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PREFACE 

This book consists of two parts. The first part deals with solids with 
microdefects such as cavities, cracks, and inclusions, as well as with elastic 
composites. The second part provides an introduction to the theory of linear 
elasticity, added to make the book self-contained since linear elasticity serves as 
the basis of the development of small-deformation micromechanics. 

The material for the first part of this book grew out of lecture notes of the 
first author in a course on micromechanics, which was initiated at the University 
of California, San Diego (UCSD), in response to the existing need for a funda-
mental understanding of the micromechanics of the overall response and failure 
modes of advanced materials, such as ceramics and ceramic and other compo-
sites. These advanced materials have become the focus of systematic and exten-
sive research at the Center of Excellence for Advanced Materials (CEAM), 
which was established at UCSD in 1986, to include the U.S. Government's 
University Research Initiative on Dynamic Performance of Materials. The 
course, given in the Spring of 1987, was intended to furnish a basic background 
for rigorous micromechanical modeling of the mechanical behavior and failure 
regimes of a broad class of brittle materials. 

Class notes taken by some of the graduate students were totally rewritten 
by the second author in early 1988. Then this new version was completely 
reworked by both authors, and used when the micromechanics course was given 
for the second time in the Fall of 1988. A new version of the notes was then 
completed and a major part of it was used again in the micromechanics course 
in the Winter Quarter of 1990, and with more extensive revisions and additions, 
again in the Winter Quarter of 1991. The manuscript was read by many gradu-
ate students who helped to correct misprints and related errors. The material 
contained in this book as Part 1, is a thoroughly reexamined, modified, 
expanded, and amended version of these class instruction notes. Included here 
are new results on many basic issues in micromechanics, which we hope will be 
helpful to graduate students and researchers dealing with rigorous physically-
based modeling of overall properties of heterogeneous solids; see Preface of 
Part 1, for comments. 

The second part, except for Sections 15 and 19, is essentially part of the 
lecture notes on elasticity which the first author wrote in the late 1960's, while 
teaching at UCSD. Many sections were done at that time, in collaboration with 
the late Professor William Prager, and it was intended then to publish a mono-
graph on elasticity in a series of books in solid mechanics, by Blaisdell Publish-
ing Company. Unfortunately, before the monograph was completed, that series 
was discontinued, and the authors were released from contractual obligations. 
The notes were completed and used many times at UCSD and at Northwestern 
University, for class instruction by the first author. The section on variational 
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methods included some new results of such generality that even today, much of 
it is not known to many researchers. These were the results obtained in colla-
boration with Professor Prager. The variational principles in the current version, 
given in Section 19, are even more general than those contained in the original 
class notes. These principles include some new elements which should prove 
useful for application to advanced modeling, as well as solutions of composites 
and related heterogeneous bodies. Section 15 is a brief modern version of ele-
ments in vector and tensor algebra, and is particularly tailored to provide back-
ground for the rest of this book. Even for students of mechanics and mechanics 
of materials familiar with the basic elements of linear elasticity, a quick exami-
nation of Subsection 15.5 should prove helpful for a better understanding of the 
notation and some of the details of the manipulations involved in Part 1. 

While the material in Part 2 is mostly standard, given for background 
information, in preparing Part 1, the authors have benefited from the contribu-
tion of many modern researchers and numerous publications which have 
appeared over the past few decades. Since the book is intended for use as a 
graduate text, only a few selected references are cited within the text. Important 
references may have been left out inadvertently, for which the authors apolo-
gize. 

While the authors take full responsibility for any errors that remain, they 
wish to express their appreciation to Mr. L. Ni and graduate students, B. Balen-
dran, Hang Deng, Mark Rashid, G. Subhash, John Wehrs, Niann-i Yu, Vinod 
Sharma, Abbas Azhdari, Yeou-Fong Li, Anil Thakur, and Tomoo Okinaka, who 
read various parts of various versions of the manuscript with care, and sought to 
remove errors of minor or major importance. Thanks are also due John Willis 
whose seminars and comments provided inspiration and insight, and led to con-
siderable improvement of several sections, as well as due Eva for proofreading 
the entire manuscript, and Shiba for helping with word processing. The authors 
also gratefully acknowledge the Army Research Office Contract DAAL-03-86-
K-0169 which provided the core support for the Center of Excellence for 
Dynamic Performance of Materials at UCSD, and partially supported the two 
authors during the preparation of this book. The book has been formatted by the 
authors, using ditroff. Most of the figures, and all of the graphs have been con-
structed by pic and grap. 

Sia Nemat-Nasser 
Muneo Hon 

La Jolla, California 
September 17, 1992 



PREFACE TO PART 1 

Part 1 of this book contains a systematic development of the overall 
response parameters of solids with microheterogeneities and defects such as 
cracks and cavities. The work deals with small deformations, particularly 
relevant to advanced materials such as ceramics and ceramic composites, as 
well as metals and polymeric composites, in a deformation range where overall 
geometrical dimensions and shapes are not altered substantially by material 
deformation. While, for the most part, a linearly elastic matrix containing 
linearly elastic inclusions or cavities and cracks, is considered, overall material 
nonlinearity caused by microcrack formation and growth, for example, is 
included. In addition, as discussed in Subsection 12.8 and in Appendix A of Part 
1, the basic results apply directly to composites and heterogeneous solids con-
sisting of elastoplastic or rate-dependent elastoviscoplastic materials, as long as 
the small-deformation theory applies, or small incremental steps are used. 

Within the above-mentioned general framework, the subject matter of 
micromechanics is treated in a deliberate and systematic manner, at each stage 
beginning with the fundamentals which are then treated in depth with consider-
able care, leading to illustrative examples to bring out in a concrete fashion the 
involved basic steps, and then providing a number of major results with broad 
applicability. 

More specifically, in Sections 1 and 2, Chapter I, the basic idea of a 
heterogeneous representative volume element (RVE) is discussed. The associ-
ated boundary-value problem is formulated, both in terms of the rate of change 
of the field variables, as well as in terms of the total quantities. Averaging 
methods are examined in Section 2, and a series of important basic universal 
results are presented. Essentially all (unless otherwise explicitly stated) the 
results in Sections 1 and 2 are valid for small deformations of solids consisting 
of any (elastic or inelastic) constituents with any material properties. These 
comments apply to results presented in Subsections 2.1 to 2.5. In Subsection 2.5, 
detailed discussions are given for solids consisting of material constituents 
which admit (at the local level) stress and/or strain potentials. (The response, 
however, need not be linear.) It is then shown how the overall macropotentials 
relate directly to the average of the corresponding micropotentials. A set of 
exact relations is obtained in this manner, and based on this, the notion of a 
representative volume element is examined. The question of the effects of the 
boundary data considered for an RIB, on the resulting overall energy density 
(elastic but materially nonlinear), and on the overall effective moduli for a 
linearly elastic RVE, is given a thorough examination, leading to a set of univer-
sal inequalities and two theorems which provide exact ordering relations when 
uniform boundary tractions, linear boundary displacements, or general boundary 
data are considered for an RIB. In particular, general results developed in Sub-
sections 2.5.6 and 2.5.7, relating to bounds on macropotentials and, therefore, on 
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the overall strain energy and complementary energy functionals, should prove 
useful and be a guiding element for specific results outlined in later sections, 
using the assumption (postulate) of statistical homogeneity, and employing sim-
ple models to calculate the local average quantities. Indeed, these universal 
theorems are used to obtain rigorous, computable bounds of considerable gen-
erality in Section 9, as is discussed later on in the sequel. 

In Subsection 2.6, questions of statistical homogeneity and representative 
volume elements are again examined to clarify the nature of the boundary data 
which may be assigned to an RVE, and their influence on the resulting average 
stresses, strains, and their potentials. Conditions under which the average of the 
product of the stress and strain (or their rates) equals the product of the 
corresponding averages, are discussed. 

Included in Sections 1 and 2 also is a brief discussion of nonmechanical 
properties of inhomogeneous media. General results developed for mechanical 
properties are specialized and applied to electrostatic, magnetostatic, thermal, 
and diffusional properties of a heterogeneous RVE. 

Chapter II is devoted to estimating, in a systematic manner, the overall 
elasticity and compliance tensors of a linearly elastic matrix containing micro-
cavities and microcracks, using two simple models for the averaging procedure. 
These are: the dilute distribution model which assumes that the inhomogeneities 
are small and far apart, so that their interaction may be neglected; and the self-
consistent model which takes into account the corresponding interaction, in a 
certain, overall, approximate manner In particular, in Section 3 the stress-strain 
relations of linear elasticity are reviewed and the necessary background is pro-
vided for subsequent sections. In Section 4, a systematic discussion of the 
overall stress and strain in a porous RIB is given for two limiting alternative 
boundary data, namely, uniform tractions, and linear displacements. It is shown, 
directly and in a simple manner, how the corresponding overall compliance and 
elasticity tensors can be estimated, using the reciprocal theorem and simple esti-
mates of the cavity boundary displacements. These results are generally valid 
for cavities of any shape or distribution, and, except for the assumption of linear 
elasticity, no approximations are involved. In Section 5 the general results of 
Section 4 are applied to porous, linearly elastic solids. The dilute-distribution 
and the self-consistent models are used. The relation between these models is 
discussed in terms of specific problems. Section 6 deals with elastic solids with 
microcracks. Here again, the same two models are used in a number of illustra-
tive examples, and the corresponding results are compared and discussed. In 
addition, a brief overview of recent advances in theoretical and experimental 
evaluation of brittle failure in compression is presented in Subsection 6.9. 

Chapter III is devoted to linearly elastic solids with elastic micro-
inclusions, as well as the elastic response of polycrystals. First, in Section 7, for 
micro-inclusions of any geometry and elasticity, exact general expressions for 
the overall elastic modulus and compliance tensors are obtained, for overall 
uniform boundary tractions and overall linear boundary displacements, respec-
tively. Then in Subsection 7.3, the concepts of eigenstrain and eigenstress 
required to homogenize the heterogeneous RVE are introduced and examined in 
some detail. In particular, Eshelby's tensor for an ellipsoidal inclusion 
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embedded in a uniform, infinitely extended, linearly elastic solid, is presented, 
together with its dual tensor (the first associated with an eigenstrain, and the 
second associated with the corresponding eigenstress), their properties exam-
ined, together with their dual relations, and they are used to obtain consistency 
conditions associated with the homogenization. These results are then related to 
the H- and J-tensors, introduced in Section 4, to homogenize an elastic RVE 
containing microcavities and microcracks. The results are then used to formulate 
overall modulus and compliance tensors of an elastic RVE with elastic inclu-
sions, on the basis of the dilute-distribution and the self-consistent models; Sub-
sections 7.4 and 7.5. The formulation of the overall elasticity and compliance 
tensors, in terms of the overall elastic energy of the RVE, is discussed in Sub-
section 7.6, focusing particularly on the required symmetry for the overall elasti-
city and compliance tensors. Section 8 contains specific illustrative examples for 
elastic solids with micro-inclusions. A number of problems are worked out in 
detail, and numerical illustrations are presented. 

Upper and lower bounds for the overall elastic moduli are presented in 
Section 9. First, the Hashin-Shtrikman variational principle, as generalized by 
Willis, is presented, when either the eigenstrains or the eigenstresses are used to 
homogenize the corresponding heterogeneous RVE, leading to two functionals: 
one, when the overall uniform boundary tractions are prescribed, where the 
eigenstrains are used for homogenization, and the other, when the overall linear 
displacement boundary data are assigned, in which case the eigenstresses are 
used to homogenize the RVE. This leads to an elegant dual principle, with the 
corresponding Euler equations defining the associated consistency conditions. 

The upper and lower bounds for the energy functionals are presented in 
Subsection 9.2, and their generalization is given in Subsection 9.3. Direct esti-
mates of the overall moduli, using approximate correlation tensors, are 
presented in Subsection 9.4. In Subsection 9.5, the Hashin-Shtrikman varia-
tional principle is generalized for boundary data other than uniform tractions 
and linear displacements, and the corresponding generalized bounds are 
obtained. With the aid of the universal theorems of Subsection 2.5.6, these 
bounds are then related to the bounds for the uniform traction and linear dis-
placement boundary data. It is proved that two out of four possible approximate 
expressions that result are indeed rigorous bounds. Explicit, computable, exact 
upper and lower bounds for the overall moduli are then given, when the com-
posite is statistically homogeneous and isotropic. Finally, it is shown in Subsec-
tion 9.6 that these new observations lead to universal bounds on two overall 
moduli of multi-phase composites, valid for any shape or distribution of phases. 
Furthermore, it is established that the bounds are valid for any finite elastic solid 
of ellipsoidal shape, consisting of any distribution of inhomogeneities of any 
shape and elasticity. (In Section 13, it is proved that the same bounds emerge 
for multi-phase composites with periodic, but otherwise completely arbitrary, 
microstructure.) 

For historical reasons, the bounds on the overall properties in Section 9 
are based on the Hashin-Shtrikman variational principle. An alternative formu-
lation of exact computable bounds is to use the universal theorems of Subsection 
2.5.6, together with proper choices of the reference elasticity or compliance 
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tensors. This is presented in Subsection 9.5.6. It is also used in Subsection 
9.7.2 to formulate bounds on parameters which define nonmechanical properties 
(e.g., conductivity and resistivity tensors) of composites. 

A number of averaging methods (models) are studied in a systematic 
manner in Section 10. This includes the dilute-distribution and the self-
consistent methods, as well as the differential scheme, and the two- and three-
phase models. The double-inclusion method is discussed in Subsection 10.4, 
together with the Mori-Tanaka result, which leads to a number of interesting 
results; for example, the self-consistent estimate is shown to be a special case of 
the double-inclusion model, and is related to the Hashin-Shtrikman bounds. The 
double-inclusion model is then generalized to multi-inclusion models, where, 
again, all the average field quantities are estimated analytically. For a set of 
nested ellipsoidal regions of arbitrary aspect ratios and relative locations, which 
is embedded in an infinitely extended homogeneous elastic solid of arbitrary 
elasticity, and which undergoes transformations with uniform but distinct 
transformation strains within each annulus, the resulting average strains of each 
annulus are computed exactly and in closed form; the transformation strains in 
the innermost region need not be uniform. Explicit results are presented for an 
embedded double inclusion, as well as a nested set of n inclusions. As examples 
of the application of the multi-inclusion model, a composite containing multi-
layer inclusions and a composite consisting of several distinct materials are con-
sidered, and their overall moduli are analytically estimated. Then, relations 
among these approximate techniques are studied, and comments on other 
averaging schemes are made. 

The development of Eshelby's tensor in terms of the infinite-space Green 
function, is contained in Section 11, where the properties of this tensor and its 
dual are studied. Given in this section is the Mori-Tanaka result, and its general-
ization to the case when arbitrary nonuniform eigenstrains (or transformation 
strains) are distributed in a region of arbitrary geometry which is contained in an 
ellipsoidal domain which, in turn, is embedded in an infinite homogeneous 
domain. This result provides a powerful tool for the study of, for example, 
fiber-reinforced composites with coated and/or partially debonded fibers. Then, 
relations among various average quantities are examined, and the energy associ-
ated with heterogeneity and, hence, the homogenizing eigenstrains or eigens-
tresses, is derived. 

Chapter IV covers the fundamentals of heterogeneous elastic solids with 
periodically distributed inhomogeneities, such as inclusions, fibers, cavities, and 
cracks. This chapter includes a number of new results, while at the same time 
presenting the theory in considerable depth, starting at an elementary level. 
Section 12 provides background information and gives a number of illustrative 
examples, including periodically distributed interacting cracks. For a periodic 
structure, the concept of a unit cell is introduced and, using Fourier series, the 
general solution is obtained. Specific classes of problems are then solved as 
illustration, and the overall average elastic parameters are obtained in terms of 
the geometry and properties of the representative unit cell. Application of the 
general results to a unit cell with rate-dependent or rate-independent consti-
tuents is examined in Subsection 12.8. 
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Section 13 focuses on the overall response of solids with periodic micros-
tructure consisting of some arrangements of linearly elastic uniform micro-
inclusions embedded in a linearly elastic uniform matrix. First, an equivalent 
homogeneous solid is defined by introducing suitable periodic eigenstrain or 
eigenstress fields. Then, the Hashin-Shtrikman variational principle is applied 
to solids with periodic microstructure, and bounds on the overall moduli are 
obtained by defining energy functionals for the eigenstrain or eigenstress fields 
in the equivalent homogeneous solid. The bounds for the periodic microstruc-
ture are exact and can be computed to any desired degree of accuracy. It is 
shown in Subsection 13.5, that there are always two overall elastic parameters 
whose bounds, obtained on the basis of the periodic and random (RVE) micros-
tructures, are identical, and hence exact. Moreover, these bounds are valid for 
inclusions of any shape or elasticity. In addition, it is shown that, with the aid of 
the minimum potential and complementary potential energies, bounds on the 
overall parameters are obtained directly, by a suitable choice of a reference 
elasticily or compliance tensor. 

In Section 14 the concept of mirror images of points and vectors is intro-
duced and then used to decompose tensor-valued functions defined on the unit 
cell, to their symmetric and antisymmetric parts. The decomposition is applied 
to Fourier series representations of tensor-valued field quantities such as strain, 
stress, and elastic moduli, resulting in considerable economy in numerical com-
putation and clarity in restrictions which must be imposed on the boundary data. 

In Appendix A of Part 1, application of the basic results to nonlinear rate-
dependent and rate-independent inelastic heterogeneous solids is briefly exam-
ined. Illustrative constitutive relations for phenomenological and slip-induced 
plasticity models are briefly presented, and their implementation in terms of the 
general theories of the preceding sections is pointed out. First, certain rate-
independent phenomenological plasticity theories are outlined, with a brief 
examination of slip-induced crystal plasticity. Then their interpretation in terms 
of rate-dependent processes is mentioned. 



CHAPTER I 

AGGREGATE PROPERTIES 

AND 

AVERAGING METHODS 

In this chapter the concept of representative volume element (RVE) is 
introduced and some averaging techniques for obtaining aggregate 
properties in terms of microstructure are presented. While attention is 
confined to small-deformation theories, no additional restrictions are 
imposed on the constitutive properties of the micro-elements which 
comprise an RVE. The general relations obtained in this chapter are 
used throughout the remainder of this book. Familiarity with the basic 
concepts and field equations of small-deformation continuum mechan-
ics, and hence with associated tensor fields and tensorial operations is 
assumed. A brief account of tensors and tensor fields, and basic field 
equations of small-deformation continuum mechanics, particularly 
linear elasticity, is presented in Part 2 of this book. 



SECTION 1 AGGREGATE PROPERTIES 

The relation between the continuum properties of a material neighborhood 
and its microstructure and microconstituents is discussed in general terms. The 
physical basis of the transition from the microscale to the macroscale is exam-
ined and illustrated, arriving at the notion of a representative volume element 
(RVE). Then the associated boundary-value problems are formulated, in terms 
of the total field quantities and their rates. Included also is a brief mention of 
nonmechanical properties such as overall thermal, electrical, magnetic, and dif-

fusional measures for microscopically heterogeneous media. 

1.1. REPRESENTATIVE VOLUME ELEMENT 

Continuum mechanics deals with idealized materials consisting of 
material points and material neighborhoods. It assumes that the material distri-
bution, the stresses, and the strains within an infinitesimal material neighbor-
hood of a typical particle (or a material element) can be regarded as essentially 
uniform. On the microscale, however, the infinitesimal material neighborhood, 
in general, is not uniform, consisting of various constituents with differing prop-
erties and shapes, i.e., an infinitesimal material element has its own complex 
and, in general, evolving microstructure. Hence, the stress and strain fields 
within the material element likewise are not uniform at the microscale level. 
One of the main objectives of micromechanics is to express in a systematic and 
rigorous manner the continuum quantities associated with an infinitesimal 
material neighborhood in terms of the parameters that characterize the micro-
structure and properties of the microconstituents of the material neighborhood. 

To this end, the concept of a representative volume element (RVE) is 
introduced; Hill (1963), Hashin (1964, 1983), Kröner (1977), Willis (1981), and 
Nemat-Nasser (1986). An RVE for a material point of a continuum mass is a 
material volume which is statistically representative of the infinitesimal material 
neighborhood of that material point. The continuum material point is called a 
macro-element. The corresponding microconstituents of the RVE are called the 
micro-elements. An RVE must include a very large number of micro-elements, 
and be statistically representative of the local continuum properties. 

Figure 1.1.1 a shows a continuum, and identifies a typical material point P 
surrounded by an infinitesimal material element. When the macro-element is 
magnified, as sketched in Figure 1.1.1b, it may have its own complex micro-
structure. It may consist of grains separated by grain boundaries, voids, inclu-
sions, cracks, and other similar defects. To be representative, this RVE must 
include a very large number of such microheterogeneities. 
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MACROSCALE 
CONTINUUM 

MICROSCALE 

inclusions 

(a) ' cracks 
grain boundaries 

e2 

(b) 

Figure 1.1.1 

(a) P is a material point or material element surrounded by a material neighbor-

hood, i.e., a macro-element; (b) Possible microstructure of an RVE for the ma-

terial neighborhood of P 

Figure 1.1.2 is a collection of several micrographs showing the micro-
structure in magnesia-partially stabilized zirconia (Mg-PSZ). Figures 1.1.2a,b 
are optical micrographs of a zirconia sample which has been subjected to a sin-
gle compressive pulse (uniaxial stress) in the direction of the arrows, producing 
phase transformation (Figure 1.1 .2a) from a meta-stable tetragonal to a stable 
monoclinic crystalline structure in PSZ, as well as creating microcracks (Figure 
1.1.2b) essentially parallel to the direction of compression; Rogers and Nemat- 

Nasser (1989).1  If these cracks are regarded as approximately flat, their normals 
then fall on a plane normal to the direction of compression, having an essentially 
uniform distribution. Figure 1.1.2c is a micrograph showing the intersection of 
these cracks with a plane normal to the direction of compression. While these 
cracks are not "flat", they are randomly oriented. 

After the first loading discussed above, the sample, which has a cubical 
geometry, is subjected to another single compression pulse (uniaxial stress) in a 
direction normal to the direction of the first loading. Figure 1.1.2d is the corre-
sponding micrograph showing new microcracks which have been formed in the 
direction of the second loading, essentially normal to the first set of cracks. 

Phase transformation from tetragonal to monoclinic occurs in platelet pre-
cipitates. This transformation involves both shear deformation and volumetric 
expansion. The constraint imposed by the surrounding matrix, forces the pre-
cipitates to accommodate the transformation shear strain through twinning, as is 

For qualitative experimental and quantitative theoretical modeling of compression-induced 
cracks in brittle solids, see Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser (1985, 1986), 
and Ashby and Hallam (1986), where references to other works, especially in rock mechanics, are 
also given; for a review, see Nemat-Nasser (1989), and Subsection 6.9. 
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Figure 1.1.2 

(a) Optical micrograph of surface rumples due to phase transformation in Mg-
PSZ; (b) Microcracks in the direction of applied compression pulse; (c) Essen-
tially randomly oriented microcracks normal to applied compression; (d) Addi-
tional microcracks in the direction of second loading; (e) Transmission electron 
micrograph showing twinning of a transformed precipitate and microcracks at 
interface with matrix; (f) Microcavities, grain boundaries, microcracks, etc. in 
Mg-PSZ (from Subhash, 1991) 
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shown in the transmission electron micrograph of Figure 1.1.2e. Twinning 
introduces additional minute cracks at the interfaces between the PSZ precipi-
tates and the elastic matrix, as is evident in this last figure. 

Therefore, in a tested sample of Mg-PSZ, in addition to pre-existing 
microcavities and grain boundaries (Figure 1.1.2f), there are numerous micro-
cracks with a rather special distribution, depending on the loading history. The 
phase transformation and twinning strains within small precipitates which are 
distributed in a cubic manner within each crystal of this polycrystalline ceramic, 
produce additional minute microcracks at the interfaces between the 
transformed precipitates and the matrix. Tension cracks are also observed to 
form normal to the applied compression, upon unloading. 

Figures 1.1.3a,b,c are optical micrographs of a metal-matrix composite 
(MMC) consisting of an aluminum matrix with alumina inclusions of a special 
arrangement caused by the processing technique, which involves a final uniaxial 
extrusion of the composite. The alumina particles are more or less aligned in 
the direction of extrusion. Figures 1.1.3a,b,c show the cross sections of a typical 
thin plate of this material, taken, respectively, through the plate thickness, nor-
mal to the direction of the extrusion; parallel to the direction of extrusion; and 
parallel to both the extrusion-direction and the upper and lower surfaces of the 
extruded plate. 

Figure 1.1.3 

Optical micrographs of an aluminum-alumina metal-matrix composite: (a) Nor-
mal to the extrusion-direction; (b) Parallel to the extrusion-direction and 
through the plate thickness; (c) Parallel to the extrusion-direction and plate 
faces (from Altman et al., 1992) 

In these examples, a sample of a typical dimension of several millimeters 
may be used as an RVE. As may be inferred from these illustrations, to quantify 
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the concept of an RVE, two length-scales are necessary: one is the continuum-
or macro-length-scale, by which the infinitesimal material neighborhood is 
measured; the second is the micro-length-scale which corresponds to the smal-
lest microconstituent whose properties and shape are judged to have direct, 
first-order effects on the overall response and properties of the continuum 
infinitesimal material neighborhood or macro-element. In general, the typical 
dimension of the macro-element, D, must be orders of magnitude larger than the 
typical dimension of the micro-element, d; i.e., D/d » 1. For example, if the 
continuum is a polycrystalline solid which is viewed as a homogenized contin-
uum, and one is interested in describing the aggregate or polycrystal properties 
(the polycrystal being the macro-element) in terms of single-crystal properties 
(each crystal being a micro-element), then the dimension, D, of the RVE should 
be much larger than the typical size, d, of the individual crystals. As a second 
example, if one is interested in estimating the elastic moduli of a whisker-
reinforced composite in terms of the matrix (assumed uniform and homogene-
ous) and the whisker parameters, then the size of the RVE must be such that it 
includes a large number of whiskers. In either example, whether or not the 
micro-elements have a random, periodic, or other distribution does not affect the 
requirement of D/d » 1, although, of course, the corresponding overall proper-
ties of the RVE are directly affected by this distribution. In the illustrations of 
Figures 1.1.2a--f and Figures 1.1.3a,b,c, the macroscopic samples used in exper-
imentally obtaining the overall mechanical properties are clearly good candi-
dates for the corresponding RVE, since their macro-dimensions (of the order of 
several millimeters) are orders of magnitude greater than the dimension of the 
cavities, microcracks, precipitates, individual crystals, and inclusions, which are 
no greater than tens of microns. 

Note that the absolute dimensions of the microconstituents may be very 
large or very small, depending on the size of the continuum mass and the objec-
tives of the analysis. It is only the relative dimensions that are of concern. For 
example, in characterizing the overall properties of a mass of compacted fine 
powder in powder-metallurgy, with grains of submicron size, a neighborhood of 
a dimension of 100 microns would be sufficient as an RVE, whereas in charac-
terizing an earth dam as a continuum, with aggregates of many centimeters in 
size, the absolute dimension of an RVE would be of the order of tens of meters. 

Another important question is what constitutes an underlying essential 
microconstituent. This also is a relative concept, depending on the particular 
problem and the particular objective. It must be addressed through systematic 
microstructural observation at the level of interest, and must be guided by exper-
imental results. Perhaps one of the most vital decisions that the analyst makes is 
the definition of the RVE. An optimum choice would be one that includes the 
most dominant features that have first-order influence on the overall properties 
of interest and, at the same time, yields the simplest model. This can only be 
done through a coordinated sequence of microscopic (small-scale) and macros-
copic (continuum-scale) observation, experimentation, and analysis. In many 
problems in the mechanics of materials, suitable choices often emerge naturally 
in the course of the examination of the corresponding physical attributes and the 
experimental results. 
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1.2. SCOPE OF THE BOOK 

The extraction of macroscopic properties of microscopically heterogene-
ous media, on the basis of systematic modeling, has taken varied paths in the 
literature. The path chosen in this book rests heavily on the basic rigorous 
approach of applied mechanics, in the spirit pioneered by Hill (1952, 1963, 
1964a,b, 1965a,b), Kröner (1953, 1958, 1977, 1978), Hershey (1954a,b), Hashin 
(1964, 1965a,b, 1968, 1970, 1983), Hashin and Shtrikman (1962a,b, 1963), 
Budiansky (1965), Walpole (1966a,b), and Willis (1977); see also, Christensen 
(1979), Nabarro (1979), Walpole (1981), Willis (1981, 1982), Bilby et al. 
(1985), Mura (1987), Weng et al. (1990), and references cited therein. Roughly 
speaking, the approach begins with a simple model, exploits fundamental princi-
ples of continuum mechanics, especially linear elasticity and the associated 
extremum principles, and, estimating local quantities in an RVE in terms of glo-
bal boundary data, seeks to compute the overall properties and the associated 
bounds. 

The book is organized in two parts. In Part 1, a fundamental and general 
framework for quantitative, rigorous analysis of the overall response and failure 
modes of microstructurally heterogeneous solids is systematically developed. 
Based on the theory of elasticity, particularly basic variational principles, and 
general averaging techniques, exact expressions are obtained for parameters 
which describe the overall mechanical and nonmechanical properties of hetero-
geneous solids and composites, in terms of the corresponding microstructure. 
These expressions apply to broad classes of materials with inhomogeneities and 
defects. The inhomogeneities may be precipitates, inclusions, whiskers, and 
reinforcing fibers, or they may be voids, microcracks, or plastically-induced 
slips, twins, and transformed materials. While, for the most part, the general 
framework is set within linear elasticity, the results directly translate to hetero-
geneous solids with rate-dependent or rate-independent inelastic constituents. 
This application is specifically pointed out at various suitable places within the 
book. 

The general exact relations obtained between the overall properties and 
the microstructure, are then used together with simple models, to develop tech-
niques for direct quantitative evaluation of the overall response which is gen-
erally described in terms of instantaneous overall moduli or compliances. These 
techniques include the dilute-distribution, the self-consistent, the differential, the 
double- and multi-inclusion, and the periodic models. The relations among the 
corresponding results for a variety of problems are examined in great detail, 
illustrated by specific, technologically significant, problems, and discussed in 
relation to rigorous computable bounds. Examples include solids with microcav-
ities, microcracks, micro-inclusions, and fibers. The bounds, as well as the 
specific results, include new observations and original developments, as well as 
a careful account of the state of the art. 

More specifically, in Section 1, the basic concept of representative volume 
element (RVE) is introduced, and in Section 2, general averaging theorems are 
presented. For heterogeneous solids whose constituents admit stress or strain 
potentials, exact relations are obtained between the macro- and microquantities. 
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In addition, two universal theorems are given, which provide clear ordering for 
the strain energy and the complementary strain energy of any heterogeneous 
elastic solid (not necessarily linear) subjected to various boundary data (dif-
ferent, but consistent) which produce either the same overall strains or the same 
overall stresses. These universal bounds are then used in a novel manner later, 
in Section 9, to develop exact computable bounds on the overall energies and 
moduli or compliances of a broad class of composites. In Sections 3-8, simple 
illustrative examples are worked out in great detail, to show the application of 
the fundamental relations. Section 9 deals with the general concept of varia-
tional principles and bounds on the overall parameters. In Section 10, the 
results of various models are reexamined with care and compared, and in Sec-
tion 11, certain necessary mathematical background information, particularly on 
Green's functions, is given. Sections 12, 13, and 14 are dedicated to basic 
results and illustrative examples of heterogeneous solids with periodic micro-
structure, including inclusions, voids, and cracks. Exact, computable bounds are 
given for periodic microstructures with unit cells consisting of any number, 
shape, or distribution of phases. In particular, universal bounds on two overall 
parameters of the composite are developed, and it is shown that the same exact 
bounds remain valid for any volume element (not necessarily with periodic 
microstructure) of any heterogeneous elastic solid. In Appendix A of Part 1, 
application of the basic results to nonlinear rate-dependent and rate-independent 
inelastic heterogeneous solids is briefly examined. 

To render the book self-contained, fundamentals of continuum mechanics, 
particularly linear elasticity, essential for micromechanics, are briefly presented 
in Sections 15-20 of Part 2. Section 21 reviews the mathematical tools for the 
solution of two-dimensional elasticity problems with singularities, including the 
Hilbert problem formulation in terms of singular integral equations, both Cau-
chy singular and Hadamard's finite-part integral, for general anisotropic materi-
als. 

There are other, equally rigorous and useful, approaches which provide at 
least complementary information on the overall behavior of microscopically 
heterogeneous solids. One such approach is the explicitly statistical formula-
tion, where an RVE is viewed as a member of an ensemble of RIB' s, from 
which ensemble averages are sought, estimated, and used to represent the corre-
sponding macroscopic constitutive parameters, as well as the material response; 
for discussion and references, see Beran (1968, 1971), Kröner (1971), Batchelor 
(1974), and McCoy (1981). The statistical approach usually seeks to define the 
required overall properties of a microstructurally randomly heterogeneous 
material in terms of the so-called correlation tensors. The n-point correlation 
tensor is the probability of finding certain material phases at n different points 
within an RIB. The simplest case is a two-point correlation tensor which pro-
vides the probability of finding, say, the ath phase at two points within an RVE, 
x1 and x2. In a similar way, cross correlation of two and several phases are 
defined. Early work in this area is by Brown (1955), Miller (1969a,b), and Hori 
and Yonezawa (1974, 1975); for a discussion and references, see Torquato 
(1991). Such statistical information has been used to develop improved bounds 
on effective properties of microstructurally randomly heterogeneous materials. 
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This book does not deal with the statistical approach. The above com-
ments and references, therefore, are given as an entry to the vast literature on the 
subject, focused on statistical estimations of continuum properties. Since the 
assumption of ergodicity allows replacing ensemble averages with sample aver-
ages, it may be viewed as a bridge between the explicitly statistical and the 
approach chosen in this book. At this early point in the discourse, suffice it to 
say that an RVE may be regarded as a representative part of a very large hetero-
geneous solid (infinitely extended), any of whose suitably large subregions may 
be used to obtain essentially the same overall macroscopic material properties 
and local continuum field variables. A large solid of this kind is called statisti-
cally homogeneous. The assumption (hypothesis) of ergodicity then allows 
extracting ensemble statistics from averages obtained over such a statistically 
homogeneous, very large, but microscopically heterogeneous continuum. In this 
context, one may consider three length-scales, namely, a microscale defining the 
heterogeneity within an RVE, a miniscule defining the size of an RVE, and a 
macroscale associated with the laboratory (or the continuum) sample; for dis-
cussion and references, see Hashin (1983). Since, within the infinitely extended, 
statistically homogeneous solid, translation and rotation of an RVE (if isotropic) 
are assumed to leave the corresponding averages essentially unchanged, these 
are also referred to as moving averages. Certain mathematical aspects of this 
concept are examined in Subsections 2.5 and 2.6. 

In addition to the above alternatives, there is considerable literature on the 
engineering approach to estimating material stiffness and strength, mainly 
focused on engineering composites. Much of the material covered in this book 
can and does serve as a fundamental framework for other, more application- 
oriented techniques.2  There are journals and proceedings of national and inter-
national conferences on composite materials, which cover a broad spectrum of 
approaches of this kind; see, as illustration, Vinson and Sierakowski (1986), 
Wilde and Blain (1990), and the Delaware Composite Design Encyclopedia 
volume 1-6 edited by Carlsson and Gillespie (1989-90). As an entry to the vast 
literature of the mechanics-related materials aspect of micromechanics, particu-
larly relating to the properties of ceramics and ceramic composites, the follow-
ing general references are mentioned: Khachaturyan (1983), Pask and Evans 
(1987), Rühle et al. (1990), Mazdiyasni (1990), and Suresh (1991). 

An approach of recent origin, akin to phenomenological plasticity, is dam-
age mechanics, with an already rather extensive series of contributions. For 
general reference, see, e.g., Talreja (1985), a comprehensive review by Krajci-
novic (1989), and a symposium proceedings edited by Ju (1992). 

2 See, e.g., Aboudi (1990) for the application of a finite-element method to a solid with period-
ic microstructure. 
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1.3. DESCRIPTION OF RYE 

In micromechanics the concept of an RVE is used to estimate the contin-
uum properties at a continuum material point, in terms of the microstructure and 
microconstituents that comprise that material point and its infinitesimal material 
neighborhood, i.e., to obtain the continuum constitutive properties in terms of 
the properties and structure of the microconstituents. These constitutive proper-
ties, often expressed as constitutive relations, are then used in the balance equa-
tions to calculate the overall response of the continuum mass to applied loads 
and prescribed boundary data. The balance equations include the equations of 
the conservation of mass, linear and angular momenta, and energy. These equa-
tions contain the body forces representing the effect of the materials not in con-
tact with the considered continuum and the inertia forces due to the motion of 
the continuum itself, as well as the associated force and displacement boundary 
data which represent the effect of the other continua in contact with the con-
sidered continuum. Therefore, in formulating boundary-value problems associ-
ated with an RVE, it is not necessary to include the body forces. Nor is it neces- 
sary to include the inertia terms for a broad range of problems3. The basic 
requirement is to obtain the overall average properties of the RVE, when sub-
jected to the boundary data corresponding to the uniform fields in the continuum 
infinitesimal material neighborhood which the RVE is aimed to represent. In 
other words, an RVE may be viewed as a heterogeneous medium under 
prescribed boundary data which correspond to the uniform local continuum 
fields. The aim then is to calculate its overall response parameters, and use 
these to describe the local properties of the continuum material element. 

Since the microstructure of the material, in general, changes in the course 
of deformation, the overall properties of its RVE also, in general, change. 
Hence, an incremental formulation is often necessary. For certain problems in 
elasticity, however, this may not be necessary, and a formulation in terms of the 
total stresses and strains may suffice. 

Consider an RVE with volume V bounded by a regular surface aV. A typ-
ical point in V is identified by its position vector, x, with components, x; (i = 1, 
2, 3), relative to a fixed rectangular Cartesian coordinate system. The unit base 
vectors of this coordinate system are denoted by e; (i = 1, 2, 3), and the position 
vector x is given by 

c C1 e1, (1.3.1) 

where repeated subscripts are summed. For the purpose of micromechanical 
calculations, the RVE is regarded as a heterogeneous continuum with spatially 
variable, but known, constitutive properties. In many cases, the objective then 
is to estimate the overall (average), say, strain increment, as a function of the 
corresponding prescribed incremental surface forces or, conversely, the average 
stress increment, as a function of the prescribed incremental surface 

3 An example in which the inertia forces are of prime importance is the description of the gas 
laws in terms of the corresponding molecular motion. Another example is the description of the heat 
capacity of solids in terms of atomic vibrations. 
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displacements. For uniform macrofields, the prescribed incremental surface trac-
tions may be taken as spatially uniform, or, in the converse case, the prescribed 
incremental surface displacements may be assumed as spatially linear. 

Under the prescribed surface data, the RVE must be in equilibrium and its 
overall deformation compatible. In constitutive modeling, body forces and iner-
tia terms are absent. The prescribed surface tractions must hence be self-
equilibrating. In the same manner, the prescribed surface displacements must be 
self-compatible so that they do not include rigid-body translations or rotations. 
Moreover, if the prescribed surface displacements are associated with a strain 
field, this field must be compatible. These conditions are assumed to hold 
throughout this chapter and elsewhere in this book, whenever we deal with an 
RVE with prescribed boundary data. 

Whether boundary displacements or boundary tractions are regarded as 
prescribed, a viable micromechanical approach should produce equivalent 
overall constitutive parameters for the corresponding macro-element. For 
example, if the instantaneous overall moduli and compliances are being calcu-
lated, then the resulting instantaneous modulus tensor obtained for the 
prescribed incremental surface displacements should be the inverse of the 
instantaneous compliance tensor obtained for the prescribed incremental surface 
tractions on the RVE. 

The displacement, u = u(x), strain, e = e(x), and stress, s = s(x), fields 
within volume V of the RVE, vary from point to point, even if the boundary 
tractions are uniform or the boundary displacements are linear. The governing 
field equations at a typical point x in V, include the balance of linear and angu- 
lar momenta,4 

V.s=0, s= sr in V, (1.3.2a,b) 

and the strain-displacement relation, 

e = 2 {V® u+(V® u)T} in V, (1.3.3a) 

where V is the del operator defined by 

V =_ a;e, = ax, 
e;, (1.3.4) 

and superscript T denotes transpose; see Part 2, especially Section 15 of this 
book, for additional discussion and comments. In rectangular Cartesian com-
ponent form, (1.3.2) and (1.3.3) become 

s~ w =0, s3=ss, inV, (1.3.2c,d) 

and 

e;j =- -(u1,j + u 1) in V, (1.3.3b) 

   

4 Here the stress and deformation fields are assumed to be continuous. Interfaces and discon-
tinuities are considered in Subsection 2.4. 
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where i, j = 1, 2, 3, and a comma followed by an index denotes partial differen-
tiation with respect to the corresponding coordinate variable. 

When the self-equilibrating tractions (not necessarily uniform), t°, are 
assumed prescribed on the boundary aV of the RVE, as shown in Figure 1.3. la, 
then 

n.s = t° on aV, (1.3.5a) 

or 

s~; n~ = t° on aV, (1.3.5b) 

where v is the outer unit normal vector of aV. On the other hand, when the dis-
placements (not necessarily linear), u°, are assumed prescribed on the boundary 
of the RVE, as shown in Figure 1.3.1b, it follows that 

u=u° onaV, (1.3.6a) 

or 

ui =u° m al. (1 .3.~b) 

(a) Traction boundary (b) Displacement boundary 
conditions conditions 

Figure 1.3.1 

For the incremental formulation it is necessary to consider a rate problem, 
where traction rates f°, or velocity 11°, but not both, as discussed above, may be 
regarded as prescribed on the boundary of the RYE. Here the rates may be 
measured in terms of a monotone increasing parameter, since no inertia effects 
are included. For a rate-dependent material response, however, the actual time 
must be used. The basic field equations are obtained from (1.3.2--6) by substi-
tuting the corresponding rate quantities, e.g., ~~ for s, ~~ for e, and u for u, arriv-
ing at 
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V.~~ = 0, ~~ = ~T in V, (1.3.7a,b) 

and 

~~ = 2 {V® ~+(V® u)T} in V. (1.3.8) 

When the self-equilibrating boundary traction rates, t°, are prescribed, 

n.~~ =t° on aV, (1.3.9) 

and when the self-compatible boundary velocities, ~j°, are prescribed, 

~j =ii°  oval. (1.3.10) 

For the most part, this book focuses on the mechanical properties of 
heterogeneous media. However, essentially all of the results can be reduced and 
directly applied to the nonmechanical properties of microscopically heterogene-
ous materials. This will be pointed out at appropriate places throughout Part 1, 
providing guidance for this kind of application. 

As an illustration, consider thermal conduction problems, and let u = u(x) 
be the temperature. With q = q(x) defining the corresponding heat flux, in the 
absence of any heat sources the steady-state regime corresponds to 

V.q = 0 in V. (1.3.11a) 

The boundary conditions may be expressed, either in terms of the normal com-
ponent of the flux, 

n.q = q° on al, (1.3.12a) 

or in terms of the temperature field, 

u = u° on al. (1.3.13) 

In component form, (1.3. l la) and (1.3.12a), respectively, become 

q ; =0 inV, (1.3.11b) 

v; q; = q°  on al. (1.3.12b) 

Note from (1.3.1 la) that the boundary flux q° must be self-balanced in the sense 
that 

or 

JvV.qdV=J
av q°dS =0. 

For future use, define p = p(x) by 

p=—Vu in V, 

p;=—u,;  inV. 

(1.3.12c) 

(1.3.14a) 

(1.3.14b) 

The negative of the temperature gradient, p, may be viewed as the force which 
drives the heat flux, q. In the terminology of irreversible thermodynamics, at 
least for convenience, p may be called the force conjugate to the flux q. Finally, 
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for an incremental formulation, the rate quantities, namely, ~, q, and p, are used. 

In the context of estimating the overall material parameters of an RVE, 
the steady-state thermal, diffusional, electrical, and magnetic field equations are 
quite similar. For example, u may be identified with the electric potential (usu-
ally denoted by f), p with the electric field (usually denoted by E), and q with 
the electric displacement (usually denoted by D). The relation to mass diffusion 
is obvious. For magnetostatics, q is identified with the magnetic induction (usu-
ally denoted by B) and p with the magnetic field intensity (usually denoted by 
H). 
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SECTION 2 AVERAGING METHODS 

Fundamental averaging theorems necessary to extract the overall quanti-
ties are presented in this section. Many of the results apply to heterogeneous 
solids with constituents of arbitrary material properties, linear or nonlinear, 
rate-dependent or rate-independent. Then attention is focused on heterogeneous 
solids whose constituents admit stress and/or strain potentials. Relations 
between macropotentials and corresponding micropotentials are examined in 
some detail for various boundary conditions. A number of bounding theorems 
are developed, which provide ordering for the overall stress and strain potentials 
when uniform tractions, linear displacements, or general (mixed, but consistent) 
boundary data for an RYE are considered. In light of these basic results, the 
notions of statistical homogeneity and representative volume element are re-
examined and precise conditions implied by, and implying, statistical homo-
geneity are studied in detail. This section, therefore, lays the theoretical founda-
tion for many of the results developed in subsequent sections. 

2.1. AVERAGE STRESS AND STRESS RATE 

Whether the prescribed self-equilibrating boundary tractions on aV are 
spatially uniform or not, the unweighted volume average of the variable stress 
field s(x), taken over the volume V of the RVE, is completely defined in terms 
of the prescribed boundary tractions. To show this, denote the volume average 
of a typical, spatially variable, integrable quantity, T(x), by 

< T>= 
V 

Jv T(x)dl. (2.1.1) 

Then the unweighted volume average stress, denoted by d, is 

d-< s >. (2.1.2) 

The gradient of x satisfies 

(V ® c)T = a; x; e; ®e = x;,~ e; ®ej = d;, e; ®ej = 1(
2
), (2.1.3) 

where d;, is the Kronecker delta (d;) = 1 when i = j, and = O otherwise), and 1(2) 
is the second-order unit tensor. From equations of equilibrium (1.3.2), and since 
the stress tensor is divergence-free, 

s = 1(
2
).s = (V® c)T.s = {V.(sâc)}T. (2.1.4) 

By means of the Gauss theorem, the average stress d is expressed as 
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< s > = ~ Jv {V.(sâc)}T dl = TJav {n.(sâc)}T dS, 

and in view of (1.3.5a), 

s 

 

= V Jan x®t° dS, 

or 

d= V Jav x; tja dS. 

(2.1.5) 

(2.1.6a) 

(2.1.~b) 

It should be noted that since the prescribed surface tractions, t°, are self-
equilibrating, their resultant total force and total moment about a fixed point 
vanish, i.e., 

JL1
t°ds=0, fav xxtldS = 0, (2.1.7a,b) 

or 

Javtj dS = 0, Ia eyk Xi tk° dS = 0, (2.1.7c,d) 

where e;~k is the permutation symbol of the third order; e;Jk = (+ 1, —1, 0) when 
i, j, k form (even, odd, no) permutation of 1, 2, 3. Hence, the average stress s 
defined by (2.1.6) is symmetric and independent of the origin of the coordinate 
system. Indeed, from (2.1.7c), 

J
ay x®'° dS = Jay t°®x dS, (2.1.7e) 

and, hence, dT = ~. Also, for any constant vector c°, 

Jan (x — x°) ®t° dS = Jan x ®t° dS. (2.1.71) 

Therefore, the average stress defined by (2.1.6) is meaningful only if the 
prescribed surface tractions are self-equilibrating. 

For the rate problem, the traction rates t° are prescribed, (1.3.9), produc-
ing a stress rate ~~ = ~(x) in accord with equilibrium conditions (1.3.7a,b). The 
traction rates ~° must be self-equilibrating so that (2.1.7a—d) written for t°, are 
satisfied. The average stress rate is then given in terms of the prescribed boun-
dary traction rates by 

s -<s >= V Jan câ't°dS, 

or 

>= V Jav x;ii dS. 

Hence, 

<s>= 
dt 

<s> =s. 

(2.1.8a) 

(2.1.8b) 

(2.1.9) 

It is noted in passing that only for small-deformation theories does the average 
of the Cauchy stress rate equal the rate of the average Cauchy stress. For finite 



or 

and 

or 

§ 2.1 AVERAGING METHODS 29 

deformations, in general, this is not valid; see Hill (1972), Havner (1982), 
Nemat-Nasser (1983), and Iwakuma and Nemat-Nasser (1984). 

2.2. AVERAGE STRAIN AND STRAIN RATE 

Whether the prescribed boundary displacements on aV are spatially linear 
or not, the unweighted volume average of the variable displacement gradient 
V nu, taken over volume V of the RYE, is completely defined in terms of the 
prescribed boundary displacements. From the Gauss theorem, and in view of 
the boundary conditions (1.3.6a), 

II VâudV = Jan
nâudS = Jan vâu°dS. (2.2.1) 

Thus, the average displacement gradient for the RYE is 

Vâu-<V® u>= 
V 

JaI vâu°dS, 

or 

(2.2.2a) 

• <u~i>— VJavviujo dS. (2.2.2b) 

Since the strain e is the symmetric part of the displacement gradient, (1 .3.3a), 
and the infinitesimal rotation w is the corresponding antisymmetric part, 

w= 2 {V® u —(V® u)T}, (2.2.3a) 

or 

wy = 2 (u~,; — u), (2.2.3b) 

the average strain, denoted by s, and the average rotation, denoted by ~, are, 
respectively, given in terms of the boundary displacements by 

e <e > = VJa'u 2(nâu°+u°® n) dS, (2.2.4a) 

sib - < e;J > = Jav 
1 1 (vi uj0 + u; nj) dS, (2.2.4b) V 2 

úiR _ < w > = V Jan 2 
(n âu° — u° ® n) dS, (2.2.5a) 

• <wii>= VJw 
2(niuj0 —u;v j) dS. (2.2.5b) 
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As mentioned before, the prescribed surface displacements are assumed to 
be self-compatible in the sense that they do not include a rigid-body translation 
or rotation of the RVE. Note, however, that the average strain e defined by 
(2.2.4), is unchanged even if a rigid-body translation or rotation is added to the 
surface data. At a typical point x in the RVE, a rigid translation 

Ur 
and a rigid-

body rotation associated with an antisymmetric, constant, infinitesimal rotation 
tensor cur, produce an additional displacement given by ur+ c.wr. The 
corresponding additional average displacement gradient then is 

<V®(ur+x.wr)>= {V fav" dS}®uT+ { V favv®xdS}.wr. 

(2.2.6a) 

Making use of the Gauss theorem, it follows that 

Vfav
vdS= 

V 
fay1.1(2)dS= 

V 
fv1 .1(2)dV=O, 

Vfavv
®xdS= 

V 

fvV®xdV= 

V 
fv1(2)dV= 1(2). 

Hence, 

< 1®(u±x.w) > = (Dr 

(2.2.6b,c) 

(2.2.6d) 

which does not affect e. Therefore, whether or not the prescribed surface dis-
placements u° include rigid-body translation or rotation, is of no significance in 
estimating the relations between the average stresses and strains or their incre-
ments. For simplicity, however, it will be assumed that the prescribed boundary 
displacements are self-compatible. 

In general, the average displacement, denoted by ú, cannot be expressed 
in terms of the surface data. For example, in view of the identity 1(2) = V ®x, the 
displacement field may be written as 

u = u.(V® c) = V.(uâc)—(V. u)c. (2.2.7) 

Therefore, the volume average of the displacement field, ú, is given by 

ú=<u>= 4
-fa n.(uâc) dS—  V f (1.u)x dl, (2.2.8a) 

or 

u'—<u i > = Vf anniujo xidS— Vf v u~,i xidV (2.2.8b) 

which includes the volumetric strain. For incompressible materials, however, 
the displacement field is divergence-free, 

V.u = 0 m l, (2.2.9) 

and the average displacement, ú, can be expressed in terms of the prescribed 
surface displacements, u°, by 

° = V f av
v.(u°®x) dS, (2.2.10a) 

or 
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u' - Vfavviuj0 xidS. (2.2. l Ob) 

For the incremental formulation, the velocity field on the boundary aV of 
the RVE is prescribed, (1.3.10). All the above relations hold for the rate fields, 
if u is replaced by ii, e by ~, and w by ~. In particular, the average velocity 
gradient becomes 

(2.2.11) 

from which the average strain rate and the average rotation rate are obtained, as 
follows: 

e =_< ~ >= 4 J~1 Z(n®~°+~°® n) dS, 

__ < ~~ > =  f - (n ®~° — ~° ân) dS, (2.2.12a,b) 

or 

= ~Jan niuG + »i)dS, 

i — <  > = 4f', fv 2 (vi ~ij0 — ~I° nj) dS. (2.2.12c,d) 

It is seen that, for the small deformations considered here, the average strain 
rate equals the rate of change of the average strain, 

e =< ~ >= dt <e> -~, (2.2.13a) 

and, similarly, the average rotation rate equals the rate of change of the average 
rotation, 

w =<~>= 
dt 

<w> -~. (2.2.13b) 

From (2.2.13a,b), or by direct use of (2.2.2) and (2.2.11), it follows that 

< V ® ii > = 4 < V ®u > = V ®u. (2.2.13c) 

2.3. AVERAGE RATE OF STRESS-WORK 

Whether or not the deformation is small, or whether or not the effects of 
inertia and body forces are included, the balance of energy leads to the follow-
ing local equation for the rate of change of the internal energy density e: 

p + V.q = s: ~~ + ph ml, (2.3.1) 

where p 
is the (current) mass-density, q is the heat flux vector, and h is the heat 
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supplied through radiation or other energy source fields. In (2.3.1), s : ~~ is the 
rate of stress-work per unit volume. 

For the moment, consider elastic materials, and let f = 4 (e, Q) be the 
Helmholtz free energy per unit volume, where Q is the temperature. The stress, 
s, and entropy, h, are given by1 

s= á , h =— ao . (2.3.2a,b) 

At constant temperature (isothermal change), 

= s : ~, (2.3.2c) 

so that the rate of stress-work equals the rate of change of the Helmholtz free 
energy at constant temperature. It is often convenient to introduce the comple-
mentary energy function yi = Y(s, 0) such that 

f(e, q) + Y(s, 8) = s : e, (2.3.3a) 

and obtain 

= aw h _ ani  
as ' — aq (2.3.3b,c) 

In general, the material constituents of an RVE need not be elastic. For 
example, rate-independent and rate-dependent elastic-plastic models may have 
to be used to describe certain classes of materials. Whatever the specific consti-
tutive properties of the material within an RVE may be, it is of interest to calcu-
late the average rate of stress-work and to explore conditions under which 
<s:1> equals< s>:< ~ >. 

To this end it is observed that, in view of (1.3.2a,b), 

s:~ =s:(~+w)=s:(V® u)= V.(s.u) — (V.s).u= V.(s.u). 
(2.3.4a) 

Hence, 

<s:~ >= 
V 

Jav t.~ dS, (2.3.4b) 

where t (= n.s) are the surface tractions on ai. Since ~~ is unchanged by the 
addition of rigid-body motions, such motions do not affect < s : ~~ >. 

Now the difference between < s : ~~ > and < s > : < ~~ > is expressed in 
terms of the boundary data by (Hill, 1963, 1967; and Mandel, 1980) 

<s:~ >—< s>:< ~ > 

= V 1an {~ — a .< V®~~ >}.{n.(s —< s >)} dS. (2.3.5) 

   

1 In the present context, f(e, Q) is interpreted as f(eü, q) _ f(ei i, e22, ..., q) and 
d~ 

is inter- 

preted as 
~xR e;®ei. Similar notation is used throughout this book. 
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The proof is straightforward: set t = n.s on aV and compute the integrand in 
the right-hand side of (2.3.5) to obtain 

( u — c.< o® ii >}.{n.(s —< s >)} 

= u.t—u.(v.< s >) —( c.< o® ~~ >).t+(c.< o® i >).(n.< s >) 

= ~i.t— (nâ~) : <O >—(x®t): < Nâi> 

+(x® n) : (< 0â~i >.< s J), (2.3.6a) 

or in component form, 

{U;—x j < UJ >}{Vk(sk;—< ski >)} = Uit;—V;Uj< sij >—xitj< Uj,; > 

+ c; n~ < 11k,i >< sjk >. (2.3.6b) 

Integrate (2.3.6a) over aV to obtain 

V J an V J an V J an 

+{ 
V Ian

cândS}:(<V®~ >.<s>T) 

= < s: ~~ > — < ~~ >: <O > — <S>:< ~~ >± 1():(< Inh >.< s >T) 

(2.3.6c) 

where the following is used: 

1(2):(<0âu>.<s>T)=<0â~>:<s>=< ~ >:<s>. (2.3.6d) 

Whatever the material properties, and whether or not the prescribed boun-
dary data of the RYE are uniform, identity (2.3.5) is valid in the context of the 
small-deformation theory. For special boundary data, the right-hand side of 
(2.3.5) may vanish, and then the average rate of stress-work equals the rate of 
work of the average stress. Two such boundary data of particular importance in 
micromechanics are considered below. 

2.3.1. Uniform Boundary Tractions 

When the prescribed boundary tractions for an RYE are uniform, they can 
be expressed in terms of a constant symmetric second-order tensor, s° , as 

t° = n.s°, or t° = V~ sj?. (2.3.7a,b) 

In view of identity (2.2.6c), the average stress from (2.1.6) becomes 

s=<s>= (2.3.8) 
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Then n.(s — < s >) is zero on N. Substitution into (2.3.5) yields 

<s:~ >= <s>:< ~ >_U:~~ =s° :~ . (2.3.9) 

2.3.2. Linear Boundary Velocities 

When the prescribed velocities on the boundary of an RVE are spatially 
linear, they can be represented in terms of a constant second-order tensor which 
may be split into a symmetric part, denoted by ~°, and an antisymmetric part, 
denoted by w°. The velocity of a typical point x on aV is given by 

4° = x.(~°+ o°). (2.3.10) 

In view of identity (2.2.6c), the average velocity gradient becomes 

<V® u>={ 
V 

Jav i®xdS}.( ~°+w°)= ~°+w°. (2.3.11a) 

Then u — x.< V ® ~i > is zero on aV. Hence, 

> = ~O <w > = wo (2.3.IIb,c) 

and substitution into (2.3.5) yields 

<s:~ >=<s>:< ~ >=43:~~ = : ~0 (2.3.12) 

2.3.3. Other Useful Identities 

The identity (2.3.5) remains valid if s is replaced by ~, and ~~ is replaced 
by e, provided that the variable stress rate, ~, is self-equilibrating; 1. ~~ = O and 
~r = is in V. Then 

<~ :e> —< ~~ >: < e> 

(2.3.13) 

as can be verified by direct computation, in line with (2.3.6). Therefore, when 
the boundary conditions on aV are given by the uniform traction rates, i.e., 
to = n.~° (with constant 6°), or by the linear displacements, i.e., u = x.e° 
(with constant e°), then 

(2.3.14) 

Similarly, in terms of s and e, 

— V Jav {u—x.< V® u >}.{n.(s —< s >)} dS. (2.3.15) 

Hence, for either uniform boundary tractions or linear boundary displacements, 
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<s:e >=<s>:<e>. (2.3.16) 

It is important to note that identity (2.3.5) is valid whether or not the self-
equilibrating stress field s is related to the self-compatible strain-rate field ~. 
Similar comments apply to s and e, as well as to s and e; (2.3.13) and (2.3.15). 
It is also important to note that all results in Subsections 2.1, 2.2, and 2.3, except 
for expressions (2.3.2) and (2.3.3), are valid for materials of any constitutive 
properties, since only equilibrium and compatibility are required. With proper 
interpretation, most of these results also apply to finite deformations; Hill 
(1972), Havner (1982), and Nemat-Nasser (1983). 

2.3.4. Virtual Work Principle 

A stress field, s = s(x), which satisfies equilibrium conditions (1.3.2a,b) 
in V, and the stress-boundary conditions (1.3.5) on any part of ai where the 
tractions are prescribed, is called statically admissible. A displacement field 
u = u(x) which is suitably smooth, so that it yields a suitable strain field through 
(1.3.3), and satisfies all prescribed displacement boundary conditions, is called 
kinematically admissible. If u = u(x) is kinematically admissible, then any vari-
ation du = du(c) in this field, which produces a smooth kinematically admissible 
displacement field u + du must be such that du = O on any part of ai where u is 
prescribed. Setting de = { V âdu + (V ® du)T}/2, and using an analysis similar to 
(2.3.4), it follows that 

< s : de > — 
V f an t° . du dS = 0, (2.3.17) 

where t° = n .s denotes the boundary tractions. This is the statement of the vir-
tual work principle, valid for any statically admissible stress field s and any 
unrelated or related virtual or real kinematically admissible variation Su of the 
displacement field; see Subsection 19.2 of Part 2. 

2.4. INTERFACES AND DISCONTINUITIES 

In general, the overall properties of an RVE are strongly affected by the 
structure, chemical composition, strength, and other relevant attributes of the 
interfaces among its individual microconstituents. For example, both the 
strength and toughness of fiber-reinforced ceramics are directly related to the 
nature of the interface bonding between the fiber and the matrix. Extensive 
debonding often deflects cracks, consumes mechanical energy, and leads to 
greater toughness. Such debonding can be modeled as displacement discon-
tinuities whose effects must be included in the overall response of the RVE. 
Similarly, intergranular and transgranular microcracks can be treated as dis-
placement discontinuities, and must be included in estimating the overall defor-
mation and its increments. In this section the effects of the discontinuities within 
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an RVE on the overall quantities are examined, without reference to the specific 
physical nature of such discontinuities. 

Let S be the collection of all surfaces within an RVE, across which certain 
field quantities may suffer jump discontinuities; see Figure 2.4.1. S includes 
three types of surfaces: (1) a closed surface, totally within the volume V of the 
RVE, which separates materials of the RVE into those inside of S and those out-
side of S; (2) an isolated surface bounded by a curve S, totally within the 
volume V; and (3) the discontinuity surface S which intersects the boundary ai 
of the RVE. In all three cases, S is regarded piecewise continuous, with piece-
wise continuously turning tangent planes. Examples are: (1) a debonded inclu-
sion within V, across which tangential displacements may be discontinuous; (2) 
an interior penny-shaped crack, across which the tangential component of the 
displacement and also the normal component (only for the opening mode) may 
be discontinuous; and (3) cracks intersecting the boundary N. A crack may be 
viewed as a cavity with one dimension which is infinitesimally small. For such 
a cavity, one can consider an inside and an outside part. In this manner, the 
volume V is divided by the collection of all discontinuity surfaces, S, into two 
parts, V and V +. Let the unit normal n point from V toward 1±, and for 
simplicity, set 

av- = s- = s,  aV+ = av+s+, (2.4.1) 

where n now is the exterior unit normal on S-, the exterior unit normal on S+ 
being — n. Whether V + and v are simply or multiply connected regions, the 
discontinuity surface S can be defined in the above manner. Denote the jump in 
a typical field quantity, T, across S by DT. The stress, displacement, and strain 
jumps at a typical point on S are defined, respectively, by 

Ds(x)  lim s(x+)— lim s(x ), 

Figure 2.4.1 

Discontinuity surfaces 
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Du(x) ° l rn 
u(x + ) — z m u(c-), 

De(x) = u
m 

e(x+) — him e(x-), (2.4.2a--c) 

where x+ and x are points in V + and 1-, respectively. 

In general, if the material properties change abruptly across S. jumps Ds 
and De in the stress and strain fields occur to compensate for the material 
mismatch across the interface. However, even when Ds is nonzero, the jump in 
the tractions, defined by 

Dt(x) - n.As(x), (2.4.2d) 

must vanish to ensure equilibrium. On the other hand, the displacement jump 
Du may not vanish when the bonding across the interface is imperfect. The 
jump Du can be decomposed into an opening gap, Du„, and a sliding gap, Dus, 
as follows: 

Du„ - (n.Au) n, Dus - Du — Du„, (2.4.3a,b) 

where only nonnegative n.Au is admitted, since the interpenetration of micro-
constituents must be excluded on physical grounds. 

The stress field s is regarded continuous and smooth in V + and 1-.  The 
average stress, &, may be calculated by applying the Gauss theorem to V + and 
V - separately, arriving at 

s 
V 

{J
v 

s dV+J
v 

s dV} 

= 1{f x+®t dS+J x-®tdS} V w w 

= V {Jan câtdS—Js xâDtdS}, (2.4.4) 

where (2.4.1) is used; the integral on S, in general, vanishes since the tractions 
are continuous there. In a similar manner, the average strain, ~, can be calcu-
lated as 

s= V {Jv e dV+Jv e dV} 

= V{ Jan 
2 
(nâu+uân) dS+ 

v- 2 
(nâu+u ân) dS} 

= 1 { J
n 

1 

(nâu+uân) dS—
Js 1 (hâDu+Duâh) dS}. 

V a 2 2 
(2.4.5) 

It should be noted that if a microconstituent translates or rotates as a rigid body, 
the corresponding displacement jump can be expressed in terms of constant ur 
and constant wr, as 

Du = ur +x.wr  on S. (2.4.6) 
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In this case, the integral on S vanishes, and (2.4.5) reduces to (2.2.4). 

In a similar manner, the effect of the discontinuity on the average rate of 
stress-work is examined. For continuous tractions across the discontinuity sur-
face S, it follows that 

<s:~ >= 1 {f s:~ dV+f s:~ d7} 
V n· v 

=  {f t.~dS+f t.udS} 
V avt an- 

= {fa t.~ dS—f s t.D1 dS}, (2.4.7) 

where Du is the velocity jump across S, defined by 

D~i(x) - lim i(x+)- lim u(x-). (2.4.2e) 

The integral on S in (2.4.7) is the rate of work of the interface tractions due to 
the relative interfacial motion. In particular, if the velocity components are con-
tinuous across S, (2.4.7) reduces to (2.3.4b). Again, if the velocity jump u is 
given by 

Mi `+ x.~r on S, (2.4.8) 

with constant 
~i and ~`, then the integral of t.Au on S vanishes. It is seen that 

the discontinuity in the field quantities does not influence the average stress, 
strain, strain rate, and the rate of stress-work, if the tractions, the displacements, 
and the velocity fields are continuous in V. 

2.5. POTENTIAL FUNCTION FOR MACRO-ELEMENTS 

As pointed out before, an RVE represents the microstructure of a macro-
element in a continuum mass. The stress and strain fields and their rates are, in 
general, functions of the position of the macro-elements within the continuum. 
Denote the position of a typical continuum macro-element by C, and the stress 
and strain fields of the continuum by S and E, respectively. These fields, in gen-
eral, are functions of C and time t, S = S(C, t) and E _ E(X, t). To distinguish 
these fields from the stress and strain fields within an RVE which represents the 
microstructure of a typical continuum material neighborhood, the continuum 
stress and strain fields are referred to as macrostress and macrostrain fields, and 
those of an RVE as microstress and microstrain fields, respectively. That is, 
instead of, for example, "the stress field within the continuum" or "the stress 
field within the RVE which corresponds to the material neighborhood of particle 
C", the expressions macrostress field and microstress field are used. In a simi-
lar manner, the continuum displacement, mass-density, temperature, and other 
physical quantities are identified by an appropriate use of the prefix "macro", 
and those of an RVE by the prefix "micro". 
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The macrofields must satisfy the continuum balance equations summar-
ized in Part 2 of this book. In particular, the equations of motion are 

V.O±F=RU, (2.5.1) 

where V = e; aiac;, and F, R, and U = U(C) are the macroscopic body force, 
mass density, and macrodisplacement fields, respectively, and superposed dot 
denotes time differentiation. Moreover, the macrostrain-macrodisplacement 
relation is 

E = 2 {V®U+(V®U) T}. (2.5.2) 

In general, at a typical point C in the continuum, at a fixed instant t, the 
values of the macrostress and macrostrain tensors, S and E, can be determined 
by the average microstress and microstrain, s and ~, over the RVE which 
represents the corresponding macro-element. In micromechanics it is assumed 
that S and E are equal to s and e, 

= s, E = s. (2.5.3a,b) 

Conversely, the macrostress and macrostrain tensors, S and E, provide the uni-
form traction or linear displacement boundary data for the RIB. Hence, when 
the traction boundary data for the RIB are prescribed, 

t° = n.S m a  l, (2.5.4a) 

and when the displacements are assumed to be prescribed on ai of the RVE, 

u° = x.E on J1. (2.5.4b) 

Furthermore, when thermal effects are also of interest, the value of the macro-
temperature, O, at the considered macro-element must equal the average micro-
temperature Q over the RVE, 

O = q - < Q >. (2.5.5) 

In general, the response of the macro-element characterized by, for exam-
ple, relations among macrostress S, macrostrain E, and macrotemperature O, 
will be inelastic and history-dependent, even if the microconstituents of the 
corresponding RVE are elastic. This is because, in the course of deformation, 
flaws, microcracks, cavities, and other microdefects develop within the RVE, 
and the microstructure of the RVE changes with changes of the overall applied 
loads. Therefore, the stress-strain relations for the macro-elements must, in gen-
eral, include additional parameters which describe the current microstructure of 
the corresponding RVE. This section focuses on a broad class of materials 
whose microconstituents are elastic (linear or nonlinear) and, therefore, the ine-
lastic response of their macro-elements stems from the generation and evolution 
of defects and hence from microstructural changes. 

For a typical macro-element, denote the current state of its microstructure, 
collectively, by S, which may stand for a set of parameters, scalar or possibly 
tensorial, that completely defines the microstructure. For example, if the micro-
defects are penny-shaped cracks, S will stand for the sizes, orientations, and 
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distribution of these cracks. The matrix material is elastic, and the inelasticity is 
produced by the growth of the cracks. If there is no change in the microstruc-
ture, e.g., no crack growth, the response of the macro-element will be elastic. 
Hence, a Helmholtz free energy, 

F = F(E, O; S), (2.5.6a) 

exists, which at constant S. yields 

(2.5.6~,c) 

where H is the macro-entropy. Then a macrostrain potential, 

Y = 41(1, O; S), (2.5.7a) 

is introduced through the Legendre transformation 

F + 0= S : E, (2.5.7b) 

with the result that, at constant S, 

E a~~ H 
ao (2.5.7c,d) 

The aim is to express the macropotential functions F and Y in terms of the 
volume averages of the microstress and microstrain potentials of the microcon-
stituents. 

Since the material within the RVE is assumed to be elastic, it admits a 
stress potential, f _ f(x, e, 8), and a strain potential, hi = yt(c, s, Q), such that 
(2.3.2) and (2.3.3) hold. Consider the cases of the prescribed boundary tractions 
and the prescribed boundary displacements for the RVE separately, as follows, 
assuming a uniform constant temperature and a fixed microstructure for the 
RVE; hence, the dependence on Q and S will not be displayed explicitly. 

2.5.1. Stress Potential 

For prescribed constant macrostrain E, the variable microstrain and 
microstress fields in the RVE are 

e = e(x; E), s = s(x; E), (2.5.8a,b) 

where the argument E emphasizes that the displacement boundary data are 
prescribed through the macrostrain E. Hence E = < e(x; E) >. The correspond-
ing microstress potential then becomes 

= F(x, 0(x; E)) = $E(x; E); (2.5.9) 

the superscript E on f emphasizes the fact that the microstress potential is asso-
ciated with the prescribed macrostrain E. 

Consider now an infinitesimally small variation dE in the macrostrain, 
which produces a variation in the microstrain field given by 
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de(c; E) = dE;i  (x; E). 

Then, 

< s : de > _ < ( ~e (x, e)) : (dE1; ~E (c; E)) > 
~ 

<fe>):dE. 

It now follows that 

< s(c; E) > = ai 
< fe >. 

(2.5. h a) 

(2.5.1Ob) 

(2.5.11) 

Therefore define the macrostress potential by 

= FE(E) - < fE > - 4J v Y~(x; E) dV, (2.5.12a) 

the corresponding macrostress (as before) by 

SE - < s(x; E) >, (2.5.12b) 

and conclude that (Hutchinson, 1987) 

SE =  
aE ' 

where the superscript E on S emphasizes that SE is the average stress produced 
by the constant macrostrain E. Note that the integral in (2.5.12a) depends on 
the current microstructure and hence on S. For example, FE = 0 in cavities and 
cracks. As cavities and cracks grow, local strains (microstrains) change. 
Hence, FE = < ~~ > changes. This is expressed by writing 

~1 

 

= FE(E, O; S) (2.5.12d) 

which also includes the macrotemperature. 

2.5.2. Strain Potential 

With macrotemperature O and microstructure S fixed, let the RIE be sub-
jected to uniform boundary tractions defined through a constant macrostress S. 
The microstrain and microstress fields may be expressed as 

e = e(c; S), s = s(x; S), (2.5.13a,b) 

where the argument S emphasizes the fact that a traction boundary-value prob-
lem with constant macrostress S is being considered. The microstrain potential 
then becomes 

(2.5.12c) 

hi = (x, s(x; S)) = Ys(a; S). (2.5.14) 

For an arbitrary change ds in the macrostress, 
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ds(c; S) = dS;i  
aS~ 

(x; S), 

and, hence, 

<ds: e>=<(dS;~~ 
as

(x; S)):( (x, s))> 

=<dS:( 
~S (x; S))> 

= < Ys >):dS. 

Thus, it follows that 

< e(c; S) > = 
aS <0> 

(2.5. iSa) 

(2.5.15b) 

(2.5.16) 

Therefore define the macrostrain potential by 

'/ _ YS(S) _ < hjs > = V f v ‚jS(x; S) dV, (2.5.17a) 

the corresponding macrostrain by 

EO < e(x; S) >, (2.5.17b) 

and obtain (Nemat-Nasser and Hon , 1990) 

EO _ aYS  
aS 

where the superscript S on E emphasizes that EO is the average strain produced 
by the prescribed macrostress S. Like the macrostress potential FE = 
FE(E, O; S), the macrostrain potential Y/ is also a function of the current 
macrotemperature O and microstructure S. This is expressed by 

41/ = YO(S, O; S). (2.5.17d) 

2.5.3. Relation between Macropotentials 

In the preceding subsection, the macrostrain potential is defined as the 
volume average of the microstrain potential 0O(x; S), when the macrostress S is 
prescribed. Then, with the corresponding macrostrain defined by 

EO = Es(S) - < e(x; S) >, (2.5.18a) 

it is concluded that 

Ys = 1/(1) _ < Ys(x; S) >,  EO — ä~ ( S). (2.5.18b,c) 

(2.5.17c) 

The notation in (2.5.18a) shows that EO is the macrostrain produced by the 
prescribed macrostress S. Define now a new macrostress potential function 
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Fs(Es) - S : EO — Ys(S), 
where, as usual, S is regarded as a function of EO through (2.5.18a). 

At the local level, on the other hand,  

= f(x, e(x; S)) = Ys(x; S), 

z 

 

(2.5.19a) 

= Y(x, 0(x; S)) = 0O(x; S), 

and hence 

fs + YO = s(x; S) : e(x; S). 

The volume average over V yields 

> + z 0O > = S: EO, 

and comparison with (2.5.19a) shows that 

FS_<YS>, E~= 
ä 

(S)4==S= 
S 

aES 
(ES). 

(2.5.20a,b) 

(2.5.20c) 

(2.5.21 a) 

(2.5.21b,c) 

In all these expressions, the superscript S shows that the corresponding quantity 
is obtained for the prescribed macrostress S. 

In a similar manner, when the macrostrain E is prescribed through linear 
boundary displacements, u = x.E on aV, 

SE _ < s(x; E) >, 

~E 

 

= FE(E) _ < fE(x; E) >, SE = aEE 
(e). (2.5.22a—c) 

Hence define a new macrostrain potential YE by 

YE 

 

= YE(sE) - SE : E — FE(E), (2.5.23) 

where, again, E is viewed as a function of SE. For the microquantities, further-
more, set 

OE = f(x, 
e(C; E)) = FE(x; E), 

E 

 

= Y(x, s(x; E)) = VE(x; E), (2.5.24a,b) 

and 

FE + 0E _ s(x; E) : e(x; E). (2.5.24c) 

The volume average over V yields 

<fE>+< YE>= SE:E, (2.5.25a) 

and comparison with (2.5.23) shows that 

aYE  E). 
aSE 

(2.5.25b,c) YE=<yE>, SE= aEE (E)~~E = 
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2.5.4. On Definition of RVE 

When the boundary tractions are given by 

t°= n.S on al, (2.5.26a) 

the microstress and microstrain fields are 

s = s(x; S), e _ e(x; S), (2.5.26b,c) 

and EO _ < e(x; S) > is the overall macrostrain. Suppose that the boundary dis-
placements are defined for this macrostrain by 

u° = x.EO  on aV, (2.5.27a) 

resulting in the microstress and microstrain fields, 

s = s(x; ES), e = e(x; ES). (2.5.27b,c) 

In general, these fields are not identical with (2.5.26b,c). Furthermore, while 
EO _ < e(x; EO) >, there is no a priori reason that < s(x; EO) > should be equal 
to S for an arbitrary heterogeneous elastic solid. 

The RVE is regarded as statistically representative of the macroresponse 
of the continuum material neighborhood, if and only if any arbitrary constant 
macrostress S produces through (2.5.26a) a macrostrain EO = < e(x; S) > such 
that when the displacement boundary conditions (2.5.27a) are imposed instead, 
then the macrostress, < s(x; EO) > = S, is obtained, where the equality is to hold 
to a given degree of accuracy. Conversely, when the macrostrain E produces 
microstress and microstrain fields, s = s(x; E) and e = e(x; E), then the RVE is 
regarded statistically representative if and only if the prescribed macrostress, 
SE = < s(x; E) >, leads to a microstrain field e(x; SE) such that < e(x; SE) > 
E. The relation between this definition of the RVE and an energy-based 
definition involving stress and strain potentials is discussed in Subsection 2.5.6, 
where several interesting inequalities are also developed. 

Based on the above definitions for an RVE, the macrostrain potential, 
Ys(S), given by (2.5.18b), and the macrostress potential, FE(E), given by 
(2.5.22b), correspond to each other in the sense that 

(S) = 
E É E 

(E) = S, (2.5.28x) 

in accordance with the Legendre transformation, 

41/(1) + FE(E) = S : E. (2.5.28b) 

It should be noted that s(x; S) ~ s(x; E) and e(x; S) ~ e(x; E), even for S and 
E which satisfy (2.5.28a). Moreover, in general, 

Ys(c; S) + fE(c; E) # s(x; S) : e(x; E). (2.5.28c) 

Similarly, the complementary macropotentials, Fs(EO) and YE(sE), are related 
through 

lRE~ (ES) _ 0E (SE) = ES, (2.5.29a) 
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Fs(E/) + YE(sE) = EO : SE, (2.5.29b) 

whereas the corresponding micropotentials do not satisfy a similar relation, i.e., 
in general, 

fs(c; EO) + 0E(c; SE) ~ s(x; E) : e(c; S). (2.5.29c) 

Table 2.5.1 provides a summary of the results presented in this subsection. Sub-
section 2.5.6 gives additional results on relations between the potentials. In 
Subsection 2.6 the notion of statistical homogeneity is discussed, and several 
important results on equivalence of the displacement and traction boundary con-
ditions are obtained. 

2.5.5. Linear Versus Nonlinear Response 

When the microstructure is fixed and the material of the RVE is linearly 
elastic, then the corresponding overall response will also be linearly elastic. In 
this case, for a prescribed macrostrain E, the macrostress 

SE 
will be proportional 

to E. 

SE= <s(x; E)>= C: E, 

where C is the overall elasticity tensor. 

Similarly, for a prescribed macrostress S, 

EO =< e(x; S)>= D: S, 

where D is the overall compliance tensor. 

(2.5.30a) 

(2.5.30b) 

Now, if the RVE is statistically representative, then C = D. A con-
sistent averaging technique is expected to satisfy this inverse relation. 

When the material of an RVE is nonlinearly elastic, then, for a fixed 
microstructure, the overall response will be nonlinearly elastic. In this case, the 
first gradient of the overall macrostress potential with respect to the overall 
macrostrain E, and that of the macrostrain potential with respect to the overall 
macrostress S, satisfy the relation (2.5.28a), when the RVE is statistically 
representative and a consistent averaging technique is employed. However, 
there is no a priori reason to believe that a similar correspondence between 
higher-order gradients of these potentials should continue to hold, even if a con-
sistent averaging technique is employed. The relations between macropotentials 
are further discussed in the following section, considering an RVE with possibly 
nonlinearly elastic materials. In the remaining part of this book, however, atten-
tion is confined to RVE's with linearly elastic constituents, unless otherwise 
stated. 

2.5.6. General Relations Between Macropotentials 

The stress potential f _ f(x; e) is said to be convex with respect to the 
argument e, if for every pair of admissible but nonidentical e(1 and cc2>, 
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Table 2.5.1 

Relation between macro- and micro-potentials for prescribed macrostress 
and macrostrain 

F(c; e( ')) — F(x; et2)) > (e~1) — e«)) : af (R' 
e«)). 

Consider RVE's consisting of convex elastic materials. 

Examine now two different boundary conditions for the same RVE which 
consists of convex elastic constituents: (I) uniform tractions t = n.S prescribed 
on boundary aV of V; and (II) any mixed uniform or nonuniform consistent dis-
placements and tractions prescribed on aV. Denote the strain and stress fields 

(2.5.31) 
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for the first boundary data (i.e., uniform boundary tractions) by e = &&(x) and 
ss(c), and those for the second (i.e., general, possibly mixed) by 

= eG(c) and sG = SG(c), respectively. The corresponding average quantities 
are denoted as follows: 

and 

Es  es>,  SS=<sS>=S, 

EG =<eG >,  SG =<sG >, 

(2.5.32a,b) 

(2.5.33a,b) 

for case (I) and case (II), respectively. Consider the overall macrostress poten-
tials when the boundary data in cases (I) and (II) are adjusted such that Es = EG, 
i.e., they both produce the same overall macrostrains. 

Theorem 1: The macrostress potential Fs(Es) associated with the uni-
form traction boundary data of case (I) cannot exceed the macrostress 
potential FG(EG) associated with the second (general, possibly mixed) 
boundary data of case (II) for Es = EG, when the corresponding RVE 

consists of convex elastic constituents.2 

Proof: Calculate the difference, FG(EG) — Fs(Es), as follows: 

FG(EG) — Fs(Es) = < f(x; eG) — f(x; es) > > < (eG — es): 
de (c' eS) > 

{< eG >V e >} : < (EG Es) : S. 

(2.5.34a) 

The last expression in (2.5.34a) vanishes if the boundary data are adjusted such 
that EG = Es, in which case, 

FG(EG) > Fs(Es)  for EG = Es, (2.5.34b) 

which completes the proof (Willis, 1989). 

Clearly, this result remains valid for the case when the RVE consists of 
linearly elastic constituents. Moreover, it also shows that the macrostress poten-
tial corresponding to linear displacement boundary data, u = x.E, i.e., FE(E), 
cannot be less than the macrostress potential Fs(Es) which corresponds to uni-
form traction boundary data, when E = Es, i.e., 

FE(E) >_ Fs(E). (2.5.34c) 

Therefore, an RVE is considered to be statistically representative if the differ-
ence between the macrostress potential for uniform traction and linear displace-
ment boundary data which produce the same overall average macrostrain, is less 
than a prescribed small value. Note that 

F 
can only approach FE from below. 

Consider now a third loading case involving linear displacement boundary 
data for the same RVE, as follows: (III) on the boundary aV of the RIB, linear 
displacements u = c.E are prescribed such that they produce the same overall 

z The superscript G on F denotes the fact that the corresponding boundary data are general 
and unrestricted. 
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macrostress corresponding to case (II) of the general boundary data. Denote the 
microstrain and microstress fields for case (III) by eE = eE(c) and SE = sE(x), 
and set 

E=<eE>, SE = < SE>. (2.5.35a,b) 

Theorem 2: The macrostrain potential YE(sE) associated with the 
linear displacement boundary data of case (III) cannot exceed the ma-
crostrain potential YG(sG) associated with the second (general, possi-
bly mixed) boundary data of case (II) for SE _ SG, when the 
corresponding RVE consists of convex elastic constituents. 

Proof: Calculate the difference, YG(sG) — YE(sE), as follows: 

YG(sG) — YE(SE) = < Y(C; SG) — Y(x; SE) > > < (sG — SE) : (c; SE) > 

= {<sG>—< sE>} :< eE>= (SG— SE): E. 

(2.5.36a) 

The last expression vanishes when SG = SE, leading to 

YG(sG) > YE(sE),  for SG = SE, (2.5.36b) 

which completes the proof (Willis, 1989). In particular, the macrostrain poten-
tial associated with uniform traction boundary data always exceeds that associ-
ated with the linear displacement boundary data when both boundary conditions 
produce the same overall macrostress, i.e., 

YE(S) <_ 1/(1). (2.5.36c) 

Again, a statistically representative RVE can be defined by requiring that the 
difference in the macrostrain potential for uniform traction and linear displace-
ment boundary conditions which produce the same overall macrostress, be less 
than a prescribed small value. Note that YE can only approach Ys from below. 

Theorems 1 and 2 may be stated in the form of the following minimum 
principles: 

Theorem I: For an elastic RVE, among all consistent boundary data 
which produce the same overall macrostrain, the uniform boundary 
tractions render the total stress potential F an absolute minimum. 

Theorem II: For an elastic RVE, among all consistent boundary data 
which produce the same overall macrostress, the linear boundary dis-
placements render the total strain potential 0 an absolute minimum. 

Consider now a linearly elastic RVE, and set 

FG(EG) =  EG : CG : EG, 00(s°) = 2 S° : D° : SG, (2.5.37a,b) 

corresponding to general consistent boundary data which produce an overall 
macrostrain EG and an overall macrostress OG, satisfying 
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V Ln {uo-c.Eo}.{n.(s — SG)} dS =0, 

so that 

(2.5.38a) 

(2.5.38b) 

see (2.3.5). Here CG and DG are the overall elasticity and compliance tensors 
defined through 

SG = CG : EG, EG = DG : SG, (2.5.37c,d) 

and hence are each other's inverse. 

Each of the boundary conditions of case (I) (uniform tractions) and case 
(III) (linear displacements) satisfies (2.5.38a). Define CO and DE, respectively, 
by 

and 

FS(ES) = 
2

1 ES : CO : ES, 

YE(SE) = 1 SE : DE : SE. 

(2.5.39a) 

(2.5.39b) 

Since CO in (2.5.39a) and DE in (2.5.39b) correspond to different boundary con-
ditions, the are not necessarily each other's inverse. Their inverses are denoted 
by DO = (CO)_1 and CE = (DE)-1, respectively. 

Now, according to Theorems I and 11, for any E, 

E : (CG — CO) : E >_ 0, (2.5.40a) 

and, for any S, 

0: (DG j E) : S >_ 0. (2.5.40b) 

Hence, uniform traction and linear displacement boundary data can be used to 
obtain lower and upper bounds of the elastic moduli associated with any other 
consistent boundary data. 

As will be discussed in Subsection 3.1, a second-order symmetric tensor 
can be expressed by a six by one column vector, and a fourth-order symmetric 
tensor can be expressed by a six by six matrix; see (3.1.4) and (3.1.7). Then, in 
this matrix form, (2.5.40a,b) are written as 

[ra]T([Ca ] — [Ca cti I)[rb] ~ 0, [Ta]T([Da ] — [Dá6 ])[Tb] ? 0, 
(2.5.41 a,b) 

where [Aa] and [Ta] correspond to E and S. and [Ca], [Ca], [Dab ], and [Dab ] 
correspond to CG, CO, DG, and DE, respectively. Since the six by six matrices, 
[C ~~ ] and [D ~~ ] for A = G, S. E, are symmetric and positive-definite, they can 
be written as 

p p pp 
[Cab] _ [Qap][lp,drq]~ Q4]T, [Da ] = [Qap]~lp`4 dpq] 1[Qbq ]T, 

(2.5.42a,b) 

where [lá dab] is the diagonal matrix of the characteristic values, lá , of [C ], 
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and [Q ~~ ] is the rotation matrix satisfying [Q ab ] [Q ab ]T = [dab] 

When the three rotation matrices, [Q2], [Q a ], and [Q a ], are identical, 
i.e., 

[Qab] _ [0a] = [Qab], (2.5.43a) 

inequalities (2.5.41a,b) imply that 

la — la >_ 0, G —  IE >_ 0 for a = 1, 2, ..., 6. (2.5.43b,c) 
~a  ~a 

Therefore, the characteristic values la of the overall elasticity tensor  
corresponding to general consistent boundary data, are bounded by 

la < la <_ la . (2.5.44a) 

This implies that the corresponding quadratic forms of the macropotentials 
satisfy similar relations, i.e., 

E:CO : E<E:CG : E<_E:CE : E Fs
(E)< F° (E)< FE(E), 

(2.5.44b) 

or 

S : DS : S >_ S : Do : S >_ S : DE : S == YS(S) >_ Yo(S) >_ YE(S). 
(2.5.44c) 

The rotation matrix [Q ] depends on the structure and properties of the RVE, 
as well as on the loading conditions. However, if the overall response of the 
RVE is expected to be isotropic, then, [Q a~ ]'s are the same under all loading 
conditions. Hence, for all possible general boundary data, equality (2.5.43a) is 
satisfied, and the bounds (2.5.44a--c) hold in the isotropic case. 

2.5.7. Bounds on Macropotential Functions 

Although, due to the heterogeneity of the RVE, it is extremely difficult to 
compute the exact macrostress potential F or macrostrain potential 0, strict 
upper and lower bounds for these quantities can be obtained, using variational 
principles.3 In this subsection, the macropotential functions, defined as functions 
of the macrofield quantities, are related to functionals of the displacement or 
stress fields, when linear displacements or uniform tractions are prescribed on 
the boundary of the RVE. 

First, consider a bound for the macrostress potential, FE, when macros-
train E = e° is prescribed. For a displacement field which satisfies the linear dis-
placement boundary condition, u = c.e° on aV, define a functional IE, by 

IE(u; e°) _ < Y(c, e(C; e°) >, (2.5.45) 

where e is given by the symmetric part of the gradient of u, sym (V®u), with 

3 See Section 19 for detailed discussions of variational principles in linear elasticity. 
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sym standing for the symmetric part of its second-order tensor argument. Since 
d = s(e) : de, the first variation of IE is 

dIE_< s(e):de(c)> 

V f an (n' s) . du dS — < { V . s(e) } . du >. (2.5.46a) 

Since the surface integral vanishes when the displacements are prescribed on 
aV, the solution of dIE = 0, denoted by ueX, yields a stress field, sex = af/ae(eeC) 
for the strain field eeC = sym (V ®ueS), which satisfies the equations of equili-
brium. Here, 

ueX 
is the actual displacement field produced by macrostrain 

E = e0, and the corresponding macrostress potential is given by 

j e(uex; e° ) = FE(e° ). (2.5.46b) 

If the microstress potential is positive-definite, i.e., if dzf > 0, then, among all 
suitably smooth displacement fields which satisfy the displacement boundary 
conditions,4 the exact displacement field renders functional jE an absolute 
minimum. Hence, for any kinematically admissible displacement field, u, the 
following inequality holds: 

jE(uex; e° ) < IE(u; e0), (2.5.46c) 

where equality holds if and only if u = ueX. Since the linear displacement field, 
u(x) = x.e° for x in V, is kinematically admissible and produces the constant 
strain field e(x) = e°, (2.5.46c) yields 

IE(uex; e°) < IE(c.e°; e°) _ < f(x; e°) >, (2.5.47a) 

where f(x; e°) is the microstress potential at x, evaluated at strain e0. From 
(2.5.46b) and (2.5.47a), an upper bound is obtained for the macrostress poten-
tial, 

FE(e°) << f(x; e°) >. (2.5.47b) 

Next, consider a bound for the macrostrain potential, Y~, when macros-
tress S = s° is prescribed. For a suitably smooth symmetric stress field which 
satisfies the equations of equilibrium, 1. s = O in V, and traction boundary con-
ditions,5 n.s = n.s° on aV, define functional I , by 

Is(s; s°) _ < Y(x; e(x; s°))+M(x).(V.s(x)) >, (2.5.48) 

where m is a Lagrange multiplier6 which, in a weak sense, enforces the equa-
tions of equilibrium and, hence, the static admissibility of s. Since 
dY _ e(s) : 60, the first variation of IM is 

dIM _ < {e(s) : ds+d(m.(V.s))} > 

° Such a displacement field is called kinematically admissible; see Section 19, Part 2. 
5 Such a stress field is called statically admissible; see Section 19, Part 2. 
6 m is a vector field in V. 
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V J an (n' ds) . m dS + < (e — sym V âm) : ds + dm. (V . s) >. 

(2.5 .49a) 

Since the surface integral vanishes for the considered traction boundary condi-
tions, the solution of dis = 0, denoted by s, produces a compatible strain field, 
hex = aY/aS(S ); see Subsection 19.5. For 

sex 
produced by S _ s°, the 

macrostrain potential is given by 

IS(sec; s°) = YS(s°). (2.5.49b) 

Furthermore, if the microstrain potential is positive-definite, then, for any stati-
cally admissible stress field, s(x), 

~s(seS; s°) < m(s; s0), (2.5.49c) 

where equality holds if and only if s = S. The uniform stress field, s(x) = s° 
for x in V, satisfies the equations of equilibrium, as well as the prescribed trac-
tion boundary conditions. Hence, (2.5.49c) yields 

is(sex; s°) < Is(s°; s° ) = < Y(x; s°) >, (2.5.50a) 

where Y(x; s°) is the microstrain potential at x, evaluated at uniform stress s°. 
The upper bound for the macrostrain potential is now given by 

Ys(s°) << hi(x; s°) >. (2.5.50b) 

The above results are direct consequences of the minimum energy princi-
ples in elasticity. They show that the uniform strain field, e = e° (= E), leads to 
an upper bound for macrostress potential FE(E), while the uniform stress field, 
s = s° (= S), provides an upper bound for macrostrain potential X1(1). In 
linear elasticity, the macrostress and macrostrain potentials correspond, respec-
tively, to the average strain energy and the average complementary strain 
energy. The overall elastic parameters may be defined in terms of either poten-
tial. Hence, upper bounds can be obtained for the overall moduli from the uni-
form strain fields, and lower bounds from the uniform stress fields. The esti-
mates of the overall moduli and the overall compliances of a linearly elastic 
composite, using uniform strains and uniform stresses, are due to Voigt (1889) 
and Reuss (1929), respectively; see Subsections 7.2 and 7.1, and (7.2.9) and 
(7.1.14). The fact that these are actually bounds has been shown by Hill (1952, 
1963), and Paul (1960). 

2.6. STATISTICAL HOMOGENEITY, AVERAGE QUANTITIES, AND 
OVERALL PROPERTIES 

To obtain further insight into the relation between the microstructure and 
the overall properties, imagine a very large volume of the heterogeneous solid 
with the property that any suitably large subvolume can be used as an RVE to 
obtain the overall macroscopic parameters. This large body is then called 
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statistically homogeneous. The term "large volume" here refers to a material 
neighborhood which is several orders of magnitude larger than the correspond-
ing RVE. On the other hand, the RVE must be several orders of magnitude 
larger than the size of its microconstituents. For simplicity, consider only 
linearly elastic materials in this subsection. 

To be specific, let B be the large solid and V be a typical representative 
volume element within B. Denote the length scales of B, V, and the microcon-
stituents, respectively, by L, D, and d. It is assumed that these length scales 
satisfy 

D
« 1, 

D 
« 1. (2.6.1a,b) 

Note that the length scales D and d are the same macro-length-scale and micro-
length-scale as mentioned in Subsection 1.1. The statistical homogeneity of B 
may be described in terms of average fields over V. 

First, define average fields in the following manner. Consider only inte-
rior regions within B that are at least the distance D away from the boundary aB 
of B. Denote the collection of all such interior regions by B'; see Figure 2.6.1. 
Let V° be a suitably large region whose centroid is located at the origin, and 
denote points in V° by z. By rigid-body translation, say, y, points in V° form a 
region whose shape and orientation are the same as V°, i.e., a region given by 
the collection of all x = y + z with y fixed and z varying in V°; Figure 2.6.1. 
Regard such a region as an RVE, and denote it by V. By definition, the centroid 
of V is y. With y fixed, the strain and stress within V are expressed as 

e = e(x) = e(y + z), s _ s(x) _ 0(y + z) z in V°. (2.6.2a,b) 

The corresponding average strain and stress over V are given by 

e(y) ° V f 
e(x) dVx = 1  f v~ e(Y+z) dVZ, 

6(y) _ f v s(x) dVx = ~° f vo 0(y + z) dVZ. (2.6.3a,b) 

In general, e(y) and d(y) depend on y and on the shape and size of V or N. 
With V° fixed, for various values of y, (2.6.3) defines moving averages of the 
strain and stress fields. 

In terms of the moving average strain and stress fields, the statistical 
homogeneity is described as follows: Let suitable uniform farfield boundary data 
associated with constant strains and stresses, e° and s°, be prescribed for the 
large body B. The large volume B is statistically homogeneous if the moving 
average strains and stresses taken over any sufficiently large volume V are 
independent of the location of the centroid y of V within B' and the shape and 
size of V. Thus, averages taken over any RVE in B' are essentially the same as 
those taken over B when the RVE is suitably large. For statistically homogene-
ous B, it therefore follows that 

e(U) e°,  s(U)  (2.6.4a,b) 

where e° and s° are the prescribed uniform farfield strains and stresses. 
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Figure 2.6.1 

Large body B, its interior region B', and 
RVE V obtained by translation of V° 

It is of interest to examine whether or not the statistical homogeneity of B 
implies that the volume average of the product of the strain and stress tensors 
taken over any RVE equals the product of their respective volume averages, i.e., 
whether or not 

(s : e)(U) = s(U) : e(U) = s° : e°, 

where 

(2.6.5a) 

(s : e)(y) - V° f vo s(U + z) : e(y + z) dVZ. (2.6.5b) 

The validity of (2.6.5a) ensures that the overall moduli defined through the aver-
age strain energy or complementary strain energy are essentially the same as 
those defined through the average stress-strain relations. Before discussing this 
issue, consider an alternative volume averaging method which involves a 
smooth weighting function.? 

2.6.1. Local Average Fields 

Volume averaging over any volume V may be performed in terms of 
smooth weighting functions. In the following, volume V is always viewed as 
the collection of points obtained by rigid translation of points within V°. Thus, 
as z varies within V°, x = y + z defines V for given y and V°; Figure 2.6.1. In 
this manner, the domain of variation of z = x — y is always V°. The unweighted 
volume average of field (...) = (...)(x) taken over V is written as 

The following brief account is closely related to the work of Murat and Tartar (1985) and 
Francfort and Murat (1986), although it is cast in a less mathematical language; comments by Willis 
(1992) are gratefully acknowledged. 
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Js H(x — y ; V°) (...)(x) dV X, (2.6.6a) 

where H(z; V°) is the Heaviside step function, $ having the value 1 for z in V°, 
and zero otherwise. Since H is discontinuous, the computation of the deriva-
tives of (...)(y; V°) with respect to y is not straightforward. Hence, instead of H, 
introduce a suitably smooth function f = f(z; V°) with the following properties: 

f(z; V°) 
>-0  forzinV° 
= 0 otherwise, 

V° 1n 
f(z; V°) dV z = V

° ~s f (c; V°) dV X = I. (2.6.7a,b) 

The function f and its derivatives may be required to vary as smoothly as 
needed, within and close to the boundary aV° of V°. Except for this smoothness 
property, f(z; V°) plays a role similar to the Heaviside step function H(z; V°). 

The averaging operation (2.6.6a) may be replaced by the operation which 
uses the weighting function f to define a local average field value at y, 

(...)a(y; F) = V° is 
F(x — y ; V°) (...)(x) dV X. (2.6.~b) 

The differentiation of the local average field (...)a(y; f) with respect to y is given 
by 

F) = V° Js aU, F(x — y; V°)l (...)(x) dVX 

bh iB f(C —y ;    V°) 
~ 

aX  (...)(c)] dlX 

=~ái (...~ 

  

a 
(y; F), (2.6.8) 

  

since 4(x — y ; V°) = f(z; V°) is smooth and vanishes smoothly at points close to 
al°. Hence, the operation of differentiation commutes with the operation of 
local averaging with weighting function F. This weighting function, therefore, 
serves as the smoothing function. 

The moving average of the strain and stress fields, (2.6.3a,b), is now 
replaced by the local average in terms of the smoothing function f, i.e., 

ea(y; F) = Vo is o(x — y ; V°) e(x) dVx, 

sa(Y; F) = V° Js 
Y(c — y ; V°) s(x) dVX. (2.6.9a,b) 

Since local averaging commutes with differentiation, ea is regarded compatible, 
and sa divergence-free, i.e., 

8 Function H(z; V°) is also called the characteristic function of N. 
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ea(Y; F) = sym {V~®&a(y; f)}, Dy• s(U; F) = 0, (2.6.10a,b) 

where ua is the displacement field associated with ea, and sym stands for the 
symmetric part of the second-order tensor. 

