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PREFACE

This book consists of two parts. The first part deals with solids with
microdefects such as cavities, cracks, and inclusions, as well as with elastic
composites. The second part provides an introduction to the theory of linear
elasticity, added to make the book self-contained since linear elasticity serves as
the basis of the development of small-deformation micromechanics.

The material for the first part of this book grew out of lecture notes of the
first author in a course on micromechanics, which was initiated at the University
of California, San Diego (UCSD), in response to the existing need for a funda-
mental understanding of the micromechanics of the overall response and failure
modes of advanced materials, such as ceramics and ceramic and other compo-
sites. These advanced materials have become the focus of systematic and exten-
sive research at the Center of Excellence for Advanced Materials (CEAM),
which was established at UCSD in 1986, to include the U.S. Government’s
University Research Initiative on Dynamic Performance of Materials. The
course, given in the Spring of 1987, was intended to furnish a basic background
for rigorous micromechanical modeling of the mechanical behavior and failure
regimes of a broad class of brittle materials.

Class notes taken by some of the graduate students were totally rewritten
by the second author in early 1988. Then this new version was completely
reworked by both authors, and used when the micromechanics course was given
for the second time in the Fall of 1988. A new version of the notes was then
completed and a major part of it was used again in the micromechanics course
in the Winter Quarter of 1990, and with more extensive revisions and additions,
again in the Winter Quarter of 1991. The manuscript was read by many gradu-
ate students who helped to correct misprints and related errors. The material
contained in this book as Part 1, is a thoroughly reexamined, modified,
expanded, and amended version of these class instruction notes. Included here
are new results on many basic issues in micromechanics, which we hope will be
helpful to graduate students and researchers dealing with rigorous physically-
based modeling of overall properties of heterogeneous solids; see Preface of
Part 1, for comments.

The second part, except for Sections 15 and 19, is essentially part of the
lecture notes on elasticity which the first author wrote in the late 1960’s, while
teaching at UCSD. Many sections were done at that time, in collaboration with
the late Professor William Prager, and it was intended then to publish a mono-
graph on elasticity in a series of books in solid mechanics, by Blaisdell Publish-
ing Company. Unfortunately, before the monograph was completed, that series
was discontinued, and the authors were released from contractual obligations.
The notes were completed and used many times at UCSD and at Northwestern
University, for class instruction by the first author. The section on variational
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methods included some new results of such generality that even today, much of
it is not known to many researchers. These were the results obtained in colla-
boration with Professor Prager. The variational principles in the current version,
given in Section 19, are even more general than those contained in the original
class notes. These principles include some new elements which should prove
useful for application to advanced modeling, as well as solutions of compesites
and related heterogeneous bodies. Section 15 is a brief modern version of ele-
ments in vector and tensor algebra, and is particularly tailored to provide back-
ground for the rest of this book. Even for students of mechanics and mechanics
of materials familiar with the basic elements of linear elasticity, a quick exami-
nation of Subsection 15.5 should prove helpful for a better understanding of the
notation and some of the details of the manipulations involved in Part 1.

While the material in Part 2 is mostly standard, given for background
information, in preparing Part 1, the authors have benefited from the contribu-
tion of many modern researchers and numerous publications which have
appeared over the past few decades. Since the book is intended for use as a
graduate text, only a few selected references are cited within the text. Important
references may have been left out inadvertently, for which the authors apolo-
gize.

While the authors take full responsibility for any errors that remain, they
wish to express their appreciation to Mr. L. Ni and graduate students, B. Balen-
dran, Hang Deng, Mark Rashid, G. Subhash, John Wehrs, Niann-1 Yu, Vinod
Sharma, Abbas Azhdari, Yeou-Fong Li, Anil Thakur, and Tomoo Okinaka, who
read various parts of various versions of the manuscript with care, and sought to
remove errors of minor or major importance. Thanks are also due John Willis
whose seminars and comments provided inspiration and insight, and led to con-
siderable improvement of several sections, as well as due Eva for proofreading
the entire manuscript, and Shiba for helping with word processing. The authors
also gratefully acknowledge the Army Research Office Contract DAAL-03-86-
K-0169 which provided the core support for the Center of Excellence for
Dynamic Performance of Materials at UCSD, and partially supported the two
authors during the preparation of this book. The book has been formatted by the
authors, using ditroff. Most of the figures, and all of the graphs have been con-
structed by pic and grap.

Sia Nemat-Nasser
Muneo Hori

La Jolla, California
September 17, 1992



PREFACE TO PART 1

Part 1 of this book contains a systematic development of the overall
response parameters of solids with microheterogeneities and defects such as
cracks and cavities. The work deals with small deformations, particularly
relevant to advanced materials such as ceramics and ceramic composites, as
well as metals and polymeric composites, in a deformation range where overall
geometrical dimensions and shapes are not altered substantially by material
deformation. While, for the most part, a linearly elastic matrix containing
linearly elastic inclusions or cavities and cracks, is considered, overall material
nonlinearity caused by microcrack formation and growth, for example, is
included. In addition, as discussed in Subsection 12.8 and in Appendix A of Part
1, the basic results apply directly to composites and heterogeneous solids con-
sisting of elastoplastic or rate-dependent elastoviscoplastic materials, as long as
the small-deformation theory applies, or small incremental steps are used.

Within the above-mentioned general framework, the subject matter of
micromechanics is treated in a deliberate and systematic manner, at each stage
beginning with the fundamentals which are then treated in depth with consider-
able care, leading to illustrative examples to bring out in a concrete fashion the
involved basic steps, and then providing a number of major results with broad
applicability.

More specifically, in Sections 1 and 2, Chapter I, the basic idea of a
heterogeneous representative volume element (RVE) is discussed. The associ-
ated boundary-value problem is formulated, both in terms of the rate of change
of the field variables, as well as in terms of the total quantities. Averaging
methods are examined in Section 2, and a series of important basic universal
results are presented. Essentially all (unless otherwise explicitly stated) the
results in Sections 1 and 2 are valid for small deformations of solids consisting
of any (elastic or inelastic) constituents with any material properties. These
comments apply to results presented in Subsections 2.1 to 2.5. In Subsection 2.5,
detailed discussions are given for solids consisting of material constituents
which admit (at the local level) stress and/or strain potentials. (The response,
however, need not be linear.) It is then shown how the overall macropotentials
relate directly to the average of the corresponding micropotentials. A set of
exact relations is obtained in this manner, and based on this, the notion of a
representative volume element is examined. The question of the effects of the
boundary data considered for an RVE, on the resulting overall energy density
(elastic but materially nonlinear), and on the overall effective moduli for a
linearly elastic RVE, is given a thorough examination, leading to a set of univer-
sal inequalities and two theorems which provide exact ordering relations when
uniform boundary tractions, linear boundary displacements, or general boundary
data are considered for an RVE. In particular, general results developed in Sub-
sections 2.5.6 and 2.5.7, relating to bounds on macropotentials and, therefore, on
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the overall strain energy and complementary energy functionals, should prove
useful and be a guiding element for specific results outlined in later sections,
using the assumption (postulate) of statistical homogeneity, and employing sim-
ple models to calculate the local average quantities. Indeed, these universal
theorems are used to obtain rigorous, computable bounds of considerable gen-
erality in Section 9, as is discussed later on in the sequel.

In Subsection 2.6, questions of statistical homogeneity and representative
volume elements are again examined to clarify the nature of the boundary data
which may be assigned to an RVE, and their influence on the resulting average
stresses, strains, and their potentials. Conditions under which the average of the
product of the stress and strain (or their rates) equals the product of the
corresponding averages, are discussed.

Included in Sections 1 and 2 also is a brief discussion of nonmechanical
properties of inhomogeneous media. General results developed for mechanical
properties are specialized and applied to electrostatic, magnetostatic, thermal,
and diffusional properties of a heterogeneous RVE.

Chapter II is devoted to estimating, in a systematic manner, the overall
elasticity and compliance tensors of a linearly elastic matrix containing micro-
cavities and microcracks, using two simple models for the averaging procedure.
These are: the dilute distribution model which assumes that the inhomogeneities
are small and far apart, so that their interaction may be neglected; and the self-
consistent model which takes into account the corresponding interaction, in a
certain, overall, approximate manner. In particular, in Section 3 the stress-strain
relations of linear elasticity are reviewed and the necessary background is pro-
vided for subsequent sections. In Section 4, a systematic discussion of the
overall stress and strain in a porous RVE is given for two limiting alternative
boundary data, namely, uniform tractions, and linear displacements. It is shown,
directly and in a simple manner, how the corresponding overall compliance and
elasticity tensors can be estimated, using the reciprocal theorem and simple esti-
mates of the cavity boundary displacements. These results are generally valid
for cavities of any shape or distribution, and, except for the assumption of linear
elasticity, no approximations are involved. In Section 5 the general results of
Section 4 are applied to porous, linearly elastic solids. The dilute-distribution
and the self-consistent models are used. The relation between these models is
discussed in terms of specific problems. Section 6 deals with elastic solids with
microcracks. Here again, the same two models are used in a number of illustra-
tive examples, and the corresponding results are compared and discussed. In
addition, a brief overview of recent advances in theoretical and experimental
evaluation of brittle failure in compression is presented in Subsection 6.9.

Chapter III is devoted to linearly elastic solids with elastic micro-
inclusions, as well as the elastic response of polycrystals. First, in Section 7, for
micro-inclusions of any geometry and elasticity, exact general expressions for
the overall elastic modulus and compliance tensors are obtained, for overall
uniform boundary tractions and overall linear boundary displacements, respec-
tively. Then in Subsection 7.3, the concepts of eigenstrain and eigenstress
required to homogenize the heterogeneous RVE are introduced and examined in
some detail. In particular, Eshelby’s tensor for an ellipsoidal inclusion
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embedded in a uniform, infinitely extended, linearly elastic solid, is presented,
together with its dual tensor (the first associated with an eigenstrain, and the
second associated with the corresponding eigenstress), their properties exam-
ined, together with their dual relations, and they are used to obtain consistency
conditions associated with the homogenization. These results are then related to
the H- and J-tensors, introduced in Section 4, to homogenize an elastic RVE
containing microcavities and microcracks. The results are then used to formulate
overall modulus and compliance tensors of an elastic RVE with elastic inclu-
sions, on the basis of the dilute-distribution and the self-consistent models; Sub-
sections 7.4 and 7.5. The formulation of the overall elasticity and compliance
tensors, in terms of the overall elastic energy of the RVE, is discussed in Sub-
section 7.6, focusing particularly on the required symmetry for the overall elasti-
city and compliance tensors. Section 8 contains specific illustrative examples for
elastic solids with micro-inclusions. A number of problems are worked out in’
detail, and numerical illustrations are presented.

Upper and lower bounds for the overall elastic moduli are presented in
Section 9. First, the Hashin-Shtrikman variational principle, as generalized by
Willis, is presented, when either the eigenstrains or the eigenstresses are used to
homogenize the corresponding heterogeneous RVE, leading to two functionals:
one, when the overall uniform boundary tractions are prescribed, where the
eigenstrains are used for homogenization, and the other, when the overall linear
displacement boundary data are assigned, in which case the eigenstresses are
used to homogenize the RVE. This leads to an elegant dual principle, with the
corresponding Euler equations defining the associated consistency conditions.

The upper and lower bounds for the energy functionals are presented in
Subsection 9.2, and their generalization is given in Subsection 9.3. Direct esti-
mates of the overall moduli, using approximate correlation tensors, are
presented in Subsection 9.4. In Subsection 9.5, the Hashin-Shtrikman varia-
tional principle is generalized for boundary data other than uniform tractions
and linear displacements, and the corresponding generalized bounds are
obtained. With the aid of the universal theorems of Subsection 2.5.6, these
bounds are then related to the bounds for the uniform traction and linear dis-
placement boundary data. It is proved that two out of four possible approximate
expressions that result are indeed rigorous bounds. Explicit, computable, exact
upper and lower bounds for the overall moduli are then given, when the com-
posite is statistically homogeneous and isotropic. Finally, it is shown in Subsec-
tion 9.6 that these new observations lead to universal bounds on two overall
moduli of multi-phase composites, valid for any shape or distribution of phases.
Furthermore, it is established that the bounds are valid for any finite elastic solid
of ellipsoidal shape, consisting of any distribution of inhomogeneities of any
shape and elasticity. (In Section 13, it is proved that the same bounds emerge
for multi-phase composites with periodic, but otherwise completely arbitrary,
microstructure.)

For historical reasons, the bounds on the overall properties in Section 9
are based on the Hashin-Shtrikman variational principle. An alternative formu-
lation of exact computable bounds is to use the universal theorems of Subsection
2.5.6, together with proper choices of the reference elasticity or compliance
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tensors. This is presented in Subsection 9.5.6. It is also used in Subsection
9.7.2 to formulate bounds on parameters which define nonmechanical properties
(e.g., conductivity and resistivity tensors) of composites.

A number of averaging methods (models) are studied in a systematic
manner in Section 10. This includes the dilute-distribution and the self-
consistent methods, as well as the differential scheme, and the two- and three-
phase models. The double-inclusion method is discussed in Subsection 10.4,
together with the Mori-Tanaka result, which leads to a number of interesting
results; for example, the self-consistent estimate is shown to be a special case of
the double-inclusion model, and is related to the Hashin-Shtrikman bounds. The
double-inclusion model is then generalized to multi-inclusion models, where,
again, all the average field quantities are estimated analytically. For a set of
nested ellipsoidal regions of arbitrary aspect ratios and relative locations, which
is embedded in an infinitely extended homogeneous elastic solid of arbitrary
elasticity, and which undergoes transformations with uniform but distinct
transformation strains within each annulus, the resulting average strains of each
annulus are computed exactly and in closed form; the transformation strains in
the innermost region need not be uniform. Explicit results are presented for an
embedded double inclusion, as well as a nested set of n inclusions. As examples
of the application of the multi-inclusion model, a composite containing multi-
layer inclusions and a composite consisting of several distinct materials are con-
sidered, and their overall moduli are analytically estimated. Then, relations
among these approximate techniques are studied, and comments on other
averaging schemes are made.

The development of Eshelby’s tensor in terms of the infinite-space Green
function, is contained in Section 11, where the properties of this tensor and its
dual are studied. Given in this section is the Mori-Tanaka result, and its general-
ization to the case when arbitrary nonuniform eigenstrains (or transformation
strains) are distributed in a region of arbitrary geometry which is contained in an
ellipsoidal domain which, in turn, is embedded in an infinite homogeneous
domain. This result provides a powerful tool for the study of, for example,
fiber-reinforced composites with coated and/or partially debonded fibers. Then,
relations among various average quantities are examined, and the energy associ-
ated with heterogeneity and, hence, the homogenizing eigenstrains or eigens-
tresses, is derived.

Chapter IV covers the fundamentals of heterogeneous elastic solids with
periodically distributed inhomogeneities, such as inclusions, fibers, cavities, and
cracks. This chapter includes a number of new results, while at the same time
presenting the theory in considerable depth, starting at an elementary level.
Section 12 provides background information and gives a number of illustrative
examples, including periodically distributed interacting cracks. For a periodic
structure, the concept of a unit cell is introduced and, using Fourier series, the
general solution is obtained. Specific classes of problems are then solved as
illustration, and the overall average elastic parameters are obtained in terms of
the geometry and properties of the representative unit cell. Application of the
general results to a unit cell with rate-dependent or rate-independent consti-
tuents is examined in Subsection 12.8.
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Section 13 focuses on the overall response of solids with periodic micros-
tructure consisting of some arrangements of linearly elastic uniform micro-
inclusions embedded in a linearly elastic uniform matrix. First, an equivalent
homogeneous solid is defined by introducing suitable periodic eigenstrain or
eigenstress fields. Then, the Hashin-Shtrikman variational principle is applied
to solids with periodic microstructure, and bounds on the overall moduli are
obtained by defining energy functionals for the eigenstrain or eigenstress fields
in the equivalent homogeneous solid. The bounds for the periodic microstruc-
ture are exact and can be computed to any desired degree of accuracy. It is
shown in Subsection 13.5, that there are always two overall elastic parameters
whose bounds, obtained on the basis of the periodic and random (RVE) micros-
tructures, are identical, and hence exact. Moreover, these bounds are valid for
inclusions of any shape or elasticity. In addition, it is shown that, with the aid of
the minimum potential and complementary potential energies, bounds on the
overall parameters are obtained directly, by a suitable choice of a reference
elasticity or compliance tensor.

In Section 14 the concept of mirror images of points and vectors is intro-
duced and then used to decompose tensor-valued functions defined on the unit
cell, to their symmetric and antisymmetric parts. The decomposition is applied
to Fourier series representations of tensor-valued field quantities such as strain,
stress, and elastic moduli, resulting in considerable economy in numerical com-
putation and clarity in restrictions which must be imposed on the boundary data.

In Appendix A of Part 1, application of the basic results to nonlinear rate-
dependent and rate-independent inelastic heterogeneous solids is briefly exam-
ined. Illustrative constitutive relations for phenomenological and slip-induced
plasticity models are briefly presented, and their implementation in terms of the
general theories of the preceding sections is pointed out. First, certain rate-
independent phenomenological plasticity theories are outlined, with a brief
examination of slip-induced crystal plasticity. Then their interpretation in terms
of rate-dependent processes is mentioned.



CHAPTERII

AGGREGATE PROPERTIES
AND
AVERAGING METHODS

In this chapter the concept of representative volume element (RVE) is
introduced and some averaging techniques for obtaining aggregate
properties in terms of microstructure are presented. While attention is
confined to small-deformation theories, no additional restrictions are
imposed on the constitutive properties of the micro-elements which
comprise an RVE. The general relations obtained in this chapter are
used throughout the remainder of this book. Familiarity with the basic
concepts and field equations of small-deformation continuum mechan-
ics, and hence with associated tensor fields and tensorial operations is
assumed. A brief account of tensors and tensor fields, and basic field
equations of small-deformation continuum mechanics, particularly
linear elasticity, is presented in Part 2 of this book.



SECTION 1 AGGREGATE PROPERTIES

The relation between the continuum properties of a material neighborhood
and its microstructure and microconstituents is discussed in general terms. The
physical basis of the transition from the microscale to the macroscale is exam-
ined and illustrated, arriving at the notion of a representative volume element
(RVE). Then the associated boundary-value problems are formulated, in terms
of the total field quantities and their rates. Included also is a brief mention of
nonmechanical properties such as overall thermal, electrical, magnetic, and dif-
fusional measures for microscopically heterogeneous media.

1.1. REPRESENTATIVE VOLUME ELEMENT

Continuum mechanics deals with idealized materials consisting of
material points and material neighborhoods. It assumes that the material distri-
bution, the stresses, and the strains within an infinitesimal material neighbor-
hood of a typical particle (or a material element) can be regarded as essentially
uniform. On the microscale, however, the infinitesimal material neighborhood,
in general, is not uniform, consisting of various constituents with differing prop-
erties and shapes, i.e., an infinitesimal material element has its own complex
and, in general, evolving microstructure. Hence, the stress and strain fields
within the material element likewise are not uniform at the microscale level.
One of the main objectives of micromechanics is to express in a systematic and
rigorous manner the continuum quantities associated with an infinitesimal
material neighborhood in terms of the parameters that characterize the micro-
structure and properties of the microconstituents of the material neighborhood.

To this end, the concept of a representative volume element (RVE) is
introduced; Hill (1963), Hashin (1964, 1983), Kroner (1977), Willis (1981), and
Nemat-Nasser (1986). An RVE for a material point of a continuum mass is a
material volume which is statistically representative of the infinitesimal material
neighborhood of that material point. The continuum material point is called a
macro-element. The corresponding microconstituents of the RVE are called the
micro-elements. An RVE must include a very large number of micro-elements,
and be statistically representative of the local continuum properties.

Figure 1.1.1a shows a continuum, and identifies a typical material point P
surrounded by an infinitesimal material element. When the macro-element is
magnified, as sketched in Figure 1.1.1b, it may have its own complex micro-
structure. It may consist of grains separated by grain boundaries, voids, inclu-
sions, cracks, and other similar defects. To be representative, this RVE must
include a very large number of such microheterogeneities.
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MACROSCALE MICROSCALE
CONTINUUM

inclusions

€3

magnified

(a)

grain boundaries

cracks

(¢] €
(b)
€

Figure 1.1.1

(a) P is a material point or material element surrounded by a material neighbor-
hood, i.e., a macro-element; (b) Possible microstructure of an RVE for the ma-
terial neighborhood of P

Figure 1.1.2 is a collection of several micrographs showing the micro-
structure in magnesia-partially stabilized zirconia (Mg-PSZ). Figures 1.1.2a,b
are optical micrographs of a zirconia sample which has been subjected to a sin-
gle compressive pulse (uniaxial stress) in the direction of the arrows, producing
phase transformation (Figure 1.1.2a) from a meta-stable tetragonal to a stable
monoclinic crystalline structure in PSZ, as well as creating microcracks (Figure
1.1.2b) essentially parallel to the direction of compression; Rogers and Nemat-

Nasser (1989).! If these cracks are regarded as approximately flat, their normals
then fall on a plane normal to the direction of compression, having an essentially
uniform distribution. Figure 1.1.2¢ is a micrograph showing the intersection of
these cracks with a plane normal to the direction of compression. While these
cracks are not "flat”, they are randomly oriented.

After the first loading discussed above, the sample, which has a cubical
geometry, is subjected to another single compression pulse (uniaxial stress) in a
direction normal to the direction of the first loading. Figure 1.1.2d is the corre-
sponding micrograph showing new microcracks which have been formed in the
direction of the second loading, essentially normal to the first set of cracks.

Phase transformation from tetragonal to monoclinic occurs in platelet pre-
cipitates. This transformation involves both shear deformation and volumetric
expansion. The constraint imposed by the surrounding matrix, forces the pre-
cipitates to accommodate the transformation shear strain through twinning, as is

! For qualitative experimental and quantitative theoretical modeling of compression-induced
cracks in brittie solids, see Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser (1985, 1986),
and Ashby and Hallam (1986), where references to other works, especially in rock mechanics, are
also given; for a review, see Nemat-Nasser (1989), and Subsection 6.9.
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AGGREGATE PROPERTIES

Figure 1.1.2

(a) Optical micrograph of surface rumples due to phase transformation in Mg-
PSZ; (b) Microcracks in the direction of applied compression pulse; (c) Essen-
tially randomly oriented microcracks normal to applied compression; (d) Addi-
tional microcracks in the direction of second loading; (€) Transmission electron
micrograph showing twinning of a transformed precipitate and microcracks at
interface with matrix; (f) Microcavities, grain boundaries, microcracks, etc. in

Mg-PSZ (from Subhash, 1991)

i3
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shown in the transmission electron micrograph of Figure 1.1.2e. Twinning
introduces additional minute cracks at the interfaces between the PSZ precipi-
tates and the elastic matrix, as is evident in this last figure.

Therefore, in a tested sample of Mg-PSZ, in addition to pre-existing
microcavities and grain boundaries (Figure 1.1.2f), there are numerous micro-
cracks with a rather special distribution, depending on the loading history. The
phase transformation and twinning strains within small precipitates which are
distributed in a cubic manner within each crystal of this polycrystalline ceramic,
produce additional minute microcracks at the interfaces between the
transformed precipitates and the matrix. Tension cracks are also observed to
form normal to the applied compression, upon unloading.

Figures 1.1.3a,b,c are optical micrographs of a metal-matrix composite
(MMC) consisting of an aluminum matrix with alumina inclusions of a special
arrangement caused by the processing technique, which involves a final uniaxial
extrusion of the composite. The alumina particles are more or less aligned in
the direction of extrusion. Figures 1.1.3a,b,c show the cross sections of a typical
thin plate of this material, taken, respectively, through the plate thickness, nor-
mal to the direction of the extrusion; parallel to the direction of extrusion; and
parallel to both the extrusion-direction and the upper and lower surfaces of the
extruded plate.

Figure 1.1.3

Optical micrographs of an aluminum-alumina metal-matrix composite: (a) Nor-
mal to the extrusion-direction; (b) Parallel to the extrusion-direction and
through the plate thickness; (c) Parallel to the extrusion-direction and plate
faces (from Altman et al., 1992)

In these examples, a sample of a typical dimension of several millimeters
may be used as an RVE. As may be inferred from these illustrations, to quantify
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the concept of an RVE, two length-scales are necessary: one is the continuum-
or macro-length-scale, by which the infinitesimal material neighborhood is
measured; the second is the micro-length-scale which corresponds to the smal-
lest microconstituent whose properties and shape are judged to have direct,
first-order effects on the overall response and properties of the continuum
infinitesimal material neighborhood or macro-element. In general, the typical
dimension of the macro-element, D, must be orders of magnitude larger than the
typical dimension of the micro-element, d; i.e., D/d >> 1. For example, if the
continuum is a polycrystalline solid which is viewed as a homogenized contin-
uum, and one is interested in describing the aggregate or polycrystal properties
(the polycrystal being the macro-element) in terms of single-crystal properties
(each crystal being a micro-element), then the dimension, D, of the RVE should
be much larger than the typical size, d, of the individual crystals. As a second
example, if one is interested in estimating the elastic moduli of a whisker-
reinforced composite in terms of the matrix (assumed uniform and homogene-
ous) and the whisker parameters, then the size of the RVE must be such that it
includes a large number of whiskers. In either example, whether or not the
micro-elements have a random, periodic, or other distribution does not affect the
requirement of D/d >> 1, although, of course, the corresponding overall proper-
ties of the RVE are directly affected by this distribution. In the illustrations of
Figures 1.1.2a~f and Figures 1.1.3a,b,c, the macroscopic samples used in exper-
imentally obtaining the overall mechanical properties are clearly good candi-
dates for the corresponding RVE, since their macro-dimensions (of the order of
several millimeters) are orders of magnitude greater than the dimension of the
cavities, microcracks, precipitates, individual crystals, and inclusions, which are
no greater than tens of microns.

Note that the absolute dimensions of the microconstituents may be very
large or very small, depending on the size of the continuum mass and the objec-
tives of the analysis. It is only the relative dimensions that are of concern. For
example, in characterizing the overall properties of a mass of compacted fine
powder in powder-metallurgy, with grains of submicron size, a neighborhood of
a dimension of 100 microns would be sufficient as an RVE, whereas in charac-
terizing an earth dam as a continuum, with aggregates of many centimeters in
size, the absolute dimension of an RVE would be of the order of tens of meters.

Another important question is what constitutes an underlying essential
microconstituent. This also is a relative concept, depending on the particular
problem and the particular objective. It must be addressed through systematic
microstructural observation at the level of interest, and must be guided by exper-
imental results. Perhaps one of the most vital decisions that the analyst makes is
the definition of the RVE. An optimum choice would be one that includes the
most dominant features that have first-order influence on the overall properties
of interest and, at the same time, yields the simplest model. This can only be
done through a coordinated sequence of microscopic (small-scale) and macros-
copic (continuum-scale) observation, experimentation, and analysis. In many
problems in the mechanics of materials, suitable choices often emerge naturally
in the course of the examination of the corresponding physical attributes and the
experimental results.
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1.2. SCOPE OF THE BOOK

The extraction of macroscopic properties of microscopically heterogene-
ous media, on the basis of systematic modeling, has taken varied paths in the
literature. The path chosen in this book rests heavily on the basic rigorous
approach of applied mechanics, in the spirit pioneered by Hill (1952, 1963,
1964a,b, 1965a,b), Kroner (1953, 1958, 1977, 1978), Hershey (1954a,b), Hashin
(1964, 1965a,b, 1968, 1970, 1983), Hashin and Shtrikman (1962a,b, 1963),
Budiansky (1965), Walpole (1966a,b), and Willis (1977); see also, Christensen
(1979), Nabarro (1979), Walpole (1981), Willis (1981, 1982), Bilby et al.
(1985), Mura (1987), Weng et al. (1990), and references cited therein. Roughly
speaking, the approach begins with a simple model, exploits fundamental princi-
ples of continuum mechanics, especially linear elasticity and the associated
extremum principles, and, estimating local quantities in an RVE in terms of glo-
bal boundary data, seeks to compute the overall properties and the associated
bounds.

The book is organized in two parts. In Part 1, a fundamental and general
framework for quantitative, rigorous analysis of the overall response and failure
modes of microstructurally heterogeneous solids is systematically developed.
Based on the theory of elasticity, particularly basic variational principles, and
general averaging techniques, exact expressions are obtained for parameters
which describe the overall mechanical and nonmechanical properties of hetero-
geneous solids and composites, in terms of the corresponding microstructure.
These expressions apply to broad classes of materials with inhomogeneities and
defects. The inhomogeneities may be precipitates, inclusions, whiskers, and
reinforcing fibers, or they may be voids, microcracks, or plastically-induced
slips, twins, and transformed materials. While, for the most part, the general
framework is set within linear elasticity, the results directly translate to hetero-
geneous solids with rate-dependent or rate-independent inelastic constituents.
This application is specifically pointed out at various suitable places within the
book.

The general exact relations obtained between the overall properties and
the microstructure, are then used together with simple models, to develop tech-
niques for direct quantitative evaluation of the overall response which is gen-
erally described in terms of instantaneous overall moduli or compliances. These
techniques include the dilute-distribution, the self-consistent, the differential, the
double- and multi-inclusion, and the periodic models. The relations among the
corresponding results for a variety of problems are examined in great detail,
illustrated by specific, technologically significant, problems, and discussed in
relation to rigorous computable bounds. Examples include solids with microcav-
ities, microcracks, micro-inclusions, and fibers. The bounds, as well as the
specific results, include new observations and original developments, as well as
a careful account of the state of the art.

More specifically, in Section 1, the basic concept of representative volume
element (RVE) is introduced, and in Section 2, general averaging theorems are
presented. For heterogeneous solids whose constituents admit stress or strain
potentials, exact relations are obtained between the macro- and microquantities.
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In addition, two universal theorems are given, which provide clear ordering for
the strain energy and the complementary strain energy of any heterogeneous
elastic solid (not necessarily linear) subjected to various boundary data (dif-
ferent, but consistent) which produce either the same overall strains or the same
overall stresses. These universal bounds are then used in a novel manner later,
in Section 9, to develop exact computable bounds on the overall energies and
moduli or compliances of a broad class of composites. In Sections 3-8, simple
illustrative examples are worked out in great detail, to show the application of
the fundamental relations. Section 9 deals with the general concept of varia-
tional principles and bounds on the overall parameters. In Section 10, the
results of various models are reexamined with care and compared, and in Sec-
tion 11, certain necessary mathematical background information, particularly on
Green’s functions, is given. Sections 12, 13, and 14 are dedicated to basic
results and illustrative examples of heterogeneous solids with periodic micro-
structure, including inclusions, voids, and cracks. Exact, computable bounds are
given for periodic microstructures with unit cells consisting of any number,
shape, or distribution of phases. In particular, universal bounds on two overall
parameters of the composite are developed, and it is shown that the same exact
bounds remain valid for any volume element (not necessarily with periodic
microstructure) of any heterogeneous elastic solid. In Appendix A of Part 1,
application of the basic results to nonlinear rate-dependent and rate-independent
inelastic heterogeneous solids is briefly examined.

To render the book self-contained, fundamentals of continuum mechanics,
particularly linear elasticity, essential for micromechanics, are briefly presented
in Sections 15-20 of Part 2. Section 21 reviews the mathematical tools for the
solution of two-dimensional elasticity problems with singularities, including the
Hilbert problem formulation in terms of singular integral equations, both Cau-
chy singular and Hadamard’s finite-part integral, for general anisotropic materi-
als.

There are other, equally rigorous and useful, approaches which provide at
least complementary information on the overall behavior of microscopically
heterogeneous solids. One such approach is the explicitly statistical formula-
tion, where an RVE is viewed as a member of an ensemble of RVE’s, from
which ensemble averages are sought, estimated, and used to represent the corre-
sponding macroscopic constitutive parameters, as well as the material response;
for discussion and references, see Beran (1968, 1971), Kroner (1971), Batchelor
(1974), and McCoy (1981). The statistical approach usually seeks to define the
required overall properties of a microstructurally randomly heterogeneous
material in terms of the so-called correlation tensors. The n-point correlation
tensor is the probability of finding certain material phases at n different points
within an RVE. The simplest case is a two-point correlation tensor which pro-
vides the probability of finding, say, the oith phase at two points within an RVE,
x! and x2. In a similar way, cross correlation of two and several phases are
defined. Early work in this area is by Brown (1955), Miller (1969a,b), and Hori
and Yonezawa (1974, 1975); for a discussion and references, see Torquato
(1991). Such statistical information has been used to develop improved bounds
on effective properties of microstructurally randomly heterogeneous materials.
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This book does not deal with the statistical approach. The above com-
ments and references, therefore, are given as an entry to the vast literature on the
subject, focused on statistical estimations of continuum properties. Since the
assumption of ergodicity allows replacing ensemble averages with sample aver-
ages, it may be viewed as a bridge between the explicitly statistical and the
approach chosen in this book. At this early point in the discourse, suffice it to
say that an RVE may be regarded as a representative part of a very large hetero-
geneous solid (infinitely extended), any of whose suitably large subregions may
be used to obtain essentially the same overall macroscopic material properties
and local continuum field variables. A large solid of this kind is called statisti-
cally homogeneous. The assumption (hypothesis) of ergodicity then allows
extracting ensemble statistics from averages obtained over such a statistically
homogeneous, very large, but microscopically heterogeneous continuum. In this
context, one may consider three length-scales, namely, a microscale defining the
heterogeneity within an RVE, a miniscale defining the size of an RVE, and a
macroscale associated with the laboratory (or the continuum) sample; for dis-
cussion and references, see Hashin (1983). Since, within the infinitely extended,
statistically homogeneous solid, translation and rotation of an RVE (if isotropic)
are assumed to leave the corresponding averages essentially unchanged, these
are also referred to as moving averages. Certain mathematical aspects of this
concept are examined in Subsections 2.5 and 2.6.

In addition to the above alternatives, there is considerable literature on the
engineering approach to estimating material stiffness and strength, mainly
focused on engineering composites. Much of the material covered in this book
can and does serve as a fundamental framework for other, more application-

oriented techniques.? There are journals and proceedings of national and inter-
national conferences on composite materials, which cover a broad spectrum of
approaches of this kind; see, as illustration, Vinson and Sierakowski (1986),
Wilde and Blain (1990), and the Delaware Composite Design Encyclopedia
volume 1-6 edited by Carlsson and Gillespie (1989-90). As an entry to the vast
literature of the mechanics-related materials aspect of micromechanics, particu-
larly relating to the properties of ceramics and ceramic composites, the follow-
ing general references are mentioned: Khachaturyan (1983), Pask and Evans
(1987), Riihle er al. (1990), Mazdiyasni (1990), and Suresh (1991).

An approach of recent origin, akin to phenomenological plasticity, is dam-
age mechanics, with an already rather extensive series of contributions. For
general reference, see, e.g., Talreja (1985), a comprehensive review by Krajci-
novic (1989), and a symposium proceedings edited by Ju (1992).

? See, e.g., Aboudi (1990} for the application of a finite-element method to a solid with period-
ic microstructure.
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1.3. DESCRIPTION OF RVE

In micromechanics the concept of an RVE is used to estimate the contin-
uum properties at a continnum material point, in terms of the microstructure and
microconstituents that comprise that material point and its infinitesimal material
neighborhood, i.e., to obtain the continuum constitutive properties in terms of
the properties and structure of the microconstituents. These constitutive proper-
ties, often expressed as constitutive relations, are then used in the balance equa-
tions to calculate the overall response of the continuum mass to applied loads
and prescribed boundary data. The balance equations include the equations of
the conservation of mass, linear and angular momenta, and energy. These equa-
tions contain the body forces representing the effect of the materials not in con-
tact with the considered continuum and the inertia forces due to the motion of
the continuum itself, as well as the associated force and displacement boundary
data which represent the effect of the other continua in contact with the con-
sidered continuum. Therefore, in formulating boundary-value problems associ-
ated with an RVE, it is not necessary to include the body forces. Nor is it neces-

sary to include the inertia terms for a broad range of problems®. The basic
requirement is to obtain the overall average properties of the RVE, when sub-
jected to the boundary data corresponding to the uniform fields in the continuum
infinitesimal material neighborhood which the RVE is aimed to represent. In
other words, an RVE may be viewed as a heterogeneous medium under
prescribed boundary data which correspond to the uniform local continuum
fields. The aim then is to calculate its overall response parameters, and use
these to describe the local properties of the continuum material element.

Since the microstructure of the material, in general, changes in the course
of deformation, the overall properties of its RVE also, in general, change.
Hence, an incremental formulation is often necessary. For certain problems in
elasticity, however, this may not be necessary, and a formulation in terms of the
total stresses and strains may suffice.

Consider an RVE with volume V bounded by a regular surface dV. A typ-
ical point in V is identified by its position vector, X, with components, x; (i =1,
2, 3), relative to a fixed rectangular Cartesian coordinate system. The unit base
vectors of this coordinate system are denoted by e; (i = 1, 2, 3), and the position
vector x is given by

X =6 (1.3.1)

where repeated subscripts are summed. For the purpose of micromechanical
calculations, the RVE is regarded as a heterogeneous continuum with spatially
variable, but known, constitutive properties. In many cases, the objective then
is to estimate the overall (average), say, strain increment, as a function of the
corresponding prescribed incremental surface forces or, conversely, the average
stress increment, as a function of the prescribed incremental surface

* An example in which the inertia forces are of prime importance is the description of the gas
laws in terms of the corresponding molecular motion. Another example is the description of the heat
capacity of solids in terms of atomic vibrations.
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displacements. For uniform macrofields, the prescribed incremental surface trac-
tions may be taken as spatially uniform, or, in the converse case, the prescribed
incremental surface displacements may be assumed as spatially linear.

Under the prescribed surface data, the RVE must be in equilibrium and its
overall deformation compatible. In constitutive modeling, body forces and iner-
tia terms are absent. The prescribed surface tractions must hence be self-
equilibrating. In the same manner, the prescribed surface displacements must be
self-compatible so that they do not include rigid-body translations or rotations.
Moreover, if the prescribed surface displacements are associated with a strain
field, this field must be compatible. These conditions are assumed to hold
throughout this chapter and elsewhere in this book, whenever we deal with an
RVE with prescribed boundary data.

Whether boundary displacements or boundary tractions are regarded as
prescribed, a viable micromechanical approach should produce equivalent
overall constitutive parameters for the corresponding macro-element. For
example, if the instantaneous overall moduli and compliances are being calcu-
lated, then the resulting instantaneous modulus tensor obtained for the
prescribed incremental surface displacements should be the inverse of the
instantaneous compliance tensor obtained for the prescribed incremental surface
tractions on the RVE.

The displacement, u = u(x), strain, € = &(x), and stress, 6 = 6(x), fields
within volume V of the RVE, vary from point to point, even if the boundary
tractions are uniform or the boundary displacements are linear. The governing
field equations at a typical point X in V, include the balance of linear and angu-

lar momenta,4

V.o =0, =0T iV, (1.3.2a,b)
and the strain-displacement relation,

€= %{V®u+(V®u)T} inV, (1.3.3a)
where V is the del operator defined by

V=0e= aixiei’ (1.3.4)

and superscript T denotes transpose; see Part 2, especially Section 15 of this
book, for additional discussion and comments. In rectangular Cartesian com-
ponent form, (1.3.2) and (1.3.3) become

Giji,j = 0, Gij = Cji inVv, (1.3.20,d)
and

&= %(ui,j +u;)  inV, (1.3.3b)

4 Here the stress and deformation fields are assumed to be continuous. Interfaces and discon-
tinuities are considered in Subsection 2.4.
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where i, j = 1, 2, 3, and a comma followed by an index denotes partial differen-
tiation with respect to the corresponding coordinate variable.

When the self-equilibrating tractions (not necessarily uniform), t°, are
assumed prescribed on the boundary 0V of the RVE, as shown in Figure 1.3.1a,
then

vV.o=1t° ondV, (1.3.5a)
or
O Vi =1t° ondV, (1.3.5b)

where v is the outer unit normal vector of dV. On the other hand, when the dis-
placements (not necessarily linear), u°, are assumed prescribed on the boundary
of the RVE, as shown in Figure 1.3.1b, it follows that

u=u® ondV, (1.3.6a)
or
y=u® ondV. (1.3.6b)
kA%
e © v < w 9V v
€ €
e .
! (a) Traction boundary e (b) Displacement boundary
conditions conditions

Figure 1.3.1

For the incremental formulation it is necessary to consider a rate problem,
where traction rates i°, or velocity u°, but not both, as discussed above, may be
regarded as prescribed on the boundary of the RVE. Here the rates may be
measured in terms of a monotone increasing parameter, since no inertia effects
are included. For a rate-dependent material response, however, the actual time
must be used. The basic field equations are obtained from (1.3.2~6) by substi-
tuting the corresponding rate quantities, e.g., 6 for ©, € for €, and u for u, arriv-
ing at
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V.6=0, o6=06T inV, (1.3.7a,b)
and

¢=2{Vei+(Vei)T} inV. (13.8)
When the self-equilibrating boundary traction rates, i°, are prescribed,

v.6 =t ondV, (1.3.9)

and when the self-compatible boundary velocities, u®, are prescribed,

a=u° ondV. (1.3.10)

For the most part, this book focuses on the mechanical properties of
heterogeneous media. However, essentially all of the results can be reduced and
directly applied to the nonmechanical properties of microscopically heterogene-
ous materials. This will be pointed out at appropriate places throughout Part 1,
providing guidance for this kind of application.

As an illustration, consider thermal conduction problems, and let u = u(x)
be the temperature. With q = q(x) defining the corresponding heat flux, in the
absence of any heat sources the steady-state regime corresponds to

V.q=0 inV. (1.3.11a)

The boundary conditions may be expressed, either in terms of the normal com-
ponent of the flux,

v.q=q° onadV, (1.3.12a)
or in terms of the temperature field,

u=u® ondV. (1.3.13)
In component form, (1.3.11a) and (1.3.12a), respectively, become

;=0 inV, (1.3.11b)

Vigi=q° onoaV. (1.3.12b)

Note from (1.3.11a) that the boundary flux q° must be self-balanced in the sense
that

[,V-adv=]_gds=o. (1.3.12¢)

For future use, define p = p(x) by
p=-Vu inV, (1.3.14a)
or
pi=—u; inV. (1.3.14b)

The negative of the temperature gradient, p, may be viewed as the force which
drives the heat flux, q. In the terminology of irreversible thermodynamics, at
least for convenience, p may be called the force conjugate to the flux q. Finally,
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for an incremental formulation, the rate quantities, namely, 1, q, and p, are used.

In the context of estimating the overall material parameters of an RVE,
the steady-state thermal, diffusional, electrical, and magnetic field equations are
quite similar. For example, u may be identified with the electric potential (usu-
ally denoted by ¢), p with the electric field (usually denoted by E), and q with
the electric displacement (usually denoted by D). The relation to mass diffusion
is obvious. For magnetostatics, q is identified with the magnetic induction (usu-
ally denoted by B) and p with the magnetic field intensity (usually denoted by
H).
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SECTION 2 AVERAGING METHODS

Fundamental averaging theorems necessary to extract the overall quanti-
ties are presented in this section. Many of the results apply to heterogeneous
solids with constituents of arbitrary material properties, linear or nonlinear,
rate-dependent or rate-independent. Then attention is focused on heterogeneous
solids whose constituents admit stress and/or strain potentials. Relations
between macropotentials and corresponding micropotentials are examined in
some detail for various boundary conditions. A number of bounding theorems
are developed, which provide ordering for the overall stress and strain potentials
when uniform tractions, linear displacements, or general (mixed, but consistent)
boundary data for an RVE are considered. In light of these basic results, the
notions of statistical homogeneity and representative volume element are re-
examined and precise conditions implied by, and implying, statistical homo-
geneity are studied in detail. This section, therefore, lays the theoretical founda-
tion for many of the results developed in subsequent sections.

2.1. AVERAGE STRESS AND STRESS RATE

Whether the prescribed self-equilibrating boundary tractions on dV are
spatially uniform or not, the unweighted volume average of the variable stress
field o(x), taken over the volume V of the RVE, is completely defined in terms
of the prescribed boundary tractions. To show this, denote the volume average
of a typical, spatially variable, integrable quantity, T(x), by

_1
<T>=v v T(x) dv. (2.1.1)
Then the unweighted volume average stress, denoted by G, is
G=<0>. 2.1.2)

The gradient of x satisfies
(Vex)T = aj X; €;®€j = X;j€;®e; = Sij ejee; = 19, (2.1.3)

where 8;; is the Kronecker delta (3;; = 1 when i = j, and = 0 otherwise), and 1@
is the second-order unit tensor. From equations of equilibrium (1.3.2), and since
the stress tensor is divergence-free,

6=19.6=(Vex)T.c = {V.(69x)}". 2.1.9)

By means of the Gauss theorem, the average stress O is expressed as
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<6>= [ (V.@en)TdV =1 [ (v.ex)Tds, 2.1.5)
and in view of (1.3.5a),

&= ), xetods, (2.1.6a)
or

_ 1 o

G = vjav X b ds. (2.1.6b)

It should be noted that since the prescribed surface tractions, t°, are self-
equilibrating, their resultant total force and total moment about a fixed point
vanish, i.e.,

jav t°dS=0, jav xxt°dS =0, (2.1.7a,b)
or
J'av t°dS =0, J‘av e Xt dS =0, (2.1.7¢,d)

where ey is the permutation symbol of the third order; e = (+ 1, — 1, 0) when
i, j, k form (even, odd, no) permutation of 1, 2, 3. Hence, the average stress ©
defined by (2.1.6) is symmetric and independent of the origin of the coordinate
system. Indeed, from (2.1.7¢c),

jav xot°dS = jav t°@x ds, (2.1.7¢)
and, hence, 6T = 6. Also, for any constant vector x°,

Joy x-xVet°dS = [ xet°ds. 2.1.79)
Therefore, the average stress defined by (2.1.6) is meaningful only if the

prescribed surface tractions are self-equilibrating.

For the rate problem, the traction rates i° are prescribed, (1.3.9), produc-
ing a stress rate 6 = 6(x) in accord with equilibrium conditions (1.3.7a,b). The
traction rates €° must be self-equilibrating so that (2.1.7a~d) written for i°, are
satisfied. The average stress rate is then given in terms of the prescribed boun-
dary traction rates by

6=<06>= %J‘av xei®dS, (2.1.8a)
or

&y =<6y>= [, xirds. (2.1.8b)
Hence,

55<6>=—g?<o>53. (2.1.9)

It is noted in passing that only for small-deformation theories does the average
of the Cauchy stress rate equal the rate of the average Cauchy stress. For finite
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deformations, in general, this is not valid; see Hill (1972), Havner (1982),
Nemat-Nasser (1983), and Iwakuma and Nemat-Nasser (1984).

2.2. AVERAGE STRAIN AND STRAIN RATE

Whether the prescribed boundary displacements on dV are spatially linear
or not, the unweighted volume average of the variable displacement gradient
V ou, taken over volume V of the RVE, is completely defined in terms of the
prescribed boundary displacements. From the Gauss theorem, and in view of
the boundary conditions (1.3.6a),

Iv VeoudV = Iav veoudS = Iav veu°ds. 2.2.1)
Thus, the average displacement gradient for the RVE is

Veu=<Veu>= %J’av veu°ds, (2.2.22)
or

wi=<u>= <[, viupds. (2.2.2b)

Since the strain € is the symmetric part of the displacement gradient, (1.3.3a),
and the infinitesimal rotation @ is the corresponding antisymmetric part,

o= %{ng ~(VewT}, (2.2.32)
or
oy = %(Uj,i ~ i), (2.2.3b)

the average strain, denoted by €, and the average rotation, denoted by ®, are,
respectively, given in terms of the boundary displacements by

F= -1 1

E=<g>= VIav > (Veu° +uev) ds, (2.2.4a)
or

gi=<g>=w[. Lvue+uovy)ds 2.2.4b

= e,,>_vfav7(v,uj+u, vj) dS, (2.2.4b)
and

®=<o>= L[ Twveu-uev)ds (2.2.52)

= 7w 2 , 2.
or

— 1 1
By =<wy>= J’ oy 5 (ViuP—uPv) ds. (2.2.5b)
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As mentioned before, the prescribed surface displacements are assumed to
be self-compatible in the sense that they do not include a rigid-body translation
or rotation of the RVE. Note, however, that the average strain € defined by
(2.2.4), is unchanged even if a rigid-body translation or rotation is added to the
surface data. At a typical point x in the RVE, a rigid translation u' and a rigid-
body rotation associated with an antisymmetric, constant, infinitesimal rotation
tensor @, produce an additional displacement given by u'+x.®". The
corresponding additional average displacement gradient then is

< Vo +x.00) > = {%J.avvdS}®u'+{%J.aVV®X S} .o,

(2.2.6a)

Making use of the Gauss theorem, it follows that

1 -1 @gs = L @ qV =

v aVvds_vjavv.l ds_VjVV.l dv =0,

1 -1 Ll j@ogv=1®

v Joy vex ds = va VexdV = Vjvl dv = 12, (2.2.6b,c)
Hence,

<Vou+x.00") > =@ (2.2.6d)

which does not affect €. Therefore, whether or not the prescribed surface dis-
placements u® include rigid-body translation or rotation, is of no significance in
estimating the relations between the average stresses and strains or their incre-
ments. For simplicity, however, it will be assumed that the prescribed boundary
displacements are self-compatible.

In general, the average displacement, denoted by u, cannot be expressed
in terms of the surface data. For example, in view of the identity 1® = V @x, the
displacement field may be written as

u=u.(Vex)=V.@uwex)-(V.u)x. 227

Therefore, the volume average of the displacement field, u, is given by

- _ 1 o _ 1
us<u>= < favv-(u @x) dS v IV(V.u)x dv, (2.2.8a)
or

I | 0% dS — L .

=<y >= Vjav V;uP x; dS VJ.V u;;x; dV, (2.2.8b)

which includes the volumetric strain. For incompressible materials, however,
the displacement field is divergence-free,
V.u=0 inV, (2.2.9)

and the average displacement, u, can be expressed in terms of the prescribed
surface displacements, u®, by

= % jav v.(u°ex) ds, (2.2.10a)

or
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= % jav vjuPx; ds. (2.2.10b)

For the incremental formulation, the velocity field on the boundary gV of
the RVE is prescribed, (1.3.10). All the above relations hold for the rate fields,
if u is replaced by u, € by €, and ® by ®. In particular, the average velocity
gradient becomes

. 1 .
<Veu>= vjav veulds, (2.2.11)

from which the average strain rate and the average rotation rate are obtained, as
follows:

< . _L L S o
£E=<E€>= Vjav 2(V®ll +uev)dS,

b=<id>=-L %(v 2%~ wsV) dS, (2.2.12a0)
or

- . 1 1, o -
Ej=<g;>= vjav -Z—(Vi Uj°+ uiOVj) ds,

a)ij =<@y>= %J‘av ';—(Vi uP—ulv;j) ds. (2.2.12¢c,d)

It is seen that, for the small deformations considered here, the average strain
rate equals the rate of change of the average strain,

<é>=%<e>zé, (2.2.13a)

and, similarly, the average rotation rate equals the rate of change of the average
rotation,

é

('_os<('o>=—(‘ii—t<m>s(;o. (2.2.13b)

From (2.2.13a,b), or by direct use of (2.2.2) and (2.2.11), it follows that

V®ﬁ5<V®ﬁ>=%< Veu> = Veu. (2.2.13¢)

2.3. AVERAGE RATE OF STRESS-WORK

Whether or not the deformation is small, or whether or not the effects of
inertia and body forces are included, the balance of energy leads to the follow-
ing local equation for the rate of change of the internal energy density é:

pe+V.q=0c:£€+ph inV, (2.3.1)

where p is the (current) mass-density, q is the heat flux vector, and h is the heat
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supplied through radiation or other energy source fields. In (2.3.1), o : € is the
rate of stress-work per unit volume.

For the moment, consider elastic materials, and let ¢ = ¢(€, 0) be the
Helmbholtz free energy per unit volume, where 0 is the temperature. The stress,

G, and entropy, 1), are given by!

o= M 30" (2.3.2a,b)
At constant temperature (isothermal change),
0=0:¢, (2.3.2¢)

so that the rate of stress-work equals the rate of change of the Helmholtz free
energy at constant temperature. It is often convenient to introduce the comple-
mentary energy function y = y(o, 0) such that

O(g, 0)+y(0,0) =0:¢, (2.3.3a)
and obtain
£= %‘g, n= %‘el. (2.3.3b,c)

In general, the material constituents of an RVE need not be elastic. For
example, rate-independent and rate-dependent elastic-plastic models may have
to be used to describe certain classes of materials. Whatever the specific consti-
tutive properties of the material within an RVE may be, it is of interest to calcu-
late the average rate of stress-work and to explore conditions under which
<o:€>equals< o >:< € >

To this end it is observed that, in view of (1.3.2a,b),
C:£=0:(¢ +(;)) =0:(Vew) =V.(oc.1)—(V.0).u =V.(C.u).
(2.3.4a)

Hence,

a1 .
<o:g>= vjavt.u ds, (2.3.4b)
where t (= v.0) are the surface tractions on dV. Since € is unchanged by the
addition of rigid-body motions, such motions do not affect < 6 : € >.

Now the difference between < G :€ > and < 6 >: <€ > is expressed in
terms of the boundary data by (Hill, 1963, 1967; and Mandel, 1980)

<O E>—<O>:<E>

= %J‘av {a—x.< Veou>}.{v.(6—< 6 >)} dS. 2.3.5)

! In the present context, (€, 0) is interpreted as d(&; 0) = d(eq1, €22, .., 6) and g% is inter-
preted as gg— €;&€j. Similar notation is used throughout this book.
ij



§2.3 AVERAGING METHODS 33

The proof is straightforward: set t = v.o on 0V and compute the integrand in
the right-hand side of (2.3.5) to obtain

{fu—-x.<Veu>}l.{v.(6-<0>))
=W t—W(V.e< G >)— (X< Vi1 >)et+ (X< Vou >)e(V.< 6 >)
=d.t—(veu): <6 >-(xet):< Veu >

+(xeVv): (< Veu >.< 6 >7), (2.3.6a)
or in component form,

{l:li—Xj< l:livj >Hvi (O —< O >)} = l:liti—Vil:lj< Gjj > — X< l:ljvi >

+ X; Vi< ‘:lk,i >< Cjk >. (2.3.6b)
Integrate (2.3.6a) over dV to obtain

w.tdS—{L[ veudS}:<o>—{L[ xetdS}:<Veus>
V Jav A"

%Iav A%

+ {%favxcav dS}: (< Veu>.<o>D)

=<G:E>—<E€>:<0>-<06>:<E£>+1D: (< Vgu>.<6>)

=<OIE>S—<OG><E>, (2.3.6¢)
where the following is used:

12: (<« Veu>.<6>N=<Vou>:<o>=<€>:<6>. (2.3.6d)

Whatever the material properties, and whether or not the prescribed boun-
dary data of the RVE are uniform, identity (2.3.5) is valid in the context of the
small-deformation theory. For special boundary data, the right-hand side of
(2.3.5) may vanish, and then the average rate of stress-work equals the rate of
work of the average stress. Two such boundary data of particular importance in
micromechanics are considered below.

2.3.1. Uniform Boundary Tractions

When the prescribed boundary tractions for an RVE are uniform, they can
be expressed in terms of a constant symmetric second-order tensor, 6°, as

t°=v.6° or t?=v;0f. (2.3.7a,b)

In view of identity (2.2.6¢), the average stress from (2.1.6) becomes

6=<06>= {%favxgav dS}.o° = c°. (2.3.8)
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Then v.(6 — < 6 >) is zero on V. Substitution into (2.3.5) yields

<G £>=<G>:<€>=0:£ =0°:¢E. (2.3.9)

2.3.2. Linear Boundary Velocities

When the prescribed velocities on the boundary of an RVE are spatially
linear, they can be represented in terms of a constant second-order tensor which
may be split into a symmetric part, denoted by €°, and an antisymmetric part,
denoted by @°. The velocity of a typical point x on dV is given by

1° = x.(€° + @°). (2.3.10)

In view of identity (2.2.6c), the average velocity gradient becomes
<V®i1>={%jaVV®de}.(é°+(b°)=é°+d)°. (2.3.11a)

Then u — x.< Veou > is zero on dV. Hence,
<é>=8° <@>=0° (2.3.11b,c)
and substitution into (2.3.5) yields

<G:£>=<0>:<£>=0:£ =0:8&° (2.3.12)

2.3.3. Other Useful Identities

The identity (2.3.5) remains valid if ¢ is replaced by &, and € is replaced
by €, provided that the variable stress rate, G, is self-equilibrating; V.6 = 0 and
6T=¢6inV. Then

<G E>—<O>:<E>

- %Jav{“"“V@“ >}e{v.(6 -< 6 >)} dS, (2.3.13)

as can be verified by direct computation, in line with (2.3.6). Therefore, when
the boundary conditions on dV are given by the uniform traction rates, i.e.,
i®=v.G° (with constant 6°), or by the linear displacements, i.e., u = x.€°
(with constant £°), then

<G E>=<G>:<E> (2.3.14)
Similarly, in terms of ¢ and €,
<G E>-<OG>.<E>

= ¥ )y -x< Vou>}.{v.(6-< 6 >)} 5. (2.3.15)

Hence, for either uniform boundary tractions or linear boundary displacements,
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<O E>=<0>:<E>. (2.3.16)

It is important to note that identity (2.3.5) is valid whether or not the self-
equilibrating stress field o is related to the self-compatible strain-rate field €.
Similar comments apply to & and €, as well as to ¢ and €; (2.3.13) and (2.3.15).
It is also important to note that all results in Subsections 2.1, 2.2, and 2.3, except
for expressions (2.3.2) and (2.3.3), are valid for materials of any constitutive
properties, since only equilibrium and compatibility are required. With proper
interpretation, most of these results also apply to finite deformations; Hill
(1972), Havner (1982), and Nemat-Nasser (1983).

2.3.4. Virtual Work Principle

A stress field, ¢ = 0(x), which satisfies equilibrium conditions (1.3.2a,b)
in V, and the stress-boundary conditions (1.3.5) on any part of ¢V where the
tractions are prescribed, is called statically admissible. A displacement field
u = u(x) which is suitably smooth, so that it yields a suitable strain field through
(1.3.3), and satisfies all prescribed displacement boundary conditions, is called
kinematically admissible. If u = u(x) is kinematically admissible, then any vari-
ation du = Su(x) in this field, which produces a smooth kinematically admissible
displacement field u + Su must be such that du = 0 on any part of 3V where u is
prescribed. Setting 8¢ = {V @du +(V ©6u)T}/2, and using an analysis similar to
(2.3.4), it follows that

. 1 o —
<o:8¢ >—vjavt .5udS =0, (2.3.17)

where t° = v.0 denotes the boundary tractions. This is the statement of the vir-
tual work principle, valid for any statically admissible stress field ¢ and any
unrelated or related virtual or real kinematically admissible variation du of the
displacement field; see Subsection 19.2 of Part 2.

2.4. INTERFACES AND DISCONTINUITIES

In general, the overall properties of an RVE are strongly affected by the
structure, chemical composition, strength, and other relevant attributes of the
interfaces among its individual microconstituents. For example, both the
strength and toughness of fiber-reinforced ceramics are directly related to the
nature of the interface bonding between the fiber and the matrix. Extensive
debonding often deflects cracks, consumes mechanical energy, and leads to
greater toughness. Such debonding can be modeled as displacement discon-
tinuities whose effects must be included in the overall response of the RVE.
Similarly, intergranular and transgranular microcracks can be treated as dis-
placement discontinuities, and must be included in estimating the overall defor-
mation and its increments. In this section the effects of the discontinuities within
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an RVE on the overall quantities are examined, without reference to the specific
physical nature of such discontinuities.

Let S be the collection of all surfaces within an RVE, across which certain
field quantities may suffer jump discontinuities; see Figure 2.4.1. S includes
three types of surfaces: (1) a closed surface, totally within the volume V of the
RVE, which separates materials of the RVE into those inside of S and those out-
side of S; (2) an isolated surface bounded by a curve 9S, totally within the
volume V; and (3) the discontinuity surface S which intersects the boundary oV
of the RVE. In all three cases, S is regarded piecewise continuous, with piece-
wise continuously turning tangent planes. Examples are: (1) a debonded inclu-
sion within V, across which tangential displacements may be discontinuous; (2)
an interior penny-shaped crack, across which the tangential component of the '
displacement and also the normal component (only for the opening mode) may
be discontinuous; and (3) cracks intersecting the boundary oV. A crack may be
viewed as a cavity with one dimension which is infinitesimally small. For such
a cavity, one can consider an inside and an outside part. In this manner, the
volume V is divided by the collection of all discontinuity surfaces, S, into two
parts, V- and V*. Let the unit normal n point from V-~ toward V*, and for
simplicity, set

V- =S- =S, 9V*=aV+SH+, (2.4.1)

where n now is the exterior unit normal on S —, the exterior unit normal on S*
being —n. Whether V* and V- are simply or multiply connected regions, the
discontinuity surface S can be defined in the above manner. Denote the jump in
a typical field quantity, T, across S by AT. The stress, displacement, and strain
jumps at a typical point § on S are defined, respectively, by

Ao(§) = lim o(x*) - lim o(x~),
xt—>E x-—E

n
S@
inclusions

S

V +
Figure 2.4.1
S

Discontinuity surfaces

V=V++V-
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Au() = lim u(x*)- lim u(x~),
x*ok x o

Ae) = xl'ii,ng E(x*)— xl~i£>n§ &(x7), (2.4.2a~c)

where x* and X~ are points in V* and V ~, respectively.

In general, if the material properties change abruptly across S, jumps AG
and Ag in the stress and strain fields occur to compensate for the material
mismatch across the interface. However, even when AG is nonzero, the jump in
the tractions, defined by

AKE) = n.AG(E), (2.4.2d)

must vanish to ensure equilibrium. On the other hand, the displacement jump
Au may not vanish when the bonding across the interface is imperfect. The
jump Au can be decomposed into an opening gap, Au,, and a sliding gap, Aus,
as follows:

Au, = (n.Au)n, Aug = Au — Au,, (2.4.3a,b)
where only nonnegative n.Au is admitted, since the interpenetration of micro-
constituents must be excluded on physical grounds.

The stress field ¢ is regarded continuous and smooth in V* and V~. The
average stress, &, may be calculated by applying the Gauss theorem to V+ and
V- separately, arriving at

c

—\17{jv+ odv+jv_ 6 dv}

_1 N _
= V{jaV*x ®tdS+J'aV7x ot dS}

=1 -
= v{javmt dS - [ EeAtds}, (2.4.4)
where (2.4.1) is used; the integral on S, in general, vanishes since the tractions
are continuous there. In a similar manner, the average strain, €, can be calcu-
lated as

= {J'+£dV+J'V_£dV}

1
\

1 1 1
v{-[av+ 5 (veutuev) dS+_faV_ 5(veu+usv) ds}

= %{jav %(V®u+u®v) as- %(n@Au+Au®n) ds}. (2.45)

It should be noted that if a microconstituent translates or rotates as a rigid body,
the corresponding displacement jump can be expressed in terms of constant u'
and constant @®F, as

Au=w+E.0 onS. (2.4.6)
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In this case, the integral on S vanishes, and (2.4.5) reduces to (2.2.4).

In a similar manner, the effect of the discontinuity on the average rate of
stress-work is examined. For continuous tractions across the discontinuity sur-
face S, it follows that

S | ‘g . g
<6.£>—V{J‘V’c.edVﬂ[v‘c.edV}

= % {-[av« t.a dS +jav’ t.0 dS)

= [, i ds—[ t.auds), (24.7)

where Au is the velocity jump across S, defined by
Au(€) = lim w(x*)— lim a(x"). (2.4.2¢)
x*>E x—>E i

The integral on S in (2.4.7) is the rate of work of the interface tractions due to
the relative interfacial motion. In particular, if the velocity components are con-
tinuous across S, (2.4.7) reduces to (2.3.4b). Again, if the velocity jump u is
given by

Ar=u+&.@ onS, (2.4.8)

with constant u' and @, then the integral of t.Au on S vanishes. It is seen that
the discontinuity in the field quantities does not influence the average stress,
strain, strain rate, and the rate of stress-work, if the tractions, the displacements,
and the velocity fields are continuous in V.

2.5. POTENTIAL FUNCTION FOR MACRO-ELEMENTS

As pointed out before, an RVE represents the microstructure of a macro-
element in a continuum mass. The stress and strain fields and their rates are, in
general, functions of the position of the macro-elements within the continuum.
Denote the position of a typical continuum macro-element by X, and the stress
and strain fields of the continuum by X and E, respectively. These fields, in gen-
eral, are functions of X and time t, X = £(X, t) and E = E(X, t). To distinguish
these fields from the stress and strain fields within an RVE which represents the
microstructure of a typical continuum material neighborhood, the continuum
stress and strain fields are referred to as macrostress and macrostrain fields, and
those of an RVE as microstress and microstrain fields, respectively. That is,
instead of, for example, "the stress field within the continuum” or "the stress
field within the RVE which corresponds to the material neighborhood of particle
X", the expressions macrostress field and microstress field are used. In a simi-
lar manner, the continuum displacement, mass-density, temperature, and other
physical quantities are identified by an appropriate use of the prefix "macro”,
and those of an RVE by the prefix "micro”.
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The macrofields must satisfy the continuum balance equations summar-
ized in Part 2 of this book. In particular, the equations of motion are

V.Z+F=RU, (2.5.1)

where V = e;0/0X;, and F, R, and U = U(X) are the macroscopic body force,
mass density, and macrodisplacement fields, respectively, and superposed dot
denotes time differentiation. Moreover, the macrostrain-macrodisplacement
relation is

E= - {VeU+(VaU)T}. (2.5.2)

€
2

In general, at a typical point X in the continuum, at a fixed instant t, the
values of the macrostress and macrostrain tensors, £ and E, can be determined
by the average microstress and microstrain, ¢ and €, over the RVE which
represents the corresponding macro-element. In micromechanics it is assumed
that X and E are equal to ¢ and €,

=6, E=E (2.5.3a,b)

Conversely, the macrostress and macrostrain tensors, 2 and E, provide the uni-
form traction or linear displacement boundary data for the RVE. Hence, when
the traction boundary data for the RVE are prescribed,

°=v.Z ondV, (2.5.4a)
and when the displacements are assumed to be prescribed on dV of the RVE,
w=x.E ondV. (2.5.4b)

Furthermore, when thermal effects are also of interest, the value of the macro-
temperature, ©, at the considered macro-element must equal the average micro-
temperature 6 over the RVE,

©=0=<0> (2.5.5)

In general, the response of the macro-element characterized by, for exam-
ple, relations among macrostress X, macrostrain E, and macrotemperature ©,
will be inelastic and history-dependent, even if the microconstituents of the
corresponding RVE are elastic. This is because, in the course of deformation,
flaws, microcracks, cavities, and other microdefects develop within the RVE,
and the microstructure of the RVE changes with changes of the overall applied
loads. Therefore, the stress-strain relations for the macro-elements must, in gen-
eral, include additional parameters which describe the current microstructure of
the corresponding RVE. This section focuses on a broad class of materials
whose microconstituents are elastic (linear or nonlinear) and, therefore, the ine-
lastic response of their macro-elements stems from the generation and evolution
of defects and hence from microstructural changes.

For a typical macro-element, denote the current state of its microstructure,
collectively, by S, which may stand for a set of parameters, scalar or possibly
tensorial, that completely defines the microstructure. For example, if the micro-
defects are penny-shaped cracks, S will stand for the sizes, orientations, and
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distribution of these cracks. The matrix material is elastic, and the inelasticity is
produced by the growth of the cracks. If there is no change in the microstruc-
ture, e.g., no crack growth, the response of the macro-element will be elastic.
Hence, a Helmholtz free energy,

® =d(E, ©; S), (2.5.6a)
exists, which at constant S, yields
500 . 90

3E° 20" (2.5.6b,c)
where H is the macro-entropy. Then a macrostrain potential,
Y =Y(Z, O; S), (2.5.7a)
is introduced through the Legendre transformation
®+¥Y=XE, (2.5.7b)
with the result that, at constant S,
E=9%  m=g% 2.5.7c.d)

The aim is to express the macropotential functions ® and ¥ in terms of the
volume averages of the microstress and microstrain potentials of the microcon-
stituents.

Since the material within the RVE is assumed to be elastic, it admits a
stress potential, ¢ = ¢(x, €, 0), and a strain potential, ¥ = Y(x, G, 0), such that
(2.3.2) and (2.3.3) hold. Consider the cases of the prescribed boundary tractions
and the prescribed boundary displacements for the RVE separately, as follows,
assuming a uniform constant temperature and a fixed microstructure for the
RVE; hence, the dependence on 6 and S will not be displayed explicitly.

2.5.1. Stress Potential

For prescribed constant macrostrain E, the variable microstrain and
microstress fields in the RVE are

e=¢(x;E), o=0(x;E), (2.5.8a,b)

where the argument E emphasizes that the displacement boundary data are
prescribed through the macrostrain E. Hence E = < g(x; E) >. The correspond-
ing microstress potential then becomes

¢ = o(x, &(x; E)) = ¢&(x; E); (2.5.9)

the superscript E on ¢ emphasizes the fact that the microstress potential is asso-
ciated with the prescribed macrostrain E.

Consider now an infinitesimally small variation 8E in the macrostrain,
which produces a variation in the microstrain field given by
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Bex; E) = 88; SE-(x; B). (2.5.10a)
Then,
<0:8E>=< (Jl(x €)) : (3 aE Y€ (x: E)) >
E
=<8E:(%%(x; E)) > = (%<¢E>):8E. (2.5.10b)
It now follows that
<o(x;E)>= a?z <0 >. 2.5.11)

Therefore define the macrostress potential by
®F = BE(E) = < ¢E > = % f, 05 By av, (2.5.12a)

the corresponding macrostress (as before) by
YE = < o(x; E) >, (2.5.12b)
and conclude that (Hutchinson, 1987)

£ _ ODE
= O, (2.5.12¢)

where the superscript E on X emphasizes that XE is the average stress produced
by the constant macrostrain E. Note that the integral in (2.5.12a) depends on
the current microstructure and hence on S. For example, ¢F = 0 in cavities and
cracks. As cavities and cracks grow, local strains (microstrains) change.
Hence, ®F = < ¢F > changes. This is expressed by writing

®F = OF(E, ©; S) (2.5.12d)

which also includes the macrotemperature.

2.5.2. Strain Potential

With macrotemperature © and microstructure S fixed, let the RVE be sub-
jected to uniform boundary tractions defined through a constant macrostress Z.
The microstrain and microstress fields may be expressed as

€e=€e(x;X), o=0(x;2), (2.5.13a,b)

where the argument X emphasizes the fact that a traction boundary-value prob-
lem with constant macrostress X is being considered. The microstrain potential
then becomes

v = Y(x, o(x; X)) = yi(x; X). (2.5.14)

For an arbitrary change 8X in the macrostress,
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80(x; ) = 5% -0 (x; ), (25.159)
ij

and, hence,

<80:€>=< (85 %(x; ) (glo(x, o)) >
ij

—< 62:(%‘%}:—(;(; ) >

(9 uEs)-
=(gg<V¥ >): 0% (2.5.15b)
Thus, it follows that
) _ 0 s
<ExX; X)>= 35 < Y >. (2.5.16)

Therefore define the macrostrain potential by
YE_WEE) =< yi>= % J, vix: Zyav, (2.5.17a)

the corresponding macrostrain by
E* = <g(x; X) >, (2.5.17b)

and obtain (Nemat-Nasser and Hori, 1990)
x_ o¥*
E o5 (2.5.17¢)
where the superscript £ on E emphasizes that E? is the average strain produced
by the prescribed macrostress X. Like the macrostress potential ®F =

®E(E, ©; S), the macrostrain potential WZ is also a function of the current
macrotemperature © and microstructure S. This is expressed by

¥YI=VYiZ, O;S). (2.5.17d)

2.5.3. Relation between Macropotentials

In the preceding subsection, the macrostrain potential is defined as the
volume average of the microstrain potential y*(x; X), when the macrostress X is
prescribed. Then, with the corresponding macrostrain defined by

E®= EXZ) =< £(x: ) >, (2.5.18a)
it is concluded that
z
WE=WEE) = < yEx; %) >, Er=s aalz(zy (2.5.18b.c)

The notation in (2.5.18a) shows that EZ is the macrostrain produced by the
prescribed macrostress Z. Define now a new macrostress potential function
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@ = OXEY) = X: EX - Yi(3), (2.5.19a)
where, as usual, X is regarded as a function of E¥ through (2.5.18a).

At the local level, on the other hand,
0F = o(x, &(x; X)) = 0%(x; X),

yE = y(x, o(x; X)) = yi(x; X), (2.5.20a,b)
and hence

O*+y¥ = o6(x; X) : g(x; 2). (2.5.20c)
The volume average over V yields

<¢EF>+<yE>=3X:E (2.5.21a)
and comparison with (2.5.19a) shows that

or=<¢t>, B=LEmenz-3m (2.521byc)

In all these expressions, the superscript X shows that the corresponding quantity
is obtained for the prescribed macrostress .

In a similar manner, when the macrostrain E is prescribed through linear
boundary displacements, u = x.E on 9V,

¥E = <o(x; E)>,

®F = OF(E) = < 0F(x: E) >, E= %Llf(ﬁ). (2.5.22a~c)
Hence define a new macrostrain potential ‘¥E by
WE = WE(XE) = 3E . E - OK(E), (2.5.23)

where, again, E is viewed as a function of ZE. For the microquantities, further-
more, set

OF = o(x, &(x; E)) = ¢°(x; E),

WE = y(x, o(x; E)) = yE(x; B), (2.5.24a,b)
and

0F +yF = o(x; E) : &(x; E). (2.5.24¢)
The volume average over V yields

<¢E>+<yE>=3E:E, (2.5.25a)

and comparison with (2.5.23) shows that

PE=<yEs, 3= S @) esE= 2o, (2.5.25b.c)
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2.5.4. On Definition of RVE

When the boundary tractions are given by
t°=v.X ondV, (2.5.26a)
the microstress and microstrain fields are
o=0o(x;X), €=¢(x;2X), (2.5.26b,c)

and EZ = < g(x; X) > is the overall macrostrain. Suppose that the boundary dis-
placements are defined for this macrostrain by

uw’=x.EZ ondV, (2.5.27a)
resulting in the microstress and microstrain fields,
o =o(x; E¥), ¢€=¢(x;E>. (2.5.27b,c)

In general, these fields are nor identical with (2.5.26b,c). Furthermore, while
EZ = < g(x; E®) >, there is no a priori reason that < o(x; E*) > should be equal
to X for an arbitrary heterogeneous elastic solid.

The RVE is regarded as statistically representative of the macroresponse
of the continuum material neighborhood, if and only if any arbitrary constant
macrostress X produces through (2.5.26a) a macrostrain EZ = < €(x; X) > such
that when the displacement boundary conditions (2.5.27a) are imposed instead,
then the macrostress, < 6(x; E%) > = X, is obtained, where the equality is to hold
to a given degree of accuracy. Conversely, when the macrostrain E produces
microstress and microstrain fields, o = o(x; E) and € = €(x; E), then the RVE is
regarded statistically representative if and only if the prescribed macrostress,
¥E = < o(x; E) >, leads to a microstrain field €(x; ZE) such that < g(x; XF) > =
E. The relation between this definition of the RVE and an energy-based
definition involving stress and strain potentials is discussed in Subsection 2.5.6,
where several interesting inequalities are also developed.

Based on the above definitions for an RVE, the macrostrain potential,
Yi(X), given by (2.5.18b), and the macrostress potential, ®F(E), given by
(2.5.22b), correspond to each other in the sense that

in accordance with the Legendre transformation,

Yi(X)+®E(E)= X E. (2.5.28b)
It should be noted that o(x; X) # o(x; E) and €(x; X) # &x; E), even for X and
E which satisfy (2.5.28a). Moreover, in general,

vi(x; X) + ¢E(x; E) # o(x; X) : €(x; E). (2.5.28¢)

Similarly, the complementary macropotentials, ®*(EZ) and WE(ZEF), are related
through

0P

)= 3 e P =gy (2:5.29)

oXE
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®I(EY) + WE(XE) = EZ: XF, (2.5.29b)

whereas the corresponding micropotentials do not satisfy a similar relation, i.e.,
in general,

oX(x; E2) + yE(x; XF) # o(x; E) : &(x; X). (2.5.29¢)

Table 2.5.1 provides a summary of the results presented in this subsection. Sub-
section 2.5.6 gives additional results on relations between the potentials. In
Subsection 2.6 the notion of statistical homogeneity is discussed, and several
important results on equivalence of the displacement and traction boundary con-
ditions are obtained.

2.5.5. Linear Versus Nonlinear Response

When the microstructure is fixed and the material of the RVE is linearly
elastic, then the corresponding overall response will also be linearly elastic. In
this case, for a prescribed macrostrain E, the macrostress XE will be proportional
to E,

¥E =< o(x; E) >=C:E, (2.5.30a)
where C is the overall elasticity tensor.

Similarly, for a prescribed macrostress X,
El=<e(x;E)>=D:3, (2.5.30b)
where D is the overall compliance tensor.

Now, if the RVE is statistically representative, then C=D". A con-
sistent averaging technique is expected to satisfy this inverse relation.

When the material of an RVE is nonlinearly elastic, then, for a fixed
microstructure, the overall response will be nonlinearly elastic. In this case, the
first gradient of the overall macrostress potential with respect to the overall
macrostrain E, and that of the macrostrain potential with respect to the overall
macrostress X, satisfy the relation (2.5.28a), when the RVE is statistically
representative and a consistent averaging technique is employed. However,
there is no a priori reason to believe that a similar correspondence between
higher-order gradients of these potentials should continue to hold, even if a con-
sistent averaging technique is employed. The relations between macropotentials
are further discussed in the following section, considering an RVE with possibly
nonlinearly elastic materials. In the remaining part of this book, however, atten-
tion is confined to RVE’s with linearly elastic constituents, unless otherwise
stated.

2.5.6. General Relations Between Macropotentials

The stress potential ¢ = ¢p(x; €) is said to be convex with respect to the
argument &, if for every pair of admissible but nonidentical £ and £?,
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Table 2.5.1

CHAPTERI

Relation between macro- and micro-potentials for prescribed macrostress

and macrostrain

§25

x E

Microstress o(x; X) o(x; E)
Microstrain €(x; X) €(x; E)
Macrostress Y=<o0o(x;X)> YE=<o(x;E) >
Macrostrain Ei=<g(x; X) > E=<¢gx;E) >
Microstress o*(x; Z) = o(x, €(x; X)) 0E(x; E) = ¢(x, €(x; E))
potential o(x; X) = %(x, g(x; X)) o(x; E)= %(x, g(x; E))
Microstrain yi(x; X) = y(x, o(x; L)) yE(x; E) = y(x, o(x; E))

i .3y = oW : CEy= ¥ :
potential &(x; )= Z=(x, 6(x; £))  &(x; E) 56 & O(x: E)
Macrostress D> = PXEX) =< ¢* > DE = OEE) = < ¢E >

. _ 0D o5 g _ ODE
potential X SEE (E%) X 5E (E)
Macrostrain YI=W (X)) =<y > WE = WE(ZF) = < yE >

. 5 _ OP* s _ O¥YE i
potential E o (03] E S3F (ZB)
MicroLegendre
transformation O*+yr=o0o(x;X):&x; Z) ¢OFE+yE=0o(x; E):e(x; E)
MacroLegendre
transformation OE+Y¥Yr =X .E* QE+VYE=JFE E
Approximated
macroLegendre
transformation OE(E)+¥YXX)=X:E OX(EX) + WE(XE) ~ XE E=
Corresponding
microLegendre
transformation OE+yrzo(x; X):e(x; E)  O*+yEzo(x; E):e(x; X)

00x; £00) - 9(x; &) > (&0 —£) : I (x; £®),

Consider RVE’s consisting of convex elastic materials.

(2.5.31)

Examine now two different boundary conditions for the same RVE which
consists of convex elastic constituents: (I) uniform tractions t = v.X prescribed
on boundary 9V of V; and (II) any mixed uniform or nonuniform consistent dis-
placements and tractions prescribed on dV. Denote the strain and stress fields
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for the first boundary data (i.e., uniform boundary tractions) by €* = £%(x) and
6> = ¢%(x), and those for the second (i.e., gemeral, possibly mixed) by
€0 = €6(x) and 6% = ¢O(x), respectively. The corresponding average quantities
are denoted as follows:

Ei=<gX> X=<oZ>=3, (2.5.32a,b)
and
EC=<gl> X0=<00>, (2.5.33a,b)

for case (I) and case (II), respectively. Consider the overall macrostress poten-
tials when the boundary data in cases (I) and (I1) are adjusted such that E* = EC,
i.e., they both produce the same overall macrostrains.

Theorem 1: The macrostress potential ®X(EX) associated with the uni-
Jorm traction boundary data of case (1) cannot exceed the macrostress
potential ®O(ESC) associated with the second (general, possibly mixed)
boundary data of case (1) for E* = ES, when the corresponding RVE

consists of convex elastic constituents.’
Proof: Calculate the difference, ®C(EC) — ®X(EZ2), as follows:

®G(ES) — BXE?) = < d(x; £0) — d(x: £5) > > < (€0 —£) : g%(x; £5) >

={<e0f>-<eX>}:<0x>=(EC-E): X
(2.5.34a)

The last expression in (2.5.34a) vanishes if the boundary data are adjusted such
that EC = EZ, in which case,

®O(ES) > ®XET)  for EC = EZ, (2.5.34b)
which completes the proof (Willis, 1989).

Clearly, this result remains valid for the case when the RVE consists of
linearly elastic constituents. Moreover, it also shows that the macrostress poten-
tial corresponding to linear displacement boundary data, u = x.E, i.e., ®E(E),
cannot be less than the macrostress potential ®*(EX) which corresponds to uni-
form traction boundary data, when E = EZ, i.e.,

®E(E) > ®X(E). (2.5.34c)

Therefore, an RVE is considered to be statistically representative if the differ-
ence between the macrostress potential for uniform traction and linear displace-
ment boundary data which produce the same overall average macrostrain, is less
than a prescribed small value. Note that ®* can only approach ®F from below.

Consider now a third loading case involving linear displacement boundary
data for the same RVE, as follows: (III) on the boundary dV of the RVE, linear
displacements u = x.E are prescribed such that they produce the same overall

2 The superscript G on @ denotes the fact that the corresponding boundary data are general
and unrestricted.
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macrostress corresponding to case (II) of the general boundary data. Denote the
microstrain and microstress fields for case (III) by €F = €E(x) and oF = oF(x),
and set

E=<¢eE> IZE=<of>. (2.5.35a,b)

Theorem 2: The macrostrain potential WE(EE) associated with the
linear displacement boundary data of case (111) cannot exceed the ma-
crostrain potential WO(ZO) associated with the second (general, possi-
bly mixed) boundary data of case (II) for XE =325, when the
corresponding RVE consists of convex elastic constituents.

Proof: Calculate the difference, 'WO(X6) — WE(ZE), as follows:

WG(0) — WE(EE) = < y(x; 6%) — y(x; 6F) > > < (6% — %) : %‘j‘i(x; ob) >

={<06%>-<06E>}:<ef>=(X6-2E).E.
(2.5.36a)
The last expression vanishes when X0 = XE, leading to
WG(X0) > WE(XE), for XO = XE, (2.5.36b)

which completes the proof (Willis, 1989). In particular, the macrostrain poten-
tial associated with uniform traction boundary data always exceeds that associ-
ated with the linear displacement boundary data when both boundary conditions
produce the same overall macrostress, i.e.,

WE(T) < W), (2.5.36¢)

Again, a statistically representative RVE can be defined by requiring that the
difference in the macrostrain potential for uniform traction and linear displace-
ment boundary conditions which produce the same overall macrostress, be less
than a prescribed small value. Note that WE can only approach Y= from below.

Theorems 1 and 2 may be stated in the form of the following minimum
principles:

Theorem I: For an elastic RVE, among all consistent boundary data
which produce the same overall macrostrain, the uniform boundary
tractions render the total stress potential ® an absolute minimum.

Theorem II: For an elastic RVE, among all consistent boundary data
which produce the same overall macrostress, the linear boundary dis-
placements render the total strain potential ¥ an absolute minimum.

Consider now a linearly elastic RVE, and set
®S(ES) = %EG .CG.ES, WO(E0) = %20 -DS: 36, (2.5.37a,b)

corresponding to general consistent boundary "data which produce an overall
macrostrain E© and an overall macrostress X6, satisfying
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¥ Joy (80— X.ES}.(v.(c -9} dS =0, (2.5.38)
so that
<£6:060>=<€0>:<0%>=EG: 3G (2.5.38b)

see (2.3.5). Here CS and DS are the overall elasticity and compliance tensors
defined through

¥G=CS:ES, ES=DO:3S, (2.5.37¢,d)
and hence are each other’s inverse.

Each of the boundary conditions of case (I) (uniform tractions) and case
(TII) (linear displacements) satisfies (2.5.38a). Define C* and DF, respectively,
by

OE(EE) = %EZ .CE: EZ, (2.5.39)
and
YE(ZE) = %):E . DE: 3E. (2.5.39b)

Since CZin (2.5.39a) and DE in (2.5.39b) correspond to different boundary con-
ditions, they are not necessarily each other’s inverse. Their inverses are denoted
by D* = (C*)~! and CE = (DE)"!, respectively.

Now, according to Theorems I and Ii, for any E,
E:(CS-C%:E>0, (2.5.40a)
and, for any X,
T :(DS-DE):X>0. (2.5.40b)

Hence, uniform traction and linear displacement boundary data can be used to
obtain lower and upper bounds of the elastic moduli associated with any other
consistent boundary data.

As will be discussed in Subsection 3.1, a second-order symmetric tensor
can be expressed by a six by one column vector, and a fourth-order symmetric
tensor can be expressed by a six by six matrix; see (3.1.4) and (3.1.7). Then, in
this matrix form, (2.5.40a,b) are written as

[CYCEI-[CEDITH1 20, [TJ(DE1-I[DEDITH] 20,
(2.5.41a,b)

where [I'] and [T,] correspond to E and X, and [C§], [C% ], [DE], and [Df]
correspond to C®, CZ, D, and DF, respectively. Since the six by six matrices,
[CA]1and [DA] for A =G, Z, E, are symmetric and positive-definite, they can
be written as

[CA)= [QH 1S Opgl[QE4 1T, [D4]= [QH1AS Spgl QAT
(2.542a,6)

where [A£ 8] is the diagonal matrix of the characteristic values, A, of [CAL,
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and [Q 4 ] is the rotation matrix satisfying [Q A 1[QO &1 = [8a]-

When the three rotation matrices, [Q8], [0 %], and [Q ], are identical,
ie.,

[Q&1=10%1=12%]. (2.5.432)
inequalities (2.5.41a,b) imply that

1 1

Therefore, the characteristic values AS of the overall elasticity tensor EG,
corresponding to general consistent boundary data, are bounded by

AESAS<SAE (2.5.44a)

>0 fora=1,2,..,6. (2.5.43b,c)

This implies that the corresponding quadratic forms of the macropotentials
satisfy similar relations, i.e.,

E:CX:E<E:CC:E<E:CE:E &= ®XE) < ®S(E) < DE(E),
(2.5.44b)

or

$:D:X23:DC:X23:DE: T &= PET) > YG(T) > PET).
(2.5.44¢)

The rotation matrix [Q ] depends on the structure and properties of the RVE,
as well as on the loading conditions. However, if the overall response of the
RVE is expected to be isotropic, then, [Q 3]s are the same under all loading
conditions. Hence, for all possible general boundary data, equality (2.5.43a) is
satisfied, and the bounds (2.5.44a~c) hold in the isotropic case.

2.5.7. Bounds on Macrepetential Functions

Although, due to the heterogeneity of the RVE, it is extremely difficult to
compute the exact macrostress potential @ or macrostrain potential ¥, strict
upper and lower bounds for these quantities can be obtained, using variational
principles.? In this subsection, the macropotential functions, defined as functions
of the macrofield quantities, are related to functionals of the displacement or
stress fields, when linear displacements or uniform tractions are prescribed on
the boundary of the RVE.

First, consider a bound for the macrostress potential, ®F, when macros-
train E = €° is prescribed. For a displacement field which satisfies the linear dis-
placement boundary condition, u = x.€° on dV, define a functional IE, by

IE(u; £°) = < ¢(x, €(x; €°) >, (2.5.45)

where € is given by the symmetric part of the gradient of u, sym (V @u), with

? See Section 19 for detailed discussions of variational principles in linear elasticity.
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sym standing for the symmetric part of its second-order tensor argument. Since
0 = o(€) : 3¢, the first variation of IE is

OIE = < o(g) : de(x) >

- %jav (v.6).0udS - < {V.o(€)}.5u >. (2.5.46a)

Since the surface integral vanishes when the displacements are prescribed on
dV, the solution of 3/E = 0, denoted by u®*, yields a stress field, 6¢* = ¢/de(€%%)
for the strain field €2 = sym (V @u®*), which satisfies the equations of equili-
brium. Here, u® is the actual displacement field produced by macrostrain
E = £°, and the corresponding macrostress potential is given by

IE(ues; £°) = DE(e0). (2.5.46b)
If the microstress potential is positive-definite, i.e., if 8%¢p > 0, then, among all

suitably smooth displacement fields which satisfy the displacement boundary

conditions,* the exact displacement field renders functional /F an absolute
minimum. Hence, for any kinematically admissible displacement field, u, the
following inequality holds:

TE(u®~; £°) < IE(u; £9), (2.5.46¢)

where equality holds if and only if u = u¢*. Since the linear displacement field,
u(x) = x.£° for x in V, is kinematically admissible and produces the constant
strain field €(x) = €°, (2.5.46¢) yields

TE(u®*; £°) < IE(x.£% £°) = < ¢(x; €°) >, (2.5.47a)

where ¢(x; €°) is the microstress potential at X, evaluated at strain €°. From
(2.5.46b) and (2.5.47a), an upper bound is obtained for the macrostress poten-
tial,

BE(£°) < < O(x; £°) >. (2.5.47b)
Next, consider a bound for the macrostrain potential, WZ when macros-

tress X = @° is prescribed. For a suitably smooth symmetric stress field which
satisfies the equations of equilibrium, V.o =0 in V, and traction boundary con-

ditions,’ v.o = v.6° on 9V, define functional /Z, by
I%(6; 6°) = < Y(x; &(x; 69) + u(x).(V.o(x)) >, (2.5.48)

where p is a Lagrange multiplier® which, in a weak sense, enforces the equa-
tions of equilibrium and, hence, the static admissibility of ©. Since
Sy = &(0) : 80, the first variation of /7 is

81 = < {g(0) : 60 + 6(.(V.0))} >

* Such a displacement field is called kinematically admissible; see Section 19, Part 2.
% Such a stress field is called statically admissible; see Section 19, Part 2.

6w is a vector field in V.
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= %jav (v.060).p dS+< (€~symVeop): 86 +n.(V.o) >.
(2.5.49a)

Since the surface integral vanishes for the considered traction boundary condi-
tions, the solution of 8/% = 0, denoted by 6¢*, produces a compatible strain field,
£ = Jy/do(0°¥); see Subsection 19.5. For 6% produced by X =a°, the
macrostrain potential is given by

1*}(0%; 6°) = PE(o0). (2.5.49b)

Furthermore, if the microstrain potential is positive-definite, then, for any stati-
cally admissible stress field, o(x),

I¥(0%; 6°) < I¥(0; 6°), (2.5.49¢)

where equality holds if and only if 6 = ¢¢*. The uniform stress field, 6(x) = ¢°
for x in V, satisfies the equations of equilibrium, as well as the prescribed trac-
tion boundary conditions. Hence, (2.5.49c¢) yields

1¥(0%; 6°) < I1¥(6°; 6°) = < Y(x; 6°) >, (2.5.50a)

where Y(x; ¢°) is the microstrain potential at x, evaluated at uniform stress ¢°.
The upper bound for the macrostrain potential is now given by

YI(6°) < < Y(X; 6°) >. (2.5.50b)

The above results are direct consequences of the minimum energy princi-
ples in elasticity. They show that the uniform strain field, € = €° (= E), leads to
an upper bound for macrostress potential ®F(E), while the uniform stress field,
0 = 0° (= X), provides an upper bound for macrostrain potential WE(X). In
linear elasticity, the macrostress and macrostrain potentials correspond, respec-
tively, to the average strain energy and the average complementary strain
energy. The overall elastic parameters may be defined in terms of either poten-
tial. Hence, upper bounds can be obtained for the overall moduli from the uni-
form strain fields, and lower bounds from the uniform stress fields. The esti-
mates of the overall moduli and the overall compliances of a linearly elastic
composite, using uniform strains and uniform stresses, are due to Voigt (1889)
and Reuss (1929), respectively; see Subsections 7.2 and 7.1, and (7.2.9) and
(7.1.14). The fact that these are actually bounds has been shown by Hill (1952,
1963), and Paul (1960).

2.6. STATISTICAL HOMOGENEITY, AVERAGE QUANTITIES, AND
OVERALL PROPERTIES

To obtain further insight into the relation between the microstructure and
the overall properties, imagine a very large volume of the heterogeneous solid
with the property that any suitably large subvolume can be used as an RVE to
obtain the overall macroscopic parameters. This large body is then called
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statistically homogeneous. The term "large volume" here refers to a material
neighborhood which is several orders of magnitude larger than the correspond-
ing RVE. On the other hand, the RVE must be several orders of magnitude
larger than the size of its microconstituents. For simplicity, consider only
linearly elastic materials in this subsection.

To be specific, let B be the large solid and V be a typical representative
volume element within B. Denote the length scales of B, V, and the microcon-
stituents, respectively, by L, D, and d. It is assumed that these length scales
satisfy

d D
) << 1, T << 1. (2.6.1a,b)

Note that the length scales D and d are the same macro-length-scale and micro-
length-scale as mentioned in Subsection 1.1. The statistical homogeneity of B
may be described in terms of average fields over V.

First, define average fields in the following manner. Consider only inte-
rior regions within B that are at least the distance D away from the boundary 0B
of B. Denote the collection of all such interior regions by B’; see Figure 2.6.1.
Let V° be a suitably large region whose centroid is located at the origin, and
denote points in V° by z. By rigid-body translation, say, y, points in V° form a
region whose shape and orientation are the same as V9, i.e., a region given by
the collection of all x = y+z with y fixed and z varying in V°; Figure 2.6.1.
Regard such a region as an RVE, and denote it by V. By definition, the centroid
of Vis y. With y fixed, the strain and stress within V are expressed as

e=¢ex)=¢(y+2z), 6=0(x)=06(y+z) zinVe (2.6.2a,b)
The corresponding average strain and stress over V are given by

7 | _ 1

Ey) = [ e@ dVa= o [ ey +2)dVy,

= 1 1

o(y) = v v o(x)dVy = Vo Jy. o(y +z) dV,. (2.6.3a,b)

In general, €(y) and 6(y) depend on y and on the shape and size of V or V°.
With Ve fixed, for various values of y, (2.6.3) defines moving averages of the
strain and stress fields.

In terms of the moving average strain and stress fields, the statistical
homogeneity is described as follows: Let suitable uniform farfield boundary data
associated with constant strains and stresses, €° and 6°, be prescribed for the
large body B. The large volume B is statistically homogeneous if the moving
average strains and stresses taken over any sufficiently large volume V are
independent of the location of the centroid y of V within B’ and the shape and
size of V. Thus, averages taken over any RVE in B’ are essentially the same as
those taken over B when the RVE is suitably large. For statistically homogene-
ous B, it therefore follows that

e(y)=¢e°,  o(y)=o°, (2.6.4a,b)

where €° and ©° are the prescribed uniform farfield strains and stresses.
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Figure 2.6.1

Large body B, its interior region B’, and
RVE V obtained by translation of V¢

It is of interest to examine whether or not the statistical homogeneity of B
implies that the volume average of the product of the strain and stress tensors
taken over any RVE equals the product of their respective volume averages, i.e.,
whether or not

(6: €)(y) = O(y): E(y) = 6°: €°, (2.6.5a)
where
©:0y) = 4 |, 6 +2) ey +2) AV, (2.6.5b)

The validity of (2.6.5a) ensures that the overall moduli defined through the aver-
age strain energy or complementary strain energy are essentially the same as
those defined through the average stress-strain relations. Before discussing this
issue, consider an alternative volume averaging method which involves a

smooth weighting function.”

2.6.1. Local Average Fields

Volume averaging over any volume V may be performed in terms of
smooth weighting functions. In the following, volume V is always viewed as
the collection of points obtained by rigid translation of points within V°. Thus,
as z varies within V°, x = y +z defines V for given y and V°; Figure 2.6.1. In
this manner, the domain of variation of z = x —y is always V°. The unweighted
volume average of field (...) = (...)(x) taken over V is written as

" The following brief account is closely related to the work of Murat and Tartar (1985) and
Francfort and Murat (1986), although it is cast in a less mathematical language; comments by Willis
(1992) are gratefully acknowledged.
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(D) = 5 [ Hx=y: Vo) ()00 dVs, (2.6.62)

where H(z; V°) is the Heaviside step function,® having the value 1 for z in V°,
and zero otherwise. Since H is discontinuous, the computation of the deriva-
tives of (...)(y; V°) with respect to y is not straightforward. Hence, instead of H,
introduce a suitably smooth function ¢ = ¢(z; V°) with the following properties:

>0 for z in V°
d(z; V°) { =0 otherwise,

1 . yo =1 : -
Vo Iw o(z; Vo)dv, = Vo IB o(x; Vo) dVe = 1. (2.6.7a,b)

The function ¢ and its derivatives may be required to vary as smoothly as
needed, within and close to the boundary dV° of V°. Except for this smoothness
property, §(z; V°) plays a role similar to the Heaviside step function H(z; V°).

The averaging operation (2.6.6a) may be replaced by the operation which
uses the weighting function ¢ to define a local average field value at y,

('3 0) = 15 [ 0= ¥3 V) ()00 Vi (2.6.6b)

The differentiation of the local average field (...)2(y; ¢) with respect to y is given
by

Dty 0= L [ [ o(x—ys vo
7 (09 = 35 [y o= 00-ys VO () aVs

= o [ 00y V) | - (o0 av,

5?5 (...)] (y; 9), (2.6.8)

since O(x —y; V°) = ¢(z; V°) is smooth and vanishes smoothly at points close to
o0V°. Hence, the operation of differentiation commutes with the operation of
local averaging with weighting function ¢. This weighting function, therefore,
serves as the smoothing function.

The moving average of the strain and stress fields, (2.6.3a,b), is now
replaced by the local average in terms of the smoothing function ¢, i.e.,

£(y; 9) = 5 [, 0K -y VO)£x) dV,,

O'(y: ) = 515 [ 0x—¥; V) 0(x) Ve (2.69a,b)

Since local averaging commutes with differentiation, €? is regarded compatible,
and ¢ divergence-free, i.e.,

8 Function H(z: V©) is also called the characteristic function of V.
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gy; 0) = sym {Vyoui(y; )}, V,.0(y; 9)=0, (2.6.10a,b)

where w® is the displacement field associated with €%, and sym stands for the
symmetric part of the second-order tensor.

Now, suppose that the local average strain and stress fields satisfy
g(y; 0)=¢€°  o%y; 9)= 0", (2.6.11a,b)

for some suitably smooth weighting function ¢ which satisfies (2.6.7a,b), and for
any sufficiently large V°. Since ¢(x; V°) can be chosen to be close to H(x; V°),
condition (2.6.11a,b) ensures that the statistical homogeneity, (2.6.4a), remains
valid. Hence, if (6 : €)? which is defined by

(6:€7(y; ) = o5 [, 0x—y; VI 6(x) 1 £(x) AV, (2.6.9¢)
satisfies
(o:€)X(y; ¢) = 6%(y; §) : €%(y; §) = 6°: €°, (2.6.11¢c)

for some suitable ¢, then (2.6.5a) holds. Therefore, instead of seeking to obtain
the conditions for the validity of (2.6.5a), consider the condition for the validity
of (2.6.11¢).

Let £2%(x) = £° and 6%(x) = ©° be constant fields in B, and let u®(x) = x.€°
be the linear displacement field associated with €°. Based on the definition of £?
and 6?, (2.6.11c¢) is rewritten as

% IB d(x —y; V°) {o(x) : &(x) — 6%(x) : €%(x)} dV, = 0, (2.6.12)

since ¢ satisfies (2.6.7b). The integrand in the left side of (2.6.12c) is rear-
ranged as

o:e-0":eP=(0-0%:(e-€)+0%:(e-€%+(6-0c?: €. (2.6.13a)

Since o® and €° are constant fields, the local average of the last two terms is
approximately zero; in view of (2.6.11a,b),

0% <L J, 00x-3: Vo) e -1 Vi =0,

€0 [ VL [, 6x=y; V°) {o(x) - 6°x)} dvx] =0. (2.6.14a,b)
Hence, the local average of (2.6.13a) becomes

;,1—0 IB d(x —y; Vo) {o(x) : &(x) — 6%(x) : €%(x)} AV

- % J‘B d(x—y; VO) {o(x) - 6%x)} : {e(x) —€%(x)} dV,. (2.6.13b)

Since €(x) and €%(x) are the symmetric parts of the gradient of u(x) and
u’(x) = x.€°, respectively, using the divergence theorem, rewrite the right side
of (2.6.13b) as
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% [, 6(x=y; Vo) {6(x) — 6%x)} : {sym (V ou)(x) —sym (V euO)(x)} dV
= &5 [ 9035 V) (600 - 0°(x)) : (v(x) 8(u(x) - w(x)} dVy

=5 [ 0= VO) {V.(6(x) = 6%} « (u(x) - w0(x)} AV

- VL [, (o) - 0%} : [ {Ved(x - y)} efux)-ux)}) dVy. (2.6.13c)
The first integral vanishes, since ¢ is zero outside of V°, and the second integral
vanishes, since both ¢ and o9 are divergence-free. With the aid of the Schwartz

inequality, the absolute value of the last integral is evaluated to be

1

VO

2

[5 to®) =0} : [ (Veo(x - y)} olu(x)-ud(x)}] dV,

2

[, to(x) - 0%x)} : [ (Veo(x - y)} o{u(x) - ul(x)}] dVy

<[ 35 Jy. 1Ve0@12av. | 57 [, 1600~ 0%x)12 Vs

[+ [, 1 -u0m)12 avy. (2.6.15)

The first two integrals are bounded, the first because the smoothing function
0(x; V°) can be chosen to satisfy this condition, and the second, since the aver-
age of the squared deviation of the stress field 6(x) from 6%x) = 6° taken over

V should remain bounded when the total complementary energy density is
bounded.

Therefore, if it is assumed that
o J,, 10 - w012 av, =0, (2.6.16)

then the validity of (2.6.11c), and hence the validity of (2.6.5a), are ensured.
While the strain field € may have wild variations about €, the displacement field
u remains continuous. It is intuitively clear that the magnitude of the fluctuation
of u about u® should decrease as the size of the microconstituents decreases.
Hence, it is expected that (2.6.6) should hold if d is suitably small, as discussed
below.

2.6.2. Limiting Process and Limit Fields

Condition (2.6.1a) is satisfied if the size of the RVE, D, is fixed and the
size of the micro-inhomogeneities, d, becomes infinitesimally small. Physically,
this corresponds to the case where the "gauge length” (in this case D) is fixed
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and the size of the micro-inhomogeneities becomes vanishingly small, i.e., the
material behaves essentially as if microstructurally homogeneous. 1t is clear
that, in this case, the difference between the actual displacement field, w, and the
smooth field u® (or equivalently, the local averaged displacement field u?)
becomes vanishingly small, although the first represents the actual particle dis-
placement at the microscale, and the second relates to the locally averaged
deformation field. At the limit as d — 0, with D fixed, the integral in the left
side of (2.6.16) is identically zero, and hence the energy density averaged over
an RVE, (0 :€)/2, equals the energy density associated with the corresponding
average fields, 6 : €/2.

From the physical point of view, on the other hand, it is generally neces-
sary to deal with finite-sized microheterogeneities. That is, the physics of the
problem at hand dictates the required minimum microscale d, and it is the gauge
length D which must be chosen suitably large to accommodate the required
reproducible macroscopic measurements, i.e., the averaging is now satisfied by
keeping d fixed (at its minimum value) and choosing D to be suitably large. In
this case, the amplitude of the fluctuation of the actual displacement field u
measured at the microscale relative to the smooth local average field u®, does
not necessarily become infinitesimally small, as the size of the RVE, namely D,
is increased. Indeed, counterexamples can be constructed, e.g., in terms of the
periodic or quasi-periodic microstructures, which show that the density of

lu—u®I2 may remain essentially unchanged,’ with d fixed and D — . For
problems of this kind, therefore, relations based on d/D — 0 with vanishingly
small micro-inhomogeneities, may not be relevant.

In practical applications, it may, however, often happen that the inhomo-
geneity size d is indeed small enough to only introduce tolerable errors, so that,
while the left side of (2.6.16) remains finite, it may be regarded as essentially
zero. Notwithstanding this, the distinction between d/D — 0 with D fixed and
d — 0 on the one hand, and with d fixed and D — = on the other hand, should
be kept in mind when interpreting the corresponding results.

2.7. NONMECHANICAL PROPERTIES

The results of the preceding subsections can easily be specialized for
application to electrostatic, magnetostatic, thermal, and diffusional properties of
a heterogeneous RVE. Except for different physical interpretations of the field
quantities and the associated material parameters, the basic steady state field
equations necessary for the present application, are essentially the same. Steady
state thermal conduction, mass diffusion, and electrostatics can be considered

® Although the absolute value of lu—u®12 may remain essentially unchanged if d is fixed, the
relative value of la—u®i2 with respect to D decreases as D increases. This means that even if the
size of the microconstituents is kept the same, the fluctuation of the displacement relative to the size
of a sufficiently large gauge length, becomes vanishingly small.
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simultaneously, as commented on at the end of Subsection 1.3.

With reference to equations (1.3.11) to (1.3.14), let u stand for {tempera-
ture, or pore pressure, or electric potential} when {thermal conduction, or mass
diffusion, or electrostatics} is considered. Then p = — Vu may be viewed as the
corresponding (thermodynamic) force, i.e., {— pressure gradient, or — tempera-
ture gradient, or electric field}, with q identifying the associated flux, i.e., {mass
flux, or heat flux, or electric displacement}. In this subsection, general results of
the preceding subsections are reduced and applied to this class of problems.

2.7.1. Averaging Theorems

Consider the volume average of the force field p = p(x) and the flux field
g = q(x) over an RVE. Whatever the nature of the boundary conditions, these
averages, denoted by p and g, are completely defined in terms of the
corresponding boundary data.

Indeed, from definition (1.3.14a) and the application of the Gauss
theorem, it immediately follows that

§E<p>=—%j.avvu°ds, 27.1)

when the boundary temperature'® (not necessarily linear), u, is prescribed.
Similarly, from (1.3.11a) and (1.3.12a) it is deduced that

g=<q>= %jav q°x dS, (2.7.2)

for any self-balanced surface flux v.q° =q° (not necessarily uniform). More-
over, from identity

<Qp>—< Q> <p>= %jav(—u+x.<p >){v.{(q—<q>)}dS,

2.7.3)

it follows that

<Q.p>=<(q>.<p>, (2.7.4)
whenever either uniform boundary flux g°,

v.q=V.q° ondV, (2.7.5a)
or linear boundary potential,

u=u=-x.p° ondV, (2.7.6a)
is prescribed. In the first case,

q=<q>=¢q°, (2.7.5b)

1 For the sake of simplicity in referencing, the results will be illustrated in terms of the ther-
mal conduction problems.
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and in the second case,
p=<p>=p° (2.7.6b)

exactly.

2.7.2. Macropotentials

Essentially all the results presented in Subsections 2.5 and 2.6 directly
translate and apply to this class of problems. All that is needed is to identify
p = — Vu with the strain tensor, and the corresponding flux, q, with the stress
tensor; an important difference, however, being that p and q are now vector
fields.

Suppose the material of the RVE admits potentials, ¢ = ¢(x, p) and
Y = Y(x, q), such that

= 90 -9y
q ap (X, p)’ P aq (X, q) (2783,b)
The two potentials are, therefore, related through the Legendre transformation,
¢+y=q-p. (2.7.8¢)

Let P be a constant vector, and consider the linear boundary data,

u=-v.P ondV, (2.7.9a)
for this heterogeneous RVE. Let the resulting force and flux fields be given by

p=px;P), q=qx P) (2.7.9b,¢)
Define the macropotential ®F(P) by

DF(P) = < d(x, p(x; P)) > =< 0F(x; P) >, (2.7.10a)
and obtain (see Subsection 2.5.1),

Q° = <q(x; P) > = 3%1. (2.7.10b)

In a similar manner, for uniform boundary data,

v.q=v.Q ondV, (2.7.11a)
where Q is a constant vector, write the resulting force and flux fields as

P=px;:Q), g=4qx;Q. (2.7.11b,c)
Then, defining the macropotential ¥Q(Q) by

PAQ) = < y(x, q(x; Q) > =< yAx; Q) >, (2.7.12a)
arrive at

PQ= < p(x; Q) > = I (2.7.12b)

0Q -
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Finally, relations between the macropotentials and the corresponding definition
of an RVE follow directly from Subsections 2.5.3 and 2.5.4; see also Table
2.5.1.

2.7.3. Basic Inequalities

When the potentials ¢(x, p) and W(x, q) are convex in the sense of''
(2.5.31), then an analysis similar to that of Subsection 2.5.6 immediately leads
to the following two basic theorems:

Theorem I: For an RVE whose microconstituents admit convex po-
tentials, among all consistent boundary data which produce the same
overall macroforce, P, the uniform flux boundary data render the total
macroflux potential ®(P) an absolute minimum.

Theorem II: For an RVE whose microconstituents admit convex po-
tentials, among all consistent boundary data which produce the same
overall macroflux, Q, the linear boundary data associated with a uni-
form force, render the total macroforce potential W(Q) an absolute
minimum.

Thus, if the macroforce associated with the general boundary data is
denoted by PG, and the corresponding macroflux potential by ®G(PY), then it
follows that

®G(P%) > PUPY  for PO =PQ (2.7.13a)

In particular, when the boundary data is defined by the linear relation (2.7.9a),
then

®P(P) > OP). (2.7.13b)

In a similar manner, it follows from Theorem II that, for any general but
consistent boundary data which produce the macroflux QF,

YOQO) > WPQY)  for Q°=Q" (2.7.14a)
Moreover, when uniform boundary fluxes are prescribed,
YAQ) 2 ¥(Q). (2.7.14b)
Consider now linear RVE’s for which the local potentials are given by
o(x, p) = %P-K-P = %‘Kij Pi Pjs (2.7.15a,b)
y(x, q) = %q-R-q = %Rij qi gj» (2.7.16a,b)

where for thermal conduction, for example, K and R are conductivity and

! Replace, e.g., € in (2.5.31) by p.
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“resistivity" tensors'? respectively, with K = KT =R, R =RT = K-!. Let
®5(PO) = TPO.KC.PS,  WH(QY) = 2QO.RO.QC, (2.7.17a,b)

correspond to any general consistent boundary data which produce an overall
macroforce PC and an overall macroflux QU satisfying

1 G G G_ (G _
Vfav{“ +x.PS}{v.(q°—Q%)} dS =0, (2.7.18a)
so that
< q0.pS > =< q% >.< pb > = QO.PC, (2.7.18b)

In (2.7.17a,b), KC and RO are the overall, e.g., conductivity and resistivity ten-
sors defined through

Q% =KS.PS, PS=R.QS, (2.7.18¢,d)
and hence are each other’s inverse.
Each of the boundary conditions of uniform flux and linear, e.g., tempera-

ture, satisfies (2.7.18a). Define K< and RP, respectively, by

@(PQ) = %PQ.EQ.PQ,

YP(QP) = %QP.I_QP.QP. (2.7.19a,b)

The conductivity KQ is not the inverse of the resistivity RF, since these tensors
are defined for different boundary data.

According to Theorems I and II, it now follows that for any constant P,
P.(K°-K9.P>0, (2.7.20a)
and for any constant Q,
Q.(R°-RP).Q=20. (2.7.20b)

Thus, uniform flux and linear, say, temperature boundary data provide lower
and upper bounds for the conductivity associated with any other boundary data.
In particular, when the second-order symmetric (and positive-definite) tensors
K, KQ RS, and RP = (KP)"! are coaxial,'® then denoting the corresponding
principal values (all positive) by A8, AR, and Af (a =1, 2, 3), from coaxiality
and Theorems I and 11, it follows that
1 1
G - P —

AG-A220, A6 AP 20, fora=1,2,3. (2.7.21a,b)

In the special case when KC, K@, and K are isotropic, then each has only one

distinct (positive) principal value, say, KA (A = G, Q, P), and (2.7.21a,b) reduce
to

"2 In electrostatics, K is the dielectric tensor.

13 LLe., they have the same principal directions.



§2.7 AVERAGING METHODS 63

KQ< KO <KP. (2.7.21¢)

All other comments regarding bounds in Subsections 2.5.6 and 2.5.7 also apply
here. In particular, the energy bounds of Subsection 2.5.7 follow directly, pro-
ducing lower and upper bounds for the effective conductivity; the derivation of
these results is left as an exercise for the reader.
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CHAPTER 11

ELASTIC SOLIDS WITH
MICROCAVITIES AND MICROCRACKS

In this chapter the overall elastic modulus and compliance ten-
sors are established for a macro-element represented by an RVE which
consists of linearly elastic constituents containing microcavities and/or
microcracks. For a fixed microstructure, the increment of the average
stress, 0G, relates linearly to the corresponding increment of the aver-
age strain, O€, by the relation 06 = C : O€, and the objective of the
analysis is to calculate the overall modulus tensor C, in terms of the
corresponding moduli of the constituents and the microstructure of the
RVE. The modulus tensor C, in general, depends on and changes with
the microstructure. In this chapter, first some fundamental results in
linear elasticity are briefly reviewed, and then the results are used in a
systematic manner to estimate the overall properties of the macro-
element, in terms of the properties and geometry of its microconsti-
tuents. Throughout the chapter, attention is focused on the stress-
strain relations, ignoring the temperature and the associated thermal
effects. The Helmholtz free energy ¢ then reduces to the strain energy
density function which is denoted by w = w(g), and the corresponding
complementary energy function ¥ reduces to the complementary strain
energy density function which is denoted by w¢ = w(6). When the fact
that, for a heterogeneous RVE, w and w¢ also depend on the position
X of the material in the RVE needs to be emphasized, then w = wW(x, €)
and wW° = W(x, O); note that even for a homogeneous material, w and
w¢ are implicit functions of x through € = €(x) and 6 = 6(x), respec-
tively.



SECTION 3 LINEARLY ELASTIC SOLIDS

This section presents stress-strain relations in linear elasticity and sum-
marizes elasticity and compliance tensors for materials with several commonly
considered symmetries. General three-dimensional, as well as plane-strain and
plane-stress conditions are briefly examined. Then the reciprocal theorem of
linear elasticity is introduced, followed by the principle of superposition and a
brief discussion of Green’s function. The material in this section will be used
throughout the remaining sections in Part 1.

3.1. HOOKE’S LAW AND MATERIAL SYMMETRY

Constitutive relations in linear elasticity are given by the generalized
Hooke law which linearly relates the stress and strain tensors through the elasti-
city and/or compliance tensors. The coefficients of these linear relations are the

elastic and/or compliance moduli, as is detailed in this subsection.!

3.1.1. Elastic Moduli
Consider a typical homogeneous and linearly elastic constituent of an
RVE, and denote its stress-strain relation by
o=C:¢g, or Gjj = Cijkl £xi. (3 lla,b)

Since both the stress and strain tensors are symmetric, ¢ = 6" and € = €7, the
elastic modulus tensor C must also possess a similar symmetry,

Cij = Gjit = Cyjix = Cjik. (3.1.1c)
Therefore, out of the eighty-one components of C, only thirty-six are independ-
ent. The number of independent components reduces to twenty-one for the most

general anisotropic linearly elastic case, if the material admits a strain energy
density function w = w(€g), such that

ow
= %—‘sv, or Oy = 4. (3.1.2a,b)

Because of the linearity of stress-strain relation (3.1.1), to within an additive
constant, the strain energy density function is given by the following quadratic

[

' See Love (1944), Sokolnikoff (1956), Hearmon (1961), Lekhnitskii (1963), and Jones
(1975).
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form:

w = %8 :C:e= %Cijkl € €. (3.1.20)
The elasticity tensor C is therefore symmetric with respect to the first and

second pairs of its indices,
Cin = Cuijs (3.1.1d)

which, together with (3.1.1c), leaves only twenty-one independent components
for C.

It is often convenient to express the stress-strain relation (3.1.1a) in terms

of a six-dimensional matrix.> To this end, the stress and strain tensors are
represented by six by one column vectors, and the elasticity tensor C by a six by
six matrix, as follows. First define the six by one column vectors [T,] and [Y,]
for the stress and strain tensors, respectively:

Ty =011 Ty = 022, T3 = O33,

T4 = 623 = O3, Ts = 031 = 013, Tg = G12 = G2y, (3.1.3a)
and

Y1 = €11, Y2 = €22, Y3 = €33,

Ya = 2853 = 283, Ys = 2831 = 2€13, Yo = 2€12 = 2€3). (3.1.3b)

Then denote the first two subscripts ij by, say, a, and the second two subscripts
kl by, say, b, to obtain the matrix of the elastic moduli, [C ], as

Ciinn Crizz Cuss Cras Crzt Cinz
Canr Crzz Cozssz Cozs Caozt Conz
Ci311 Ci322 Cazz Caaz Cazzr Caznz

Cuit Caz22 Cozzz Cozzs Cazzr Cozzf?
Cain Caizz Gaizz Caizz Cazr Gannz
Ci2it Ciaz Cizz Cizoz Crzr Cianz

[Cap] = (3.1.3¢)

where a, b =1, 2, ..., 6. The stress-strain relation (3.1.1) now becomes

[Ta = [Cabll®), or Ta=CaM (3.1.4a,b)

where repeated indices are summed, and a and b take on values from 1 to 6.
The strain energy density function w may be expressed as

w= LIIMCwI] = 5 Can Yoo (3.1.52)

so that

* This notation has been introduced by Voigt; see Hearmon (1961).
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_ oW _ ow
[Ta] - a[Ya] ’ or Ta= a,Ya . (315b,C)

3.1.2. Elastic Compliances

The six by six matrix of the elastic moduli [C,p] is positive-definite and
symmetric, admitting a unique inverse matrix [D g}, i.e.,

[Dav] = [Cab]_l or [Cap] = [Dab]_l- (3.1.6a,b)

Observe that the relation between the components of the matrix [C ) and the
components of the tensor C diifers from the relation between the components of
the matrix [D,,] and the components of the tensor D. Defining a diagonal
matrix [Wy], by

[Wa] = (3.1.6¢)

OO OO =
OO O =0
COO=OO
OSCOMNOOO
ONOOO O
NOOOOO

and associating the components of tensor D with matrix [D,,] in a manner simi-
lar to (3.1.3¢), it follows that

(D] = [Wap] [qu][qu]

Diinn Dnizz Dz 2Dyizs 2Dyy31 2Dgg2
D1 Doz Danz 2Dazz 2Dgzi 2D
_ | Daair Dsszz Dsazz 2Dazz 2Dsza; 2Daanp 3.1.6d)
T |2D2311 2D2322 2D2333 4D2323 4D3331 4Da3nn o
2D3111 2D3122 2D3y33 4D3123 4D313; 4D3gp2

2Dy211 2Di222 2Dj233 4D1223 4D1231 4Dz

where matrix [Dyy) in expression [W,,][Dpg][Wqp] is obtained by replacing in
the right-hand side of (3.1.3c), the letter C by the letter D. In Part 2 of this
book, Section 15 gives a detailed discussion of the relation between the tensor

operation and the corresponding six-dimensional matrix operation.®

The matrix [D,] and the compliance tensor D are both symmetric, and, in
general, each has at most twenty-one independent components. The strain-
stress relation can be written as

[Yal = [Dapllte]l, oF  Ya=DapT. (3.1.7a,b)

In tensor representation this becomes

3 An alternative formulation is due to Kelvin (1856). This formulation has been reexamined
and extended by Mehrabadi and Cowin (1990). The approach outlined in Section 15 appeared in the
1988 version of the notes which evolved into the present book.
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e=D:o, or €= Dijkl Okt (3.1.8a,b)

The complementary strain energy density function,

we = LD awll%] = 5D Ta T, (3.1.9)

is such that
_ Ow* _ Ow*

[Ya] - a[,ta] s or Ya - a,ta . (319b,C)
The tensor representation of (3.1.9a~c) becomes

wé = %G:DIG= %Dijklcijckl, (3.1.10a)
and

_ OwS L _ Owe
£= 36 or g acij . (3.1.10b,¢)

3.1.3. Elastic Symmetry

The number of independent elastic parameters (elastic moduli or elastic
compliances) further reduces from the maximum of twenty-one, if the material
possesses elastic symmetries. The greatest symmetry exists in isotropic materi-
als for which any plane is a plane of symmetry. Recall that a plane normal to an
orientation constitutes a plane of elastic symmetry, if reflection about this plane
leaves the elastic parameters unchanged.

For the isotropic case, there are only two elastic parameters, and the elas-
ticity tensor becomes

C=ADg1® +2u1¢9, (3.1.11a)
or
Cijia = A 855 8i1 + i (Bik 651 + By G510 (3.1.11b)

where 1 is the second-order unit tensor and 1¢) is the symmetric fourth-order
unit tensor; the fourth-order unit tensor 14 is given by

148 = 8y & = %(&k 31+ 8 &) + %(aik 3 —8u i) = LY + 150, 3.1.11¢)

With second-order contraction, 19 (1¢®) maps a symmetric (antisymmetric)
second-order tensor to itself, but maps an antisymmetric (symmetric) second-
order tensor to 0, while 1® maps any second-order tensor to itself. The parame-
ters A and Y are called the Lamé constants (for heterogeneous elastic materials
they, of course, are not constant); | is the shear modulus. If Young’s modulus is
denoted by E, Poisson’s ratio by v, and the bulk modulus by K, then these elas-
tic parameters are all related, such that they can be expressed in terms of any
two chosen from them. Table 3.1.1 gives the relations among these parameters.
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Table 3.1.1
Relations among isotropic elastic moduli
Moduli Relations
by 2wy _ WE-2) :K_;u: Ev _ 3Kv
1-2v 3u—-E 3 (1+v)(1-=-2v) l+v
_ 3KBK-E)
9K -E
M A(l-2v) :i(K—X)z E _ 3K(1-2v) _ 3KE
2v 2 2(1+v) 2(1+v) 9K-E
v A __ A _E ,_ 3K-2n _3K-E
200+ 3K-— 21 23K +p) 6K
PEA+20) _ A1 +v)(1-2v) _ 9K(K-A) _
E A+p v 3K-A 21 +v)
= _9Ku _
IR+ 3K(1 -2v)
2,_A0d+v) _2u(l+v) _ LE _ E
K A+ 3H 3v 3(1-2v)  33u-E) 3(1-2v)

For the isotropic case, all the components of the matrix [C,] can be
expressed in terms of two components, say, C; and C |, which, together with
C 4, are defined in terms of Young’s modulus E and Poisson’s ratio v, as fol-

lows:
_E 1-v _E \%
Ci=Tivicay Ty Toav
Cu=—E (=p (3.1.12a~c)
2(1+V) : o

It then follows that

[Cab] =

Ciy Cip Ci2 0 0 0
Cip Cp Cp2 0 0 0
Cip Ciz Ciy 0 0 0
0 0 0 (Ch=Cp)2 0 0
0 0 0 0 (C1i-C )2 0

0 0 O 0 0 (Cn—Ci)2

(3.1.12d)

In a similar manner, the compliance matrix [D 4] is expressed in terms of, say,
Dy and D », arriving at an expression similar to (3.1.12d):
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Dy Dy, Dp 0

0 0

Dy, Dy Dy 0 0 0

Di; Dy; Dy, 0 0 0

Dwl=| 0 0 0 20,,-Dp) 0 0

0 0 O 0 2(Dy1-Dy) 0

0 0 0 0 0 2(D1—Dyy)
(3.1.12¢)
In terms of E and v, we have

D11=%’ Di=-1, D44=A1?+Yl(=&). (3.1.12f~h)

Next, we consider transversely isotropic materials which have five inde-
pendent elastic parameters. In this case, there exists a plane of isotropy.
Choose this plane to coincide with the x),x;-plane. The compliance matrix
[D 1] then becomes

Dy Dy Dz 0
Dy Dy Dz 0
Dz Diz Dz 0
Dbl=| 0 0 0 Dy
0 0 O 0 Dy
0 0 0 0 0 2Dyu—-Dp

0
0
0
0 (3.1.13a)

S oo CO O

In this case, the Young modulus associated with any direction in the x;,x;-plane
is the same, say, E; = E; =E, and the Poisson ratio associated with any two
orthogonal directions in this plane is also the same, say, vi; = vy =Vv. The
corresponding shear modulus W), =Wy =W is given by w=E2(1+v). If
Young’s modulus in the x3-direction is denoted by E3, Poisson’s ratio associated
with the xs-direction and a direction in the x;,xz-plane by, say, Vi3 = Va3 = V3,
with the corresponding shear modulus 1,3 = U3 = U3, then

v
D11=%, D12=—%, D13=—E—2,
Di3 = L, Dy = L (3.1.13b~f)
E3 [VE
A similar expression holds for the elastic modulus matrix [C z]:
ChnCpCyz 0 O 0
CpCnCiz 0 0 0
C3CizCs;z 0 O 0
[Cal=] 0 0 0 Cu 0 0 , (3.1.13g)
0 0 0 0 Cyu 0

0 0 0 0 0 (Ci—-Cp)2

where
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_p_L _vi DY Y5
C”_D{EE3 E32}’ CIZ_D{EE3+E32}’
_n (L+V)vs R
CB_DT&’ Cs3=D—p7—,
2R2
Cu=us D= E°Es (3.1.13h-1)

(1+W{(1=-Vv)E;-2v$E}’

The material is called orthotropic, if it possesses two mutually orthogonal
planes of symmetry. In this case the material will also be symmetric with respect
to a plane perpendicular to the two planes of symmetry. The number of inde-
pendent elastic parameters reduces to nine, and the elasticity matrix, for exam-
ple, can be expressed in a coordinate system coincident with the material sym-
metry directions, as

CuCpCisz O

0
CpCpnCyx 0 O
C3CxnCs;z 0 O

[Cal=| 0" 0 0 Cu 0 (3.1.14a)

0 0 0 0 Css
0 0 0 0 0 Ce

(=N oo Nel

with a similar expression holding for [D,]. With E, v, and p standing for
Young’s modulus, Poisson’s ratio, and the shear modulus, respectively, and with
subscripts representing quantities with respect to the planes of symmetry, the
compliance matrix in this case becomes

1/E] ‘—V21/Ez —V31/E3 0 0 0
—Vv12/E; 1/E; —V32/E3 0 0 0
—V13/El —V23/Ez 1/E3 0 0 0
[Da] = 0 0 0 Uy 0 0 (3.1.14b)
0 0 0 0 1wz O
Note that, since D,, = Dy, fora,b=1, 2, 3,
Va _ Ve Ve _ Vs
E, E’ E;  E’
Vi3 _ Vi
=5 (3.1.14c)

When there is only one plane of symmetry, the total number of independ-
ent elastic parameters is thirteen, and the material is called monoclinic. Taking
the xs-direction normal to the plane of symmetry, the corresponding elasticity
matrix [C ] becomes
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CiCaCi3 0 0 Cis
CpCnCpx 0 0 Cu
Ci3CaCyxz 0 0 Cy
[Cbl=]| 0 0 0 Cu Css ©
0 0 0 Cu Css O
Cie Co6 C36 0 0 Ces

(3.1.15)

with a similar expression for the compliance matrix [D ,].

There are other symmetry conditions which can be considered. Many of

these are related to crystal structure.* For example, in a crystal with cubic sym-
metry, there are three independent elastic parameters. These may be chosen to
be

Ciu=Cu=C31=A Cu=Css=Ces=U,

C||=C22=C33=7\,+2u+u’. (4.1.16a~c)
Here A and p are the usual Lamé constants, and the quantity
, ch-¢C
n =2{%—C66} (3.1.16d)

measures the degree of cubic anisotropy.

3.1.4. Plane Strain/Plane Stress

Consider a case when either the strain tensor or the stress tensor has van-
ishing components in a certain direction, say, the Xsz-direction. If the strain
satisfies

e.£=0, or €3=€3(=€3)=8€3(=€3) =0, (3.1.17a,b)

then, it is called a plane strain state of deformation. On the other hand, if the
stress satisfies

e3.0=0, or 033=03(=013)=03(=03)=0, (3.1.18a,b)

then, it is called a plane stress state of deformation. For both plane strain and
plane stress, strain components, €1, €22, and € = €, and stress components,
G11, Oz, and Gj2 = Oy, are called the inplane strain and stress components,
while strain components, €33, €3 = €33, €3] = €3, and stress components, 33,
G>3 = O3y, 031 = Gj3, are called the out-of-plane strain and stress components. [t
should be noted that although the word "plane” appears, the stress and/or strain
fields are three-dimensional. That is, the plane strain or plane stress state
corresponds to only e3.€ = 0 or e3.6 = 0, respectively, but not to both.

Since the plane strain and plane stress correspond to special deformation
and stress states, the constitutive relations discussed in the previous subsections

* See Nye (1957).
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do not change, and relation (3.1.1) or (3.1.8) holds between strain and stress ten-
sors, i.e., 6 =C:€ or € =D:06. In matrix notation, (3.1.4a) for plane strain
becomes

T Ci Ci2 C13 Cis Ci15 Cis| |7y
T Ci12 Cx Ca3 Cog Co5 Crs| |y,
T3] |C13 C23 C33 C34 C35 C36| | 0 (3.1.19)
Ta| ~ |C1a Coq C34 Caa Cys Cae| |0 o
Ts Cis Cys C35 Cus Css Cs| | O
T6 Ci6 Ca6 C36 Cas Css Ces| | Y]

or, when decomposed into the inplane stress components, [Ty, Ty, T¢], and the
out-of-plane stress components, [13, T4, T5],

T Ciit Cia Cis| |1
T =1Ci2 Cxn Cy| | V2]
| T | _C16 Ca C66_ | Ye |

T3 >C31 Ci Ci| [N
T4| = C4| C42 C46 Ya2i. (3119b,C)
| %5 »C51 Cs C56_ Yo |

Similarly, (3.1.7a) for plane stress becomes

T Dy Dy D13 Dy Dis Dyg| |1,
Y2 D2 Dy Dj3 Day Das Dag| |1,
§E] D13 D33 D33 D3g D3s D3
Ya| ~ | D1a D24 D3a Dyy Dys Dy
Ys Dis Dys D3s Dys Dss Dsg
Yo Dig Dys D36 Das Dss Des| | 6]

(3.1.20a)

SO O

or, when decomposed into the inplane strain components, [y;, Y2, Yol, and the
out-of-plane strain components, [Y3, Y4, Y5,

Yi Dy Dy Dig| | Ty
Y2| = | D12 Dy Dy |T2],
Yo D¢ Dy D66_ | T

Y D3y D3y Dig| | Ty
Ya| = D41 D42 D46 T2l . (3120b,C)
s | _D51 Ds) D56_ | T

These are apparent constitutive relations, expressing all stress components in
terms of the inplane strain components for the plane strain case, and for the
plane stress case, expressing all strain components in terms of the inplane stress
components, i.e., {(3.1.19b,c) and (3.1.20b,c), respectively. Since the out-of-
plane components of stress (in plane strain) and the components of strain (in
plane stress) are defined, once the corresponding inplane quantities are obtained,
in what follows only the inplane relations (3.1.19b) and (3.1.20b) will be
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considered. Because

Ciy Ci2 Cis| |Dit D12 Dys
Ci2 Cp Cr|#| D12 D2 Do (3.1.21a)
7C16 Cyx Ces| |Dis Do Dee_

and

Dy D Dig| |Cy1 Ci2 Cus
Dy Dy Dol #|Cr12 Co2 Co (3.1.21b)
»D16 D¢ Dgs| {Cis Cas Cse_

for D=C! or C = D!, these apparent constitutive relations do not enjoy the
usual reciprocal relation displayed by (3.1.1) and (3.1.8).

Now examine the apparent constitutive relations for the inplane strain and
stress components, when the material is isotropic or transversely isotropic, with
the plane of symmetry being the x;,x,-plane. Since isotropy is a special case of
transverse isotropy, the latter case is considered. From (3.1.13), the three by
three matrix for the apparent constitutive relations is as follows: for plane strain,

EZE
€)1 — 3
[CH] (1 +v){(1 —=Vv)E;—2v$E}

1/E—V3/E; V/E+V{/E; 0
X V/E+V32/E3 I/E—V'J;Z/E::, 0 s
0 0 {(1 = V)E; — 2vZE }/2EE;

1/E-Vv#E; —V/E-V3$E; 0
(D®]=|-VE-Vv¥E, U/E-viE, 0o |, (3.1.22ab)
0 0 2(1 +V)/E

and for plane stress,

1 -v 0
DPI=2/-v 1 0 |,
0 0 2(1+V)]
E 1 v 0
C1=yTyr[vI 0 |, (3.1.23a,b)
V0 0 (1-vy2]

where [DE ] =[CE T and [CH1=[DE ], and the superscript (€) or (G)
emphasizes whether the three by three matrix of the apparent constitutive rela-
tions is for plane strain or plane stress.

Since in (3.1.22) and (3.1.23), Y6 =Te/ll Or T¢ = WYe(€12 = G12/2 or
O2 = 2u€y), where W is the shear modulus given by E/2(1 +V), expressions
(3.1.22b) and (3.1.23a) become
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1/2—-W(v3/E3+V/E) —w(#E;+V/E) 0
[D®] = & —W(VHEs+V/E)  1/2—W(v}/Es+VIE) 0|,
0 0 1

| 12-v2(1+v) —v/2(1+v) 0
D] = m -v2(1+v) 12-v2(1+v) 0. (3.1.24a,b)
0 0 1

As shown in later sections, these are two-dimensional isotropic matrices. Define
K by

3D{Y +D® _ 3D{H, + DI,
D{Y -Dfp D{f}, - D{%,
where Dig?éf is a two-dimensional fourth-order isotropic tensor corresponding to
the three by three matrix [D]. Then, (3.1.24a) and (3.1.24b) yield

K (a=¢, 0), (3.1.25a)

3-8u (V—32 +X)  for plane strain
E; E

3-v
1+v

= (3.1.25b)

for plane stress.

Hence, the apparent constitutive relations (3.1.24a,b) and their inverses are
given by

oy= 1
(D] m

(x+1)/8 (x-3)8 0
(x—-3)8 (x+1)/8 0},
0 0 1

[CP1=n (3.1.26a,b)

K+DIxk=-1) —(x-3Ix-1) 0}
—x=-3)x-1 &+DIx-1) 0],
0 0 1

where o = € for plane strain, and o = ¢ for plane stress. While u relates the
inplane shear stress and shear strain, the relation between the inplane hydrostatic
stress, (011 + 022)/2, and the inplane volumetric strain, €; + €7, is given by K, as

O+ 0
202 - AL () +en). (3.127)

Note that when the material is isotropic, E3 = E and v3 =V, and « for plane
strain reduces to 3 —4v.

The apparent constitutive relations for the out-of-plane stress and strain
components are easily determined. Since the constitutive relations for an iso-
tropic or a transversely isotropic material with the x3-axis as the axis of sym-
metry, are given by

B3=Ca(Mm+y)+Cayzs or Y3=D3(T1+T)+D3371s,

Tq = C44’Y4, Ts = C44'Y5, (3.1.28a~d)

it immediately follows that the out-of-plane normal stress and strain components
satisfy
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B3=C3(1+Y2) or G33=Cni (€1 +E0), (3.1.22¢,d)
for plane strain, and
Y3=D3(T1+T) or €3 =D311(61;+62), (3.1.23c,d)

for plane stress, where

V3EE v
m, D3y =Da3yy =—E—z- (3.1.29a,b)
In particular, for the isotropic case, C3; = C33;y = (1= V)E/(1 +Vv)1-2v) and
D3y = D33y =—V/E, and the out-of-plane shear strain and stress components
must vanish for either plane strain or plane stress. For other symmetries, how-
ever, the out-of-plane shear stress or shear strain may not be zero in the plane
strain or plane stress case.

C31=Cazpy =

3.2. RECIPROCAL THEOREM, SUPERPOSITION, AND GREEN’S
FUNCTION

When the microstructure of an RVE which consists of linearly elastic con-
stituents, is fixed (i.e., existing cavities and cracks do not grow, and there is no
frictional sliding of microcracks), the response of the RVE will be linear, and

the reciprocal theorem applies.’

Consider two separate loadings of an RVE, with two different sets of
self-equilibrating tractions; each applied separately on the surface dV of the
RVE with fixed microstructure; note that these are different loadings of the same
RVE. Denote the first set of tractions by t{!), and the second set by 2, and refer
to both collectively by t® (o = 1, 2); see Figure 3.2.1. The displacement, the
strain, and the stress produced by t(® are designated as follows:

{u, €, 6} = {u®, €@, @} (a=1,2). (3.2.1a)

These fields satisfy the equilibrium equations, (1.3.2), the strain-displacement
relations, (1.3.3a), the traction boundary conditions, (1.3.5a), and the linear
stress-strain relations, (3.1.1a). In particular, the stress boundary conditions are

t®=v,609 ondV, (3.2.1b)
and the stress-strain relations become
0@ =C:e®, 3.2.1¢)

where the elasticity tensor, in general, is a function of position x in V, since the
RVE is, in general, heterogeneous, i.e., C = C(x).

3 According to Love (1944, p.173) the theorem is due to E. Betti (I nuve Cimento (Ser. 2), tt.
7 and 8 (1872)). More general theorems are given by Rayleigh (1873), and by Lamb (1889) who in-
cludes inertia.
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N

a®

ath)

\

system 1 D system 2 e
Figure 3.2.1

An RVE subjected to two sets of surface tractions, ') and t®

3.2.1. Reciprocal Theorem

The reciprocal theorem states that the work done by the self-equilibrating
surface tractions t() going through the displacements u® which are produced by
the self-equilibrating surface tractions t?, equals the work done by the tractions
t® going through the displacements u(!) which are produced by the tractions t(,
ie.,

fav {0, u®@ ds = jav t@,u® ds. (3.2.2)

The proof follows from the symmetry of the elasticity tensor, which yields
@ gB) = (C:e@): B = (C:e®): e =B : g (3.2.3a)
and the fact that the two stress fields are symmetric and divergence-free, so that
o@: g® = g (Veou®) = V. (6@ ,ub) (3.2.3b)

Now, substitution of (3.2.1b) into (3.2.2), and the use of the Gauss theorem and
(3.2.3b) yield

(o) ) = (o) - £(B) = ). = B), gl
favt“.u(BdS jvoa.eﬁdv jvo@.e(a)dv fthB.u“)dS.

(3.2.3¢)

The reciprocal theorem also holds when the self-compatible surface displace-
ments instead of the surface tractions are prescribed on dV. In this case, the sur-
face tractions are determined by the resulting stress field.

3.2.2. Superposition

The linearity of the RVE for a fixed microstructure permits construction
of various solutions by means of superposition. This means that if the solutions
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for two different boundary data are known, then the solution when both boun-
dary data are applied, is obtained by the addition of the corresponding field
quantities. For example, for any two constants all> and a®, the solution for the
self-equilibrating surface tractions

t=ath + a@t@ = a@tl®  on IV (oL summed), (3.2.4a)
is given by
{u, €, 0} = {a@u@, g @@} (o summed). (3.2.4b)

Note that the superposition follows if, instead of surface tractions, surface dis-
placements are prescribed, or if a suitable combination of surface tractions and
surface displacements are given.

3.2.3. Green’s Function

The Dirac delta function, d(x), has the property that, for any suitably
smooth scalar- or tensor-valued function, f(x), defined on dV,

[ @) 8(y ~ %) dS = f(x), (3.2.5)

where the integration is with respect to y on V. The Dirac delta function, inter-

preted in the distributional sense,® can be used to represent concentrated forces.
For example, if T is a concentrated force applied at a fixed point x on dV, the
corresponding tractions on dV can be defined as

t(y)=Td(y—x) foryondV. (3.2.6)

The concept of Green’s function can be effectively used to obtain general
results for linear problems, where superposition applies. The actual calculation
of Green’s function will generally be unnecessary. It is only the concept that is
applied. Green’s function here is introduced in terms of the concentrated boun-
dary forces, but the basic idea also applies when concentrated body forces are
involved.

Green’s function G = G(x, y) is a second-order tensor with components
Gij(x, y), representing the displacement component u;(x) at a point x, due to the

unit concentrated force applied at a point y in the ej—direction;7 see Figure 3.2.2.
G is a two-point tensor field. According to the reciprocal theorem, G has the
property that

Gi(x, y) = Gji(y, x). 3.2.7)

Suppose the self-equilibrating surface tractions t = t(y) are prescribed on
the boundary 0V of an RVE. With the use of Green’s function and

® See, for example, Stakgold (1967).

” When V is finite, conceptually, suitable body forces may be distributed within the body in
order to equilibrate the applied concentrated force.
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Figure 3.2.2

Green’s function

€

superposition, the resulting displacement field is given by
u(x) = [,, G(x, y)-1(y) d, (3.2.8a)

where the integration is with respect to y. The corresponding strain and stress
fields are now obtained by direct calculation, arriving at

&) = [, 2 ((VeG(x, y)I.ty) + {[VeG(x, y)]-ty)}") d,

o(x) = [, C:[VeG(x, y)l-L(y) dS, (3.2.8b,0)
where V is with respect to X. In component form, (3.2.8a~c) become

ux) = [, Gi(x, Y)4(y) dS,
&) = [, 7Gx 1)+ Gai(x, V)] 4(y) S,

6y(®) = [, Cit Grmi(x, ¥) tn(y) dS, (3.2.9a~c)

where, for example, Gixj(x, y) = 0Gi(x, y)/axj.8

In the next section the response of an RVE with microcavities to both
prescribed macrostresses and prescribed macrostrains is considered. For the
case when the macrostrains are prescribed, it is convenient to consider the
inverse of (3.2.8a). To this end, let x and y be two arbitrary points, both on the
boundary 9V of the RVE; note that in (3.2.8a~c), x is a typical point in V or on
dV. When tractions t(y) are prescribed on dV, then the resulting surface dis-
placements are given by (3.2.8a) for x on dV. On the other hand, and in view of
the uniqueness of the solution to linearly elastic problems, if the self-compatible

8 See, e. g., Roach (1982) for a detailed discussion of Green’s function.
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displacements u(x) are prescribed over 9V, then the corresponding self-
equilibrating tractions which must be applied in order to attain such displace-
ments are given by the solution t(y) of the integral equation (3.2.8a). Thus,
(3.2.8a) admits an inverse. This is expressed by

ty) = [,, Gy, 0).ux) d, (3.2.10a)

where the integration is with respect to x over dV. The second-order tensor-
valued function G™!(y, X), is also a Green function. It is the "inverse” of
G(x, y), in the sense that

[y 6. -Gz, y) dS = 19 8(y - x), (3.2.10b)

where 12 = §;;e;®¢; is the second-order identity tensor, x and y are typical
points on 9V, and the integration is with respect to point z; see Figure 3.2.3.
Then, upon substitution of (3.2.10a) into (3.2.8a), it follows that

u(x) = jav {jav G(x, z). G '(z, y) dS}.u(y) dS

= [, 3y -xuy) ds = u). (3.2.10c)
Similarly,
[, G'x. 2).G(z, y) dS = 19 8(y - x). (3.2.10d)
Figure 3.2.3 )

€2

Inverse of Green’s function e

It is emphasized that (3.2.10b,c) are valid if and only if points x and y are on the
same boundary 9V where the tractions t(z) correspond to the prescribed dis-
placements u(x) and, conversely, the displacements u(x) correspond to the
prescribed tractions t(z).
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SECTION 4 ELASTIC SOLIDS WITH
TRACTION-FREE DEFECTS

In this section, an RVE consisting of a linearly elastic material which con-
tains stress-free cavities, is considered. The overall stress-strain/strain-stress
relations are developed. The results are then illustrated by a number of simple
examples. This section is intended as a simple but concrete illustration of how
macroquantities are related to microquantities and microstructure. Subsequent
sections will then treat more general cases, including open and closed micro-
cracks, micro-inclusions, and related problems, using various averaging tech-
niques, and comparing results by means of illustrative examples. Bounds on

overall moduli are given in Sections 9 and 13.!

4.1. STATEMENT OF PROBLEM AND NOTATION

Consider an RVE with total volume V, bounded externally by surface dV.
On this surface, either uniform tractions,

t°=v.c° ondV, (4.1.1a)
or linear displacements,
u°=x.£° ondV, (4.1.1b)

are assumed to be prescribed, where 6° and £° are second-order symmetric con-
stant stress and strain tensors for the macro-element. It is emphasized that either
(4.1.1a) or (4.1.1b), but not both, can be prescribed. In other words, if the trac-
tion boundary data (4.1.1a) corresponding to the constant macrostress X = G°,
are prescribed, then the surface displacements on dV, corresponding to these
tractions, in general, are not spatially linear, being affected by the microstruc-
ture of the RVE. Similarly, if the linear displacement boundary data (4.1.1b)
corresponding to the constant macrostrain E = €°, are prescribed, then the sur-
face tractions on dV, produced by these displacements, are not, in general, spa-
tially uniform. In the sequel, therefore, the two cases are treated separately and

independently, and then the relation between the results is discussed.’

! For application of the results of this section and references to related issues, see Sections 5
and 6.

2 See also general results presented in Section 2, especially Subsections 2.5 and 2.6.
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Assume that the material of the RVE is linearly elastic and homogeneous
(but not necessarily isotropic). The inhomogeneity, therefore, stems solely from
the presence of cavities. Denote a typical cavity by €4, with the boundary 02
(=1, 2, ..., n), so that there are a total of n individual cavities in V. The union
of these cavities is denoted by €2, having the boundary 0Q which is the union of
all 0Q, i.e.,

Q=% W= 0% (4.1.2a,b)
o= o=

The remainder of the RVE (i.e, when € is excluded) is called the matrix. The

matrix is denoted by’ M. The boundary of M is the sum of 0V and 9%, Figure
4.1.1,

M=V-Q, oM = dV +0Q. (4.1.3a,b)

Figure 4.1.1

Matrix M and micro-
cavities Qq

The total boundary surface of the RVE can include some portion of 0Q. For
simplicity, however, exclude this possibility. Thus, all cavities are within the
RVE, each being fully surrounded by the matrix material. For a typical cavity,
€, two faces of its surface boundary, d€2,, may be distinguished, as follows:
(1) the exterior face of the cavity, denoted by 92§, which is the face toward the
matrix material, defined by the direction of the exterior unit normal n of the cav-
ity; and (2) the exterior face of the surrounding matrix, denoted by 0Q¥, which
is the face toward the interior of the cavity, defined by the direction of the exte-
rior unit normal (—n) of the matrix (i.e., the interior unit normal of the cavity).
0, coincides with 92§ for the cavity €, while oM at the cavity €, coincides
with 0Q1; see Figure 4.1.2. In view of this convention, the integral of a surface
quantity taken over dM can always be decomposed as

fy©ds=], ©ds +O§‘,1 jan&d ()ds=[ ()ds- aﬁ;‘,l ja% () ds

3In general, V, Q, and M are open sets, but sometimes they may be treated as closed, if it is
felt that this does not cause any confusion.
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Figure 4.1.2
0QM and 9Q§

= jav ()dS-— jag () dS. (4.1.4)

Thus Q2 always stands for the union of 0Q§ (0. =1, 2, ..., n).

To distinguish the boundary of M at the cavities from that at the exterior
of the RVE, which is dV, the exterior unit normal on dV is systematically
denoted by Vv (as before), and the exterior unit normal on the surface 90, for a
typical cavity €24, by n, pointing from the inside of the cavity toward the matrix
M.

The matrix material is linearly elastic and homogeneous. Denote the
corresponding constant elasticity tensor by C and the compliance tensor by D.

4.2. AVERAGE STRAIN FOR PRESCRIBED MACROSTRESS

Suppose that uniform tractions t° = v.G° are prescribed on dV, associated
with the constant symmetric macrostress X = ¢°. If the RVE is homogeneous,
having no cavities, then the corresponding average strain associated with the
average stress 6° would be

£° = D : 00, (421)

and hence, in conjunction with 6 = ¢°, the average strain would be €°. The
presence of cavities disturbs the uniform stress and strain fields, producing the
variable stress field ¢ = 6(x) and strain field € = €(x), in M, with 6 =0 in Q.
Nevertheless, from the results of Section 2,

_ 1 1 _
c—<0>—vjvch—-\7-chdV—c°. (422)

On the other hand, the average strain is not, in general, equal to €°. Instead,
E=<E>=€°+E, 4.2.3)
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where €° is defined by (4.2.1), and €€ is the additional strain due to the presence
of cavities.

To calculate the additional strain €° due to cavities, one may apply the
reciprocal theorem, as follows. Consider two sets of loads, one defined by

W _ | v.00° on dV
t _{ —n.dc° on 0Q (4.2.42)

which corresponds to uniform virtual stress 56° and strain d€° = D : §¢° within
the entire RVE (as illustrated in Figure 4.1.2, —n is the interior unit normal on
the cavity surface 9€, or the exterior unit normal to the boundary of the matrix),
and the other defined by

@_)v.o® ondV 2.
t _{0 on 0Q (4.2.4b)

which is the actual loading considered for the RVE.

Denote the displacement, strain, and stress fields associated with the first
loading (4.2.4a) by

{uD, €D, oV} = {(x.9e°), d€°, do°} (4.2.5a)

which follows from the fact that, for loading (4.2.4a), the strain and stress fields
are both uniform throughout the matrix M. And denote the fields associated
with the second (i.e., the actual) loading (4.2.4b) by

(0@, @, 6@} = {u, € o}. (4.2.5b)
From the reciprocal theorem, (3.2.2), it follows that
[, V09 (x.8e9) dS = [, (v.869).udS-[  (n.86°).udS  (4.2.6a)
which can be written as

80°: ([, D:{(xev).c°} dS—[ veudS+[ neudS)=0. (4.26b)

Since 86° is an arbitrary symmetric tensor, the symmetric part of the quantity
within the braces must vanish identically. Noting that the first integral within
the braces yields

%jav D: {(xeV).6°} dS = D: {1?.0°} = €°, (4.2.72)
and using the averaging scheme presented in Section 2, it follows that
g=L1( 1 T
=<7l 3 {Veu+(Veu)T} dV
=eo+ [ Lmeu+uen)ds (4.2.7b)
A . 2.

Comparison with (4.2.3) shows that the additional strain €° due to cavities, is
given by*
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—_ 1 1

&=y [, o (neu+uen)ds, (4.2.82)
or, in component form,

gf = %Jan %(niuj +nju;) dS. (4.2.8b)

4.3. OVERALL COMPLIANCE TENSOR FOR POROUS ELASTIC
SOLIDS

Define the overall compliance D of the porous RVE with a linearly elastic
homogeneous matrix, through

€=D:6=D:o" 4.3.1)

where the macrostress, X = ¢°, is regarded prescribed, and the average strain is
given by (4.2.3). To obtain the overall compliance in an explicit form, the strain
€° due to cavities will now be expressed in terms of the applied stress 6°. Since
the matrix of the RVE is linearly elastic, for a given microstructure the displace-
ment u(X) at a point x on d<Q is linearly dependent on the uniform overall stress
o°. This is easily seen if the applied tractions (4.1.1a) are substituted into
(3.2.8a), to arrive at

ux) = [, G(x, y)-(V(y)-0°} dS, (4.3.22)

where the integration is taken with respect to y over the boundary dV of the
RVE. Since ¢° is a symmetric constant tensor, (4.3.2a) can be expressed as

u;(X) = Kjjk(x) o, (4.3.2b)

where the third-order tensor,
Kij(x) = Kjj(x) = Jav %{Gij(X, V) vi(y) + Gud(x, y) vi(y)} dS, (4.3.2¢)

depends on the geometry and the elastic properties of the matrix of the RVE.

To obtain the additional overall strain, €°, due to the presence of cavities
in terms of the prescribed overall stress, 6°, substitute from (4.3.2¢) into (4.2.8),
to arrive at

€§ = Hju 0, (4.3.3a2)

where the constant fourth-order tensor, H, is given by

Higa = Hjn = i = v J (000 Kpa(® + m®) Kia(0)} dS. (4.33b)

* For a direct evaluation of cavity strain, (4.2.8) is due to Horii and Nemat-Nasser (1983),
where application to frictional cracks is formulated, as discussed in Subsection 6.4.
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Hence, for an RVE with a linearly elastic matrix containing cavities of arbitrary
shapes and sizes, the following general result is obtained, when the overall

macrostress is regarded prescribed (Horii and Nemat-Nasser, 1983)5 :
€ =H:o°, or _E-S = Hjju 0Q. (4.3.4a,b)

It should be noted that this exact result is valid whether or not the linearly elastic
constituent of the RVE is homogeneous. The requirements are: (1) the matrix of
the RVE is linearly elastic, and (2) the microstructure of the RVE remains
unchanged under the applied macrostress Z = ¢°.

It may be instructive to re-examine (4.3.2b) by first introducing for a pair
of points, x on dQ and y on 9V, a fourth-order tensor, h(x, y), as

hiju(x, y) = % {ni(x) Gjx(x, y) vi(y) + ni(x) Gji(x, y) vi(y)

+nj(x) Gik(x, y) vi(y) + nj(x) Gu(x, y) vi(y) }, (4.3.5a)

and then obtain
_1
H= [, [ hx y) dsds, (4.3.5b)

where the y-integral is over dV, and the x-integral is over dQ.