Now, suppose that the local average strain and stress fields satisfy 

ea(y; F) = e°, sa(y; F) = s°, (2.6.11a,b) 

for some suitably smooth weighting function F which satisfies (2.6.7a,b), and for 
any sufficiently large V°. Since F(x; V°) can be chosen to be close to H(x; V°), 
condition (2.6.11a,b) ensures that the statistical homogeneity, (2.6.4a), remains 
valid. Hence, if (s : e)a which is defined by 

(0 : e)a(y; F) = 10 jB F(x — y; V°) 0(x) : e(x) dVX, (2.6.9c) 

satisfies 

(s : e)a(y; F) = sa(y; F) : ea(Y; F) = S° : e°, (2.6.11c) 

for some suitable F then (2.6.5a) holds. Therefore, instead of seeking to obtain 
the conditions for the validity of (2.6.5a), consider the condition for the validity 
of (2.6.11c). 

Let e°(x) = e° and s°(x) = s° be constant fields in B, and let u°(x) = x. e° 
be the linear displacement field associated with e°. Based on the definition of ea 
and sa, (2.6.11c) is rewritten as 

V J f(c — y; V°) { s(x) : e(x) — 0°(x ) : e°(x) } dl), = 0, (2.6.12) 

since f satisfies (2.6.7b). The integrand in the left side of (2.6.12c) is rear-
ranged as 

s:e —&°: e°=(s — s°):(e — e°)+s°:(e — e°)+(s —&°): e°. (2.6.13a) 

Since s° and e° are constant fields, the local average of the last two terms is 
approximately zero; in view of (2.6.11a,b), 

s° : [ V 
jB 

F(x — y; V°) { e(x) — e°(x) } dN l = 0, 

e° : 
 Vo 

jB 4(x — y; V°) ( s(x) — 0°(x) } dV X l = 0. (2.6.14a,b) 

Hence, the local average of (2.6.13a) becomes J 

Vo jB F(C — y; 10) ( s(x) : e(x) — s°(x) : e°(x) } dl), 

= 
m° }B 

(C — y; n°) { s(c) — s°(c) } : V e(c) — e°(x) } dVX. (2.6.13b) 

Since e(x) and e°(x) are the symmetric parts of the gradient of u(x) and 
u°(x) = x 

.es, 
respectively, using the divergence theorem, rewrite the right side 

of (2.6.13b) as 



JB { s(c) — s°(c) } : ( { V âf(c - y) } â { u(c) - u°( c) } ] dVX 
2 1 

V° 

§ 2.6 AVERAGING METHODS 57 

-  ° lB f(x — y; V°) { s(c) — 0°( c) } : { sym (V ® u)(x) — sym (V ® u°)(c) } dVX 

‚ ° f a$ ~(x — y; V°) { 0(0) — 0°( c) } : { n(c) â(u(x) — 0°(x)) } dV X 

— V° 
JB Y(x — y; V°) { V . (s(c) — 0°(x)) } . { u(x) — u°( c) } dVX 

- f B { s(x) — s°(x) } : [ { V ® f(x — y) } ®{ u(x) — u°(c) } ] dVX.  (2.6.13c) 

The first integral vanishes, since f is zero outside of V°, and the second integral 
vanishes, since both s and s° are divergence-free. With the aid of the Schwartz 
inequality, the absolute value of the last integral is evaluated to be 

J n { s(c) — s°(x) } : ( { V âf(c - y) } â { u(c) - u°(x) } ] dVX 

< l V° f n. I V ® f(z)1 2 d1Z I l V ~
n 1 s(x) — s°(c) 1 2 dVX 

[ +
1 1 u(x) - u° (x) 1

2 dVX ] . (2.6.15) 

The first two integrals are bounded, the first because the smoothing function 
f(x; V°) can be chosen to satisfy this condition, and the second, since the aver-
age of the squared deviation of the stress field s(x) from 0°(x) = s° taken over 
V should remain bounded when the total complementary energy density is 
bounded. 

Therefore, if it is assumed that 

V L I u(x) - u°(x)1 2 dVX = 0, (2.6.16) 

then the validity of (2.6.11c), and hence the validity of (2.6.5a), are ensured. 
While the strain field e may have wild variations about e°, the displacement field 
u remains continuous. It is intuitively clear that the magnitude of the fluctuation 
of u about u° should decrease as the size of the microconstituents decreases. 
Hence, it is expected that (2.6.6) should hold if d is suitably small, as discussed 
below. 

2.6.2. Limiting Process and Limit Fields 

Condition (2.6.1a) is satisfied if the size of the RVE, D, is fixed and the 
size of the micro-inhomogeneities, d, becomes infinitesimally small. Physically, 
this corresponds to the case where the "gauge length" (in this case D) is fixed 

1 
V° 

2 
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and the size of the micro-inhomogeneities becomes vanishingly small, i.e., the 
material behaves essentially as if microstructurally homogeneous. It is clear 
that, in this case, the difference between the actual displacement field, u, and the 
smooth field u° (or equivalently, the local averaged displacement field ua) 
becomes vanishingly small, although the first represents the actual particle dis-
placement at the microscale, and the second relates to the locally averaged 
deformation field. At the limit as d - 0, with D fixed, the integral in the left 
side of (2.6.16) is identically zero, and hence the energy density averaged over 
an RVE, (s : e) / 2, equals the energy density associated with the corresponding 
average fields, s : e / 2. 

From the physical point of view, on the other hand, it is generally neces-
sary to deal with finite-sized microheterogeneities. That is, the physics of the 
problem at hand dictates the required minimum microscale d, and it is the gauge 
length D which must be chosen suitably large to accommodate the required 
reproducible macroscopic measurements, i.e., the averaging is now satisfied by 
keeping d fixed (at its minimum value) and choosing D to be suitably large. In 
this case, the amplitude of the fluctuation of the actual displacement field u 
measured at the microscale relative to the smooth local average field u0, does 
not necessarily become infinitesimally small, as the size of the RVE, namely D, 
is increased. Indeed, counterexamples can be constructed, e.g., in terms of the 
periodic or quasi-periodic microstructures, which show that the density of 

I u - u° 1 2 may remain essentially unchanged,9 with d fixed and D -i oo For 
problems of this kind, therefore, relations based on d/D -> 0 with vanishingly 
small micro-inhomogeneities, may not be relevant. 

In practical applications, it may, however, often happen that the inhomo-
geneity size d is indeed small enough to only introduce tolerable errors, so that, 
while the left side of (2.6.16) remains finite, it may be regarded as essentially 
zero. Notwithstanding this, the distinction between d / D - 0 with D fixed and 
d - 0 on the one hand, and with d fixed and D -i 

oo 
on the other hand, should 

be kept in mind when interpreting the corresponding results. 

2.7. NONMECHANICAL PROPERTIES 

The results of the preceding subsections can easily be specialized for 
application to electrostatic, magnetostatic, thermal, and diffusional properties of 
a heterogeneous RVE. Except for different physical interpretations of the field 
quantities and the associated material parameters, the basic steady state field 
equations necessary for the present application, are essentially the same. Steady 
state thermal conduction, mass diffusion, and electrostatics can be considered 

9 Although the absolute value of 1 u — u° 1 2 may remain essentially unchanged if d is fixed, the 
relative value of 1 u — '1° 1 2 with respect to D decreases as D increases. This means that even if the 
size of the microconstituents is kept the same, the fluctuation of the displacement relative to the size 
of a sufficiently large gauge length, becomes vanishingly small. 
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simultaneously, as commented on at the end of Subsection 1.3. 

With reference to equations (1.3.11) to (1.3.14), let u stand for (tempera-
ture, or pore pressure, or electric potential) when (thermal conduction, or mass 
diffusion, or electrostatics) is considered. Then p = - Vu may be viewed as the 
corresponding (thermodynamic) force, i.e., {- pressure gradient, or - tempera-
ture gradient, or electric field], with q identifying the associated flux, i.e., (mass 
flux, or heat flux, or electric displacement). In this subsection, general results of 
the preceding subsections are reduced and applied to this class of problems. 

2.7.1. Averaging Theorems 

Consider the volume average of the force field p = p(x) and the flux field 
q = q(x) over an RVE. Whatever the nature of the boundary conditions, these 
averages, denoted by p and q, are completely defined in terms of the 
corresponding boundary data. 

Indeed, from definition (1.3.14a) and the application of the Gauss 
theorem, it immediately follows that 

Vfav n u° dS, (2.7.1) 

when the boundary temperature 10 (not necessarily linear), u°, is prescribed. 
Similarly, from (1.3.11a) and (1.3.12a) it is deduced that 

q <q>= V J~n q° c dS, (2.7.2) 

for any self-balanced surface flux v.q° = q° (not necessarily uniform). More-
over, from identity 

<q.p >-< q >·< > = V1an(-u+c.<r >){n.(q-<q>)} dS, 

(2.7.3) 

it follows that 

<q.p > = < q >.< p>, 

whenever either uniform boundary flux q°, 

V .q = V.q°  on al, 

or linear boundary potential, 

u = u° = - x.p° on al, 
is prescribed. In the first case, 

(2.7.4) 

(2.7.5a) 

(2.7.6x) 

(2.7.5b) q °<q>=q °, 

 

   

1° For the sake of simplicity in referencing, the results will be illustrated in terms of the ther-
mal conduction problems. 



P = p(x; P), q = q(x; P). 

Define the macropotential F(R) by 

F(R) _ < f(x, P(x; R)) > = < FP(x; R) >, 

and obtain (see Subsection 2.5.1), 
P 

QP = <q(x; R) > = a . 

(2.7.9b,c) 

(2.7.10a) 

(2.7. l Ob) 
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and in the second case, 

ii  <R > = R (2.7.~b) 

exactly. 

2.7.2. Macropotentials 

Essentially all the results presented in Subsections 2.5 and 2.6 directly 
translate and apply to this class of problems. All that is needed is to identify 
p = - Vu with the strain tensor, and the corresponding flux, q, with the stress 
tensor; an important difference, however, being that p and q are now vector 
fields. 

Suppose the material of the RVE admits potentials, f = f(c, p) and 
= Y(c, q), such that 

q = áp (x, P),  P = áq 
(x, 9) (2.7.8a,b) 

The two potentials are, therefore, related through the Legendre transformation, 

O–Y = q.p. (2.7.8c) 

Let R be a constant vector, and consider the linear boundary data, 

u = -v.P ma  l, (2.7.9a) 

for this heterogeneous RVE. Let the resulting force and flux fields be given by 

In a similar manner, for uniform boundary data, 

v.q = v.Q m a  l, (2.7.1 la) 

where Q is a constant vector, write the resulting force and flux fields as 

P = p(x; Q), q = q(x; Q). 

Then, defining the macropotential YQ(Q) by 

YQ(Q) _ < Y(x, q(x; Q)) > = < Q(x; Q»' 

arrive at 

PQ = < R(x; Q) > - áQ
aYQ  

 . 

(2.7.11 b,c) 

(2.7. 12a) 

(2.7.12b) 
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Finally, relations between the macropotentials and the corresponding definition 
of an RVE follow directly from Subsections 2.5.3 and 2.5.4; see also Table 
2.5.1. 

2.7.3. Basic Inequalities 

When the potentials f(x, p) and yt(x, q) are convex in the sense of11 

(2.5.31), then an analysis similar to that of Subsection 2.5.6 immediately leads 
to the following two basic theorems: 

Theorem I: For an RVE whose microconstituents admit convex po-
tentials, among all consistent boundary data which produce the same 
overall macroforce, P, the uniform flux boundary data render the total 
macroflux potential F(R) an absolute minimum. 

Theorem II: For an RVE whose microconstituents admit convex po-
tentials, among all consistent boundary data which produce the same 
overall macroflux, Q, the linear boundary data associated with a uni-
form force, render the total macroforce potential 0(Q) an absolute 
minimum. 

Thus, if the macroforce associated with the general boundary data is 
denoted by PG, and the corresponding macroflux potential by FG(RG), then it 
follows that 

FG(RG) > FQ(PQ)  for PG = rQ. (2.7.13a) 

In particular, when the boundary data is defined by the linear relation (2.7.9a), 
then 

F(R) > FQ(R). (2.7.13b) 

In a similar manner, it follows from Theorem II that, for any general but 
consistent boundary data which produce the macroflux QG, 

OG(QG) > YP(QP)  for QG = QP. (2.7.14a) 

Moreover, when uniform boundary fluxes are prescribed, 

YQ(Q) ? Y1'(Q)• (2.7.14b) 

Consider now linear RVE's for which the local potentials are given by 

1 1 
f(x, r) =  r.K.p = 2 Kijpipj, 

Y(c,9) = Zq.R.q=  
(2.7.16a,b) 

where for thermal conduction, for example, K and R are conductivity and 

Replace, e.g., e in (2.5.31) by p. 

(2.7.15a,b) 
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"resistivity" tensors12 respectively, with K = KT = R-1, R = RT = K-1. Let 

FG(RG) = 1 PG.KG.PG, YG(QG) = 1 QG.RG.QG, 
2 2 

correspond to any general consistent boundary data which produce an overall 
macroforce PG and an overall macroflux QG, satisfying 

V I {uG+x.PG}{v.(qG—QG)}dS=0, (2.7.18a) 

so that 

< gG.pG > = < qG >.< pG > = QG.PG. (2.7.18b) 

In (2.7.17a,b), KG and RG are the overall, e.g., conductivity and resistivity ten-
sors defined through 

QG = KGPG PG = RG.QG, (2.7.18c,d) 

and hence are each other's inverse. 

Each of the boundary conditions of uniform flux and linear, e.g., tempera-
ture, satisfies (2.7.18a). Define KQ and RP, respectively, by 

FQ(RQ) = 2 PQ.KQ.PQ, 

YP(QP) = 2 QP•RP• QP• (2.7.19a,b) 

The conductivity KQ is not the inverse of the resistivity RP, since these tensors 
are defined for different boundary data. 

According to Theorems I and II, it now follows that for any constant P, 

P . (KG — KQ) . P >_ 0, (2.7.20a) 

and for any constant Q, 

Q.(RG—RP).Q>_0. (2.7.20b) 

Thus, uniform flux and linear, say, temperature boundary data provide lower 
and upper bounds for the conductivity associated with any other boundary data. 
In particular, when the second-order symmetric (and positive-definite) tensors 
KG, KQ, RG, and RP = (KP)-1 are coaxial,13 then denoting the corresponding 
principal values (all positive) by la , lQ, and 7á (a = 1, 2, 3), from coaxiality 
and Theorems I and II, it follows that 

l — lQ>_0, c — 1 P >_0, fora= 1, 2, 3. (2.7.21a,b) Ca  la 

In the special case when KG, KQ, and Kt' are isotropic, then each has only one 
distinct (positive) principal value, say, KA (A = G, Q , P), and (2.7.21 a,b) reduce 
to 

12 

In electrostatics, K is the dielectric tensor. 

13 I.e., they have the same principal directions. 

(2.7.17a,b) 
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KQ<_KG <_KR. (2.7.21c) 

All other comments regarding bounds in Subsections 2.5.6 and 2.5.7 also apply 
here. In particular, the energy bounds of Subsection 2.5.7 follow directly, pro-
ducing lower and upper bound for the effective conductivity; the derivation of 
these results is left as an exercise for the reader. 
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CHAPTER II 

ELASTIC SOLIDS WITH 

MICROCAVITIES AND MICROCRACKS 

In this chapter the overall elastic modulus and compliance ten-
sors are established for a macro-element represented by an RVE which 
consists of linearly elastic constituents containing microcavities and/or 
microcracks. For a fixed microstructure, the increment of the average 
stress, dd, relates linearly to the correyronding increment of the aver-
age strain, ds, by the relation d~~ = C : ds, and the objective of the 
analysis is to calculate the overall modulus tensor C, in terms of the 
corresponding moduli of the constituents and the microstructure of the 
RVE. The modulus tensor C, in general, depends on and changes with 
the microstructure. In this chapter, first some fundamental results in 
linear elasticity are briefly reviewed, and then the results are used in a 
systematic manner to estimate the overall properties of the macro-
element, in terms of the properties and geometry of its microconsti-
tuents. Throughout the chapter, attention is focused on the stress-
strain relations, ignoring the temperature and the associated thermal 
effects. The Helmholtz free energy f then reduces to the strain energy 
density function which is denoted by w = w(e), and the corresponding 
complementary energy function y reduces to the complementary strain 
energy density function which is denoted by w' = wc(s). When the fact 
that, for a heterogeneous RVE, w and w° also depend on the position 
x of the material in the RVE needs to be emphasized, then w = w(x, e) 
and WC = w°(x, s); note that even for a homogeneous material, w and 
WC are implicit functions of x through e = e(x) and s = s(x), respec-
tively. 



aw 
ás' or sij =  ae~j ' 

(3.1.2a,b) 

SECTION 3 LINEARLY ELASTIC SOLIDS 

This section presents stress-strain relations in linear elasticity and sum-
marizes elasticity and compliance tensors for materials with several commonly 
considered symmetries. General three-dimensional, as well as plane-strain and 
plane-stress conditions are briefly examined. Then the reciprocal theorem of 
linear elasticity is introduced, followed by the principle of superposition and a 
brief discussion of Green's function. The material in this section will be used 
throughout the remaining sections in Part 1. 

3.1. HOOKE'S LAW AND MATERIAL SYMMETRY 

Constitutive relations in linear elasticity are given by the generalized 
Hooke law which linearly relates the stress and strain tensors through the elasti-
city and/or compliance tensors. The coefficients of these linear relations are the 

elastic and/or compliance moduli, as is detailed in this subsection.1 

3.1.1. Elastic Moduli 

Consider a typical homogeneous and linearly elastic constituent of an 
RVE, and denote its stress-strain relation by 

s = C : e, or sij = Cijki ekl. (3.1. la,b) 

Since both the stress and strain tensors are symmetric, s = s and e = &T, the 
elastic modulus tensor C must also possess a similar symmetry, 

C11' = Cjikl = Cij1k = Cjilk• (3.1.1c) 

Therefore, out of the eighty-one components of C, only thirty-six are independ-
ent. The number of independent components reduces to twenty-one for the most 
general anisotropic linearly elastic case, if the material admits a strain energy 
density function w = w(e), such that 

Because of the linearity of stress-strain relation (3.1.1), to within an additive 
constant, the strain energy density function is given by the following quadratic 

See Love (1944), Sokolnikoff (1956), Hearmon (1961), Lekhnitskii (1963), and Jones 
(1975). 
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form: 

w = +e: 
C : e = ZC;jw£ij eki. (3.1.2c) 

The elasticity tensor C is therefore symmetric with respect to the first and 
second pairs of its indices, 

CijkI = Cklij, (3.1.1d) 

which, together with (3.1.1c), leaves only twenty-one independent components 
for C. 

It is often convenient to express the stress-strain relation (3.1.1a) in terms 

of a six-dimensional matrix.2 To this end, the stress and strain tensors are 
represented by six by one column vectors, and the elasticity tensor C by a six by 
six matrix, as follows. First define the six by one column vectors [Ta] and [Ua] 
for the stress and strain tensors, respectively: 

Ti = si i, t2 = s22, t3 = s33, 

and 

t4 = s23 = s32, t5 = s31 = s13, t6 = S12 = S21, (3.1.3a) 

U~~ = ei1, U2 = e22, U3 = e33, 

'( = 2E23 = 2£32, U5 = 2e31 = 2e13, y6 = 2e12 = 2e21 . (3.Í.3b) 

Then denote the first two subscripts ij by, say, a, and the second two subscripts 
kl by, say, b, to obtain the matrix of the elastic moduli, [Cab], as 

CIiiI C22 
C ii33 

C23 
C ii3i C iii2 

C2211 C2222 C2233 C2223 C2231 C2212 

C3311 C3322 C3333 C3323 C3331 C3312 
C2311 C2322 C2333 C2323 C2331 C2312 

C3111 C3122 C3133 C3123 C3131 C3112 
C121! C1222 C1233 C1223 C1231 C1212 

[Cab] = (3.1.3c) 

where a, b = 1, 2, ..., 6. The stress-strain relation (3.1.1) now becomes 

[Ta] _ [Cab] [UbI or 
Ta = Cab gb, (3.1.4a,b) 

where repeated indices are summed, and a and b take on values from 1 to 6. 
The strain energy density function w may be expressed as 

w = 2 [Ua]T[Cab][Yb] = 2 Cabia75, (3.l.5a) 

so that 

2 This notation has been introduced by Voigt; see Hearmon (1961). 
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[ta] = 
(~w (~w  

a[Ua] , 
Or ta 

= ay (3.1.5b,c) 

3.1.2. Elastic Compliances 

The six by six matrix of the elastic moduli [Cab] is positive-definite and 
symmetric, admitting a unique inverse matrix [D ab], i.e., 

[Dab] = [Cab]-1 or [Cab] = [Dab]. (3.1.6a,b) 

Observe that the relation between the components of the matrix [Cab] and the 
components of the tensor C differs from the relation between the components of 
the matrix [Dab] and the components of the tensor D. Defining a diagonal 
matrix [Wab], by 

1 00000 
010000 
0 0 1 0 0 0 
0 0 0 2 0 0 ' 
0 0 0 0 2 0 
000002 

and associating the components of tensor D with matrix [D ab] in a manner simi-
lar to (3.1.3c), it follows that 

[Dab] = [W ap] [Dpq] [W qb] 

D1111 D1122 D1133 2D1123 2D1131 
2

D1112 

D2211 D2222 D2233 2D2223 2D2231 2D2212 

D3311 D3322 D3333 2D3323 2D3331 2D3312 

2D2311 2D2322 
2

D2333 4132323 4D2331 4D2312 
2D3111 2D3122 2D3133 4D3123 4D3131 4D3112 

2D1211 2D1222 2D1233 4D1223 4D1231 4D1212 

(3.1.6d) 

  

where matrix [Dab] in expression [W ap] [Dpq] [ Wqb] is obtained by replacing in 
the right-hand side of (3.1.3c), the letter C by the letter D. In Part 2 of this 
book, Section 15 gives a detailed discussion of the relation between the tensor 
operation and the corresponding six-dimensional matrix operation.3 

The matrix [D ab] and the compliance tensor D are both symmetric, and, in 
general, each has at most twenty-one independent components. The strain-
stress relation can be written as 

[Ua] = [Dab] [Tb], or Ua = Dab Tb. 

In tensor representation this becomes 

(3.1.7a,b) 

   

3 An alternative formulation is due to Kelvin (1856).- This formulation has been reexamined 
and extended by Mehrabadi and Cowin (1990). The approach outlined in Section 15 appeared in the 
1988 version of the notes which evolved into the present book. 

[Wahl = (3.1.6c) 
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e = D : 6, Or £ij = Dijkl dkl• 

The complementary strain energy density function, 

We = 2 [~a~~ abl[Tbl = 
2 

Dab Ta Tb, 

awe  
Or Ua = a~a • 

The tensor representation of (3.1.9a--c) becomes 

WC 2 6 : D : s = Z Dijkl sij skl, 

and 

c c 
e as , or  e;j = aW  

* 3.1 

(3.1.8a,b) 

(3.1.9a) 

(3.1.9b,c) 

(3.1.10x) 

(3.1.IOb,c) 

is such that 

aWc 
[UaI 

 

3.1.3. Elastic Symmetry 

The number of independent elastic parameters (elastic moduli or elastic 
compliances) further reduces from the maximum of twenty-one, if the material 
possesses elastic symmetries. The greatest symmetry exists in isotropic materi-
als for which any plane is a plane of symmetry. Recall that a plane normal to an 
orientation constitutes a plane of elastic symmetry, if reflection about this plane 
leaves the elastic parameters unchanged. 

For the isotropic case, there are only two elastic parameters, and the elas-
ticity tensor becomes 

C = l1( )®1( 2) +2111(4 ), (3.1.1 la) 

or 

C 1' = l d jj d~d +M(d jk dj~ +d jI djk), (3.1.11b) 

where 1(2) is the second-order unit tensor and 
1(4s) 

is the symmetric fourth-order 
unit tensor; the fourth-order unit tensor 1(4) is given by 

l;~ j ° dik dji = 2 (dik 8j, + 8;, djk) + 
2 

(8;k dj1 — 8;1 djk) = 1 iRk,) 
+ 1. ). (3.1.11 c) 

With second-order contraction, 
1(4s) 

(1(4a)) maps a symmetric (antisymmetric) 
second-order tensor to itself, but maps an antisymmetric (symmetric) second-
order tensor to 0, while 1(4) maps any second-order tensor to itself. The parame-
ters l and m are called the Lame constants (for heterogeneous elastic materials 
they, of course, are not constant); m is the shear modulus. If Young's modulus is 
denoted by E, Poisson's ratio by v, and the bulk modulus by K, then these elas-
tic parameters are all related, such that they can be expressed in terms of any 
two chosen from them. Table 3.1.1 gives the relations among these parameters. 
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Table 3.1.1 

Relations among isotropic elastic moduli 

For the isotropic case, all the components of the matrix [Cab] can be 
expressed in terms of two components, say, C11 and C 12 which, together with 

C44, are defined in terms of Young's modulus E and Poisson's ratio v, as fol-
lows: 

E  1 — n  C 11 -   

1+ n 1-2v' 
E  v  

C12  1+n 1-2v' 

 

 

E 

  

(3.1.12a—c) 

    

It then follows that 

C11C12C12 0 0 0 

C i2 C Ii C12 0 0 0 

C i2 C i2 C1 i 0 0 0 
[Cab] = 0 0 0 (C11 — C12)/2 0 0 

0 0 0 G 0 (C ii —C i2)/2 0 
0 0 0 0 0 (C11 —C12)/2 

(3.1.12d) 

In a similar manner, the compliance matrix [D ab] is expressed in terms of, say, 
D11 and D 12, arriving at an expression similar to (3.1.12d): 
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D11 D 12 D 12 0 0 0 
D12 D i1 D12 0 0 0 
D12 D i2 D 11 0 0 0 

[Dab] = 0 0 0 2(D11 — D12) 0 0 
0 0 0 0 2(D11 — D12) 0 
0 0 0 0 0 2(D11 —D 1 2) 

In terms of E and v, we have 

D i2= — ~, D4a= 
2(1~~ 

1) (= m)• 

(3.1.12e) 

(3.1.12f—h) 

Next, we consider transversely isotropic materials which have five inde-
pendent elastic parameters. In this case, there exists a plane of isotropy. 
Choose this plane to coincide with the x1,x2-plane. The compliance matrix 
[Dab] then becomes 

[Dab] = 

D11D 12 D 13 

D 12 D 1 1 D 13 

D13 D 13 D33 

0 0 0 
0 0 0 
0 0 0 

0 
0 
0 

D4<I 

O 
0 

0 
0 
0 
0 

D44 
0 

0 
0 
0 
0 
0 

2(D 11 —D 1 2) 

(3.1.13a) 

In this case, the Young modulus associated with any direction in the x1,x2-plane 
is the same, say, E1 = E2 = E, and the Poisson ratio associated with any two 
orthogonal directions in this plane is also the same, say, 112 =121 = v. The 
corresponding shear modulus M12 = X21 _ m is given by m = E/2(1 + v). If 
Young's modulus in the x3-direction is denoted by E3, Poisson's ratio associated 
with the x3-direction and a direction in the x i,x2-plane by, say, 113 = 123 = 13, 
with the corresponding shear modulus 1113 = 1123  113, then 

11 -= , D12 =- E, D13= - E3 , 

D33 = 
G3 D44 = m3 . (3.1.13b--f) 

A similar expression holds for the elastic modulus matrix [Cab]: 

C ii C12 C13 0 0 0 
C 12 C11 C13 0 0 0 
C 13 C13 C33 0 0 0 

[Cab] = 0 0 0 C4 i 0 0 
0 0 0 0 C44 0 
0 0 0 0 O (C11 —C 12)/2 

(3.1.13g) 

where 
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n 2 V Z 

C ii =D{ E E3 }, 
C12=D{ E~~  + E

3

3 

}, 
3 3   

_12 C 13 = D  E E3 
n3 , <33 — D 1 

E2 , 

C44 = 1l3, 
E2 E D_ 

(1 +n){(1 — n)E3 -2n3E} ' 
(3.1.13h--1) 

The material is called orthotropic, if it possesses two mutually orthogonal 
planes of symmetry. In this case the material will also be symmetric with respect 
to a plane perpendicular to the two planes of symmetry. The number of inde-
pendent elastic parameters reduces to nine, and the elasticity matrix, for exam-
ple, can be expressed in a coordinate system coincident with the material sym-
metry directions, as 

[Cab] = 

<11 C12 C13 0 0 0 

C12 C22 C23 0 0 0 
C 13 C23 C33 0  0 0 
0  0 0 C44 0  0 
0  0 0  0 C55  0 
0  0 0 0 0 C66 

(3.1.14a) 

   

with a similar expression holding for [D ab].  With E, 1, and m standing for 
Young's modulus, Poisson's ratio, and the shear modulus, respectively, and with 
subscripts representing quantities with respect to the planes of symmetry, the 
compliance matrix in this case becomes 

1/E1 —V21/ E2 —V3 1/E3  0 0 0 
— n12/E1  1/E2  —V32/ E3  0 0 0 
— n13/E1  — n23/E2  1/E3 0 0 0 

0 0 0  1/m23  0 0 
0 0 0 0  1/1.113  0 
0 0 0  0  0 1/m12 

Note that, since Dab = Dba for a, b = 1, 2, 3, 

121 _ 112 132 _ 123  
E2 E1 ' E3 E2 ' 

[Dab] (3.1.14b) 

113 131 
E1 E3 (3.1.14c) 

When there is only one plane of symmetry, the total number of independ-
ent elastic parameters is thirteen, and the material is called monoclinic. Taking 
the c3-direction normal to the plane of symmetry, the corresponding elasticity 
matrix [Cab] becomes 
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[Cab] = 

C II C12 C13 

C12 C22 C23 

C13 C23 C33 
0 0 0 

o 0 0 

C16 C26 C36 

CHAPTER!! 

0 0 C16 
0 0 C26 
0 0 C36 

C44 C45 0 

C45 C55 0 

0 0 C66 

§ 3.1 

(3.1.15) 

with a similar expression for the compliance matrix [Dab]. 

There are other symmetry conditions which can be considered. Many of 

these are related to crystal structure.4 For example, in a crystal with cubic sym-
metry, there are three independent elastic parameters. These may be chosen to 
be 

C12= C23 = C3 i = l, Ca4 = C55 = C66 = m, 

C11 = C22 = C33 = l+2m+m'. 

Here l and m are the usual Lame constants, and the quantity 

M =2{  C ii —C12 
C66} 2 

measures the degree of cubic anisotropy. 

(4.1. 16a—c) 

(3.1.16d) 

3.1.4. Plane Strain/Plane Stress 

Consider a case when either the strain tensor or the stress tensor has van-
ishing components in a certain direction, say, the x3-direction. If the strain 
satisfies 

e3.e = 0, or e33 — e32 (— e23) — e31 (— £i3) — 0, (3.1.17a,b) 

then, it is called a plane strain state of deformation. On the other hand, if the 
stress satisfies 

e3.s = 0, or S33 — 032 (— s23) — s31 (— s13) — 0, (3.1.18a,b) 

then, it is called a plane stress state of deformation. For both plane strain and 
plane stress, strain components, E11, e22, and e12 = e21, and stress components, 
s11, 022, and s12 = s21, are called the inplane strain and stress components, 
while strain components, £33, e23 = e32, e31 = e13, and stress components, s33, 
s23 = s32, S31 = s13, are called the out-of-plane strain and stress components. It 
should be noted that although the word "plane" appears, the stress and/or strain 
fields are three-dimensional. That is, the plane strain or plane stress state 
corresponds to only e3.e = 0 or e3.s = 0, respectively, but not to both. 

Since the plane strain and plane stress correspond to special deformation 
and stress states, the constitutive relations discussed in the previous subsections 

° See Nye (1957). 
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do not change, and relation (3.1.1) or (3.1.8) holds between strain and stress ten-
sors, i.e., s = C : e or e = D : s. In matrix notation, (3.1.4a) for plane strain 
becomes 

Ti CII C12 Ci3 Ci4 C15 C16 yi 
t2 C 12 C22 C23 C24 C25 C26 U2 
t3 
t4 

Ci3 C23 C33 C34 C35 C36 

Cl4 C24 C34 C44 C45 C46 

0 
0 , (3.1.19a) 

t5 C15 C25 C35 C45 C55 C56 0 

T6 C16 C26 C36 C46 C56 C66 6 

or, when decomposed into the inplane stress components, [t1, t2, R6], and the 
out-of-plane stress components, [t3, R4, R5], 

Ti 

t2 
t6 

t3 

CII C12 C16 

C12 C22 C26 

C16 C26 C66 

C31 C32 C36 

gi 
U2 
U6 

U1 
t4 

t5 
C41 C42 C46 

C51 C52 C56 

U2 
U6 

(3.1.19b,c) 

Similarly, (3.1.7a) for plane stress becomes 

U1 D 11 
D12 D 13 D 14 D 15 D 16 T i 

U2 D 12 D 22 D23 D24 D25 D26 T2 

U3 D 13 D23 D33 D34 D35 D 36 0 (3.1.20a) 
U4 D 14 D 24 D34 D44 D45 D46 0 ' 

U5 Dis D25 D35 D45 D55 D 56 0 

U6 D16 D 26 
D36 

D 46 D56 D66 T6 

or, when decomposed into the inplane strain components, 
out-of-plane strain components, [y3, y4, y51, 

[Ui, U2, U6], and the 

yi D ii D i2 D16 Ti 
U2 D i2 D 22 D 26 t2 
U6 D 16 D 26 D 66 t6 

73 D 31 D 32 D36 Ti 
U4 D 41 D 42 D46 t2 (3.1.20b,c) 

75 D 5  D 52 D56 t6 

These are apparent constitutive relations, expressing all stress components in 
terms of the inplane strain components for the plane strain case, and for the 
plane stress case, expressing all strain components in terms of the inplane stress 
components, i.e., (3.1.19b,c) and (3.1.20b,c), respectively. Since the out-of-
plane components of stress (in plane strain) and the components of strain (in 
plane stress) are defined, once the corresponding inplane quantities are obtained, 
in what follows only the inplane relations (3.1.19b) and (3.1.20b) will be 
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considered. Because 

-1 
C i, C12 C16 D11 D12 D,6 

C12 C22 C26 D12 D22 D26 (3. 1.2 la) 
C i6 C26 C66 D16 D26 D66 

and 

D11 D12 D16 c,1 C12 C16 
-t 

D 12 D22 D26 C i2 C22 C26 (3.1.21b) 
D16 D26 D66 C16 C26 C66 

for D = C-1 or C = D-1, these apparent constitutive relations do not enjoy the 
usual reciprocal relation displayed by (3.1.1) and (3.1.8). 

Now examine the apparent constitutive relations for the inplane strain and 
stress components, when the material is isotropic or transversely isotropic, with 
the plane of symmetry being the x1,x2-plane. Since isotropy is a special case of 
transverse isotropy, the latter case is considered. From (3.1.13), the three by 
three matrix for the apparent constitutive relations is as follows: for plane strain, 

[Ca~b) ] _  
i2 i 

 

(1 ± n){(1 -n)E3 -2n E} 

1/E - n3/E3 n/E + n3/E3 0 
n/E+n3/E3 1/EN/E3 0 

0 0 {(1 - n)E3 - 2n3E}/2EE3 

[Da;t ] = 

1/E - n3/E3  - n/E - n3/E3 0 
- n/E - n3/E3 1/E - n3/E3 0 

0 0 2(1 +n)/E 
(3.1.22a,b) 

   

and for plane stress, 

[D a4i~~ ] = 1
E
- 

1 
-n 

-v 
1 

0 
0 

O 0 2(1 +n) 

[Ca~~ ] = 1 En2 

1 v 0 
n 1 0 
0 0 (1-n)/2 

(3.1.23a,b) 

   

where [Da;> ] - [Ca 
]-1 and [Ca ] - [Da ) ]-1, and the superscript (e) or (s) 

emphasizes whether the three by three matrix of the apparent constitutive rela-
tions is for plane strain or plane stress. 

Since in (3.1.22) and (3.1.23), g6 = t6/m or t6 = Mg6(e12 = s12/2m or 
si2 = 2me12), where m is the shear modulus given by E/2(1 –1), expressions 
(3.1.22b) and (3.1.23a) become 

c 
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[D j = 
1A 

1/2 — m(V3 /E3 + n/E)  — M(132/E3 + n/E)  0 
+ v/E)  1/2 — M(n/E3 + v/E) 0 

0 0 1 

  

[DaS,~) ] = m 
1/2— n/2(1+ v) — n/2(1+ v) 0 

— n/2(1 +n) 1/2 —v/2(1 + n) 0 
0 0 1 

(3.1.24a,b) 

   

As shown in later sections, these are two-dimensional isotropic matrices. Define 
k by 

=  
3D +D}u) — 3D?1 ±D 2  (a = e, s), (3.1.25a) 
D }a) — D } ) D11 — D2 

 

where DJ is a two-dimensional fourth-order isotropic tensor corresponding to 
the three by three matrix [D g) ]. Then, (3.1 .24a) and (3.1.24b) yield 

k= 

z 
3— 8 m ( É + É) for plane strain 

3 

 

—1 for plane stress. 
1 +v 

(3.1.25b) 

   

Hence, the apparent constitutive relations (3.1.24a,b) and their inverses are 
given by 

[ll aV,°` ) 
] = 

 

(k + 1)/8 (k — 3)/8 0 
(k -3)/8 (k +1)/8 0 , 

0 0 1 

 

     

[Cá]=m 

 

(k+ 1)/(k — 1)  — (k — 3)/(k — 1) 0 
— (k — 3)/(k -1) (k+ 1)/(k — 1)  0 

0 0 1 
(3.1.26a,b) 

     

where a = e for plane strain, and a = s for plane stress. While m relates the 
inplane shear stress and shear strain, the relation between the inplane hydrostatic 
stress, (s11 + s22)/2, and the inplane volumetric strain, e11 + £22, is given by k, as 

s11 2 s22 = 1l (e11+e22)• (3.1.27) 

Note that when the material is isotropic, E3 = E and 13 = v, and k for plane 
strain reduces to 3 — 4v. 

The apparent constitutive relations for the out-of-plane stress and strain 
components are easily determined. Since the constitutive relations for an iso-
tropic or a transversely isotropic material with the x3-axis as the axis of sym-
metry, are given by 

T3 = C 31 (Y1 + 72) + C 33 y3 
or  U3 = D 31 (T 1 + T2) + D 33 T3, 

Ta = C4474, t5 = C4475, (3.1.28a—d) 

it immediately follows that the out-of-plane normal stress and strain components 
satisfy 



78 CHAPTER'! § 3.1 

T3 = C31 (UI + U2) Or s33 = C3311 (ei 1 + e22), (3.1.22c,d) 

for plane strain, and 

73 = D31 (Ti + t2) or e33 = D3311 (s11 + s22), (3.1.23c,d) 

for plane stress, where 

C31 = C3311 = (1 —V)E3 E2V3 E 
D31 = D3311 =--—.    (3.1.29a,b) 

In particular, for the isotropic case, C3 = C33h = (1 — n)EI(1 + n)(1 —21) and 
D 31 = D3311 = — V/E, and the out-of-plane shear strain and stress components 
must vanish for either plane strain or plane stress. For other symmetries, how-
ever, the out-of-plane shear stress or shear strain may not be zero in the plane 
strain or plane stress case. 

3.2. RECIPROCAL THEOREM, SUPERPOSITION, AND GREEN'S 
FUNCTION 

When the microstructure of an RVE which consists of linearly elastic con-
stituents, is fixed (i.e., existing cavities and cracks do not grow, and there is no 
frictional sliding of microcracks), the response of the RVE will be linear, and 
the reciprocal theorem applies.5 

Consider two separate loadings of an RVE, with two different sets of 
self-equilibrating tractions, each applied separately on the surface aV of the 
RVE with fixed microstructure; note that these are different loadings of the same 
RVE. Denote the first set of tractions by t(1), and the second set by t(2), and refer 
to both collectively by t(a) (a = 1, 2); see Figure 3.2.1. The displacement, the 
strain, and the stress produced by t(a) are designated as follows: 

{u, e, s} = {u(a), e(a), s~a)} (a = 1, 2). (3.2.1a) 

These fields satisfy the equilibrium equations, (1.3.2), the strain-displacement 
relations, (1.3.3a), the traction boundary conditions, (1.3.5a), and the linear 
stress-strain relations, (3.1. la). In particular, the stress boundary conditions are 

t(a) = V.s~~) On aV, (3.2.1b) 

and the stress-strain relations become 

S~a) = C : (3.2.1c) 

where the elasticity tensor, in general, is a function of position x in V, since the 
RVE is, in general, heterogeneous, i.e., C = C(x). 

5 According to Love (1944, r.173) the theorem is due to E. Betti (Il nuve Clmento (Ser. 2), tt. 
7 and 8 (1872)). More general theorems are given by Rayleigh (1873), and by Lamb (1889) who in-
cludes inertia. 
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u«) 

Figure 3.2.1 

An RVE subjected to two sets of surface tractions, t(') and t(2) 

3.2.1. Reciprocal Theorem 

The reciprocal theorem states that the work done by the self-equilibrating 
surface tractions t~l) going through the displacements u 2 which are produced by 
the self-equilibrating surface tractions t«), equals the work done by the tractions 
t(2) going through the displacements u(1) which are produced by the tractions tt1), 
i.e., 

J 
~(I) j(2) dS = fav t

(2)
.u(1) dS. (3.2.2) 

The proof follows from the symmetry of the elasticity tensor, which yields 

s(a) : e(b) _ (C : eia)) : eib) = (C : eib)) : e(a) = s(b) : eia), (3.2.3 a) 

and the fact that the two stress fields are symmetric and divergence-free, so that 

S~a) : e(b) = Sia) : (râ11lß)) = r.(s~a).u~b)). (3.2.3b) 

Now, substitution of (3.2.1b) into (3.2.2), and the use of the Gauss theorem and 
(3.2.3b) yield 

fln 
t(a),u(b) dS = f v S~a): e(b) dl = f v s(b) : eia) dl = f ln 

t(b).u(a) dS. 

(3.2.3c) 

The reciprocal theorem also holds when the self-compatible surface displace-
ments instead of the surface tractions are prescribed on aV. In this case, the sur-
face tractions are determined by the resulting stress field. 

3.2.2. Superposition 

The linearity of the RVE for a fixed microstructure permits construction 
of various solutions by means of superposition. This means that if the solutions 
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for two different boundary data are known, then the solution when both boun-
dary data are applied, is obtained by the addition of the corresponding field 
quantities. For example, for any two constants a(1) and a(2), the solution for the 
self-equilibrating surface tractions 

t = a~ l)t~ l) + a(2)t(2) _ a(a)t(a) on aV (a summed), (3.2.4a) 

is given by 

{u, e, s} = {a~a)u~a), a~a)e~a), a~a)s~a)} (a summed). (3.2.4b) 

Note that the superposition follows if, instead of surface tractions, surface dis-
placements are prescribed, or if a suitable combination of surface tractions and 
surface displacements are given. 

3.2.3. Green's Function 

The Dirac delta function, d(x), has the property that, for any suitably 
smooth scalar- or tensor-valued function, f(x), defined on aV, 

Jav f(y) d(Y — x) dS = f(x), (3.2.5) 

where the integration is with respect to y on aV. The Dirac delta function, inter-

preted in the distributional sense,6 can be used to represent concentrated forces. 
For example, if T is a concentrated force applied at a fixed point x on aV, the 
corresponding tractions on aV can be defined as 

t(y) = T d(y — x) for y on aV. (3.2.6) 

The concept of Green's function can be effectively used to obtain general 
results for linear problems, where superposition applies. The actual calculation 
of Green's function will generally be unnecessary. It is only the concept that is 
applied. Green's function here is introduced in terms of the concentrated boun-
dary forces, but the basic idea also applies when concentrated body forces are 
involved. 

Green's function G = G(x, y) is a second-order tensor with components 
G,~(x, y), representing the displacement component u(c) at a point x, due to the 

unit concentrated force applied at a pointy in the e~-direction;? see Figure 3.2.2. 
G is a two-point tensor field. According to the reciprocal theorem, G has the 
property that 

G1 (x, U) = G 1(y, c). (3.2.7) 

Suppose the self-equilibrating surface tractions t = t(y) are prescribed on 
the boundary aV of an RVE. With the use of Green's function and 

6 See, for example, Stakgold (1967). 

' When V is finite, conceptually, suitable body forces may be distributed within the body in 
order to equilibrate the applied concentrated force. 
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Figure 3.2.2 

Green's function 

superposition, the resulting displacement field is given by 

° (x) = Jay G(x, y) • t( U) dS, (3.2.8a) 

where the integration is with respect to y. The corresponding strain and stress 
fields are now obtained by direct calculation, arriving at 

e(x) =f an 2 { [V ®G( c, y)] . t(y) + { [V ® G(c, y)] . t(y) }T } dS, 

s(x) = an C: [V ®G(x, Y)] •t(Y) dS, (3.2.8b,c) 

where V is with respect to x. In component form, (3.2.8a--c) become 

u(c) = f an Gii(x, Y) i(y) dS, 

e'i(x) = f an [Gi1,i(x, y) + Gik,i(x, y)] tk(y) dS, 

s1 (x) = lay Ctrd G i(c, y) 
tm(y) 

d8, (3.2.9a--c) 

where, for example, Gik,i(x, y) - aG;k(c, y)/axi.8 

In the next section the response of an RVE with microcavities to both 
prescribed macrostresses and prescribed macrostrains is considered. For the 
case when the macrostrains are prescribed, it is convenient to consider the 
inverse of (3.2.8a). To this end, let x and y be two arbitrary points, both on the 
boundary aV of the RVE; note that in (3.2.ßa--c), x is a typical point in V or on 
aV. When tractions t(y) are prescribed on aV, then the resulting surface dis-
placements are given by (3.2.8a) for x on aV. On the other hand, and in view of 
the uniqueness of the solution to linearly elastic problems, if the self-compatible 

8 

See, e.g., Roach (1982) for a detailed discussion of Green's function. 
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displacements u(x) are prescribed over aV, then the corresponding self-
equilibrating tractions which must be applied in order to attain such displace-
ments are given by the solution t(y) of the integral equation (3.2.8a). Thus, 
(3.2.8a) admits an inverse. This is expressed by 

t(Y) = fw G i (U x).u(x) dS, (3.2.10x) 

where the integration is with respect to x over aV. The second-order tensor-
valued function G-1(y, x), is also a Green function. It is the "inverse" of 
G(x, y), in the sense that 

f av G(x, z). G-1(z, y) dS = 1(2) d(y — x), (3.2.1Ob) 

where 1(2) = d;, e; ®e i is the second-order identity tensor, x and y are typical 
points on aV, and the integration is with respect to point z; see Figure 3.2.3. 
Then, upon substitution of (3.2.10a) into (3.2.8a), it follows that 

u(x) = f an { f an G(x, z). G1(z, y) dS} .u(y) dS 

= f an d(y — x) u(y) dS = u(x). (3.2.10c) 

Similarly, 

Jan G-i(c, z). G(z, y) dS = 1(2> d(y — x). (3.2. l Od) 

Figure 3.2.3 

Inverse of Green's function 

It is emphasized that (3.2.10b,c) are valid if and only if points x and y are on the 
same boundary aV where the tractions t(z) correspond to the prescribed dis-
placements u(x) and, conversely, the displacements u(x) correspond to the 
prescribed tractions t(z). 
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SECTION 4 ELASTIC SOLIDS WITH 

TRACTION-FREE DEFECTS 

In this section, an RVE consisting of a linearly elastic material which con-
tains stress-free cavities, is considered. The overall stress-strain/strain-stress 
relations are developed. The results are then illustrated by a number of simple 
examples. This section is intended as a simple but concrete illustration of how 
macroquantities are related to microquantities and microstructure. Subsequent 
sections will then treat more general cases, including open and closed micro-
cracks, micro-inclusions, and related problems, using various averaging tech-
niques, and comparing results by means of illustrative examples. Bounds on 
overall moduli are given in Sections 9 and 13.1 

4.1. STATEMENT OF PROBLEM AND NOTATION 

Consider an RVE with total volume V, bounded externally by surface aV. 
On this surface, either uniform tractions, 

t° = n.s° on aV, (4.1.1a) 

or linear displacements, 

u° = c.e° m a  l, (4.1.1b) 

are assumed to be prescribed, where s° and e° are second-order symmetric con-
stant stress and strain tensors for the macro-element. It is emphasized that either 
(4.1.1a) or (4.1.1b), but not both, can be prescribed. In other words, if the trac-
tion boundary data (4.1.1a) corresponding to the constant macrostress S = s°, 
are prescribed, then the surface displacements on aV, corresponding to these 
tractions, in general, are not spatially linear, being affected by the microstruc-
ture of the RVE. Similarly, if the linear displacement boundary data (4.1.1b) 
corresponding to the constant macrostrain E = e°, are prescribed, then the sur-
face tractions on aV, produced by these displacements, are not, in general, spa-
tially uniform. In the sequel, therefore, the two cases are treated separately and 
independently, and then the relation between the results is discussed.2 

For application of the results of this section and references to related issues, see Sections 5 
and 6. 

2 See also general results presented in Section 2, especially Subsections 2.5 and 2.6. 
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Assume that the material of the RVE is linearly elastic and homogeneous 
(but not necessarily isotropic). The inhomogeneity, therefore, stems solely from 
the presence of cavities. Denote a typical cavity by W, with the boundary aw0 
(a = 1, 2, ..., n), so that there are a total of n individual cavities in V. The union 
of these cavities is denoted by W, having the boundary aw which is the union of 
all aw0, i.e., 

W = L.) W, aw - 
i,  a 0,• (4.1.2a,b) 

The remainder of the RVE (i.e, when W is excluded) is called the matrix. The 
matrix is denoted by3 M. The boundary of M is the sum of aV and aw, Figure 
4.1.1, 

M V — W, aM - aV + aW. (4.1.3a,b) 

Figure 4.1.1 

Matrix M and micro-
cavities W 

The total boundary surface of the RVE can include some portion of aw. For 
simplicity, however, exclude this possibility. Thus, all cavities are within the 
RVE, each being fully surrounded by the matrix material. For a typical cavity, 
W, two faces of its surface boundary, aw, may be distinguished, as follows: 
(1) the exterior face of the cavity, denoted by awá, which is the face toward the 
matrix material, defined by the direction of the exterior unit normal n of the cav-
ity; and (2) the exterior face of the surrounding matrix, denoted by aw, which 
is the face toward the interior of the cavity, defined by the direction of the exte-
rior unit normal (— n) of the matrix (i.e., the interior unit normal of the cavity). 

coincides with aw& for the cavity W, while aM at the cavity W coincides 
with aW~M; see Figure 4.1.2. In view of this convention, the integral of a surface 
quantity taken over am can always be decomposed as 

f  (.) dS = Jav (.) dS + aS1 L. (.) dS = f av (.) dS — ~1 f  (.) dS 
=  ~~a 

3 In general, V, W, and M are open sets, but sometimes they may be treated as closed, if it is 
felt that this does not cause any confusion. 



§ 4.1 ELASTIC SOLIDS WITH TRACTION-FREE DEFECTS 87 

Figure 4.1.2 

awá and awá 

— f av f aW (.) dS. (4.1.4) 

Thus aW always stands for the union of aWá (a = 1, 2, ..., n). 

To distinguish the boundary of M at the cavities from that at the exterior 
of the RVE, which is aV, the exterior unit normal on aV is systematically 
denoted by v (as before), and the exterior unit normal on the surface aWa for a 
typical cavity W,, by n, pointing from the inside of the cavity toward the matrix 
M. 

The matrix material is linearly elastic and homogeneous. Denote the 
corresponding constant elasticity tensor by C and the compliance tensor by D. 

4.2. AVERAGE STRAIN FOR PRESCRIBED MACROSTRESS 

Suppose that uniform tractions t° = n.s° are prescribed on aV, associated 
with the constant symmetric macrostress S = s°. If the RVE is homogeneous, 
having no cavities, then the corresponding average strain associated with the 
average stress s° would be 

D : so, (4.2.1) 

and hence, in conjunction with s = s°, the average strain would be e°. The 
presence of cavities disturbs the uniform stress and strain fields, producing the 
variable stress field s = s(x) and strain field e = e(x), in M, with s = O in W. 
Nevertheless, from the results of Section 2, 

=<s>= fv s dn= 
V 

f1S dV= S°. (4.2.2) 

On the other hand, the average strain is not, in general, equal to e°. Instead, 
(4.2.3) 
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where e° is defined by (4.2.1), and ~° is the additional strain due to the presence 
of cavities. 

To calculate the additional strain ~° due to cavities, one may apply the 
reciprocal theorem, as follows. Consider two sets of loads, one defined by 

t(1) _ n.do° on al 
—n.8u° on aU 

which corresponds to uniform virtual stress ds° and strain de° = D : ds° within 
the entire RVE (as illustrated in Figure 4.1.2, — n is the interior unit normal on 
the cavity surface aw, or the exterior unit normal to the boundary of the matrix), 
and the other defined by 

t(2) n . s° on al 
=1 0 on aU 

which is the actual loading considered for the RVE. 

Denote the displacement, strain, and stress fields associated with the first 
loading (4.2.4a) by 

( u('), eM, s(1)} _ {(c.de°), de°, 80°} (4.2.5a) 

which follows from the fact that, for loading (4.2.4a), the strain and stress fields 
are both uniform throughout the matrix M. And denote the fields associated 
with the second (i.e., the actual) loading (4.2.4b) by 

{u(2),  e(2>,  s~2>} _ {u, e, 0}. (4.2.5b) 

From the reciprocal theorem, (3.2.2), it follows that 

Ja', (n.s°).(c.de°) dS = L (n.ds°).0 dS Jan (n.ds°).0 dS (4.2.6a) 

which can be written as 

ds° : { Jan D : { (c âv) .0° } dS — Jan n âu dS + I w n ®u dS } = 0. (4.2.~b) 

Since ds° is an arbitrary symmetric tensor, the symmetric part of the quantity 
within the braces must vanish identically. Noting that the first integral within 
the braces yields 

V 
Jan 

 

D: {(x® n).s°} dS = D: { 1(2).s0} = e°, (4.2.7a) 

and using the averaging scheme presented in Section 2, it follows that 

e — 
V 

Jn 

2 
{V® u+(V emir} dV 

= e°+ 4-J  2 (n® u+ u®n) dS. (4.2.7b) 

Comparison with (4.2.3) shows that the additional strain ~° due to cavities, is 
given by4 

(4.2.4a) 

(4.2.4b) 
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eC =  If 2 (hâu+uâh) dS, 

or, in component form, 

 1aW 2 (h; uj + nj ui) dS. 

(4.2.8a) 

(4.2.8b) 

4.3. OVERALL COMPLIANCE TENSOR FOR POROUS ELASTIC 
SOLIDS 

Define the overall compliance D of the porous RVE with a linearly elastic 
homogeneous matrix, through 

(4.3.1) 

where the macrostress, S = s°, is regarded prescribed, and the average strain is 
given by (4.2.3). To obtain the overall compliance in an explicit form, the strain 
~° due to cavities will now be expressed in terms of the applied stress 0°. Since 
the matrix of the RVE is linearly elastic, for a given microstructure the displace-
ment u(x) at a point x on aW is linearly dependent on the uniform overall stress 
0°. This is easily seen if the applied tractions (4.1.1 a) are substituted into 
(3.2.8a), to arrive at 

*(x) = G an G(x, Y). {n(U).s°} dS, (4.3.2a) 

where the integration is taken with respect toy over the boundary aV of the 
RVE. Since s° is a symmetric constant tensor, (4.3.2a) can be expressed as 

u1(c) = 1;jk(x) sjj, (4.3.2b) 

where the third-order tensor, 

Kijk(C) = K kj(x) = J f an  { 0~j(x, 
y)Vk(y) 

+ Gik(x, U) uj(U) } dS, (4.3.2c) 

depends on the geometry and the elastic properties of the matrix of the RVE. 

To obtain the additional overall strain, ~' , due to the presence of cavities 
in terms of the prescribed overall stress, s°, substitute from (4.3.2c) into (4.2.8), 
to arrive at 

E~. = H~jw s , (4.3.3a) 

where the constant fourth-order tensor, H, is given by 

Hijkl = Hji i = Hij;k = f 2 
{ n (x) K, j(x) + n(c) K1 (x) } dS. (4.3.3b) 

° For a direct evaluation of cavity strain, (4.2.8) is due to Horii and Nemat-Nasser (1983), 
where application to frictional cracks is formulated, as discussed in Subsection 6.4. 
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Hence, for an RVE with a linearly elastic matrix containing cavities of arbitrary 
shapes and sizes, the following general result is obtained, when the overall 

macrostress is regarded prescribed (Horii and Nemat-Nasser, 1983)5: 

ec = H : s°, or s;j = H11 s1,. (4.3.4a,b) 

It should be noted that this exact result is valid whether or not the linearly elastic 
constituent of the RVE is homogeneous. The requirements are: (1) the matrix of 
the RVE is linearly elastic, and (2) the microstructure of the RVE remains 
unchanged under the applied macrostress S = s°. 

It may be instructive to re-examine (4.3.2b) by first introducing for a pair 
of points, x on aw and y on aV, a fourth-order tensor, h(x, y), as 

h1jkI(x, y) = 4 { n1(c) Gjk(x, y) vi(U) + n1(x) Gji(x, y) vk(y) 

+ n(x) Glk(x, U) ni(U) + nj(x) Gii(c, y) Vk(y) }, (4.3.5a) 

and then obtain 

H = V JaVz f n h(x, y) dS dS, (4.3.5b) 

where the y-integral is over aV, and the x-integral is over aw. 
To obtain the overall elastic compliance tensor D, in terms of the constant 

compliance of the matrix, D, and the constant tensor H, substitute (4.2.1), 
(4.3.1), and (4.3.4) into (4.2.3), and noting that the resulting equation must hold 
for any macrostress s°, arrive at 

D = D + H, (4.3.6a) 

or 

DijkI = D;jk1 + H~~M. (4.3.~b) 

In many situations, the tensor H can be computed directly, using (4.2.8). 
Several examples of this are given later on, in Sections 5 and 6. 

4.4. AVERAGE STRESS FOR PRESCRIBED MACROSTRAIN 

Suppose that, instead of the uniform tractions, the linear displacements 
u° = x. e° (associated with the constant symmetric macrostrain E = e°) are 
prescribed on aV. The matrix of the RVE is assumed to be homogeneous, as in 
Subsection 4.2. In the absence of cavities, the corresponding average stress 

This procedure has been followed by Wang etal. (1986) to estimate the overall properties of 
composites with special distributions of microcracks. It has also been reproduced by Talreja (1989) 
who incorrectly attributes the method to Wang et al. (1986). As pointed out by Nemat-Nasser 
(1987), the method is particularly suited for estimating the overall properties of solids with cavities 
and cracks of arbitrary shapes, and with frictional cracks. 
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associated with the prescribed macrostrain, e°, would be 

s° = C : e°. (4.4.1) 

Due to the presence of cavities, the actual field quantities are nonuniform. From 
the results of Section 2, 

e= 
= 1 f e dV=1f

an 
1 (v ® u+u®v)dS= e° (4.4.2) 

V n V  2 

which is valid for any RVE of any material and microstructure. Note that the 
surface integral in (4.4.2) extends over the exterior boundary, aV, of the RVE 
only. It does not include the cavity boundaries aw. Equation (4.4.2) is the 
direct consequence of the fact that the average strain for an RIB is given in 
terms of its boundary displacements which are prescribed here to be u° = c.e°. 
The macrostrain E = e° is prescribed here and should not be confused with the 
quantity e° defined in (4.2.1), in terms of the prescribed macrostress S = s°. 
Similarly, the quantity s° is defined in the present subsection by (4.4.1), in terms 
of the prescribed e°, and should not be confused with the macrostress S = s° 
which is the prescribed quantity in (4.2.1) of Subsection 4.2.1.6 Indeed, for a 
prescribed macrostrain, the average stress is not, in general, equal to s°. 
Instead, 

(4.4.3) 

where s° is defined by (4.4.1), and 6e is the decrement in the overall stress due 
to the presence of cavities. 

As in Subsection 4.2, the reciprocal theorem will be applied to calculate 
the average stress U in (4.4.3). To this end, a third set of boundary data is 
defined by 

‚ i3) = c.e° on an, 
t~3> = 0 on aW. 

(4.2.4c) 

The displacement, strain, and stress fields associated with these boundary condi-
tions are denoted by 

{u(3),  E13), 0l3>} = {u, e, s}, (4.2.5c) 

which are actual fields, in general, different from those given by (4.2.5b) for the 
boundary conditions (4.2.4b). The actual tractions on the boundary of the RVE 
now are 

t(x) = n(C).s(x), (4.4.4) 

where c is on N. These tractions are required in order to impose the boundary 
displacements prescribed by (4.2.4c). 

Applying the reciprocal theorem, (3.2.2), to the two sets of loads, (4.2.4a) 
and (4.2.4c), it follows that 

6 Note, however, that (4.2.1) and (4.4.1) represent the same set of equations for the homogene-
ous linearly elastic RVE without any cavities, whether s° or e° is regarded prescribed. 
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J1 t.(x.de ) dS = fay (n.ds°).(x.e°) dS — f au (n.ds°).0 dS 

which can be written as 

de°: { tnx dS — f C: {(x® n).e°} dS±j C:(n®u) dS} = 0, (4.4.5b) 

where, in using loading (4.2.5a), the quantity de° is regarded as a virtual spa-
tially constant strain field with the corresponding stress field, ds° = C: de°. 
Since de° is an arbitrary symmetric tensor, the symmetric part of the quantity 
within the braces in (4.4.5b) must vanish identically. Noting that the second 
integral within the parentheses can be expressed as 

V fan 

 

C: {(x® n).e°} dS = C: { 1(2).e°} = s°, (4.4.~a) 

and using the averaging procedure of Section 2, it now follows that 

s _ + f t® c dS = s° —C : { 1

V 
f  1 (n® u+uân) dS}. (4.4.~b) V av a~ 2 

Comparison with (4.4.3) shows that the decremental stress de due to the pres-
ence of cavities, is given by 

sc 

 

= — C : ~C, (4.4.7) 

where ~c is the strain due to the presence of cavities given by (4.2.8a,b), which 
now must be computed for the prescribed boundary displacements u° = c.e°. 

4.5.  OVERALL ELASTICITY TENSOR FOR POROUS ELASTIC 
SOLIDS 

When the overall macrostrain is regarded prescribed, E = e°, designate 
the overall elasticity tensor of the porous RIB with a linearly elastic and homo-
geneous matrix, by C, and define it through 

(4.5.1) 

Substitution of (4.4.1), (4.4.7), and (4.5.1) into (4.4.3) then yields 

(C—C): e°+ C:~c=0. (4.5.2) 

For a given microstructure (i.e., for existing cavities with fixed shapes, 
sizes, and distribution), the response of the RIB is linear. Hence, the displace-
ment field anywhere within the linearly elastic matrix of the RVE is a linear and 
homogeneous function of the prescribed overall constant strain e°. Therefore, in 
line with result (4.3.2b,c) for the case when the macrostresses were considered 
to be prescribed, at a typical point c on the boundary of the cavities, aw, 

(4.4.5a) 

u1(x) = Lyk(x) ei?, (4.5.3a) 



§ 4.5 ELASTIC SOLIDS WITH TRACTION-FREE DEFECTS 93 

where L(x) is a third-order tensor-valued function with the symmetry property, 
Lijk = L;kj. Now, from the definition of ~°, (4.2.8a,b), 

(4.5.3b) 

where the constant fourth-order tensor, J, is given by 

Jijkl = Jjikl = Jijlk = f an 
{ ni(x) Lju(x) + n(x) Likj(x)} dS. (4.5.3c) 

Hence, for an RVE with a linearly elastic matrix (whether homogeneous or not) 
containing cavities of arbitrary shapes and sizes, the following general result is 
obtained, when the overall macrostrains are regarded prescribed: 

= J : e° or = JjjkI e . (4.5.4a,b) 

To obtain an expression for the overall elastic moduli of the porous RVE, 
substitute (4.5.4) into (4.5.2) and, noting that the resulting expression must be 
valid for any constant symmetric macrostrain e°, arrive at 

C = C — C : J, C1' = Cijki — Cijmn Jmnkl• (4.5.5a,b) 

It should be noted that in many practical problems the tensor J, similarly 
to the tensor H, can be calculated directly from (4.2.8), and therefore, the 
overall elastic moduli can be estimated from (4.5.5). It may, however, be 
instructive to seek to construct the tensor J in terms of the Green functions 
G(x, y) and G-1(y, x), which are discussed in Subsection 3.2.3. 

To this end, for the linear displacements, u° = z. e1, prescribed on the 
outer boundary aV of the RVE, express the resulting tractions, t(y), using 
(3.2.10a), as 

t(Y) = f w G
1(y, z).(z.e°) dS, (4.5.6a) 

where the integration is taken with respect to z over the outer boundary aV 
(excluding the traction-free cavity boundaries) of the RVE. Substituting 
(4.5.6a) into (3.2.8a), the displacement field for points on aw is obtained in 
terms of the prescribed macrostrain e°, as 

u(C) = f av G(C, y)' {f an G
-l(y, z).(z.e°) dS } dS, (4.5.~b) 

where both the y- and z-integral are taken over aV. Noting that e° is a sym-
metric tensor, tensor L in (4.5.3a) may now be written in terms of G and G-1, as 

Lijk(C) = fay Gim(x, y) { f an 2 { Gm; (y, z) zk + Gp'j (y, z) zj } dS } dS. (4.5.6c) 

Therefore, from comparison of (4.5.3b) with (4.5.6c), a fourth-order tensor, 
j(x, y), can be introduced as 

jijkl(x, y) 

= f an 4 { n1(c) Gjm(X, y) Gmk(y, z) zl + n(x) Gjm(R, y) G(  y, z) zk 
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+11.)(x) Gim(x, y) Gmk(y, Z) Zi + n}(x) Gim(x, y) GmÍ (y, Z) Zk } dS, 

(4.5.6d) 

where the integral is taken with respect to z over aV. The constant tensor J in 
(4.5.3b) now becomes 

~ V f ~.,n i(x, y) dS dS, (4.5.6e) 

where the y-integration is over aV, and the x-integration is over aW. 
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SECTION 5 ELASTIC SOLIDS WITH 

MICROCAVITIES 

By means of simple examples involving elementary solutions in linear 
elasticity, it is illustrated in this section how the overall elasticity and compli-
ance tensors of a porous RVE may be estimated for small porosities in a 
straightforward manner. The objective is to show: (1) how elasticity solutions to 
simple problems can be used in conjunction with the general results reported in 
this chapter, to calculate the effective elastic moduli and compliances of elastic 
solids containing cavities; and (2) how the tensors H and J in (4.2.8) or (4.3.5b) 
and (4.5.6e) can be estimated directly, without invoking the corresponding 
Green function. 

Two extreme cases are considered: (1) when the elastic solid contains a 
dilute distribution of cavities, so that typical cavities are so far apart that their 
interaction may be neglected; and (2) when the cavities are randomly distri-
buted. In this latter case, the idea of the self-consistent method is introduced; 
this will be discussed in some detail later on. The range of validity of these 
approximating methods is limited to relatively small volume fractions of inho- 
mogeneities.1 

5.1. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING 
CIRCULAR HOLES 

In this subsection, the problem of estimating the effective moduli of a 
linearly elastic homogeneous solid containing circular cylindrical cavities, is 
worked out in some detail. Assume either plane stress which then corresponds 
to a thin plate containing circular holes, or plane strain which then corresponds 
to a long cylindrical body containing cylindrical holes with circular cross sec- 
tions and a common generator.2 Both cases deal with a two-dimensional prob-
lem; the first case, with generalized plane stress and the second case, with plane 
strain. A rectangular Cartesian coordinate system is chosen such that 

s3; = 613 = O for plane stress, 

Several averaging techniques and their limitations are discussed in Section 10, and elastic 
solids with periodically distributed cavities and inclusions are examined in Section 12. 

z In this case, the RVE will be transversely isotropic, when the defects are randomly distribut-
ed and the matrix is isotropic. 
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E3i = Ei3 = 0 for plane strain, (5.1.1a,b) 

fir i = 1, 2, 3. All field quantities, hence, are functions of two space variables, 
xi and x2, or when polar coordinates are used, r and Q. 

For simplicity, the matrix of the RVE is assumed to be isotropic, linearly 
elastic, and homogeneous. Then, the corresponding two-dimensional stress-
strain and the strain-stress relations become 

s~j = M i k — 1 d~j dki + (d~k d;1 + d~~~ djk) } eki, 

or in 

where 

= 

matrix 

S11 

s22 
S12 

eii 
e22 

2e12 

m is 

k= f 

k 3 
 

3)/(k
1)/(k -1) 

0 

S11 
s22 
S12 

-1) 0 
0 
1 

ratio, and 

ei! 
e22 

2e12 

(5.1.2a,b) 

(5.1.2c,d) 

(5.1.2e) 

m { 

= m 

= 

the shear 

3-4v 
(3 — v)/(1 

notation, 

8 

(k+ 1)/(k -1) — (k — 
— (k -3)/(k -1) (k+ 

0 

(k+ 1)/8 (k-3)/8 0 
1 (k-3)/8 (k +1)/8 0 m 

0 0 1 

modulus, v is the Poisson 

for plane strain 
+ n) for plane stress. 

The relations involving S3i or e3; are not considered in this subsection, but they 
are readily written down with the aid of the results of Subsection 3.1.4. 

5.1.1. Estimates of Three-Dimensional Moduli from Two-Dimensional 
Results 

In general, when an elastic RVE contains cylindrical cavities, cracks, or 
elastic fibers, all aligned in, say, the x3-direction, i.e., when the generator of the 
cylindrical inhomogeneities is parallel to the x3-direction, and when the distribu-
tion of these inhomogeneities is otherwise random, then the overall response of 
the elastic RVE will be transversely isotropic. In this case, the inplane effective 
shear modulus, i, and the Poisson ratio, v, may be estimated, using either a 
plane-stress or plane-strain formulation, with inplane two-dimensional stress-
strain or strain-stress relations, defined by (5.1.2). In other words, the two-
dimensional formulation of a transversely isotropic RVE, in terms of the inplane 
effective shear modulus m and the inplane effective parameter i, circumvents 
the immediate consideration of the effect of the third dimension. However, 
when one wishes to obtain the effective inplane Young modulus, É, and the 
Poisson ratio, v, the influence of the third dimension must be taken into account. 
In this subsection the relation between plane-stress and plane-strain solutions for 
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this class of problems is examined, in a rather general setting. The results apply 
to problems of an elastic RVE with cylindrical cavities, slit cracks, and elastic 
fibers, all aligned, say, in the c3-direction. Examples are considered in this sec-
tion and in Sections 6 and 8. 

With x3 as the axis of symmetry, the overall compliance matrix, [Dab], for 
a transversely isotropic RVE, takes on the form 

[Dab] 

1/E 
—W 

—1 3/E3 
0 
0 
0 

—iJE 
1/E 

— n3/E3 

0 
0 
0 

— n3/E3 

— n3/E3 

1/E3 

0 
0 
0 

0 
0 
0 

1/m3 
0 
0 

0 
0 
0 
0 

1/m3 
0 

0 
0 
0 
0 
0 

1/m 

(5.1.3) 

where É, v, and i /2( I +v) are the inplane effective Young modulus, Pois- 
son ratio, and shear modulus, respectively, and E3, 13, and 113 are the effective 
Young modulus in the x3-direction, Poisson ratio, and shear modulus common to 
the ci,c3- and x2,x3-directions, respectively. 

For simplicity, consider only normal stresses and normal strains, and par-
tition the six by six matrix, [Dab], into two three by three matrices, [Di»] and 

1/E — IE — n3/E3 1/m3 0 0 

[Dáb» ] — IE 1/E — n3/E3 , [Di»] _ 0 1/m3 0 
— n3/E3 — n3/E3 1/E3 0 0 1/m 

(5.1.4a,b) 

Moreover, define two three by two matrices, [Pahl and [Rab ], by 

1 0 
[R ab] = 0 1 ,  

00 

1 0 
_0 _1 
V3 13 

(5.1.5a,b) 

   

Then the nominal compliance tensors, relating the normal inplane stress and 
strain components, for plane-strain and plane-stress states, may be obtained by 
multiplying [P ab]T[D a~) ] from the right by [R b] for plane strain and by [R ab] 
for plane stress, respectively, i.e., for plane strain, 

1/E — n3/E3  — n/E — n3/E3 
[Rab]T[Dbi)][Pcd] = 

L —1/ E -1/E3  1/E—V3/E 3 

and for plane stress, 

(5.1.6a) 

1/E — v/E 
[Rab]T[Dbe ][Rcd] = 

L 
—V/E 1/É ; (5.1.6b) 

see Subsection 3.1. The parameter k for these nominal compliance tensors is 
then given by 
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2 

3-84{É + É3} 

3—v  
1 +v 

  

  

plane strain 
(5.1.7) k= ~ 

plane stress. 

For the isotropic case, v = 13 (= v) and E = E3 (= E), and i reduces to k, given 
by 3 — 4v in plane strain, and (3 — v)/(1 + v) in plane stress. 

5.1.2. Effective Moduli: Dilute Distribution of Cavities 

Since plane problems are considered, an RVE of unit thickness in the c3-
direction is used. Furthermore, because all the field quantities are assumed to be 
uniform throughout this thickness, integration over the thickness is not 
displayed, but simply implied. 

Figure 5.1.1 is a typical portion of an RVE in the xi,x2-plane. The circu-
lar holes for the dilute distribution of cavities are far apart. Let there be n holes 
in the RVE. Denote the volume of a typical hole by Wa, being bounded by the 
surface area aw. From (4.2.8a), the overall strain due to the cavities becomes 

p ec = a ~a 
a I V 

where ~a is given by 

ea 
— Wa Jast~ 2 (nâu+u®n) dS. 

(5.1.8a) 

(5.1.8b) 

Figure 5.1.1 

A typical portion of an RVE 
containing microcavities 

The right-hand side of (5.1.8b) is now estimated, using the assumption 
that the cavities are not interacting with each other, since they are far apart. 
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Consider three loading conditions: (1) only sP1 is nonzero; (2) only sz2 is 
nonzero; and (3) only s~2 = si1 is nonzero. The general loading case is then 
obtained by a suitable combination of these. 

Figure 5.1.2 shows a typical cavity of radius a, subjected to farfield stress 
s~ 1, with all other stress components at infinity being zero. The displacement 
field for this problem is3 

0 
ur = ur(r, q) = 8~r {(K—  1)r 2 +2a

2 
±2a [ 2(k + 1) + r2 — -2 ] c os2q } , 

u8 = u8(r, q) = — 
4M

r { r2 + a2(k — 1) + r2 } sin2 q, (5.1.9a,b) 

where ur and u8 are the displacement components with respect to the polar coor-
dinates r, q. The rectangular Cartesian components of the displacements are 
then given by 

u 1 = ur cos0 — u8 sin°, u2 = ur sinq + uq cosq. (5.1.9c,d) 

Figure 5.1.2 

A typical cavity of radius a, sub-
jected to a farfield stress (71), ~ s 

The components of the unit vector n, normal to the boundary of the circular cav-
ity, are 

n1 = cosO, n2 = sinO. (5.1.10a,b) 

Substitution of (5.1.9a--d) and (5.1.10a,b) into (5.1.8b) with r = a = a~, and sim-
ple integration yield 

sa = 
g~1  

(3eiâe1—e2®e2)Oh. (5.1.11a) 

Similarly, when only s22 is nonzero, 

sa = gel  (  e1®el + 3e2 ®e2) s22. (5.1.1 lb) 

The results for the case when only sf2 = si1 is nonzero, can be obtained from 
(5.1.1 la,b) by a 45-degree rotation of the coordinate system and superposition; 

3 See Michell (1899), Love (1944), and Timoshenko and Goodier (1951). 
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see Figure 5.1.3. 

Figure 5.1.3 

Coordinate system rotated 
by 45 degrees 

To this end, let 

e ~~
 42 

(e l + e2), e2 = j
2 

(— e i + e2) 

define the unit base vectors of the rotated coordinate system. Then, 

= +1  {(3ei®e ~ —e2®e2)—(—e ~ ®e ~ +3e2®e2)} ßi2 

_  +1  (4e1ne2+4e2eel)sf2 8m 

(5.1.12a,b) 

— 1  (2e1®e2+ 2e2®e1)( sf2+ szi). (5.1.12c) 

Note that the results in (5.1.12a--c) are independent of the void size. From 
(5.1.12a--c), the average strain due to the presence of cavities is given by 

~`=f  1(4-1 {(3e1 ne1 — e2ne2) s?i +(- e1 ne1 + 3e2ne2) s 

+ 2(ei ne2 + e2ne1) (s~2+sii)}, 

where f is the void volume fraction of the RVE, defined by 

f = n 
 ~« 

a=1 V . 

Therefore, the tensor H in (4.3.6a) takes on the form 

H=f  +1  {(3e1 ne1 — e2ne2)n(ej ne1)+(— e 1 ne1 + 3e2ne2)n(e2 ne2) 

+2(e1®e2+e2®el)®(el ®e2+e2®e 1)}. (5.1.14a) 

(5.1.14b) [Hab] = f 
k m 

1 

In matrix notation corresponding to (5.1.2d), this becomes 

3/8  — 1/8 0 
1/8 3/8 0 
0 0 1 
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Since H33 = 2(H11 — H 12), the tensor H is isotropic in the xl,x2-plane. Substitu-
tion of (5.1.14b) into (4.3.6) yields the overall compliance tensor D, where, for 
the two-dimensional case, the compliance matrix [Dab] can be read off (5.1.2b). 
In particular, the effective shear modulus, ii, and the effective Poisson ratio, v, 
are obtained from 

~ = {1+f(k+1)}-1 = 1—f( k+1)+O(f2), 
m 

k 
- {1+ f  20i–1)  

1 } {1+f(k+ 1)}-1 = 1  f  (k +1)kk-2) +O(f2), 

(5.1.15a,b) 

where i = 3— 8~(V/É + n3/E3) for plane strain, and i = (3 — v)/(1 + V) for plane 
stress. For plane stress, the effective Young modulus, E, and Poisson ratio, v, 
are 

~
= (1 + 3f )-1 = 1— 3f + O(f2), 

= (1+f -- )(1+3f)-1 = 1—(3— 
n 

)f+O(f2). (5.1.15c,d) 

Figure 5.1.4 shows the variation of the shear and Young moduli with 
respect to the void volume fraction f, for plane stress with v = 1/3; note that, for 
the present case, this value of v leads to Wv = k/k = 1, and 
M/m = É/ E = (1 +3f)-1. Since a dilute distribution of cavities is assumed, the 
applicability of these results is limited to small values of the void volume frac-
tion f. Figure 5.1.4 also includes the curve for the case when the macrostrain is 
prescribed, as discussed below. 

Figure 5.1.4 

Normalized overall shear, ii / m, and 
Young, É / E, moduli for n = 1/3 
DD:O = dilute distribution with 

macrostress prescribed 
DD:E = dilute distribution with 

macrostrain prescribed VOID VOLUME FRACTION 

In the same manner as the overall compliance tensor, D, is obtained for a 
prescribed macrostress, S = s°, the overall elasticity tensor, C, is obtained for a 
prescribed macrostrain, E = e°, by computing the decremental stress &° 
(= — C :  ) from the displacements of In the model of an infinite body 
containing a single cavity, shown in Figure 5.1.2, farfield stress s° may be 
replaced by the farfield strain e° = D : s°, and (5.1.1 3a) written in terms of the 
prescribed e°, as 
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c H : (C : e°), (5.1.16) 

where C is the elasticity tensor of the matrix material corresponding to (5.1.2a).4 

Then, the tensor J in (4.5.3b) is given by 

J=H:C=f  X 2 1 {(k K 1 

e1®e1 
~-1 e2®e2)®(e1®el) 

+(
— k — 1 

eiâei+ k
k 

1  e2®e2)®(e2®e2) 

+ 2(ei®e2+e2®e1)®(e1®e2+e2®e1)}, (5. 1. 17a) 

or, in matrix notation corresponding to (5.1.2a),5 

{Jab} = f k 2 1 

k/(k — 1) — ~k — 2)/(k — 1) 0 
(k-2)/(k -1) k/(k -1) 0 

0 0 2 
(5.1.17b) 

   

Since J33 = /II — J 12, the tensor J is isotropic in the x i,x2-plane. In the same 
manner as (5.1.15a,b) are obtained, the effective shear modulus, F, and Poisson 
ratio, v, in the present case are calculated from 

= 1 —f( k– 1), 
M 

K — {1 f(K+1k(K2_))+2) }(1 fK+1 )-i 

= 1 — f ± 2 ±0(f2). k (5.1.18a,b) 

For plane stress, the effective Young modulus, E, and Poisson ratio, v, are 

E 
=(1-fl+v 

4  
)(1—f 1 2—v )(1— f

3-2n+3v2 )-1 =1-3f+ O(f2), E  1 —v 2 

= {1+f  
1_61±12  

}(1—f  
3-2v+

2

3n2)-i= 
1—(3—  

1—v v 

(5.1.18c,d) 

For v = 1/3, it follows that v/v = _K/k = 1, and M/m = É/ E = (1 — 3f). These 
results are displayed in Figure 5.1.4. It turns out that the self-consistent method 
also yields the same estimate for É/E and j./ m, as discussed in the next section. 

The product of the overall compliance tensor D and the overall elasticity 
tensor C is 

D : C = 1(4s) — H : C : H: C = 1(4s) + 0(f2), (5.1.19a) 

4 It should be noted that only for this model, J = H: C. In general, J obtained from (4.5.6e) 
may not relate to H obtained in (4.3.5b) by this simple expression. 

The matrix [Jab] is defined by [yá] = [Jab][ge], and hence J33 = 2./1212: compare (3.1.3c) and 
(3.1.6d). 
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or 

C:D=1(4s) —C : H:C:H=1(
4

s) +0(~), (5.1.19b) 

where 1(4s) is the fourth-order symmetric identity tensor. If D and C, obtained 
respectively from H and J of (5.1.14a) and (5.1.17a), are regarded as estimates 
of the overall compliance and overall modulus tensors, then they are each 
other's inverse only to the first order in the void volume fraction f. This is rea-
sonable, since the corresponding equations are valid for dilute distributions of 
voids, and hence, small f only; see Section 10 for additional comments and illus-
trations. 

It is seen from Figure 5.1.4 that the relation between the overall elastic 
moduli for the uniform overall stress and uniform overall strain, obtained by the 
dilute-distribution model, is exactly the reverse of that required by the energy 
Theorem I of Subsection 2.5, namely, by inequality (2.5.44). The contradiction 
is indeed a consequence of the modeling procedure used in the dilute-
distribution approach, to estimate the concentration tensors, or equivalently, the 
H- and J-tensors. This is discussed in some detail in Subsection 10.1.1. 

In this connection, it may be instructive to note that the estimate of the 
three-dimensional overall inplane Young modulus É and Poisson ratio v, given 
by (5.1.18c,d), does not coincide with the corresponding results obtained using 
the plane-strain conditions. This contradiction also stems from the errors 
inherent in the dilute-distribution modeling procedure. In view of these obser-
vations, the results of this approximate averaging technique should be used for 
very small values of f, where these discrepancies are negligibly small. 

5.1.3. Effective Moduli: Self-Consistent Estimates 

The "self-consistent" estimate of the overall properties of an RVE with 
microstructure, refers to a very special averaging procedure. In this approach, 
for the present problem, a single typical cavity is embedded in a homogeneous 
linearly elastic solid which has the yet-unknown overall moduli of the RVE, and 
then the necessary local quantities are estimated and used to obtain the overall 
moduli; Kröner (1958), Budiansky (1965), Hill (1965), and Hashin (1968). For 
example, in estimating the tensor H or the tensor J, for the elastic matrix, the 
unknown average shear modulus 11 and Poisson ratio v are used. Substitution of 
the result into (5.1.14) or (5.1.17), for example, then gives a system of two equa-
tions for r. and v. 

In view of these comments, for the case when the macrostress S = s° is 
prescribed, the additional overall strain, s°, estimated by the self-consistent 
method, is obtained from (5.1.1 3a), by replacing m by ii, and in the expression 
for k, by replacing v by v; k is replaced by i, with i = 3— 8 m(v/É + v3 /E 3) for 
plane strain and k = (3 —v)/(1 +v) for plane stress. Equation (5.1.14 a) now 
takes on the form 

H — f  
8m1  

{(3e1 ®ej  — e 2 ®e 2) ®(el ®e1) + (— ei ne1 + 3e2 ®e2) ®(e2 ®e2) 
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+ (2e1 ®e2 +2e2®e i)â(e i ®e2+e2 ®e i)}, (5.1.20a) 

with similar modification for (5.1.14b). Using (5.1.20a) and (4.3.6), 

D=D+H, (5.1.20b) 

or in matrix form, 

(  + 1)/8 ( — 3)/8 0 
(  — 3)/8 (i + 1)/8 0 

0 0 1  

(k+ 1)/8 (k — 3)/8 0 
(k — 3)/8 (k + 1)/8 0 

0 0 1 

1 = m 

3/8  — 1/8 0 
+ f  

k–1 
1/8 3/8 0 

m  0  0 1 
(5.1.20c) 

  

Since D, D, and H are isotropic tensors, there are only two linearly independent 
relations among the three equations in (5.1.20c). From these, a system of two 
equations is obtained for the two unknowns jI and i, 

k+1 __ k+1  
+f  

3(i ± 1) 1 = I +f  IV +1 (5.1.20d,e) 
8M  8m  8m M  M M 

from which F, and k are determined as 

= (1 —3f) {1 ±f( k -2))-1 = 1 —f( k– 1)–0(f2), 
~ 

=(1—f  K-2) {1+f(k-2)}- iR -1  f ± 2)  +0(f2). 
(5.1.21 a,b) 

In particular, for plane stress, the effective Young modulus, É, and Poisson 
ratio, v, are given by 

É = 1— 3f, 

~ = 1 —(3— - )f. (5.1.21c,d) 

Again, for v = 1/3, it follows that v/v = k/k = 1, and É/ E and M/m are 
exactly the same as those estimated for the dilute distribution model with macro-
strain prescribed. Figure 5.1.5 shows the graph of the normalized overall shear 
modulus over a range of the void volume fraction f, for v = 1/4. For com-
parison, the corresponding estimates obtained for a dilute distribution of cavities 
are also shown (dotted lines). As is seen, the self-consistent method yields an 
estimate very close to that of the dilute distribution with the overall strain 
prescribed.  Indeed, for v = 1/4, it follows that M/m = (1 + 16f/5)-iR, 
(1 — 31)1(1 + f/5) , and (1 — 16f/5), for a dilute distribution with S prescribed, the 
self-consistent method, and the dilute distribution with E prescribed, respec-
tively. It is emphasized that these results are valid for only relatively small void 
volume fractions. 
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Figure 5.1.5 

Normalized overall shear mo-
dulus Ft / m for v = 1/4 
SC - self-consistent 
DD:O - dilute distribution with 

macrostress prescribed 
DD:E = dilute distribution with 

macrostrain prescribed 
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In a similar manner, one obtains the decremental overall stress, Vic, 
estimated by the self-consistent method for the case when the macrostrain 
E = e° is prescribed. The overall elasticity tensor C then becomes 

C = C — C : J, (5.1.22a) 

where J is obtained from (5.1.17a), by replacing j and k by Ft and , respec-
tively. For the present model (but not in general), H and J are related by 

H= J:C 1  or  J =H:C. 

Substitution of (5.1.22c) into (5.1.22a) gives 

C = C: (1(
4s) — H : C). 

(5.1.22b,c) 

(5.1.22d) 

This yields two equations for j and i , which are identical with those obtained 
from (5_1.20b). Indeed, multiplying (5.1.22d) by C-1 from the left-hand side 
and by C-1 from the right-hand side, it follows that 

C-1 = C-1 - H (5.1.22e) 

which is identical to (5.1.20b) if C
-1 

is identified with D. Hence the overall 
elasticity tensor C for prescribed macrostrains, is given by the inverse of the 
overall compliance tensor D for prescribed macrostresses. Therefore, the self-
consistent method yields a unique overall compliance tensor (or elasticity ten- 
sor) whether the macrostress or the macrostrain is regarded prescribed.6 In par- 
ticular, a unique set of overall i and are obtained from (5.1.21a,b), for a 
porous RIB. 

5.1.4. Effective Moduli in x3-Direction 

Finally, consider the effective Young modulus in the c3-direction, and the 
Poisson ratio in the c1,x3- and x2,c3-directions, É3 and v3, for a solid containing 

6 The term "self-consistent" is used in the literature to emphasize the existence of this inverse 
property; the method dates back to Bruggeman (1935). 
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circular cylindrical cavities, all parallel to the x3-direction. 

Assume that the stress field in the RVE is given by 

_ X33 in M 
033 — 0 in Wa (a = 1, 2, ..., n), 

(5.1.23) 

where s33 is constant, and all other stress components are zero. This stress field 
satisfies traction-free conditions at cavities on any plane normal to the c3-
direction. Since the stress field in M is uniform, the strain field there is uniform, 
given by 

eii _ e22 = — É s33, e33 = É s 3 in M. (5.1.24a,b) 

The boundary displacement at the cavities is compatible with that of the matrix, 
if the strain field in Wa is defined by 

e11 = e22 = -  s33, e33 = sM in Wa (a = 1, 2, ..., n). 

(5.1.24c,d) 

Therefore, denoting the volume average over V = M + ± Wa by <>1,  the 
a=1 

average stress and strain over V become 

<s33>v=(1
— f) sM (5.1.25) 

and 

< eii >v = < E22 >n = - É 033, < e33 >v = 033, (5.1.26a,b) 

with other components of < s >v and < e >v being zero. These results are 
exact. 

Since < s33 >n is the only nonzero component of < O >1, the ratio of 
<O33 >v to < e33 >v determines E3, and the ratio of < e11 >v = < e22 >v to 
< e33 >„ determines 13. That is, 

E3 ° < s33 > N = (1— f ) E, 
<e33>v 

(5.1.27a,b) 

Hence, E3 decreases in proportion to the volume fraction of the cavities, while 
13 remains the same as that of the matrix. In particular, when cavities reduce to 
slit cracks parallel to the x3-direction, it follows from (5.1.27a,b) that R3 = E, 
and 13 = v, that is, in linear elasticity, slit cracks parallel to the x3-direction do 
not affect the x3-stiffness, and, hence the corresponding stress-strain relation; 
see Isida and Nemat-Nasser (1987a,b). 
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5.2. EFFECTIVE BULK MODULUS OF AN ELASTIC BODY CON-
TAINING SPHERICAL CAVITIES 

In this subsection, the effective bulk modulus of a linearly elastic homo-
geneous solid containing microcavities is estimated. For simplicity, assume an 
isotropic matrix containing spherical microcavities, Wa, of radius a (a = 1, 2, 

n); see Figure 5.2.1. The bulk modulus of an isotropic elastic material is 
defined in terms of the Lame constants, l and m, by 

K=l+ 3m. (5.2.1a) 

The mean stress, s/3 = S. and the volumetric strain, e;; _ e, are then related by 

s = Ke. (5.2.1b) 

Consider the response of the RVE, subjected to the prescribed macrostress 
S _ 0°1(2), or to the prescribed macrostrain E = e°1(2).  First the overall bulk 
modulus is estimated, assuming a dilute distribution of microcavities, i.e., 
neglecting the interaction among them. Then consider the self-consistent esti-
mate of this modulus. 

Figure 5.2.1 

An RVE containing spher-
ical microcavities 

For a typical cavity Wa of radius aa, the field variables in the neighbor-
hood of Wa are assumed to be spherically symmetric; see Figure 5.2.2. The 
additional strain or the decremental stress is computed, using the spherical coor-
dinates (r, 0, hi) with the origin at the center of the cavity. Under the farfield 
stress s°1(2), the displacement components are 

Ur = u(r) = 32 °211 r+ 

4~ 
r2  , u0 = 0, u0 = 0, (5.2.2a--c) 

where a is the radius of the cavity. Since the unit normal n on aw~, coincides 
with the radial base vector er, the average strain for Wa, (5.1.8b), becomes 
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Figure 5.2.2 

A spherical cavity and 
spherical coordinates 

Jaw 140) dS = ~~ {awa ur(a)}, (5.2.3) 

where Wa = 4pa3/3, and aWa = 4pa2. Therefore, the additional volumetric strain 
due to the presence of cavities is given by 

e _ e' = K f (1 + 4E ) s°, (5.2.4a) 

where f is the void volume fraction. From (5.2.4a), the "dilute estimate" of the 
effective bulk modulus, K, is obtained when the macrostress is prescribed, 

• = {1+f  2(1
3(1 — v

-2v)) }
-t = 1  f  

3(1 v)  
+0(f2). (5.2.4b) 

K 	 2(1-

-

2v)  

If the macrostrain E = 0°1( 2) is prescribed, an infinite body subjected to 
the farfield stress given by K6°112) is considered. Then, by replacing s° with 
K e° in (5.2.4a), the corresponding additional volumetric strain due to the cavi-
ties becomes 

= f(l ± 4m)e°. (5.2.5a) 

From (5.2.5a) the effective bulk modulus, K,- is estimated for the prescribed 
macrostrain, as 

= 1 - f (1 + 4m ) = 1 f  
2(11— 2v) . 

(5.2.5b) 

Comparing (5.2.4b) and (5.2.5b), it is observed that the two expressions agree 
with each other to within the first order in the void volume fraction f. For 
v = 1/3, R/k = (1 3f)-1 for the case when the macrostress is prescribed, and 
i/k = (1 — 3f) when the macrostrain is prescribed. These are identical with the 
corresponding ./m and É/1? of (5.1.15) and (5.1.18); see Figure 5.1.4. As is 
seen, here again, the result of Theorem I of Subsection 2.5 is contradicted, 
revealing the limitation of the dilute-distribution model. 

The estimates (5.2.4b) and (5.2.5b) do not include any interaction among 
the cavities. To include this interaction for a random distribution of cavities, the 
self-consistent method may be used. Then, for the case when the macrostress is 
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regarded prescribed, (5.2.4a) is replaced by 

e° = 1 f (1 + 4m  ) s°, (5.2.6a) 

and instead Of (5.2.4b), it now follows that 

K — 1 f  2(1 1— 2v) 
(5.2.~b) 

which also requires an estimate of the overall Poisson ratio v. Similarly, a self-
consistent estimate of the overall bulk modulus can be obtained when the 
macrostrain is regarded prescribed. As pointed out in connection with 
(5.1.22a--e), the result is identical with that for the prescribed macrostress, i.e., 
with (5.2.~b). 

5.3. ENERGY CONSIDERATION AND SYMMETRY PROPERTIES OF 
TENSOR H 

The overall compliance tensor D and elasticity tensor C are defined, 
respectively, by (4.3.1) and (4.5.1). They are given for a linearly elastic RVE 
with microcavities, by (4.3.6a) and (4.5.5a). 

The overall quantities D and C may also be defined in terms of the total 
elastic energy stored in the RVE, in the sense that if the RVE is replaced by an 
equivalent linearly elastic and homogeneous solid, it must store the same 
amount of elastic energy as the actual RVE for the same macrostress, S = s°, 
when the overall stress is prescribed, or for the same macrostrain, E = e°, when 
the overall strain is prescribed. The two cases of prescribed macrostress and 
prescribed macrostrain are treated separately, starting with the former. 

Denote the macro-complementary strain energy function by W° = 
WC(S) = Wc(s°), when the macrostress is given by S = s°. From (2.5.17a), 

W°( S) = < w° > = V  w'(s(x; S)) dV, (5.3.1) 

where wc(s) is the complementary energy density function of the matrix 
material at point x. Since the RVE is linearly elastic and subjected to uniform 
tractions t° = n.s° on aV, 

2Wc(s°)=<s:e>=s°:<e>=s°:e 

= s° : (e° + Ý°) = s° : (D + H) : s°, (5.3.2) 

where definitions (4.2.1) and (4.3.3a), and expression (4.2.3) are also used. 
Hence, whatever the structure of the microcavities, only the symmetric part of H 
contributes to the stored elastic energy; note that the microstructure is fixed and 
no frictional effects are included. Therefore the definition of H given by 
(4.3.5b), is replaced by 
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Hükl = 4-f asz lay 2 (h;iu + hkl,J) dS dS. (5.3.3) 

The effective compliance of the RVE may now be defined as the constant 
symmetric tensor D with the property that, for any macrostress S = s°, the 
overall complementary energy density is 

W°( s°) =  s° : D : s°. (5.3.4a) 

Comparison with (5.3.2) shows that D is defined by 

D = D+H. (5.3.4b) 

In a similar manner, when the macrostrain is prescribed to be E = e°, 
from (2.5. 12a), the overall elastic energy density of the RVE becomes 

W(E) = < w > = 4
-f w(e(x; E)) dV. (5.3.5) 

Moreover, 

2W(e°) =<s:e>=<s>:e°=s:e° 

= (s° + Cs°) : e° = e° : (C — C : J) : e°, (5.3.6) 

where (4.4.7) and (4.5.3b) are used. Defining the overall effective elasticity ten-
sor, C, such that 

W(e°) = 2 e° : C : e° (5.3.7) 

for any prescribed constant strain e°, it is concluded from (5.3.6) and (5.3.7) that 

C=C—C:J, (5.3.8a) 

where C : J is required to have the following symmetry property: 

Cijrs Jrskl = Ciiirs Jrsy • (5.3.8b) 

5.4. CAVITY STRAIN 

When the macrostress is prescribed, S = s°, the expression (4.2.1) defines 
e° = D : s° which is the uniform strain in a homogeneous matrix with compli-
ance D subjected to constant stress s°. The additional strain ec due to the pres-
ence of cavities, is then given by (4.2.8), namely 

V fa 2 (°® u+uân) dS; (5.4.1a) 

note that n is the exterior unit normal of the cavity. The cavity may be regarded 
as an elastic continuum with zero elastic resistance. Then ~° becomes the 
weighted sum of the average strain over each individual cavity, i.e., 
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n   eC — S, V { Wa Iasz~ 2 (hâu+uâh) dS} 

- ± fa {  1  1 1 {oâu+(oâu)T} dV} 
a = I Wa 

W~ 
2 

where 

= SI xaxa, (5.4.1b) 

fa 
= na (5.4.1c) 

is the volume fraction of the ath cavity Wa, there are n cavities in V, and the 
Gauss theorem is used to obtain 

= J0 e(x) dV. (5.4.2) 

It is shown later on, how the average cavity strain ea relates to the transforma-
tion strain or the eigenstrain introduced by Eshelby (1957) for ellipsoidal inclu-
sions. Note in this connection that the result ~c = H : s° is valid for cavities of 
any shape in an elastic solid of any (finite or infinite) dimension, with H a con-
stant fourth-order tensor which depends only on the geometry and elastic prop-
erties of the matrix. Eshelby's results, on the other hand, are for an ellipsoidal 
inclusion in an infinitely extended elastic solid. 
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SECTION 6 ELASTIC SOLIDS WITH 

MICROCRACKS 

In this section, the general results obtained in Section 4 are specialized for 
application to linearly elastic solids which contain microcracks. Problems of 
this kind arise when one seeks to understand the overall response and failure 
modes of brittle materials such as ceramics, ceramic composites, rocks, and 
cement-like and related materials. A variety of microcrack arrangements are 
examined and the overall properties of the solid are estimated, using various 
averaging techniques. 

6.1. OVERALL STRAIN DUE TO MICROCRACKS 

In Subsection 4.2, the additional strain, s°, due to the presence of cavities 
is calculated; see (4.2.8). A crack is a cavity, one of whose dimensions is very 
small relative to the other two dimensions. For example, an elliptical crack can 
be regarded as an ellipsoidal cavity, the length of one of whose principal axes 
becomes very small in comparison with the length of the other two principal 
axes. Similarly, a penny-shaped crack can be regarded as a limiting case of a 
cavity in the shape of an ellipsoidal of revolution. In general, a crack is 
identified by two identical surfaces which are separated by the crack-opening-
displacement, representing the relative displacement of the corresponding points 
on the two identical surfaces. These surfaces are often called "crack faces". 
Figure 6.1.1 illustrates this for an elliptical crack. Here the "upper" surface or 

Figure 6.1.1 

Elliptical crack 
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the "upper" face of the crack is denoted by aw+, and the "lower" one by aw-. 
The exterior unit normal of the crack on aw + is denoted by n. Hence, the exte-
rior unit normal of the crack on aw - is — n. 

In general, the boundary aw of a typical ath crack in an RVE is divided 
into aw and aw; aw = aWá + aw. For a function f(x) defined on aw, 
the surface integral over the entire aWa can be reduced to the integral over aWá 
only, as follows: 

f  f(x) dS = f f(x+ ) dS+ f f(x)dS
aw 

—f aW~~ {f(x±)—f(x)} dS, 
(6.1.1) 

where f(x+) and f(x) are calculated at the corresponding points, x± and x -, 
on aw and respectively. 

Let aw, aw+, and aw- respectively denote the union of all crack sur-
faces, their "plus" or "upper" surfaces, and their "minus" or "lower" surfaces. 
Hence, aw = aw + + aw . The expression for the additional strain due to cracks 
becomes 

eC — 
 

i n 

V ~1 f aW" 2
{ h(c) âu(c) + u(c) âh(c) } dS 

a   

V aSi 
faW~~ 

{ 2
{h(c+)âu(c+)+u(c+)âh(c+)} 

— 2 {n(x+)® u(x-)+ u(c-)®n (x+)} } dS 

V a~~ fate + 2 {n(x+)®[u]( c+)+[u](c+)ân(x+)} dS 
a 

f a~  2 { n ®[u] + [ u] ân } dS, (6.1.2a) 

where n is the exterior unit normal of aw+, and [u] _ [u](x+) is the crack-
opening-displacement, COD, defined by 

[u] ° [u](c+) = u(x±)—u(x), (6.1.2b) 

where x± and x- are the corresponding points on the "plus" and "minus" faces 
of the crack. 
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6.2. OVERALL COMPLIANCE AND MODULUS TENSORS OF HOMO-
GENEOUS LINEARLY ELASTIC SOLIDS WITH MICROCRACKS 

When the macrostress for an RVE is prescribed, S = s°, an analysis simi-
lar to that in Section 4, immediately shows that the overall effective compliance 
tensor D of the cracked RVE with a homogeneous linearly elastic matrix of 
compliance tensor D, is given by (4.3.6), where the constant tensor H is now 
defined through 

V fast. 
2{n®[u]+[u]®n}dS= H:s°, (6.2.1) 

where s° is an arbitrary constant prescribed macrostress. This expression is 
valid when all microcracks are open. It is also valid when some microcracks are 
closed and undergo frictional sliding; Horii and Nemat-Nasser (1983). Indeed, 
it remains valid even if the microcracks exhibit resistance to the relative dis-
placement of their surfaces, as long as the COD is a linear and homogeneous 
function of the overall prescribed macrostress s°, i.e., as long as 

[u] = Kc(x) : s°, (6.2.2) 

for some linear operator K'(x) which is a third-order tensor; here x is a point on 
the "upper" or "plus" surface of the crack at which the COD is being measured. 

Similarly, when the macrostrain is prescribed, E = e°, under the condi-
tions stated above, 

° = 
V 

faW 

2 
{hâ[u]+[u]ân} dS =J :e°. (6.2.3) 

The overall elasticity tensor then is given by (4.5.5). In the remaining parts of 
this section a number of illustrative examples of some practical importance are 
given. As for the case of an elastic solid with microcavities, the overall moduli 
are obtained with: (1) the assumption that the crack distribution is dilute so that 
crack interaction may be neglected, and (2) the self-consistent approach which 
approximately accounts for the interaction effects.' 

The effect of a dilute concentration of randomly oriented ribbon-shaped 
and penny-shaped cracks on the overall moduli of a solid is examined by Bris-
tow (1960), using the elastic energy associated with a single crack in an 
unbounded uniform elastic matrix. Walsh (1969) considers a similar model with 
circular cracks, and also examines the influence of fluid filled cracks. The dilute 
distribution model has also been employed by Salganik (1973) to study the 
effect of elliptical cracks on the elasticity of cracked solids, by Griggs et al. 
(1975) who use circular cracks to model source regions associated with 
anomalous pressure/shear wave velocities encountered in earthquake events, 
and by Garbin and Knopoff (1973, 1975a,b) who address the effects of ran-
domly distributed circular cracks (both with and without fluids) on the overall 
elastic properties of the solid, using the zero-frequency limit of scattering elastic 

'See also Section 10 for the differential scheme and the double- and multi-inclusion methods, 
and Section 12 for a periodic distribution of microcracks. 
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waves. The self-consistent model (Kröner, 1958; Budiansky, 1965; Hill, 1965) 
is used by Budiansky and O'Connell (1976) who consider elliptical cracks and 
identify parameters which adapt the elliptic crack-results to other convex crack 
shapes; see O'Connell and Budiansky (1974, 1977). Related studies are by 
Hoenig (1979) who considers non-random distribution of cracks; Horii and 
Nemat-Nasser (1983) who examine the anisotropy induced by preferential crack 
opening and closing in the presence of friction; and Nemat-Nasser and Horii 
(1982) and Horii and Nemat-Nasser (1985, 1986) who study failure in compres-
sion, including axial splitting, faulting, and brittle to ductile transition under 
increasing confining pressures (see also Nemat-Nasser and Obata, 1988; and 
Nemat-Nasser, 1989); the effects of crack geometry and distribution on the 
overall elastic moduli is studied by Laws et al. (1983), Laws and Brocken-
brough (1987), and Laws and Dvorak (1987). A different method, called the 
differential scheme, has been used by Hashin (1988), and by Nemat-Nasser and 
Hon i (1990), where comparison of various techniques is provided. 

6.3. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING 
ALIGNED SLIT MICROCRACKS 

In this subsection two-dimensional problems are considered, i.e., plane 
strain, plane stress, and antiplane shear. The overall elastic moduli of an RVE 
containing microcracks are then estimated. All cracks are assumed to be planar 
and parallel to the c3-direction. Their intersections with the x i,x2-p1ane, there-
fore, are lines identifying the crack faces; see Figure 6.3.1. 

Figure 6.3.1 0 

A typical portion of a 
two-dimensional RVE 
containing microcracks 

xl 
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6.3.1. Crack Opening Displacements 

Consider a typical crack lying on the x i,x3-p1ane, from x1 = — a to x i = a, 
with 1x3 I < 00, in a homogeneous linearly elastic isotropic solid subjected to 
farfield uniform stresses G22 and s j = sz~. The crack opening displacements 
are 

[ue] =1a2 — c jZ  

where 

I c i I <_a(i= 1, 2), (6.3.1a) 

1 — n2 

1 k+ 1 _ g 
E' 8m 1 

E 

for plane strain 

for plane stress, 
(6.3.1b) 

with k = 3 -4v  for plane strain, and k = (3 -1)1(1 +v) for plane stress; see Fig-
ure 6.3.2. Modulus E' may be regarded as a nominal two-dimensional Young 
modulus. 

Figure 6.3.2 

Two-dimensional crack 

Similarly, for antiplane shear, with the farfield uniform stress s23 = s32 
applied to an infinitely extended solid containing a planar crack on 1x1 I <_ a, 

1 x3 I < oo, the crack opening displacement is 

1 xi 1 <_a. (6.3.1c) 

6.3.2. Effective Moduli: Dilute Distribution of Aligned Microcracks 

Consider a dilute distribution of microcracks all aligned and parallel to the 
x l-axis; see Figure 6.3.3. Throughout this section microcracks are parallel to the 
x3-direction as discussed before, but for conciseness the x3-configuration is not 
mentioned. The crack sizes and the location of their centers in the x j,x2-plane 
are assumed to be random. Initially the cracks are all closed. Under an overall 
compressive uniaxial macrostress S22 = - p° (p° > 0), applied in the x 2-direction, 
the cracks will have no effect, since they remain closed, transmitting the uni-
form normal compression. The overall Young modulus will be the same as that 
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of the matrix material, i.e., E. On the other hand, under tensile uniaxial macros-
tress, S22 = p° (p° > 0), applied in the x2-direction, the cracks will open and 
hence make a contribution to the overall macrostrain in the c2-direction. The 
solid then is more compliant in tension than in compression when loaded in the 
x2-direction. 

Figure 6.3.3 

Microcracks aligned parallel 

to the c3-acis 

n 

c2 

 

0 

    

  

xl 

 

The change in Young's modulus is now estimated for uniaxial tension in 
the x2-direction by considering a single crack in an infinitely extended solid sub-
jected at infinity to uniform tension S22 = sz2; see Figure 6.3.4. 

s22 

 

c2 

 

   

Figure 6.3.4 

A single crack in an infinitely 
extended solid subjected to uni-
form tension at infinity 

1  i 
 

1  1 
sz2 

For a typical crack W of length 2a0, it follows from (6.3. la) that 

a

" 
ezz = a~~ f _ aa [u2] dxl = ~~

 s22. (6.3.2a) 

Define f« by 

fa = Na a (a not summed), (6.3.3a) 
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where Na is the number of cracks of length 2aa per unit area in the xl,x2-plane. 
The parameter fa measures the density of the cracks of length 2aa; Budiansky 
and O'Connell (1976). When there are n sets of cracks, Wa, in an RVE, each set 
having its own length 2aa (ci = 1, 2, ..., n), the overall crack density parameter f 
is defined by 

2 f— S fa= S Naaa, 
a =1 a =1 

with the constraint 

= 
 

a = 1 

(6.3.3b) 

(6.3.3c) 

where N is the total number of cracks per unit area. When all cracks have a 
common length 2a, then f = N a2. 

The total contribution to the overall strain by the opening of the micro-
cracks which are all aligned in the xl-direction, now becomes 

c a° 2  1  ° Z~  
e22 N = Z a f -  [u2] dc1 = S (N a aa) Z J_ Lull dxi = f sz

o

r 
a= 1 an a= 1 as a~  

(6.3.2b) 

From (4.3.6), the nominal Young modulus2 É2, is obtained, 

EZ = { 1 + 2pf H(s22) }-1, E' 

or 

(6.3.4a) 

EZ 
= 4    (k+ 1)(1 +n) { 1 + 2pf H(s22) }-1, (6.3.4b) 

E   

where H(x) is the Heaviside step function, being zero if its argument x is nonpo-
sitive, and one if x is positive, and E is the overall nominal Young modulus in 
the c2-direction. Since the presence of the cracks all aligned in the xl-direction 
does not affect the nominal Young modulus in the xl-direction, E1 = E' which is 
the nominal matrix Young modulus. Therefore, with the microcracks aligned in 
the xl-direction, the response of the RVE is anisotropic. From (6.3.4a,b) and the 
definition of E , therefore, it follows that 

EZ = { 1 + 2p(1 — hn2) f H(s°2) }-1, (6.3.4c) 
E 

where h = 0, 1 for plane stress and plane strain, respectively. Thus, the results 
for plane strain are obtained from those for plane stress if f is replaced by 
(1 — n2) f. 

Assuming that the cracks are frictionless, the overall shear moduli M12 and 

ßt23, are estimated as follows. To estimate 1112 for a dilute distribution of micro-
cracks aligned in the xl-direction, consider the applied macrostress 

z Because of anisotropic overall response, ÉZ is defined by 1 / E = 1 / É 2 — hn2 / E, where 
= O for plane stress and h = 1 for plane strain. 
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S12 = S21 = s12, and obtain, using (6.3.1a), 

e~2 = S Na f 
ah  

1 [u i] dx1 = S (Na a~) lz f a~ 2[ui] dx1 = f ~, s~2• 
a= I aa 2 a=I aa 

(6.3.5a) 

Direct application of (4.2.3) now gives 

e1z = ei2+ßi2 = 1  siz +f  p(k+ 1) 
s i2• 

Then from X12 = s12/2~I12, it follows that 

1112 = {1± f   p(1+ 1)  }-1 = 1—f  p(k+ 1) ±0(f2). 
4 4 

(6.3.5b) 

(6.3.6) 

In a similar manner, 1 23 is estimated from s23 = f ps23/2m, arriving at 

123 = {1+ f p}-1 = 1—f p+0(f2), 
M 

where (6.3.1c) is used. Note that the overall shear modulus in the x1,x3-plane is 
not affected by the presence of cracks aligned in the xi-direction; hence, 
113=M. 

Summarizing the above results, observe that the matrix [Hab] for the plane 
problem is given by 

[Hab] _ f  p(k+ 1) 
4m 

0  0 0 
0 H(s) 0 
0 0  1 

(6.3.8a) 

   

when the overall stress is prescribed. Moreover, for the antiplane shear prob-
lem, 

[dab] = f r 1
1 

, (6.3.9a) 

again when the macrostress is prescribed. On the other hand, when the overall 
macrostrains are regarded given, an analysis similar to that presented in Subsec-
tion 5.1.2, readily shows that, for the plane problem, 

[Jab] = f  
p(k+ 1)  
4(k -1) 

0 0 0 
(k -3) H(s22) (k+ 1) H(s22)  0 

0 0 k-1 
(6.3.8b) 

   

where s22 = { m(k + 1) e22 — m(k — 3) ei }/(k —1). For the antiplane shear prob-
lem, 

G i 
[Jab]=fnLQ O

J
. (6.3.9b) 

(6.3.7) 

Although J for the plane problem is not symmetric, i.e., Jy iRa ~ J' j , the product 
C : J is symmetric: 
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[Cab][Jbc] — f  p(K+ 1)m  
4(k — 1) 2 

(k — 
3)2 H(s 2) — ( k — 3)( k+ 1) H(s 2) 0 

- (k — 3)( k+ 1) H(s22) (k+ 1)2 H(s22) 0 
0 0 (k - 1)2 

(6.3.8c) 

Indeed, if H and C are symmetric, then (C : J)T = (C :H : C)T = C : H : C = 
C : J. From (6.3.8) and (6.3.9), various components of [Cab] for plane and anti-
plane problems are obtained. For example, the overall shear modulus of plane 
problems, 1.1,2, is 

[112 = 1 f  p(k+ 1)  . 
4 ' 

the overall shear modulus of antiplane problems, M23, is 

X23 = 1— f p; (6.3.11) 

6.3.3. Effective Moduli: Dilute Distribution of Aligned Frictional Micro-
cracks 

The results of the preceding subsection show that the presence of friction-
less microcracks aligned in the x1-direction renders the elastic response of the 
RVE both anisotropic and history-dependent. The history dependence in this 
case refers to the response to uniaxial loading in the x2-direction, where, in ten-
sion, the value of the Young modulus is reduced due to the presence of cracks, 
compared with the Young modulus in pure compression. Furthermore, if uniax-
ial tension in the x2-direction is applied first, then the corresponding Young 
modulus for the superimposed incremental tension or compression in the x2-
direction will have a different value than in the case when uniaxial compression 
in the x2-direction is applied first, and then incremental loading or unloading is 
superimposed in the same direction. Because of the assumption of frictionless 
microcracks, the response to shearing is independent of the history, but of 
course, dependent on the direction of shearing. 

The history dependence of the response of an RVE containing aligned 
microcracks becomes more pronounced when the cracks are frictional. To illus-
trate this, let the coefficient of friction be denoted by h, and consider a dilute 
distribution of microcracks, all aligned in the x1-direction. Consider loadings of 
such an RVE, following different paths, all of which lead to the final overall 
macrostresses S11 = S22 = —p° and S12 = S21 = t° (p°, t° > 0). Furthermore, 
assume that 

C 

(6.3.10) 

M 
and Ft13 =  . As in the case of microcavities, Subsection 5.1, 1 12 given by 
(6.3.6) and (6.3.10), and m23 given by (6.3.7) and (6.3.11) agree only to the first 
order in the crack density parameter f. 
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t° < h p°. (6.3.12) 

Load Path I: As the first load path, first apply a small hydrostatic tension, 
S11 = S22 = s > 0, so that all the cracks are open. Then apply the shear stress, 
t°, which produces the shear strain, 12, given by 

12 =21 2m L2 ~° = Zm {1+f p(1 —v)} t°, (6.3.13a) 

where (6.3.5b) is used, and plane strain is assumed; for plane stress, a similar 
result is obtained when the corresponding value of k is substituted into (6.3.6), 
and the result is inserted in X12 = t° /2mi2• 

Apply a new uniform macropressure, — (p° + s), so that the final macros-
tress state is given by S11 = S22 = —p° and S12 = S21 = t°. The corresponding 
shear stress-shear strain relation is shown in Figure 6.3.5, and consists of the 
straight line OA1. 

Figure 6.3.5 

Shear stress-shear strain relation 

Now consider unloading by removing the macroshear stress t°. All the 
cracks remain locked under the action of macrocompression S22 = — p°. The 
stress-strain path then follows the straight line A1B1 whose slope is given by 2m, 
rather than 2m12. At point BI, a residual strain of 

X12 _ f p(1 —v) ~° (6.3.13b) 

is locked in the RVE. 

If the applied macropressure is removed, then the RVE will undergo an 
overall macroshear strain of the magnitude given by (6.3.13b). The area within 
the triangle 1A1B1 is half of the total elastic energy per unit volume, which is 
lost in this cycle by frictional sliding. 

Load Path II: Consider an alternative load path which starts from the origin in 
the stress-strain coordinates of Figure 6.3.5, but first, apply the uniform macro-
compression of magnitude p°, so that all cracks are locked in their initial state of 
zero COD. Then, the overall macroshear stress of magnitude t° is applied. 
Since t° is restricted in magnitude by (6.3.12), all microcracks remain locked. 
The overall response of the RVE to this shear stress of magnitude t° would be 
an elastic strain, 
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12 = 
Z~ 

t°. (6.3.13c) 

This corresponds to the straight line Olh in Figure 6.3.5. If the uniform 
macropressure is removed while the same uniform macroshear stress is main-
tained, the overall macroshear strain will increase to the value given by 
(6.3.13b), and the representative point in the stress-strain diagram will move 
from point Ah to point A1. If the macroshear stress is then removed, the path 
A10 will be followed. 

The above example has been used by Nemat-Nasser (1987) to illustrate 
the complexity of the response of elastic materials containing frictional micro-
cracks. This complexity increases manyfold, when the microcracks in addition 
to opening and closing, may also grow preferentially in response to the applied 
macrostresses; see Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser 
(1985, 1986), and Ashby and Hallam (1986) for several illustrations, including 
model experiments. 

6.4. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING 
RANDOMLY DISTRIBUTED SLIT MICROCRACKS 

6.4.1. Effective Moduli: Random Dilute Distribution of Open Microcracks 

Consider two-dimensional problems, where the unit normals of the micro-
cracks lie in the x1,x2-plane. Furthermore, assume that the distribution of these 
cracks is such that their interaction can be ignored in the estimate of the overall 
elastic moduli. For simplicity, consider the additional assumption that all the 
cracks are open and remain so for the considered class of loading. As was illus-
trated in Subsection 6.3.3, the effect of crack closure due to the applied loading 
can be quite complex, as illustrated in Subsection 6.4.5; see Hon i and Nemat-
Nasser (1983). 

To obtain the overall moduli for a random dilute distribution of micro-
cracks, consider a typical microcrack, Wa, lying in the xa-direction which makes 
the angle Qa with the fixed coordinate c1-axis. The unit normal of this crack is 
in the positive direction of the local c2 -axis. Hence, the xi ,xZ -axes attached to 
the ath crack are obtained by rotating the x i,x2-coordinate system by the angle 
Q about the center of the crack, Oa, in a counterclockwise direction; see Figure 
6.4.1. Suppose that the macrostress S = s° is prescribed. According to linearity 
(see Subsection 3.2), Ha can be defined such that the average strain due to the 
presence of a typical crack W~, is given by Ha : s°. Denoting the components of 
ha in the x a,x2 -coordinate system (the a-coordinates) by 1.21a~, it follows that 

f :, 2 (~;[úII +~i[ú;l) dxi = H i &, (6.4.1x) 

where all quantities are expressed in terms of components in the a-coordinates; 
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Figure 6.4.1 

ath crack and local 
a-coordinate system 

these components are designated by superimposed carets, e.g., s;° are the com-
ponents of the applied uniform macrostrefss S = s° in the a-coordinates. From 
(6.3.1a) it follows that 

H Hi H2 Hi z  ~ (6.42222 =  ,  !2!2 2121 2E' ,  

with all other components of Ha being zero, where E' is defined by (6.3.1b). 

To obtain the tensor H for the dilute random distribution of microcracks 
of various sizes, transform the components in the a-coordinates into the x1,x2-
coordinates, and integrate the results over all values of the crack orientation 
angle Qa, assuming a uniform distribution. Let Qa be the corresponding ortho-
normal tensor, transferring components in the a-coordinates into those in the 
c1,x2-coordinates. Denoting the unit vector in the x-direction by ea, define Qa 
by 

or 

Q«  (6.4.2a) 

ei« = Q«.e; = Q~`ej, (i = 1, 2), (6.4.2b) 

where the components of 
Qa in the c;,c2-coordinates, denoted by Q1, are, 

Q1' = cosE«, 

Q12 = — sin qa, 
Q = sinqa, 

Q22 = cosE«, 
(6.4.2c—f) 

and where Q; = Qa : (ei ®e~) = e; From (6.4.2a), the following identity is 
obtained: 

Q1 Qi = Q Qi = d (a not summed). (6.4.2g) 

In terms of Q;a and the overall crack density parameter f defined by (6.3.3b), the 
H-tensor is finally expressed as 
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H = H;iki e;®ei®ek®e i 

f  2p 
= 2n f o HPgrs ei°C ®eq ®ea ®e" d qa 

— ~ 
 f ~2p 

2p 0 Q1 QJ9 Qkr Q1s Hpgrs dqa } e; ®ei ®ek ®eb (6.4.3a) 

where the components of Qa depend on Q. Note that, although an individual 
microcrack Wa has its own Ha-tensor, the components of all Ha's in their own 
a-coordinates are given by (6.4.1b,c). 

Since the crack distribution is random, H is an isotropic tensor of the form 
(in two-dimensional space) 

Hjikl = h1 8;i did + h2 
2 

(d;k d&I + d;1 djk), (6.4.3b) 

where h1 and h2 are obtained from (6.4.3a) with the aid of (6.4.2g), as follows: 

Hii = 4h1 + 2h2 = f PPgq, 

H;; = 2h1 + 3h2 = f ~Pgrg. (6.4.4a,b) 

Substitute (6.4.Ib,c) into (6.4.4a,b), to arrive at 

4h 1 + 2h2 = f ~2222 = É' 

2h1 + 3h2 = f (I 22 + 214
1212) = f É, . (6.4.4c,d) 

Therefore, h1 and h2 are 

h1 = 0, h2 -f E,. (6.4.4e,f) 

In matrix form, H is given by 

1 0 0 
{Hab} = f ~• 0 1 0 (6.4.4g) 

0 0 2 

Since the overall compliance tensor is 

D = D+H, (6.4.5) 

the overall shear modulus, ii, becomes 

1 + f 
p(

4 1) }_1 — 1 f 
p(4 

1) +O(f2), { (6.4.6a) 

and the overall Poisson ratio, v, for plane strain and plane stress can be calcu-
lated from 

= {l+f  3p(k+1)  
}{1+f  

p(k+1)  }_i 
4k 4 
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— 1 f  p(1+ 1)(k -3) ±0(f 2), (6.4.~b) 4k 
where i = 3— 8 ji(v/É + n2/E) for plane strain and k _ (3 — n)/(1 +) for plane 
stress. For plane stress, the overall Young modulus, E, and Poisson ratio, v, are 

É 

 

= (1 + f p)
-1 

= 1— f p + O(f2), 

n 

 

= (I ±f p)-1 = I —f p–0(f2). (6.4.6c,d) 

Note that the Young modulus in the x3-direction coincides with that of the 
matrix, since all microcracks are parallel to the x3-axis. Note also that the 
overall inplane Young modulus for plane strain is given by 

É
= {1+f(1— n2)p}-1. (6.4.6e) 

Consider now the case when the macrostrain E = e° is prescribed. The 
average strain ~a contributed by the ath microcrack Wa then is 

~a = J : e°, (6.4.7a) 

where, as shown in Subsection 5.1.2, the tensor Ja is 

J« = ha : C. (6.4.7b) 

Therefore, if the dilute distribution of microcracks is un~form, from H given by 
(6.4.4), J is obtained, 

Jijkl = Hijmn Cmnkl 

= p(8 1) { 1  
dijdkl+(dik djl+ d01dik)}, (6.4.8a) 

or in matrix form, 

k+1 —( k-3) 0 
(k -3) k+1 0 (6.4.86) 

0 0 2(k — 1) 

Then, the overall elasticity tensor becomes 

C= C — C:J. (6.4.9) 

In particular, the overall shear modulus, Ft, and non-dimensionalized parameter, 
R, are obtained from 

m = 1  f  p(k+ 1)  
m 4 ' 

_ p(k+1)(k2 -2k +3) p(k +1) 1 
k — {1  f 4k(k -1) 

}{1 f  2(k -1) } 

= 1 f  p(k+1)(k -3) + 0(f2), (6.4.10a,b) 4k 
where = 3— 8 ~(v/É + n2/E) for plane strain and i  = (3 — v)/(1 ±) for plane 

[Jab] = f  
n(K+ 1)  
8(k -1) 
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stress. For plane stress, the overall Young modulus, E, and Poisson ratio, v, are 

É =  
l +v )(1—f  l p n){1-f p11+~22) }-1 = 1 —f p+0(f2) 

_ 
 

(1 —f t  
 
2P
—v2 

) { 1 —f    }-1 = 1—f p+0(f2). (6.4.10c,d) 
 1— v2 

As explained in Subsection 5.1.2, D and C, given by (6.4.5) and (6.4.9), are 
each other's inverse only to the first order in the overall crack density parameter 
f, i.e., 

: D = 1(4s) + 0(f2), and D : C = 1(4s) + 0(f2). (6.4.11a,b) 

6.4.2. Effective Moduli: Self-Consistent Estimate 

Suppose the distribution of microcracks in the x i,x2-plane is random, and 
it is desirable to include their interaction to a certain extent. As in Subsection 
5.1.3, the self-consistent scheme may be applied to estimate the overall compli-
ance D (or the elasticity tensor C) of the RVE. The resulting overall compli-
ance tensor then is isotropic, due to the random distribution of microcracks. In 
terms of the unknown overall shear modulus, 11, and non-dimensionalized 
parameter, i, H is expressed as 

HykI = f - 2 (d;k 8)1 + dii dik) = f 6t 1) (d;k dii + 8116_0, (6.4.12) 

where i = 3 — 8 ji( n/E + n2/E) for plane strain and iX = (3 — v)/(1 + v) for plane 
stress. Then, the overall compliance D satisfies 

D = D + H, (6.4.13a) 

or in matrix form 

1  
8j1 

k +1 k -3 0 
k -3 k +1 0 

0  08 

1 
8m 

k +1 k-3 0 
k-3 k +1 0 

0  08 
+f  p(k+1)  

8m 

1 0 0 
0 1 0 
002 

      

(6.4.13b) 

Since D, D, and H are isotropic tensors, there are only two linearly independent 
relations among the three equations in (6.4.13b). From these, a system of two 
equations is obtained for the two unknowns j and x 

k+1 k+1 p(k+1) 1 _ 1 p(k+1) 
8 —  8~ 

+f  

8M mR 
— 

M 
+ f  

4m (6.4.13c,d) 

Then, i and i are given by, 

=(1—f P) {1+ f  
P(4 

3)  }-1 = 1-f  
n(4 

1) + 0(f2), 

= {1 — f  p(k -3)  } { 1+f  p(k-3)  }_i 
k 4k 4 
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= 1 —f  
P(V+ 3) 

+0(f2). (6.4.14a,b) 

In particular, for plane stress, the effective shear modulus, , Young modulus, 
E, and Poisson ratio, v, become, 

= (1 —f p) (1 f  
1+

)-i -1 f  I n p +O(f2
), m n 

~ = 1 —f p, 

= I —f t. n (6.4.14c—e) 

Figure 6.4.2 shows the variation of the overall shear and Young moduli with 
respect to the crack density parameter f, for dilute distributions (6.4.6,10) and 
self-consistent estimates (6.4.14). The Poisson ratio v is set equal to 1/3. It 
should be noted that in the self-consistent estimate, the overall elasticity tensor, 
C, which satisfies 

C=C—C:J=C—C:H:C, (6.4. 15a) 

is in fact the inverse of D given by (6.4.13a), i.e., 

C=D1. (6.4.1 Sb) 

See Subsection 5.1.3 for a detailed derivation. 
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Figure 6.4.2 

Normalized overall shear, / M, and Young's, E / E. moduli for dilute random 
distribution of slit microcracks, all parallel to the x3-axis; v = 1/3 
SC = self-consistent 
DD:O - dilute distribution with macrostress prescribed 
DD:E - dilute distribution with macrostrain prescribed 
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6.4.3. Effective Moduli in Antiplane Shear: Random Dilute Distribution of 
Frictionless Microcracks 

Next, consider the antiplane shearing of the RVE, where, again, the unit 
normals of the microcracks lie in the x i,x2-p1ane. The lengths and orientations 
of the microcracks in the x1,x2-plane are random such that the overall shear 
moduli for the x1,x3-p1ane and the x2,x3-plane are the same, i.e., 413 = 1123 = 13• 
The procedure outlined in Subsections 6.4.1 and 6.4.2 for two-dimensional 
inplane problems will be followed to estimate the overall shear modulus j13 for a 
dilute distribution of frictionless microcracks, and then the self-consistent esti-
mate will be worked out. 

Consider a typical microcrack Wa and the corresponding xi ,c2-coordinate 
system (the a-coordinates) as defined in Subsection 6.4.1; see Figure 6.4.1. The 
c3-axis coincides with the c3-axis. Suppose that the macrostress S = s° is 
prescribed such that its nonzero components in the x1,x2-coordinates are si3 
(= s31) and S23 (= s32). Then, the contribution to the average strain by a typical 
crack Wa is given by (6.4.1a), i.e., 

Ea= 
a

a~ 

2 J 

G 
 as 2 

{n®[u]+[u ]®n} dx ~~ = H« : s0. (6.4.16a) 

From (6.3. lc), the components of Ha in the a-coordinates, 14, k1, are easily deter-
mined, 

112323 = 113223 = 112332 = 113232 = 4, 
(6.4.16b) 

with all other components being zero. Recall that the tensor Ha depends on the 
orientation of the microcrack Wa, but its components in the corresponding ci-
coordinates are constant and independent of the crack length; they are given by 
(6.4.1~b). Then, in transforming from the a-coordinates to the x1,x2-coordinates 
through (6.4.2), the H-tensor for a uniform (random) distribution of cracks is 
given by (6.4.3a), i.e., 

H = H 11 ei ®e i ®e k ®e i 

2~ 
_ { 2p f : Q Q19 Qkr Qls 1pgrs dQa } e,®e J ®e k ®e I, (6.4.16c) 

where Qa is the angle of the *a-axis with respect to the x1-axis. 

Since the crack distribution is random, H is isotropic. For the antiplane 
shearing considered here, the nonzero components of H are 

111313 = 113113 = 111331 = 113131 = H2323 = 143223 = 142332 = 113232. (6.4.17a) 

Taking advantage of (6.4.3h) and using (6.4. I~b), now obtain 

I1.11.Í = 
41

1313 = f 11 rq = 2f ~2323 = f 2~ 
(6.4.17b) 

and hence 

H1313 = H2323 = ... = f 
8m 

. (6.4.17c) 
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In matrix form, the H-tensor for this antiplane shearing can be expressed by 

[Habl = f 2m 

1 0 
01 (6.4.17d) 

  

Then, the corresponding overall compliance matrix takes on the following form: 

1  
m3 

Therefore, 

113 
m 

~ 0 

~~ 

m

1 

the overall 

= (1+f 2)-1 

1 0 
01 

shear 

= 1 — 

+f P 
 i0 O, 

modulus, M3 = 1113 = 1t23, is obtained, 

f 
2 

+ O(f2). 

(6.4.17e) 

(6.4.18) 

Next, suppose that the macrostrain E = e° is prescribed such that its 
nonzero components in the x i,x2-coordinates are 013 (= e1) and e23 (= e30 ). The 
average strain due to the microcrack Wa is given by (6.4.7a), i.e., 

—
ga = : eo (6.4.19a) 

where, in terms of Ha defined by (6.4.1), the Ja-tensor for the antiplane shear 
becomes 

Ja = Ha : C = 2MHa. (6.4.19b) 

Therefore, since the dilute distribution of microcracks is random, in terms of H 
given by (6.4.17c), the J-tensor is equal to 2m , and its nonzero components in 
the x iR,x2-coordinates are 

11313 = J2323 = ••• — f 
' 

or, in matrix form, 

(6.4.20a) 

7, l o 
1an1 = f

[ 
 
2 0 1 

The relevant components of the overall elasticity tensor, C, are now given by 

M3 

Therefore, 

G1 0 
o i 

the 

= m 

overall 

1 01 
01 

shear 

~i 1 01 
(6.4.20c) 

_
f 2 i0 1JJ  

modulus, M3 (= 4 13 = 423), becomes 

(6.4.21) 

The overall shear modulus 43, given by (6.4.18), and that given by (6.4.21) 
agree with each other only up to the first order in the overall crack density 
parameter f. 

Finally, consider the case when the distribution of microcracks in the 
x1,x2-plane is random (and still dilute), and their interaction effects are to be 

(6.4.20b) 
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included through the self-consistent approach. The resulting overall compliance 
tensor D is isotropic in the x1,x2-plane. The overall shear modulus M3 

(= M13 = M23) will now be estimated. In matrix form, the H-tensor is expressed 
in terms of M3 by 

LHabi = f  2  [ (6.4.22a) 

and the relevant components of the overall compliance tensor, D, become 

1 
1 ii i 

[1 
01 n_  

m3 0 1J 
— s 1 

—
f2m3 

1 0 
0  (6.4.22b) 

  

Therefore, the overall shear modulus, 43, is 

-! -
3 = 1 — 2 . (6.4.23) 

As is seen from (6.4.21) and (6.4.23), the self-consistent estimate of the overall 
shear modulus coincides with the estimate obtained from a dilute distribution of 
microcracks when the macrostrain is regarded prescribed; see Figure 6.4.3. It is 
emphasized that, like the dilute distribution assumption, the self-consistent 
method is valid only for small values of the crack density f. However, the dilute 
distribution assumption leads to results in violation of Theorem I of Subsection 
2.5, whereas the self-consistent method does not. Indeed, unlike the dilute dis-
tribution assumption, the self-consistent approach yields the same overall 
moduli, whether the macrostress or the macrostrain is regarded prescribed. 
Since the relevant components of the J-tensor are 

[Jacl = {Habl[Cbc] = f 2 Lp 
011 = 

[Jac], (6.4.24) 

the corresponding components of the overall elasticity tensor, C (= C — C : J), 
coincide with those given by (6.4.20c). 

Figure 6.4.3 

Normalized overall shear 
modulus, 1.13 / 4, for dilute 
distribution of slit cracks, 
all parallel to the c3-axis 
SC = self-consistent 
DD:O = dilute distribution with 

macrostress prescribed 
DD:E - dilute distribution with 

macrostrain prescribed 
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6.4.4. Plane Stress, Plane Strain, and Three-Dimensional Overall Moduli 

Since the slit cracks are parallel to the x3-direction, having an otherwise 
random distribution, the overall response of the RVE is transversely isotropic, 
with the x1,x2-plane being the plane of isotropy. The formulation in terms of M 
and k, in Subsections 6.4.1 and 6.4.2, permits direct evaluation of the overall 
moduli without specific reference to whether plane stress or plane strain condi-
tions are assumed; see also, Subsections 3.1.4, 5.1.1, and 8.3. For plane stress, 

= (3 —v)/(1 +v), and the results illustrated in Figure 6.4.2 and relations 
(6.4.14) are obtained. It may be instructive to compare these results with the 
corresponding estimates of the overall moduli obtained under plane strain con-
ditions. This is done below for the self-consistent model. 

z 
Since, for plane strain, k = 3 -4v  and = 3— 8 m (É + 

É 
), from (6.4.13) 

it follows that 

- - = (1 —f p)(1 —f pn)-1, 

~
= (1 —f p)(1 —fin 2)-1, 

~
= (1 —f p)(1 —f pv2)-1. (6.4.25a—c) 

The first two equations in (6.4.25) have been obtained by Laws and 
Brockenbrough (1987) using a different procedure. Results (6.4.13a--d) unify 
the necessary analyses, and lead to the interesting conclusion that3  (E = v/n for 
both plane stress and plane strain. 

It is reasonable to expect that the overall moduli in the plane of isotropy, 
i.e., in the x1,x2-plane, should not depend on whether plane strain or plane stress 
conditions are employed in order to calculate these overall parameters; see also 
Subsection 8.3.1. The difference between the corresponding expression in 
(6.4.14c--e) for plane stress, and in (6.4.25a—c) for plane strain, therefore, is a 
manifestation of the modeling approximation. This difference, however, is 
small enough to be neglected. Indeed, essentially the same estimates are 
obtained even if the effect of anisotropy associated with the x3-direction is alto-
gether neglected. In this case, i  3 — 4v and it follows that (Horii and Nemat-
Nasser, 1983) 

E (1—f p)(1+ v—f2 pn)  
E (1 +v)(1—f pn)2  ' 

• = (1 —f p)(1 —fin n) 1. (6.4.26a,b) 

In Figure 6.4.4, É / E and v /v, given by (6.4.25b,c) and (6.4.26a,b), are plotted 

3this equality holds for the self-consistent model and the dilute distribution model with 
overall stresses prescribed. It does not hold for the dilute distribution model with overall strains 
prescribed. 
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Figure 6.4.4 

Comparison of normalized overall Young's modulus É/ E and Poisson's ratio 
/ n, for slit microcracks (parallel to the x3-axis), obtained for plane strain, as-

suming transverse isotropy, (6.4.25b) and (6.4.25c), and isotropy, (6.4.26a) and 
(6.4.26b); n = 1/3 

for plane strain. As is seen, the differences are insignificant, especially for the 
overall Young modulus .4 

6.4.5. Effect of Friction and Load-Induced Anisotropy 

When pre-existing cracks are closed and undergo frictional sliding under 
overall compressive loads, the overall response may become anisotropic even 
when the matrix material is isotropic and the distribution of pre-existing cracks 
is random. This anisotropy is load-dependent, often affected by the load history. 
Hence, in general, the corresponding overall shear and bulk moduli may depend 
on the history of the applied overall hydrostatic pressure and overall shear 
stresses. 

Unlike an open crack, the deformation of a frictional crack involves a 
complex set of conditions. To simplify the analysis and yet illustrate the basic 
phenomenon, assume that: 1) the normal and shear stresses transmitted across 
the crack surfaces are constant; and 2) the crack sliding is governed by a simple 
friction law. Let the crack shown in Figure 6.4.1 be closed, and consider the 
following governing conditions: 

4I he corresponding results for /l are identical, given by (6.4.25a). 
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if 1021 1 < — h s22, then 

if 1 s21 I > - h s22, then 

[u ~~ ] = [u2] = 0, s 2 = s22 

and s2i = s21, 
&2C1 =- h sgn 

(s21) s22 
and [u2] = 0, 

(6.4.27) 

where s22 and &21 are the normal and shear stresses transmitted across the crack 
surfaces, h is the coefficient of sliding friction (regarded to be a positive con-
stant), and sgn (x) is 1, 0, or —1, depending on whether x is positive, zero, or 
negative. 

Let the applied loads be as in Subsection 6.3.3, i.e., uniform pressure, 
sp1 = s22 = — p°, accompanied by pure shear, 01 2 = = t° (p°, t° > 0). Con- 
sider the sliding displacement of closed cracks. Since the stress field is sym-
metric with respect to the lines x l = ± c2, consider the range — p/4 < Qa < 3p/4. 
In the ath coordinate system, the macrostresses are 

= — p° + t° sin2Q, s22 = — p° — t° sin2Q, 

X12 = t° cos2Q,,. (6.4.28) 

Hence, slip conditions (6.4.27) determine the behavior of the ath crack, as fol-
lows: the ath crack is 

open 
closed with slip for 
closed without slip 

n/2> I Q — p/4 I >n/4 — Q~ 
n/4 — Q', > I qa — n/41 > n/4 — QV 
n/4 — QS > I Q~, — n/41 >0 

 

where Q and 0S are defined by 

sin2E', = — R, (I Q° 1 < p/4) 
(6.4.29a,b) 

cos20, = h + sin20,), (10S 1 < p/4). 

Hence, all cracks are closed if p°/ t° > 1. 
In view of (6.3.1), the crack opening displacements for the closed crack 

with slip are given by 

4Na2 -5Z (sr2+ hs22)/E for & >0 (0,,<p/4) 

4'!a2_ i? (si2 — hsi2)/ E' for &12 < 0 (Qa > p/4), 
[úß] = 

[ú2] = 0, (6.4.30a,b) 

where = sz2• For this closed crack with slip, the Ha-tensor defined by 
(6.4.1) is given by 

H1212 = 2E' ' 
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a H i222 = 

p 
' 

h E 
p 
E' h 

for Qa < p/4 

for Q~, > p/4. 
(6.4.31a,b) 

Therefore, the H-tensor defined by (6.4.3) is 

1 Q` 1 Q 
Hi i i i = H2222 = f E' 

{ 2[q] 
p/a 

± 1 — sin4 q — h cos4q]Qc 

1 Q° 1 a 
H1212 = f 4E' { 

4[Q] p/a + 
2

[40+sin4q+h cos4q]Q` }, 

e, 
Hi i22 = H2211 = f E, { — 8 [4q — sin4 q — h cos4q]Q }, 

Q, 
Hi ii2 =H22i2= f 2pE' { [cos2q]-p/4 

}' 

Q,. 8, 

H1211 = H1222 = f 2E  {[cos2q]-p/a + [h sin2q]Q }, (6.4.32a--e) 

where, again, f = a21. 

When the macrostrains are regarded as given, an analysis similar to that 
presented in the preceding subsections shows that the J-tensor is given by H : C. 
Unlike in the previous cases, however, neither C : J nor J is symmetric. Indeed, 
C :J is given by 

(C: J) i i i i = (C: J)2222 

— f 64(k1) 
E2  {4(4 +(k — 1)2) [Q] ~p/4 

+  (k 
21)2 

[4Q — sin4 q — h cos4q]Q }, 

(C:7) i2i2 f  64(k ~2 )  
{4[0] Qp/4 + 

1 [4Q+ sin4q+hcos4q]~'}, 

(C: J)1122 = (C: J)22 i i = f 
(k + 1)2 E' {4(4—( k — 1)2) [8]  64(k — 1)2 

-p/4  

(k —  
1)2 [4Q — sin4 q — h cos4q] Qc 1 

(C: J)1112 = (<: 7)22i2 — f  
(k+ 1)2E' [cos2q] 
16(k — 1) -p/4' 

e 

Q~ 
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(C: J)1211 = (C : J)1222 = f (k+ 1)2 E' { [cos2q] 
e  

+ [h sin2q]q ~ . 
16(K — 1) -p/4 q , 

(6.4.33a--e) 

To simplify the discussion, define the overall shear and bulk moduli by 

E12= 
Z~ 

si2, 61i+ E22= 
2K 

(sii+sU2). (6.4.34a,b) 

Figure 6.4.4 shows the variation of jI and K with respect to the load parameter, 
p°/ t°, for indicated values of the crack density, f. All cracks are closed if 
p°/ t° = 1, and are open if p°/ t° << — 1. As p°/ t° decreases, some cracks open 
up, and hence i decreases with decreasing p°/ t°. The influence of the applied 
shear stress on the overall volumetric stiffness is revealed by considering the 
principal stresses, — p° ± t°. As t° increases, one of the principal stresses 
becomes tensile, causing a large number of suitably oriented cracks to remain 
Open. 
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Figure 6.4.4 

Normalized overall bulk and shear moduli for dilute distribution of closed 
cracks; S = macrostress prescribed and E = macrostrain prescribed 

Next, consider the self-consistent method which accounts for crack 
interaction in a certain manner. Let the ath crack be embedded in a two-
dimensionally anisotropic solid, with the yet-unknown overall compliance ten-
sor, D. For an open crack under the farfield stress s°, the COD's are 

[~i] = 2]a2 — c~~ Diiii {(aib2+a2bi) 6z2+(bi +b2) s~2}, 

[~2] = 2'a2 
— zi D2222 (

a~~ + b~)(az + Rz ) 
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c [ {b1(a + b) + b2(a +b?)} si2+(aib2+a2b1) á~2] , (6.4.35a,b) 

where a1, a2, b j, and (32 ((3 i, (32 > 0) are given by li = a i ± tbi and l2 = 
a2 ± -R2, which are the roots of the characteristic equation, 

Diiii 
l4-41

)1112 l
3

+2 (91122+
21

)1212) l2-4D2212 l+ D2222 = 0; (6.4.36) 

see Sih, Paris, and Irwin (1965), and Section 21. 

Assume that the sliding condition (6.4.27) holds for this anisotropic case. 
If the crack is closed and undergoes sliding, the transmitted normal stress, s22, is 
computed from (6.4.35), as 

X22 _  { bi(ai + b1) + b2(a? + bi) } &i2 + (11132 + a2bi) &i2  
< 0, (6.4.37) 

b1(a2+b2)+b2(ai +bi) — h sgn(si2)(a1b2+ a2bi) 
and the resulting slip is 

[ú1] = 
2']a2— Xi Di 11 {(a ib2+ a2bi) (& 2 - 2) 

+ (bi + b2) (si2+ H sgn (&?2) s22)}. (6.4.38) 

As is seen, the symmetry with respect to the c1 = – c2-lines does not hold, due 
to material anisotropy. 

With the aid of (6.4.36) and (6.4.38), the -tensor can be computed. 
The results are summarized as follows: 

(a) for an open crack, 

~a  P  
[   b1   +  b2  

2222 = a~ +b~~ az+Rz 

222 = 112C4212 = 2 P (aib2 +a2b i) D1111, 

H 212= 4 P (b1 + b2)  iiii 

with the other ~ v vanishing; 

(b) for a closed crack without slip, i.e., when I s12 I < — h s22, 

~~ =O; 

(6.4.39a—c) 

(6.4.40) 

(c) and for a closed crack with slip, i.e., when I sp2 I > — hsi2 and si2 < 0, 

~i222 = 2 P{ (aib2+0(2131) 

{(aib2+a2bi) — hsgn (ái2)(ß i + b2)}{bi(az+ßi)+ß2( a~~ +b~)}  j 
J 1111' 

D2222+ 

{ bi(az + b2 ) + b2(a~~ + b~~ ) } — hsgn (s~2)(ai b2 + a2bi) 
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Hi222 = 4 n
ll ~

(b i + N2) 

{(a i ß2+ a2ß i) -hs8n (si2)(ß i + ß2) }(a i ß2+ a2ß i)  
{bi(az +ßz)+ b2(a~~ +b~)} -hs8h(s~2)(aib2+a2bi)~ 

D 
 liii' 

(6.4.41) 

with the other 14, kI being zero. Once I1 is determined, the overall compliance 
tensor D is computed from, say, (6.4.13). Note that the overall shear and bulk 
moduli defined by (6.4.34) are expressed in terms of this anisotropic overall 
compliance D, as 

1 °  — 
= -2(D i2ii+ D i222)

To
+ 4 D i2i2> 

K =Diiii +D2222+
2D>>22-2 (D1122+D2212) j.. (6.4.42a,b) 

As shown in Subsection 6.4.2, the overall elasticity tensor C obtained under the 
assumption of macrostrains prescribed, coincides with the inverse of the compli-
ance tensor D. 

It is seen that Ha and hence D are not symmetric when sliding occurs on 
closed frictional cracks, unless the coefficient of friction, h, is zero. For illustra-
tion, consider two extreme cases, one with h = O (sliding with no frictional loss) 
and the other with h » 1 (no sliding). Figure 6.4.5 shows ii and K as functions 
of f for several extreme loading conditions. Here, also, the effect of the loading, 

p°/ t° or t°/p°, is clearly seen. 5 

CRACK DENSITY PARAMETER 

Figure 6.4.5 

Normalized overall bulk and shear moduli for dilute-distribution of closed 
cracks; self-consistent method 

5 See Mao and Sunder (1992a,b) who examine polycrystalline ice, and Ju (1991) who presents 
damage models for microcracked solids. 
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6.5. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING 
ALIGNED PENNY-SHAPED MICROCRACKS 

In this subsection the overall elastic moduli of an RVE consisting of a 
homogeneous linearly elastic isotropic matrix material which contains penny-
shaped microcracks, are estimated. Similarly to the case of the two-dimensional 
problems examined in Subsections 6.3 and 6.4, the overall response of the RVE 
may be isotropic or anisotropic, depending on the distribution of microcracks. 
This and related issues are brought into focus through several illustrative exam-
ples. 

6.5.1. Crack-Opening-Displacements 

Consider a penny-shaped crack of radius a, lying in the x i,x2-p1ane with 
its center at the origin of the coordinate system. The unit normal n of the posi-
tive crack face, therefore, coincides with the unit base vector e3. Under the 
action of farfield stresses, s l3 = s31, s23 = s32, and s3 3 > 0, the COD's are 

[u1] = '/a2 — r2  
p~(2 — N)) si3' r<—a(i= 1,2), 

[u3] _ '/a2 — r2 8(1 
 pEn2) s33, r < a, 

where r2 = x i + x2 ; see Figure 6.5.1. 

(6.5.1a,b) 

Figure 6.5.1 

A penny-shaped crack 

6.5.2. Effective Moduli: Dilute Distribution of Aligned Microcracks 

Consider a dilute distribution of penny-shaped microcracks, all parallel to 
the x j,x2-plane, as shown in Figure 6.5.2. The crack sizes and the locations of 
their centers are assumed to be random. This means that the overall response of 
the RVE is transversely isotropic, with the x i,x2-p1ane defining the plane of iso-
tropy. Hence, there are a total of no more than five independent overall elastic 
moduli. Furthermore, when the cracks are closed, the Young modulus in the 
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x3-direction, i.e., E3, will be the same as the Young modulus of the isotropic 
matrix, E. Under uniaxial tension in the x3-direction, however, É 3  < E, since, 
due to the crack opening displacement, the RVE is more compliant for such 
uniaxial tensile loading. If it is further assumed that the cracks are frictionless, 
then the overall moduli will have the form given by (3.1.13), with the exception 
that 

= E  in compression 
< E in tension. 

(6.5.2) 

When the microcracks are frictional, the response will be history-dependent, 
similar to the case discussed in Subsections 6.3.3 and 6.4.5. 

Figure 6.5.2 

A dilute distribution of 
penny-shaped microcracks, 
parallel to the xi,x2-plane 

To estimate the overall moduli for the dilute distribution of penny-shaped 
microcracks aligned normal to the x3-axis, let N~, be the number of cracks of 
radius a per unit volume of the RVE. Then the additional overall strain due to 
the presence of microcracks, s', can be expressed as 

e V~ 3 e = Li fae
a 
, fa= Na ~a ~ 

a =i 

ea _ 

 

a  
f  

+ 2 { 
n  ® [u] + [u] ® h } dS, 

« 
(6.5.3a—c) 

where fa measures the density of cracks with radius ate, and the total crack den-
sity f and the total number of cracks per unit volume, N, respectively are 

f = S f, 
a = 1 

n 
=  

a1 
(6.5.3d,e) 

Direct calculation, based on (6.5.1) and (6.5.3c), readily yields 
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e 3 = 16(1—
n2) 

 s~~  3E(2 — n) 
(i = 1, 2), 

a _ 16(1 — n2
) 

the crack 

000 
000 
0 0 1 
0 0 0 
000 
000 

two non 

] 
J 

0 0 0 
000 
001 

1 00 
010 
000 

(6.5.4a,b) 

radius ate. The matrix [Hab] is obtained 

0 0 0 
0 0 0 
0 0 0 (6.5.5a) 2/(2 — n) 0 0 
0 2/(2 — n)0 
0 0 0 

-trivial parts, 

(6.5.5b) 

(6.5.5c) 

(6.5.5d) 

e33 

Hence, ~a is 
from (6.5.4a,b), 

[Hab] = 

or, when [Hab] 

[Hab] = 

it follows that 

[Háb~ ] 

[Haa9 ] 
— 

3E s33 

independent of 

f 16(1 — n2) 
3E 

is divided into 

L [Ha(b) ] [0] 
[0] [Haa b> 

f 16(1 — n2) 
3E 

32(1— n2 
) 

3E(2 — n) 

From this and (4.3.6), it is seen that the overall compliance tensor D is 
transversely isotropic. Then the overall elastic moduli are 

E — 1' V 1' m 1 
' 

(6.5.~a--c) 

where the notation É = E1 = EZ, n =112, and m = M12 is used for the overall 
elastic moduli in the x1,x2-plane; and 

É 3 = { 1 +f  
16(1_12) }_1 = 1 — f  

16(1_12)  

±0(f2), 

n = {1+ f  
16(1_2)(n2-1) 

}{1+f  16(13 n2 )  }_i 

= 1 — f  
16(1_12)(1+112) 

±0(f2), 3n(2 — n) 

3 = { 1 +f  16(1— n)  }-1 —1 f  16(1
3(2— n

—
n)

)  +0(f2), (6.5.~d--f) 
 

where the notation 13 = V13 = V23 and 43 = 413 = 423 is used; see Subsection 3.1 
and (3.1.13). 

When the macrostrains are regarded prescribed, the overall elasticity ten-
sor is given by (4.5.5). The tensor J in (4.5.5) relates to the tensor H by 
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J = H: C, for the model of a dilute distribution of microcracks. To calculate J, 
in view of (6.5.5), set 

[Jáb) ]  [0] [Cáb) ] [0] 6 5.7a,~ [Jab] 
= [0]  [Ja 1]' [Cab] _ [0] [Ca]] 

) 

Then, 

[J ' ] _ [Háb) ][C1 ], [J) ] _ [Háb) ][Cbó ]. (6.5.7c,d) 

Since [Cab] is isotropic, it follows that 

[Ca i ] — (1 +n)(1 — 2 n) 

1 — n n n 
n 1 —v n 
n  n 1—v 

  

[Ca] = 
2(1E n) 

1 0 
01 
0 0 

(6.5.8a,b) 

   

Thus, in view of (6.5.5), 

   

[1a ]  
16(1 — n)  
3(1 -2n) 

0 0 0 
0 0 0 
n v 1—v 

[Ja]=f  
16(1—v)  
3(2—v) 

1 00 
0 1 0 
0 0 0 

    

(6.5.9a,b) 

Although [J a ) ] is not symmetric, the product[Ca
) ] [Jec> ] is symmetric, 

[Cáb~][Jbó ]=f 16(1 — n)E  
3(1 +v)(1 —2 n)2 

[Cabi ] [Jabi ] = f  
8(1—v)E  

3(1 ±v)(2—v)  

n2  n2  v(1—v) 
n2 n2 1(1—i) , 

n(1 — n) 1(1 —i) (1 — n)2 

1 00 
0 1 0 
000 

Note that, since 

(C:Jh212= 
2 

{(C:J)l111 — (C:Jh1221 =0, 

(6.5.9c,d) 

(6.5.9e) 

([Ca ][J1 ])33 = {([Ca~) ][J1ió ])11 — ([Caj][Jtió ])12} = 0, (6.5.9f) 

the tensor C : J is_transversely isotropic. From (6.5.9c,d) and (4.5.5), various 
components of [Cab] are obtained. For example, the overall shear moduli, 

= M!2 and j3= M13= M23, are 

M_ = 1, m3 - =1 f  16(1— n)  
m M 3(2—v) 

(6.5.10a,b) 

   

6 Note that the matrix representing a tensor is denoted by the corresponding italic letter; see 
Sections 3 and 15 for details. 
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These shear moduli are equivalent to those given by (6.5.6c) and (6.5.6e), up to 
the first order in the crack density parameter f. 

For the self-consistent model, the H-tensor is to be computed for a 
penny-shaped crack in an unbounded transversely isotropic elastic solid, with 
the crack normal to the axis of elastic isotropy. This problem is not examined 
here; see Section 21. The self-consistent results, however, are given by Hoenig 
(1979) using a different method; see also Laws and Brockenbrough (1987). 

6.6. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING 
RANDOMLY DISTRIBUTED PENNY-SHAPED MICROCRACKS 

6.6.1. Dilute Open Microcracks with Prescribed Distribution 

A typical penny-shaped microcrack is defined by its radius, aa, and its 
orientation given by the unit normal, na = n. The components of n in fixed 
Cartesian coordinates may be expressed by 

n1 = sin0 cosO, n2 = sin0 sini, n3 = cosY; (6.6.1) 

see Figure 6.6.1. When there are a very large number of microcracks with radii 
ranging from am to aM, and with unit normals ranging over all orientations, a 
density function, w = w(a, Q, Y, may be introduced such that the number of 
cracks per unit volume with radii in the range of a to a + da, and orientations in 
the range of (Q, 0) to (8+ dl, 0 + d0), is given by w(a, 8, 0) sin0 da dq d. 
Then the total number of cracks per unit volume, N, is 

1 aM 
r
2p P 

N 4- f am J o f8 
w(a, Q' Y) siny da dq d. 

Figure 6.6.1 

Distribution of radii and unit 
normals of penny-shaped cracks 

(6.6.2a) 
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Note that sinY dq d0 defines the elementary solid angle with orientation (Q, Y). 
With Q ranging from 0 to 2p and Y ranging from 0 to p, the corresponding unit 
vector traces a unit sphere. 

When the crack size distribution is independent of the crack orientation, 
the density function may be expressed as 

w(a, 0, hi) = wr(a) w0(q, Y), (6.6.2b) 

and it follows that 
a
1 

N = G J  w(a) da, 1 = 4n J o Io wo(Q, Y) sin0 dq d. (6.6.2c,d) 
am 

To estimate the elastic moduli of an RVE with a prescribed dilute distri-
bution of penny-shaped microcracks, first consider a typical microcrack, Wa, of 
radius as and orientation (Q, 1a), and calculate the corresponding Ha-tensor. 
Then integrate the result over all possible radii and orientations, using the 
corresponding weighting function w(a, Q, 0). Let 04% c2 , x3) be the local rec-
tangular Cartesian coordinate system (the a-coordinates) for the microcrack Wa, 
where the unit base vectors in the a-coordinates are e~~ (i = 1, 2, 3), and the ori-
gin Oa is at the center of W. The crack W~, lies in the xi ,c3 plane. Its unit nor-
mal n (=e3) is in the c3-direction. Since the crack is penny-shaped, the x1-
direction in the xi,x2-plane may be chosen arbitrarily. For simplicity, choose the 
xa-axis parallel to the x1,x2-plane, i.e., on the intersection of the x i,x2- and the 
crack-plane. This uniquely determines the a-coordinates; see Figure 6.6.2. The 
angle between the x2- and the xi -axis is Q,, and the angle between the c3- and 
the c~-axis is ya. Therefore, the orthogonal tensor Qa, defined by (6.4.2a), has 
the following components in the c; coordinates: 

Q«_— sin q«,  Qii = cos,  Q3 i= 0, 

Q iz =— cos ya cosqa, Qz2 = — cos Ya sin8, Q32 = sinya, 

(g3 = sinYa cosqa, Q2a3 = sinya sinqa, Q33 = cosya. (6.6.3a--i) 

Figure 6.6.2 

A typical microcrack 
in a-coordinates 

xl 
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Suppose that the macrostress S = s° is regarded prescribed. From the 
contribution to the overall strain by the single crack Wa, the corresponding 
tensor is defined by 

sa = aá Jai + 1 { n ®[u] + [u] un } dS = Ha : 0• (6.6.4a) 

The components of Pa in the local a-coordinates can be read off (6.5.4a,b). 
Denoting these components by H , obtain 

H3333 = 
16(1 _n2

) 
3E 

a a a a —  
Hi3i3 = H3~3 = Hi33i = H3i3i  

(i = 1, 2; i not summed), (6.6.4b,c) 

with other components being zero. It should be noted that: (1) the Ha-tensor 
depends on the crack orientation (Q, 'a), but is independent of the crack size 
aa; and (2) the components of 

Ha 
in the corresponding ct-coordinates are con-

stant, given by (6.6.4b,c). The components of Ha in the c;-coordinates, there-
fore, are functions of the orientation angles 0a and Ya. 

Since the distribution of microcracks is prescribed (i.e., a crack density 
function w(a,E, Y) is given), to obtain the H-tensor, integrate the Ha-tensor over 
all possible radii and orientations, using the corresponding crack density func-
tion: 

1  aM 2p p 
H 41 Ja J o Jo a

3 Ha(0, q) w(a, q, Y) sin da dq d. (6.6.5a) 

In particular, when the crack size distribution is independent of the crack orien-
tation, from (6.6.2b) and (6.6.4c), H becomes 

a1 
H = {I a3 w~(a) da} ~;~w 

a 

x 
 { 4

2P P 
p Jo Io e;a®et a®ek®eia w 0(8, hi) sinY dq dY}, (6.6.5b) 

where the base vectors e are functions of Q and hi, defined by (6.6.3a--i). 

Next, consider the case when the macrostrain E _ e° is prescribed. For a 
typical niicrocrack Wa of radius as and orientation (q. Ya), define a tensor Ja 
by (6.4.7a), which is related to the tensor Pa through 

Ja = ha : C, (6.6.6a) 

where the components of Ja in the c; coordinates are functions of 0a and Y. In 
the corresponding a-coordinates, however, these components (denoted by J) 
are, 

I3333 = 
16(1 —V)2 J33ii = 

16n(1 — V)  

3(1-2n) 3(1-2n) ' 

Ji3i3 = J3ü3 = Ji33i — J3 1 8(1 +n) (i = 1, 2;i not summed), (6.6.~b--d) 
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with other components being zero; see (6.5.9a) and (6.5.9b). Similarly to  
the components J  are independent of crack size. In a manner similar to 
(6.6.5a), the tensor J is given by 

1 am 
r
2p P 

 

4p Ja J o 1o a
3 J (Y' q) w(a, q, Y) sinY da dq d = H: C. (6.6.7a) 

In particular, when the crack size distribution is independent of the crack orien-
tation, from (6.6.2b) and (6.6.6b—d), J becomes 

aM 
= 1 

Ja 
a3 w(a) dal Jijkl 

1 4 
 2p P 

x ~ !o fo er®e ra®eka®era w0(8, hi) sinhi dq d}, (6.6.7b) 

where, again, e and w0 are functions of 8 and hj. It should be noted that, unlike 
Ha and H, Ja and J may not be symmetric with respect to the first and last pair 
of their indices, i.e., JykI # Jkly. However, the tensors C : Jr' and C : J, which 
determine the overall elasticity tensor C, have this symmetry; see Subsections 
6.3.2 and 6.5.2. 

6.6.2. Effective Moduli: Random Dilute Distribution of Microcracks 

Consider a simple case where: (1) the distribution of microcracks is 
dilute; (2) the crack orientation distribution is random; and (3) the crack size 
distribution is independent of the crack orientation; Figure 6.6.3. Then, the 
crack orientation distribution function, w0(8, Y), given by (6.6.2b), becomes 

w0(8, hi) = constant = 1. (6.6.8) 

Figure 6.6.3 

A random dilute distribu-
tion of microcracks 
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Furthermore, the H- and J-tensors, respectively defined by (6.6.5b) and (6.6.7b), 
become 

H; ki { 4p J0 
jo e(8, Y) âeia(q, Y) âek"(q, Y) â e(q, 

Y) siny dq d}, 

J = J~ ki { 4p J o f o e a(Q, Y) âej"(0, Y) âe(q, Y) ®e i°`(q, 
Y) siny dq d}, 

(6.6.9a,b) 

where f is the crack density parameter, defined by 

a3 wr(a) da, (6.6.10a) J am 

and the dependence of the base vectors e on Q and hi is explicitly indicated. It 
should be noted that due to the dilute distribution of microcracks, f « 1. In par-
ticular, when the crack size distribution is uniform, from (6.6.2c), WC(a) becomes 

w(a) = constant —  . 
aM —a m 

The crack density parameter f then is 

aM 
f = N 

J  
a3 da = 

4 
(a~,3,i + aM am + aM am + am) aM — a m a m 

When all microcracks in the RVE have the same radius a, f becomes 

f=Na3. 

(6.6. l Ob) 

Due to the assumption of a random distribution of cracks, the overall 
response of the RVE is isotropic. Hence, H and J may be expressed as 

H = h1 1(2~ ®1(2)±h 2 1(4s), J = j1 1(2)®1(2) +J21(4s), (6.6.11a,b) 

where (h1, h2) and (j1, j2) are unknown functions of the crack density parameter 
f. Therefore, the resulting overall elasticity and compliance tensors, C and D, 

are isotropic and can be expressed as 

= vÉ  1(2) ® 1(2) +  
E  1(4s), 

(1+v)(1-2v) 1+v 

D = — É 1(2) ®1 (2) +  1 +  v_ 1(4s), (6.6.11c,d) 

where the overall Young modulus, É, and Poisson ratio, v, depend on the crack 
density parameter f, as well as on the moduli of the isotropic matrix material. 

First, H is obtained and the overall elastic moduli of the RVE are 
estimated, when the macrostress S is prescribed. Using the rotation tensor Qa 
defined by (6.4.2a) or (6.6.3a--i), express the components Hiikl of H in the x- 
coordinates in terms of H . Then use suitable summations of H;ki to obtain 
(6.6.11a), given below; see-also Subsection 6.4.1. Since 
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(1(2)®1 (2))::(ea®eja®ek"®e~a) = d,j dku 

1(as)
::(e;aâeia ®e k"®e ) = 2 (dekdji+ diidji ), (6.6.12a,b) 

and 

(1(2)®1 (2))::(1(2)®1( 2)) = ddjj = 9, 

(1(2) ®1(2))::1(4s) = 1(4s)::(1(2)® 1(2)) _ dIj d~i = 3, 

1(4s)
::1(4s) = (d;j d~~ + d1 djj) = 6, (6.6.12c--e) 

where :: denotes fourth-order contraction, it follows that fourth-order contrac-
tions of H, (6.6.9a) and (6.6.11a), yield 

H::(1(2)®1( 2)) = f~;j = f 33 = 9h1 +3h2, 

H::1
(4S) 

= f 2 (Hijij = f (H3333 + 2Hi"313 + 2H223) 

= 3h1 + 6h2. (6.6.13a,b) 

Substitution from (6.6.4b,c) for components ~; now leads to the following set 
of equations for unknowns h1 and h2: 

9h1+3h2—f  16(1-12)  
3E 

3h1 +6h2 = f{  16(1 
_n2) 

+  32(1 _n2) 
3E 3E(2 — n) 

Hence, 

(6.6.13c,d) 

16v(1-12)  1 h~ __ — f  
45(2—i) E ' 

h2 = f  32(1 —1 2)(5 — n) 1 
45(2—i) B ' (6.6.13e,f) 

In matrix form, H is 
r10-3n — n — n 0 0 0 

—1 10-3n — n 0 0 0 

= 
f 16(1 — n2) 

[H ab~ 
— n 
0 

— n 10-3v 
0 0 

0 
4(5 — n) 

0 
0 

0 
0 45(2 — i )E 

0 0 0 0 4(5—i) 0 
0 0 0 0 0 4(5—i) 

(6.6.13g) 

From (4.3.6) and (6.6.11d), the overall Young modulus, É, and Poisson ratio, v, 
are 

— {1+f  16(1-12)(10-3n)  }_1 
= 

1  f  16(1— n2)(10 -31)  +0(f2), 
45(2 — n) 45(2 — n) 



0 0 

0 0 

0 0 

2(5—i) 0 

0 

0 

0 

0 
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n = {1+f  16(1-12)  } {l+f  16(1-12)(10-3v)  }_ I 
n 45(2—i) 45(2 — n) 

= 1 f  
16(1—v2)(3— n)  

+ 0(f2), 
15(2— n) 

and the overall shear modulus, ii = E/2(1 +v), becomes 

— {1± f   32(1— 
)(n) 

n)  
}_ I = 1 f  32(I — )(5) 

n)  

(6.6.14a,b) 

(6.6.14c) 

Next, J is obtained and the overall elastic moduli of the RVE are 
estimated when the macrostrain E is prescribed. In view of 

(1(2) ®1 (2)) : (1(2)®1( 2)) = 31(2)®1 (2)
, 

(1(2) ® 1(2)) : 1(4s) = 1(4s) : (1(2)®1(2)) = 1(2) ®1 (2), 

1(4s) : 1(4s) = 1(4s), 

obtain 

(6.6.15a--c) 

H: C =
I   

16(1— n2 
)  {  i1(2) ® 1(2)±2(5 _i)1(4s)} 

45(2 — n)E 

{  E  
{  

v  
1 +n  — 2n 1(2)®1( 2)+1

(4s)

}} 1   

=  16(1— n) {  3i(3 —v) 1 2
® 1 2 ±2(5_i)1 4s)}, (6.6.15d) 45(2—i)  1-2i 

or in matrix form 

{dab} — f  16(1 —v) X 
45(2—i) 

10 —13 n + n2 3n(3 — n) 3n(3 — n)  
1-2v 1 -2v 1-2v 

3n(3 — n) 10 — 13 n + n2 3n(3 — n)  
1-2n 1 -2n 1-2v 

3n(3 — v) 3n(3 — v) 10 —13 n + n2 
1-2n 1 -2n 1-2v 

0 0 0 
0 0 0 0  2(5—i) 0 
0 0 0 0  0 2(5—i) 

(6.6.15e) 

Then, it follows that 

C:J= f 16(1 —i)E { n(19 -16n+ i2) 1(2) ® 1(2) ± 2(S _i)1(4s)I. 45(1 )(2 ) 
(1-2i)2 

(6.6.15f) 



c { 1  f  32(1— n) 5 — 2 n + 8n2 — 3 n3  

45(2— v) 1 -2i 
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Therefore, the overall elastic parameters, É, v, and ii, are, 

E — {1 f  32(1— n)(5 — n)  } {1  f  16(1—v) 5(2+3 n — n3)  
E 45(2—v) 45(2—v) (1+ n)(1 -2v) 

— 1  f  16(1 — n2)(10 — 3 n) + 0(f2), 
45(2 — n) 

n _ 16(1— n)(19 -16n +n2) 
n — {1  f 

45(2— n)(1 -2n) } 

c { 1  f  32(1 — n) 5 — 2 n + 8n2 — 3 n3  
}_i 

45(2—i) 1 -2" 

= 1 -f  
16(1-1/2)(3 — n) +0(f2), 

15(2—i) 

= 1—f  32(1 — n)(5 — n)  
45(2— i) 

These overall elastic moduli, E, v, and i, agree with those given by (6.6.14a--c), 
up to the first order in the crack density parameter f. 

6.6.3. Effective Moduli: Self-Consistent Estimates 

Suppose that the interaction effects are to be included to a certain extent. 
Assume that the crack orientation and size distribution are random, with size 
distribution being independent of orientation. Then, the RVE is isotropic. The 
self-consistent scheme may be applied to estimate the overall elastic moduli, as 
follows. 

As discussed in Subsections 5.1.3 and 6.4.2, in the self-consistent method, 
a typical microcrack W~, is embedded in a homogeneous isotropic elastic solid 
which has the yet-unknown overall moduli, say, Young's modulus, É, and 
Poisson's ratio, y. Then, the Ha- and Ja-tensors defined by (6.6.4) and (6.6.6), 
are replaced by Ha and J", by substituting É and v for E and v. Ha or J C is then 
integrated over all possible crack sizes and orientations, to arrive at 

1
a1 aM r2p 

(
P 

4~ Jam , o Jo 
a3 ha(Y' q) w(a, q, Y) siny da dl d, 

aM 2p 
r
rP 

J 4~ Jam J o Jo a3 J
° ~(Y, q) w(a, q, hi) siny da dl d. (6.6.17a,b) 

According to the self-consistent method, J" = ha : C, and hence J = 
H: C. This relation between H and J leads to the equivalence of the overall 
elasticity and compliance tensors, C and D; Subsections 5.1.3 and 6.4.2. Hence, 
it suffices to consider the overall compliance tensor D, in order to obtain the 

(6.6.16a--c) 



v = V±  16V(1—v2)  
É  E 45(2—v)É ' 

1 +1 _ 1+n +f  32(1—v 2)(5—v)  
E 45(2—) 

From (6.6.18b,c), a non-linear equation for v results 

= { — f  16(1 2)(~o_3)  
} {1 — f  16(1—v 2)  }_1  

45(2—) 45(2 — n) 

or 
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overall elastic moduli, E and v. Since the crack orientation distribution is ran-
dom and the crack size distribution is independent of the orientation, H is given 
by (see (6.6.9a) and (6.6.11a)) 

H = H'i   { 4~ o f o 
e."(0

, Y
) ®ei«(0, Y) âe, (0, Y) âei'(0, hi) sinhi dq d}, 

= i  j(2) ® ~(2) ±j 2 I(4s), (6.6.17c) 

where, from (6.6.13e,f), h1 and h2 are determined by replacing (E, v) by (E, n). 
Then, H becomes 

H = — f  16 (1 2)  1 1(2) ®1 (2) + f  32(1 2)(5 — n) 1 1(4s) 
45(2—) E 45(2—v)  E 

Since the overall compliance tensor D is equal to D + H, from the 
coefficients of 1(2)®1( 2) and 

1(4s), 
obtain the following set of equations for É and 

n: 

(6.6.18b,c) 

(6.6.18d) 

f _ 45(n — n)(2 — v) (6.6.18e) 
16(1 —)[1 On —(1 + 3v)] • 

Then, in terms of V, the overall Young modulus, E, and the overall shear 
modulus, , are given by 

~~ _ 1  f  16(1— n2)(10-3n)  
E 45(2 — n) 	' 

_ {1 — f  16(1— n2)(10-3n) } 1+n  
m 45(2— n) 1 +n ' 

= 1  f  32(1— n)(5 — v) (6.6.18f,g) 
45(2 — n) 

These results agree with those first obtained by Budiansky and O'Connell 
(1976) using a different method. Since the leading term in the expansion of Wi 
with respect to f is 1, it follows that 

É _ 1 f  16(1— v2)( 10 — 3 n) + 0(f2
), E 45(2 — n) 

n_ = 1  f  16(1— n2)(3 — n)  ±0(f2) n 15(2—i) 

(6.6.18a) 
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= 1-f  32(1-n)(5-n)  ± 0(f2). 
m 45(2- n) 

(6.6.18h-j) 

Figure 6.6.4 shows the graphs of the overall moduli, E and v, with respect to the 
crack density parameter f; the self-consistent estimates, (6.6.18), and the esti-
mates obtained from a dilute distribution, (6.6.14) and (6.6.16), are displayed. 
Here, for completeness, the overall modulus, K, is also reported, 

K - 1  f  16(1-V2)  
K 9(1-2v) 

This follows from the definition of the bulk modulus and (6.6.18f,g). 

(6.6.18k) 
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CRACK DENSITY PARAMETER 

Figure 6.6.4 

Normalized overall shear, 1 / M, Young's, E / E, and bulk, K/ K, moduli, and 
Poisson's ratio, v/v, for random dilute distribution of penny-shaped micro-
cracks; v = 1/3 
SC = self-consistent 
DD:S = dilute distribution with macrostress prescribed 
DD:E = dilute distribution with macrostrain prescribed 
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The procedure outlined in this subsection may be used to estimate the 
overall moduli of an elastic solid containing randomly distributed open elliptical 
microcracks. Problems of this kind have been considered by Budiansky and 
O'Connell (1976), following a different procedure. These authors show that, for 
elliptical microcracks of a common aspect ratio, b/a = constant, the self-
consistent model leads to the following overall moduli: 

*=1-f 32(1-n){1+ 3T(b/a, v)}, 
45 4 

É
= 1-f  45  (1 — v2){3+T(b/a, v)}, (6.6.19a,b) 

where v is the solution of the nonlinear equation, 

__ 45(n - v)   f 
16(1 

_2){2(1  + 3n) - (1- 2n)T(b/a, v) } ' 
(66 19c) 

and T is defined by 

T(b/a, v) - k2F(k) { R(k, v) + Q(k, v) } , k = (1 + b2/a2) 1/2, 

R(k, n) - { (k2 -) F(k) + v(b/a)2E(k) }-1 , 

Q(k, v) - { (k2 - (b/a)2) F(k) - v(b/a)2E(k) }-1, (6.6.19d-g) 

where F(k) and E(k) denote the complete elliptic integrals of the first and second 
kind. The crack density parameter, f, for this problem is defined by 

f=  2pR
< 

A2 2 (6.6.19h) 

where A = pab is the area and P = 4pF(k) is the perimeter of the elliptical crack. 
Budiansky and O'Connell conclude that the variation of the effective moduli 
with the crack density parameter f defined by (6.6.19h), is insensitive to the 
values of the aspect ratio b/a, and indeed, with this definition of f, these moduli 
may be represented to within a few percent by Equations (6.6.18f,g,k). In view 
of this conclusion, one may consider equivalent penny-shaped cracks of an 
effective radius á, obtained by equating the expression for f given by (6.6.19h) 
to the corresponding expression for penny-shaped cracks of a common radius á. 
This leads to 

~ _ {  pab2  
}1/3 

2E(k) 
(6.6.19i) 

Thus, the dependence of the results on the aspect ratio b/a for all cracks may be 
relaxed, as long as the elliptic crack orientations remain random and uncorre-
lated with their size and aspect ratios. This issue has been further examined by 
Laws and Brockenbrough (1987) who show that knowledge of the aspect ratio 
b/a is essential for defining correct families of equivalent penny-shaped cracks, 
by illustrating that the radius of the equivalent penny-shaped crack is sensitive 
to the aspect ratio, as is also evident from the Budiansky and O'Connell result 
(6.6.19i). 
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6.7. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING 
PENNY-SHAPED MICROCRACKS PARALLEL TO AN AXIS 

In the preceding subsections, cases were considered where the overall 
response of the RVE satisfies some symmetry conditions due to a particular dis-
tribution of microcracks. In Subsection 6.5.2, microcracks parallel to the c1 ,c2-
plane render the overall compliance and elasticity tensors transversely isotropic, 
while in Subsections 6.6.2 and 6.6.3, the random distribution of microcracks 
makes the overall response isotropic. In this subsection, another particular dis-
tribution of microcracks is considered, which renders the the overall response of 
the RVE transversely isotropic. Suppose that all microcracks are parallel to the 
x3-axis with their unit normals which lie in the xl,x2-plane, having a random dis-
tribution; see Figure 6.7.1. Then, due to the symmetry in the x1,x2-plane, the 
overall elastic response of the RVE is transversely isotropic, with the c3-axis 
being the axis of symmetry. The transverse isotropy induced by randomly dis-
tributed microcracks parallel to the x3-axis, and the transverse isotropy induced 
by microcracks parallel to the x1,x2-plane (or perpendicular to the x3-axis), are 
compared later in this subsection. 

As in Subsection 6.5.2, the distribution of the microcracks is assumed to 
be dilute, and the distribution of the crack sizes is also assumed to be indepen-
dent of that of their orientations. Then, since the unit normals of the micro-
cracks are uniformly distributed in the x1,x2-plane, the crack orientation distri-
bution function w0(8, hJ) is independent of Q. It is given by 

c ~,c2 — plane 

Figure 6.7.1 

Microcracks parallel to the x3-axis 
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w(8, y) = 2 d(0- 2 ), (6.7.1) 

where d is the Dirac delta function. From (6.7.1) and (6.6.9a,b), the H- and J-
tensors are obtained, 

fzp 
H H,~kI { 2p J o e'(0, 2)®e i"(Q, --)®e 1 (8, 2)®e ia(Q, --)d8 }, 

(zp 
J J,~kRi { 2~ J o ea(8, 2)®e ja(q, 2)âe1 (8, --)®e(8,2) d q 1, 

(6.7.2a,b) 

where f is the crack density parameter defined by (6.6.10a). 

From (6.6.3a--i), the components of the coordinate transformation tensor, 
Qa(q, p/2), are 

Qf'(e, 2) = - sinq, 

Q(8, 2 ) = q, Q2(0, 2 ) = 0, Q(8, 2) = 1, (6.7.3a-i) 

Qf(8, 2) = cosO, Q(8, 2) = sinq, 
Q3(8, 2 ) = 

O. 

Since eta = Q;a e;, the integrands in (6.7.2a,b) are expressed in terms of 0, and 
the components of H and J in the c; coordinates are obtained. 

On the other hand, if advantage is taken of transverse isotropy, H can be 
obtained without having to integrate (6.7.2a). Since the x3-axis is the axis of 
symmetry, the components of H in the x;-coordinates (denoted by H;ik1) can be 
expressed in terms of five unknown parameters, say, h; (i = 1, 2, ..., 5), which 
depend on the crack density parameter f and the matrix elastic moduli E and v, 
as 

H1111 = H2222 = h1, H1122 = h2, H1133 = H2233 = h3, 

H3333 = h, 

and also 

H1313 = H2323 = hs, (6.7.4a--e) 

H1212 = 2(Hiiii -Hii22) = - -(h1 -h2) (6.7.4f) 

and Hykl = Hjiu = H;J1k = HJ;1k, with other components being zero; see (3.1.13). 

From (6.6.12a,b), it follows that 

= f ~;aj, H1 = f 11 . (6.7.5a,b) 

Since e;a(0, p/2) . e3 = 1 for i = 2 and 0 for i = 1 or 3, 

H::(e;®e;®e3®e3) = HH33 = f1:1 2, 

H::(e;®e3®e;®e3) = H133 = fH2, 

Q2(8, 2 ) = cosO, Q(8, 2 ) = 0, 
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H::(e3 ®e3 ®e3 ®e3) = H3333 = f ~zzzz. (6.7.5c--e) 

Now, substitute (6.7.4a-f) and (6.6.4b,c) into Hj}ki and 1141, respectively, to 
obtain a set of equations for the unknowns h, (i = 1, 2, »., 5), as follows: 

2h1 +2h2 +4h3 +h4 - f  16(1 -12)  
3E 

3h1 -h2 +h4+4h5 = f  16(1-12)(4-1)  
3E(2 - n) ' 

h4 +2h5 = f  8(1- n2)  
3E(2 - n) ' 

2h3 + h4 = 0,  h4 = 0. 

Hence, 

h1 = f  2(1- 1/2)(8 - 3n) 1 
3(2-i) E ' 

(6.7.5f j) 

h2 = - f  2n(1-n2) 1 
3(2-n) ~' 

(6.7.5k-o) 
_ z 

hs = 0, ha = 0, hs = f E ' 

When the RVE is subjected to uniaxial tractions in the x3-direction, i.e., 
when only the macrostress component S33 is nonzero, the open microcracks 
parallel to the x3-axis do not contribute to the overall strains. This physical 
observation implies that HH33 = 0 for i = 1, 2, 3, and hence both h3 and h4 are 
zero; see (6.7.5m,n). From (4.3.6), the overall compliance tensor D is 
D = D + H which leads to the following overall transversely isotropic elastic 
moduli for the solid with microcracks: 

= {1 + f  
2(1-

12)(
8-3n) }_1 = 1  f  2(1-i2)(8-3i) ± 0(f2), E 3(2-i) 3(2-i) 

= {1 + f  2(1- n2)  } {1+f  2(1-1/2)(8-3n)  }_~ 
3 3(2-i) 3(2-i) 

- 1  f  2(1 -12)(7 + 0(f2), 
3(2-i) 

= {1 + f  
4(1- n)(4-n)  

}-1 = 1  f 
4(1- n)(4-n) 

± 0(f2), m 3(2-i) 3(2-i) 
(6.7.~a-c) 

where É, n, and  are the overall Young modulus, Poisson ratio, and shear 
modulus in the x i,x2-plane; and 

É 3 
- i = n ' 

~3 = {1 + f  
8(1 - i)  )-! = 1 

f  
8(1 - n) + 0(f2), 3(2-i) 3(2-i) 

where 13 = v13 =123 and 1.L3 = 1113 = m23; see (3.1.13). 

(6.7.~d-f) 
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Next, consider the J-tensor. As shown in Subsections 6.3.2 and 6.5.2, 
even though both H and C are transversely isotropic, J, given by H : C, may not 
be transversely isotropic. However, the tensor C : J = C : H : C is transversely 
isotropic, and the components of C : J satisfy relations similar to (6.7.4a—f). 
Hence calculation of C : J follows the steps (6.7 .5 a—i) outlined for H. 

In this subsection, however, J is computed by direct matrix calculation. 
Using the same notation as (6.5.5b) and (6.5.7a), denote the matrices of H and J 
by 

[Ha4;~ ] [0] 
1 

[Jai [0] 

1 [1ab] 
= [0] [h~g) ]  ' [Jab] = [0] [312))11 ' 

where [Hai9 ] and [Ha9 ] are 

(6.7.7a,b) 

[hi.!)]  ] = f  
2(1 — n2)  
3(2 — n)E 

8-3v —v 0 
—v 8-3v 0 
0  0 0 

  

8(1_12) 
3(2 — n)E 

20 0 
02 0 
0 0 4— n 

(6.7.7c,d) 

   

From J=H:C, 

[JW] = [Hai ~][Cbó ] 

 

__ 2(1 — n) f  
3(2— n)(1-2n) 

2n2 — 11n+8 —2 n2 +7n —4 n2 +8n 
— 2n2 +7n 2n2 -11n+8 —4 n2 +8n 

0 0 0 

  

[J)] = [Na][<b~~] — f 
4(1— n)  
3(2— n) 

20 0 
02 0 
0 0 4 — n 

(6.7.8a,b) 

   

Although [J
a

) ] is not symmetric, [C2) UV] is symmetric; see (6.3.8c) or 
(6.5.9c). Then, 

[Ca ][Jbe ] — f 
2(1 — n)E   

3(1 +n)(2 — n)(1 -2v)2 

—41/ 3 +201/2 — 19 n+8 4n3 -20n2 +15n —4 n2 +8n 
4n3 -20n2 + 15n —4 n3 +201/2 — 19 n+8 —41/ 2 +8n 

—4v 2 +8n —4 n2 +8n —81/ 3 +16\72 

[Cáb~][Jáb~] —f  2(1 — n)E  
3(1 +n)(2 — n) 

20 0 
02 0 
0 0 4—v 

(6.7.8c,d) 

   

Since 

(C:1)1212= 
2 

{(C: J)1111—(C:J) ~~22} = f 3(1+n)(2 n)E' (6.7.8e) 

c 

or 
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([Ca II ji i)33= {([Ca)1[.12 Dii 
([CYj) 

I{'1  D12} 

_ f 

 

2(1 — n)(4 — n)E (6.7.8f) 
3(1+v)(2— n) ' 

tensor C : J is transversely isotropic. From (6.7.8c,d), various components of 
the overall elasticity tensor C are obtained. For example, the overall shear 
moduli, M = 1 12 and 43 = M i3 = 423, are 

= 1 f  4(1 — n)(4 — n) 13 _ 1  f  8(1 — n)  
3(2—v) 1 3(2— n) 

The overall shear moduli j given by (6.7.6c) and (6.7.9a), and 43 given by 
(6.7.6f) and (6.7.9b), agree up to the first order in the crack density parameter f; 
see Figure 6.7.2. 

Now, consider the transverse isotropies associated with two different ran-
dom distributions of microcracks, one with all cracks perpendicular to the x3-
axis and the other with cracks parallel to this axis. The overall transversely iso-
tropic elastic moduli for the first case are given by (6.7.6a--f) and (6.7.9a,b), and 
those for the microcracks parallel to the x3-axis, are given by (6.5.~a--f) and 
(6.5.10a,b). From comparison of the moduli, E3, É, ii, and 43, for the two cases, 
it is concluded that: (1) under uniaxial tension in the x3-axis, the RVE contain-
ing microcracks parallel to the x3-axis is stiffer than the one containing micro-
cracks perpendicular to this axis (this is obvious on physical grounds); (2) under 
biaxial loading in the x1,x2-plane, the RVE containing microcracks parallel to 
the c3-axis is less stiff than the one containing microcracks perpendicular to this 

(6.7.9a,b) 

CRACK DENSITY PARAMETER 

Figure 6.7.2 

Comparison of normalized overall shear moduli for penny-shaped microcracks 
parallel to the x3-axis; v = 1/3 
DD:O - dilute distribution with macrostress prescribed 
DD:E = dilute distribution with macrostrain prescribed 
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axis (this is also obvious on physical grounds); and (3) under shear loading in 
the c1 ,x3-plane or in the x2,x3-plane, the RIB containing microcracks parallel to 
the x3-axis is stiffer, whereas under shear loading in the c i,x2-p1ane, the RVE 
with microcracks perpendicular to the x3-axis is stiffer. The results for micro-
cracks parallel to the x3-axis have been used by Rogers and Nemat-Nasser 
(1990) to model damage evolution in magnesia-partially-stablized zirconia 
(Mg-PSZ) ceramic samples subjected to uniaxial compressive stress pulses; 
similar modeling has been used by Subhash and Nemat-Nasser (1992). 

6.8. INTERACTION EFFECTS 

When microcracks are closely spaced, their interaction may require a 
more effective modeling than that provided by the self-consistent method. The 
periodic model presented in Sections 12, 13, and 14 may then be an attractive 
alternative. As an intermediate step, one may consider an elastic solid contain-
ing a certain distribution of rows of co/linear cracks, as recently proposed by 
Deng and Nemat-Nasser (1992) in a two-dimensional setting. The slit crack 
arrays in this model are all assumed to be parallel to, say, the x3-axis. In addi-
tion, they may be either all parallel or randomly oriented, resulting in an overall 
(two-dimensional, i.e., inplane) orthotropic or isotropic material response, 
respectively; three-dimensionally, the response then is orthotropic or trans-
versely isotropic, respectively. The method of dilute distribution, the self-
consistent method, and the differential scheme (see Section 10) are used by 
these authors to estimate the overall instantaneous moduli, focusing attention on 
two-dimensional problems, either plane strain or plane stress. This is accom-
plished by considering a crack array on the x i-axis, Figure 6.8.1, and using the 
corresponding solution for the COD to calculate the required H- and J-tensors. 

c2 

—c — a a C xl 

Figure 6.8.1 

A row of equally-spaced equal collinear cracks on the c1-axis 
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6.8.1. Crack-Opening-Displacements and Associated Strains 

The elasticity problem for a collinear crack array has been addressed by 
Irwin (1958), Koiter (1959), England and Green (1963), Sneddon and Srivastav 
(1965), and Sneddon and Lowengrub (1969) for isotropic media. Deng and 
Nemat-Nasser (1992) use the results of Nemat-Nasser and Hon (1987), and 
report closed-form expressions for the crack opening displacements, for a crack 
array in a transversely isotropic elastic solid, and also in an orthotropic elastic 
solid; see Section 21. They then use these results to estimate the corresponding 
overall moduli in plane strain and plane stress cases. 

The COD's for a row of cracks (Figure 6.8.1) in a transversely isotropic 
elastic matrix, under uniform farfield stresses s°°, are given by 

{ [ul], [u2], [u3] } = T(c j) 1 { + 1)  S , ± 1)  s22, 4 sz3 }, 
1~2 it ß.t23 

(6.8.1a) 

where M and M23 are the inplane and out-of-plane shear moduli, associated with 
the c1,x2- and x2,x3-coordinates, respectively, and 

T(xl) = cos(  
2c

1 ) f XI tan(- -) {cos( p 
l  

) — cos( $) }-'12 dx. (6.ß.1b) 

The strain components due to a single crack in this array of collinear cracks now 
are 

{e, e, ez3} = S{  2(k+ 1)  s22, (k+ 1) szi>  m m 1.123 

where 
2 

S = — 
~
c
a2 In cos( 2c ). 

Hence, (6.8.2a) becomes 

(6.8.2a) 

(6.8.2b) 

{e, e ', e } = — c2 lncos( pa ) {  2(k+ 1) sz2, 
(k+ 1)  szi. 4 sá3} pa2 

 

2c m m m23 

(6.8.2c) 

which yields the following limiting expression: 

a/lim->0 (ez2, ezi, e:') = 
P 

M23 
{  2(k+ 1)  

G22,  
(IV + 1)  

Gil,  4 sz3},  (6.8.2d) c    

in agreement with the results for a single crack in an infinitely extended solid, 
given in Subsection 6.3.2. 

As is shown in Section 21, the crack opening displacements [ua] (a = 1, 
2) and the associated strains for a general two-dimensional anisotropic case 
(plane strain or plane stress), can be related to the corresponding results for the 
transversely isotropic case, as follows (Nemat-Nasser and Hori, 1987; Deng and 
Nemat-Nasser, 1992): 

[u«] = R [uä °] (a not summed), (6.8.3a) 
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where 

Ri 
 —}

1  {2D1212+D ii2z +(DiiiiD2222)~½~ }}~
½
~ 2Diiii 

R2 — 1 } 2D1111  
2D2222 {2D i2i2+ D ii22+(DiiiiD2222)½} 

½ (6.8.3b,c) 

here, the components of the compliance tensor are interpreted for plane prob-
lems, as 

n2 2 

Di i i i = ~i 
- h 

E3 , D2222 = 
1 

2 — h É3 , 

121 131132  
D1122 = D2211 _ — Ez 

— h 
E3 

(6.8.4a c) 

where h = O in plane stress and h = 1 in plane strain; see Section 3 for notation. 
Therefore, for the two-dimensionally anisotropic matrix, the strains associated 
with a single crack in a crack array are, 

2 

1C22, X21, X23 } In cos ( 
2c ) 

c {2R2 D iiii Gzz, R1 D1111 Gil, 2D2323 s23}, (6.8.5) 

and, in view of these, the fourth-order tensor Ha, 

= Ha : s°° or e;; = S1 ki ski, (i, j, k, 1 = 1, 2, 3), (6.8.6a,b) 

has the following nonzero components: 

z 
112222 = 1~a2 R2 Diiii Incos( 2c ), 

112i2i =112ii2 = H122 i = 1112iz = 4 H222t {D1111/D2222}½, 

z 
112323 = 112332 = 113223 = 143232 = — 

má2 
D23231ri cos( 

2c ) 
(6.8.7a—c) 

Since the strain components due to a crack in a row of cracks, depend 
only on the ratio, a/c, of the common crack length and spacing, the inelastic 
strains due to crack arrays of different crack lengths but identical a/c-ratio, are 
the same. For a parallel distribution of crack arrays, the overall strain due to a 
large number of crack arrays with the same a/c-ratio, therefore, depends only on 
the number of cracks measured per unit area, normal to the x3-direction. Thus, 
for an estimate of the overall inelastic strains, an average crack length, 2a, and 
an average crack spacing, 2c, may be used in order to obtain an effective { crack 
length) / { crack spacing } = a/c, and then (6.8.2a) may be used, for an isotropic 
matrix, or (6.8.5) for an orthotropic matrix. For randomly oriented crack arrays, 
the overall strain is averaged over all orientations. 
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6.8.2. Dilute Distribution of Parallel Crack Arrays 
For a dilute distribution of crack arrays, the interaction between any two 

arrays may be neglected. For an elastic matrix which contains collinear parallel 
rows of crack arrays with the same a/c-ratio, the corresponding overall inelastic 
strains due to cracks become, 

(6.8.8) 
«= i 

where N0, is the number of cracks of length 2a per unit area. Then, for a three-
dimensionally isotropic matrix, it follows that, 

–22- –f  1613~~ H c2 siz lncos(
im

), viz= –f  
891111020~z 

lncos( pa) 
Pa2 2c p:2 2c 

X23 = –f 
16D2

Pa2 z 
ßz3 In cos( Pa 

 2c ). 

With ~j = H1JkI sk~, for plane and anti-plane problems, arrive at 

2 

H2222 = –f 
161)11211c  In cos( 

2c )' 

Hi22i = H2112 = H2121 = Hiz i2 = – f  
2D i2ip~2(k+ 1)  lncos( 

2c )' 

(6.8.9:--c) 

2 
H2332 = 3223 = H3232 = H2323 = –f  

8D2323c 

In COS( 2c ), (6.8.10a–C) 

where, for the isotropic matrix, k = 3 –4v for plane strain and k = (3 –v)/(1 + n) 
for plane stress, and all other components of H are zero. The overall response is 
three-dimensionally orthotropic, with E1= E3 = E, 1731= 1713 = v, and 1~~3 = 
431 = see (3.1.14b). 

For the case when the macrostress, S = s°, is prescribed, instead of 
(6.3.4), (6.3.6), and (6.3.7), which are obtained from a single-crack solution, 
now obtain, for crack arrays, 

2 1 = {l f  16c  In cos( -- ) }  , 
~~ tea2 2c 

M12 = 1  f  2c2(k+ 1) 
1ncos( 

pa )}_~ 
m pa2 2c 

z 1123 = (1– f  
óc  

lncos( pa )}_1 (6.8.11a--c 
M ia2 2c ) 

Indeed, for the special case of a/c - 0, these results reduce to the corresponding 
equations of Subsection 6.3. If the matrix material is anisotropic, for example, it 
is orthotropic, and the crack arrays are aligned with one of the principal material 
directions, then, instead of (6.8.2:), expression (6.8.5) must be used to obtain 
the strains due to the cracks. Note that (6.8.11:) yields 



D1111 = D1111, D1122 = D ii22• 

matrix, D1111 = D2222 = 
(k + 1)  

8m For an isotropic 

leading to 

E
' = 1 ~ f  

8c2 

2 In c
osh 2c ) 

(6.8.14a,b) 

and D1122— 
(k -3)  
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E2 = { 1 — f (1 — hn2) lp~~ 
2 In cos( 2c) }-1, (6.8.11d) 

for both plane stress (h = 0) and plane strain (h = 1). This is identical with 
(6.3.4c) at the limit as a/c — O. 

When the macrostrain, E = e°, is regarded prescribed, the dilute distribu-
tion model with parallel rows of cracks, yields 

mR12 = 1-4  C1212 H i212 C1212 = 1 + f  2c2pa2 
2c 

1)  in cos( 
)' 

M23 C2323 02323 óC 2 pa 
M 

= 1— 4 
M 

— 1 + f  
8c2 I

n cos( 2c ), (6.8.12a,b) 

which also reduce to the results of Subsection 6.3, as a/c — O. Note again here 
that the overall compliance and elasticity tensors are each other's inverse only to 
the first order in f. 

Consider now the self-consistent averaging method. For crack arrays 
parallel to the c 1-axis, the Ha-tensor for the self-consistent method is defined by 
(6.8.7), except that the relevant components of the compliance tensor in these 
equations must be replaced by the corresponding average overall quantities, i.e., 
all relevant D1  are to be replaced by This results in the following 
nonzero components for the H-tensor: 
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Because of the special crack arrangement, however, it follows that 

(6.8.13a--c) 
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(6.8.15a—c) 

The first two equations in (6.8.15) are coupled, and hence the corresponding 
overall elastic moduli are calculated by iteration. As an illustration, Figure 6.8.2 
gives the self-consistent estimate of E2/E and M12/M in plane stress, for indicated 
values of a/c. For comparison, the limiting results for a/c = O are also given. 

6.8.3. Randomly Oriented Open Slit Crack Arrays Parallel to an Axis 

Consider an isotropic elastic matrix containing collinear open slit crack 
arrays with random orientations, parallel to the x3-axis, resulting in a trans-
versely isotropic overall response. Based on the procedure outlined in Subsec-
tion 6.4, and in view of the exact correspondence between the Ha-tensor for a 
single crack, given in Subsection 6.4, and that given in the present section for an 
array of collinear cracks, it follows that the overall moduli can be written down 
by simple inspection. 

Consider first the dilute distribution model with macrostresses regarded 
prescribed. With parameter S defined in (6.8.2b), the components of the compli-
ance tensor are readily obtained to be 
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CRACK DENSITY PARAMETER 

Figure 6.8.2 

The self-consistent estimate of the normalized x2-direction Young modulus, 
E2/E, and the inplane shear modulus, 412/x, for random distribution of collinear 
frictionless crack arrays, parallel to the x1-axis; v = 1/3, and a/c as indicated 



6.8 ELASTIC SOLIDS WITH MICROCRACKS 165 

E, 

 

=(I– 8Sf)-t, 

m = {1 +2(k+1)Sf}-1, 

M 
where É' and Ft are the nominal inplane Young and the inplane shear moduli. 
The inplane Young modulus then is 

É = {1+8(1— hn2)Sf}-1, (6.8.16d) 

where h = O for plane stress and h = 1 for plane strain. 

Next consider the self-consistent method. The components of the H-
tensor then are, 

h1111 = H2222 2(i ± 
  1) S f, 

H i2i2 = H2121 = H1221 = H2112 = 4 H2222, 

141313 = 
14

313~~ = 143113 = H ~ 33~~ = X2323 = X3232 = 143223 = 142332 = Ms  

(6.8.17a--c) 

where i = (3 — v)/(1 + v) for plane stress and i = 3 — 8 ji( n/É + n2/E) for plane 
strain; here, n is the inplane overall Poisson ratio. Thus, the relevant com-
ponents of the overall transversely isotropic compliance tensor are estimated by 
the self-consistent method to be, 

E' = 1-8Sf, 

m =x(x -8vSf)(1-8Sf)-1, 

423 = 1— 4S f, (6.8.18a--c) 

where x = 1 for plane strain and x = 1 + v for plane stress. From the first rela-
tion, the effective inplane Young modulus is given by 

É = (1 —85f)(1  — 8 hn2S f)
-1 

(6.8.18d) 

where = O for plane stress and h = 1 for plane strain, respectively. For plane 
stress, E/E and 4/mR are plotted in Figure 6.8.3, showing the influence of a/c on 
these moduli. 

m23 = (1+4Sf)-1, (6.8.16a--c) 
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CRACK DENSITY PARAMETER 

Figure 6.8.3 

The self-consistent estimate of the normalized inplane Young modulus, É/ E, 
and the shear modulus, 11/m, for collinear frictionless crack arrays with ran-
domly distributed orientation of the arrays; v = 1/3, and a/c as indicated 

6.9. BRITTLE FAILURE IN COMPRESSION 

The material developed in this section can be used to study failure of brit-
tle solids with microdefects. Tensile cracking is a common mode of failure of 
many brittle materials. Even under all-around compressive loads, brittle materi-
als tend to fail by the formation of tensile microcracks at microdefects such as 
cavities, grain boundaries, inclusions, and other inhomogeneities; see Figure 
1.1.1 of Section 1, which represents vivid examples of compression-induced 
axial tensile cracks, and a recent review of the micromechanics of rock failure 
by Myer et al. (1992). As the overall confining pressure is increased, plastic 
flow may accompany microcracking, and eventually may become the dominant 
mechanism of the overall deformation. Hence, under great confining pressure, 
brittle materials such as rocks and ceramics may undergo plastic flow before 
rupture. In this subsection, some aspects of brittle failure in compression are 
briefly discussed; tensile failure of microflawed solids is discussed by Karihaloo 
and Huang (1991). 