To obtain the overall elastic compliance tensor D, in terms of the constant
compliance of the matrix, D, and the constant tensor H, substitute (4.2.1),
(4.3.1), and (4.3.4) into (4.2.3), and noting that the resulting equation must hold
for any macrostress 6°, arrive at

D=D+H, (4.3.6a)

or

Dijt = Dijia + Hija. (4.3.6b)

In many situations, the tensor H can be computed directly, using (4.2.8).
Several examples of this are given later on, in Sections 5 and 6.

4.4. AVERAGE STRESS FOR PRESCRIBED MACROSTRAIN

Suppose that, instead of the uniform tractions, the linear displacements
u® = x.g° (associated with the constant symmetric macrostrain E = £°) are
prescribed on dV. The matrix of the RVE is assumed to be homogeneous, as in
Subsection 4.2. In the absence of cavities, the corresponding average stress

* This procedure has been followed by Wang et al. (1986) to estimate the overall properties of
composites with special distributions of microcracks. It has also been reproduced by Talreja (1989)
who incorrectly attributes the method to Wang et al. (1986). As pointed out by Nemat-Nasser
(1987), the method is particularly suited for estimating the overall properties of solids with cavities
and cracks of arbitrary shapes, and with frictional cracks.
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associated with the prescribed macrostrain, £°, would be
o°=C:¢g° “4.4.1)

Due to the presence of cavities, the actual field quantities are nonuniform. From
the results of Section 2,

1 1
Viav 2
which is valid for any RVE of any material and microstructure. Note that the
surface integral in (4.4.2) extends over the exterior boundary, dV, of the RVE
only. It does not include the cavity boundaries dQ. Equation (4.4.2) is the
direct consequence of the fact that the average strain for an RVE is given in
terms of its boundary displacements which are prescribed here to be u°® = x.£°.
The macrostrain E = €° is prescribed here and should not be confused with the
quantity £° defined in (4.2.1), in terms of the prescribed macrostress X = G°.
Similarly, the quantity 6° is defined in the present subsection by (4.4.1), in terms
of the prescribed €°, and should not be confused with the macrostress X = ¢°
which is the prescribed quantity in (4.2.1) of Subsection 4.2.1.% Indeed, for a
prescribed macrostrain, the average stress is not, in general, equal to ©°.
Instead,

|

—<g>= %jv gdv = (Vou+ugv)ds = &° (4.4.2)

6 =<0 >=0°+0¢, 4.4.3)
where G° is defined by (4.4.1), and ¢ is the decrement in the overall stress due
to the presence of cavities.

As in Subsection 4.2, the reciprocal theorem will be applied to calculate
the average stress 6 in (4.4.3). To this end, a third set of boundary data is
defined by

u® =x.e° ondV,
=0 on 0.

The displacement, strain, and stress fields associated with these boundary condi-
tions are denoted by

(u®, €3, 6®) = {u, €, o}, (4.2.5¢)

(4.2.4c)

which are actual fields, in general, different from those given by (4.2.5b) for the
boundary conditions (4.2.4b). The actual tractions on the boundary of the RVE
now are

(x) = V(x).0(x), (4.4.4)
where X is on dV. These tractions are required in order to impose the boundary
displacements prescribed by (4.2.4c).

Applying the reciprocal theorem, (3.2.2), to the two sets of loads, (4.2.4a)
and (4.2.4c¢), it follows that

5 Note, however, that (4.2.1) and (4.4.1) represent the same set of equations for the homogene-
ous linearly elastic RVE without any cavities, whether 6° or €° is regarded prescribed.
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jav t.(x.5e°) dS = jav (V.86°).(x.£°) dS — jag (0.80°).udS  (4.4.52)
which can be written as
Beo: ([, texdS- [, C:{(xev).e°} dS+[ Ci(neu)dS}=0, (4.4.5b)

where, in using loading (4.2.5a), the quantity d€° is regarded as a virtual spa-
tially constant strain field with the corresponding stress field, d6° = C : 8g°.
Since 8g° is an arbitrary symmetric tensor, the symmetric part of the quantity
within the braces in (4.4.5b) must vanish identically. Noting that the second
integral within the parentheses can be expressed as

%javc: {(xoV).£°} dS = C: {1@.£°} = ¢°, (4.4.62)
and using the averaging procedure of Section 2, it now follows that
1
2

Comparison with (4.4.3) shows that the decremental stress 6° due to the pres-
ence of cavities, is given by

6°= -C:€, 4.4.7)

o= %jav toxdS = 6°—C: {%jm (neu+uen) ds). (4.4.6b)

where €€ is the strain due to the presence of cavities given by (4.2.8a,b), which
now must be computed for the prescribed boundary displacements u° = x.£°.

45. OVERALL ELASTICITY TENSOR FOR POROUS ELASTIC
SOLIDS

When the overall macrostrain is regarded prescribed, E = €°, designate
the overall elasticity tensor of the porous RVE with a linearly elastic and homo-
geneous matrix, by C, and define it through

c=C:eo 4.5.1)
Substitution of (4.4.1), (4.4.7), and (4.5.1) into (4.4.3) then yields
(C-C):€°+C:&=0. 4.5.2)

For a given microstructure (i.e., for existing cavities with fixed shapes,
sizes, and distribution), the response of the RVE is linear. Hence, the displace-
ment field anywhere within the linearly elastic matrix of the RVE is a linear and
homogeneous function of the prescribed overall constant strain €£°. Therefore, in
line with result (4.3.2b,c) for the case when the macrostresses were considered
to be prescribed, at a typical point x on the boundary of the cavities, 0€Q,

ui(x) = Lij(x) €%, (4.5.3a)
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where L(x) is a third-order tensor-valued function with the symmetry property,
Lix = Liyj. Now, from the definition of €, (4.2.8a,b),

€5 = ljued, (4.5.3b)
where the constant fourth-order tensor, J, is given by
Jija = i = Figne = % 30 %{ni(x)ijl(X) +nj(x) Lia(x)} dS. (4.5.3¢)

Hence, for an RVE with a linearly elastic matrix (whether homogeneous or not)
containing cavities of arbitrary shapes and sizes, the following general result is
obtained, when the overall macrostrains are regarded prescribed:

e=J:e% or Ef=lued (4.5.4a,b)

To obtain an expression for the overall elastic moduli of the porous RVE,
substitute (4.5.4) into (4.5.2) and, noting that the resulting expression must be
valid for any constant symmetric macrostrain €°, arrive at

C=C-C:J,  Ciu = Cija—Cijmn Jmnki- (4.5.5a,b)

It should be noted that in many practical problems the tensor J, similarly
to the tensor H, can be calculated directly from (4.2.8), and therefore, the
overall elastic moduli can be estimated from (4.5.5). It may, however, be
instructive to seek to construct the tensor J in terms of the Green functions
G(x, y) and G~!(y, x), which are discussed in Subsection 3.2.3.

To this end, for the linear displacements, u® = z.€°, prescribed on the
outer boundary dV of the RVE, express the resulting tractions, t(y), using
(3.2.10a), as

ty) = [, Gy, 2).(z.€°) 6, (4.5.62)

where the integration is taken with respect to z over the outer boundary oV
(excluding the traction-free cavity boundaries) of the RVE. Substituting
(4.5.6a) into (3.2.8a), the displacement field for points on 902 is obtained in
terms of the prescribed macrostrain €°, as

ux) = [, G, y)-{f,, G(y. 2)-(z.€°) dS} @, (4.5.6b)

where both the y- and z-integral are taken over dV. Noting that €° is a sym-
metric tensor, tensor L in (4.5.3a) may now be written in terms of G and G4, as

oV

Lix®) = [, Ginx 9){ [, 5{Gal(y. D2+ Gik(y, D) dS | as.
(4.5.6¢)

Therefore, from comparison of (4.5.3b) with (4.5.6c), a fourth-order tensor,
j(X, ¥), can be introduced as

Jip(X, y)
= [,y {0 Gin(x, ) Gak(y. 21+ %) Gin(x, 1) Gl 3. D)2
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+0j(X) Gim(X, ¥) Gak(y, 2) 21 + 0j(X) Gim(X, ) Gl (y, 2) } ds,
(4.5.6d)

where the integral is taken with respect to z over dV. The constant tensor J in
(4.5.3b) now becomes

_1 :
V= 7)o [y i, y) dS dS, (4.5.6¢)

where the y-integration is over dV, and the x-integration is over 0€2.
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SECTION 5§ ELASTIC SOLIDS WITH
MICROCAVITIES

By means of simple examples involving elementary solutions in linear
elasticity, it is illustrated in this section how the overall elasticity and compli-
ance tensors of a porous RVE may be estimated for small porosities in a
straightforward manner. The objective is to show: (1) how elasticity solutions to
simple problems can be used in conjunction with the general results reported in
this chapter, to calculate the effective elastic moduli and compliances of elastic
solids containing cavities; and (2) how the tensors H and J in (4.2.8) or (4.3.5b)
and (4.5.6e) can be estimated directly, without invoking the corresponding
Green function.

Two extreme cases are considered: (1) when the elastic solid contains a
dilute distribution of cavities, so that typical cavities are so far apart that their
interaction may be neglected; and (2) when the cavities are randomly distri-
buted. In this latter case, the idea of the self-consistent method is introduced;
this will be discussed in some detail later on. The range of validity of these
approximating methods is limited to relatively small volume fractions of inho-

mogeneities.'

5.1. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING
CIRCULAR HOLES

In this subsection, the problem of estimating the effective moduli of a
linearly elastic homogeneous solid containing circular cylindrical cavities, is
worked out in some detail. Assume either plane stress which then corresponds
to a thin plate containing circular holes, or plane strain which then corresponds
to a long cylindrical body containing cylindrical holes with circular cross sec-

tions and a common generator.” Both cases deal with a two-dimensional prob-
lem; the first case, with generalized plane stress and the second case, with plane
strain. A rectangular Cartesian coordinate system is chosen such that

63 =0;3=0 for plane stress,

! Several averaging techniques and their limitations are discussed in Section 10, and elastic
solids with periodically distributed cavities and inclusions are examined in Section 12.

2 In this case, the RVE will be transversely isotropic, when the defects are randomly distribut-
ed and the matrix is isotropic.
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€i=¢€3=0 for plane strain, (5.1.1a,b)
fori=1, 2, 3. All field quantities, hence, are functions of two space variables,
x; and x», or when polar coordinates are used, r and 0.

For simplicity, the matrix of the RVE is assumed to be isotropic, linearly
elastic, and homogeneous. Then, the corresponding two-dimensional stress-
strain and the strain-stress relations become

oj=n{- E—__% 8ij O + (Bik 51 + 041 O5) } €,

;= {K—8_3— &;j O + % (8ix O + 81 63)} O, (5.1.2a,b)

1
m
or in matrix notation,

() (x+D/(x-1) —-(x-3)/(x-1) 0| €t

On| =y —(k=-3)(xk-1) (k+1)/(x-1) 0} £ |,

Ci2 0 0 1]]2¢;,

€11 1 (x+1)/8 (x-3)/8 0[|0n

€n | == |(x=-3)/8 (x+1)/8 0]|02|, (5.1.2¢,d)
2ep0 H 0 0 1]lo12

where U is the shear modulus, v is the Poisson ratio, and

_]3-4v for plane strain
K= { B-v(1+v) for plane stress. (5.1.2¢)

The relations involving G3; or €3 are not considered in this subsection, but they
are readily written down with the aid of the results of Subsection 3.1.4.

5.1.1. Estimates of Three-Dimensional Moduli from Two-Dimensional
Resuits

In general, when an elastic RVE contains cylindrical cavities, cracks, or
elastic fibers, all aligned in, say, the xs-direction, i.e., when the generator of the
cylindrical inhomogeneities is parallel to the xs-direction, and when the distribu-
tion of these inhomogeneities is otherwise random, then the overall response of
the elastic RVE will be transversely isotropic. In this case, the inplane effective
shear modulus, {1, and the Poisson ratio, v, may be estimated, using either a
plane-stress or plane-strain formulation, with inplane two-dimensional stress-
strain or strain-stress relations, defined by (5.1.2). In other words, the two-
dimensional formulation of a transversely isotropic RVE, in terms of the inplane
effective shear modulus [l and the inplane effective parameter X, circumvents
the immediate consideration of the effect of the third dimension. However,
when one wishes to obtain the effective inplane Young modulus, E, and the
Poisson ratio, V, the influence of the third dimension must be taken into account.
In this subsection the relation between plane-stress and plane-strain solutions for
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this class of problems is examined, in a rather general setting. The results apply
to problems of an elastic RVE with cylindrical cavities, slit cracks, and elastic
fibers, all aligned, say, in the xs-direction. Examples are considered in this sec-
tion and in Sections 6 and 8.

With x3 as the axis of symmetry, the overall compliance matrix, [5 abl, for
a transversely isotropic RVE, takes on the form

VE -VE -VvJsE; 0 0 0 |
-WVE 1E -VyEs 0 0 0
_ —V3/E3 —V3/E3 1/E3 0 0 0
Dal=| ¢ 0 0 Umps 0 0 | (5.1.3)
0 0 0 0 1/i; O
0 0 0 0 0 1/

where E, v, and [t = E/2(1 +V) are the inplane effective Young modulus, Pois-
son ratio, and shear modulus, respectively, and Ej, V3, and |13 are the effective
Young modulus in the x3-direction, Poisson ratio, and shear modulus common to
the x;,X3- and X3,X3-directions, respectively.

For simplicity, consider only normal stresses and normal strains, and par-
tition the six by six matrix, [D ], into two three by three matrices, [D D1 and

(DR1,

_ VE -VIE -ViE; B /s 0 0
DP1=| -VE 1E -Vi¥Es|, [D@P1=| 0 1/p; 0
—Vi/Es —Vi/Es 1/E; 0 0 1/
(5.1.4a,b)
Moreover, define two three by two matrices, [P ] and [P 1, by
10 10
(Pal={0 1|, [Pal={0 1. (5.1.5a,b)
00 V3 V3

Then the nominal compliance tensors, relating the normal inplane stress and
strain components, for plane-strain and plane-stress states, may be obtained by
multiplying [P ]T[D#’] from the right by [P ] for plane strain and by [P ]
for plane stress, respectively, i.e., for plane strain,

— , 1/E-V#E; -V/E~-V3/E;
(Pl [DEP1[PL] = [_WE_VSZ/E VE-V2E; |° (5.1.6a)
and for plane stress,
— I/E -V/E
[P [DE 1[Peal = [_V,E VE } ; (5.1.6b)

see Subsection 3.1. The parameter K for these nominal compliance tensors is
then given by
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— 2
3-8 YL + =2} lane strain
mMgrg) P .1.7)

plane stress.

For the isotropic case, V= V; (=v) and E = E; (=E), and ¥ reduces to K, given
by 3 —4v in plane strain, and (3 — v)/(1 + v) in plane stress.

5.1.2. Effective Moduli: Dilute Distribution of Cavities

Since plane problems are considered, an RVE of unit thickness in the xs-
direction is used. Furthermore, because all the field quantities are assumed to be
uniform throughout this thickness, integration over the thickness is not
displayed, but simply implied.

Figure 5.1.1 is a typical portion of an RVE in the x;,x,-plane. The circu-
lar holes for the dilute distribution of cavities are far apart. Let there be n holes
in the RVE. Denote the volume of a typical hole by Q, being bounded by the
surface area 0Q,. From (4.2.8a), the overall strain due to the cavities becomes

_ Qo -
c — Sf0 sa
£ agl V E s (5183)
where €% is given by
| 1
&= o Jana 5 (nou +uen)ds. (5.1.8b)
Figure 5.1.1

A typical portion of an RVE
containing microcavities

The right-hand side of (5.1.8b) is now estimated, using the assumption
that the cavities are not interacting with each other, since they are far apart.
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Consider three loading conditions: (1) only Gf, is nonzero; (2) only G% is
nonzero; and (3) only of, = 65 is nonzero. The general loading case is then
obtained by a suitable combination of these.

Figure 5.1.2 shows a typical cavity of radius a, subjected to farfield stress
oy, with all other stress components at infinity being zero. The displacement

field for this problem is®

0 4
U, = uy(r, 0) = g“ (G~ Dr2+2a2 4 22k + D) +12— & ] cos26},
ur r
0 4
U = ug(r, 0) = — Z’—Q'r— (2+a2(k— 1)+ ?_2} 5in26, (5.1.9a,b)

where u, and ug are the displacement components with respect to the polar coor-
dinates r, 6. The rectangular Cartesian components of the displacements are
then given by

u; = u, cosd —ugsind, u; = u, sind + ug coso. (5.1.9¢,d)
X2
r
Figure 5.1.2 - ' _
-— Y —
A typical cavity of radius a, sub- D _
jected to a farfield stress 694 -— of} ofif —

The components of the unit vector n, normal to the boundary of the circular cav-
ity, are

n; = coso, Ny = sin0. (5.1.10a,b)

Substitution of (5.1.9a~d) and (5.1.10a,b) into (5.1.8b) with r = a = a,, and sim-
ple integration yield

- K+1

€% = e (3e,9e)—e;0€e3)67). (5.1.11a)
Similarly, when only 65, is nonzero,
g = —KsJL L - e;@e) +3e,0€)) 05, (5.1.11b)

The results for the case when only Gf> = G5, is nonzero, can be obtained from
(5.1.11a,b) by a 45-degree rotation of the coordinate system and superposition;

3 See Michell (1899), Love (1944), and Timoshenko and Goodier (1951).
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see Figure 5.1.3.

€
62’
e.’
Figure 5.1.3 "
Coordinate system rotated
by 45 degrees o
To this end, let
. 1 . 1
ei=—(e1+e), e=-—=(-—e+e .1.12a,
i \/2(1 2) 2 \/2( 1+€) (5.1.12a,b)
define the unit base vectors of the rotated coordinate system. Then,
£ = %Lll {(Be @€ —e;8€;) — (— e;0€e; + 3e;8€,)} o
- k+1 (de ve; +4e,0€() O
8n
_x+1 ° o
= W (e 2e; +2e;9€)) (012+021). (5.1.12¢)

Note that the results in (5.1.12a~c) are independent of the void size. From
(5.1.12a~c), the average strain due to the presence of cavities is given by

K+1
8u

g€=f {(3e;®e) —e;2€;) 6P + (— e;®€e) + 3e;2€;) 65

+2(e12€ex+e30€1) (6 +065D1, (5.1.13a)

where f is the void volume fraction of the RVE, defined by
Q
f= =, 1.1
agl = (5.1.13b)

Therefore, the tensor H in (4.3.6a) takes on the form

H= f%ul {(Be12e)—e068)@(e19€) + (— €1 2€1 + 3er2e3)(er8€7)

+2(e®e;+e;0¢))0(e;0e+e0€1) . (5.1.14a)

In matrix notation corresponding to (5.1.2d), this becomes

38 -1890
-1/8 3/8 0].
0 0 1

[Ha] = f%l (5.1.14b)
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Since H33 = 2(H; — H 1), the tensor H is isotropic in the x,X,-plane. Substitu-
tion of (5.1.14b) into (4.3.6) yields the overall compliance tensor D, where, for
the two-dimensional case, the compliance matrix [D 4] can be read off (5.1.2b).
In particular, the effective shear modulus, [, and the effective Poisson ratio, V,
are obtained from

Bt 1)) = 1= f e+ 1)+ O(),

=

=1+ 2Dy paer )t = 1 £ EHDK=D) | o2y
K K
(5.1.15a,b)

where K = 3 — 8W(V/E + V{/E3) for plane strain, and ¥ = (3 — V)/(1 +V) for plané

stress. For plane stress, the effective Young modulus, E, and Poisson ratio, V,
are

&=l

= (1+3)" = 1 -3f+O(f2),

es]fes]

=(1+f%)(1+3f)‘1 = 1—(3—%)f+0(f2). (5.1.15¢,d)

<|<|

Figure 5.1.4 shows the variation of the shear and Young moduli with
respect to the void volume fraction f, for plane stress with v = 1/3; note that, for
the present case, this value of v leads to viw=%¥/x=1, and
i/ = E/E = (1+3f)"L. Since a dilute distribution of cavities is assumed, the
applicability of these results is limited to small values of the void volume frac-
tion f. Figure 5.1.4 also includes the curve for the case when the macrostrain is
prescribed, as discussed below.

i

08}
Figure 5.1.4 R/p g6l -..,,._“.1..)_D:E
oR . .
Normalized overall shear, [/, and E/E 04+ o
Young, E/E, moduli for v = 1/3 02l DD:E -,
DD:Z = dilute distribution with )
macrostress prescribed 0t
.1 02 03 04
DD:E = dilute distribution with 00 Of
macrostrain prescribed VOID VOLUME FRACTION

In the same manner as the overall compliance tensor, D, is obtained for a
prescribed macrostress, X = 6°, the overall elasticity tensor, C, is obtained for a
prescribed macrostrain, E = €°, by computing the decremental stress G°
(=— C:¥°) from the displacements of d€2,. In the model of an infinite body
containing a single cavity, shown in Figure 5.1.2, farfield stress ¢° may be
replaced by the farfield strain €° = D : 6¢°, and (5.1.13a) written in terms of the
prescribed €°, as
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e=H:(C:¢g%, (5.1.16)

where C is the elasticity tensor of the matrix material corresponding to (5.1.2a).*
Then, the tensor J in (4.5.3b) is given by

J=H:C=1 Kzl {(KE1 emer%ez@ez)@(el@el)

2 €| ®€; + 1 e®er)®(e8e))

K
+(K1

+%(e1®e2+e2®el)®(e1®e2+e2®e1)}, (5.1.17a)

or, in matrix notation corresponding to (5.1.2a),

ct1 k/(xk-1) -xK-2)/(x-1) 0
[Jal=1f > —(k— 2)/(1(—1) x/(xk-1) 0]. (5.1.17b)
0 2

Since J33 =J 1 —J 12, the tensor J is isotropic in the x;,X;-plane. In the same
manner as (5.1.15a,b) are obtained, the effective shear modulus, |1, and Poisson
ratio, V, in the present case are calculated from

=1-f(x+1),

=il

7:|7<|

- f(K+1])(((l]((2 2K+2) 31 - f1<+1)_

- l—fLD]?(—ﬁ+O(t?). (5.1.18a,b)

For plane stress, the effective Young modulus, E, and Poisson ratio, V, are

E _ 2 3-2v+3vi. | _

=0~ 1+V)(1—f VA -f2== yl=1-3f+0(f2),

v 1-6v+V? 3-2v+3v? 1

v = (1+f AoV HA-f === yl=1-3 )f+0(f2)
(5.1.18c,d)

For v = 1/3, it follows that v/v = ¥/k =1, and @/u = E/E= (1-3f). These
results are displayed in Figure 5.1.4. It turns out that the self-consistent method
also yields the same estimate for E/E and /|, as discussed in the next section.

The product of the overall compliance tensor D and the overall elasticity
tensor C is

D:C=1%—-H:C:H:C = 1% + O(f2), (5.1.19a)

4 It should be noted that only for this model, J =H:C. In general, J obtained from (4.5.6e)
may not relate to H obtained in (4.3.5b) by this simple expression.

3 The matrix [J 5] is defined by [v§] = [/ ][¥8], and hence J 33 = 2J 1315; compare (3.1.3c) and
(3.1.6d).



§5.1 ELASTIC SOLIDS WITH MICROCAVITIES 103

or
C:D=1%49_C:H:C:H= 1% +0(f), (5.1.19b)

where 1¢9) is the fourth-order symmetric identity tensor. If D and C, obtained
respectively from H and J of (5.1.14a) and (5.1.17a), are regarded as estimates
of the overall compliance and overall modulus tensors, then they are each
other’s inverse only to the first order in the void volume fraction f. This is rea-
sonable, since the corresponding equations are valid for dilute distributions of
voids, and hence, small f only; see Section 10 for additional comments and illus-
trations.

It is seen from Figure 5.1.4 that the relation between the overall elastic
moduli for the uniform overall stress and uniform overall strain, obtained by the
dilute-distribution model, is exactly the reverse of that required by the energy
Theorem I of Subsection 2.5, namely, by inequality (2.5.44). The contradiction
is indeed a consequence of the modeling procedure used in the dilute-
distribution approach, to estimate the concentration tensors, or equivalently, the
H- and J-tensors. This is discussed in some detail in Subsection 10.1.1.

In this connection, it may be instructive to note that the estimate of the
three-dimensional overall inplane Young modulus E and Poisson ratio v, given
by (5.1.18c,d), does not coincide with the corresponding results obtained using
the plane-strain conditions. This contradiction also stems from the errors
inherent in the dilute-distribution modeling procedure. In view of these obser-
vations, the results of this approximate averaging technique should be used for
very small values of f, where these discrepancies are negligibly small.

5.1.3. Effective Moduli: Self-Consistent Estimates

The "self-consistent” estimate of the overall properties of an RVE with
microstructure, refers to a very special averaging procedure. In this approach,
for the present problem, a single typical cavity is embedded in a homogeneous
linearly elastic solid which has the yet-unknown overall moduli of the RVE, and
then the necessary local quantities are estimated and used to obtain the overall
moduli; Kroner (1958), Budiansky (1965), Hill (1965), and Hashin (1968). For
example, in estimating the tensor H or the tensor J, for the elastic matrix, the
unknown average shear modulus pt and Poisson ratio v are used. Substitution of
the result into (5.1.14) or (5.1.17), for example, then gives a system of two equa-
tions for [t and V.

In view of these comments, for the case when the macrostress X = ¢° is
prescribed, the additional overall strain, €°, estimated by the self-consistent
method, is obtained from (5.1.13a), by replacing | by i, and in the expression
for K, by replacing v by V; k is replaced by ¥, with K = 3 — 8((V/E + V§/E;) for
plane strain and K = (3-Vv)/(1+V) for plane stress. Equation (5.1.14a) now
takes on the form

H=f Eg';:_ll {(Be®e; —er0er)e(e;0e)) +(— e ®e+ 3ex0e2) ®(er0€7)
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+ (e 9e;+2er0e1) o(ejeer+er0ey)}, '(5.1.20a)

with similar modification for (5.1.14b). Using (5.1.20a) and (4.3.6),
D=D+H, (5.1.20b)

or in matrix form,

| [®+1y8 (€-3y8 0] | [+ 18 (x-3)8 0]
Llx=38 (x+1y8 0| = L |(x=3)/8 (x+1)/8 0
0 o 1| M| o 0 1
_ 38 —1/8 0
XL g 38 o). (5.1.20c)
B 0 0 1

Since D, D, and H are isotropic tensors, there are only two linearly independent

relations among the three equations in (5.1.20c). From these, a system of two
equations is obtained for the two unknowns p and ¥,

K+l _x+1  p3(k+1) 1_1

8 8u 8p 7 pop

from which p and K are determined as

+f—, (5.1.20d,e)

i =(1-3f){1+f(x-2)}"' =1-f(x+1)+0O(f?),

=

=(1—f “;2){1+f(1<—2)}—1 = l—fw +O(f2).
(5.1.21a,b)

AR

In particular, for plane stress, the effective Young modulus, E, and Poisson
ratio, v, are given by

=1-13f,

eslled

= 1—(3—-\17)f. (5.121¢,d)

<|<l

Again, for v = 1/3, it follows that V/v = K/x = 1, and E/E and [i/p are
exactly the same as those estimated for the dilute distribution model with macro-
strain prescribed. Figure 5.1.5 shows the graph of the normalized overall shear
modulus over a range of the void volume fraction f, for v = 1/4. For com-
parison, the corresponding estimates obtained for a dilute distribution of cavities
are also shown (dotted lines). As is seen, the self-consistent method yields an
estimate very close to that of the dilute distribution with the overall strain
prescribed. Indeed, for v=1/4, it follows that p/p = (1+16f/5)7},
(1-36/(1+1/5), and (1 — 16£/5), for a dilute distribution with X prescribed, the
self-consistent method, and the dilute distribution with E prescribed, respec-
tively. It is emphasized that these results are valid for only relatively small void
volume fractions.
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1

Figure 5.1.5 osl \
Normalized overall shear mo- 06} .-""-u.,._DD:}:
dulus i/ for v = 1/4 niu o
- 041 2
SC = self-consistent DDE *. SC
DD:X = dilute distribution with 02t
macrostress prescribed 0 L.
DD:E = dilute distribution with 0 01 02 03 04
f

macrostrain prescribed
VOID VOLUME FRACTION

In a similar manner, one obtains the decremental overall stress, G°,
estimated by the self-consistent method for the case when the macrostrain
E = €°is prescribed. The overall elasticity tensor C then becomes

C=C-C:J, (5.1.22a)

where J is obtained from (5.1.17a), by replacing 1 and x by i and ¥, respec-
tively. For the present model (but not in general), H and J are related by

H=J:C! or J=H:C. (5.1.22bc)
Substitution of (5.1.22c¢) into (5.1.22a) gives
C=C:(14%9-H:C). (5.1.22d)

This yields two equations for L and K, which are identical with those obtained
from (5.1.20b). Indeed, multiplying (5.1.22d) by C! from the left-hand side
and by C~! from the right-hand side, it follows that

C'=C'-H (5.1.22¢)

which is identical to (5.1.20b) if C~! is identified with D. Hence the overall
elasticity tensor C for prescribed macrostrains, is given by the inverse of the
overall compliance tensor D for prescribed macrostresses. Therefore, the self-
consistent method yields a unique overall compliance tensor (or elasticity ten-
sor) whether the macrostress or the macrostrain is regarded prescribed.® In par-
ticular, a unique set of overall i and K are obtained from (5.1.21a,b), for a
porous RVE.

5.1.4. Effective Moduli in x;-Direction

Finally, consider the effective Young modulus in the x3-direction, and the
Poisson ratio in the x,x3- and x;,x3-directions, E; and Vs, for a solid containing

% The term "self-consistent” is used in the literature to emphasize the existence of this inverse
property; the method dates back to Bruggeman (1935).
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circular cylindrical cavities, all parallel to the x3-direction.
Assume that the stress field in the RVE is given by
(oM inM 5193
"33‘{0 inQu(a=1,2, .., n), (5.1.23)

where 6} is constant, and all other stress components are zero. This stress field
satisfies traction-free conditions at cavities on any plane normal to the X3-
direction. Since the stress field in M is uniform, the strain field there is uniform,
given by

en=en=-2ol), = % oM inM. (5.1.24a,b)

The boundary displacement at the cavities is compatible with that of the matrix,
if the strain field in € is defined by

) 1 -
g =Ep= —Ec%‘, £33 = EG% inQu(a=1,2, .., n).

(5.1.24¢,d)

Therefore, denoting the volume average over V =M+ Zn: Qy by <>y, the
a=1
average stress and strain over V become
<o >v=(1-f)o}f (5.1.25)

and

1
<en>v=<en>y=-goll <en>y=golf (5.1.26a,b)

with other components of < 6 >y and < € >y being zero. These results are
exact.

Since < 033 >v is the only nonzero component of < & >y, the ratio of
< 033 >y to < €33 >y determines Ei, and the ratio of <&y >y=<€pn >y to
< £33 >y determines V3. That is,

< 033>y

Bi= Sgosv=(1-NE
- _ <€ >v _ _ <E&2>vy _
Viz -t = -2 ey (5.1.27a,b)

Hence, E; decreases in proportion to the volume fraction of the cavities, while
V3 remains the same as that of the matrix. In particular, when cavities reduce to
slit cracks parallel to the xs-direction, it follows from (5.1.27a,b) that E; = E,
and v3 = v, that is, in linear elasticity, slit cracks parallel to the x3-direction do
not affect the xs-stiffness, and, hence the corresponding stress-strain relation;
see Isida and Nemat-Nasser (1987a,b).
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5.2. EFFECTIVE BULK MODULUS OF AN ELASTIC BODY CON-
TAINING SPHERICAL CAVITIES

In this subsection, the effective bulk modulus of a linearly elastic homo-
geneous solid containing microcavities is estimated. For simplicity, assume an
isotropic matrix containing spherical microcavities, €, of radius a5 (=1, 2,
..., n); see Figure 5.2.1. The bulk modulus of an isotropic elastic material is
defined in terms of the Lamé constants, A and W, by

K=A+ %u- (5.2.1a)

The mean stress, 6;/3 = G, and the volumetric strain, €; = €, are then related by
o=Ke. (5.2.1b)

Consider the response of the RVE, subjected to the prescribed macrostress
2 =0°1D, or to the prescribed macrostrain E = €21, First the overall bulk
modulus is estimated, assuming a dilute distribution of microcavities, i.e.,
neglecting the interaction among them. Then consider the self-consistent esti-
mate of this modulus.

Figure 5.2.1

An RVE containing spher-
ical microcavities

V=M+Q

For a typical cavity Qg of radius a,, the field variables in the neighbor-
hood of Q, are assumed to be spherically symmetric; see Figure 5.2.2. The
additional strain or the decremental stress is computed, using the spherical coor-
dinates (r, 0, ) with the origin at the center of the cavity. Under the farfield
stress 6°1@), the displacement components are

G° ¢ a’ - = -
M+ r+ m 2 ug=0, uy=0, (5.2.2a~c)
where a is the radius of the cavity. Since the unit normal n on 92, coincides
with the radial base vector e, the average strain for Qq, (5.1.8b), becomes

u =ugr) =
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Figure 5.2.2

A spherical cavity and
spherical coordinates

G O g, (@ 45 = g (9Qu ua)), (52.3)

where Qg = 41ta®/3, and 0Q,, = 4ma®. Therefore, the additional volumetric strain
due to the presence of cavities is given by

gf=E= 1+ %I&) o°, (5.2.42)

where f is the void volume fraction. From (5.2.4a), the "dilute estimate” of the
effective bulk modulus, K, is obtained when the macrostress is prescribed,

K _ 3A-Vv) 1 _q_¢ 30-V)
K= {1+f 21 -2v) Fl=1-f 21 =2v) +0(f%). (5.2.4b)

If the macrostrain E = €°1® is prescribed, an infinite body subjected to
the farfield stress given by K€°1® is considered. Then, by replacing ¢° with
K €° in (5.2.4a), the corresponding additional volumetric strain due to the cavi-
ties becomes

£C — 3_K 0
ge=f(1+ 4u)£. (5.2.5a)

From (5.2.5a) the effective bulk modulus, K, is estimated for the prescribed
macrostrain, as

K _,_ 3K, _ 1 _ ¢30-v

f‘l f(1+m =1 f~—2(1_2V). (5.2.5b)
Comparing (5.2.4b) and (5.2.5b), it is observed that the two expressions agree
with each other to within the first order in the void volume fraction f. For
v =1/3, k/x = (1 - 3f)7! for the case when the macrostress is prescribed, and
k/k = (1 - 3f) when the macrostrain is prescribed. These are identical with the
corresponding [/t and E/E of (5.1.15) and (5.1.18); see Figure 5.1.4. As is
seen, here again, the result of Theorem I of Subsection 2.5 is contradicted,
revealing the limitation of the dilute-distribution model.

The estimates (5.2.4b) and (5.2.5b) do not include any interaction among
the cavities. To include this interaction for a random distribution of cavities, the
self-consistent method may be used. Then, for the case when the macrostress is
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regarded prescribed, (5.2.4a) is replaced by

£¢ = L i 0

£ = K f(1+ 4ﬁ)6 . (5.2.6a)
and instead of (5.2.4b), it now follows that

K _,_¢301-V)

K= 1-f 21 =2v) (5.2.6b)

which also requires an estimate of the overall Poisson ratio V. Similarly, a self-
consistent estimate of the overall bulk modulus can be obtained when the
macrostrain is regarded prescribed. As pointed out in connection with
(5.1.22a~e), the result is identical with that for the prescribed macrostress, i.e.,
with (5.2.6b).

5.3. ENERGY CONSIDERATION AND SYMMETRY PROPERTIES OF
TENSOR H

The overall compliance tensor D and elasticity tensor C are defined,
respectively, by (4.3.1) and (4.5.1). They are given for a linearly elastic RVE
with microcavities, by (4.3.6a) and (4.5.5a).

The overall quantities D and C may also be defined in terms of the total
elastic energy stored in the RVE, in the sense that if the RVE is replaced by an
equivalent linearly elastic and homogeneous solid, it must store the same
amount of elastic energy as the actual RVE for the same macrostress, X = 69,
when the overall stress is prescribed, or for the same macrostrain, E = €°, when
the overall strain is prescribed. The two cases of prescribed macrostress and
prescribed macrostrain are treated separately, starting with the former.

Denote the macro-complementary strain energy function by W¢ =
We(Z) = W¢(o°), when the macrostress is given by X = ¢°. From (2.5.17a),

WeE) =< we > = +-f we(o(x; D) dV, (5.3.1)

where we(c) is the complementary energy density function of the matrix
material at point x. Since the RVE is linearly elastic and subjected to uniform
tractions t° = v.G° on dV,

2WY(0%) =< 0:€>=0C%:<€>=0C°:E

=0°:(e°+e9)=0°:(D+H):0° (5.3.2)

where definitions (4.2.1) and (4.3.3a), and expression (4.2.3) are also used.
Hence, whatever the structure of the microcavities, only the symmetric part of H
contributes to the stored elastic energy; note that the microstructure is fixed and
no frictional effects are included. Therefore the definition of H given by
(4.3.5b), is replaced by
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1 1
Hijju = Vfag fav 7(hijk1 +hy;5) dS dS. (5.3.3)

The effective compliance of the RVE may now be defined as the constant
symmetric tensor D with the property that, for any macrostress X = @°, the
overall complementary energy density is

We(o°) = %0‘0 :D:o°. (5.3.4a)
Comparison with (5.3.2) shows that D is defined by
D=D+H. (5.3.4b)

In a similar manner, when the macrostrain is prescribed to be E = €°,
from (2.5.12a), the overall elastic energy density of the RVE becomes

WE)=<w>= % , W(E; E)) dV. (5.3.5)

Moreover,
2W(E%) =<0 :€>=<0>:e°=0:¢€°
=(0°+0°%:e°=€°: (C-C:J):¢e°, (5.3.6)

where (4.4.7) and (4.5.3b) are used. Defining the overall effective elasticity ten-
sor, C, such that

W(e)) = 3e°:C e (53.7)
for any prescribed constant strain €°, it is concluded from (5.3.6) and (5.3.7) that

C=C-C:J, (5.3.8)
where C: J is required to have the following symmetry property:

Cijrs Jrska = Cuars Trsi- (5.3.8b)

5.4. CAVITY STRAIN

When the macrostress is prescribed, X = ¢°, the expression (4.2.1) defines
£°=D: ¢° which is the uniform strain in a homogeneous matrix with compli-
ance D subjected to constant stress 6°. The additional strain €° due to the pres-
ence of cavities, is then given by (4.2.8), namely

=L
\Y
note that n is the exterior unit normal of the cavity. The cavity may be regarded

as an elastic continuum with zero elastic resistance. Then €° becomes the
weighted sum of the average strain over each individual cavity, i.e.,

& " %(n®u+u®n) ds; (5.4.12)
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a=1 o o
= z“;l f, €, (5.4.1b)
o=
where
£, = % (5.4.1c)

is the volume fraction of the ath cavity g, there are n cavities in V, and the
Gauss theorem is used to obtain

gu= o f, e av. (5.42)
It is shown later on, how the average cavity strain €% relates to the transforma-
tion strain or the eigenstrain introduced by Eshelby (1957) for ellipsoidal inclu-
sions. Note in this connection that the resuit € = H : ©¢° is valid for cavities of
any shape in an elastic solid of any (finite or infinite) dimension, with H a con-
stant fourth-order tensor which depends only on the geometry and elastic prop-
erties of the matrix. Eshelby’s results, on the other hand, are for an ellipsoidal
inclusion in an infinitely extended elastic solid.
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SECTION 6 ELASTIC SOLIDS WITH
MICROCRACKS

In this section, the general results obtained in Section 4 are specialized for
application to linearly elastic solids which contain microcracks. Problems of
this kind arise when one seeks to understand the overall response and failure
modes of brittle materials such as ceramics, ceramic composites, rocks, and
cement-like and related materials. A variety of microcrack arrangements are
examined and the overall properties of the solid are estimated, using various
averaging techniques.

6.1. OVERALL STRAIN DUE TO MICROCRACKS

In Subsection 4.2, the additional strain, €°, due to the presence of cavities
is calculated; see (4.2.8). A crack is a cavity, one of whose dimensions is very
small relative to the other two dimensions. For example, an elliptical crack can
be regarded as an ellipsoidal cavity, the length of one of whose principal axes
becomes very small in comparison with the length of the other two principal
axes. Similarly, a penny-shaped crack can be regarded as a limiting case of a
cavity in the shape of an ellipsoidal of revolution. In general, a crack is
identified by two identical surfaces which are separated by the crack-opening-
displacement, representing the relative displacement of the corresponding points
on the two identical surfaces. These surfaces are often called "crack faces".
Figure 6.1.1 illustrates this for an elliptical crack. Here the "upper” surface or

Figure 6.1.1

—_f/
fu] X~ ;. Qg

/i
Qg /J\)
Elliptical crack 904
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the "upper” face of the crack is denoted by dQ*, and the "lower" one by 0Q-.
The exterior unit normal of the crack on dQ* is denoted by n. Hence, the exte-
rior unit normal of the crack on dQ~ is —n.

In general, the boundary 0Q, of a typical ath crack in an RVE is divided
into 0Qg and dQq ; 0Qy = 04 +9Q¢ . For a function f(x) defined on 902,
the surface integral over the entire dQ, can be reduced to the integral over 0Qy
only, as follows:

[y f0S =] f(x+)ds+j _fx")ds

=faga+ (f(x*) —f(x~)} dS, 6.L1)

where f(x*) and f(x~) are calculated at the corresponding points, X+ and x~,
on dQ¢ and dQy , respectively.

Let 0Q2, dQ*, and dQ~ respectively denote the union of all crack sur-
faces, their "plus" or "upper" surfaces, and their "minus" or "lower" surfaces.
Hence, 0Q2 = 0Q* +0Q~. The expression for the additional strain due to cracks
becomes

i j n(x)@u(x)+u(x)®n(x)}

= '\lf =1 fagg{ %{n(x“)@u(x“)+u(x+)®n(x+)}

w[»—

(n(x*)eux")+u(x")on(x+))} }

<~

3 L (nx*)elu)x*) + [ul(x*)on(x*)} dS
o= vong 2

il

<~

fam %{w[u] +[u]en} dS, (6.1.2a)

where n is the exterior unit normal of dQ*, and [u] = [u](x*) is the crack-
opening-displacement, COD, defined by

[u] = [u]l(x*) =u(x™) —u(x"), (6.1.2b)

where Xx* and x~ are the corresponding points on the "plus" and "minus" faces
of the crack.
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6.2. OVERALL COMPLIANCE AND MODULUS TENSORS OF HOMO-
GENEOUS LINEARLY ELASTIC SOLIDS WITH MICROCRACKS

When the macrostress for an RVE is prescribed, £ = ¢°, an analysis simi-
lar to that in Section 4, immediately shows that the overall effective compliance
tensor D of the cracked RVE with a homogeneous linearly elastic matrix of
compliance tensor D, is given by (4.3.6), where the constant tensor H is now
defined through

&= %jaw %{n®[u] +[u]len} dS =H: o°, 6.2.1)

where ©° is an arbitrary constant prescribed macrostress. This expression is
valid when all microcracks are open. It is also valid when some microcracks are
closed and undergo frictional sliding; Horii and Nemat-Nasser (1983). Indeed,
it remains valid even if the microcracks exhibit resistance to the relative dis-
placement of their surfaces, as long as the COD is a linear and homogeneous
function of the overall prescribed macrostress 69, i.e., as long as

lu] = K(x) : 6°, 6.2.2)

for some linear operator K°(x) which is a third-order tensor; here X is a point on
the "upper” or "plus" surface of the crack at which the COD is being measured.

Similarly, when the macrostrain is prescribed, E = €°, under the condi-
tions stated above,

£ = % . %{n@[u] +[ulen} dS=17J:¢e° 6.2.3)
The overall elasticity tensor then is given by (4.5.5). In the remaining parts of
this section a number of illustrative examples of some practical importance are
given. As for the case of an elastic solid with microcavities, the overall moduli
are obtained with: (1) the assumption that the crack distribution is dilute so that
crack interaction may be neglected, and (2) the self-consistent approach which

approximately accounts for the interaction effects.!

The effect of a dilute concentration of randomly oriented ribbon-shaped
and penny-shaped cracks on the overall moduli of a solid is examined by Bris-
tow (1960), using the elastic energy associated with a single crack in an
unbounded uniform elastic matrix. Walsh (1969) considers a similar model with
circular cracks, and also examiaes the influence of fluid filled cracks. The dilute
distribution model has also been employed by Salganik (1973) to study the
effect of elliptical cracks on the elasticity of cracked solids, by Griggs et al.
(1975) who use circular cracks to model source regions associated with
anomalous pressure/shear wave velocities encountered in earthquake events,
and by Garbin and Knopoff (1973, 1975a,b) who address the effects of ran-
domly distributed circular cracks (both with and without fluids) on the overall
elastic properties of the solid, using the zero-frequency limit of scattering elastic

!See also Section 10 for the differential scheme and the double- and multi-inclusion methods,
and Section 12 for a periodic distribution of microcracks.
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waves. The self-consistent model (Kroner, 1958; Budiansky, 1965; Hill, 1965)
is used by Budiansky and O’Connell (1976) who consider elliptical cracks and
identify parameters which adapt the elliptic crack-results to other convex crack
shapes; see O’Connell and Budiansky (1974, 1977). Related studies are by
Hoenig (1979) who considers non-random distribution of cracks; Horii and
Nemat-Nasser (1983) who examine the anisotropy induced by preferential crack
opening and closing in the presence of friction; and Nemat-Nasser and Horii
(1982) and Horii and Nemat-Nasser (1985, 1986) who study failure in compres-
sion, including axial splitting, faulting, and brittle to ductile transition under
increasing confining pressures (see also Nemat-Nasser and Obata, 1988; and
Nemat-Nasser, 1989); the effects of crack geometry and distribution on the
overall elastic moduli is studied by Laws et al. (1983), Laws and Brocken-
brough (1987), and Laws and Dvorak (1987). A different method, called the
differential scheme, has been used by Hashin (1988), and by Nemat-Nasser and
Hori (1990), where comparison of various techniques is provided.

6.3. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING
ALIGNED SLIT MICROCRACKS

In this subsection two-dimensional problems are considered, i.e., plane
strain, plane stress, and antiplane shear. The overall elastic moduli of an RVE
containing microcracks are then estimated. All cracks are assumed to be planar
and parallel to the x3-direction. Their intersections with the x;,x,-plane, there-
fore, are lines identifying the crack faces; see Figure 6.3.1.

Figure 6.3.1

A typical portion of a
two-dimensional RVE
containing microcracks
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6.3.1. Crack Opening Displacements

Consider a typical crack lying on the x;,x3-plane, from x; = —a to x; = a,
with Ix3] < oo, in a homogeneous linearly elastic isotropic solid subjected to
farfield uniform stresses 635 and 673 = 65]. The crack opening displacements
are

wl=Va2-x? L o5 Ixl<al=12), (6.3.12)
where
[—v? for plane strain
El"' = K8-:l.1 =1, E (6.3.1b)

— for plane stress,

with ¥ = 3 —4v for plane strain, and x = (3 —Vv)/(1 + V) for plane stress; see Fig-
ure 6.3.2. Modulus E” may be regarded as a nominal two-dimensional Young
modulus.

X2

Figure 6.3.2

Two-dimensional crack

Similarly, for antiplane shear, with the farfield uniform stress 633 = 653
applied to an infinitely extended solid containing a planar crack on Ix;| <a,
Ix3] < oo, the crack opening displacement is

[us] = Va2 —x¢ % o5, Ixl <a. (6.3.1¢)

6.3.2. Effective Moduli: Dilute Distribution of Aligned Microcracks

Consider a dilute distribution of microcracks all aligned and parallel to the
x)-axis; see Figure 6.3.3. Throughout this section microcracks are parallel to the
xs-direction as discussed before, but for conciseness the x3-configuration is not
mentioned. The crack sizes and the location of their centers in the x;,x,-plane
are assumed to be random. Initially the cracks are all closed. Under an overall
compressive uniaxial macrostress 2y; = —p° (p° > 0), applied in the x,-direction,
the cracks will have no effect, since they remain closed, transmitting the uni-
form normal compression. The overall Young modulus will be the same as that
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of the matrix material, i.e., E. On the other hand, under tensile uniaxial macros-
tress, Xy = p° (p° >0), applied in the x,-direction, the cracks will open and
hence make a contribution to the overall macrostrain in the x,-direction. The
solid then is more compliant in tension than in compression when loaded in the
Xp-direction.

Figure 6.3.3

Microcracks aligned parallel
to the x3-axis X

The change in Young’s modulus is now estimated for uniaxial fension in
the x,-direction by considering a single crack in an infinitely extended solid sub-
jected at infinity to uniform tension X, = 6%,; see Figure 6.3.4.

X2

Figure 6.3.4

-a [8) a  x
A single crack in an infinitely

extended solid subjected to uni-

form tension at infinity

For a typical crack Q of length 2a,, it follows from (6.3.1a) that

aﬂ
eh= [, ldu=Fop (6.3.22)

Define f, by

fy=NgaZ (o not summed), (6.3.32)
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where N, is the number of cracks of length 2a, per unit area in the x;,x,-plane.
The parameter f, measures the density of the cracks of length 2a,; Budiansky
and O’Connell (1976). When there are n sets of cracks, Q,, in an RVE, each set
having its own length 2a, (0t = 1, 2, ..., n), the overall crack density parameter {
is defined by

f= 3 fu= 3 Nyaj, (6.3.3b)

N= ¥ N, (6.3.3¢)

where N is the total number of cracks per unit area. When all cracks have a
common length 2a, then f = N a2,

The total contribution to the overall strain by the opening of the micro-
cracks which are all aligned in the x;-direction, now becomes

_ ] 2, ] 1 ¢% 2
— — 2 =
e= Y Naf, [wldxi= 3 Naad o5 [ wldx =f5 op,

(6.3.2b)
From (4.3.6), the nominal Young modulus? E3, is obtained,
22 = {1+ 2rfH(c%)}™!, (6.3.4a)
or
B4 onfHo)) (6.3.4b)

E = (x+D{1+V)

where H(x) is the Heaviside step function, being zero if its argument x is nonpo-
sitive, and one if x is positive, and Ej is the overall nominal Young modulus in
the x,-direction. Since the presence of the cracks all aligned in the x;-direction
does not affect the nominal Young modulus in the x;-direction, E, = E’ which is
the nominal matrix Young modulus. Therefore, with the microcracks aligned in
the x{-direction, the response of the RVE is anisotropic. From (6.3.4a,b) and the
definition of Ej, therefore, it follows that

E;

E
where 1) =0, 1 for plane stress and plane strain, respectively. Thus, the results
for plane strain are obtained from those for plane stress if f is replaced by
(1-v)f

Assuming that the cracks are frictionless, the overall shear moduli p;; and
N3, are estimated as follows. To estimate [, for a dilute distribution of micro-
cracks aligned in the x;-direction, consider the applied macrostress

= {1+2r(1 —mv2) fH(oR)} !, (6.3.4¢)

2 Because of anisotropic overall response, E3 is defined by 1/Ej=1/E;-nVv2/E, where
1 = 0 for plane stress and 1} = 1 for plane strain.
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32 = Z31 = G, and obtain, using (6.3.1a),

— _ @ & 1 o n 1 | T
€= 2 Naf, glulda= ¥ Naad) o5 [ Fluldai=fg of

(6.3.5a)
Direct application of (4.2.3) now gives
En=eh+Eh = - op+f HEELD 6p (6.3.5b)
2u 8u
Then from €15 = 6%/2[11,, it follows that
B2 et D)y g _p kD) | o), (6.3.6)
m 7] g
In a similar manner, 1,3 is estimated from €53 = f TG 5/21, arriving at
l‘&i = (1+fn} = 1 - fn+0(f), (6.3.7)

where (6.3.1¢) is used. Note that the overall shear modulus in the x,x3-plane is
not affected by the presence of cracks aligned in the x,-direction; hence,
iz =U.

Summarizing the above results, observe that the matrix [H 4] for the plane
problem is given by

0 0 O
[H) = £ HEED |0 Hog) 0], (6.3.8)
0 0 1

when the overall stress is prescribed. Moreover, for the antiplane shear prob-
lem,

[Hpl =X (6.3.92)

m
again when the macrostress is prescribed. On the other hand, when the overall
macrostrains are regarded given, an analysis similar to that presented in Subsec-
tion 5.1.2, readily shows that, for the plane problem,

01

00}

0 0 0
o] =f%(%)l —(k=3)H(G$) (k+DH©GS 0 |, (6.3.8b)
0 0 k-1

where 6% = {W(x+1) &5 — Wi —3) ey }/(x—1). For the antiplane shear prob-
lem,

Jan] = fw

00
0 1] _ (6.3.9b)

Although J for the plane problem is not symmetric, i.e., Ji # Juij, the product
C : J is symmetric:
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[CapllJ el = £ FEE DI

4(x—1)?
(x—3)2 H(o35») —(k-3)x+1)H(o) O
x| —(k=3)x+1) H(o%) (x+ 1)2 H(o$,) 0
0 0 (x—1)2
(6.3.8¢)

Indeed, if H and C are symmetric, then (C:J)T= (C:H:C)T= C:H:C=
C: 1. From (6.3.8) and (6.3.9), various components of [C ] for plane and anti-
plane problems are obtained. For example, the overall shear modulus of plane
problems, 13, is

P _ 1_fw; (6.3.10)
the overall shear modulus of antiplane problems, 153, is
E&i = 1-fm 6.3.11)

and [y3=p. As in the case of microcavities, Subsection 5.1, W), given by
(6.3.6) and (6.3.10), and p,3 given by (6.3.7) and (6.3.11) agree only to the first
order in the crack density parameter f.

6.3.3. Effective Moduli: Dilute Distribution of Aligned Frictional Micro-
cracks

The results of the preceding subsection show that the presence of friction-
less microcracks aligned in the x;-direction renders the elastic response of the
RVE both anisotropic and history-dependent. The history dependence in this
case refers to the response to uniaxial loading in the x,-direction, where, in ten-
sion, the value of the Young modulus is reduced due to the presence of cracks,
compared with the Young modulus in pure compression. Furthermore, if uniax-
ial tension in the xj-direction is applied first, then the corresponding Young
modulus for the superimposed incremental tension or compression in the Xp-
direction will have a different value than in the case when uniaxial compression
in the x,-direction is applied first, and then incremental loading or unloading is
superimposed in the same direction. Because of the assumption of frictionless
microcracks, the response to shearing is independent of the history, but of
course, dependent on the direction of shearing.

The history dependence of the response of an RVE containing aligned
microcracks becomes more pronounced when the cracks are frictional. To illus-
trate this, let the coefficient of friction be denoted by W, and consider a dilute
distribution of microcracks, all aligned in the xi-direction. Consider loadings of
such an RVE, following different paths, all of which lead to the final overall
macrostresses Xj; =Xy =—p° and Xjp = 25 =1° (p° 1°>0). Furthermore,
assume that
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© <N pO. (6.3.12)

Load Path I As the first load path, first apply a small hydrostatic tension,
X1 = Zp =06 >0, so that all the cracks are open. Then apply the shear stress,
7°, which produces the shear strain, €, given by

- = |
B =B = g = o (141 -V)) (6.3.13a)

where (6.3.5b) is used, and plane strain is assumed; for plane stress, a similar
result is obtained when the corresponding value of k is substituted into (6.3.6),
and the result is inserted in €1, = T%/2}4),.

Apply a new uniform macropressure, —(p°®+0), so that the final macros-
tress state is given by X;; = Xy =—p° and X = Xp; = 1°. The corresponding
shear stress-shear strain relation is shown in Figure 6.3.5, and consists of the
straight line OA;.

Figure 6.3.5

Shear stress-shear strain relation

Now consider unloading by removing the macroshear stress 1°. All the
cracks remain locked under the action of macrocompression X;; = —p°. The
stress-strain path then follows the straight line A;B; whose slope is given by 2y,
rather than 2fi;,. At point By, a residual strain of

= n(l v)
€ 20
is locked in the RVE.

If the applied macropressure is removed, then the RVE will undergo an
overall macroshear strain of the magnitude given by (6.3.13b). The area within
the triangle OA;By is half of the total elastic energy per unit volume, which is
lost in this cycle by frictional sliding.

(6.3.13b)

Load Path II: Consider an alternative load path which starts from the origin in
the stress-strain coordinates of Figure 6.3.5, but first, apply the uniform macro-
compression of magnitude p°, so that all cracks are locked in their initial state of
zero COD. Then, the overall macroshear stress of magnitude 1° is applied.
Since 1° is restricted in magnitude by (6.3.12), all microcracks remain locked.
The overall response of the RVE to this shear stress of magnitude 1° would be
an elastic strain,
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€= Tlu” T°. (6.3.13c)
This corresponds to the straight line OAy in Figure 6.3.5. If the uniform
macropressure is removed while the same uniform macroshear stress is main-
tained, the overall macroshear strain will increase to the value given by
(6.3.13b), and the representative point in the stress-strain diagram will move
from point Ay to point A;. If the macroshear stress is then removed, the path
A0 will be followed.

The above example has been used by Nemat-Nasser (1987) to illustrate
the complexity of the response of elastic materials containing frictional micro-
cracks. This complexity increases manyfold, when the microcracks in addition
to opening and closing, may also grow preferentially in response to the applied
macrostresses; see Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser
(1985, 1986), and Ashby and Hallam (1986) for several illustrations, including
model experiments.

6.4. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING
RANDOMLY DISTRIBUTED SLIT MICROCRACKS

6.4.1. Effective Moduli: Random Dilute Distribution of Open Microcracks

Consider two-dimensional problems, where the unit normals of the micro-
cracks lie in the x;,xp-plane. Furthermore, assume that the distribution of these
cracks is such that their interaction can be ignored in the estimate of the overall
elastic moduli. For simplicity, consider the additional assumption that all the
cracks are open and remain so for the considered class of loading. As was illus-
trated in Subsection 6.3.3, the effect of crack closure due to the applied loading
can be quite complex, as illustrated in Subsection 6.4.5; see Horii and Nemat-
Nasser (1983).

To obtain the overall moduli for a random dilute distribution of micro-
cracks, consider a typical microcrack, Qg, lying in the x {*~direction which makes
the angle 0, with the fixed coordinate x;-axis. The unit normal of this crack is
in the positive direction of the local x§*-axis. Hence, the x*,x$-axes attached to
the oith crack are obtained by rotating the x;,x;-coordinate system by the angle
0., about the center of the crack, Oy, in a counterclockwise direction; see Figure
6.4.1. Suppose that the macrostress £ = ¢° is prescribed. According to linearity
(see Subsection 3.2), H* can be defined such that the average strain due to the
presence of a typical crack Qg is given by H*: ¢°. Denoting the components of
H* in the x{*,xf*-coordinate system (the a-coordinates) by Hyf, it follows that

a ~

go = EIZ f _; -;-(ﬁi[ﬁj] +A;[0]) dxf* = A 68, (6.4.12)

where all quantities are expressed in terms of components in the a-coordinates;
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X2

Ag,
X1

Figure 6.4.1

oith crack and local
o-coordinate system

these components are designated by superimposed carets, e.g., 8{} are the com-
ponents of the applied uniform macrostrefss X = ¢° in the o-coordinates. From
(6.3.1a) it follows that

A, = % Afyy = Afiy = A = Afip = % (6.4.1bc)

with all other components of H* being zero, where E’ is defined by (6.3.1b).

To obtain the tensor H for the dilute random distribution of microcracks
of various sizes, transform the components in the o-coordinates into the xy,x,-
coordinates, and integrate the results over all values of the crack orientation
angle 0, assuming a uniform distribution. Let Q* be the corresponding ortho-
normal tensor, transferring components in the o-coordinates into those in the
X1,X2-coordinates. Denoting the unit vector in the x*-direction by e, define Q*
by

Q% = ef*oe;, (6.4.22)
or

e?*=Q%e; =Qte;, (i=1,2), (6.4.2b)
where the components of Q% in the x;,x;-coordinates, denoted by Q, are,

Qf = cosb, Q% = sinBy, (6.4.20-F)

Qp = —sinfg, Q4 = cosBy,

and where Qf = Q%: (e;®e;) = e;.e” From (6.4.2a), the following identity is
obtained:

QrQ%=Qf#Q¥=258x (o notsummed). (6.4.2g)

In terms of Q and the overall crack density parameter f defined by (6.3.3b), the
H-tensor is finally expressed as
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H = Hjjy e;9¢;9¢e 0¢;
f 2% A

=510 Hghes e eefeef oed dO,

27 N
- { % J. 0 Qi Q3 Qi QFf Hyors dea} €i®€;®C ®¢e), (6.4.3a)

where the components of Q* depend on 0. Note that, although an individual
microcrack € has its own H®*-tensor, the components of all H*'s in their own
a-coordinates are given by (6.4.1b,c).

Since the crack distribution is random, H is an isotropic tensor of the form
(in two-dimensional space)

Hijia = hy 88,0+ hy %(Sik ;1 + 0y Oj1), (6.4.3b)
where h; and h; are obtained from (6.4.3a) with the aid of (6.4.2g), as follows:
Hijj = 4h) +2hy = f A0

Hyj = 2hy + 3hy = TH . (6.4.4a,b)
Substitute (6.4.1b,c) into (6.4.4a,b), to arrive at
4y + 2hy = £Figh, = £ 21
2hy +3hy = E(AS,, + 20B,,) = £ %—" (6.4.4¢,d)
Therefore, h; and h; are
hy=0, h= f%. (6.4.4¢.f)
In matrix form, H is given by
100
[Hap] = f% 010]|. (6.4.4g)
002
Since the overall compliance tensor is
D=D+H, (6.4.5)
the overall shear modulus, L, becomes
A= 2Dy oy p 20D o), (6.4.6a)

and the overall Poisson ratio, v, for plane strain and plane stress can be calcu-
lated from

K _ 3n(k+ 1) nic+1) -
X = (1 D) (14 p HEED) 4
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1—f w +0(f2), (6.4.6b)

where K =3 - 8u(v/E+v2/E) for plane strain and ¥ = (3—V)/(1 +V) for plane
stress. For plane stress, the overall Young modulus, E, and Poisson ratio, v, are

=1 +fr)y! = 1 -fr+0(f),

t ez

=(1+fry!=1-fr+O(f?). (6.4.6c,d)

<|<l

Note that the Young modulus in the xs-direction coincides with that of the
matrix, since all microcracks are parallel to the x3-axis. Note also that the
overall inplane Young modulus for plane strain is given by

% = (1+f(1=v)m)L. (6.4.6¢)
Consider now the case when the macrostrain E = €° is prescribed. The
average strain €% contributed by the orth microcrack Qg then is
€*=J%:g° (6.4.7a)
where, as shown in Subsection 5.1.2, the tensor J® is
Je=H*:C. (6.4.7b)

Therefore, if the dilute distribution of microcracks is uniform, from H given by
(6.4.4), J is obtained,

Jijia = Hijrmn Crana

f 1[(1(84- D {— E: :1)) Sij 81(1 + (Sik Sjl + 811 Sjk) b (6.4.8a)

or in matrix form,
k+1 —(x-3) 0

Wal = f %“—“l —(xk-3) x+1 o | (6.4.8b)
(x 0 0 2k-1)
Then, the overall elasticity tensor becomes
C=C-C:J. (6.4.9)

In particular, the overall shear modulus, L, and non-dimensionalized parameter,
K, are obtained from

B _pmGe+l)
4 k]

=

K _ £ R+ D(k2-2k+3) f(k+1)
x == dx(x—1) - 2(K )} B
1-f B D=3 |, o), (6.4.10a,b)

where K = 3 - 8{L(V/E + V¥E) for plane strain and K = (3—V)/(1 +V) for plane
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stress. For plane stress, the overall Young modulus, E, and Poisson ratio, v, are

E_,, ¢ x B Cem(A+VA )
—E—(l f1+v)(l f—l_v){l f—l_v2 Jl=1-fr+0O(f?)

VN o_q_f_2n _ (1 +vY) B R 2

v (1 fl—vz){l f TV } 1-fr+0O(f%). 6.4.10c,d)

As explained in Subsection 5.1.2, D and C, given by (6.4.5) and (6.4.9), are
each other’s inverse only to the first order in the overall crack density parameter
f,ie,

C:D=199+0(f2), and D:C =19 +0(f2). (6.4.11a,b)

6.4.2. Effective Moduli: Self-Consistent Estimate

Suppose the distribution of microcracks in the xy,x;-plane is random, and
it is desirable to include their interaction to a certain extent. As in Subsection
5.1.3, the self-consistent scheme may be applied to estimate the overall compli-
ance D (or the elasticity tensor C) of the RVE. The resulting overall compli-
ance tensor then is isotropic, due to the random distribution of microcracks. In
terms of the unknown overall shear modulus, [, and non-dimensionalized
parameter, K, H is expressed as

Hij =1 %7 %(Sik O+ du) =1 ﬂ%ﬁ (Six &5 + 051 S5, (6.4.12)

where ¥ = 3 — 8{L(V/E + V¥/E) for plane strain and K = (3 —V)/(1 +V) for plane
stress. Then, the overall compliance D satisfies
D=D+H, (6.4.13a)

or in matrix form

Al Al

S+ |
—

00O O

1
3

Al Al
S+

1
8u

100

010].

002
(6.4.13b)

Since D, ﬁ, and H are isotropic tensors, there are only two linearly independent
relations among the three equations in (6.4.13b). From these, a system of two
equations is obtained for the two unknowns W and ¥,

K+1 _ k+1 (K +1) 1 _ 1 K+ 1)
L= +f ), = =—+f=2=="C 6.4.13c,d
TR T TR ap (6.4.13c.d)
Then, | and K are given by,

J&=(1—fn){1+fi——“'<4‘3) jt=1-r 2D L o),
K _ oy _¢R(x-=3 mK—3) -
X=q fi—lm( }{1+f—§4—}l
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=1- fw +O(f2), (6.4.14,b)

In particular, for plane stress, the effective shear modulus, [, Young modulus,
E, and Poisson ratio, v, become,

M _q f WV v _f T 2

m (I=fm) (1= f {2y = 1= f T +0(f),

E _

F_l_fn’

Vo_-f

V— - TC- (6414C"'e)

Figure 6.4.2 shows the variation of the overall shear and Young moduli with
respect to the crack density parameter f, for dilute distributions (6.4.6,10) and
self-consistent estimates (6.4.14). The Poisson ratio v is set equal to 1/3. It
should be noted that in the self-consistent estimate, the overall elasticity tensor,
C, which satisfies

C=C-C:J=C-C:H:C, (6.4.152)
is in fact the inverse of D given by (6.4.13a), i.e.,
C=D". (6.4.15b)

See Subsection 5.1.3 for a detailed derivation.

1 1
08} 0.8L
0.6 ﬁé"“ 0.6}- 7. DD
Hip - 'D._’ E/E
0.4} 0.4 -
0.2 02| DDE. -SC
0 ! ! 1 0 1 1 1
0 01 02 03 04 0 01 02 03 04
f f
CRACK DENSITY PARAMETER
Figure 6.4.2

Normalized overall shear, j./, and Young’s, E/E, moduli for dilute random
distribution of slit microcracks, all parallel to the x3-axis; v = 1/3

SC = self-consistent

DD:X = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed
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6.4.3. Effective Moduli in Antiplane Shear: Random Dilute Distribution of
Frictionless Microcracks

Next, consider the antiplane shearing of the RVE, where, again, the unit
normals of the microcracks lie in the x;,xp-plane. The lengths and orientations
of the microcracks in the X|,X;-plane are random such that the overall shear
moduli for the x,x3-plane and the x,x3-plane are the same, i.e., [L13 = [ia3 = W3
The procedure outlined in Subsections 6.4.1 and 6.4.2 for two-dimensional
inplane problems will be followed to estimate the overall shear modulus [ for a
dilute distribution of frictionless microcracks, and then the self-consistent esti-
mate will be worked out.

Consider a typical microcrack €2, and the corresponding x{*,x§-coordinate
system (the o-coordinates) as defined in Subsection 6.4.1; see Figure 6.4.1. The
x§{-axis coincides with the xs-axis. Suppose that the macrostress X = ¢° is
prescribed such that its nonzero components in the xj,x;-coordinates are Gf3
(=0%,) and 655 (=0%,). Then, the contribution to the average strain by a typical
crack ) is given by (6.4.1a), i.e.,

£ = Lz_’- * Lingu]+[ulen) dxf* = H*: o°. (6.4.16a)
ag -a, 2

From (6.3.1c), the components of H* in the ¢i-coordinates, I:Ii‘j’f(l, are easily deter-
mined,

I:Izo_%23 = I:Izt.xz23 = I:Izo_%32 = I:Izt.xz32 = %, (6.4.16b)

with all other components being zero. Recall that the tensor H* depends on the
orientation of the microcrack €2, but its components in the corresponding o~
coordinates are constant and independent of the crack length; they are given by
(6.4.16b). Then, in transforming from the o-coordinates to the x1,xz-coordinates
through (6.4.2), the H-tensor for a uniform (random) distribution of cracks is
given by (6.4.3a), i.e.,

H = Hjju e;®¢j0ex o€

o .
= {% [, Q% Qi Q& Qf Hey 6o ) eioej0eeer, (6.4.16¢)

where 0, is the angle of the x{*-axis with respect to the x,-axis.

Since the crack distribution is random, H is isotropic. For the antiplane
shearing considered here, the nonzero components of H are

Hj313 = H3113 = Hyssp = H3i31 = Haspsz = H3zs = Hazsp = Hiom, (6.4.17a)
Taking advantage of (6.4.3b) and using (6.4.16b), now obtain

Hijij = 4Hy313 = fHgpq = 2f Al = f% (6.4.17b)
and hence
Hpzi3=Hyspz = ... = f . (6.4.17c)

8p
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In matrix form, the H-tensor for this antiplane shearing can be expressed by

—f-
(Has] = 57

(1) ﬂ _ (6.4.17d)

Then, the corresponding overall compliance matrix takes on the following form:

1 1 0] 1 [1 0} - [1 0}
—_ =— +f == . (6.4.17¢)
Therefore, the overall shear modulus, {3 = ;3 = [L;3, is obtained,

Ei_ Tyt 1_¢tX&
m =(1+f3)' =1 f2+O(f2). (6.4.18)

Next, suppose that the macrostrain E = €° is prescribed such that its
nonzero components in the xi,x;-coordinates are €3 (=€f;) and €55 (=€$). The
average strain due to the microcrack Q, is given by (6.4.7a), i.e.,

€% =J*:g° (6.4.19a)

where, in terms of H* defined by (6.4.1), the J*-tensor for the antiplane shear
becomes

Jo=H*: C =2uH* (6.4.19b)

Therefore, since the dilute distribution of microcracks is random, in terms of H
given by (6.4.17c), the J-tensor is equal to 2itH, and its nonzero components in
the x;,x;-coordinates are

Jaz=Junn=...= f%, (6.4.20a)

or, in matrix form,

10
[al = f% 0 1] . (6.4.20b)

The relevant components of the overall elasticity tensor, C, are now given by

_ |1 10 10

iy [0 ﬂ :u{o J RE [0 J, (6.4.20¢)
Therefore, the overall shear modulus, [13 (= [113 = [133), becomes

W _¢n

C=1-f 3 (6.4.21)

The overall shear modulus {3, given by (6.4.18), and that given by (6.4.21)
agree with each other only up to the first order in the overall crack density
parameter f.

Finally, consider the case when the distribution of microcracks in the
X1,X2-plane is random (and still dilute), and their interaction effects are to be
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included through the self-consistent approach. The resulting overall compliance
tensor D is isotropic in the Xj,x»-plane. The overall shear modulus {13
(=13 = Up3) will now be estimated. In matrix form, the H-tensor is expressed
in terms of 3 by

! 0} (6.4.22a)

[Hal =f5|0 11

)

and the relevant components of the overall compliance tensor, 5, become

L[IO}_LIO}_ -
TR AU S !

01 25 01
Therefore, the overall shear modulus, {13, is

! 0} _ (6.4.22b)

Uz _ i
s | _ff' (6.4.23)
As is seen from (6.4.21) and (6.4.23), the self-consistent estimate of the overall
shear modulus coincides with the estimate obtained from a dilute distribution of
microcracks when the macrostrain is regarded prescribed; see Figure 6.4.3. It is
emphasized that, like the dilute distribution assumption, the self-consistent
method is valid only for small values of the crack density f. However, the dilute
distribution assumption leads to results in violation of Theorem I of Subsection
2.5, whereas the self-consistent method does not. Indeed, unlike the dilute dis-
tribution assumption, the self-consistent approach yields the same overall
moduli, whether the macrostress or_the macrostrain is regarded prescribed.
Since the relevant components of the J-tensor are

10

Vel = [Habl[Coel = £ 5 | ¢ J = [V, (6.4.24)

the corresponding components of the overall elasticity tensor, C (=C-C:J),
coincide with those given by (6.4.20c).

1

08 . DD

Figure 6.4.3 06

) Ha/p
Normalized overall shear 041 DD:E, SC ..
modulus, i3/, for dilute
distribution of slit cracks, 0.2l
all parallel to the x3-axis
SC = self-consistent 0 I L |
DD:Z = dilute distribution with 0 01 02 03 04

macrostress prescribed £
DD:E = dilute distribution with CRACK DENSITY PARAMETER

macrostrain prescribed
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6.4.4. Plane Stress, Plane Strain, and Three-Dimensional Overall Moduli

Since the slit cracks are parallel to the xs3-direction, having an otherwise
random distribution, the overall response of the RVE is transversely isotropic,
with the x;,x;-plane being the plane of isotropy. The formulation in terms of p
and K, in Subsections 6.4.1 and 6.4.2, permits direct evaluation of the overall
moduli without specific reference to whether plane stress or plane strain condi-
tions are assumed; see also, Subsections 3.1.4, 5.1.1, and 8.3. For plane stress,
K=3-V)/(1+V), and the results illustrated in Figure 6.4.2 and relations
(6.4.14) are obtained. It may be instructive to compare these results with the
corresponding estimates of the overall moduli obtained under plane strain con-
ditions. This is done below for the self-consistent model.

— Y 2
Since, for plane strain, K = 3—4v and K = 3 — su(% + VF)’ from (6.4.13)
it follows that

B fryd —favy,

=(1-fr)(1-frv2),

o =

= (1 -fm)(1 —frv2y . (6.4.25a~c)

<<l

The first two equations in (6.4.25) have been obtained by Laws and
Brockenbrough (1987) using a different procedure. Results (6.4.13a~d) unify

the necessary analyses, and lead to the interesting conclusion that® E/E = /v for
both plane stress and plane strain.

It is reasonable to expect that the overall moduli in the plane of isotropy,
i.e., in the x;,x;-plane, should not depend on whether plane strain or plane stress
conditions are employed in order to calculate these overall parameters; see also
Subsection 8.3.1. The difference between the corresponding expression in
(6.4.14c~e) for plane stress, and in (6.4.25a~c) for plane strain, therefore, is a
manifestation of the modeling approximation. This difference, however, is
small enough to be neglected. Indeed, essentially the same estimates are
obtained even if the effect of anisotropy associated with the x3-direction is alto-
gether neglected. In this case, k =3 —4v and it follows that (Horii and Nemat-
Nasser, 1983)

E _ (1-fm( +v—f2mv)
E A+v)1-frv)z
Y = (- fm1 - frv) . (6.4.26a,b)

In Figure 6.4.4, E/E and V/v, given by (6.4.25b,c) and (6.4.26a,b), are plotted

*This equality holds for the self-consistent model and the dilute distribution model with
overall stresses prescribed. It does not hold for the dilute distribution model with overall strains
prescribed.
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0.8 0.8
0.6 0.6
BB (6.4.26a) Sh (6.4.26b)
0.4 041
6.4.25b
o2l ( ) o2l (6.4.25¢)
0 1 I 1 0 L i
0 O0F 02 03 04 0 01 02 03 04
f f

CRACK DENSITY PARAMETER

Figure 6.4.4

Comparison of normalized overall Young’s modulus E/E and Poisson’s ratio
v /v, for slit microcracks (parallel to the xs-axis), obtained for plane strain, as-
suming transverse isotropy, (6.4.25b) and (6.4.25c), and isotropy, (6.4.26a) and
(6.4.26b); v=1/3

for plane strain. As is seen, the differences are insignificant, especially for the
overall Young modulus.*

6.4.5. Effect of Friction and Load-Induced Anisotropy

When pre-existing cracks are closed and undergo frictional sliding under
overall compressive loads, the overall response may become anisotropic even
when the matrix material is isotropic and the distribution of pre-existing cracks
is random. This anisotropy is load-dependent, often affected by the load history.
Hence, in general, the corresponding overall shear and bulk moduli may depend
on the history of the applied overall hydrostatic pressure and overall shear
stresses.