6.9.1. Introductory Comments 

Failure of materials by formation and growth of tension cracks under ten-
sile loading is extensively studied and to a large extent understood. Failure 
under overall compression, on the other hand, has received considerably less 
attention. Historically, experimental investigation of compressive failure of 
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materials such as rocks has led to paradoxes. Bridgman (1931) demonstrates 
several failure modes peculiar to high pressures, leading to paradoxical results 
which impel him to express skepticism on whether there is such a thing as a 
genuine rupture criterion. The common feature of these paradoxes is that failure 
always occurs by the formation of tension cracks in specimens subjected to pure 
compression. Efforts to observe through electron microscopy the fracture pat-
tern in failed specimens have raised further questions, since microcracks have 
been seen to have emanated from a variety of defects in various directions, 
although predominantly in the direction of maximum compression. These and 
related difficulties have led several authors to criticize micromechanical models 
that have been suggested for explaining brittle failure under compressive loads. 

Over the past decade, several developments have helped to bring the issue 
of brittle failure in compression to a somewhat satisfactory level of basic under-
standing. The unexplained Bridgman paradoxes have been resolved (Scholz et 
al., 1986), models which satisfactorily and quantitatively explain axial splitting, 
faulting, and transition from brittle to ductile modes of failure have been 
developed, and, most importantly, the mechanisms of fracturing in loading and 
unloading have been captured experimentally and by means of laboratory 
models. These have given credence to the simple but effective micromechanical 
modeling of brittle failure on the basis of preexisting flaws with frictional and 
cohesive resistance. Such a model, though an idealization of a rather complex 
process, seems to capture the observed phenomenon of axial splitting in the 
absence of confinement, as well as the related phenomena of exfoliation or sheet 
fracture, and rockburst; Holzhausen (1978), Nemat-Nasser and Horii (1982), 
and Ashby and Hallam (1986). In the presence of moderate confining pressures, 
furthermore, faulting by the interaction of preexisting microflaws has also been 
modeled, by considering the interactive growth of tension cracks from an 
echelon of suitably oriented microflaws; Horii and Nemat-Nasser (1985a). 
Failure by faulting through intensive cracking in the presence of confining pres-
sure has been observed experimentally by, e.g., Hallbauer et al. (1973), Olsson 
(1974), and Kranz (1983); see also Myer et al. (1992). Furthermore, by includ-
ing, in addition to tension cracks, possible zones of plastically deformed materi-
als at high shear-stress regions around preexisting flaws, the transition from 
brittle-type failure to ductile flow under very high confining pressures has been 
modeled; Horii and Nemat-Nasser (1986). A series of accompanying experi-
mental model studies lends qualitative support to these analytical results. In par-
ticular, the influence of confining pressure on the mode of failure of brittle 
materials seems to have been understood and modeled under quasi-static loads. 

During unloading, however, microcracks may grow essentially normal to 
the direction of the applied compression. Indeed, even extremely ductile crystal-
line solids such as single-crystal copper (an fcc metal), and mild steel and pure 
iron (bcc metals) can undergo tensile cracking normal to the direction of 
compression, possibly during the unloading phase, under suitable conditions; see 
Nemat-Nasser and Chang (1990). In these experiments, the sample experiences 
only compressive loading and unloading. Nevertheless, tension cracks are 
developed, basically normal to the applied compression; see Nemat-Nasser and 
Ho~~ (1987) for a model prediction of this phenomenon. 
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6.9.2. Bridgman Paradoxes 

Bridgman performed a number of experiments on failure in compression 
which led to several paradoxes. In each case, a sample of essentially brittle 
material is subjected to high fluid pressures; see Figures 6.9.1a--e. Two of 
Bridgman's paradoxes, one called the pinching-off effect and the other the ring 
paradox, have been shown to be basically due to hydraulic fracturing; see Jaeger 
and Cook (1963) and Scholz et aI. (1986). 

(a) (b) 

GLASS  - GLASS 

RTV 
SEALANT (e) 

Figure 6.9.1 

(a) Bridgman's pinching-off experiment; (b) Failure caused by hydraulic frac-
turing; (c) Bridgman's ring paradox; (d) Axial crack due to hydraulic fractur-
ing; (e) Bridgman's second ring paradox 

In the pinching-off experiment, a long cylindrical sample of circular cross 
section is placed in a chamber with the two ends of the rod extending out of the 
chamber, as shown in Figure 6.9. la. The chamber contains pressurized fluid. At 
a certain pressure on the order of, but greater than the tensile strength of the 
sample, the sample fractures with a crack normal to its axis, somewhere close to 
its mid-length, and is explosively discharged from the chamber. Jaeger and 
Cook (1963) repeat the test and obtain similar results. They reason that the 

(c) 

STEEL 

(d) 
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pressurized fluid penetrating into preexisting flaws can drive a crack in a direc-
tion normal to the axis of the cylinder, as sketched in Figure 6.9.lb. Since the 
stress intensity factor at the tip of such a crack increases essentially as the 
square root of the crack length, once the crack begins to grow, the growth 
accelerates with increasing crack length, leading to explosive dynamic failure. 

The ring paradox which also is repeated and solved by Jaeger and Cook 
(1963), again involves hydraulic fracturing. The experiment consists of a thin 
cylindrical tube of a brittle material (Bridgman used hard rubber), tightly fitted 
over a solid steel cylinder (Figure 6.9.1c), and totally immersed in a fluid bath 
and pressurized; note that the entire package, i.e., the tube and the steel cylinder, 
is under hydrostatic fluid pressure. The tube fractures by a single axial crack 
which apparently starts from its interior surface and grows radially toward its 
exterior surface; see Figure 6.9.1d. Here again, hydraulic fracturing occurs from 
an axial flaw at the interior surface of the tube, since the hoop stress s8 is the 
smallest compressive principal stress in the tube. Failure occurs at a pressure on 
the order of the tensile strength of the tube. Bridgman repeats the same experi-
ment, except that the ends of the tube are sealed, as sketched in Figure 6.9.1e, 
before submerging it in the fluid which is then pressurized. Again, an axial 
crack develops, this time presumably from the exterior surface inward. 

Bridgman repeats the pinching-off experiment of Figure 6.9. la, but this 
time encloses the cylindrical sample in a rubber jacket, as sketched in Figure 
6.9.2a. The failure mode is quite different from the unjacketed sample, occur-
ring at pressures close to the compressive (rather than the tensile) strength of the 
sample. Failure occurs by stable growth of a number of tensile cracks normal to 
the axis of the cylinder, breaking the sample into several disks. Jaeger and Cook 
(1963) repeat the test, arriving at similar results. 

(a) (b) 

Figure 6.9.2 

(a) Bridgman's pinching-off experiment with sealed sample (failure by axial splitting); 

(b) Bridgman's third ring experiment 
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Related to this paradox is another version of the ring paradox. Both of 
these paradoxes have been more elusive and indeed, touch on some rather subtle 
aspects of brittle failure of brittle materials under all-around compressive loads. 
In the third ring experiment, Bridgman jackets the sealed tube/steel construction 
of Figure 6.9.1e (as shown in Figure 6.9.2b), before submerging it in a fluid bath 
which is then pressurized. It is observed that axial tension cracks develop from 
the interior surface of the tube in the radial direction, growing axially, 
apparently in a stable manner, and never reaching the exterior surface of the 
tube. 

All three ring experiments have been recently repeated by Scholz et al. 
(1986), using pyrex glass tubes which fit a steel rod with a tolerance better than 
3Mm, with a tube thickness exceeding mm size, and length and radius on the 
order of cm. By direct measurement, through strain gauges placed on the glass 
tube and by simple calculation, it is established that all three principal stresses 
everywhere within the glass tube are compressive. Nevertheless, 2 to 6 axial 
tension cracks are seen to form from the interior surface, growing radially and 
axially, without reaching the exterior surface of the glass tube. This paradox has 
been (quantitatively) explained by Scholz et al. (1986) in terms of model calcu-
lations of Nemat-Nasser and Horii (1982); see Figure 6.9.3. A similar explana-
tion applies to the disking phenomenon of the jacketed cylindrical rod of Figure 
6.9.2a. 

Figure 6.9.3 

The sliding crack model of 
Brace and Bombolakis (1963) 
as analyzed by Nemat- Nasser and 
Horii (1982): preexisting flaw PP' 
and curved tension cracks PQ and 
P'Q' under biaxial compression 

  

s22 s22 

Scholz et al. (1986) consider a preexisting flaw with suitable inclination 
and estimate the required flaw size which, in the case of the jacketed ring exper-
iment of Figure 6.9.2b, can produce tension cracks under the prevailing 
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compressive stress state, using the sliding crack model (Figure 6.9.3), initially 
proposed by Brace and Bombolakis (1963), and later quantified analytically, as 
well as confirmed experimentally, by Nemat-Nasser and Horii (1982); see also 
Steif (1984), Ashby and Hallam (1986), Myer et al. (1992), and Yoshida and 
Horii (1992). 

Calculations based on the Nemat-Nasser and Horii (1982) theory show 
that a preexisting flaw size of 10mm is sufficient to produce such axial tension 
cracks. SEM observations show that axial cracks emanate from preexisting 
flaws of about 20Mm, and that the axial cracks consist of several individual 
cracks which seem to have been initiated from different preexisting flaws. 

Figure 6.9.4 

Scanning electron photomicrographs of axial crack observed in the jacketed 
ring (from Scholz etal., 1986) 

Figure 6.9.4 shows the scanning electron photomicrographs of an axial 
crack observed in the jacketed construction of Figure 6.9.2b, at successively 
greater magnification, A, B, C, and D. The sample has been subjected to several 
loading cycles. The corresponding crack front position can be seen in these 
photographs. The pictures are taken perpendicular to the fracture plane, with 
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the inside surface of the pyrex ring appearing at the bottom of each photograph. 
The crack appears to have been initiated from a flaw of rather complex 
geometry through an abrupt kink, and then extended axially. The light vertical 
lines in photographs A and B mark the arrest lines in successive pressurizations. 

This is perhaps one of the most conclusive laboratory experiments which 
not only resolves the Bridgman paradox, but also shows the role of preexisting 
flaws in generating tensile cracks under all-around compression in brittle solids. 
The fact that flaws in the pyrex glass in this experiment are few and far apart, 
precludes their interaction, leading to axial cracking. In a rock, ceramic, or 
similar specimen, there are numerous preexisting microflaws such as pores, 
grain boundaries, preexisting cracks, and inclusions, each of which can be and 
often is a source of producing local tensile stresses, even though the applied 
loads may all be compressive. Note that although the sliding-crack model seems 
to represent and capture the involved rather complex process of failure, it has 
not often been experimentally observed to be the major micromechanism of 
generating tensile cracks under all-around compressive loads; see Myer et al. 
(1992). 

6.9.3. A New Look at Microcracking in Compression 

The fact that axial splitting under uniaxial compression is caused essen-
tially by nucleation at various flaws of tension cracks which grow essentially in 
the direction of compression, has been demonstrated in a recent series of experi- 
ments by Zheng et al. (1988). In these experiments the microstructure of the 
compressed sample is preserved by impregnating the specimen with molten 
Wood's metal which solidifies prior to the removal of the compressive loads. 
The sample is then sectioned and studied. Figure 6.9.5a is a photomicrograph of 
an axial section of a uniaxially compressed sample of Indiana limestone, show-
ing a preponderance of nearly axial cracks, filled with Wood's metal (white). 
Figure 6.9.5b is a photomicrograph of a similar sample, with limestone grains 
removed by etching. Planar extension cracks are clearly seen in this three-
dimensional photo. The presence of solidified Wood's metal which penetrates 
tube-like pores of diameters exceeding 0.1 5Mm, and planar cavities with aper-
tures exceeding 0.05mm, precludes further fracturing during unloading. Hence, 
microcracking produced solely during the application of compression can be 
studied. The authors conclude that a variety of microscopic mechanisms (bend-
ing, point loading, and sliding) produces tensile cracking parallel to the direction 
of maximum compression. 

The model experiments by Brace and Bombolakis (1963), Hoek and 
Bieniawski (1965), and Nemat-Nasser and Horii (1982), involving preexisting, 
inclined, slit flaws, seem to capture the essence of this failure process. In addi-
tion, Horii and Nemat-Nasser (1985a, 1986) have provided illustration of 

Another method of preserving the microstructure is to subject the sample to a single com-
pressive pulse of limited total energy; see Nemat-Nasser et al. (1991). The results of Figure 1.1.1 of 
Section 1 are obtained in this manner; Subhash (1991), and Subhash and Nemat-Nasser (1993). 
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transition from the axial splitting mode of failure to faulting, when axial 
compression is applied in the presence of lateral confinement, and transition 
from a brittle to a ductile mode of failure, when the confining pressure is suit-
ably large. 

Figure 6.9.5 

(a) Scanning electron photomicrographs of axial cracks observed in uniaxially 
compressed Indiana limestone (white is Wood's metal); (b) Sample with lime-
stone grains removed by etching (from Myer et al., 1992) 

The experiments involve thin plates of relatively brittle material (e.g., 
Columbia resin CR39) containing thin slits (flaws) fitted with thin brass sheets, 
and subjected to inplane compression. Under inplane axial compression, tension 
cracks are observed to nucleate from the flaws, to curve toward the direction of 
maximum inplane compression, and to grow with increasing compression, even-
tually becoming parallel to this loading direction; see Figure 6.9.6. Of particular 
interest in these experiments is the fact that the presence of slight inplane lateral 
tension can render a crack growth regime of this kind unstable: once a critical 
crack extension length is attained, the crack would grow spontaneously, leading 
to axial splitting of the specimen. Nemat-Nasser and Horii (1982) seek to 
explain the phenomena of axial splitting, exfoliation or sheet fracture (Holzhau-
sen, 1978), and rockburst, using this observation. 

It therefore appears that, in the absence of lateral confinement, axial split-
ting may well be the result of the formation of axially oriented tension cracks at 
the most compliant inhomogeneities. These cracks then grow axially and lead to 
axial splitting. Once such a process is initiated, the specimen no longer remains 
homogeneous in a continuum sense. At this stage, the strength drops dramati-
cally. 
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Figure 6.9.6 

(a) Specimen with a number of randomly oriented cracks; (b) Failure pattern un-
der overall axial compression (from Nemat-Nasser and Horii, 1982) 

When lateral confinement accompanies axial compression, a profound 
change in the overall response of rocks, concrete, ceramics, and other brittle 
materials is often observed. Microscopic observation shows that, in this case 
also, microcracks are nucleated at various micro-inhomogeneities, and these 
cracks grow essentially in the direction of maximum compression. However, 
the presence of confinement seems to arrest further growth of cracks of this 
kind. Indeed, electron microscopy, as well as optical microscopy, seem to sug-
gest a more or less uniform distribution of microcracks within the sample, up to 
axial loads rather close to the peak stress; see, e.g., Hallbauer et al. (1973), Ols-
son and Peng (1976), Wong (1982), and Myer et al. (1992). Close to the peak 
stress a region of high-density microcracks begins to emerge, which eventually 
becomes the final failure plane. The sample fails by faulting at an angle some-
where between 10 and 30° with respect to the axial compression. 

Horii and Nemat-Nasser (1985a, 1986) have suggested that such faulting 
may be the result of the interactive unstable growth of tension cracks at suitable 
sets of interacting microfiaws. To verify this, a series of model experiments is 
performed on plates which contain sets of small flaws and a number of large 
flaws; a flaw here is a thin slit (0 4 mm thick) containing two thin brass sheets 
(0.2 mm each). Two identical specimens are tested, one without confining pres-
sure, the other with some confinement; see Figure 6.9.7. 

In the absence of confinement, cracks emanate from the tips of the longer 
flaws, grow in the direction of axial compression, and lead to axial splitting, 
while many of the smaller flaws have not even nucleated any cracks; Figure 
6.9.7b. On the other hand, when some confinement accompanies axial compres-
sion, cracks emanating from the larger flaws are soon arrested. Then, at a 
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certain stage of loading, suddenly, cracks emanating from many small flaws 
grow in an unstable manner, leading to eventual faulting; Figure 6.9.7c. The 
faulting is observed to initiate at some small preexisting flaws, and then run 
through the sample at a finite speed; Horii and Nemat-Nasser (1985a). 

Figure 6.9.7 

(a) Specimen containing rows of small flaws, and several larger flaws; (b) Axial 
splitting under overall axial compression without lateral confinement; (c) Shear 
failure (faulting) under axial compression with lateral confinement (from Horii 
and Nemat-Nasser, 1985a) 

When the confining pressure is quite large, e.g., exceeding 25-30% of the 
peak stress, then a transition from brittle failure by faulting to a ductile response 
by overall plastic flow takes place. Microscopic observation shows a rather gen-
eral distribution of microcracks accompanying extensive plastic deformation. 
The sample may fail by either localized plastic shearing or by barreling. Horii 
and Nemat-Nasser (1986) suggest a model which seems to illustrate the 
involved mechanism. Figure 6.9.8 shows a sample containing two collinear 
flaws. When inplane axial compression is applied in the presence of relatively 
large confining pressures, both tension cracks and plastically deformed zones 
develop close to the tips of the preexisting flaws. That is, under axial compres-
sion, cracks can emanate from the tips of the flaws, while at the same time plas-
tic zones exist there. The crack length and the size of the plastic zone depend on 
the confining pressure. For moderate confinement, the tension crack length 
increases at a great rate, while the plastic zone size remains limited. On the 
other hand, once suitable confinement exists, the tension crack soon ceases to 
grow in response to the increasing axial compression, while the plastic zone size 
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continues to increase. Indeed, if the confinement is large enough, the growth of 
the plastic zone may, at a certain stage, actually relax the stress field around the 
tension crack, resulting in partial closure of the tension crack. Moreover, plastic 
zones seem to form first and, in fact, often shield cracking which, once initiated, 
may then suddenly snap to a finite length, in an unstable growth mode. Based 
on this model, Horii and Nemat-Nasser (1986) estimate the brittle-ductile transi-
tion pressure, and obtain results in reasonable agreement with experimentally 
observed values. These experiments are performed at suitably low tempera-
tures, where creep effects can be regarded insignificant. The phenomenon of 
creep in rock is rather complex and outside the scope of the present brief 
review; see, e.g., Kranz (1979, 1980), and Yoshida and Horii (1992). 

Figure 6.9.8 

(a) Specimen containing two collinear flaws; (b) Arrested tension cracks 
emanating from the flaws under axial and lateral compressive stresses of con- 
stant ratio = 0.05; (c) Photoelastic picture of unloaded specimen showing 
the residual strain distribution (from Horii and Nemat-Nasser, 1986) 

6.9.4. Model Calculations: Axial Splitting 

The two-dimensional elasticity boundary-value problem associated with 
the model shown in Figure 6.9.3 has been formulated in terms of singular 
integral equations and solved numerically; Nemat-Nasser and Horii (1982) and 
Horii and Nemat-Nasser (1983, 1985a,b). The boundary conditions on the flaw 
PP' are 

uy = uy , t y = T„y = — Tc + 11(5y, (6.9.1 a,b) 

and on the curved cracks PQ and P'Q', it is required that 
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S8 = Tq = 0, (6.9.1c) 

where tc is the cohesive (or yield) stress, h is the frictional coefficient, uy is the 
displacement in the y-direction, s, is the normal stress and tx , is the shear 
stress on PP', and so is the hoop stress and tro is the shear stress on PQ. 
Superscripts + and - denote the values of the considered quantities above and 
below the x-axis. Figure 6.9.9 shows some typical results. 

 

15 

10 

5 

0 

  

I S1 I (pc)½ 

Ke 

0 2 4 6 8 
1/c 

Figure 6.9.9 

Normalized axial compression required to attain the associated crack exten-

sion length (from Horii and Nemat-Nasser, 1983) 

As is seen, in the presence of small lateral tension, crack growth becomes 
unstable after a certain crack extension length is attained. This unstable crack 
growth is considered to be the fundamental mechanism of axial splitting of a 
uniaxially compressed rock specimen. Peng and Johnson (1972) report the pres-
ence of lateral tension in the uniaxially compressed specimen because of the 
end-boundary conditions. Different end inserts affect the ultimate strength. 
They report a radial tensile stress of 4-8% of the applied compression. These 
experimental data seem to support the analytical results. 

Nemat-Nasser and Horii (1982) have made a series of model experiments 
and have shown that the unstable growth of tension cracks discussed above, may 
indeed be the basic micromechanism of axial splitting; see their Figs. 13-20. 

The numerical calculations of the singular integral equation which 
corresponds to the elasticity model of Figure 6.9.3 are rather laborious. Further-
more, they preclude further modeling which often requires simple closed-form 
analytic expressions. Efforts have been made to develop such expressions for 
the model of Figure 6.9.3, by substituting for the curved cracks, equivalent 
straight cracks; see, e.g., Ashby and Hallam (1986), Steif (1984), and Horii and 
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Nemat-Nasser (1986). Simple expressions which seem to yield accurate results 
over the entire range of crack lengths and orientations are given by Horii and 
Nemat-Nasser (1986). In a more recent article, Nemat-Nasser and Obata (1988) 
have used these analytical expressions to model the dilatancy and the hysteretic 
cycle observed in rocks. A brief outline of the approximate analytical solution of 
Horii and Nemat-Nasser (1986) is given below. 

c 
c 

(a) (b) 
Figure 6.9.10 

(a) Preexisting flaw PP' and straight cracks PQ and P'Q'; (b) A representative 
tension crack QQ' with splitting forces F 

Figure 6.9.10a shows the flaw with straight cracks, and Figure 6.9.10b 
shows a crack of length 2/ subjected to a pair of forces of common magnitude F, 
which represent the effect of the flaw on cracks PQ and P'Q'. These cracks are 
additionally subjected to farfield stresses s11 and s22. The force F is estimated 
from the driving shear stress t*, on the preexisting flaw, 

T* 

 

= — (s11 — s22) sin2U — t~ + 2 h { s11 + s22 — ( 6l — s22) cos2y }, 

F = 2c t*. (6.9.2a,b) 

Then, under the action of the concentrated coaxial forces of magnitude F and the 
farfield stresses, the stress intensity factors at Q and Q' are given by 

__  p(1+ 1*)   +1/z(p1)'12{sii+s22 —( si1 — s22) cos2(Q — g)}, 
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Kh =  — 2c ~* cosh /z(p1)'/(si i — s22) sin2(q — y). (6.9.3a,b) 

In this equation, !/c = 0.27 is introduced so that when the crack length 1 
is vanishingly small, the corresponding stress intensity factors are still accu-
rately given by (6.9.3a,b). Note that, when 1 is large, the presence of /* is of lit-
tle consequence. Thus, (6.9.3a,b) are good estimates over the entire range of 
crack lengths. Alternative expressions are given by Ashby and Hallam (1986)

8
. 

6.9.5. Model Calculations: Faulting 

In the presence of confining pressure, an axially compressed sample of 
rock fails by faulting or (macroscopic) shear failure. To explain the mechanics 
of such faulting, some authors have emphasized the role of Euler-type buckling 
associated with columnar regions formed in the sample because of axial crack-
ing; see, for example, Fairhurst and Cook (1966), Janach (1977), and Holzhau-
sen and Johnson (1979). 

A different model has been suggested by Horii and Nemat-Nasser (1983, 
1985b). This model considers a row of suitably oriented microflaws and seeks to 
estimate the axial compression at which out-of-plane cracks that nucleate from 
the tips of these flaws can suddenly grow in an unstable manner, leading to the 
formation of a fault; see Figure 6.9.11. 

    

Figure 6.9.11 

An unbounded two-dimensional solid 
with a row of preexisting flaws PP' and 
tension cracks PQ and P'Q' 

s22 

 

siit 

     

$ In addition, other microcrack-induced failure models have been proposed; see, e.g., Ka-
chanov (1982), Costin (1985), Ortiz (1985), Kemeny and Cook (1986), Krajcinovic (1989), Ju 
(1990), Karihaloo and Fu (1990), Talreja (1991), and a special issue of Applied Mechanics Reviews, 
edited by Li (1992). 
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The solution of the elasticity problem associated with a solid containing a 
row of periodically distributed flaws with out-of-plane microcracks, is given by 
Horii and Nemat-Nasser (1983, 1985b). Typical results are shown in Figure 
6.9.12. For small values of f, the axial compression first increases with increas-
ing crack extension length, attains a peak value, decreases, and then begins to 
rise again. This suggests an unstable crack growth at a critical value of the axial 
stress, which may lead to the formation of a fault zone. It is seen from Figure 
6.9.11 that the peak values of the axial stress for the values of F from 29° to 36° 
fall in a very narrow range, i.e., I Ds11 'Ipc / K° Z 0.3. This implies that the 
overall failure angle is sensitive to imperfection and other effects. Indeed, the 
orientations of the fracture plane observed in experiments often scatter over a 
certain range. The range of the overall failure angle, however, may be limited, 
since the peak value of the axial stress increases sharply as f decreases. The 
possible range of the overall orientation angle f can be specified by prescribing 
the stress barrier, I Ds t I Ipc / K°, which can be overcome. Note that the value of 
g in Figure 6.9.11 is chosen such that the required axial compression for instabil-
ity is minimized; see Horii and Nemat-Nasser (1985a, 1986) for further com-
ments and examples. 

7 

6 
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4 
I s i 1 I (pe)½ 

Ke 3 

Figure 6.9.12 

Axial stress versus crack extension 
length for indicated orientation f of 
crack row, g = 0.24p, t = 0, and 
h = 0.4 (from Horii and Nemat-
Nasser, 1985a) 
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6.9.6. Model Calculations: Brittle-Ductile Transition 

Brittle failure by faulting is suppressed by sufficiently high confining 
pressures that promote distributed inelastic deformation at various flaws, 
throughout the sample. Microscopically, the deformation remains highly hetero-
geneous, in view of the microstructure of the material. Depending on the 
material and the temperature, the inelastic deformation may stem from grain-
size microcracking, plastic glide, or a combination of the two. For example, in 
marble and limestone, as well as in pyroxenes, microcracking and the associated 
cataclysmic flow can be inhibited at room temperature by large enough 
confining pressures, whereas for other materials, such as quartz and feldspar, 
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this requires higher temperatures; Donath et al. (1971), Tobin and Donath 
(1971), Olsson and Peng (1976), Tullis and Yund (1977), Kirby and Kronenberg 
(1984), and Myer et al. (1992). This difference in response most likely stems 
from the microstructural differences, such as grain size, shape, and composition, 
among these materials. To gain insight, it is instructive to examine the influence 
of increasing lateral pressure on the interactive, unstable crack growth associ-
ated with a row of preexisting flaws, shown in Figure 6.9.11. For f = 29°, 
y= 43°, and d/c = 4, the results are shown in Figure 6.9.13. It is seen that 
increasing the lateral pressure suppresses the unstable growth of tension cracks 
emanating from the tips of the interacting flaws, and therefore suppresses the 
associated faulting. 

Figure 6.9.13 

Compressive force required to attain 
the associated length of cracks 
emanating from a row of preexisting 
flaws, under the indicated normal-
ized lateral stresses (contours of 
constant 1 s221(pc)½ / Kc), with d/c = 
4, y = 43°, and f = 29° (from Horii 
and Nemat-Nasser, 1986) 

I si i I (pe)½ 
Ke 

To estimate the brittle-ductile transition analytically , Horii and Nemat-
Nasser consider the model shown in Figure 6.9.14. It consists of the frictional 
and cohesive flaw PP' which, in addition to plastic zones PR and P'R' of com-
mon length I, has produced at its tips, out-of-plane tension cracks PQ and P'Q' 
of common length I. The boundary conditions on the preexisting flaw and the 
tension cracks are given, respectively, by (6.9.1a,b) and (6.9.1c). The conditions 
on the slip lines PR and P'R' are 

uy = uy , T 3, = — Ty, (6.9.4a,b) 

where Ty is the yield stress in shear. The principal stresses at infinity are 
prescribed to be si i and s22. In this model the tension cracks are assumed to be 
straight. The plastic zones are modeled by dislocation lines collinear with the 
preexisting flaw, as motivated by the model experiments, although it is not 
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difficult to consider a non-collinear dislocation line or several such lines, 
depending on the circumstances. The use of collinear dislocation lines is reason-
able as a starting point for modeling, and seems to yield adequate results. 

c 

Figure 6.9.14 

Preexisting flaw PP', ten-
sion cracks PQ and P'Q', 
and plastic zones PR and 
P'R' 

The stresses at the ends of the plastic zones must be bounded. Consider a 
solution that renders the Mode II stress intensity factor at R and R' zero, i.e., 
require that 

KR = 0, at R and R'. (6.9.4c) 

Horii and Nemat-Nasser (1986) present an exact formulation and solutions for 
the problem sketched in Figure 6.9.14, in terms of singular integral equations. 
They also give approximate closed-form solutions which may prove effective 
for further modeling. The approximate analytical solution is based on the 
assumption that the ductility defined by 

D= K` (6.9.5) 
T (pRc) iz 

is small, and the size of the tension crack is large relative to the size of the plas-
tic zone. Hence, the interaction between the plastic zone and the crack is 
neglected. The stress intensity factor K1 at Q and Q' is estimated using (6.9.3a). 
Then the Dugdale (Dugdale, 1960) model is used in Mode II to estimate the size 
of the plastic zone such that KR = 0 at points R and R' in Figure 6.9.14. This 
yields the following expression for si i/TV: 
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— { 2+ p (t~ /tU -1) aresin{ 1 +1R /c}-1} s11 _   

tU 
(1 

 
s11 

)sin2g — h
{1+ sii —(1 sii 

)cos2g} p aresin{1 +1R /c}-1 

(6.9.6a) 

and in view of (6.9.3a,b), 

K1  — sinO   
Tu(pc)2  

te{l
t + lt** }i2 

c  c 

x  J  sii  
{ (1 _ 

s22 ) sin2g — h { 1 + s22  (1 _ s22 ) cos2g} } + t̀ } 1

tl tn sii sii si i tn 

+'h(It ic) u
y 

{ 1 
+ S11 — { 1— sii 

} cos2(q — g)}. (6.9.6b) 

Horii and Nemat-Nasser (1986) examine the accuracy of (6.9.6a,b) by compar-
ing the corresponding results with the numerical ones for the exact formulation. 
For ductility, D, less than about 0.1, the approximate results are quite good. One 
shortcoming of the approximate results (6.9.6a,b) is that they do not yield a 
maximum value for the size of the tension cracks, whereas the exact calculation 
does. Figure 6.9.15 shows the relation between /1 /c and 1 p/c for D = 0.04 and D 
= 0.08, obtained by the numerical solution of the singular integral equations for 
the exact formulation of the boundary-value problem. 
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Figure 6.9.15 

Relation between the tension crack 
length and the size of the plastic 
zone under proportional loading for 
indicated stress ratios (contours of 

s22/sIi), for: (a) D = 0.04; and (b) 
D = 0.08 (from Horii and Nemat-
Nasser, 1986) 

From the results presented in Figure 6.9.15, it is seen that for small lateral 
compression, lu/c remains very small as I t/c increases rapidly, dominating the 
failure regime; the response of the solid is brittle in this case. With suitably large 
values of s22/s1l, on the other hand, 11/c ceases to increase after it attains a cer-
tain (negligibly small) value, while Ir/c continues to increase with increasing 
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Brittle-ductile diagram (from Horii and Nemat-Nasser, 1986) 
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axial compression; the response of the solid in this case is ductile. Indeed, for 
large enough s22/si ~~ 

(e.g., s22/sii = 0.2), the tension crack actually begins to 
relax and close, as the plastic zone extends. The model also suggests another 
possible failure mode, where, while a plastic zone develops first, once the ten-
sion crack is initiated, it grows to a finite length in an unstable manner, as the 
plastic zone relaxes; this is referred to as the transitional mode. 

By examining the maximum size of the tension cracks and whether they 
grow in a stable or unstable manner, Horii and Nemat-Nasser produce from this 
two-dimensional model, the brittle-ductile diagram9 of Figure 6.9.16. 

For s22/0i l exceeding 0.2 to 0.25, this figure shows a transition to the 
ductile response. This seems to be in accord with experimental observations 
summarized by Mogi (1966). Note from Figure 6.9.15 that, for s22/sii greater 
than certain values, the size of the plastic zone continues to grow with increas-
ing compression (for proportional loading), once 11/c attains certain maximum 
values. A deformation process of this kind characterizes a ductile mode. The 
change from the brittle to the ductile mode is illustrated in Figure 6.9.15a,b for D 
= 0.04 and 0.08, respectively. It is seen that this change occurs when the stress 
ratio increases from 0.325 to 0.35 for D = 0.04, and from 0.25 to 0.275 for D = 
0.08. 

It thus appears that whether the failure is brittle, being dominated by the 
growth of tension cracks, or ductile, being dominated by the growth of plastic 
zones, depends on the magnitude of the stress ratio, s22/s l i, and the overall duc-
tility, D. The influence of temperature enters implicitly through the associated 
values of fracture toughness, K , and yield stress, Tu. Since the former increases 

The model does not include the effects of strain hardening, strain rates, and stress three-
dimensionality, which affect the quantitative (but not the qualitative) nature of the results. 
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and the latter decreases with increasing temperature, D increases with increasing 
temperature. Also, the influence of grain size is implicitly included through the 
dependency of D on the flaw size c: the larger the c, the smaller the D. It is 
shown by Horii and Nemat-Nasser (1986) that when D is suitably large, the 
growth of tension cracks can be essentially suppressed by suitable confinement. 
For a D of the order of a few percent, however, both tension cracks and plastic 
deformation can occur. The material for a small D is inherently brittle. How-
ever, suitably large confining pressures suppress unstable growth of microcracks 
and promote plastic flow instead. Hence, it seems that compression may induce 
plastic flow of crystalline solids which, otherwise, are commonly classified as 
brittle. 

An important aspect of brittle failure, not considered in this brief review, 
is the mechanism of microcracking ahead of an advancing tensile macrocrack. Jo 
It has been reasoned that the generation of such microcracks may result in 
increased toughness,11 on account of the additional energy required to create 
microcracks. Furthermore, toughening by crack bridging, both over a small 
region in the neighborhood of the crack tip (Budiansky, 1986; Rose, 1987; and 
Budiansky et al., 1988), as well as partial or full bridging by fiber reinforcement 
(Nemat-Nasser and Hori, 1987) are timely topics which require examination in 
their own right; see Subsection 21.5.4 for additional comments. 
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CHAPTER III 

ELASTIC SOLIDS WITH 

MICRO-INCLUSIONS 

In this chapter consider an RVE which consists of a linearly elastic and 
homogeneous matrix containing linearly elastic inclusions. The elastic 
modulus and compliance tensors of the matrix material are denoted by 
C and D, respectively. For a typical elastic inclusion, W. the 
corresponding elasticity and compliance tensors are denoted by Ca 
and Da, respectively. When there is only a single inclusion, W, in the 
uniform matrix, then the elasticity and compliance tensors of the inclu-
sion are denoted by C. and Dom. The main objective of this chapter is 
to estimate the overall moduli of the RVE, in terms of the moduli of its 
constituents and their distribution. In addition to this, the example of a 
linearly elastic and homogeneous matrix containing linearly elastic 
and homogeneous inclusions of different elasticities is used, in order to 
introduce the important concepts of eigenstrain and eigenstress which 
play key roles in estimating and bounding the overall moduli of hetero-
geneous solids (elastic or inelastic). The presentation is, however, gen-
eral, applicable to bounded or unbounded heterogeneous solids with 
inclusions having arbitrary geometries. For the special case of an 
infinitely extended homogeneous linearly elastic solid containing an 
ellipsoidal inclusion, the important results obtained by Eshelby (1957) 
are presented. The results of this chapter have direct application to 
elastic composites such as ceramics, cermets, cementitious materials, 
and other related heterogeneous solids. The stress and strain fields due 
to phase transformation or other physical processes are also discussed, 
e.g., heating, which may result in heterogeneous straining of an ini-
tially unstrained solid, thereby producing self-equilibrating stresses. 
An example would be a stress field induced in ceramic composites 
which contain partially stabilized zirconia which undergoes phase 
transformation under the applied stresses. 



SECTION 7 OVERALL ELASTIC MODULUS AND 

COMPLIANCE TENSORS 

In this section, an RVE of volume V 'bounded by aV is considered, which 
consists of a uniform elastic matrix with elasticity and compliance tensors C and 
D, containing n elastic micro-inclusions Wa, with elasticity and compliance ten-
sors Ca and Da (a = 1, 2, ..., n). The micro-inclusions are perfectly bonded to 
the matrix. All constituents of the RVE are assumed to be linearly elastic. 
Hence, the overall response of the RVE is linearly elastic. The matrix and each 
inclusion are assumed to be uniform, but neither the matrix nor the inclusions 
need be isotropic. In general, the overall response of the RVE may be anisotro-
pic, even if its constituents are isotropic. This depends on the geometry and 
arrangement of the micro-inclusions.  

The overall elasticity and compliance tensors of the RVE are denoted by 
C and D, and it is sought to estimate them in terms of the RVE's microstructural 
properties and geometry. As in Section 4, the cases of a prescribed macrostress 
and a prescribed macrostrain are considered separately. The concepts of eigen-
strain and eigenstress are introduced to homogenize the RVE, and the 
corresponding consistency conditions are developed. Then for an ellipsoidal 
inhomogeneity, the Eshelby tensor and its conjugate are introduced, and they are 
related to the H- and J-tensors, which have been used in Sections 4, 5, and 8. 
These results are then employed and explicit expressions for the overall moduli 
are obtained by the dilute and the self-consistent methods.1 

7.1. MACROSTRESS PRESCRIBED 

For the constant macrostress s _ s°, the boundary tractions are 

t° = n.s° on aV. (7.1.1) 

Because of heterogeneity, neither the resulting stress nor the resulting strain 
fields in the RVE are uniform. Define the constant strain field e° by 

e° = D : s°, (7.1.2a) 

and observe that the actual stress field, denoted by s, and strain field, denoted by 
e, can be expressed as 

Bounds on moduli are presented in Section 9, and other averaging methods are discussed and 
compared in Section 10. 
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s _ s° + sd(c), e = e° + ed(c), (7.1.2b,c) 

where the variable stress and strain fields, sd(c) and ed(x), are the disturbances 
or perturbations in the prescribed uniform stress field s° and the associated con-
stant strain field e°, due to the presence of the inclusions. The total stress and 
strain tensors, s and e, are related by Hooke's law, as follows: 

s(R) = s° + sd(c) — 

{ 

C : e(c) = C: { e° + ed(c) } in M = V — W 
— — Ca : e(c) = C« : { e° + Ed(c) } in Wa, 

e(c) = e° + 
ed(c) 

- D : s(c) = D: {s0 + 6d(c) 
Da : s(c) = Da : { s° + sd(c) } 

in M = N —U 
in Wa, 

(7.1.3a,b) 

where W is the union of all micro-inclusions, W  
=i 

From the averaging theorems discussed in Section 2, and in view of 
(7.1.1), it follows that 

s=<s> = s°. (7.1.4a) 

On the other hand, the overall average strain is given by 

(7.1.4b) 

i.e., in general, < ed > # O. The aim is to calculate the overall compliance D, 
such that 

s = D : s = D : s°. (7.1.5) 

To this end, consider the notation 

< e >a f ~a e(C) dV, (7.1.6a) 

or, in general, for any field variable T(x), set 

T <T>a -  f0,, T(x)dV. (7.1.~b) 

Similarly, when the strain field is averaged over the matrix material of the RVE, 
it is convenient to write 

eM-< e >M - M J1 
e(C) dl, (7.1.6c) 

and, for the general field variable T(x), set 

TM _ < T >M _ 
j JM 

T(x) dV. (7.1.6d) 

Thus, the volume average of (7.1.3b) over the matrix and inclusions produces 

= D : ~TM, sa = Da : a  (a not summed). (7.1.7a,b) 

Since 
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and 

V 
~M =~ — S fa~°G = D :6° — S fa Da:a, 

a = 1 a=1 
(7.1.8a) 

M sM = M D : sM = D: {s°— S fa sa
}, (7.1.8b) 

a =1 

then 

(D — D) : s° = S f« (D — Da) : s« = S fa (D — Da) : < s° + sd >, 
a= 1 a =1 

(7.1.9) 

where f« = Wa/N is the volume fraction of the ath inclusion. This is an exact 
result. It defines the overall compliance tensor D in terms of the average 
stresses in the inclusions. It is important to note that this result does not require 
knowledge of the entire field within each inclusion. Only the estimate of the 
average value of the stress in each inclusion is needed. 

Since the response is linearly elastic, the disturbances or perturbations in 
the stress and strain fields due to the presence of inclusions, sd(x) and ed(x), are 
linear and homogeneous functions of the prescribed constant macrostress 
S = s°. Hence, in general, 

(Da — D) : < s° + sd >a - (Da — D) : 43a = ha : 6°  (a not summed), 
(7.1.10) 

where the constant fourth-order Ha-tensor is defined by 

ea —D:~«-< e°+ ed >«
— D:< s°+sd>a -ha:s°. (7.1.11) 

This is the change in the average strain of Wa, if Da is replaced by D. Note that 
for traction-free cavities or cracks, = 0, and definition (7.1.11) is consistent 
with (4.3.3). Since s° is arbitrary, substitution of (7.1.10) into (7.1.9) produces 

D=D+ S faHa. 
a = 1 

(7.1.12) 

The result (7.1.12) is exact. It applies to a finite, as well as an infinitely 
extended RVE. There is no restriction on the geometry (i.e., shapes) or distribu-
tion of the inclusions. The only requirements are: (1) the matrix is linearly elas-
tic and homogeneous; (2) each inclusion is linearly elastic and homogeneous; 
and (3) the inclusions are perfectly bonded to the matrix. Approximations and 
specializations are generally introduced when it is sought to estimate the con-
stant tensors Ha (a = 1, 2, ..., n ). To this end, the inclusions are often assumed 
to be ellipsoidal and other assumptions are made in order to estimate the Ha's. 
This and related issues are examined later on in this chapter. Observe that, since 

~« = S2« JWQ e(x) dV = (7.1.13) 

the Ha-tensor here has the same significance as that introduced for cavities in 
Sections 4 and 5. The u = u(x) in (7.1.13) is the displacement of the boundary 
of the ath inclusion. Unlike the case of an isolated cavity, the calculation of this 
boundary displacement field is somewhat complicated. 
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It is noted that (7.1.12) can be specialized to yield the Reuss (1929) esti-
mate. Reuss assumed that the average stress of each inclusion (and hence the 
matrix) is equal to the applied stress s°. Then, the average strain in Wa is given 
by 

~a=Da:sa= D° ~ :s°. (7.1.14a) 

Hence, Ha reduces to Da — D. Then, the overall compliance D is estimated to 
be the volume average of the compliance tensor of the matrix and the inclusions, 
i.e., 

D =(1-f)D+ S f Da, 
a =1 

where f = fa is the total volume fraction of all inclusions. 
a= 1 

(7.1.14b) 

7.2. MACROSTRAIN PRESCRIBED 

When, instead of the macrostresses, the uniform macrostrains, E = e°, are 
prescribed, the boundary conditions for the RVE become 

• c.e° on aV, (7.2.1) 

and defining 

• C : e1, (7.2.2) 

again observe that the presence of inclusions with different elasticity tensors 
introduces disturbances or changes in the uniform strain and stress fields, e° and 
s°. Denoting the strain and stress disturbances by ed and sd, respectively, 
express the resulting variable strain, e = e(x), and stress, s = s(x), as in 
(7.1.2c,b). The stress-strain relations are given by (7.1.3). 

From the boundary conditions (7.2.1), it now follows that 

e -< e>=<e°+ed>= e°, (7.2.3a) 

but 

(7.2.3b) 

in general, is not equal to s°, i.e., in general, < sd > ~ O. The overall elasticity 
tensor C is defined through 

s= C:~=C: e°, (7.2.4) 

to be estimated in terms of the microstructure and properties of the RVE. 

Following the procedure outlined in Subsection 7.1, observe that 

CFM = s — , 
~ 

f «= C:

- 

E0 _ ~, fa Ca :—g a, (7.2.5a) 
a=1 a=1 
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and that 

M 
~M = M C:~M =C:(e°- 

j 
fasa). 

a= i 
Hence, it follows from (7.2.4), (7.2.5a), and (7.2.5b) that 

(7.2.5b) 

(C — C) : S° = S fa (C _ Ca) : Sa = S fa (C — Ca) : < e° + Sd >a. 
a =I a=1 

(7.2.6) 

Again, because of linearity, the change of the average strain of W due to the 
homogenization associated with replacing Ca by C, is expressed as 

~a — D : sa Ja : e°, (7.2.7) 

and from (7.2.6) it is deduced that (since e° is arbitrary) 

C =C— ± ffC:Ja=C:(1
(4s)_ j fa Ja) 

a=1 a=1 

Definition (7.2.7) for Ja is consistent with the corresponding definition for the 
case of cavities where sa = 0; see (4.5.3). Comments which follow (7.1.12) 
also apply here. The constant tensors Ha and J~, for each inclusion, must now 
be estimated. 

It is noted that (7.2.8) can be simplified to yield the Voigt (1889) estimate. 
Voigt assumed that the average strain of each inclusion (and hence the matrix) is 
equal to the applied strain e°. Then, the overall elasticity tensor C is given by 
the volume average of the elasticity tensors of the matrix and the inclusions, i.e., 

C=(1—f)C+ j , faCa. (7.2.9) 
a=1 

7.3. EIGENSTRAIN AND EIGENSTRESS TENSORS 

For clarity in presentation, a specific elasticity problem is considered and 
is used to introduce the concept of eigenstrain. Consider a finite homogeneous 
linearly elastic (not necessarily isotropic) solid with elasticity tensor C and com-
pliance tensor D, containing within it a (only one) linearly elastic and homo-
geneous (but not necessarily isotropic) inclusion W, of arbitrary geometry, with 
elasticity and compliance tensors CU and DU. The total volume is V, bounded 
by aV, and the matrix is M = V — W, bounded by aV + awM = aV — aU; see 
Subsection 4.1, as well as Figure 4.1.1, for a discussion of the notation. Let the 
solid be subjected on aV to either the self-equilibrating surface tractions 
corresponding to the uniform stress s° = (s°)T = constant, 

t° _ n.s° m a  N, (7.3.1a) 

or the self-compatible linear surface displacements corresponding to the uniform 
strain e° = (e°)T = constant, 

(7.2.8) 



V t° = n.s° V t° = n.s° 

£° +8d — E~ 
C: (e°+ £d — E*) 

x°+Sd 
CU: (E° + £d) 

(a) Heterogeneous RVE 

E°+ Ed 
C: (S° + Sd) 

(b) Equivalent homogeneous RVE 
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u° = x. e° on aV; (7.3.1b) 

see Figure 7.3.1a for the case when the surface tractions are prescribed. Note 
that (7.3.1a) and (7.3.1b) define two separate problems which are being exam-
ined simultaneously. These boundary conditions are in general mutually 
exclusive for a heterogeneous elastic solid. 

Figure 7.3.1 

Equivalent homogeneous RVE and eigenstrain 

If the RVE were uniform throughout its entire volume, then the stress field. 
and hence the corresponding strain field would be uniform when tractions are 
prescribed on aV by (7.3.1a); these fields would be given by s° and e° = D : s°, 
respectively. Similarly, the strain field and the corresponding stress field would 
be uniform when displacements are prescribed on aV by (7.3.1b); these fields 
would be given by e° and s° - C : e°, respectively. The presence of region W 
with a different elasticity, i.e., the existence of a material mismatch, disturbs the 
uniform stress and strain fields in both cases. Denote the resulting variable 
strain and stress fields, respectively by e = e(x) and s = s(x), and set 

e = e° + ed(c), s = s° + sd(c). (7.3.2a,b) 

Here ed(c) and sd(c) are the disturbance strain and stress fields caused by the 
presence of the inclusion W, with mismatched elasticity. From Hooke's law it 
follows that 

_ C: (e° + ed(c)) 
S — CU : (e° + ed(c)) 

D : (s° + sd(c)) _ 
e DU: (s° + sd(c)) 

in M = V — W 
in W, 

in M =1 — W 
in W. 

(7.3.3a,b) 
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7.3.1. Eigenstrain 

Instead of dealing with the above-mentioned heterogeneous solid, it is 
convenient and effective to consider an equivalent homogeneous solid which 
has the uniform elasticity tensor C of the matrix material everywhere, including 
in W. Then, in order to account for the mismatch of the material properties of 
the inclusion and the matrix, a suitable strain field e*(x) is introduced in W, such 
that the equivalent homogeneous solid has the same strain and stress fields as the 
actual heterogeneous solid under the applied tractions or displacements, which-
ever may be the case. The strain field e* necessary for this homogenization is 
called the eigenstrain. 

Figure 7.3.lb illustrates this procedure for the case when boundary trac-
tions corresponding to s° are prescribed on ay. In this figure the eigenstrain 
field is given by 

e*() 
= { 

~* 
in M 
inU. 

(7.3.4a) 

For this equivalent problem the elasticity tensor is uniform everywhere, includ-
ing in W. It is given by C. Therefore, the corresponding strain and stress fields 
are 

e(c) = e° + ed(x), 

s(c) = C : (e(c) — e*(c)) = 
C: (e° + ed

(x)) 
C : (e° + ed(R) — e*(x)) 

in M 
in W. 

(7.3.4b,c) 

As is seen, the eigenstrain field disturbs the relation between the strain and the 
stress. Indeed, they are no longer related through uniform elasticity C in W. 

To relate the eigenstrain e* to the corresponding perturbation strain ed, 
consider the equivalent uniform elastic solid of volume V and uniform elasticity 
C, and observe that, since by definition, 

= C : e° (7.3.5a) 

or 

e° = D : s°, (7.3.5b) 

then from (7.3.2) and (7.3.4), it follows that 

sd(x) = C: (ed(c) — e*(c)) in V. (7.3.6) 

Since the resulting stress field must be in equilibrium and must produce a com-
patible strain field, in general, the strain field ed(x) is obtained in terms of an 

integral operator acting on the corresponding eigenstrain2 e*(c). In the present 
context, it is convenient to denote this integral operator by S, and simply set 

ed(x) = S(x; E*) (7.3.7a) 

2 As will be shown in Section 9 in some detail, (7.3.6) can be solved with the aid of Green's 
function for V. 
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or 

e1 (C) - Si~(c; e*). (7.3.7b) 

7.3.2. Eigenstress 

In the above treatment, the heterogeneous finite (or infinite) linearly elas-
tic solid consisting of a uniform matrix M and a single inclusion W with dif-
ferent elasticities (7.3.3a), is homogenized by the introduction of the eigenstrain 
e*(c). The homogenization can be performed by the introduction of an eigen-
stress s*(c), instead. To this end, set 

* 
 

in M 
in W. 

(7.3.8a) 

For this alternative equivalent problem, the elasticity tensor is again uniform 
everywhere, including in W, like in (7.3.4). The corresponding strain and stress 
fields are 

e(c) = e° + ed(c), 

s(x) = C : e(C) + *(x) 
_ 

C: (e° + ed(c)) 
C: (e° + ed(c)) + s*(c) 

From (7.3.5), the disturbance strain and stress must satisfy 

sd(x) = C : ed(c) + s*(c)  in V, 

in M 
in W. 

(7.3.8b,c) 

(7.3.9) 

for the required eigenstress. As discussed in Subsection 7.3.1, in general, the 
stress field sd(c) is expressed in terms of an integral operator acting on the 
corresponding eigenstress s*(c). Formally, this is written as 

sd(c) = T(x; s*) (7.3.10a) 

or 

s(C) = Ty(c; s* ). (7.3.1Ob) 

7.3.3. Uniform Eigenstrain and Eigenstress 

An important result3 due to Eshelby (1957), which has played a key role 
in the micromechanical modeling of elastic and inelastic heterogeneous solids, 
as well as of nonlinear creeping fluids, is that if: 

1)1— W is homogeneous, linearly elastic, and infinitely extended; and 

3 See an earlier similar observation in two dimensions by Hardiman (1954). 
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2) W is an ellipsoid, 
then: 

1) the eigenstrain e* necessary for homogenization is uniform in W; and 

2) the resulting strain ed and hence, stress sd, are also uniform in W, the 
former being given by 

ed =Sw:e*, (7.3.11a) 

where the fourth-order tensor SU is called Eshelby's tensor, with the fol-
lowing properties: 

a) it is symmetric with respect to the first two indices and the second two 
indices, 

Si k1 - Sjlk1 — Si 1, k; (7.3.1 lb) 

however, it is not, in general, symmetric with respect to the exchange 
of ij and kl, i.e, in general, S;i ~ S; 

b) it is independent of the material properties of the inclusion W; 

c) it is completely defined in terms of the aspect ratios of the ellipsoidal 
inclusion W, and the elastic parameters of the surrounding matrix M; 
and 

d) when the surrounding matrix is isotropic, then SU depends only on the 
Poisson ratio of the matrix and the aspect ratios of W. 

In Subsection 7.3.6, the components of Eshelby's tensor are listed for 
several special cases. In Section 11 a detailed calculation of Eshelby's tensor is 
given. 

When the eigenstrain e* and the resulting strain disturbance ed are uni-
form in W, then the corresponding eigenstress s* and the associated stress dis-
turbance sd are also uniform in W. Therefore, a fourth-order tensor TU, may be 
introduced such that 

sd = TW : s* in W. (7.3.12a) 

The tensor TU has symmetries similar to Eshelby's tensor SU, i.e., 

Tijl = Tj i = Ti 11  , (7.3.12b) 

but in general, Tik1 ~ Ti j. 

To relate the tensor TU to Eshelby's tensor SU, it is first noted from (7.3.6) 
and (7.3.9) that the eigenstrain and eigenstress are related by 

s*+C:e*= 0, e ± D : = 0. (7.3.13a,b) 

From (7.3.9), (7.3.11a), and (7.3.12a), it follows that 

SU :  = D : (Tw_ 1(4s)) : (—C:  

TU : s* = C: (SU — 1(4s)) : (— D : s*). (7.3.14a,b) 

Therefore, the tensors S' and TU must satisfy 



202 

TW + C: SW : D= 1(4s). 
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(7.3.14c,d) 

(7.3.14e,f) 
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SW + D : TW : C = j(4s), 

In component form, these are 

S~jkl + DijPg T 9rs Crsk! = 2 (dik d;1 + d~ I  

Tijkl + CiJpg S 9rs Drskl = 2 (dik d;1 + Sil d;k). 

7.3.4. Consistency Conditions 

For finite V, the eigenstrains or eigenstresses necessary for homogeniza-
tion are, in general, nonuniform in W, even if W is ellipsoidal. Also, for a nonel-
lipsoidal W, the required eigenstrains or eigenstresses are in general, variable in 
W (they are zero outside of W), even if V is unbounded. For the general case, 
the eigenstrain, e*(c), or the eigenstress, s*(c), is defined by the so-called con-
sistency conditions which require the resulting stress field s(x), or the strain 
field e(x), to be the same under the applied overall loads, whether it is calculated 
through homogenization or directly from (7.3.3a) or from (7.3.6). Hence, the 
resulting stress field in W becomes, 

s(c) = Cn : { e° + ed(c) } = C: { e° + ed(c) — e*(c) } in W, (7.3.15a) 

and the resulting strain field in W satisfies, 

e(x) = DU : { s° + sd(c) } = D: { s° + sd(x) — s*(c) } in W. (7.3.15b) 

Substitution into (7.3.15a) for ed(x) from (7.3.7) now yields an integral equation 
for e*(c). Similarly, substitution into (7.3.15b) from (7.3.10) yields an integral 
equation for s*(c). 

It is noted that both (7.3.15a) and (7.3.15b) are valid whether uniform 
tractions produced by s° or linear displacements produced by e° are prescribed 
on ay. If the overall stress s° is given, e° is defined by D : s°, whereas if the 
overall strain e° is given, s° is defined by C : e°. In Chapter IV this procedure is 
detailed when V is a cuboid, representing a unit cell of an RIB with periodic 
microstructure. In the sequel, on the other hand, attention is confined to the case 
when V is unbounded and W is ellipsoidal, so that the homogenization eigen-
strain and eigenstress are both uniform in W. 

Whether V is bounded or not, and for any homogeneous linearly elastic 
inclusion W in a homogeneous linearly elastic matrix M, consistency conditions 
(7.3.15a,b) yield 

e° + ed(x) _ lw : e*(x), s° + sd(c) = Bw : s*(x) in W, (7.3.16a,b) 

where 

A° = (C — Cam) -1 : C, Bc = (D — D W)
-1 

: D. (7.3.17a,b) 

By definition, constant tensors AU and BU satisfy 
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or 

D : C0 = 1(4s) — (A0)1 = (1(4s) — (BW)-1)-T 

C : D0 - 1(4s)  (BW)-1 = (1(4s) - (A0) R, 

(7.3.17c) 

(7.3.17d) 

where the superscript -T stands for the inverse of the transpose or the transpose 
of the inverse. 

When V is unbounded there is no distinction between the cases when the 

strain e° or the stress s° is prescribed.° Thus e° = D : s° or s° = C : e°. Also, 
when, in addition, W is ellipsoidal, then ed, e*, sd, and s* are all constant ten-
sors in W. Hence, for unbounded V and ellipsoidal W, substitution for ed in 
(7.3.16a) or for sd in (7.3.16b) provides explicit expressions for the eigenstrain 
e and eigenstress s* which are necessary for homogenization, 

e = (A° — S0)-1 : e°, s* = (B0 — R0)-1 : s° in W. (7.3.18a,b) 

These and (7.3.16a,b) now lead to 

e = e° + ed = A0 : (A0 — S°)' : e°, 

s = s° + sd = B0: (BW _ T~)-1 : s°  in W. (7.3.19a,b) 

Note that the strain e and stress s in W given by ('7.3.19a) and (7.3.19b) 
are equivalent. From constitutive relations (7.3.3a,b), substitution of (7.3.17a,b) 
into (7.3.19a,b) yields 

s = CW : AW : (AW SW)
-1 

:e° 

E = D~ : B0 : (BW — TW)
-1 

: s° 

= {D0 : { j(4s) 
— R0: 

(~(4s) — C: D 0)} 1 : C) : e0 in W. (7.3.20a,b) 

Taking advantage of identities (7.3.14c,d), observe that the fourth-order tensors 
in the right-hand sides of (7.3.20a,b) become 

Cam : {1(4s) -5
0 :(1(4s) —D:Cam)} -1 : D= {1(4s) — TW:(1(4s) —C:Dom)} -1, 

DU : {1(4s)_ Tw : (1(4s) _C : D0)} i :V = {1(a5) — MW.(1(a5) — D : CW)}-i. 
(7.3.20c,d) 

Therefore, (7.3.20c,d) compared with (7.3.19a,b) yield the equivalence relations 
between (A0, SV) and (B0, R0), as follows: 

C0 : A0 : (A0 — S 0)-1 : D = B0 : (B0 — T om) 1, 

D0 : BW : (BW — TW)-1 : C = A0 : (A0 — S0) 1. (7.3.20e,Í) 

4 This is, however, not true when V is bounded. 
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7.3.5. H- and J-Tensors 

Since the total strain in an ellipsoidal W is uniform for the unbounded V 
considered in Subsection 7.3.4, the corresponding H0- and J0-tensors defined in 
(7.1.11) and (7.2.7), respectively, become 

<e >o— D:< S >0=02 -13 : sW=hw:s° in W, (7.3.21a) 

when the overall stress s° is prescribed; and 

<e >o— D:< s >0= 0 — D: = Iw : eo  inU, (7.3.21b) 

when the overall strain e° is prescribed. Since the region V is unbounded, H. 
and J0 satisfy 

JO = Hw : C, 110 = J0 : D. (7.3.21c,d) 

Comparing (7.3.20a,b) and (7.3.21a,b), note that 110 and J may be 
expressed in terms of Eshelby's tensor S0 and its conjugate T0. as 

hw = (D0 — D) : B0 : (B0 — T0) , 

J0 = (D0 
— D) : CU : A0 : (A0 

— $ W)-1, (7.3.22a,b) 

or 

HW = (D0 — D) : C0 : A0 : (AW — S0) 1 : D, 

J0 = (D0 — D) : B 0 : (B0 — T0)-1 : C. (7.3.22c,d) 

As pointed out before, the Eshelby tensor S and its conjugate T0 for a uniform 
ellipsoidal inclusion W in an unbounded uniform matrix, depend on the aspect 
ratios of W and the elastic parameters of the matrix material, but they are 
independent of the material properties of W. On the other hand, H0 and J0 

depend on the geometry of W, as well as on the elasticity of both W and the 
matrix material. For cavities, on the other hand, (7.3.22c,d) reduce to 

H0 _ (1(4s) — 5 0)-1 
: D, J0 = (1(4s) — S

0)-1, (7.3.22e,f) 

which show that the H- and J-tensors are effective tools for homogenization of 
solids with cavities and cracks. 

From the above equations, it is seen that the equivalence of (A0, 
50) 

and 
(B0, T0), given by (7.3.20e,f), corresponds to the equivalence of J0 and H0, 
given by (7.3.21c,d). It should be kept in mind that: 

1) if the solid containing an inclusion is unbounded, these equivalent rela-
tions always hold, since the farfield stress s = s° and strain e°° = e° are 
related by s° = C : e° or e° = D : s°, and hence the response of the solid 
is the same whether s° or e° is prescribed; but 

2) if the solid is bounded, these equivalent relations do not, in general, hold, 
since the response of the solid when uniform boundary tractions are 
prescribed is, in general, different from that when linear boundary dis-
placements are prescribed. 



Figure 7.3.2 

An ellipsoid coaxial with 
the Cartesian coordinates 
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As is seen from (7.3.20), the formulation in terms of (C, A l SU) corresponds 
exactly to that in terms of (D, BU, TW). Furthermore, from (7.2.24), the HW-

and JW-tensors are expressed in terms of either (C, Al, SU) or (D, Bl, TW). 
Hence, from now on in this chapter, mainly A0, Bw, SU, and TU are used 
instead of hW and J~. 

7.3.6. Eshelby's Tensor for Special Cases 

The components of Eshelby's tensor S. with respect to a rectangular 
Cartesian coordinate system are listed below when the matrix M is unbounded 
and isotropically elastic, and the inclusion W is ellipsoidal with semiprincipal 
axes, a;, which coincide with the coordinate axes, x; (i = 1, 2, 3 ); see Figure 
7.3.2. 

(1) General form (a1 > a2 > a3): 

Si111— 
8~(1—v) 

al 111 + 8 (1 2 v) If , 

S1122 —  a2 I12 8p(1 — n) 8
1-2v (1 2 

n) I1. 

S1212- 16p(1 — v) ~ai +ai) h2+ 16p(1 —v) (I1 + 12). 

The I;- and I1-integrals are given by 

I1 _ 
2

a2)~a i —a)

4 2  22a3 

(a i 
2  {F(8, k) — E(8, k) }, 

13 = 
2 

4pa1a~a3 
{ 

az(a i — a)'~ 
E(8, k)}, 

(a2 — a3 )(ai  as )iz a ia3 

(7.3.23a- c) 
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and 

31
11 +112+113= án, 
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(7.3.23g--i) 112 a1 
— aZ, 

2na1 
a1 + a2 

S2233 - 
1 
  2(1— n) 

(7.3.25a—k) 

51133 = 
1  2na2 

S3311 = S3322 = 0, 2(1— n) ai+a2 ' 

z 1  a?+az  +  1-2n  
5iz iz = 

 
2(1—i) { 2(a1 + a2)2 2 }, 

Sz3z3 =   a 2(i1 + a2) , S3 i3i = 
2 2(a a F a2) 

_ p(1 —2v) a3 
53333 = 1 

4(1—i) a1 ' 

(4) Penny-shape (al = a2  » a3 ) 

S1111=52222=  n(13 — 8v) a3 
32(1—i) a1 ' 

where F and E are the elliptic integrals of the first and second kind, and 

0 = aresin{  a' za3  }'% k _ {  az — ai }'h 
a1 a1 —a 3 

(2) Sphere (ai = a2  =a3  = a): 

5n -1 4-5v  S'ikl — 
15(1 — v) d''dw+ 15(1 — v) (d~k dj1+ d,,d,k). 

(3) Elliptic cylinder (a3 — co) 

1 a2 +2a1a2 
+(1-2v) 

a2  

}, 51111 = 2(1— v) { (a ±a2)2 ai+ a2 

2 
52222 = 

 

2(1 —v)  n) { ~ái + á2~~ 
±(1 -2v) a1 + a2  }' S3333 = 0, 

2 
5ii22 = 

 

2(1-
1 

{ (ai +a2)z  (1-2n) a2  

(7.3.24) 

(7.3.23j,k) 

522ii = 1 { 
ai 

2(1—i) (a i + a2)2  (1-2n)  
ai 

} 
ai+a2 ' 



f ~ 

ea S. 
C : (ed — e*) 
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S ii22= S22ii= 
p(81 — 1) a3 

32(1— n) a l ' 
5

1133 = S2233 = 
p(21 — 1) a3 

8(1— n)  a1 ' 

S3311 = S3322 —
1 n 8n 

 
p(4 

1) 

a1 }, 

n(7 — 8n) a3 1 p(n — 2) as 
S1212 = 32(1 — n) a1 S3i3i = S2323 = 2 

{ 1 + 
4(1— n) a1 }' 

 (7.3.26a---g) 

7.3.7. Transformation Strain 

As pointed out in Subsection 7.3.3, an unbounded uniform elastic solid V 
containing a uniform elastic ellipsoidal inhomogeneity W, can be homogenized 
by the introduction of uniform eigenstrains e* (or eigenstresses s*) in W. Upon 
homogenization, and in view of (7.3.5), the disturbance stress and strain fields, 
sd and ed, may be viewed as the stress and strain fields produced in the 
unbounded homogeneous solid (no inhomogeneity) when the region W under- 
goes a transformation which introduces in W inelastic strains5 e*. Figure 7.3.3 
shows a portion of an unbounded uniform solid of elasticity C, with transforma-
tion strains e* defined in W in the absence of any applied loads. In this case, the 
stress field sd is self-equilibrating, with a vanishing average, i.e., < sd > = O. 
In general, the fields sd and ed are nonzero when they correspond to an actual 

Figure 7.3.3 

A portion of an unbounded uniform 
elastic solid of uniform elasticity C, 
in which region W has undergone 
transformation with inelastic strain e* 

5 That is, if W is cut off such that the constraint imposed by its surrounding matrix is relaxed, 
then its strain would be e* which is also called the unconstrained transformation strain. 
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inelastic transformation strain e* in W. In the case of the inhomogeneity, on the 
other hand, the disturbance fields, sd and ed, vanish when the applied loads are 
zero. In both cases, however, the strain ed and the stress sd in W are given by 
(7.3.1 la) and (7.3.6), respectively. The difference between homogenization of a 
heterogeneous elastic solid, illustrated in Figure 7.3.1, and the strain and stress 
fields produced by inelastic strains e* in W, Figure 7.3.3, should nevertheless be 
carefully noted. In Figure 7.3.1, the eigenstrains are introduced as a tool to sim-
plify the solution of the problem, whereas in Figure 7.3.3, these are the actual 
inelastic strains which may stem from shrinkage, thermal expansion, phase-
transformation, or plastic deformation by slip or twinning The basic equations 
are, however, quite similar, and provide a powerful technique to deal with a 
broad class of problems involving defects in homogeneous or inhomogeneous 
elastic solids. 

As an illustration, assume that W of elasticity C2 in Figure 7.3.1, actually 
undergoes a uniform inelastic deformation which corresponds to inelastic 
strains e'°, if W were not constrained by its surrounding elastic matrix. In the 
presence of the surrounding elastic matrix M of elasticity C, and when the 
farfield stresses and strains are s° and e°, s° = C : e°, it then follows that the 
actual stress field in W is given by 

s = s°+sd = CU: (e°+ed— E) 

= C : (e° + ed — e'" — e*) in W, (7.3.27a,b) 

where 

ed = SU : (e'" + e*) in W. (7.3.27c) 

In (7.3.27a,b), a part of ed in W is due to the actual inelastic deformation of W, 
i.e., due to e'". This part must be defined through the relevant physical laws 
which govern the corresponding inelastic deformation. The remaining part of ed 
in W, on the other hand, is due to eigenstrains e* which are introduced in order 
to homogenize the solid. Upon this homogenization, the uniform elasticity ten-
sor C is used for the entire solid, i.e., for both the elastic matrix and, say, the 
elastic-plastic inclusion W. From (7.3.27) and definition (7.3.17), it follows that 

E* = (AW —S W)-t : {e°+(Sw — 1( 4s)) : (7.3.2'7d) 

Since in general, the relation between e'" and the farfield uniform strain e° (or 
stress 0°) is nonlinear and possibly history-dependent, an incremental formula-
tion is often necessary. Because of the assumed small deformations, the 
corresponding rate equations in the present case6 follow directly from (7.3.27); 
replace e°, e*, and e'" by their rates. 

The formulation may also be done in terms of the eigenstress. Then it is 
necessary to define the decrement, G, in the stress due to the inelastic strain e, 
by 

6 The assumption that the matrix is linearly elastic, considerably simplifies the solution of this 
problem. For the case when the matrix also admits inelastic deformations, the problem becomes 
considerably more complex; see Appendix A of Part 1. 
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G1° _ — CU : el", 

and obtain the consistency conditions, 

e = e°+ed 

= DU: (s°+sd— G) 

= 

 

D: (s° + sd — s'° — (1*) in W, (7.3.28b) 

where 

sd = TU : (s'" + s*). (7.3.28c) 

Hence, instead of (7.3.27d), the following equivalent relation is obtained: 

s* = (BW _ TW)-1 : {s0 + (TW — 1(4s)) :  (7.3.28d) 

7.4. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE TEN-
SORS: DILUTE DISTRIBUTION 

In this subsection, the following two exact relations are applied to an RVE 
consisting of an elastic matrix and elastic micro-inclusions: from (7.2.6) when 
the overall strain e° is prescribed, 

(C — C) : e° = S fa (C — Ca) ~ e° ; (7.4.1 a) l   

and from (7.1.9) when the overall stress s° is prescribed, 

(D —D) : s° = – fa (D — Da) : &a. (7.4.1b) 
a=1 

Then, the average stress or the average strain sa of each micro-inclusion Wa, 
is estimated in order to obtain the overall elastic parameters of the RVE. For 
simplicity, consider the case when all micro-inclusions are either ellipsoidal or 
can be approximated by ellipsoids, and are perfectly bonded to the matrix. As in 
the cases of microcavities and microcracks, for a dilute distribution of inclu-
sions, interaction effects may be neglected. In the next subsection, the self-
consistent method is used, which includes the interaction effects in a certain 
manner. Under the assumption of adilute distribution of inhomogeneities, the 
overall elasticity C and compliance D, are each other's inverse only to the first 
order in the volume fraction of inhomogeneities. The general case is considered 
first, and then results for special geometries of inclusions and their distribution 
are given. 

As in the case of microcavities and microcracks, the case of a prescribed 
macrostress S = s°, and the case of a prescribed macrostrain E = e°, are treated 
separately. In either case, an infinitely extended solid under a prescribed overall 
stress s° or strain e°, is considered with an embedded isolated inclusion Wa, in 

(7.3.28a) 
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order to estimate the average strain and the average stress of a typical inclusion 
W. Since for these estimates the solid is assumed to be unbounded, the pres-
ence of a single inclusion does not affect the overall relations s° = C : e° and e° 
= D : s°. Therefore, for calculating and ~a, on the basis of a single inclusion 
in an unbounded matrix, it does not make any difference whether the stress or 
the strain is regarded prescribed at infinity Note, however, that the final overall 
elastic parameters in the "dilute estimates" (but not in the self-consistent case) 
depend on whether (7.4.1a) or (7.4.1b) is used. 

Denote the elasticity and compliance tensors of W by Ca and Da, respec-
tively, and set 

Aa - (C — Ca) -1 : C, Ba _ (D — Da) -1 : D. (7.4.2a,b) 

The Eshelby tensor S and its conjugate T, in general, depend on the aspect ratios 
of W. Hence, denote them by Sa and Ta, respectively. From (7.3.14c,d), 5a 
and Ta satisfy 

Sa + D: Ta: C=1(4s), Ta+ C:Sa: D=1(4s). (7.4.3a,b) 

Then, for a single Wa embedded in an infinitely extended solid, under uniform 
stress or strain at infinity, the resulting strain and stress in W~, are uniform and 
given, in view of (7.3.20e,f), by 

Ea < e° + Ed >a = Aa : (Aa — S 1 :  

• < s° + sd > = Ba : (Ba — T9-1 : s°  (a not summed).  (7.4.4a,b) 

From (7.3.19c,d), the corresponding equivalence relations are, 

Ca : Aa : (Aa — Ste)-1 : D = Ba : (Ba  

Da : Ba : (Ba — Ta)-1 : C = Aa : (Aa — 5 a)-1 (ei not summed). (7.4.4c,d) 

7.4.1. Macrostress Prescribed 

Consider first the case when the surface tractions are regarded prescribed 
through (7.1.1) by the macrostress S = s°. For a dilute distribution of inclu-
sions, the average stress of each inclusion Wa is approximated by the uniform 
stress of a single inclusion embedded in an unbounded solid with the elasticity 
of the matrix material, and subjected to the farfield stress s° (or strain 
e° - D : s°). From (7.4.4a), it then follows that 

• = Ca : Aa : (Aa — Ste) -1 : D : s°, (7.4.5a) 

and from (7.4.4b), 

• = Ba : (Ba — T 1 : s°. (7.4.5b) 

From (7.4.4c,d), it is seen that these two equations are equivalent. Now, substi-
tution of (7.4.5a,b) into (7.1.9) yields 
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(D - D) : s° - { f (Da - D) : Ca : Aa : (Aa - Sa)-1 : D}  : s°, 
a = l 

(D-D):s°= , fa (Da - D) : B° : (Ba _Ta)-! . : s°. (7.4.5c,d) 
a 

Since the resulting equations must be independent of the prescribed s°, it fol-
lows that 

H 
1 ) ± 

a = I 
 

D=D: 1(as)_ S1 fa(Ba-Ta)-1 }. (7.4.6a,b) 

Recall that since an unbounded region is considered, the average stress 6a given 
by (7.4.5a) is equivalent to that given by (7.4.5b), and hence the overall compli-
ance D given by (7.4.6a) is identical to that given by (7.4.~b). 

When all the inclusions are similar, are all similarly aligned with respect 
to the fixed coordinate axes, and have the same elasticity and compliance ten-
sors denoted, respectively, by C1 and D1, then (7.4.6a,b) reduce to 

D = { 1(4s) + f (AI - S1)-1 } : D, D = D: { 1(as) - f (BI - 01)-1 },  (7.4.7a,b) 

where f is the volume fraction of inclusions, 

A1 - (C - C1)-1 : C, B1 
= (D - DI)-1 : D, (7.4.7c,d) 

and S1 and T1 are Eshelby's tensor and its conjugate, common to all inclusions. 

7.4.2. Macrostrain Prescribed 

Next, consider the case when the surface displacements are regarded 
prescribed through (7.2.1) by the macrostrain E = e°. The average strain in 
each inclusion is now approximated by the uniform strain of a single inclusion 
embedded in an unbounded solid with the elasticity of the matrix material, and 
subjected to the farfield strain e° (or the farfield stress s° = C : e°). Thus, from 
(7.4.4a,b), it follows that 

= Aa : (Aa - Sa)-1 : e°, ea = Da : Ba : (Ba - Ta)-1 : C: e°. (7.4.8a,b) 

Substitution of (7.4.8a,b) into the exact relation (7.4.1b) then yields 

(C - C) : e° =
{ a1 

f (Ca - C) : Aa : Oa - Sa)-1 
} 

: E°, 
= 

I.e., the inclusions have the same aspect ratios, but may not be equal in size. 
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(C — C) : e° _ 
{ S fa (Ca — C) : Da : Ba : (Ba — Ta)-1 : C 

a=i 

and since the prescribed overall strain, e°, is arbitrary, 

=C:{ 1(4s)_ r fa (Aa_ Sa) i } 
L=.i~~  

= { 
1(4s) + 

j 
fa (B« - 7-a)-1 } : C. 

a=l 

: e°, (7.4.8c,d) 

(7.4.9a,b) 

Again, since an unbounded region is considered, the average strain 
~a 

given by 
(7.4.8a) is the same as that given by (7.4.8b). Hence, the overall elasticity ten-
sor C given by (7.4.9a) is identical with that given by (7.4.9b). 

If all inclusions are similar, with identical elasticity and alignment, as 
mentioned in Subsection 7.4.1, then Ca - C1, Da - D1, Sa - S1, and Ta = T1 for 
all W. The overall elasticity tensor C becomes 

C= C: { j(4s) —f (A1-- S1)-1 
} 

C = { 1(4s) + f (B1 — T1)-1 } : C. (7.4. l0a,b) 

7.4.3. Equivalence between Overall Compliance and Elasticity Tensors 

In Subsection 7.4.1, two identical expressions are obtained for the overall 
compliance tensor, (7.4.6a,b). Similarly, in Subsection 7.4.2, two expressions 
are obtained for the overall elasticity tensor, (7.4.9a,b). A dilute distribution of 
micro-inclusions is assumed, in arriving at these results. As discussed in Sec-
tions 5 and 6, the overall elasticity and compliance tensors obtained by this 
assumption agree only up to the first order of the volume fraction of micro-
inclusions. Indeed, from (7.4.6a) and (7.4.9a), 

D : C = 1(4s) f« fp (Aa — S 1 : (Aß — Sß) -1, 
a=i 

and from (7.4.~b) and (7.4.9b), 

C : D = 1(4s) _ 
j~ S

.~ fa fß ( Ba — T9)-1 : (Bß - Tß) 1• (7.4.1 lb) 

Therefore, C and D are each other's inverse only to the first order in the volume 
fraction of micro-inclusions. 

In particular, when all micro-inclusions are similar, from (7.4.7a,b) and 
(7.4.10a,b), it follows that 

D : C = 1(4s) _ f2 (AI — S1)-1 : ( A1 — 5 I)-1 = 1(4s) + 0(f2
), 

(7.4.11 a) 

: D = j(4s)_f2 (B1 — Tt)-i : (Bt _ Tt)-i = 1(4s) + O(f2). (7.4.12a,b) 
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In terms of S" and 
Ta, 

the tensors H" and H can be defined from 
(7.4.6a,b), by 

H" = (A
a 

— S")
-1 

: D —D : ( Ba — 0")-1, H _ SR fa Ham,  (7.4.13a,b) 
a =1 

and the tensors J" and J from (7.4.8a,b), by 

1" _ (A" — S") -1 = —D:  (B" — T a)-1 : C, J - S (7.4.13c,d) 
a= 1 

From the equivalence relations (7.4.4c,d), it follows that 

J=H:C, H=J:D. (7.4.13e,f) 

Hence, (7.4.11a,b) may be rewritten in terms of the H-tensor, as 

C:D=1(4s) —C:H:C: H, D:C=104s0 —H:C:H:C. (7.4.14a,b) 

These relations are exactly the same as relations (5.1.19a,b) obtained for an 
elastic RVE with microcavities. 

7.5. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE TEN-
SORS: SELF-CONSISTENT METHOD 

Consider the self-consistent method for estimating the average stress &" 
or the average strain s" for a typical micro-inclusion W. As explained in Sec-
tions 5 and 6, in the self-consistent method, one considers a typical micro-
inclusion embedded in an unbounded homogeneous elastic solid which has the 
yet-unknown overall moduli of the RVE, and then calculates the average stress 
or strain in the embedded inclusion. Since an unbounded solid is used, compu-
tation of the average strain and stress does not depend on whether the overall 
strain e° or the overall stress s° is regarded prescribed. Moreover, these overall 
strains and stresses are related by the overall elastic parameters, i.e., s° = C : e° 
or e° = D : s, where the unknown overall elasticity and compliance tensors are 
denoted by C and D, respectively. The results obtained in Subsection 7.3 now 
give the average strain and stress in Wa, to be 

e°+ed>a = A":(Aa-8a)-1 :S°, 

s° + sd >" = B" : (B" — T") -1 : s°, (7.5.1 a,b) 

where 

A" - (C — C") -1 : C, B" _ (D—D 1 : D. (7.5.1c,d) 

In (7.5.1a,b), S" and Ta are Eshelby's tensor and its conjugate, for the geometry 
of W and the overall material properties defined by C and D. From (7.3.13c,d) 
and (7.3.19c,d), S" and Ta satisfy 
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: Ta :  = 1(4s), ja+C:Sa:D= 1(4s), (7.5.2a,b) 

and tensors Aa and Ba satisfy 

Ca : Aa : (Aa — S °C)-1 : D = Ba : (Ba — T")-1, 

Da : B : (Jr — ta)-1 : C = Aa : (Aa — Ste) -1 (a not summed). (7.5.2c,d) 

7.5.1. Macrostress Prescribed 

Following the procedure in Subsection 7.4.1, consider first the case when 
the macrostress S = s° is regarded prescribed. The average stress da of the 
micro-inclusion Wa is approximated by the uniform stress of a single inclusion 
embedded in an unbounded solid with the yet-unknown elasticity and compli-
ance tensors, C and D. From (7.5.1a,b), the average stress of Wa, is expressed in 
terms of the overall stress, s°, as 

da= Ca:Aa:(Aa —Sa)
-1 

: D :  

6a = Ba: (1a — T") -1 : s° , (7.5.3a,b) 

and substitution of (7.5.3a,b) into (7.4.lb) yields 

(D — D) : s° = { f(D—D) : Ca : Aa : (Aa — Sa) -1 : D}  : s°, 
a=i 

(D — D) : s° = S fa (Da — D) : Ba : (Ba — Ta)-1 } : s°. 
a=i 

Since s° is arbitrary, the overall compliance D becomes 

D = D+±  fa (Da — D) : C a : Aa : (Aa — S«) -1 : D, 
oi=1 

(7.5.3c,d) 

D = D + 
a1 

fa (Da — D) : Ba : (Ba — Ta)-1. (7.5.4a,b) 

Since the average stress da given by (7.5.3a), is the same as that given by 
(7.5.3b), the overall compliance tensor D given by (7,5.4a), equals that given by 
(7.5.4b). 

When all the inclusions are similar, from (7.5.4a,b) the overall compliance 
D becomes 

D = D±f(D1 —D) :C 1 : A1 : (A1 — X ~1 : D, 

D = D+ f (D1 — D) : B1 : (B1 — T1)-1, 

where 

A1 = (C — C1)-1 : C, B1 = ~D — D 1)-1 : D, 

(7.5.5a,b) 

(7.5.5c,d) 

and S1 and T1 are Eshelby's tensor and its conjugate, common to all inclusions. 
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7.5.2. Macrostrain Prescribed 

Next, consider the case when the macrostrain E = e° is prescribed. In a 
manner similar to the preceding subsection, from (7.5.1a,b) express the average 
strain of the micro-inclusion Wa in terms of the overall strain e° as 

~a = Aa : (Aa — Ste) -1 : e° 

É a Da : Ba : (Ba — Ta)
-

I : C : e°. (7.5.6a,b) 

Substitution into (7.4.1 a) now yields 

(C — C) :e° ={ , fa (Ca — C) : Aa : (Aa — S a)- i 
a 

(C—C): e0 = fa (Ca — C) : Da : B (Ba — Ta)-i : C 
a 1 

(7.5.6c,d) 

Since e° is arbitrary, the overall elasticity tensor C is given by 

 
C = C± ±   fa (Ca — C) : A°C : (AV — S a)-1, 

a= 1 

C = C + 
j 

fa (Ca — C) : D a : Ba : (Ba — Ta)-1 : C. 
a=1 (7.5.7a,b) 

Again, since the average strain ~a given by (7.5.6a), is the same as that given by 
(7.5.~b), the overall elasticity tensor C given by (7.5.7a), equals that given by 
(7.5.7b). 

When all inclusions are similar, (7.5.7a,b) reduce to 

C = C + f (C1 — C) : XI : (A1 — S 1)-1, 

C = C + f (C1 — C) : D 1 : B1 : (B1 — 
T1)-1 

: C. (7.5.8a,b) 

7.5.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained 
by Self-Consistent Method 

As discussed in Sections 5 and 6, the overall compliance and elasticity 
tensors obtained by the self-consistent method are each other's inverse, hence 
the name self-consistent. To see this, consider (7.5.7a) and multiply from the 
right by C-1, and from the left by C-1 = D, to obtain 

D = C-1+ ~~
: C 1 

a=1 

= V-i — S fa (Da — D) : Ca : Aa : (Aa — Sa)- i : C
-1 

• (7.5.9a) a 1 

Now, multiply (7.5.4b) from the right by D-1, and from the left by D-1 = C, to 
arrive at 
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C=D ~+ S f« C :(D"—D): B":(B"— Ta)-i: D-i 
a = 1 

= D-i _ j f~ (C" — C) : D a : B"  : (Ba — 0") -1 : D-1. 
~= l 

Comparing (7.5.9a) with (7.5.4a), or (7.5.9b) with (7.5.7b), observe that 

C-1 = D, D-1 = C. (7.5.9c,d) 

Therefore, the overall compliance tensor D given by (7.5.4a,b), and the overall 
elasticity tensor C given by (7.5.7a,b), are each other's inverse, exactly. 

When all micro-inclusions are similar, a similar procedure yields, from 
(7.5.8a), 

D = C-1 + f (D — D 1) : C1 : A1: (A1- S1)-1 : C-1, (7.5.10a) 

and from (7.5.5b), 

C = D-1 + f (C — C 1) : D1 : B1 : (B1 — Tl)~ 1 : D-1. (7.5.10b) 

The equivalence of (7.5.10a) and (7.5.5a), and (7.5.10b) and (7.5.8b), ensure the 
equivalence of D and C. 

In terms of S" and Ta, the tensor H can be defined from (7.5.3c,d), by 

H° SR fa(D"—D):C": Aa:(Aa_ S")-1:D 
cc=1 

«=i 
: B" : (B" — T")-1, (7.5.1la) 

and the tensor J from (7.5.6c,d), by  

f D : (Ca_ C) : Aa: (Aa Sa)_I 
~=1 

a=i 
From (7.5.11a,b) (or from the equivalence relations (7.5.2c,d)), H and J satisfy 

J = H : C, H = J : D. (7.5.12a,b) 

These relations correspond to (5.1.22b,c) exactly, and hence, 

D = D+H=='C=C —C:J. (7.5.13) 

Formulation of effective moduli of elastic composites has been considered 
by a number of investigators. Related to the formulation presented in this sub-
section are contributions by Kerner, (1956), Hill (1963, 1965a,b), Willis (1964, 
1977, 1980, 1981, 1982), Walpole (1966a,b, 1967, 1970, 1981), and Wu 
(1966). 

(7.5.9b) 

(7.5.11b) 
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7.5.4. Overall Elasticity and Compliance Tensors for Polycrystals 

In certain problems it may not be feasible to distinguish between the 
matrix and the inclusions in an RVE. For example, if an RVE is a polycrystal, 
each crystal may be treated as an inclusion embedded in the remaining crystals 
and hence, all crystals have the same significance. In this case there is complete 
symmetry in treating each crystal as an inclusion. Here the concept of a matrix 
with embedded inclusions is no longer relevant. Nevertheless, it is possible to 
apply the exact relations (7.4.Ia,b), in order to estimate the corresponding 
overall elasticity and compliance tensors. However, on physical grounds, the 
assumption of a dilute distribution of inclusions no longer applies, whereas the 
self-consistent scheme may be used. Indeed, the self-consistent method was ori-
ginally proposed by Hershey (1954), Kröner (1958, 1967) and Kneer (1965), to 
estimate the overall moduli of polycrystals; earlier work on the elastic properties 
of polycrystals is due to Voigt (1928) and Reuss (1929); the self-consistent 
method was later applied to composites by Budiansky (1965) and Hill (1965a,b). 
Other related work in this area is by Hill (1952), Hashin and Shtrikman (1962), 
Peselnick and Meister (1965), Morris (1970, 1971), Zeller and Dederichs 
(1973), Korringa (1973), and Gubernatis and Krumhansl (1975); see also 
reviews by Hashin (1964, 1983), Watt el al. (1976), Kröner (1980), and Mura 
(1987). 

For the self-consistent estimate, a single crystal is embedded in an 
unbounded uniform matrix which has the effective overall parameters of the 
polycrystal. The local average stresses and strains in the embedded crystal are 
then calculated and used to obtain the overall moduli. To apply (7.4.1a,b), how-
ever, the significance given to the matrix (whose elasticity and compliance ten-
sors have been denoted by C and D, respectively) must be removed. 

To this end, regard the matrix in (7.4.1a,b) as the zeroth inclusion, W0, 
with the corresponding elasticity and compliance tensors C° and D°, respec-
tively. The volume fraction of W0 is f° = 1— f. For simplicity assume that all 
micro-inclusions are similar, and denote the common Eshelby tensor and its 
conjugate by S1 and T1, where the superbar signifies  that these tensors 
correspond to the yet-unknown overall elasticity or compliance tensors C and 
D. Then, rewrite (7.5.4a) and (7.5.7b), as 

D — D° — fa (1(4s) — D° : Ca) : { 1 )±S: (D : Ca — 1(4s)) }-1 : D, 
a=1 

C — C° = S fa (1
(4s) — C ° : Da) : { 1(as) + TI : (C: Da — 1(

4s))}_1 : C, 
« =i 

where Aa and Ba are eliminated using (7.5.lc,d). Since 
h 

S f« = 1, a =1 

multiplying (7.5. 14a) from the right by C, observe that 

(7.5.14a,b) 

(7.5.15) 
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0 = 1(4s) — D0 : C — S fa (1(4s) — D 0 : Ca) : { 1(4s) + S1 : (D : Ca —1( 4s)) }-1 

a =0 

= 1(4s) — S fa{1(4s)+S1: (D :Ca-1(4s))}-1 
a=0 

—D 0 : C :{ 1(4s) _jfb :Ca : {1(4s) ±SI : ( : Ca_ 1(4s))}1 

_ {1(4s) —D 0: C :(1(4s)—S1~)} 

1(4s)ar0 fa ~ 1(4s) + S1 : (D : Ca — 1(4s)) }-1 }. 

In a similar manner, (7.5.14b) yields 

0 — { 1(4s) — C° : D : (1(4s) — T1) } 

:~ 1(48) 
j

(4 fa {1s)+T1 : (C:Da -1(4s))}-I 
0   

(7.5.14c) 

(7.5.14d) 

Since the tensor (1(4s) — C 0 : D: (1(4s) — T1-')) is invertible,$ the following expres-
sions are obtained for the overall elasticity and compliance tensors C and D, 
which do not distinguish between the matrix and the inclusions: 

fa {1(4s)+51 : (D : Ca— 1(4s))}1 =  
=0 

S f { 1(4s) + Th (C: Da — 1(4s))}1 = 1(4s)
. 

a =0 
(7.5.16a,b) 

It is noted that (7.5.16a) and (7.5.16b) are identical. The proof is straight-
forward. The equivalence relations between S1 and T1 are 

S1+D : f1: C = 1(48) fI± : S1 : D = 1(4s). (7.5.17a,b) 

Using (7.5.15), rewrite (7.5.16a) as 

0 S1 : (D : Ca — 1( 4s)) : { 1(
4
s) + S1: (D : Ca —1(4s)) }-1

. 
a=0 

With the aid of±7.5.17a), multiplication of (7.5.18a) from the right by D and 
from the left by C yields, 

0 = f (T1-1(4s)) : (C: Da -1(4s)) : { 1(4s) + T1 : (C : Da- 1(48))}-1. 

(7.5.18b) 

Now multiply (7.5.18b) from the left by f1: (f1_ 1(4s))1, to obtain (7.5.16b). 

Similar comments apply when D0 or C0 is replaced by Da or Ca. 

(7.5.18a) 
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7.6. ENERGY CONSIDERATION AND SYMMETRY OF OVERALL 
ELASTICITY AND COMPLIANCE TENSORS 

In this section, the elastic strain energy stored in an elastic RVE is exam-
ined. The RVE contains a linearly elastic and homogeneous matrix and a set of 
linearly elastic and (each) homogeneous inclusions with their possibly different 
elasticity tensors. From constitutive relations (7.3.3a,b), the complementary 
strain energy density function, w°(s), and the elastic strain energy density func-
tion, w(e), are defined by 

Z s: D: s  inM 

~ s:D° : s iri Wa, 

 

Z e:C:e in M 

Z e:Ca:e ihWa. 

 

w(e) _ (7.6.1 a,b) 

  

The components of the elasticity and compliance tensors satisfy the following 
symmetry conditions: 

Dijkl = Djikl = Dijlk = Dklij, Cijkl = Cjikl = Cijlk = Cklij, 

D kl = DJ% = D'k = D~ij, C~~ kl = Cj  = Cijfk = C. (7.6.1c4) 

When the macrostress S = s° is regarded prescribed, the overall complementary 
strain energy function W° = Wc( s°) is defined by 

W°( s°)=<w°>= < s:e>= Zs°:s. ('7.6.2a) 

When the macrostrain E = e° is regarded prescribed, the overall strain energy 
function W = W(e°) becomes 

W(e°) <w>= < s:e>= ~: e°. (7.6.2b) 

It is recalled that s in (7.6.2a) is the stress field produced by the applied overall 
stress s°, while e in (7.6.2b) is the strain field produced by the overall strain e°. 
In general, these resulting stress and strain fields are unrelated. Also, in general, 
the average strains in (7.6.2a) is unrelated to the average stress s in (7.6.2b); 
see Subsections 2.5 and 2.6 for related comments and explanation. 

The overall compliance tensor D and elasticity tensor C may be defined 
by the overall complementary and strain energy functions, W' and W, through 

W°(s°) =  ~° : D : s°, W(e°) __ 2 e° : C : e°. (7.6.3a,b) 

The tensors D and C then are the compliance and elasticity tensors of a homo-
genized RVE which contains the same amounts of elastic energy as the hetero-
geneous solid, under a uniform stress s° and a uniform strain e°, respectively. 
If the estimates of D and C are made in a consistent manner, then C and D must 
be each other's inverse. Moreover, like D and C, D and C defined by (7.6.3a,b) 
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have the following symmetry properties: 

Dijkl- = Djikl- = Dij1k- = Dklij, Cijkl = CjikI- = Cijlk = C- klij. (7.6.3c,d) 

On the other hand, the D- and C-tensors defined in Subsection 7.4 by (7.4.6a,b) 
and (7.4.9a,b), and in Subsection 7.5 by (7.5.4a,b) and (7.5.8a,b), need not and 
may not necessarily satisfy the symmetry conditions Dijkl = Dklij and = C1' . 
The aim now is to establish the corresponding energy relations, considering the 
prescribed macrostress and prescribed macrostrain cases separately. 

7.6.1. Macrostrain Prescribed 

When the prescribed macrostrain is E = e°, from the results obtained in 
Subsection 7.2, the average stress is exactly given by 

s =<s>= C:E°+ S fa (C"—C): S", 
a=i 

(7.6.4) 

where ~" _ < e > is the average strain of the ath micro-inclusion W. There-
fore, the right-hand side of (7.6.2b) is calculated as follows: 

s:e°_ {C: e°+ 
' 

f"(C"_C):~a}:e°. (7.6.5a) a=i 
From (7.6.3b) and (7.6.5a) it now follows that 

S°:C:- £°={C:£°+ S fa(C"—C): S"}:e°. 
a= i 

(7.6.5b) 

Since the response of the RVE is linearly elastic, from (7.2.7) it follows that 

(C" — C) : s" _ — C : J" : e°. (7.6.5c) 

Hence, 
p 

e°:C: e°=e°:{C— S f"C:J"}:e°. 
a = 1 

(7.6.6a) 

This is an exact result which must hold for any prescribed constant symmetric 
e°. It thus follows that 

p 
C = sym {C + 

S 
f« C: J"}, (7.6.6b) 

a=i 

where sym stands for the "symmetric part of", i.e., for a fourth-order tensor T, 

sym (TijkI) = 2 (Tijk1 + 1klij). (7.6.6c) 

Expression (7.6.~b) is an exact result which must hold for any linearly 
elastic RIB. Approximations become necessary in order to estimate the 
tensor. The The homogenization method discussed in Subsections 7.4 and 7.5 may 
be used to estimate J". For example, when the distribution of inclusions is 
dilute, the J"-tensor is estimated by embedding Wa in an unbounded matrix of 
elasticity C, with the overall strain e° or the stress s° = C : e° prescribed at 



§ 7.6 OVERALL ELASTIC MODULUS AND COMPLIANCE TENSORS 221 

infinity. This then yields 

Ja = (Da — D) : C a : Aa : (Aa — S a)-1, (7.6.7a) 

where Aa is given by (7.4.2a). Hence, 

C = sym C: {1(4s)_  S fa (Aa — $ a)-1 } } 
a -1 

(7.6.7b) 

For the self-consistent estimate, on the other hand, the Ja-tensor becomes 

Ja = J" = (D — D a) : Ca : Aa : (AC — S a)-1, (7.6.8a) 

where the notation follows that in Subsection 7.5, e.g., (7.5.1c). Then, from 
(7.6.~b), 

C=sym{C+ S fa (Ca—C): Aa:(Aa — Sa)-1~. 
a- i (7.6.8b) 

Expressions (7.6.7b) and (7.6.8b) respectively are the symmetric parts of 
expressions (7.4.9a) and (7.5.7a). In a similar manner, one can show that the 
energy-based definition of the overall elasticity tensor C is given in terms of Ba 
and Ta by the symmetric part of (7.4.9b) for the dilute-distribution case, and by 
the symmetric part of (7.5.7b) for the self-consistent case, i.e., by 

C = sym 
{ 

{ 1(4s) + 
j 

fa (Ba — 7~) -1 } : C } , 
a= i 

for the dilute case, and by 

= sym { C — SR fa(Ca — C):Da : Ba :(Ba — ta)-1 : C;, 
a= 1 

for the self-consistent case. 

7.6.2. Macrostress Prescribed 

When the prescribed macrostress is S = s°, from the results obtained in 
Subsection 7.1, the average strain is exactly given by 

e=<e>= D: s°+ a1 f (Da — D): sa, (7.6.9) 

where sa = < s >a is the average stress of the ath micro-inclusion W. Then, 
the right-hand side of (7.6.2a) is computed as 

s°:e =s°: {D: s°+ 
S 

f«(Da—D): sa}. 
a = 1 

Hence, from (7.6.3a) and (7.6.10a), it follows that 

D: = s°: f D : s0– j fa(Da—D): sa}. 
a=i 

(7.6.7c) 

(7.6.8c) 

Since the response of the RVE is linearly elastic, from (7.1.11) it is noted that 
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(Da — D) : 6 a = Ha : s°, (7.6.10c) 

and hence, 

s° : D : s° _ s° : {D+ 
j 

fa Ha} : s°. (7.6.11a) 
a=i 

This expression is an exact result which must hold for any constant and sym-
metric s°, leading to 

D=sym{D+ S fa ka}. 
a = 1 

(7.6.11b) 

Again (7.6.11b) is an exact result. To estimate 
a, 

however, one is often 
forced to introduce simplifying approximations; see Subsections 7.4 and 7.5. 
For example, when the distribution of micro-inclusions is dilute, 

(Da _ D)-1 : Ha - B°` : (B° _ T")-1 

= Ca : Aa : (Aa _ S")
-1 

: D (a not summed), (7.6.12a) 

where the notation follows that in Subsection 7.4. Hence, two equivalent 
expressions for D are obtained, 

D=sym{D: {1(4s)_ j fa(B"_1'9)-1}} 
a=1 1 

D = sym { { 1(as) + 
a1 fa (Aa — Ste)

-1 
} : D }. (7.6.12b,c) 

For the self-consistent method, 

(Da _ D)-1 : 4a = Ba : (Ba _ Ta)-i 

= Ca : Aa : (Aa _ Sa)
-1 

: D (a not summed),  (7.6.13a) 

where the notation follows that in Subsection 7.5. Again, two equivalent 
expressions are obtained, 

D = sym { D+ ± fa(Da —D): Ba:(Ba — Ta)-1}, 
a=1 

D = sym { D±±  f a (Da — D) : C a : Aa : (Aa — S a)-1 : D }. (7.6.13b,c) 
a = 1 

7.6.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained 
on the Basis of Elastic Energy 

In Subsection 7.6.1, it is shown that the overall elasticity tensor defined in 
terms of the overall strain energy, W = e° : C : e°/2, is the symmetric part of the 
overall elasticity tensor defined directly in terms of the average stress and strain, 
6 = C : e°; see (7.2.8) and (7.6.~b). Similarly, in Subsection 7.6.2, the overall 
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compliance tensor defined in terms of the overall complementary strain energy, 
W° = s° : D : s°/2, is the symmetric part of the overall compliance tensor 
defined in terms of the average strain and stress, ~~ = D : s°; see (7.1.12) and 
(7.6.11b). For comparison purposes, let C and D be the overall elasticity and 
compliance tensors defined for the average strain and stress, i.e., those given by 
(7.2.8) and f7.1.12), respectively. As noted, these tensors may not be sym-
metric. Let C(s) and D(s) be defined by 

C(s) = sym (C), D(s) = sym (D). (7.6.14a,b) 

Then, the overall elasticity and compliance tensors based on the overall elastic 
and complementary energies, i.e., those given by (7.6.~b) and (7.6.11b), are 
equal to C(s> and D(s), respectively. 