Unlike an open crack, the deformation of a frictional crack involves a
complex set of conditions. To simplify the analysis and yet illustrate the basic
phenomenon, assume that: 1) the normal and shear stresses transmitted across
the crack surfaces are constant; and 2) the crack sliding is governed by a simple
friction law. Let the crack shown in Figure 6.4.1 be closed, and consider the
following governing conditions:

*The corresponding results for {1/ are identical, given by (6.4.25a).
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if 16211 < -1 O, then [u]=[u]=0, 0%=0y

and G} =0y, (6.4.27)
if 16,1 > —1 6, then 6§ = -1 sgn(62) 65

and [uy] =0,

where 82“2 and 62“1 are the normal and shear stresses transmitted across the crack
surfaces, 1 is the coefficient of sliding friction (regarded to be a positive con-
stant), and sgn(x) is 1, 0, or —1, depending on whether x is positive, zero, or
negative.

Let the applied loads be as in Subsection 6.3.3, i.e., uniform pressure,
of, = 0%, = — p°, accompanied by pure shear, 67, = 69 = 1° (p°, t° > 0). Con-
sider the sliding displacement of closed cracks. Since the stress field is sym-
metric with respect to the lines X, = +Xx,, consider the range —7/4 < 0, < 3n/4.
In the ath coordinate system, the macrostresses are

8{’1 = —p°+1° 8in20,, 82"2 = —p°—1°sin20,,

60 = 1° c0s26,,. (6.4.28)

Hence, slip conditions (6.4.27) determine the behavior of the ath crack, as fol-
lows: the oth crack is

open /2> 10y~ 14| >7/4 -6,
closed with slip for T/4—0.> 10, —1/4] >w/4-6, ",
closed without slip w4 —0;> 10, —m/4l >0

where 0, and 6, are defined by

sin20, = — &, (16,1 < m/d)
v, (6.4.29a,b)
0526, = M (% +5in20,), (16,1 <7/4).

Hence, all cracks are closed if p°/1° > 1.
In view of (6.3.1), the crack opening displacements for the closed crack
with slip are given by
N2 -2 (GR+NOH/E for6u>0 (8, </4)
[a,1= - . .
N2 =2 GH-NOR/E for6B<0 (8, > ),
[G2] = 0, (6.4.30a,b)
where 65, = 6. For this closed crack with slip, the H%tensor defined by

(6.4.1) is given by

Y T
Hloén = AR
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A _]73‘711 for 04, < /4 A3l
Ha — ( 4. la, )
S Zn  forey>ma

Therefore, the H-tensor defined by (6.4.3) is

8, . 8,
Hijp = Hon = £ - (210]_, + 140 -sin40 -7 cosd], },
1 & 1 . 6,

Hipp=f Vo { 4[6]_n/4+ 5 [40 +sind40 +n COS46]9L, 1
Moz = Hygyy = £ L { = L [46 = sind6 1 cosd0]" |

1 22” E/ 8 ec k

¥ 8

Hijp =Hyp =1 55 {[e0s20] 1},

ec . 9.\
len = H1222 =f % { [COS26]_1[I4+ [n Sll’l26]ec }, (64328."6)

where, again, f = a?N.

When the macrostrains are regarded as given, an analysis similar to that
presented in the preceding subsections shows that the J-tensor is given by H: C.
Unlike in the previous cases, however, neither C : J nor J is symmetric. Indeed,
C:Jis given by

C: D11 =(C: Dy

’ ef
= ST e o1 10]

—1)2 o
+ % [46 — 5ind0 —n cos46] ),

. _ ¢ (k+D2FE 6 1 . 6,
(C.J),212—f-——64(K_1) {410]__ +- [46+sm46+ncos46]ec},

1 ZE/ 6,
C:Dp=C: Ny =t % {4@-(e-19[0)__,

—1)2 A
_ % [46 — sin40 —m cos46]_},

(c+1)2FE

C:Dnnp=C:Npp =t 16(x—1)

ec
[cos20] o’
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0,
(Do = (€ D= £ CEE (0001 "+ pmsince ).

16(x
(6.4.33a~¢)
To simplify the discussion, define the overall shear and bulk moduli by
g = ﬁ of, € teEpn= ‘2% (67 +05). (6.4.34a,b)

Figure 6.4.4 shows the variation of [t and K with respect to the load parameter,
p°/1°, for indicated values of the crack density, f. All cracks are closed if
p%1° =1, and are open if p°/1° << —1. As p°1° decreases, some cracks open
up, and hence | decreases with decreasing p°/1°. The influence of the applied
shear stress on the overall volumetric stiffness is revealed by considering the
principal stresses, —p°*1° As 1° increases, one of the principal stresses
becomes tensile, causing a large number of suitably oriented cracks to remain
open.

/pO<1; T pO<—1; %

0.8 wpP<LE 0.8 pres-LE
o/p° = 10; 3
0.6} /p° = 10; E 0.6
K/K n/p

041 04+

| | pore21; T
0.2 02r B liE

0 ! | 1 1 0 1 1 i I
0 01 02 03 04 0S5 0 01 02 03 04 05
f/m fim
CRACK DENSITY PARAMETER
Figure 6.4.4

Normalized overall bulk and shear moduli for dilute distribution of closed
cracks; £ = macrostress prescribed and E = macrostrain prescribed

Next, consider the self-consistent method which accounts for crack
interaction in a certain manner. Let the oth crack be embedded in a two-
dimensionally anisotropic solid, with the yet-unknown overall compliance ten-
sor, D. For an open crack under the farfield stress 6°, the COD’s are

[4;] = 2\/a2_5(12 D11 {(0uBy +0aB)) 65 + (B +By) 61,

0] = Na— 22D 1
(8] = 2Na* =81 Do i 2 B
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x| (B2 +B2)+By@? +BD)) 6%+ (uBy+ 0B OB |, (6.435ab)
where o, 0y, By, and B, (B, B, >0) are given by A, =0y £1B; and A, =
o * 18,, which are the roots of the characteristic equation,
Dy A =4 Dy 3 A3 +2 (D) 12+ 2 Dy19) A2 = 4 Digyy A+ Dy = 0; (6:4.36)
see Sih, Paris, and Irwin (1965), and Section 21.

Assume that the sliding condition (6.4.27) holds for this anisotropic case.
If the crack is closed and undergoes sliding, the transmitted normal stress, G5, is
computed from (6.4.35), as

55 = {Bi(@F +B3) +Ba(of + BP)} 05 + (0B + 05B)) of)
Bi(az +B3) + Ba(af +BF) — M sgn (G)(0u B + 02B1)

and the resulting slip is

<0, (6.4.37)

(] = 2\a? - 22Dy {04y + 0uBy) (65— 65)

+(B1 +By) (G +1 5gn (G) %)} (6.4.38)
As is seen, the symmetry with respect to the X; = * X,-lines does not hold, due

to material anisotropy.

With the aid of (6.4.36) and (6.4.38), the H% tensor can be computed.
The results are summarized as follows:

(a) for an open crack,

B: B>

+
of +Bf o +P3

-

Doy,

o
szzz—“[

A%y, =HS)n= % 7 (ouBy +0B) Dy,

A = 7 7 (Bi+B2) Dinn, (6.4.3%-c)
with the other ﬁﬁd vanishing;
(b) for a closed crack without slip, i.e., when oD < -1 o9,

A =0; (6.4.40)

(c) and for a closed crack with slip, i.e., when 16{;| > —NG3, and 65, <0,

Ay = ‘;‘ n{ (o0 By + 0oPy)

_ {(0uPr + 0By) —msgn (62)(B1 + B HBi(0F + BD) + Ba(a? + BP)} } l;)uu
{Bi(0F + B3) + Ba(af + B} ~Msgn (5101 B; + 0By) '
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A = % n{ B+ B

_ {(0uBa+ 0uBy) —Misgn (S)(Bi + Ba) e By + 0B1) } ]i)““
{Bi(0f + B2) + Ba(af + B} —nsgn (G ) (0 By + 0nBy) '

(6.4.41)

with the other I:I-,‘}kl being zero. Once I:Ii‘j’id is determined, the overall compliance
tensor D is computed from, say, (6.4.13). Note that the overall shear and bulk
moduli defined by (6.4.34) are expressed in terms of this anisotropic overall
compliance D, as

— — 0 —
1. ~2(Dy211+Diaz) B +4 Dy,

i T

L 511+ By 2By - 2B+ B 2
f—D1111+D2222+2D1122 D22+ Do) g (6.4.42a,b)

As shown in Subsection 6.4.2, the overall elasticity tensor C obtained under the
assumption of macrostrains prescribed, coincides with the inverse of the compli-
ance tensor D.

It is seen that H* and hence D are not symmetric when sliding occurs on
closed frictional cracks, unless the coefficient of friction, 1, is zero. For illustra-
tion, consider two extreme cases, one with 1} = 0 (sliding with no frictional loss)
and the other with 1} >> 1 (no sliding). Figure 6.4.5 shows il and K as functions
of f for several extreme loading conditions. Here, also, the effect of the loading,

p/t° or T°/p°, is clearly seen.’

1
\p/‘cs—l;n>>1
0.8- pits-1;
=0
=, 06 1
w/p
04 pit>1
021
0 I 1 L 0 ! ] ! 1
0 01 02 03 04 05 0 01 02 03 04 05
fir fin

CRACK DENSITY PARAMETER

Figure 6.4.5

Normalized overall bulk and shear moduli for dilute-distribution of closed
cracks; self-consistent method

% See Mao and Sunder (1992a,b) who examine polycrystalline ice, and Ju (1991) who presents
damage models for microcracked solids.
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6.5. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING
ALIGNED PENNY-SHAPED MICROCRACKS

In this subsection the overall elastic moduli of an RVE consisting of a
homogeneous linearly elastic isotropic matrix material which contains penny-
shaped microcracks, are estimated. Similarly to the case of the two-dimensional
problems examined in Subsections 6.3 and 6.4, the overall response of the RVE
may be isotropic or anisotropic, depending on the distribution of microcracks.
This and related issues are brought into focus through several illustrative exam-
ples.

6.5.1. Crack-Opening-Displacements

Consider a penny-shaped crack of radius a, lying in the x;,x;-plane with
its center at the origin of the coordinate system. The unit normal n of the posi-
tive crack face, therefore, coincides with the unit base vector e3. Under the
action of farfield stresses, 613 = 631, G533 = G35, and 633 > 0, the COD’s are

— —y2
[u;] = Va2 — 12 :c%((lz—vv) 63, r<a(i=1,2),

- 2
) =Va2 -2 3=V o5 r<a, (6.5.1ab)

where 12 = x{ + x#; see Figure 6.5.1.

X3

Figure 6.5.1
A penny-shaped crack

6.5.2. Effective Moduli: Dilute Distribution of Aligned Microcracks

Consider a dilute distribution of penny-shaped microcracks, all parallel to
the x;,x;-plane, as shown in Figure 6.5.2. The crack sizes and the locations of
their centers are assumed to be random. This means that the overall response of
the RVE is transversely isotropic, with the x;,x;-plane defining the plane of iso-
tropy. Hence, there are a total of no more than five independent overall elastic
moduli. Furthermore, when the cracks are closed, the Young modulus in the
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x3-direction, i.e., E3, will be the same as the Young modulus of the isotropic
matrix, E. Under uniaxial tension in the x;-direction, however, E; < E, since,
due to the crack opening displacement, the RVE is more compliant for such
uniaxial tensile loading. If it is further assumed that the cracks are frictionless,
then the overall moduli will have the form given by (3.1.13), with the exception
that

= | =E  incompression 6.5.2
E3{ <E intension. ©>2)

When the microcracks are frictional, the response will be history-dependent,
similar to the case discussed in Subsections 6.3.3 and 6.4.5.

Figure 6.5.2

A dilute distribution of O X3
penny-shaped microcracks,

parallel to the x;,x,-plane 1

To estimate the overall moduli for the dilute distribution of penny-shaped
microcracks aligned normal to the xs-axis, let Ny be the number of cracks of
radius ag per unit volume of the RVE. Then the additional overall strain due to
the presence of microcracks, €°, can be expressed as

— i} —
g = 21 fu €%,  f,=Ngad,
o=

aLé .. >{nslul+[ulen}ds, (6.5.3a~c)

where f, measures the density of cracks with radius ag, and the total crack den-

sity f and the total number of cracks per unit volume, N, respectively are
)i I
f=Y f, N= 21 Ng. (6.5.3d.e)
o=

a=1

Direct calculation, based on (6.5.1) and (6.5.3¢), readily yields
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€53 3E(2 —V) Gi3 (1 = 1’ 2)’
o - 16(1-v)
eg= 10V (6.5.4a,b)

Hence, €% is independent of the crack radius a,. The matrix [H ] is obtained
from (6.5.4a,b),

000 0 0 0
000 0 0 0
_1601-v2 1001 0 0 0
Hal =f=3="1000 22-v) 0 0| (6.5.52)
000 0 2/2-v) 0
000 0 0 0
or, when [H ] is divided into two non-trivial parts,
(HP1 [0]
[H ] =[ [8] HP1| (6.5.5b)
it follows that
[0 0 0]
HY] =fﬁ%"zl 000, (6.5.5¢)
001
(10 0]
1= £.32(1-v?)
[HP]1= 17———3}3(2 ) 8(1)8 . (6.5.5d)

From this and (4.3.6), it is seen that the overall compliance tensor D is
transversely isotropic. Then the overall elastic moduli are

E_| Y_, B_ -
B 1, v 1, m 1, (6.5.6a~c)
where the notation E =E; = E;, V=V5, and @ = u;, is used for the overall
elastic moduli in the x;,x,-plane; and

% = (1+£ 160 V%) 13—"2 =1 —f———16(13“’2) +0(2),

Vs _ 16(1 = 2v)(v2— 1) 16(1=v2) |_
v = 1+£ S0 (14 20 =

—1- f16(1—\12)(1+v V)+O(f2),

3v(2—v)
E _ 16(1 —v) 6§1 - -
m {(1+f—2 30 -V) Jl=1-1 30 = +O(f2), (6.5.6d~f)

where the notation V3 = Vi3 = V3 and 3 = 113 = [y is used; see Subsection 3.1
and (3.1.13).

When the macrostrains are regarded prescribed, the overall elasticity ten-
sor is given by (4.5.5). The tensor J in (4.5.5) relates to the tensor H by
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J =H:C, for the model of a dilute distribution of microcracks. To calculate J,
in view of® (6.5.5), set

vP1 [0] ([c¥1 (o]
g ab]=[ [0] [Ja(%)lJ’ [Cab =[ 0 [CQ1 (6.5.7a.b)
Then,
V1 =HPIICL], F@1=HPICL]. (6.5.7¢,d)
Since [Cy] is isotropic, it follows that
E -v v v
1)1 — 1- ,
[Ca']= Ty =2w) A
, 100
)= 010]. 6.5.8a,b
(1= 2(1+v)001 (6.5.8a,b)
Thus, in view of (6.5.5),
00 O 100
u@1=r180=W 100 o |, pR1=r-V 00|
3A=2v) |y y 12y CZ-v) o000
(6.5.9a,b)
Although [J (] is not symmetric, the product[C §) ][J§] is symmetric,
V2 v ov(l-v)
[CHWP=fL00=VE | yq_y),
i BA+VA=2V |y _y) vl =v) (1-v)?
100
DT = 8(1-Vv)E
([CRIWP] f3(1+v)(2_v) 8 (1) 8}. (6.5.9¢,d)
Note that, since
(C:Din = FHC: D -(C: Dz} =0, (65.9¢)

(CLWEDxs= l{([Cénl’][léé’])u —((CR WD) =0, (6.5.9)

the tensor C:J is transversely isotropic. From (6.5.9¢c,d) and (4.5.5), various
components of [Ca] are obtained. For example, the overall shear moduli,
{ =z and U3 = [1y3 = [iz3, are

By, By _pl60-v) 6.5.102,b
T 32-v) ( )

® Note that the matrix representing a tensor is denoted by the corresponding italic letter; see
Sections 3 and 15 for details.
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These shear moduli are equivalent to those given by (6.5.6¢) and (6.5.6¢), up to
the first order in the crack density parameter f.

For the self-consistent model, the H-tensor is to be computed for a
penny-shaped crack in an unbounded transversely isotropic elastic solid, with
the crack normal to the axis of elastic isotropy. This problem is not examined
here; see Section 21. The self-consistent results, however, are given by Hoenig
(1979) using a different method; see also Laws and Brockenbrough (1987).

6.6. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING
RANDOMLY DISTRIBUTED PENNY-SHAPED MICROCRACKS

6.6.1. Dilute Open Microcracks with Prescribed Distribution

A typical penny-shaped microcrack is defined by its radius, ay, and its
orientation given by the unit normal, n, = n. The components of n in fixed
Cartesian coordinates may be expressed by

n; = siny cos0, ny = sinVy sind, n3 = COs\Y; (6.6.1)

see Figure 6.6.1. When there are a very large number of microcracks with radii
ranging from ay to ay, and with unit normals ranging over all orientations, a
density function, w = w(a, 0, y), may be introduced such that the number of
cracks per unit volume with radii in the range of a to a+ da, and orientations in
the range of (0, y) to (0+d0, y+dy), is given by w(a, 0, y) siny da dO dy.
Then the total number of cracks per unit volume, N, is

N=-L ["[7 [ w(a, 0, ) siny da do dy (6.6.2a)
4r Ja, Jo Jo T ' o

X3

da

unit sphere g d
ad

Figure 6.6.1

. . . . . X
Distribution of radii and unit !

normals of penny-shaped cracks 6
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Note that siny dO dy defines the elementary solid angle with orientation (0, ).
With 0 ranging from 0 to 27 and y ranging from O to 7, the corresponding unit
vector traces a unit sphere.

When the crack size distribution is independent of the crack orientation,
the density function may be expressed as

w(a, 0, W) = wla) wo(0, ), (6.6.2b)

and it follows that

—Mwia) da, 1= -L [ w6, y) siny do d 6.6.2c.d
N—J.amwr(a) a, _RJ.O J.Owo( , ) siny . (6.6.2¢,d)

To estimate the elastic moduli of an RVE with a prescribed dilute distri-
bution of penny-shaped microcracks, first consider a typical microcrack, €, of
radius ag and orientation (8q, Wo), and calculate the corresponding H%tensor.
Then integrate the result over all possible radii and orientations, using the
corresponding weighting function w(a, 6, ¥). Let (x{*, x§*, x§) be the local rec-
tangular Cartesian coordinate system (the o-coordinates) for the microcrack
where the unit base vectors in the o-coordinates are e (i = 1, 2, 3), and the ori-
gin Oy is at the center of Qy. The crack € lies in the x{,x§plane. Its unit nor-
mal n (=ef) is in the x{-direction. Since the crack is penny-shaped, the x{-
direction in the x,X;-plane may be chosen arbitrarily. For simplicity, choose the
x{-axis parallel to the x,Xp-plane, i.e., on the intersection of the x;,X,- and the
crack-plane. This uniquely determines the -coordinates; see Figure 6.6.2. The
angle between the X;- and the x{*-axis is 6, and the angle between the x3- and
the x{*-axis is ,. Therefore, the orthogonal tensor Q% defined by (6.4.2a), has
the following components in the x;-coordinates:

Qf = —sin®,, Qf =cosb,, Qf =0,
Qf = —cosyy cosOy, Q%= —cosy sindy,, Q% = sinyq,

QF; = sinyy cosOg, Q% = sinyy, sinfy, Qf} = cosyg,. (6.6.3a~1)

X2a X3
x5
xf
. n
Figure 6.6.2 %
A typical microcrack
in a-coordinates Oy X2

Qq

X1
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Suppose that the macrostress X = 6¢° is regarded prescribed. From the
contribution to the overall strain by the single crack Q,, the corresponding H*-
tensor is defined by

Sa_ 1 1

€= — g 2 5 {ne[u] +[u]en} dS = H*: ¢°. (6.6.42)
The components of H* in the local o-coordinates can be read off (6.5.4a,b).
Denoting these components by Hukl, obtain

RV A _ 2
A% = 46213—\’1, s = Afs = Ay = Ay = %}2—\’;%
(i=1, 2; i not summed), (6.6.4b,c)

with other components being zero. It should be noted that: (1) the H”tensor
depends on the crack orientation (0, W), but is independent of the crack size
ay; and (2) the components of H” in the corresponding o-coordinates are con-
stant, given by (6.6.4b,c). The components of H* in the x;-coordinates, there-
fore, are functions of the orientation angles 0, and Y.

Since the distribution of microcracks is prescribed (i.e., a crack density
function w(a,0, ) is given), to obtain the H-tensor, integrate the H*-tensor over
all possible radii and orientations, using the corresponding crack density func-
tion:

H=-L ["[7 "3 By, ) wa, 0, ) siny da do d (6.6.52)
A Ja Jo Jo ’ 4 v V- o

In particular, when the crack size distribution is independent of the crack orien-
tation, from (6.6.2b) and (6.6.4¢), H becomes

aM A
H= {J‘a a® wi(a) da} Hi},

x{ 7= J-an- e e eef o Wy(0, ) siny do dy},  (6.6.5b)

where the base vectors e are functions of 0 and y, defined by (6.6.3a~1).

Next, consider the case when the macrostrain E = €° is prescribed. For a
typical microcrack € of radius a, and orientation (0q, Vo), define a tensor J*
by (6.4.7a), which is related to the tensor H* through

Je=H*:C, (6.6.6a)

where the components of J* in the x;-coordinates are functions of 0, and Y, In
the corresponding 0-coordinates, however, these components (denoted by J{j)
are,

jo.. = 16(1=v)? jou. = 16v(1—V)
3333 3(1 _2V) > 33ii ~ 3(1 _2V)

jiai:; = jg,oiti:; = 31%31 = jg,oit:;i = '&l%l (l = 1, 2,1 not Summed), (666b~d)
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with other components being zero; see (6.5.9a) and (6.5.9b). Similarly to I:Iij-"kl,
the components Jif, are independent of crack size. In a manner similar to
(6.6.5a), the tensor J is given by

Ay o2 .
= ﬁ I O [ a3 39y, ©) w(a, 0, y) siny dadO dy = H:C.  (6.6.7a)

In particular, when the crack size distribution is independent of the crack orien-
tation, from (6.6.2b) and (6.6.6b~d), J becomes

1= ([ wila) da} g
a r ijkl

2 .
X {?11{ J : ﬂ; efoeloedoe™ wo(0, ¥) siny dO dy},  (6.6.7b)

where, again, e and w, are functions of 8 and . It should be noted that, unlike
H% and H, J* and J may not be symmetric with respect to the first and last pair
of their indices, i.e., J # J;. However, the tensors C:J* and C:J, which
determine the overall elasticity tensor C, have this symmetry; see Subsections
6.3.2 and 6.5.2.

6.6.2. Effective Moduli: Random Dilute Distribution of Microcracks

Consider a simple case where: (1) the distribution of microcracks is
dilute; (2) the crack orientation distribution is random; and (3) the crack size
distribution is independent of the crack orientation; Figure 6.6.3. Then, the
crack orientation distribution function, wo(0, V), given by (6.6.2b), becomes

wo(0, ) = constant = 1. (6.6.8)

Figure 6.6.3

A random dilute distribu-
tion of microcracks

Xi
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Furthermore, the H- and J-tensors, respectively defined by (6.6.5b) and (6.6.7b),
become

~ 2.
H= 0% (4 [, [ %0, w)ee[®, w)aex(©, v)oef®, y) siny b dy),

~ 2
3 =35 (= [ [; e7®. Weef®, w)eel(®, weer®, y) siny o dy),
(6.6.9a,b)

where f is the crack density parameter, defined by
aM
f= L a3 w(a) da, (6.6.10a)
and the dependence of the base vectors € on 0 and V is explicitly indicated. It

should be noted that due to the dilute distribution of microcracks, f<< 1. In par-
ticular, when the crack size distribution is uniform, from (6.6.2c), w.(a) becomes

N
w(a) = constant = ay—an (6.6.10b)
The crack density parameter f then is
__ N Moy N 3.2 2443
f= oo [, @t da= 7 (ad+adian +amad+ad). (6.6.10¢)
When all microcracks in the RVE have the same radius a, f becomes
f=Nas (6.6.10d)

Due to the assumption of a random distribution of cracks, the overall
response of the RVE is isotropic. Hence, H and J may be expressed as

H=h19g1®+h, 149,  J=j; 1Pel1® +j, 149, (6.6.11a,b)

where (hy, hy) and (ji, j2) are unknown functions of the crack density parameter
f. Therefore, the resulting overall elasticity and compliance tensors, C and D,
are isotropic and can be expressed as

C=_ VE 04104+ _E_ qu
C=aema-my e 15 1'%
D= ___1\;— 1(2)®1(2)+L%Z 16s), (6.6.11c,d)

where the overall Young modulus, E, and Poisson ratio, v, depend on the crack
density parameter f, as well as on the moduli of the isotropic matrix material.

First, H is obtained and the overall elastic moduli of the RVE are
estimated, when the macrostress X is prescribed. Using the rotation tensor Q%
defined by (6.4.2a) or (6.6.3a~1), express the components Hji of H in the x;-
coordinates in terms of Hly. Then use suitable summations of Hjju to obtain
(6.6.11a), given below; see also Subsection 6.4.1. Since
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(1(2)®1(2))::(ei°‘®ej°‘®e1?‘®e1°‘) = Sij 81(1,

1(45)::(ei°‘®ej°‘®e1?®e1°‘) = %(Sik 8j| + 811 Sjk), (66 12a,b)
and

(1221®):(1Pe1?) = §;§;; =9,

(1P1@)::149) = 149)::(1P 1) = §; §; = 3,

169169 = 18,8+ 8, 8y) = 6, (6.6.12c~¢)

where :: denotes fourth-order contraction, it follows that fourth-order contrac-
tions of H, (6.6.9a) and (6.6.11a), yield

H:(1281?) = fAY; = fA%:; = 9hy +3hy,
H:149 = f %(Hiﬁj +Hg) = £ (Ahys + 2H 3+ 2Ff03)

= 3h; + 6h,. (6.6.13a,b)

Substitution from (6.6.4b,c) for components § ijki» now leads to the following set
of equations for unknowns h; and hy:

_ ¢ 16(1-v?)
9h1+3h2—f————3E )

_eod6(1-v)) | 32(1-v?)
3h; 4+ 6hy = f{ 3E + 3EG V) }. (6.6.13¢.d)
Hence,
= Ml——\ﬂl _1_ — 32(1 -v)(5-v l
i f 452-v) E° hy =£ 452 =) S (6.6.13e.1)
In matrix form, H is
10-3v -V -V 0 0 0
-v 10-3v -v 0 0 0
_ e 16(1 —V? -V -v 10-3v 0 0 0
0 0 0 0 45-v) 0
(6.6.13g)

From (4.3.6) and (6.6.11d), the overall Young modulus, E, and Poisson ratio, v,
are

B _ 16(1=v3)(10=3v) 11 _ 1 _ ¢ 16(1=v3)(10=3v)
g - U mm ey T = gty H O,
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Vo erded- } (145160 =Y 2)(10 3V) y-1

45(2 -V)
16(1 -v)(3-v) 2
—f ——————15(2 ) + O(f?), (6.6.14a,b)
and the overall shear modulus, [t = E/2(1 +V), becomes
}L 2g1—v)(5 V) 32(1 - vggS V)
m {1+f 250 —f 450 - +0(f2). (6.6.14¢)

Next, J is obtained and the overall elastic moduli of the RVE are
estimated when the macrostrain E is prescribed. In view of

(10g12): (12g1@) = 31Dg1®),
(1Dg1?): 149 = 169 : (1D g1?) = 1D g1,

1¢5); 1(4s) = 1), (6.6.15a~c)

obtain

oo [ 160=V)) 10 102 1S
H:C {f45(2 )E{ vi®g1@ +2(5-v)1 }}

. _E v 21 4 14s)
{ Toy (Togy 1Pe1@+1®}

_16(1-v) (3V3-V) 121 -
=ty Fiogy 17e17+26 -1, (6.6.15d)

or in matrix form

Vo] = £ 160 =V)

452 -v)
10— 13v+v2 3v(3-v) 3v(3-v)
1-2v 1-2v 1-2v 0 0 0
3v(3-v) 10-13v+vZ  3v3-v) 0 0 0
1-2v 1-2v 1-2v
3v(3-v) 3v(3-v) 10— 13v +Vv2 0 0 0
1-2v 1-2v 1-2v
0 0 0 2(5-v) 0 0
0 0 0 0 25-v) 0
0 0 0 0 0  2(5-v)
(6.6.15e)

Then, it follows that

Y= 16(1 —-Vv)E v(19 — 16v +V2) ) 1?2 _ (4s)
CI=fgsrivigoy  aoar  12e1?+2(65-v16).
(6.6.151)
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Therefore, the overall elastic parameters, E, v, and [1, are,

E _ 1-£320-WG=V) 1y _¢160=v) 52+3v-v) ,

E 152 -V) 52-v) (1+v)(1=2v)

_£32(1-v) 5-2v+8vZ-3v3
* =T 52— 1-2v }

_ 1 _¢ 16(1 -v»)(10-3v)
=1-f 50 -v) +0(f2),

Vo (1-£ 160 -v)A9-16v+v?) |
v 452 -v)(1-2v)

_£32(0-v) 5-2v+8vZ-3v3 .
* =T 452 =) 1-2v }

_1_¢l6(d-vH(3-V) )
1-f gy + 0,

M _¢32(0-v)(5-V) _
m 1-f 5o-v) (6.6.16a~c)
These overall elastic moduli, E, v, and W, agree with those given by (6.6.14a~c),
up to the first order in the crack density parameter f.

6.6.3. Effective Moduli: Self-Consistent Estimates

Suppose that the interaction effects are to be included to a certain extent.
Assume that the crack orientation and size distribution are random, with size
distribution being independent of orientation. Then, the RVE is isotropic. The
self-consistent scheme may be applied to estimate the overall elastic moduli, as
follows.

As discussed in Subsections 5.1.3 and 6.4.2, in the self-consistent method,
a typical microcrack €, is embedded in a homogeneous isotropic elastic solid
which has the yet-unknown overall moduli, say, Young’s modulus, E, and
Poisson’s ratio, v. Then, the H*- and J*-tensors defined by (6.6.4) and (6.6.6),
are replaced by H* and J%, by substituting E and v for E and v. H® or J* is then
integrated over all possible crack sizes and orientations, to arrive at

H=-L (" a3 HXv, 0) w(a, 6, ) siny da do
_Ejamjo foa (v, 6) w(a, 6, y) siny da do dy,

T= L [ [ [F 2 oy, 0) wia, 0, ) siny da do d 6.6
_ﬁjamjo foa (y, 0) w(a, 6, y) siny da . (6.6.17a,b)

__ According to the self-consistent method, J*=H®:C, and hence J =
H:C. This relation between H and J leads to the equivalence of the overall
elasticity and compliance tensors, C and D; Subsections 5.1.3 and 6.4.2. Hence,
it suffices to consider the overall compliance tensor D, in order to obtain the
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overall elastic moduli, E and v. Since the crack orientation distribution is ran-
dom and the crack size distribution is independent of the orientation, H is given
by (see (6.6.9a) and (6.6.11a))

TR N N L o, 0, 0, ;
- ijkl 1 9 gl s s s s
H = Hju {37 IO IO eX(0, ¥) @e(0, ¥) eeX(0, W) oe™0, y) siny db dy}

=h1@g1@ +h,1¢s), (6.6.17¢)

where, from (6.6.13e.1), Hl and Hz are determined by replacing (E, v) by (E, V).
Then, H becomes

He_flVU-V) 1 10y 9@ 45320=V)(E-V) 1 ;uy
H f 45(2-V) El el +f 452 -V) El . (6.6.18a)

Since the overall compliance tensor D is equal to D+H, from the
coefficients of 121 and 1¥9), obtain the following set of equations for E and
v

Vs 16V(1 —V?)

v
E E  452-V)E’

14V _ 14V 320 -V V) (6.6.18b.c)
E E 452-Vv)E
From (6.6.18b,¢), a non-linear equation for v results
V _ ¢ 16(1-v3)(10-3V) _e16(1-v%
v ={1-f 4503 -v) y{1-f 452 -9) 1, (6.6.18d)
or
f=—_ HBO-VIC-V) (6.6.18¢)

T 16(1 - vA[10v —v(1 +3V)]°

Then, in terms of v, the overall Young modulus, E, and the overall shear
modulus, [, are given by

E _ | 5 16(1=v)(10 - 3V)

E Be-v)
B - (g 160-10-39) ) 1+v
m 352 -V) T+v

- 1—f%¥5v—;—vl. (6.6.18f,g)

These results agree with those first obtained by Budiansky and O’Connell
(1976) using a different method. Since the leading term in the expansion of V/v
with respect to f is 1, it follows that

E __;16(1=v)(10-3v)

E- T gy tO)
V __e16(0=vH(3-V)

Y = 1 LUVIBN o),
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B p320-96=V) o2 =

m 1-f 1502 - V) +O(f?). (6.6.18h~))
Figure 6.6.4 shows the graphs of the overall moduli, E and v, with respect to the
crack density parameter f; the self-consistent estimates, (6.6.18), and the esti-
mates obtained from a dilute distribution, (6.6.14) and (6.6.16), are displayed.
Here, for completeness, the overall modulus, K, is also reported,

K _ ¢ 16(1-%?)
K =1-f51—2v (6.6.18k)

This follows from the definition of the bulk modulus and (6.6.18f,g).

08 .f3ii:j~--...?P:Z 08 . DDXE
061 0.6]-
w/u DD:E SC E/E s
04l 04k C
02k 02, |PPE
0 | ] 1 1 0 1 i i ]
0 01 02 03 04 05 0 01 02 03 04 05
1 1
0.81 08 \DDZ
06k \ \. 0.6}
R/K .. DDX Vv . 8C
041 041 DD:E -
02+ \DD:E - sc 02r :
0 I 1 I L 0 i 1 i
0 01 02 03 04 05 0 01 02 03 04 05
f f

CRACK DENSITY PARAMETER

Figure 6.6.4

Normalized overall shear, i/, Young’s, ]_E/E, and bulk, K/K, moduli, and
Poisson’s ratio, v/v, for random dilute distribution of penny-shaped micro-
cracks; v=1/3

SC = self-consistent

DD:X = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed
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The procedure outlined in this subsection may be used to estimate the
overall moduli of an elastic solid containing randomly distributed open elliptical
microcracks. Problems of this kind have been considered by Budiansky and
O’Connell (1976), following a different procedure. These authors show that, for
elliptical microcracks of a common aspect ratio, b/a = constant, the self-
consistent model leads to the following overall moduli:

B_g_¢32_ 3 T(ba, v
B = 1-£ 3201 -v)(1+ 5T, V),

% = 1—f-}4-§—(1 ~ V{3 +T(bla, V)}, (6.6.19a,b)

where V is the solution of the nonlinear equation,
_ 45(v —V)

f= 6 =201+ 3v)— (1 — W) T(7a, 9)] (6.6.19¢)
and T is defined by

T(b/la, V) = kKZF(k) {R(k, V) + Q(k, V)}, k = (1 +b%a?)12,

R(k, V) = {(K2-V) F(k) + V(b/a)2E(k)} !,

Q(k, v) = { (k% —V(b/a)?) F(k) — v(b/a)2E(k)} !, (6.6.19d~g)

where F(k) and E(k) denote the complete elliptic integrals of the first and second
kind. The crack density parameter, f, for this problem is defined by

f= T < P >, (6.6.1%h)
where A = mab is the area and P = 4nF(k) is the perimeter of the elliptical crack.
Budiansky and O’Connell conclude that the variation of the effective moduli
with the crack density parameter f defined by (6.6.1%h), is insensitive to the
values of the aspect ratio b/a, and indeed, with this definition of f, these moduli
may be represented to within a few percent by Equations (6.6.18f,g.k). In view
of this conclusion, one may consider equivalent penny-shaped cracks of an
effective radius a, obtained by equating the expression for f given by (6.6.19h)
to the corresponding expression for penny-shaped cracks of a common radius a.
This leads to

=~ _ ¢ mab% ;3 i
Thus, the dependence of the results on the aspect ratio b/a for all cracks may be
relaxed, as long as the elliptic crack orientations remain random and uncorre-
lated with their size and aspect ratios. This issue has been further examined by
Laws and Brockenbrough (1987) who show that knowledge of the aspect ratio
b/a is essential for defining correct families of equivalent penny-shaped cracks,
by illustrating that the radius of the equivalent penny-shaped crack is sensitive
to the aspect ratio, as is also evident from the Budiansky and O’Connell result
(6.6.19i).
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6.7. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING
PENNY-SHAPED MICROCRACKS PARALLEL TO AN AXIS

In the preceding subsections, cases were considered where the overall
response of the RVE satisfies some symmetry conditions due to a particular dis-
tribution of microcracks. In Subsection 6.5.2, microcracks parallel to the x,X»-
plane render the overall compliance and elasticity tensors transversely isotropic,
while in Subsections 6.6.2 and 6.6.3, the random distribution of microcracks
makes the overall response isotropic. In this subsection, another particular dis-
tribution of microcracks is considered, which renders the the overall response of
the RVE transversely isotropic. Suppose that all microcracks are parallel to the
X3-axis with their unit normals which lie in the X;,x,-plane, having a random dis-
tribution; see Figure 6.7.1. Then, due to the symmetry in the x;,X;-plane, the
overall elastic response of the RVE is transversely isotropic, with the x3-axis
being the axis of symmetry. The transverse isotropy induced by randomly dis-
tributed microcracks parallel to the x3-axis, and the transverse isotropy induced
by microcracks parallel to the x;,Xp-plane (or perpendicular to the x3-axis), are
compared later in this subsection.

As in Subsection 6.5.2, the distribution of the microcracks is assumed to
be dilute, and the distribution of the crack sizes is also assumed to be indepen-
dent of that of their orientations. Then, since the unit normals of the micro-
cracks are uniformly distributed in the x;,x;-plane, the crack orientation distri-
bution function wy(6, ) is independent of 8. It is given by

X),X2 — plane

X1

Figure 6.7.1

Microcracks parallel to the x3-axis
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wo(6, ) = 2 8y~ 5). 6.7.1)

where 0 is the Dirac delta function. From (6.7.1) and (6.6.9a,b), the H- and J-
tensors are obtained,

3 f > T T T T
H =il (5 [ e, T)eef(6, T)eed(0, T)oeX(0, 7)do |,

A 21
3 =3 (5 [ o0, Broes0, T)oetd, Troer®, £)do },
(6.7.2a,b)
where f is the crack density parameter defined by (6.6.102).
From (6.6.3a~i), the components of the coordinate transformation tensor,

Q%(0, 1/2), are

QMO, T)y=—sinB,  Qfi(6, T)=cosh, Q%O T)=0,
2 2

Q6. 5) =0, Qs(0, 5) =0, Q%6, ) =1, (6732~

Q4(0, L) = cose, Q%0, Ty=sin6,  QK®, T)=0.
2 2 2

Since e = Qf*e;, the integrands in (6.7.2a,b) are expressed in terms of 0, and
the components of H and J in the x;-coordinates are obtained.

On the other hand, if advantage is taken of transverse isotropy, H can be
obtained without having to integrate (6.7.2a). Since the x3-axis is the axis of
symmetry, the components of H in the x;-coordinates (denoted by Hj;q) can be
expressed in terms of five unknown parameters, say, h; (i=1, 2, ..., 5), which
depend on the crack density parameter f and the matrix elastic moduli E and v,
as

Hyjin=Hom =h;,  Hiup=hs, Hijzz3 =Hss =h;,

His3zs = hs,  Hjzi3 = Hazoz = hs, (6.7 4a~¢)
and also
Hyzz = %(Hun —Hy») = %(hl ~h) (6.7.4f)

and Hjjg = Hjig = Hyjix = Hjik, with other components being zero; see (3.1.13).
From (6.6.12a,b), it follows that
Hiji = fHS,  Hy; = (A (6.7.52,b)
Since (0, /2).e3=1fori=2and Ofori=1or3,

H::(e;oe;0e30e3) = Hijzz = fH,,

H::(e;0e;30€e;0e3) = Hiziz = ffl&iz,
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H::(escesce; ®e3) = Hyzyy = fﬁ%zz. (6.7.50~e)

Now, substitute (6.7.4a~f) and (6.6.4b,c) into Hjjy and ﬁij-’id, respectively, to
obtain a set of equations for the unknowns h; (i =1, 2, ..., 5), as follows:

g 160 - v?)

2h;+2h, +4hy+hy = 3E

_ 2
3hy —hy +hy + 4hs = £ 100 —VIE V)

3EQ-v)
_¢ 81-v?)
h4+2h5—f3E(2_V)’
2h;+hs=0, hy=0. (6.7.5£~j)
Hence,
h = 20=v)B8-3v) 1 hy= —f 2=V v 1
= 32-V) E’ 32-v) E°’
_ _ _¢d(-vH 1 _
h;=0, hy=0, hs= f3(2 v E (6.7.5k~0)

When the RVE is subjected to uniaxial tractions in the x3-direction, i.e.,
when only the macrostress component X33 is nonzero, the open microcracks
parallel to the xs-axis do not contribute to the overall strains. This physical
observation implies that Hy33 =0 for i = 1, 2, 3, and hence both h; and hy are
zero; see (6.7.5m,n). From (4.3.6), the overall compliance tensor D is
D =D +H which leads to the following overall transversely isotropic elastic
moduli for the solid with microcracks:

E _ 21 -vH(8-3v) \_1 _ f2(1-v3)(8-3v)

B _{1+f—3(2—v) =1 —————3( ) +0(f%),
v _ 2(1-v? 2(1-vH)(8-3v)

v_{1+f 32— )}{1+f 32-v)

_ 2(1 —v3)(7-3v)
=1- —3(2—)— +0O(f?),

n_ 40-v)4-V) 1 _{_¢40-V)4-V) >
{1+f73(2—v) } 1 f—3(2—v) +O(f?),
(6.7.6a~c)
where E, V, and [1 are the overall Young modulus, Poisson ratio, and shear
modulus in the x1,x;-plane; and

E; vy

E L 5=L

H3 _ 8(1-v) f8(1-v) -
o —{1+f3(2 v)} I= 3(2 V) + O(f?), (6.7.6d~1)

where V3 = Vi3 = V3 and 13 = i3 = Hos; see (3.1.13).
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Next, consider the J-tensor. As shown in Subsections 6.3.2 and 6.5.2,
even though both H and C are transversely isotropic, J, given by H : C, may not
be transversely isotropic. However, the tensor C:J = C:H:C is transversely
isotropic, and the components of C:J satisfy relations similar to (6.7.4a~f).
Hence calculation of C : J follows the steps (6.7.5a~0) outlined for H.

In this subsection, however, J is computed by direct matrix calculation.
Using the same notation as (6.5.5b) and (6.5.7a), denote the matrices of H and J
by

HE1 [0] P11 (0]
[Hab]=[ (0 [HZS%)]}’ T :[ (0] [Jé%’]}’ (©7:70)
where [H Y] and [HJ ] are
'8—3v —-v 0
o 2(0=vH) |7 _
HP]1=f 30 —VIE OV 8 03v 8]
20 0
D7 = 8(1—V2)
(H1=1 55—k 8(2)49\’} (6.7.7¢,d)

FromJ=H:C,
UO1=HPICL]

21— V) 2v2-11v+8 —2vZ+7v  —4vZ+8v
=f— =" ¥ | _2vZ4T7v 2vZ—11v+8 —4vZ+8v|,
A1 20 0
U@1=HPNCR1=£t21=V) 192 ¢ |. (6.7.8a,b)
32=V) 100 4-v

Although [J] is not symmetric, [C{ ][J{] is symmetric; see (6.3.8¢c) or
(6.5.9¢). Then,

D7 ] = 2(1-v)E
[Ca(b Ws’l=1 31+ w2 -v)(1 —-2\’)2

—4V34+20vZ—19v+8  4v3—-20vZ+15v —4v2 4+ 8v
x 4v3 = 20vZ + 15v —4v34+20vZ—19v+8 —4vZ+8v |,
—4v2 4+ 8v —4v2 +8v —8v3+16v2
20 0
2) )R 2 l—V)E
[CRIIP] f—£73(1+v)(2—v) 8 (2) 49\: (6.7.8¢,d)

Since

(€C:Diai2 = FAC: D= (C: D) = AZWENE - (67.580)

or
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(CHIWR D33 = %{([Ca(ll)) WD = ACH I Dz}

—f 2(1 -v)(4-Vv)E

3(1+v)(2-v) °

tensor C:J is transversely isotropic. From (6.7.8c,d), various components of

the overall elasticity tensor C are obtained. For example, the overall shear
moduli, I._L = l»_i12 and I._L3 = I._L13 = ]._L23, are

H_j_f4d-v4-v) B3 _,_81-v) 6.7.9a.b

m 1-f 30—V m | f3(2—v)' (6.7.9a,b)

The overall shear moduli B given by (6.7.6¢) and (6.7.9a), and Q3 given by
(6.7.6f) and (6.7.9b), agree up to the first order in the crack density parameter f;
see Figure 6.7.2.

(6.7.86)

Now, consider the transverse isotropies associated with two different ran-
dom distributions of microcracks, one with all cracks perpendicular to the x3-
axis and the other with cracks parallel to this axis. The overall transversely iso-
tropic elastic moduli for the first case are given by (6.7.6a~f) and (6.7.9a,b), and
those for the microcracks parallel to the xs-axis, are given by (6.5.6a~f) and
(6.5.10a,b). From comparison of the moduli, E; E, K, and 3, for the two cases,
it is concluded that: (1) under uniaxial tension in the x3-axis, the RVE contain-
ing microcracks parallel to the x3-axis is stiffer than the one containing micro-
cracks perpendicular to this axis (this is obvious on physical grounds); (2) under
biaxial loading in the x;,x;-plane, the RVE containing microcracks parallel to
the x3-axis is less stiff than the one containing microcracks perpendicular to this

DD:X
0.8} , 08| I
N ' DD:E
06 L 0.6}
i/ R Ba/p
04l 04|
02} 02l
0 ! L L 0 1 1 ]
0 01 02 03 04 0 01 02 03 04
f f
CRACK DENSITY PARAMETER
Figure 6.7.2

Comparison of normalized overall shear moduli for penny-shaped microcracks
parallel to the x3-axis; v=1/3

DD:Z = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed
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axis (this is also obvious on physical grounds); and (3) under shear loading in
the X1,Xx3-plane or in the x3,x3-plane, the RVE containing microcracks parallel to
the xj-axis is stiffer, whereas under shear loading in the xi,x;-plane, the RVE
with microcracks perpendicular to the x3-axis is stiffer. The results for micro-
cracks parallel to the x3-axis have been used by Rogers and Nemat-Nasser
(1990) to model damage evolution in magnesia-partially-stablized zirconia
(Mg-PSZ) ceramic samples subjected to uniaxial compressive stress pulses;
similar modeling has been used by Subhash and Nemat-Nasser (1992).

6.8. INTERACTION EFFECTS

When microcracks are closely spaced, their interaction may require a
more effective modeling than that provided by the self-consistent method. The
periodic model presented in Sections 12, 13, and 14 may then be an attractive
alternative. As an intermediate step, one may consider an elastic solid contain-
ing a certain distribution of rows of collinear cracks, as recently proposed by
Deng and Nemat-Nasser (1992) in a two-dimensional setting. The slit crack
arrays in this model are all assumed to be parallel to, say, the x3-axis. In addi-
tion, they may be either all parallel or randomly oriented, resulting in an overall
(two-dimensional, i.e., inplane) orthotropic or isotropic material response,
respectively; three-dimensionally, the response then is orthotropic or trans-
versely isotropic, respectively. The method of dilute distribution, the self-
consistent method, and the differential scheme (see Section 10) are used by
these authors to estimate the overall instantaneous moduli, focusing attention on
two-dimensional problems, either plane strain or plane stress. This is accom-
plished by considering a crack array on the x;-axis, Figure 6.8.1, and using the
corresponding solution for the COD to calculate the required H- and J-tensors.

X2

Figure 6.8.1

A row of equally-spaced equal collinear cracks on the x;-axis
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6.8.1. Crack-Opening-Displacements and Associated Strains

The elasticity problem for a collinear crack array has been addressed by
Irwin (1958), Koiter (1959), England and Green (1963), Sneddon and Srivastav
(1965), and Sneddon and Lowengrub (1969) for isotropic media. Deng and
Nemat-Nasser (1992) use the results of Nemat-Nasser and Hori (1987), and
report closed-form expressions for the crack opening displacements, for a crack
array in a transversely isotropic elastic solid, and also in an orthotropic elastic
solid; see Section 21. They then use these results to estimate the corresponding
overall moduli in plane strain and plane stress cases.

The COD’s for a row of cracks (Figure 6.8.1) in a transversely isotropic
elastic mairix, under uniform farfield stresses o>, are given by

(], ), [us]} = T(xl)%{ (“; D o5, (“: D53, % o5,
(6.8.1a)

where U and Jly3 are the inplane and out-of-plane shear moduli, associated with
the x1,X2- and x»,x3-coordinates, respectively, and

T(x)) = COS(%);—I—)LZi tan(—’%) {COS(%) - COS(—TE(;;)} ~" dE. (6.8.1b)

The strain components due to a single crack in this array of collinear cracks now
are

_or 2kt e (Xk+D) e 4
e%, £5f, €55} =S G2, G21, —— O3}, .8.
{edh, €51, €35} = S{ m 72 m e 23} (6.8.2a)
where
2
S=- # 1ncos(’2‘—§ . (6.8.2b)
Hence, (6.8.2a) becomes
o eo)—_ € | may 2(k+1) o (K+1) oo 4 o
{8?29 8219 823} Tcaz nCOS( 2C ){ u 6229 u 6219 u23 623}
(6.8.2¢)

which yields the following limiting expression:

. 2(k+1) o +1) o o
Jim (e5, efi, efi) = T (Ku Los, Q‘u Los, %623}, (6.8.2d)
in agreement with the results for a single crack in an infinitely extended solid,
given in Subsection 6.3.2.

As is shown in Section 21, the crack opening displacements [ug] (o0 = 1,
2) and the associated strains for a general two-dimensional anisotropic case
(plane strain or plane stress), can be related to the corresponding results for the
transversely isotropic case, as follows (Nemat-Nasser and Hori, 1987; Deng and
Nemat-Nasser, 1992):

{ug] = Py [udse (o not summed), (6.8.3a)
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where

P = { {2D1212+D1122+(D1111D2222)/2}
2D

1

P = 2Dy111

{ 2D2222 {2D1212+ Dij22 + (Dy111D2222) }} s (6.8.3b,c)

here, the components of the compliance tensor are interpreted for plane prob-
lems, as

v} \Z;
Dy = —"Tl E31 Doy = ——Tl E332
v 2\
D122 =Doapy = - E_221 - 3&332 ) (6.8.4a~c)

where 1 = 0 in plane stress and 1) = 1 in plane strain; see Section 3 for notation.
Therefore, for the two-dimensionally anisotropic matrix, the strains associated
with a single crack in a crack array are,

8c
{ed, €55, e} =~ p— 5 1n cos( )

x {2P; D111 633, P1 D111 613, 2D2323 6531, (6.8.5)

and, in view of these, the fourth-order tensor H%,
e*=H* 0" or &f=Hod, G, k1=1,2,3), (6.8.6a,b)

has the following nonzero components:

Hpy = _ 16 5-P2 Dyp11 Incos( a)
a2
Hfiz) = Hff1o = Hft = Hfsjo = +Heb (Diani/ Do} %,
o Y - % — HY . — 8¢? Ta
Hp3 = H3) = Hihos = Hho = — WDBB In COS(Z_C)' (6.8.7a~c)

Since the strain components due to a crack in a row of cracks, depend
only on the ratio, a/c, of the common crack length and spacing, the inelastic
strains due to crack arrays of different crack lengths but identical a/c-ratio, are
the same. For a parallel distribution of crack arrays, the overall strain due to a
large number of crack arrays with the same a/c-ratio, therefore, depends only on
the number of cracks measured per unit area, normal to the xs-direction. Thus,
for an estimate of the overall inelastic strains, an average crack length, 2a, and
an average crack spacing, 2c, may be used in order to obtain an effective {crack
length} / {crack spacing} = a/c, and then (6.8.2a) may be used, for an isotropic
matrix, or (6.8.5) for an orthotropic matrix. For randomly oriented crack arrays,
the overall strain is averaged over all orientations.
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6.8.2. Dilute Distribution of Parallel Crack Arrays

For a dilute distribution of crack arrays, the interaction between any two
arrays may be neglected. For an elastic matrix which contains collinear parallel
rows of crack arrays with the same alc-ratio, the corresponding overall inelastic
strains due to cracks become,

=3 No| L{ulen+neful}dx= 3 Nyajer=fer, (688
o= -a, 2 o=

where N is the number of cracks of length 2a, per unit area. Then, for a three-
dimensionally isotropic matrix, it follows that,

= 16D1|11c G5 Ta = 8Dullc o1 Ta
T c

€5 = Py Incos(5-),  Ef= ———n 3 Incos(5 ),

€53 = f716D2323c 9% I OS(E) (6.8.9a~c)

nal
With €§ = Hjj 01, for plane and anti-plane problems, arrive at

_ 16Dy ,c? Ta
Ha = finaz Incos(5 ).
2D12|202(K+ D

Hizi=Haz=Hazi =Hpia= —f 5
ma

Inco s( )

8D,3,3¢2
Hj33p = Hazo3 = H3p3p = Hpzoz = — fT

Ta ~
In cos( 2 ), (6.8.10a~c)
where, for the isotropic matrix, ¥ = 3 — 4v for plane strain and k= (3 -V)/(1 +V)
for plane stress, and all other components of H are zero. The overall response is
three-dimensionally orthotropic, with E;j= E3= E, v31= V3=V, and H3=
M31 = M; see (3.1.14b).

For the case when the macrostress, £ = 6°, is prescribed, instead of
(6.3.4), (6.3.6), and (6.3.7), which are obtained from a single-crack solution,
now obtain, for crack arrays,

E) _ 16c
E/ - { f

u 2
Mz g _p 20K ED) gy o5 B2 Y)-1
u ma? 2c

In cos( )} L

% = (1-£35 8° 7 Incos(Z2))-1. (6.8.11a~c)
Indeed, for the spemal case of a/c — 0, these results reduce to the corresponding
equations of Subsection 6.3. If the matrix material is anisotropic, for example, it
is orthotropic, and the crack arrays are aligned with one of the principal material
directions, then, instead of (6.8.2a), expression (6.8.5) must be used to obtain
the strains due to the cracks. Note that (6.8.11a) yields
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E
E

for both plane stress (M =0) and plane strain (n = 1). This is identical with
(6.3.4¢) at the limit as a/c — 0.

When the macrostrain, E = €°, is regarded prescribed, the dilute distribu-
tion model with parallel rows of cracks, yields

B _ 4 ConHenCon _ p2c%k+1) In cos( 52,
u u na? 2c

= (1 — T2y 16 Ty
(111 -1v) 125~ Incos(52)) ", (6.8.11d)

i 2
B gy ComHomsCon g 82, ooy (6.8.12a,b)
n n Ta 2c

which also reduce to the results of Subsection 6.3, as a/c — 0. Note again here
that the overall compliance and elasticity tensors are each other’s inverse only to
the first order in f.

Consider now the self-consistent averaging method. For crack arrays
parallel to the x,-axis, the H*-tensor for the self-consistent method is defined by
(6.8.7), except that the relevant components of the compliance tensor in these
equations must be replaced by the corresponding average overall quantities, i.e.,
all relevant Djjq are to be_replaced by Djji. This results in the following
nonzero components for the H-tensor:

2 —

Hyp = fHSy, = —f Léc P2611111n005(%),

a2

Hyppp = fHY), = f%ﬁzzzz {Di111/Daam}”,

= = 8c2Ds3 ma
Hy33 = fH$y; = —f T In cos(2—c). (6.8.13a~c)

Because of the special crack arrangement, however, it follows that

Dy =Dun. Dia =D (6.8.14a,b)
For an isotropic matrix, Dy =Dom = QCSL—I) and D »n = i%l,
leading to
E/

— 158 ma
E; =1 fna2 1ncos(2c)

g -3 ARk
X{ g’z[ (K+8il)ﬁlz * 2§f+1l+2\/E /Ez]} ’

2
i l—fiﬁ'—lzﬁlncos(E
Hi2 na 2c

8” 2(](—3) Sk
X{(K+l)ﬁlz+ 1 +2\/E/E2 s
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a3 _ . ¢ 8c2 Ta -
T 1+lencos( 5 ) (6.8.15a~c)

The first two equations in (6.8.15) are coupled, and hence the corresponding
overall elastic moduli are calculated by iteration. As an illustration, Figure 6.8.2
gives the self-consistent estimate of E,/E and [11,/p in plane stress, for indicated
values of a/c. For comparison, the limiting results for a/c = 0 are also given.

6.8.3. Randomly Oriented Open Slit Crack Arrays Parallel to an Axis

Consider an isotropic elastic matrix containing collinear open slit crack
arrays with random orientations, parallel to the x3-axis, resulting in a trans-
versely isotropic overall response. Based on the procedure outlined in Subsec-
tion 6.4, and in view of the exact correspondence between the H*-tensor for a
single crack, given in Subsection 6.4, and that given in the present section for an
array of collinear cracks, it follows that the overall moduli can be written down
by simple inspection.

Consider first the dilute distribution model with macrostresses regarded
prescribed. With parameter S defined in (6.8.2b), the components of the compli-
ance tensor are readily obtained to be

1 1

0.8 0.8
0.6 0.6
E,/E Hi2/p

04 0.4

0.2 0.2

0 0

0 01 02 03 04 05 0 01 02 03 04 05
f f
CRACK DENSITY PARAMETER

Figure 6.8.2

The self-consistent estimate of the normalized X,-direction Young modulus,
E,/E, and the inplane shear modulus, [t;5/, for random distribution of collinear
frictionless crack arrays, parallel to the x;-axis; v = 1/3, and a/c as indicated
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E = -1

& = (1+85D7,

%: (1+20c+1)SF),

% =(1+4S), (6.8.16a~c)

where E’ and [ are the nominal inplane Young and the inplane shear moduli.
The inplane Young modulus then is

E - (1e8a-nvase, (6.8.16d)

where N = O for plane stress and 1 = 1 for plane strain.

Next consider the self-consistent method. The components of the H-
tensor then are,

Hi = Hpy = AKE—HZSf,
Hyz12 = Hypz) = Higy = Hoyppo = % Ha,

ITI!S]S = i:13131 = I—:—13113 = ITIlSSl = ITI2323 = I713232 = I—:—13223 = I712332 = 3—253 f,

(6.8.17a~c)

where K = (3 —V)/(1 +V) for plane stress and K = 3 — 8{L(V/E + V¥E) for plane
strain; here, v is the inplane overall Poisson ratio. Thus, the relevant com-
ponents of the overall transversely isotropic compliance tensor are estimated by
the self-consistent method to be,

E _,_
?—1 8SH,

J}=§<§—8v5f)<1—85f)—',

% = 1-4Sf, (6.8.18a~c)

where & = 1 for plane strain and & = 1 +V for plane stress. From the first rela-
tion, the effective inplane Young modulus is given by

% = (1-8S)(1 - 8qv2S )1, (6.8.18d)

where 1 = O for plane stress and 1 = 1 for plane strain, respectively. For plane
stress, E/E and p/p are plotted in Figure 6.8.3, showing the influence of a/c on
these moduli.
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0 01 02 03 04 05 0 01 02 03 04 05
f f

CRACK DENSITY PARAMETER

Figure 6.8.3

The self-consistent estimate of the normalized inplane Young modulus, E/E,
and the shear modulus, p/u, for collinear frictionless crack arrays with ran-
domly distributed orientation of the arrays; v = 1/3, and a/c as indicated

6.9. BRITTLE FAILURE IN COMPRESSION

The material developed in this section can be used to study failure of brit-
tle solids with microdefects. Tensile cracking is a common mode of failure of
many brittle materials. Even under all-around compressive loads, brittle materi-
als tend to fail by the formation of tensile microcracks at microdefects such as
cavities, grain boundaries, inclusions, and other inhomogeneities; see Figure
1.1.1 of Section 1, which represents vivid examples of compression-induced
axial tensile cracks, and a recent review of the micromechanics of rock failure
by Myer et al. (1992). As the overall confining pressure is increased, plastic
flow may accompany microcracking, and eventually may become the dominant
mechanism of the overall deformation. Hence, under great confining pressure,
brittle materials such as rocks and ceramics may undergo plastic flow before
rupture. In this subsection, some aspects of brittle failure in compression are
briefly discussed; tensile failure of microflawed solids is discussed by Karihaloo
and Huang (1991).

6.9.1. Introductory Comments

Failure of materials by formation and growth of tension cracks under ten-
sile loading is extensively studied and to a large extent understood. Failure
under overall compression, on the other hand, has received considerably less
attention. Historically, experimental investigation of compressive failure of
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materials such as rocks has led to paradoxes. Bridgman (1931) demonstrates
several failure modes peculiar to high pressures, leading to paradoxical results
which impel him to express skepticism on whether there is such a thing as a
genuine rupture criterion. The common feature of these paradoxes is that failure
always occurs by the formation of tension cracks in specimens subjected to pure
compression. Efforts to observe through electron microscopy the fracture pat-
tern in failed specimens have raised further questions, since microcracks have
been seen to have emanated from a variety of defects in various directions,
although predominantly in the direction of maximum compression. These and
related difficulties have led several authors to criticize micromechanical models
that have been suggested for explaining brittle failure under compressive loads.

Over the past decade, several developments have helped to bring the issue
of brittle failure in compression to a somewhat satisfactory level of basic under-
standing. The unexplained Bridgman paradoxes have been resolved (Scholz et
al., 1986), models which satisfactorily and quantitatively explain axial splitting,
faulting, and transition from brittle to ductile medes of failure have been
developed, and, most importantly, the mechanisms of fracturing in loading and
unloading have been captured experimentally and by means of laboratory
models. These have given credence to the simple but effective micromechanical
modeling of brittle failure on the basis of preexisting flaws with frictional and
cohesive resistance. Such a model, though an idealization of a rather complex
process, seems to capture the observed phenomenon of axial splitting in the
absence of confinement, as well as the related phenomena of exfoliation or sheet
fracture, and rockburst; Holzhausen (1978), Nemat-Nasser and Horii (1982),
and Ashby and Hallam (1986). In the presence of moderate confining pressures,
furthermore, faulting by the interaction of preexisting microflaws has also been
modeled, by considering the interactive growth of tension cracks from an
echelon of suitably oriented microflaws; Horii and Nemat-Nasser (1985a).
Failure by faulting through intensive cracking in the presence of confining pres-
sure has been observed experimentally by, e.g., Hallbauer et al. (1973), Olsson
(1974), and Kranz (1983); see also Myer et al. (1992). Furthermore, by includ-
ing, in addition to tension cracks, possible zones of plastically deformed materi-
als at high shear-stress regions around preexisting flaws, the transition from
brittle-type failure to ductile flow under very high confining pressures has been
modeled; Horii and Nemat-Nasser (1986). A series of accompanying experi-
mental model studies lends qualitative support to these analytical results. In par-
ticular, the influence of confining pressure on the mode of failure of brittle
materials seems to have been understood and modeled under quasi-static loads.

During unloading, however, microcracks may grow essentially normal to
the direction of the applied compression. Indeed, even extremely ductile crystal-
line solids such as single-crystal copper (an fcc metal), and mild steel and pure
iron (bcc metals) can undergo tensile cracking normal to the direction of
compression, possibly during the unloading phase, under suitable conditions; see
Nemat-Nasser and Chang (1990). In these experiments, the sample experiences
only compressive loading and unloading. Nevertheless, tension cracks are
developed, basically normal to the applied compression; see Nemat-Nasser and
Hori (1987) for a model prediction of this phenomenon.
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6.9.2. Bridgman Paradoxes

Bridgman performed a number of experiments on failure in compression
which led to several paradoxes. In each case, a sample of essentially brittle
material is subjected to high fluid pressures; see Figures 6.9.la~e. Two of
Bridgman’s paradoxes, one called the pinching-off effect and the other the ring
paradox, have been shown to be basically due to hydraulic fracturing; see Jaeger
and Cook (1963) and Scholz et al. (1986).

(a) )]

GLASS GLASS

STEEL RTV
© ) SEALANT

(e)

Figure 6.9.1

(a) Bridgman’s pinching-off experiment; (b) Failure caused by hydraulic frac-
turing; (c) Bridgman’s ring paradox; (d) Axial crack due to hydraulic fractur-
ing; (e) Bridgman’s second ring paradox

In the pinching-off experiment, a long cylindrical sample of circular cross
section is placed in a chamber with the two ends of the rod extending out of the
chamber, as shown in Figure 6.9.1a. The chamber contains pressurized fluid. At
a certain pressure on the order of, but greater than the tensile strength of the
sample, the sample fractures with a crack normal to its axis, somewhere close to
its mid-length, and is explosively discharged from the chamber. Jaeger and
Cook (1963) repeat the test and obtain similar results. They reason that the
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pressurized fluid penetrating into preexisting flaws can drive a crack in a direc-
tion normal to the axis of the cylinder, as sketched in Figure 6.9.1b. Since the
stress intensity factor at the tip of such a crack increases essentially as the
square root of the crack length, once the crack begins to grow, the growth
accelerates with increasing crack length, leading to explosive dynamic failure.

The ring paradox which also is repeated and solved by Jaeger and Cook
(1963), again involves hydraulic fracturing. The experiment consists of a thin
cylindrical tube of a brittle material (Bridgman used hard rubber), tightly fitted
over a solid steel cylinder (Figure 6.9.1c), and totally immersed in a fluid bath
and pressurized; note that the entire package, i.e., the tube and the steel cylinder,
is under hydrostatic fluid pressure. The tube fractures by a single axial crack
which apparently starts from its interior surface and grows radially toward its
exterior surface; see Figure 6.9.1d. Here again, hydraulic fracturing occurs from
an axial flaw at the interior surface of the tube, since the hoop stress Gy is the
smallest compressive principal stress in the tube. Failure occurs at a pressure on
the order of the tensile strength of the tube. Bridgman repeats the same experi-
ment, except that the ends of the tube are sealed, as sketched in Figure 6.9.1e,
before submerging it in the fluid which is then pressurized. Again, an axial
crack develops, this time presumably from the exterior surface inward.

Bridgman repeats the pinching-off experiment of Figure 6.9.1a, but this
time encloses the cylindrical sample in a rubber jacket, as sketched in Figure
6.9.2a. The failure mode is quite different from the unjacketed sample, occur-
ring at pressures close to the compressive (rather than the tensile) strength of the
sample. Failure occurs by stable growth of a number of tensile cracks normal to
the axis of the cylinder, breaking the sample into several disks. Jaeger and Cook
(1963) repeat the test, arriving at similar results.

RUBBER
JACKET

RUBBER
JACKET

(a) b)

Figure 6.9.2

(a) Bridgman’s pinching-off experiment with scaled sample (failure by axial splitting);
(b) Bridgman’s third ring experiment
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Related to this paradox is another version of the ring paradox. Both of
these paradoxes have been more elusive and indeed, touch on some rather subtle
aspects of brittle failure of brittle materials under all-around compressive loads.
In the third ring experiment, Bridgman jackets the sealed tube/steel construction
of Figure 6.9.1e (as shown in Figure 6.9.2b), before submerging it in a fluid bath
which is then pressurized. It is observed that axial tension cracks develop from
the interior surface of the tube in the radial direction, growing axially,
apparently in a stable manner, and never reaching the exterior surface of the
tube.

All three ring experiments have been recently repeated by Scholz et al.
(1986), using pyrex glass tubes which fit a steel rod with a tolerance better than
3um, with a tube thickness exceeding mm size, and length and radius on the
order of cm. By direct measurement, through strain gauges placed on the glass
tube and by simple calculation, it is established that all three principal stresses
everywhere within the glass tube are compressive. Nevertheless, 2 to 6 axial
tension cracks are seen to form from the interior surface, growing radially and
axially, without reaching the exterior surface of the glass tube. This paradox has
been (quantitatively) explained by Scholz et al. (1986) in terms of model calcu-
lations of Nemat-Nasser and Horii (1982); see Figure 6.9.3. A similar explana-
tion applies to the disking phenomenon of the jacketed cylindrical rod of Figure
6.9.2a.

C11

Figure 6.9.3

The sliding crack model of

Brace and Bombolakis (1963)

as analyzed by Nemat- Nasser and
Horii (1982): preexisting flaw PP’
and curved tension cracks PQ and
P’Q’ under biaxial compression

O

Scholz et al. (1986) consider a preexisting flaw with suitable inclination
and estimate the required flaw size which, in the case of the jacketed ring exper-
iment of Figure 6.9.2b, can produce tension cracks under the prevailing
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compressive stress state, using the sliding crack model (Figure 6.9.3), initially
proposed by Brace and Bombolakis (1963), and later quantified analytically, as
well as confirmed experimentally, by Nemat-Nasser and Horii (1982); see also
Steif (1984), Ashby and Hallam (1986), Myer et al. (1992), and Yoshida and
Horii (1992).

Calculations based on the Nemat-Nasser and Horii (1982) theory show
that a preexisting flaw size of 10um is sufficient to produce such axial tension
cracks. SEM observations show that axial cracks emanate from preexisting
flaws of about 20um, and that the axial cracks consist of several individual
cracks which seem to have been initiated from different preexisting flaws.

Figure 6.9.4

Scanning electron photomicrographs of axial crack observed in the jacketed
ring (from Scholz et al., 1986)

Figure 6.9.4 shows the scanning electron photomicrographs of an axial
crack observed in the jacketed construction of Figure 6.9.2b, at successively
greater magnification, A, B, C, and D. The sample has been subjected to several
loading cycles. The corresponding crack front position can be seen in these
photographs. The pictures are taken perpendicular to the fracture plane, with
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the inside surface of the pyrex ring appearing at the bottom of each photograph.
The crack appears to have been initiated from a flaw of rather complex
geometry through an abrupt kink, and then extended axially. The light vertical
lines in photographs A and B mark the arrest lines in successive pressurizations.

This is perhaps one of the most conclusive laboratory experiments which
not only resolves the Bridgman paradox, but also shows the role of preexisting
flaws in generating tensile cracks under all-around compression in brittle solids.
The fact that flaws in the pyrex glass in this experiment are few and far apart,
precludes their interaction, leading to axial cracking. In a rock, ceramic, or
similar specimen, there are numerous preexisting microflaws such as pores,
grain boundaries, preexisting cracks, and inclusions, each of which can be and
often is a source of producing local tensile stresses, even though the applied
loads may all be compressive. Note that although the sliding-crack model seems
to represent and capture the involved rather complex process of failure, it has
not often been experimentally observed to be the major micromechanism of
generating tensile cracks under all-around compressive loads; see Myer et al.
(1992).

6.9.3. A New Look at Microcracking in Compression

The fact that axial splitting under uniaxial compression is caused essen-
tially by nucleation at various flaws of tension cracks which grow essentially in
the direction of compression, has been demonstrated in a recent series of experi-

ments by Zheng et al. (1988)". In these experiments the microstructure of the
compressed sample is preserved by impregnating the specimen with molten
Wood’s metal which solidifies prior to the removal of the compressive loads.
The sample is then sectioned and studied. Figure 6.9.5a is a photomicrograph of
an axial section of a uniaxially compressed sample of Indiana limestone, show-
ing a preponderance of nearly axial cracks, filled with Wood’s metal (white).
Figure 6.9.5b is a photomicrograph of a similar sample, with limestone grains
removed by etching. Planar extension cracks are clearly seen in this three-
dimensional photo. The presence of solidified Wood’s metal which penetrates
tube-like pores of diameters exceeding 0.15um, and planar cavities with aper-
tures exceeding 0.05um, precludes further fracturing during unloading. Hence,
microcracking produced solely during the application of compression can be
studied. The authors conclude that a variety of microscopic mechanisms (bend-
ing, point loading, and sliding) produces tensile cracking parallel to the direction
of maximum compression.

The model experiments by Brace and Bombolakis (1963), Hoek and
Bieniawski (1965), and Nemat-Nasser and Horii (1982), involving preexisting,
inclined, slit flaws, seem to capture the essence of this failure process. In addi-
tion, Horii and Nemat-Nasser (1985a, 1986) have provided illustration of

7 Another method of preserving the microstructure is to subject the sample to a single com-
pressive pulse of limited total energy; see Nemat-Nasser ef al. (1991). The results of Figure 1.1.1 of
Section | are obtained in this manner; Subhash (1991), and Subhash and Nemat-Nasser (1993).
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transition from the axial splitting mode of failure to faulting, when axial
compression is applied in the presence of lateral confinement, and transition
from a brittle to a ductile mode of failure, when the confining pressure is suit-
ably large.

Figure 6.9.5

(a) Scanning electron photomicrographs of axial cracks observed in uniaxially
compressed Indiana limestone (white is Wood’s metal); (b) Sample with lime-
stone grains removed by etching (from Myer et al., 1992)

The experiments involve thin plates of relatively brittle material (e.g.,
Columbia resin CR39) containing thin slits (flaws) fitted with thin brass sheets,
and subjected to inplane compression. Under inplane axial compression, tension
cracks are observed to nucleate from the flaws, to curve toward the direction of
maximum inplane compression, and to grow with increasing compression, even-
tually becoming parallel to this loading direction; see Figure 6.9.6. Of particular
interest in these experiments is the fact that the presence of slight inplane lateral
tension can render a crack growth regime of this kind unstable: once a critical
crack extension length is attained, the crack would grow spontaneously, leading
to axial splitting of the specimen. Nemat-Nasser and Horii (1982) seek to
explain the phenomena of axial splitting, exfoliation or sheet fracture (Holzhau-
sen, 1978), and rockburst, using this observation.

It therefore appears that, in the absence of lateral confinement, axial split-
ting may well be the result of the formation of axially oriented tension cracks at
the most compliant inhomogeneities. These cracks then grow axially and lead to
axial splitting. Once such a process is initiated, the specimen no longer remains
homogeneous in a continuum sense. At this stage, the strength drops dramati-
cally.
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Figure 6.9.6

(a) Specimen with a number of randomly oriented cracks; (b) Failure pattern un-
der overall axial compression (from Nemat-Nasser and Horii, 1982)

When lateral confinement accompanies axial compression, a profound
change in the overall response of rocks, concrete, ceramics, and other brittle
materials is often observed. Microscopic observation shows that, in this case
also, microcracks are nucleated at various micro-inhomogeneities, and these
cracks grow essentially in the direction of maximum compression. However,
the presence of confinement seems to arrest further growth of cracks of this
kind. Indeed, electron microscopy, as well as optical microscopy, seem to sug-
gest a more or less uniform distribution of microcracks within the sample, up to
axial loads rather close to the peak stress; see, e.g., Hallbauer ef al. (1973), Ols-
son and Peng (1976), Wong (1982), and Myer et al. (1992). Close to the peak
stress a region of high-density microcracks begins to emerge, which eventually
becomes the final failure plane. The sample fails by faulting at an angle some-
where between 10 and 30° with respect to the axial compression.

Horii and Nemat-Nasser (1985a, 1986) have suggested that such faulting
may be the result of the interactive unstable growth of tension cracks at suitable
sets of interacting microflaws. To verify this, a series of model experiments is
performed on plates which contain sets of small flaws and a number of large
flaws; a flaw here is a thin slit (0.4 mm thick) containing two thin brass sheets
(0.2 mm each). Two identical specimens are tested, one without confining pres-
sure, the other with some confinement; see Figure 6.9.7.

In the absence of confinement, cracks emanate from the tips of the longer
flaws, grow in the direction of axial compression, and lead to axial splitting,
while many of the smaller flaws have not even nucleated any cracks; Figure
6.9.7b. On the other hand, when some confinement accompanies axial compres-
sion, cracks emanating from the larger flaws are soon arrested. Then, at a
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certain stage of loading, suddenly, cracks emanating from many small flaws
grow in an unstable manner, leading to eventual faulting; Figure 6.9.7c. The
faulting is observed to initiate at some small preexisting flaws, and then run
through the sample at a finite speed; Horii and Nemat-Nasser (1985a).

Figure 6.9.7

(a) Specimen containing rows of small flaws, and several larger flaws; (b) Axial
splitting under overall axial compression without lateral confinement; (c) Shear
failure (faulting) under axial compression with lateral confinement (from Horii
and Nemat-Nasser, 1985a)

When the confining pressure is quite large, e.g., exceeding 25-30% of the
peak stress, then a transition from brittle failure by faulting to a ductile response
by overall plastic flow takes place. Microscopic observation shows a rather gen-
eral distribution of microcracks accompanying extensive plastic deformation.
The sample may fail by either localized plastic shearing or by barreling. Horii
and Nemat-Nasser (1986) suggest a model which seems to illustrate the
involved mechanism. Figure 6.9.8 shows a sample containing two collinear
flaws. When inplane axial compression is applied in the presence of relatively
large confining pressures, both tension cracks and plastically deformed zones
develop close to the tips of the preexisting flaws. That is, under axial compres-
sion, cracks can emanate from the tips of the flaws, while at the same time plas-
tic zones exist there. The crack length and the size of the plastic zone depend on
the confining pressure. For moderate confinement, the tension crack length
increases at a great rate, while the plastic zone size remains limited. On the
other hand, once suitable confinement exists, the tension crack soon ceases to
grow in response to the increasing axial compression, while the plastic zone size
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continues to increase. Indeed, if the confinement is large enough, the growth of
the plastic zone may, at a certain stage, actually relax the stress field around the
tension crack, resulting in partial closure of the tension crack. Moreover, plastic
zones seem to form first and, in fact, often shield cracking which, once initiated,
may then suddenly snap to a finite length, in an unstable growth mode. Based
on this model, Horii and Nemat-Nasser (1986) estimate the brittle-ductile transi-
tion pressure, and obtain results in reasonable agreement with experimentally
observed values. These experiments are performed at suitably low tempera-
tures, where creep effects can be regarded insignificant. The phenomenon of
creep in rock is rather complex and outside the scope of the present brief
review; see, e.g., Kranz (1979, 1980), and Yoshida and Horii (1992).