As shown in Subsections 7.4.3 and 7.5.3, the C- and D-tensors satisfy cer-
tain equivalence relations: for the dilute distribution, 

C : D = 1(4s> + O(f2), D : C = 1(4s) + O(f2); (7.6.15a,b) 

and for the self-consistent method, 

C:D=1(
4s) D:C=1(

4s). (7.6.16a,b) 

From (7.6.14a,b), C(s) : D(s) and D(s) : C(s) can be calculated direct y. Let C(a) 

and D(a) be the antisymmetric parts of C and D, i.e., C(a)  = C — C (s) and 
D(a) = D — D (s>. Then, 

C(s) : D(s> = C: D — { C (a) : D(s> + C(s> : D(a) + C(a) : D(a) }, 

D(s) :  (s) = D : C — {D(a) : C(s) + D(s) : C(a) + D(a) :  (a)} . (7.6.17a,b) 

As is seen, tensors C(s> and D(s) may not satisfy the same equivalence relations 
as C and D, if C(a) and D(a) are non-zero. Therefore, in general, the overall elas-
ticity and compliance tensors estimated from the energy-based definitions may 
not be each other's inverse. The inconsistency here is a direct result of the 
approximation involved in estimating the average strain or stress in the inclu-
sions. 

For the dilute distribution, however, C(a) and D(a) are zero. This is 
because the Eshelby tensor Sa satisfies9 

(C : Sa)T = C: S", (S°C : D)T = S a : D. (7.6.18a,b) 

Since C and D are symmetric, the tensors inside the parentheses of (7.6.7b) and 
(7.6.12c) are symmetric. Hence, C(s) and D(s> are equal to C and D, and are 
each other's inverse up to the first order in the volume fraction of micro-
inclusions. 

However, the symmetric parts of the overall tensors estimated by the 
self-consistent method may not be each other's inverse. Even though the 
Eshelby tensor S" is such that C: S" and S° : D are symmetric, as shown in 
(7.6.18a,b), the tensors inside the parentheses of (7.6.8b) and (7.6.13c) are not 

9 The proof is given in Section 11. 
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necessarily symmetric. Hence, from (7.6.8b) it follows that 

D — C (s
)-1 

= D : sym { ~ fa (C"  — C) : A a : (A~ — s a)-  
a=1 

: C(s)_i 

# sym { D : ± 
a 1 J

f~ (C" — C) : A" : ( Aa — S") -i : C(s)-1 l  (7.6.19a) 
=   

and from (7.6.13b), 

C — D(s)-1 _= C : sym { ± f" (Da — D) : B" : (Ba — T")-1 l :  
a ~ J 

# sym { C:  
a 1 J

fa (Da — D) : Ba : ( B~ — T a)_i :15(5)-11. (7.6.19b) 
=   

Comparison of (7.6.19a) with (7.6.13c) and (7.6.19b) with (7.6.8cß, shows that 
C(s) and D(s) are not, in general, each other's inverse, even though C and D are. 

7.6.4. Certain Exact Identities Involving Overall Elastic Energy 
In Subsections 7.6.1 and 7.6.2, the symmetric overall elasticity and com-

pliance tensors are obtained, using the exact results of Subsections 7.1 and 7.2. 
These exact equations are derived directly from the average strain and stress in 
the RIB. On the other hand, from the evaluation of the average strain and com-
plementary strain energies of the RIB, alternative exact equations for the 
overall elasticity and compliance tensors are derived, which are necessarily 
symmetric tensors. In this subsection, two exact identities are presented for the 
elastic energy of the RVE. 

As a starting point, compute 

=<s:e> — S fa <s:e>a. a= 1 
(7.6.20) 

Then, consider the case when the macrostrain E = e° is regarded prescribed. 
From (7.6.2b) and (7.6.3b), the right-hand side of (7.6.20) becomes 

<s:S> — ~ f a <s:e>a = S°:C: e°
—

f < e: Ca : e >a, a = 1 a = 1 

and hence 

where 

n 
:e°—< e:C: e>M= S f z e: Ca: e  

a 1 

(7.6.21) 

(7.6.22a) 

<S:C: e>M= Ci~ia<ei~ekI>M, 
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< e : Ca : e >a = C ~~ < eijek, >a. (7.6.22b,c) 

Next, consider the case when the macrostress S = s° is prescribed. From 
(7.6.2a) and (7.6.3a), the right-hand side of (7.6.20) becomes 

<s:e> — fa <s:e>a = s°:D: s° — S fa <s:D": s>a, (7.6.23) 
a = 1 a=1 

and hence, 

s°:D: s° —< s: D: s>M= ~ f < s:Da:s>a, 
a =1 

where 

(7.6.24a) 

<O : D : s >1 = Dijkl < 6ij6k1 >1, < e : D" : s > = Dijkl < 6ij6kl >a• 
(7.6.24b,c) 

These two expressions, (7.6.19a) and (7.6.21a), are exact. As is seen from 
(7.6.19b,c) and (7.6.21b,c), the average quantities,10 < eâe >M, < eâe >, 
< sâs >M, and < sâs > must be estimated. For example, one may approxi-
mate as follows: 

<eâe>a =s"®s"—<( e — ~a)â(e— ~a)>a ~aâ~a. (7.6.25a) 

Then, for the prescribed macrostrain e°, < eâe > is estimated as 

< eâe >0 = {Aa : (Aa — S")
-1 

: e°} â{Aa : (Aa— S") -1 

by the dilute distribution model, or as 

: e°}, (7.6.25b) 

< e âe >0 = { A" : (A" — S") -1 : e° } â{ Aa : (A" — S")
-1 

: e° }, (7.6.25c) 

by the self-consistent model. For the other average quantities, < eâe >M, 
< sâs >M, and < sâs >a, similar approximations may be admissible. 

By definition, the C- and D-tensors in the exact expressions (7.6.22a) and 
(7.6.24a) are symmetric, i.e., Cd = Cilij, and Dijjl = However, these ten- 
sors may be unrelated to the symmetric overall tensors, C(s) and D(s), obtained in 
Subsections 7.6.1 and 7.6.2. The C(s)- and D(S)-tensors satisfy 

e° : (C(s) : e°) — e°:< C:e>M = S fa e°:< C e >a, 
a= 1 

n 
s°: : s°) —  : < D : s >1 a :< D": s > . 1 f s° a (7.6.26a,b) 

From a comparison of (7.6.26a) with (7.6.22a) and (7.6.26b) with (7.6.24a), it is 
seen that C(s) and D(S) (which are derived from the average strain and stress) are, 
in general, different from C and D (which are derived from the average elastic 
and complementary energies). These differences are the direct consequence of 

1° In view of the linearity of the RIB, the average quantity < eâe >i relates to e°âe°, 
through a constant eighth-order tensor. Similar comments apply to < eâe >~. Note that < sâs >m 
and < 0®0 > a have similar relations to s°âs°. 
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the modeling approximations. 

7.7. REFERENCES 

Budiansky, B. (1965), On the elastic moduli of some heterogeneous materials, J. 
Mech. Phys. Solids, Vol. 13, 223-227. 

Eshelby, J. D. (1957), The determination of the elastic field of an ellipsoidal 
inclusion, and related problems, Proc. R. Soc. London, Ser. A, Vol. 241, 
376-396. 

Gubernatis, J. E. and Krumhansl, J. A. (1975), Macroscopic engineering proper-
ties of polycrystalline materials: Elastic properties, J. Arr1. Phys., Vol. 46, 
No. 5, 1875-1883. 

Hardiman, N. J. (1954), Elliptic elastic inclusion in an infinite elastic plate, Q. J. 
Mech. Arr1. Math., Vol. 52, 226-230. 

Hashin, Z. (1964), Theory of mechanical behaviour of heterogeneous media, 
App!. Mech. Rev., Vol. 17, 1-9. 

Hashin, Z. (1983), Analysis of composite materials - A survey, J. Arr1. Mech., 
Vol. 50, 481-505. 

Hashin, Z. and Shtrikman, S. (1962), A variational approach to the theory of the 
elastic behaviour of polycrystals, J. Mech. Phys. Solids, Vol. 10, 343-352. 

Hershey, A. V. (1954), The elasticity of an isotropic aggregate of anisotropic 
cubic crystals, J. App!. Mech., Vol. 21, 236-241. 

Hill, R. (1952), The elastic behaviour of a crystalline aggregate, Proc. Phys. 
Soc., London, Sect. A, Vol. 65, 349-354. 

Hill, R. (1963), Elastic properties of reinforced solids: Some theoretical princi-
ples, J. Mech. Phys. Solids, Vol 11, 357-372. 

Hill, R. (1965a), Theory of mechanical properties of fibre-strengthened materi- 
als - III: Self-consistent model, J. Mech. Phys. Solids, Vol. 13, 189-198. 

Hill, R. (1965b), A self-consistent mechanics of composite materials, J. Mech. 
Phys. Solids, Vol. 13, 213-222. 

Kerner, E. H. (1956), The elastic and thermo-elastic properties of composite 
media, Proc. Phys. Soc., Vol. 69, No. 8B, 808-813. 

Kneer, G. (1965), Uber die Berechnung der Elastizitätsmoduln vielkristalliner 
Aggregate mit Textur, Phys. Stat. Sol., Vol. 9, 825-838. 

Korringa, J., (1973), Theory of elastic constants of heterogeneous media, J. 
Math. Phys., Vol. 14, 509-513. 

Kröer, E. (1958), Berechnung der elastischen Konstanten des Vielkristalls aus 
den Konstanten des Einkristalls, Z. Phys., Vol. 151, 504-518. 

Kröer, E. (1967), Elastic moduli of perfectly disordered composite materials, 
J. Mech. Phys. Solids, Vol. 15, No. 319. 

Kröer, E. (1980), Graded and perfect disorder in random media elasticity, J. 
Eng. Mech. Division, Vol. 106, No. EMS, 889-914. 

Morris, P.R. (1970), Elastic constants of polycrystals, Int. J. Eng. Sci., Vol. 8, 
49-61. 

Morris, P. R. (1971), Iterative scheme for calculating polycrystal elastic 



§ 7.7 OVERALL ELASTIC MODULUS AND COMPLIANCE TENSORS 227 

constants, Int. J. Engineering Science, Vol. 9, 917-920. 
Mura, T. (1987), Micromechanics of defects in solids (2nd edition), Martinus 

Nijhoff Publishers, Dordrecht. 
Peselnick, L. and Meister, R. (1965), Variational method for determining effec-

tive moduli of polycrystals: (A) hexagonal symmetry, (B) trigonal sym-
metry, J. App'. Phys, Vol. 36, 2879-2884. 

Reuss, A. (1929), Berechnung der Fliessgrenze von Mischkristallen auf Grund 
der Plastizitätsbedingung für Eink ristalle, Z. Angew. Math. Mech., Vol. 9, 
49-58. 

Voigt, W. (1889), Lehrbuch der Kristallphysik, Teubner, Leipzig. 
Walpole, L. J. (1 966a), On bounds for the overall elastic moduli of inhomogene-

ous systems - I, J. Mech. Phys. Solids, Vol. 14, 151-162. 
Walpole, L. J. (1966b), On bounds for the overall elastic moduli of inhomogene-

ous systems - II, J. Mech. Phys. Solids, Vol. 14, 289-301. 
Walpole, L. J. (1967), The elastic field of an inclusion in an anisotropic medium, 

Proc. Roy. Soc. A, Vol. 300, 270-289. 
Walpole, L. J. (1970), Strengthening effects in elastic solids, J. Mech. Phys. 

Solids, Vol. 18, 343-358. 
Walpole, L. J. (1981), Elastic behavior of composite materials: Theoretical 

foundations, Advances in Applied Mechanics, Vol. 21, 169-242. 
Watt, J. P., Davies, G. F., and O'Connell, R. J. (1976), The elastic properties of 

composite materials, Rev. Geophys. Space Phys., Vol. 14, 541-563. 
Willis, J. R. (1964), Anisotropic elastic inclusion problems, Q. J. Mech. App!. 

Math., Vol. 17, 157-174. 
Willis, J. R. (1977), Bounds and self-consistent estimates for the overall proper-

ties of anisotropic composites, J. Mech. Phys. Solids, Vol. 25, 185-202. 
Willis, J. R. (1980), Relationships between derivations of the overall properties 

of composites by perturbation expansions and variational principles, in Vari-
ational Methods in the Mechanics of Solids (Nemat-Nasser, S., ed.), Per-
gamon Press, 59-66. 

Willis, J. R. (1981), Variational and related methods for the overall properties of 
composites, Advances in Applied Mechanics, Vol. 21, 1-78. 

Willis, J. R. (1982), Elasticity theory of composites, in Mechanics of Solids, The 
Rodney Hill 60th Anniversary Volume (Hopkins, H. G. and Sewell, M. J., 
eds.), Pergamon Press, Oxford, 653-686. 

Wu, T. T. (1966), The effect of inclusion shape on the elastic moduli of a two-
phase material, Int. J. Solids Struc., Vol. 2, 1-8. 

Zeller, R. and Dederichs, P. H. (1973), Elastic constant of polycrystals, Phys. 
Status Solidi B, Vol. 55, 831-842. 



n 
OWZ  
/ Wa 

O 
O 

OO 

W1 

SECTION 8 EXAMPLES OF ELASTIC SOLIDS 

WITH ELASTIC MICRO-INCLUSIONS 

In this section, several specific examples are worked out in some detail in 
order to illustrate the results of the preceding section. 

8.1.  RANDOM DISTRIBUTION OF SPHERICAL MICRO-INCLU-
SIONS 

Suppose all micro-inclusions in an RVE are spherical (Figure 8.1.1), or 
they can be approximated as spheres. Assume that the matrix and the inclusions 
are both linearly elastic and isotropic, but do not have the same elastic parame-
ters. If the distribution of the micro-inclusions is random (whether it is dilute or 
not), the overall response of the RVE is isotropic. Hence, in order to express the 
overall elasticity and compliance tensors, it suffices to obtain two independent 
overall elastic moduli as functions of the volume fraction of the inclusions and 
the elastic moduli of the matrix and the inclusions. As in Subsections 5.1, 6.4, 
and 6.6, a dilute distribution of inclusions is considered first, and the 
corresponding overall elastic moduli of the RVE are estimated. Then, the self-
consistent method is used in order to take into account (in a certain approximate 
sense) the interaction effects, which are completely neglected by the assumption 
of a dilute distribution. 

To this end, first observe that an isotropic fourth-order tensor can be 
expressed in terms of two basic isotropic fourth-order tensors (Hill, 1965a,b), 

Figure 8.1.1 

A portion of an RVE containing 
spherical micro-inclusions 



230 CHAPTER!'! § 8.1 

E1 = 11(2) ® 1(2), E2 - 112) ® 1 2) ± I() 
3 3 

The tensors E 1 and E2 satisfy 

E 1 : E 1 =E 1 , E2 : E2 =E2, E 1 : E2 =E2 : E1 
=0. 

(8.1.la,b) 

(8.1.1c--e) 

Moreover, for arbitrary real numbers (a1, a2), (b1, b2), and (p, q), it follows that 

P (ai E1 
+ a2 E2) + q (b 1 

E1 
+ b2 E2) = (pa1 + qb 1) E 1 + (ra2 + qb2) E2, 

(a i E 1 + a2 E2): (b i E 1 + b2 E2) _ (aib 1) E 1 + (a2b2) E2
, 

(aj E1 + a2 E
2)-1 = ai 1 E1 + 

a21 
E2. (8.1.1f—h) 

These properties can be used to reduce certain tensorial operations on isotropic 
tensors to scalar operations on the corresponding coefficients of E1 and E2. 

In terms of E1 and E2, the elasticity and compliance tensors of the matrix 
M and a typical micro-inclusion W~, are expressed as 

C= 3KE1 +2mE2, D = 3K E1+ 
Z- 

E2, (8.1.2a,b) 

and 

Ca 3KaEI+2MaE2, Da - 
3Ka E1+ 21a E2, (8.1.3a,b) 

where K and M are the bulk and shear moduli of M, and Ka and ma are the bulk 
and shear moduli of W. In a similar manner, the overall isotropic (for random 
distribution of inclusions) elasticity and compliance tensors, denoted by C and 
D, are expressed as 

C=3KE1 +2mE2, D= 
3K

E1+
21~~ 

E2, (8.1.4a,b) 

where K and jI are the overall bulk and shear moduli. Therefore, the tensorial 
equations involving (C, Ca, C) or (D, Da, D) are reduced to scalar equations 
for (K, Ka, K) and (m, Ma, ~). 

8.1.1. Effective Moduli: Dilute Distribution of Spherical Inclusions 

For a dilute distribution of micro-inclusions, a typical micro-inclusion Wa 
is embedded in an unbounded homogeneous solid with the elasticity and compli-
ance tensors C and D. When all micro-inclusions are spherical, the common 
Eshelby tensor and its conjugate are given by 

S1 = s1 E1 + S2 E2, Ta=T1 =(1—s1)El+(1—s2)E 2, (8.1.5a,b) 

where the coefficients Si  and s2 are functions of the Poisson ratio, 
v = (3K — 2 m)/2(3K + m), of the matrix M, 

1 +n  
i = 3(1 — n) , 

__ 2(4-5v)  s2 
15(1 — n) ' (8.1.5c,d) 

Since in the present case the moduli expressed in terms of T1 are identical with 
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m, moduli 
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those expressed in terms of S1, hereinafter only the expressions in terms of S1 
are employed. 

First consider the case when themacrostress S = s° is prescribed. From 
(7.4.6a) the overall compliance tensor D is given by 

D = { 1(4s) + 
~ f~ (Aa — S l)-1 } : D, (8.1.6a) 

a=1 

where 

Aa (C — Ca)-1 : C —  K  E1 +  
11   

E2. 
K—Ka 

M_Ma 

Then, in terms of E1 and E2, D is rewritten as 

D = 3K 
{1+aSi fa(K 

Ka 
s i)-1} E1 

+ { 1+ S fa (  m s2)
-1 

} E2. 
2m 

 
a=1  m — ma 

(8.1.~b) 

(8.1.6c) 

Hence, from (8.1.4b) and (8.1.6c), the overall bulk modulus, K, and shear 
modulus, , become 

K
={1+ 

S 
fa (  

K 
s0)-i }-1 =1— S fa(  K s~)-1+..., 

K  a=1  K—K a a= 1  K— Ka 

- = { 1 + S fa ( ~ a s2)-1 
}-1 = 1 — S fa (  m 

a s2) I + ... . 
11  a =1  ~ — m a = i  ~— m 

(8.1.7a,b) 

Next consider the case when the macrostrain E = e° is prescribed. From 
(7.4.9a), the overall elasticity tensor C is expressed in terms of E1 and E2, as 

C = C: { j(4s) — ~ fa (Aa —S1)1 } 
a =1 

= 3K{1 —
S1 fa ( K Ka 

s i) 1} E1 

a   

+ 2M { 1 — 
j 

fa (  m s2)-1 } E2. 
oi = 1 —11 1' 

Hence, from (8.1.4a) and (8.1.8), the overall bulk, K and shear, 
become 

K =1 — S fa (  K  
K 

 

a=1  K — Ka 
s l)-I, 

s2)
-1. (8.1.9a,b) 

As is seen from (8.1.7a,b) and (8.1.9a,b), the overall bulk modulus given by 
(8.1.7a) and (8.1.9a) and shear modulus given by (8.1.7b) and (8.1.9b), agree to 
the first order in the volume fraction of micro-inclusions. 
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As a special case, let all micro-inclusions have the same elasticity, with 
the common bulk and shear moduli, K1 and 111. If the macrostress is regarded 
prescribed, (8.1.7a,b) yield 

K = {1 ±f(  s1)
-1}-1 

= {1+f(  
1 

1 —s 2)
-1

}-1, 

and if the macrostrain is regarded prescribed, (8.1.9a,b) yield 

K =1— f ( K 
K

K1 
s~)-1, M = 1— f (  mR  l  s2)-1, 

mR -M 
where f is the volume fraction of micro-inclusions. 

8.1.2. Effective Moduli: Self-Consistent Estimates 

If the distribution of micro-inclusions is random and the interaction 
effects are to be included to a certain extent, then the self-consistent method 
may be used to estimate the overall response of the RVE. Since each micro-
inclusion is assumed to be embedded in an unbounded solid which has the 
unknown overall elasticity and compliance tensors, C and D, the Eshelby tensor 
and its conjugate become 

S S1 = s1 E1 
+ s2 E2, Ta T1 = (1 — s1) E1 + (1— s2) E2, (8.1.12a,b) 

where sl and s2 are defined in terms of the overall Poisson ratio, v = 
(3k— 2)/2(3K+ 4), by  

1± 
~) ' s2 — 15(1 Sv ) (8.1.12c,d) 

Again, since the formulation in terms of T1 is equivalent to that in terms of S1, 
only the expression involving S1 is employed. 

Now, using the results obtained in Subsections 7.5.1 and 7.5.2, the overall 
elasticity and compliance tensors are obtained, which are each other's inverse. 
From (7.5.4a), the overall compliance tensor D is given by 

D = D + fa (D« — D) : CcG : Aa : (Aa — S1)-1 : D, 
=i 

where 

Aa = (C — C : C —  K  E1 +  — m  E2. 
K — Ka m ma 

Hence, D in terms of E1 and E2 becomes 

(8.1.13b) 

° a   i D 
3 { K

+ 
Si fa K K— Ka ( K Ka l)  } E 

+ 1{ 1+ x fa 1 m — 
ma 

( — s2) 1} E2• (8.1.13c) 
2 M a = 1  M m- ma m

— ma 

Or, from (7.5.7a), the overall elasticity tensor C is expressed as 

(8.1.1 3a) 
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C=C
+

f (C — C) : Aa: (Aa S1)-1 
a =1 

Ka —K K  = 3{K+ S
i fa  K —K a ( K — Ka 

sl)  } E1  

+2{11+ ~ fa ~a 
1 ( — m s2)-1} E2• (8.1.13d) 

=1  M -1 M — M 

Either from (8.1.13c) or (8.1.13d), the overall bulk modulus, K, and shear 
modulus, m, are given by 

K =1+ aS~ fa (
K

a -1){1+(K  

= 1+ S f«(~— 
i&1

-1){1+(~-1)s2}-1. 
m i m m (8.1.14a,b) 

As discussed in Subsection 7.5.4, the matrix of an RVE with n spherical 
micro-inclusions may be regarded as an "inclusion" in the self-consistent 
method. Since all micro-inclusions have the common Eshelby tensor, 5', from 
(7.5.16a) it follows that 

~ fa {1+s1( K« — 1)}-1E1+ 
E 

fa{1+s2(L-1)}-1E2 -E1+E2. 
a=1 K a=1 M 

(8.1.15) 

Therefore, the overall bulk modulus, K and shear modulus, M, satisfy the fol-
lowing equations: 

S f« {1+si ( Ka  

a=1  

= 1. 
a =1 m 

(8.1.16a,b) 

These coincide with Budiansky's results (1965). 

When all micro-inclusions consist of the same material, denote their com-
mon bulk and shear moduli by K1 and 111, and from (8.1.14a,b) obtain 

'   _ 

K K(K — K') K — KI 

Lt = 1— f  mR(1 — mR1)  (  M s2)-1 
M mR(M — mRI)  M — M' 

It is noted that although K and M given by (8.1.10a,b) or (8.1.11a,b) are decou-
pled, K and M given by (8.1.17a,b) are coupled, since  and s2, the coefficients 
of Eshelby's tensor 5', are determined by the unknown overall Poisson ratio, 
v - (3K — 2 M)/2(3K+ M). 

Figure 8.1.2 shows the graph of the overall bulk and shear moduli of an 
RVE containing spherical micro-inclusions of a common elasticity, where 
m1/m = 50, and n n = 0.3. Solid curves indicate the self-consistent estimate, 

(8.1.17a,b) 
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given by (8.1.17a,b), and dotted curves are the results for a dilute distribution, 
given by (8.1.10a,b) and (8.1.11a,b). For small f, these curves coincide; 
(8.1.11a) and (ß.1.11b), respectively, are asymptotic expressions for K/K and 
II/m, as f goes to zero. 
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Figure 8.1.2 

Overall bulk and shear moduli of an RVE with randomly distributed spherical inclusions; 
KI/K = m4m = 50 and vI = v = 1/3. 
SC - self-consistent 
DD:O = dilute distribution with macrostress prescribed 
DD:E = dilute distribution with macrostrain prescribed 

8.2. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING 
ALIGNED REINFORCING-FIBERS 

In this subsection, composite materials are considered which consist of a 
linearly elastic matrix reinforced by linearly elastic long and stiff microfibers. 
The microfibers are aligned in, say, the x3-direction, having a random distribu-
tion in the xi,x2-plane. Hence, the composite is, for example, stiffer in the x3-
direction than in the x1- and x2-directions, when the fibers are stiffer than the 
matrix. The microfibers may be approximated as long circular cylinders, and, in 
this manner this type of composite material is modeled by an elastic RVE which 
contains a random distribution of infinitely long aligned microfibers. The aim 
then is to estimate the overall elastic parameters of this RVE in plane strain and 
antiplane shear. Because of the random distribution of the fibers parallel to the 
x3-direction, the composite is transversely isotropic. 
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For simplicity, assume that both the matrix and the reinforcing microfibers 
are homogeneous, linearly elastic, and isotropic. Then, the analysis of the two-
dimensional inplane and antiplane deformations of the composite can be based 
on the Eshelby tensor S for an isolated infinitely long circular cylindrical inclu-
sion embedded in an unbounded homogeneous solid. In the self-consistent 
model, the estimate of the average stress and strain in a typical inclusion is 
affected by the anisotropy which results from randomly distributed but aligned 
fibers. Therefore, the inplane overall elastic moduli obtained by the self-
consistent model are coupled with the overall moduli associated with the x3-
direction; see Subsection 5.1. As pointed out before, even for the self-consistent 
method, the validity of the results is limited to rather small values of the volume 
fraction of inhomogeneities. Therefore, in the case of the aligned but randomly 
distributed fibers, the induced anisotropy, because of the aligned fibers, should 
be rather small, unless there is considerable mismatch between the fiber and 
matrix stiffness. In the case of a small anisotropy, instead of a transversely iso-
tropic overall response, one may ignore the anisotropy, and hence the coupling, 
treating the problem as a pseudo-isotropic two-dimensional one. 

On the other hand, as in Section 5, by the introduction of the parameter k, 
the three-dimensional formulation can be reduced to the corresponding two-
dimensional counterpart exactly, and then the two-dimensional results may be 
examined appropriately by a proper interpretation of the overall effective i . 

To this end, the necessary two-dimensional Eshelby tensor is obtained 
from that associated with a circular cylindrical inclusion, with its generator 
parallel to the x3-axis, embedded in an infinite, transversely isotropic, linearly 
elastic material. Regarding a circular cylindrical inclusion as a limit of an ellip-
soid with a1 = a2 and a i/a3 = a2/a3 - 0, the nonzero components of Eshelby's 
tensor, S, for this homogenized infinite material are as follows: 

2- 
= 52222 2(1+K) ' 

1122 = » 2(1+k) ' 51212 2(1 ±i) ' 

S3311 = S3322 = 5333 0, 51313 = 52323 
4 , 

(8.2.1a--e) 

where k = 3 – 817 /É + Vi/ E3) with E, v, and i being the effective inplane 
Young modulus, Poisson ratio, and shear modulus, and E3 and n3 being the 
effective Young modulus in the x3-direction and Poisson ratio in the x1,c3- and 
x2,x3-directions; and Siiki = Sj,ki = S,i1k. If the infinite body is isotropic,1 k is 
replaced by 3 – 4v, with v being the Poisson ratio, and these coefficients become 

31 i l i = S2222 ~ 

 

5-4v  
5 = 5 

1-4v  
51212 

3-4v  
1122 2211 

8(1–v) ' 8(1– v) ' 8(1–v)' 

S1133 = S2233 = S3333 0, S1313 = S2323  (8.2.1f j) 

where Sijj j = Sj,kj = S,jIk• 

  

   

(8.2.1f—j) can be obtained directly from the components of the Eshelby tensor for an isotro-
pic material. In particular, S1133 = S2233 - O. 
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In this subsection, plane strain state is assumed.2 Hence, in view of 
(8.2.1a—d), S 1 is defined by 

Sijkl = 2(1 + K) 
dij dkI + 1 + R 2 (d;k d;, + d i djk) (i, j, k, 1 = 1, 2), 

(8.2.2a) 

and for antiplane shear, 

'3 1313 = '33113 = 51331 = 53131 = 5 2323 = 532 23 ='32332 ='33232 = 4 
+ 

•
5- 1323 = 5- 3123 = 51332 = 53132 = 52313 ='33213 = 5- 2331 ='3323 I = 0.  (8.2.3a,b) 

For an isotropic case, in view of (8.2.1f j), define 

Si
j- 2(1 + k) dij 8k1 + 1 + k 2 

(d,k dj, + dii djk) 

where k = 3 — 4v, and for antiplane shear, obtain 

513I3= S3113= 51331 = 53131= 52323= 53223= 52332= 53232= 4+ 

51323 = 53123 = 81332 = 53132 ='32313 = 53213 = 52331 = 53231 = O. (8.2.3c,~) 

In this subsection the two-dimensional overall properties of the RVE are exam-
ined, i.e., the effects of 51133 

and 
S2233 

or 
51133 

and 
52233 are excluded. 

Since the reinforcing microfibers are randomly distributed in the c1,c2-
plane, the overall response of the RVE is isotropic in this plane. Hence, all the 
tensors (i.e., C, C1, C, S1, etc.) involved in this particular setting are two-
dimensionally isotropic. In Subsection 8.1, two base tensors, E1 and E2, are 
introduced in terms of 1(2)®1( 2) and 

1(4s) 
in (8.1.1a,b), in order to express three-

dimensional isotropic tensors and to reduce tensorial manipulations of these iso-
tropic tensors to simple scalar operations on the coefficients of E1 and E2. Since 
a two-dimensional isotropic tensor T is expressed as 

Tijkl = T1 dy dp + T2 (dij dp + dil djk) (i, j, k, 1= 1, 2), (8.2.4) 

define E1 and E2 in terms of dij dk, and (8,k 8;1 + &1 d;k)/2, by 

Ekhu = 2 dij dki,  E —  dij dki +  (dik dj1 + di18;k). (8.2.5a,b) 

Note that the coefficients of 8i; dk, in E1 and E2 are ±1/2 for two-dimensional 
isotropic tensors, while they are ±1/3 for three-dimensional isotropic tensors. 
The tensors E1 and E2 satisfy 

E1 : E1 = E1, E2 : E2  E2, E1 : E2 = E2 : E1 = O. (8.2.5c--e) 

(i, j, k, 1 = 1, 2), 

(8.2.2b) 

2 

While a plane strain state is assumed for infinitely long fibers, the corresponding plane stress 
solution can be obtained by simple modification of the results; see Subsection 8.3. 



§ 8.2 ELASTIC SOLIDS WITH MICRO-INCLUSIONS 237 

In terms of E1 and E2, the two-dimensional isotropic elasticity and com-
pliance tensors of the matrix material, denoted by C and D, are expressed as 

C = 3K' E1 + 2ME2, D = 3K, E1 + 
Z~ 

E2, (8.2.6a,b) 

and those of the reinforcing microfibers, denoted by C1 and D1, as 

C1 = 3K'1 E 1 +2M1 E2, D1 = 3K'1 E
1 + 

21 
 E2. (8.2.7a,b) 

Then 3K'/2 is interpreted as the two-dimensional bulk modulus; the factor 3 in 
(8.2.6a,b) is introduced to make these equations the same as (8.1.2a,b). Here K' 
and K'1 are defined by 

and 

1  _ , (1 — n — 2 n2)/E for plane strain 
3K' (1-1)/E for plane stress, (8.2.6c) 

1   _ (1 — n1- 2(nt)
2)~t 

— 3K'1 (1 — nt)/Et 
for plane strain 
for plane stress. 

(8.2.7c) 

Note that the corresponding shear modulus does not change under plane strain 
or plane stress, i.e., m = E/2(1 –1) and M1 = E1/2(1 + NI). 

In a similar manner, the two-dimensional overall elasticity and compli-
ance tensors, denoted by C and D, can be expressed in terms of E1 and E2, as 

C = 3K' E1 + 2m E2, D = 3K, E1 + 
21~ 

E2, (8.2.8a,b) 

where K' is defined by 

1 f (1- n)/~~ - 2n3/~3 for plane strain 
for plane stress. 

(8.2.8c) 

Note that ~~ remains the same for plane strain or plane stress. 

Since the Eshelby tensor S1 or Sl, given by (8.2.3), is two-dimensionally 
isotropic, its conjugate T1 or T1 is also two-dimensionally isotropic. In terms of 
E1 and E2, S1 and T1 are expressed as 

S1 =s1 E1 +s2 E2,  f1=(1-s1)E1 +(1-s2) E2, 

and S1 and T1 as 

S1= 

 

s E1 + 2 E
2, T1 =(1—s 1) E1 +(1-52) E2, 

where 

s l  
1+k '  

SZ  
1+k ' 

sl  
1+k '  

s2 
 l+k '

k 2 k  

where i = 3— 8 I(n/É + n/E3) and k = 3 — 4 n for plane strain. 

(8.2.9a,b) 

(8.2.9c,d) 

(8.2.9e---h) 
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8.2.1. Effective Moduli: Dilute Distribution of Fibers 

As in Subsection 8.1, first consider an RVE which contains a random and 
dilute distribution of aligned reinforcing microfibers, and assume that the 
interaction between neighboring fibers is negligible. Hence, estimate the aver-
age strain and stress of each fiber by the uniform strain and stress in an isolated 
microfiber embedded in an unbounded homogeneous solid which has the matrix 
elasticity and compliance tensors C and D. When the farfield stress and strain 
s° and e° (which satisfy s° = C : e° or e° = D : s°) are prescribed for this 
unbounded solid, the exact uniform strain and stress in the isolated microfiber 
can be calculated in terms of the corresponding Eshelby tensor S1. Hence, the 
average stress and strain of a typical microfiber in the composite, denoted by I 
and 61, are approximated by 

s1 = 

 

A1 : (A1 — S 1)
-1 

: e°, 61 = C1 : A1 : (A1 — S 1)
-1 

: D : s°, (8.2.10a,b) 

where Al is the two-dimensional fourth-order tensor 

AI = (C — C 1)
-1 

: C. (8.2.10c) 

The overall compliance and elasticity tensors, D and C, are determined from 
(8.2.10): when the macrostress s = s° is prescribed, from (7.4.7a), 

D = { 1 
(4s) 

+ f (A1 — S 1)-1 } : D; (8.2.11 a) 

and when the macrostrain E = e° is prescribed, from (7.4.10x), 

C = C: { 1(4s) — f (A1 — S 1)-1 }, (8.2.12a) 

where f is the volume fraction of the microfibers, and the two-dimensional 
fourth-order identity tensor, (dik d,1 + d;1 d;k)/2, is denoted by 1(4s). 

In terms of E 1 and E2, the tensorial equation (8.2.11a) reduces to 

3K' E1 +2i E2 K 
3K' {

1 +f(
K, K'I  s iR) E1 —1 } 

N 

+ 1  { 1 +f(   m i  s2)-1 } E2, (8.2.1 lb) Zm m — m 
and the (8.2.12a), becomes 

3K'E1 +2mE2 = 3K' {1—f( K,
K

K,i  si)
-1

} E 1 

+ 2m { 1 — f (  It 1  
s2)-1 } E2. (8.2.12b) 

Therefore, the overall elastic moduli K' and 4- are obtained: when S = s° is 
prescribed, 

K' ={1+f(K,K
K,I  s i )

-1}-1
=1—f( K.K

K,~  s1) ± 0(f 2), 

= {1+ f (  m I  s2)
-1 

}-i = 1 — f ~~ m 
i  s2)-1 + 0(f2); (8.2.13a,b) 

m m — m m — m 
and when E = e° is prescribed, 
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K, = 1-f(K,KK,I -s1)
-i, 

M   
m 

I 
s2)-i. 

m-m 
(8.2.14a,b) 

8.2.2. Effective Moduli: Self-Consistent Estimates 

Next consider the case when the distribution of aligned reinforcing 
microfibers in the x1,x2-plane is random, and the interaction between the 
microfibers is to be included using the self-consistent method. From (8.2.9) and 
the overall Poisson ratio v, the Eshelby tensor S1 is defined for an infinitely long 
circular cylinder embedded in an unbounded solid, by 

SI = s  E ±S2 E2, (8.2.15a) 

where 

2 _  k 5 __ 
1+k ' 52 1+k (8.2.15b,c) 

The overall compliance and elasticity tensors C and D are determined 
from (8.2.16): when the macrostress S = s° is prescribed, from (7.55a), 

D = D+f(DI-D):CI:AI:(AI-Si)-1 : D 

'1 
= 3 {' k' 

K' - K'I 
( K KK I  

+ 1 { 1 + f 1  — 11I (  S2)-1 } E2; (8.2.16) 

and when the macrostrain E = e° is prescribed, from (7.5.8a), 

C = C + f (CI - C) : AI : (AI - SI)
-1 

=3{K'+fk' K K K )_1} E1 
K'-k'I  K'-K'1 

+2 {m+ f     s2)') E2. (8.2.17) 
M -~ mR-mR 

As is shown in Subsection 7.5, the above two equations, (8.2.16) and (8.2.17), 
are identical, giving the same overall moduli K' and 11. Hence, 

K =1-f K(K, _ K,~ ( K,-K,I  si)-i = 1-f ~ K'K K'I  s1)-1 + O0.2), 

= 1 — f ~~~  mI) mR  S2) 1 = 1 - f (  M 52)-1 + 0(f2). 
11(1-mI)  M -m M -M' 

(8.2.18a,b) 
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Figures 8.2.1 shows the graphs of the overall moduli K' and ii as functions 
of the volume fraction of the microfibers f, obtained by the assumption of a 
dilute distribution, (8.2.13a,b) and (8.2.14a,b), and by the self-consistent 
method, (8.2.18a,b). As is seen, for small f, the three estimates agree. 
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Figure 8.2.1 

Two-dimensional overall bulk and shear moduli of an RVE with aligned circular 
cylindrical inclusions; K'1/K' = M1/M = 50 and v1 = n = 1/3 
SC = self-consistent 
DD:O - dilute distribution with macrostress prescribed 
DD:E = dilute distribution with macrostrain prescribed 

8.2.3. Effective Moduli in Antiplane Shear: Dilute-Distribution and Self-
Consistent Estimates 

In this subsection, the overall shear moduli of the RVE in the c1,c3- and 
x2,x3-planes are estimated for antiplane shearing. Due to the isotropy of the 
matrix and the reinforcing microfibers, and the random distribution of the 
microfibers in the x i,x2-plane, the overall shear moduli in the x1,x3- and x2,x3-
planes are the same, i.e., 

%t13 = m23 = m3• (8.2.19) 

Furthermore, the fourth-order tensors involved in this antiplane shear problem 
(i.e., C, C, S, etc.) are expressed by means of the two by two identity matrix 
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11a
s) 

i = [0 0] , (8.2.20) 

so that all tensorial equations are reduced to the corresponding scalar equations 
for the coefficients of this matrix; see Subsection 6.4.3. 

From this observation, the four tensorial equations, (7.4.7a) and (7.5.10a) 
for the dilute distribution, and (7.5.5a) and (7.5.10b) for the self-consistent 
method, are reduced to four scalar equations, similar to (8.2.11) and (8.2.12) 
obtained in Subsection 8.2.1, and (8.2.16) and (8.2.17) obtained in Subsection 
8.2.2, respectively. Hence, the overall shear modulus j3 for the antiplane shear 
is given by the same equation that gives the overall shear modulus jI for the 
plane strain case: from the assumption of a dilute distribution, when sf 

or s23 is 
prescribed, 

±f( I s3) 1} 1 = 1— f( I s3)-1 ±0(f 2); (8.2.21) 

and when ef 
or e 3 is prescribed, 

 = 1— f ( ~ ~~I  s3)-1; (8.2.22) 

and by the self-consistent estimate, when either, say, 0f3 or, say, e f  is 
prescribed, 

3 = 1  f 
I•t(4l3 - lt1) 

( ~3 - 111 S3) 1 = 1-f  ( m ~11I 

5

3)
-1 

+ 0(f2), 

(8.2.23) 

where, from (8.2.3), 

51313 = ••• = 
52323 = ••• - S3 = 4 , 

- i 1 51313  ...- 52323=...=53= (8.2.24) 

It is instructive to compare the overall shear modulus R3, 
for the antiplane 

shear, given by (8.2.21) and (8.2.22) for the dilute distribution, and by (8.2.23) 
for the self-consistent method, with the overall shear modulus i for the plane 
problem, given by (8.2.13b) and (8.2.14b) for the dilute distribution, and by 
(8.2.18b) for the self-consistent method. When the Poisson ratios of the matrix 
and that of the_composite, v and v, are 1/2, the E2-coefficients of the Eshelby 
tensors S1 and S1, i.e., s2 and s2, reduce to 1/2. In this case, R3 coincides with i. 
In general, 0 <_ v < 1/2 and 0 5 v <— 1/2, and hence 

S2>53, S2 > S3. (8.2.25a,b) 

If the reinforcing microfibers are stiffer than the matrix, i.e., 111 > m, it follows 
that 113 > 1., according to the assumption of a dilute distribution; compare 
(8.2.21) with (8.2.13b), and (8.2.22) with (8.2.14b). Furthermore, expecting 
m > m in this case, note that M3 > i according to the self-consistent estimate; 
compare (8.2.23) with (8.2.17b). This stiffer response of the RIB in the c3-
direction is reasonable on physical grounds. 
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Figure 8.2.2 shows the graph of j3 with respect to the volume fraction of 
microfibers f. As is seen, for small f, the three results, (8.2.21), (8.2.22), and 
(8.2.23) agree with each other. Note that these estimates are valid only for small 
values of f. In this connection, recall that the results of the dilute-distribution 
model may actually violate the exact theorems of Subsection 2.6, further reveal-
ing the limitation of these estimates. 
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Figure 8.2.2 

Two-dimensional overall anti-shear moduli of an RVE with aligned circular 
cylindrical inclusions; K'I/K' = Ml/m = 50 and nl = n = 1/3. 
Sc = self-consistent 
DD:O = dilute distribution with macrostress prescribed 
DD:E = dilute distribution with macrostrain prescribed 

Early work on elastic properties of reinforced elastic materials is by 
Dewey (1947), Hashin (1959, 1962, 1965, 1970, 1979), Paul (1960), Hill (1963, 
1964, 1965a,b), Hashin and Rosen (1964), Budiansky (1965), Adams et al. 
(1967), Walpole (1970, 1981), Christensen and Waals (1972), Korringa (1973), 
Chu et al. (1980), and Willis (1983). An interesting observation by Hill (1964) 
for any two-phase composite with aligned cylindrical fibers, is that not all the 
corresponding effective moduli are independent. For isotropic constituents, Hill 
provides two relations which connect the overall parameters, leading to only 
three independent overall moduli for this kind of transversely isotropic compo-
sites. The procedure has other potential applications, some of which have been 
pursued by Dvorak (1990) and Dvorak and Chen (1989). 
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8.3. THREE-DIMENSIONAL ANALYSIS OF PLANE STRAIN AND 
PLANE STRESS STATES 

In the preceding subsection, a plane strain state is assumed, and an 
infinitely long fiber is used as a model for analyzing the two-dimensional 
inplane problem. The results, however, can also be used for analyzing an 
inplane problem in plane stress. This and related issues are examined in this 
subsection. 

8.3.1.  Reduction of Three-Dimensional Moduli to Two-Dimensional 
Moduli 

For simplicity consider a case when the macrostress, S = s°, is pre-
scribed. As shown in (7.4.7a), the overall compliance tensor, D, is given by 

D =(1(40) + fÁ): 

where 

Á 
J { (C 

= l { (C 

The matrix form 

[(...)ab] = 

D, 

— C 1)-1 : C — S11-1 dilute distribution 
— C1)-1 : C — S1)-1 self—consistent. 

of these tensors is 

[(...)ábß ] [lab] 
[lab] [(...)$)] 

(8.3. la) 

(83.1b) 

(8.3.2) 

where [(...)a >] and [(...)a >] are thee by three matrices. Hence, normal stresses 
(normal strains) and shear stresses (shear strains) are decoupled, and it suffices 
to examine only [(...)a

1)1 for plane strain or plane stress. 

In terms of [(...)a
1)1, the average strain, ~~ = D : s°, is given by 

{~~ ~. )] [ub m] = ([1 +f [L ]) [D] [tb°(1)], (8.3.3) 

where [~~ 1I = [ 11, ~22, 
33], 

[ta(1)1 = [sf1, X22, ß33] T, and [1 a~~~ ] is a three by 
three identity matrix. 

As mentioned in Subsection 5.1, the nominal two-dimensional matrix 
which relates the normal inplane strains, [l1, ~2]T, to the normal inplane 
stresses, [Tr, Tz]T, is given by 

[R ar]T [D pá) ] [Pqb] = [Pap]T ([1pq) ] +f [L ]) 
[D4] 

[Pb], (8.3.4a) 

for plane strain, and by 

[Pap]T 
[D V. ] [Pqb] = [Pap]T ([1 

Pq) ] 
+f [L 1 ]) [DV) ] [Prb], (8.3.4b) 

for plane stress; see (5.1.5a,b) and (5.1.6a,b). Note that [R ~b ] is now defined by 

[Rab] = [Rab](Dcd) = 

1 0 
_0 1  

—D31/D33 —D 32 / D 33 

(8.3.5) 
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where the quantity in parentheses denotes the argument of [Pb]. Therefore, if 
the three-dimensional A is obtained from a three-dimensional analysis of an 
RVE, then, the nominal two-dimensional compliance tensor can be obtained 
using (8.3.4a) for plane strain and (8.3.4b) for plane stress. However, in a two-
dimensional analysis, only the nominal part of A, i.e., [Pap]

T ([1 Pq) ] + f [Ápq ) ]) 
[D 0 ) ] [R1 ] for plane strain and [Pap]T ([1 ~1

q
) I + f [A ) ]) [D4R ] [Prb] for plane 

stress, is estimated. Moreover, this nominal part is often given in terms of the 
nominal compliance tensor, that is, 

[R ap]T ([1P9)]+f [A 1)]) [D)] [Prb] 

[Pap]T ([1
Pq) ]

+f 
[Apq)1) [Dc~R] [Prb] 

function of [P ap] [D pq] [R qb ] or [P ap] [D pq] [P qb ] plane strain 
function of [P ap] [D pq] [P qb] or [P ap] [D pq] [P qb] plane stress. 

(8.3.6) 

Therefore, the estimate of the overall compliance tensor changes, depending on 
whether plane strain or plane stress conditions are assumed.3 

8.3.2. Two-Dimensional Nominal Eshelby Tensor 

Consider now a two-dimensional nominal Eshelby tensor, denoted by S', 
which is obtained from the three-dimensional Eshelby tensor. Note that, in 
matrix form similar to (8.3.3), the strain field produced by an eigenstrain tensor, 
e = S : e*, is expressed as 

[y)] = [Sá ] [y1 1 i, (8.3.7) 

where [fa t)] = [e11, e22, e33]T and [Wá11)] = [e11, e22, e33]T. It is assumed that e33 
vanishes in plane strain. Hence, with the aid of [P ab ] and [Rab](Scd), a two by 
two matrix for the two-dimensional nominal Eshelby tensor is given by4 

[Sabi _ [Pap]T [S Pq) ] [P gb](Scd)• (8.3.8a) 

In particular, if components Si3(= Sii33) (i not summed) of Eshelby's tensor van-
ish as in (8.2.1), then (8.3.8a) becomes 

[S ab] _ [PaP]T [S i [P qb]• (8.3.8b) 

The nominal Eshelby tensor used in Subsection 8.2 is obtained in this manner. 

Now, consider the stress produced by an eigenstrain tensor, s = 
C: (S — 1( 4s)) : e*. In matrix form, s is expressed as 

3 Similar comments apply when the overall strains are prescribed, E = e0. 
4 Note that the argument of 

[Pb] now is the relevant components of [Sab]. 
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[t ] = [Cab) ] ([S ] — [1 ]) [y(l)], (8.3.9) 

where [t2 )] = [s11, s22, 633]1. If it is assumed that s33 vanishes in plane stress, 
then, with the aid of [Pahl and [R ab](Scd), a two by two matrix for the two-
dimensional nominal Eshelby tensor, S', is obtained to be, 

[Sb] = [Pap]T [S' 
:1  [
1gb]((C : (S — 1(4s)))Cd)• (8.3.10) 

Some attention must be paid to the argument of the matrix [Rab ]. Since T l) in 
(8.3.9) vanishes, the -a.?gurnent must therefore be the relevant components of 
C : (S — 1

(4s)), as indicated. 

It is seen that the two-dimensional nominal Eshelby tensor for plane strain 
(or plane stress) is obtained by assuming that £33 (or s33) produced by e* van-
ishes. However, the resulting two-dimensional Eshelby tensor is not the same as 
that obtained by_ reducing (1(

4
s) + f A) with Á = { (C — C 1)-1 : C — S1 }-1 or 

Á = { (C — C 1)-1 : C — S 1} , to the corresponding two-dimensional tensor; see 
Subsection 8.3.1. Indeed, the overall moduli obtained with the aid of the nomi-
nal Eshelby tensor (8.3.8) for plane strain, differ from those obtained through 
the nominal Eshelby tensor (8.3.10) for plane stress. This inconsistency does 
not occur if the overall moduli are obtained directly by using the nominal part of 
(1(4s) + f A). However, especially for an anisotropic case, the computation of 
(1(4s) + f A) (or the Eshelby tensor itself) is more complex. In this case, plane 

approximations may be used , as discussed above.5 

8.3.3. Computation of Nominal Eshelby Tensor for Plane Stress 

As shown in the previous subsection, the two-dimensional Eshelby tensor 
used in Subsection 8.2 is the nominal Eshelby tensor for plane strain, obtained 
from the Eshelby tensor for a cylindrical fiber in a transversely isotropic 
material. In this subsection, the two-dimensional nominal Eshelby tensor for 
plane stress is computed. 

The matrix form of C for a transversely isotropic material is 

[Cab) ] _ 
C11 

C12 
C13 

C12 C11 C13 

C13 C13 C33 

(8.3.11) 

   

and Cab's are given by (3.1.13h--1), with E, E3, v, and 13 replaced by E, E3, v, 
and v3, respectively. Hence, 

5 The inconsistency is due to the plane approximation, and is derived from the noncommuta-
tivity of certain matrix operations; for example, [R ap]T[ifg) ~[Pgb] = [R ar]~{I(C C1)a]1[C) I 

[S r ] } 1[Prbj # {([R arI 1' ([C l1) ] — [Ci .1
1) I C1[ 'qtI) 

([R]T[C(I) 
I[ tbI)  

([R 
IT[s4,!)][P,b])} 
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[Cáb) I ~[Sb~~ 1 — [1 bc) 1) - 2  +i 

2C12- k~C ii+ C12) 2C11 - (Ch + C12) S13(C11 + C12) — 2(1 + )C13 

2C i1-k(C ii +C i2) 2C i2 -i(C1i+ C12) S i3(Cii+ C i2)-2(l+ k)C13 
2(1 —i)C 13 2(1 — k)C 13 2S13C13 — 2(1 + i)C 33 

(8.3.12) 

Although 51133 = S2233 is not given in (8.2.1), due to the symmetry 
C : S, it is obtained to be 

of 

_  4C1133   
51133 

C1111+C1122
, 

4C13 S13 = 
C ii+ C i2 

(8.3.13a,b) 

c 

Hence, the two by three matrix [Rab ] for plane stress is 

1 
0  

(1— k)C13   
513C13—(1+x)033 

[P b j((C: (S — 1( 4s)))ab)) _ 
0 
1 

(1 — K)C13   

S13C13 —(1 ± k)C33 

Since k = 3 — 81(v%E + v3 / E3), the 
from (8.3.10), to be 

3+v 1+v 2 É i 
4 8 \ l  V3 ~3 ) 

142v +  1 8  (1  v3 E )-1 

3 

(8.3.14) 

_  1-2n +  1 +n (1 n2 E )-i 
4 8 3 E3 

3+ n 1+ n 2 É i 
4 8 

(1 V3 
~3 

) 

(8.3.15a) 

[Sabj = 

nominal Eshelby tensor is obtained 

In particular, if the material is isotropic, (8.3.15a) becomes 

1  5-41-212 —1+21-212 
[Sabi = 8(1—i)  —1+21-212 5-41-212 

(8.3.15b) 
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SECTION 9 UPPER AND LOWER BOUNDS FOR 

OVERALL ELASTIC MODULI 

In this section the focus is again on an RVE which consists of a linearly 
elastic matrix and linearly elastic micro-inclusions. In Section 7, eigenstrains or 
eigenstresses are introduced to define an equivalent homogeneous solid for a 
heterogeneous RVE. The stress and strain fields in the equivalent homogeneous 
solid depend on the distribution of the corresponding eigenstrains (or eigens-
tresses). For the exact eigenstrain (or eigenstress) field which satisfies the con-
sistency conditions, the resulting stress and strain fields in the equivalent homo-
geneous solid coincide with the actual stress and strain fields of the original 
heterogeneous RVE. It is easier to seek to solve this equivalent homogeneous 
solid problem than the original heterogeneous one. Furthermore, the strain and 
complementary strain energy functionals of the equivalent solid, when regarded 
as functionals of the eigenstrain (or eigenstress), are stationary for the exact 
eigenstrain (or eigenstress). Depending on the heterogeneity of the original 
RVE, these functionals provide global maximum or minimum values for the 
actual total strain and complementary energy functionals. This remarkable 
result relating to the elastic energy of the equivalent solid was obtained by 
Hashin and Shtrikman (1962a,b), and is called the Hashin-Shtrikman variational 
principle. Its formulation in terms of both eigenstress (also called polarization 
stress) and eigenstrain (also called polarization strain) is given by Hill (1963) 
who develops these principles from the classical variational theorems of elasti- 
city; see Section 19, Part 2.1 

 

It is still difficult to obtain the exact eigenstrain and eigenstress fields 
which produce in the equivalent homogeneous solid the actual stress and strain 
fields of the original heterogeneous RVE. However, with the aid of the varia-
tional principle, approximate eigenstrain (or eigenstress) fields which yield strict 
upper and lower bounds for the overall parameters of the RVE can be con-
structed. Willis (1977) has generalized the Hashin-Shtrikman variational princi-
ple using the Green function of an unbounded equivalent homogeneous solid. 
He has sought to construct upper and lower bounds for the overall parameters of 
the heterogeneous solid. Willis (1981, p.18) comments that the approximations 
involved in using the Green function of the unbounded domain may render the 
results, more as plausible estimates than rigorous bounds. It turns out that the 
general theorems of Subsection 2.5.6, i.e., Theorem I and II, can be used to 
show rigorously that two out of four possible bounding expressions that result 
from the generalized Hashin-Shtrikman bounds, as obtained with the aid of the 
approximate Green function, remain rigorous bounds. These new results are dis-
cussed in Subsection 9.5. Other related contributions are by Hashin (1965, 

See also Subsection 13.5. 
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1967), Walpole (1966a,b, 1969, 1981), Korringa (1973), Willis and Acton 
(1976), Kröner (1977), and Wu and McCullough (1977). 2 

First, the Hashin-Shtrikman variational principle, as generalized by Willis, 
is presented in this section. Two integral operators, A and G, are defined which 
determine the stress and strain fields in the equivalent homogeneous solid pro-
duced by a prescribed eigenstrain or eigenstress, respectively associated with the 
uniform traction and linear displacement boundary data. In terms of A and G, 
the strain and complementary strain energy of the equivalent solid are defined as 
functionals of the eigenstrain and eigenstress, respectively. Then, Willis' for-
mulation is followed, the Green function of the equivalent solid is introduced, 
and the exact expressions for the stress and strain fields produced by the eigen-
strains or eigenstresses are formulated. The upper and lower bounds are 
obtained in terms of integral operators A and G. Then, approximations of these 
integral operators are introduced, and a solution method is outlined. In Subsec-
tion 9.5, the Hashin-Shtrikman variational principle is generalized for boundary 
data other than uniform tractions and linear displacements, and the correspond-
ing generalized bounds are obtained. With the aid of Theorems I and II of Sub-
section 2.5.6, these bounds are then related to the bounds for the uniform trac-
tion and linear displacement boundary data. It is proved that two out of four 
possible approximate expressions that result are indeed rigorous bounds. Expli-
cit, computable, exact upper and lower bounds for the overall moduli are then 
given when the composite is statistically homogeneous and isotropic Finally, it 
is shown in Subsection 9.6 that these new observations lead to universal bounds 
on two overall moduli of multi-phase composites, valid for any shape or distri-
bution of phases. Furthermore, it is established that the bounds are valid for any 
finite elastic solid of ellipsoidal shape, consisting of any distribution of inhomo-
geneities of any shape and elasticity. In Section 13, it is proved that the same 
bounds emerge for multi-phase composites with periodic, but otherwise com-
pletely arbitrary, microstructure (see Subsection 13.5). 

For historical reasons, the bounds on the overall properties in this section 
are based on the Hashin-Shtrikman variational principle. An alternative formu-
lation of exact computable bounds is to use the universal Theorems I and II of 
Subsection 2.5.6, together with proper choices of the reference elasticity or 
compliance tensors; this is presented in Subsection 9.5.6. These bounds are 
valid for any finite elastic solid of ellipsoidal shape, consisting of any distribu-
tion of inhomogeneities of any shape and elasticity. Theorems I and II of Sub-
section 2.7 are used in Subsection 9.7.2 to formulate bounds on parameters 
which define nonmechanical properties (e.g., conductivity and resistivity ten-
sors) of composites. 

2 More recently, Accorsi and Nemat-Nasser (1986) have used the Hashin-Shtrikman variation-
al principle to obtain bounds on the overall elasticity and instantaneous elastic-plastic moduli of 
composites with periodic microstructures; see Sections 12, 13, and 14 for detailed accounts of some 
basic results for heterogeneous solids with periodic microstructure. 
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9.1. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 

The Hashin-Shtrikman variational principle is formulated for a general 
linearly elastic heterogeneous RVE. The elasticity and compliance tensors are 
denoted by C' and D', respectively, where C' = (D') or D' = (C')-1. They are, 
in general, functions of the position vector x, i.e., 

C' = C'(x), D' = D'(x). (9.1.1a,b) 

These tensors satisfy the following symmetry conditions: 

C'j  = C'jk1 = C yik = C ii,i, D;iuu = D'jju = D ylk (9.1.1c,d) 

In particular, when the RVE consists of a linearly elastic homogeneous matrix 
and n distinct linearly elastic homogeneous micro-inclusions, C' and D' become 

C' = { Ca in W , D' _ { 
D in M  

 Da in W , 
(9.1.2a,b) 

a 

where C and D, and Ca and Da are the elasticity and compliance tensors of the 
matrix M and the micro-inclusions Wa (a = 1, 2, ..., n), respectively. 

9.1.1. Macrostress Prescribed 

First consider the case when the RVE is subjected to uniform tractions 
produced by the constant macrostress S = s°; see Figure 9.1.1x. From the 
averaging theorem, 

i  <S > = s0, (9.1.3a) 

and the overall compliance tensor of the RVE, denoted by D, is defined by 

s=< e> -D:s°. (9.1.3b) 

Figure 9.1.1a 

Heterogeneous RVE of volume V, 
bounded by aV, subjected to 
uniform tractions t = n.s° 

s= C':e an 

  

<s> =s° 

Note that C' and D' are variable, and there may exist material discontinuity sur-
faces in V. However, the tractions and displacements must remain continuous 
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across these surfaces. Hence, their presence does not affect the averaging 
theorems which are derived with the aid of the Gauss theorem; see Subsection 
2.4. In view of this observation, the existence of material discontinuity surfaces 
does not require any special treatment in the present context. 

Now consider an equivalent homogeneous solid with an overall geometry 
identical to that of the RVE, and introduce the eigenstrain field necessary for 
this homogenization. Let the homogenized solid consist of a comparison 
material, with constant elasticity and compliance tensors C and D. Note that in 
(9.1.2a,b), C and D are the elasticity and compliance tensors of the homogene-
ous matrix material. Here C and D are associated with an arbitrary elastic com-
parison material which is used for the homogenization of the original hetero-
geneous RVE. Introduce the eigenstrain field e* = e*(c) such that, in the 
equivalent homogeneous solid with elasticity and compliance tensors C and D, 
the same stress and strain fields as exist in the original heterogeneous RVE are 
produced. Hence, there follow the consistency conditions, 

s(x) = C'(x) : e(x) = C: { e(x) —  

e(x) = D'(x) : s(x) = D : s(x) + e*(c). (9.1.4a,b) 

Then, in terms of the eigenstrain e*(x), the stress field in the equivalent homo-
geneous solid, s(x), which coincides with that in the original heterogeneous 
RVE, is given by 

s(x) = {D'(c) —D} -1 : e*(c). (9.1.4c) 

Now consider the fact that the boundary tractions are uniform. If the per-
turbation stress sd(c) is defined in the equivalent homogeneous solid through 

sd(c) - s(x) — s°, (9.1.5a) 

then, 

n.sd(c) = O on aV; (9.1.5b) 

see Figure 9.l.lb. Because of linearity, the perturbation stress, sd(c), in 

Figure 9.1.1b 

Homogenizing eigenstrain field e*(x), 
distributed in homogeneous V of 
elasticity C, produces disturbance 
fields which leave boundary aV of 
V traction-free, td = i .  = 0 

<S> = s° 
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general, is a linear functional of the distributed eigenstrains. Then, formally 
define an integral operator L(x; ...) which determines sd(x) in terms of e*(x), 
through 

sd(x) - — A(c; e*). (9.1.6a) 

The operator A(x; ...) ( denoted by A for short) has the following properties: 

1) A depends on the geometry and material properties of the equivalent 
solid, but not on the prescribed (or required) eigenstrains; 

2) the stress and strain fields determined by A are statically and kinemati-
cally admissible; 

3) the stress field produced by A satisfies the zero-traction boundary condi-
tions (9.1.5b). 

In terms of Green's function G(x, y) which satisfies traction free boun-
dary conditions on aV, integral operator A is expressed as 

A(x; e*) = _C:{  f n VX ®G(x, Y). { V y. (C : 0*(Y)) } dVy — e*(x) }, (9.1.6b) 

or in component form, 

A J
r f

~~(c; e*) = — CiiPq 1  m as P Ggs(x, Y) { ayC (C rski e) } dVy — epq(c) 

(9.1.6c) 

The integral operator A is related to the integral operator S which has been 
introduced by (7.3.7) in Subsection 7.3. While S yields the perturbation strain 
field e' associated with a given eigenstrain field e*, operator — A yields the 
corresponding stress field sd. Hence, 

A(x; e*) _ —C: {S(x; e*)— e*(c)}, 

S(x; e*) _— D : A(c; e*) + e*(c). (9.1.6d,e) 

In general, with respect to the averaging operator < >, the integral opera-
tor A is self-adjoint, i.e., for arbitrary eigenstrain fields a*(1) = e*(1)(x) and 
e*(2> = e*(2)(x) in the equivalent homogeneous solid, 

< e*(l)(x) : A(c; e*(2)) > = < e*(2)(x) : A(x; a*(l)) >. (9.1.7a) 

The proof is straightforward. Let Oa03> = sd(a)(x) 
and ed(a) _ ed(a)(

c) be the 
stress and strain fields produced by the eigenstrain e*(a). Then from (9.1.4) and 
(9.1.6), 

ed(a)(c) = D : sd(a)(c) + e*(a)(c), 

— A(c; e*(a)) ~a = 1, 2). (9.1.7b,c) 

The eigenstrain e*(a)  produces self-equilibrating body forces through 
V . (C : e*(a)). Hence, sd(a) = — A(c; e*(a)) is statically admissible. Since sd(a) 
and ed(a) are statically and kinematically admissible, by the averaging theorem, 
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< sd(a) : ed(R) > = V f 
av 

td(a).ud(R) dS, (9.1.7d) 

where td(") and ud(ß ) are the tractions and displacements produced on aV by 
sd(a) and ed(ß ), respectively. From the boundary conditions associated with A, 
(9.1.5b), the surface integral in the right-hand side of (9.1.7d) vanishes. Hence, 
from (9.1.7b--d), 

< e (a) : A(e*(R)) > = < (ed(a) — D : : (— sd(ß)) > 

=<sd(a) : D:sd(ß)> 

= < (A : e*(a)) : D : (A : e*(R)) >. (9.1.7e) 

The symmetry of D with respect to the first and second pairs of its indices now 
implies (9.1.7a). The symmetry embedded in (9.1.7a,e) is displayed by the nota-
tion 

A(c; e*) - (A: e*)(c), (9.1.6f) 

and (9.1.7a) is rewritten as follows: 

< e () : (A : e*(R)) > = < e*(c) : A : e*(ß) >. (9.1.7f) 

In this notation, the operation A: e*(ß) is to be understood in the sense of 
(9.1.6b,c,f), i.e., A: e*(ß ) _ (A : e*(ß))(x) = A(x; e*(ß)). Notation (9.1.7f) is used 
in the sequel. Note from (9.1.7e) that 

< :A: >_< :(A:D:A): >. (9.1.7g) 

From (9.1.4c) and (9.1.6a), the consistency condition (9.1.4a) is replaced 
by the following consistency condition written for the eigenstrain field: 

(D'(x) — D)-1 : e*(x) + (A: e*)(x) — s° = 0. (9.1.8) 

This consistency condition is a linear integral equation which defines the eigen-
strain field necessary for homogenization. The solution to this integral equation 
is the exact eigenstrain field which gives the actual stress and strain fields of the 
original RVE. 

Now a functional is constructed for the eigenstrain field in the equivalent 
homogeneous solid such that the exact eigenstrain that satisfies the consistency 
condition (9.1.8) renders this functional stationary. Using the symmetry of A, 
define a functional, I, for an arbitrary eigenstrain, e*, by 

I(e*; s°) = 2 < e* : 1(D' — D) -1 + A } : e* > — < s° : e* >, (9.l.9a) 

where < e* : A : e* > _ < e* : (A : e*) > = < (A : e*) : e* >. The overall stress s° 
is regarded as fixed. The boundary conditions imposed on A then lead to 
<(A:  e*) > = 0. The first variation of functional I is given by 

dI(e*; s°) = < de* :{ (D' — D)-1 + A } : e* — s° } >, (9.1.9b) 
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where de* is an arbitrary variation in the eigenstrain field. As is seen, for the 
exact eigenstrain e* which satisfies (9.1.8), i.e., the eigenstrain field which pro-
duces in the equivalent homogeneous solid the same stress and strain fields as in 
the original heterogeneous RVE, dI(e*; s°) = O. Hence I(e*; s°) is the station-
ary value of (9.1.9a). Moreover, the vanishing of the first variation of b(e*; s°), 
for arbitrary variation of the eigenstrain, yields the consistency condition (9.1.8). 

Using the exact eigenstrain e*, rewrite the functional I, (9.1.9a), as 

I(e*; s°) = 2 < (e* — e*) : {(D'— D) -1 + A) : (e* — e*) > + I(e*; 0°) 

(9.1.10a) 

which attains its stationary value for e* _ e*. Note that I(e*; s°) is the change of 
the complementary strain energy associated with the difference between the 
reference and the overall compliance tensors, D — D. Indeed, direct substitution 
of e* into (9.1.9a) yields 

b(e*; s°) = — Z < e* : s° > = 2 s° : (D —D) : s°, (9.1. l0b) 

where D is the overall compliance tensor defined by (9.1.3b). In Subsection 9.2, 
representations (9.1.10a) and (9.1.10b) are used to establish extremum princi-
ples for calculating the eigenstrain field e* and for obtaining bounds on the 
overall moduli D. 

For uniform traction boundary data, (9.1.9) and (9.1.10) define the 
Hashin-Shtrikman variational principle, in the sense that the Euler equation 
associated with functional I(e*; 0°) is the corresponding consistency condition, 
(9.1.8). 

9.1.2. Macrostrain Prescribed 

Next, consider the case when the RVE is subjected to linear displacements 
produced by the constant macrostrain E = e°; see Figure 9.1.2a. From the 
averaging theorem, 

Figure 9.1.2a 

Heterogeneous RVE of volume V, 
bounded by aV, subjected to 
linear displacements u = x.e° 

e= D':s an 

  

<E> =e° 
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(9. 1. h a) 

and the overall elasticity tensor of the RVE, denoted by C, is defined by 

s -<s>= C: e° . (9.1.11b) 

Now, instead of the eigenstrain e*, introduce an eigenstress field, s*, in 
the equivalent homogeneous solid, such that the final stress and strain fields 
coincide with those of the original heterogeneous RVE. The consistency condi-
tion for the eigenstress s* is given by 

e(x) = D'(x) : s(C) = D: {s(x) — s*(c)}, 

s(x) = C'(x) : e(x) = C : e(x) + s*(c), (9.1.12a,b) 

where D and C are the compliance and elasticity tensors of the equivalent 
homogeneous solid. Then, in terms of the eigenstress s*, the strain field in the 
homogeneous solid is expressed as 

e(C) = { C'(c) — C } -1 : s*(c), (9.1.12c) 

with the corresponding stress field defined by (9.1.12b). These stress and strain 
fields in the equivalent homogeneous solid are identical with the actual stress 
and strain fields in the original heterogeneous RVE. 

Define the perturbation strain ed(c) in the equivalent homogeneous solid 
by 

ed(c) _ e(x) — e°. 

Then, the displacement field associated with ed(c) satisfies 

ud=0 oval; 

(9.1.13a) 

(9.1.13b) 

see Figure 9.1.2b. The perturbation strain field ed(c), produced by the eigen-
stress s*(c), can be expressed in terms of an integral operator G(c; ...) (denoted 
by G for short), in a manner similar to that which led to the introduction of the 
operator A. Hence, write 

Figure 9.1.2b 

Homogenizing eigenstress field s*(x), 
distributed in homogeneous V of 
compliance D, produces disturbance 
fields, such that displacements on 
boundary aV of V vanish; ud = O 

<e> =e° 
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Ed(c) - — G(x; s*), (9. 1. 14a) 

or, following the notation introduced for A in (9.1.6f), set 

ed(c) = — (G : s*)(x)• (9.1.14b) 

In terms of Green's function G(x, y) which satisfies zero surface displacement 
boundary conditions on aV, integral operator G is expressed by 

G(x; s*) = — fn 2 { { VX ®G(x, y)•(Vy. s*(Y))} 

+ {VX ®G( c, y).(Vy.S*(y))}T{ dVy, (9.1.14c) 

or in component form, 

G,~(x; s*) = — f n 2 { ax; Gi(x, U) 
a)Jk 

si i(U) 

+ 
 aX G 1(x, y) ~~ ski(y)} dVy. (9.1.14d) 

i yk 

The integral operator G is given by the integral operator T(x; ...) introduced by 
(7.3.10) in Subsection 7.3. Indeed, G and T respectively give the strain and 
stress fields due to a given eigenstress field, 

G(c; s*) _ —D:  { T(x; s*) — s*(c) }, 

T(x; s*) _— C : G(c; s) + s*(c). (9.1.14e,f) 

Table 9.1.1 summarizes the relations among integral operators S , T, A, 
and G. 

The integral operator G satisfies properties 1) and 2) which are stated for 
A, after (9.1 .~a). However, while A produces zero tractions on aV, G produces 
zero displacements on N. Hence, instead of property 3) of A, the operator G 
satisfies the following condition: 

3') the displacement field produced by G vanishes on the boundary aV, i.e., 
(9.1.13b) is satisfied identically. 

In general, similarly to A, the integral operator G is self-adjoint, i.e., for 
arbitrary eigenstress fields s*(1) and s*(2) in the equivalent homogeneous solid, 

< s*(j) : (A: s
*(2)

) > = < s*(2) : (A: s*(l)) > _ < s*(l) : G : s*(2) 
>; (9.1.15a) 

here, again, the same notation as in (9.1.7f) is used. The proof is similar to that 
for A. Taking advantage of the boundary conditions (9.1.13b), observe that 

< s*(a) : (A: s*(a)) > = < (A: s*(a)) : C : (A: s*(ß )) >, (9.1.15b) 

where — ( G : s*(a))(c) is the strain field associated with s*(a). From the sym-
metry of C with respect to the first and second pairs of its indices, (9.1.15a) now 
follows. Note from (9.1.15b), that 
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Table 9.1.1 

Relation among integral operators S, T, A, and G 

uniform traction boundary conditions: S and A for e* 

disturbance strain S(x; e*) — D: A(c; e')+e* 

disturbance stress C : (S(x; e*) — e") — A(x; e*) 

linear displacement boundary conditions: T and G for s* 

disturbance strain D: (T(x; s*) — s*) — G(c; s*) 

disturbance stress T(x; s*) — C : G(x; s*) + s* 

< : G: >_< :(A:C:A): >. (9.1.15c) 

From (9.1.12b) and (9.1. 14a), the following consistency condition for the 
eigenstress s* is obtained, 

(C'(x) — C) -1 : s*(x) + (G : s*)(x) — e° = 0. (9.1.16) 

For a prescribed e°, this is a linear integral equation which defines s* in the 
equivalent homogeneous solid, such that the corresponding final stress and strain 
fields are identical with those of the original heterogeneous RVE. 

Consider now the following functional, J, similar to the functional I, 
which is stationary for the eigenstress field which satisfies the consistency con-
dition (9.1.16): 

J(s*; e°) =  < s* : {(C' — C) -1 ± A} : s* > — < e° : s* >, (9.1.17a) 

where the fact that G is self-adjoint is also used. In (9.1.17a), the overall strain 
e° is fixed. The boundary conditions imposed on G lead to <(A:  s*) > = 0. 
Thus, the first variation of J, for an arbitrary variation ds* of the eigenstress 
field, yields 

dJ(s*; e°) _ < ds* :{ (C' — C)-i + G} : s* — e° 
} 

>. (9.1.17b) 

Therefore, for the exact eigenstress s* which satisfies (9.1.16), WJ(s*; e°) = O. 
Hence, for the eigenstress field which produces in the equivalent homogeneous 
solid the exact stress and strain fields of the original heterogeneous RVE, the 
functional J(s*; e°) is stationary. Furthermore, the vanishing of the first varia-
tion of J(s*; e°), for arbitrary variation of the eigenstress, leads to the con-
sistency condition (9.1.16). 
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In a manner similar to (9.1.10a), the functional J can be rewritten as 

J(s*; e°) = --<  (s* — s*) : {(C'—C) -1 ±A} : (s* — s*) > +J(s*; e°) 

(9.1.18a) 

which, for s* = s*, has the stationary value J(s*; e°), and can be used to estab-
lish bounds for the overall moduli. Direct substitution of s* into (9.1.1 7a) yields 

J(s*; e°) = —  < s* : e° > =  e° : (C — C) : e°, (9.1.18b) 

where C is the overall elasticity tensor defined by (9.1.1lb). Therefore, simi-
larly to I(e*; s°) which gives the change in the complementary strain energy due 
to the inhomogeneity of the RVE, J(s*; e°) gives the change in the correspond-
ing strain energy. It should be noted that the functional I is defined with the 
overall stress s° prescribed, while the functional J is defined with the overall 
strain e° fixed. Hence, for an arbitrary heterogeneous elastic solid, I(W*; s°) 
and J(s*; es) may not be related, even if s° = C : e° or e° = D : s°, with 
C=D-1 and D=C-1. 

9.2. UPPER AND LOWER BOUNDS FOR ENERGY FUNCTIONALS 

In Subsection 9.1, functionals I and J are introduced for prescribed eigen-
strain and eigenstress fields in the equivalent homogeneous solid. It is shown 
that the eigenstrain and eigenstress fields, e* and s*, which satisfy their 
corresponding consistency conditions, respectively render I and J stationary. 
Under certain conditions, these stationary values become the extremum values 
of these functionals. 

To establish this, first note that a fourth-order symmetric tensor A is 
positive-definite (negative-definite) when, for every symmetric second-order 
tensor t of nonzero magnitude, t : t ~ 0, the following inequality holds: 

t:A:t>(<)0. (9.2.1a) 

A is called positive-semi-definite (negative-semi-definite), when under the same 
conditions, 

1: A : t >_ (<_) 0. (9.2.1b) 

Hence, the elasticity and compliance tensors, C' and D', are positive-definite, 
since the energy required for any elastic deformation is always positive. 

The integral operators, A and G, associated with the averaging operator 
< >, namely the operators < : { (D' — D) -1 + A):  > and < : { (C' — C) -1 

+ G}: >, are called positive-definite (negative-definite) or positive-semi-
definite (negative-semi-definite) if, for every eigenstrain field e* and eigenstress 
field s* with nonzero norms, < e* : e* > # 0 and < s* : s* > # 0, it follows that 
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<e*: {(D'—D) -1 +A} : e*> > (<) 0  or >_(<_)0, 
(9.2.2a,b) 

< s*: {(C'— C)-1 ±A} : s > > (<) 0,  or >_(<_)0. 

From (9.1. ha) it is seen that if the integral operator < : { (D' — D) -1 + A } : > is 
positive-definite (negative-definite), then the local stationary value of the func-
tional I, i.e., I(e*; s°), is the corresponding global minimum (maximum), i.e., 
for any eigenstrain field e*, 

I(e*; s°) < (?) I(e*; s° ), (9.2.2c) 

where e* is the eigenstrain field which satisfies the consistency condition (9.1.8). 
Similarly, from (9.1.18a), if < : {(C'—C) -1 +A}:  > is positive-definite 
(negative-definite), then for any eigenstress field s*, 

J(s*; e0) <_ (>_) J(s*; e0), (9.2.2d) 

where s* is the eigenstress field which satisfies the consistency condition 
(9.1.16). 

In this subsection it is shown that the positive-definiteness (negative-
definiteness) of, e.g., the tensor C' — C is equivalent to the positive-definiteness 
(negative-definiteness) of the integral operator < : { (C' — C) -1 + G) : > and the 
negative-definiteness (positive-definiteness) of the integral operator < : {(D' 
— D) -1 + L } : >. In view of (9.2.2c), minimization (maximization) of I(e*; s°) 
with respect to e*, over a suitable class of approximating functions, results in an 
optimal estimate of e* within the considered function-space, when C' — C is 
negative-definite (positive-definite). Similar comments apply to J(s*; e0), 
viewed as a functional of the eigenstress field s*(x). 

From the identities 

C' — C = (C' — C) : (C' — C)- i : (C' — C), 

D' — D = (D' — D) : (D' — D) : (D' — D), (9.2.3a,b) 

it is seen that: (1) if C'—C is positive-definite (negative-definite), then 
(C' — C) -1 is positive-definite (negative-definite); and (2) if D' — D is positive-
definite (negative-definite), then (D' — D) -1 is positive-definite (negative-
definite), i.e., 

C' — C is p.d. (n.d.) (C' — C) is p.d. (n.d.), 

D' — D is p.d. (n.d.) == (D' — D)-1 is p.d. (n.d.), (9.2.3c,d) 

where p.d. and n.d. stand for positive-definite and negative-definite, respec-
tively. 

9.2.1. Stiff Micro-Inclusions 

First, assume C' — C is positive-definite, i.e., choose the comparison elas- 
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ticity tensor C such that C' — C is positive-definite3. For example, when an RIB 
contains micro-inclusions which are stiffer than the surrounding uniform matrix 
and there are suitable symmetries, identify C with the elastic tensor of the 
matrix material, in which case, the class of eigenstresses (eigenstrains) is res-
tricted to vanish within matrix M. From (9.1.15b), for any eigenstress field s*, G 
satisfies 

< : G: s > = < (A: s*) : C: (A: 
s*) 

>. (9.2.4) 

Since C is a positive-definite tensor, < : G : > is a positive-definite operator. 
Hence, the positive-definiteness of the tensor C' — C implies the positive-
definiteness of the operator < : ((C' — C) -t + G} : >. 

Furthermore, the positive-definiteness of the tensor C' — C implies the 
negative-definiteness of the operator < : {(D' - D)-~~ +A}  : >. To see this, let 
sd and ed be the strain and stress fields produced by an arbitrary eigenstrain 
field e*, i.e., 

ed = D : sd + e*, sd = — ( l : e*). (9.2.5a,b) 

Then, < e* : A: e* > becomes 

<e* 
: A: e* > = < e : C: e* > < e* : C: ed> 

=<e* : C:e* >—< ed:C: ed>. (9.2.5c) 

From identity 

(D'—D)-1 = —C: (C'—C) -1 
: C—C, 

it follows that 

>= —<(C:e *):(C'—C)
-
I:(C:e*)> 

—<e * : C:e*>. 

Hence, adding (9.2.5c) and (9.2.5e), obtain 

<e*: {(D'—D) - +A}:e* >= —<(C :e*):(C_C)_ I :(C :  

(9.2.5d) 

(9.2.5e) 

—< ed:C: ed>. (9.2.5f) 

Therefore, if C' — C is positive-definite, then the tensors (D' — D) -1 and D' — D, 
and the integral operator < : { (D' — D)

-1 
+ A) : > are all negative-definite. 

3 The same comments apply even when C' - C is positive-semi-definite. However, the 
positive-semi-definiteness of C' - C implies that some eigenvalues of C coincide with the 
corresponding eigerivalues of C' at some points within V, where, then, (C' - C)-1 is not defined. In 
such a case, restrict the appropriate components of the eigenstrain field to vanish where the 
corresponding eigenvalues of C' - C vanish. This restriction is mandatory, otherwise functional J 
will not be well defined. Thus, the eigenstrains must always vanish wherever the reference elasticity 
tensor equals the actual material elasticity tensor, as discussed in Section 7. 
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9.2.2. Compliant Micro-Inclusions 

Next, assume D' — D is positive-definite, i.e., choose a stiff comparison 
material of uniform elasticity C = D-1. This may correspond to the case when 
an RVE contains micro-inclusions which have suitable symmetry and are more 
compliant than the surrounding uniform matrix with elasticity C = D-1. Then 
the integral operators < : ((D' — D) -1 + A } : > and < : { (C' — C) -1 + G } : > are 
positive-definite and negative-definite, respectively. From (9.1.7e), for any 
eigenstrain e*, 

(9.2.6) 

Hence, similarly to operator < : G : >, the integral operator < : A: > is 
positive-definite. Thus, when D' — D is positive-definite, then the integral 
operator < : {(D' —D) 1 + A } : > is positive-definite. 

As in (9.2.5), the negative-definiteness of the integral operator < : {(C' 
— C) -1 + G } : > follows from the positive-definiteness of the tensor D' — D. 
Using (9.1.15b), observe that 

<s*: G: s*>=<s* : D:s* >—< sd:D: sd>, (9.2.7a) 

where sd is the stress field produced by the eigenstress s* through 

sd = — C : (1-:s*) + s*. (9.2.7b) 

Using identities similar to those in (9.2.5d), obtain 

< s*:(C'—C) -1 :s* >= —< (D:s*): (D'— D)-1 :(D: s*)> 

—<s*:D:s*>. (9.2.7c) 

The addition of (9.2.7a) and (9.2.7c) yields 

< s* : {(C'—C) - ± A} : s > = —< (D: s*):(D'—D) -1 : (D: s*)> 

(9.2.7d) 

If D' — D is positive-definite, then the tensors (C' — C)-1 and C' — C, and the 
integral operator < : { (C' — C) -1 + G} : > are all negative-definite. 

9.2.3. Bounds for Elastic Strain and Complementary Elastic Energies 

Using the overall compliance and elasticity tensors D and C, given by 
(9.1.3b) and (9.1.11b), define the average complementary strain energy and the 
average strain energy, respectively, as follows: the average complementary 
strain energy is 

W°( s°) =  s° : D : s°, (9.2.8a) 

when s° is prescribed; and the average strain energy is 
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W(e°) = 2 e° : C : e°, (9.2.8b) 

when e° is prescribed.4 Let WC° and W°, respectively, be the comparison aver-
age complementary strain energy and strain energy, i.e., 

W°°( s°)  s° : D : s°, W°( e°) __ 2 e° : C : e°. (9.2.8c,d) 

From (9.1.10b) and (9.1.18b), the values of the functionals I(e*; s°) and 
J(s*; e°) are 

1(e*; s°) = Wd°( s°) — Wc( s°), J(s*; e°) = W°( e°) — W( e°). (9.2.8e,f) 

Then, from the results obtained in the preceding subsections, the positive-
definiteness or negative-definiteness of the integral operators < : { (D' - D) 1  

+ A } : > and < : { (C' — C) -1 + G } : > depends on whether D' — D or C' — C is 
positive-definite, i.e., 

{C'—Cis p.d. ~~ D'—D isn.d.} 1 ~ {(D'—D)1+A }: >isn.d. 
: {(C —C) +G} : > is p.d. 

{D —D isp.d.~~C'—C isn.d.}~< {(D'—D)~+A}: >isp.d. < : { (C — C) 1 ±A}:  > is n.d. 
(9.2.9a,b) 

Therefore, if C' — C is positive-definite (if D' — D is positive-definite), then, for 
arbitrary eigenstrain and eigenstress fields e* and s*, Wc(s°) and W(e°) satisfy 

We°( s°) — Wc( s°) > (5  < e* : { (D' — D) -1 + A } : e* > — s° : < e* >, 

W°( e°) — W( e°) 5 (>_)  < s* : { (C' — C) +A}  : s * >—<  s* >: e°, 
(9.2. l0a,b) 

where s° is the prescribed overall stress for Wc° and W°, and e° is the 
prescribed overall strain for W° and W. The equality in each case holds only 
when e* = e* and s* = s*, respectively. It should be recalled that for a bounded 
V, the stress and strain fields associated with a prescribed s°, in general, are dif-
ferent from those corresponding to a given e°. Hence C and D, in general, need 
not be related. However, as pointed out before, if the RVE is indeed statistically 
representative, and if a consistent averaging scheme is used, then one expects 
that C and D be each other's inverse. 

Consider now the particular case when the RVE consists of a homogene-
ous matrix and n distinct but homogeneous micro-inclusions. The volume aver-
age over V in the functionals I and J is decomposed into the volume average 
over the matrix M and the sum of those over each micro-inclusion W. Choose 
the matrix with elasticity and compliance tensors C and D, as the comparison 
material. Since (C' — C) -1 and (D' — D) -1 are not defined in M, restrict eigen-
strain and eigenstress fields to vanish in M. The functionals I and J then are 

These are two separate problems. 
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well defined, with finite values. From (9.2. l0a,b) it follows that if Ca — C is 
positive-definite (if Da — D is positive-definite) for all a = 1, 2, ..., n, then, for 
any arbitrary eigenstress and eigenstrain fields, s* and 

e*, 
vanishing in M, 

W°O(s° ) — W'(s° ) 

n 

>_(<_) 
 I 

 

W0(e0) — W( e) 

p 
<_ (>_) fa  < s* : {(Ca — C)

-i + G} : s* >a — < s* > : i  e°, 

where 

(9.2.11 a,b) 

<e*>= S fa< e* >a, 
a= I 

GI 

<s*>= S, f <s>, 
a =1 

(9.2.11 c,d) 

and, as before, f is the volume average of W. Again, the equality in each case 
holds only when e* = e* and s* = s*. It should be noted that if D —D = l and 
C' — C = 0 in M, then the exact eigenstress and eigenstrain fields in the 
equivalent homogeneous solid that produce the same stress and strain fields as in 
the original heterogeneous RVE, vanish identically over the matrix M. Hence, 
they belong to the group of restricted trial eigenstrain and eigenstress fields 
which vanish over M, rendering I and J finite. 

9.3. GENERALIZED BOUNDS ON OVERALL ENERGIES 

Consider an RVE of volume V which contains linearly elastic and homo-
geneous micro-inclusions of possibly different elasticity tensors, embedded in a 
linearly elastic and homogeneous matrix. From (9.1.2a,b), the elasticity and 
compliance tensors C'(x) and D'(x) of the RVE are given by 

C'(x) = HM(c) C + H(c) Ca, 
a=1 

n 
D'(x) = Hi(x)D± ± Ha(x) Da, (9.3.1a,b) 

where H(c) = H(x; Wa) (or HM(x) = H(c; M)) is the Heaviside step function 
which takes on the value 1 if x is in Wa (or M) and is 0 otherwise. 

In Subsection 9.2.3, particular eigenstrain and eigenstress fields are 
chosen in the equivalent homogeneous solid, which vanish in the matrix, since 
the reference elasticity and compliance tensors are set to coincide with those of 
the matrix. Hereinafter, in order to consider a more general case, do not impose 
any such restriction on the reference elasticity and compliance tensors; they 
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may, for example, coincide with those of the cth inclusions. For simplicity, 
treat the matrix phase as the 0th inclusion phase, W0, and denote its elasticity 
and compliance by C° and D°. 

Now, in order to consider Hashin-Shtrikman bounds on the overall elastic 
moduli, choose particular eigenstrain and eigenstress fields which take on dis-
tinct constant values in each micro-inclusion, i.e., 

e*(x) = S H(c) e*", s*(x) = S H" (x) s*". (9.3.2a,b) 
a = 0 a = 0 

Here a*a and s (a = 0, 1, 2, ..., n) are constant tensors. From these fields, 
bounds on the overall elasticity and compliance tensors are computed by optim-
izing I and J, in accordance with (9.2.2c,d). The technique is expected to yield 
good bounds when the volume fraction of each inclusion is suitably small. On 
the other hand, when an inclusion is large so that the assumption of a uniform 
eigenstrain or eigenstress in it appears inappropriate, one may subdivide this 
inclusion into several subregions and use the uniform eigenstrain and eigenstress 
in each subregion. Such an approach is mandatory for estimating the instan-
taneous (or incrementally linear) effective moduli of an RVE with nonlinear 
constituents, e.g., an RVE with elastic-plastic materials; see Accorsi and 
Nemat-Nasser (1986), and Nemat-Nasser et al. (1986) for illustrations. 

9.3.1. Correlation Tensors 

With piecewise constant eigenstrain and eigenstress fields, 
e*(x) 

and 
s*(x), (9.3.2a,b), the integral operators A and G defined by (9.1.6) and (9.1.14) 
reduce to tensor operators, A"ß and Gab, acting on the constant eigenstrain and 
eigenstress tensors, a*ß and s*ß. These tensor operators determine, for example, 
the average stress, < s >a, and strain, < e >a, in micro-inclusion W~, for the 
constant eigenstrain and eigenstress, e*ß and s*ß, prescribed on Wr, (a, ß = 0, 1, 
2, ..., n). The tensors l y and GY are called the correlation tensors. In this 
subsection, these correlation tensors are defined explicitly in terms of integral 
operators A and G, for piecewise constant trial eigenstrain and eigenstress fields. 

First, consider the integral operator A, introduced in (9.1.6a,b), and note 
again that 

— ( l : e*)(c) = C: (S(x; e*) — e*(c)), (9.3.3a) 

where the integral operator S(x; e*) is defined by (7.3.7) in terms of the Green 
function of the homogeneous linearly elastic solid V bounded by aV, with zero 
tractions prescribed on ay. As pointed out in Subsection 9.1, the actual calcu-
lation of the Green function for a bounded region of arbitrary shape is, in gen-
eral, not feasible. Nevertheless, the properties of such a Green function can be 
used effectively to establish general expressions which, in many important 
applications, lend themselves to accurate estimates. The Hashin-Shtrikman 
bounds, as generalized by Willis, provide an illustration of this procedure. 

5 In this case, the eigenstrains and eigenstresses must vanish there. 
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The integral operator G relates to the integral operator T(x; s*), as fol- 
lows: 

— (A : s*)(x) = D: (T(x; s*) — o*(Ä)), (9.3.3b) 

where T(x; s*) is defined by (7.3.10) in terms of the Green function of the 
bounded V, which satisfies zero displacement boundary conditions on 2V. 

Using the piecewise constant eigenstrain field (9.3.2a), first observe that 

< e*(x) : A(x; e*) >a = e*a : < A(x; 
e*) 

>a (a not summed). (9.3.4a) 

Similarly, using the piecewise constant eigenstress field (9.3.2b), obtain 

< s*(x) : G(x; s*) > = s*a : < G(c; s*) >a (a not summed). (9.3.4b) 

For the volume average of the stress < A : e* >a and strain < G : s* > in 
(9.3.4a) and (9.3.4b), introduce the fourth-order constant correlation tensors, 
Aß ß and Ga ß (a, b = 0, 1, 2, ..., n), such that for arbitrary a*ß and s *ß, 

b A
ß ß : e *ß = < A(c; Hb e*ß) > a  or  fp l3 eß;ß = < L;~(x; Hb a*ß) >~ 

(ß not summed), (9.3.5a,b) 

and 

b Gar : s r = < G(c; Hr s*r) >a  or  fr G  s~ß - < G(; Hr s*r) >a 

((3 not summed), (9.3.5c,d) 

where Hb is the Heaviside step function which equals 1 in Wr and 0 elsewhere. 
The fourth-order correlation tensor Aaß (tensor Gaß) represents the influence of 
the eigenstrain a*ß (eigenstress s *ß) in the bth micro-inclusion Wr on the ath 
micro-inclusion Wa, for the class of piecewise constant eigenstrain (eigenstress) 
fields. These tensors depend only on the geometries of the inclusions and the 
RVE, as well as the elasticity tensor C = D-1 of the reference material, hut not 
on the eigenstrain and eigenstresses, nor on the elasticity of the corresponding 
inclusions. 

From the self-adjointness of the integral operator A or G, i.e., from 
< Ha e

*a : A: Hb a*ß > = < Hb e*ß : A : Ha e*a > for any e and a*ß, or from 
< Ha, s*a : G : Hb s*p > = < Hb s*ß : G : H~ s*a > for any s*a and s*ß, the correla-
tion tensors satisfy 

Aaß = ( Aß a)T  or  A; ß = L (9.3.5e,f) 

and 

Gar = (Gra)T or G,j;b = G;bj. (9.3.5g,h) 

In general, however, these correlation tensors are not symmetric with respect to 

their superscripts a and b.6 

6 As shown in (9.1.6) and (9.1.14), integral operators A and G can be expressed in terms of 
Green function G. While (9.3.5e-h) are directly derived from (3.2.7), i.e., Gy(x, y) = Gi;(y, x), the 
correlation tensors are symmetric with respect to their superscripts, if Green's function is of the form 
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Using the correlation tensors Lab and Gab, rewrite (9.3.4a) and (9.3.4b), 
as 

° 
e*a : < A(x; e*) >a = S fp e°: Aaß : e *ß, 

s*° i : < G(c; s*) >a = G
~  

b s
*a : Gab : s*b 

o 

and hence obtain 

(a not summed), (9.3.6a,b) 

(9.3.6c,d) 

fa e*a :< A(x; e*) >a = S S fa fbR e*°~ : AabR : e*bR , 
a =0 a = 0  0 

S fa s*a : < G(c; s*) >a = S 

R— 
fa b s : G0 : s*b. 

a =o a=o 0 

9.3.2. Upper and Lower Bounds on Overall Energies 

With the aid of the correlation tensors, Lab and Gab, for the piecewise 
constant trial eigenstrain and eigenstress fields, 

e*(x) 
and s*(x), functionals 

I(e*; s°) and J(s*; e°) defined respectively by (9.l.9a) and (9.1.17a), reduce to 
quadratic forms (with linear terms) in the constant eigenstrains a*a and eigens-
tresses s*a, (a = 0, 1, 2, ..., n), respectively. These quadratic forms then provide 
upper and lower bounds on the overall complementary elastic and elastic ener-
gies, W°( s°) and W(e°). The aim now is to formally calculate these quadratic 
expressions, and obtain their optimal values which determine bounds on the 
overall energies. 

For prescribed overall constant stress and strain, s° and e°, the upper and 
lower bounds on the overall complementary elastic energy W°( s°) and the 
overall elastic energy W(e°) are given by (9.2.11 a) and (9.2.1lb), respectively. 
Substituting (9.3.5) and (9.3.6) into these bounds, obtain the following bounds 
on W°( s°) and W(e°), when Ca – C is positive-definite (when Da – D is 
positive-definite) for all a's: 

Wc(s°) ? (~) I(e*; s° ), 

W°( e°) – W( e) <_ (>_) J(s*; e°). (9.3.7a,b) 

In general, the exact eigenstrain and eigenstress fields which produce the same 
stress and strain fields in the original heterogeneous RVE, are not piecewise 
constant but vary within each micro-inclusion. Hence, in most cases, the ine-
qualities < and > instead of <_ and > apply in (9.3.7a,b). From functionals 
1(e*; s°) and J(5*; e°), define functions I' and J', using the piecewise constant 
eigenstrain and eigenstress fields. Let {e*a} and {s*a} (a = 0, 1, 2, ..., n) stand 

G(x, y) = G(x — y), as shown in Subsection 9.4. Note that the transpose in (9.3.5e—h) is with respect 
to the first and second pairs of the subscripts. 
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for the set of constant eigenstrains and eigenstresses, and set 

I(e*; s°) __ I'({e*a} ; s°), J(s*; e0) = J'({s*a}; e0), (9.3.8a,b) 

where 

I"({e*a}; s°) = S VV
n a =oit o 

e*« : Iab : e*b — s° : e*
, 

J'({s*a}; e0
) E ß~ S*a : J y :s*ß-S*:E °

, 
=o  0 

with the fourth-order tensors ß aß and Jaß being defined by 

Iab = fa dar (Dß — D)-1 + f fp LaR 

Jaß = f (Cß — C) -1 + fa fp Gaß (a, ß not summed). (9.3.8e,f) 

Note that Iaß and J «ß are symmetric with respect to the first and second pairs of 
their subscript indices, i.e., Iy _ßj ß and J ~~ = J. 

The optimal (or stationary) values of the quadratic expressions I' and J' 

are computed by setting equal to zero the corresponding derivative with respect 
to a*ß and s*ß, respectively, i.e., from 

ae*R ({e*a}; 0°) = 0, 
as

*ß ({s*a}; e0) = O. (9.3.9a,b) 

These are systems of linear equations for the unknowns {e*ß} and {s *ß}, respec-
tively. Let { e*a } and {G*a} be the corresponding solutions, i.e., the solutions to 
the following sets of n linear tensorial equations: 

b— 

 

1a3: e*b - fa s° = 0, 
o 

n 

p o 

In general, when the basic problem is well-posed, both (9.3. ha) and (9.3.1Ob) 
have a unique solution. This is assumed to be the case in the following. 

If C' — C is positive-definite (if D ' — D is positive-definite) everywhere in 
V, the functionals I and J are negative-definite and positive-definite (positive-
definite and negative-definite), and hence they have the global maximum and 
minimum (minimum and maximum), respectively. Since the functions I' and J' 
are defined by substituting piecewise constant eigenstrains and eigenstresses 
into I and J, I' and J' must have the global maximum or minimum, when I and J 
have the global maximum or minimum, respectively. On the other hand, when 
the set of linear tensorial equations (9.3.10a,b) has a unique solution, both I' and 
J' have one and only one stationary value. Therefore, if C' — C is positive-
definite (if D' — D is positive-definite), and if the the solution of (9.3.10a,b) is 
unique, then the unique stationary values of I' and J' that are given by the solu-
tion of (9.3.10a,b), are the corresponding global maximum or minimum. Actu-
ally, the uniqueness of the solution of (9.3.10a,b) is guaranteed, when C' — C is 

(9.3.8c,d) 

J«ß : s*b — f a e° = 0 (a = 0, 1, 2, ..., n). (9.3. l0a,b) 
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positive-definite (when D' — D is positive-definite); for a general proof, see 
Willis (1989). The simple proof is as follows: the integral operators in the func-
tionals I and J, < : { (D' — D)

-1 
+ A } : > and < : {(C'—C)

-1
+G} : >, are 

definite when either C' — C or D' — D is definite, which means that only e* = 0 
and s* = O lead to 

<e*: {(D'—D) –A} :  > = S S e*":I"ß:e*ß=0, 
«=o o 

< s* : {(C'—C) -1+A}  : s* > _ j j s*" . J"ß . s*ß = 0, (9.3.1 la,b) 
«=0 0 

and the left-hand side of (9.3.11a,b) cannot be zero for nonzero piecewise con-
stant eigenstrains or eigenstresses. Hence, if { e*"(K) } and { s*"(K) } (K = 1, 2) 
are two solutions of (9.3. lOa,b), then, { e*a(i) — e*"«) }  and { s*"(1) — 0*"« ) 

satisfy 
° n 

(e*
a(i) 

— e ( )) : I"a : (e*a( p — e*R(2)) = 0, 

S a (s
*«(i) _ s «))* 2)) : J«r : (

s
*a() _ s*a(2)) = O. 

a =0 (3̀ 0 

SobSo 

(9.3.11c,d) 

From (9.3.11a,b), it follows that e*"(1) = e*n(2) and s*"«1) = s*"«), for a = 0, 1, 
2, ..., n. Therefore, the solution of (9.3.10a,b) is unique, if C' — C is positive-
definite (if D' — D is positive-definite). $ In this case, the stationary values of I' 
and J' are the corresponding global maximum and minimum. In summary, 
whenever operator < : { (C' — C) -1 + A) : > or < : {(D'—D)

-1
+A} : > is 

positive-definite (negative-definite), the corresponding matrix, I"ß or J"ß, is 
definite and therefore invertible. 

In terms of the optimal constant eigenstrains and eigenstresses, {e*a} and 
{s*"), which are the solutions of (9.3.1Oa,b), the functions I' and J' are written 
as 

t'({e*"}; s°) = aSo S.o 2 (e*
"— e*") : I" a : (e*ß— e*ß ) +t'({e*

"}; s°), 

J'({s*"}; e°) = 
«$o 

,o 2 (s*"-s*" ) : 70 : (s*a— s*ß)+J'({s*"}; e°). 

~" (9.3.12a,b) 

Therefore, for any constant eigenstrains and eigenstresses, {e*"} and {s*"), 

I~({e*a}; 6°) > (~) h({e*9; s° ), 

The following proof is essentially the same as that for the uniqueness of the solution of 
linearly elastic problems; see Part 2, Subsection 18.3. 

8 The above proof also implies that if the operator < : {(D'-D)-1 + A } : > or < : ((C' 
-C)-1 + G} : > is positive-definite or negative-definite, then the corresponding tensors ßaß or J aß are 
positive-definite or negative-definite, respectively. 
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}'({s*a}; e°) < (~) }'({a*a}; e0), (9.3.12c,d) 

if Ca — C is positive-definite, (if Da — D is positive-definite), for a = 0, 1, 2, »., 
P. 

From the governing sets of n + 1 linear equations (9.3.10a,b), compute the 
values of I'({e*a}; s°) and J'({s*a}; e°), as 

1'( { e*a } ; s°) = — 
2 

s° : ~*, 

J'({s*a}; e° ) _ — 2 6* : e°, 

where 

~* = S fa e*a, s* - S fa s*a. 
a = 0 a =0 

(9.3.13a,b) 

(9.3.13c,d) 

Therefore, from (9.3.7), (9.3.8), (9.3.12), and (9.3.13), the upper and lower 
bounds on the overall elastic energies are given by 

W°° (s° ) — W c(s° ) ? (<_) — 2 0
° :  

W°( e°) — W(e°) 5 (>_) —  s* : e°, (9.3.14a,b) 

when Ca — C is positive-definite (when Da — D is positive-definite). 

9.3.3. Subregion Approximation Method 

As mentioned above, the correlation tensors for the trial piecewise con-
stant eigenstrain and eigenstress fields depend only on the geometries of the 
equivalent homogeneous solid, the reference elasticity, and the geometries of 
the inclusions and the RVE. Hence, in principle, the trial correlation tensors can 
be defined for any pair of micro-inclusions, Wa and Wr. Since an inclusion can 
be divided into a number of subregions, with each subregion being viewed as an 
inclusion, more and more accurate estimates of the correlation tensors may be 
expected by further subdivision. 

To improve the approximation method, divide each micro-inclusion Wa 

into a set of several subregions. Ordering these subregions from 0 to N (> n), 
redefine W~, to be the ath subregion, with a = 0, 1, 2, ..., N. Several subregions 
now have common uniform elasticity and compliance tensors. However, each 
such subregion may have its own uniform eigenstrain and eigenstress, unequal 
to those of other subregions, even though all these subregions may belong to the 
same original inclusion which has been subdivided for the purpose of calcula-
tion. The procedure of Subsection 9.3.2 may now be followed to calculate the 
trial correlation tensors Aaß and Gab, the quadratic expressions I' and J', and 
their optimal values. Then, for a properly posed problem, it is expected that the 
exact eigenstrain and eigenstress fields, e*(c) and s*(c), are given by the limit 
of the optimal piecewise constant eigenstrains and eigenstresses, {e*a} and 



§ 9.3 UPPER AND LOWER BOUNDS 271 

{s*"}, i.e., 

lim e*" = e*(c), lim s*" = s*(c). 
Wh~c W~~c (9.3.15a,b) 

Therefore, as N increases, it is expected that more and more accurate solutions 
to the consistency conditions result. 

Using this approximating method with a piecewise constant trial eigen-
strain field, Nemat-Nasser and Taya (1981, 1985) evaluated the overall elastic 
energies of elastic solids with periodic structures; see also Nemat-Nasser et al. 
(1982) and Iwakuma and Nemat-Nasser (1983). In this case, the trial correla-
tion tensors, A"ß and G"ß, can be expressed in Fourier series, and the optimal 
values of the quadratic expressions, I' and J', can be computed analytically. 
These authors show that, when the volume fraction of micro-inclusions is small, 
even a small number of subregions yields good estimates of the exact average 
elastic energies. These and related topics are discussed in Sections 12 and 13. 

9.4. DIRECT ESTIMATES OF OVERALL MODULI 

Expressions for the exact upper and lower bounds on the average comple-
mentary and elastic energies are obtained in the preceding subsections. How-
ever, it is rather difficult to compute these bounds, since: (1) for a bounded 
RVE, the exact integral operators A and G are very complicated; and (2) the 
exact correlation tensors A"ß and G"ß cannot, in general, be calculated expli-
citly. In order to obtain explicit expressions for the bounds, it is necessary to 
estimate the integral operators and the corresponding correlation tensors. Willis 
(1977) proposed an asymptotic method to explicitly determine estimates of the 
correlation tensors through simple integral operators which are defined in terms 
of the Green function of an infinite homogeneous elastic solid. For a hetero-
geneous finite elastic solid, the integral operators and the corresponding correla-
tion tensors derived in this approximate manner may not (since errors are intro-
duced by the approximation) produce bounds on the average elastic energies, 
even if the Hashin-Shtrikman variational principle is applied. In simple cases, 
such as when the microgeometry is statistically isotropic, the results in such an 
approximation depend only on the volume fraction of micro-inclusions and are 
independent of other geometrical properties of the RVE.9 Since the volume frac-
tion of micro-inclusions is a geometrical quantity which can be measured easily, 
results of this kind are generally regarded as useful. Numerical computations 
seem to support this. Furthermore, the approach has been justified by consider-
ing the RVE as part of a very large heterogeneous body with mean stress and 
strain in common with the RVE. The resulting boundary tractions and displace-
ments on aV of the RVE then fluctuate about the corresponding average stress 

9 This should be contrasted with the results presented in Section 13 for periodic microstruc-
tures where the Green function and the bounds can be calculated to any desired degree of accuracy. 
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and strain tensors. It is suggested (Willis, 1977) that the boundary contributions 
to the overall average elastic strain and complementary elastic strain energies, 
by these fluctuations, may be neglected. This then allows use of the simple 
translationally invariant Green function of an unbounded domain to estimate the 
operators A and G. It is shown in Subsection 9.5 that the error in such an 
approximation may actually affect the corresponding bounds. However, based 
on the universal Theorems I and II of Subsection 2.5.6, the effects of this 
approximation are established in Subsection 9.5.3, and computable rigorous 
bounds are obtained in Subsection 9.5.4. 

In this subsection, expressions which approximate the exact integral 
operators, A and G, are obtained. First, in terms of the Green function G°° for an 
infinitely extended homogeneous domain, exact expressions for A and G are 
developed, and then these are approximated with the aid of several assumptions. 
For piecewise constant trial eigenstress and eigenstrain fields, the correlation 
tensors are then computed, and explicit bounds on the overall elastic energies 
are estimated according to the Hashin-Shtrikman variational principle. Finally, 
from these energy bounds, the bounds on the overall elasticity and compliance 
tensors of the RVE are obtained. 

9.4.1. Boundary-Value Problems for Equivalent Homogeneous Solid 

Consider the boundary-value problem for the displacement field u(x) of 
the equivalent homogeneous bounded solid V with uniform elasticity tensor C 
(= D-1). As shown in Section 11, for tractions t prescribed on aV, and body 
forces V .T distributed in V, the displacement field u is given by the solution of 
the following boundary-value problem: 

V.(C: V® u(c))+ V.T(x) = O x in V, 

v(x).(C : V ®u(x)) = t(x) x on aV, (9.4.1a,b) 

where T(x) is some second-order tensor field, and 1(x) is the outward unit nor-
mal at x on aV. In (9.4.Ib), the tractions t are regarded as arbitrary. 

To formulate boundary-value problem (9.4.1a,b) in terms of the infinite-
body Green function, regard the finite homogeneous domain V as part of an 
infinitely extended homogeneous solid. Then, for arbitrary T(x) defined in V, 
tractions acting on the boundary aV are such that the continuity of displace-
ments and tractions is satisfied. The required solution can be expressed in terms 
of the Green function G°°(z) of the unbounded homogeneous solid, where, 
instead of t, some suitable body-force layer t is distributed on aV such that the 
resulting tractions due to both T and t equal t. Then, the solution u is exactly 
given by

1° 

10 Note that the solutions corresponding to the two tensor fields, T in V and t on aV, are in-
dependent of each other. Hence, the displacement field produced by them is given by superposition 
of the one produced by T and the other produced by 1, i.e., U(x; T; t) = U(x; T; 0) + U(x; 0; t). 
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u(c) = U(x; T; t), (9.4.2a) 

where 

U(x; T, t) — —f n T(y) : (oy ®G°° T(U — x)) dVy 

+ f aV {n(U) • T(U) + t(y) }. G (y — c) dSy, (9.4.2b) 

or in component form, 

U{x; T; 1) = — f1  Gj7,k(y — x) Tk j(Y) dNy 

+f1 {vk(y) Tkj(Y) +tj(y) } Gj; (y — x) dSy. (9.4.2c) 

Here subscript y indicates that the corresponding operation is with respect to the 
variable y; see Subsection 11.1. In (9.4.2a--c), U(x; T; t) is an integral operator 
which acts on the first- and second-order tensor fields, t and T, resulting in a 
vector field u(~). In principle, t(x) can be computed from an integral equation 
which results when tractions corresponding to displacement field U(x; T; t) are 
set equal to a given t(x) on ay. 

In particular, let the displacement fields of the equivalent homogeneous 
solid, respectively produced by an eigenstrain field e* and an eigenstress field s*, 
be denoted by 

us(c) = U(x; — C : e* ; tO), (9.4.3a) 

and 

uE(c) = U(x; s*; 1E) x in V, (9.4.3b) 

where tE and t are introduced to satisfy zero displacement or zero traction 
boundary conditions 

11 
on ay. The unknown tractions are determined from the 

following integral equations: 

n(x) . C : { V ®U(x; — C : e* ; tO) — e*(x) } =0 x on aV, (9.4.4a) 

and 

U(x; s*; tE) = 0 x on aV; (9.4.4b) 

see (9.1.5b) and (9.1.13b). For the bounded equivalent homogeneous solid, the 
boundary-value problems associated with the eigenstrain e* and eigenstress s* 
are solved exactly by (9.4.3), if the unknown tractions tE and tO can be deter-
mined. But, in general, this is a very difficult problem, even if the Green func-
tion G°° is known explicitly. 

Note that two separate boundary-value problems are considered simultaneously for the same 
RVE, one corresponding to zero displacements (denoted by superscript E) and the other correspond-
ing to zero tractions (denoted by superscript S) on aV. These-are two separate problems, and the two 
boundary data are, in general, independent. 
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9.4.2. Simplified Integral Operators 

Using (9.4.3a,b), express the integral operators l and G in terms of the 
integral operator U, as 

— A(x; e*) = C : (V ®U(x; —c : e *; tO)) — C : e*(x), 

— A(x; s*) = 2 { (V ®U(x; s *; tE)) + (V ®U(x; s *; 1E))T}. (9.4.5a,b) 

These formal expressions are exact. From (9.4.5a,b) now seek to obtain simple 
integral operators which approximate the stress and strain fields produced by the 
corresponding eigenstrain and eigenstress fields. 

To this end, first introduce a rearrangement of the integral operator U. 
From the Gauss theorem, (9.4.2b) is rewritten as 

U(x; T; t) — — f n (T(y) — T) : ( N , âG T
(y — x)) dV y 

+ f an {v (U) • (T(y) — T) + S(y) } . G°°T (y — ~) dSy 

= U(x; T — T; S), (9.4.6) 

where T is the (constant) average of T over V, i.e., T - < T>. It has been 
pointed out in the literature (Willis, 1977, 1981) that if the required boundary 
conditions are either zero tractions or zero displacements, it is then expected that 
the integrand of the surface integral should satisfy the following two properties: 
(1) T — T has an oscillatory spatial variation about zero on aV; and (2) the 
unknown traction f also has an oscillatory spatial variation about zero on ay. 
The approximation is then based on the expectation that the contribution to the 
displacements at the interior points of a very large (relative to the size of the 
inhomogeneities) V by the surface integral in (9.4.6) may be neglected, except 
when the displacement of points within a thin "boundary layer" close to aV is of 
concern. Hence, for interior points x in V, the displacement u is approximated 

by12 

u(c) ; UA(x; T — T), 

where 

uA(c; T) =— f n T(y) ~ (Vy ®G`
°T(y — x)) dVy. 

(9.4.7a) 

(9.4.7b) 

If the exact integral operator U is replaced by the integral operator UA in 
(9.4.3a,b), the displacement fields, us and uE, produced by the eigenstrain and 
eigenstress fields, e* and s*, are respectively approximated by (two separate 
problems) 

uS(c) = UA(x; — C: (e* — e *)), uE(x) = UA(x; s* _j*) (9.4.8a,b) 

where e* _ < e* > and s = < s* >. Hence, substitution of (9.4.8a,b) into 

12 The consequences of this assumption are rigorously established in Subsection 9.5. 
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(9.4.5a,b) yields the following approximation of the integral operators A and G: 

A(x; e*) _ (A: e*)(x) = (AA : e*)(x), 

G(x; s*) - (G : s*)(x) = (AA : s*)(c), (9.4.9a,b) 

where 

— (pA : e*)(x) - C: { V ®UA( c; _C : (e* — e*)) } — C : (e*(x) — *), 

— (GA : s*)(x) = 
2 

{ (V ®UA( c; s* — s )) + (V ®UA( c; s* — s )) T}, 

(9.4.9c,d) 

are the approximate forms of the corresponding original operators. By their 
construction, the volume averages of (AA : e*)(x) and (AA : s*)(x) over V are 
identically zero, 

<AA:e* >=0,  < AA :s* >=0, (9.4.9e,f) 

when V is an ellipsoid; see Subsection 11.3.3 and Equation (11.3.18b). This 
observation is used in Subsections 9.5 and 9.6, to obtain exact computable 
bounds for the overall moduli. 

9.4.3. Approximate Correlation Tensors 

Using the (approximate) integral operators AA and GA given by (9.4.9a,b), 
now approximate the correlation tensors, Laß and Gaß, for piecewise constant 
trial eigenstrain and eigenstress fields. Assuming a suitable reference elasticity 
tensor, C, and following definition (9.3.5a,b) for Laß and Gaß, consider 

xrhar :e*b=<AA:Hre*b>a 

={  S2a f sta {!Wb C : (y — x) : C dV y } dVX + C } : (dar — f r) e*b 

(9.4.10a) 

and 

b Gab : s b  <AA: Hßs*ß> a 

= 
ff { f ~ G(y - x) dVy } dVX } : (dar — f r) s*ß 

(a, b not summed), (9.4. l Ob) 

where Hp = H(c; Wr), and a*ß and s*ß are the arbitrary constant eigenstrain and 
eigenstress; x and y are in the ath and bth micro-inclusions, Wa and Wr, respec-
tively; and the fourth-order tensor field P 0(z) is defined by 
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Gijkl = — -‚- { G ji + G ii + Git,jk + Gjl,ik } . (9.4.11) 

It is still difficult to compute the above double integral analytically, even 
though the Green function G°° can be obtained explicitly, at least when an iso-
tropic reference elasticity C is used. From the properties of G°°, however, it is 
possible to estimate the values of these integrals and obtain an explicit approxi-
mation for the correlation tensors Aab and Gab. As shown by Willis (1977) for a 
medium with statistically homogeneous and isotropic microgeometry, the dou-
ble integral of G°° can be expressed as 

a I ,1W G°°(y — x) dV y dVX  GAab, (9.4.12a) 

where the approximated correlation tensors GAab are defined by 

GAab - (dbR f_ 
— 1) P  (ß not summed), 

with the fourth-order tensor P given by 

P  =1 G°°(z) dN (a > 0). Iz I  

(9.4.12b) 

(9.4.13a) 

As will be shown in Section 11, tensor P satisfies the symmetry properties: 

Pyki = 1'1,10 (= Rjikd _ Pijik)• (9.4.13b) 

subtract it from b() a*b (b not summed), in order to compute the approximate 
Since the contribution of 

b() 
a*bR to the average eigenstrain e* is fbR a*b, 

correlation tensor AAab; see (9.4.9c). Then, direct substitution of (9.4.12) into 
(9.4.1W) yields AAabR, as 

AA~b _ — (db fbR  — 1) C : P : C + db fbR C — C  (ß not summed). 

(9.4.14) 

It is seen from the symmetry of P, (9.4.13b), that tensors AAab and GAab are 
symmetric with respect to the first and last pairs of their subscript indices, i.e., 

l ijid 13 _ ~i~ij (- l
jik~~ bR — l j~k bR), 

GAab _Fl bR( G jkbR (9.4.15a,b) i i jll- i ), 

fora,ß=0, 1,2,...,n. 

A brief derivation of (9.4.12) and (9.4.13) is as follows; see Willis (1977) 
for details. Since G (s*) is defined by 

G°°(x; s*) = JA°°(x — y) : (s* — s) dV y, (9.4.16a) 

for piecewise constant distribution of eigenstresses, < s* : G°°(s*) > becomes 



f (far(1 c — y I ) — f afp) G°°(c — y) dVy  : * 
n n 

SorSo S*a : 
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< : Go0(s*) > = So J J (Ha(x) S*a) 

: G(c — U) : (IIr(U) s
*r — s *)dVX dVy. (9.4.16b) 

Based on the assumption of statistical homogeneity, interpret the above volume 
average as the expected value or the ensemble average taken at a fixed point. 
Then, noting that the expected value of finding phase a at x is given by f~, the 
right side of (9.4.16b) becomes 

where is the two-point correlation function that represents the probability of 
finding phases a and ß at x and y, respectively. Note that the two-point correla-
tion function must depend only on I x — y I , in view of statistical homogeneity 
(translation invariance) and isotropy (rotation invariance). 

In view of the assumed disorder, fiy tends to fa fb when 1 x — y I becomes 
large. Furthermore, fr(0) = fa when a = ß and fab(0) = 0 when a ~ ß; that is, 
the probability of finding the ath phase at any point is given by f~, and the pro-
bability of finding different ath and bth phases at one point is zero. Hence, the 
contribution to the volume average, < s : G°°(s*) >, by the ath and bth phases 
may be estimated, as 

f dVy = (far(0) — f~ fp) P, (9.4.16c) 

where identity 

fa<Izl<b 
G°°(z) dVZ = 0 (a>b>0) (9.4.16d) 

is also used. Hence, (9.4.12) and (9.4.13) are obtained. 

Since G is given by the gradient of the Green function G`°, it depends on 
the elastic properties of the comparison material, i.e., on C (or D). For the case 
of an isotropic elastic material, Eshelby (1957) obtained an explicit form for P, 

P 
=

2M(1 — v) { 15 
1(2) ®1(2) ± 

2(41551) 1(4s)} (9.4.17) 

where M and v are the shear modulus and Poisson ratio of the isotropic material. 
For the case of an anisotropic elastic material, P has been obtained for several 
cases; for example, Kneer (1965), Willis (1970), and Kinoshita and Mura 
(1971). 

9.4.4. Optimal Eigenstrains and Eigenstresses 
Using the simplified integral operators which are derived from the Green 

function for an infinite domain, approximate the functionals I and J, by 

I(e*; 0°) = IA(e*; s°
), J(5*; e0

) ~ JA(s*; e0), (9.4.18a,b) 

where IA and JA are obtained by replacing the _ integral operators A and G in I 
and J, with the integral operators AA and GA which are defined by (9.4.9c,d). 
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For piecewise constant trial eigenstrain and eigenstress fields, e* = 

Ma a*a and s* = ~ Ha s*a, construct the quadratic expressions I' and J' in 
a O a=0 
(9.3.8a,b) from I and J. In a similar manner, for such piecewise constant fields, 
define quadratic expressions IA' and JA' from 1A and JA, as 

IA(e*; s°) = IA~({e*a}; s0), JA(s*; e°) = JA'({s*a}; e°), (9.4.19a,b) 

where 

IA'({ e*a } ; so) _  
a o 

: IAaß : e*ß — s° : e*, 
= o ~ 

JA'({s*a}; e°) - S s*a: JAaß: s*ß— s*B : e°, 
a O  0 ~ 

with the fourth-order tensors IAaß and JAaß being obtained by replacing the trial 
correlation tensors Lab and G'ß in Iab and Jaß with the approximate correlation 
tensors AAaß and GAaß which are defined by (9.4.12) and (9.4.14), for a, ß = 0, 
1, 2, ..., n. Hence, from (9.4.18a,b), estimate I' and J' by 

I'({e*a}; s0) = IA'({e*a}; s0), J'({s*a}; e°) = JA'({s*a}; e°). (9.4.18c,d) 

Substituting (9.4.14) into (9.4.19a), write the quadratic expression IA', as 

IA'({e*a}; s0) 

a =0  2 

+Ze
* :C:(R —D):C: e* — s° :e* 

+ 2 (— C : *) : (R — D): (— C :  ) + (D : s0
): (— C : *), (9.4.20a) 

where 

(Da _ D)-1 = —C : (C a — C) -1 : Ca = — C — C : (C a — C) -1 : C (9.4.21a) 

and 

(Da D)-1 _ C : P : C + C = — C : { (C a — C) -1 + P } : C (9.4.21b) 

are used. In a similar manner, substituting (9.4.12b) into (9.4.19b), write the 
quadratic form JA', as 

JA'({s*a}; e°) =  
a0 

fa ., s*a : {(Ca — C)-1+P} : S*a 
= 2 

(9.4.19c,d) 

(9.4.20b) 
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Note that the symmetry properties, RijkI _ PkIjJ and (C : P : C)iju = (C : P : C)klij, 
are used to derive (9.4.20a,b). 

The optimal eigenstrains and eigenstresses, 
{E*1} 

and {s*a}, are deter-
mined such that the derivatives of IA'({ e*~ } ; s°) and JA'({ s*a} ; e°) with respect 
to e*a and s*a vanish for all a. Since P is a constant tensor, the governing sets of 
n + 1 linear tensorial equations are given by 

{ (Ca - C)1 + R} : (- C : e*a) - R : (- C : ~*) - (D : s° + ~*) = 0, 

{(Ca- C)-i+R} : s*a -R : s* -e° = 0, 

(a = 0, 1, 2. .... n). (9.4.22a,b) 

The above two sets of tensorial equations are essentially the same, and if 
- C : e*a and D : s° + e* in (9.4.22a) are replaced by S*a and e°, respectively, 
one obtains (9.4.22b). Furthermore, solving each set of equations explicitly, 
obtain the solution of, say, (9.4.22b), to be s*a = { (Ca - C)-1 + P }-1 : { e° 
+ R : d* } . Then the average eigenstress, d*, is given by 

6* = (1(
4s) - S : R )_

1 
: S : e°, (9.4.23a) 

where 

a =0 

= S fa (Ca-C) : {1
(45)

+ R :(Ca-C)}-i. 
a = o (9.4.23b) 

In a similar manner, from (9.4.22a) obtain 

~* = -D:  { 1(
4
s) - s : (P - D) }-1 : s : (D : s°). (9.4.23c) 

As shown in (9.3.13a,b), the optimal values of IA'({e*a}; s°) and 
JA'({ s*a } ; e°) are given by half of the inner product of s° : ~* and ~* : e°, 
respectively. Indeed, using (9.4.20-23), obtain 

I^'({ e*9 ; s0) = - 1 s° : s*A, 

JA'({6*a}; e°) = - 
2

*A : e°, (9.4.24a,b) 

where, to distinguish the optimal average eigenstrain and eigenstress of the 
exact functions I' and J' from those of the approximated functions IA' and JA', 
the superscript A is used for the latter, i.e., 

~*A - - D : { 1(4s) - S : (R - D) }
-

i : S : D : s°, 

s*A - (1(4s) - S : R )-i : S : e°. (9.4.24c,d) 
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9.5. GENERALIZED VARIATIONAL PRINCIPLES; EXACT BOUNDS 

It is established in this subsection that the approximate expressions AA 
and Gl given by (9.4.9c,d), can actually be used to obtain rigorous bounds for 
the overall moduli of the heterogeneous finite solid. This is done with the aid of 
the universal Theorems I and II of Subsection 2.5.6. The proof given in the 
present subsection does not depend on the statistical nature of the RVE, 
although this is an important feature which has been considered, in order to vali-
date the approximations used to estimate these bounds; Willis (1977, 1981). 

The results obtained here apply to any heterogeneous linearly elastic 
solid of overall ellipsoidal shape, independently of its size, and the distribution 
and elasticity tensors of its heterogeneities. The elastic inclusions may be distri-
buted in the considered finite ellipsoidal RVE in an arbitrary manner, and their 
elasticity may deviate from the average properties of the composite by orders of 
magnitude, without affecting the proof. Since the initial RVE can be regarded 
as a suitably large part of an infinitely extended heterogeneous solid with the 
same overall properties, it is always possible to choose an RVE in an ellipsoidal 
shape. Indeed, from the discussion of Section 2, it is clear that the overall pro-
perties must not depend on the shape and the size of the RVE, as long as the 
RVE is suitably large. The choice of an ellipsoidal RVE, therefore, is for con-
venience of analysis only. While the ellipsoidal shape of the RVE is essential 
for establishing the final proof (Subsection 9.5.4), general results developed in 
Subsections 9.5.1, 9.5.2, and 9.5.3 hold for RVE's of any shape or size, contain-
ing any number of phases with arbitrary elastic moduli. 

9.5.1. Generalization of Energy Functionals and Bounds 

Integral operator A = A(x; e*) defined by (9.1.6), yields the disturbance 
stress field, — sd, due to eigenstrain field e* in the homogeneous solid13 V of 
uniform elasticity C = D-1, such that the boundary aV is left traction-free; see 
Figure 9.5.1a. If the corresponding disturbance strain field is denoted by ed 

D : sd + e*d with14 e*d = e* — < e* >, then it follows that 

:  > = Vjav
td.uddS=0, (9.5.1a) 

where td (= 0) and ud are the associated boundary tractions and displacements, 
respectively. As is shown in Subsections 9.1 and 9.2, the integral operator 
< : { (D' — D)-1 + A } : > is self-adjoint, and it is positive-definite (negative-
definite) when D' — D is positive-definite (negative-definite). 

13 V is not necessarily an ellipsoid. 

° The disturbance strain associated with the disturbance stress is defined by ed = D : ad+ e* 
in Subsection 9.1. The volume average of ed is nonzero (given by < e* >) in this definition. In the 
present subsection, the disturbance strain is defined such that its volume average vanishes. 
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G a
1 

s = -L(e) i 
i  ed = D : sd+e*a i 
L J 

Figure 9.5.1a 

Eigenstrain field e(c) in homogeneous V 
produces disturbance fields which leave 
aV traction-free, td = N.sd = 0 on aV 

an 

td= 0 

Similarly, integral operator G = G(x; s*) defined by (9.1.14), yields the 
disturbance strain field, - ed, due to the eigenstress field s*, in the homogeneous 
solid V of uniform elasticity C, such that the corresponding boundary displace-
ments on aV vanish identically (a different problem); see Figure 9.5.1b. Hence, 
if the corresponding disturbance stress field is denoted by sd = C : ed + s*d with 
s*d = s* - < s* >, then (9.5.1a) also holds for this problem, and the correspond-
ing integral operator < : { (C' - C)-1 + G} : > is self-adjoint, as well as positive-
definite (negative-definite), when C' - C is positive-definite (negative-definite). 

For both of the above stated problems, the Hashin-Shtrikman variational 
principle holds, and (9.2.9) and (9.2.10), therefore, follow directly from the pro-
perties of operators A and G. Note that (9.2. ha) corresponds to the uniform 
traction boundary data with the average stress s° prescribed, whereas (9.2.1Ob) 
is for the linear displacement boundary data with the average strain e° pre-
scribed. The key to the establishment of the Hashin-Shtrikman variational prin-
ciple, and hence (9.2.10), the bounds for these cases, is the fact that for any 
eigenstrain or eigenstress field, the disturbance stress or strain field satisfies 
(9.5.la) identically. 

For the Hashin-Shtrikman variational principle to apply, it is not neces-
sary to restrict operators A and G to correspond, respectively, to traction-free 

G ed = - G(s*) ~ 

L J 

Figure 9.5.1b 

Eigenstress field s(c) in homogeneous V 
produces disturbance fields, such that 
displacements on aV vanish; ud = 0 on aV 
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and zero-displacement boundary conditions on boundary aV of homogeneous V. 
The only requirement is that (9.5.la) holds for the associated disturbance stress 
and strain fields. Then, the corresponding (total) stress and strain fields, s and 
e, satisfy 

(9.5.2) 

This ensures that the overall moduli defined in terms of the elastic or comple-
mentary elastic energies coincide with those defined in terms of the average 
stress-strain relations; see Subsection 2.3. As mentioned, the volume average 
of the disturbance stresses and the disturbance strains is zero, i.e., 

<Gd> = .kv
R®td dS=O, 

< Ed > — V 
J
av sym Iv ®u d} dS = 0; (9.5.1b,c) 

see Subsections 2.1 and 2.2. Conditions (9.5.1b) and (9.5.1c) are equivalent, 
when the disturbance stress and strain fields are related through ed — D : sd = 
e* — < e* >, if e* is prescribed, or through sd — C : ed = s* — < s* >, if s* is pre-
scribed. 

Consider now a general class of boundary data for homogeneous solid V 
of uniform elasticity C = D-1, such that neither the disturbance traction nor the 
disturbance displacement field, on boundary aV, is identically zero, but, instead, 
at every point on aV, these disturbance fields satisfy 

td.ud = 0 on al, (9.5.3) 

where td = n . (s — < s >) and ud = u — c . < e > on ay. The disturbance traction 
field and disturbance displacement field are associated with the disturbance 
stress field and the disturbance strain field, respectively. 

For this class of boundary data, consider first the case when the overall 
stress is prescribed to be < s > _ s°. Denote by AG the corresponding integral 
operator which, for any eigenstrain field e*(x), yields the disturbance stress 
field, sd(c) = — AG( x; e*), and the corresponding disturbance strain and hence 

displacement fields, ed and ud, such that (9.5.3) is satisfied identica11y;15 see 
Figure 9.5.1c. Define for AG the following functional: 

i(e*; AG; s°) = 2 < e* : {(D' — D) -1 + AG } : e* >— < s° : e* >. (9.5.4a) 

The Hashin-Shtrikman variational principle is applicable to this class of func-
tionals, since, by definition, AG is self-adjoint and satisfies 

<e* : AG :e* >= .z (A'he*) : D : (AVh e*)
> 

=<e*:C:e*>—< ed:C: ed >. (9.5.5a) 

These properties of AG ensure the positive-definiteness (negative-definiteness) 

15 The class of operators AG includes operator L associated with the traction-free boundary 
conditions, i.e., (9.1.5b). 
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of operator < : { (D' — D) -1 + AG } : >, when D' — D is positive-definite 

(negative-definite); see Subsection 9.2.16 

Let e*G be the eigenstrain field that renders i(e*; AG; s°) stationary. Due 
to the self-adjointness of AG, this eigenstrain, e*G, satisfies 

d~(e*G; 
AG; s°) = < {(D' — D) -1 + AG} : e*G s0} > = O. (9.5.6a) 

The Euler equation of Í coincides with the consistency condition under the con-
sidered general boundary conditions, and hence the stationary value of Í is given 
by 

Í(e*G; AG; s°) = —  s*G : s° = s° : (D — DG) : s°, (9.5.7a) 

where DG is the overall compliance tensor under the prescribed, possibly mixed, 
boundary conditions. This is the generalized Hashin-Shtrikman variational 
principle. Furthermore, it follows from (9.5.5a) that for any eigenstrain field e*, 

I(e*G; AG; s°) < (?) 1(e*; AG; s° ), (9.5.8a) 

if D' — D is positive-definite (negative-definite). These are the generalized 
Hashin-Shtrikman bounds. Note that, since condition (9.5.3) is satisfied for the 
general boundary data considered above, the energy definition of DG and its 
definition based on the average stress-strain relations are identical. 

The case when the overall strain is prescribed to be < e > = e°, is treated 
in a similar manner. Denote by GG the integral operator which, for any eigens-
tresses s*(x), yields the disturbance strain field, ed(c) _ — GG(c; s*), and the 
corresponding disturbance stress and displacement fields, such that (9.5.3) is 

satisfied identically.17 The Hashin-Shtrikman variational principle is then appli-
cable. Define the following functional for GG: 

or G sd = — AG(e*) i 
i  ed = D : sd+ e*d i 
L J 

G H ed = 
— G0(s) 

i  sd =C:ed +s*d i 
L  - - - - - - - - - - - - - - - -  J 

Figure 9.5.1e 

Eigenstrain field e(c) or eigenstress 
field s(c) in homogeneous V produces 
disturbance fields, such that although 
neither tractions nor displacements 
are identically zero on aV, their inner 
product vanishes there 

    

Equation (9.5.5a) holds whether the disturbance strain field is defined by ed = D : sd+ e* or 
by ed= D : &d+ (e*—<e* >). 

17 

The class of operators GG includes operator G associated with the zero-displacement boun-
dary conditions, i.e., (9.1.13b). 
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i(s*
; GG; e°) = <s*:  {(C'—C) -i +A0}  : s* >—<  e° : st>, (9.5.4b) 

where < : GG :> satisfies18 

< s : GG : s* > = < (G: 
s*):C 

:(G: s*) > 

=<s*:D:s*>—< sd:D: sd>. (9.5.5b) 

These properties of GG ensure the positive-definiteness (negative-definiteness) 
of operator < : 1(C' — C)

-1 

+ GG } : >, when C'— C is positive-definite 
(negative-definite); see Subsection 9.2. Then, observe that s*G which solves 

dJ(s*G; GG; e°) _ < ds* : 
{ 

G  _ e0 }  C)
-

i ± A}  : s*G — e° 
} 

> = 0, (9.5.~b) 

renders J stationary, and satisfies the consistency condition under the prescribed 
boundary data. Then, the stationary value of J is given by 

J(s*G; GG; e°) = — 
2 

& e° = Z e° : (C _ G) : e°, (9.5.7b) 

where CG is the overall elasticity tensor under the prescribed, possibly mixed, 
boundary conditions. From (9.5.5b) it follows that, for any eigenstress field s*, 

J(s*G; GG; e°) < () i(s*; ~G; e° ), (9.5.8b) 

if C' — C is positive-definite (negative-definite). Equations (9.5.4b) to (9.5.7b) 
define the second generalized Hashin-Shtrikman variational principle, and 
(9.5.8b) gives the corresponding generalized bounds. It should be noted that the 
results obtained in this subsection, namely (9.5.7a,b) and (9.5.8a,b), are valid for 
any finite isolated V of any shape or size, i.e., V is not necessarily an ellipsoid. 
Note also that since condition (9.5.3) is satisfied, the energy definition of CG and 
its definition through the average stress-strain relations are identical. 

The class of functionals i(e*; AG; s°) includes the functional I(e*; s°) 
which corresponds to uniform boundary tractions, and which has been con-
sidered in the preceding subsections. Similarly, the class of functionals 
J(e*; AG; e°) includes the functional J(s*; e°) for linear displacement boundary 
data. To emphasize the corresponding boundary data, the operator A associated 
with the uniform traction boundary data will be denoted by A , and the operator 
G associated with the linear displacement boundary data will be denoted by GE. 
The corresponding functionals will be displayed as 

I(e*; s°) = I(e*; AO; s°), J(s*; e° ) = i(s*; GE; e°). (9.5.9a,b) 

Table 9.5.1 summarizes the functionals and the corresponding bounds for vari-
ous boundary data. 

It may be instructive to note that when the boundary data of the original 
heterogeneous RVE consist of either uniform tractions or linear displacements, 
the classical principles of the minimum potential and complementary potential 

° Similarly to (9.5.5a), (9.5.5b) holds whether sd is defined by ad = C : G0+s* or by ad = 
C G0+(s*—< s* >). 
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Table 9.5.1 

Finite-space operators and their properties 

boundary data trial field Hashin-Shtrikman functional 

uniform tractions e* = e*(x) 

linear displacement s* = so(x) 

general: < s > = s° e* = eo(x) 

general: < e > = e° s* = s*(c) 

I(e*; s°) - ~(e*; AS; s°) 

J(s*; e°) = J(s*; Ge; e°) 

~(e*; AG; s°) 

J(s*; 
GG; e°) 

boundary data exact field optimal value 

uniform tractions e* = es(C) 

linear displacement s* = s*(x) 

general: < s > = s° e = e(C) 

general: < e > = e° s = s(C) 

I(e*; s°) = s° : (D — D S) : s° / 2 

J(s*; e°) = e° : (C — CE) : e° / 2 

~(e*G; AG; s°) = s° : (D— D G) : s° / 2 

(s; GG; e°) = e° : (C — C G) : e° / 2 

restrictions bounds 

D' D is p.d. 

D'— D is n.d. 

C' — C is p.d. 

C'—C is n.d. 

I(e*, s°) <_ I(e*, s°) 

~(e*G; AG; s°) <_ ~(e *; AG; s°) 

I(e*; s°) >_ I(e*; s°) 

I(e*O; AG; s°) ? I(e*; AG; s°
) 

J(s*' e°) < J(s*' e°) 

J(s*G; AG; e°) < J(s*; AG; e°) 

J(s*; e°) > J(s*; e°) 

J(s*G; AG; e°) > J(s*; AG; e°) 

energies can be used to establish the Hashin-Shtrikman variational principle, as 
is shown by Hill (1963). For the general boundary data considered in this sub-
section, on the other hand, the universal Theorems I and II of Subsection 2.5.6 
provide the necessary inequalities which compare the energies associated with 
different boundary data which produce either the same overall stresses or the 
same overall strains. 
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9.5.2. Inequalities among Generalized Energy Functionals 

Now, consider Theorems I and II of Subsection 2.5.6, in order to obtain 
inequalities that hold among the members of each of the classes of functionals Í 
and J. As is shown by (9.5.7a,b), the stationary value of Í (of J) gives the overall 
compliance (elasticity) tensor of the original heterogeneous RVE for the corre-
sponding boundary conditions. For the same overall strains, or the same overall 
stresses, the elastic and complementary energies associated with these or any 
other general boundary data can be compared with the aid of universal 
Theorems I and II of Subsection 2.5.6. 

According to Theorem I, among all boundary conditions19 that yield the 
same average strains, ~, the uniform traction boundary conditions render the 
strain energy an absolute minimum. This yields 

(9.5. IOa) 

where CO is the overall elasticity tensor of the RVE when subjected tithe uni-
form traction boundary conditions (signified by the superscript S), and CÉ is the 

overall elasticity tensor defined through the average strain energy20 of the same 
RVE under some other general boundary conditions which produce the same 
overall average strain, ~. It thus follows that C c — CO is positive-semi-definite. 
Then, in view of identity (9.2.5d), (C~)-1 and D° = (CO)-1 satisfy 

2 s° : ((C)-1  
DO) s°  0, (9.5.1 la) 

for any constant s° . Hence, (CÉ)-1- DO is negative-semi-definite. 

Similarly, according to Theorem II of Subsection 2.5.6, among all boun-
dary conditions that yield the same average stresses, s, the linear displacement 
boundary conditions render the complementary elastic strain energy an absolute 
minimum, i.e., 

(9.5.1Ob) 

where DE is the overall compliance tensor of the RVE when subjected to the 
linear displacement boundary conditions (signified by the superscript E), and 
D is the overall compliance tensor defined through the average complementary 

strain energy21 of the same RVE under some other general boundary conditions, 
both producing the same overall average stress, . Hence, CE _ (DE)_l satisfies 

re These may or may not satisfy (9.5.3). 

20 Since the considered general boundary data need not satisfy (9.5.3), and hence (9.5.2) may 
not hold, the energy definition of the overall elasticity tensor, C5 , and its definition by the average 
stress-strain relations may not, in general, be the same. Subscript E emphasizes that this quantity is 
defined through the average energy of the RVE. Note that CO is the same for both definitions, since 
it corresponds to uniform traction boundary data. 

21 Comments similar 10 the preceding footnote about CÉ also apply to 13 . 
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e° : ((D)-1 -  E) : e° < 0, (9.5.1 lb) 

for any e°. Note that even under the same boundary conditions, C and D are 
not, in general, each other's inverse, unless (9.5.2) is satisfied. 

Now, if the general boundary data considered above are restricted such 
that they satisfy (9.5.3), then the energy definition of the overall moduli and 
their definition based on the average stress-strain relations coincide. Then 
(CMG.)-1 in (9.5.IIa) is expressed as DÉ = DG, and with the aid of (9.5.7a), the 
following inequality for the stationary value of functional Í is obtained: 

I(e*s; AO; s°) < I(e*G; AG; s°
), (9.5.12a) 

where e*S is the eigenstrain field that satisfies the same consistency condition 
(9.5.6a), with AG replaced by AO corresponding to uniform traction data. In a 
similar manner, with the aid of (9.5.7b) and (9.5.1lb), the following inequality 
for the stationary value of functional J is obtained: 

J(s*E; GE; e°) < J(s*G; GG; e° ), (9.5.12b) 

where s*E is the eigenstress field that satisfies (9.5.~b), with GG replaced by GE. 
Note that for these cases, the general boundary conditions are restricted to 
satisfy (9.5.3), so that (9.5.2) holds. 

Observe that the left side of (9.5.12a) is given by h(e*; s°) with e*  
since functional I belongs to the class of Í's; see (9.5.9a). Similarly, the left side 
of (9.5.12b) is given by J(s*; e°), with s* - s*E; see (9.5.9b). 

Figure 9.5.2 summarizes the results of this subsection in the form of a 
flow chart. Note that the results above the two middle dashed boxes correspond 
to any general boundary data (denoted by superscript G), whereas those below 
these dashed boxes are for boundary data which satisfy (9.5.3). 

9.5.3. Functionals with Simplified Integral Operators 

Disturbance stress and strain fields produced by integral operators AG or 
GG, introduced in Subsection 9.5.1, satisfy particular prescribed boundary condi-
tions on aV, such that (9.5.3) is satisfied. In Subsection 9.4.2, simplified integral 
operators AA and GA are introduced to approximate A and G. This approxima-
tion is equivalent to embedding the uniform isolated V of elasticity C = D-1 in 
an unbounded homogeneous domain of the same uniform elasticity, and consid-
ering its response under overall stresses or strains, when eigenstrains or eigens-
tresses are distributed within V. In this manner, V is regarded as a portion, V', 
of a uniform infinite region of uniform elasticity C = D-1, within which suitable 
eigenstrains or eigenstresses are distributed. 

Note that constant eigenstrains, a*°, or eigenstresses, s*°, uniformly distri-
buted throughout the infinite domain, produce no disturbance fields in any sub-
domain, since the divergences of C : e*° and s*° are identically zero everywhere. 
Hence, for any arbitrary eigenstrain field, e*, defined within V', it is only neces-
sary to consider the strain and stress fields produced in V' by the disturbance 
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I(e*S; AS; s°) < I(e*G; 
AG; s°) 

i 

Figure 9.5.2 

Flow chart of exact inequalities for different boundary data with the same aver-

age strain < e > = e° (left half) and the same average stress < s > = s° (right 
half); results above the middle dashed boxes are for boundary data which need 
not satisfy (9.5.3), whereas those below these boxes satisfy (9.5.3) 

eigenstrain field, e*d - e* - < e* >, and then add the average strains and stresses 
corresponding to the uniform eigenstrains, < e* >. Similar comments apply to 
any eigenstress field, s*, prescribed within V', so that only the fields produced 
by the disturbance eigenstresses, s*d = s* - < s* >, need to be examined and 
superimposed on the average fields produced in V' by the uniform eigenstresses, 
< s* >, applied over the infinite region; see Figure 9.5.3. Therefore, only the 
effects of the disturbance eigenstrains and eigenstresses, a*d and s*d, are con-
sidered in the following. 

The approximate operators, AA and Gl, are not associated with any partic-
ular prescribed boundary conditions on aV - aN', since the disturbance stress 
and strain fields that they yield change the corresponding boundary data on aV', 
as the eigenstrains or eigenstresses are changed. Thus, (9.5.3) may not neces-
sarily be satisfied, and the Hashin-Sht~kman variational principle may not be 
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i s^ = _LA(e) ~ i 
~ 

E ^ =   
i e^= D:6^+ e*d i  or i s^ =C: E^+s*d i 
L  - - - - - - - - - -  J  - - - - - - - - - - - L J 

B / i 

, 1 
( .. ) 

( -6* +e*d or i* +s*d „ 

i "/ C D ~ 
n i• 

e* or i* \~`_._- -- 

Figure 9.5.3 

Eigenstrain field e* or eigenstress field s* in infinite homogeneous region B; a 
or s*d is distributed in an arbitrary subregion V', and e or s is distributed 
throughout B; for ellipsoidal V', < SA > = 0, < E^ > = 0, and < SA : e^ > <- O 

applicable to the functionals defined for these operators, namely to functionals 
IA(e*; Al; s°) and JA(s*; Gl; e°), which are given by 

IA(e*; Al; s°) = < e* : { (D' - D)
-1 

+ AA } : e* > - < s° : e* >, 

JA(s*; Gl; s°) - < s* : {(C'-C)-1 + AA } : s* >-<  e° : s* >; (9.5.13a,b) 

see Subsection 9.4.4.22 

Although the fields due to simplified operators 
Al 

and 
Gl 

may not satisfy 
(9.5.3) and hence, (9.5.2) may not survive the involved approximation, the fol-
lowing result is always true for any eigenstrain and eigenstress field, e* and s*, 
defined in any finite subdomain V' (of any shape) of a uniform infinite domain 
of constant elasticity C = D-1: 

1) operators < : Al: > and < : Gl: > are self-adjoint and positive-definite. 

This property is proved at the end of this subsection. 

From the self-adjointness and positive-definiteness of operators Al 
and 

Gl, it follows that the stationary value of IA (of JA) is its absolute minimum, if 
D' - D (if C' - C) is positive-definite. That is 

22 

In Subsection 9.4.4, these functionals are denoted by I^(e*; s0) and J^(s*; e°). In this and 
the following subsections, the dependence on integral operators A^ and Gl 

is displayed in the corre-
sponding arguments. 
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IA(e*A; Al; s° ) <_ IA(e*; Al; s°) for any e* when D' — D is p.d., 

JA(s*A; Gl; e° ) <_ JA(s*; Gl; e° ) for any s* when C' — C is pd., 
(9.5.14a,b) 

where e*A and s*A are the solutions of 

dIA(e*A; AA; s°) _ < de* : { {(D'—D) - i + AA } :  *l_ s° } > = 0, 

dJA(s*A• 
Gl; e°) = < ds* :{ { (C' — C) -i + GA} : s*A — e° } > = 0. 

(9.5.15a,b) 

The Euler equations in (9.5.15a) and (9.5.15b) are the same as those in (9.5.6a) 
and (9.5.~b), respectively, except for the corresponding integral operators and 
hence for the boundary data on aV'. 

In addition to the self-adjointness and the positive-definiteness, operators 
Al and 

Gl 
have the following property, independently of the shape of V': 

2) operators < : (AA : D : Al — Al) : > and < : (GA : C: Gl — Gl) : > are 
negative-definite. 

Since < AA > and < GA > vanish23 for any eigenstrains and eigenstresses, if V' 
is an ellipsoid, property 2) can be used to obtain inequalities which relate the 
elastic and complementary elastic strain energies in the ellipsoidal V' to its 
overall elasticity and compliance tensors which are defined by means of the 
average stress-strain relations. Property 2) is also proved at the end of this sub-
section. 

Now, consider an arbitrary eigenstrain field, e*, in ellipsoidal V'. Denote 
the strain and stress fields produced by the disturbance eigenstrains through Al, 
by24 sl(c) _ — AA(x; 

e*) 
and el(c) = D : sA(x) + e*d(c). Since V' is ellipsoidal, 

and since operator < : (AA : D : Al — AA) : > is negative-definite, these strain 
and stress fields satisfy 

< sA > _ < — A(e) > = 0, 

< eA > = < —D : AA(e*d) + e*d > = 0, (9.5.16a--c) 

: > = < ed :(AA: D : Al_AA): e*d) > <_ 0. 

Under uniform farfield stresses s° , the resulting (total) stress and strain fields in 
the infinite uniform domain which contains V', are given by 

s(C) _ s° + sA(c), e(x) = D : s° + < e* > + eA(c), (9.5.17a,b) 

and these satisfy 

23 This is proved in Subsection 11.3.3. 

24 As mentioned, constant eigenstrains do not produce stresses, if they are distributed 
throughout the infinite domain. Hence, sA = — AA(e*d) is written as — A"(e*). 
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<s:e>-< s>:<e>=<SA : el ><<-0, (9.5.18a) 

where <O > = s° and < e > = e = D : s° + < e* >. From (9.5.18a), the follow-
ing inequality is obtained: 

(9.5.19a) 

where CE is the overall elasticity tensor of V' defined through the average elas- 
tic strain energy, <O : e >/2 : CE : / 2; and C~-~ is the overall elasticity 
tensor of V' defined through the average stress-strain relations, < O > = C 
:  . Thus, (CE)-1 and D,-e ° (C05)-1 satisfy 

2 s° : (D~-5 - (CE)-1) : s° <_ 0, (9.5.20a) 

for any 0°. 

In a similar manner, consider an arbitrary eigenstress field s*, defined in 
ellipsoidal region V', and let el(c) = — GA(c; s*) and SA(C) = C : eA(c) + s*d(x) 
be the corresponding strain and stress fields25 produced through Gl. Since V' is 
ellipsoidal, and since operator < : (AA : C : Gl — Gl) : > is negative-definite, eA 
and SA satisfy 

<£A>=< — GA(s*d)>=0, 

< sA > = < — C : GA(s*d) + s*d > = O, (9.5.16d—f) 

<sA:eA>=<s*d:(GA:C: GA—AA):s*d)><_ 0. 

Under uniform farfield strains e°, the resulting (total) stress and strain fields 
which are given by 

e(x) _ e° + eA(c), s(x) = C: e° + < s* > + OA(x), (9.5.17c,d) 

satisfy 

<S:e> -< s>:<e>=< OA: eA><-0, (9.5.18b) 

and hence the following inequality is obtained: 

(9.5.19b) 

where s = < s > = C : e° + < s* >, and DE and Ds_e are the overall compliance 
tensors defined for V' through the average elastic strain energy1 and the average 
stress-strain relations, respectively. Thus, (DE)-1 and C~-5 = (D,-e)-1 satisfy 

2 
e° : (C - (DE)-1) : e° <_ 0, (9.5.20b) 

for any e°. 

Table 9.5.2 summarizes the results of this subsection. The superscript A 
denotes the results obtained through operators 

A 
or Gl associated with the 

infinite-space Green function. 

25 Comments similar to the preceding footnote about L also apply to Gl. 



self-adjointness 

positive-definiteness 

negative-definiteness 

<e*~: AA:e*2 > <s*~: GA:s*2 > 
=<e*2 : AA:eH> =<s*2 : GA:sh> 

<e°:EA:e°>>>— O ozs°:AA : s°>>_ O 
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_AA) :s° ><<— O 
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total fields 
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volume average 
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s° : (D — (Ce ) l) 
: S0 <<— O 

~~ : (Di' — D') : < O 

e° : (C — (D ')-1) 
: e° <— O 

overall moduli 
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Table 9.5.2 

Infinite-space operators and their properties 

It will now be proved that operators < : AA : > and < : Gl: > are self-
adjoint and positive-definite for any eigenstrain and eigenstress field, respec-
tively, and that < : (AA : D : AA — AA): > and < : (AA : C : AA — Gl): > are 
negative-definite. For illustration, the proof is given only for operator 

Gl 
here. 

Consider an infinite domain B of uniform elasticity C. By definition, integral 
operator 

Gl 
determines disturbance strains in B for eigenstresses distributed in 

B. Let V' be a region in B, within which eigenstresses s*(x) are distributed. As 
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is discussed in Subsection 12.4, the Fourier transform representation of GA(s*) is 
given by 

GA(c; s*) = f 
+
f FGA(x) : Fs*(x) exp(ix.c) dVx, (9.5.21a) 

where 

Fs*(x) _ (2n)3 Jv s(x) exp(— ix.c) dVX, 

FGA(x) = 
sym(xâ(x•C.x)-1âx) x ~ o 

0 x =0, 
(9.5.21b,c) 

   

with sym standing for the symmetric part of the fourth-order tensor. 

Since eigenstresses uniformly distributed in B do not produce disturbance 
strains, it suffices to consider an eigenstress field which vanishes outside of V' 
and has zero volume average over V'. Then, < s* : GA : s* > is given by 

< s* : GA : s* > = V 
L1 

s*(x) : GA(c; s*) dVX 

= V, J +: FS*( — x) : FGA(x) : FS*(x) dVx. (9.5.22) 

Since tensor FAA() is symmetric with respect to the first and last pairs of its 
indices for any x, operator < : GA : > is self-adjoint. 

Since s* is real-valued, Fs*(— x) is the complex conjugate of Fs*(x); see 
(9.5.21b). From definition (9.5.21c) of FAA, and the symmetry of Fs*, 
Fs*(— x) : FGA(x) : FS*(x) becomes 

FS*(— x) : FAA(x) : Fs*(x) = {x.Fs*(— x)} •(x•C.x)-1. {x.Fs*(x)} 

= Z.(x.C.x).Z, (9.5.23a) 

where Z = ( . C. x)-1. Ix 
.FS*(x) 

}.  Because of the symmetry and positive-
definiteness of C, the following relations always holds: 

Z.(x.C.x).Z = sym {Z âx} : C: sym (Zâx} 

= sym { (ReZ)® x} : C: sym {(ReZ)âx} 

+ sym { (imZ)âx} : C: sym {(imZ)âx} >_ O. (9.5.23b) 

It follows from (9.5.23a) and (9.5.23b) that < : GA : > is positive-definite. The 
self-adjointness and positive-definiteness of < : LA : > can be proved in essen-
tially the same manner. Note that the above results hold independently of the 
shape and size of V'. 
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With the aid of the Fourier transformation, it can be proved that < : 
(AA : C : Gl — Gl) : > <_ 0. Since C is positive-definite and s* vanishes outside 
of V', the following inequality holds: 

: (Al : C : Gl Gl) : s > 

_ ~, f v, GA(c; s*) : {C :  GA(c; s*) — s*(c) } dVX 

u, f B GA(c; s*) : { C : GA(c; s*) — *(c)}} dVx. 

In terms of Fs* and 
FAA, 

the right side of (9.5.24) is given by 

~, f± : Fs*(— x) : {FAA(_ x) : C : FAA(I) — F GA(— x) } : Fs*(x) dnx. 

From definition (9.5.21c) of FGA, 
FAA(_ x) : C : FGA(x) = FGA(x) : C : FGA(x) = FGA(x), 

(9.5.24) 

(9.5.25) 

for x # 0, and the term in the curly brackets vanishes. Therefore, it is proved 
that for any eigenstresses which vanish outside of V', < : (AA : C : Gl 
— Gl) : > <_ 0. In essentially the same manner, it is proved that < : (Al : D : Gl 
— Al) : > <_ 0, for any eigenstrains which vanish outside of V'. Note again that 
V' does not need to be an ellipsoid. Hence, if eigenstrains e* or eigenstresses s* 
satisfy < Al(e*) > = 0 or < AA(s*) > = 0, then, inequalities (9.5.18) to (9.5.20) 
hold. These latter conditions are necessarily satisfied when V' is ellipsoidal. 

9.5.4. Exact Bounds Based on Simplified Functionals 

In Subsection 9.5.2, two exact inequalities, (9.5.11a) and (9.5.I1b), are 
obtained for the overall compliance and elasticity tensors of the original hetero-
geneous RVE (denoted by V with boundary aN) subjected to any arbitrary 
boundary data, using Theorems I and II of Subsection 2.5.6; see Figure 9.5.2. In 
Subsection 9.5.3, two other exact inequalities, (9.5.14a) and (9.5.14b), are 
obtained for functionals IA and JA, for any eigenstrains and eigenstresses pre-
scribed in an arbitrary uniform region, V', of an infinite uniform domain, B. 
Furthermore, for an ellipsoidal RVE, two additional exact inequalities, (9.5.20a) 
and (9.5.20b), relate the overall moduli defined through the average energy and 
the average stress-strain relations, when the disturbance fields are given by 
approximate operators 

Al 
and Gl; see Table 9.5.2. Two sets of exact inequali-

ties, namely, {(9.5.11a), (9.5.14a), (9.5.20a)} and {(9.5.11b), (9.5.14b), 
(9.5.20b)}, are employed in this subsection, and exact computable bounds for 
the overall moduli of the original heterogeneous RVE are obtained. The case of 
traction boundary data is examined first. 

To this end, choose V' and V to be identical ellipsoids. The first is part of 
the uniform infinite B, and the second represents the original RVE. For any 
eigenstrain field e* defined in V', < Al(e*) > - 0, where the average is over V'; 
see (9.4.9e). It then follows that the left side of (9.5.14a) can be expressed as 
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IA(e*A; LA; s°) _ 
— 1 

e*A : s° = 
2 

s° : (D — D ' ) : s°, (9.5.26a) 

where D' is the overall compliance tensor of the original RVE which is homo-
genized by the eigenstrain field e*A, and which is subjected to the following 
boundary conditions: 

u(x) = x . (D : s°) + U(x; —c : (e*A - 
É

*A)), 
(9.5.27a) 

t(x) = 1(x).  (s° — LA(x; e*A)), 

where U is defined by (9.4.7). The eigenstrain field e*A solves the consistency 
conditions for boundary data (9.5.27a) exactly, and hence homogenizes the ori-
ginal RVE for these boundary data exactly. 

The definition of the overall compliance, D' given by (9.5.26a), is based 
on the average stress-strain relations associated with the special boundary data 

(9.5.27a).
26 

From (9.5.20a), the following inequality now follows: 

Z
s° : (D~ — (C ')-1) : s° <_ 0, (9.5.28a) 

where CÉ' is the the overall elasticity tensor which is defined by the average 
strain energy of the RVE for boundary data (9.5.27a). Inequality (9.5.11a) 
therefore applies to this 

CF, 
i.e., 

Z s° : ((C~')-t — D O) : s° < 0. (9.5.29a) 

Finally, from (9.5.28a) and (9.5.29a) it follows that 

2 s° : (D
S
'~ — D S) : s° <— 0, (9.5.30a) 

for any constant s°. Hence, D DO is negative-semi-definite. 

It is still difficult to compute D'5 exactly, since it requires an exact value 
of e*A. Inequality (9.5.14a) may now be invoked and, instead of the exact 
eigenstrain field, e*A, a piecewise constant eigenstrain field may be used, 
together with the approximate operator 

L. 
As in Subsection 9.4, denote the 

value of the functional IA for piecewise constant distribution of eigenstrains, 
{e*a}, by IA'({e*a}; so), where e*a is the constant eigenstrain field defined on 
W~, (a = 1, 2, ..., n). Let the stationary value of IA' be attained by {e*a} which is 
the solution of aIA'/ae*a = O (a = 1, 2, ..., n). For the class of piecewise con-
stant eigenstrains, the optimal value IA'( { e }; 0°) obtained in this manner is 
now expressed as 

IAI({e
*a

}; s°) = Z 
s° : (D— DOA) : s°, (9.5.31a) 

where D, defined from IA'( }; so), is the final estimate of the overall com- 
pliance tensor. From inequality (9.5.14a) it now follows that 

26 

Subscript s-e emphasizes that the moduli are obtained through the average stress-strain rela-
tions. Superscript S denotes that the uniform traction data are prescribed, and superscript S' signifies 
that V = V' is embedded in an infinite solid. Note that the boundary conditions (9.5.27a) or 
(9.5.27b) cannot be prescribed a priori; all primed quantities correspond to these boundary data. 
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- s° : (DeA _ Ds'E) : s° < 0, (9.5.32a) 

if D' - D is positive-definite. Together with (9.5.30a), a computable bound on 
the overall compliance tensor DO is obtained as follows: 

s°: DO : s°?s°:DOA : s°, (9.5.33a) 

for any s°, if D' - D is positive-definite. In the right half of Figure 9.5.4, the 
above results are summarized in the form of a flow chart. 
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boundary conditions 

L H 
Theorem I  
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Figure 9.5.4 

Flow chart of exact inequalities when homogenized V is regarded as part of an 
infinite domain with approximate operators Gl and Al; Dr" is the overall com-
pliance tensor when V is subjected to boundary conditions produced by Gl 

(symbolized by E'), and C is the overall elasticity tensor when V is subjected 
to boundary conditions produced by 

Al 
(symbolized by S') 
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The case corresponding to the class of functionals 
i(s*; 

GG; e°) with 
approximation JA(s*; Gl; e°), is treated in the same manner. First the overall 
elasticity for the functional JA(s*A; Gl; e°) is defined by 

JA(s*A; Gl; e°) — — 2 s*A : e° = 2 e° : (C — C ') : e°, (9.5.26b) 

where s
*A is the eigenstress field which exactly homogenizes the original RIB 

under the following boundary data: 

u(c) = c.e°+ U(c; (s*A— ~*A)), 
(9.5.27b) 

t(x) = n(x) . (C : e° — AA(c; s*A)). 

Note that C' is the overall elasticity tensor defined through the average stress-
strain relations. Hence, inequality (9.5.20b) applies, i.e., 

2 
e° : ( 'e — ( ') ) : e° <_ 0, (9.5.28b) 

where DÉ' is the overall compliance tensor which is defined by the average 
complementary elastic strain energy of the RVE under the special boundary 
data (9.5.27b). Since inequality (9.5.11b) applies to this CÉ', 

2 
e° : ((DÉ) 1 — CE) : e° <_ 0, (9.5.29b) 

and in view of (9.5.28b), the following inequality holds: 

e° : ( ' — C
E) : e° < 0, (9.5.30b) 

for any constant e°. Hence, Cá  — CE is negative-semi-definite. 

Again, based on inequality (9.5.14b), JA(s*; Gl; e°) is replaced by the 
computable function, JA'({s*a}; e°), for piecewise constant eigenstresses, {s*a}. 
The optimal value of this function is JA'({s*a}; e°), where {s*a} is the solution 
of aJA'/as*a = 0 (a = 1, 2, ..., n). The optimal value JA'({s*a}; e°) now 
becomes 

JA'({s*a}; e°) = 2 e° : (C —  El) : e°, (9.5.31b) 

where CEA, defined from JA'({s*a}; e°), is the final estimate of the overall elas-
ticity tensor. Inequality (9.5.14b) now yields 

2 
e° : (CEA — C E ) : e° ~ 0, (9.5.32b) 

if C' - C is positive-definite. In view of (9.5.30b), a computable bound on the 
overall elasticity tensor CE is obtained as follows: 

e°: CE :e°>— e°:CEl :E°, (9.5.33b) 

for any e°, if C' — C is positive-definite. In the left half of Figure 9.5.4, these 
results are summarized in the form of a flow chart. 

From (9.5.33a,b) the following exact relations between the energy func-
tionals and their approximations are obtained: 
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Í(e*; AO; s°) <_ I^'({e*"}; s°), (9.5.34a) 

when D' — D is positive-definite; and 

J(3*; GE; e0) <_ J^'({e*"}; e0), (9.5.34b) 

when C' — C is positive-definite. 

From (9.5.33a,b), it is therefore possible to state the following rigorously 
established, computable bounds for the overall moduli of an arbitrary hetero-
geneous, linearly elastic solid: 

is p.d. when D' — D is p.d., 
(9.5.35a,b) 

~E — C EA is p.d. when C' — C is p.d.. 

These results are exact and provide lower and upper bounds for the overall 
moduli. Note that the considered boundary data for (9.5.35a) are uniform trac-
tions, whereas the boundary data which lead to (9.5.35b) are linear displace-
ments; these are signified by superscripts S and E, respectively. The approxima-
tion of replacing A by AA precludes the possibility of obtaining bounds under 
uniform tractions when D' — D is negative-definite. Similarly, when G is 
replaced by Gl, then the possibility of obtaining bounds from linear displace-
ment boundary data when C' — C is negative-definite is precluded. In view of 
these observations, bounds which are obtained under these conditions should be 
regarded as estimates of the overall moduli rather than rigorous bounds. Only 
inequalities (9.5.35a,b) survive with certainty the errors introduced by approxi-
mating the Green function G(i, y) by that of the infinite domain, in the manner 
discussed in Subsection 9.4. 

Figure 9.5.4 summarizes the results of this subsection in the form of a 
flow chart. 

9.5.5. Calculation of Bounds 

As shown in Subsection 9.5.4, exact inequalities (9.5.35a,b)_rrovide com-
putable bounds for the overall tensors DO and C

E
, in terms of DOA and CE^, 

respectively. Indeed, for statistically homogeneous and isotropic RVE's, substi-
tution of (9.4.24c) into (9.4.24a) and (9.4.24d) into (9.4.24b), yields DOA and 
CAA as follows: 

DSA=_ D—D:{ 1(4s) —i:(1'—D)} 1 : S: D 

CAA = C + { 1(4s) — S : P)-1 : S, (9.5.36a,b) 

where S is given by (9.4.23b). After some tensor manipulation, 
DOA 

and CE^ 

are expressed in terms of P which can be computed explicitly. In this manner, 
DOA becomes 

DŜ = D:{C— {1(as) — S: (R —D) }-1: S} : D 
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= D:{C — S: {1(4s) — (R —D): S}
-1

}:D 

= D : { C: ~~ 1(4s) —(? — D) : S} S j(4s) — (R — D) : S)-1 : D 

= { 1(4s) —P:  S } : { 1(4s) — (R — D) : S }-1 : D, (9.5.37a) 

and 
CEA 

takes on the form 

CEA =C+O: {1(4s) — R:O}
-1 

_ { C: { 1(4s) — R : + : {1(4s)_ R : S} 1 

=C: {1(
4s) —( R —D): S}: {1(4s) —P: i}-1. (9.5.37b) 

Since substitution of (9.4.23b) into S in { 1(4s) — ( R — D) : S} and { 1(4s) — P : S} 
yields 

1(4s) —(P—D): S= D:{ fCa: {1(
4s) +R:(Ca —C)} 

a=0 

1(4s) — R : C _ a
~0 f

f 
{ 1(4s) + R : (Ca — C) }-1, (9.5.38a,b) 

DOA and CEA are finally expressed in terms of P, as 

D/A = { aV+0 8 f 1(4s) + R : (Ca — C) }_1 
} 

I 

:{ S8 fpCß: {1( as)+R:(Cp—C)} -i } -i, 

EA—{ VR' fh Ca.{1(4s)+R:(Ca C)}_1} 
a=0 

:{ S,0 fp { 1(4s) + P : (Cß _ C) } -i } i (9.5.39a,b) 

Therefore, most remarkably, but as should be expected from their derivation, 
these bounding tensors are each other's inverse, 

CEA = (DSA)-1 Or  DOA = (CEA)-1 (9.5.39c,d) 

Inequalities (9.535x) and (9.5.35b) provide the upper bound on the overall com-
iliance and elasticity tensors, DO and CE, in such a manner that the tensors 
DO — DOA and CE — CEA are positive-definite, when Da — D and Ca — C are 
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positive-definite.27 

The tensor P can be computed explicitly. Hence, explicit bounds on the 
overall elastic energies and tensors are obtained. Hashin and Shtrikman (1963) 
apply the Fourier transform to the stress and strain fields and estimate the values 
of the correlation tensors for an isotropic case. Walpole (1966b) generalizes the 
bounds for an anisotropic case. Willis (1977) and Kröner (1977) examine the 
general properties of the Hashin-Shtrikman bounds; for additional comments 
and references, see Walpole (1981), Willis (1981), and Mura (1987). Recently, 
Milton and Kohn (1988) have addressed certain mathematical aspects of these 
bounds; see also Kantor and Bergman (1984), Francfort and Murat (1986), and 
Torquato and Lado (1992). The generalized variational principles and the corre-
sponding generalized bounds, as well as the accompanying inequalities which 
lead to the computable exact bounds (9.5.35a,b) are new observations. These 
observations are used in Subsection 9.6 to obtain universal bounds on two 
overall moduli, which apply to any heterogeneous elastic solid. 

9.5.6. Alternative Formulation of Exact Inequalities: Direct Evaluation of 
Exact Bounds 

A number of exact inequalities can be derived based on Theorems I and II 
of Subsection 2.5.6 and a proper choice of the reference elasticity and compli-
ance tensors. To this end, the following results are considered: 1) generalization 
of Theorems I and II of Subsection 2.5.6; 2) consequences of negative-
definiteness of D' — D or C' — C; and 3) consequences of the vanishing of 
< AA > or < A^ > when V is ellipsoidal. In this manner, exact computable 
upper and lower bounds for the overall moduli and compliances are established 
directly without invoking the variational principle;28 i.e., bounds on the overall 
elasticity and compliance tensors of a general heterogeneous elastic solid con-
sisting of any number of phases of any shape, size, and distribution are obtained 
directly by proper choices of the reference elasticity and compliance tensors 
and by the use of Theorems I and II. These results are then related to the corre-
sponding bounds obtained in the preceding subsections. 

First, observe that the proof of Theorem II of Subsection 2.5.6 can be 
directly applied to establish the following result: for any disturbance stress field 
sd which satisfies the equations of equilibrium and has zero volume average, 

2 
< sE : D' : SE > <_ 

2 
< (s° + sd) : D' : (s° + sd) >, (9.5.40a) 

where sE is the stress field of the linear displacement boundary data, with 
< OE > = s°. Similarly, the proof of Theorem I of Subsection 2.5.6 can be 
directly applied to show that: for any disturbance strain field ed which is compa-
tible with a disturbance displacement field (i.e., is the symmetric part of the 

27 These are two mutually exclusive cases. 
28 

For historical reasons, bounds developed up to this point are based on the Hashin-Shtrikman 
variational principle. 



§ 9.5 UPPER AND LOWER BOUNDS 301 

gradient of a displacement field), and has zero volume average, 

2 <es : C':e~><_ 2 <(e°+ed):C':(e°+ed)>, (9.5.40b) 

where 
e 

is the strain field of the uniform traction boundary data, with < es > 
_ e° 

Note that s' in (9.5.40a) is not necessarily associated with a compatible 
strain field, and that ed in (9.5.40b) is not necessarily associated with an equili-
brating stress field. In Subsection 2.5.6, Theorems I and II are stated for cases 
when the considered fields are associated with compatible strains and equilibrat-
ing stresses, such that they can be actually produced in the RVE when subjected 
to suitable boundary conditions. Here, on the other hand, these theorems are 
generalized by (9.5.40a,b) to include cases when the strains are compatible but 
the stresses need not be in equilibrium, or cases when the stresses are in equili-
brium but the strains need not be compatible; Willis (1992). 

Next, let D' — D be negative-semi-definite. Then, for any arbitrary pair of 
fields s and s, the following inequality holds: 

0>_ (s —s) : (D'—D) : ( s —s) 

= s: (D'—D): s-2s:(D'—D):s+s:(D'—D):s 

= s: D' : s — s: D : s — 2 e* : s+ e*: (D'—D) : e*, (9.5.41a) 

where29 e* - (D' — D) : s. Thus, taking the volume average over V, and dividing 
both sides by 2, obtain 

(9.5.42a) 

This inequality holds for any pair of s and e*. 

Similarly, let C' — C be negative-semi-definite. Then, for any arbitrary 
pair of fields e and e, 

0 ?(e —e):(C'—C):( e —e) 

= e : C': e — e: C : e — 2 s* : e– 
s*: 

(C'— C) : s, (9.5.41b) 

where30 s* _ (C' — C) : e. It now follows that 

2 <e:C':e><_
2

<e:C: e+2 s*: e —s*:(C'—C) -l:st >.  (9.5.42b) 

This inequality holds for any pair of e and s*. 

Finally, consider a stress field which is produced by an arbitrary eigen-
strain field, say, e*, i.e., s = — AA(e*), and apply (9.5.40 a) and (9.5.42a). By 

29 

Note that s = (D'—D) -1 : e* may be viewed as the stress field associated with the homogen-
izing eigenstrain field e ; compare with (9.1.4c). 

30 Note that e = (C'— C) -1 : s may be viewed as the strain field associated with the homogen-
izing eigenstress field s*; compare with (9.1.12c). 
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definition, s is in equilibrium, and has zero volume average when V is an ellip-
soid. Thus, consider an ellipsoidal V, replace Sd by s in (9.5.40a), s by 
s° + sA in (9.5.42a), and obtain 

2 <sE :D': SE ><_
2

<(s°+ OA):D':(s°+sA)> 

<_ 2 <{ (s° + sA) : D: (s°+OA) + 2 (s°+OA) : e* 

— e* : (D' — D) -1 : e* } >. (9.5.43a) 

Inequality (9.5.43a) holds for any 
e*, 

as long as D' — D is negative-semi-definite 
and V is ellipsoidal. From < sA > = 0, the first two terms in the right side of 
(9.5.43a) become 

< (s° + SA) : D: (s° + SA) + 2 (s° + SA) : e* > 

= s° : D : s°+<sA:D: sA+sA: e*+(sA+ 2 s°):e* > 

= s° : D : s° + < e* : (AA : D : AA — AA) : e* — e* : (AA(e*) —2 s°) >. 
(9.5.44a) 

In this manner, inequality (9.5.43a) is rewritten as 

2 <sE : D': sE ><< 2 s' : D : S0- 
 

2 
<e*: {(D'—D) + AA } :e* > 

(9.5.45a) 

By definition, the left side of (9.5.45a) is given by s° : DE : s° / 2, and the 
terms in the curly brackets of the right side of (9.5.45a) equal functional 
IA(e*; AA; s°). Since the last expression of (9.5.45a) is negative due to the pro-
perty of 

AA when V is ellipsoidal, the following inequality is obtained: 

2 s° : (DE — D) : s° <_ — IA(e*; AA; s0), (9.5.46a) 

when D' — D is negative-semi-definite. This inequality is exact. It is a direct 
result of Theorem II of Subsection 2.5.6, and the choice of the reference compli-
ance tensor, D. 

A similar exact inequality is obtained for JA directly from (9.5.40b) and 
(9.5.42b). Since e = — GA(s*) is compatible and has zero volume average when 
V is ellipsoidal, replace e by 

e 
in (9.5.40b), e by e° + e 

in (9.5.42b), and 
obtain 

<— 2 <{ (e° + el) : C : (e° + el) 
+2 (e° + el): 

s* 
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— 

 

s*: (C' — C)_
1 

: s* } >. (9.5.43b) 

Inequality (9.5.43b) holds for any s*, as long as C' — C is negative-semi-definite 
and V is ellipsoidal. From < SA > = 0, the first two terms in the right side of 
(9.5.43b) become 

< (e° + el) : C : (e° + el) –2 (e° + el) : s* > 

= e° : C : e° + < s* : (GA : C : AA — AA) : s* — s* : ( GA(s*) — 2 e°) >, (9.5.44b) 

and inequality (9.5.43b) is rewritten as 

2 
<eS : C': eS > <_ 2 e° : C: e° —{  k s : 

{(C'_C) +Gl} :s' 

—<s*>: e°}
+ 2 

<s* : (Al : C: 
Gl_ Al): st >. (9.5.45b) 

The left side of (9.5.45b) is equal to e° : CO : e° / 2 by definition, and the terms in 
the curly brackets in the right side of (9.5.45b) equal JA(s*; 

Gl: 
e°). The last 

expression in (9.5.45b) is negative due to the properties of 
Gl 

when V is ellip-
soidal. Hence, the following inequality is obtained: 

2 e
° : (C~ — C) : e° <_ — JA(s*; 

Gl; es), (9.5.46b) 

when C' — C is negative-semi-definite. 31 Again, this inequality is exact, and fol-
lows directly from Theorem I of Subsection 2.5.6 and the choice of the refer-
ence elasticity tensor, C. 

Functionals IA(e*; LA; s0)  and JA(s*; 
Gl; es) in the right side of 

(9.5.46a,b) can be computed for piecewise constant eigenstrains and eigens-
tresses, respectively. As shown in Subsection 9.5.4, the values of the function-
als I~~ and JA for such piecewise constant eigenstrains and eigenstresses are 
given by functions mA' and JA', and their optimal values are IA'( { e) ; s°) _ 
s° : (D — D OA) : s°/ 2 and JA'({ s*a } ; e°) = e° : (C — C EA) : e°/ 2, where 

DOA 
and 

CEA are estimated by (9.5.39a,b) of Subsection 9.5.5. Thus, (9.5.46a) and 
(9.5.46b) yield 

: j E: Ss < Ss : i :  

e° : CO
: e° <— e° : CEA : e°, (9.5.47a,b) 

if D' — D and C' — C are negative-semi-definite, 32 respectively. Again, inequali-
ties (9.5.47a,b) are exact. 

Inequalities (9.5.47a) and (9.5.47b) lead to the following conclusions: for 
the overall moduli of an arbitrary heterogeneous, linearly elastic solid, 

31 In terms of functionals defined in Subsection 9.5.2, inequalities (9.5.46a) and (9.5.46b) are 
written as Ï(e*E; AE; s°) >_ Il(e*; AA; s0) and J(s*O; GO; e°) > Jl(s*; Gl; e°). 

32 These are two mutually exclusive cases which are being examined simultaneously, where 
each case can be realized by a proper choice of the corresponding reference tensor. 
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containing any number of different phases of arbitrary distribution and shape, 

DE — DOA is n.d. when D' — D is n.d., 
(9.5.48a,b) 

CO — CEA is n.d. when C' — C is n.d., 

where DOA and CEA are computable. The negative-definiteness of D' — D is 
equivalent to the positive-definiteness of C' — C. Hence, (9.5.48a,b) can be 
rewritten as 

DS — DEA is p.d. when D' — D is p.d., 
(9.5.49a,b) 

VE — C SA is p.d. when C' — C is p.d.. 

Since DEA = DOA and CAA =CEA, (9.5.49a) and (9.5.49b) are equivalent33 to 
(9.5.35a) and (9.5.35b). 

9.6. UNIVERSAL BOUNDS FOR OVERALL MODULI 

In the preceding subsections, exact inequalities are established between 
the average strain energy of an ellipsoidal RVE and approximate functionals IA 
and JA, by combining the Hashin-Shtrikman variational principle34 with 
Theorems I and II of Subsection 2.5.6. An estimate of the exact bounds for the 
overall moduli of the RVE is obtained based on the assumption of statistical 
homogeneity and isotropy. However, two exact bounds for certain combina-
tions of the components of the overall elasticity tensor can be deduced 
rigorously, without any additional assumptions other than that the RVE be ellip-
soidal. These bounds apply to a general heterogeneous elastic solid consisting 
of any number of phases with any arbitrary shape and elasticity tensor. 

In this subsection, the equivalence between IA and JA is first established. 
Then, using JA only, exact inequalities which relate the average strain energy in 
the RVE to JA are summarized. From the values of JA for piecewise constant 
eigenstresses, two universal bounds are deduced, one for 

Ciiji 
and the other for 

Cijii. Then, from the equivalence relation, other bounds for D are obtained. 
Finally, it is shown that when all phases of the RVE are isotropic, these univer-
sal bounds coincide with the conventional bounds which are obtained by assum-
ing the statistical homogeneity and isotropy of the microstructure. 

33 As shown in Subsection 9.5.5, 
DOA 

and 
CEA 

are computed from functionals IA and JA with 
the assumption of statistical homogeneity and isotropy, and are each other's inverse. If these func-
tionals are computed in a different manner, 

DOA 
and CEA may not be each other's inverse, and 

bounds (9.5.35a,b) and (9.5.49a,b) then need not be identical. 
34 

Or directly, by a proper choice of the reference elasticity tensor. 
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9.6.1. Equivalence of Two Approximate Functionals 

In an infinite homogeneous domain B, fields produced by eigenstrains e* 
through operator AA coincide with those produced by eigenstresses s* through 
operator Gl, if s* = — C : e* or e* = — D : s*. This is because both AA and 

Gl 
are 

obtained from the Green function of the infinite B. Indeed, the following rela-
tions hold between AA and Gl, for any arbitrary e* and s*: 

AA(x; e*d) = C: { AA(c; —C: 

GA(x; s*d) = D : { AA(c; —D:  s*d) + s*d(x) }, (9.6. I a,b) 

where 
e*d 

- e* — < e* > and s*d = s* — < s* > are the disturbance eigenstrains 
and eigenstresses. 

As shown in Subsection 9.3, the following identity holds: 

(C' — C)-t _ — D — D : (D' — D)
-1 

: D. (9.6.2) 

Hence, if functional JA is written as 

JA(s*; e°)_ -
2 

<(—D: 
s*): 

{(D'—D) -1 –Al) : (—D :  

— 2 <(—D:s*): {—<s * >-2(C: e°)} >, 

then it follows that IA and JA are related through 

(9.6.3) 

IA(— D : s*; C : e° + < s* >) _ — JA(s*; e°) + Z < s* >:D:<  s* >, (9.6.4a) 

Thin is the equivalence relation between functionals ~A and JA. 

From equivalence relation (9.6.4a), it is seen that the eigenstress field 
which renders JA(s*; e°) stationary, gives an eigenstress field which renders 
IA(e*; s°) stationary, when the average eigenstress is fixed and C : e°+< s* > is 
denoted35 by s°. Furthermore, if CA is determined from the stationary value of 
JA, say, JA(s*; e°), as 

Jl(s*; e°) = 
2 

e° : (C — CA) : e°, (9.6.5a) 

then the stationary value of the corresponding IA is 

IA(e*; s°) = 2 
s° : (D — (CA) -I) : s°, (9.6.5b) 

where e* = — D : s* and s° = C : e° + < s* >. The proof is straightforward: 
since s* renders JA stationary, JA(s*; e°) equals — < s* > : e° / 2. Hence, < s* > 
is expressed in terms of CA, as 

3s 

For notational convenience, only in this subsection, C : e°+< s* > is designated by S°. In 
all other subsections of Section 9, s° equals C : e°. 
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> (CA — C) : e°. (9.6.5c) 

Substitution of (9.6.5a) and (9.6.5c) into (9.6.4a) yields 

IA(e*; s° ) = — JA( s*; e°) +  < s* >: D : < s* > 

= 
2 

e°: {CA_C±(CA_C): 
D : (CA_C)} : e0 

= 
2 

(CA: e°) : (D — (C A)-1) : (CA : e°). (9.6.5d) 

Since s° = C : e°+< s* > equals CA : e°, (9.6.5d) yields (9.6.5b). 

Therefore, functional IA(e*; s°) or its stationary value can be computed 
from functional JA(s*; e°), by replacing e* with — D: s*.36 Hence, it suffices to 
consider either IA or JA. In this subsection, only JA is studied, since operator GA 

in JA is of simpler form than operator LA in IA. 

9.6.2. Summary of Exact Inequalities 

The results obtained in Subsections 9.5.1 to 9.5.4 can be summarized as 
follows: 

1) According to Theorem II of Subsection 2.5.6, for apy arbitrary RVE, 
CE — (D) is positive-semi-definite, where C E and D are the overall 
elasticity and compliance tensors, defined through the strain energy of the 
RIB, respectively for the linear displacement boundary data and for other 
general boundary data, both yielding the same average stresses. 

2) In an ellipsoidal RVE, the integral operator GA satisfies < AA > = O for 
any eigenstress field. Moreover, operator < : (AA : C : GA — Gl) : > is 
negative-semi-definite. It follows that (D) — Cg E is positive-semi-
definite, where C~ 

E 
is the overall elasticity tensor defined through the 

average stress-strain relations. 

3) Since GA is positive-definite, when C' — C is positive-semi-definite, then, 

it follows that JA(s*; e°) = Z e° : (C — C 1 ) : e° is the minimum of 

JA(s*; e°), where s* is the eigenstress field that minimizes JA and hence 
homogenizes the RIB when it is subjected to some boundary conditions 
which cannot be prescribed a priori. 

From 1) to 3), the following inequality holds for any s* and any e°: 

ae For approximation, a certain class of eigenstress fields is usually used in computing func-
tional JA. If a stationary value of JA is given by (9.6.5a) on such eigenstress fields, then a stationary 
value of IA on the corresponding class of eigenstrain fields is always given by (9.6.5b). Indeed, for a 
piecewise constant distribution of eigenstresses and eigenstrains, the bounds produced by JA and IA 
(or JA' and IA'), CEA and D/-A, are each other's inverse; see Subsection 9.5.5. 
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2 
e° : (C — CE) : e° 5 JA(s*; e°) if C' — C is p.d.. (9.6.6) 

Besides the positive-definiteness of C' — C, a sufficient condition for the validity 
of (9.6.6) is that the RVE be ellipsoidal. 

In the following subsection, functional JA(s*; e°) is computed without any 
special assumptions other than the overall shape of the RVE, which must be 
ellipsoidal. The key to the computation is the special properties of operator Gl. 
The results do not depend on the aspect ratios or the orientation of the ellip-
soidal RVE, i.e., the same universal expressions for the bounds are obtained for 
any ellipsoidal RVE, or for that matter, for any heterogeneous elastic solid (with 
any heterogeneities) of overall ellipsoidal shape. 

9.6.3. Universal Bounds for Overall Moduli of Ellipsoidal RVE (1) 

Now, consider an ellipsoidal RVE consisting of n + 1 distinct subregions, 
Wa, with elasticity Ca and volume fraction f« (a = 0, ..., n), where the subregion 
corresponding to the matrix is denoted by W0, with elasticity C°. To homogen-
ize this RVE, consider a subregion, V', in an infinite homogeneous solid, B, with 
the same geometry as that of the RVE. Let B be isotropic, with elasticity tensor 
C = 2mn/(1 — 21)1 

(2) 
a 1(2) + 2m 1

(45)
, such that Ca — C is positive-definite for 

a = 0, ..., n. First, distribute piecewise constant eigenstresses, s*a, in each Wa 

within V', and then distribute the average eigenstress, s* - fa s*0C, uniformly 
a=0 

in B — V', such that the disturbance strain and stress fields in V' are due only to 
the disturbance eigenstress field defined by 

s*d(x) = SR H(x; Wa)(s*a — s ), (9.6.7) a O 

where H(x; Wa) = 1 for x in Wa, and 0 otherwise. Finally, consider uniform 
strains e° prescribed in B. 

Since V' is ellipsoidal and s* is distributed throughout B, < s : Gl : s* > 
equals < s*d : Gl : s*d >, and functional JA is given by 

JA(s*; e°) = 2 < s*: (C' — C) 1 : s* > — < e° : s* > 

+ < S*d : Gl : S*d >. (9.6.8a) 

For piecewise constant eigenstresses prescribed in V', functional JA is given by 
function JA' which, in view of (9.6.8a), becomes 

JA'({s*a}; e°) = 
aa0 

fa s*a: {(Ca—C)-1 : s*°''-2 e°} 

+ 
2 aS0 bt0 

< { H(Wa) (s
*a — s *) } : GA : { H(Wb) (s*b — s *) } >. (9.6.8b) 



{
fa 

1  3-4v  
m 2(1— n) 

< H(W) G H(Wr) > — 
if a = b 

(9.6.1 lb) 

0 otherwise. 
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To compute JA', integral < {H(Wa) (s*a — s*) } : Gl : {H(Wr) (s*ß — s *) } > needs 
to be evaluated. 

To this end, consider the Fourier transform of operator Gl, given by 
(9.5.21). Since C is isotropic, FAA defined by (9.5.21c) becomes 

FAA(x) 
— 1 

1  2(1 — i)  

where x _ x / I x I . From x, x, = 1, the components of FAj%satisfy 

FAA_ 1  1-2v  
m 2(1 — n) 

FA,A — 1 
2 1 4v ~ (  )' 

and hence the inverse Fourier transforms of FG1 j and FG;A satisfy 

(2p)s f  FG;A (x) exp(tx.c) dVx = 2(1 —i) d(x), 

(2p)3 1 FR 
FG~~ J(x) exp(tx.c) dVx = 

2(1—i) 
d(x), (9.6.10a,b) 

where d(x) is the delta function at the origin. 

From (9.6.10a,b), the following exact relations are obtained for < H(Wa) 

G 4 ~~ H(wp) >: 

(9.6.9a) 

(9.6.9b,c) 

1  1-2v  
m 2(1— n) if a b 

otherwise, 
< H(Wa) G;A H(Wp) > = 

and 

(9.6.1 la) 

Since the isotropic tensor P defined by (9.4.13) satisfies R j = (1 — 2v)/2 m(I — v) 
and R;jj = (3 —4v)/24(1—v), (9.6.11a,b) are rewritten as 

< H(Wa) G;A H(Wr) > = 

> = 

ifa = (3 
0 otherwise, 

if a=b 
0 otherwise. 

(9.6.11c,d) 

Note that exact expressions (9.6.11a,b) and (9.6.11c,d) hold for any Wa and Wr 
of arbitrary shape, orientation, and relative location. 

Taking advantage of (9.6.11), function JA' given by (9.6.8) can be com-
puted exactly by choosing special forms for e° and s*a's. First, suppose that the 
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uniform overall strain is dilatational, e° = e° 
1(2). 

Then, setting s*" = s
*

a 1(2), 
and using (9.6.11c), compute JA' as 

JA'({s*a 1(2)}; ° 1(2)) 

= SR f s(Ca — C)J 
5*a 

3 * 0 + 1 SR a0 f"(s*"—s*) R„A(s*"—*) 
2 a=0 2 = 

_ 
aSR

Ofas*a{(Ca — C)j+R;;ii}S*a — Z s
*

P
*-3S* e°, (9.6.12a) 

where s* _ fa s*a. This computation of JA' does not involve any assump- 

tions except that V' is ellipsoidal. It applies to any RVE, consisting of any arbi-
trary multi-phase microstructure. 

Next, consider three cases of overall biaxial shearing with nonzero strain 
components, e°(e1 ®e 1 — e2 ®e2), e°(e2 ®e2 — e3 ®e3), and e°(e3 ®e3 — e 1®el), and 
three cases of overall pure shearing with nonzero strain components, 
e°(e2®e3+e3®e2), e°(e3®el+e1ne3), and e°(eiâe2+e2®e1). For simplicity, 
denote the tensor products of the unit base vectors associated with these six 
cases by si (i = 1, 2, ..., 6), i.e., s1 = e1ne1—e2®e2, ..., s4 = e2®e3+e3®e2, ... . 
For each e° = e°si, set S*" = s*asi, and write the corresponding energy function 
JA' as JA'({s*asi}; e°si). Using (9.6.11c) and (9.6.11d), compute the following 
function: 

3
[ JA'({s*as i}; e°s i)+7A'({s*as2}; e°s2)+7 A'({s*as3}; e°s3) ] 

+ 
2

[ 7A~({s*"sa}; e°sa)+7A
'({s

*

"sN}; e°ss)+7A'({s
*a

s6}; e° s6) j 

h 
S fa s*

a 
{(Ca — C)„ --(C a — C);i l} s* a — 5 s * e° o  3 ii 

1 ~ 1 *a + 2 So fa (
*as  — s ) {P iiy — 3 R;;ii } (s  — * ) 

h S= 

	

	fa s*a {(Ca — C); ;j — 3 (C" — C)j + R;j;j — 3 R;;jj } s*a 
o 

— 2 
s*{Piüi —  	}s* -5s* e°. (9.6.12b) 

Again, this computation of JA' does not involve any assumptions except that V' 
is ellipsoidal. The result applies to any RVE consisting of any arbitrary micro-
structure. 

The right sides of (9.6.12a) and (9.6.12b) can be rewritten in a unified 
manner, as follows: 

Ni { 
aao

fas*a {(Ca —C)I 1 +R1} S*a — 2 s
*

R1s *— ~
*

e° (I = 1, 2), 
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where 1i = 3 and 12 = 5; and where P1 = R„ jj/ N iR and P2 = (R,üi — R/3)/N2, 
with similar expressions for (Cc' — C)j 1 or any other fourth-order tensor. The 
above quadratic form (with linear terms) can be optimized with respect to {s*9. 
Let { s*a} be the eigenstresses that render the corresponding functions station-
ary. Then, the corresponding optimal values of JA' are given by 

JA'({s*a1(2)};e°1(2))= 
2 

1 e°(C 1 —C1)6°, 

3 l 
JA'({s*a si}, e° si)+...] + 

2
[ JA'({s*a sa}; e° s4) + ...~ 

= 
2 

NZ e° (V2 — C Z) e°, 

where 

(9.6.13a,b) 

h 
Ci=S Ía 

a = 0 
1 i  r1 l-i 

CI+ 
 

(C"_ C)I 
1 , l ~ + (Va — V)I 

1 1 

x{ 
0

fp( I +  (Cß PC) 1
] 

 

for I = 1, 2. In view of (9.6.6), the °following bounds for CE are obtained: 

C1 >_ C1 (1= 1, 2) if C' — C is p.d.. (9.6.14a,b) 

While the results obtained in Subsection 9.5 are only valid for the case when 
statistical homogeneity and isotropy exist, inequalities (9.6. 14a) and (9.6.14b), 
corresponding to I = 1 and I = 2, respectively, hold for any microstructure of the 
RVE. Hence, these are indeed universal bounds. In fact, these bounds are valid 
for any finite elastic composite with overall ellipsoidal shape, independently of 
the shape, distribution, and elasticity of its multi-phase inclusions. 

9.6.4. Universal Bounds for Overall Moduli of Ellipsoidal RVE (2) 

Exact inequalities (9.6.14a,b), obtained in Subsection 9.6.3, are for the 
overall elasticity tensor, CE, of an ellipsoidal RVE under linear displacement 
boundary conditions. In essentially the same manner, similar exact inequalities 
are obtained for the overall compliance tensor, DO, of the same ellipsoidal RVE 
under uniform traction boundary conditions. Indeed, from the exact inequality 

2 
s° : (D — D O) : s° <_ IA(e*; s°) if D' — D is p.d., (9.6.15) 

inequalities similar to (9.6.14a,b) are deduced by computing the right side of 
(9.6.15) for suitable piecewise constant eigenstrains. In this computation, the 
properties of operator AA, similar to (9.6.11) of operator Gl, are used. 

Without considering the properties of AA, the right side of (9.6.15) can be 
directly computed from the results obtained in Subsection 9.6.3, if the equi-
valence relation established in Subsection 9.6.1 is applied. Indeed, equivalence 
relations similar to (9.6.4a) hold between functions JA' and IA', and it can be 
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easily shown that if {s*a} renders IA'({s*1}; e°) stationary, then, {e*a} _ 
{-D : s*a} renders JA'({e* }; s°) stationary, when s° is set to be C: e°+s*. 
Furthermore, if the stationary value JA'({ s*a } ; e°) is expressed in terms of CA, 
as37 

JA'({s*a}; e°) = Z e° : (C - CA) : e°, (9.6.16a) 

then, the stationary value IA'({e*a}; s°) is given by 

IA'({e*9; s°) = s° : (D - (CA)-') : 0°. (9.6.16b) 

Taking advantage of (9.6.16), consider the case when the applied uniform 
strain is dilatational, and assume that the homogenizing eigenstress is also dila-
tational, i.e., e° = e° 1(2) and s*" = s*a 1(2

).  The stationary value of JA' for these 
uniform strain and eigenstress fields is given by (9.6.13a). It is rewritten as 

JA'({s*a 1(2)}; e° 1(2)) = 2 (e° 1(2)) : (C - C, E ') : (e° 1(2)), (9.6.17a) 

where E' - 1(2)®1( 2)/3; see (8.1.1a). Hence, it follows from (9.6.16) that the 
stationary value of IA'({e*a 1 }; s° 1) is 

IA'({e*a 1 }; s° 1) = 
2 (s° 1) : (D - 1 E1) : (s° 1 ). (9.6.17b) 

C~ 
In view of (9.6.15), the following bound for DO is obtained: 

D~>_1 ifD'-Disp.d., 
C l 

where D  = D; j /3. This bound is valid for any finite elastic composite consist-
ing of arbitrary microstructure, as long as its overall shape is ellipsoidal. 

Manipulations similar to the above, yield a bound for D2 = DO -  
which can be expressed in terms of C2. Indeed, overall pure shear strains and 
the homogenizing shear eigenstresses, e° _ e° s; and s*a = s*a Si, correspond to 
the overall pure shear stresses and the homogenizing shear eigenstrains, 
s° = e° s; and a*a = e*a s;, for i = 1, 2, ..., 6. Thus, since the stationary value of 
the sum of JA"s given by (9.6.13b), is 

3 
[ JA'({s*as,

}; e° s1)+...] + 
2 

[ JA'({s*a
s4}; e° s4)+...] 

= [ (eo si):(C_ C2E2):(es si)±...] 

± [(es s4) : (C  C2 E2) : (e° s4) + ...], (9.6. 19a) 

where E2 - 1(4s) -E2, then the stationary value of the corresponding sum of 

As commented on in Subsection 9.6.1, if a stationary value of J^' is given by (9.6.16a) on a 
class of eigenstress fields, the stationary value of IA' on the corresponding class of eigenstrain fields 
is always given by (9.6.16b). 

(9.6.18a) 
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IA" s is given by 

3
~ IA'({e*as i }; s° s i) +...] ± 1 [ IA'({e*a sa}; s°s4)+...~ 

1 
3 (s° sl): (D- _ E2):(s° sl)+...] 

±1 
( s° s4) : (D - E2) : (s° S4) + ... 

JJ . C2  

In view of (9.6.15), the following bound for DO is obtained: 

D2 >_  1 if D' - D is p.d.. 
C2 

Again, this bound is valid for any finite elastic composite consisting of arbitrary 
microstructure. 

9.6.5. Relation between Universal Bounds and Estimated Bounds 

Now, consider relations between the universal bounds, C1 and C2, and the 
estimate of the overall elasticity tensor, CEA, based on the assumption of statisti-
cal homogeneity and isotropy. For simplicity, let all W~'s be isotropic, having a 
distribution such that CEA is isotropic. In this case, CEA can be expressed in 
terms of the basic isotropic tensors, E1 and E2, as 

CEA = CÍ A E1 + CZ 
A 
E2; (9.6.20a) 

see Subsection 8.1. In this manner, definition (9.5.39b) of CEA is reduced to two 
algebraic relations involving the coefficients of these basic tensors. Hence, 
coefficient CIA is given by 

CIA = 
{

fa CÍ { 11(4s) + P
1 (C - C1) }-i i 

a=0 

c 
{ 

_
n

,o fp (1¢a=)+R1(C{1-C1)}
-1~ 1, (9.6.20b) 

for I = 1, 2. Note that C1, CI , R1, and 
1(4s) 

are the corresponding coefficients of 
the isotropic tensors, C, Ca, P, and 

1(4s), 
respectively. 

Coefficient CEA given by (9.6.20b) is related to the universal bound C1. 
To prove this, first observe that the coefficient for E1 is determined by the 
fourth-order contraction with E1, i.e., 

Ci = N1 Cei», C~~ = N1 C;Ü, R1 = Ni  Pi,jj+ 

(9.6.19b) 

(9.6.18b) 

1 {as) = { (d;kd,I + d;ldik) } { 
3 

dijdk, } = 1. (9.6.21a--d) 

Next, since Ca and C are isotropic, (Ca - C)-1 is given by 
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1   E1 +  1   E2 
CZ — C2 

of (9.6.21) and (9.6.22), rewrite C1, defined by 

(Ca _ C)-i —  C i —C 1 

Finally, taking advantage 
(9.6.14c), as 

={
fa C~ {1+1)1(Cä-C 1)}-1 

«=o 

c  
ßSofR

{1+1)1(Cß—C1))}- (9.6.23) 

The right side of (9.6.23) is given by (9.6.16b) for I = 1. Hence, 

C i= C ia = N 1  C; A. (9.6.24a) 

This is the relation between C1 and 
CE' 

for the isotropic case. 

In a similar manner, it is shown that universal bound (9.6.1 8a) given by 
1/C1 is related to DOA. Since 

DOA 
is the inverse of CEA, it is given by 

DsA= DsA
EI+D2AE2= 

E1+ 

E2. (9.6.25) 
C1 CZ 

Hence, it follows from (9.6.23) that 

C1 = C1 A — D SA 

= Nl D;UA. (9.6.26a) 

Therefore, it is concluded from (9.6.24a) and (9.6.26a) that the upper bounds for 
C;y and D;S~, determined by Ci, remain unchanged whether or not Wa's and the 
overall RVE are isotropic. 

In essentially the same manner, CZ 
A 

and DZ 
A 

can be related to C2, as fol- 
lows t 

(9.6.22) 

and 

C2 =   CZ A= N
Z 

(C;E~~ — 3 C;iiA) 

1  _  1 — SA  1 xr l xr) 

C2 
- EA - D2  - 12 (Dijij — 3 Diijj . 
C2 

(9.6.24b) 

(9.6.26b) 

9.7. BOUNDS FOR OVERALL NONMECHANICAL MODULI 

In Subsection 2.7, certain nonmechanical properties, such as electrostatic, 
magnetostatic, thermal, and diffusional properties, are briefly reviewed, and it is 
shown that universal Theorems I and II also apply to this class of problems. To 
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treat this class of nonmechanical properties in a unified manner, a generalized 
force field p = p(x), with its conjugate flux field q = q(x) is introduced. The 
force field is the gradient of a scalar potential field u = u(x), i.e., p = — 0 u. In 
the absence of sources, the flux field is divergence-free, i.e., V.q = 0. More-
over, these conjugate fields are related through constitutive relations, q = K'.p 
and p = R'.q, where, for ease in referencing, K' and R' are referred to as con-
ductivity and resistivity tensors, respectively. These are second-order, positive-
definite, symmetric tensors, which may stand for other properties; e.g., K' is the 
dielectric tensor in electrostatics. For heterogeneous materials, K' = K'(x) and 
R' = R'(x). 