Figure 6.9.8

(a) Specimen containing two collinear flaws; (b) Arrested tension cracks
emanating from the flaws under axial and lateral compressive stresses of con-
stant ratio 6,/01; = 0.05; (c) Photoelastic picture of unloaded specimen showing
the residual strain distribution (from Horii and Nemat-Nasser, 1986)

6.9.4. Model Calculations: Axial Splitting

The two-dimensional elasticity boundary-value problem associated with
the model shown in Figure 6.9.3 has been formulated in terms of singular
integral equations and solved numerically; Nemat-Nasser and Horii (1982) and
Horii and Nemat-Nasser (1983, 1985a,b). The boundary conditions on the flaw
PP’ are

uf=uy, Y =15 = —-1.+1N0y, (6.9.1a,b)

and on the curved cracks PQ and P'Q’, it is required that
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Og=Tp =0, (6.9.1¢)

where 7. is the cohesive (or yield) stress, 7 is the frictional coefficient, u, is the
displacement in the y-direction, oy is the normal stress and Tyy is the shear
stress on PP’, and Og is the hoop stress and 7T, is the shear stress on PQ.
Superscripts + and - denote the values of the considered quantities above and
below the x-axis. Figure 6.9.9 shows some typical results.
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Figure 6.9.9

Normalized axial compression required to attain the associated crack exten-
sion length (from Horii and Nemat-Nasser, 1983)

As is seen, in the presence of small lateral tension, crack growth becomes
unstable after a certain crack extension length is attained. This unstable crack
growth is considered to be the fundamental mechanism of axial splitting of a
uniaxially compressed rock specimen. Peng and Johnson (1972) report the pres-
ence of lateral tension in the uniaxially compressed specimen because of the
end-boundary conditions. Different end inserts affect the ultimate strength.
They report a radial tensile stress of 4-8% of the applied compression. These
experimental data seem to support the analytical results.

Nemat-Nasser and Horii (1982) have made a series of model experiments
and have shown that the unstable growth of tension cracks discussed above, may
indeed be the basic micromechanism of axial splitting; see their Figs. 13-20.

The numerical calculations of the singular integral equation which
corresponds to the elasticity model of Figure 6.9.3 are rather laborious. Further-
more, they preclude further modeling which often requires simple closed-form
analytic expressions. Efforts have been made to develop such expressions for
the model of Figure 6.9.3, by substituting for the curved cracks, equivalent
straight cracks; see, e.g., Ashby and Hallam (1986), Steif (1984), and Horii and
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Nemat-Nasser (1986). Simple expressions which seem to yield accurate results
over the entire range of crack lengths and orientations are given by Horii and
Nemat-Nasser (1986). In a more recent article, Nemat-Nasser and Obata (1988)
have used these analytical expressions to model the dilatancy and the hysteretic
cycle observed in rocks. A brief outline of the approximate analytical solution of
Horii and Nemat-Nasser (1986) is given below.

O

(@) ®

Figure 6.9.10

(a) Preexisting flaw PP’ and straight cracks PQ and P’Q’; (b) A representative
tension crack QQ’ with splitting forces F

Figure 6.9.10a shows the flaw with straight cracks, and Figure 6.9.10b
shows a crack of length 2/ subjected to a pair of forces of common magnitude F,
which represent the effect of the flaw on cracks PQ and P’Q’". These cracks are
additionally subjected to farfield stresses 6;; and G5;. The force F is estimated
from the driving shear stress T, on the preexisting flaw,

*

T= - %(011 —O22) Sin2y— T+ %n {C11+ 02— (01— 022) cos2y ),

F=21". (6.9.2a,b)

Then, under the action of the concentrated coaxial forces of magnitude F and the
farfield stresses, the stress intensity factors at Q and Q’ are given by

2c 7" sin@

1T TRUTIOE +Ya(nl)#{011 + G22 — (O11 — O22) c0s2(6 —Y) },
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—2¢ 1" cosO | .
Kip= >0 —Y%(rl)*(0) - 2(0-7). 9.
U= TRd+ 1% 2(7l)”(G11 — Oz2) sin2(0 —7) (6.9.3a,b)
In this equation, {*/c = 0.27 is introduced so that when the crack length /
is vanishingly small, the corresponding stress intensity factors are still accu-
rately given by (6.9.3a,b). Note that, when [ is large, the presence of ™ is of lit-
tle consequence. Thus, (6.9.3a,b) are good estimates over the entire range of

crack lengths. Alternative expressions are given by Ashby and Hallam (1986)%.

6.9.5. Model Calculations: Faulting

In the presence of confining pressure, an axially compressed sample of
rock fails by faulting or (macroscopic) shear failure. To explain the mechanics
of such faulting, some authors have emphasized the role of Euler-type buckling
associated with columnar regions formed in the sample because of axial crack-
ing; see, for example, Fairhurst and Cook (1966), Janach (1977), and Holzhau-
sen and Johnson (1979).

A different model has been suggested by Horii and Nemat-Nasser (1983,
1985b). This model considers a row of suitably oriented microflaws and seeks to
estimate the axial compression at which out-of-plane cracks that nucleate from
the tips of these flaws can suddenly grow in an unstable manner, leading to the
formation of a fault; see Figure 6.9.11.

G22

Figure 6.9.11

An unbounded two-dimensional solid
with a row of preexisting flaws PP’ and
tension cracks PQ and P'Q’

% In addition, other microcrack-induced failure models have been proposed; see, e.g., Ka-
chanov (1982), Costin (1985), Ortiz (1985), Kemeny and Cook (1986), Krajcinovic (1989), Ju
(1990), Karihaloo and Fu (1990), Talreja (1991), and a special issue of Applied Mechanics Reviews,
edited by Li (1992).
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The solution of the elasticity problem associated with a solid containing a
row of periodically distributed flaws with out-of-plane microcracks, is given by
Horii and Nemat-Nasser (1983, 1985b). Typical results are shown in Figure
6.9.12. For small values of ¢, the axial compression first increases with increas-
ing crack extension length, attains a peak value, decreases, and then begins to
rise again. This suggests an unstable crack growth at a critical value of the axial
stress, which may lead to the formation of a fault zone. It is seen from Figure
6.9.11 that the peak values of the axial stress for the values of ¢ from 29° to 36°
fall in a very narrow range, i.e., IAGII‘/nc/ K:=0.3. This implies that the
overall failure angle is sensitive to imperfection and other effects. Indeed, the
orientations of the fracture plane observed in experiments often scatter over a
certain range. The range of the overall failure angle, however, may be limited,
since the peak value of the axial stress increases sharply as ¢ decreases. The
possible range of the overall orientation angle ¢ can be specified by prescribing
the stress barrier, | AGy INrc/ K., which can be overcome. Note that the value of
v in Figure 6.9.11 is chosen such that the required axial compression for instabil-
ity is minimized; see Horii and Nemat-Nasser (1985a, 1986) for further com-
ments and examples.

loy H(rc)”
Ke

Figure 6.9.12 2

Axial stress versus crack extension
length for indicated orientation ¢ of
crack row, Y=0.24w, 17.=0, and
N =04 (from Horii and Nemat- 0 1 2
Nasser, 1985a)

6.9.6. Model Calculations: Brittle-Ductile Transition

Brittle failure by faulting is suppressed by sufficiently high confining
pressures that promote distributed inelastic deformation at various flaws,
throughout the sample. Microscopically, the deformation remains highly hetero-
geneous, in view of the microstructure of the material. Depending on the
material and the temperature, the inelastic deformation may stem from grain-
size microcracking, plastic glide, or a combination of the two. For example, in
marble and limestone, as well as in pyroxenes, microcracking and the associated
cataclysmic flow can be inhibited at room temperature by large enough
confining pressures, whereas for other materials, such as quartz and feldspar,
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this requires higher temperatures; Donath et al. (1971), Tobin and Donath
(1971), Olsson and Peng (1976), Tullis and Yund (1977), Kirby and Kronenberg
(1984), and Myer et al. (1992). This difference in response most likely stems
from the microstructural differences, such as grain size, shape, and composition,
among these materials. To gain insight, it is instructive to examine the influence
of increasing lateral pressure on the interactive, unstable crack growth associ-
ated with a row of preexisting flaws, shown in Figure 6.9.11. For ¢ = 29°,
v=43°, and d/c =4, the results are shown in Figure 6.9.13. It is seen that
increasing the lateral pressure suppresses the unstable growth of tension cracks
emanating from the tips of the interacting flaws, and therefore suppresses the
associated faulting.

loy! (1CC)‘/2

Figure 6.9.13

Compressive force required to attain
the associated length of cracks
emanating from a row of preexisting
flaws, under the indicated normal-
ized lateral stresses (contours of |
constant |65, 1(mc)”2/K,), with d/c = 0 1 )
4, y=43°, and ¢=29° (from Horii
and Nemat-Nasser, 1986)

To estimate the brittle-ductile transition analytically , Horii and Nemat-
Nasser consider the model shown in Figure 6.9.14. It consists of the frictional
and cohesive flaw PP’ which, in addition to plastic zones PR and P'R’ of com-
mon length /,,, has produced at its tips, out-of-plane tension cracks PQ and P'Q’
of common length ;. The boundary conditions on the preexisting flaw and the
tension cracks are given, respectively, by (6.9.1a,b) and (6.9.1c). The conditions
on the slip lines PR and P'R’ are

u,t =uy, Tey = =Ty, (6.9.4a,b)

where Ty is the yield stress in shear. The principal stresses at infinity are
prescribed to be ;7 and G2;. In this model the tension cracks are assumed to be
straight. The plastic zones are modeled by dislocation lines collinear with the
preexisting flaw, as motivated by the model experiments, although it is not
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difficult to consider a non-collinear dislocation line or several such lines,
depending on the circumstances. The use of collinear dislocation lines is reason-
able as a starting point for modeling, and seems to yield adequate resuits.

(/%)

Figure 6.9.14

Preexisting flaw PP, ten-
sion cracks PQ and P'Q’,
and plastic zones PR and
PR’

The stresses at the ends of the plastic zones must be bounded. Consider a
solution that renders the Mode II stress intensity factor at R and R’ zero, i.e.,
require that

Kf=0, atR and R’ (6.9.4¢)

Horii and Nemat-Nasser (1986) present an exact formulation and solutions for
the problem sketched in Figure 6.9.14, in terms of singular integral equations.
They also give approximate closed-form solutions which may prove effective
for further modeling. The approximate analytical solution is based on the
assumption that the ductility defined by

K.

A= o) (6.9.5)
is small, and the size of the tension crack is large relative to the size of the plas-
tic zone. Hence, the interaction between the plastic zone and the crack is
neglected. The stress intensity factor K at Q and Q’ is estimated using (6.9.3a).
Then the Dugdale (Dugdale, 1960) model is used in Mode II to estimate the size
of the plastic zone such that K{§ = 0 at points R and R’ in Figure 6.9.14. This
yields the following expression for G;1/ty :
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_{24. %(‘CC/’Cy— 1) arcsin{1+lp/C}‘1}

O11
T 1- )s1n27 n{1+ 922 -(1- 022)cos2y} arcsin{1+1,/c}~ v
(6.9.6a)
and in view of (6.9.3a,b),
Ki __ —sinf
Ty(me)” niley E}Vz
c ' ¢
x{%{( 022)s1n27 M1+ o2 “22 ~(1- 022)00s27}}+ —}

41 v, 011 O22 _On _
+U e P 14 2 (1= 22 feos20-7)].  (6.9.6b)
Horii and Nemat-Nasser (1986) examine the accuracy of (6.9.6a,b) by compar-
ing the corresponding results with the numerical ones for the exact formulation.
For ductility, A, less than about 0.1, the approximate results are quite good. One
shortcoming of the approximate results (6.9.6a,b) is that they do not yield a
maximum value for the size of the tension cracks, whereas the exact calculation
does. Figure 6.9.15 shows the relation between /;/c and [ /c for A=0.04 and A
= (.08, obtained by the numerical solution of the singular integral equations for
the exact formulation of the boundary-value problem.

2
35—
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25
1.5 3
.275
ly/c 11—
Figure 6.9.15 ° 273 2| 225
Relation between the tension crack 05 30
length and the size of the plastic ’ \ B
zone under proportional loading for 2
indicated stress ratios (contours of 0 I M
O2/0yy), for: (a) A = 0.04; and (b) 0 0.05 01 0 0.05 0.1
A = 0.08 (from Horii and Nemat- e /e

Nasser, 1986)

From the results presented in Figure 6.9.15, it is seen that for small lateral
compression, [,/c remains very small as [i/c increases rapidly, dominating the
failure regime; the response of the solid is brittle in this case. With suitably large
values of 0,/0;;, on the other hand, [/c ceases to increase after it attains a cer-
tain (negligibly small) value, while I /c continues to increase with increasing
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axial compression; the response of the solid in this case is ductile. Indeed, for
large enough G,)/C); (e.g., 622/611 = 0.2), the tension crack actually begins to
relax and close, as the plastic zone extends. The model also suggests another
possible failure mode, where, while a plastic zone develops first, once the ten-
sion crack is initiated, it grows to a finite length in an unstable manner, as the
plastic zone relaxes; this is referred to as the transitional mode.

By examining the maximum size of the tension cracks and whether they
grow in a stable or unstable manner, Horii and Nemat-Nasser produce from this

two-dimensional model, the brittle-ductile a'iagram9 of Figure 6.9.16.

For G,)/6, exceeding 0.2 to 0.25, this figure shows a transition to the
ductile response. This seems to be in accord with experimental observations
summarized by Mogi (1966). Note from Figure 6.9.15 that, for 6,,/0), greater
than certain values, the size of the plastic zone continues to grow with increas-
ing compression (for proportional loading), once I/c attains certain maximum
values. A deformation process of this kind characterizes a ductile mode. The
change from the brittle to the ductile mode is illustrated in Figure 6.9.15a,b for A
= 0.04 and 0.08, respectively. It is seen that this change occurs when the stress
ratio increases from 0.325 to 0.35 for A = 0.04, and from 0.25 to 0.275 for A =
0.08.

It thus appears that whether the failure is brittle, being dominated by the
growth of tension cracks, or ductile, being dominated by the growth of plastic
zones, depends on the magnitude of the stress ratio, 65/6};, and the overall duc-
tility, A. The influence of temperature enters implicitly through the associated
values of fracture toughness, K, and yield stress, Ty. Since the former increases

03—
A
0.2
transitional ductile mode
A mode
A
0.1
brittle mode
0 I | | J
0 0.1 0.2 0.3 0.4 0.5
022/0
Figure 6.9.16

Brittle-ductile diagram (from Horii and Nemat-Nasser, 1986)

? The model does not include the effects of strain hardening, strain rates, and stress three-
dimensionality, which affect the quantitative (but not the qualitative) nature of the resuits.
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and the latter decreases with increasing temperature, A increases with increasing
temperature. Also, the influence of grain size is implicitly included through the
dependency of A on the flaw size c: the larger the c, the smaller the A. It is
shown by Horii and Nemat-Nasser (1986) that when A is suitably large, the
growth of tension cracks can be essentially suppressed by suitable confinement.
For a A of the order of a few percent, however, both tension cracks and plastic
deformation can occur. The material for a small A is inherently brittle. How-
ever, suitably large confining pressures suppress unstable growth of microcracks
and promote plastic flow instead. Hence, it seems that compression may induce
plastic flow of crystalline solids which, otherwise, are commonly classified as
brittle.

An important aspect of brittle failure, not considered in this brief review,

is the mechanism of microcracking ahead of an advancing tensile macrocrack. '
It has been reasoned that the generation of such microcracks may result in

increased toughness,!! on account of the additional energy required to create
microcracks. Furthermore, toughening by crack bridging, both over a small
region in the neighborhood of the crack tip (Budiansky, 1986; Rose, 1987; and
Budiansky et al., 1988), as well as partial or full bridging by fiber reinforcement
(Nemat-Nasser and Hori, 1987) are timely topics which require examination in
their own right; see Subsection 21.5.4 for additional comments.
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CHAPTER III

ELASTIC SOLIDS WITH
MICRO-INCLUSIONS

In this chapter consider an RVE which consists of a linearly elastic and
homogeneous matrix containing linearly elastic inclusions. The elastic
modulus and compliance tensors of the matrix material are denoted by
C and D, respectively. For a typical elastic inclusion, Qg the
corresponding elasticity and compliance tensors are denoted by C*
and D%, respectively. When there is only a single inclusion, Q, in the
uniform matrix, then the elasticity and compliance tensors of the inclu-
sion are denoted by C® and D®. The main objective of this chapter is
to estimate the overall moduli of the RVE, in terms of the moduli of its
constituents and their distribution. In addition to this, the example of a
linearly elastic and homogeneous matrix containing linearly elastic
and homogeneous inclusions of different elasticities is used, in order to
introduce the important concepts of eigenstrain and eigenstress which
play key roles in estimating and bounding the overall moduli of hetero-
geneous solids (elastic or inelastic). The presentation is, however, gen-
eral, applicable to bounded or unbounded heterogeneous solids with
inclusions having arbitrary geometries. For the special case of an
infinitely extended homogeneous linearly elastic solid containing an
ellipsoidal inclusion, the important results obtained by Eshelby (1957)
are presented. The results of this chapter have direct application to
elastic composites such as ceramics, cermets, cementitious materials,
and other related heterogeneous solids. The stress and strain fields due
to phase transformation or other physical processes are also discussed,
e.g., heating, which may result in heterogeneous straining of an ini-
tially unstrained solid, thereby producing self-equilibrating stresses.
An example would be a stress field induced in ceramic composites
which contain partially stabilized zirconia which undergoes phase
transformation under the applied stresses.



SECTION 7 OVERALL ELASTIC MODULUS AND
COMPLIANCE TENSORS

In this section, an RVE of volume V bounded by dV is considered, which
consists of a uniform elastic matrix with elasticity and compliance tensors C and
D, containing n elastic micro-inclusions g, with elasticity and compliance ten-
sors C* and D* (0. = 1, 2, ..., n). The micro-inclusions are perfectly bonded to
the matrix. All constituents of the RVE are assumed to be linearly elastic.
Hence, the overall response of the RVE is linearly elastic. The matrix and each
inclusion are assumed to be uniform, but neither the matrix nor the inclusions
need be isotropic. In general, the overall response of the RVE may be anisotro-
pic, even if its constituents are isotropic. This depends on the geometry and
arrangement of the micro-inclusions.

_ The overall elasticity and compliance tensors of the RVE are denoted by
C and D, and it is sought to estimate them in terms of the RVE’s microstructural
properties and geometry. As in Section 4, the cases of a prescribed macrostress
and a prescribed macrostrain are considered separately. The concepts of eigen-
strain and eigenstress are introduced to homogenize the RVE, and the
corresponding consistency conditions are developed. Then for an ellipsoidal
inhomogeneity, the Eshelby tensor and its conjugate are introduced, and they are
related to the H- and J-tensors, which have been used in Sections 4, 5, and 8.
These results are then employed and explicit expressions for the overall moduli

are obtained by the dilute and the self-consistent methods.!

7.1. MACROSTRESS PRESCRIBED

For the constant macrostress 6 = 6°, the boundary tractions are
t°=v.c° ondV. 7.1

Because of heterogeneity, neither the resulting stress nor the resulting strain
fields in the RVE are uniform. Define the constant strain field £° by

e°=D:o°, (7.1.2a)

and observe that the actual stress field, denoted by 6, and strain field, denoted by
€, can be expressed as

! Bounds on moduli are presented in Section 9, and other averaging methods are discussed and
compared in Section 10.
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o=0°+0%x), &=¢e°+gd(x), (7.1.2b,c)

where the variable stress and strain fields, 69(x) and €4(x), are the disturbances
or perturbations in the prescribed uniform stress field 6° and the associated con-
stant strain field €°, due to the presence of the inclusions. The total stress and
strain tensors, ¢ and &, are related by Hooke’s law, as follows:

C:eg(x)=C: {e°+ed(x)} inM=V-Q

o(x) = 6°+0d(x) = { Co:g(x) =C%: {e°+&%(x)}  in Qg

D:o(x)=D: {o°+0x)} inM=V-Q

e(x) = e +elx) = { D*:6(x) =D*: {6°+06%x)}  inQy,

(7.1.3a,b)
where Q is the union of all micro-inclusions, Q = CJ Q..
a=1

From the averaging theorems discussed in Section 2, and in view of
(7.1.1), it follows that

0 =<0>=0° (7.1.4a)
On the other hand, the overall average strain is given by
E=<E>=<g’+gd>, (7.1.4b)

ie., in general, < €9 ># 0. The aim is to calculate the overall compliance ]_),
such that

§=D:6=D:o". (7.1.5)

To this end, consider the notation

— 1

B =<e>= o jﬂm £(x) dV, (7.1.62)
or, in general, for any field variable T(x), set

o _ 1

T =<T>= o jgu T(x) dV. (7.1.6b)

Similarly, when the strain field is averaged over the matrix material of the RVE,
it is convenient to write

Moceoy= ﬁ [ g av, (7.1.6¢)
and, for the general field variable T(x), set

TM=<Toy= ﬁ [, T av. (7.1.6d)

Thus, the volume average of (7.1.3b) over the matrix and inclusions produces
eM=D:cM E=D*:6% (o not summed). (7.1.7a,b)

Since
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%EM=E—21 f@%f):m—él f, D%: G°, (7.1.82)
and

%EM:%-D:&M:D:{GO-(; f, 6%}, (7.1.8b)
then

(D-D):6°= 3 £ (D-D%:5%= 3 £ (D-DY:<6°+0 >,
(7.1.9)

where f, = €,/V is the volume fraction of the ath inclusion. This is an exact
result. It defines the overall compliance tensor D in terms of the average
stresses in the inclusions. It is important to note that this result does not require
knowledge of the entire field within each inclusion. Only the estimate of the
average value of the stress in each inclusion is needed.

Since the response is linearly elastic, the disturbances or perturbations in
the stress and strain fields due to the presence of inclusions, 69(x) and £9(x), are
linear and homogeneous functions of the prescribed constant macrostress
2 = ¢°. Hence, in general,

(D*-D):<06°+09>,=(D*-D):6%*=H*:6° (o not summed),
(7.1.10)

where the constant fourth-order H%tensor is defined by
g -D:0%*=<e°+ei>,-D:< 6°+0¢>, = H*: ¢°. (7.1.11)

This is the change in the average strain of €, if D% is replaced by D. Note that
for traction-free cavities or cracks, 6% = 0, and definition (7.1.11) is consistent
with (4.3.3). Since 6° is arbitrary, substitution of (7.1.10) into (7.1.9) produces

D=D+ il f, HE. (7.1.12)
o=

The result (7.1.12) is exact. It applies to a finite, as well as an infinitely
extended RVE. There is no restriction on the geometry (i.e., shapes) or distribu-
tion of the inclusions. The only requirements are: (1) the matrix is linearly elas-
tic and homogeneous; (2) each inclusion is linearly elastic and homogeneous;
and (3) the inclusions are perfectly bonded to the matrix. Approximations and
specializations are generally introduced when it is sought to estimate the con-
stant tensors H* (o0 = 1, 2, ..., n ). To this end, the inclusions are often assumed
to be ellipsoidal and other assumptions are made in order to estimate the H*'s.
This and related issues are examined later on in this chapter. Observe that, since

&= [, emdv=2 [ Lmeutuends, (7.1.13)
o ‘o [ @

the H%tensor here has the same significance as that introduced for cavities in
Sections 4 and 5. The u =u(x) in (7.1.13) is the displacement of the boundary
of the ath inclusion. Unlike the case of an isolated cavity, the calculation of this
boundary displacement field is somewhat complicated.
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It is noted that (7.1.12) can be specialized to yield the Reuss (1929) esti-
mate. Reuss assumed that the average stress of each inclusion (and hence the
matrix) is equal to the applied stress 6°. Then, the average strain in Qy is given
by

€' =D*:5%=D: g°. (7.1.142)

Hence, H* reduces to D*—D. Then, the overall compliance D is estimated to
be the volume average of the compliance tensor of the matrix and the inclusions,
i.e.,

D=(1-f)D+ ‘";] £ D2, (7.1.14b)
o=

] . . . .
where f = ), fy is the total volume fraction of all inclusions.
o=

7.2. MACROSTRAIN PRESCRIBED

When, instead of the macrostresses, the uniform macrostrains, E = €°, are
prescribed, the boundary conditions for the RVE become

u®=x.£° ondV, (7.2.1)
and defining
c°=C:g°, (7.2.2)

again observe that the presence of inclusions with different elasticity tensors
introduces disturbances or changes in the uniform strain and stress fields, €° and
6°. Denoting the strain and stress disturbances by €¢ and &9, respectively,
express the resulting variable strain, € = &(x), and stress, 6 = O(X), as in
(7.1.2¢,b). The stress-strain relations are given by (7.1.3).

From the boundary conditions (7.2.1), it now follows that

E=<e>=<g’+gd>=¢g° (7.2.3a)
but

G=<06>=<06°+0¢>, (7.2.3b)

in general, is not equal to 6°, i.e., in general, < 6¢ ># 0. The overall elasticity
tensor C is defined through

6=C:e=C:¢g°, (7.2.4)
to be estimated in terms of the microstructure and properties of the RVE.

Following the procedure outlined in Subsection 7.1, observe that

Meu_5- 3 t,60=C:ieo- 3 f,Co: 87, (7.2.52)
A" =1 a=1
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and that

Mau_Me.gmoc:(eo- i fo €%). (7.2.5b)
\" \" o=1

Hence, it follows from (7.2.4), (7.2.5a), and (7.2.5b) that
(C-C):e0= 3 f,(C—C%:8%= ¥ f,(C—C%:<eo+ed>,
o=1 o=1
(7.2.6)

Again, because of linearity, the change of the average strain of Q, due to the
homogenization associated with replacing C® by C, is expressed as

£-D:0%=J*: g°, 7.2.7)
and from (7.2.6) it is deduced that (since €° is arbitrary)
C=C- ¥ [, C:Je=C:(1¥— 3" ,Jo). (7.2.8)
a=1 a=1

Definition (7.2.7) for J* is consistent with the corresponding definition for the
case of cavities where 6% = 0; see (4.5.3). Comments which follow (7.1.12)
also apply here. The constant tensors H* and J%, for each inclusion, must now
be estimated.

It is noted that (7.2.8) can be simplified to yield the Voigt (1889) estimate.
Voigt assumed that the average strain of each inclusion (and hence the matrix) is
equal to the applied strain €°. Then, the overall elasticity tensor C is given by
the volume average of the elasticity tensors of the matrix and the inclusions, i.e.,

C=(1-HC+ z‘i;l f, Co. (7.2.9)

7.3. EIGENSTRAIN AND EIGENSTRESS TENSORS

For clarity in presentation, a specific elasticity problem is considered and
is used to introduce the concept of eigenstrain. Consider a finite homogeneous
linearly elastic (not necessarily isotropic) solid with elasticity tensor C and com-
pliance tensor D, containing within it a (only one) linearly elastic and homo-
geneous (but not necessarily isotropic) inclusion €, of arbitrary geometry, with
elasticity and compliance tensors C2 and D2. The total volume is V, bounded
by 0V, and the matrix is M =V -Q, bounded by 9V +0QM = gV —9Q; see
Subsection 4.1, as well as Figure 4.1.1, for a discussion of the notation. Let the
solid be subjected on JV to either the self-equilibrating surface tractions
corresponding to the uniform stress 6° = (6°)T = constant,

t°=v.06° ondV, (7.3.1a)

or the self-compatible linear surface displacements corresponding to the uniform
strain £° = (£°)T = constant,
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u°=x.e° ondV,; (7.3.1b)

see Figure 7.3.1a for the case when the surface tractions are prescribed. Note
that (7.3.1a) and (7.3.1b) define two separate problems which are being exam-
ined simultaneously. These boundary conditions are in general mutually
exclusive for a heterogeneous elastic solid.

v © =v.0° v ©=v.g°

i e +gd-g* t
C:(e°+ed—¢")

04 g €°+gd
C2: (g°+€d) C:(g°+gd)
(a) Heterogeneous RVE (b) Equivalent homogeneous RVE
Figure 7.3.1

Equivalent homogeneous RVE and eigenstrain

If the RVE were uniform throughout its entire volume, then the stress field
and hence the corresponding strain field would be uniform when tractions are
prescribed on @V by (7.3.1a); these fields would be given by 6° and £° = D : 0°,
respectively. Similarly, the strain field and the corresponding stress field would
be uniform when displacements are prescribed on 9V by (7.3.1b); these fields
would be given by €° and 6° = C: €°, respectively. The presence of region £
with a different elasticity, i.e., the existence of a material mismatch, disturbs the
uniform stress and strain fields in both cases. Denote the resulting variable
strain and stress fields, respectively by € = £(x) and 6 = 6(x), and set

e=¢g°+ed(x), ©=0°+0ix). (7.3.2a,b)

Here £9(x) and 09(x) are the disturbance strain and stress fields caused by the
presence of the inclusion Q, with mismatched elasticity. From Hooke’s law it
follows that

_{C:(8°+8d(x)) inM=V-Q
C=1cCo:(ec+e%x)) inQ,

_[D:(e°+0%x)) inM=V-Q
€ _{ D®: (c°+04(x)) inQ. (7.3.3a,b)
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7.3.1. Eigenstrain

Instead of dealing with the above-mentioned heterogeneous solid, it is
convenient and effective to consider an equivalent homogeneous solid which
has the uniform elasticity tensor C of the matrix material everywhere, including
in Q. Then, in order to account for the mismatch of the material properties of
the inclusion and the matrix, a suitable strain field £*(x) is introduced in Q, such
that the equivalent homogeneous solid has the same strain and stress fields as the
actual heterogeneous solid under the applied tractions or displacements, which-
ever may be the case. The strain field £* necessary for this homogenization is
called the eigenstrain.

Figure 7.3.1b illustrates this procedure for the case when boundary trac-
tions corresponding to 6° are prescribed on dV. In this figure the eigenstrain
field is given by

\ 0 inM
EM =1 nq

For this equivalent problem the elasticity tensor is uniform everywhere, includ-
ing in Q. It is given by C. Therefore, the corresponding strain and stress fields
are

(7.3.4a)

£(x) = €° +ed(x),

_ . * _ C:(80+8d(x)) inM 73 4b.c
o) =C: (@x) & (x) ‘{ C.(eo+edx)—£(x) ing 400
As is seen, the eigenstrain field disturbs the relation between the strain and the
stress. Indeed, they are no longer related through uniform elasticity C in Q.

To relate the eigenstrain € to the corresponding perturbation strain €9,
consider the equivalent uniform elastic solid of volume V and uniform elasticity
C, and observe that, since by definition,

o°=C:¢g° (7.3.5a)
or

e°=D:0o° (7.3.5b)
then from (7.3.2) and (7.3.4), it follows that

oldx)=C:(edx)—-€"(x)) inV. (7.3.6)

Since the resulting stress field must be in equilibrium and must produce a com-
patible strain field, in general, the strain field €%(x) is obtained in terms of an
integral operator acting on the corresponding eigenstrain’ £*(x). In the present
context, it is convenient to denote this integral operator by S, and simply set

£d(x) = S(x; ") (7.3.7a)

2 As will be shown in Section 9 in some detail, (7.3.6) can be solved with the aid of Green’s
function for V.



200 CHAPTER III §7.3

or

ed(x) = Sij(x; €. (7.3.7b)

7.3.2. Eigenstress

In the above treatment, the heterogeneous finite (or infinite) linearly elas-
tic solid consisting of a uniform matrix M and a single inclusion  with dif-
ferent elasticities (7.3.3a), is homogenized by the introduction of the eigenstrain
£'(x). The homogenization can be performed by the introduction of an eigen-
stress 6" (x), instead. To this end, set

o*(%) ={ ?,* o 122’[ (7.3.82)

For this alternative equivalent problem, the elasticity tensor is again uniform
everywhere, including in Q, like in (7.3.4). The corresponding strain and stress
fields are

€(x) = €2+ gd(x),

. o\ | C:(e°+ei(x)) inM
ox)=C:ex)+06 (x) —{ C:(°+89(x) +6°(X) in. (7.3.8b,0)

From (7.3.5), the disturbance strain and stress must satisfy
odx)=C:edx)+06"(x) inV, (7.3.9)

for the required eigenstress. As discussed in Subsection 7.3.1, in general, the
stress field ¢9(x) is expressed in terms of an integral operator acting on the
corresponding eigenstress 6" (x). Formally, this is written as

od(x) = T(x; 6" (7.3.10a)
or

oi(x) = Tjj(x; 6%). (7.3.10b)

7.3.3. Uniform Eigenstrain and Eigenstress

An important result® due to Eshelby (1957), which has played a key role
in the micromechanical modeling of elastic and inelastic heterogeneous solids,
as well as of nonlinear creeping fluids, is that if:

1) V- Q is homogeneous, linearly elastic, and infinitely extended; and

? See an earlier similar observation in two dimensions by Hardiman (1954).
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2)Q s an ellipsoid,
then:

1) the eigenstrain €* necessary for homogenization is uniform in Q; and
g ary g

2) the resulting strain €9 and hence, stress 69, are also uniform in €, the
former being given by

gd =892 ¢ (71.3.11a)
where the fourth-order tensor S€ is called Eshelby’s tensor, with the fol-
lowing properties:

a) it is symmetric with respect to the first two indices and the second two
indices,

Siﬁ(l = Sﬁ}d = Siﬁk; (7311b)
however, it is not, in general, symmetric with respect to the exchange
of ij and kI, i.e, in general, S}, # Si;

b) it is independent of the material properties of the inclusion £2;

¢) it is completely defined in terms of the aspect ratios of the ellipsoidal
inclusion Q, and the elastic parameters of the surrounding matrix M;
and

d) when the surrounding matrix is isotropic, then S depends only on the
Poisson ratio of the matrix and the aspect ratios of Q.

In Subsection 7.3.6, the components of Eshelby’s tensor are listed for
several special cases. In Section 11 a detailed calculation of Eshelby’s tensor is
given.

When the eigenstrain € and the resulting strain disturbance €9 are uni-
form in Q, then the corresponding eigenstress 6™ and the associated stress dis-
turbance 6¢ are also uniform in Q. Therefore, a fourth-order tensor T, may be
introduced such that

oi=T?: 6" inQ. (7.3.12a)
The tensor T has symmetries similar to Eshelby’s tensor S, i.e.,

T =Tk = T (7.3.12b)
but in general, T # T

To relate the tensor T to Eshelby’s tensor S<, it is first noted from (7.3.6)
and (7.3.9) that the eigenstrain and eigenstress are related by

6'+C:€"=0, e+D:o"=0. (7.3.13a,b)
From (7.3.9), (7.3.11a), and (7.3.12a), it follows that

S " =D:(TE-1¥)): (-C: ",

TC: 6" =C:(§2-1%)): (-D:c"). (7.3.14a,b)

Therefore, the tensors $? and T must satisfy
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SC+D:TL:C=1"), T+ C:S2:D =19, (7.3.14¢,d)

In component form, these are

Sig%(l + Diqu Técz]rs skl = (Slk 9; il + 811 8Jk)

lekl + Clqu Séczlrs skl = 2 (Slk il + Sil 8jk)- (73 14e’f)

7.3.4. Consistency Conditions

For finite V, the eigenstrains or eigenstresses necessary for homogeniza-
tion are, in general, nonuniform in €, even if Q is ellipsoidal. Also, for a nonel-
lipsoidal €, the required eigenstrains or eigenstresses are in general, variable in
Q (they are zero outside of Q), even if V is unbounded. For the general case,
the eigenstrain, €°(x), or the eigenstress, 6"(x), is defined by the so-called con-
sistency conditions which require the resulting stress field 6(x), or the strain
field &(x), to be the same under the applied overall loads, whether it is calculated
through homogenization or directly from (7.3.3a) or from (7.3.6). Hence, the
resulting stress field in Q becomes,

o(x) =C2: {e°+ed(x)} =C: {e°+&d(x)—£'(x)] inQ, (7.3.15a)
and the resulting strain field in Q2 satisfies,
£x)=D%: {6°+09x)} =D: {6°+0ix)-0"(x)}] inQ. (7.3.15b)

Substitution into (7.3.15a) for €4(x) from (7.3.7) now yields an integral equation
for €°(x). Similarly, substitution into (7.3.15b) from (7.3.10) yields an integral
equation for 6*(x).

It is noted that both (7.3.15a) and (7.3.15b) are valid whether uniform
tractions produced by ¢° or linear displacements produced by €° are prescribed
on dV. If the overall stress G° is given, €° is defined by D : 6°, whereas if the
overall strain €° is given, 6° is defined by C : €°. In Chapter IV this procedure is
detailed when V is a cuboid, representing a unit cell of an RVE with periodic
microstructure. In the sequel, on the other hand, attention is confined to the case
when V is unbounded and € is ellipsoidal, so that the homogenization eigen-
strain and eigenstress are both uniform in Q.

Whether V is bounded or not, and for any homogeneous linearly elastic
inclusion Q in a homogeneous linearly elastic matrix M, consistency conditions
(7.3.15a,b) yield

e°+ed(x) = AL: g'(x), ©°+0%x)=B2:0"(x) inQ, (7.3.16a,b)
where
e=(C-C%!:C, B =(D-D9¥!:D. (7.3.17a,b)

By definition, constant tensors A® and B satisfy
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D:C2 = 1649 — (A" = (149 — (BR)~1) T (7.3.17¢)
or
C:D® = 169 — (B~ = (149 — (AR)1)T, (7.3.17d)

where the superscript -T stands for the inverse of the transpose or the transpose
of the inverse.

When V is unbounded there is no distinction between the cases when the

strain €° or the stress 6° is prescribed.4 Thus e°=D:c6°or 6°=C:£° Also,
when, in addition, Q is ellipsoidal, then €94, €, 64, and 6™ are all constant ten-
sors in Q. Hence, for unbounded V and ellipsoidal Q, substitution for €4 in
(7.3.16a) or for ¢4 in (7.3.16b) provides explicit expressions for the eigenstrain
£" and eigenstress 6™ which are necessary for homogenization,

£ = (AR-SO1:go, 6" =B2-TYH1:6° inQ. (7.3.18a,b)
These and (7.3.16a,b) now lead to
e=g°+ed= AQ:(AQ-S§¥) 1 go,

6=0°+0i=B2: (Be-TY1:6° inQ. (7.3.19a,b)

Note that the strain € and stress ¢ in Q given by (7.3.19a) and (7.3.19b)
are equivalent. From constitutive relations (7.3.3a,b), substitution of (7.3.17a,b)
into (7.3.19a,b) yields

0 =CR: A2 (AR -8 g0
={CR: {149 -8Q: 1*)-D:CY}-1:D}: 0°,
€=D2:B2: (BQ-TY ! : 00

={D2:{1®-_TL: (14 -C:DY}1:C}:e° inQ. (7.3.20a,b)

Taking advantage of identities (7.3.14c,d), observe that the fourth-order tensors
in the right-hand sides of (7.3.20a,b) become

ce. {1(45)_5(2 (1@ -D:CYH}1:D = {149 T : (14 - C . DY},
D¢ {1(45)_'[‘(2 . (1(4s)_C . DQ)}—I -C= {1(45)_5(2 . (1(45)__1) . CQ)}‘I.
(7.3.20c,d)

Therefore, (7.3.20c,d) compared with (7.3.19a,b) yield the equivalence relations
between (AL, $9) and (B, TS), as follows:

C2: A2 (A2- S9! D = B (BT,

D2 :B2: (BT 1:C = AR: (AR - SO-1, (7.3.20e.f)

* This is, however, not true when V is bounded.
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7.3.5. H- and J-Tensors

Since the total strain in an ellipsoidal Q is uniform for the unbounded V
considered in Subsection 7.3.4, the corresponding H?- and J?-tensors defined in
(7.1.11) and (7.2.7), respectively, become

<E€>-D:<6>q=£e2-D:6%=H?:6° inQ, (7.3.21a)
when the overall stress ¢° is prescribed; and
<E>-D:<6>q=2-D:6%=J2:e° inQ, (7.3.21b)

when the overall strain €° is prescribed. Since the region V is unbounded, H?
and J9 satisfy

Je=H2:C, H2=J9:D. (7.3.21c,d)

Comparing (7.3.20a,b) and (7.3.21a,b), note that H® and J? may be
expressed in terms of Eshelby’s tensor $© and its conjugate T<, as

H® = (D2-D): B2: (B2-T?),

J2=(D2-D):C2: A% (A% - S, (7.3.22a,b)
or

HO = (D¢-D):C2: A%: (A2-S9)1: D,

J2=(D2-D):B2: (BQ-T?)!:C. (7.3.22¢c,d)

As pointed out before, the Eshelby tensor 8 and its conjugate T< for a uniform
ellipsoidal inclusion Q in an unbounded uniform matrix, depend on the aspect
ratios of Q and the elastic parameters of the matrix material, but they are
independent of the material properties of Q. On the other hand, H® and J9
depend on the geometry of €, as well as on the elasticity of both Q and the
matrix material. For cavities, on the other hand, (7.3.22¢,d) reduce to

H2= (1¢9-8O)-1:D, J2= (169821 (7.3.22e,1)

which show that the H- and J-tensors are effective tools for homogenization of
solids with cavities and cracks.

From the above equations, it is seen that the equivalence of (A2, $2) and
(B2, T9?), given by (7.3.20e,f), corresponds to the equivalence of J¢ and H2,
given by (7.3.21c,d). It should be kept in mind that:

1)if the solid containing an inclusion is unbounded, these equivalent rela-
tions always hold, since the farfield stress 6 = ¢° and strain € = €° are
related by 6° = C:€° or €° = D : ¢°, and hence the response of the solid
is the same whether G6° or €° is prescribed; but

2)if the solid is bounded, these equivalent relations do not, in general, hold,
since the response of the solid when uniform boundary tractions are
prescribed is, in general, different from that when linear boundary dis-
placements are prescribed.



§7.3 OVERALL ELASTIC MODULUS AND COMPLIANCE TENSORS 205

As is seen from (7.3.20), the formulation in terms of (C, A®?, $?) corresponds
exactly to that in terms of (D, B, T%). Furthermore, from (7.2.24), the H®-
and J-tensors are expressed in terms of either (C, A2, §%) or (D, B9, T9),
Hence, from now on in this chapter, mainly A®?, B2, S, and T2 are used
instead of H? and J

7.3.6. Eshelby’s Tensor for Special Cases

The components of Eshelby’s tensor S, with respect to a rectangular
Cartesian coordinate system are listed below when the matrix M is unbounded
and isotropically elastic, and the inclusion  is ellipsoidal with semiprincipal
axes, a;, which coincide with the coordinate axes, x; (i=1, 2, 3 ); see Figure
7.3.2.

Figure 7.3.2

An ellipsoid coaxial with
the Cartesian coordinates

(1) General form (a; > a; > as):

_ 3 2 1-2v
_ 1 2 _ 1-2v
Stz = S —v) & Iy, SR —v) L.
Sin= A @l+ad) I+ A=V (1,+1) (7.3.23a~c)
16m(1—-v) 172 167(1 - V) ) "

The I;- and Ijj-integrals are given by

47a aras

I =
(af ~af)(af - ad)"

{F(6, k) - E(8, k)},

4majazas a)(af—af)”
= D -E e; k )
@ adai-ad% | am S

I3
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I+ 1415 =4n, (7.3.23d~D)
and
_4n 2 2 27 . _
Sp+Inp+lz= YR 3af I +ag lip+ag 113 = 31,
f
L-T .
I = ~
12 al—al’ (7.3.23g~i)
where F and E are the elliptic integrals of the first and second kind, and
. af—-af . af-af .
9 = AN /2’ k = —=>"= /2, .
arcsin{ Py } { a7 —a? (7.3.235,k)

(2) Sphere (a) = a; = a3 = a):

Sv—1
Sijkl = m 8,1 Sk] + —15(1—) (811( 811 + 811 Sjk ). (7.3.24)
(3) Elliptic cylinder (a3 — o)
1 af+2aa; _ a
S“”_ 2(1-\/) (a|+32)2 +(1 2V) at+ap }’
_ 1 af+2aja, _ _
Sz = AV (et ay)? +(1-2v) a +a }o Sa=0,
a3

-1 —(1- a2
Stz = 20 —V) {(a1+a2)2 (1-2v) ata ),

S _ 1 2va,
233 2(1-v) aj+a ’
2
aj
St = —2
2211 2(1—V) { (a1+a2)2 ( V) a1+ }
2va
Si133 = 7(-11—_-\—,7 alT;f S3311 = S3zp =0,
Sy e 1 af+ai | 1-2v,
RR2Z20-v) 20 +a)? 2 P
- a -8 .
S2323 = ar+ay)” S3131 Yty (7.3.25a~k)

(4) Penny-shape (a; = a; >> a3)

= Sy = F13-8V) 83 —1-F(1=2v) 2
S =80 = Ham oy o S =Yy
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n@v—1) az T2v—1) as

Siio=S»1= DA -V) a’ S1133 = Som3 = 8(1-v) a,’

) {l_n(4v+1) ﬁ}

S3311 =833 = i

-V 8v a;
_ ™7-8v) a3 - -1 mwv—-2) a3
Si212 = 32A=V) ar’ S3131 = Sazz = 3 {1+ A1=V) a

(7.3.26a~g)

7.3.7. Transformation Strain

As pointed out in Subsection 7.3.3, an unbounded uniform elastic solid V
containing a uniform elastic ellipsoidal inhomogeneity €, can be homogenized
by the introduction of uniform eigenstrains €" (or eigenstresses ¢”) in Q. Upon
homogenization, and in view of (7.3.5), the disturbance stress and strain fields,
o¢ and €9, may be viewed as the stress and strain fields produced in the
unbounded homogeneous solid (no inhomogeneity) when the region Q under-
goes a transformation which introduces in Q inelastic strains® €*. Figure 7.3.3
shows a portion of an unbounded uniform solid of elasticity C, with transforma-
tion strains £” defined in Q in the absence of any applied loads. In this case, the
stress field o4 is self-equilibrating, with a vanishing average, i.e., < 09> =0.
In general, the fields 6¢ and €¢ are nonzero when they correspond to an actual

Figure 7.3.3

A portion of an unbounded uniform
elastic solid of uniform elasticity C,
in which region Q has undergone

transformation with inelastic strain €"

5 That is, if Q is cut off such that the constraint imposed by its surrounding matrix is relaxed,
then its strain would be € which is also calied the unconstrained transformation strain.
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inelastic transformation strain € in Q. In the case of the inhomogeneity, on the
other hand, the disturbance fields, 69 and €9, vanish when the applied loads are
zero. In both cases, however, the strain €9 and the stress 69 in Q are given by
(7.3.11a) and (7.3.6), respectively. The difference between homogenization of a
heterogeneous elastic solid, illustrated in Figure 7.3.1, and the strain and stress
fields produced by inelastic strains € in Q, Figure 7.3.3, should nevertheless be
carefully noted. In Figure 7.3.1, the eigenstrains are introduced as a 700l to sim-
plify the solution of the problem, whereas in Figure 7.3.3, these are the actual
inelastic strains which may stem from shrinkage, thermal expansion, phase-
transformation, or plastic deformation by slip or twinning. The basic equations
are, however, quite similar, and provide a powerful technique to deal with a
broad class of problems involving defects in homogeneous or inhomogeneous
elastic solids.

As an illustration, assume that Q of elasticity C2 in Figure 7.3.1, actually
undergoes a uniform inelastic deformation which corresponds to inelastic
strains €™, if Q were not constrained by its surrounding elastic matrix. In the
presence of the surrounding elastic matrix M of elasticity C, and when the
farfield stresses and strains are 6° and €°, 6° = C: €9, it then follows that the
actual stress field in € is given by

6=06°+69=CQ: (g0 +ed—gin)

=C:(e°+ed-€"—¢") in Q, (7.3.27a,b)
where
ed=82:(gir+e") in Q. (7.3.27¢)

In (7.3.27a,b), a part of €% in Q is due to the actual inelastic deformation of Q,
i.e., due to €. This part must be defined through the relevant physical laws
which govern the corresponding inelastic deformation. The remaining part of £9
in Q, on the other hand, is due to eigenstrains € which are introduced in order
to homogenize the solid. Upon this homogenization, the uniform elasticity ten-
sor C is used for the entire solid, i.e., for both the elastic matrix and, say, the
elastic-plastic inclusion Q. From (7.3.27) and definition (7.3.17), it follows that

€ = (A2 S9! : €0+ (52— 149) : gin}, (7.3.27d)

Since in general, the relation between € and the farfield uniform strain €° (or
stress 6°) is nonlinear and possibly history-dependent, an incremental formula-
tion is often necessary. Because of the assumed small deformations, the
corresponding rate equations in the present case® follow directly from (7.3.27);
replace €°, €%, and € by their rates.

The formulation may also be done in terms of the eigenstress. Then it is
necessary to define the decrement, 6™°, in the stress due to the inelastic strain €,
by

© The assumption that the matrix is linearly elastic, considerably simplifies the solution of this
problem. For the case when the matrix also admits inelastic deformations, the problem becomes
considerably more complex; see Appendix A of Part 1.
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oit = —CQ: gin, (7.3.28a)
and obtain the consistency conditions,

g=¢g°+gd
=D%:(c°+6¢-c'")

=D:(6°+069-06"-06") inQ, (7.3.28b)
where
ol =T (6" + 6. (7.3.28¢)
Hence, instead of (7.3.27d), the following equivalent relation is obtained:

6" = (B2-TY: {c°+(T2- 1¥): g}, (7.3.284d)

7.4. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE TEN-
SORS: DILUTE DISTRIBUTION

In this subsection, the following two exact relations are applied to an RVE
consisting of an elastic matrix and elastic micro-inclusions: from (7.2.6) when
the overall strain £° is prescribed,

(C-C):e0= z";l £, (C—C%) : % (74.1a)

and from (7.1.9) when the overall stress 6° is prescribed,
_ n _
D-D):o°= 21 fo (D —-D% :c% (7.4.1b)
o=

Then, the average stress % or the average strain £* of each micro-inclusion €,
is estimated in order to obtain the overall elastic parameters of the RVE. For
simplicity, consider the case when all micro-inclusions are either ellipsoidal or
can be approximated by ellipsoids, and are perfectly bonded to the matrix. As in
the cases of microcavities and microcracks, for a dilute distribution of inclu-
sions, interaction effects may be neglected. In the next subsection, the self-
consistent method is used, which includes the interaction effects in a certain
manner. Under the assumption of a dilute distribution of inhomogeneities, the
overall elasticity C and compliance D, are each other’s inverse only to the first
order in the volume fraction of inhomogeneities. The general case is considered
first, and then results for special geometries of inclusions and their distribution
are given.

As in the case of microcavities and microcracks, the case of a prescribed
macrostress X = ¢°, and the case of a prescribed macrostrain E = £°, are treated
separately. In either case, an infinitely extended solid under a prescribed overall
stress G° or strain €°, is considered with an embedded isolated inclusion Q,, in
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order to estimate the average strain and the average stress of a typical inclusion
Q. Since for these estimates the solid is assumed to be unbounded, the pres-
ence of a single inclusion does not affect the overall relations 6° = C : €° and €°
=D : ¢° Therefore, for calculating 6 and €%, on the basis of a single inclusion
in an unbounded matrix, it does not make any difference whether the stress or
the strain is regarded prescribed at infinity. Note, however, that the final overall
elastic parameters in the "dilute estimates”" (but not in the self-consistent case)
depend on whether (7.4.1a) or (7.4.1b) is used.

Denote the elasticity and compliance tensors of Qg by C* and D%, respec-
tively, and set

A= (C-Cx»1:C, B*=D-D%!1:D. (7.4.2a,b)

The Eshelby tensor S and its conjugate T, in general, depend on the aspect ratios
of Q. Hence, denote them by S* and T%, respectively. From (7.3.14c,d), 8¢
and T satisfy

Se+D:Te:C =109, Te+C:S%: D = 1@, (7.4.3a,b)

Then, for a single Q, embedded in an infinitely extended solid, under uniform
stress or strain at infinity, the resulting strain and stress in Qg are uniform and
given, in view of (7.3.20e,f), by

€0 =< g+gd >, = A% (A*—S*) 1 g0,

6%=<0°+0d>, =B%: (B%-T% 1:6° (onotsummed). (7.4.4ab)
From (7.3.19c¢,d), the corresponding equivalence relations are,

C%: A% (A®—S%)1: D = B%: (B*—T®) |,

D®:B%: (B*—T®)1:C = A%: (A%—-S%~!1 (g not summed). (7.4.4c,d)

7.4.1. Macrostress Prescribed

Consider first the case when the surface tractions are regarded prescribed
through (7.1.1) by the macrostress £ = 6°. For a dilute distribution of inclu-
sions, the average stress of each inclusion € is approximated by the uniform
stress of a single inclusion embedded in an unbounded solid with the elasticity
of the matrix material, and subjected to the farfield stress 6° (or strain
€° =D : 0°. From (7.4.4a), it then follows that

G%=C%; A%: (A%-S§%1:D: ¢°, (7.4.5a)
and from (7.4.4b),
6% =B%: (B%—T®!: g°. (7.4.5b)

From (7.4.4c,d), it is seen that these two equations are equivalent. Now, substi-
tution of (7.4.5a,b) into (7.1.9) yields
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(]_)—D):0°={ z'i;l fa(D“—D):C“:A“:(A“—S“)“:D}:GO,

(D-D):c° ={ agl fo (D% — D) : B®: (B*— T%)"! } : G°. (7.4.5¢.d)

Since the resulting equations must be independent of the prescribed 6°, it fol-
lows that

13:{ 14+ 3 fa(A“—SO‘)“} :D,
a=1

D=D :{1(48) - f‘,l o, (B — T%)! } (7.4.6a,b)

o=

Recall that since an unbounded region is considered, the average stress 6* given
by (7.4.5a) is equivalent to that given by (7.4.5b), and hence the overall compli-
ance D given by (7.4.6a) is identical to that given by (7.4.6b).

When all the inclusions are similar,” are all similarly aligned with respect
to the fixed coordinate axes, and have the same elasticity and compliance ten-
sors denoted, respectively, by C! and D, then (7.4.6a,b) reduce to

D={14+f(Al-S)1}:D, D=D:{1@—_f(B-TH!}, (7.4.7ab)
where f is the volume fraction of inclusions,
Al=(C-CY':C, B'=(D-D)!:D, (7.4.7¢,d)

and S! and T! are Eshelby’s tensor and its conjugate, common to all inclusions.

7.4.2. Macrostrain Prescribed

Next, consider the case when the surface displacements are regarded
prescribed through (7.2.1) by the macrostrain E = £°. The average strain in
each inclusion is now approximated by the uniform strain of a single inclusion
embedded in an unbounded solid with the elasticity of the matrix material, and
subjected to the farfield strain €° (or the farfield stress 6° = C: €°). Thus, from
(7.4.4a,b), it follows that

€% =A% (A*—S%1:g0, go=D%:B%:(B*-T*!:C:g° (7.4.8ab)
Substitution of (7.4.8a,b) into the exact relation (7.4.1b) then yields

(C-C): e ={ af:;l £ (Co—C): A®: (Aa—sa)—l} €0,

" Le., the inclusions have the same aspec ratios, but may not be equal in size.



212 CHAPTER III §7.4

(C-C):e° ={ f:l £, (C*—C): D*: B®: (B®— Ty ! ; c} L€°,  (7.4.8¢,d)
o=
and since the prescribed overall strain, €°, is arbitrary,

C=c:f 109~ 3 fo (A% =81,
o=1

C ={ 19+ 3 f, (Ba—Ta)—l} . C. (7.4.9a,b)
oa=1

Again, since an unbounded region is considered, the average strain €* given by
(7.4.8a) is the same as that given by (7.4.8b). Hence, the overall elasticity ten-
sor C given by (7.4.9a) is identical with that given by (7.4.9b).

If all inclusions are similar, with identical elasticity and alignment, as
mentioned in Subsection 7.4.1, then C* = CL, D® = D!, §¢ = SI, and T® = T! for
all Q,. The overall elasticity tensor C becomes

C=C: {14 —f(Al-SI) 1},

C={1®+fBI-T)!}:C. (7.4.10a,b)

7.4.3. Equivalence between Overall Compliance and Elasticity Tensors

In Subsection 7.4.1, two identical expressions are obtained for the overall
compliance tensor, (7.4.6a,b). Similarly, in Subsection 7.4.2, two expressions
are obtained for the overall elasticity tensor, (7.4.9a,b). A dilute distribution of
micro-inclusions is assumed, in arriving at these results. As discussed in Sec-
tions 5 and 6, the overall elasticity and compliance tensors obtained by this
assumption agree only up to the first order of the volume fraction of micro-
inclusions. Indeed, from (7.4.6a) and (7.4.9a),

D:C=1®- ¥ an: fo fp (A%~ S%)!: (AP Sy, (7.4.11a)
a=1p=1
and from (7.4.6b) and (7.4.9b),
C:D=1- & 3 fufy (Be-To: BP-TO) (74.11b)
a=1p=1

Therefore, C and D are each other’s inverse only to the first order in the volume
fraction of micro-inclusions.

In particular, when all micro-inclusions are similar, from (7.4.7a,b) and
(7.4.10a,b), it follows that

D:C = 14— 2 (Al-SIy1: (Al Syl = 1649 1 O(f2),

C:D = 149 —f2 (BI-Th-1: (BI-TY)! = 149 + O(f2). (7.4.12a,b)
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In terms of S%* and T¢, the tensors H* and H can be defined from
(7.4.6a,b), by

He=(A*-S%1:D= -D:(B*-T%!, H= ¥ f,H% (74.13ab)
a=1
and the tensors J* and J from (7.4.8a,b), by
Je= (AC-S9) = —D:(BE-T%:C, JT= 3 1% (74.13cd)
a=1

From the equivalence relations (7.4.4c,d), it follows that
J=H:C, H=J:D. (7.4.13e,f)
Hence, (7.4.11a,b) may be rewritten in terms of the H-tensor, as
C:D=1%-C:H:C:H, D:C=1%-H:C:H:C. (74.14ab)

These relations are exactly the same as relations (5.1.19a,b) obtained for an
elastic RVE with microcavities.

7.5. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE TEN-
SORS: SELF-CONSISTENT METHOD

Consider the self-consistent method for estimating the average stress 6%
or the average strain €% for a typical micro-inclusion €. As explained in Sec-
tions 5 and 6, in the self-consistent method, one considers a typical micro-
inclusion embedded in an unbounded homogeneous elastic solid which has the
yet-unknown overall moduli of the RVE, and then calculates the average stress
or strain in the embedded inclusion. Since an unbounded solid is used, compu-
tation of the average strain and stress does not depend on whether the overall
strain €° or the overall stress 6° is regarded prescribed. Moreover, these overall
strains and stresses are related by the overall elastic parameters, i.e., 6° = C: €°
or €° = D : ¢°, where the unknown overall elasticity and compliance tensors are
denoted by C and D, respectively. The results obtained in Subsection 7.3 now
give the average strain and stress in £, to be

Er=<go+gd >y = A%: (A%— 8% 1:go,

0% =< 0°+ 09 >4 = B®: (B*—T%! : ¢°, (7.5.1ab)
where
A*=(C-C%»1:C, B*={D-D%"!:D. (7.5.1c,d)

In (7.5.1a,b), S* and T are Eshelby’s tensor and its conjugate, for the geometry
of Qg and the overall material properties defined by C and D. From (7.3.13¢,d)
and (7.3.19¢,d), 8* and T satisfy
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S*+D:T*:C=149), To4+C:S%:D =14, (7.5.2a,b)
and tensors A® and B* satisfy
C: A%: (A*—S%!:D = B*: (B*— T,

D*:B%: (B*-T% ' :C=A%: (A®~S%! (o not summed). (7.5.2¢,d)

7.5.1. Macrostress Prescribed

Following the procedure in Subsection 7.4.1, consider first the case when
the macrosiress X = 6° is regarded prescribed. The average stress 6% of the
micro-inclusion € is approximated by the uniform stress of a single inclusion
embedded in an unbounded solid with the yet-unknown elasticity and compli-
ance tensors, C and D. From (7.5.1a,b), the average stress of Q, is expressed in
terms of the overall stress, G°, as

6% =C%: A%: (A®~-S%"!:D: 0",
6% = B%: (B*—T%"!: ¢°, (7.5.3a,b)
and substitution of (7.5.3a,b) into (7.4.1b) yields

(ﬁ—D):o":{ azi‘,l fy(D*~D): C®: A%: (A% — S%)-! :13} . 6°,

(D-D):0°= { 3 f,(D*-D): B%: (B*—T%! } : G°. (7.5.3¢,d)
o=1
Since ©° is arbitrary, the overall compliance D becomes

D=D+ 3 f,(D%-D):C*: A%: (A%~ §%!: D,
o=1

D=D+ ¥ f,(D*-D):B*: (B*— T, (7.5.4a,b)
a=1

Since the average stress 6% given by (7.5.3a), is the same as that given by
(7.5.3b), the overall compliance tensor D given by (7.5.4a), equals that given by
(7.5.4b).

_ When all the inclusions are similar, from (7.5.4a,b) the overall compliance
D becomes

D=D+f(D'-D):Cl:A': (A'-S)1: D,

D=D+{(D'-D):B!: (B! - T}, (7.5.5a,b)
where
Al=(C-C)':C, B!'=D-D)':D, (7.5.5¢,d)

and S! and T! are Eshelby’s tensor and its conjugate, common to all inclusions.
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7.5.2. Macrostrain Prescribed

Next, consider the case when the macrostrain E = €° is prescribed. In a
manner similar to the preceding subsection, from (7.5.1a,b) express the average
strain of the micro-inclusion £, in terms of the overall strain £° as

g9 = A% (AU 5% g0,
€% =D%: B*: (B*—T%:C:¢°. (7.5.6a,b)
Substitution into (7.4.1a) now yields

(C-C): e :{ az;“,l f, (C*=C): Ka:(Ka—"sIa)—l} - go,

(C-C):¢° :{ 3 £, (C*—C): D*: B*: (B*—T%"! : E} L€° (7.5.6c.d)
a=1
Since €° is arbitrary, the overall elasticity tensor Cis given by

C=C+ 3 £, (Co—C): A%: (A*—§%,
o=1

C=C+ i fo (C*—C) : D*: B*: (ﬁ“—'i‘“)" :C. (7.5.7a,b)
oa=1

Again, since the average strain €* given by (7.5.6a), is the same as that given by
(7.5.6b), the overall elasticity tensor C given by (7.5.7a), equals that given by
(7.5.7b).

When all inclusions are similar, (7.5.7a,b) reduce to

C=C+f(C'-C): Al: (Al-S) I,

C=C+f(C'-C):D':B': (B'-T) ! :C. (7.5.8a,b)

7.5.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained
by Self-Consistent Method

As discussed in Sections 5 and 6, the overall compliance and elasticity
tensors obtained by the self-consistent method are each other’s inverse, hence
the name self-consistent. To see this, consider (7.5.7a) and multiply from the
right by C~1, and from the left by C~! = D, to obtain

D=C'+ ¥ f,D:(C*=~C): A% (A%—§%1:C"!
o=1
=C'- ¥ f,(D*-D):C*: A%: (A%—§%)1:C. (7.5.92)
a=1

Now, multiply (7.5.4b) from the right by 13‘1, and from the left by D1 =C, to
arrive at
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C=D"'+ ¥ f,C:(D*-D):B*: (B*—T%!: D!
a=1

=D!- ¥ £,(C*~C):D*:B*: (B*-T%!: D (7.5.95)
a=1

Comparing (7.5.9a) with (7.5.4a), or (7.5.9b) with (7.5.7b), observe that
C'=D, D'=C (7.5.9¢,d)

Therefore, the overall compliance tensor D given by (7.5.4a,b), and the overall
elasticity tensor C given by (7.5.7a,b), are each other’s inverse, exactly.

When all micro-inclusions are similar, a similar procedure yields, from
(7.5.8a),

D=C'+f(D-DY):Cl: Al: (AI-Sly!:.C, (7.5.10a)
and from (7.5.5b),
C=D!+f(C-C):D:B!: (B'-T)!: DL (7.5.10b)

The equivalence of (7.5.10a) and (7.5.5a), and (7.5.10b) and (7.5.8b), ensure the
equivalence of D and C.

In terms of S* and T, the tensor H can be defined from (7.5.3¢,d), by

H= Y f,(D*-D):C%: A%: (A*-§%:D
a=1

= il fo (D*—D): B%: (B%—T%", (7.5.11a)
o=
and the tensor J from (7.5.6¢.d), by

T= - ¥ fuD:(C*-C): A%: (A%— S !
oa=1

-3 £,D:(C*-C):D*: B*: (B*—T%!: C. (7.5.11b)
a=1

From (7.5.11a,b) (or from the equivalence relations (7.5.2¢,d)), HandJ satisfy
J=H:C, H=IJ:D. (7.5.12a,b)
These relations correspond to (5.1.22b,c) exactly, and hence,

D=D+H&=C=C-C:J. (7.5.13)

Formulation of effective moduli of elastic composites has been considered
by a number of investigators. Related to the formulation presented in this sub-
section are contributions by Kerner, (1956), Hill (1963, 1965a,b), Willis (1964,
1977, 1980, 1981, 1982), Walpole (1966a,b, 1967, 1970, 1981), and Wu
(1966).
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7.5.4. Overall Elasticity and Compliance Tensors for Polycrystals

In certain problems it may not be feasible to distinguish between the
matrix and the inclusions in an RVE. For example, if an RVE is a polycrystal,
each crystal may be treated as an inclusion embedded in the remaining crystals
and hence, all crystals have the same significance. In this case there is complete
syminetry in treating each crystal as an inclusion. Here the concept of a matrix
with embedded inclusions is no longer relevant. Nevertheless, it is possible to
apply the exact relations (7.4.1a,b), in order to estimate the corresponding
overall elasticity and compliance tensors. However, on physical grounds, the
assumption of a dilute distribution of inclusions no longer applies, whereas the
self-consistent scheme may be used. Indeed, the self-consistent method was ori-
ginally proposed by Hershey (1954), Kroner (1958, 1967) and Kneer (1965), to
estimate the overall moduli of polycrystals; earlier work on the elastic properties
of polycrystals is due to Voigt (1928) and Reuss (1929); the self-consistent
method was later applied to composites by Budiansky (1965) and Hill (1965a,b).
Other related work in this area is by Hill (1952), Hashin and Shtrikman (1962),
Peselnick and Meister (1965), Morris (1970, 1971), Zeller and Dederichs
(1973), Korringa (1973), and Gubernatis and Krumhansl (1975); see also
reviews by Hashin (1964, 1983), Waitt el al. (1976), Kroner (1980), and Mura
(1987).

For the self-consistent estimate, a single crystal is embedded in an
unbounded uniform matrix which has the effective overall parameters of the
polycrystal. The local average stresses and strains in the embedded crystal are
then calculated and used to obtain the overall moduli. To apply (7.4.1a,b), how-
ever, the significance given to the matrix (whose elasticity and compliance ten-
sors have been denoted by C and D, respectively) must be removed.

To this end, regard the matrix in (7.4.1a,b) as the zeroth inclusion, Qg,
with the corresponding elasticity and compliance tensors C° and DY, respec-
tively. The volume fraction of Qg is fo = 1 —f. For simplicity assume that all
micro-inclusions are similar, and denote the common Eshelby tensor and its
conjugate by S' and T', where the superbar signifies that these tensors
correspond to the yet-unknown overall elasticity or compliance tensors C and
D. Then, rewrite (7.5.4a) and (7.5.7b), as

D-D0= f; fo (149 —DO: C%) : {149+ 8L (D : Co— 1¢49)}-1

o=1

= 3 £, (199 -CO: Do) : {149+ T (C : D%~ 1¢49) )1
o=1
(7.5.14a,b)
where A% and B® are eliminated using (7.5.1c.d). Since

¥ f=1, (7.5.15)
oa=1

multiplying (7.5.14a) from the right by C, observe that
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0=1%-D%: E—OZO fo (149 — DO : C) : {1149+ 8: (D : Co— 1¢49))}-!
= 1<4s>—020 £, {149+ S: (D : Co— 1¢49))} -1
-D9:C :{ 1(45)—020 foD:Co: {1494 S1: (D : Co - 1(45))}—1}
= {149 -DO: C: (1¢49 - 8!}

;{ 149 i £, {1649+ S1: (D : Co— 1649)}-1 } (7.5.14¢)
a=0

In a similar manner, (7.5.14b) yields

0={149-CO: D: (1% - T}
:{ ) i £, {1649 + T1: (C : D% — 1649))}-1 } (7.5.14d)
oa=0

Since the tensor (149 —C0: D : (149 — TI™)) is invertible,? the following expres-
sions are obtained for the overall elasticity and compliance tensors C and D,
which do not distinguish between the matrix and the inclusions:

i fo {1(4s)+§l . (]3 1 Co— 1@9)}-1 = 1G9
a=0

io £, (149 +T1: (C : D*— 1¢9)}-1 = 1649), (7.5.16a,b)
o=

It is noted that (7.5.16a) and (7.5.16b) are identical. The proof is straight-
forward. The equivalence relations between S! and T are

S4+D:T:C=14), TI+C:S:D=1®. (7.5.17a,b)
Using (7.5.15), rewrite (7.5.16a) as

0= io £, S':(D:Co—149): {199+ 81: (D: Co—199)}! (7.5.18)

With the aid of (7.5.17a), multiplication of (7.5.18a) from the right by D and
from the left by C yields,

0= 3 fo (T'—149): (C: D= 149): {149+ T (C: D% — 149)}-1,
a=0
(7.5.18b)

Now multiply (7.5.18b) from the left by T!: (T! — 149)-1, to obtain (7.5.16b).

8 Similar comments apply when DP or C? is replaced by D* or C*.
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7.6. ENERGY CONSIDERATION AND SYMMETRY OF OVERALL
ELASTICITY AND COMPLIANCE TENSORS

In this section, the elastic strain energy stored in an elastic RVE is exam-
ined. The RVE contains a linearly elastic and homogeneous matrix and a set of
linearly elastic and (each) homogeneous inclusions with their possibly different
elasticity tensors. From constitutive relations (7.3.3a,b), the complementary
strain energy density function, w°(6), and the elastic strain energy density func-
tion, w(g), are defined by
ic :D:o inM
wi(o) =1 |

50! D*: ¢ in Qg,

%e :C:e inM

w(g) = (7.6.1a,b)
=€£:C%:¢ in Q.

2
The components of the elasticity and compliance tensors satisfy the following

symmetry conditions:

Dijui = Djin = Djjix = Dij» G = Cjixt = Cijix = Caijo

[—

D = Djffa = Dific = D, il = Cfila = Ciffic = Clly.- (7.6.1¢c~1)

When the macrostress Z = ¢° is regarded prescribed, the overall complementary
strain energy function W¢ = W¢(o°) is defined by

| |

¢{0) = C N — 2 . = —

We¢(o°) =< we > 2<<s.x»:> >

When the macrostrain E = €° is regarded prescribed, the overall strain energy
function W = W(€°) becomes

WE) =<w>= %< c:£>= %6 1 E°. (7.6.2b)
It is recalled that ¢ in (7.6.2a) is the stress field produced by the applied overall
stress 6°, while € in (7.6.2b) is the strain field produced by the overall strain €°.
In general, these resulting stress and strain fields are unrelated. Also, in general,
the average strain € in (7.6.2a) is unrelated to the average stress G in (7.6.2b);

see Subsections 2.5 and 2.6 for related comments and explanation.

G°: €. (7.6.2a)

The overall compliance tensor D and elasticity tensor C may be defined
by the overall complementary and strain energy functions, W¢ and W, through

W¢e(o°) = —6" D:o°, W(e°) = 8" C:eo (7.6.3a,b)

The tensors D and C then are the compllance and elasticity tensors of a homo-
genized RVE which contains the same amounts of elastic energy as the hetero-
geneous solid, under a uniform stress 6° and a uniform strain €°, respectively.
If the estimates of D and C are made in a consistent manner, then C and D must
be each other’s inverse. Moreover, like D and C, D and C defined by (7.6.3a,b)
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have the following symmetry properties:

Di = Djin = Dijik = Ditij, Gt = Gjimi = Gijix = Cae (7.6.3c,d)
On the other hand, the D- and C-tensors defined in Subsection 7.4 by (7.4.6a,b)
and (7.4.9a,b), and in Subsection 1.5 by (7.5.4a,b) and (7.5.8a,b), need not and
may not necessarily satisfy the symmetry conditions Dizq = Dyij and Ciiq = C-
The aim now is to establish the corresponding energy relations, considering the
prescribed macrostress and prescribed macrostrain cases separately.

7.6.1. Macrostrain Prescribed

When the prescribed macrostrain is E = €°, from the results obtained in
Subsection 7.2, the average stress is exactly given by

G=<06>=C:e2+ ¥ £,(C*—C): &%, (1.6.4)
o=1

where €% = < € >, is the average strain of the oth micro-inclusion £,. There-
fore, the right-hand side of (7.6.2b) is calculated as follows:

c:e°={C:€e°+ i f, (C*—C): €%} : g°. (7.6.52)
o=1
From (7.6.3b) and (7.6.5a) it now follows that
€0:C:e9={C:€%+ 3 f,(C*—C): 8%} :eo. (7.6.5b)
o=1
Since the response of the RVE is linearly elastic, from (7.2.7) it follows that
(C*-C):€*= -C:Jo:g° (7.6.5¢)
Hence,
£:C:e0=€°: {C— ¥ £, C:J%} :e. (7.6.6a)
a=1

This is an exact result which must hold for any prescribed constant symmetric
€°. It thus follows that

C=sym{C+ il £, C:Jo}, (7.6.6b)
o=
where sym stands for the "symmetric part of", i.e., for a fourth-order tensor T,

sym (Tyu) = %(Tijkl + Taiy)- (7.6.6¢)

Expression (71.6.6b) is an exact result which must hold for any linearly
elastic RVE. Approximations become necessary in order to estimate the J-
tensor. The homogenization method discussed in Subsections 7.4 and 7.5 may
be used to estimate J* For example, when the distribution of inclusions is
dilute, the J*-tensor is estimated by embedding £, in an unbounded matrix of
elasticity C, with the overall strain €° or the stress 6°= C: €° prescribed at
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infinity. This then yields
Je=(D*-D):C*: A%: (A*—S§%)!, (7.6.72)
where A% is given by (7.4.2a). Hence,

C = sym { C: (19— 21 £, (A%—S@)1} } (7.6.7b)

For the self-consistent estimate, on the other hand, the J*-tensor becomes
Jo=J=(D-D%:C%: A%: (A%—S%)-1, (7.6.8a)

where the notation follows that in Subsection 7.5, e.g., (7.5.1c). Then, from
(7.6.6b),

C = sym { C+ gl £y (C—C): A%: (A% — S } (7.6.8b)

Expressions (7.6.7b) and (7.6.8b) respectively are the symmetric parts of
expressions (7.4.9a) and (7.5.7a). In a similar manner, one can show that the
energy-based definition of the overall elasticity tensor C is given in terms of B%
and T by the symmetric pait of (7.4.9b) for the dilute-distribution case, and by
the symmetric part of (7.5.7b) for the self-consistent case, i.e., by

C=sym{ 199+ 3 f(BE-T}:C}, (7.6.70)
a=1
for the dilute case, and by

C =sym { C—azi:l f, (C*—C):D>: B*: (ﬁ"‘—'f“")’l : E}, (7.6.8¢)

for the self-consistent case.

7.6.2. Macrostress Prescribed

When the prescribed macrostress is X = ¢°, from the results obtained in
Subsection 7.1, the average strain is exactly given by

E=<e>=D:0°+ ¥ f,(D*-D): &9 (7.6.9)
o=1

where 0% = < G > is the average stress of the oth micro-inclusion €, Then,
the right-hand side of (7.6.2a) is computed as

6°:€=0°: (D:6°+ 3 f,(D*—D):5%}. (7.6.10a)
oa=1
Hence, from (7.6.3a) and (7.6.10a), it follows that
6°:D:6°=06°: (D:06°+ 3 f,(D*-D): 6%}. (7.6.10b)
o=1

Since the response of the RVE is linearly elastic, from (7.1.11) it is noted that
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(D*-D): 0% =H"*: 0°, (7.6.10c)
and hence,
Gotl_):G°=G°:{D+ Zn: f, H*} : o°. (7.6.11a)
o=1

This expression is an exact result which must hold for any constant and sym-
metric ¢°, leading to

D =sym{D+ il f, H*). (7.6.11b)
e

Again (7.6.11b) is an exact result. To estimate H*, however, one is often
forced to introduce simplifying approximations; see Subsections 7.4 and 7.5.
For example, when the distribution of micro-inclusions is dilute,

(D%—D)! : H* = B®: (B%— T%)!