In this subsection, it is shown that the application of the generalized 
Hashin-Shtrikman variational principles and the universal Theorems I and II of 
Subsection 2.7 leads to exact bounds for the overall conductivity or resistivity 
tensor, K or R. In particular, it is demonstrated that the resulting bounds on K;;  
and R;; are universal in the sense that they are independent of the shape and dis-
tribution of the phases within the composite, i.e., they apply to any composites 
with any number and distribution of phases. Indeed, the same bounds are 
obtained for the unit cell of composites with periodic microstructure; see Sec-
tion 13. 

The presentation in this subsection is structured such that the results of 
Subsections 9.5 and 9.6 directly apply to the considered cases of nonmechanical 
material parameters. First, the corresponding generalized Hashin-Shtrikman 
variational principles are developed. Then, these principles are combined with 
universal Theorems I and II of Subsection 2.7, and computable bounds for the 
overall conductivity tensor K or resistivity tensor R are obtained in terms of the 
Green function of the infinite homogeneous body. Finally, the universal bounds 
valid for any heterogeneous medium of any number and distribution of phases 
are obtained. 

In view of the mathematical similarity in the field equations, for mechani- 
cal and nonmechanical properties, the procedure38  for obtaining bounds on the 
mechanical properties can easily be followed to produce bounds on the non-
mechanical parameters; see, e.g., Hashin and Shtrikman (1962c) for bounds for 
magnetic permeability, Willis (1977) for bounds for thermal conductivity, and 
Milton (1990) who provides a review of certain mathematical treatments con- 
cerning the overall mechanical and nonmechanical properties of composites.

39 
 

38  In addition to a variational method similar to that presented in this section, Milton (1990) 
summarizes another technique to obtain bounds on the overall properties, and discusses the relation 
between the two methods; see also Milton and Kohn (1988). 

39  While the bounds presented in this section involve the volume fractions of inhomogeneities 
and the corresponding two-point correlation tensors as the only required geometric information about 
the microstructure, improved bounds are obtained when higher-order correlation tensors are avail-
able; see, e.g., Torquato (1991) for discussions and references. 
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9.7.1. Generalized Hashin-Shtrikman Variational Principle 

Consider an RYE whose force and flux fields, p(x) and q(x) , are related 
through the following linear constitutive relation: 

q(x) = K'(x)•P(x), (9.7.1a) 

where the conductivity tensor K'(x) stands for any other nonmechanical (or 
mechanical) material tensor discussed in Subsection 2.7. Note that the force 
field is given by the gradient of a potential field, u, and the flux field is 
divergence-free, 

p(x) = — V u(x), V .q(c) = 0  in V. (9.7.1b,c) 

Moreover, on the boundary aV, either the potential or the flux is prescribed, 
such that the disturbance potential field, ud = u — c. < p>, and the disturbance 
flux field, qd = q — < q >, satisfy 

(v(x).qd(x)) u't(x) = 0 on aV. (9.7.2a) 

Note that ud is associated with the disturbance force field, pd = p — < p>. When 
the boundary conditions that satisfy (9.7.2a) are prescribed, the average force 
and flux satisfy 

<q.r>=< q>.< r >; (9.7.2b) 

see Subsection 2.7. 

To obtain a general variational principle similar to (9.5.7a), introduce an 
equivalent homogeneous RVE with constant reference conductivity tensor, K, 
and prescribe a suitable homogenizing eigenflux field,40 q* = q*(c). Flux and 
force fields in the equivalent homogeneous RVE are related through 

q(x) = K.p(x)+q*(x). (9.7.3) 

Since these fields in the equivalent homogeneous RVE coincide with those in 
the original heterogeneous RVE, they must satisfy (9.7.1a), and hence 

K'(x).p(x) = K.p(x)+q*(x) (9.7.4a) 

or 

(K'(x) — K)-t . q*(x) — p(x) = 0. (9.7.4b) 

This is the consistency condition for the eigenflux field. 

The governing field equation for a potential field u in the equivalent 
homogeneous RVE is deduced from (9.7.1a,b) and (9.7.3), 

V.{K.(—V11(x))+ q*(x)} =0, (9.7.5) 

subjected to the general boundary conditions satisfying (9.7.1d). This 
boundary-value problem for u can be solved for given q*, and the resulting force 
field is expressed in terms of q*, as 

40 An eigenflux field here plays a role similar to the eigenstress field in preceding subsections; 
see, for example, Subsection 7.3. 
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R(c) = r° — rG(x; q*), (9.7.6a) 

where GG is an integral operator which, for a given q*, produces the disturbance 
force field, 

pd 
- R — < p >. Superscript G here stands for general boundary 

conditions that satisfy (9.7.1d). On account of (9.7.2a), operator GG is self-
adjoint,  and operator < . { (K' — K) -1 + GG} . > is positive-semi-definite 
(negative-semi-definite) when K' — K is positive-semi-definite (negative-semi-
definite).

41 

When < p>  is prescribed to be p°, consistency condition (9.7.4b) is 
rewritten in terms of the integral operator GG, as follows: 

(K'(c) — K)
-1

. q*(c) + 1-G(c; q*) — p° = 0. (9.7.7) 

In view of (9.7.7), for an arbitrary eigenflux field, 0* _ 0*(x), introduce a func-
tional defined by 

(
* GG; P°) = 2 

< 0* . { (K' — K)-! + 1-G } . Y* > < 0* >.r°. (9.7.Sa) 

Since the first variation of J is 

dJ(Y*; GG; R°) = < dy* . { { (K' - K) 
i 
+ GG } . Y* — r° >, (9.7.8b) 

the exact eigenflux field, q*, which satisfies (9.7.7) renders J stationary. The sta-
tionary value of J is given by 

j(q*; GG; p°) _  — Z q*.p° = Z r° .(K —
KG)•P°, (9.7.8c) 

where KG is the overall conductivity tensor for the prescribed general boundary 
data.42 This is one of the generalized Hashin-Shtrikman variational principles 
for nonmechanical properties of any heterogeneous RVE under general boun-
dary data which satisfy (9.7.2a). Moreover, from the positive-semi-definiteness 
(negative-semi-definiteness) of the operator < . ((K' — K)-1 + GG } . >, it immedi-
ately follows that, for any eigenflux field, 0*, 

2 r° . (K — K G) . r° = J(r*; rG : r°) < 2) J(0*; GG :13°), (9.7.9a) 

when K' — K is positive-semi-definite (negative-semi-definite). These are the 
generalized Hashin-Shtrikman bounds corresponding to general boundary data 
(9.7.2a). 

As in the case of mechanical fields, the formulation here may also be 
implemented in terms of the eigenforce field, say, = f*(c), conjugate to the 
eigenflux field 0* = *(c) If the reference resistivity is R = K-1, then the 
eigenfields are related by 

R.0* 
+ f* = 0 or K. O* + 0* = 0; compare with 

(7.3.13a,b). Then, in terms of GG, an integral operator for f* is defined by 

41 The proof of these properties of the integral operator is essentially the same as that given in 
Subsections 9.1 and 9.2. 

42 

From (9.7.2b), it follows that < q > = KG.p0 and < q.p > = pi.EG.pi. 
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AG(x; f*) = K. { AG(x; - K.f*) + (f* - < f* >) }, (9.7.~b) 

which produces a disturbance flux field, qd - q - < q >. In terms of integral 
operator AG, functional Í conjugate to the functional J, is defined as 

I(f*; AG; q°) = 2 < f* . { (R' - R)
- I 

+ AG } . f* >-<  f* >.q°,  (9.7.8d) 

for a given q°. Since the first variation of Í is 

dÍ(f*; AG; q°) _ < df* .{ {(R'-R)
-1 

+ AG } .4)* - q° } >, (9.7.8e) 

the exact homogenizing eigenforce field, r* - - R. q*, renders Í stationary. The 
stationary value is given by 

Í(p*; AG; q°) =  2 p*.q° = 2 q°.(R-RG).q°, (9.7.8f) 

where RG is the overall resistivity tensor for the prescribed general boundary 

data43 that satisfy (9.7.2a). Then, the second generalized Hashin-Shtrikman 
variational principle applied to nonmechanical fields, takes on the following 
form: 

2 r°. (R - RG) • q° = I(R*; AG; q°) < (?) I(f*; 
AG: 

q°), 

when R' - R is positive-semi-definite (negative-semi-definite). 

(9.7.9b) 

9.7.2. Consequence of Universal Theorems 

Although (9.7.9a,b) is exact, it is not easy to determine the integral opera-
tor GG which produces disturbance fields satisfying the prescribed boundary 
conditions. In order to use an integral operator which can be explicitly deter-
mined, combine the Hashin-Shtrikman variational principles with Theorems I 
and II of Subsection 2.7. First, observe the following inequality which is 
obtained directly from the proof of Theorem II: 

2 
< rP.K'.r > <_ 2 < (p°+13d).K'.(p°+pd) >, (9.7.10a) 

where pP = pP(x) is the force field when the RVE is subjected to the linear 
potential boundary conditions which yield the average force p°; and pd = pd(x) 
is an arbitrary disturbance force field which is compatible,44 i.e., is given by the 
gradient of a certain disturbance potential ud, pd = — Du d, and has zero volume 
average, < pd > = O. 

Let K be a constant conductivity tensor such that K' - K is negative-
semi-definite, i.e., for any arbitrary pair of fields p and p', 

43 Again, from (9.7.2b), it follows that < p > = RG.q° and < p.q > = q°.RG qo 
44 The disturbance force field pd is not necessarily associated with an "equilibrating" flux field, 

i.e., K' 
.pd 

need not necessarily be divergence-free. 
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O ? (r-r').(K'-K).(r-r'). (9.7.11) 

Replacing p' by p' _ (K' - K)-1 . o*, and taking the volume average of the 
resulting inequality, obtain 

0 >_ 2<p.(K'-K).r-2*.13+ Y*.(K'-K)-I. * >. (9.7.12) 

Then, taking advantage of inequality (9.7.12), evaluate the right side of 
(9.7.10a) and obtain 

2 
< rP.K'.r' > <_ Z r°.K.ro 

- 1< y*.(K_K)_I.y*_ y*.(Rd +2Rs) >– Z<pd.gd>, (9.7.13) 

where qd = K.pd+ O*d. Note that inequality (9.7.13) holds for any pair of 0* 
and pd, as long as K' - K is negative-semi-definite. 

Now, relate pd and *d through an integral operator which can be 
obtained from the Green function of an infinite homogeneous solid B with uni-
form conductivity K. As in the case of mechanical fields, this integral operator 
is denoted by Gl, i.e., pd(x) = - GA(R; Y*d). The explicit expressions of 

Gl 
and 

the Green function are given at the end of this subsection.45 When the subregion 
V' is ellipsoidal,

46 
the following three identities hold: 

<rl>=< -AA(o*) >= 0, 

< qA > _ < - K.AA
(o*) + 0*d > = 0, (9.7.14a-c) 

< gl.rl > _ < y*d. {GA.K.GA - AA} .y* > <_ 0, 

where qA = K.pA+ *d is the corresponding flux field; the proof of (9.7.14a--c) 
is given at the end of this subsection. 

In view of (9.7.14a), replace pd in (9.7.13) by pA, and from (9.7.14c), note 
that the last term in the right side of (9.7.13) is negative. Hence, inequality 
(9.7.13) is rewritten as 

2 
< r .K'.r > <_ 2 p°. K.r°-J(  *; Gl; r°). (9.7.15) 

Furthermore, if K' is defined as the overall conductivity of the RVE when sub-
jected to the linear potential boundary conditions, then < p'.K'p' > is given by 
r°.KP.p°, and (9.7.15) yields 

2 
r° . (KR - K) . r° < - j(

*; Gl; r°), (9.7.16a) 

if K' - K is negative-definite. This is an exact bound for K', directly expressed 
in terms of the simple and known integral operator 

Gl 
of the infinite uniform 

body B. Note that this formulation is implemented directly in terms of the 

° See (9.7.24) and (9.7.25a—c). 
46 

When (9.7.14a,b) hold, then (9.7.14c) follows whether or not V' is ellipsoidal. 
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universal Theorem II and the negative-definiteness of K' — K. The only assump-
tion is that (9.7.14a,b) hold, which is necessarily ensured when V' is ellipsoidal. 

In essentially the same manner, an exact bound for the overall resistivity 
is obtained. First, Theorem I of Subsection 2.7 is generalized as 

<gQ.R'.gQ><_ <(q°+gd).R'.(q°+qd)>, (9.7.1Ob) 

for any equilibrating qd with zero average, where qQ is the divergence-free flux 
field when the RVE is subjected to the uniform flux boundary conditions which 
yield < qQ > = q°. Then, qd( c) in (9.7. l Ob) is set equal to — AA(x; f*), where 
integral operator AA is defined by AA(x; f*) K.GA(x; Y*)— Y*d(x) with 

R. *. In this manner, the following exact inequality is obtained: 

2 q
° . (RQ — R) . q° < — Ï( f

*; Al; q°), (9.7.16b) 

when R' — R is negative-definite and the RVE is ellipsoida1. 47 Note that RQ is 
the overall resistivity of the RVE when it is subjected to the uniform flux boun-
dary conditions. 

9.7.3. Universal Bounds for Overall Conductivity 

Since 
Gl 

is explicitly given, functional 
j( *; 

Gl; p°) can be computed 
exactly for certain classes of suitable eigenflux fields. Suppose that an ellip-
soidal RVE contains n distinct microconstituents embedded in a matrix. Let the 
matrix and microconstituents be denoted by Wo and W l, W2, ..., W. The conduc-
tivity and volume fraction of W~, are Ka and fa (a = 0, 1, ..., n). To homogenize 
this RVE, consider an ellipsoidal subregion V' of an infinite homogeneous body 
B. The geometry of V' is the same as that of the RVE. Let the body B be iso-
tropic, with conductivity tensor K = K 1(2), such that Ka — K is negative-definite 
for all a. Assume that B is subjected to farfield uniform forces p°. Then, distri-
bute piecewise constant eigenfluxes in B in the following manner: 1) Y*a in 

each Wa within V'; and 2) Y* 
= $ fa 

*a uniformly in B — V'. Thus, in V', the 
a= 0 

disturbance eigenflux field is 

Y*d(c) = S, H(x; W0) 
(Y*a  

a = 0 
(9.7.17) 

where H(x; Wa) = 1 for x in Wa, and 0 otherwise. 

The average eigenflux '* does not produce disturbance fields, since it is 
uniformly distributed throughout B. Moreover, < AA(Y*d) > vanishes, since V' 
is ellipsoidal. Hence, in this setting, functional J reduces to the function JA' of 
y*a's, defined by 

° The properties of A which are the same as those of Gl, (9.7.14a—c), must be used to derive 
(9.7.16b) but no other assumptions are required. Hence, (9.7.16b) holds for any ellipsoidal RVE. 



1 

< H(Wa) G,̂  H(Wr) > = 
if a = b 

0 otherwise. 
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JA'~~ { Y
*
a } ; R° ) = 2 a~0 fa Y*a • { (Ka — K)-1 , yr

*a — 2 r° } 

– a
t 

So < { H(WRa)(Y
*°. 

— ‚‚*) } . G. { H(WRb)(Y
*
ß — ‚*) } >.  (9.7.18) 

To compute JA', < { H(wa)(Y*a — ‚‚*) } . G. { H(wb)(Y*ß — l*) } > needs to be 
evaluated. 

Since K is isotropic, the integral operator GA has the following property: 

(9.7.19a) 

The proof of this property is given at the end of this subsection. Introduce an 
isotropic second-order tensor P = (1/3K) 1(2), and rewrite (9.7.19a) as 

fa R~~~ if a = b 
< H(Wa) G H(Wr) > = (9.7.19b) 

0 otherwise. 

Note that the left side of (9.7.19) can be explicitly evaluated in terms of P, if sta-
tistical homogeneity and isotropy are assumed; see Subsection 9.4 for the case 
of mechanical fields. 

Taking advantage of exact relation (9.7.19), proceed as follows: let only 
one component of the uniform force r°, say, pi, be nonzero, and let the corre-
sponding nonzero component of 0*0C be i ° for each W. The function JA' for 
this case is denoted by JA'({pia}; pi ). For three possible cases of this kind, 
identify the nonzero components of r° and yr*« by r° and Y. Then, consider 
the following sum of the resulting three cases: 

JA'({Y~ a}; pl)+~~'({Y2a}; r2)+ JA'({Y3a}; r3) 

1  h —  — 
= ~~ S fa Y*a {(Ka — K) 1 + R11 } y*a 

_ 2 
y* R~~~ Y* _ 3y* r°. 

a = 0 
(9.7.20) 

Since the right side of (9.7.20) is a quadratic form (with linear terms) for 
{ 0*«) it can be optimized. Let { q*« } be the eigenflux that renders the right side 
of (9.7.20) stationary, and compute 

JA'({g~a}; Pi)+J
A
'({q;a}; ri)+J

A'({q;a}; r3) = r° (K~~ — K)r°, 
(9.7.21a) 

where 

K"+ 9 ~ G1+ 
R„   

~Ka — I{) ~~~ 
1 (Ka _ K)1 K)~~~ 

1 , 
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h c f(   
~ rSo a1+ 
 (Ka — K),< i 

In view of (9.7.16a), the following bound for KP is obtained: 

R >— K if K' — K is negative—definite. 

(9.7.21b) 

(9.7.22a) 

By definition of the integral operator Gl, the following equivalence rela-
tion holds between Í(f*; AA; q°) and J(0*; Gl; ro): 

IA(f*; Al; q°) + JA(Y*; Gl; R°) = 
2 

< 0* > : R: < 0* >, (9.7.23) 

where f* = _R. O* and q° = K. R°+< 0* >. From (9.7.23), IA which 
corresponds to JA for the above special eigenflux field, is computed exactly. 
Hence, in view of inequality (9.7.16b), the following bound for RQ is obtained: 

R1$ >— K if R' — R is negative—definite, (9.7.22b) 

where K is given by (9.7.21b). 

Now, the explicit form of the Green function of the infinite homogeneous 
B and the associated integral operator GA is presented, and the properties of Gl 
are proved. Since, in the presence of a source b, the governing equation for a 
potential u in B is V. {— K.(Vu)} +b = 0, the Green function of B is 

L . (x.K.x)-iexp(tx.c) dVx. (9.7.24) 

Hence, when an eigenflux field 0* 
is prescribed in B, the resulting force field is 

given by 

— rl(x) = GA(c;  *) 

= f 
+

f FGA(x).Fy*(x) exp(ix.c) dVx, (9.7.25a) 

where 

= (2p)3 1 'i'' exp(— ix.c) dVx, 

FAAO = ®
x/x.K.x  x ~ 0 

(9.7.25b,c) 
0 x=0, 

and where x x l. 

The proof of (9.7.14a--c) and (9.7.19a) is as follows: 1) For any arbitrary 
eigenflux distributed in an ellipsoidal region, the volume average of the resulting 
forces is given by the product of a certain second-order tensor and the average 
of the eigenflux. Hence, (9.7.14a) and (9.7.14b) hold as long as V' is ellipsoidal 
and < 0*d > = 0. 2) Due to the positive-definiteness of K, the following ine-
quality holds: 
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< gd.pd > = <  0*d.(AA.KA A— GA).y*d > 

< n, J B GA(c; Y
*d) (K GA(c; Y*d) — Y*d) dV. 

The right side of (9.7.26a) is expressed in terms of 
F'lI*d 

and FA, as 

- -i: FY*d(— x) . { FAA(_ x) .K.FAA(x) — FrA(— x) } .Fy*d(x) anx. 

From (9.7.16c), 
FAA 

satisfies 

FGA( — x) . k. FGA(x) = FGA(x) . K . FGA(x) = FAA(F,), 

for x # 0, and the term in the curly brackets vanishes. Hence, (9.7.14c) holds. 
3) For isotropic K, the Fourier transform of GA is 

FAA(x) = XâX (9.7.27a) 

where x _ x / 1 x 1; see definition (9.7.25a,b) of Gl. From x, x, = 1, the com-
ponents of 

FAA 
satisfy 

FG;; = , (9.7.27b) 

from which the inverse Fourier transform of FG;A becomes 

1  
(2p)s f

- 
FG;?(x) exp(Ix.c) dNx = d(x), (9.7.27c) -  

where d(c) is the delta function at the origin. Hence, (9.7.19a) is obtained. 
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SECTION 10 SELF-CONSISTENT, DIFFERENTIAL, 
AND RELATED AVERAGING 
METHODS 

In the preceding sections, the overall moduli of a linearly elastic RVE are 
evaluated by: (1) the assumption of a dilute distribution of inhomogeneities, and 
(2) the self-consistent method. In the first case, the interaction effects are ig-
nored, and, in the second case, this interaction is included in a certain sense. 
Both methods, however, are valid only when the volume fraction of inhomo-
geneities is rather small, although the self-consistent estimate may apply over a 
wider range. There is an alternative method, called the differential scheme, 
which applies over a much wider range of the volume fraction of inhomo-
geneities. In this scheme, differential equations for the overall moduli are 
derived by evaluating the change in the moduli of a homogenized RVE due to 
the introduction of an infinitesimally small amount of microconstituents. The 
overall moduli are then determined as suitable solutions of these differential 
equations. In this section the self-consistent and differential schemes are related 
to the results obtained by the dilute-distribution assumption, and their relations 
are discussed in some detail. Other related averaging schemes are also con-
sidered, including the two-phase, double-inclusion (or the three-phase), and the 
multi-inclusion methods. In addition, it is shown that the average strain within 
each annulus in a nested set of ellipsoidal regions of arbitrary aspect ratios and 
relative orientations and positions, embedded in an infinite uniform elastic solid, 
can be computed exactly, when each annulus undergoes arbitrary transformation 
with uniform but distinct (i.e., different from annulus to annulus) eigenstrains; 
the eigenstrain of the innermost ellipsoid need not be uniform. Explicit results 
are presented for this problem, and used to obtain estimates of the overall modu-
li of composites with several layers of coatings of different elasticities. 

10.1. SUMMARY OF EXACT RELATIONS BETWEEN AVERAGE 
QUANTITIES 

For a linearly elastic RVE, with matrix M and micro-elements Wa, the fol-
lowing two exact equations define the overall moduli: when the constant ma-
crostrain E = e° is prescribed, 

(C — C) : e° _ }~~ fa (Ca — C) : ~° ; (l0. l .la) 

and when the constant macrostress S _ s° is prescribed, 
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(D—D) : s0 
= 

1 fa (Da —D):ß". (10.1.Ib) 

In general, C given by (10.l.la) and D given by (10.1.1b), may not be each 
other's inverse. Since the RVE is linearly elastic, the average strain and stress 
in each inclusion relate linearly to the uniform boundary data: when the macros-
train E = e° is prescribed, 

~" = ~a(e°) _ Ea : e°, (10.1.2a) 

and when the macrostress S = s° is prescribed, 

sa(s°) = F" : s°, (10.1.2b) 

where the fourth-order tensors Ea and F" depend on the material properties and 
geometry of all constituents: 

E"(Ca, W
a; C, I; C1 , W1 ; ...; Cß, Wr; ...; C° , Wn), 

F" = F"(D", Wa; D, M; D1, W1; ...; Dß, Wp; ...; Dn, Wn), (b # a), 
(10.1.2c,d) 

where M and Wr stand for the geometry (shapes, locations, etc.) of the matrix 
and the bth micro-element. Note that Ea and Fa relate to tensors ha and ja of 
Sections 4 and 7, by 

(C" — C) : Ea = j", (D" — D) : F a = ha  (ci not summed). (10.1.3a,b) 

Here, it is more convenient to use Ea and F", as defined by (10.1.1a,b). 

From (10.1.1a,b) and (10.1.2a,b), 

C = C + f~ (C" — C) : Ea (e° prescribed), 
a=1 

D = D + S f« (D" — D) : F"  (s° prescribed). (10.1.4a,b) 

In general, it is difficult to obtain exact expressions for Ea and F". With proper 
estimates of Ea and F", however, reasonable estimates of C and D can be ob-
tained. Note that, in general, Ea and Fa are not related to each other, since they 
represent the response of the ath micro-element, Wa, in a finite RVE of volume 
V, under different boundary conditions. 

10.1.1. Assumptions in Dilute-Distribution Model 

Since it is difficult to obtain the tensors Ea and Fa exactly, approximate 
estimates are often sought, based on simple assumptions. The simplest esti-
mates are obtained from the Reuss and Voigt approximations which produce 
bounds; see Subsections 2.5 and 7.1, and Equations (7.1.14) and (7.2.9), where 
Ea and Fa are taken to be 

1(4s), 
the identity tensor. 

The next simplest assumption is that of a dilute distribution of inhomo-
geneities, where interaction among the inhomogeneities is neglected. This as- 



10.1 RELATED AVERAGING METHODS 327 

sumption yields reasonable estimates of Ea and Fa, when the volume fraction of 
micro-elements is relatively small and the micro-elements are far apart. With 
the assumption of a dilute distribution of inhomogeneities, consider a fictitious 
unbounded homogeneous solid, denoted by B, whose moduli are those of the 
matrix material and in which an isolated micro-element, Wa, is embedded. 
Denote the corresponding average strain and stress in Wa due to farfield uniform 
strain e°° = e° and stress s°° = s°, respectively, by 

~a(e°) - E°° : e°, ~a(s°) - F°°: s°, (10.1.5a,b) 

where 

E°° = E(Ca, Wa; C), F°° = F°°(D a, Wa; D). (10.1.5c,d) 

Here, Wa stands for the shape and orientation of the ath micro-element. Unlike 
for the bounded V, in the present case, for either s° = C : e° or e° = D : s°, 

F°° = Ca : E°° : D, E°° = Da : F°° : C. (10.1.6a,b) 

This is because the farfield strain and stress are related through s° = C : e° or 
e° = D : s°, and hence produce identical fields in B. Depending on C, Ca (or D, 
Da), and Wa, it may be possible to calculate E°° and F°° directly. In the sequel, 
denote the estimate of Ea and Fa obtained by means of the dilute-distribution as-
sumption (i.e., by embedding an isolated Wa in an unbounded matrix with elasti-
city C) by superposed DD (for dilute distribution), i.e., set 

Ea = Erra =_ E~(Va Wa; C),  Fa FDDa =_ F(Da, Wa; D).  (10.1.7a,b) 

Denoting by CDD the corresponding estimated overall elasticity tensor when the 
RVE is subjected to e°, and by DDD the corresponding estimated overall compli-
ance tensor when the RVE is subjected to s°, obtain 

CDD C+ ±  fa (Ca — C) : EDD° 
a=1 

DDD = D +~ fa (Da — D) : FDD a. (10.1.8a,b) l   

From the equivalence relations (10.1.6a,b) for E°° and F, 

(Ca — C) : EDD a = —C : (Da — D) : FDD a : C,  

(Da — D) : FDDa = — D: (Ca _ C) : EDDa : D (ci not summed), (10.1.9a,b) 

and the estimated overall tensors CDD and DDD satisfy 

Z
(D : CDD +DDD : C) = 1(4s), 

2 
(C : DDD+CDD : D) = 1(4s). (10.1.9c,d) 

Hence, from jD — DDD) : (C — CDDjor (C — C'): (D — DDD), it is seen that the 
deviation of DDD : CDD and CDD : DDD from 

1(4s) 
is second-order in the volume 

fraction of inhomogeneities, 
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j DD :  DD-1(as)
=

S ~, b { (Ca - C) : EDD«} : { (Db - D) : FDDb), 
a 1  i 

DD: 1jpO — 1(4s) = r ~ f1 fß { (Da — D) : FDDcX } : { (Cß — C) : EDDß } . 
a 1 
 

1 

(10.1. l0a,b) 

Although CDD and DDD are the overall tensors for different boundary conditions, 
they are each other's inverse to the first order in the volume fraction of micro-
elements. 

10.1.2. Dilute Distribution: Modeling Approximation 

As commented on in Subsections 5.1.1, the effective overall moduli es-
timated on the basis of the dilute-distribution assumption contradict the exact 
inequalities (2.5.44) of Subsection 2.5, which are based on fundamental energy 
theorems in linear elasticity. Here, this issue is examined in some detail and it is 
shown that the contradiction stems from the approximation used in the dilute-
distribution modeling to estimate the concentration tensors, E and F. 

For simplicity, consider a two-phase composite, and let the corresponding 
RVE consist of the matrix phase with elasticity C = D-1 and the inclusion phase 
with elasticity C1 = (D1)-1. The overall elasticity when the RVE is subjected to 
the linear displacement boundary conditions, and the overall compliance when 
the RVE is subjected to the uniform traction boundary conditions are exactly 
given by 

CE = C + f (CI — C) : EE, DO= D + f (Dl — D) : FO, (10.1.11a,b) 

where superscript E or S emphasizes that the corresponding quantity is obtained 
for prescribed macrostrain, E = e°, or prescribed macrostress, S = s°, respec-
tively; hence, EE is the concentration tensor for the average strain in the inclu-
sions under the overall strain E, while FO is the concentration tensor for the 
average stress in the inclusion under the overall stress S. 

Taking advantage of identities 

DO — D = —D : (CO — C) : DO, 

D1 —D= — D : (C 1 — C) : D 1, (10.1.12a,b) 

with CO = (DO)-1, rewrite (10.1.11b) as 

CO = C + f (C1 — C) : (DI : FO : C O). (10.1.11 c) 

Subtracting (10.1.1lc) from (10.1.11 a), compute the difference CE — C°, as 

CE - CS = f (CI — C) : { EE — DI : FO : CO } . (10.1.13) 

Since the overall elasticity tensors CE and CO are defined in terms of two dif-
ferent boundary-value problems, it is clear that they need not coincide. Indeed, 
the following inequality holds between CE and CO: 
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e° : (CE_CO) : e° >_ 0, for any e°; (10.1.14a) 

see Subsection s 2.5. For illustration, assume that C, C1, and C, are all isotropic. 
Then, (10.1.14a) reduces to the following scalar equation: 

(CE)a _ (CS)a ~ 0, for a = 1, 2, (10.1.14b) 

where Oa's are the coefficients of the unit isotropic tensors, E 1 and E2, defined 
in Section 8; see (8.1.1). 

In the dilute-distribution model, concentration tensors EE and FO are ap-
proximated by E°° = E °(W, C1; C) and F°° = E (W, D1; D), which, respectively, 
give the average strain and the average stress in an inclusion of elasticity 
C1 = (D1)-1, embedded in an infinite homogeneous solid of elasticity C = D-1, 
when farfield strains and stresses satisfying e° = D : s° or s° = C : e° are 
prescribed.  Therefore, these concentration tensors are related through 
F°° = C 1 : E°° : D; see (10.1.6). The scalar equation corresponding to (10.1.13) 
then becomes 

(CEDD)a — (CODD)C1 = — f { (C (VR)a} (Eo°)a (D)a { (VRSDD)a _ (Cr } 

for a = 1, 2 (a not summed). (10.1.15a) 

If the inclusions are stiffer than the matrix, (Cs)a and 
(CSDD)a 

will be greater 
than (Cr. On the other hand, if the inclusions are more compliant than the ma-
trix, (C1r and (C

SDD)a 
will be smaller than (C)a. Since (E)° is positive, the 

right-hand side of (10.1.15a) is always negative. This implies that 

(CEDD)15 _ (CSDD)a < 0, for a = 1, 2. (10.1.15b) 

This inequality is a direct result of the approximation used in the dilute-
distribution model to calculate the average strains and stresses in the inhomo-
geneities. Inequality (10.1.15b), therefore, should not be viewed as contradict-
ing the general result embedded in inequality (10.1.14a) and displayed by 
(10.1.14b) for an isotropic inclusion and matrix. If the concentration tensors, EE 

and FO, are calculated exactly, then (10.1.14b) is obtained instead of (10.1.15b). 
Indeed, this dichotomy should be viewed as a measure of the limitation of the 
dilute-distribution modeling approximation. 

10.2. SELF-CONSISTENT METHOD 

As already explained in Sections 5 and 7, to estimate the average stress or 
strain in a typical inhomogeneity, the self-consistent method embeds this inho-
mogeneity in a fictitious unbounded homogeneous solid B which has the yet-
unknown overall properties of the RVE, instead of those of the matrix material 

It should be kept in mind that inequality (10.1.14a) is derived on the basis of the average 
strain energy, and that for the linear displacement and uniform traction boundary conditions, the 
overall moduli obtained from the average stress-strain relation are identical with the overall moduli 
obtained from the corresponding average strain energy. 
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(used in the dilute-distribution approach). The resulting elasticity and compli-
ance tensors obtained for prescribed overall strains and stresses, respectively, 
are then each other's inverse. To distinguish these unbounded homogeneous 
solids, use the notation, 

B = B(C) = B(), (10.2.1) 

when the elasticity of the material of B is C = D-~. With this notation, the un-
bounded homogeneous solid used in the dilute-distribution assumption is denot-
edby B(C) or B(D), while that used in the self-consistent method is denoted by 
B(C) or B(D). 

Consider a successive approximation to estimate the overall tensors, and 
regard the self-consistent method as its limiting case. Let C(N) be the overall 
elasticity tensor in the Nth approximation, with C(1) = C, the matrix elasticity 
tensor. Denote by D(1) the overall compliance tensor (not necessarily the in-
verse of C 1) for the Nth approximation. Set 

~(n–1) = C + fa (Ca — C) : Ea(N), 
a=1 

(N+1) = D+ S fa (Da — D) : F a(N), 
a = 1 

(10.2.2a,b) 

where 

Ei(N) _ E(Ca, Wa; C(N)), Fa(N) = F°°
(Da, Wa; D(1)). (10.2.2c,d) 

Thus, Ea(N) and Fa(N) are the estimates of the concentration tensors Ea and Fa, 
on the basis of embedding W in infinitely extended hom geneous linearly elas- 
tic solids with elasticity and compliance tensors C(1) and respectively. 

With N = 2, the results of the dilute-distribution assumption are obtained, 

(2) = C + ~ fa (Ca — C) : Ea(I) = C + ~ f~ (Ca — C) : EDDa 
a a=1 

D(2) = D + 
S 

fa (Da — D) : Fa( i) = D + 
S 

fa (Da — D) : FDDa 
a = 1 a=1 

(10.2.3a,b) 

and hence C(2) = C
DD 

and D(2) = DDD 

Note that to obtain C 1±1  the fictitious unbounded homogeneous solid 
B(C 1) is used, whereas to obtain D1±1 , B(D(N)) is used; see (10.2.2c,d). 
Hence, C(N+i) 

and D 1±1 are not necessarily each other's inverse. Since B(C(N)) 
and B(D(N)) are influenced by all microconstituents in the RVE, C 1±1  and 
D1+1) take into account their interaction in a certain sense. It is plausible that as 
N increases, C(1) and D(1) become better estimates of the overall elasticity and 
compliance tensors. The limits C(°° ) and D(°° ) are defined by 

C(°° ) = lim C(N), D(°° ) - lim D(N). (10.2.4a,b) N-oo 1-400 

If these limits exist, then they may be considered the best estimates of the 
overall elasticity and compliance tensors, C and D, for this class of approximate 
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solutions. From the recurrence formulae (10.2.2a,b), 

C(°° ) = C + fa (Ca - C) : Ea(°°), 
a= i 

D(°°) 
= D + 

S 
f« (Da - D) : Fa(), 

a=i (10.2.5a,b) 

where 

Ea(00) = E°°(C a, Wa; c(`°)), Fa(00) = F(Da, Wa; D(00)). (10.2.5c,d) 

Hence, in this method, the original exact tensors Ea and Fa are approximated by 

Ea = Ea(°°), Fa = Fa(°°), (10.2.6a,b) 

which are the self-consistent estimates. The corresponding overall elasticity and 
compliance tensors, Csc and Dsc, are derived from the following equations: 

CSC = C + 
j 

fa (Ca — C) : Esca 
=1 

Dsc = D + S fa (Da - D) : Fsca 
a =1 

where 

(10.2.7a,b) 

Esca = EF(Va Wa; C), F5  = F°°(Da, Wa; Dsc) (10.2.7c,d) 

Therefore, from comparison of (10.2.5a-d) with (10.2.7a-d), Csc and Dsc agree 
with the limits C(°° ) and D(°° ), i.e., 

CSC  C(°°)  Dsc (10.2.8a,b) 

Since C(N) and D(N) correspond to the RVE subjected to different boun-
dary conditions, they may not necessarily be each other's inverse. Indeed, from 
the recurrence formulae (10.2.2a,b), it is seen that C1±1  and D1±1  are each 
other's inverse only up to the first order in the volume fraction of micro-
elements. The proof is straightforward. If C - C(N) and D - D(N> are 0(f), with 

f = fa, then C1±1 and D 1±1 become 
a=1 
C(N+i) = C + 0(f), D 1±1  D + 0(f), (10.2.9a,b) 

and hence, 

V(N+1) :  (N–1) = 1(4s)+ O(f2) (N+1) :  (N+1) = I ( ) + 0(f2). (10.2.9c,d) 

Now examine the equivalence of C 1 and D(N) in greater detail. Since 
B(C1) = B((C(N))-1) and B(D(N)) = B((D(N))-1), from (10.1.6a,b), it follows that 

E(Ca, Wa; C(N)) = Da : F °(Da, Wa; (c
1) 1) : C(n), 

F(Da, Wa; D11)) = Ca : E(Ca, Wa; (D(1))
-1

) : D(1)  (a not summed). 
(10.2. l0a,b) 

Using (10.2.10a,b), and multiplying (10.2.2a) by D from the left and by (C(N))-i 
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from the right, obtain  

D: {C(1±1) 
: (C(N))-1 } + ~ fa (Da — D) : F °`(Da, Wa; (C(n))-1). a=i 

(10.2.1la) 

Similarly, multiplying (10.2.2b) by C from the left and by D(1)-1 from the right, 
obtain 

(D 1)-t = C: {D(N+i) 
: (D(1)) 1 } + 

S 
fa (Ca — C) : E°°(Ca, Wa; (D

1)-1) a = 1 
(10.2.11b) 

Comparing (10.2.11a) with (10.2.2b), and (10.2.11b) with (10.2.2a), note that 

D(1+1)  (C 1)-1 = D : { 1(4s) (1±1) : (C(1))-1 

+ S fa (Da — D) : { F
00
(Da, Wa; D 1)) — F°°(Da, Wa; (C(N))-i) }, 

a = 1 

(1+1) — (D 1)-1 = C : ~~ 1(4s) (1±1) .  

+ S fa (Ca — C) : { E°°(Ca, Wa; c1) — E°°(Ca, Wa; (D
1)-1) } . 

a = 1 
(10.2.12a,b) 

As N goes to infinity, the left-hand sides of (10.2.12a,b) approach 

1-400 
m {D(N+1) — (C1)1 } = D (oo) — (C (°° ))-1, 

N 
{C(N+IL(D(N))-l} = C(°°) _ (D(°°))-1 , 

(10.2.12c,d) 

and the terms in the summation in the right-hand sides of (10.2.12a,b) approach 

u m { F°°(D a, W ; D(N)) — F °° (Da, Wa; (c1) 1)} 

= F°°(D a, Wa; D(°° )) — F°°(Da, Wa; (C(°°) )-i), 

N m{E°°(Ca, Wa; C
(N)) — E°°~Ca, Wa; ( (1))-1)} 

= E°°(Ca, Wa; C(°°)) _ E°° (Ca, Wa; (j(oo))_1) (10.2.12e,f) 

Since 

1-400  

m C(N+1) : (C 1) 1 = 1(4s), him  D( N+1) : (D1) 1 = 1(4s),  (10.2.12g,h) 

C(°° ) and D(°° ), and consequently Csc and Dsc, are each other's exact inverse, 

Dsc = (Vsc)-i CSC = (DSC)_l. (10.2.13a,b) 

As pointed out in Sections 6, 7, and 8, the overall elasticity or compliance 
tensor, Csc or Dsc, estimated by the self-consistent method, is given by the solu-
tion of a (nonlinear) tensorial equation. However, this tensorial equation cannot, 
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in general, be solved directly, especially when the geometries and material pro-
perties of the microconstituents are complicated. In this case, direct computa-
tion of the limit of the sequence { C(N) } or { D~N> } is an effective alternative algo-
rithm for obtaining 

CSC 
or Dsc. In three examples of Section 8, namely, Figures 

8.1.2, 8.2.1, and 8.2.2, 
Csc 

is obtained by directly computing {C(1)} such that 
C1 — C1 1) is essentially zero. Numerically, such direct evaluation of the lim-
it of this sequence appears stable and efficient. For the problems of Section 8, it 
produces physically meaningful solutions of the nonlinear equations. 

Since V is bounded, in principle C and D may not be each other's inverse. 
However, an RVE represents one macroscopic material point at which the mi-
crostructure must be characterized in a statistical sense. It therefore suffices to 
obtain a statistical estimate of the overall response of this RVE under various 
macroscopic conditions. This may be more significant than the exact response 
of the RVE under particular microscopic boundary conditions. In this sense, the 
overall tensors estimated by the self-consistent method, 

CSC 
and DSC, which are 

each other's inverse, may be a more suitable representation than the exact 
overall elasticity and compliance tensors calculated for the boundary conditions 
of the linear displacements and uniform tractions. It is in this sense that the 
results of various models discussed in this book should be examined. 

10.3. DIFFERENTIAL SCHEME 

As pointed out before, estimates of the overall moduli of heterogeneous 
linearly elastic solids by the assumption of a dilute distribution of micro-
elements, as well as by the self-consistent method, have a limited range of appli-
cability. While it is plausible that the self-consistent method may yield reason-
able estimates for greater values of the volume fraction of inhomogeneities than 
the dilute-distribution assumption, its range is still quite limited. Indeed, for 
porous elastic solids and for elastic solids with microcracks, the self-consistent 
method gives zero stiffness (zero values for the overall shear and bulk moduli) 
at unreasonably small values of the void volume fraction or the crack density 
parameter; see Sections 5 and 6, and Figures 5.1.3, 6.4.2, 6.4.3, and 6.6.2. In 
this book several alternatives which apply over a broad range of densities of in-
homogeneities are considered. They are: (1) estimates obtained by the dilute-
distribution assumption; (2) estimates obtained by the self-consistent method; 
(3) estimates obtained by the so-called differential scheme; (4) estimates ob-
tained by assuming periodically distributed inhomogeneities; and (5) estimates 
obtained by other averaging schemes. The fourth alternative is discussed and il-
lustrated in Chapter IV. In this subsection the differential scheme is examined. 
Subsection 10.4 deals with other averaging schemes, including the two-phase 
model (Benveniste, 1987), and the double- and multi-inclusion methods (Hon 
and Nemat-Nasser, 1992). 

As an introduction, consider an RVE which contains a uniform elastic ma-
trix of elasticity C = D-1, and micro-inclusions with common elasticity C1 = 
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(D1)-1, i.e., a two-phase RVE. To estimate the overall elasticity C, when the 
volume fraction of the inclusion is f, the differential scheme begins with a uni-
form RVE of elasticity C, containing an infinitesimally small volume fraction of 
inhomogeneities, df. The overall moduli are estimated by the dilute-distribution 
assumption which, since df « 1, yields accurate results. Then a new homo-
geneous solid whose elasticity tensor is the uniform elasticity which has just 
been calculated, i.e., the overall elasticity obtained in the previous step, is con-
sidered, and an infinitesimally small increment, df, of the inhomogeneities is ad-
ded. Again, the dilute-distribution assumption is used to obtain the new overall 
elasticity tensor. This process is continued until the final volume fraction of in-
homogeneities is obtained. The mathematical formulation of this procedure 
leads to an ordinary differential equation for the overall elasticity tensor as a 
function of the volume fraction of inhomogeneities, f. This differential equation 
is integrated and the overall moduli for any value of f are obtained. The method 
may be formulated in terms of the elasticity tensor or the compliance tensor 
which will be each other's inverse. 

In the sequel first the differential scheme for a two-phase RVE is formu-
lated, and then the results are extended to cases involving inhomogeneities of 
several phases. Note at the outset that, inasmuch as only the volume fractions of 
inhomogeneities are prescribed, the final solution is not unique, depending on 
the chosen integration paths. However, one may fix the integration path on phy-
sical grounds and obtain reasonable results. 

The differential scheme for estimating the overall properties of hetero-
geneous media was used by Roscoe (1952, 1973) who examined the viscosity of 
suspensions of rigid spheres and properties of composites with elastic and 
viscoelastic constituents. The application of the concept to composites and 
solids with microcracks is discussed by Boucher (1974), McLaughlin (1977), 
Cleary et al. (1980), Norris (1985), Hashin (1988), and Nemat-Nasser and Hon 
(1990). Other related contributions are Sen et al. (1981) and Sheng and Cal-
legari (1984) who consider geophysical applications, and Henyey and Pomphrey 
(1982) who use an iterative scheme. Milton (1984) has used the concept of 
embedding in defined proportions, dilute concentrations of phases of a hetero-
geneous body within a sequentially homogenized medium, and has established 
the corresponding relation to other averaging methods, especially to realization 
of bounds through sequential packing; see also Milton (1990) who presents a 
broad framework to obtain possible effective tensors for composites, and Tor-
quato (1991) who reviews the literature in the general area of random hetero-
geneous media with improved bounds for effective parameters, and provides 
useful comments and references. 

10.3.1. Two-Phase RYE 

Here the uniform matrix of elasticity C contains only one kind of inclu-
sion of common elasticity C1; the corresponding compliance tensors are D and 
D1, respectively. For conceptual simplicity, let there be only one inclusion W1 

with volume fraction f1 in the RVE. Regard the overall elasticity and compli- 
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ance tensors of the RVE as functions of f i, i.e., 

C (= C(C1, Wi; C, M)) = C(f i), 

D (= D(D1, Wi; D, M)) = D(f1). (10.3.1a,b) 

Seek to obtain an expression which governs the variations of C and D in terms 
of f i, with the shape of the inclusion, W1, kept fixed. 

From the exact equation (10.1.4a), C(f1) satisfies 

C(f i) — C = f 1(C
1 — C) : E 1(C1, W1; C, M), (10.3.1c) 

when the macrostrain E = e° is regarded prescribed, and in view of the exact 
equation (10.1.4b), D(f i ) satisfies 

D(f1) —D = f 1(D
1 —D) : F1(D1, Wi; D, I), (10.3.1d) 

when the macrostress S = s° is regarded prescribed. The tensors E1 and F1 

determine the average strain and stress in W1, i.e., ~1(e°) and s1(s°), respective-
ly. Consider the change in E1 and F1, and hence the change in C and D, caused 
by an infinitesimally small change in f i. 

First, to examine the change in C, construct the following procedure: 

1) Consider an RVE of volume V which consists of a uniform matrix M of 
volumev and an inclusion W1 of volume 11. Let the overall elasticity ten-
sor be C(f i), where f i = v1/(v+vi). 

2) Replace this RVE by a uniform solid, M', of volume v + v1, and elasticity 
tensor C(f i). 

3) Add an infinitesimally small inclusion dw1 of volume dv1 and elasticity 
tensor C1, and calculate the resulting new overall elasticity tensor by the 
dilute-distribution assumption. 

The geometry of dw1 is assumed to be similar to that of W1. The volume frac-
tions f1 and f1 + df1 are given by 

where df i « 1. Hence, the volume fraction df1 of the additional dW i in the 
composite of total volume v + v1 + w 1 is given by 

81/ 1  df1  

 ' 
. 

(10.3.2c) 
v+v1 +5v1 1 —f 1  

subtract (l0.3.2a) from (10.3.2b). Let the overall elasticiy tensor of this ima-
ginary composite of volume v + v1 + w j be denoted by C(f i + df 1).  Since the 
composite consists of a uniform matrix M' of volume v + VI and elasticity tensor 
C(f1), and an inclusion dw 1 of volume dv1 and elasticity tensor C1, the exact ex-
pression for C(f1 + df1) is, from (10.3.1c), 

(f1 –df1) —(f 1 ) = l8ff~ {C1 —C(f 1)} : E1(C1 , dw 1 ; C(f1 ), M'). (10.3.3) 

Now take the limit as the volume fraction of the micro-element dw 1 in the corn- 
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posite M'+8521 approaches zero. As dw1 approaches zero, the response of dw1 

embedded in the finite M' approaches that of an isolated micro-element embed-
ded in B(C) which is an unbounded homogeneous solid of elasticity tensor 
C(fl). This is the limiting case of the assumption of a dilute distribution of inho-
mogeneities. Hence, 

sszmo 
E1(C1, dw1; C(f1), N1') = E°°(C1, W1; C(f1)). (10.3.4) 

Here E°° is the tensor that exactly determines the average strain of an isolated 
micro-element in an unbounded homogeneous solid of uniform elasticity C; see 
Subsection 10.1. Therefore, taking the limit df l - 0 in (10.3.3), obtain a differ-
ential equation for C with respect to fl, 

dfl C
(f1) = 

1 _fl {C
1 –C(f 1)}: EDS, (10.3.5a) 

where 

EDP = EDS(f1) = E°°(C1, W1; C(f1)). (10.3.5b) 

Since C is equal to C at f l = 0, the initial condition is2 

C(0)=C. (10.3.5c) 

Hence, one has an initial-value problem for C. 

Next examine the effect of df l on the overall compliance tensor D(f i). 
Following the same procedure as above, arrive at 

df iR D(f1) = 1 1 fl {D
1 –D(f 1)} : FDS, (10.3.~a) 

where 

FDS = FDS(f1) = F00(Dl, W1; D(f0)), (10.3.~b) 

with the initial condition3 

D(0)=D. (10.3.6c) 

10.3.2. Multi-Phase RVE 

Using the technique of Subsection 10.3.1, examine a multi-phase RVE, 
containing n distinct linearly elastic and homogeneous micro-elements embed-
ded in its linearly elastic and homogeneous matrix. Let the volume fraction of 
each micro-element Wa be fa, and regard the overall elasticity and compliance 
tensors as functions of all fa, i.e., 

2 It should be noted that in the differential equation (10.3.5a), C approaches C1 as f i ap-
proaches 1, such that C1 —C vanishes at f 1 = 1, and the right-hand side of (10.3.5a) remains bound-
ed. Hence, C(1) = C1 need not be imposed as an additional condition. 

_ 3 
Like (10.3.5), in the differential equation (10.3.6a), D approaches Di as f i goes to 1. Hence, 

D(1) = D1 need not be imposed. 
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C (= C(C1, W1; ...; C°, W; C, M)) = C(f1,..., fa), 

D (= D(D1, W1; ...; Da, Wa; D, M)) = D(f1,..., fa). (10.3.7a,b) 

Micro-inclusions need not have the same shape, but each micro-element Wa is 
assumed to have a distinct similar shre for any value of fa, and hence only the 
effects of the volume fractions fa on C and D are considered. 

Consider an infinitesimally small change in the volume fraction of one 
typical micro-element, say, Wa, and examine its effects on the overall moduli 
using the procedure outlined in the preceding subsection. In this manner, arrive 
at 

C(..., fa + dfa, ...) — C(..., fa, ...) 

_  
1 — fa 

C(..., fa, ...) }: Ea(Ca, dWa; C(..., fa, ...), M') 

(a not summed; a = 1, ..., n), (10.3.8a) 

when fa is changed to f + df for a fixed a. Similarly, obtain for the overall 
compliance, 

D(..., fa + dff, ...) —D(..., f a, ...) 

fa, ...) }: Fa(D° ~, dWa; 
D(...> 

fa, ...), M') 

(a not summed; a = 1, ..., n). (10.3.8b) 

Note that in (10.3.8a,b) the homogenized matrix is M' which consists of the ori-
ginal matrix, M, and all inhomogeneities, Wp ((3 = 1, ..., n), and that the 
infinitesimally small inhomogeneity dWa has a shape similar to that of W. 

Taking the limit dff — 0, obtain partial differential equations from 
(10.3.8a,b) for the overall elasticity and compliance tensors estimated by the dif-
ferential  scheme. Denote these by CDS = CDS(f l, ..., fa) and DDS = DDS(f. 
fa), respectively, and observe that 

afa CDS(f l, ..., fa) =
1 

1 f 
(Ca — C DS) : EDSa 

a 

afa 
D°S(f 1, ..., fa) = 1 

1 
f (Da — DDS) : F DSix 

(a not summed; a = 1, (10.3.9a,b) 

where 

EDSa = EDSa(f., ..., fa) = E (Ca, Wa; CDS(f., ..., fa)), 

FDS" = FDSa(f
1, ..., fa) = F°°

(Da, W~; DDS(f i, ..., fa)). (10.3.9c,d) 

The initial conditions of the sets of partial differential equations (10.3.9a,b) are 

CDs(0, ..., 0) = C, DDS(0, ..., 0) = D. (10.3.9e,f) 
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It is clear that the solution to the system of partial differential equations 
(10.3.9a) or (10.3.9b), with the corresponding initial conditions (10.3.9e) or 
(10.3.9f), is not unique, because these partial differential equations give the gra-
dient of C

DS 
or DDS with respect to only the volume fraction of each inhomo-

geneity. From a physical point of view, this nonuniqueness is not acceptable: 
the overall response of an elastic composite should not depend on the manner by 
which the solution is constructed. That is, even if there are infinitely many ways 
that the construction of a finite composite can be theoretically interpreted (i.e., 
by different sequential additions of small amounts of inhomogeneities), the 
response of the final composite to given boundary data should be unique. 
Therefore, the possible solutions must be restricted by introducing reasonable 
simplifying assumptions. 

One technique of constructing the final solution incrementally is to start 
with the initial step of a uniform matrix, M, containing infinitesimally small in- 
homogeneities, dWa (a = 1, n), each centered at the centroid of the 
corresponding W, and each having a shape similar to the corresponding W. 
Furthermore, fix the relative fraction of inhomogeneities such that dWa/dWr 
= Wa/Wr for all a and ß. Thus, set 

fa = paf, Sfa = radf, S 
a 1

Ra= 1, 
= 

(10.3.10a—c) 

where pa, a = 1, 2, ..., n, are fixed numbers giving the relative volume fractions 
of inhomogeneities, and note that 

CDS(01f, r2f, ..., r f) DS(f), 

DDS(r1f, r2f. ..., rnf) = DDS(f). (10.3.10d,e) 

The parameter f then varies from zero to a final value, as the sizes of the inho-
mogeneities are increased while their respective shapes remain self-similar. The 
overall moduli CDs and DDS are now regarded as functions of only the total 
volume fraction f of the entire set of micro-elements, W, in the RVE. In this 
manner, the partial differential equations (10.3.9a,b) are reduced to the follow-
ing two ordinary differential equations: 

1  d VRDS(fl — 1  (Ca _ ADS) . EDSa 
Ra df 1 — raf 

1  d pDS(f) = 1  (Da — DDS) : FDSa 
Ra df 1 — paf 

(a not summed), 

(10.3.11 a,b) 

where 
EDSa 

and FDSa are now regarded as functions of f. 

Multiplying by r and then summing (0.3.11a,b) over all c's, obtain the 
following ordinary differential equations for CDs and DD: 

C''5(f) = ~ Ra  (Ca — C Ds) : EDSa 
df « _1 1— Paf 

CDS(0) = C, (10.3.12a,c) 

and 
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df DDS(fl = 
= 
= 

Ra  (Da — DDS) : FDSa 
a i 1 — paf 

DDS(0) = D. (10.3.12b,d) 

10.3.3. Equivalence between Overall Elasticity and Compliance Tensors 

The initial-value problem (10.3.9a,e) gives the overall elasticity tensor 
CDS of the RVE subjected to a constant macrostrain, while the initial-value 
problem (10.3.9b,f) gives the overall compliance tensor DDS of the RVE sub-
jected to a constant macrostress. In principle, 

Csc 
and 

DSc 
need not be each 

other's inverse. However, in order to obtain physically admissible solutions 
from the partial differential equations (10.3.9a,b), one may assign the 
equivalence of CDS and DDS as a necessary condition. As discussed before, such 
an equivalence is more desirable for estimating the expected response of an 
RVE, than the exact solution of the corresponding initial-value problem. 

To this end, observe that: 1) by definition, F°° and E°° are 

F°° (D° , Wa; (CDs)-t) = Ca : E(Ca, W0,; CDs) : (CDS)4 

E°°(Ca, Wa; (DDS)-1) = Da : F°(D a, Wa; DDs) : (DDS)-1 

(a not summed);  (10.3.13a,b) 

and 2) differentiation of CDs : (CDs)-1 = 1(4s) and DDs : (DDS)-1 = 1(4s) with 

respect to fa yields 

{  a  CDs } : (ADS)-1 + DS: f  a  (
1 

ADS)- i } =0, 
afa 

l a~a   

(  a  DDS ) : (1 1 +DDs . {  a  (DDs)  } = 0, (10.3.14a,b) afa afa 

and hence, 

a  ( Ds)1 =  (DS)1: {  a  CDs} :  
afa  afa 

a  (DDs)- i = _ (DDS)-1: {  a  DDS} : ( Ds)-1 
afa afa 

Then, from (10.3.13a,b) and (10.3.14c,d), the partial differential_equations 
(10.3.9a,b) for CDS and DDS can be transformed into those for 

(CDs)-1 
and 

(DDs)-1 respectively, as follows: 

a  ( DS) 1 = 1  
1 — f 

{ Da _ (VDS)-1 } : F(Da, Wa; (C
Ds)-1), afa a 

a  ( Ds)1 = 1  { Ca_ ~ } : E(Ca, Wa; ( Ds)1) 
afa 1 — f a 

(10.3.14c,d) 

(a not summed),  (10.3.15a,b) 

for a = 1, ..., n, and the initial conditions (10.3.9c,d) are transformed into 



(DDS)-1 = CDS 

or 

(10.3.17a,b) 

(10.3.17c,d) 

(CDS)-1 = DDS 

DS : DDS = 1(4s) DDS : CDS = 1(4s) 
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(CDs)-1(0, ..., 0) = D, (D')1(0,..., 0) = C. (10.3.15c,d) 

Here, in deriving (10.3.15a,b), the following identities are used: 

(C" — C Ds) : Dec = — CDs : { Da — (CDS)
-1 

} , 

(Da — DDS) : Ca = _DDS : { Ca — (DDS)
-1 } . (10.3.16a,b) 

From comparison of (10.3.15a) with (10.3.9b) and (10.3.15b) with (10.3.9a), 
respectively, it is seen that 

(CDS)-1 
satisfies the same initial-value problem as 

DDS. And from comparison of (10.3.15c) with (10.3.91) and (10.3.15d) with 
(10.3.9e), it is seen that (D')1 satisfies the same initial value problem as CDS. 

Therefore, if the solutions of the differential scheme are uniquely chosen,4 then 
it follows that 

Thus, the two partial differential equations, (10.3.12a) and (10.3.12b), are equiv-
alent. 

10.4. TWO-PHASE MODEL AND DOUBLE-INCLUSION METHOD 

A major shortcoming of the self-consistent method is that the interaction 
between the inclusions and their immediate surrounding matrix material of dif-
ferent elasticity is not directly included in the model. When the elasticity of the 
matrix deviates considerably from that of inclusions, one may use the double-
inclusion method which does take this fact into account directly. In this method, 
the average strain or stress in a typical inclusion is estimated by embedding a 
typical inclusion W in a finite ellipsoidal region V of matrix elasticity, and then 
this double-inclusion is embedded in an infinite uniform solid. When the elasti-
city of the infinite solid is that of the matrix, one has the two-phase model (Ben-
veniste, 1987). On the other hand, when this elasticity is the yet-unknown 
overall elasticity of the composite, one has the three-phase or double-inclusion 
model (Hon i and Nemat-Nasser, 1992); see Subsection 10.6. For prescribed 
overall strains or stresses, the average strains and stresses in the ellipsoidal re-
gion V are then obtained, and used to estimate its overall moduli, using the exact 
expressions (10.1.1a,b). This procedure for the double-inclusion model is 
significantly simplified by the use of the observation by Tanaka and Mori 
(1972), based on the properties of the Eshelby tensor; this and its generalizations 
are discussed in Subsection 11.3.3. The result exploits Eshelby's solution of the 

The partial differential equations (10.3.15) can be reduced to ordinary differential equations, 
in the same manner as (10.3.9) is reduced to (10.3.11) or (10.3.12). In this case, the solution is 
unique. 
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single-inclusion problem considered in some detail in Section 11. 

The Tanaka-Mori result addresses the following problem: Suppose that 
uniform eigenstrains are distributed in an ellipsoidal domain W embedded in an 
infinite homogeneous domain, and let V be an arbitrary ellipsoidal domain 
which includes W. Then, the volume average of the strains and stresses pro-
duced by the eigenstrains in W, when taken over V — W, is identically zero, if V 
and W are coaxial and similar5. 

From this exact result, the two-phase averaging scheme is derived and 
then generalized to the double-inclusion case which may involve noncoaxial and 
dissimilar ellipsoids of different elasticities, embedded in an infinite solid of yet 
different elasticity. Note the difference between this kind of averaging scheme 
and the three averaging methods discussed in this section. These latter methods 
consider a single inclusion embedded in an unbounded homogeneous elastic 
solid, and use this model to estimate the average strain or stress in a typical in-
clusion of a finite RIB consisting of many inclusions within a matrix material. 
On the other hand, in the double-inclusion method, a finite subregion of an 
infinite domain, which contains an inclusion is considered as an RVE, and the 
exact average strain and stress in this subregion are computed for uniform 
farfield stresses or strains. This method and its extensions to three-phase and 
multi-inclusion models are examined in this subsection. 

10.4.1. Basic Formulation: Two-Phase Model 

Consider an infinite homogeneous domain, B, of matrix elasticity C and 
compliance D, in which an isolated inclusion W of elasticity CU and compliance 
DU is embedded. Let V contain W, and be a subregion of the infinite domain. 
Denote by M the part of V which is outside of W, M = V — W. The elasticity and 
compliance fields of this infinite composite, C' and D', are 

 

C' = C'(x) = 
Ct x in W 
C  x in M 
C x outside of V 

(10.4. l a) 

and 

   

D' = D'(x) = 
DU  x in W 
D  xinM 
D x outside of V; 

(10.4. l b) 

   

see Figure 10.4.1. 

The following exact average relations hold among the strains and stresses 
in V, W, and M: 

5 It is shown in Subsection 11.3.3 that the average strain in the ellipsoidal domain V is exactly 
defined by the Eshelby tensor for V and the average eigenstrain in W, even when W is not ellipsoidal 
and the eigenstrain distribution in W is not uniform; see (11.3 .1 Sb). 
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Figure 10.4.1 

A double inclusion V = M + W is 
embedded in a uniform infinite 
domain B; elasticity of W is C2, 
that of M = V — W and the 
infinite domain is C; this is 
a two-phase model 

e >‚ = f e >w– (I —f) .V e >1, 

<s>1= f< s >w+(1 —f)< s>m, (10.4.2a,b) 

where f = WN. Let the farfield strains and stresses be denoted by e°° and s, 
and note that s°° = C : e°° or e°° = D : s. Let the homogenizing eigenstrain be 
e*. Then, if W is ellipsoidal, its strain and stress fields are exactly given by 

e(x) = e°° + S~ : e*, 

s(x) = C: {e +(SV — 1(40) : e*} x in W. (10.4.3a,b) 

Here the eigenstrain e* is determined from consistency condition (7.3.15a), to be 

e* = (Au — S W)-1 : e, (10.4.3c) 

where Aw _ (C—C2)-1 : C , and SV is Eshelby's tensor for W; see Subsection 
7.3. Since the strain and stress fields are uniform in W, their volume averages 
over W are given by (10.4.3), i.e., 

< e >w = e°° + Sw : e*, < s >W = C :  { e°° + (SW —1( 4s)) : e* } .  (10.4.4a,b) 

The eigenstrain defined by (10.4.3c) disturbs the strain and stress fields 
outside of W. Hence, these fields are not uniform. Let V be an ellipsoid coaxial 
with and similar to W. Then, according to the Tanaka-Mori result, the volume 
average of these disturbances, taken over M = V — W, vanishes. Hence, 
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<e>M= e°°, <s>M=C: e°° . (10.4.5a,b) 

Substituting (10.4.4a,b) and (10.4.5a,b) into (10.4.2a,b), obtain the exact aver-
age strain and stress over V, as follows: 

< e >v= e°°+ fSU: e*, 

< s >v = C: {e°°+ f (SW — 1( 4s)) : e*}. (10.4.6a,b) 

Therefore, the overall elasticity, denoted by CTP for this two-phase model, is 
defined through < s >v = CTP: < e >1, and is given by 

CTP = C: { 1(4s) + f (SW — 1(4s)) : (An — SU)-1 ) 

: { 1(as)+fSw:(A0 —SU) -1 }-1. (10.4.7) 

In deriving (10.4.7), one assumption, that the overall moduli of the two-
phase material are given by the average response of the above specified V, is 
made. The mathematical derivation, however, is exact. Furthermore, the 
overall elasticity and compliance defined on the basis of (10.4.6a,b): 

1) are each other's inverse; 

2) do not depend on the surface data on aV; and 

3) do not depend on the location of W relative to V. 

Except for special cases,6 the surface data on aV are unknown. Because 
of this, it cannot be proven that the same overall elasticity is obtained by consid-
ering the average strain energy of the composite. However, from (10.4.3a,b), 

(O : e)(C) = {e°°+(SW-1(4s)):e*}:C: {e°°+5°: e* } xin W, (10.4.3d) 

and its volume average over W is given by 

: { 1(4s) + SU : (A° — S W) } : e°°. (10.4.4c) 

Hence, assuming that the average strain energy over M, < O : e >1, is approxi-
mated by e°° : C : e°°, and using the exact average relation 

<s:e>v=f< s: e>w+(1 —f)< s:e>m, (10.4.2c) 

estimate the average strain energy over V, as 

<e:s>v =e:{1(
4s) +f(S°-1(

4s)):(Aw —S 0)-I}T:C 

: { 1(4s) + f$W : (AW — S W)-~~ } : e°° 

6 For example, if 1) V and W are cocentered spheres, 2) the farfield stresses or strains are iso-
tropic, i.e., of the form s1(2) or e1(2), and 3) C and CU are isotropic, then the field variables are 
spherically symmetric, and the surface tractions and displacements become uniform and linear on 
ay. 
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+ f(1 — f) e°° : { (SW —1(4s)) : (AW — S W)-1 } T : C : { SW : (AW — S W)-1 } :e°° 

=<e>v:CTP : <e >v 

+f(1 —f) e: ((S' — 1(4s)) : (AU — SU) -1 } T : C: { SU : (AU — Ste) -1 } : e. 
(10.4.6c) 

If f is close to 0 or 1, the second term in the right-hand side of (10.4.6c) may be 
neglected. Therefore, for a relatively small or large volume fraction, the sym-
metric part of the overall elasticity defined by (10.4.7) may be used to obtain a 

good estimate of the average strain energy in V. 

The above procedure can be directly applied to a multi-phase RVE. Sup-
pose that a finite ellipsoidal subregion V of the infinite domain contains several 
micro-inclusions Wa, (a = 1, 2, ..., n). Instead of (10.4.2a,b), then 

n 
>1 = S < >+(I —f) < e >1, 

a =1 

n 
>„ = S f < S >±(l—f) <O >1, 

a=i 
(10.4.8a,b) 

~ 
where f is the volume fraction of Wa, and f = E fa. For the same method to 

a 1 
work, each Wa of distinct elasticity Ca, must be an ellipsoid coaxial and similar 
to V. Neglecting the interaction among the micro-inclusions, set 

<e>a
=e°°+ SU :e*a, 

<O > = C: { e°° + (SU — 1(4s)) : e*a } , 

where 

E*a = (Aa — SU)_ 1 :  

(10.4.9a,b) 

(10.4.9c) 

with Aa = (C — C a)-1 :C, SU being the common Eshelby tensor for all Wa's. 
The average strain and stress over M are still given by (10.4.5a,b). Hence, sub-
stitution of (10.4.9a--c) and (10.4.5a,b) into (10.4.8a,b) yields 

< e >n = ef + f SU : (Aa — S 1 :  
a 1 

< s >n = C: {e°°+ 
SR 

f~ (SU —1(4s)) : ( Aa — Ste)-1 : e°°}. (10.4.10a,b) a 1 

Therefore, the overall elasticity CMP of this multi-phase composite becomes 

CIP = C: { 1(4s) + fa 
(SU — 1(4s)) : (Aa _ SU)— h } 

a 1 

' Note that < s : e >M = e: C: e is assumed in deriving (10.4.6c). This implies small 
volume fractions of the inclusion phase. 
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: {1(4s) ±  S f SU : (Aa _ Stt)-i }-i . 
a=i (10.4.11) 

The overall compliance D"" is given by the inverse of CL!R. 

10.4.2. Comments on Two-Phase Model 

The averaging scheme presented in Subsection 10.4.1 is proposed by Ben- 
veniste (1987) on the basis of the following model,$ due to Mori and Tanaka 
(1973): 

Suppose a number of micro-inclusions are randomly distributed in an 
RVE subjected to linear displacement boundary conditions. If an ad-
ditional inclusion W is embedded in this RVE, then the average strain 
over W becomes 

<e>VI=De+<e>M, (10.4.12a) 

where M denotes the matrix phase surrounding W, and De is given by 
the strain which is produced in an isolated inclusion when it is embed- 
ded in an infinite uniform domain.9 Since the number of inclusions is 
large, the average strain over the newly embedded inclusion W must be 
the same as that of the other pre-existing ones. Hence, (10.4.12a) 
gives a relation between the average strains in the inclusion and the 
matrix phases. 

To obtain the relation between De and < e >M, regard < e >M as the 
farfield strain e, introduced in Subsection 10.4.1, and compute the average 
strain in W in terms of < e >M. From (10.4.3a) and (10.4.4a), 

De = SU : (AU_ Sn)-1 : < e >M. (10.4.12b) 

The average strain in the inclusion phase is obtained by substituting (10.4.12b) 
into (10.4.12a). The average strain and hence the corresponding average stress 
in the inclusion and matrix phases are now expressed in terms of < e >i. Then, 
with the aid of (10.4.2a,b), the average strain and stress in the RVE are also ex-
pressed in terms of < e >i, and the overall moduli of the RVE are computed. In 
this manner, Benveniste (1987) derives the overall compliance under uniform 
tractions, and the overall elasticity under linear displacements. The final result 
is the same as (10.4.7).10 

S 

This is called the Mori-Tanaka model. A similar result is obtained when the RVE is subject-
ed to uniform traction boundary conditions. 

9 Mori and Tanaka (1973) also address the local field variables in the embedded inclusions, 
not only their volume averages; see also Tanaka and Mori (1972). 

1° Mori and Wakashima (1990) have obtained (10.4.7), using (10.4.12) and successive itera-
tions. The derivation in Subsection 10.4.1 is terse and transparent, requiring no iteration nor any res-
triction on the boundary data on N. 
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The Mori-Tanaka model and the differential scheme consider the change 
in the overall moduli when a small increment of the inclusion phase is intro-
duced in a homogeneous composite. The corresponding change in the field vari-
ables is neglected by the former, whereas in the latter scheme the change in the 
field variables is related to the change of the volume fraction of the inclusion. It 
is shown in Subsection 10.5 that, as the volume fraction goes to zero, the two 
methods agree asymptotically, although their specific predictions may be dif-
ferent, depending on the problem. 

10.4.3. Relation with Hashin-Shtrikman Bounds 

When V and W are spherical, the overall elasticity given by the two-phase 
model coincides with either the upper or the lower bound obtained from the 
Hashin-Shtrikman variational principle. Assume that the matrix is isotropic and 
all inclusions are spherical. If the reference elasticity is set to be the matrix 
elasticity, a bound on the overall elasticity, CHs, is given by (9.5.39b), i.e., 

(1—f)C+ S fa Ca:{1(
4s) + Ss:D:(Ca—C)}

-i 
a = 1 

:•(1—f)1(
4s) +  fa {1(

4s) +Ss:D:(CcG—C)} -1}-1,  (10.4.13) a=1 

where P in (9.5.28b) is replaced by Ss : D, with Ss being Eshelby's tensor for a 

sphere in an isotropic solid11; see Subsection 9.5. On the other hand, from 

(Aa — Ss) -1 = —D:  (Ca — C) : { 1( 4s) + Ss : D : (Ca — C) } -1 (10.4.14a) 

and 

1(4s) _ (1 —f)1(4s)+ 
L 
~` fa 1(4s)> 

a =.i i (10.4.14b) 

rewrite (10.4.11) as 

CMP = C:{(1—f) 1(4s)+ j fD :Ca : {1
(4s) +SS:D:(Ca —C)} -1 

a = 1 

:{(1 —f) 1(4s)+ 
S 

f {1
(4s)

+Ss:D:(Ca—C)}
-1 

a= i 
1• (10.4.14c) 

As is seen, the right-hand sides of (10.4.13) and (10.4.14c) are the same. Hence, 
C' coincides with CHs, if the inclusions are all spherical and the matrix is iso-
tropic. Weng (1990) shows the relation between the above two estimates of the 
overall moduli, CHs and Cm?. 

The matrix phase may be regarded as the 0th inclusion phase, i.e., M = W0 and C = CO. In 
this case, ~0C°:{1(4s)

+Ss:D:(C0-C)}-t and f0{1(4s) +Ss:D:(C0 -C)}-t reduce to (1- f) C 
and (1- f) 

1(4s), 
respectively. 

Ch' S = 
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The agreement of the overall moduli obtained by the multi-phase model 
and the corresponding Hashin-Shtrikman bounds is revealing. The multi-phase 
model includes the interaction between the matrix and an embedded inclusion 
exactly, but it does not take into account interaction among inclusions (which 
may not be negligible for large volume fractions of inclusions). Since the 
Hashin-Shtrikman variational principle considers the average strain energy 
stored in an RVE, it is seen that if the lower (upper) bound of the Hashin-
Shtrikman variational principle coincides with the multi-phase result, then the 
interaction among inclusions always makes a positive (negative) contribution to 
the average strain energy, in such a manner that the corresponding bound 
remains valid. Indeed, if C' — C is positive-definite (if D' — D is positive-
definite), then 

2e°: C:e°>_(<)2e°:CHS : e°=2e°: CMP: e°, (10.4.15) 

where C is the exact overall elasticity of the composite that gives the exact 
overall strain energy. Hence, if the inclusions are more stiff (compliant) than 
the matrix, their interaction always results in an increase (decrease) in the 
overall strain energy. 

10.4.4. Generalization of Eshelby's Results 

The two-phase model discussed in the preceding subsections is based on 
Eshelby's results. The double-inclusion method discussed in this and the fol-
lowing subsections is based on the following generalization of Eshebly's results. 
Consider average strains and stresses in an ellipsoidal region V of an unbounded 
uniform elastic solid B with elasticity C, when V undergoes phase transforma-
tions in the following manner: 1) an ellipsoidal subregion W of V undergoes 
transformation corresponding to eigenstrains e*'(c) (not necessarily constant); 
and 2) the remaining part of V, G = V — W, undergoes transformations with uni-
form eigenstrains e*2; see Figure 10.4.2. Ellipsoids W and V need not be either 
coaxial or similar. Although the resulting strain and stress fields, É d and sd, 
may not be constant in V and W, the average strain and stress in W are exactly 
given by 

<e' >f2= S : < e >w +(sn-sn):E*2, 

< sd > = C: (SU —1(4s) ) : < e* 1 >w + C : (S1—S°) : e*2, (10.4.16a,b) 

where Sv and Sn are Eshelby's tensors for ellipsoids V and W, respectively. 
Similarly, the average strain and stress over V are exactly given by 

<ed>n =Sv: {f< e 1 >w+(I _ f) e*2}, 

<sd>n= C:(S`'-1(4s)):{f< e* 1 >w+(1 —f) e*2
}, (10.4.16c,d) 

where f is the volume fraction of W in V, f= W / V. Finally, in view of 
(10.4.16a—d), the average strain and stress over G are given by 
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Figure 10.4.2 

An unbounded uniform solid B 
contains two ellipsoidal 
regions, V and W (W c V), 
with eigenstrains e*1(x) in 
W and uniform eigenstrains 
e*2 in G = 1— W 

< Ed > = S1 : e*2 + 
1 

x 
f (Sv — 8w) : (< e* 1 >W  

< sd >G = C : (Sv — 1(as)) : e*2 + 1 
f 

f C : (Sv — S W) : (< e*1 >W — e*2). 

(10.4.16e,f) 

Again, these equations are exact. 

The proof of (10.4. l~a— ~) directly follows from the Tanaka-Mon result 
presented in Subsection 11.3. Indeed, the volume average of the strain produced 
by e*(c) in W is

12 

< (strain due to e* 1) >D = 
SW : < e*1 >W 

f Sv : < e*1 > 
D=U 
D=V 

(10.4. lIa) 

and the volume average of the corresponding stress field is 

C: (SU — 1(4s)) : < E* 1 >~ 
f C : (Sv — 1(4s)) : < e* 1 >~ 

< (stress due to e*1
) >D = 

D= U  (10.4.17b) 
D=l. 

Fields due to constant e*2 in G can be obtained by superposing the fields due to 
- e*2 distributed over the entire W and the fields due to e*2 distributed over the 
entire V. Hence, the volume average of the strain and stress fields produced by 
e*2 in G are computed by applying the Tanaka-Mori result separately to the 

12 While Eshelby's technique determines local field quantities inside (and outside) an ellip-
soidal region of constant eigenstrain, the Tanaka-Mori result gives only the average field quantities 
over the ellipsoidal regions. 
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fields due to -e*2 in W and e*2 in V, i.e., 

< (strain due to e*2) >D =
(SV fl S) a 

D=U 
D=V, 

< (stress due to e*2) >D= C:(S-Si):e
*2 

(1 - f) C: (S — 1(4s)) :  
D = W (10.4.17c,d) 
D = V. 

The volume averages of ed and sd taken over W and V, (10.4.16a--d), are ob-
tained directly from (10.4.17a—d). 

The above results can be generalized to the case when V consists of a 
series of annulus subregions, each of which has distinct constant eigenstrains. 
To be specific, consider a nested series of ellipsoidal regions, W~, (a = 1, 2, ..., 
m), with Wm = V, which satisfy W1 c W2 c ... c Wm, and denote the annulus 
between W~, and W 1 by Ga = W — W~,_ i (a = 2, 3, ..., m); see Figure 10.4.3. 
Then, consider the following distribution of eigenstrains: 

e*(c) = H(c; W1) e
*1(c) 

+ SR H(x; G~) e*a, (10.4.18) 
«=2 

where each e*a (a = 2, 1, ..., m) is constant, and H(x; D) is the Heaviside step 
function, taking on the value 1 when x is in D, and 0 otherwise; note that e*I(c) 
need not be constant, and that each annulus has different but constant eigen-
strains. The resulting strain and stress fields are denoted by ed and sd. 

Figure 10.4.3 

A nested sequence of 4 
inclusions embedded in 
infinite domain B; W 
with eigenstrain e*a (a 
= 1, 2,3,4); B with 
elasticity C 

B, C 

 

Apply the Tanaka-Mori result to the fields produced by e*(c) in W1. The 
volume average of the resulting strain field over any W~, D W i then is 
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< strain due to e*1 > = 
 S

a : < e
*1 

>1 (a not summed), (10.4.19a) 

where Se' is Eshelby's tensor for Wa, and subscript a or 1 on <> emphasizes 
that the volume average is taken over Wa or W1. The strain field due to e*rR in Gr 
(b = 2, 3, ..., m) is obtained by superposing the strain field due to — e*b distribut-
ed in Wr_ ~ , and the strain field due to e*ß distributed in Wr. Hence, the average 
strain over Wa due to e

*b is 

< strain due to e*rR >a = 
(Sr — SR

-1) : e*r 

{(Wr — Wr_1)/W} Sa: e*r 
Wa c Wr 
W15 x W~3 

(ß not summed). (10.4.19b) 

Since all subregions have the same elasticity, the resulting average stresses are 
obtained directly from the corresponding average elastic strains. 

The volume average of the strain field ed, over W0, is obtained by superpo-
sition of (10.4.19a) and (10.4.19b) for b = 2, 3, ..., m, and then the volume aver-
age of ed over annular region Ga is computed. This leads to 

<ed>1=S1 :<e*1
>1+ S. (SrR — Sß

-
I):e*ß (10.4.20a) 

and 

a  
<ed>a= Fa _Fa 1  (Sa —Sa

-1
): F1< e*1 >1+

1 

SZ (Fr — Fr- i)e*
p} 

+ 

 

1  {(F15 2F15_1)S15 ±F15 _ 1 S15 1} :e*a 

Fa —F a i 

+ (SR — SR 1) : e*r, 
b = 55+1 

(10.4.20b) 

for 13a = 2, 3, ..., m, where <> denotes the volume average taken over the an-
nular region F15, and Fa is the volume fraction of W relative to Wm = V, i.e., 

<>'- 
F15  _F15 

 (F15 <.>55 —F «_ 1 <>15 1), F«° Va . (10.4.21a,b) 

The corresponding average stresses are computed in the same manner, and are 
expressed in terms of < ed >, as 

<sd>1=C:(< ed>1 — < E*1

>~, 

< sd >a = C : (< ed >1 — e*a), (10.4.20c,d) 

for a = 2, 3, ..., m. In particular, if all W«'s are similar and coaxial, then, 
(10.4.20a) and (10.4.20b) become 

=2 

13 Note that in (10.4.20b), the first summation is omitted for a = 2, and the second summation 
is omitted for a = m. 
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<ed >1=S:< e*1 >1, <ed > = S : e, (10.4.22a,b) 

for a = 2, 3, ..., m, where S is the Eshelby tensor common to all Wa's. 

10.4.5. Double-Inclusion Method 

The exact results presented in the preceding subsection can serve as a 
basis for a new averaging scheme, called the double-inclusion method. To illus-
trate this method, consider an ellipsoidal inclusion V which includes another el-
lipsoidal inclusion W in it and is embedded in an unbounded region of elasticity 
C. The elasticity of W and the remaining part of V, M - V — W, is CU and CM, 
respectively. The elasticity tensor field then is 

C' = C'(x) = 
C if x in W 
CM if x in M 
C otherwise. 

(10.4.23) 

   

Hence, M may be viewed as the matrix phase which contains an inclusion W, 
and which is surrounded by a homogenized infinite solid of uniform elasticity C; 
see Figure 10.4.4 

Figure 10.4.4 

An unbounded uniform solid B 
of elasticity C, contains two 
ellipsoidal regions, V and 
W (W c V), of elasticity tensors 
02 in W andCMin G= V— W 

The fields produced in the double-inclusion V when the infinite domain is 
subjected to farfield strains e, are not uniform, due to the existence of the in-
clusion W within V. Hence, the homogenizing eigenstrain field in V is no longer 
constant (unlike the single-inclusion case), and may, indeed, suffer a jump 
across aw. Though it is difficult to compute the exact homogenizing eigenstrain 
field, the volume average of the eigenstrains taken over W and M can be estimat-
ed by applying the generalized Eshelby results of the preceding subsection. 
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Since the average strains and stresses, taken over the inclusion phase W 
and the matrix phase M, are given by (10.4.16a,b) and (10.4.16e,f), the follow-
ing average consistency conditions are obtained (Hon i and Nemat-Nasser, 
1992): 

CU : { e°° + SW : £*W + (Sv — S W) : ~*M } 

= C: { £°° + (S W —1(4s)) : E*W + (Sv — SU) : E*M } (10.4.24a) 

and 

CM : { £°° + Sv : £*M +  1 
f 

f  (Sv — S W) : (E*W — e*M) } 

= C: {£°° (Sv _ 1)) : ~*M + 1 f (Sv — SU) : ( E*w — ~*M) }, (10.4.24b) 

where s*
2 

and s*M are estimates of the average eigenstrains14 over W and M. 
Solving the set of tensorial equations, (10.4.24a,b), for s*sz and ~*M, and substi-
tuting the results into (10.4.16c,d), compute the average strain and stress over V. 
Then, the overall elasticity of the double-inclusion is given by 

C = C : { 1(4s) + (Sv —1( 4s)) : A } : { 1(4s) + Sv : A }-1, (10.4.25a) 

where A is defined by 

f*n + (1— f) s*M - A : e°°. (10.4.25b) 

Note that the left side of (10.4.25b) is the volume average of the eigenstrains 
over V. 

As an example, consider the case when V and W are similar and coaxial 
ellipsoids. In this case, e*' and are given by 

g*W = (A — S)-1 : e, £*M = (AM — S) -1 : e°°, (10.4.26a,b) 

where S is Eshelby's tensor common to W and M, 
A 

(C — C 1 : C, and 
AM = (C — CM) -1 : C. Hence, the overall elasticity C is obtained by substituting 
the following A into (10.4.25a): 

A = f(AV—S)-1+(1—f)(AM—S)- i. (10.4.26c) 

If C is set equal to CTM, then (AM — 5) -1 vanishes, and the resulting overall 
elasticity tensor coincides with that obtained by the two-phase model; see 
(10.4.7). On the other hand, C of the infinite body may be set equal to the yet-
unknown overall elasticity tensor of the double-inclusion, C. From (10.4.25a), 
A given by (10.4.26c) then vanishes, and hence 

f (AU — S) -1 + (1 f) (AM — S)
-1 

= 0, (10.4.27) 

where S is Eshelby's tensor for the elasticity C, AM = (C — CM)-1 : C, and 

14 Although e*W is the volume average of the exact eigenstrains over W, e`M is not the 
corresponding exact quantity over M. The error due to this approximation is examined by Hon i and 
Nemat-Nasser (1992). 
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( : C. The overall moduli C satisfying (10.4.27), remarkably, 
coincide with the estimate by the self-consistent method. The proof is straight-
forward, although the required algebraic manipulation is rather tedious. First, 
multiplying (10.4.27) by AU — S from the left and by AM — S from the right, ob-
tain 

{f(C—CM) -1 +(1—f) (C—C 0)-1}:C—S=O. (10.4.28a) 

Next, multiplying (10.4.28a) by C — CM from the left, and taking advantage of 

(C — CM) : (C — C 2)-1 = (02 — CM) : (C — C2)-1 + 1(4s), (10.4.28b) 

arrive at 

(C — CM) : { (C — C W)-1 : C — S } = f (C W — CM) : (C — C W)
-1 

: C.  (10.4.28c) 

Finally, using 

(C—0 0)-1 : C: {(C—Cam) -1 :CS}
-1 

= 1(4s) +S: {(C— C2)-1 : C—S} -1, (10.4.28d) 

and multiplying (10.4.28c) by { (C — C 0)-1 : C — S} 1 from the left, obtain 

C —CTM 
=f(CU_CM): 

{1(4s)+S: 
{(C_CU)_1 

:C—S} 1}. (10.4.28e) 

Since 1(4s) + S: { (C — C 2)-1 : C — S } -1 is ß°°(C 2, W; C), the overall moduli satis-
fying (10.4.27) coincide with the overall moduli estimated by the self-consistent 
method; see Subsection 10.2. 

If it is assumed that V (= W2) is not similar to and coaxial with W (= W1), 
then a different estimate for the overall elasticity tensor results; see Hon i and 
Nemat-Nasser (1992). In this sense, this three-phase model is more general than 
the self-consistent model. It should be noted that, as in the double-inclusion 
model, no approximation is made in this case, except for the assumption of a 
piecewise constant eigenstrain field. The location of W relative to V is arbitrary. 

10.4.6. Multi-Inclusion Method 

The double-inclusion method considered in the preceding subsection can 
be generalized to a multi-inclusion method. The multi-inclusion is an ellipsoid, 
V, which contains a nested series of ellipsoids, W~, (a = 1, 2, ..., m), such that W1 
c W2 c ... c Wm = V; see Figure 10.4.5. The smallest ellipsoid W, and each an-
nular region G = W — W_ , have uniform elasticities C1 and Ca (a = 2, 3, ..., 
m), and the multi-inclusion V is embedded in an infinite domain of uniform 
elasticity C. Hence, the elasticity tensor field is 

C' = C'(x) = 
C1 

Ca 
C 

ifxin W, 
if c in G~, 
otherwise. 

(a = 2, 3,...,m) (10.4.29) 



Figure 10.4.5 

A five-phase inclusion 
embedded in infinite 
domain B; WiandG,, 
with elasticities C1 and Ca 
(a = 2, 3, 4);Bwithelasticity ffC .EQ.ps 1 c 
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To compute the average field quantities over the multi-inclusion when the 
farfield strains e°° are prescribed, use the results obtained in Subsection 10.4.4. 
Then, estimate the volume average of the eigenstrain field through the following 
average consistency conditions: 

C1 : (e°° + < ed >1) = C : (e°° + < ed >1 — s *1) (10.4.30a) 

and 

Ca : (e°° + < ed >‚) = C: (e°° + < ed >a — e*a) (a not summed), (10.4.30b) 

for a = 2, 3, ..., m, where < ed >1 and < ed > are the averages of the strain field 
over W1 and Ga, respectively, computed from (10.4.19a) and (10.4.19b), by sub-
stituting the average eigenstrains over W1 and G~, ~*1 and ~*a, into < e* >i and 
e*a (a = 2, 3, ..., m). Now solve the set of m tensorial equations, (10.4.30), for 

*1 and ~*a, and obtain the overall elasticity as 

C=C:{1(4s) +(Sv-1(4s)):A }:{1(4s) +Sv:A} , (10.4.31a) 

where Sv is the Eshelby tensor for V - Wm, and A is defined by 

 
a 1 

fa É a=_A :e. (10.4.31b) 
= 

Again, the left side of (10.4.31b) is the volume average of the eigenstrains taken 
over V. 

If Wa's are similar and coaxial, the average consistency conditions are re-
duced to 

Ca : (e`° + S : s*c') = C: {e°° + (S — 1(4s)) : e*9 (a not summed), (10.4.32) 

where S is the Eshelby tensor common to all Wa's. The solution of (10.4.32) 
then is 
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~*a = (Aa — S) -1 : e, (10.4.33a) 

where Aa = (C — C a)-1 : C, and A in (10.4.31b) is given by 

A = (10.4.33b) 
a =1 

where f1 = W l / V and fa - Ga / V (a = 1, 2, ..., m). Hence, the overall elasticity 
tensor is given by 

C = C: { 1(4s) + fa 
(S —1(4s)) : ( Aa — S)-1 

a=1 

: {I()– S fa S : (Aa — S)- i }-i (10.4.33c) 
a =1 

This overall elasticity tensor is of a form similar to that estimated by the multi-
phase inclusion; see (10.4.11). 

10.4.7. Multi-Phase Composite Model 

With the aid of the generalized Eshelby results obtained in Subsection 
10.4.4, the interaction among adjacent inclusions can be estimated through the 
interaction between V and the surrounding homogenized infinite domain. 
Hence, in a composite consisting of inclusions of different materials, the interac-
tion among various constituents may be accounted for, in an approximate 
manner, by choosing a suitable arrangement of different inclusions in a multi-
phase composite model. This type of multi-phase composite model can also be 
used to analyze heterogeneous materials which do not have a matrix phase, such 
as polycrystals. 

To illustrate this multi-phase composite model in a specific manner, sup-
pose that the ellipsoid V contains n —1 ellipsoidal heterogeneities Wa (a = 1, 2 , 

, n — 1). The remaining part of V is denoted by G; see Figure 10.4.6a. The 
elasticities of Wa and G are Ca and C", respectively, and the volume fractions of 
Wa and G are defined by fa = Wa / V (a = 1, 2 , ..., n —1) and f" = G/ V. When 
this multi-phase composite is embedded in an infinite domain with uniform elas-
ticity C, the elasticity tensor field is 

C(x) = 
Ca ifxin Wa (a= 1, 2, ..., n-1) 
C" ifxinA 
C otherwise. 

(10.4.34) 

   

Apply the generalized Eshelby results to this multi-phase composite V subjected 
to farfield strains e. In view of (10.4.34), the average consistency conditions 
are 

Ca : (e00 + < ed >) = C: (e°° + < ed >a — ~*a) (a not summed), (10.4.35) 

for a = 1, 2, ..., n, where ~*a and e*" are the average eigenstrains, and < >a and 
<> are the volume averages taken over Wa (a = 1, 2, ..., n — 1) and G. 
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Figure 10.4.6 

(a) A 5-phase composite is embedded in infinite domain B; Wc, with elasticity 
Ca (a = 1, ..., 4) ; G with elasticity C5; and B with elasticity C 
(b) To estimate < ed >1, eigenstrains e*1 are distributed in W1, and eigenstrains 
Vs`  fp  

1 -f e*p are uniformly distributed in V — W1 
P =z ~ 

The volume averages of the strains produced by the eigenstrain field are 
obtained in terms of the average eigenstrains. From 

< (•) >n-tt = S fp  

< (•) >b, (10.4.36) 
ß~ a 1— fa 

for each Wa, assume that 1 — W is a region where the average eigenstrains, 

± { fp / (1— f)} s*ß, are uniformly distributed; see Figure 10.4.~b. Then, the 
ß   

average strain over W is estimated by 

< ed >a = S° : e
*a 

+ (Sn — S °C) :{ S 
fR  s *R 

 R a 1 —fa }, 
(10.4.37a) 

for a = 1, 2, ..., n — 1, where Sa and Sv are Eshelby's tensors for W and V, 
respectively. For G, from < ed >n = Sv : < e* >v and (10.4.37a), it follows that 

h-1 
<ed>"=Sn:s*"+ S a = 1 

fa   
f"(1— fa) (Su — Sa) : s*a— ± fps*ß }. 

(10.4.37b) 

Substitution of (10.4.37a,b) into (10.4.36) yields a set of n tensorial equa-
tions for n average eigenstrains, from which s*a's are computed, and the aver-
age response of each inclusion is evaluated. Finally, the overall elasticity tensor 
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C is obtained, which is identical with (10.4.31). Note that (10.4.37a) still holds, 
even when the matrix phase is absent, in which case ff is zero. 

Furthermore, if a multi-phase composite consisting of n — 1 different kinds 
of inclusions with similar shapes but distinct elasticities, is embedded in a ma-
trix M, then the consistency conditions are (10.4.35), and the average eigen-
strains are given by (10.4.36). As shown in the preceding subsection, it is easy 
to prove that the estimates of the overall moduli by the self-consistent and the 
Mori-Tanaka models are obtained from this multi-phase composite model, by 
setting C = C and C = CTM, respectively. 

10.5. EQUIVALENCE AMONG ESTIMATES BY DILUTE DISTRIBU-
TION, SELF-CONSISTENT, DIFFERENTIAL, AND DOUBLE-INCLU-
SION METHODS 

In Subsections 10.1, 10.2, 10.3, and 10.4, the overall elasticity and com-
pliance tensors, C and D, are estimated by the dilute-distribution assumption 
(DD), the self-consistent method (SC), the differential scheme (DS), and the 
double-inclusion method (DI). In these approximations, the exact Ea- and Fa-
tensors which determine the average strain and stress of each micro-element for 
the prescribed macrostrain and macrostress, are replaced by the approximate 
E°° and F-tensors which determine the average strain and stress of one isolated 
micro-element embedded in an unbounded homogeneous solid of suitable elasti-
city, and subjected to a constant farfield strain and stress, respectively. The 
overall moduli estimated by these approximations are: by the dilute-distribution 
assumption, 

CDD = C +
± 

f~ (Cc — C) : E(C a, Wa; C), 
1 

DDD = D + , fa (D°C — D) : F(D°`, Wa; D); 
a 

(10.5. l a,b) 

by the self-consistent method, 

Csc = 

 

C±±  f a (Ca — C) : E(C a, Wa; Csc); (10.5.2) 
a=1 

by the differential scheme, 

lRf 
CDS =1 1 

 
(Ca — CDs) : E(Ca, WrV; 

a   

CDS(0) = C; (10.5.3a,b) 

and by the double-inclusion method, 

CD'=C:{1(4s) + r 1(40) : (Aa_ S°) } 
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: { 1(4s) 
± 

S SU : (Aa_ SW)}. (10.5.4) 
a =1 

Now consider the asymptotic behavior of these tensors, CDD DDD, CSC 

CDs and CMS, as fa approaches zero, when fp = 0 for b # a. The zeroth-order 
asymptotic term of all four estimates is the matrix elasticity, C. From (10.5.1 a), 
CDD behaves as 

C°D = C + fa (Cc' - C) : E°°(Ca, Wa; C) (a not summed). (10.5.5a) 

As shown in Subsection 10.1, from the equivalence of E°° and F°°, DDD behaves 
as 

(D°° )-1 = { D : { 1(4s) - f (Ca - C) : E°°(C a, Wa; C) : D} }-1 

= C + f (Ca - C) : E°°(C a, Wa; C)  (a not summed).  (10.5.5b) 

For the self-consistent method or the differential scheme, with initial conditions 
Csc(0) = C°S(0) = C, the behavior as f approaches zero is given by 

Csc = C + fa (Ca - C) : E (CSC(0),Ca; Wa) 

= C + fa (Ca - C) : E°°(C a, Wa; C), 

CDS = CDS(0) + f (Ca — CDS(0)) : EF(CDS(0),Ca; W
~) 

= C + fa (Ca - C) : E°°(C a, Wa; C)  (a not summed), (10.5.5c,d) 

where the third argument of E°° or F°° is replaced by C. For the double-
inclusion method, from 

Sa : (Aa — S 1 = EF(Ca Wa; C) - 1(4s), 

C : (Sa — 1(4s)) : (Aa — S a)-i = Ca : E(Ca, Wa; C) — C 

(a not summed), (10.5.6a,b) 

it follows that 

C°1  { C + fa (Ca : E°°(Ca, Wa; C) - C) } : (1 (4s)  

+ fa (E(Va, Wa; C) — 1(4s))} 1 

C). (10.5.5e) 

Hence, as is seen from (10.5.5a-e), CDD DAD CSC ADS and C°m, give the same 
estimate of the overall response of the RVE for small volume fractions of 
micro-elements. Asymptotically, therefore, these methods are all consistent at 
small volume fractions of inhomogeneities. 
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10.6. OTHER AVERAGING SCHEMES 

The three averaging schemes, DD, SC, and DS, studied in this section 
share a common model for computing the average strain (or stress) in a typical 
inhomogeneity. The common model may be called the two-phase model, since it 
is based on an isolated inclusion embedded in an infinite homogeneous domain. 
The model yields explicit results with the aid of the Eshelby tensor. There are 
other models which can be used for certain heterogeneous materials, and require 
relatively simple analytic estimates. The double- and multi-inclusion models are 
two examples. Two other such models are: 1) the composite-spheres model, 
considered by Hashin (1962), and 2) a three-phase model. Neither is directly re-
lated to Eshelby's solution. The three-phase model was initially proposed by 
Fröhlich and Sack (1946) who modeled the overall properties of viscous fluids 
containing elastic or rigid spheres, by solving the problem of a concentric elastic 
(or rigid) sphere embedded in a fluid shell which in turn is embedded in a homo-
genized medium of the effective overall properties. For the rigid spherical 
suspension problem, Fröhlich and Sack obtain the effective viscosity using their 
three-phase model. For the elastic spheres dispersed in a viscous fluid, an ordi-
nary linear differential equation is obtained for the shearing. Mackenzie (1950) 
follows Fröhlich and Sack, and considers a similar three-phase model consisting 
of a spherical cavity embedded in a shell of the matrix material which in turn is 
embedded in an infinite domain of the homogenized material, in order to esti-
mate the overall properties of an elastic solid containing spherical cavities. His 
final results turn out to match the self-consistent estimates, as is shown in Sub-
section (10.4.4); see (10.4.25b). Smith (1974) works out the three-phase model 
in some detail and obtains a quadratic equation for the effective shear modulus. 
The same result is reported by Christensen and Lo (1979) who have re-
examined the three-phase model and provide comments and discussion, showing 
that a term neglected by Smith is in fact negligible. In addition, these authors ex-
amine the plane problem of solids with cylindrical inclusions, using the same 
three-phase model. The three-phase model is briefly reviewed in Subsection 
10.6.2. 

10.6.1. Composite-Spheres Model 

The composite-spheres model assumes that an RVE may be represented 
by a finite body V consisting of a matrix M and a single inclusion W in it, where 
these are cocentered spheres of radii b and a. Both M and W have distinct elasti-
cities and distinct compliances, C and CU, and D and Dn. Hence, 

~W 
C' = C'(x) = C 

DW D' = D'(x) =  

W (0 < r < a) 
M (a < r < b), 

W (0< r <a) 
M (a < r < b), 

(10.6.1a,b) 
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where r = 1 x I , with the origin at the common center of the spheres. The 
volume fraction of W is f = (a/b)3; see Figure 10.6.1. Both M and W are isotro-
pic. 