=C%: A% (A*~S8%"1:D (o notsummed), (7.6.12a)

where the notation follows that in Subsection 7.4. Hence, two equivalent
expressions for D are obtained,

D =sym [D: (149~ 3 fu BT},
oa=1

D = sym { {169 4 aﬁl f, (A%—S%1}: D } (7.6.12b,c)

For the self-consistent method,

(D*-D)!: H* = B*: (B*— T%!

=C% A®:(A*—S*1:D (0 notsummed), (7.6.13a)

where the notation follows that in Subsection 7.5. Again, two equivalent
expressions are obtained,

D =sym{ D+ 3 f(x(D‘*—D):ﬁ‘*:(l_BO‘—'f“*)“l},
a=1

D =sym{ D+ 3 f,(D%—D):C%: A%: (A%—§%1: ﬁ}. (7.6.13b,c)
oa=1

7.6.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained
on the Basis of Elastic Energy

In Subsection 7.6.1, it is shown that the overall elasticity tensor defined in
terms of the overall strain energy, W = €°: C: £%2, is the symmetric part of the
overall elasticity tensor defined directly in terms of the average stress and strain,
o = C: &% see (7.2.8) and (7.6.6b). Similarly, in Subsection 7.6.2, the overall
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compliance tensor defined in terms of the overall complementary strain energy,
We¢=06°:D:06%2, is the symmetric part of the overall compliance tensor
defined in terms of the average strain and stress, € = D : ¢°; see (7.1.12) and
(7.6.11b). For comparison purposes, let C and D be the overall elasticity and
compliance tensors defined for the average strain and stress, i.e., those given by
(7.2.8) and (7.1.12), respectively. As noted, these tensors may not be sym-
metric. Let C® and D® be defined by

C® = sym(C), DO = sym (D). (7.6.14a,b)

Then, the overall elasticity and compliance tensors based on the overall elastic
and complementary energies, i.e., those given by (7.6.6b) and (7.6.11b), are
equal to C® and D®), respectively.

As shown in Subsections 7.4.3 and 7.5.3, the C- and D-tensors satisfy cer-
tain equivalence relations: for the dilute distribution,

C:D=1%+0(f2), D:C =14 +0(f2); (7.6.15a,b)
and for the self-consistent method,
C:D=1%, D:C=1%, (7.6.16a,b)

From (7.6.14a,b), C® : D® and D® : C® can be calculated directly. Let C®
and D® be the antisymmetric parts of C and D, ie., C® =C-C® and
D® = D-D®. Then,

CO:DO = C: D~ (T : DY +T® : DW+T®: D®),

D®:C®=D:C—-{D®:CO®+D®:C®+D®: C@}, (7.6.17a,b)

As is seen, tensors C®® and D® may not satisfy the same equivalence relations
as C and D, if C® and D® are non-zero. Therefore, in general, the overall elas-
ticity and compliance tensors estimated from the energy-based definitions may
not be each other’s inverse. The inconsistency here is a direct result of the
approximation involved in estimating the average strain or stress in the inclu-
sions.

For the dilute distribution, however, C® and D@ are zero. This is
because the Eshelby tensor S¢ satisfies’

(C:8%HT=C:8°, (S*:D)T =S8*:D. (7.6.18a,b)

Since C and D are symmetric, the tensors inside the parentheses of (7.6.7b) and
(7.6.12¢) are symmetric. Hence, C® and D® are equal to C and D, and are
each other’s inverse up to the first order in the volume fraction of micro-
inclusions.

However, the symmetric parts of the overall tensors estimated by the
self-consistent method may not be each other’s inverse. Even though the
Eshelby tensor 8% is such that C:S* and S*:D are symmetric, as shown in
(7.6.18a,b), the tensors inside the parentheses of (7.6.8b) and (7.6.13¢) are not

® The proof is given in Section 11.



224 CHAPTER III 8§76

necessarily symmetric. Hence, from (7.6.8b) it follows that

D-C®!=D: sym{ 3 £, (C*=C): A% (K“—ga)‘l} : CO1
a=1

# sym { D: 2“;1 £,(C=—C): A%: (A%~ §%1 : CO-1 } (7.6.192)
o=
and from (7.6.13b),

C-D®-1=C: sym{ i f,(D*—D): B*: (E“—Ta)‘l} : DOl
a=1

# sym { C: 2“;1 f,(D*-D): B*: (B*—T%)! : DO-! } (7.6.19b)
o=

Comparison of (7.6.19a) with (7.6.13c) and (7.6.19b) with (7.6.8c), shows that
C® and D® are not, in general, each other’s inverse, even though C and D are.

7.6.4. Certain Exact Identities Involving Overall Elastic Energy

In Subsections 7.6.1 and 7.6.2, the symmetric overall elasticity and com-
pliance tensors are obtained, using the exact results of Subsections 7.1 and 7.2.
These exact equations are derived directly from the average strain and stress in
the RVE. On the other hand, from the evaluation of the average strain and com-
plementary strain energies of the RVE, alternative exact equations for the
overall elasticity and compliance tensors are derived, which are necessarily
symmetric tensors. In this subsection, two exact identities are presented for the
elastic energy of the RVE.

As a starting point, compute

<o:e>y=<¢€:C:e>vy=<0:D:6>y

=<0.€>—

ﬁM=

1 fu<o:€>q (7.6.20)
Then, consider the case when the macrostrain E = €° is regarded prescribed.
From (7.6.2b) and (7.6.3b), the right-hand side of (7.6.20) becomes

— 1]
<G:E>— i fa<o:e€>,=€°:C:e°- ) fy<e:C%:€>,
=1 a=1

(7.6.21)
and hence
e°:§:e°—<e:C:e>M=a21fa<e:C“:e>a, (7.6.222)
where

<8:C:8>M=Cijk1<€ij€k1>M,
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<&:C%: &>y = Cfy < gj€u >0 (7.6.22b,c)

Next, consider the case when the macrostress X = ¢° is prescribed. From
(7.6.2a) and (7.6.3a), the right-hand side of (7.6.20) becomes

<c:t-:>—azi:1 fa<c:s>a=c°:5:c°—azi:1 fu<0:D*: 6 >y, (7.6.23)
and hence,

c°:5:c°—<c:D:c>M=ai:1fa<c:D“:c>a, (7.6.24a)
where

< 6:D: 06 >y = Dju < 6jj0u >m, < €:D%: 0 >¢ = D} < 6;;0u >0
(7.6.24b,c)

These two expressions, (7.6.19a) and (7.6.21a), are exact. As is seen from

(7.6.19b,c) and (7.6.21b,c), the average quantities,'’ < £0€ >y, < €®E€ >,
< 080 >M, and < 6®0 >, must be estimated. For example, one may approxi-
mate as follows:

< EQE > = EPREX— < (E—EX)R(E — EX) >, = EXQEX, (7.6.25a)
Then, for the prescribed macrostrain €°, < £8€ > is estimated as

<EQE >¢ = {A*: (A*—SY1:e°} @ {A%: (A®—S%)1: g0}, (7.6.25b)
by the dilute distribution model, or as

< EQE >q = {A%: (A%—S%)1: g9} @{A%: (A% — S¥)!: £°}, (7.6.25¢)

by the self-consistent model. For the other average quantities, < EQE >y,
< 0®0 >M, and < 6®06 >, similar approximations may be admissible.

By definition, the C- and D-tensors in the exact expressions (7.6.22a) and
(7.6.24a) are symmetric, i.e., Ciji = Cuyj, and Djjq = Dy, However, these ten-
sors may be unrelated to the symmetric overall tensors, C® and D, obtained in
Subsections 7.6.1 and 7.6.2. The C®- and D®-tensors satisfy

— 11
€0:(CW:e9)—g°:<Cig>y= Y fo€2:<Crig >,
a=1

c°: (5(5) :09-0%:<D:o>y= 2 fo 6°: < D%: 6 >,. (7.6.26a,b)
a=1

From a comparison of (7.6.26a) with (7.6.22a) and (7.6.26b) with (7.6.24a), it is
seen that C® and D® (which are derived from the average strain and stress) are,
in general, different from C and D (which are derived from the average elastic
and complementary energies). These differences are the direct consequence of

1 In view of the linearity of the RVE, the average quantity < EeE >y relates to E°GEC,
through a constant eighth-order tensor. Similar comments apply to < £2€ >y. Note that < 686 >y
and < 6906 >y have similar relations to 6°e6°.
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the modeling approximations.
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SECTION 8 EXAMPLES OF ELASTIC SOLIDS
WITH ELASTIC MICRO-INCLUSIONS

In this section, several specific examples are worked out in some detail in
order to illustrate the results of the preceding section.

8.1. RANDOM DISTRIBUTION OF SPHERICAL MICRO-INCLU-
SIONS

Suppose all micro-inclusions in an RVE are spherical (Figure 8.1.1), or
they can be approximated as spheres. Assume that the matrix and the inclusions
are both linearly elastic and isotropic, but do not have the same elastic parame-
ters. If the distribution of the micro-inclusions is random (whether it is dilute or
not), the overall response of the RVE is isotropic. Hence, in order to express the
overall elasticity and compliance tensors, it suffices to obtain two independent
overall elastic moduli as functions of the volume fraction of the inclusions and
the elastic moduli of the matrix and the inclusions. As in Subsections 5.1, 6.4,
and 6.6, a dilute distribution of inclusions is considered first, and the
corresponding overall elastic moduli of the RVE are estimated. Then, the self-
consistent method is used in order to take into account (in a certain approximate
sense) the interaction effects, which are completely neglected by the assumption
of a dilute distribution.

To this end, first observe that an isotropic fourth-order tensor can be
expressed in terms of two basic isotropic fourth-order tensors (Hill, 1965a,b),

Figure 8.1.1

A portion of an RVE containing
spherical micro-inclusions
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E'= % 19g1®, E’= —%1<2>®1<2>+ 164, (8.1.1a,b)

The tensors E! and E? satisfy
E':E! = E!, EZ:E? = E2, E!:E2=E2:E!'=0. (8.1.1c~e)
Moreover, for arbitrary real numbers (a;, a3), (b}, by), and (p, q), it follows that

p(ai E' +a; E?) +q(b; E! + by E2) = (pa; +gb;) E! + (pas + gby) E?,
(a E!+ aj Ez)l(bl E!+ b, Ez) = (a;by) E!'+ (aszby) Ez,

(a1 E'+ 2, E?)! = a7 E!' + a3 E% (8.1.1f~h)
These properties can be used to reduce certain tensorial operations on isotropic
tensors to scalar operations on the corresponding coefficients of E! and E2.

In terms of E! and E?, the elasticity and compliance tensors of the matrix
M and a typical micro-inclusion €, are expressed as

_ 1 2 =1l gyl g
C=3KE'+2uE? D 3KE +2HE’ (8.1.2a,b)
and
o — agRl aR2 D“:L 1 L 2
C* =3K*E! +2u*E?, 3K E'+ 2 E-, (8.1.3a,b)

where K and [ are the bulk and shear moduli of M, and K* and pu® are the bulk
and shear moduli of Q. In a similar manner, the overall isotropic (for random
distribution of inclusions) elasticity and compliance tensors, denoted by C and
D, are expressed as

C=3KE'+2iE, D=-LE+_LE

C=3KE!'+2pE? D= 3KE +2HE’ (8.1.4a,b)
where K and [1 are the overall bulk and shear moduli. Therefore, the tensorial

equations involving (C, C% C) or (D, D% D) are reduced to scalar equations
for (K, K% K) and (i, u*, p).

8.1.1. Effective Moduli: Dilute Distribution of Spherical Inclusions

For a dilute distribution of micro-inclusions, a typical micro-inclusion Qg
is embedded in an unbounded homogeneous solid with the elasticity and compli-
ance tensors C and D. When all micro-inclusions are spherical, the common
Eshelby tensor and its conjugate are given by

S“ESI=81E1+82E2, T“ETI=(1—81)E1+(1—82)E2, (8.1.5a,b)

where the coefficients s; and s; are functions of the Poisson ratio,
v = 3K -21)/2(3K + ), of the matrix M,

_ l+v _ 2(4-5v)
Sl——3(1—v)’ Sy = 50 =) (8.1.5¢,d)

Since in the present case the moduli expressed in terms of T! are identical with
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those expressed in terms of S, hereinafter only the expressions in terms of S!
are employed.

First consider the case when the macrostress X = ¢° is prescribed. From
(7.4.6a) the overall compliance tensor D is given by

D= {14+ ¥ f,(A*-S)'}:D, (8.1.62)
a=1

where

K
< Ka E!+ m ”u E2. (8.1.6b)

Then, in terms of E! and E2, D is rewritten as

A%=(C-C%':C=

n

D= {1+ ; fa(iK —s)) 1} E!
1 2 1) -1y ®g2
— {1 fo - E°. .1
+ o { +a2=:1 (H—Ha s~} (8.1.6¢)

Hence, from (8.1.4b) and (8.1.6¢), the overall bulk modulus, K, and shear
modulus, [, become

K 2 K 2 K _
PP L e b U e L 8
B3t ) =1 3 (B s
m agl (x(u_ua $2)7'} agl (x(u_ua $2)

(8.1.7a,b)

Next consider the case when the macrostrain E = €° is prescribed. From
(7.4.9a), the overall elasticity tensor C is expressed in terms of E! and E2, as

C=C:{1%— i Ae—Sh

n
- % fu (e s E!
o= -

+2u {1 z (—L—Sz) }E2. (8.1.8)

Hence, from (8.1.4a) and (8.1.8), the overall bulk, K, and shear, g, moduli
become

K _,_< K oy
K- 2 et 0
JTENE O Y A LN
m agl “(u—u“ $2) (8.1.9a,b)

As is seen from (8.1.7a,b) and (8.1.9a,b), the overall bulk modulus given by
(8.1.7a) and (8.1.9a) and shear modulus given by (8.1.7b) and (8.1.9b), agree to
the first order in the volume fraction of micro-inclusions.
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As a special case, let all micro-inclusions have the same elasticity, with
the common bulk and shear moduli, K! and ul. If the macrostress is regarded
prescribed, (8.1.7a,b) yield

K

X _ ) l1- B B R R
g = U+ T K s m {1+f(u—u‘ 2717,
(8.1.10a,b)
and if the macrostrain is regarded prescribed, (8.1.9a,b) yield
XK__ N N T Y Y e
K -1 f(K g S0 m 1 f(u—u‘ s2)', (8.1.11a,b)

where f is the volume fraction of micro-inclusions.

8.1.2. Effective Moduli: Self-Consistent Estimates

If the distribution of micro-inclusions is random and the interaction
effects are to be included to a certain extent, then the self-consistent method
may be used to estimate the overall response of the RVE. Since each micro-
inclusion is assumed to be embedded in an unbounded solid which has the
unknown overall elasticity and compliance tensors, C and D, the Eshelby tensor
and its conjugate become

S*=S'=FEl+5E,, T*=T'=(1-5)E'+(1-5)E% (8.1.12ab)
where s; and s; are defined in terms of the overall Poisson ratio, v =
(3K-2[)2(3K+ ), by

glzi, §2= 24_5_!‘)

3(1-v) 15(1-v)
Again, since the formulation in terms of T! is equivalent to that in terms of S,
only the expression involving Slis employed.

(8.1.12¢c,d)

Now, using the results obtained in Subsections 7.5.1 and 7.5.2, the overall
elasticity and compliance tensors are obtained, which are each other’s inverse.
From (7.5.4a), the overall compliance tensor D is given by

D=D+ zn: fy (D*—D): C*: A%: (A*—-S)! : D, (8.1.13a)
o=1
where
A= (C-C%!:.C=-K E+_E g2 (8.1.13b)

K-K®* U —u®
Hence, D in terms of E! and B2 becomes

_ l n — Ko K - | 1
D= Tl ; fo - K Ko (K—KO‘ s E
I Z £, P_H_(_!*_—sz) VE2. (8.1.13¢c)

2 u [INTETCR TR
Or, from (7.5.7a), the overall elasticity tensor Cis expressed as



§ 8.1 ELASTIC SOLIDS WITH MICRO-INCLUSIONS 233

C=C+ ¥ £, (C*-C): A%: (A*-Sly!
o=1

K*-K K

3K+ $ £ K K __se
i R-K* K-ko )
2+ 3 fauH(—L_SZ) B2 8.1.13d)

Either from (8.1.13¢) or (8.1.13d), the overall bulk modulus, K, and shear
modulus, j, are given by

L Ko _ LG
g =1+ 2 fo G- DI+ (G- D),

ﬁ_= 1+021 fa(%i—l){1+(%i—l)§2}“. (8.1.14a,b)

As discussed in Subsection 7.5.4, the matrix of an RVE with n spherical
micro-inclusions may be regarded as an "inclusion” in the self-consistent
method. Since all micro-inclusions have the common Eshelby tensor, S!, from
(7.5.164) it follows that

$ ot (145 () B+ 3 £ {145, (&2 — 1)) B2 = B+ B2

d=1 K d=1 K
(8.1.15)

Therefore, the overall bulk modulus, K, and shear modulus, }, satisfy the fol-
lowing equations:

< (K* -
f 1+ ?—1 1=1,
3 fa 14515 D)

3 fo (145 -0 =1, (8.1.16a,b)

These coincide with Budiansky’s results (1965).

When all micro-inclusions consist of the same material, denote their com-
mon bulk and shear moduli by K! and p!, and from (8.1.14a,b) obtain
K _ 1— K(K K (= K

=57

K K(K K K-K!
Bo_q_pBu-pH Ft 5!
| u(u u‘)( s L. (8.1.17a,b)

It is noted that although K and u given by (8.1.10a,b) or (8.1.11a,b) are decou-
pled, K and jt given by (8.1.17a,b) are coupled, since 5; and s, the coefficients
of Eshelby’s tensor S!, are determined by the unknown overall Poisson ratio,
v = (3K-2p)2(3K + ).

Figure 8.1.2 shows the graph of the overall bulk and shear moduli of an
RVE containing spherical micro-inclusions of a common elasticity, where
p/p = 50, and v = v = 0.3. Solid curves indicate the self-consistent estimate,
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given by (8.1.17a,b), and dotted curves are the results for a dilute distribution,
given by (8.1.10a,b) and (8.1.11a,b). For small f, these curves coincide;
(8.1.11a) and (8.1.11b), respectively, are asymptotic expressions for K/K and
w/, as f goes to zero.

4 4

3L 3L
DD DDE
R/K 21 ST i 2| o sC

(| —="" ooz 1— bp:E

VOLUME FRACTION OF INCLUSIONS

Figure 8.1.2

Overall bulk and shear moduli of an RVE with randomly distributed spherical inclusions;
KVYK=p/u=50and v =v=1/3.

SC = self-consistent

DD:X = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed

8.2. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING
ALIGNED REINFORCING-FIBERS

In this subsection, composite materials are considered which consist of a
linearly elastic matrix reinforced by linearly elastic long and stiff microfibers.
The microfibers are aligned in, say, the x3-direction, having a random distribu-
tion in the x;,x;-plane. Hence, the composite is, for example, stiffer in the x3-
direction than in the x;- and x,-directions, when the fibers are stiffer than the
matrix. The microfibers may be approximated as long circular cylinders, and, in
this manner this type of composite material is modeled by an elastic RVE which
contains a random distribution of infinitely long aligned microfibers. The aim
then is to estimate the overall elastic parameters of this RVE in plane strain and
antiplane shear. Because of the random distribution of the fibers parallel to the
x3-direction, the composite is transversely isotropic.
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For simplicity, assume that both the matrix and the reinforcing microfibers
are homogeneous, linearly elastic, and isotropic. Then, the analysis of the two-
dimensional inplane and antiplane deformations of the composite can be based
on the Eshelby tensor S for an isolated infinitely long circular cylindrical inclu-
sion embedded in an unbounded homogeneous solid. In the self-consistent
model, the estimate of the average stress and strain in a typical inclusion is
affected by the anisotropy which results from randomly distributed but aligned
fibers. Therefore, the inplane overall elastic moduli obtained by the self-
consistent model are coupled with the overall moduli associated with the x3-
direction; see Subsection 5.1. As pointed out before, even for the self-consistent
method, the validity of the results is limited to rather small values of the volume
fraction of inhomogeneities. Therefore, in the case of the aligned but randomly
distributed fibers, the induced anisotropy, because of the aligned fibers, should
be rather small, unless there is considerable mismatch between the fiber and
matrix stiffness. In the case of a small anisotropy, instead of a transversely iso-
tropic overall response, one may ignore the anisotropy, and hence the coupling,
treating the problem as a pseudo-isotropic two-dimensional one.

On the other hand, as in Section 5, by the introduction of the parameter K,
the three-dimensional formulation can be reduced to the corresponding two-
dimensional counterpart exactly, and then the two-dimensional results may be
examined appropriately by a proper interpretation of the overall effective k.

To this end, the necessary two-dimensional Eshelby tensor is obtained
from that associated with a circular cylindrical inclusion, with its generator
parallel to the x3-axis, embedded in an infinite, transversely isotropic, linearly
elastic material. Regarding a circular cylindrical inclusion as a limit of an ellip-
soid with a; = ap and a)/a3 = ay/a; — 0, the nonzero components of Eshelby’s
tensor, S, for this homogenized infinite material are as follows:

§1111 =§2222—> §1122=§2211—> ﬁ, §1212—> T]KIE_)’

2+K
2(1+x)°

§3311 = §3322 = §333 -0, §1313 = §2323 - (8.2.1a~¢e)

1
4 *
where K =3 -8U(V/E+V#/E;) with E, V, and L being the effective inplane
Young modulus, Poisson ratio, and shear modulus, and E3 and V3 being the

effective Young modulus in the x3-direction and Poisson ratio in the x;,x3- and
X;,X3-directions; and S,Jkl = Sji = S,ﬂk If the infinite body is 1sotroplc1 K is

replaced by 3 —4v, with v being the Poisson ratio, and these coefficients become

Sii11 = Sa222 & % Stz = Sau1 = Si2i2 = 8(1—43)

»

1-4v
8A=v)’
Si133 = 8233 = 83333 0, Si313=Sm23 > %, (8.2.1f~j)

where Sijkj = Sjikj = Sijlko

! (8.2.1f~j) can be obtained directly from the components of the Eshelby tensor for an isotro-
pic material. In particular, Sjj33 = Sg233 = 0.
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In this subsection, plane strain state is assumed.” Hence, in view of
(8.2.1a~d), S'is defined by

Sia = 5ty Sudut 7o 3 Gudi+&id  Gik1=1,2)
(8.2.2a)
and for antiplane shear,
§1313 = §3[113 = §1[331 = §3[131 = §2[323 = §3[223 = §1;332 = §31232 = %

Stss = Shizs = Shisa = Shisy = Skais = Shus = Sk = Shs = 0. (8.2.3ab)
For an isotropic case, in view of (8.2.1f~j) define

Sha = 5o didut TE e TGRSHESY (i k1=1,2)
(8.2.2b)

where € = 3 —4v, and for antiplane shear, obtain

L -l —ql. —l —ol  _cl_  _el  _qr _ _1
S1313 = S3113 = Si331 = S3131 = S2323 = S3223 = S7332 = Sipz = Ve

Stis = Sdips = Slisp = Sdis0 = S3313 = Sha1z = Sksz1 = Shs = 0. (8.2.3¢,d)

In this subsection the two-dimensional overall properties of the RVE are exam-
ined, i.e., the effects of S{;33 and S1,3; or Sj33 and Sky3; are excluded.

Since the reinforcing microfibers are randomly distributed in the x;,x,-
plane, the overall response of the RVE is isotropic in this plane. Hence, all the
tensors (i.e., C, C, C, S|, etc.) involved in this particular setting are two-
dimensionally isotropic. In Subsection 8.1, two base tensors, E! and EZ2, are
introduced in terms of 1P 1@ and 1“9 in (8.1.1a,b), in order to express three-
dimensional isotropic tensors and to reduce tensorial manipulations of these iso-
tropic tensors to simple scalar operations on the coefficients of E! and E2. Since
a two-dimensional isotropic tensor T is expressed as

Tijkl =T Sij 6j|+T2 %(Sik 6j|+6ﬂ Sjk) a, j, k,1=1,2), (8.2.4)
define E! and E? in terms of 61j 6](1 and (Sik 6j1 + 6“ Sjk)/Z, by
Eijlkl = %Sij dul, Eijzkl = - %Sij O+ %‘(Sik 5j1 +0; 5jk)- (8.2.5a,b)

Note that the coefficients of 8; 8y in E! and E? are +1/2 for two-dimensional
isotropic tensors, while they are £1/3 for three-dimensional isotropic tensors.
The tensors E! and E? satisfy

El:E!=El, E2:E?=E? El:E2=E2:El = 0. (8.2.5¢c~e)

? While a plane strain state is assumed for infinitely long fibers, the corresponding plane stress
solution can be obtained by simple modification of the results; see Subsection 8.3.
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In terms of E! and E?, the two-dimensional isotropic elasticity and com-
pliance tensors of the matrix material, denoted by C and D, are expressed as

= 'Rl 2 = 1 1 L 2
C =3K'E'+2uE-, D= IR E'+ pm E (8.2.6a,b)
and those of the reinforcing microfibers, denoted by C! and D!, as
Cl=3K'El+20'E%, D'=_L_E+- LB
m 37 B B (8.2.7a,b)

Then 3K’/2 is interpreted as the two-dimensional bulk modulus; the factor 3 in
(8.2.6a,b) is introduced to make these equations the same as (8.1.2a,b). Here K’
and K" are defined by

1 (1-v-2v2)/E for plane strain
3K’ { (1-v)E for plane stress, (8.2.6c)
and
1 [ =vI=2(vH2/E! for plane strain
3KT - { (1 - vh/E! for plane stress. (8.27¢)

Note that the corresponding shear modulus does not change under plane strain
or plane stress, i.e., )L = E/2(1 +v) and p! = EY2(1 + VY.

In a similar manner, the two-dimensional overall elasticity and compli-
ance tensors, denoted by C and D, can be expressed in terms of E! and E?, as

C=3KE'+20E, D= 3;_(, E'+ ZL E2, (8.2.8a,b)
where K’ is defined by
(1-VvYE -2v#/E; for plane strain
3K E{ (1-VYE for plane stress. (8.2.8¢)

Note that [l remains the same for plane strain or plane stress.

Since the Eshelby tensor S'or S, given by (8.2.3), is two-dimensionally
isotropic, its conjugate T' or T! is also two-dimensionally isotropic. In terms of
E! and E2, S' and T! are expressed as

S'=5E'+5, B, T'=(-s)E'+(1-5)E, (8.2.92,b)
and S'and T! as

S'=s;E'+, B2, T!=(1-s)E'+(1-s) B, (8.2.9¢,d)
where

-2 - x 2 ok 3

=T RTToE ST The 2T T (829%-h)

where K = 3 — 8[L(V/E + V#/E3) and k = 3 — 4v for plane strain.
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8.2.1. Effective Moduli: Dilute Distribution of Fibers

As in Subsection 8.1, first consider an RVE which contains a random and
dilute distribution of aligned reinforcing microfibers, and assume that the
interaction between neighboring fibers is negligible. Hence, estimate the aver-
age strain and stress of each fiber by the uniform strain and stress in an isolated
microfiber embedded in an unbounded homogeneous solid which has the matrix
elasticity and compliance tensors C and D. When the farfield stress and strain
o° and €° (which satisfy 6°=C:€° or €°=D:06°) are prescribed for this
unbounded solid, the exact uniform strain and stress in the isolated microfiber
can be calculated in terms of the corresponding Eshelby tensor SI. Hence, the
average stress and strain of a typical microfiber in the composite, denoted by €!
and G, are approximated by

gl=Al:(Al-Sh-l:g0, oI=Cl:Al:(Al-S)!:D:0° (8.2.10a,b)
where Al is the two-dimensional fourth-order tensor
Al=(C-Ch!:C. (8.2.10¢)

The overall compliance and elasticity tensors, D and C, are determined from
(8.2.10): when the macrostress ¢ = ¢° is prescribed, from (7.4.7a),

D= {149+ (Al-S))'} : D; (8.2.11a)
and when the macrostrain E = €° is prescribed, from (7.4.10a),

C=C: {14 —f(Al-SI)1}, (8.2.12a)
where f is the volume fraction of the microfibers, and the two-dimensional
fourth-order identity tensor, (8ix 8; + 8 8i)/2, is denoted by 1¢49),

In terms of E! and EZ2, the tensorial equation (8.2.11a) reduces to

Le+-Le=_L

R Etop B Ul (g

KII - Sl)_l} El

1 18 -1 |2
+ 5 {1+f - E?, 8.2.11b
2“ { (u“ul 2) } ( )

and the (8.2.12a), becomes

3K B!+ 2 B2 = 3K’ {1-f (o—pr K’I -s)™'} E!
+2u {1—f(EfW—s2)—1} E2. (8.2.12b)

Therefore, the overall elastic moduli K’ and [ are obtained: when X = o° is
prescribed,

K = (+f (B

K/ 1 _Sl) } I= l_f( T _Sl)_1+o(f2)7

K’ K’
B {1ttt ey
m {1+ (u_ul s2)7} (!J—!JI s2) 1+ 0(f%);  (8.2.13a,b)

and when E = €° is prescribed,
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WI

K = l_f( K/I _51)41’
B sy (8.2.14a,b)
M n—p

8.2.2. Effective Moduli: Self-Consistent Estimates

Next consider the case when the distribution of aligned reinforcing
microfibers in the X|,Xp-plane is random, and the interaction between the
microfibers is to be included using the self-consistent method. From (8.2.9) and
the overall Poisson ratio v, the Eshelby tensor S' is defined for an infinitely long
circular cylinder embedded in an unbounded solid, by

S'=%5,E'+5,E2, (8.2.152)

where

|
o
Al

> s = (8.2.15b,¢)

l+x’
The overall compliance and elasticity tensors C and D are determined
from (8.2.16): when the macrostress X = G° is prescribed, from (7.5.5a),

D=D+{(D'-D):C!: Al: (A!-S)':D

R 744! w7’ _
Lol ¢l K=K K _gyyp

T3 'K K K -K*' K-K!
—{—+f }_‘—“—(—“——sz)} (8.2.16)
Hop—pt

and when the macrostrain E = €° is prescnbed, from (7.5.8a),

C=C+f(C'-C):Al: (A'-8Y)!

, , KT-K’ K -\
=3{K'+fK g (K'—K'I -5)"} E!
2 {u+fi J*_&(—L—s) VE 8.2.17
H+ip o o % ( )

As is shown in Subsection 7.5, the above two equations, (8.2.16) and (8.2.17),
are identical, giving the same overall moduli K’ and (. Hence,

K REK-KY K _ K’
s f B8 _ I=1—f
K KE-KD K-k " e

—-s)~ 1+ 0O(f?),

B _pR@- u)(
u

w75 = G e O,

(8.2.18a,b)
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Figures 8.2.1 shows the graphs of the overall moduli K’ and {1 as functions
of the volume fraction of the microfibers f, obtained by the assumption of a
dilute distribution, (8.2.13a,b) and (8.2.14a,b), and by the self-consistent
method, (8.2.18a,b). As is seen, for small £, the three estimates agree.

4 5
3L _ 4 _
sc 3t o
K'/K 2+ ,.:”DD:Z n/p , DD::E:::SC
11— DD:E 1L ""PDE
0 L 1 L 1 0 1 1 ! t
0 01 02 03 04 05 0 01 02 03 04 05
f f

VOLUME FRACTION OF INCLUSIONS

Figure 8.2.1

Two-dimensional overall bulk and shear moduli of an RVE with aligned circular
cylindrical inclusions; K'VK' = u/u =50 and v = v = 1/3

SC = self-consistent

DD:X = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed

8.2.3. Effective Moduli in Antiplane Shear: Dilute-Distribution and Self-
Consistent Estimates

In this subsection, the overall shear moduli of the RVE in the x;,x3- and
Xz,X3-planes are estimated for antiplane shearing. Due to the isotropy of the
matrix and the reinforcing microfibers, and the random distribution of the
microfibers in the x;,X;-plane, the overall shear moduli in the X{,X3- and X3,X3-
planes are the same, i.e.,

i3 = oz = Ua. (8.2.19)

Furthermore, the fourth-order tensors involved in this antiplane shear problem
(ie.,C,C, S, etc.) are expressed by means of the two by two identity matrix
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Hg1= [(l) ﬂ , (8.2.20)

so that all tensorial equations are reduced to the corresponding scalar equations
for the coefficients of this matrix; see Subsection 6.4.3.

From this observation, the four tensorial equations, (7.4.7a) and (7.5.10a)
for the dilute distribution, and (7.5.5a) and (7.5.10b) for the self-consistent
method, are reduced to four scalar equations, similar to (8.2.11) and (8.2.12)
obtained in Subsection 8.2.1, and (8.2.16) and (8.2.17) obtained in Subsection
8.2.2, respectively. Hence, the overall shear modulus L3 for the antiplane shear
is given by the same equation that gives the overall shear modulus [ for the
plane strain case: from the assumption of a dilute distribution, when 63 or 0%; is
prescribed,

Jﬁi ={1 +f(ﬁ —sy) )l =1 —f(ﬁ —s3)7 L+ O(f2); (8.2.21)
and when €{; or £3; is prescribed,

B p (B sy (8.2.22)
W n—p

and by the self-consistent estimate, when either, say, o3 or, say, €f; is
prescribed,

_ = _
£3__1_f Hs(u— W) M3 I_§3)—1= l—f(Eg’—l’—LT—S3)_l+0(f2),

H wps—ph) T Hz-p
(8.2.23)
where, from (8.2.3),
L _ —Ql. - —e-l
S{33=...= 8333 =... =83 T
L _ot _ _=_1
Si313= ... = Sy33 = . =83 = (8.2.24)

It is instructive to compare the overall shear modulus 3, for the antiplane
shear, given by (8.2.21) and (8.2.22) for the dilute distribution, and by (8.2.23)
for the self-consistent method, with the overall shear modulus [ for the plane
problem, given by (8.2.13b) and (8.2.14b) for the dilute distribution, and by
(8.2.18b) for the self-consistent method. When the Poisson ratios of the matrix
and that of the composite, v and V, are 1/2, the E?-coefficients of the Eshelby
tensors S! and SL, i.e., s, and S,, reduce to 1/2. In this case, [L3 coincides with L.
In general, 0 € v < 1/2 and 0 £ v £ 1/2, and hence

Sy > 83, SH > §3. (8225a,b)

If the reinforcing microfibers are stiffer than: the matrix, ie., p! >, it follows
that [3 > l1, according to the assumption of a dilute distribution; compare
(8.2.21) with (8.2.13b), and (8.2.22) with (8.2.14b). Furthermore, expecting
IL> 1 in this case, note that |13 > [t according to the self-consistent estimate;
compare (8.2.23) with (8.2.17b). This stiffer response of the RVE in the xz-
direction is reasonable on physical grounds.
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Figure 8.2.2 shows the graph of [13 with respect to the volume fraction of
microfibers f. As is seen, for small f, the three results, (8.2.21), (8.2.22), and
(8.2.23) agree with each other. Note that these estimates are valid only for small
values of f. In this connection, recall that the results of the dilute-distribution
model may actually violate the exact theorems of Subsection 2.6, further reveal-
ing the limitation of these estimates.

4
3L
DD:Z
pa/p 2 SC
1 DD:E
O | { |

0 005 01 015 02

f

VOLUME FRACTION OF INCLUSIONS

Figure 8.2.2

Two-dimensional overall anti-shear moduli of an RVE with aligned circular
cylindrical inclusions; K'VK' = p/u =50 and Vi = v = 1/3.

SC = self-consistent

DD:Z = dilute distribution with macrostress prescribed

DD:E = dilute distribution with macrostrain prescribed

Early work on elastic properties of reinforced elastic materials is by
Dewey (1947), Hashin (1959, 1962, 1965, 1970, 1979), Paul (1960), Hill (1963,
1964, 1965a,b), Hashin and Rosen (1964), Budiansky (1965), Adams et al.
(1967), Walpole (1970, 1981), Christensen and Waals (1972), Korringa (1973),
Chu et al. (1980), and Willis (1983). An interesting observation by Hill (1964)
for any two-phase composite with aligned cylindrical fibers, is that not all the
corresponding effective moduli are independent. For isotropic constituents, Hill
provides two relations which connect the overall parameters, leading to only
three independent overall moduli for this kind of transversely isotropic compo-
sites. The procedure has other potential applications, some of which have been
pursued by Dvorak (1990) and Dvorak and Chen (1989).
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8.3. THREE-DIMENSIONAL ANALYSIS OF PLANE STRAIN AND
PLANE STRESS STATES

In the preceding subsection, a plane strain state is assumed, and an
infinitely long fiber is used as a model for analyzing the two-dimensional
inplane problem. The results, however, can also be used for analyzing an
inplane problem in plane stress. This and related issues are examined in this
subsection.

8.3.1. Reduction of Three-Dimensional Meoduli te Two-Dimensional
Moduli

For simplicity consider a case when the macrostress, X = G°, is pre-
scribed. As shown in (7.4.7a), the overall compliance tensor, D, is given by

D=(14+fA):D, (8.3.1a)
where
u _{ {(cc-cht:c-st! dilute distribution (8.3.1b)
“l{c-cht.c-8l}! self—consistent. -

The matrix form of these tensors is

1)
[T [0w) ] , (8.3.2)

[l =1 0,1 1)@

where [(...) @] and [(...))] are thee by three matrices. Hence, normal stresses
(normal strains) and shear stresses (shear strains) are decoupled, and it suffices
to examine only [(...){V] for plane strain or plane stress.

In terms of [(...){], the average strain, € = D : 6°, is given by
TP =D [P = (1 LP1+F AL D D [wD], (8.3.3)
where [Y{P] = [E11, €22, €33]7, [121V] = [0}, 0%, 6%]T, and [1 P ] is a three by
three identity matrix.

As mentioned in Subsection 5.1, the nominal two-dimensional matrix
which relates the normal inplane strains, [Y;, ¥2]T, to the normal inplane
stresses, [TP, 1917, is given by

[PaplT DR [Pep] = [PaplT (LR 1+E AL D [DEPT [P ], (8.3.42)
for plane strain, and by
[PaplT [DE 1 [Pgp) = [Papl™ (1 1+F[AD D) [DEPT [P i), (8.3.4b)
for plane stress; see (5.1.5a,b) and (5.1.6a,b). Note that [P ] is now defined by
) o 1 0
[Pa]=[Pap]l(Deca) = 0 1 , (8.3.5)

—D3/ D33 —D3y/ D
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where the quantity in parentheses denotes the argument of [P, ]. Therefore, if
the three-dimensional A is obtained from a three-dimensional analysis of an
RVE, then, the nominal two-dimensional compliance tensor can be obtained
using (8.3.4a) for plane strain and (8.3.4b) for plane stress. However, in a two-
dimensional analysis, only the nominal part of A, i. e, [PaplT (1] +£ [A ()
[D{P1 [Py ] for plane strain and [Pap]T ([1 5] +£ [A (”]) [Dé})] [Prb] for plane
stress, is estimated. Moreover, this nominal part is often given in terms of the
nominal compliance tensor, that is,

[Papl™ (1P 1+E AP D [DEP] [Psy ]
[Popl™ ([1R1+F AR [DPT [P

function of [P ap)[Dpq)[Pgb] or [PapllDpqllPqp]  plane strain
function of [P 3p][D pgl[P gb] oF [P ap][D pgl [P gp) plane stress.

(8.3.6)

Therefore, the estimate of the overall compliance tensor changes, depending on
whether plane strain or plane stress conditions are assumed.’

8.3.2. Two-Dimensional Nominal Eshelby Tensor

Consider now a two-dimensional nominal Eshelby tensor, denoted by S’,
which is obtained from the three-dimensional Eshelby tensor. Note that, in
matrix form similar to (8.3.3), the strain field produced by an eigenstrain tensor,
€=_S:¢", is expressed as

VO] = [SE1 [w®], (8.3.7)

where [Y{)] = [€11, €22, €33]T and [va ] = [e1], €25, €x3]T. It is assumed that €33
vanishes in plane strain. Hence, with the aid of [P ] and [P 4, 1(Scq), a two by

two matrix for the two-dimensional nominal Eshelby tensor is given by*
[San] = [PaplT [SEPT [P gp1(Sca)- (8.3.8a)

In particular, if components Si3(= Si33) (i not summed) of Eshelby’s tensor van-
ish as in (8.2.1), then (8.3.8a) becomes

[Sa] = [PaplT [SSHT P gp). (8.3.8b)
The nominal Eshelby tensor used in Subsection 8.2 is obtained in this manner.

Now, consider the stress produced by an eigenstrain tensor, ¢ =
C:(S—1")):¢". In matrix form, © is expressed as

? Similar comments apply when the overall strains are prescribed, E = £°.

4 Note that the argument of [P 5, ] now is the relevant components of [S ).
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(1] = [CHTASELT- 116D v, ®8.3.9)

where [T{"] = [0}, O, 033]T. If it is assumed that G3; vanishes in plane stress,
then, with the aid of [P,,] and [P 4, ](Scq), a two by two matrix for the two-
dimensional nominal Eshelby tensor, S, is obtained to be,

[Sap]=[Papl IS 1P ap1(C : (S — 199))y). (8.3.10)

Some attention must be paid to the argument of the matrix [P,,]. Since 15" in
(8.3.9) vanishes, the s2rgument must therefore be the relevant components of
C: (S —1¥9)), as indicated.

It is seen that the two-dimensional nominal Eshelby tensor for plane strain

(or plane stress) is obtained by assuming that £33 (or 633) produced by £* van-
ishes. However, the resulting two-dimensional Eshelby tensor is not the same as
that obtained by reducing (149 +fA) with A = {(C-C)1:C-S}-! or
= {(C-Cly1:C-S'}"}, to the corresponding two-dimensional tensor; see
Subsectlon 8.3.1. Indeed, the overall moduli obtained with the aid of the nomi-
nal Eshelby tensor (8.3.8) for plane strain, differ from those obtained through
the nominal Eshelby tensor (8.3.10) for plane stress. This inconsistency does
not occur if the overall moduli are obtained directly by using the nominal part of
(169 +f A) However, especially for an anisotropic case, the computation of
(149 + £ A) (or the Eshelby tensor itself) is more complex. In this case, plane

approximations may be used , as discussed above.’

8.3.3. Computation of Neminal Eshelby Tensor for Plane Stress

As shown in the previous subsection, the two-dimensional Eshelby tensor
used in Subsection 8.2 is the nominal Eshelby tensor for plane strain, obtained
from the Eshelby tensor for a cylindrical fiber in a transversely isotropic
material. In this subsection, the two-dimensional nominal Eshelby tensor for
plane stress is computed.

The matrix form of C for a transversely isotropic material is

_ Cin €l2 Cj13
[CP1=| Ci2 Cii Cis |, (8.3.11)
Ci3 Ci3 Cs33

and Cp’s are given by (3.1.13h~1), with E, Es, v, and v; replaced by E, Es, V,
and Vv, respectively. Hence,

® The inconsistency is due to the plane approximation, and is derived from the noncommuta-
tivity of certain matrix operations; for example, [P, ]T[A élé)][qu] = [PplT{I(C -CHPIICP]
= SPNUPw) # (AP I ACR - ICEPHP D ([Prs CONPwD - ([qu]T[Sér')][Prb])}“-
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[CP1ASL1-1PD = 575
2C1—K(C11+C12) 2C11=K(C11+Cp) S13(Cri+Ci2) —2(1+%)C 3
x| 2C1=K(Cii+C2) 2C12—K(C11+Ci2) S13(C1i+C12) —2(1+K)C13) .
2(1-1)C13 2(1-%)C3 2813C13-2(1+K)C33

(8.3.12)

__ Although 51133 = 52233 is not given in (8.2.1), due to the symmetry of
C: S, it is obtained to be

4C 133 S 4C;

Siigs= ———132 =—— 8.3.13a,b
" i+ Cin BT Ch+Cy ( )
Hence, the two by three matrix [P, ] for plane stress is
o 1 0
[P 1((C: (S -14N)P) = 0 _ 1
(1-xC3 _ (1-xC3

S13C13—(1+€)C33 §15C13—(1+%)C33
(8.3.14)

Since k =3 —8(V/E +V4/E3), the nominal Eshelby tensor is obtained
from (8.3.10), to be

3+v _ 1+V(1_V32_E_)_1 _1-2v 1+V(1_V32T§_)_1

5% ] 4 8 E; 4 8
1= 1-2v 14V, _wE 1 34V _ 14V o E
7 Ty UTVE)T g g ~Vig)
(8.3.15a)
In particular, if the material is isotropic, (8.3.15a) becomes
| 5-4v-2vZ —1+42v-2v?
[San1= BA—-v) | —1+2v-2vZ 5-4v-2v2 (8.3.15b)
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SECTION 9 UPPER AND LOWER BOUNDS FOR
OVERALL ELASTIC MODULI

In this section the focus is again on an RVE which consists of a linearly
elastic matrix and linearly elastic micro-inclusions. In Section 7, eigenstrains or
eigenstresses are introduced to define an equivalent homogeneous solid for a
heterogeneous RVE. The stress and strain fields in the equivalent homogeneous
solid depend on the distribution of the corresponding eigenstrains (or eigens-
tresses). For the exact eigenstrain (or eigenstress) field which satisfies the con-
sistency conditions, the resulting stress and strain fields in the equivalent homo-
geneous solid coincide with the actual stress and strain fields of the original
heterogeneous RVE. It is easier to seek to solve this equivalent homogeneous
solid problem than the original heterogeneous one. Furthermore, the strain and
complementary strain energy functionals of the equivalent solid, when regarded
as functionals of the eigenstrain (or eigenstress), are stationary for the exact
eigenstrain (or eigenstress). Depending on the heterogeneity of the original
RVE, these functionals provide global maximum or minimum values for the
actual total strain and complementary energy functionals. This remarkable
result relating to the elastic energy of the equivalent solid was obtained by
Hashin and Shtrikman (1962a,b), and is called the Hashin-Shtrikman variational
principle. Its formulation in terms of both eigenstress (also called polarization
stress) and eigenstrain (also called polarization strain) is given by Hill (1963)
who develops these principles from the classical variational theorems of elasti-

city; see Section 19, Part 2.!

It is still difficult to obtain the exact eigenstrain and eigenstress fields
which produce in the equivalent homogeneous solid the actual stress and strain
fields of the original heterogeneous RVE. However, with the aid of the varia-
tional principle, approximate eigenstrain (or eigenstress) fields which yield strict
upper and lower bounds for the overall parameters of the RVE can be con-
structed. Willis (1977) has generalized the Hashin-Shtrikman variational princi-
ple using the Green function of an unbounded equivalent homogeneous solid.
He has sought to construct upper and lower bounds for the overall parameters of
the heterogeneous solid. Willis (1981, p.18) comments that the approximations
involved in using the Green function of the unbounded domain may render the
results, more as plausible estimates than rigorous bounds. It turns out that the
general theorems of Subsection 2.5.6, i.e., Theorem I and II, can be used to
show rigorously that two out of four possible bounding expressions that result
from the generalized Hashin-Shtrikman bounds, as obtained with the aid of the
approximate Green function, remain rigorous bounds. These new results are dis-
cussed in Subsection 9.5. Other related contributions are by Hashin (1965,

! See also Subsection 13.5.
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1967), Walpole (1966a,b, 1969, 1981), Korringa (1973), Willis and Acton
(1976), Kroner (1977), and Wu and McCullough (1977).2

First, the Hashin-Shtrikman variational principle, as generalized by Willis,
is presented in this section. Two integral operators, A and T, are defined which
determine the stress and strain fields in the equivalent homogeneous solid pro-
duced by a prescribed eigenstrain or eigenstress, respectively associated with the
uniform traction and linear displacement boundary data. In terms of A and T,
the strain and complementary strain energy of the equivalent solid are defined as
functionals of the eigenstrain and eigenstress, respectively. Then, Willis® for-
mulation is followed, the Green function of the equivalent solid is introduced,
and the exact expressions for the stress and strain fields produced by the eigen-
strains or eigenstresses are formulated. The upper and lower bounds are
obtained in terms of integral operators A and I'. Then, approximations of these
integral operators are introduced, and a solution method is outlined. In Subsec-
tion 9.5, the Hashin-Shtrikman variational principle is generalized for boundary
data other than uniform tractions and linear displacements, and the correspond-
ing generalized bounds are obtained. With the aid of Theorems I and II of Sub-
section 2.5.6, these bounds are then related to the bounds for the uniform trac-
tion and linear displacement boundary data. It is proved that two out of four
possible approximate expressions that result are indeed rigorous bounds. Expli-
cit, computable, exact upper and lower bounds for the overall moduli are then
given when the composite is statistically homogeneous and isotropic. Finally, it
is shown in Subsection 9.6 that these new observations lead to universal bounds
on two overall moduli of multi-phase composites, valid for any shape or distri-
bution of phases. Furthermore, it is established that the bounds are valid for any
finite elastic solid of ellipsoidal shape, consisting of any distribution of inhomo-
geneities of any shape and elasticity. In Section 13, it is proved that the same
bounds emerge for multi-phase composites with periodic, but otherwise com-
pletely arbitrary, microstructure (see Subsection 13.5).

For historical reasons, the bounds on the overall properties in this section
are based on the Hashin-Shtrikman variational principle. An alternative formu-
lation of exact computable bounds is to use the universal Theorems I and II of
Subsection 2.5.6, together with proper choices of the reference elasticity or
compliance tensors; this is presented in Subsection 9.5.6. These bounds are
valid for any finite elastic solid of ellipsoidal shape, consisting of any distribu-
tion of inhomogeneities of any shape and elasticity. Theorems I and II of Sub-
section 2.7 are used in Subsection 9.7.2 to formulate bounds on parameters
which define nonmechanical properties (e.g., conductivity and resistivity ten-
sors) of composites.

2 More recently, Accorsi and Nemat-Nasser (1986) have used the Hashin-Shtrikman variation-
al principle to obtain bounds on the overall elasticity and instantaneous elastic-plastic moduli of
composites with periodic microstructures; see Sections 12, 13, and 14 for detailed accounts of some
basic results for heterogeneous solids with periodic microstructure.
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9.1. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE

The Hashin-Shtrikman variational principle is formulated for a general
linearly elastic heterogeneous RVE. The elasticity and compliance tensors are
denoted by C” and D', respectively, where C’ = (D")"! or D’ = (C")~!. They are,
in general, functions of the position vector X, i.e.,

C=Cx), D =Dx). (9.1.1a,b)
These tensors satisfy the following symmetry conditions:
Cij = Cjint = Clji = Clay,  Dfijin = D = Diyjix = Dy (9.1.1¢c,d)

In particular, when the RVE consists of a linearly elastic homogeneous matrix
and n distinct linearly elastic homogeneous micro-inclusions, C” and D’ become

,_[C inM (D inM
¢ ‘{ca inQq D _{DO‘ in Qg ©1226)

where C and D, and C* and D are the elasticity and compliance tensors of the
matrix M and the micro-inclusions Qg (00 = 1, 2, ..., n), respectively.

9.1.1. Macrostress Prescribed

First consider the case when the RVE is subjected to uniform tractions
produced by the constant macrostress X = ¢°; see Figure 9.1.1a. From the
averaging theorem,

0 =<0 >=0° (9.1.3a)
and the overall compliance tensor of the RVE, denoted by D, is defined by
g=<e>=D:o°. (9.1.3b)

c: v

Figure 9.1.1a

Heterogeneous RVE of volume V,
bounded by 9V, subjected to

uniform tractions t = v.G°
t=v.o°

<0 >=0°

Note that C”" and D’ are variable, and there may exist material discontinuity sur-
faces in V. However, the tractions and displacements must remain continuous
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across these surfaces. Hence, their presence does not affect the averaging
theorems which are derived with the aid of the Gauss theorem; see Subsection
2.4. In view of this observation, the existence of material discontinuity surfaces
does not require any special treatment in the present context.

Now consider an equivalent homogeneous solid with an overall geometry
identical to that of the RVE, and introduce the eigenstrain field necessary for
this homogenization. Let the homogenized solid consist of a comparison
material, with constant elasticity and compliance tensors C and D. Note that in
(9.1.2a,b), C and D are the elasticity and compliance tensors of the homogene-
ous matrix material. Here C and D are associated with an arbitrary elastic com-
parison material which is used for the homogenization of the original hetero-
geneous RVE. Introduce the eigenstrain field € = €*(x) such that, in the
equivalent homogeneous solid with elasticity and compliance tensors C and D,
the same stress and strain fields as exist in the original heterogeneous RVE are
produced. Hence, there follow the consistency conditions,

o(x) = C'(x) : &(x) = C: {&(x) - €'(x)},

&(x) = D'(x) : 6(x) = D : 6(x) + £7(x). (9.1.4a,b)

Then, in terms of the eigenstrain £°(x), the stress field in the equivalent homo-
geneous solid, o(x), which coincides with that in the original heterogeneous
RVE, is given by

o(x) = {D’'(x)-D}": €'(x). (9.1.4c)
Now consider the fact that the boundary tractions are uniform. If the per-
turbation stress 9(x) is defined in the equivalent homogeneous solid through
od(x) = o(x) - G°, (9.1.5a)
then,
v.c¥x)=0 ondV; (9.1.5b)

see Figure 9.1.1b. Because of linearity, the perturbation stress, o4(x), in

Figure 9.1.1b

Homogenizing eigenstrain field £°(x),
distributed in homogeneous V of
elasticity C, produces disturbance
fields which leave boundary oV of <6 >=0°
V traction-free, ¢ = v.6¢ =0
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general, is a linear functional of the distributed eigenstrains. Then, formally
define an integral operator A(X; ...) which determines ¢9(x) in terms of £*(x),
through

od(x) = - A(x; €. (9.1.6a)
The operator A(x; ...) ( denoted by A for short) has the following properties:

1) A depends on the geometry and material properties of the equivalent
solid, but not on the prescribed (or required) eigenstrains;

2) the stress and strain fields determined by A are statically and kinemati-
cally admissible;

3) the stress field produced by A satisfies the zero-traction boundary condi-
tions (9.1.5b).

In terms of Green’s function G(x, y) which satisfies traction-free boun-
dary conditions on 9V, integral operator A is expressed as

A €) = ~C:{ [, VioGix, ). (Vy-(C: €'} dVy ~€'®) |, (9.1.6b)
or in component form,

Ay €)= ~Cipg| [, 5-Gos(x, ¥) (- Comaeid) dV, —e5(o) .

_a—;p_ Yr
(9.1.6¢)

The integral operator A is related to the integral operator S which has been
introduced by (7.3.7) in Subsection 7.3. While S yields the perturbation strain
field €9 associated with a given eigenstrain field €*, operator — A yields the
corresponding stress field 69. Hence,

A(x; €)= - C: {S(x; &) - " ()},
S(x; £ = -D:Ax; £)+£"(x). (9.1.6d,e)

In general, with respect to the averaging operator < >, the integral opera-
tor A is self-adjoint, i.e., for arbitrary eigenstrain fields e*® = e*()(x) and
e"@ = e"@(x) in the equivalent homogeneous solid,

< e M(x): A(x; €'D) > = < " D(x) : A(x; e"D) >, (9.1.7a)

The proof is straightforward. Let 64® = ¢gd@(x) and £4® = gd@)(x) be the
stress and strain fields produced by the eigenstrain €*®, Then from (9.1.4) and
9.1.6),

£4@(x) = D : ¢4¥(x) + " (¥)(x),

69O(x) = — A(x; e'@) (a=1,2). (9.1.7b,c)

The eigenstrain €*® produces self-equilibrating body forces through
V.(C:e"®). Hence, 64® = — A(x; €"®) is statically admissible. Since ¢9(®
and €4® are statically and kinematically admissible, by the averaging theorem,
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do) . gdB) 5 = 1 d(@)_ yd(B)
<G“.85>—Vjavta.u5ds, (9.1.7d)

where t4® and ud® are the tractions and displacements produced on dV by
64 and £4®), respectively. From the boundary conditions associated with A,
(9.1.5b), the surface integral in the right-hand side of (9.1.7d) vanishes. Hence,
from (9.1.7b~d),

< e @ Ae'®) > = < (g4 -D: ¢d®) : (- o) >
=< od®:D:cgiP >

=<(A:e"):D:(A:e"®) >, 9.1.7e)

The symmetry of D with respect to the first and second pairs of its indices now
implies (9.1.7a). The symmetry embedded in (9.1.7a,e) is displayed by the nota-
tion

Ax; €9 = (A : £9)(%), (9.1.6f)
and (9.1.7a) is rewritten as follows:
<ef®:(AeB)>=<e@: A:e'® >, 9.1.70

In this notation, the operation A:e"® is to be understood in the sense of
(9.1.6b,c.f), ie., A:e*® = (A:e*®)(x) = A(x; e"®). Notation (9.1.7f) is used
in the sequel. Note from (9.1.7e) that

<:A:>=<:(A:D:A): > 9.1.7g)

From (9.1.4¢) and (9.1.6a), the consistency condition (9.1.4a) is replaced
by the following consistency condition written for the eigenstrain field:

D'(x)-D)!:e"X)+(A:e)x)-0c°=0. (9.1.8)

This consistency condition is a linear integral equation which defines the eigen-
strain field necessary for homogenization. The solution to this integral equation
is the exact eigenstrain field which gives the actual stress and strain fields of the
original RVE.

Now a functional is constructed for the eigenstrain field in the equivalent
homogeneous solid such that the exact eigenstrain that satisfies the consistency
condition (9.1.8) renders this functional stationary. Using the symmetry of A,
define a functional, I, for an arbitrary eigenstrain, e*, by

Ke*; 6°) = %< e {(D-D)!'+A}:e">-<6°:e" >, (9.1.92)
where <e*:A:e*>=<e’:(A:€)>=<(A:e"):e" > The overall stress G°

is regarded as fixed. The boundary conditions imposed on A then lead to
< (A :e") >=0. The first variation of functional I is given by

ol(e*; 6°) = < de” :{ D' -D)1+A}:e" —60} >, (9.1.9b)
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where 8e” is an arbitrary variation in the eigenstrain field. As is seen, for the
exact eigenstrain € which satisfies (9.1.8), i.e., the eigenstrain field which pro-
duces in the equivalent homogeneous solid the same stress and strain fields as in
the original heterogeneous RVE, 8I(€*; 6°) = 0. Hence I(£"; 6°) is the station-
ary value of (9.1.9a). Moreover, the vanishing of the first variation of I(g"; 6°),
for arbitrary variation of the eigenstrain, yields the consistency condition (9.1.8).

Using the exact eigenstrain €*, rewrite the functional I, (9.1.9a), as

I(e*; 6°) = %< (e —€): (D' =Dy +A}: (e —&") >+I("; 6°)
(9.1.10a)

which attains its stationary value for ¢* = £*. Note that I(€"; 6°) is the change of
the complementary strain energy associated with the difference between the
reference and the overall compliance tensors, D —D. Indeed, direct substitution
of £" into (9.1.9a) yields

I(e"; 6°) = —%< £:0°>= %GO:(D—I_)):(SO, (9.1.10b)
where D is the overall compliance tensor defined by (9.1.3b). In Subsection 9.2,
representations (9.1.10a) and (9.1.10b) are used to establish extremum princi-
ples for calculating the eigenstrain field € and for obtaining bounds on the
overall moduli D.

For uniform traction boundary data, (9.1.9) and (9.1.10) define the
Hashin-Shtrikman vanational principle, in the sense that the Euler equation

associated with functional I(e*; 6°) is the corresponding consistency condition,
(9.1.8).

9.1.2. Macrostrain Prescribed

Next, consider the case when the RVE is subjected to linear displacements
produced by the constant macrostrain E = €°; see Figure 9.1.2a. From the
averaging theorem,

D - oV

Figure 9.1.2a

Heterogeneous RVE of volume V, u=x.g°
bounded by dV, subjected to

linear displacements u = X.€° <g>=g°
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€=<g>=¢g° (9.1.11a)
and the overall elasticity tensor of the RVE, denoted by C, is defined by
6=<06>=C:¢g" (9.1.11b)

Now, instead of the eigenstrain €, introduce an eigenstress field, 6°, in
the equivalent homogeneous solid, such that the final stress and strain fields
coincide with those of the original heterogeneous RVE. The consistency condi-
tion for the eigenstress 6" is given by

&(x) = D'(x): o(x) = D : {6(x) - 07 (x)},

o(x) = C'(x) : €(x) = C: &(x) + 67(x), (9.1.12a,b)

where D and C are the compliance and elasticity tensors of the equivalent
homogeneous solid. Then, in terms of the eigenstress 6°, the strain field in the
homogeneous solid is expressed as

e(x) = {C'(x)-C}!: 0" (x), 9.1.12¢)

with the corresponding stress field defined by (9.1.12b). These stress and strain
fields in the equivalent homogeneous solid are identical with the actual stress
and strain fields in the original heterogeneous RVE.

Define the perturbation strain €4(x) in the equivalent homogeneous solid

by

ed(x) = &(x) —¢€°. (9.1.13a)
Then, the displacement field associated with €9(x) satisfies

wi=0 onadV; (9.1.13b)

see Figure 9.1.2b. The perturbation strain field €9(x), produced by the eigen-
stress G"(x), can be expressed in terms of an integral operator I'(x; ...) (denoted
by T for short), in a manner similar to that which led to the introduction of the
operator A. Hence, write

ed - _ F(G*) av

Figure 9.1.2b

Homogenizing eigenstress field 6°(x),
distributed in homogeneous V of
compliance D, produces disturbance
fields, such that displacements on
boundary dV of V vanish; ud=0

<E>=¢g°



§9.1 UPPER AND LOWER BOUNDS 257

gdx) = -I'(x; 6°), (9.1.14a)
or, following the notation introduced for A in (9.1.6f), set
edx) = —(I': 6")(x). (9.1.14b)

In terms of Green’s function G(X, y) which satisfies zero surface displacement
boundary conditions on 0V, integral operator I is expressed by

rx; 6% =-], %{ {VxeG(x, y)-(Vy.0'(y))}

+ {VoG(x, y)-(Vy-o*(y))}T} av,, (9.1.14¢)

or in component form,

Ty 69= = [, 5 (52-Gax, ) 50-04)

9 o
+a—iju(x, y) v ow(y)} dVy. (9.1.144)

The integral operator I' is given by the integral operator T(X; ...) introduced by
(7.3.10) in Subsection 7.3. Indeed, I and T respectively give the strain and
stress fields due to a given eigenstress field,

I'(x; 6") = -D: {T(x; 6")-6"(X)},
T(x; ¢*) = —C: I'(X; 6) + 6" (X). (9.1.14e,1)

Table 9.1.1 summarizes the relations among integral operators S , T, A,
and I

The integral operator I satisfies properties 1) and 2) which are stated for
A, after (9.1.62). However, while A produces zero tractions on dV, I produces
zero displacements on 0V. Hence, instead of property 3) of A, the operator I’
satisfies the following condition:

3’) the displacement field produced by I' vanishes on the boundary 0V, ie.,
(9.1.13b) is satisfied identically.

In general, similarly to A, the integral operator I is self-adjoint, i.e., for
arbitrary eigenstress fields s*V) and s*@ in the equivalent homogeneous solid,

<s' D (T8 >=<s"D:(:s"D)>=<s"D:T:5D>,; (9.1.152)

here, again, the same notation as in (9.1.7f) is used. The proof is similar to that
for A. Taking advantage of the boundary conditions (9.1.13b), observe that

<§@: ([:s"P)>=<(T:8"®):C:(:s®) >, (9.1.15b)

where — (I :s™®)(x) is the strain field associated with s*®. From the sym-
metry of C with respect to the first and second pairs of its indices, (9.1.15a) now
follows. Note from (9.1.15b), that
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Table 9.1.1

Relation among integral operators S, T, A, and T’

uniform traction boundary conditions: S and A for £*

disturbance strain ~ S(x; £7) -D:Ax; €)+¢€"

disturbance stress  C:(S(x; £")—¢%) —A(x; €%)

linear displacement boundary conditions: T and I" for ¢”

disturbance strain D : (T(x; 6")-06") -I'(x;06")
disturbance stress  T(x; 0%) -C. I'(x; 6" +0°
<:T:>=<:(T:C:): >. (9.1.15¢)

From (9.1.12b) and (9.1.14a), the following consistency condition for the
eigenstress ¢ is obtained,

Cx-O)l:6"x)+(T:6")(x)-€°=0. (9.1.16)

For a prescribed €°, this is a linear integral equation which defines ¢* in the
equivalent homogeneous solid, such that the corresponding final stress and strain
fields are identical with those of the original heterogeneous RVE.

Consider now the following functional, J, similar to the functional I,
which is stationary for the eigenstress field which satisfies the consistency con-
dition (9.1.16):

J(s"; €9) = %< $ {(C'=C) ' +T} 8" >—< €0:5" >, (9.1.17a)

where the fact that I is self-adjoint is also used. In (9.1.17a), the overall strain
€° is fixed. The boundary conditions imposed on T lead to < (I':s%) >=0.
Thus, the first variation of J, for an arbitrary variation 8s” of the eigenstress
field, yields

3I(s™; €°) = < 3s” :{ (C'-C)'+I}:s* -eo} >. (9.1.17b)

Therefore, for the exact eigenstress 6™ which satisfies (9.1.16), 8J(¢™; £°) = 0.
Hence, for the eigenstress field which produces in the equivalent homogeneous
solid the exact stress and strain fields of the original heterogeneous RVE, the
functional J(6”; €°) is stationary. Furthermore, the vanishing of the first varia-
tion of J(c™; £°), for arbitrary variation of the eigenstress, leads to the con-
sistency condition (9.1.16).
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In a manner similar to (9.1.10a), the functional J can be rewritten as

J(s™; €°) = %< -0 [(C-C)y+T}:(s"-06") >+J(0"; £°)
(9.1.18a)

which, for s* = 6", has the stationary value J(6™; £°), and can be used to estab-
lish bounds for the overall moduli. Direct substitution of 6™ into (9.1.17a) yields

J(o"; £°) = —%< 6 e > = %s":(C—C):e", (9.1.18b)
where C is the overall elasticity tensor defined by (9.1.11b). Therefore, simi-
larly to I(€*; 6°) which gives the change in the complementary strain energy due
to the inhomogeneity of the RVE, J(0"; €°) gives the change in the correspond-
ing strain energy. It should be noted that the functional I is defined with the
overall stress ¢° prescribed, while the functional J is defined with the overall
strain €° fixed. Hence, for an arbitrary heterogeneous elastic solid, 1(€"; 6°)
and J(0"; €£°) may not be related, even if 6°=C:£° or €2 =D:0° with
C=D'!andD=C"

9.2. UPPER AND LOWER BOUNDS FOR ENERGY FUNCTIONALS

In Subsection 9.1, functionals I and J are introduced for prescribed eigen-
strain and eigenstress fields in the equivalent homogeneous solid. It is shown
that the eigenstrain and eigenstress fields, € and 6", which satisfy their
corresponding consistency conditions, respectively render I and J stationary.
Under certain conditions, these stationary values become the extremum values
of these functionals.

To establish this, first note that a fourth-order symmetric tensor A is
positive-definite (negative-definite) when, for every symmetric second-order
tensor t of nonzero magnitude, t: t # 0, the following inequality holds:

t:A:t> (0. (9.2.1a)

A is called positive-semi-definite (negative-semi-definite), when under the same
conditions,

t:A:t2()0. (9.2.1b)

Hence, the elasticity and compliance tensors, C" and D', are positive-definite,
since the energy required for any elastic deformation is always positive.

The integral operators, A and T, associated with the averaging operator
< >, namely the operators < :{(D'-D)'+A}: > and < :{(C'-C)!
+I'}: >, are called positive-definite (negative-definite) or positive-semi-
definite (negative-semi-definite) if, for every eigenstrain field e* and eigenstress
field s™ with nonzero norms, < ¢ :e* ># 0 and < s* : s* > # 0, it follows that
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<e {D'-D)yl+A}l:e’> >0 or =20,
(9.2.2a,b)
<s {((C-C)'+T}:s"> >0, or =2(X)0.

From (9.1.102) it is seen that if the integral operator < : {(D'=D) '+ A}: >is
positive-definite (negative-definite), then the local stationary value of the func-
tional I, i.e., I(e"; 6°), is the corresponding global minimum (maximum), i.e.,
for any eigenstrain field e”,

I(g"; 6°) £ () I(e*; ©69), (9.2.2¢)
where €" is the eigenstrain field which satisfies the consistency condition (9.1.8).

Similarly, from (9.1.18a), if < :{(C’-C)1+T}: > is positive-definite
(negative-definite), then for any eigenstress field s*,

J(o*; €°) < (@) I(s™; £9), (9.2.2d)

where 0" is the eigenstress field which satisfies the consistency condition
9.1.16).

In this subsection it is shown that the positive-definiteness (negative-
definiteness) of, e.g., the tensor C’ — C is equivalent to the positive-definiteness
(negative-definiteness) of the integral operator < : {{(C’'—=C)"'+T}: > and the
negative-definiteness (positive-definiteness) of the integral operator < : {(D’
—-D)! +A}: > In view of (9.2.2c), minimization (maximization) of I(e*; ¢°)
with respect to €*, over a suitable class of approximating functions, results in an
optimal estimate of € within the considered function-space, when C’—C is
negative-definite (positive-definite). Similar comments apply to J(s™; £°),
viewed as a functional of the eigenstress field s*(x).

From the identities

C-C=(C'-C):(C'-O):(C'-0),

D'-D=({D'-D):(D’-D)':(D'-D), (9.2.3a,b)

it is seen that: (1) if C'—C is positive-definite (negative-definite), then
(C’-O)! is positive-definite (negative-definite); and (2) if D’ -~ D is positive-
definite (negative-definite), then (D’—D)™! is positive-definite (negative-
definite), i.e.,

C’'-Cispd. (nd.) &= (C'-C)lisp.d. (nd.),
D’-Disp.d. (nd.) &= (D’-D)lis p.d. (n.d.), (9.2.3¢,d)

where p.d. and n.d. stand for positive-definite and negative-definite, respec-
tively.

9.2.1. Stiff Micro-Inclusions

First, assume C"— C is positive-definite, i.e., choose the comparison elas-
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ticity tensor C such that C’ — C is positive-definite®. For example, when an RVE
contains micro-inclusions which are stiffer than the surrounding uniform matrix
and there are suitable symmetries, identify C with the elastic tensor of the
mairix material, in which case, the class of eigenstresses (eigenstrains) is res-
tricted to vanish within matrix M. From (9.1.15b), for any eigenstress field s*, "
satisfies

<s:T:8">=<(T:89:C:(I:5% > (9.2.4)

Since C is a positive-definite tensor, < :I": > is a positive-definite operator.
Hence, the positive-definiteness of the tensor C'—C implies the positive-
definiteness of the operator < : {(C'~C)1+T}: >.

Furthermore, the positive-definiteness of the tensor C’—C implies the
negative-definiteness of the operator < : {((D'—D)" '+ A}: > To see this, let
o9 and €9 be the strain and stress fields produced by an arbitrary eigenstrain
field ¥, i.e.,

ed=D:od+e’, ol= —(A:e". (9.2.5a,b)
Then, < ¢*: A :e* > becomes

<e:A:ef>=<e":C:e">—<e":C:ed>

=<e":C:e">—-<¢ed:C:ed>. (9.2.5¢)
From identity
(D'-Dyl=-C:(C'-Cyt:C-C, (9.2.5d)
it follows that
<e":(D-D)ylie">=-<(C:e):(C'-C)yL:(C:e") >

—<e":C:e" > (9.2.5¢e)
Hence, adding (9.2.5¢) and (9.2.5¢), obtain
<e’:{((D'-Dyl+A}):e">= —<(C:e"):(C-C)!:(C:e") >

—<gd:C:gd>. (9.2.56)

Therefore, if C’ - C is positive-definite, then the tensors (D’ —D)! and D’ - D,
and the integral operator < : {(D’~D)"!'+ A}: > are all negative-definite.

* The same comments apply even when C’'-C is positive-semi-definite. However, the
positive-semi-definiteness of C’—C implies that some eigenvalues of C coincide with the
corresponding eigenvalues of C’ at some points within V, where, then, (C’—C)~! is not defined. In
such a case, restrict the appropriate components of the eigenstrain field to vanish where the
corresponding eigenvalues of C’—C vanish. This restriction is mandatory, otherwise functional J
will not be well defined. Thus, the eigenstrains must always vanish wherever the reference elasticity
tensor equals the actual material elasticity tensor, as discussed in Section 7.
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9.2.2. Compliant Micre-Inclusions

Next, assume D’ —D is positive-definite, i.e., choose a stiff comparison
material of uniform elasticity C = D~!. This may correspond to the case when
an RVE contains micro-inclusions which have suitable symmetry and are more
compliant than the surrounding uniform matrix with elasticity C = D™!. Then
the integral operators < : {(D’=D) '+ A}: >and < : {(C'-C)'+T}: > are
positive-definite and negative-definite, respectively. From (9.1.7e), for any
eigenstrain e”,

<e':Aef>=<(A:e):D:(A:e") > (9.2.6)

Hence, similarly to operator < :T': >, the integral operator < :A: > is
positive-definite. Thus, when D’—D is positive-definite, then the integral
operator < : {(D’ —=D)™! + A} : > is positive-definite.

As in (9.2.5), the negative-definiteness of the integral operator < : {(C’
—-C)! +T} : > follows from the positive-definiteness of the tensor D’ —D.
Using (9.1.15b), observe that

<s":T:s">=<s":D:s">-<09:D:0d>, (9.2.7a)
where o4 is the stress field produced by the eigenstress s™ through

od=-C:(I:s")+s". (9.2.7b)
Using identities similar to those in (9.2.5d), obtain

<s:(C-0O)l:is">=-<D:s):(D'-D)':(D:s") >

-<s":D:s" > (9.2.7¢)
The addition of (9.2.7a) and (9.2.7¢) yields
<s* {(C-C)'+T}:s">= —<(D:s"):(D'-D)!:(D:s%) >

-<o4:D:od>. (9.2.7d)

If D’—D is positive-definite, then the tensors (C'—C)™!' and C'-C, and the
integral operator < : {(C'—C)~!+ I'} : > are all negative-definite.

9.2.3. Bounds for Elastic Strain and Cemplementary Elastic Energies

Using the overall compliance and elasticity tensors D and C, given by
(9.1.3b) and (9.1.11b), define the average complementary strain energy and the
average strain energy, respectively, as follows: the average complementary
strain energy is

We(c©) = %co :D:o°, (9.2.82)

when ©° is prescribed; and the average strain energy is
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W(e°) = %so .C:e°, (9.2.8b)

when €° is prescribed.4 Let We° and W°, respectively, be the comparison aver-
age complementary strain energy and strain energy, i.e.,

Weo(60) = %co ‘D:6°, WO(e°) = %so .C:e°. (9.2.8¢.d)

From (9.1.10b) and (9.1.18b), the values of the functionals I(¢*; 6°) and
J(6™; €°) are

I(e*; 6°) = Weo(6°) — We(a©), (0% £°) = WO(£°) — W(£?). (9.2.8e.f)

Then, from the results obtained in the preceding subsections, the positive-
definiteness or negative-definiteness of the integral operators < : {(D’— D)!
+A}: >and < : {(C'-=C)!'+T}: > depends on whether D'=D or C'-C is
positive-definite, i.e.,

' s Ty < {(D'-D)'+A}: >isnd.
{C'-Cispd. &<=D D1sn.d.}=>{< {((C'=C)'+T}: >isp.d.

' o P < {(D’'-Dy'+A}: >isp.d.
{D'-Dispd. =C C1sn.d.}=>{< {(C’'—Cy1+T}: >isnd.

(9.2.9a,b)

Therefore, if C’ - C is positive-definite (if D’ — D is positive-definite), then, for
arbitrary eigenstrain and eigenstress fields € and s*, W¢(6°) and W(£°) satisfy

Weo(5%) - We(6%) > (<) L< e (D'=Dy'+A}:e* >—6°:<e* >,
2

Wo(£°) — W(e®) < (2) %< §((C=C)y 14T} :s" >—<s* >: €,
(9.2.10a,b)

where 6° is the prescribed overall stress for W and W¢ and €° is the
prescribed overall strain for W° and W. The equality in each case holds only
when €* = € and s* = 6", respectively. It should be recalled that for a bounded
V, the stress and strain fields associated with a prescribed 6°, in general, are dif-
ferent from those corresponding to a given €°. Hence C and D, in general, need
not be related. However, as pointed out before, if the RVE is indeed statistically
representative, and if a consistent averaging scheme is used, then one expects
that C and D be each other’s inverse.

Consider now the particular case when the RVE consists of a homogene-
ous matrix and n distinct but homogeneous micro-inclusions. The volume aver-
age over V in the functionals I and J is decomposed into the volume average
over the matrix M and the sum of those over each micro-inclusion €, Choose
the matrix with elasticity and compliance tensors C and D, as the comparison
material. Since (C'—C)™! and (D’ —D)"! are not defined in M, restrict eigen-
strain and eigenstress fields to vanish in M. The functionals I and J then are

4 These are two separate problems.
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well defined, with finite values. From (9.2.10a,b) it follows that if C*—C is
positive-definite (if D*— D is positive-definite) for all oo =1, 2, ..., n, then, for
any arbitrary eigenstress and eigenstrain fields, s* and e, vanishing in M,

We(G°) — W(G°)

> (<) i fa%<e*: {(D*~D)yl+A}:e">,—0%:<e" >,
a=1

Weo(g®) — W(g®°)

<@ ¥ fa%<s*:{(C°‘—C)“‘+1"}:s* >u—<s">:€%  (92.11a,b)
o=1
where
<e'>= 3 fu<e >y,  <s>= P fa<si, (9.2.11c,d)
a=1 =1

and, as before, f;, is the volume average of . Again, the equality in each case
holds only when ¢* = £* and s* = ¢". It should be noted that if D'~ D = 0 and
C’'—-C=0 in M, then the exact eigenstress and eigenstrain fields in the
equivalent homogeneous solid that produce the same stress and strain fields as in
the original heterogeneous RVE, vanish identically over the matrix M. Hence,
they belong to the group of restricted trial eigenstrain and eigenstress fields
which vanish over M, rendering I and J finite.

9.3. GENERALIZED BOUNDS ON OVERALL ENERGIES

Consider an RVE of volume V which contains linearly elastic and homo-
geneous micro-inclusions of possibly different elasticity tensors, embedded in a
linearly elastic and homogeneous matrix. From (9.1.2a,b), the elasticity and
compliance tensors C’(x) and D’(x) of the RVE are given by

C'(x) = Hy(x) C+ zl Ho(x) C°,

D'(x) = Hu(x) D+ 3 Ho(x) D", (9.3.1a)

where Hy(x) = H(x; Q) (or Hy(x) = H(x; M)) is the Heaviside step function
which takes on the value 1 if x is in Q,, (or M) and is O otherwise.

In Subsection 9.2.3, particular eigenstrain and eigenstress fields are
chosen in the equivalent homogeneous solid, which vanish in the matrix, since
the reference elasticity and compliance tensors are set to coincide with those of
the matrix. Hereinafter, in order to consider a more general case, do not impose
any such restriction on the reference elasticity and compliance tensors; they
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may, for example, coincide with those of the ath inclusion’. For simplicity,

treat the matrix phase as the Oth inclusion phase, €y, and denote its elasticity
and compliance by C? and D,

Now, in order to consider Hashin-Shtrikman bounds on the overall elastic
moduli, choose particular eigenstrain and eigenstress fields which take on dis-
tinct constant values in each micro-inclusion, i.e.,

€= ¥ Hne® @)= 3 Ho(0)s™ (9.3.22.b)

Here €' and s** (=0, 1, 2, ..., n) are constant tensors. From these fields,
bounds on the overall elasticity and compliance tensors are computed by optim-
izing I and J, in accordance with (9.2.2c,d). The technique is expected to yield
good bounds when the volume fraction of each inclusion is suitably small. On
the other hand, when an inclusion is large so that the assumption of a uniform
eigenstrain or eigenstress in it appears inappropriate, one may subdivide this
inclusion into several subregions and use the uniform eigenstrain and eigenstress
in each subregion. Such an approach is mandatory for estimating the instan-
taneous (or incrementally linear) effective moduli of an RVE with nonlinear
constituents, e.g., an RVE with elastic-plastic materials; see Accorsi and
Nemat-Nasser (1986), and Nemat-Nasser et al. (1986) for illustrations.

9.3.1. Correlation Tensors

With piecewise constant eigenstrain and eigenstress fields, e€*(x) and
s"(x), (9.3.2a,b), the integral operators A and I" defined by (9.1.6) and (9.1.14)
reduce to tensor operators, A®® and I'®B, acting on the constant eigenstrain and
eigenstress tensors, €*P and s*P. These tensor operators determine, for example,
the average stress, < G >y, and strain, < € >y, in micro-inclusion g, for the
constant eigenstrain and eigenstress, e"? and s*P, prescribed on Qg, (o, =0, 1,
2, ..., n). The tensors A®® and T'™B are called the correlation tensors. In this
subsection, these correlation tensors are defined explicitly in terms of integral
operators A and I', for piecewise constant trial eigenstrain and eigenstress fields.

First, consider the integral operator A, introduced in (9.1.6a,b), and note
again that

—(A:e)x) =C:(Sx; £)—-e"(x)), (9.3.3a)

where the integral operator S(x; €") is defined by (7.3.7) in terms of the Green
function of the homogeneous linearly elastic solid V bounded by oV, with zero
tractions prescribed on dV. As pointed out in Subsection 9.1, the actual calcu-
lation of the Green function for a bounded region of arbitrary shape is, in gen-
eral, not feasible. Nevertheless, the properties of such a Green function can be
used effectively to establish general expressions which, in many important
applications, lend themselves to accurate estimates. The Hashin-Shtrikman
bounds, as generalized by Willis, provide an illustration of this procedure.

* In this case, the eigenstrains and eigenstresses must vanish there.
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The integral operator T relates to the integral operator T(x; ¢*), as fol-
lows:

—-T:0"x) =D: (T(x; 6) - 0"(x)), (9.3.3b)
where T(x; 6*) is defined by (7.3.10) in terms of the Green function of the
bounded V, which satisfies zero displacement boundary conditions on oV.

Using the piecewise constant eigenstrain field (9.3.2a), first observe that
<e'x):A(x;e") >p=e™: < A(x; €) >, (0 not summed). (9.3.4a)
Similarly, using the piecewise constant eigenstress field (9.3.2b), obtain

<s"(x): T(x; 8*) > = 8": < T'(x; 8") >, (0 not summed). (9.3.4b)

For the volume average of the stress < A :e” >, and strain < I": 8" >, in
(9.3.4a) and (9.3.4b), introduce the fourth-order constant correlation tensors,
A°Band TP (o, =0, 1, 2, ..., n), such that for arbitrary eP and s*B,

fpAP:eP=<A(x; Hge®) >, or 3 Af exf = < Aji(x; Hpe™) >,

(B not summed), (9.3.5a,b)
and

fToP:sP=<T(x; HgsP) >, or 3 T sP = < Tj(x; Hps™P) >,

(B not summed), (9.3.5¢,d)

where Hj is the Heaviside step function which equals 1 in €25 and 0 elsewhere.
The fourth-order correlation tensor A®P (tensor T'®P) represents the influence of
the eigenstrain e*P (eigenstress s™P) in the Pth micro-inclusion Qg on the ath
micro-inclusion €24, for the class of piecewise constant eigenstrain (eigenstress)
fields. These tensors depend only on the geometries of the inclusions and the
RVE, as well as the elasticity tensor C = D! of the reference material, but not
on the eigenstrains and eigenstresses, nor on the elasticity of the corresponding
inclusions.

From the self-adjointness of the integral operator A or T, ie., from
<Hge™:A:Hpge> = <HpeB: A:H,e™ > for any e™ and e, or from
<Hys™:T:Hps™ > =< Hps™:T:Hy,s™ > for any s and s™, the correla-
tion tensors satisfy

A = (ABHT  of Aiﬁ’iﬁ = Al?l% (9.3.5e,f)
and
b = (BT of rij.xlg = Fﬁ%- (9.3.5g,h)

In general, however, these correlation tensors are not symmetric with respect to
their superscripts ¢ and f3.°

6 As shown in (9.1.6) and (9.1.14), integral operators A and I can be expressed in terms of
Green function G. While (9.3.5e~h) are directly derived from (3.2.7), i.e., Gij(x, y) = Gji(y, x), the
correlation tensors are symmetric with respect to their superscripts, if Green’s function is of the form
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Using the correlation tensors A% and T8, rewrite (9.3.4a) and (9.3.4b),
as

e < A(x; %) > = an: fpe : A%B: &P,
=

§'0: < T(x; 8%) >0 = fgs™:T*8:s* (o not summed), (9.3.6a,b)
Bf‘: )
and hence obtain

1] 1]
fye™®; et = fyfge™®: A®B: B
azo 0 € %< A(X; €7) >q Zopgoaﬁe A%:e

o=

=

io fr 8" < [(X; §%) > = io an“0 fo fp 8™ : T8 5*B. (9.3.6¢,d)
o= o= 0f=

9.3.2. Upper and Lower Bounds oen Overall Energies

With the aid of the correlation tensors, A°® and I'®P, for the piecewise
constant trial eigenstrain and eigenstress fields, e*(x) and s*(x), functionals
I(e*; 6°) and J(s™; €°) defined respectively by (9.1.9a) and (9.1.17a), reduce to
quadratic forms (with linear terms) in the constant eigenstrains e** and eigens-
tresses s*%, (o0 =0, 1, 2, ..., n), respectively. These quadratic forms then provide
upper and lower bounds on the overall complementary elastic and elastic ener-
gies, W¢(o°) and W(€°). The aim now is to formally calculate these quadratic
expressions, and obtain their optimal values which determine bounds on the
overall energies.

For prescribed overall constant stress and strain, ¢° and €°, the upper and
lower bounds on the overall complementary elastic energy W(6°) and the
overall elastic energy W(€°) are given by (9.2.11a) and (9.2.11b), respectively.
Substituting (9.3.5) and (9.3.6) into these bounds, obtain the following bounds
on Wo°) and W(g°), when C*—C is positive-definite (when D*-D is
positive-definite) for all o’s:

We(6°) — We(6°) 2 (<) I(e; 6°),

Wo(g°) — W(g®) < (2) I(s™; £°). (9.3.7a,b)

In general, the exact eigenstrain and eigenstress fields which produce the same
stress and strain fields in the original heterogeneous RVE, are not piecewise
constant but vary within each micro-inclusion. Hence, in most cases, the ine-
qualities < and > instead of < and 2> apply in (9.3.7a,b). From functionals
I(e*; 6°) and J(s*; £°), define functions I’ and J', using the piecewise constant
eigenstrain and eigenstress fields. Let {€"®} and {s**} (=0, 1, 2, ..., n) stand

G(x, y) = G(x —y), as shown in Subsection 9.4. Note that the transpose in (9.3.5e~h) is with respect
to the first and second pairs of the subscripts.
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for the set of constant eigenstrains and eigenstresses, and set
I(e*; 6°) =I'({e™}; 6°), J(s*; €°) = J'({s™}; £°), (9.3.8a,b)

where

I'({e*}; 6% = i an: e IB: e -g0:€

V(ise)e= 3 3 pseiibisto5 e 93.8¢,d)

with the fourth-order tensors I8 and J* being defined by
I°B = £, Saﬁ (DF-D)1 +1, f A9B,

JoB = £, 808 (CP—C) ' +f, f I (0, B not summed). (9.3.8¢,D)

Note that 1°8 and J*B are symmetric with respect to the first and second pairs of
their subscript indices, i.e., Iiﬁﬂ IﬁB and J,Jkl Jﬁﬁ.

The optimal (or stationary) values of the quadratic expressions I’ and J’
are computed by setting equal to zero the corresponding derivative with respect
to €™ and s*B, respectively, i.e., from

ar 1. o0 a1
et} o

508 ek o) = 35

These are systems of linear equations for the unknowns {€"P} and {s*B}, respec-

tively. Let {€"®} and {¢"®} be the corresponding solutions, i.e., the solutions to

the following sets of n linear tensorial equations:

5 ({s™); 89 = (9.3.9a,b)

an: 8. —f, 6° =0,
=

Bﬁj JB:6*B—f,e0=0 (=0, 1,2,..,0). (9.3.10a,b)
=0

In general, when the basic problem is well-posed, both (9.3.10a) and (9.3.10b)
have a unique solution. This is assumed to be the case in the following.

If C’ - C is positive-definite (if D’ — D is positive-definite) everywhere in
V, the functionals I and J are negative-definite and positive-definite (positive-
definite and negative-definite), and hence they have the global maximum and
minimum (minimum and maximum), respectively. Since the functions I’ and J’
are defined by substituting piecewise constant eigenstrains and eigenstresses
into I and J, U’ and J’ must have the global maximum or minimum, when I and J
have the global maximum or minimum, respectively. On the other hand, when
the set of linear tensorial equations (9.3.10a,b) has a unique solution, both I’ and
J have one and only one stationary value. Therefore, if C'—C is positive-
definite (if D’ — D is positive-definite), and if the the solution of (9.3.10a,b) is
unique, then the unique stationary values of I and J’ that are given by the solu-
tion of (9.3.10a,b), are the corresponding global maximum or minimum. Actu-
ally, the uniqueness of the solution of (9.3.10a,b) is guaranteed, when C’'—C is
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positive-definite (when D’ —D is positive-definite);” for a general proof, see
Willis (1989). The simple proof is as follows: the integral operators in the func-
tionals I and I, < : {(D’'-D)'+A}: > and < : {(C'-C)'+T}: >, are
definite when either C'—C or D’ — D is definite, which means that only €" = 0
ands* = 0lead to
* . /- cef s = S \ *a . Job - B =
<e :{(D'-D)yl+A}:e"> Zggoe I%:e 0,

a=0

<8 ((C—C)F'+T):s*>= 3 3 s'o.Job:gB =, .
s 1 {( ) }:s agoﬁ);os s (9.3.11a,b)

and the left-hand side of (9.3.11a,b) cannot be zero for nonzero piecewise con-
stant eigenstrains or eigenstresses. Hence, if {€"%X)} and {¢"*K)} (K =1, 2)
are two solutions of (9.3.10ab), then, {€"D —g*™@} apd {¢"MD - "))
satisfy

i an‘, (g — gra2)y  JoB ; (£"B(D — g"BQR)) =,
a=0pF=0

io B}“:O (6" — ") : Jo: (6"P) — 67P) = 0. (9.3.11c.d)
o= =

From (9.3.11a,b), it follows that £ = g"®2 apd ¢ = ¢"*@) for =0, 1,
2, ..., n. Therefore, the solution of (9.3.10a,b) is unique, if C'—C is positive-
definite (if D’ — D is positive-definite).® In this case, the stationary values of I’
and J” are the corresponding global maximum and minimum. In summary,
whenever operator < : {(C'-C)"'+A}: > or <:{(D'-D)1+I}: > is
positive-definite (negative-definite), the corresponding matrix, 1% or JoB, is
definite and therefore invertible.

In terms of the optimal constant eigenstrains and eigenstresses, {€°*} and
{6}, which are the solutions of (9.3.10a,b), the functions I’ and I’ are written
as

I'({e"}; 0°) = 020 520 %(e*“ —g'): 1B (e’ - £"B) + I'({£7%); 69),
Y({s™®); £°) = OZO B>::'o %(s*‘* — ") Job: (s'8— 6"B) + J'({G"®); £°).
(9.3.12a,b)

Therefore, for any constant eigenstrains and eigenstresses, {€*®} and {s**},

I'({g*}; 0°) 2 () I'({e"®}; 69),

" The following proof is essentially the same as that for the uniqueness of the solution of
linearly elastic problems; see Part 2, Subsection 18.3.

8 The above proof also implies that if the operator < : {(D'~D)!+A}: > or < : {(C’
—O)'+T} : > is positive-definite or negative-definite, then the corresponding tensors 1% or JoB are
positive-definite or negative-definite, respectively.
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Y({6"*}; €°) < (2) J'({s"%}; £°), (9.3.12¢,d)

if C*—C is positive-definite, (if D*— D is positive-definite), for . =0, 1, 2, ...,
n.

From the governing sets of n+ 1 linear equations (9.3.10a,b), complite the
values of I'({€"%}; 6°) and J'({67%}; £°), as

I’({S*a}; 6% = — %GOZE*,
Y({o™}; %) = - -%—6* (€% (9.3.13a,b)
where
—% 3 * —% a *
€= ) fyee, 6 =) fyo™ 9.3.13¢,d)
o=0 o=0

Therefore, from (9.3.7), (9.3.8), (9.3.12), and (9.3.13), the upper and lower
bounds on the overall elastic energies are given by

Weo(6°) - We(6°) 2 (<) - %G"ig*’

Wo(e?) — W(e°) < (2) — %6*:80, (9.3.14a,b)

when C%— C is positive-definite (when D% — D is positive-definite).

9.3.3. Subregion Approximation Method

As mentioned above, the correlation tensors for the trial piecewise con-
stant eigenstrain and eigenstress fields depend only on the geometries of the
equivalent homogeneous solid, the reference elasticity, and the geometries of
the inclusions and the RVE. Hence, in principle, the trial correlation tensors can
be defined for any pair of micro-inclusions, Q, and Qp. Since an inclusion can
be divided into a number of subregions, with each subregion being viewed as an
inclusion, more and more accurate estimates of the correlation tensors may be
expected by further subdivision.

To improve the approximation method, divide each micro-inclusion Qg
into a set of several subregions. Ordering these subregions from 0 to N (> n),
redefine €, to be the oth subregion, with o = 0, 1, 2, ..., N. Several subregions
now have common uniform elasticity and compliance tensors. However, each
such subregion may have its own uniform eigenstrain and eigenstress, unequal
to those of other subregions, even though all these subregions may belong to the
same original inclusion which has been subdivided for the purpose of calcula-
tion. The procedure of Subsection 9.3.2 may now be followed to calculate the
trial correlation tensors A®® and I'®B, the quadratic expressions I’ and J', and
their optimal values. Then, for a properly posed problem, it is expected that the
exact eigensirain and eigenstress fields, £°(x) and 6"(x), are given by the limit
of the optimal piecewise constant eigenstrains and eigenstresses, {€"*} and
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{o"%}, ie.,
Jim e =€'(x),  lim 0™ =0"(x). (9.3.15a,b)

Therefore, as N increases, it is expected that more and more accurate solutions
to the consistency conditions result.

Using this approximating method with a piecewise constant trial eigen-
strain field, Nemat-Nasser and Taya (1981, 1985) evaluated the overall elastic
energies of elastic solids with periodic structures; see also Nemat-Nasser et al.
(1982) and Iwakuma and Nemat-Nasser (1983). In this case, the trial correla-
tion tensors, A®® and T'®B, can be expressed in Fourier series, and the optimal
values of the quadratic expressions, I’ and J', can be computed analytically.
These authors show that, when the volume fraction of micro-inclusions is small,
even a small number of subregions yields good estimates of the exact average
elastic energies. These and related topics are discussed in Sections 12 and 13.

9.4. DIRECT ESTIMATES OF OVERALL MODULI

Expressions for the exact upper and lower bounds on the average comple-
mentary and elastic energies are obtained in the preceding subsections. How-
ever, it is rather difficult to compute these bounds, since: (1) for a bounded
RVE, the exact integral operators A and I' are very complicated; and (2) the
exact correlation tensors A% and B cannot, in general, be calculated expli-
citly. In order to obtain explicit expressions for the bounds, it is necessary to
estimate the integral operators and the corresponding correlation tensors. Willis
(1977) proposed an asymptotic method to explicitly determine estimates of the
correlation tensors through simple integral operators which are defined in terms
of the Green function of an infinite homogeneous elastic solid. For a hetero-
geneous finite elastic solid, the integral operators and the corresponding correla-
tion tensors derived in this approximate manner may not (since errors are intro-
duced by the approximation) produce bounds on the average elastic energies,
even if the Hashin-Shtrikman variational principle is applied. In simple cases,
such as when the microgeometry is statistically isotropic, the results in such an
approximation depend only on the volume fraction of micro-inclusions and are

independent of other geometrical properties of the RVE.? Since the volume frac-
tion of micro-inclusions is a geometrical quantity which can be measured easily,
results of this kind are generally regarded as useful. Numerical computations
seem to support this. Furthermore, the approach has been justified by consider-
ing the RVE as part of a very large heterogeneous body with mean stress and
strain in common with the RVE. The resulting boundary tractions and displace-
ments on dV of the RVE then fluctuate about the corresponding average stress

® This should be contrasted with the results presented in Section 13 for periodic microstruc-
tures where the Green function and the bounds can be calculated to any desired degree of accuracy.
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and strain tensors. It is suggested (Willis, 1977) that the boundary contributions
to the overall average elastic strain and complementary elastic strain energies,
by these fluctuations, may be neglected. This then allows use of the simple
translationally invariant Green function of an unbounded domain to estimate the
operators A and I'. It is shown in Subsection 9.5 that the error in such an
approximation may actually affect the corresponding bounds. However, based
on the universal Theorems I and II of Subsection 2.5.6, the effects of this
approximation are established in Subsection 9.5.3, and computable rigorous
bounds are obtained in Subsection 9.5.4.

In this subsection, expressions which approximate the exact integral
operators, A and T, are obtained. First, in terms of the Green function G* for an
infinitely extended homogeneous domain, exact expressions for A and I are
developed, and then these are approximated with the aid of several assumptions.
For piecewise constant trial eigenstress and eigenstrain fields, the correlation
tensors are then computed, and explicit bounds on the overall elastic energies
are estimated according to the Hashin-Shtrikman variational principle. Finally,
from these energy bounds, the bounds on the overall elasticity and compliance
tensors of the RVE are obtained.

9.4.1. Boundary-Value Problems for Equivalent Homogeneous Selid

Consider the boundary-value problem for the displacement field u(x) of
the equivalent homogeneous bounded solid V with uniform elasticity tensor C
(= D!). As shown in Section 11, for tractions t prescribed on dV, and body
forces V. T distributed in V, the displacement field u is given by the solution of
the following boundary-value problem:

V.C:Voux)+V.T(x)=0 xinV,

v(x).(C: Veou(x)) = &(x) XondV, (9.4.1a,b)

where T(x) is some second-order tensor field, and v(x) is the outward unit nor-
mal at X on dV. In (9.4.1b), the tractions t are regarded as arbitrary.

To formulate boundary-value problem (9.4.1a,b) in terms of the infinite-
body Green function, regard the finite homogeneous domain V as part of an
infinitely extended homogeneous solid. Then, for arbitrary T(x) defined in V,
tractions acting on the boundary 0V are such that the continuity of displace-
ments and tractions is satisfied. The required solution can be expressed in terms
of the Green function G™(z) of the unbounded homogeneous solid, where,
instead of t, some suitable body-force layer t is distributed on dV such that the
resulting tractions due to both T and t equal t. Then, the solution u is exactly

given by'°

10 Note that the solutions corresponding to the two tensor fields, T in V and € on dV, are in-
dependent of each other. Hence, the displacement field produced by them is given by superposition
of the one produced by T and the other produced by €, i.e., Ux; T; £) = U(x; T; 0) + U(x; 0; £).
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ux)=Ux; T; 1), (9.4.2a)
where

Ux; T; ) = — jv T(y): (V,eG~T(y —x)) dV,

+[,, (v T(y) +1(y)}.G~T(y - x) dS,, (9.4.2b)
or in component form,

Ui(x; T5 ) = = [, Gik(y — %) Tig(y) dVy

+[, ) Ty +()) GRy -0 dSy.  (9.420)

Here subscript y indicates that the corresponding operation is with respect to the
variable y; see Subsection 11.1. In (9.4.2a~c), U(x; T; ) is an integral operator
which acts on the first- and second-order tensor fields, t and T, resulting in a
vector field u(x). In principle, §(x) can be computed from an integral equation
which results when tractions corresponding to displacement field U(x; T; t) are
set equal to a given t(x) on dV.

In particular, let the displacement fields of the equivalent homogeneous
solid, respectively produced by an eigenstrain field ¢” and an eigenstress field s”,
be denoted by

ui(x) = U(x; —-C:e"; t5), (9.4.3a)
and
E(x) =U(x;s"; ) xinV, (9.4.3b)

where tE and & are introduced to satisfy zero displacement or zero traction

boundary conditions!! on dV. The unknown tractions are determined from the
following integral equations:

v(x).C:{VeU(x; —-C:e"; t¥)-e"(x)} =0 xondV, (9.4.4a)
and
Ux; s tE)=0 xonoaV,; (9.4.4b)

see (9.1.5b) and (9.1.13b). For the bounded equivalent homogeneous solid, the
boundary-value problems associated with the eigenstrain e* and eigenstress s*
are solved exactly by (9.4.3), if the unknown tractions tE and t* can be deter-
mined. But, in general, this is a very difficult problem, even if the Green func-
tion G is known explicitly.

' Note that two separate boundary-value problems are considered simultaneously for the same
RVE, one corresponding to zero displacements (denoted by superscript E) and the other correspond-
ing to zero tractions (denoted by superscript £) on dV. These-are two separate problems, and the two
boundary data are, in general, independent.
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9.4.2. Simplified Integral Operators

Using (9.4.3a,b), express the integral operators A and T in terms of the
integral operator U, as

—Ax; ) =C:(VaU(x; —C:e"; t2)-C:e*(x),

-T'(x; s = %{(V oU(x; s*; tB)) +(VoU(x; s*; tE)T}. (9.4.5a,b)

These formal expressions are exact. From (9.4.5a,b) now seek to obtain simple
integral operators which approximate the stress and strain fields produced by the
corresponding eigenstrain and eigenstress fields.

To this end, first introduce a rearrangement of the integral operator U.
From the Gauss theorem, (9.4.2b) is rewritten as

Ux; T; B = - [ (T@)-T): (V,eG=T(y - x)) dVy
+ [,y (VO (TE) - D +1(y)} .G~y - x) dS,

=Ux; T-T; 1), (9.4.6)

where T is the (constant) average of T over V, ie., T=<T >. It has been
pointed out in the literature (Willis, 1977, 1981) that if the required boundary
conditions are either zero tractions or zero displacements, it is then expected that
the integrand of the surface integral should satisfy the following two properties:
(1) T-T has an oscillatory spatial variation about zero on dV; and (2) the
unknown traction f also has an oscillatory spatial variation about zero on dV.
The approximation is then based on the expectation that the contribution to the
displacements at the interior points of a very large (relative to the size of the
inhomogeneities) V by the surface integral in (9.4.6) may be neglected, except
when the displacement of points within a thin "boundary layer" close to dV is of
concern. Hence, for interior points x in V, the displacement u is approximated

by12

u(x) = UAx; T-T), (9.4.72)
where
UAx; T) = — [, T(y) : (Vy@G=T(y - x)) dVy. (9.4.7b)

If the exact integral operator U is replaced by the integral operator U” in
(9.4.3a,b), the displacement fields, u* and uF, produced by the eigenstrain and
eigenstress fields, e* and s”, are respectively approximated by (two separate
problems)

uI(x) = UAx; —C:(e"-¢"), uf(x)=UAx;s" -5, (9.4.8a,b)

where e =<e*> and 5 =<s" > Hence, substitution of (9.4.8a,b) into

12 The consequences of this assumption are rigorously established in Subsection 9.5.
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(9.4.5a,b) yields the following approximation of the integral operators A and I':
A(x; e) = (A:e")(x) = (A*:e")(x),

I'(x; s*) = :s")(x) = T :s")(x), (9.4.9a,b)
where

—(A%:e)(x) = C: {VoUA(x; —C: (e -€")} -C: (e"(x) —¢€"),

- (TA:s"x) = %{(V@UA(X; s* -8 +(VeUAX; s* =) T},
(9.4.9¢,d)

are the approximate forms of the corresponding original operators. By their
construction, the volume averages of (A»:e")(x) and (I'A:s™)(Xx) over V are
identically zero,

<Ar:e">=0, <TIA:s">=0, (9.4.9¢,)

when V is an ellipsoid, see Subsection 11.3.3 and Equation (11.3.18b). This
observation is used in Subsections 9.5 and 9.6, to obtain exact computable
bounds for the overall moduli.

9.4.3. Approximate Correlation Tensors

Using the (approximate) integral operators A” and I' given by (9.4.9a,b),
now approximate the correlation tensors, A®® and I'®8, for piecewise constant
trial eigenstrain and eigenstress fields. Assuming a suitable reference elasticity
tensor, C, and following definition (9.3.5a,b) for A®B and I'®8, consider

fg A% e =~ < AL Hpe™ >,
- 1 : : : *
_{— Q—ajga{IQBC.I‘"’(y—x).CdVy} de+C} : (8op—fp) €'
(9.4.10a)

and

faIB: s =< I'A: Hps™ >,
=[] (], Ty —%) dVy} dVy | : (Bup—Tp) s

(c, B not summed), (9.4.10b)

where Hg = H(x; Qg), and €"B and s™P are the arbitrary constant eigenstrain and
eigenstress; x and y are in the aith and Bth micro-inclusions, , and Qg, respec-
tively; and the fourth-order tensor field I'™(z) is defined by
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= % {GEj1+ Gt + Gk + G ). 9.4.11)

It is still difficult to compute the above double integral analytically, even
though the Green function G™ can be obtained explicitly, at least when an iso-
tropic reference elasticity C is used. From the properties of G, however, it is
possible to estimate the values of these integrals and obtain an explicit approxi-
mation for the correlation tensors A% and I'*8, As shown by Willis (1977) for a
medium with statistically homogeneous and isotropic microgeometry, the dou-
ble integral of I can be expressed as

1 ~
o, fo Jo T -® vy aVe =I5, (9.4.12a)
where the approximated correlation tensors 'A% are defined by
rAoB = (3,5 f_lﬁ ~1)P (B not summed), (9.4.12b)

with the fourth-order tensor P given by
P=[ T-@dV, (@>0). (9.4.13a)

As will be shown in Section 11, tensor P satisfies the symmetry properties:
Pk = Puiij (= Pji = Pijix). (9.4.13b)
Since the contribution of Hp(x) €"P to the average eigenstrain € is f3 e,
subtract it from Hp(x) €™ (B not summed), in order to compute the approximate

correlation tensor AA%B; see (9.4.9c). Then, direct substitution of (9.4.12) into
(9.4.10a) yields AA%B, as

ArB = — (o f—lﬁ ~1)C:P:C+3d4p fi[i C-C (B not summed).
(9.4.14)

It is seen from the symmetry of P, (9.4.13b), that tensors AA%® and TR are
symmetric with respect to the first and last pairs of their subscript indices, i.e.,

Al_]Ak(IXﬁ - kll_]ﬁ(_ 111-\k?4i - ulk )
rlﬁgﬁ— kluﬁ(— Aot[i_ ulkﬁ) (9.4.15a,b)

foro, =0,1,2,...,n

A brief derivation of (9.4.12) and (9.4.13) is as follows; see Willis (1977)
for details. Since I'*(s”) is defined by

I=(x; 5) = [T=(x—y): (s*~5") dVy, (9.4.16a)

for piecewise constant distribution of eigenstresses, < s* : I'(s*) > becomes
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<s":T>(s")>= az:“o Bgo% _”(Ha(x) $°%)

:T=(x—y): (Hp(y)s"P—5")dV, dV,. (9.4.16b)

Based on the assumption of statistical homogeneity, interpret the above volume
average as the expected value or the ensemble average taken at a fixed point.
Then, noting that the expected value of finding phase o at x is given by f,, the
right side of (9.4.16b) becomes

agoﬁgos*a:{j(%ﬁ(lx—yl)—fafﬁ)p»(x_y) avy}:s

where (g is the two-point correlation function that represents the probability of
finding phases o and B at X and y, respectively. Note that the two-point correla-
tion function must depend only on IX—yl, in view of statistical homogeneity
(translation invariance) and isotropy (rotation invariance).

In view of the assumed disorder, 0qp tends to f, fs when |x—y| becomes
large. Furthermore, ¢op(0) = fo when o = B and ¢ap(0) = O when o # f; that is,
the probability of finding the aith phase at any point is given by fy, and the pro-
bability of finding different ath and Bth phases at one point is zero. Hence, the
contribution to the volume average, < s : I'™(s”) >, by the ath and Bth phases
may be estimated, as

f(%s( Ix=y )= fofp) I™(x - y) dVy = ($op(0) — fo fp) P, (9.4.16¢)
where identity
.[a<lzl<b l"""(z) dv.=0 (@>b>0) (9.4.16d)

is also used. Hence, (9.4.12) and (9.4.13) are obtained.

Since I'™ is given by the gradient of the Green function G, it depends on
the elastic properties of the comparison material, i.e., on C (or D). For the case
of an isotropic elastic material, Eshelby (1957) obtained an explicit form for P,

=L 1 jog1@4 24=5V) qas
P (=) { 5 1% 1) + 5 169} 94.17)
where L and v are the shear modulus and Poisson ratio of the isotropic material.
For the case of an anisotropic elastic material, P has been obtained for several
cases; for example, Kneer (1965), Willis (1970), and Kinoshita and Mura
(1971).

9.4.4. Optimal Eigenstrains and Eigenstresses

Using the simplified integral operators which are derived from the Green
function for an infinite domain, approximate the functionals I and J, by

I(e"; 0°) = IA(e"; 6°),  J(s™; €°) = JA(s™; £9), (9.4.18a,b)

where I* and JA are obtained by replacing the integral operators A and I in I
and J, with the integral operators A and I'A which are defined by (9.4.9¢,d).
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For piecewise constant trial eigenstrain and eigenstress fields, e* =

Z Hye™and s™ = Z Hy, 8%, construct the quadratic expressions I’ and J' in
a=0

(9.3.8a,b) from I and J In a similar manner, for such piecewise constant fields,
define quadratic expressions I4” and JA’ from I and J4, as

IMe™; 69 =TV({e7); 69),  JAGs™; £°) = IV({57%); &), (9.4.19a,b)

where

INM({e*®): 6°) = i Bi e AR . "B _ O -

4 *® 4 n 1 *® *®
IN({s™}; &%) = =80 JAob . "B B : g, 4.
({s™h ey = ¥ Bgo 3 (9.4.19¢.,d)
with the fourth-order tensors 14®B and JA®B being obtained by replacing the trial
correlation tensors A® and T8 in I°® and J*B with the approximate correlation

tensors AA% and T which are defined by (9.4.12) and (9.4.14), for o, B = 0,
1,2, ..., n. Hence, from (9.4.18a,b), estimate I’ and J' by

I'({e"}; 6°) = IM({e"%}; 6°),  J({s™}; €°) = JV({s™%}; €°). (9.4.18¢.d)
Substituting (9.4.14) into (9.4.19a), write the quadratic expression I, as
IA’({e*(x}; 60)

i e*@: ((D*-D)y!-C:P:C+C}:e*
+%E*:C:(P—D):C:E*—G°:E*

= 3 fu (- C:e"): {(CH-Cy ' +P): (- C:e™®)
a=0

+%(—C:E*):(P—D):(—C:E*)+(D:6°):(—C:E*), (9.4.20a)

where

D*-D)!'= -C:(C*-C)L:C*= ~C-C:(C*-C)!:C (9.4.21a)
and

D*-D)y'-C:P:C+C= -C: {(C*-C)y'+P}:C (9.4.21b)

are used. In a similar manner, substituting (9.4.12b) into (9.4.19b), write the
quadratic form J&', as

JN([s*®); €°) = Z f, Lgo. ((co—Cy '+ P} :s™

- %§* PS5 eo. (9.4.20b)
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Note that the symmetry properties, Pijkl = Pklij and (C:P: C)ijkj =(C:P: C)klij’
are used to derive (9.4.20a,b).

The optimal eigenstrains and eigenstresses, {€°*} and {6"*}, are deter-
mined such that the derivatives of 1V({e"}; 6°) and J'({s*®}; £°) with respect
to ¢** and s"® vanish for all c. Since P is a constant tensor, the governing sets of
n + 1 linear tensorial equations are given by

[(Co-C)'+P}:(-C:€Y-P:(-C:€)—-(D:06°+€") =0,
{(C*—CY'!'+P}:6"*—P:6"—¢° =0,

(x=0,1,2, .., n). (9.4.22a,b)

The above two sets of tensorial equations are essentially the same, and if
—C:€"* and D:0°+€" in (9.4.22a) are replaced by 6*® and €°, respectively,
one obtains (9.4.22b). Furthermore, solving each set of equations explicitly,
obtain the solution of, say, (9.4.22b), to be 6™ = {(C*—C) ' +P}!: {g°
+P:06"}. Then the average eigenstress, G", is given by

G =(149_%:P)!:%:¢g° (9.4.23a)
where
=¥ £y ((CO—C) + P}
0

o

M=

, fo (C*—C): {189+ P (C*—C)}~\. (9.4.23b)

o

In a similar manner, from (9.4.22a) obtain
€=-D:(14%_-X:(P-D)}:Z:(D:0°). (9.4.23¢)
As shown in (9.3.13a,b), the optimal values of I#({€"*}; 6°) and

J¥({0"*}; €°) are given by half of the inner product of 6°:€" and G*:€°,
respectively. Indeed, using (9.4.20~23), obtain

IA/({S*O,}-’ 0-0) - _ %GO . E*A’
W({6");8%) = - 15°A 1", (9.4.24a.b)

where, to distinguish the optimal average eigenstrain and eigenstress of the
exact functions I” and J' from those of the approximated functions 14" and J#’,
the superscript A is used for the latter, i.e.,

€Az —D: {1®_3:(P-D)}!:Z:D:0°,

A= (14 —_3:PY!:3:go. (9.4.24c¢,d)
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9.5. GENERALIZED VARIATIONAL PRINCIPLES; EXACT BOUNDS

It is established in this subsection that the approximate expressions A*
and I given by (9.4.9¢,d), can actually be used to obtain rigorous bounds for
the overall moduli of the heterogeneous finite solid. This is done with the aid of
the universal Theorems I and II of Subsection 2.5.6. The proof given in the
present subsection does not depend on the statistical nature of the RVE,
although this is an important feature which has been considered, in order to vali-
date the approximations used to estimate these bounds; Willis (1977, 1981).

The results obtained here apply to any heterogeneous linearly elastic
solid of overall ellipsoidal shape, independently of its size, and the distribution
and elasticity tensors of its heterogeneities. The elastic inclusions may be distri-
buted in the considered finite ellipsoidal RVE in an arbitrary manner, and their
elasticity may deviate from the average properties of the composite by orders of
magnitude, without affecting the proof. Since the initial RVE can be regarded
as a suitably large part of an infinitely extended heterogeneous solid with the
same overall properties, it is always possible to choose an RVE in an ellipsoidal
shape. Indeed, from the discussion of Section 2, it is clear that the overall pro-
perties must not depend on the shape and the size of the RVE, as long as the
RVE is suitably large. The choice of an ellipsoidal RVE, therefore, is for con-
venience of analysis only. While the ellipsoidal shape of the RVE is essential
for establishing the final proof (Subsection 9.5.4), general results developed in
Subsections 9.5.1, 9.5.2, and 9.5.3 hold for RVE’s of any shape or size, contain-
ing any number of phases with arbitrary elastic moduli.

9.5.1. Generalization of Energy Functionals and Bounds

Integral operator A = A(x; €*) defined by (9.1.6), yields the disturbance
stress field, — 69, due to eigenstrain field e* in the homogeneous solid'® V of
uniform elasticity C = D!, such that the boundary 0V is left traction-free; see
Figure 9.5.1a. If the corresponding disturbance strain field is denoted by €9 =
D:od+e*d with'* e*d = e* — < e* >, then it follows that

1
<od:gd>= V-[av td,uddS =0, (9.5.1a)

where td (= 0) and u? are the associated boundary tractions and displacements,
respectively. As is shown in Subsections 9.1 and 9.2, the integral operator
< {(D'-D)!'+A}: > is self-adjoint, and it is positive-definite (negative-
definite) when D’ — D is positive-definite (negative-definite).

13V is not necessarily an ellipsoid.

14 The disturbance strain associated with the disturbance stress is defined by €4 = D: 6%+ ¢*
in Subsection 9.1. The volume average of €9 is nonzero (given by < " >) in this definition. In the
present subsection, the disturbance strain is defined such that its volume average vanishes.
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Figure 9.5.1a

Eigenstrain field e*(x) in homogeneous V
produces disturbance fields which leave
dV traction-free, t4 = v.o¢ =0 on 9V

Similarly, integral operator I = I'(x; s*) defined by (9.1.14), yields the
disturbance strain field, — €9, due to the eigenstress field s*, in the homogeneous
solid V of uniform elasticity C, such that the corresponding boundary displace-
ments on dV vanish identically (a different problem); see Figure 9.5.1b. Hence,
if the corresponding disturbance stress field is denoted by 64 = C: €4+ 8" with
$"d =8"—< 5" >, then (9.5.1a) also holds for this problem, and the correspond-
ing integral operator < : {{C'—C)"'+T'} : > is self-adjoint, as well as positive-
definite (negative-definite), when C’ — C is positive-definite (negative-definite).

For both of the above stated problems, the Hashin-Shtrikman variational
principle holds, and (9.2.9) and (9.2.10), therefore, follow directly from the pro-
perties of operators A and I'. Note that (9.2.10a) corresponds to the uniform
traction boundary data with the average stress 6° prescribed, whereas (9.2.10b)
is for the linear displacement boundary data with the average strain €° pre-
scribed. The key to the establishment of the Hashin-Shtrikman variational prin-
ciple, and hence (9.2.10), the bounds for these cases, is the fact that for any
eigenstrain or eigenstress field, the disturbance stress or strain field satisfies
(9.5.1a) identically.

For the Hashin-Shtrikman variational principle to apply, it is not neces-
sary to restrict operators A and I to correspond, respectively, to traction-free

Figure 9.5.1b

Eigenstress field s*(x) in homogeneous V
produces disturbance fields, such that
displacements on 9V vanish; u¢ = 0 on oV
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and zero-displacement boundary conditions on boundary 0V of homogeneous V.
The only requirement is that (9.5.1a) holds for the associated disturbance stress
and strain fields. Then, the corresponding (total) stress and strain fields, ¢ and
€, satisfy

<O:E>=<0>:<E>. (9.5.2)

This ensures that the overall moduli defined in terms of the elastic or comple-
mentary elastic energies coincide with those defined in terms of the average
stress-strain relations; see Subsection 2.3. As mentioned, the volume average
of the disturbance stresses and the disturbance strains is zero, i.e.,

I dAQ —
<ogd>= v favx®t dS =0,

<gd>= %J'avsym{vebud} ds =0; (9.5.1b,c)

see Subsections 2.1 and 2.2. Conditions (9.5.1b) and (9.5.1c) are equivalent,
when the disturbance stress and strain fields are related through €¢-D: g9 =
e —< e’ >, if e"is prescribed, or through 64— C:gd = s"—< 8" >, if 5" is pre-
scribed.

Consider now a general class of boundary data for homogeneous solid V
of uniform elasticity C = D!, such that neither the disturbance traction nor the
disturbance displacement field, on boundary dV, is identically zero, but, instead,
at every point on dV, these disturbance fields satisfy

th.ud=0 onaVv, (9.5.3)

where t = v.(6—< 6 >)and ud = u—x.< € >on dV. The disturbance traction
field and disturbance displacement field are associated with the disturbance
stress field and the disturbance strain field, respectively.

For this class of boundary data, consider first the case when the overall
stress is prescribed to be < ¢ > = ¢°. Denote by AS the corresponding integral
operator which, for any eigenstrain field e*(x), yields the disturbance stress
field, 69(x) = — AS(x; e"), and the corresponding disturbance strain and hence

displacement fields, €9 and ud, such that (9.5.3) is satisfied identically;'® see
Figure 9.5.1c. Define for A° the following functional:

i(e*; AG; 6°) = % <e'  {((D'-Dy!'+AS):e*>—<c°:e* >  (9.54a)

The Hashin-Shtrikman variational principle is applicable to this class of func-
tionals, since, by definition, AC is self-adjoint and satisfies

<e':AG:e">=<(AS:e"):D:(AS:e") >
=<e :C:e">-<gd:C:el>. (9.5.5a)

These properties of AS ensure the positive-definiteness (negative-definiteness)

15 The class of operators AC includes operator A associated with the traction-free boundary
conditions, i.e., (9.1.5b).
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of operator < :{(D'-D)'+AS%}: > when D'-D is positive-definite
(negative-definite); see Subsection 9216

Let £7C be the eigenstrain field that renders i(e*; AS; ¢°) stationary. Due
to the self-adjointness of A, this eigenstrain, €°C, satisfies

3l(e*C; AC; 6°) = < Be* :{ {(D’-D) !+ AC): g0 60} >=0. (9.5.6a)

The Euler equation of I coincides with the consistency condition under the con-
sidered general boundary conditions, and hence the stationary value of I is given
by

(€% AS; 6°) = - 1 '0:6°= 1 6°: (DD : 0", (9.5.7a)
where D is the overall compliance tensor under the prescribed, possibly mixed,
boundary conditions. This is the generalized Hashin-Shtrikman variational
principle. Furthermore, it follows from (9.5.5a) that for any eigenstrain field ¢”,

1(€*G; AG; 6°) < () i(e*; AC; 6°), (9.5.8a)

if D’—D is positive-definite (negative-definite). These are the generalized
Hashin-Shtrikman bounds. Note that, since condition (9.5.3) is satisfied for the
general boundary data considered above, the energy definition of DS and its
definition based on the average stress-strain relations are identical.

The case when the overall strain is prescribed to be < € > = €°, is treated
in a similar manner. Denote by I'C the integral operator which, for any eigens-
tresses s'(x), yields the disturbance strain field, €4(x) = —I'G(x; s*), and the
corresponding disturbance stress and displacement fields, such that (9.5.3) is

satisfied identically.!” The Hashin-Shtrikman variational principle is then appli-
cable. Define the following functional for I'C:

| A [

i 69=—AGE") | or (&= TG |

1 gd=D:od+g*d ) lod=C:ed+0™ 1
|

Figure 9.5.1¢

Eigenstrain field e’(x) or eigenstress
field s*(x) in homogeneous V produces
disturbance fields, such that although
neither tractions nor displacements

are identically zero on 9V, their inner
product vanishes there

'¢ Equation (9.5.5a) holds whether the disturbance strain field is defined by €4 = D : 69+¢* or
byed=D:od+(e*—<e* >).

'7 The class of operators I'C includes operator T" associated with the zero-displacement boun-
dary conditions, i.e., (9.1.13b).
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J(s*; TG; g°) = % <s": {(C'-C)'+T0}:8" >-<g°:5" >, (9.5.4b)

where < : TG : > satisfies'®

<s:T6:8">=<T%:5"):C:(IS:5" >

=<s:D:s*>-<c:D:0¢>. (9.5.5b)

These properties of I'C ensure the positive-definiteness (negative-definiteness)
of operator < :{(C'-C)'+IC}: > when C'-C is positive-definite
(negative-definite); see Subsection 9.2. Then, observe that 6™C which solves

8J(67G; T'G; £°) = < 8s* :{ (C'—C)y'1+T9}: G*G—e"} >=0, (9.5.6b)

renders J stationary, and satisfies the consistency condition under the prescribed
boundary data. Then, the stationary value of J is given by

J6'% TG e0) = - 1 5°0:6°= 1 &°:(C-C9) e, (9.5.7b)

where CC is the overall elasticity tensor under the prescribed, possibly mixed,
boundary conditions. From (9.5.5b) it follows that, for any eigenstress field s*,

J(6*G; TS; €°) < (@) J(s*; T'S; €9), (9.5.8b)

if C’—C is positive-definite (negative-definite). Equations (9.5.4b) to (9.5.7b)
define the second generalized Hashin-Shtrikman variational principle, and
(9.5.8b) gives the corresponding generalized bounds. 1t should be noted that the
results obtained in this subsection, namely (9.5.7a,b) and (9.5.8a,b), are valid for
any finite isolated V of any shape or size, i.e., V is not necessarily an ellipsoid.
Note also that since condition (9.5.3) is satisfied, the energy definition of CS and
its definition through the average stress-strain relations are identical.

The class of functionals 1(e*; AC; 6°) includes the functional I(e*; 6°)
which corresponds to uniform boundary tractions, and which has been con-
sidered in the preceding subsections. Similarly, the class of functionals
J(e*; AG; £°) includes the functional J(s*; £°) for linear displacement boundary
data. To emphasize the corresponding boundary data, the operator A associated
with the uniform traction boundary data will be denoted by AZ, and the operator
T associated with the linear displacement boundary data will be denoted by TE,
The corresponding functionals will be displayed as

I(e*; o°) = I(e*; AT; 6°),  J(s*; €°) = J(s*; TE; £°). (9.5.92,b)
Table 9.5.1 summarizes the functionals and the corresponding bounds for vari-
ous boundary data.

It may be instructive to note that when the boundary data of the original
heterogeneous RVE consist of either uniform tractions or linear displacements,
the classical principles of the minimum potential and complementary potential

18 Similarly to (9.5.5a), (9.5.5b) holds whether ¢4 is defined by 6¢ = C:TG+s"orby 6d =
C:TO+(s"—<s">).
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Table 9.5.1

Finite-space operators and their properties

boundary data trial field

Hashin-Shtrikman functional

uniform tractions e" =e'(x)
linear displacement  s* = s*(x)
genera <6 >=06° e"=e’(x)

general: < € > = €° s* =s"(x)

1(e*; 6°) = i(e*; AZ; 6°)
I(s" &) = J(s" T &9)
i(e*; AS; o)

J(s*; TS; €°)

boundary data exact field

optimal value

uniform tractions € =¢g'(x)
linear displacement 6" = ¢"(x)
general: <6 >=0° € =¢g"6(x)

general: < € > = g° 06 = 0"%(x)

I(e*; 6°) = 6°: (D—D%): 6°/2

J(o"; &) =€°: (C—C"):€°/2

i(e76; AS; 6°) = 6°: (D-D%:0°/2
J(6*6; TG; €°0) = g°: (C—C°) : £°/2

restrictions bounds
I(€"; o°) < I(e*; o°
D’'-Dis p.d. A( . )= R )*
I(€"G; AS; 0°) <1(e"; AS; o°)
I(g"; 6°) = 1(e"; 6°
D’-Disn.d. A( )2 1( R )
I(€"G; AS;-a°) 2 1(e*; AS; o°)
J(o"; £°9) < J(s™; €°
C'-Cispd. A( . )= A)*
J(67C; AC; £°) < J(s™; AS; £°)
J(o"; €°) = )(s"; €°
C'-Cisnd. ( )2 X )

J(07G; AG: €°) > J(s*; AC; £°)

285

energies can be used to establish the Hashin-Shtrikman variational principle, as
is shown by Hill (1963). For the general boundary data considered in this sub-
section, on the other hand, the universal Theorems I and II of Subsection 2.5.6
provide the necessary inequalities which compare the energies associated with
different boundary data which produce either the same overall stresses or the

same overall strains.
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9.5.2. Inequalities among Generalized Energy Functionals

Now, consider Theorems I and II of Subsection 2.5.6, in order to obtain
inequalities that hold among the members of each of the classes of functionals I
and J. As is shown by (9.5.7a,b), the stationary value of I(ofh) gives the overall
compliance (elasticity) tensor of the original heterogeneous RVE for the corre-
sponding boundary conditions. For the same overall strains, or the same overall
stresses, the elastic and complementary energies associated with these or any
other general boundary data can be compared with the aid of universal
Theorems I and II of Subsection 2.5.6.

According to Theorem I, among all boundary conditions'® that yield the
same average strains, €, the uniform traction boundary conditions render the
strain energy an absolute minimum. This yields

lE:(Eg—EZ):Ezo, (9.5.102)

where CZ is the overall elasticity tensor of the RVE when subjected to the uni-
form traction boundary conditions (signified by the superscript X), and Cg is the

overall elasticity tensor defined through the average strain energy?° of the same
RVE under some other general boundary conditions which produce the same
overall average strain, €. It thus follows that CS — CZ is positive-semi-definite.
Then, in view of identity (9.2.5d), (CS)~! and D = (C%)! satisfy

1 6°:(CH1-DY:0°0, 9.5.112)

for any constant 6°. Hence, (EEG)‘l -D%is negative-semi-definite.

Similarly, according to Theorem II of Subsection 2.5.6, among all boun-
dary conditions that yield the same average stresses, O, the linear displacement
boundary conditions render the complementary elastic strain energy an absolute
minimum, 1.e.,

%6:(1_)2—1_)5):620, (9.5.10b)
where DE is the overall compliance tensor of the RVE when subjected to the
linear displacement boundary conditions (signified by the superscript E), and

DG is the overall compliance tensor defined through the average complementary

strain energy?! of the same RVE under some other general boundary conditions,
both producing the same overall average stress, 6. Hence, CE = (DF)~! satisfies

' These may or may not satisfy (9.5.3).

2 Since the considered general boundary data need not satisfy (9.5.3), and hence (9.5.2) may
not hold, the energy definition of the overall elasticity tensor, C E, and its definition by the average
stress-strain relations may not, in general, be the same. Subscript E emphasizes that this quantity is
defined through the average energy of the RVE. Note that CZ is the same for both definitions, since
it corresponds to uniform traction boundary data.

21 Comments similar to the preceding footnote about CZ also apply to D.
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%so:((ﬁg)—l ~CBy: g0 <0, (9.5.11b)
for any €°. Note that even under the same boundary conditions, Eg and Bg are
not, in general, each other’s inverse, unless (9.5.2) is satisfied.

Now, if the general boundary data considered above are restricted such
that they satisfy (9.5.3), then the energy definition of the overall moduli and
their definition based on the average stress-strain relations coincide. Then
(C Sy 1in (9.5.11a) is expressed as DS = DS, and with the aid of (9.5.7a), the
followmg inequality for the stationary Value of functional 1 is obtained:

I(S*Z; AZ; GO) < I(S*G; AG; GO), (95128)

where € is the eigenstrain field that satisfies the same consistency condition
(9.5.6a), with AC replaced by AZ corresponding to uniform traction data. In a
similar manner, with the aid of (9.5.7b) and (9.5.11b), the following inequality
for the stationary value of functional J is obtained:

J(0™E; TE; £°) < J(07C; TS, £9), (9.5.12b)

where 6°F is the eigenstress field that satisfies (9.5.6b), with T'C replaced by I'E.
Note that for these cases, the general boundary conditions are restricted to
satisfy (9.5.3), so that (9.5.2) holds.

Observe that the left side of (9.5.12a) is given by I(e*; 6°) with £" = £*Z
since functional I belongs to the class of Is; see (9.5.9a). Similarly, the left 31de
of (9.5.12b) is given by J(6"; £°), with 6" = 6"E; see (9.5.9b).

Figure 9.5.2 summarizes the results of this subsection in the form of a
flow chart. Note that the results above the two middle dashed boxes correspond
to any general boundary data (denoted by superscript G), whereas those below
these dashed boxes are for boundary data which satisfy (9.5.3).

9.5.3. Functionals with Simplified Integral Operators

Disturbance stress and strain fields produced by integral operators AS or
'S, introduced in Subsection 9.5.1, satisfy particular prescribed boundary condi-
tions on dV, such that (9.5.3) is satisfied. In Subsection 9.4.2, simplified integral
operators A* and I' are introduced to approximate A and I'. This approxima-
tion is equivalent to embedding the uniform isolated V of elasticity C = D! in
an unbounded homogeneous domain of the same uniform elasticity, and consid-
ering its response under overall stresses or strains, when eigenstrains or eigens-
tresses are distributed within V. In this manner, V is regarded as a portion, V’,
of a uniform infinite region of uniform elasticity C = D!, within which suitable
eigenstrains or eigenstresses are distributed.

Note that constant eigenstrains, €*°, or eigenstresses, s™°, uniformly distri-
buted throughout the infinite domain, produce no disturbance fields in any sub-
domain, since the divergences of C : €* and s™ are identically zero everywhere.
Hence, for any arbitrary eigenstrain field, €*, defined within V’, it is only neces-
sary to consider the strain and stress fields produced in V’ by the disturbance
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RVE

linear displacement uniform traction

boundary conditions boundary conditions
r-------- r——-------

) Theorem I —— ——1 Theorem II |
Lo __ 4 [ |
/

CE—(DS)tispd DZ—(C%ispd
[l B [ q
, fields due to TG: | , fields due to AG: |
L@ =C8, T €91 =DZ,
[ g Lo %€ 5

v Y

(_ZE—(_Z((;8 is p.d. Bz—ﬁg_s is p.d.

[t l [ B
, stationary valuﬁe . ; stationary value |
I of functional J ! | of functional I 1
[ 4 Lo ____ g

A 4

J(c"E; TE; £°) < j(6™G; T, £°) ie'Z; AZ; 69) < i(£*G; AS; 60)

Figure 9.5.2

Flow chart of exact inequalities for different boundary data with the same aver-
age strain < € > = €° (left half) and the same average stiess < ¢ > = ¢° (right
half); results above the middle dashed boxes are for boundary data which need
not satisfy (9.5.3), whereas those below these boxes satisfy (9.5.3)

eigenstrain field, "4 = " —< € >, and then add the average strains and stresses
corresponding to the uniform eigenstrains, < ¢* >. Similar comments apply to
any eigenstress field, s*, prescribed within V’, so that only the fields produced
by the disturbance eigenstresses, s*4 =s"—<s* >, need to be examined and
superimposed on the average fields produced in V’ by the uniform eigenstresses,
< s >, applied over the infinite region; see Figure 9.5.3. Therefore, only the
effects of the disturbance eigenstrains and eigenstresses, €*¢ and s, are con-
sidered in the following.

The approximate operators, A* and I', are not associated with any partic-
ular prescribed boundary conditions on dV = dV’, since the disturbance stress
and strain fields that they yield change the corresponding boundary data on dV’,
as the eigenstrains or eigenstresses are changed. Thus, (9.5.3) may not neces-
sarily be satisfied, and the Hashin-Shtrikman variational principle may not be
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| 02 = —AAE) | eA= —TAs") |
tgA=D:oA+ed1 T 1 6A=C:eghss™d
Lo 3 Lo __ J
-7 TS v
B e RN
// - \
/ |
{ e +edors +s% J
\ ’
: - i C,D
Nwvos s s
L O -
e ors ——

Figure 9.5.3

Eigenstrain field e” or eigenstress field s” in infinite homogeneous region B; ¢*d
. . . . . . , —% k. . .

or s* is distributed in an arbitrary subregion V’, and € or s is distributed

throughout B; for ellipsoidal V', < 62 >=0,<€*>=0,and < 0% :e* > <0

applicable to the functionals defined for these operators, namely to functionals
IA(e"; AA; 6°) and JA(s™; TA; £°), which are given by
1

I5(e"; A%; 6°) = > <e": {(D'-D)y!'+Ar}:e">-<0%:e" >,

JAs™; TA; 6°) = —é- <s' {(C—Cy'+TA} ;8" >—<£0:5" > (9.5.13ab)

see Subsection 9.4.4.%

Although the fields due to simplified operators A* and T may not satisfy
(9.5.3) and hence, (9.5.2) may not survive the involved approximation, the fol-
lowing result is always true for any eigenstrain and eigenstress field, e and s,
defined in any finite subdomain V’ (of any shape) of a uniform infinite domain
of constant elasticity C = D L;

1) operators < : AA: >and < :TA: > are self-adjoint and positive-definite.
This property is proved at the end of this subsection.

From the self-adjointness and positive-definiteness of operators A* and
T4, it follows that the stationary value of IA (of JA) is its absolute minimum, if
D’ - D (if €’ - C) is positive-definite. That is

” In Subsection 9.4.4, these functionals are denoted by IA(e*; 6°) and JA(s*; €°). In this and
the following subsections, the dependence on integral operators A* and T'A is displayed in the corre-
sponding arguments.
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IA(€™A; A% 6°) <IA(e™; A% 6°)  for any €* when D’ ~D is p.d.,

JAG™A; TA; €°) < JA(s™; TA; €°)  for any " when C'—C is p.d.,
(9.5.14a,b)

where €4 and 6™ are the solutions of

SIME™; AA; 6°) = < Be” :{ {(D'-D) !+ AA} :e*A—co} >=0,

SJA(G™A; TA; £°) = < 8™ :{ {(C-C) ' +TA}: c*A—e"} >=0.
(9.5.15a,b)

The Euler equations in (9.5.15a) and (9.5.15b) are the same as those in (9.5.6a)
and (9.5.6b), respectively, except for the corresponding integral operators and
hence for the boundary data on dV’.

In addition to the self-adjointness and the positive-definiteness, operators
A# and T'” have the following property, independently of the shape of V"
2)operators < ((AA:D:AA—AM: > and < :(TA:C:TA-T?): > are
negative-definite.

Since < AA > and < I'A > vanish? for any eigenstrains and eigenstresses, if V’
is an ellipsoid, property 2) can be used to obtain inequalities which relate the
elastic and complementary elastic strain energies in the ellipsoidal V' to its
overall elasticity and compliance tensors which are defined by means of the
average stress-strain relations. Property 2) is also proved at the end of this sub-
section.

Now, consider an arbitrary eigenstrain field, e”, in ellipsoidal V’. Denote
the strain and stress fields produced by the disturbance eigenstrains through A4,
by?* 6A(x) = — AA(x; e) and €A(x) = D : 6A(x) +€*4(x). Since V' is ellipsoidal,
and since operator < : (A*:D:AA—- A*): > is negative-definite, these strain
and stress fields satisfy

<OA>=< —-AMe') >=0,
<gA>=< —-D:AMe"H+e"d>=0, (9.5.16a~c)

<ot grA>=<e': (AP D AA-AY: e ><0.

Under uniform farfield stresses ¢°, the resulting (total) stress and strain fields in
the infinite uniform domain which contains V’, are given by

0(x) = 6°+07(x), E&(X)=D:6°+<e* >+eA(X), (9.5.17a,b)

and these satisfy

3 This is proved in Subsection 11.3.3.

* As mentioned, constant eigenstrains do not produce stresses, if they are distributed
throughout the infinite domain. Hence, 6A = — AA(e*d) is written as — AA(e™).
g
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<O E>-<O>:<eE>=< 07 g2 ><0, (9.5.18a)

where <o >=0c%and <€ >=€ =D:06°+< e’ > From (9.5.18a), the follow-
ing inequality is obtained:

%E:(EE—EM):ESO, (9.5.19)

where Cg is the overall elasticity tensor of V’ defined through the average elas-
tic strain energy, <6:€>/2 = €:Cg:&/2; and C__ is the overall elasticity
tensor of V’ defined through the average stress-strain relations, < 6 > = Cg,
:€. Thus, (Cg)~' and Dy = (Co.¢)™! satisfy

% 6°: (Dy.— (Cp)): 6°<0, (9.5.202)

for any o°.

In a similar manner, consider an arbitrary eigenstress field s*, defined in
ellipsoidal region V', and let eA(x) = —'A(x; s*) and 64(x) = C : €4(x) + s™4(x)
be the corresponding strain and stress fields®> produced through I'. Since V’ is
ellipsoidal, and since operator < : (I'*: C:TA—T4): > is negative-definite, €7
and o satisfy

<grA>=< -TAs"H>=0,
<or>=< —C:TAs"Y+s"d>=0, (9.5.16d~f)
<Ot EA>=<s 9 (TA:C:TA-T?) :s") > <.

Under uniform farfield strains €°, the resulting (total) stress and strain fields
which are given by

£(x) = €° + £A(x), o(x) =C:e°+<s* >+ 064(x), 9.5.17¢,d)
satisfy
<O E>-<O0>:<E>=<0r:eA><0, (9.5.18b)

and hence the following inequality is obtained:
6 :(Dg— Do) : G <0, (9.5.19b)

where 6 =<0>=C:e°+<s" >, and 135 and 13(,_8 are the overall compliance
tensors defined for V’ through the average elastic strain energy, and the average
stress-strain relations, respectively. Thus, (Dg)~! and Cg.e = (Do)~} satisfy

% £°: (Cor— (D)) : £0<0, (9.5.20b)
for any €°.

Table 9.5.2 summarizes the results of this subsection. The superscript A
denotes the results obtained through operators A or I'* associated with the
infinite-space Green function.

 Comments similar to the preceding footnote about A also apply to TA.
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Table 9.5.2

Infinite-space operators and their properties

properties of operators AA(x; ") and ' (x; s*) associated with < >
(eigenstrains or eigenstresses vanish outside of V*)

.. <e'l:Are?> <s:TA:s2>
self-adjointness =<e?:Ar:e' > =<s?2:TA:s" >
positive-definiteness <e":Ar:e">20 <s":TA:8">20
negative-definiteness <€ :(A:D: AR N <shi@A:C:*

—AY:e"><0 -T?):s"><0

fields produced by operators for ellipsoidal V*

volume average <AMe) >=0 <TAs) >=0
o’x) = — Ar(x; e* £A(x) = —TM(x; §*
disturbance fields (x) ( ) (x) (x;87)
eh(x) =D 64x) or(x) = C: eA(x)
+e"(x) +5"(x)
o(x) =0°+ GA(X) £(x) = €°+ EA(X)
total fields
E(X)=D:6° E(X)=C:e°
+< e’ >+eMx) +< 8" >+06%x)

relations among fields produced by operators for ellipsoidal V”

<G:E> £:C; ¢ 6:Df:o
<6 >, <g>-relations ©°=CZ,:E e=DE.:o
<G>
<or:gr><0 <or: gr><0
—<O>:<E>
_ £:(CF-CX):e<0 G:(DF-DE):6<0
overall moduli T . B
o°: (DE.—(C: )Y e (Cy.—(DEYY
:0°<0 1g°<0

It will now be proved that operators < : A%: > and < :TA: > are self-
adjoint and positive-definite for any eigenstrain and eigenstress field, respec-
tively, and that < :(A%:D:AA—AA):> and < ((FA:C:AA-TA): > are
negative-definite. For illustration, the proof is given only for operator I'* here.
Consider an infinite domain B of uniform elasticity C. By definition, integral
operator I'* determines disturbance strains in B for eigenstresses distributed in
B. Let V' be a region in B, within which eigenstresses s*(x) are distributed. As



§9.5 UPPER AND LOWER BOUNDS 293

is discussed in Subsection 12.4, the Fourier transform representation of I'A(s™) is
given by

I'A(x; s%) = J.i: FTAE) : Fs*(E) exp(1E.x) d Ve, (9.5.21a)
where
Fs*&) = (_ZTIW J.V, s*(x) exp(—1§.x) dVy,,
sym(E(E.C.E) o) Ex0
FTAE) = (9.5.21b,c)
0 E=0,

with sym standing for the symmetric part of the fourth-order tensor.

Since eigenstresses uniformly distributed in B do not produce disturbance
strains, it suffices to consider an eigenstress field which vanishes outside of V’
and has zero volume average over V’. Then, < s*:T"A:s" > is given by

1
VI

<s":TA:g">= J.v' s"(x) : TA(x; %) dV,

= % J.B s*(x): TA(x; s*) dV,
= \i | i: Fs*(— &) : FTA) : rs*(E) d V. 9.5.22)

Since tensor FT'AE) is symmetric with respect to the first and last pairs of its
indices for any &, operator < : ' : > is self-adjoint.

Since s” is real-valued, Fs*(—§) is the complex conjugate of rs*(E); see
(9.5.21b). From definition (9.5.21c) of FT®, and the symmetry of Fs",
Fs*(— &) : FTA(E) : Fs™(E) becomes

F$* (= 8) : FTAE) : Fs"(§) = {E.Fs"(-§)}.(§.C.E) 1. {E.Fs*(E)}
=Z.¢.C.E).Z, (9.5.23a)

where Z = (§.C.E)1.{E.Fs"(§)}. Because of the symmetry and positive-
definiteness of C, the following relations always holds:

Z.E.C.E).Z=sym{ZoE}:C:sym{ZsE)}
= sym {(ReZ)®E} : C : sym {(ReZ) &}

+sym {(imZ)@E} : C: sym {(InZ) 2} = 0. (9.5.23b)

It follows from (9.5.23a) and (9.5.23b) that < : TA: > is positive-definite. The
self-adjointness and positive-definiteness of < : A%: > can be proved in essen-
tially the same manner. Note that the above results hold independently of the
shape and size of V’.
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With the aid of the Fourier transformation, it can be proved that < :
(T'*:C:TA-T*): ><0. Since C is positive-definite and s* vanishes outside
of V’, the following inequality holds:

<s":(TA:C:TA-TH):s" >

= \}, IV, FA(x; s*): {C:TAx; ") —s"(x)} dV,

< \1/ [ TA®: 871 {C: TAR: 87 - 5'(R)} V. (9.5.24)
In terms of Fs™ and FT™, the right side of (9.5.24) is given by

I [ A8 (FTAE): € ATA®) — FTA-B)) £ 15°(E) Ve,

From definition (9.5.21c¢) of FTA,
FTA=E): C: FTAE) = FTAE) : C : FTAE) = TAE), (9.5.25)

for § #0, and the term in the curly brackets vanishes. Therefore, it is proved
that for any eigenstresses which vanish outside of V’, < :(I'A:C:T*
—TI): ><0. In essentially the same manner, it is proved that < : (A*:D:TA
— A%): > <0, for any eigenstrains which vanish outside of V’. Note again that
V’ does not need to be an ellipsoid. Hence, if eigenstrains " or eigenstresses s
satisfy < A*e") > = 0 or < TA(s") > = 0, then, inequalities (9.5.18) to (9.5.20)
hold. These latter conditions are necessarily satisfied when V’ is ellipsoidal.

9.5.4. Exact Bounds Based on Simplified Functionals

In Subsection 9.5.2, two exact inequalities, (9.5.11a) and (9.5.11b), are
obtained for the overall compliance and elasticity tensors of the original hetero-
geneous RVE (denoted by V with boundary dV) subjected to any arbitrary
boundary data, using Theorems I and II of Subsection 2.5.6; see Figure 9.5.2. In
Subsection 9.5.3, two other exact inequalities, (9.5.14a) and (9.5.14b), are
obtained for functionals I* and J4, for any eigenstrains and eigenstresses pre-
scribed in an arbitrary uniform region, V', of an infinite uniform domain, B.
Furthermore, for an ellipsoidal RVE, two additional exact inequalities, (9.5.20a)
and (9.5.20b), relate the overall moduli defined through the average energy and
the average stress-strain relations, when the disturbance fields are given by
approximate operators A* and I'*; see Table 9.5.2. Two sets of exact inequali-
ties, namely, {(9.5.11a), (9.5.14a), (9.5.20a)} and {(9.5.11b), (9.5.14b),
(9.5.20b)}, are employed in this subsection, and exact computable bounds for
the overall moduli of the original heterogeneous RVE are obtained. The case of
traction boundary data is examined first.

To this end, choose V’ and V to be identical ellipsoids. The first is part of
the uniform infinite B, and the second represents the original RVE. For any
eigenstrain field e” defined in V', < AA(e*) > = 0, where the average is over V’;
see (9.4.9¢). It then follows that the left side of (9.5.14a) can be expressed as



8§95 UPPER AND LOWER BOUNDS 295

IAE™; A% 6% =— 2§ :6°= 1 6°: (D-DZ) : 0", (9.5.26a)
where l_)§ . is the overall compliance tensor of the original RVE which is homo-
genized by the eigenstrain field £*4, and which is subjected to the following
boundary conditions:

ux) = x.(D:6°)+U(x; —C:(e"A-€")),

(9.5.27a)

U(x) = V(x).(6° - AA(x; €"4),
where U is defined by (9.4.7). The eigenstrain field € solves the consistency

conditions for boundary data (9.5.27a) exactly, and hence homogenizes the ori-
ginal RVE for these boundary data exactly.

The definition of the overall compliance, l—)§ . given by (9.5.26a), is based
on the average stress-strain relations associated with the special boundary data
(9.5.27a).%° From (9.5.20a), the following inequality now follows:

1 6°: (DX~ (CF)™):6°<0, (9.5.282)
where Eg is the the overall elasticity tensor which is defined by the average
strain energy of the RVE for boundary data (9.5.27a). Inequality (9.5.11a)
therefore applies to this CZ, i.e.,

% 6°: (CX)'-D¥: 6°<0. (9.5.292)
Finally, from (9.5.28a) and (9.5.29a) it follows that
1 6°:(DZ,-D):6°<0, (9.5.30a)

for any constant 6°. Hence, Dg_’ . — D7 is negative-semi-definite.

It is still difficult to compute Dg_’ . exactly, since it requires an exact value
of €A, Inequality (9.5.14a) may now be invoked and, instead of the exact
eigenstrain field, €A, a piecewise constant eigenstrain field may be used,
together with the approximate operator A*. As in Subsection 9.4, denote the
value of the functional I1* for piecewise constant distribution of eigenstrains,
{e™®}, by I¥({e**}; 6°), where e"® is the constant eigenstrain field defined on
Qq(o=1,2,..,n). Let the stationary value of I* be attained by {£"®} which is
the solution of dI*’/de™® =0 (o0 =1, 2, ..., n). For the class of piecewise con-
stant eigenstrains, the optimal value I*({€"*}; 6°) obtained in this manner is

now expressed as
IA({€°); 6°) = % 6°: (D—DA): ¢°, (9.5.31a)

where D*A, defined from I*'({£*¢}; 6°), is the final estimate of the overall com-
pliance tensor. From inequality (9.5.14a) it now follows that

% Subscript 0-€ emphasizes that the moduli are obtained through the average stress-strain rela-
tions. Superscript X denotes that the uniform traction data are prescribed, and superscript X’ signifies
that V=V’ is embedded in an infinite solid. Note that the boundary conditions (9.5.27a) or
(9.5.27b) cannot be prescribed a priori; all primed quantities correspond to these boundary data.
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1 6°:(D*-DZ):0°<0, (9.5.32a)
if D’—D is positive-definite. Together with (9.5.30a), a computable bound on

the overall compliance tensor D* is obtained as follows:
o°:DZ:6°26°: DA 6o, (9.5.33a)

for any o°, if D’ —D is positive-definite. In the right half of Figure 9.5.4, the
above results are summarized in the form of a flow chart.

RVE

linear displacement uniform traction

boundary conditions boundary conditions
Fmm - T P
I Theorem I ! l«——  Theorem II |
Lo - - | L - - - )
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L TEF et E [ T T T D SRR L TO oe' O |
Y A
CE-CE ispd. DI- DZ, is p.d.
ffffffff ‘ _— e o — — —
JA(o*A A o") ......... S IA( ~ Ak o
1 | _ . i {3 ) |
| <IN TA 0°)  C-Cipd T D-Dispd | SIAE AN 0°)

e P SR Lo Anoen
a5 R SR i N
ycomputation of JA;, ,computauon of 1A,
1 CEAestimated | | DA estimated !
Lo ____ 4 Lo - g
CE_CEAjspd DE-D™is pd.
Figure 9.5.4

Flow chart of exact inequalities when homogenized V is regarded as part of an
infinite domain with approximate operators I'4 and A, DE is the overall com-
pliance tensor when V is subjected to boundary conditions produced by I'*
(symbolized by E), and CE is the overall elasticity tensor when V is subjected
to boundary conditions produced by A* (symbolized by £}
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The case corresponding to the class of functionals i(s*; I'G; £°) with
approximation JA(s™; TA; €9), is treated in the same manner. First the overall
elasticity for the functional JA(6™A; T'A; £°) is defined by

NG T £0) = — 2 5460 = 2 £°:(C-CE)) e, (9.5.26b)

where 6™ is the eigenstress field which exactly homogenizes the original RVE
under the following boundary data:

u(x) = x.£°+ U(x; (6°A - T*A)),
(9.5.27b)
t(x) = v(x).(C: e°-TA(x; 6™4)).

Note that Eé‘: . is the overall elasticity tensor defined through the average stress-
strain relations. Hence, inequality (9.5.20b) applies, i.e.,

1€ (CE,-DF) ™M :e° <0, (9.5.28b)

where 5? is the overall compliance tensor which is defined by the average
complementary elastic strain energy of the RVE under the special boundary
data (9.5.27b). Since inequality (9.5.11b) applies to this C g’,

2 & (DFY!-CH:e0<0, (9.5.29b)

and in view of (9.5.28b), the following inequality holds:
2 € (CE,~CH:e°<0, (9.5.30b)

for any constant £°. Hence, (_Jf e = CEis negative-semi-definite.

Again, based on inequality (9.5.14b), JA(s*; TA; £°) is replaced by the
computable function, J({s**}; £°), for piecewise constant eigenstresses, {s*®}.
The optimal value of this function is J#'({6™*}; €°), where {67} is the solution

of dJ¥/ds*™*=0 (=1, 2, .., n). The optimal value JA({G"%}; €°) now
becomes
¥({6"®); £°) = % £°: (C—CEA) : g0, (9.531b)

where CEA, defined from J¥({6*®}; £°), is the final estimate of the overall elas-
ticity tensor. Inequality (9.5.14b) now yields

1 € (CPA-CE, re0 <0, (9.5.32b)
if C’~C is positive-definite. In view of (9.5.30b), a computable bound on the
overall elasticity tensor CE is obtained as follows:

£°:CE.g0>¢g°:CEA: go, (9.5.33b)

for any €°, if C’—C is positive-definite. In the left half of Figure 9.5.4, these
results are summarized in the form of a flow chart.

From (9.5.33a,b) the following exact relations between the energy func-
tionals and their approximations are obtained:
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I(e"; AZ; 0°) < I¥({€79); 69), (9.5.34a)
when D’ — D is positive-definite; and

J(o*; TE; €°) < JM({€7%}; €9), (9.5.34b)
when C’ - C is positive-definite.

From (9.5.33a,b), it is therefore possible to state the following rigorously
established, computable bounds for the overall moduli of an arbitrary hetero-
geneous, linearly elastic solid:

DZ-D® ispd. whenD’'-Disp.d.,
_ (9.5.35a,b)
CE-CEA ispd.  whenC’ -Cisp.d.

These results are exact and provide lower and upper bounds for the overall
moduli. Note that the considered boundary data for (9.5.35a) are uniform trac-
tions, whereas the boundary data which lead to (9.5.35b) are linear displace-
ments; these are signified by superscripts X and E, respectively. The approxima-
tion of replacing A by AA precludes the possibility of obtaining bounds under
uniform tractions when D’—D is negative-definite. Similarly, when T is
replaced by I', then the possibility of obtaining bounds from linear displace-
ment boundary data when C’—C is negative-definite is precluded. In view of
these observations, bounds which are obtained under these conditions should be
regarded as estimates of the overall moduli rather than rigorous bounds. Only
inequalities (9.5.35a,b) survive with certainty the errors introduced by approxi-
mating the Green function G(x, y) by that of the infinite domain, in the manner
discussed in Subsection 9.4.

Figure 9.5.4 summarizes the results of this subsection in the form of a
flow chart.

9.5.5. Calculation of Bounds

As shown in Subsection 9.5.4, exact mequalmes (9.5.35a,b) provide com-
putable bounds for the overall tensors D= and CF, in terms of D and CFA,
respectively. Indeed, for statistically homogeneous and isotropic RVE’s, substi-
tution of (9.4.24c) into (9.4.24a) and (9.4.24d) into (9.4.24b), yields DA and
CEA a5 follows:

DA=D-D:{1¥%_-X:(P-D)}"':Z:D

CEA=C+{1¢49_X:P} |3, (9.5.36a,b)

where X is given by (9.4.23b). After some tensor manipulation, DA and CEA
are expressed in terms of P which can be computed explicitly. In this manner,
DA becomes

DA =D { (149 _F:(P-D)) - ):}
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D:{ Cc-%: {1<4s)—(P—D):>_:}-l} ‘D

=D:{C: (18- ®-D):Z}-Z}: (19— @-D): £} D

= {1 _P:%}: {14 —(P-D):Z}':D, (9.5.37a)

and CEA takes on the form

CEA=C+Z: {14 P 3}

={Ci1@-p: 5+ 2} (1P F)

=C: {14 _(P-D):X}: {1®—-P:X}|. (9.5.37b)

Since substitution of (9.4.23b) into X in {149 —(P-D): X} and {14 —P: X}
yields

1(43)—(P—D):f‘.=D:{ 3 £, Co: {1(4S)+P:(C°‘—C)}*‘},

a=0

19-P:Z= 3 £, {19+P:(C*—C)}, (9.5.38a,b)
=0
DA and CEA are finally expressed in terms of P, as

DA =-{ i fa{1(4s)+P:(C°‘—C)}‘1}
1 a=0
|

:{ Bz':“,o f3CP: {1(4S)+P:(C[5—C)}—1}—1,

:{ Bzijo f3 {149 + P (CB— C)}! }-1. (9.5.39a,b)

Therefore, most remarkably, but as should be expected from their derivation,
these bounding tensors are each other’s inverse,

CEA = (DZA)y!1  or DA = (CEAYL (9.5.39c,d)

Inequalities (9.5.35a) and (9.5.35b) provide the upper bound on the overall com-
pliance and elasticity tensors, D* and CE, in such a manner that the tensors
DX-D** and CE—CEA are positive-definite, when D*—D and C*-C are
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positive-definite.?’

The tensor P can be computed explicitly. Hence, explicit bounds on the
overall elastic energies and tensors are obtained. Hashin and Shtrikman (1963)
apply the Fourier transform to the stress and strain fields and estimate the values
of the correlation tensors for an isotropic case. Walpole (1966b) generalizes the
bounds for an anisotropic case. Willis (1977) and Kroner (1977) examine the
general properties of the Hashin-Shtrikman bounds; for additional comments
and references, see Walpole (1981), Willis (1981), and Mura (1987). Recently,
Milton and Kohn (1988) have addressed certain mathematical aspects of these
bounds; see also Kantor and Bergman (1984), Francfort and Murat (1986), and
Torquato and Lado (1992). The generalized variational principles and the corre-
sponding generalized bounds, as well as the accompanying inequalities which
lead to the computable exact bounds (9.5.35a,b) are new observations. These
observations are used in Subsection 9.6 to obtain universal bounds on two
overall moduli, which apply to any heterogeneous elastic solid.

9.5.6. Alternative Formulation of Exact Inequalities: Direct Evaluation of
Exact Bounds

A number of exact inequalities can be derived based on Theorems I and II
of Subsection 2.5.6 and a proper choice of the reference elasticity and compli-
ance tensors. To this end, the following results are considered: 1) generalization
of Theorems I and II of Subsection 2.5.6; 2) consequences of negative-
definiteness of D’—D or C'—C; and 3) consequences of the vanishing of
< Ar> or <T2> when V is ellipsoidal. In this manner, exact computable
upper and lower bounds for the overall moduli and compliances are established

directly without invoking the variational principle;* i.e., bounds on the overall
elasticity and compliance tensors of a general heterogeneous elastic solid con-
sisting of any number of phases of any shape, size, and distribution are obtained
directly by proper choices of the reference elasticity and compliance tensors
and by the use of Theorems | and I1. These results are then related to the corre-
sponding bounds obtained in the preceding subsections.

First, observe that the proof of Theorem II of Subsection 2.5.6 can be
directly applied to establish the following result: for any disturbance stress field
o4 which satisfies the equations of equilibrium and has zero volume average,

% <ot:D':oE>< % < (6°+09:D" :(6°+069) >, (9.5.40a)
where 6F is the stress field of the linear displacement boundary data, with
< 6f > =¢° Similarly, the proof of Theorem I of Subsection 2.5.6 can be
directly applied to show that: for any disturbance strain field €¢ which is compa-

tible with a disturbance displacement field (i.e., is the symmetric part of the

7 These are two mutually exclusive cases.

28 For historical reasons, bounds developed up to this point are based on the Hashin-Shtrikman
variational principle.



§9.5 UPPER AND LOWER BOUNDS 301

gradient of a displacement field), and has zero volume average,

% <eX:C:eE>< % < (€ +ed):C: (e°+ed) >, (9.5.40b)
where €2 is the strain field of the uniform traction boundary data, with < €% >
=g°

Note that 69 in (9.5.40a) is not necessarily associated with a compatible
strain field, and that €9 in (9.5.40b) is not necessarily associated with an equili-
brating stress field. In Subsection 2.5.6, Theorems I and II are stated for cases
when the considered fields are associated with compatible strains and equilibrat-
ing stresses, such that they can be actually produced in the RVE when subjected
to suitable boundary conditions. Here, on the other hand, these theorems are
generalized by (9.5.40a,b) to include cases when the strains are compatible but
the stresses need not be in equilibrium, or cases when the stresses are in equili-
brium but the strains need not be compatible; Willis (1992).

Next, let D’ — D be negative-semi-definite. Then, for any arbitrary pair of
fields ¢ and s, the following inequality holds:

0=2(0-s5):(D'-D):(0-5)
=0:(D'-D):6-20:(D'-D):s+s:(D'-D):s
=0:D':06-0:D:06-2¢":06+€e":(D'-D)!:¢", (9.5.41a)
where® e* = (D’ —D) : s. Thus, taking the volume average over V, and dividing

both sides by 2, obtain

%<G:D':G>S%<G:D26+26:e*—e*:(D'—D)_1:e* >. (9.5.42a)

This inequality holds for any pair of ¢ and €”.

;Similarly, let C'—C be negative-semi-definite. Then, for any arbitrary
pair of fields € and e,

0>2(-€):(C-0C):(e-e)

=£:C':ge-€:C:e-25":e+5":(C-C)!:5", (9.5.41b)
where®® s* = (C’ - C) : e. It now follows that

%<e:cne>s%<e:C:e+2s*:e—s*:(C'—C)—1:s* >, (9.5.42b)

This inequality holds for any pair of € and s”.

Finally, consider a stress field which is produced by an arbitrary eigen-
strain field, say, e, i.e., 64 = — A%(e”), and apply (9.5.40a) and (9.5.42a). By

¥ Note that s = (D' — D)1 : & may be viewed as the stress field associated with the homogen-
izing eigenstrain field €*; compare with (9.1.4c).

* Note that € = (C'— C)~! : s* may be viewed as the strain field associated with the homogen-
izing eigenstress field s*; compare with (9.1.12c).
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definition, ¢4 is in equilibrium, and has zero volume average when V is an ellip-
soid. Thus, consider an ellipsoidal V, replace 6¢ by 6* in (9.5.40a), ¢ by
6°+ 64 in (9.5.42a), and obtain

%<GE:D':GE>S%<(6°+6A):D':(6°+6A)>

< % <{(6°+06):D:(6°+6A)+2(c°+0") e’

—-e":(D’'-D)l:e"}) > (9.5.43a)

Inequality (9.5.43a) holds for any e”, as long as D’ — D is negative-semi-definite
and V is ellipsoidal. From < ¢® > = 0, the first two terms in the right side of
(9.5.43a) become

< (6°+04):D:(6°+0")+2(6°+064):e" >
=0°:D:6%°+<06A:D:0r+0”:e" +(64+26%:e" >

=06°:D:0%+<e’:(AM:D: AP - AN :e"—e": (Are") - 206°) >.

(9.5.44a)
In this manner, inequality (9.5.43a) is rewritten as
%<GE:D':GE>S%6°:D:6°—{ % <e {(D'-D)y!1+Ar}:e" >

-<e’ >:6°}+%<e*:(AA:D:AA—AA):e* >, (9.5.452)

By definition, the left side of (9.5.45a) is given by 6°: DE: 6°/2, and the
terms in the curly brackets of the right side of (9.5.45a) equal functional
IA(e"; AA; 6°). Since the last expression of (9.5.45a) is negative due to the pro-
perty of A when V is ellipsoidal, the following inequality is obtained:

% 6°: (DE—D): 6° < —IA(e"; AA; 6°), (9.5.462)

when D’ — D is negative-semi-definite. This inequality is exact. It is a direct
result of Theorem II of Subsection 2.5.6, and the choice of the reference compli-
ance tensor, D.

A similar exact inequality is obtained for J* directly from (9.5.40b) and
(9.5.42b). Since €A = —IM(s") is compatible and has zero volume average when
V is ellipsoidal, replace €9 by € in (9.5.40b), € by €°+¢€* in (9.5.42b), and
obtain

% <e:C:e2>< % < (e°+€8):C :(e°+eh) >

< % < {(€°+€4):C: (2 +€A) +2(e°+€4) 1 8"
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-5 (C'-C) s} > (9.5.43b)

Inequality (9.5.43b) holds for any s”, as long as C’ — C is negative-semi-definite
and V is ellipsoidal. From < ¢® > = 0, the first two terms in the right side of
(9.5.43b) become

<(e°+€7):C:(e°+eM)+2(e°+€M):s" >

=£°:C:e%4+<s" :(TA:C:TA-T?):s"~s": (TA(5") - 2€°) >, (9.5.44b)
and inequality (9.5.43b) is rewritten as

%<82:E':ez>s%e°:c:e°—{ %< s ((C'—C) 1 +TA) - s

—<s*>:£°}+%<s*:(l"A:C:l"A—l"A):s*>. (9.5.45b)
The left side of (9.5.45b) is equal to €°: CZ:.g°/2 by definition, and the terms in
the curly brackets in the right side of (9.5.45b) equal JA(s*; TA: €°). The last
expression in (9.5.45b) is negative due to the properties of I'* when V is ellip-
soidal. Hence, the following inequality is obtained:

%ao (CE—C):£° < — JA(s™; T g9), (9.5.46b)

when C’ — C is negative-semi-definite.3! Again, this inequality is exact, and fol-
lows directly from Theorem I of Subsection 2.5.6 and the choice of the refer-
ence elasticity tensor, C.

Functionals 14(e*; A*; 6°) and JA(s*; TA;€°) in the right side of
(9.5.46a,b) can be computed for piecewise constant eigenstrains and eigens-
tresses, respectively. As shown in Subsection 9.5.4, the values of the function-
als IA‘ and JA for such piecewise constant eigenstrains and eigenstresses are
given by functions 14" and J4’, and their optimal values are I*'({€'*}, ¢°) =
6°: (D-D*): 692 and J*'({6*%}; £°) = £°:(C —CEA):£°/2, where D** and
CEA are estimated by (9.5.39a,b) of Subsection 9.5.5. Thus, (9.5.46a) and
(9.5.46b) yield

6°:DE:g°< 6°: DA o0,
€°:CE:g0<go:CBA: go, (9.5.47a,b)

if D'~ D and C’ - C are negative-semi-definite,?? respectively. Again, inequali-
ties (9.5.47a,b) are exact.

Inequalities (9.5.47a) and (9.5.47b) lead to the following conclusions: for
the overall moduli of an arbitrary heterogeneous, linearly elastic solid,

*' In terms of functionals defined in Subsection 9.5.2, inequalities (9.5.46a) and (9.5.46b) are
written as I(€°E; AE; 69) > TA(e"; AA; 6°) and J(67%; TZ; £°) > JA(s™; T'A; £°).

32 These are two mutually exclusive cases which are being examined simultaneously, where
each case can be realized by a proper choice of the corresponding reference tensor.
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containing any number of different phases of arbitrary distribution and shape,

DE-DZA isnd. when D’—Disn.d.,
o (9.5.48a,b)
CZ—-CEA jsnd. when C'-Cisnd.,

where D*A and CEA are computable. The negative-definiteness of D’ —D is
equivalent to the positive-definiteness of C'—C. Hence, (9.5.48a,b) can be
rewritten as

DZ-DEA jsp.d. when D' ~D s p.d.,
_ — (9.5.49a,b)
CE-C* ispd. when C'—~C is p.d..

Since DFA = D™ and CZA = CEA, (9.5.49a) and (9.5.49b) are equivalent™ to
(9.5.35a) and (9.5.35b).

9.6. UNIVERSAL BOUNDS FOR OVERALL MODULI

In the preceding subsections, exact inequalities are established between
the average strain energy of an ellipsoidal RVE and approximate functionals I
and JA, by combining the Hashin-Shtrikman variational principle** with
Theorems 1 and 1T of Subsection 2.5.6. An estimate of the exact bounds for the
overall moduli of the RVE is obtained based on the assumption of statistical
homogeneity and isotropy. However, two exact bounds for certain combina-
tions of the components of the overall elasticity tensor can be deduced
rigorously, without any additional assumptions other than that the RVE be ellip-
soidal. These bounds apply to a general heterogeneous elastic solid consisting
of any number of phases with any arbitrary shape and elasticity tensor.

In this subsection, the equivalence between 14 and J# is first established.
Then, using JA only, exact inequalities which relate the average strain energy in
the RVE to JA are summarized. From the values of J* for piecewise constant
eigenstresses, two universal bounds are deduced, one for Cy; and the other for
Cijij. Then, from the equivalence relation, other bounds for D are obtained.
Finally, it is shown that when all phases of the RVE are isotropic, these univer-
sal bounds coincide with the conventional bounds which are obtained by assum-
ing the statistical homogeneity and isotropy of the microstructure.

33 As shown in Subsection 9.5.5, D2 and CEA are computed from functionals I2 and JA with
the assumption of statistical homogeneity and_isotropy, and are each other’s inverse. If these func-
tionals are computed in a different manner, D4 and CEA may not be each other’s inverse, and
bounds (9.5.35a,b) and (9.5.49a,b) then need not be identical.

3 Or directly, by a proper choice of the reference elasticity tensor.
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9.6.1. Equivalence of Two Approximate Functionals

In an infinite homogeneous domain B, fields produced by eigenstrains e”
through operator A* coincide with those produced by eigenstresses s* through
operator I'A, if s* = —C:e" or " = — D : s". This is because both A* and T'* are
obtained from the Green function of the infinite B. Indeed, the following rela-
tions hold between A* and T, for any arbitrary e” and s™:

AAX; e') = C: {TAx; —C:e') +e"d(x)},
I'A(x; ') =D : {AAX; —D:s") +s"(x)}, (9.6.1a,b)

where e"d=¢e"—<e" > and s"d=s"—<s" > are the disturbance eigenstrains
and eigenstresses.

As shown in Subsection 9.3, the following identity holds:
(C-C)y'=-D-D:(D'-D)!:D. 9.6.2)

Hence, if functional JA is written as

INs" €°) == 2 < (-D:5): {(D'-D) '+ A} (-D:sY) >

—%< (D:sY):{-<s >-2(C:€9} > (9.6.3)

then it follows that I and J* are related through

IACD:s% C:e0+<s" >) = — JAs"; £°) +% <s'>:D:<s"> (9.6.4a)
or
IA-D:s%; C: %) = — JAs"; £°) —% <5 >:D:<s’ > (9.6.4b)

This'is the equivalence relation between functionals I* and JA,

From equivalence relation (9.6.4a), it is seen that the eigenstress field
which renders JA(s™; £°) stationary, gives an eigenstress field which renders
I4(e”; 6°) stationary, when the average eigenstress is fixed and C:€°+< s > is

denoted by ¢°. Furthermore, if C* is determined from the stationary value of
JA, say, JA(0™; €9), as

A" 89 = 1 & (C~CY) e, (9.6.52)
then the stationary value of the corresponding I is
"' 6°) = 5 6°:(D-(CH): 0, (9.6.5b)

where €' =-D:06" and 6°=C:€°+< 06" > The proof is straightforward:
since ¢” renders JA stationary, JA(6"; €°) equals —< 6" >:€°/2. Hence, < 6" >
is expressed in terms of C#, as

% For notational convenience, only in this subsection, C:€°+< s* > is designated by 6°. In
all other subsections of Section 9, 6° equals C : €°.
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<6">=(CA-C):e". (9.6.5¢)
Substitution of (9.6.5a) and (9.6.5¢) into (9.6.4a) yields

IA(g"; 6°) = - JA (0™ e°)+% <o"'>:D:<o">

= L€ {C'-C+(@C*-0):D:(C'-0)) 1
= L (€ :89: (- (Chie). 9.6.50)

Since 6° = C: £°+< 6" > equals CA : €°, (9.6.5d) yields (9.6.5b).

Therefore, functional I*(e*; 6°) or its stationary value can be computed
from functional JA(s™; €°), by replacing e* with — D : s*.3® Hence, it suffices to
consider either I* or JA, In this subsection, only J* is studied, since operator I'*
in JA is of simpler form than operator A2 in I,

9.6.2. Summary of Exact Inequalities

The results obtained in Subsections 9.5.1 to 9.5.4 can be summarized as
follows:

1) According to Theorem II of Subsection 2.5.6, for any arbitrary RVE,
CE—(D9! is positive-semi-definite, where CF and DF are the overall
elasticity and compliance tensors, defined through the strain energy of the
RVE, respectively for the linear displacement boundary data and for other
general boundary data, both yielding the same average stresses.

2)In an ellipsoidal RVE, the integral operator I'* satisfies < I'* > =0 for
any eigenstress field. Moreover, operator < :(TA:C:TA-T4): > is
negative-semi-definite. It follows that (DE)“—CS_8 is positive-semi-
definite, where CS, is the overall elasticity tensor defined through the
average stress-strain relations.

3) Since T is positive-definite, when C"—C is positive-semi-definite, then,
it follows that JA(6™; €°) = % €°:(C-C&,):€° is the minimum of

JA(s™; £9), where 0" is the eigenstress field that minimizes J* and hence
homogenizes the RVE when it is subjected to some boundary conditions
which cannot be prescribed a priori.

From 1) to 3), the following inequality holds for any s* and any €°:

% For approximation, a certain class of eigenstress fields is usually used in computing func-
tional JA, If a stationary value of JA is given by (9.6.5a) on such eigenstress fields, then a stationary
value of I on the corresponding class of eigenstrain fields is always given by (9.6.5b). Indeed, for a
piecewise constant distribution of eigenstresses and eigenstrains, the bounds produced by JA and 14
(or J&” and 12"), CEA and D*A, are each other’s inverse; see Subsection 9.5.5.



§9.6 UPPER AND LOWER BOUNDS 307

% £0:(C—CH):e°<JA(s* €9) ifC'—Cisp.d.. (9.6.6)

Besides the positive-definiteness of C' —C, a sufficient condition for the validity
of (9.6.6) is that the RVE be ellipsoidal.

In the following subsection, functional JA(s*; €°) is computed without any
special assumptions other than the overall shape of the RVE, which must be
ellipsoidal. The key to the computation is the special properties of operator T,
The results do not depend on the aspect ratios or the orientation of the ellip-
soidal RVE, i.e., the same universal expressions for the bounds are obtained for
any ellipsoidal RVE, or for that matter, for any heterogeneous elastic solid (with
any heterogeneities) of overall ellipsoidal shape.

9.6.3. Universal Bounds for Overall Moduli of Ellipseidal RVE (1)

Now, consider an ellipsoidal RVE consisting of n+ 1 distinct subregions,
Q,, with elasticity C* and volume fraction f, (0. = 0, ..., n), where the subregion
corresponding to the matrix is denoted by Qg, with elasticity C°. To homogen-
ize this RVE, consider a subregion, V’, in an infinite homogeneous solid, B, with
the same geometry as that of the RVE. Let B be isotropic, with elasticity tensor
C =2uv/(1-2v)1P 1@ +2u1@9 such that C*—C is positive-definite for
a =0, .., n. First, distribute piecewise constant eigenstresses, s*%, in each Qg

— il .
within V’, and then distribute the average eigenstress, s" = ) fos"*, uniformly
a=0

in B—V’, such that the disturbance strain and stress fields in V’ are due only to
the disturbance eigenstress field defined by

s = 3 Hix Qo) (575, ©.6.7)

where H(x; €,) =1 for x in Qg, and 0 otherwise. Finally, consider uniform
strains €° prescribed in B.

Since V' is ellipsoidal and §" is distributed throughout B, < s*:TA:s* >
equals < 8" : T : s* >, and functional JA is given by
1

JAGs™; €9) = 5<s*:(C’—C)‘1:s* >—<g%:s" >

+ L <A s (9.6.82)
For piecewise constant eigenstresses prescribed in V', functional JA is given by

function JA’ which, in view of (9.6.8a), becomes
’ *, 1 a *, *,
JV({s™}; €9 = 5 Y fo 57 {(C*—C)y1:s"—2¢g°)
a=0

il

+3 3 3 < HQ = -5)): T (H@p (9-5)) > 9680

o=
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To compute J#, integral < {H(Qq) (s™*—57)} : TA: {H(Qp) (s"P~5")} > needs
to be evaluated.

To this end, consider the Fourier transform of operator I'*, given by
(9.5.21). Since Cis isotropic FI'A defined by (9.5.21¢c) becomes

FDAE) = 1 = o7y EoBeBeE +omEe1 k), 9.6.92)

where & = E/IE1. From& &, = 1, the components of FT'{} satisfy
FFA _ 1 1-2v

W 2(1-v)y”
T = :L 23(1‘_43), (9.6.9b.¢)
and hence the inverse Fourier transforms of Fl“,‘,}J and FF,JU satisfy
(77153' [ 7 FTAE) expiEx) dVe = m 2(1 ) 8(x),
(2;)3 [~ T{E) exp(iE.x) dve =1 m 2(1 V) 8(x), (9.6.10a,b)

where 8(x) is the delia function at the origin.

From (9.6.10a,b), the following exact relations are obtained for < H(Qq)
FijAkl H(QB) >

1 1-2v ifa=3

fo
p2(1-v) (9.6.11a)

< H(Ly) rll_]_] H(QB) >=
0 otherwise,

and ‘

1 3-4v .
fo — if o=
*u 2(1-v) P (9.6.11b)

< H(Qu) TAH(Qp) > =

iij
0 otherwise.

Since the isotropic tensor P defined by (9.4.13) satisfies Py;; = (1 —2v)/2u(1 - v)
and Pyj; = (3 —4v)2u(1 - v), (9.6.11a,b) are rewriiten as

< H(Qo) T H(Qg) > = {ga Py  ifa=p

otherwise,
_{foPy; ifo=p 9.6.11c,d
< H(Qo) T H(Qp) > _{0 otherwise. ©6.11ed)

Note that exact expressions (9.6.11a,b) and (9.6.11¢,d) hold for any €, and Qg
of arbitrary shape, orientation, and relative location.

Taking advantage of (9.6.11), function J*” given by (9.6.8) can be com-
puted exacily by choosing special forms for €° and s**’s. First, suppose that the
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uniform overall strain is dilatational, €° = €212, Then, setting §*® = s™*1(2),
and using (9.6.11c), compute JA’ as

({s*1@)); £0 1)

a=0 o= 0
< * —% —x —x%
- % GZO (€O - Oy + Py} 87 - % s Pyjs —3s¢€%  (9.6.12a)

—% 1] . . ’ .
where 5" = ) fus™ This computation of JA" does not involve any assump-
oa=0

tions except tl_lat V’ is ellipsoidal. It applies to any RVE, consisting of any arbi-
trary multi-phase microstructure.

Next, consider three cases of overall biaxial shearing with nonzero strain
components, £°(e; ®€; — €;®€;), £°(e®e; —e3®e3), and £°(e3®e; —€;®e;), and
three cases of overall pure shearing with nonzero strain components,
(e, €3+ e30€y), £%es3ee; +e;ees), and £%(e;®e; +ey0€e;). For simplicity,
denote the tensor products of the unit base vectors associated with these six
cases by s; i=1, 2, ..., 6), i.e., s) = €;9€; —€28€y, ..., §4 = €;0€3+€38€7, ... .
For each £° = €%;, set §*=5s O‘sl, and write the correspondmg energy function
JA as JA({s™0s;}; €%;). Using (9.6.11c) and (9.6.11d), compute the following
function:

TLIMUs™s1): 8980 +I¥((5"52); €050 +IV((57083); €°53)

[ IMU"54); €00+ IV({5"85); €953) + ¥ ({57056 )3 2°56)

n « _ * e
= % 2 fasa{(C“—C)iji}_%(Ca O)ijj) s™=557¢

a *, —% *, —%
% D fo(s*—5 ){Pijij_";"Piijj}(S %“-5)

a=0

o * — *
= % Z fot s {(Ca_c)iji} - _( C)u_u + P1_|1_| é 11_|_|} s

1 —= 1
58 {Pijij — 2 Piij
Again, this computation of JA does not involve any assumptions except that V’
is ellipsoidal. The result applies to any RVE consisting of any arbitrary micro-
structure.
The right sides of (9.6.12a) and (9.6.12b) can be rewritten in a unified
manner, as follows:

}$"—5%"¢o. (9.6.12b)

N7 3 s (C-O' +P s - LE'PF -5} (1=12),

a=0
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where Ny =3 and N;=35; and where Py = Py;;/N; and P, = (Py;; — Pyyj/3)/Na,
with similar expressions for (C*—- C){ 'or any other fourth-order tensor. The
above quadratic form (with linear terms) can be optimized with respect to {s*®}.
Let {0} be the eigenstresses that render the corresponding functions station-
ary. Then, the corresponding optimal values of J4’ are given by

(610} £010) = LN (€, - Cpe,

%[ ¥({c"s1}; €°81) + ... | +%[ JV({0™%84}; €%84) + .. |
= % N, £0(C, — C) €9, (9.6.13a,b)
where
Ci= ¥ ¢ [CI+ 1 Hl+ Pi ]_l
= (Co-Cy! (co-cy!
i P; —13-1
fy 14+ ——L } , 6.1
X{ ) bl (CB—C){‘] 9.6.13¢)
forI =1, 2. In view of (9.6.6), the following bounds for CE are obtained:
CE=2C; (1=1,2) ifC-Cispd. (9.6.14a,b)

While the results obtained in Subsection 9.5 are only valid for the case when
statistical homogeneity and isotropy exist, inequalities (9.6.14a) and (9.6.14b),
corresponding to I = 1 and I = 2, respectively, hold for any microstructure of the
RVE. Hence, these are indeed universal bounds. In fact, these bounds are valid
for any finite elastic composite with overall ellipsoidal shape, independently of
the shape, distribution, and elasticity of its multi-phase inclusions.

9.6.4. Universal Bounds for Overall Moduli of Ellipsoidal RVE (2)

Exact inequalities (9.6.14a,b), obtained in Subsection 9.6.3, are for the
overall elasticity tensor, CE, of an ellipsoidal RVE under linear displacement
boundary conditions. In essentially the same manner, similar exact inequalities
are obtained for the overall compliance tensor, D%, of the same ellipsoidal RVE
under uniform traction boundary conditions. Indeed, from the exact inequality

% 6°:(D-D%):0°<IA(e*; 6° ifD'-Dispd., (9.6.15)
inequalities similar to (9.6.14a,b) are deduced by computing the right side of
(9.6.15) for suitable piecewise constant eigenstrains. In this computation, the
properties of operator AA, similar to (9.6.11) of operator T'A, are used.

Without considering the properties of A4, the right side of (9.6.15) can be
directly computed from the results obtained in Subsection 9.6.3, if the equi-
valence relation established in Subsection 9.6.1 is applied. Indeed, equivalence
relations similar to (9.6.4a) hold between functions JA’ and I#’, and it can be
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easily shown that if {6"®} renders 14'({s"®}; €°) stationary, then, {€"®} =
{-D: 06"} renders JA'({€"®}; 6°) stationary, when G° is set to be C:€°+ 06"
Furthermore, if the stationary value J4({67%}; €°) is expressed in terms of CA,

as®
I¥({6"); €°) = % £0: (C—CH :e°, (9.6.162)
then, the stationary value I4'({€"®}; 6°) is given by
I7({€"%}; 0°) = % o°:(D- (EA)’I) 1 0°. (9.6.16b)

Taking advantage of (9.6.16), consider the case when the applied uniform
strain is dilatational, and assume that the homogenizing eigenstress is also dila-
tational, i.e., €° = €° 1@ and §*® = §** 12, The stationary value of JA’ for these
uniform strain and eigenstress fields is given by (9.6.13a). It is rewritten as

JA(6* 1D g0 1@) = % (€ 1@): (C—CEY: (€°19?), (9.6.17a)

where E! = 1@g13/3; see (8.1.1a). Hence, it follows from (9.6.16) that the
stationary value of I"'({e"®1}; 6°1) is

(£ 1) 00D = 3 @ 1): (D= 2 BY: @), (9.6.17b)
1
In view of (9.6.15), the following bound for D? is obtained:
DI C_L if D - Disp.d., (9.6.18a)
1

where DY = ﬁi%j /3. This bound is valid for any finite elastic composite consist-
ing of arbitrary microstructure, as long as its overall shape is ellipsoidal.

' Manipulations similar to the above, yield a bound for D5 = D - DE/3
which can be expressed in terms of C,. Indeed, overall pure shear strains and
the homogenizing shear eigenstresses, €° = €°s; and §*® = §*%g;, correspond to
the overall pure shear stresses and the homogenizing shear eigenstrains,
o° =¢°s; and e"® = e*%s;, fori = 1, 2, ..., 6. Thus, since the stationary value of
the sum of JA”’s given by (9.6.13b), is

%[ JM({o™s 1} e08) +... ] + %[ JM({0™%s84}; €954) + ... |

= Ll es): (C-CB) s+

+ 2 @591 (C-C1B): (50)+...), (9.6.19a)

where E? = 149 —E2, then the stationary value of the corresponding sum of

37 As commented on in Subsection 9.6.1, if a stationary value of J4” is given by (9.6.16a) on a
class of eigenstress fields, the stationary value of I*” on the corresponding class of eigenstrain fields
is always given by (9.6.16b).
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14”5 is given by

1

LIM((e"es1); 0080 + .. + 2 V(€™ 54} 0°50) + .

=L 0 . _L 2y . 0
3[(0 s : (D CZE).(G s1)+...]

iy (D- -1 E.
+2[ (0°50): (D= - E): (0° S4)+...]. (9.6.19b)
In view of (9.6.15), the following bound for DZ is obtained:
DI> C_L if D'-Dis p.d.. (9.6.18b)
2

Again, this bound is valid for any finite elastic composite consisting of arbitrary
microstructure.

9.6.5. Relation between Universal Bounds and Estimated Bounds

Now, consider relations between the universal bounds, C; and C;, and the
estimate of the overall elasticity tensor, CEA, based on the assumption of statisti-
cal homogeneity and isotropy. For simplicity, let all £4’s be isotropic, having a
distribution such that CEA is isotropic. In this case, CEA can be expressed in
terms of the basic isotropic tensors, E! and E?, as

CEA = CEAE! + CEAEY; (9.6.20a)

see Subsection 8.1. In this manner, definition (9.5.39b) of CEA is reduced to two
algebraic relations involving the coefficients of these basic tensors. Hence,
coefficient CEA is given by ‘

CPr={ ¥ fuCH (19 +Pi(CP-CD) |

n -1
x { 2, fs (169 + Py (CP-Cp) } . (9.6.20b)

for I =1, 2. Note that C;, C%, Py, and 1{*9 are the corresponding coefficients of
the isotropic tensors, C, C%, P, and 19, respectively.

Coefficient CEA given by (9.6.20b) is related to the universal bound Cj.
To prove this, first observe that the coefficient for E! is determined by the
fourth-order contraction with El, i.e.,

1 1
C = Ny Gy, CP= Wll— Gy Pi= Ny P
1{*% = {% (8dy + Gudj) } {% 9;jdu} = 1. (9.6.21a~d)

Next, since C® and C are isotropic, (C*— C)! is given by
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o_ (Y1 = 1 E!+ 1 E2
(C*-C) Cr-C, -G & (9.6.22)

Finally, taking advantage of (9.6.21) and (9.6.22), rewrite C 1, defined by
(9.6.14c), as

={ % fWCH1+P (CF-Cp) ']

| BUrPCP-Co | 9623)
The right side of (9.6.23) is given by (9.6.16b) for I = 1. Hence,
Ci=Cf*= N Cci (9.6.24a)

This is the relation between C; and CEA for the isotropic case.
In a similar manner, it is shown that universal bound (9.6.18a) given by
1/C| is related to D*A. Since D is the inverse of CEA, it is given by

1
DA =DIAE!+DJAE? = a E! + CEA EZ (9.6.25)

Hence, it follows from (9.6.23) that

1 -1 _pma__1 pz

El (_:IEA Dl Nl D“]J . (96263)
Therefore, it is concluded from (9.6.24a) and (9.6.26a) that the upper bounds for

C,'f]J and Duu’ determined by C, remain unchanged whether or not Q’s and the

overall RVE are isotropic.

In essentially the same manner, CEA and DA can be related to C», as fol-
lows:

Cr=Cit= NLZ (. ) (9.6.24b)
and
1 1 5 1
CTz = W =D = N, (Dlﬁ? D ). (9.6.26b)

9.7. BOUNDS FOR OVERALL NONMECHANICAL MODULI

In Subsection 2.7, certain nonmechanical properties, such as electrostatic,
magnetostatic, thermal, and diffusional properties, are briefly reviewed, and it is
shown that universal Theorems I and II also apply to this class of problems. To
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treat this class of nonmechanical properties in a unified manner, a generalized
force field p = p(x), with its conjugate flux field q = q(x) is introduced. The
force field is the gradient of a scalar potential field u = u(x), i.e., p=—-Vu. In
the absence of sources, the flux field is divergence-free, i.e., V.q =0. More-
over, these conjugate fields are related through constitutive relations, q = K'.p
and p = R’.q, where, for ease in referencing, K’ and R’ are referred to as con-
ductivity and resistivity tensors, respectively. These are second-order, positive-
definite, symmetric tensors, which may stand for other properties; e.g., K’ is the
dielectric tensor in electrostatics. For heterogeneous materials, K’ = K’(x) and
R’ =R'(x).

In this subsection, it is shown that the application of the generalized
Hashin-Shtrikman variational principles and the universal Theorems I and II of
Subsection 2.7 leads to exact bounds for the overall conductivity or resistivity
tensor, K or R. In particular, it is demonstrated that the resulting bounds on Kii
and R;; are universal in the sense that they are independent of the shape and dis-
tribution of the phases within the composite, i.e., they apply to any composites
with any number and distribution of phases. Indeed, the same bounds are
obtained for the unit cell of composites with periodic microstructure; see Sec-
tion 13.

The presentation in this subsection is structured such that the results of
Subsections 9.5 and 9.6 directly apply to the considered cases of nonmechanical
material parameters. First, the corresponding generalized Hashin-Shtrikman
variational principles are developed. Then, these principles are combined with
universal Theorems I and II of Subsection 2.7, and computable bounds for the
overall conductivity tensor K or resistivity tensor R are obtained in terms of the
Green function of the infinite homogeneous body. Finally, the universal bounds
valid for any heterogeneous medium of any number and distribution of phases
are obtained.

In view of the mathematical similarity in the field equations, for me¢hani-

cal and nonmechanical properties, the procedure® for obtaining bounds on the
mechanical properties can easily be followed to produce bounds on the non-
mechanical parameters; see, e.g., Hashin and Shtrikman (1962c) for bounds for
magnetic permeability, Willis (1977) for bounds for thermal conductivity, and

Milton (1990) who provides a review of certain mathematical treatments con-

cerning the overall mechanical and nonmechanical properties of composites.>

3 In addition to a variational method similar to that presented in this section, Milton (1990)
summarizes another technique to obtain bounds on the overall properties, and discusses the relation
between the two methods; see also Milton and Kohn (1988).

 While the bounds presented in this section involve the volume fractions of inhomogeneities
and the corresponding two-point correlation tensors as the only required geometric information about
the microstructure, improved bounds are obtained when higher-order correlation tensors are avail-
able; see, e.g., Torquato (1991) for discussions and references.
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9.7.1. Generalized Hashin-Shtrikman Variational Principle

Consider an RVE whose force and flux fields, p(x) and q(x) , are related
through the following linear constitutive relation:

q(x) = K'(x).p(x), (9.7.1a)

where the conductivity tensor K’(x) stands for any other nonmechanical (or
mechanical) material tensor discussed in Subsection 2.7. Note that the force
field is given by the gradient of a potential field, u, and the flux field is
divergence-free,

p(x) =—Vu®x), V.qx)=0 inV. (9.7.1b,c)

Moreover, on the boundary dV, either the potential or the flux is prescribed,
such that the disturbance potential field, ud = u — x.< p >, and the disturbance
flux field, q¢ = q— < q >, satisfy

vx).qdx)ud(x)=0 ondV. (9.7.2a)

Note that ud is associated with the disturbance force field, pd = p—< p > When
the boundary conditions that satisfy (9.7.2a) are prescribed, the average force
and flux satisfy

<g.p>=<q>.<p>; (9.7.2b)
see Subsection 2.7.

To obtain a general variational principle similar to (9.5.7a), introduce an
equivalent homogeneous RVE with constant reference conductivity tensor, K,

and prescribe a suitable homogenizing eigenflux field,*® q* = q*(x). Flux and
force fields in the equivalent homogeneous RVE are related through

q(x) = K.p(x) +q’(x). (9.7.3)

Since these fields in the equivalent homogeneous RVE coincide with those in
the original heterogeneous RVE, they must satisfy (9.7.1a), and hence

K'(x).p(x) = K.p(X) +q"(x) (9.7.4a)
or

K’'(x)-K)'.q*(x) - p(x) = 0. (9.7.4b)
This is the consistency condition for the eigenflux field.

The governing field equation for a potential field u in the equivalent
homogeneous RVE is deduced from (9.7.1a,b) and (9.7.3),
V. {K.(-Vux))+q*(x)} =0, (9.7.5)

subjected to the general boundary conditions satisfying (9.7.1d). This
boundary-value problem for u can be solved for given q", and the resulting force
field is expressed in terms of q, as

“ An eigenflux field here plays a role similar to the eigenstress field in preceding subsections;
see, for example, Subsection 7.3.
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p(x) = p°-T%x; q°), (9.7.62)

where I'C is an integral operator which, for a given q*, produces the disturbance
force field, pd=p—<p > Superscript G here stands for general boundary
conditions that satisfy (9.7.1d). On account of (9.7.2a), operator I'C is self-
adjoint, and operator < .{(K'—K)'+TI%}.> is positive-semi-definite
(negative-semi-definite) when K’—K is positive-semi-definite (negative-semi-
definite).*!

When < p > is prescribed to be p° consistency condition (9.7.4b) is
rewritten in terms of the integral operator I'C, as follows:

K'&)-K)l.q(x)+I'S(x; @) -p° = 0. 9.7.7)

In view of (9.7.7), for an arbitrary eigenflux field, y* = ¥*(x), introduce a func-
tional defined by

J(w*; TG; po) = —é— <YK -K)H+T6Ly' >—< y >.po. (9.7.8a)
Since the first variation of J is
SJ(y*; T'S; po) = < dy*. { {(K'—K) + TS}y — po} >, (9.7.8b)

the exact eigenflux field, q", which satisfies (9.7.7) renders j stationary. The sta-
tionary value of J is given by

1
2

where K is the overall conductivity tensor for the prescribed general boundary

Jq: TS po)=— 5 q*.p° = % p°.(K—K9).p°, (9.7.8¢)

data.** This is one of the generalized Hashin-Shtrikman variational principles
Jfor nonmechanical properties of any heterogeneous RVE under general boun-
dary data which satisfy (9.7.2a). Moreover, from the positive-semi-definiteness
(negative-semi-definiteness) of the operator < . {(K’ —~ K)~1+TC}. >, it immedi-
ately follows that, for any eigenflux field, y*,

%p".(K— KS).pe = J(p*; TC: p°) < (2) J(y*; TG : po), (9.7.9a)

when K’ —K is positive-semi-definite (negative-semi-definite). These are the
generalized Hashin-Shtrikman bounds corresponding to general boundary data
(9.7.2a).

As in the case of mechanical fields, the formulation here may also be
implemented in terms of the eigenforce field, say, §* = ¢*(x), conjugate to the
eigenflux field y" = y'(x). If the reference resistivity is R = K~!, then the
eigenfields are related by R. W' +¢" =0 or K.¢"+y" =0; compare with
(7.3.13a,b). Then, in terms of I'C, an integral operator for ¢" is defined by

I The proof of these properties of the integral operator is essentially the same as that given in
Subsections 9.1 and 9.2.

%2 Brom (9.7.2b), it follows that < q > = KC.p® and < q.p > = p°.KC.p°.
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AS(x; %) = K. {TS(x; — K.9*) + (9" —< ¢ >)}, (9.7.6b)

which produces a disturbance flux field, qi= q—<q>. In terms of integral
operator AS, functional I conjugate to the functional J, is defined as

14" AG; q°) = %< O (R —R) 1 +AS}.9" >—< ¢ >.q°, (9.7.8d)
for a given g°. Since the first variation of I is
81(¢"; A% q°) =< 8¢"-{ {(R'—R)™ + AS}.¢" - @} >, (9.7.8¢)

the exact homogenizing eigenforce field, p* = —R.q", renders I stationary. The
stationary value is given by

I(p*; AS; q°) = - % p.q°= % q°.(R-R9).q°, (9.7.80)

where RO is the overall resistivity tensor for the prescribed general boundary
data® that satisfy (9.7.2a). Then, the second generalized Hashin-Shtrikman
variational principle applied to nonmechanical fields, takes on the following
form:

L R-RO).q° = (p"; A% q9) < (2) (4" AC: g, (9.7.9b)

when R’ — R is positive-semi-definite (negative-semi-definite).

9.7.2. Consequence of Universal Theorems

Although (9.7.9a,b) is exact, it is not easy to determine the integral opera-
tor TO which produces disturbance fields satisfying the prescribed boundary
conditions. In order to use an integral operator which can be explicitly deter-
mined, combine the Hashin-Shtrikman variational principles with Theorems I
and II of Subsection 2.7. First, observe the following inequality which is
obtained directly from the proof of Theorem II:

%< pF.K.pf >< %< (p°+p9.K'.(p° +p?) >, (9.7.10a)
where pP = pP(x) is the force field when the RVE is subjected to the linear
potential boundary conditions which yield the average force p°; and p? = p9(x)
is an arbitrary disturbance force field which is compatible,** i.e., is given by the
gradient of a certain disturbance potential ud, pd = — Vu¢, and has zero volume
average, < p¢ > =0.

Let K be a constant conductivity tensor such that K’—K is negative-
semi-definite, i.e., for any arbitrary pair of fields p and p’,

* Again, from (9.7.2b), it follows that < p > = RG.q° and < p.q > = q°.R%.q°.

* The disturbance force field pd is not necessarily associated with an "equilibrating” flux field,
i.e., K’.p9 need not necessarily be divergence-free.
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0=(p-p).K'-K).(p-p') (9.7.11)

Replacing p” by p’= (K'—K) l.y", and taking the volume average of the
resulting inequality, obtain

0> %< p- (K -K).p-2y .p+y . (K -K)yl.y" >, (9.7.12)

Then, taking advantage of inequality (9.7.12), evaluate the right side of
(9.7.10a) and obtain

%< pF-K.pP>< —;—p".K.p"

- %< W (K — K)oy’ — g (pd +2p°) > + %< pl.qi>, (9.7.13)

where @4 = K.pd+y*. Note that inequality (9.7.13) holds for any pair of "
and p9, as long as K" — K is negative-semi-definite.

Now, relate pd and y*d through an integral operator which can be
obtained from the Green function of an infinite homogeneous solid B with uni-
form conductivity K. As in the case of mechanical fields, this integral operator
is denoted by T4, i.e., pi(x) = — TA(x; y'9). The explicit expressions of I'* and
the Green function are given at the end of this subsection.* When the subregion
V' is ellipsoidal,*® the following three identities hold:

<pr>=< -TAY"H>=0,
<ghr>=< -K.TAyH+y'd>=0, (9.7.14a~c)

<gh.opA > =< yd (TAK.TA-TA}y > <0,

where g = K.p” +y"d is the corresponding flux field; the proof of (9.7.14a~c)
is given at the end of this subsection.

In view of (9.7.14a), replace pd in (9.7.13) by p#, and from (9.7.14c), note
that the last term in the right side of (9.7.13) is negative. Hence, inequality
(9.7.13) is rewritten as

%< pP.K .pP > < %p".K.p"—j(\v*; TA; po). (9.7.15)
Furthermore, if KP is defined as the overall conductivity of the RVE when sub-
jected to the linear potential boundary conditions, then < pP.K'pP > is given by
p°-KP.p°, and (9.7.15) yields

2p°-(KP—K).p° < - J(w's T p°), (9.7.16a)

if K"’—K is negative-definite. This is an exact bound for KP, directly expressed
in terms of the simple and known integral operator I'* of the infinite uniform
body B. Note that this formulation is implemented directly in terms of the

* See (9.7.24) and (9.7.25a~c).
46 When (9.7.14a,b) hold, then (9.7.14c) follows whether or not V” is ellipsoidal.
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universal Theorem II and the negative-definiteness of K’ — K. The only assump-
tion is that (9.7.14a,b) hold, which is necessarily ensured when V” is ellipsoidal.

In essentially the same manner, an exact bound for the overall resistivity
is obtained. First, Theorem I of Subsection 2.7 is generalized as

%< qQR.R’.q2 > < %< (@ +q%).R’.(q° +q%) >, (9.7.10b)

for any equilibrating q¢ with zero average, where q is the divergence-free flux
field when the RVE is subjected to the uniform flux boundary conditions which
yield < @2 > = q°. Then, q¥(x) in (9.7.10b) is set equal to — AA(x; ), where
integral operator A* is defined by AA(x; ¢) = —K.I'(x; y*) — y'd(x) with
¢ = —R.y". In this manner, the following exact inequality is obtained:

%q"-(le—R)-q" <-1(¢"; A% q°), (9.7.16b)

when R’ - R is negative-definite and the RVE is ellipsoidal.*’ Note that RO is
the overall resistivity of the RVE when it is subjected to the uniform flux boun-
dary conditions.

9.7.3. Universal Bounds for Overall Conductivity

Since I™ is explicitly given, functional J(y*; TA; p°) can be computed
exactly for certain classes of suitable eigenflux fields. Suppose that an ellip-
soidal RVE contains n distinct microconstituents embedded in a matrix. Let the
matrix and microconstituents be denoted by Qg and Q, Q,, ..., Q,. The conduc-
tivity and volume fraction of Q are K% and fy (0. = 0, 1, ..., n). To homogenize
this RVE, consider an ellipsoidal subregion V” of an infinite homogeneous body
B. The geometry of V' is the same as that of the RVE. Let the body B be iso-
tropic, with conductivity tensor K = K 1@, such that K* - K is negative-definite
for all o. Assume that B is subjected to farfield uniform forces p°. Then, distri-
bute piecewise constant eigenfluxes in B in the following manner: 1) y** in

each Q, within V’; and 2) \TI* = Zn: fo W'® uniformly in B — V’. Thus, in V’, the
oa=0

disturbance eigenflux field is
* o * —x
yi(x) = ZO H(x; Qo) (W™~ y), (9.7.17)
o=

where H(x; Q4) = 1 for x in Qg, and 0 otherwise.

The average eigenflux y* does not produce disturbance fields, since it is
uniformly distributed throughout B. Moreover, < TA(y"d) > vanishes, since V’
is ellipsoidal. Hence, in this setting, functional J reduces to the function J4" of
Y %’s, defined by

47 The properties of A” which are the same as those of T3, (9.7.14a~c), must be used to derive
(9.7.16b) but no other assumptions are required. Hence, (9.7.16b) holds for any ellipsoidal RVE.
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Wy} p) = % aio fo @™ { (K= K)' g™ — 2pe}

1 & o *OL__* * __*

+7 2y i, < (HOQW™ =y} T2 ()W P -y} > (97.18)
To compute J¥, < {HQu)(W*—y")}.TA (HQp)(w™P - ")} > needs to be
evaluated.

Since K is isotropic, the integral operator T'A has the following property:

fo if =P

1
K
< H(Qy) T H(Qp) > = (9.7.19a)

0 otherwise.

The proof of this property is given at the end of this subsection. Introduce an
isotropic second-order tensor P = (1/3K) 1, and rewrite (9.7.19a) as

fa Pii ifo= B
<H@Q)TH H(Qp) > = (9.7.19b)
0 otherwise.

Note that the left side of (9.7.19) can be explicitly evaluated in terms of P, if sta-
tistical homogeneity and isotropy are assumed; see Subsection 9.4 for the case
of mechanical fields.

Taking advantage of exact relation (9.7.19), proceed as follows: let only
one component of the uniform force p°, say, pf, be nonzero, and let the corre-
sponding nonzero component of y*® be y;* for each Q. The function JA* for
this case is denoted by JA’({y;®}; pf). For three possible cases of this kind,
identify the nonzero components of p° and y*® by p® and y*® Then, consider
the following sum of the resulting three cases:

M) p?) HIM{w: %) pD) + IV ({w3%)s D)
-1 io oy (K= K)' + Py} o - Ly Py = 3y pe. (9.7.20)
o=

Since the right side of (9.7.20) is a quadratic form (with linear terms) for
{w"®}, it can be optimized. Let {q"®*} be the eigenflux that renders the right side
of (9.7.20) stationary, and compute

I¥({ai®): PR+ IV((a3%): D) +I¥((a3%); D) = 5 p° (K= K)o,
(9.7.21a)

where
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" P; !
P 1+ R A CR 115
In view of (9.7.16a), the following bound for K" is obtained:
RP>K  if K- K is negative—definite. (9.7.22a)

By definition of the integral operator T4, the following equivalence rela-
tion holds between [(¢*; A%; q°) and J(y"; T4; p°):

IA@'; A% @) +JAY TA pO) = 2< y' > Ri< ' >, (9.7.23)

where ¢ =—R.y" and ¢°=K.p°+<¥" > From (9.7.23), I* which
corresponds to JA for the above special eigenflux field, is computed exactly.
Hence, in view of inequality (9.7.16b), the following bound for R is obtained:

RQ> 79<— if R” — R is negative—definite, (9.7.22b)

where K is given by (9.7.21b).

Now, the explicit form of the Green function of the infinite homogeneous
B and the associated integral operator I'* is presented, and the properties of T2
are proved. Since, in the presence of a source b, the governing equation for a
potential u in B is V.{— K.(Vu)} + b = 0, the Green function of B is

cofey — _— 1 [t -
g7(x) = v " (B-K.E)lexp(E.x) dVe. (9.7.24)
Hence, when an eigenflux field y* is prescribed in B, the resulting force field is
given by
-pA(x) = TA(x; y)

= [T MTAE) .y €) exp(iE.x) dV, (9.7.252)

where

* 1 *
A'®) = s [, W exp(-15.%) dVs,

EE/E.K.E 0
FTAE) = Set/e.KE &7 (9.7.25b,c)

0 §=05
and where E = £/ 1E|.

The proof of (9.7.14a~c) and (9.7.19a) is as follows: 1) For any arbitrary
eigenflux distributed in an ellipsoidal region, the volume average of the resulting
forces is given by the product of a certain second-order tensor and the average
of the eigenflux. Hence, (9.7.14a) and (9.7.14b) hold as long as V" is ellipsoidal
and < y*¢>=0. 2) Due to the positive-definiteness of K, the following ine-
quality holds:
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<qlpd>=< Y (TAKAT-TH) . gyd >

1
\%

The right side of (9.7.26a) is expressed in terms of Ay*d and T, as
%K:F‘l’*d(— E){FTA= &) K. FTAE) — FTA(- €)} . ™€) dVe.
From (9.7.16¢), FT'* satisfies
FTAR= E) K. TAE) = FPAE). KL FTAE) = TAE), (9.7.26b)

for & # 0, and the term in the curly brackets vanishes. Hence, (9.7.14c) holds.
3) For isotropic K, the Fourier transform of I'* is

<

; jB TAR; W) (K. TA(x; y'd) — w'd) dV,. (9.7.262)

FTAE) = % Eot, (9.7.272)

where € = &/ 1E1; see definition (9.7.25a,b) of TA. From && =1, the com-
ponents of FI"* satisfy

1

i = < (9.7.277b)
from which the inverse Fourier transform of FT{ becomes
1 e _ 1
2y f _. FTR(E)exp(E .x) dVe = - 3(x), (9.7.27¢)

where 8(x) is the delta function at the origin. Hence, (9.7.19a) is obtained.
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SECTION 10 SELF-CONSISTENT, DIFFERENTIAL,
AND RELATED AVERAGING
METHODS

In the preceding sections, the overall moduli of a linearly elastic RVE are
evaluated by: (1) the assumption of a dilute distribution of inhomogeneities, and
(2) the self-consistent method. In the first case, the interaction effects are ig-
nored, and, in the second case, this interaction is included in a certain sense.
Both methods, however, are valid only when the volume fraction of inhomo-
geneities is rather small, although the self-consistent estimate may apply over a
wider range. There is an alternative method, called the differential scheme,
which applies over a much wider range of the volume fraction of inhomo-
geneities. In this scheme, differential equations for the overall moduli are
derived by evaluating the change in the moduli of a homogenized RVE due to
the introduction of an infinitesimally small amount of microconstituents. The
overall moduli are then determined as suitable solutions of these differential
equations. In this section the self-consistent and differential schemes are related
to the results obtained by the dilute-distribution assumption, and their relations
are discussed in some detail. Other related averaging schemes are also con-
sidered, including the two-phase, double-inclusion (or the three-phase), and the
multi-inclusion methods. In addition, it is shown that the average strain within
each annulus in a nested set of ellipsoidal regions of arbitrary aspect ratios and
relative orientations and positions, embedded in an infinite uniform elastic solid,
can be computed exactly, when each annulus undergoes arbitrary transformation
with uniform but distinct (i.e., different from annulus to annulus) eigenstrains;
the eigenstrain of the innermost ellipsoid need not be uniform. Explicit results
are presented for this problem, and used to obtain estimates of the overall modu-
li of composites with several layers of coatings of different elasticities.

10.1. SUMMARY OF EXACT RELATIONS BETWEEN AVERAGE
QUANTITIES

For a linearly elastic RVE, with matrix M and micro-elements €, the fol-
lowing two exact equations define the overall moduli: when the constant ma-
crostrain E = €° is prescribed,

(E—C):s°=a21 fy (C%—C): €% (10.1.1a)

and when the constant macrostress X = ¢° is prescribed,
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(B—D):cO:azi;l f, (D*—D): G (10.1.1b)

In general, C given by (10.1.1a) and D given by (10.1.1b), may not be each
other’s inverse. Since the RVE is linearly elastic, the average strain and stress
in each inclusion relate linearly to the uniform boundary data: when the macros-
train E = €° is prescribed,

€% = g%(e°) = E*: €°, (10.1.2a)
and when the macrostress X = G° is prescribed,

0% = 6%0°) = F*: ¢°, (10.1.2b)
where the fourth-order tensors E* and F* depend on the material properties and
geometry of all constituents:

E* = EX(C%, Qqy; C, M; C!, Qy; ...; CB, Qg; ...; C7, Qy),

Fo = FYD% Q; D, M; D!, Q;; ..; DB, Qg; ..; D", Q,), (B=ow),
(10.1.2¢,d)

where M and Qg stand for the geometry (shapes, locations, etc.) of the matrix
and the PBth micro-element. Note that E* and F* relate to tensors h* and j* of
Sections 4 and 7, by

(C*-C):E*=j% (D*-D):F*=h®* (o notsummed). (10.1.3a,b)
Here, it is more convenient to use E* and F%, as defined by (10.1.1a,b).
From (10.1.1a,b) and (10.1.2a,b),

C=C+ ¥ £, (C*~C):E* (g° prescribed),
o=1

D=D+ 3 f, (D*-D):F* (c° prescribed). (10.1.4a,b)
a=1

In general, it is difficult to obtain exact expressions for E* and F*._With proper
estimates of E* and F*, however, reasonable estimates of C and D can be ob-
tained. Note that, in general, E* and F* are not related to each other, since they
represent the response of the oth micro-element, Qg, in a finite RVE of volume
V, under different boundary conditions.

10.1.1. Assumptions in Dilute-Distribution Model

Since it is difficult to obtain the tensors E* and F* exactly, approximate
estimates are often sought, based on simple assumptions. The simplest esti-
mates are obtained from the Reuss and Voigt approximations which produce
bounds; see Subsections 2.5 and 7.1, and Equations (7.1.14) and (7.2.9), where
E® and F* are taken to be 19, the identity tensor.

The next simplest assumption is that of a dilute distribution of inhomo-
geneities, where interaction among the inhomogeneities is neglected. This as-
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sumption yields reasonable estimates of E* and F*, when the volume fraction of
micro-elements is relatively small and the micro-elements are far apart. With
the assumption of a dilute distribution of inhomogeneities, consider a fictitious
unbounded homogeneous solid, denoted by B, whose moduli are those of the
matrix material and in which an isolated micro-element, €, is embedded.
Denote the corresponding average strain and stress in Qg due to farfield uniform
strain €~ = €° and stress 6™ = ¢°, respectively, by

£%e%) =E™: e°, 0%0°) = F°: 0°, (10.1.5a,b)
where
E* = E*(C% Q4 C), F~=F=(D% Qg; D). (10.1.5¢,d)

Here, Q,, stands for the shape and orientation of the ¢ith micro-element. Unlike
for the bounded V, in the present case, for either 6° =C: €% 0re° =D :06°,

F*=C* . E~:D, E”=D%.F*:C. (10.1.6a,b)

This is because the farfield strain and stress are related through ¢° = C: €° or
€° = D: 6°, and hence produce identical fields in B. Depending on C, C* (or D,
D%), and Q,, it may be possible to calculate E* and F* directly. In the sequel,
denote the estimate of E* and F* obtained by means of the dilute-distribution as-
sumption (i.e., by embedding an isolated €, in an unbounded matrix with elasti-
city C) by superposed DD (for dilute distribution), i.e., set

E® = EPDa = E=(CY, Qq; C), F=FPPo = F=(D% Q. D). (10.1.7ab)

Denoting by CPP the corresponding estimated overall elasticity tensor when the
RVE is subjected to €°, and by DPP the corresponding estimated overall compli-
ance tensor when the RVE is subjected to 6°, obtain

CPP=C+ ¥ f,(C*-C): EPPo
a=1

D’ =D+ ¥ f, (D= D): FoDo, (10.1.8a,b)
a=1
From the equivalence relations (10.1.6a,b) for E* and F*,
(C*~C): EPPe = —C: (D%~ D): FPPe - C,
(D¢-D):FPPoe = _D: (C*—C):EPP%: D (o not summed), (10.1.9a,b)
and the estimated overall tensors CPP and DPP satisfy

1 (D:CPP+DPP:C) = 14,

% (C:DPP+ CPP . D) = 149), (10.1.9¢,d)

Hence, from (D — DPP) : (C = CPP) or (C - CPP): (D —DPP), it is seen that the
deviation of DPP: CPP and CPP: DPP from 1% is second-order in the volume
fraction of inhomogeneities,
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DPP:CPP-1¢9 = ¥ BZ o, f3 {(C*—C) : EPDoy : {(DB — D) : FPDB},
1B=1

o=

CPP:DPP_ 19 = ¥ BZ o f3 {(D%— D) : FPD®} ; {(CB—C): EPDB}.
a=1f8=1
(10.1.10a,b)

Although CPP and DPP are the overall tensors for different boundary conditions,
they are each other’s inverse to the first order in the volume fraction of micro-
elements.

10.1.2. Dilute Distribution: Modeling Approximation

As commented on in Subsections 5.1.1, the effective overall moduli es-
timated on the basis of the dilute-distribution assumption contradict the exact
inequalities (2.5.44) of Subsection 2.5, which are based on fundamental energy
theorems in linear elasticity. Here, this issue is examined in some detail and it is
shown that the contradiction stems from the approximation used in the dilute-
distribution modeling to estimate the concentration tensors, E and F.

For simplicity, consider a two-phase composite, and let the corresponding
RVE consist of the matrix phase with elasticity C = D! and the inclusion phase
with elasticity C! = (DY)~!. The overall elasticity when the RVE is subjected to
the linear displacement boundary conditions, and the overall compliance when
the RVE is subjected to the uniform traction boundary conditions are exactly
given by
CE=C+f(C!-C):EE, D*=D+f(D'-D):F, (10.1.11a,b)
where superscript E or Z emphasizes that the corresponding quantity is obtained
for prescribed macrostrain, E = €°, or prescribed macrostress, X = ¢°, respec-
tively; hence, EF is the concentration tensor for the average strain in the inclu-

sions under the overall strain E, while FZ is the concentration tensor for the
average stress in the inclusion under the overall stress X.

Taking advantage of identities

D*-D=-D:(CE-C): D%,

DI-D= -D:(C!-C): D}, (10.1.12a,b)
with CZ = (D), rewrite (10.1.11b) as

CZ=C+f(CI-C):(D': FZ:C?). (10.1.11¢)
Subtracting (10.1.11c) from (10.1.11a), compute the difference CE — CZ, as

CE-CZ=f(C'-C): {EE-D!: F>: C%}. (10.1.13)

Since the overall elasticity tensors CE and CZ are defined in terms of two dif-
ferent boundary-value problems, it is clear that they need not coincide. Indeed,
the following inequality holds between CE and C:
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€°:(CE-CY):£°2>0, forany £, (10.1.14a)

see Subsection' 2.5. For illustration, assume that C, C\, and (_3 are all isotropic.
Then, (10.1.14a) reduces to the following scalar equation:

(CB*—(CH*20, foro=1,2, (10.1.14b)

where ()%s are the coefficients of the unit isotropic tensors, E! and E2, defined
in Section 8; see (8.1.1).

In the dilute-distribution model, concentration tensors EE and F* are ap-
proximated by E* = E*(Q, C!; C) and F~ = E~(Q, D'; D), which, respectively,
give the average strain and the average stress in an inclusion of elasticity
C!'= (DY), embedded in an infinite homogeneous solid of elasticity C = D!,
when farfield strains and stresses satisfying €°=D:6° or 6°=C:€° are
prescribed. Therefore, these concentration tensors are related through
F~ = Cl: E”:D; see (10.1.6). The scalar equation corresponding to (10.1.13)
then becomes

(CEPPye— (CEPP) = — [ {(C1)~ (C)¢} (B)* (D)* {(CEPP)*—(C)e),
forao=1,2 (o not summed). (10.1.15a)

If the inclusions are stiffer than the matrix, (C))* and (C*PP)® will be greater
than (C)* On the other hand, if the inclusions are more compliant than the ma-
trix, (CH* and (C*PP)® will be smaller than (C)*. Since (E<)* is positive, the
right-hand side of (10.1.15a) is always negative. This implies that

(CEPDYa_(CEPDyx <), fora=1,2. (10.1.15b)

This inequality is a direct result of the approximation used in the dilute-
distribution model to calculate the average strains and stresses in the inhomo-
geneities. Inequality (10.1.15b), therefore, should not be viewed as contradict-
ing the general result embedded in inequality (10.1.14a) and displayed by
(10.1.14b) for an isotropic inclusion and matrix. If the concentration tensors, BEE
and FZ, are calculated exactly, then (10.1.14b) is obtained instead of (10.1.15b).
Indeed, this dichotomy should be viewed as a measure of the limitation of the
dilute-distribution modeling approximation.

10.2. SELF-CONSISTENT METHOD

As already explained in Sections 5 and 7, to estimate the average stress or
strain in a typical inhomogeneity, the self-consistent method embeds this inho-
mogeneity in a fictitious unbounded homogeneous solid B which has the yet-
unknown overall properties of the RVE, instead of those of the matrix material

! Tt should be kept in mind that inequality (10.1.14a) is derived on the basis of the average
strain energy, and that for the linear displacement and uniform traction boundary conditions, the
overall moduli obtained from the average stress-strain relation are identical with the overall moduli
obtained from the corresponding average strain energy.
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(used in the dilute-distribution approach). The resulting elasticity and compli-
ance tensors obtained for prescribed overall strains and stresses, respectively,
are then each other’s inverse. To distinguish these unbounded homogeneous
solids, use the notation,

B = B(€) = B®D), (10.2.1)

when the elasticity of the material of B is C = D!, With this notation, the un-
bounded homogeneous solid used in the dilute-distribution assumption is denot-
ed by B(C) or B(D), while that used in the self-consistent method is denoted by
B(C) or B(D).

Consider a successive approximation to estimate the overall tensors, and
regard the self-consistent method as its limiting case. Let C™ be the overall
elasticity tensor in the Nth approximation, with C(V) = C, the matrix elasticity
tensor. Denote by D™ the overall compliance tensor (not necessarily the in-
verse of C™) for the Nth approximation. Set

— n
CMD =C+ Y o (C*-C): EXN),
a=1

DD =D+ Z fo (D*—D) : FoM), (10.2.2a,b)
a=1
where
E*N = E*(C%, Qg; CN),  FoM™ = F*(D%, Q; DM). (10.2.2¢,d)

Thus, E*™ and F*™ are the estimates of the concentration tensors E® and F®,
on the basis of embedding €2, in infinitely extended homogeneous linearly elas-
tic solids with elasticity and compliance tensors C™) and D™, respectively.

With N = 2, the results of the dilute-distribution assumption are obtained,

CO=C+ ¥ £,(C*—C):BM=C+ ¥ f,(C*—C): EPDx,
oa=1 a=1

D® =D+ z fy (D~D):Fe) =D + 2 f, (D%~ D) : FPDo,
(10.2.3a,b)

and hence C® = CPP and D@ = DPP,

_ Note that to obtain C™D, the fictitious unbounded homogeneous solid
B(C™) is used, whereas to obtain D™D, B(D™) is used; see (10.2.2¢.d).
Hence, C™D and DD are not necessarily each other’s inverse. Since B(C™)
and B(D™) are influenced by all microconstituents in the RVE, C®1 and
D™D take into account their interaction in a certain sense. It is plausible that as
N increases, C™ and D™ become better estimates of the overall elasticity and
compliance tensors. The limits C and D) are defined by

C® = lim C™,  D® = lim D™. (10.2.4a,b)
If these limits exist, then they may be considered the best estimates of the
overall elasticity and compliance tensors, C and D, for this class of approximate
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solutions. From the recurrence formulae (10.2.2a,b),

C®=C+ ¥ f,(C*=C): Ex),
o=1

D™ =D+ ¥ f,(D*-D):Fu), (10.2.5a,b)
o=1
where
E%=) = E*(CY, Qy; C™),  FY) = F*DY, Q; D™). (10.2.5¢,d)

Hence, in this method, the original exact tensors E* and F* are approximated by
E¢= Eo™),  Fo= PO, (10.2.6a,b)

which are the self-consistent estimates. The corresponding overall elasticity and
compliance tensors, C5€ and DC, are derived from the following equations:

CC=C+ ¥ f,(Ce—C):ESCx,
o=1

DC-—Dx+ i f, (D*— D) : F5C, (10.2.7a,b)
oa=1
where
ESCo = E*(C%, Q,; C5€), F5C = F*(D%, Qg; D5C). (10.2.7¢,d)

Therefore, from comparison of (10.2.5a~d) with (10.2.7a~d), C5€ and D’C agree
with the limits C®) and D™, i.e.,

CC=C™, D=D", (10.2.8a,b)
Since C™ and D™ correspond to the RVE subjected to different boun-

dary conditions, they may not necessarily be each other’s inverse. Indeed, from
the recurrence formulae (10.2.2a,b), it is seen that CN*D and D®N*D are each

other’s inverse only up to the first order in the volume fraction of micro-
elements. The proof is straightforward. If C—C®™ and D~ D® are O(f), with

N _ d
f= Y fy then CN*D and DN*D become
o=1

CND=C+0(f), DN =D+0(), (10.2.9a,b)
and hence,
CN+D DNFD = 169 1. O(f2),  DND: CN*D = 149+ O(f2). (10.2.9¢,d)
Now examine the equivalence of C™ and D™ in greater detail. Since
B(C™) = B(C™)~1) and BDM) = B(D™)1), from (10.1.6a,b), it follows that
E*(C% Qq; CN) = D*: F(D, Qq; (CN)): CM,
F=(D?, Qy; DNV) = C*: E*(CY, Qy; (D™)~1): D™ (o not summed).
(10.2.10a,b)
Using (10.2.10a,b), and multiplying (10.2.2a) by D from the left and by (C™)-!
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from the right, obtain
(CONY1 =D {CND: (CO) 1} + 3 £, (D= D) : F(D?, Qg (CN) ).
a=1

(10.2.11a)

Similarly, multiplying (10.2.2b) by C from the left and by D™-! from the right,
obtain

(DMY1 = C: (DN . (D)1} 4 2 (C*—C) : E*(C®, Q,; (DM,
(10.2.11b)

Comparing (10.2.11a) with (10.2.2b), and (10.2.11b) with (10.2.2a), note that
DN _ (CN))-1 = D ; {1¢49) - CN+D (E(N))—l}

f (D%=D): {F*(D% Qq; D) - F(D% Qy; (CN) )},

ﬁM:

E(N-H) _ (B(N))—l =C: {149 — DN+ . (ﬁ(N))—l}

i fo (C*=C): {E™(C?, Qq; CN) - E~(C?, Q,; (DN) )}
. (10.2.12a,b)
As N goes to infinity, the left-hand sides of (10.2.12a,b) approach
ﬂ;‘_‘)‘; {]_)(N+1)_ (E(N))—l} =D — (E(w))—l’
Jim {COD — (DN)Y-1} = C) — (D)1, (10.2.12¢,d)
and the terms in the summation in the right-hand sides of (10.2.12a,b) approach
Jim {F=(D?, Q; DM) — F=(D?, Qq; (CM)™)
= F*(D%, Qu; D)~ F(D% Qq; (C™)Y),
Jim (E=(C% Qq; C™) ~E=(C% Qq; (DM}
= E*(C% Qq; C) — E~(C%, Qq; (D)), (10.2.12¢/f)

Since
1\111_1)1; CN+D - (CN)yT = 1), I\IJI_I)IL D®+D - (DMNY-1 = 1¢4)] (10.2.12g,h)
C®) and D), and consequently CSC and DS, are each other’s exact inverse,
DSC = (CS6)-1,  CSC = (DSO)-1. (10.2.13a,b)

As pointed out in Sections 6, 7, and 8, the overall elasticity or compliance
tensor, C5¢ or D5, estimated by the self-consistent method, is given by the solu-
tion of a (nonlinear) tensorial equation. However, this tensorial equation cannot,
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in general, be solved directly, especially when the geometries and material pro-
perties of the microconstituents are complicated. In this case, direct computa-
tion of the limit of the sequence {C™} or {D™)} is an effective alternative algo-
rithm for obtaining C5€ or D5C. In three examples of Section 8, namely, Figures
8.1.2, 8.2.1, and 8.2.2, C5C is obtained by directly computing {C™} such that
C™ — CIN-1 js essentially zero. Numerically, such direct evaluation of the lim-
it of this sequence appears stable and efficient. For the problems of Section 8, it
produces physically meaningful solutions of the nonlinear equations.

Since V is bounded, in principle C and D may not be each other’s inverse.
However, an RVE represents one macroscopic material point at which the mi-
crostructure must be characterized in a statistical sense. It therefore suffices to
obtain a statistical estimate of the overall response of this RVE under various
macroscopic conditions. This may be more significant than the exact response
of the RVE under particular microscopic boundary conditions. In this sense, the
overall tensors estimated by the self-consistent method, CS€ and DSC, which are
each other’s inverse, may be a more suitable representation than the exact
overall elasticity and compliance tensors calculated for the boundary conditions
of the linear displacements and uniform tractions. It is in this sense that the
results of various models discussed in this book should be examined.

10.3. DIFFERENTIAL SCHEME

As pointed out before, estimates of the overall moduli of heterogeneous
linearly elastic solids by the assumption of a dilute distribution of micro-
elements, as well as by the self-consistent method, have a limited range of appli-
cability. While it is plausible that the self-consistent method may yield reason-
able estimates for greater values of the volume fraction of inhomogeneities than
the dilute-distribution assumption, its range is still quite limited. Indeed, for
porous elastic solids and for elastic solids with microcracks, the self-consistent
method gives zero stiffness (zero values for the overall shear and bulk moduli)
at unreasonably small values of the void volume fraction or the crack density
parameter; see Sections 5 and 6, and Figures 5.1.3, 6.4.2, 6.4.3, and 6.6.2. In
this book several alternatives which apply over a broad range of densities of in-
homogeneities are considered. They are: (1) estimates obtained by the dilute-
distribution assumption; (2) estimates obtained by the self-consistent method;
(3) estimates obtained by the so-called differential scheme; (4) estimates ob-
tained by assuming periodically distributed inhomogeneities; and (5) estimates
obtained by other averaging schemes. The fourth alternative is discussed and il-
lustrated in Chapter IV. In this subsection the differential scheme is examined.
Subsection 10.4 deals with other averaging schemes, including the two-phase
model (Benveniste, 1987), and the double- and multi-inclusion methods (Hori
and Nemat-Nasser, 1992).

As an introduction, consider an RVE which contains a uniform elastic ma-
trix of elasticity C = D~!, and micro-inclusions with common elasticity C! =
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(DY, ie., a two-phase RVE. To estimate the overall elasticity C, when the
volume fraction of the inclusion is f, the differential scheme begins with a uni-
form RVE of elasticity C, containing an infinitesimally small volume fraction of
inhomogeneities, 8f. The overall moduli are estimated by the dilute-distribution
assumption which, since &f << 1, yields accurate results. Then a new homo-
geneous solid whose elasticity tensor is the uniform elasticity which has just
been calculated, i.e., the overall elasticity obtained in the previous step, is con-
sidered, and an infinitesimally small increment, &f, of the inhomogeneities is ad-
ded. Again, the dilute-distribution assumption is used to obtain the new overall
elasticity tensor. This process is continued until the final volume fraction of in-
homogeneities is obtained. The mathematical formulation of this procedure
leads to an ordinary differential equation for the overall elasticity tensor as a
function of the volume fraction of inhomogeneities, f. This differential equation
is integrated and the overall moduli for any value of f are obtained. The method
may be formulated in terms of the elasticity tensor or the compliance tensor
which will be each other’s inverse.

In the sequel first the differential scheme for a two-phase RVE is formu-
lated, and then the results are extended to cases involving inhomogeneities of
several phases. Note at the outset that, inasmuch as only the volume fractions of
inhomogeneities are prescribed, the final solution is not unique, depending on
the chosen integration paths. However, one may fix the integration path on phy-
sical grounds and obtain reasonable results.

The differential scheme for estimating the overall properties of hetero-
geneous media was used by Roscoe (1952, 1973) who examined the viscosity of
suspensions of rigid spheres and properties of composites with elastic and
viscoelastic constituents. The application of the concept to composites and
solids with microcracks is discussed by Boucher (1974), McLaughlin (1977),
Cleary et al. (1980), Norris (1985), Hashin (1988), and Nemat-Nasser and Hori
(1990). Other related contributions are Sen ef al. (1981) and Sheng and Cal-
legari (1984) who consider geophysical applications, and Henyey and Pomphrey
(1982) who use an iterative scheme. Milton (1984) has used the concept of
embedding in defined proportions, dilute concentrations of phases of a hetero-
geneous body within a sequentially homogenized medium, and has established
the corresponding relation to other averaging methods, especially to realization
of bounds through sequential packing; see also Milton (1990) who presents a
broad framework to obtain possible effective tensors for composites, and Tor-
quato (1991) who reviews the literature in the general area of random hetero-
geneous media with improved bounds for effective parameters, and provides
useful comments and references.

10.3.1. Two-Phase RVE

Here the uniform matrix of elasticity C contains only one kind of inclu-
sion of common elasticity C!; the corresponding compliance tensors are D and
D!, respectively. For conceptual simplicity, let there be only one inclusion ;
with volume fraction f; in th