Figure 10.6.1 

Composite-spheres model 

Under spherically symmetric loading, the deformation of V is spherically 
symmetric. For example, in hydrostatic loading (t = n.(s°1t2)) with v being the 
outer unit normal on aN), the displacement field becomes u(x) = ur(r) x / I x 1. 
The radial displacement ur then is 

u(r) l r =
{AW r 

Ar +Br z 

where 

0<r< a 
a < r < b, 

(10.6.2a) 

t1 = L s° B - b3 (L 3K - 1) s° rW = A+ , (10.6.2b-~d) 4m 4m 4m ' a3 

with 

L 3 4(Kw — K) f+3(KKU/m)+4K · 
(10.6.2e) 

As usual, K and M are bulk and shear moduli for the matrix, while 10 and MU 
are those for the inclusion. From the boundary condition, the average stress 
over V is es = s° 1(

2
), and from (10.6.2), the average strain over V becomes 

= 1 
1av 

ur(b) v® n dS = so{ K+f (KW —K)(3K+4 M)  _1 1(2), 
V 3K+4m+3(1 —f)( KW —K) 

(10.6.3) 

since v = x / 1 x I on the boundary. Therefore, the overall bulk modulus K is 
given by 

K l+f  (K° —K)(3K+4 m) (10.6.4) K K{3K+4m+3(1 —f)(K 0 —K)} 

This estimate of the overall bulk modulus also gives the average strain energy 
due to hydrostatic loading s°. The resulting radial displacement field is linear in 
x. Thus, the same K is obtained for a linear displacement boundary condition. 
The overall bulk modulus is therefore uniquely given by (10.6.4), since in this 
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case the upper and lower bounds coincide.15 The stress and strain fields within 
these composite spheres remain unchanged when the composite is embedded in 
an infinite homogeneous elastic solid of bulk modulus K, (10.6.4), under farfield 
hydrostatic stress s°, or when the infinite solid is filled with composite spheres 
of suitable dimensions but a common volume fraction, leading to an assemblage 
of spherical composites, Hashin (1962). Similar comments apply to an assem-
blage of aligned composite cylinders of circular cross sections, as discussed by 
Hashin and Rosen (1964). 

In order to estimate the overall shear modulus i, other loading conditions 
must be considered. The solution then is more complicated than (10.6.2). For 
large volume fractions of inclusions, Hashin (1962) obtains the following esti-
mate of m: 

M 
- 1-(1-f) (1°- M){(7 -5v)m+2(W -5v)mW) 

(10.6.5) 
15(1—v) mm 

where v is Poisson's ratio of the matrix. 

10.6.2. Three-Phase Model 

A general three-phase model is shown in Figure 10.6.2. An isolated 
double-inclusion V which consists of a matrix M and a single inclusion W within 
it is embedded in an infinite homogeneous domain subjected to farfield uniform 
stresses or strains, s or e. The elasticity and compliance of M and W are C 
and C l and D and DU, respectively, whereas those of the surrounding infinite 
domain are the yet-unknown overall elasticity and compliance of the composite 
V = M + W, i.e., C and D. Since three distinct materials, M, W, and the sur-
rounding infinite body, are considered, this model may be called the three-phase 
model. It may also be called a generalized self-consistent method, since, in ad-
dition to including the interaction of an inclusion with its immediate surrounding 
matrix, it considers the overall effects of the composite on each double-
inclusion. While the self-consistent method seeks to predict the interaction of 
an inclusion and its neighboring microstructure (the combined effect of the ma-
trix and other inclusions), this model includes (in a certain approximate sense) 
the interaction between the inclusion and the surrounding matrix, as well as the 
neighboring microstructure. 

Unlike a single-inclusion problem solved by Eshelby, there is no simple 
analytic solution for the general double-inclusion case. Hence, the shape and ar-
rangement of the double inclusion must be specified such that simple analytic 
results are obtained. Usually, V and W are taken to be cocentered spheres or 
cylinders. As the simplest example, a solution of cocentered spheres is present-
ed. Similarly to the composite-spheres model of Subsection 10.6.1, it is as-
sumed that: 1) the radii of V and W are b and a, respectively, i.e., the elasticity 
and compliance tensors are 

15 As shown in Section 2, the overall moduli of a finite body depend on the prescribed boun-
dary conditions, and the uniform traction and linear displacement boundary conditions provide 
bounds for the moduli corresponding to any general boundary data; see Subsection 2.5.6. 
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s e°° 

Figure 10.6.2 

Three-phase model 

C, D 

C' = C'(x) 
CU 

C 

0<r< a  
a<r<b 
b < r, 

0<r< a 
D' = D'(x) = a< r<b 

b < r; 
(10.6.6a,b) 

and 2) C and CU are isotropic, and hence C becomes isotropic. 

When the farfield stress is hydrostatic, S°° = s°1i2), or the farfield strain is 
dilatational, e°° = s°1(2), the resulting stress and strain fields become spherically 
symmetric, and only radial displacement Ur = ur(r) is produced, 

AUr 0<r< a 
ur(r)= Ar+1r2 a<r<b 

Ar+Br2 b<r, 

where A, B, and Aw are given by (10.6.2b--d), and 

A 
3K ' b2 — (A — A) b+ 

bz . 

(10.6.7a) 

(10.6.7b,c) 

The overall bulk modulus K of this three-phase model coincides with that of the 
composite-spheres model. Note that the resulting tractions and displacements 
on the boundary of V are uniform and linear, respectively. Hence, K given by 
(10.6.4) is also the unique overall bulk modulus of this model. 

If farfield shearing is prescribed, the overall shear modulus of the compo-
site, i., can be estimated. However, unlike the case of the spherically symmetric 
loading, surface tractions and displacements on aV now fluctuate. Hence, it is 
seen that: 1) the overall shear modulus may not be the same when it is defined 
through the relation between the average strain and stress over V, compared 
with that defined through the average strain energy; and 2) the predicted overall 
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shear modulus is not unique, unless its upper and lower bounds coincide. Fol-
lowing Smith (1974), ~~ is computed from the average elastic energy, leading to 

A2 {m}2 +2AI {m} +Ao=0, (10.6.8a) 

where 

A2 = 8f'3d(4 — 5 n)h i — 2f~ '3 { 63dh2 + 2h ih3 } + 252f513dh2 

— 25fd(7 —12 n + 8n2)h2 + 4(7 — IOn)h2h3, 

Ai = — 2fla
3
d(1 — 5 n)h i + 2f'13 { 63dh2 + 2h ih3 } — 252f 513dh2 

+75fd(3— n)nh2+ 2 (15n -7)h2h3, 

A0 = 4f ioi3d(5n — 7)h i — 2f 713 { 63dh2 + 2h 1h3 

— 252f5/3dh2 + 25fd(n2 — 1) h2 — 4(7 + 5v) h2h3, 

with d = mw/m -1, and 

H i _ (49— 5 Ovn°)d + 35(d + I)(1w —21) + 35(21w — n), 

(10.6.8b--d) 

112 = 5nw(d — 3) + 7(d±5), 113 = (d + 1)(8 — l0v) + (7 — 5 n). (10.6.8e—g) 

Christensen (1990) has examined the results of several models for ex-
treme conditions of composites containing rather high concentrations of rigid in-
clusions, in an effort to provide insight into the validity and limitations of these 
models. Referring to the above three-phase model as the generalized self-
consistent method (GSCM), Christensen compares the overall shear modulus 
obtained by this model with those given by the differential scheme (DS) and the 
Mori-Tanaka method (MT) as proposed by Benveniste (1987). In addition, ex- 

perimental data collected by Thomas (1965)16 on viscosity of suspensions of 
particles, e.g., glass spheres in liquids, are used to check the effectiveness of 
various model estimates. Christensen finds that the GSCM results correlate 
better with the experimental data. 

Vu (1992) has examined the sources of data used by Thomas (1965), and 
has observed that the reported experimental data depend on particle size distri-
bution, shearing rate, and even on the type of the viscometer used for measure-
ments, as has been pointed out by Jeffrey and Acrivos (1976). The overall 
response at high concentration of suspensions is generally non-Newtonian, espe-
cially at high shearing rates. Thus, while such comparisons provide better 
understanding of the results of various models, caution must be exercised in 
drawing definite conclusions on the effectiveness of various models. In a recent 
work, Nemat-Nasser et al. (1992) have re-examined the results presented by 

16 An earlier effort to collect and correlate similar data is by Rutgers (1962a,b). These and re-
lated issues are reviewed by Jeffrey and Acrivos (1976). 
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Christensen (1990), and have provided an alternative method based on the 
periodic microstructure, which seems to also produce results in good accord 
with experimental data used by Christensen. These authors also have re-
examined the sources of data used by Thomas (1965), and provide useful cri-
tique and comments. Figure 10.6.3 taken from Nemat-Nasser et al. (1992), 
summarizes Christensen's results, as well as adding new results based on a 
periodic structure which Nemat-Nasser et al. call the modified equivalent inclu-
sion method (MEIM). This method uses a periodic microstructure in which the 
unit cell is homogenized using the yet-unknown overall moduli for the reference 
elasticity tensor; see Section 12. 

Figure 10.6.3 

Comparison of estimates of overall shear modulus; LB: lower bound; GSCM: 
generalized self-consistent method; DT: differential scheme; MT: Mori-Tanaka 
method; MEIM: modified equivalent inclusion method; Data taken from fol-
lowing references: No. 1: Ting and Luebbers (1957), No. 2: Ward and Whit-
more (1950), No. 3: Broughton and Windebank (1938), No. 4: Manley and Ma-
son (1954), No. 5: land (1948), No. 6: Sweeny and Geckler (1954), No. 7: 

Saunders (1961) 
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SECTION 11 ESHELBY'S TENSOR AND RELATED 
TOPICS 

In Section 7, Eshelby's tensor SU and its conjugate TU are introduced for 
an infinitely extended homogeneous linearly elastic solid and are used to deter-
mine the constant strain and stress fields in an ellipsoidal subdomain W, in which 
a uniform eigenstrain or eigenstress is distributed. As shown in Sections 8 and 
10, Eshelby's tensor can be used to estimate the average strains and stresses in 
the micro-inclusions embedded in an elastic matrix. These tensors can be com-
puted analytically and therefore, they provide an effective means for estimating 
the overall moduli of a heterogeneous RVE. 

In this section an infinitely extended homogeneous linearly elastic solid is 
considered within a portion of which either eigenstrains or eigenstresses are dis-
tributed (not necessarily uniformly). The Green function for the unbounded 
solid is then used to formulate the resulting displacement field in terms of two 
integral operators, S°°(x; e*) and T°°(x; s*), where e* = e*(c) and s* _ s(c) are 
the corresponding prescribed eigenstrain and eigenstress.1 The integral operators 
reduce to tensor operators, when the distribution of eigenstrains or eigenstresses 
is uniform and the domain W in which they are distributed is an isolated ellip-
soid in an unbounded uniform medium, resulting in the Eshelby tensor, SU, and 
its conjugate, TU. Explicit expressions are derived for these tensors in the case 
of an isotropic matrix, and the anisotropic case is briefly discussed. Then a 
number of interesting properties of the Eshelby tensor are examined, including: 
(1) its symmetry properties; (2) the Tanaka-Mon result which is then general-
ized and used to estimate the interaction among inclusions and to solve the 
double-inclusion problem; and (3) the disturbances in the average field values 
produced by prescribed eigenstrains or eigenstresses, where exact expressions 
are obtained for the average strain, stress, and strain energy and complementary 
strain energy densities. 

11.1. EIGENSTRAIN AND EIGENSTRESS PROBLEMS 

Consider an infinitely extended domain, denoted by V, consisting of a 
homogeneous linearly elastic solid of elasticity C (not necessarily isotropic). 
The displacement field produced by distributed body forces, f, is formulated in 

1 
Note that only the eigenstrain or the eigenstress but not both can be prescribed arbitrarily in a 

given region. Hence, when both eigenstrain and eigenstress are mentioned, either two separate prob-
lems are considered, or the two fields are mutually dependent. The intended alternative should be 
clear from the context. 
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terms of the corresponding Green function. Then, eigenstrains or eigenstresses 
distributed within a certain finite domain in V°°, are expressed as equivalent 
body forces, and the corresponding displacement, strain, and stress fields are 
obtained in terms of the integral operator S°° and T°°. 

11.1.1. Green's Function for Infinite Domain 

First consider the Green function for an infinitely extended homogeneous 
linearly elastic solid, V°°, with elasticity and compliance tensors C and D. As 
pointed out before, the Green function G1 (x, y) gives the displacement in the 
c1-direction at point x, produced by a unit point force applied in the xj-direction 
at point y. More precisely, the Green function is the vector-valued fundamen- 
ta12 solution of the operator L - V . { C :(V ®)},  

V.{C: (V®G°°(x, y))} ± d(x-y) 1(2) = O c in 100, (11.l.la) 

where d(x - y) is the delta function, and 

G°°(x, y) -i 0 as I x l - oo. (l l.l.lb) 

In component form, (11.1.1a) is 

Cykl G1k(c, y) + d(c - y) dim = 0 c in V°°. (11.1.1c) 

Since the domain V°° is homogeneous and unbounded, only the difference 
between the x-point (where the displacement is measured) and the y-point 
(where the unit force is applied) determines the Green function, 

G°°(x, y) = G°°(x - y). (11.1.2) 

The farfield condition (11.1.1b) now becomes 

G°°(z) -~ 0 as - 00
. (11.1.3a) 

The gradient of G°° also vanishes for large values of z, and hence the farfield 
strains and stresses are zero. For an arbitrary finite domain W within V°° to be 
in equilibrium, the resultant tractions on the surface aW of W must satisfy 

law Jaw II(x). {C : (VX ®G°°( c -y)} dSX = 0 
if yin W 
otherwise, 

(11.1.3b) 

where n is the outer unit normal of aW, and subscript x stands for differentia-
tion (integration) with respect to x. Indeed, with the aid of the Gauss theorem, 
(11.1.3b) is obtained by integrating the governing equation (11.1.1 a) over W. 

The Green function has an important symmetry property, derived from the 
reciprocal theorem. Let ula>(x) be the displacement field produced by a point 
force f(a) applied at x(a), for a = 1, 2; note that these are two different displace-
ment fields, each associated with its own point loading. Using the reciprocal 
theorem, and noting that fla) is a point force, obtain 

2 

See, e.g., Morse and Feshbach (1953), Stakgold (1967), and Roach (1982). 
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= f(2).u(1)(x(2)). (11.1.4a) 

Since u(")(x) is given by G°(x — x ~")).f("), this leads to 

x(
2
)) . f(2) = f(2).0— (x(2) — x( 1)) . f('). (11.1.4b) 

The above equation must hold for any fl") applied at any point x0">. Therefore, 
the Green function G°° has the following symmetry property: 

G°°(z) = G°°T(— z) or Gib (z) = G(- z). (11.1.5a,b) 

It is apparent from the governing equations (11.1.1), that G is an even function 
of z. Thus, in view of (11.1.5), it follows that 

G°°(z) = GT(z) or G1 (  z) = G; (z). (11.1.6a,b) 

11.1.2. The Body-Force Problem 

Using the Green function G°°, consider the displacement field u produced 
by distributed body forces f. The boundary-value problem for u is, 

V.(C : V®u(x))+ f(x) = 0  x in V`°, 

with 

u(c) — 0 as I x I — f. 

From linearity, the solution is given by integrating G°° for the prescribed body 
forces f. Assuming that f vanishes sufficiently quickly toward infinity, obtain 

u(x) = fv 
G(x— y).f(y) dN . (11.1.8) 

This is the unique solution of the boundary-value problem (11.1.7), valid for any 
f (discontinuous or not) which renders the integral finite. 

Now suppose the body forces, f, are given by the divergence of a tensor 
field T(x) which is sufficiently smooth in W but suffers a jump to 0 across aW, 
i.e., 

and 

T(x) = 
f T(x) ~ 0 xinW 

otherwise, 
(11.l.9a) 

f(x) = V.T(x) x in W. (11.1.9b) 

Then, while f(x) is finite within W, it behaves as a delta function across W. 
This behavior is represented by concentrated forces distributed within a thin 
layer about aW, representing the jump in T(x) across this boundary; the overall 
effect, therefore, is represented by additional tractions acting on W over its 
boundary W. Denote these tractions by [t](x) for x on aW, and obtain 

[t](c) - n(x).[T](x) _ —n(x).{ lim T(c+)} x on aW, (11.1.9e) 
-4c 
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where the minus sign is due to the fact that the unit outer normal n points from 
the inside toward the outside of W, and x+ is a point inside W. The resulting 
displacement field produced by body forces f(x) distributed within W, and trac-
tions [t](x) acting on W, i.e., the displacement field corresponding to (11.1.9b) 
and (11.1.9c), is given by 

u(x) = J» 
G°°T (y — x).f(y) dV y + f aRw 

Gb0T(y — x) • [t](y) dSy, (11.1.10) 

where the symmetry of G°°, (11.1.5), is used. In view of (11.1.9b,c), use the 
Gauss theorem to rewrite (11.1.10) as 

u(x) = — L1 T(Y) : ( N , âG°°T (y — cR)) dVy (11.1.11 a) 

or, in component form, 

u;(cR) _ —1»  Gj7,i(y — x) T k(3') dVy, (11.1.11b) 

where subscript j following a comma denotes derivative with respect to yi. 
Note, since (11.1.10) is valid for any x in V, the finite domain problem can also 
be solved in a similar manner, if x is restricted to remain within W. In this case, 
[t] is replaced by suitable surface tractions on aW, in order to satisfy the 
prescribed boundary conditions; see Subsection 9.4. 

11.1.3. The Eigenstrain- or Eigenstress-Problem 

Using the general results obtained in Subsection 11.1.2, consider the prob-
lem of an eigenstrain field e* (or eigenstress field s*) prescribed in W and van- 
ishing identically outside of W, 

or 

e*(x) _ ~ ~ ~c) *   

s*(c) _{
*(c) 

h 

xinW 
otherwise 

xinW 
otherwise. 

(11.1.1 2a) 

(11.1.12b) 

Let ue (let US) be the displacement field produced by e* (by s*) and denote by ee 

and se (by eS and SS) the corresponding strain and stress fields. These strain and 
stress fields are expressed as 

£e = 
Z 

{(nâIIe)+(nâIIe)T}, 

and 

= 
2 

{(V®us)+(V âus)T}, 

see Section 7. 

se =C:Ee— C:£*, 

sS = C : e5 + s*; 

As explained in Subsection 9.3, the divergence of the eigenstrain e* and 
eigenstress s* can be regarded as equivalent body forces. Indeed, direct 
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substitution of the constitutive relations (11.1.13b) and (11.1.13d) into the equa-
tions of equilibrium yields 

V.se= V.{C : (V®u e)} ± V.(_ C :e5)  O (11.1.13e,f) 

and 

V.ss = V. {C : (V ® us)} + V.s* = 0. (11.1.13g,h) 

The divergence of - C : e* (of s*) appears like a distribution of body forces in 
the governing equations for the displacement field ue (field us); see (11.1 .7a). 
Hence, the displacement field ue (field us) may be expressed in terms of the 
Green function G, as 

ue(x) = f w { C : e*(y) } : { Vy ®G(y - x) } dV y (11.1.14a) 

and 

us(x) = — j»,  s*(y) : { Vy ®GT(y - x) } dV y (11.1.14b) 

or, in component form, 

u; (c) = f mR G,i(y—x)C kRimn emn(y) dVy (11.1.14c) 

and 

u; (x) = -f w Grú,i(y - c) s(y) dVy. (11.1.14d) 

The displacement field ue (field us) obtained above, satisfies the condition, 
ue(z) 0, (us(z) - 0), as I z I -> 

oo, and is continuous across W. 

In general, the strain and stress fields ee and 
se 

(field es and us) are 
discontinuous across surfaces where the eigenstrain (eigenstress) admits finite 
discontinuities; the displacement field ue (field us) is, of course, continuous, as 
are the tractions v . se (traction v . ss). 

Using the strain-displacement and the constitutive relations given by 
(11.1.13), define the integral operator S°° (operator T°°) which determines ee 

(determines ss), in terms of e* (of s*), as follows: 

S(x; e*) = f 1(y - x):C : e*(y) dVy (11.1.15a) 

and 

R°°(c; s*) _ -C:  { J» G°°(g - x) : s*(y) dVy } + s*(c), (11.1.15b) 

or, in component form, 

S,~ (c; e11) = f» Gymn(y - x) Cmnki ei i(y) dNy (11.1.15c) 

and 

Ty (x; ski) = - Cgjmn {f w Gmnuu(y - c) ski(y) dVy } + s i (x), (11.1.15d) 

where, as shown in (9.4.10c), the tensor field G(Z) is defined by 
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G =-- - (11.1.15e) 

If the prescribed eigenstrains and eigenstresses correspond to each other 
in the sense that 

s*(c) = — C : e5(C) or e*(c) = — D : s*(c) c in W, (11.1.16a,b) 

then the resulting displacement fields ue and us are the same, as are the resulting 
strain and stress fields. Then (11.1.13a) and (11.1.13c) agree, and 

se =C: (ee— e*)=C: es+s*= ss. (11.1.17) 

Therefore, the integral operators S°° and T°° satisfy 

T°°(x; — C:  e5) = C: { S°°(x; e*) — e*(c) } (11.1.18a) 

and 

S°°(x; — D : s*) = D : { T°°( c; s*) — S*(c) }, (11.1.18b) 

provided that s* and e* are related by (11.1.16a,b). Equations (11.1.18a,b) are 
the equivalence relations between the integral operators S°° and T. 

11.2. ESHELBY'S TENSOR 

Since the integral operators S°° and T°° are equivalent, only S°° is com-
puted. Here this is done when: (1) the eigenstrains are uniformly distributed in 
an ellipsoidal domain, and (2) the unbounded homogeneous solid V°° is isotro-
pic. The resulting tensor which relates the strain field in the ellipsoid to the 
prescribed uniform eigenstrain is derived. This is Eshelby's tensor. The results 
for an anisotropic V°° are also briefly examined. Hereinafter in this subsection, 
the components of tensors are used, mainly to avoid any possible confusion. 

11.2.1. Uniform Eigenstrains in an Ellipsoidal Domain 

First consider the case when a constant eigenstrain eij° is uniformly distri-
buted in a certain finite domain W (not necessarily ellipsoidal) within V°°. In 
terms of the Heaviside step function, the eigenstrain field e(c) is expressed as 

ey(x) = H(x; W) e~° c in V°°, (11.2.1) 

where }{(x; W) is 1 for x in W, and O otherwise. Note that e;j° is the magnitude 
of the uniform eigenstrain field ey (x). From (1 1.I.14a), the resulting displace-
ment field u1(x) is given by 

u;(x) = { f w GkRi,l(U — x) dVy } Cklmn em~, (11.2.2) 

and from (11.1.15a), the strain field e;i(x) becomes 



11.2 ESHELBY'S TENSOR AND RELATED TOPICS 373 

e (x) = Sykl(x; W) e °, (11.2.3a) 

where the tensor field Si°kl( c; W) is 

S(c; W) = {J
w 

Gijmn(x — y) dVy } Cmnld. (11.2.3b) 

Since the partial derivatives of the uniform eigenstrain field eij(x) - ei~° 

are zero in W, the equivalent body forces vanish in W. However, across the 
boundary aW, the divergence of 

ejJ 
(x) varies as a delta function. This boundary 

then is a discontinuity surface for the strain and stress fields. To examine this 
discontinuity, denote the inside and outside of the domain W by superscripts + 
and — , respectively, and let ni be the unit normal vector pointing from the inside 
to the outside of W (from W + to W ). Although the displacements u(c) and 
tractions n1(c) sij(x) are continuous across aW, the quantity (called pseudo-
tractions) 

[tj](c) = ni(c){ lim Ciju eu(C ± ) — lim Cijk I eu(x )}, (11.2.4a) c+-sc x ~x 

is discontinuous for x on aW, and from the continuity of tractions, 

[tj](x) _ [Cijkl ßk1 ni](x) = n(c) lira Cijkl eki(x+) c on aW (11.2.4b) c+ -4c 

or 

[tj](c) = ni(x) (CijcRl e0) x on W. (1l.2.5a) 

The strain field in W, given by (11.2.3a), 

e (x) = S1 (x; W) ew~°, (11.2.5b) 

and the corresponding stress field, 

s (C) = Cijkl {Sk~mn(x; W) — lkh ~n} e c in W, (11.2.5c) 

are, in general, nonuniform within W, unless the integral in the right side of 
(11.2.3b) turns out to be independent of x. When W is ellipsoidal in shape, 
Eshelby (1957) has shown that this integral is constant, and hence, a uniform 
eigenstrain distributed in W produces uniform strain and stress fields in W, with 
continuous displacements and tractions across aW; see also Hardiman3 (1954), 
Eshelby (1963), and Hill (1965). 

11.2.2. Eshelby's Tensor for an Isotropic Solid 

Eshelby (1957) shows that if the domain where the uniform eigenstrain ei~ 
is distributed is an ellipsoid, say, W, then the resulting strain and stress fields in 
W are uniform. For an isotropic V, Eshelby gave explicit expressions for the 
tensor which relates the resulting uniform strain in the ellipsoid to the prescribed 

3 It is pointed out that Hardiman in a Ph.D. thesis (1951) has shown that stress and strain fields 
in an elliptic inclusion in an infinite plate, are uniform when the farfield strains or stresses are uni-
form. 
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eigenstrain e,;. From the results of Subsection 11.2.1, it is seen that the integral 
(11.2.3b) is independent of x in W, only if W has a suitable shape. 

To compute the tensor field Si °k1(c; W) explicitly, it is assumed that: 

1) W is an ellipsoid, with the semi-axes a; parallel to the x1- direction (i = 1, 2, 
3); and 

2) the linearly elastic homogeneous solid V°° is isotropic, 

Ci;kl = 2m { 1-2v 
di; dki + 

2 
(d;k d31 + 8;1 djk) } , 

where m and v are the shear modulus and Poisson ratio. 

The Green function G,° (z) for an infinitely extended body with isotropic 
elasticity is given by (see Part 2) 

G(  z) — 16pM(1 v) I z l 
{ (3 — 4v) d;; +  I z Í~2 }, (11.2.7) 

where 1z1 = 'iz;z,. Substitute (11.2.7) into (11.1.14), to obtain 

8p(1 —v) 
{ Y,ikRI — 2v dki ~,i — 2(1 — v)( dik f,~~ + di~~ f,k) }, u'   

where a subscript following a comma stands for differentiation with respect to 
the corresponding argument, and 

I c - y l dVy, f_ F(x) = f sz l c 1 1 
dVy. (11.2.8b,c) 

The corresponding strain field now becomes 

ei'= 8p(1 —v) {V,W -2v F,i;dkI 

—(1 —  v) (dikf,jI + 8;k0,i1 + diIf,jk + d;If,ik) } ek1. 

From (11.2.8d) , define the following fourth-order tensor: 

SiTu(x; 
W) = 
 8p(1 — n) { Y,ü~~ — 2v F,;;du 

— (1 — n) (d;kf,;~~ + d;kf,ii + diif jk + d;if,ik) } 

(11.2.8d) 

(11.2.9) 

which determines the strains at any point x, produced by constant unit eigen-
strains distributed in W. To obtain tensor field S , it is necessary to evaluate the 
second derivatives of F(x) and the fourth derivatives of Y(x), with respect to the 
coordinate variables, xl, c2, and x3. These derivatives may be conveniently 
expressed in terms of a set of integrals over W, often referred to as the (-
integrals, as follows: 

f,,j _ — d;; Ii — x; I;;, Y,ijki = dij (Xk Jik) j + (ci x; 
li;),kl, (11.2. l0a,b) 

where i, j, k, and 1 are not summed, and I; and I;; are 

I; = I,(i) = 2p a1 a2 a3 
J  

(A; + s) 1 D(s) 

(11.2.6) 

(11.2.8x) 



and 

I (l) ={ 
- 4p a3 (a2 + l)-512 xi, 

- 4p a3 (a2 + l)
-712 

xk, 
I+j,k(l) = {0 

for I c I <_a 
for I c l >a 

for lxl <_a 
for Ixl > a, 

(11.2.12d) 

(11.2.12e) 
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Iy = I;j(0) = 2p a122 a3 J a (A; + s)-1 (A + s)-1 
Dd(s) 

(11.2. lOc,d) 

with A; = a? and D(s) = 1j(A1 + s)(A2 + s)(A3 + s); and Jy is 

= J(l) = A; I;j(l) - Ij(l) (j not summed). (11.2.10e) 

The argument l in the above expressions is equal to zero when x is in W, and for 
x outside of W, it takes on the largest positive root of the following equation: 

xi (A + l)-i = 
± x? (a? + l)

-i = 1. (11.2.101) 
i =i 

Substitution of (1 1.2. IOa-f) into (11.2.9) yields 

8p(1-n) S1  = Sp(1 -n) S~ kI –2ndkl C j Ijj 

+ (1 - n) d~ i Xk Ik,j l- dj1 Xk 1k,i + d jk Xl 11,j + djk Xl 11,i I 

+ dij xk Jik,l + (djk C + djk xi) Jl + 
(dh 

xj + d i xi) Jij,k + xi Xi Ji u, 

(11.2.11a) 

where S;lk1 is 

8p(1-n)S d;j dk,(2nI;+ J;k)+(dik dj1 +djk dh)1(1-n)(Ik+Ii)+ Jij}, 
(11.2.11b) 

and repeated indices are not summed. This tensor is constant, and is completely 
defined in terms of the I-integrals. 

As an illustration, assume W is a sphere of radius a. From A; = a2 (i = 1, 
2, 3), the I-integrals, (11.2.1Oc,d), become 

1(l) = 43 a3 (a2 + l)-312 I(l) = a3 (a2 + l)-5/2 

and J; reduces to 

J(l) _ - 15 
a3 (a2 + l)-512 

(222 - 5 l), 

for i, j = 1, 2, 3. Note that l = 0 for 1 x 1 <_a, and l = 1 x 1 2 - a2 for 1 x 1 >a. 
Hence, the derivatives of the I-integrals with respect to xi are given by 

for i, j, k = 1, 2, 3. Substitute (11.2.12a--e) into (11.2.11a), to compute Sijkl for 
this case explicitly. In particular, for S;k; given by (11.2.11b), obtain 

SU dij dki 15(1-n) – (dik djI – djk dII) 1541 5
n ~ (11.2.12f) 
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Suppose x is inside W. The parameter l is then zero4 and all derivatives 
of the I-integrals vanish identically. The tensor field 5,ß(x ; W) equals S (c) at 
l = 0, and is uniform inside W. This is Eshelby's tensor. The uniform strain 
and stress fields in W then are 

ey = Si ki £kh  sij = Cijkl (Sktmn — 1 A1Np) EI;,~,. (11.2.13a,b) 

Therefore, the uniform eigenstrain e,~ prescribed in an ellipsoidal domain W, 
produces uniform tractions on aw, 

tj+ = niCijkl{ Sktmn(0)— 11~14i n £mn• (11.2.13c) 

11.2.3. Eshelby's Tensor for Anisotropic Media 

When the unbounded linearly elastic homogeneous solid V°° is anisotro-
pic, a procedure similar to that for the isotropic case shows that if the prescribed 
eigenstrain is uniform in the ellipsoidal domain, then the strain and stress fields 
inside this ellipsoidal domain are also uniform. However, the derivation of the 
Eshelby tensor is more tedious compared with the isotropic case. 

Excluding the mathematical details, consider the reason why the tensor 
field S1(x; W) is constant in W. In general, the Green function for the 
unbounded domain is expressed in terms of polyharmonic potentials, FS, which 
are defined by 

Fs(c; 
W) = 

4p(2s1 1)!! f W Ix—y12s-3 dV y. (11.2.14a) 

Indeed, for the isotropic case, the functions f and yi are given by F2 and F1, 
respectively, 

= — 8 p 02, Y = — 4p f1. (11.2.14b,c) 

The two potentials Fl and F2 are called harmonic and biharmonic potentials. 

Let 
12 

be the Laplacian with respect to x, i.e., 12 = a,a,. Since a, I x — y I 
= (x,—y,)/ Ix—yl, then 

021x—y12s-3 = (2s— 1)(2s-3)1x—y12s-5. (11.2.15a) 

Therefore, the polyharmonic potentials satisfy V2Fs = FS _ 1 for s> 1, and 

V2sFs(c; W) = { 0 
for x in W 
otherwise. 

(11.2.15b) 

This is because the harmonic potential F1(x) is such that V2F1(x) is 1 for x 
inside, and 0 for x outside W. 

In general, the tensor field S,j j(x; W) is given by 12SFs's, whether the 
unbounded solid is isotropic or not. Then, from (11.2.15b), Syk1(c; W) is con-
stant for c in W. Walpole (1967) has given detailed results for the polyharmonic 

4 The values of the I-integrals at l = O are explicitly given by the complete elliptic integrals. 
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potentials relating to the eigenstrain problem in the anisotropic case; he solves 
the corresponding integral equations for the eigenstrain field by successive 
approximations, using polyharmonic potentials. Other related references are:5 

Bhargava and Radhakrishna (1963, 1964) who present results for orthotropic 
media; Willis (1964) who considers cubic symmetry; Chen (1967) who exam-
ines a solid with one plane of symmetry; and Yang and Chen (1976) who dis-
cuss general anisotropic plane problems and give results for orthorhombic aniso-
tropy. These and related results are summarized by Mura (1987) who also pro-
vides additional references. 

11.3. SOME BASIC PROPERTIES OF ESHELBY'S TENSOR 

11.3.1. Symmetry of the Eshelby Tensor 

In the preceding subsections, the integral operator Sir (x; e) and the ten-
sor field S, k1(x; W) are explicitly expressed in terms of the tensor field G' °u(z) 
which is given by the gradient of the Green function G,r (z) for the unbounded 
domain V°°; see (11.1.15a) and (11.2.3b). The integration of G(z) essentially 
determines these operators, and hence yields the Eshelby tensor Syki when the 
domain W is an ellipsoid. Define the tensor field 

Rjki(x; W) = f Gai(U — x) dVy, (11.3.1) 

where W is an arbitrary finite domain (not necessarily ellipsoidal). If W is ellip-
soidal, it is denoted by W, and the corresponding Eshelby tensor, by See. Then, 
in terms of R,Jk1(x; W), this tensor becomes, 

Si ~ = Ri mh Cmn u, (11.3.2a) 

where 

RA~(c; W) _ 13iVki = constant for x in W. (11.3.2b) 

The properties of the Green function, G1 (  z), will now be used to study the ten-
sor field Ri~ki(x; W), and to obtain the symmetry properties of the Eshelby tensor 
S,k,. It should be noted that in this section, the infinite homogeneous domain V°° 

is not assumed to be isotropic nor has it any special symmetries. The following 
results are valid for a general anisotropic linearly elastic N. 

From the symmetry properties (11.1.5) and (11.1.6) of the Green function, 
G,r (z) = Gj; (— z) and G ib (z) = G; (z), it follows that 

5 See also Stroh (1958, 1962), Barnett (1972), Barnett and Lithe (1973), Ting and Van (1991), 
and Ting (1992). 
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Gij,k(Z) = — Gji,k( — z), Gy,kl(Z) = Gj~,kl(— z)> 
(11.3.3a—d) 

Gij,k(z) = Gk(z), G(z) = G3 (z). 

Therefore, in view of (11.1.15e), G,°kI(z) is symmetric with respect to the first 
and last pairs of its indices, i.e., 

GijkI(z)=- 4 {G)ájiR(— Z)+ Gky1(—z)+ G1~jk(—z)+Glk(-z) 

= Gi~ij(— z) = Gi (z). (11.3.4) 

Based on (11.3.4), it is now proved that Ryu(x; W) is also symmetric with 
respect to the first and second pairs of its indices. From (11.3.1), 

Piju(x; W) = fw-x G (z) dV , (11.3.5a) Z 

where z = y - x, and W — x denotes the rigid-body translation of region W by x. 
Then, from (11.3.4), R~w(x; W) _ Rkjy(x; W) becomes 

Rk1ij(x; W) = f W _
c 

G (Z) dVZ 

= f v,-x Grkj ~(Z) dVz = Pijhh(x; W). (11.3.5b) 

As is seen, Pijk1(x; W) is symmetric with respect to the first and second pairs of 
its indices, for any x in V. Note that (11.3.5c) holds whether or not W is ellip-
soidal. 

For an ellipsoidal W, Rijki(x; W) is constant, denoted by Rijkl(W), for x in 
W, (11.3.2b). From (11.3.5c), 

Rykl =RiR j. (11.3.6) 

Therefore, the Eshelby tensor Silo satisfies the following two symmetry proper-
ties: 

S~~ mn Dmnld = skl p Dmnij (= Pijkl), (1 1.3.7) 

with Dyk1 = Cyr iR being the compliance tensor, and 

Cijmn S1 1 = Cklmn Smpij (= Cijmn Pmnrq CrqiVi). (1 1.3.8) 

From these properties of the Eshelby tensor Skl, and its conjugate Tik = 1 kÍ) 

— DijmnS rgCrgm, it follows that the overall elasticity and compliance tensors, 
Cijki and Dim, estimated by the dilute assumption, are always symmetric; see 
Subsection 3.6. 

11.3.2. Conjugate Eshelby Tensor 

Using the equivalence relations (11.1.18a,b), define the tensor field 
T1kl(x; W) for a finite domain W, as follows: 
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T;°ki(x; W) = — Cijmnf
w 

Fmnk1(U — c) dVy + H(x; W) i(4s) 

which, in terms of Pyki(c; W), becomes 

T (c; W) = —Cijmn Pmnkl(x; W) + H(x; W) l j. 

(11.3.9a) 

(11.3.9b) 

When W is an ellipsoid, W, T(x; W) is constant, denoted by Tyke, for x 
in W. Indeed, from (11.3.2b), 

T (W) = — Cijmn R1 QkI(w) + 1yß>. (11.3.10) 

The tensor Tyke is conjugate to the Eshelby tensor Sjk1• The equivalence rela-
tions between S~ki and Ti~kl are 

Si kl + Dijkl Rk~lmn Cmnkl =  

V~
kl 

(4s) 
• + Cijkl Sklmn Dmn = 1 i~kl 

From the symmetry of Pyk1, the symmetry of Tjkl follows, 

Dijmn Rm~k1(W) = Dklmn Rm(W), 

R (W) Cmnkl = Rklmn(W) Cmnij• 

(11.3.1 la,b) 

(11.3.12a,b) 

11.3.3. Evaluation of Average Quantities 

An interesting application of Eshelby's fundamental results is the 
Tanaka-Mori observation (Tanaka and Mori, 1972): 

Suppose that an eigenstrain is uniformly distributed in a certain finite 
domain W of arbitrary shape. Let W1 and W2 be two arbitrary ellip-
soidal domains such that W is totally contained within W1, and W1 is 
totally contained within W2; see Figure 11.3.1. Then, the average 
strain in subregion W2 — W1 is completely determined by Eshelby's ten-
sors corresponding to W1 and W2. 

Figure 11.3.1 

Tanaka-Mori result: ellipsoidal 
W1 and W2 and finite 
domain W 
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Consider the proof of the Tanaka-Mori result, using the tensor field R (c; W). 

For a uniform eigenstrain 
eij 

in the finite domain W within an unbounded 
uniform region V°°, the strain field is 

e(x) = R;jkd(x; W) Cklmn e,;;, c in V°°. (11.3.13a) 

Therefore, the average strain in the region between two ellipsoidal domains, W1 
and W2, becomes 

Eij _ 1  { r0 Rijkl(x; W) dnc} Cklmn emp -W, 

__  
 1 {fU,-U {fw Ga~(Y — )()dVy} dVx} 

Cklmu ~mn, 

(11.3.13b) 

where x and y are in W2 — W1 and W, respectively. 

Since the domains W and W2 — W1 do not intersect, the integrand 
G~I1~(x — y) in (11.3.13b) is not singular. Hence, the order of integration can be 
changed, 

r 
I,-W {fW Gijkl(Y—x)dVY}dVx=fW{f G(y— c) d1x}dVy. 

, 
(11.3. 14a) 

As shown in (11.3.6), the first integral in the right-hand side is given by 

f _~ G,1k1(Y — x)dVx= R j(W2) — RIkI(WI) (11.3.14b) 

which does not depend on y, if y is in W c W1 c W2. 

Therefore, from (11.3.2), (11.3.13), and (11.3.14), the average strain 

~~ 12 Q' is given in terms of the Eshelby tensor b ~ g Y Y 

eij 2 W' 
= W 

W2 — "l 1Sik~(W2) — S~~ (W1)} ekil, (11.3.15) 

where S;kl(U1) and S(W2) are the Eshelby tensors corresponding to the ellip-
soidal domains W1 and W2, respectively. Equation (11.3.15) expresses the 
Tanaka-Mori result. The average stress in W2 — W1 is given by Ciju e;W'-sz 

since sij = Cijki ekl outside W. Next, examine two consequences of the Tanaka-
Mon result. 

As is shown in Subsection 11.2.2 for the isotropic case, the Eshelby tensor 
depends on both the shape and the orientation of the ellipsoid, but only the ratios 
of the semi-axes enter the components of this tensor in a coordinate system 
coincident with the directions of the principal semi-axes of the ellipsoid. There-
fore, if the two ellipsoidal regions W1 and W2 have the same shape and orienta-
tion, i.e., if the corresponding semi-axes have common ratios and directions, 
then 

S11(W2) = Siki(W1), (11.3.16a) 

and the average strain (and, hence, the average stress) in W2 — W1 vanishes, 
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ei  ~
1
= 0.  

This result holds for any W with any arbitrary shape. 

When the eigenstrain ei is distributed in an ellipsoidal domain, say, W, let 
W1 coincide with W; see Figure 11.3.2. Then, from the Tanaka-Mori result, the 
average strain in any ellipsoidal region W' which includes W (W c W') is given 
by 

eijZ = ~, Silki(W') e. (11.3.17a) 

As is seen, (11.3.17a) does not depend on the shape or the orientation of W. 
Indeed, W need not be ellipsoidal. The average stress is determined by 

Cijmn 'S m~ki(UU) — 1mnld } ek1, (11.3.17b) 

since sij = CijkI (ei'j — ek1) in W. 

(11.3.16b) 

Figure 11.3.2 

Ellipsoidal domains W and W', where 
eigenstrains e~j are distributed in W 

The Tanaka-Mori result can be further generalized to include nonuniform 
distributions of eigenstrains in the region, W, of any arbitrary shape. Suppose 
e` 

 
= e(x) is integrable on W, having the average ~* = < e* >w.  Then 

(11.3.13b) becomes 

jr —

W -UI — w2 
1 

w i 
{~~,-~, {J» Giju(U — cR) Cum. emn(y)} dN } dVX 

1   
W2 — W1 f w { f tz,  W G(U — x) dVX } Ckimn emn(U) dVy 

— W — W {Si, ~(~2> — S;~ (~l~} < ekI >W. (11.3.18a) 

Thus the average strain over W2 — W1 vanishes: (1) when W1 and W2 are similar 
and coaxial ellipsoids, (in this case, the distribution of e*(x) in W may be arbi-
trary); and (2) when e*(c) has a zero average over W (in this case, W1 and W2 
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need not be similar or coaxial, but both must be ellipsoids). Expression 
(11.3.18a) remains valid, as W1 coincides with W. Then the average strain in 
any ellipsoidal region W' which includes an arbitrary domain, W, in which vari-
able eigenstrains e*(c) are distributed, is given by 

< e >w. (11.3.18b) 

Then the corresponding average stress is 

ßij — ~~iR Dijmn {Sm'ke(~') — 1m4n } < e~ >W. (11.3.18c) 

Thus the average strain and stress induced in an ellipsoidal region W' by arbi-
trary eigenstrains e*(c) distributed in a region W c W' of arbitrary shape, are 
always zero if the eigenstrains have zero average over W. All these and all other 
results presented in this section are exact. 

11.4. RELATIONS AMONG AVERAGE QUANTITIES 

As shown in Sections 7 and 9, a heterogeneous solid can be homogenized 
by distributing suitable eigenstrains or eigenstresses within its inhomogeneities. 
The stress and strain fields produced in the homogenized solid by external loads 
in the presence of such eigenstrains or eigenstresses then coincide with the 
corresponding actual fields. Moreover, the estimate of the overall moduli of a 
heterogeneous RVE depends only on the average field quantities within its inho-
mogeneities. In this subsection, these average field quantities are expressed in 
terms of the corresponding eigenstrains or eigenstresses of the homogenized 
solid. 

11.4.1. General Relations 

Choose a certain finite region V in an unbounded homogeneous domain 
V, and consider relations among various average field quantities in V. It is 
assumed that the eigenstrain e* or eigenstress s* may be distributed in V, in 
order to produce arbitrary displacements or tractions on aV. Since a jump in the 
eigenstrains (or eigenstresses) across aV is equivalent to a layer of body forces 
applied there, this body force layer (or the corresponding surface displacements) 
on aV may be chosen such that the strain and stress fields due to the eigenstrains 
and eigenstresses coincide with those of a heterogeneous bounded RIB with 
prescribed boundary conditions. 

The stress and strain fields produced by the eigenstrain e* and eigenstress 
s* are now examined at the same time, but as two separate problems for the 
same region V. Following the notation of Section 7.3, let ed and sd be the 
corresponding (disturbance) strain and stress fields. These fields satisfy the 
strain-displacement relations and the equations of equilibrium, 
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ed = 2 {(Oâud)+ (Oâud)T}, O.sd = 0, (11.4.1a,b) 

where ud is the displacement field. Hence, ed and sd are kinematically and stati-
cally admissible fields, related by 

J C: (ed — e*) d — ,f D : sd + e* 

C : ed + s*, D: (sd — s*) 

for a prescribed eigenstrain e*, or a prescribed eigenstress s*, respectively. 
Note that either (but not both) e* or s* is prescribed. These are two separate 
problems which are being examined simultaneously. If s* = — C : e*, then the 
two problems are identical, otherwise, they are two separate problems. 

From the kinematical admissibility of the strain field and the statical 
admissibility of the stress field, the average strain and stress are given by the 
surface data on aV, 

< ed > = 
V 

f 

2 
(n âud + ud ® n) dS, 

< sd > = V f (n.sd)® c dS, (11.4.3a,b) 

where the displacements and tractions are assumed to be continuous everywhere 
in V. The continuity of displacements and tractions does not imply the con-
tinuity of the corresponding strain and stress fields. Indeed, if the eigenstrains 
and eigenstresses are discontinuous across some surfaces, the strain or stress 
fields are also discontinuous there. Taking the volume average of (11.4.2a,b), 
note the following relations for the above defined average quantities: 

d C:(< ed>—< e*>) 

D : < sd > + <  
D : (< s' > < s >). 

These relations are exact. They are valid for a finite V with arbitrary shape, and 
for any variable (admissible) eigenstrain or eigenstress field prescribed on any 
region within V. These relations always hold whether or not the displacements 
or tractions are discontinuous. When the boundary aV of V is traction-free, it 
follows from (11.4.3b) and (11.4.4a) that < ed > = < e* >, and when the boun-
dary displacements on aV vanish, (11.4.3a) and (11.4.4b) show that < sd > = 
< s* >. Again, these results are not restricted to any specific geometry for V or 
any specific distribution of eigenstrains and eigenstresses, nor are they restricted 
to any specific shape of the regions within V, where these eigenstrains and 
eigenstresses are distributed. 

Next consider the volume average of the strain energy density produced 
by prescribed eigenstrains or eigenstresses. Define the stress-work W* by 

W*_
<Gd: ed >. (ll.4.5a) 

sd = (11.4.2a,b) 

<ed >= (11.4.4a,b) 

Again, from kinematical and statical admissibility of the strain and stress fields, 
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it follows that 

W*= 2<sd>:< ed>+(B.C.), 

where (B.C.) stands for the "boundary contributions", given by 

(B.C.)=_ 2V Jv {n.(sd—< sd>)}.{ud—x.< ed>} dS. 

As in (11.4.3a,b), the continuity of displacements and tractions is also assumed. 

From the constitutive relations (11.4.2a,b), define the elastic strain, 

(11.4.6) 

such that C : ede is the resulting stress sd. Then, the average elastic strain 
energy, E*, produced by the eigenstrains or eigenstresses is 

E* = 2 < sd : ede >. (11.4.7a) 

The total strain ed is the sum of the elastic strain ede and the inelastic strain 
(ed— ede) Using (11.4.2a,b) and (11.4.5a), express the average elastic strain 
energy E*, as 

2E* = f
2W*—< sd: e* > 
2W*+< sd: D: s*>. 

(11.4.7b) 

11.4.2. Superposition of Uniform Strain and Stress Fields 

Consider a uniform V°°, within which eigenstrain e* (eigenstress s*) is 
prescribed in a subregion V. Let the farfield strain and stress be e° and s°°. 
Then, it follows that 

e°° — lim ~ e(x), s°° = lim~ 
s(x). (11.4.8a,b) 

The limiting procedure does not depend on the direction of x. The farfield strain 
and stress are related by 

s°° = C : e, e°° = D : s'°, (11.4.8c,d) 

since e* and s* are prescribed on a finite region V within N. 
If the farfield strain or stress is prescribed to be e°° _ e° or s = s° 

(s° = C : e° or e° = D : s°), in the absence of eigenstrains or eigenstresses, the 
resulting strain and stress fields are constant and given by s° and e° everywhere 
in a homogeneous N. Superimpose these uniform fields and the disturbance 
fields, sd and ed, which are produced by the eigenstrains or eigenstresses. Since 
sd and ed vanish at infinity, the prescribed farfield boundary conditions are 
unchanged by this superposition. 

Denoting the superposed strain and stress fields by s and e (as in Section 
7), define these fields in terms of the uniform and disturbance fields, as follows: 
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e= E°+ ed,  s=s°+sd. 

Then, the exact relations (11.4.4a,b) become 

<0>=s°+< sd>=
~ 

C:(e°+<ed>—< e*>) 
C:(e°+< ed >)+<s >, 

o d D :(s°+<sd>)—< E*> <e> =e +<e >=  
D : (s° + < sd > <s >). 

(11.4.9a,b) 

(11.4.10a,b) 

Now compute the change in the stress-work due to the existence of eigen-
strains or eigenstresses. Since the elastic strain energy in the absence of any 
eigenstrain or eigenstress is given by s° : e°/2, define this change in the stress 
work by 

DW*= 2< s:e> — Z s°: e°, (11.4.11a) 

and from (11.4.9a,b), rewrite (11.4.11 a) as 

DW*= 2(s°:< ed >+e°:<sd>)+ W*, (11.4.11b) 

where W* is given by (11.4.5a). In a similar manner, for the average elastic 
strain energy, consider the change due to the existence of eigenstrains or eigens-
tresses, defined by 

DE*= 2< s :ee>— 2 s°: e°, (11.4.12) 

where ee is the elastic part of the total strain, ee = e° + ede. From (11.4.8a,b), 
(11.4.12) becomes 

2AE* _1-  
2DW*+< s*>:e°+<sd: D: s*> 

or in terms of W* and E*, from (11.4.7b), 

2AE* = f 2DW*— s°:< e*>+2E*-2W* (11.4.13b) I 2DW + < s > : e° + 2E — 2W . 

11.4.3. Prescribed Boundary Conditions 

Using the general results obtained in Subsections 11.4.1 and 11.4.2, con-
sider relations for the average quantities associated with particular boundary 
conditions prescribed on av, i.e., uniform surface tractions or linear surface dis-
placements. In either case, the tractions or displacements on an are determined 
by certain prescribed constant symmetric tensors, s° or e°. The uniform trac-
tions are prescribed by 

n.s = n.s° on al, (1l.4.14a) 

and the linear displacements are prescribed by 

(11.4. 13a) 
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u = c.e° m a  l. (11.4.15a) 

Note that, in general, s° and e° are not related; the boundary conditions 
(11.4.14a) and (11.4.15a) are mutually exclusive. However, one can always 
define e° = D : s° in the first case, and s° = C : e° in the second-case, that is, e° 
can be defined to stand for D : s° if s° is prescribed, and s° can be defined to 
represent C : e° if e° is prescribed. 

Since the uniform strain and stress fields satisfy the above boundary con-
ditions automatically, the disturbance strain and stress fields, sd and ed, pro-
duced by the eigenstrains and eigenstresses, satisfy either zero tractions or zero 
displacements, depending on whether (11.4.14a) or (11.4.15a) is prescribed. 
Under (11.4.14a), 

n.sd = 0  on aV (ud ~ I on aV), (11.4.14b) 

and under (11.4.15a), 

ud = I on aV (n.sd # I on aN). (11.4.15b) 

The (average) constitutive relations (11.4.3a,b), together with (11.4.14b), 
now yield 

<e* > 
<sd > = 0,  <ed> 

_D:< s*>, 

whereas (11.4.3a,b) and (11.4.15b) give 

d d — C < e* > (11.4.17a,b) 
< s >. 

In either case, the stress-work W* is zero. Hence, from (11.4.7b), the elastic 
strain energy 

E* 
is given by 

2E* = 
<sd:D: s*>. 

(11.4.18) 

From (11.4.16), (11.4.17), and (11.4.18), the average total strain and 
stress are: when uniform boundary tractions are prescribed by (11.4.14a), 

<s>=s
°
,  <e>= 

e~ * +<e> * (11.4.19a,b) 
e — D:< s >; 

and when linear boundary displacements (11.4.15a) are given, 

s° + < s* > (11.4.20a,~) <e>=e°, < s>= s°-C:< ~*>. 

Under either boundary conditions, from (11.4.11b) and (11.4.13b), the change in 
the stress-work, DW*, and that of the elastic strain energy, DE*, are: when uni-
form boundary tractions are prescribed, 

2LW*= > 2DE*=2E* =, —< sd: e* > (11.4.21a,b) 
—< s* >: e°, <sd: D:s* >; 

and when linear boundary displacements are prescribed, 

(11.4.16a,b) 
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2D
W*_{ —

s0:< e*> 
2DE*=2E*= 

—<(5d: e*> 
. <sd:D: s*>. 

When (11.4.21) and (11.4.22) describe the same problem, so that s° and e° are 
related through s° = C: e° or e° = D : s°, it is seen that in (11.4.21a) and 
(11 .4.22a), the absolute value of DW* is the same but its sign changes, while 
DE* in (11.4.21b) and (11.4.22b) coincides and is given by E*. 

Finally, suppose an RVE of volume V and arbitrary elasticity C' = C'(x), 
is subjected on its boundary aV to self-equilibrating tractions of arbitrary varia-
tion, and denote the corresponding stress and strain fields by s(x) and e(x), 
respectively. Consider, in addition, a homogeneous solid of volume V' with the 
same geometry as that of V, but of uniform elasticity C, subjected on its boun-
dary aV' to the same tractions as those acting on aV, and denote the correspond-
ing stress and strain fields by s(c) and eH(c), respectively. Let e*(c) be the 
eigenstrain field which homogenizes V of variable elasticity C'(x) to V' of con-
stant elasticity C. Define the (average) energy of inhomogeneity by 

DW* 2<s:e> — 2<sH: eH>. (11.4.23a) 

It then follows that 

* 
2DW* _ < SH : e > (11.4.23b) 

I. — < s :eH>, 

as may be verified by direct calculation, where s* = — C : e*. Similarly, when 
arbitrary self-compatible displacements are prescribed on aV, the average 
energy of the inhomogeneity becomes 

2DW* = ~ - < sH : e* > 
< s*: eH>. 

(11.4.24) 
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CHAPTER IV 

SOLIDS WITH 

PERIODIC MICROSTRUCTURE 

In the preceding sections attention is focused on solids with 
irregular microheterogeneities. The random distribution of inhomo-
geneities is the corresponding limiting case. At the other extremum is 
the limiting case of perfect regularity. This may be modeled by an 
infinitely extended solid with periodic structure. In this chapter the 
general properties of solids with periodic microstructure are examined, 
i.e., solids with periodically distributed cavities or inclusions. Many 
advanced composites can be modeled in this manner. Furthermore, the 
results provide useful limiting values for the overall properties of solids 
with microheterogeneities. 

For a periodic structure, the concept of a unit cell is introduced 
and, using Fourier series, the general solution is obtained. Various 
symmetry conditions are considered, and the results are discussed. 
Specific classes of problems are then solved for illustration, obtaining 
the overall average material parameters in terms of the geometry and 
properties of the representative unit cell. In particular, explicit expres-
sions for the Green function are used to calculate bounds on the overall 
elastic and complementary elastic energies, employing the Hashin-
Shtrikman variational principle. An alternative direct formulation of 
these bounds is also presented. Application to nonmechanical proper-
ties, as well as to nonlinear constituents, is discussed. In addition, gen-
eral universal bounds for two elastic parameters are obtained. These 
bounds are valid for any number and distribution of phases in a unit 
cell. 



SECTION 12 GENERAL PROPERTIES AND 

FIELD EQUATIONS 

This section addresses a number of general physical and mathematical 
properties of solids with periodic microstructure. First, attention is focused on 
the essential differences between an RVE with random distribution of 
microheterogeneities and an RVE of a solid with periodic microstructure. Then 
the Fourier series expansion technique is used to solve the problem of a linearly 
elastic solid with periodically distributed cavities or linearly elastic inclusions. 
To this end, a unit cell is specified which encompasses the structure of the solid 
and which is used to reduce the solution of an infinitely extended periodic struc-
ture to that of a finite unit cell. The boundary conditions for the unit cell are 
examined with some care and the uniqueness of the periodic field variables is 
discussed. A series of illustrative examples are worked out, and application of 
the results to periodically distributed inelastic inhomogeneities in an inelastic 
matrix is also briefly examined. 

12.1. PERIODIC MICROSTRUCTURE AND RVE 

As has been discussed before, the distribution of microdefects may, in 
many cases, be regarded to be random and therefore, be described statistically. 
The concept of an RVE with random distribution of defects has been introduced 
to deal with such situations. In many problems the material may possess a regu-
lar microstructure which lends itself to a completely different type of modeling, 
namely, a solid with periodically distributed defects or inclusions. Such a per-
fectly regular distribution, of course, does not exist in actual cases. However, 
the model can be quite useful, since it provides limiting values for various 
overall material properties. 

Whereas the boundary data for an RVE with irregular heterogeneities are 
defined by the local values of the macrostress or macrostrain in the correspond-
ing continuum at the corresponding material element, the same interpretation 
cannot be applied directly to the model of a solid with a periodic structure. In 
this latter model the periodicity extends to infinity in all directions and therefore, 
the boundary conditions need to be prescribed differently in a precise and useful 
manner. In particular, these boundary conditions must be such that they lead to 
a periodic distribution of the field quantities, namely, displacement, strain, and 
stress. Hence, a representative unit cell is considered, which encompasses the 
periodic geometry and material properties, as well as the periodicity of the field 
variables, and the overall properties of the solid with periodic microstructure are 
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studied in terms of the overall properties of this representative cell. This 
representative cell is called the unit cell. By definition the solid with a periodic 
structure must consist of an infinite monolithic collection of such unit cells, 
satisfying the continuity of displacements and tractions across all cell boun-
daries. For the unit cell, the average strains and stresses can be calculated in 
terms of the geometry and properties of its constituents, and the overall average 
elasticity and compliance tensors can be defined. In this manner, instead of an 
RVE, a unit cell is employed, in order to estimate the constitutive properties of 
the continuum material. Note that, in many advanced composites, the micros-
tructure can indeed be accurately modeled as a periodic one and therefore, the 
present results directly apply to such structures. However, an estimate of the 
overall properties of solids on the basis of an assumed periodic microstructure 
has broader application and, indeed, provides limiting values for cases where 
actual periodicity may not exist. Note that when the shapes and the arrangement 
of the inclusions within the unit cell are regular, following a certain pattern, then 
the overall response of the solid will entail some corresponding symmetries. On 
the other hand, when the arrangement within the unit cell is irregular and more 
or less random, the overall response may become isotropic even for the periodi-
cally arranged unit cells. The general results presented in this section and the 
following two sections apply to both cases. 

12.2. PERIODICITY AND UNIT CELL 

A model of an infinitely extended linearly elastic solid with periodically 
varying inhomogeneities is now examined. The elastic and compliance tensors 
are periodic functions of the position. For an arbitrary loading, the displace-
ment, strain, and stress fields may not, in general, be periodic. However, special 
idealized prescribed deformations or stresses may be considered which produce 
periodically varying field quantities and also lead to practically useful results. 

Assume that the infinitely extended periodic structure is obtained from a 
unit cell which is repeated indefinitely in all directions. The unit cell does not 
need to be in the shape of a parallelepiped. But, for a broad class of periodic 
structures, a unit cell of that kind can always be chosen. The parallelepiped unit 
cell lends itself to simpler analysis and, therefore, is considered in this chapter. 

Denote by 2a; (i = 1, 2, 3), the dimensions of the parallelepiped unit cell 
in the x;-direction. Then the elasticity tensor C' = C'(x) satisfies the following 
periodic condition: 

C'(x + d) .= C'(x), 

where 
3 

d = .S 2m; a; e~, i_ 

with m; (i = 1, 2, 3) arbitrary integers. It is convenient to introduce 
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a1 = 2a1 el, a2 = 2a2 e2, a3 = 2a3 e3, (12.2.2b--d) 

to denote the edges of the unit cell. The vectors as (a = 1, 2, 3), now define the 
regular structure of the periodic solid. Note that from one set of regularity vec-
tors as (a = 1, 2, 3), other sets can be constructed. For example, al + a2 and 
a2 — a 1 can replace a1 and a2. As shown in Figure 12.2.1, several parallelepiped 
unit cells can be constructed for one periodic structure. Therefore, depending 
on the problem, different suitable regularity vectors may be chosen. Note also 
that the regularity vectors need not be mutually orthogonal. Here, however, 
orthogonality is assumed for the sake of simplicity in presentation. 

O 

O 

O  

O 

O 

0 

at O 

O 

Figure 12.2.1 

Two unit cells for one periodic structure 

Let u = u(c), e = e(x), and s _ s(C) be the displacement, strain, and 
stress fields. They must satisfy the three governing field equations, 

e(C) =  

V . s(c) = 0, s(x) = C'(x) : e(x), 

for any x. Consider periodic solutions, 

s(c + d) _ s(x),  e(l + d) = e(C). 

From these and (12.2.1), it follows that 

s(x + d) = C'(x) : e(C). 

(12.2.3 a—c) 

(12.2.4a,b) 

(12.2.4c) 

If the displacement field u satisfies the periodicity, its gradient and hence 
the strain field become periodic. The converse, however, may not be the case. 
That is, even if the strain field satisfies periodicity, the corresponding 
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displacement field may not be periodic. This is because a uniform strain field, 
which satisfies periodicity, 

e(x + d) _ e(x) _ e°, (12.2.5a) 

produces a linear displacement field, 

u(x) = c.e°, (12.2.5b) 

which is not periodic. In order for the corresponding displacement field to be 
periodic, subtract from the total strain field the corresponding uniform part (if it 
exists). In this manner, it is required that the average strain for a periodic strain 
field vanish. The uniform part (if it exists) will then be dealt with separately. In 
Subsection 12.3, the periodicity of the displacement field is examined in some 
detail. 

In general, besides periodicity properties, the field variables possess cer-
tain symmetry and antisymmetry properties. From these properties, zero traction 
or zero displacement conditions can be assigned on certain planes in a periodic 
structure; see Section 14. These conditions may be used to simplify and consid-
erably reduce the required actual computation. 

12.3. FOURIER SERIES 

Since the field variables in a solid with a periodic structure and suitable 
boundary data satisfy periodicity, it is useful to consider the Fourier series 
representation of these variables. Recall 

exp(tx) = cosx+tsinx (t = '1-1). (12.3.1) 

Define the domain of a typical unit cell, U, by 

U {x; — a <x 1  a1 (i 1, 2, 3)}, (12.3.2) 

and introduce new variables x;, by 

x;(n) -  (n; = 0, ±1, ...; i not summed; i = 1, 2, 3). (l2.3.3a) 

For simplicity, treat ; as components of a vector, say, x, and write 

xR = xl e1, x; x; = x . x. (12.3.3b,c) 

Note that the set of complex functions exp(tx .x) is periodic, 

exp{t(x+ d).x} = exp(tx.x), (1 2.3.4a) 

with d defined by (12.2.2a), and orthonormal, 

Ju exp(tc.x) exp(— ix. z) dN = { 0 otherwise, 
(12.3.4b) 

where z; = m;p/a; (m; = 0, ±1, ..., ; i not summed; i = 1, 2, 3), and 
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U = 8 a1 a2 a3. 

Note also that 

ac exp(ic.x) = ix,ecr(tc.x) (i = 1, 2, 3) 

or 

q{exp(ic.x)} =t x exp(ix.x). 

(12.3.4c) 

(12.3.4d) 

(12.3.4e) 

The set of functions, exp(ix.x), x, = n,p/a,, (ni = 0, ±1, ...), defines an 
orthogonal basis such that a suitably smooth arbitrary periodic function f(x), 
with periodicity f(x + d) = f(x), can be expressed as 

f(x) = S Ff(x) exp(~x.x), (12.3.5a) 
x 

where the summation is taken for all integers n, (i = 1, 2, 3). The coefficients 
Ff(x) are defined by 

f(x) _ f v f(c) exp(— iRc. x) dVX. (12.3.5b) 

These coefficients are unique, and the infinite sum converges at every point in 
the unit cell if f(x) is sufficiently smooth; see Sneddon (1951). 

12.3.1. Displacement and Strain Fields 

Now, seek to express the periodic field variables in the unit cell in terms 
of the Fourier series. First consider the displacement field u(x). From (12.3.5), 

u(c) = S' F-u(~) exp(ic.x), 
x 

where 

Fu(x) = ~T fu u(c) exp(—tx. x) dVX 

or, in component form, 

Fu1(x) = --f u u,(c) exp(— ic.x) dVX. 

(12.3.6a) 

(12.3.~b) 

(12.3.6c) 

In (12.3.6a) and in the sequel, a prime on S indicates that the summation is 
taken over all integers n, in (12.3.3a), such that x ~ O. The term corresponding 
to  = 0, i.e., Fu(0), should be omitted, since it corresponds to a rigid-body 
translation. 

Using (12.3 .~b), express the coefficients of the Fourier expansion of 
V®u(x), as 

F(Nâu)(x) = 
Ü f u 

V® u(c) exp(—tx. x) dVX. (12.3.7a) 

From the Gauss theorem, (12.3.7a) is rewritten as 
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F(V âu)(x) = 
Ü f au n(c) âu(c) exp(— ic.x) dSx 

1  V{exp(— ic.x)}âu(c)dV. U Iu (12.3.7b) 

Because of periodicity, 

u(c) = u(x-), exp(ix± .x) = exp(1x .x) on au, (12.3.8a,b) 

where x+ is on x; _ +a; and x- is on x; = —a ;, for i = 1, 2, 3. Since the unit 
external normal vector on au, 1(x), satisfies 

n(x+) = — n(x ), (12.3.8c) 

the surface integral in the right-hand side of (12.3.7b) vanishes, 

~au 1(x)® u(x) exp(—tx. x) dSx = O. (12.3.8d) 

The displacement gradient then becomes 

V ®u(x) = S' F(V ® u)(x) exp(tx . (12.3.9a) 

where 

F(V âu)(x) = txâFu(x). (12.3.9b) 

Hence, the strain field e has the following Fourier series expansion: 

e(x) =  ' Fe(x)exp(ic.x), (12.3.10a) 

where 

Fe(x) = 
Z {

xâFu(x)+ Fu(x)âx}. (12.3.10b) 

Assuming that the order of differentiation and summation can be exchanged in 
the Fourier series expansions, obtain (12.3.9a) directly from the gradient of the 
right-hand side of (12.3.6a). This formal exchange of the operators is possible 
only if u(x) is periodic, suitably smooth, and the surface integral corresponding 

to (12.3.7a) vanishes for all x, i.e., (12.3.8d) holds. 

From (12.3.8d), it can be proved that the average strain over the unit cell 
must vanish identically if the displacement field is periodic. For x, = 0 (or 
n; = 0), (12.3.8d) becomes 

U Jau 
n(c) âu(c) dSx = < V âu > = 0, (12.3.11) 

where U = 8a1a2a3, and < > stands for the volume average over U. Therefore, 
for a periodic displacement field, the average strain must vanish. 

12.3.2. Stress Field 

The periodic elasticity tensor C'(x) has the Fourier series expansion, 
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C'(x) = S FC' exp(ic •x), (12.3.12a) 

where 

FC'(x)  C'(c) exp(— ic.x) dVx, (12.3.12b) 

with FC'jjkj = 1C'jiki = '~~ ik = FC'ldjj. Then,1 

s(c) = C'(x) : e(c) 

= {S FC'(x) exp(ix• x)} : { ' Fe(z) exp(ix . )}. 
x z 

If the order of the two infinite summations can be rearranged, then 

s(c) = S { S' FC'(x — z) : Fe(z) } exp(ic. x). 
x  z 

Note from (12.3.13b), that 

Fs(x) = 
~T f U s(x) exp(— ic.x) dVx 

(12.3.13a) 

(12.3.13b) 

=t S'FC'(x — C) {(z)âFU(z)}• (12.3.14a) 
z 

Note also that, if C' is a constant, say, C, then 

Fs(x) = t C : {xâFU(x)} (12.3.14b) 

which is linear in x and Fu(x). 
Whatever may be the relation between Fu(x) and Fs(x), the divergence of 

the stress field satisfies 

F(o.s)(x) = 
 f 

au n(c).s(c) exp(—~ c.x) dSx 

+ - -Ju 
ix.s(c) exp(— ic.x) dVx 

= ix.Fs(x). (12.3.15) 

As pointed out before, this is because the stress field s(x) is periodic and the 
surface integral on aU vanishes for all x, i.e., 

Jau n(x).s(x) exp(—tx. x) dSx = O. (12.3.16a) 

In particular, taking x = 0, observe that 

r 
.1au n(c).s(c) dSx = 0 

which stems from the equilibrium of the unit cell. 

In (12.3.13a), the uniform part of the stress field is included. 

(12.3.16b) 
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12.4. HOMOGENIZATION 

An elastic solid with periodically distributed inhomogeneities can be 
homogenized by the introduction of suitable periodically distributed eigenstrains 
or eigenstresses. In this approach, the periodic elasticity tensor C' is replaced by 
a reference constant elasticity tensor C and a suitable periodic eigenstrain (or 
eigenstress) field. The uniform solid with constant elasticity tensor C, is 
referred to as the equivalent homogeneous solid. In this section, this general 
problem is formulated by the Fourier series approach.2 

12.4.1. Periodic Eigenstrain and Eigenstress Fields 

In the equivalent homogeneous solid of reference constant elasticity C, 
the required eigenstrain (or eigenstress) field is periodic, i.e., 

e*(x + d) = e*(x), s*(x + d) = s*(x), (12.4.1a,b) 

where d is given by (12.2.2a). The Fourier series representations of the eigen-
strain and eigenstress fields are 

e*(x) _ ~' FE*(x) exp(tx.x), 
x 

s*(c) = S' Fs*(x) exp(ic.x), 
x 

where 

I *(x) = 
U fu 

e*(c) exp(— ic.x) dVx, 

Fs*(x) = Ü JU s*(c) exp(— ic.x) dVx, 

(12.4.2a,3a) 

(12.4.2b,3b) 

with (Fe*)T = Fe* and (Fs*)T = Fs*. The terms Fe*(0) and Fs*(0) need not be 
considered in this representation,3 since they correspond to uniform eigenstrains 
and eigenstresses, and hence do not produce (equivalent) distributed body 
forces, i.e., V .e* = 0 and V . s* = 0 for these terms. As pointed out before, uni-
form strain and stress fields are dealt with separately; see Subsection 12.4.5. 

To relate the field variables in the equivalent homogenized solid to those 
in the original heterogeneous solid with periodic structure, use the following 
consistency conditions for the eigenstrain (or eigenstress) field: 

'- See also Bakhvalov and Panasenko (1984) who apply an asymptotic expansion as well as the 
Fourier series expansion to fields in a solid with periodic microstructure. 

' Unlike periodic strain or stress fields, periodic eigenstress and eigenstrain fields are allowed 
to have nonzero volume averages, < e* > and < s* >, i.e., homogeneous parts. Although these 
homogeneous parts produce no periodic strain or stress fields, they are required for a complete 
representation of the final solution; note that these constant eigenstrains and eigenstresses do affect 
the homogeneous strains and stresses, through S° = C : (e° — < e* >) or e° = D : (O0 — < s* >). 
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C'(x) : e(c) = C:  

D'(x) : s(x) = D: {s(x) — s*(x)} for x E U, (12.4.4a,b) 

where D' and D are the actual and the reference compliance tensors, respec- 

tively,4 i.e., D'(x) = C'-t(x) and D = C-1; see Subsection 12.4.5. It is important 
to note that the homogeneous (uniform) parts of the field variables e(x), s(x), 
e*(x), and s*(x) are included in (12.4.4). When the average stress and strain 
tensors, < s(x) > = s° and < e(x) > _ e°, are nonzero and are included in the 
consistency conditions, the corresponding average eigenfields < s*(c) > and 
< e*(c) > must also be included in s*(c) and 

e*(); 
see (12.4.22a,b). Hence, 

consistency conditions (12.4.4a,b) may be interpreted to be identical with 
(12.4.22a,b), given later on, if quantities e(x), s(c), e*(x), and s*(x) include 
their corresponding averages. 

12.4.2. Governing Equations 

First consider the periodic field variables produced by a prescribed 

periodic eigenstress field, s*. The stress field s is given by5 C : e + s*. Equili-
brium then requires that 

V.{C: (V®u(x))} + N.s*(c) = 0, for c U. (12.4.5a) 

Hence, 1. s can be regarded as the distributed body forces. Noting that both 
O®u and s* are periodic, use a Fourier series expansion and arrive at 

— x.0 : {xâFU(x)} + Ix.Fs*(x) = 0, for x # 0. (12.4.5b) 

From (12.4.5b), the coefficients Fu(x) are obtained uniquely in terms of 
those of the eigenstress field. If (x.C.x) has an inverse (choose C with a 
unique inverse), then 

Fu(x) = t (x.C.x)-1 . { x.Fs*(x) } (12.4.~a) 

or in component form, 

(x) = t (x.C.x)~tt{xkFskR~(x)}. (12.4.~b) 

Note that (12.4.~a) necessarily requires that x # O. From (12.3.10b) and 
(12.3.14b), it then follows that 

(x) = —sym { xâ(x.C.x)-1 ® x} : Fs*( x), 

Fs(x) = —C : sym { xâ(x.C.x)-' ® x} : Fs*(x)+Fs*(x), (12.4.7a,b) 

where sym stands for the symmetric part of the corresponding fourth-order 

As mentioned in the previous footnote, the homogeneous part of e' or s' must be included 
in consistency condition (12.4.4a,b). 

5 Superscript p is used later on for periodic strain and stress fields to emphasize their periodici-
ty. Here, however, the superscript p is omitted. 
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tensor, i.e., sym T = (T,jj + Tjikl + Tijlk + T)/4. In component form, these 
become 

Feij(x) = —sym { xi(x.C.x)jk1 xi) Fs 1(x), 

Fsij(x) _ —Cijmnsym Ixm(x.C.x)~klxi} Fsii(x)+ Fsij(x). (12.4.7c,d) 

In a similar manner, the field variables associated with a prescribed 
periodic eigenstrain field e` are obtained. This leads to 

Fu(x) _ — t (x.C.x)-1. {x.(C : Fe`(x))} (12.4.8a) 

or in component form, 

Fu(x) = —L( x.C.x)i~l {xm 
C ki(x)}. (12.4.8b) 

The strain and stress fields are then defined by

(x) = sym {xâ(x.C.x)-1âx} : C: Fe`(x), 

Fs(x) = C: (sym {xâ(x.C.x)-1âx} : C— 1( 45)]  : FE*(x) (12.4.9a,b) 

or in component form, 

Feij(x) = sym {xi (x•C.x)jm xn} Cmnkl kl(x), 

Fs!j(x) = Cijp9 (sym {xp (x.C.x)gm 4n} Cmnkl — i ] FeiI(x). (12.4.9c,d) 

12.4.3. Periodic Integral Operators 

Let S(; e*) (= e(x)) and R (c; s*) (= s(x)) be the integral operators for 
e and s*, defined in the manner6 of Section 7, i.e., S gives a periodic strain 
field produced by e*, and t gives a periodic stress field produced by s*. Then, 
these integral operators reduce to fourth-order tensor operators, FS = FS(x) 
and FT = F'r'(x), for the coefficients of the Fourier series expansions of the 
strain and stress fields. These now determine the coefficients of Fourier series 
representations of the strain and stress fields in terms of those of the eigenstrain 
and eigenstress fields. From (12.4.9a) and (12.4.7b), 

(x) = FS(x) : Fe*(x), Fs(x) = IT (x) : Fs*(x), 
where 

FS(x) = sym {xâ(x.C.x)-1 âx} : C, 

6 In Section 7, integral operators S and T are introduced to obtain the disturbance stress and 
strain fields produced by prescribed eigenstrain and eigenstress fields, respectively. While S and T 
give the fields which do not violate the prescribed boundary conditions, 

S 
and T give periodic 

fields whose volume averages vanish. 

(12.4. l0a,b) 
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F'GP(xR) = —C : sym { xâ(x.C.x)-1âx} + 1(4s) (12.4.1 Oc,d) 

or in component form, 

FSjkl(xR) = sym {x (xR • C.xR)jm x} Cmnkl, 

ET il(xR) = — Cijmn sym { xm (xR . C . xR)nkl xRl } +  

As is seen, FS P and F'G satisfy the following equivalence relations: 

FSP + D : UGP : C = 1(4s) FTP + C : FS? : D = 1(4s). (12.4.11 a,b) 

In a similar manner, define integral operators i'(x; e*) (= — s) and 
GP(x; s*) (= — e), where s and e are periodic stress and strain fields due to e* 
and s*, respectively. These integral operators reduce to the fourth-order tensors 
FAP = Fmm(x) and FGP = FGP(x) which correspond to the tensor fields AA(x) and 
FA(x) introduced in Subsection 9.4; see Subsection 9.4 or 11.1. From (12.4.7a) 
and (12.4.9b), 

Fs(x) = —F L '(x) : Fe*(x), Fe(x) = —F GP(x) : Fs*(x), (12.4.12a,b) 

where 

FAP(x) _ —C : sym {xâ(x.C.x)-1® x} : C+C, 

FGP( xR) = sym {xRâ(x.C.x)-1® x} (12.4.12c,d) 

or in component form, 

FAykl(xR) = — Cijpq sym { xp (x . C . xR)gr1 xs) Crskl + Cijkl, 

FGjiil(x) = sym {x; (x.C.x)jk1 xi}. (12.4.12e,f) 

From the symmetry of C, Cijki = Cjild = Cij!k = Cksj, the second-order tensor 
(x.C.x) and its inverse are symmetric, i.e., (x.C.x)  1 = (.C.); 

1  
Hence, 

FA and FGP have the following symmetry properties: 

FA ji = FA~ikl = FAij k = F~klij , 

FGjkl = FGJ J = FG j 1k = FGi ; (12.4.12g,h) 

compare (12.4.12d) with (11.3.4). 

The fourth-order tensors FS P and F'GP are given in terms of FGP, by 

FS(x) = —F G1'(x) : C, FT1'(xR) = —C : F GP(xR) + 1(4s). (12.4.13a,b) 

Therefore, using FGP, express the integral operators Sp and t for the eigen-
strain, e*, and the eigenstress, s*, respectively, as 

7 Similarly to S and Si', or T and TR, the integral operator A or G introduced in Section 9 
gives a strain field which does not violate prescribed boundary conditions, while ii or G gives a 
periodic stress or strain field whose volume average vanishes. 

(12.4. I Oe,f) 
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S(x; e*) = S FGR(x) : C: { 
Ü 

f ~ e*
(U) eXR(tix • (x _ U)) dVy }, 

TR(c; s*) = - S' C : FGg(x) : { LT J u s*(U) eXR(tx • (x _ U)) dVy } + s*(x) 

(12.4.14a,b) 

or, in component form, 

S;P(x; e*) = S' FG1 ma(x) Cmnkl { Ü 
f 

U ei j(y) exr(tx • (x - y)) dVy }, 

T,P(x; s*
) _ -O Cjjmn FGmnki { Ü f , sii(Y) exr(tx • (c - y)) dVy } +  

(12.4.14c,d) 

Note that (12.4.14a-d) exclude terms associated with x = 0; this is signified by a 
prime on the summation sign. 

12.4.4. Isotropic Matrix 

The periodic microstructure may be homogenized by an isotropic refer-
ence constant elasticity tensor, i.e., an isotropic uniform equivalent solid. This 
may be an effective approach when the matrix material is isotropic and the 
volume fraction of inhomogeneities is not very large. In principle, one may 
always choose an isotropic constant reference elasticity tensor for the equivalent 
homogenized solid. However, the nature of the solution to the final set of equa-
tions depends on how closely the elasticity of the homogenized solid represents 
the final overall elasticity tensor. 

Let the constant reference elasticity tensor C be isotropic, 

C = l 1(2>®1 (2) + 2m 1(48). (12.4.15) 

Direct substitution into x.C.x yields 

x.C.x _ (l+m)xâx+mx21(2>, (12.4.16a) 

where 

x= Ix l ='ixix;. (12.4.16b) 

Set (x.C.x)-1 _ Axâx+B 1(2). Then, (x.C.x).(x.C.x)-1 = 1(2) becomes 

{ A(l+2m)x2 +B(l+m)} xâx+Bmx2 1(2) = 1(2), (l2.4.l7a) 

from which A and B are obtained, 

m(l + 2M) -4' 
= -2 (12.4.17b,c) 

Therefore, the inverse of (x.C.x) is 

(x . C • x) -   x 2 { ~ +2~ x 
2x ® x + 1(2)} (x ~ 0). (12.4.17d) 
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To simplify notation, define t = x/x with x = I x I .  Then, (12.4.17d) becomes 

(x•C.x) i = m x-t{ 
l + m xâx+ 1(2)} 

or in component form, 

(x•C.x)y i = m x-2 {—  

(12.4.18a) 

(12.4.18b) 

Using (12.4.18), compute the fourth-order tensor FS when the reference 
equivalent homogeneous solid is isotropic, 

FS (x) = 2sym( ®1(2)® x) (l–M) Xâxâxâx+ l+2m Eât®1(2) 

=2sym ( â1(2)â) 11n xâxâxâx+  

1 n 
xâx®1~2), 

(12.4.19) 

where v is the Poisson ratio, v = l/2(l + m) Similarly, F'G becomes 

FTP(x) = 1(4s)_2sym(®1(2)®) 
l +2m 1(2)âxâx 

+  +2m S S 

= 

 

1(4s)_2sym( ® 1(2)®)  v 
1 v 1 v 

1(2)®I®I±  
1   âxâxâX, 

(12.4.20) 

and FGP becomes 

FGP(x) _ 1 {  "+2m xâxâxâx+sym(xâ1(2 )âx)} 

{  2(1 — i) xâxâxâx+sym(xâ1(2) âx)). (12.4.21) 

As is seen, FG;k, = FG;~;i, whereas this symmetry does not hold for FS and F'G . 

12.4.5. Consistency Conditions 

In Subsection 12.4.3, the periodic strain and stress fields produced by a 
prescribed periodic eigenstrain (or eigenstress) field are obtained . As men-
tioned in Subsection 12.3, a periodic displacement field cannot include a linear 
part which corresponds to a uniform strain field. 

Uniform stress and strain fields, however, are periodic, and satisfy all the 
governing field equations. Therefore, the consistency conditions can be 
rewritten for the eigenstrain and eigenstress, as 

C'(x) : (e° + eR(c)) = C : (e° + eR(c) —  
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D'(x) : (s° + sR(x)) = D: (s° + sR(x) — s*(c)), (12.4.22a,b) 

where e° and s° are constant symmetric tensors, and eR and SR are the periodic 
strain and stress fields produced by e* and s*, respectively.$ From (12.4.10a,b), 
e and sP are given by 

eR~c) = 'FSP(x) : { LT f 
e*(U) ecr(tx • (x — y)) dVy } , 

SR(C) =  ' i G (x) : { Ü f  s*(U) ecr(~x • (c — y)) dVy }. (12.4.22c,d) 

With the aid of (12.4.22c), consistency condition (12.4.22a) yields the fol-
lowing integral equation for the eigenstrain field: 

(C'(x) — C) : [ e0 + S' FS ): {  f u e*(U) ecp(ix • (x — y)) dVy } 

+C : e*(x) = O. (12.4.22e) 

Similarly, from (12.4.22d) and the consistency condition (12.4.22b), the follow-
ing integral equation for the eigenstress field is obtained: 

(D'(x)—D): 

 

s°-S'FTR(x): { ~T fu s*(U) eXR(tx•(c — U))dVy} 

   

±D : S*(c) = O. (12.4.22f) 

Integral equations (12.4.22e,f) can be solved with the aid of Fourier 
series. Using (12.3.13), obtain, from (12.4.22e), 

FC'(x) : e° + L,,' FC'(x - z) : FSP(z) : Fe*~z) 
z 

= C: { e° + FSP(x) : Fe*(x) — F e*(x) }, (12.4.23a) 

and from (12.4.22f), 

FD'(x) : s° + S' FD'(x —  ) : ' G(z) : Fs*(z) 
z 

= D: { s° +' GR(x) : Fs*(x) — F s*(x) } . (12.4.23b) 

Here, the uniform eigenstrain and eigenstress fields associated with the Fourier 
coefficients Fe*(0) and 

FO*(0) 
must be included in (12.4.23a,b), although these 

terms are not included in (12.4.22c,d). This is because the uniform fields e° and 
s° are related through 

s° = C: (e° — F e*(0)) or e° = D : (s° — FO*(0)), (12.4.24a,b) 

8 Superscript p emphasizes that these fields satisfy periodicity, and hence have zero volume 
averages. 
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as well as through the overall relations s° = C : e° or e° = D : s°. If the infinite 
sums in (12.4.23a,b) are truncated, i.e., if n; is restricted to, —N < n ; < N (i = 1, 
2, 3), then these equations are reduced to two sets of (2N+ 1)3 linear equations 
for the complex-valued tensors Fe*(x) and Fs*(x). In this manner, approximate 
solutions for the eigenstrains and eigenstresses are obtained. When the elasticity 
tensor C'(x) is suitably smooth, e.g., it is piecewise constant, then it can be 
shown that the infinite series in (12.4.23a,b) are convergent, and the exact solu-
tions of (12.4.23a,b) can be estimated to any desired degree of accuracy, by 
choosing N suitably large. 

It is emphasized that substitution for eR(c) from (12.4.22c) into (12.4.22a), 
yields the integral equation (12.4.22e) for the eigenstrain field e*(c). Similarly, 
from (12.4.22d) and (12.4.22b), the integral equation (12.4.22f) is obtained for 
the eigenstress field s*(c). The solution of these integral equations then pro-
vides the required exact eigenstrain (eigenstress) field which produces, for a 
chosen reference uniform elasticity tensor C, a homogenized solid equivalent to 
the original periodically heterogeneous solid. In the latter part of this section, 
this technique is illustrated by means of several examples. 

12.4.6. Alternative Formulation 

The formulation of a heterogeneous elastic solid with periodic microstruc-
ture in terms of a representative unit cell, using Fourier series expansion of the 
field quantities, is effective, straightforward, and allows for an evaluation of the 
overall properties of the heterogeneous solid in a systematic manner. In addi-
tion, as pointed out at the beginning of Section 13, and elsewhere in Chapter IV, 
the results also directly apply to a finite heterogeneous elastic solid, in the shape 
of the considered unit cell subjected to suitable overall boundary data. 

There is an alternative but essentially equivalent method of formulating 
the problem of a heterogeneous solid with periodic microstructure, which 
directly deals with the infinitely extended solid consisting of identical unit cells 
repeated indefinitely in all three directions, and employs Green's function for an 
infinite homogeneous elastic solid having the reference uniform elasticity tensor, 
C. Furthermore, this Green function takes on a particularly simple form when 
the reference elasticity tensor, C, is isotropic; see Subsection 11.1. This tech-
nique has been discussed and illustrated by Walker et al. (1990, 1991). In this 
subsection the equivalence of the two alternative formulations is established. 

As is pointed out in Subsection 12.4.3, there are four equivalent integral 
operators which can be used to establish the overall response and properties of a 
homogenized unit cell of periodic structure. These are: — GP(x; s*) and 
T '(c; s*), which, respectively, give the periodic strain and stress fields in the 
homogenized unit cell, due to the prescribed eigenstresses s*; and — A (c; e*) 
and SP(c; e*), which, respectively, yield the periodic stress and strain fields in 
the homogenized unit cell, produced by the prescribed eigenstrains e*. Because 
of the equivalence of these operators, in the sequel, only EP = — GP(c; s*) is 
considered, where homogenization of the unit cell is accomplished by the intro-
duction of the appropriate eigenstress field a*(x). 
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As detailed in the previous subsections, the integral operator GP(x; s*) 
has the following Fourier series representation: 

GP(x; s*) = S FAP(x) : < s*(y) exp(tx.(c — y) >u  for x in U, (12.4.25) 

where the Fourier coefficients, FGP(x), are defined by (12.4.12d). In (12.4.25), 
the discrete variable, x, has the components, x; = pn;/a; (i not summed), and the 
triple summation is with respect to nl = 0, ±1,..., ±co, with x ~ O. Since the 
transformation from Fourier series to Fourier transform representation requires 
transformation from discrete variables in the triple infinite summation, to con-
tinuous variables in the corresponding triple infinite integration, it proves con-
venient to introduce a three by three diagonal matrix, A, with the following 

nonzero components: 

A1 1 = 2a1, A22 = 2a2, A33 = 2a3, (12.4.26a--c) 

and express x in terms of n, with components nl (i = 1, 2, 3), as 

x= 2pA-l.h. (12.4.26d) 

Consider now the infinitely extended homogenized linearly elastic solid of 
reference elasticity C, and let s*(c) be an eigenstress field prescribed in a finite 
region B, such that it admits a Fourier transform and an inverse Fourier 
transform, as follows: 

Fs*(z) = (2n)3 
1± 00 

s*(c) exp(—t z.c) dVX, 

s*(c) = J
+f 

Fs*(z) exp(tz.c) dVz. (12.4.27a,b) 

This prescribed eigenstress field produces the strain field, e(x), which may be 
expressed as 

e(x) _ — G(x; s*), (12.4.28a) 

where 

G(x; s*) = (2p)3 i–= (1 FA(z) : s*(Y) exp(tz • (c — y)) dV y } dVz. 

(12.4.2ßb) 

In (12.4.28b) the integration with respect to y is taken over the region where s* 
is prescribed. This eigenstress field must be appropriately restricted so that the 
corresponding infinite integrals are meaningful and finite. 

Under suitable restrictions, it may be expected that the Green function for 
the homogeneous infinite domain should also apply to the equivalent homo-
genized periodic structure, even if the field variables are not assumed to be 
periodic.9 The form of the Fourier transform and the form of the Fourier expan-
sion are essentially the same, except for the following two points: 

Note that the Fourier transform cannot be applied directly to a periodic field, since the 
infinite integral of the periodic function, which does not vanish at infinity, may not converge. 
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1) the variables in the Fourier transform are continuous and real, and range 
from minus infinity to plus infinity, while those in the Fourier series are 
discrete integers which also range from minus infinity to plus infinity; and 

2) the Fourier transform uses f +~ exp(ix.x) dVX = (2p)3 for x = 0 and is 

zero otherwise, while the Fourier series uses 
L1 

exp(tx.x) dVX = U for 

x = 0 and is zero otherwise, where x = 2pA_
1
.n. 

The periodic structure consists of an infinite number of unit cells, each of 
which contains the same eigenstress. Hence, the field variables in the periodic 
structure are periodic. It therefore may be expected that if the integral operator 
G is applied to the eigenstresses in the infinite set of unit cells, it should produce 
a strain field identical with the one defined by G1 over a typical unit cell. That 
is, if all unit cells are identified by U(m), with m being a set of three integers, 
m = (m1, m2, m3), then the following indentity is expected to hold: 

G1'(x; s*) = G(x; (s* in U(m))) for x in U(0), (12.4.29) 

where s* in G1 is the eigenstress field in the original unit cell, U = U(0), and the 
same eigenstress field is distributed in each cell. Although (12.4.29) is intui-
tively acceptable, it is not certain whether the infinite sum of 
G(c; (s* in U(m))) in the right-hand side is actually convergent. On the other 
hand, the left-hand side of (12.4.29) is a well-defined quantity for a rather gen-
eral class of eigenfunctions s*. 

With the aid of the Poisson sum formula, (12.4.29) can be established for-
mally.10 To simplify notation, define the term which appears in G1' by 

h(x; n) = FG '(2p A-1.h) : < exp(t(2p A-1.n).(x — y)) >, (12.4.30a) 

where the volume average is taken with respect to y. Then, the Poisson sum 
formula transforms the infinite summation of h(x; n) with respect to n, into the 
following alternative form: 

' h(x; n) = (2p)3 U f  h(x; z') exp(iz.A.m) dVX, (12.4.31) 

where z' = A.z/2p and U = ga1a2a3. Hence, from 

h(x; z') = FGP(2p A-1 . z') < exp(t(2p A-1. z') . (x — y)) >u 

= FGP(z) 
Ü 

f U exp(tz.(x — y)) dVy, (12.4.30b) 

the following expression for G1'(x; s*) is obtained: 

The convergence of the infinite summation is discussed by several authors; see Furuhashi et 
al. (1981) and Mura (1987) for periodically distributed eigenstrains, and Horii and Sahasakmontri 
(1990) for a problem of periodically distributed cracks; see also Jeffrey (1973) and McCoy and 
Reran (1976) for nonmechanical problems. 
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G'P(c; s*) = (2p)3 f ± f FGP
(z) exr(tz•C) 

x s*(y) exp(— iz . (y — A .m)) dVy} dVzR. (12.4.32a) 

The eigenstress field in the periodic structure satisfies the periodicity, 
s*(y + A. m) = s*(y), for any m. Hence, since U(m) may be obtained through a 
rigid-body translation of U(0) by A.m, the sum of the integral of 
s*(y) exp(— tz . (y — A. m)) for different m's taken over U=U(0), can be 
replaced by the sum of the integral of s*(y) exp(— iz .y) taken over U(m)'s, as 
follows: 

S L3 s*(U) exp(— iz.(y — A.m)) dVy = S fu(m) s*(U) exp(~ iz.y) dVy. 

(12.4.33) 

Hence, (12.4.32a) becomes 

GR(c, s*)  (2n)3 f±
f 

FGR
~z) exP(iz•c) 

{S fu(m> 
s*(y) ecr(—.y) dVy} dVzR 

= S  1 
f 

3  
+f { FA(V) : s*(U) ecr

(
tz•

(
c — U)) dVy } dVz. 

m (2p)3 °° f u(m) 
(12.4.32b) 

Since the second integral in the right-hand side of (12.4.32b) is G(x; s*) for x in 
U(0) and s* in U(m), identity (12.4.29) is proved. 

In the above discussion, the infinite summation in (12.4.29) is the limit of 
a corresponding finite sum as the number of terms goes to infinity. Hence, 
(12.4.29) should read 

N 
GR(c; s*) = lim S' h(x; n) 

N-00 

= 1im 
S 

G(c; (s* in U(m)) ). (12.4.34) 

For certain problems, the convergence of the sum of h(x; n) up to ±1, as N 
goes to infinity, may be slower than the convergence of the sum of 
G(x; (s* in U(m))) up to ±1, as M goes to infinity. In cases of this kind, it 
may be better to use a Green function formulation similar to (12.4.28), instead 
of the Fourier series formulation (12.4.27), to compute the field variables in the 
periodic structure model. 1 1 

Expressions (12.4.29) and (12.4.34) are formally introduced; see Mura (1987) for discus-
sions on the convergence of these infinite sums. 
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12.5. TWO-PHASE PERIODIC MICROSTRUCTURE 

Several illustrative examples of estimating the overall moduli of solids 
with periodic microstructures are presented in this subsection. For simplicity, 
only two-phase periodic microstructures are considered, where one phase is the 
matrix, M, with elasticity C, and the other phase is an inclusion, W, with elasti-
city CU, i.e., 

C'(x) _ H(x; M)C+H(x; W) C2, (12.5.la) 

where H(x; M) and H(x; W) are the Heaviside step functions associated with 
points in M and W, respectively. For the equivalent homogeneous solid, the 
matrix elasticity C is used. Then the eigenstrains are nonzero only in W, i.e., 

e*(c) = H(x; W)e*(x). (12.5.1b) 

12.5.1. Average Eigenstrain Formulation 

From (12.4.22a), the consistency condition is 

(H(x; M) C + H(x; W) Cw } : (e° + eR(x)) = C: { e° + eR(c) — H(x; W) e*(x) } , 

x in U = M + W, (12.5.2a) 

where the disturbance (periodic) strain field eR~c) 
is determined by the eigen-

strain field H(x; W) e*(x). Equivalently, (12.5.2a) can be rewritten as 

CU : (e° + eP(x)) = C : (e° + eR~c) — e*(c)), x in W, (12.5.2b) 

since the eigenstrains vanish in M because of the choice of the reference elasti-
city tensor. 

Assume that the matrix (and hence the reference equivalent homogeneous 
solid) is isotropic. As shown in Subsection 12.4, the disturbance strain eR is 
determined from 

eR~c) = S' FSP(x) :{ *J u H(y; W) e*(U) eXr(tx • (C — U)) dVy 

= S FS (xR) : {  f WR 
e(y) ecr(tx•(x — y)) dVy}, (12.5.3) 

where the fourth-order tensor FS P is given by (12.4.13a). When C is isotropic, 
from (12.4.19) FS can be rewritten as (Nemat-Nasser et al., 1982; and 
Iwakuma and Nemat-Nasser, 1983) 

FS (x) = F81(x)
1 

1 
n FS2(x) +  

where 

(12.5 .4a) 

2sUm(xâ1(2)âx),  FS2(x) = xâxâxâx 
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FS3(x) = xâxâ1(2), (12.5.4b- d) 

with x = x/x. As shown in earlier sections, when an infinitely extended isotro-
pic elastic solid contains an isolated ellipsoidal inclusion, then the tensor SP 
reduces to Eshelby's constant tensor S which only depends on the Poisson ratio 
v of the infinite solid. Tensors FS1, FS2, and FS3 are also independent of the 
material properties. Equations (12.5.4a—d), therefore, provide a powerful tool to 
study the overall response of solids with a periodic distribution of arbitrary 
inclusions and defects in an isotropic elastic matrix. 

The exact eigenstrain field e* is defined by the solution of the set of linear 
equations (12.4.23a) for the Fourier coefficients, Fe*. In general, this is a 
difficult task; see Nemat-Nasser and Taya (1981, 1985) and Nunan and Keller 
(1984) for discussions of alternative methods of solution. A good approxima-
tion may be obtained if the eigenstrain H(x; W) e*(c) is replaced by its average 
value, H(x; W)e*, in (12.5.3), and the result is entered into the consistency con- 

dition (12.5.2b).12 In this manner, the average eigenstrain e* is estimated from 

eR(c) = {O' f g(— x) FS (x) eXr(tx•~)} : 
x 

where f = W/U, and 

g(x) — S2 .[ exp(tx.c) dVX. 

*, ( 12.5 .5 a) 

(12.5.5b) 

Now the average value of the periodic strain in W becomes 

f n eR(x) dVX = SP : e*, 

where 

(12.5.6a) 

S1' _ s' f g(— x) g(x) FSP(x). (12.5.~b) 

It should be noted that since g(x) and g(— x) are complex conjugates, their pro-
duct g(— x) g(x) is real. Therefore, SP is a real-valued tensor, since FS(x) is 
also real-valued. 

Using (12.5.2b) and (12.5.~b), obtain an average consistency condition 
for the average eigenstrain *, as follows: 

CU : (e° + SP : s*) = C: {e° + (SP — 1(4s)) : ~* ). (12.5.7a) 

Note that the effect of the geometry of the inclusion W is represented in SP 
through the g-integral. For a given geometry of W, the g-integral, the three 
infinite series in (12.5.4a), and hence SP can be computed once and for all, and 
the results can then be used to solve the inclusion problem for various different 
material properties determined by CU. Since the average eigenstrain s* is 
obtained through (12.5.7a), the overall elasticity C is computed from 

12 
The reason for the effectiveness of this approximation is established in Section 13, with the 

aid of the Hashin-Shtrikman variational principle; see also Nunan and Keller (1984) where this is 
verified computationally. 
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C : e° = C : (e° — f s*) (12.5.8a) 

which equals the uniform overall stress s°. 
Substituting from (12.5.7a) for s` into (12.5.8a), and in view of the fact 

that e° is arbitrary, obtain an explicit expression for the overall elasticity tensor, 

C=C — f {(C — Csz)-1
— SP :C

-1
} I. (12.5.9a) 

The form of (12.5.9a) appears slightly different from that of the equations 
derived for an RVE model; see, for example, Section 10. However, taking 
advantage of the fact that { (C — C 2)-1 — S 1': C-1}-1 can be rewritten as 
C: { (C — C°) -1 : C — SP }-1, rewrite (12.5.9a) as 

C = C: 1(4s) — f { (C — C°) 1 : C — S}- 
} 

(12.5.9b) 

which is of the same form as that obtained for a typical RVE,13 except for the 
difference between S, the Eshelby tensor for the infinite domain, and SP, the ten-
sor for the periodic structure defined by (12.5.4b). Note that the overall compli-
ance tensor in this case becomes 

D = D : { 1(4s) _ f { (D — D W)-1 : D — TR }-1 } , (12.5.9c) 

where TP is defined by C : (SP — 1( 4s)). 

As the spacing of the inclusions increases, or as the volume fraction of W 
approaches zero, it is expected that the tensor SP defined by (12.5.~b) should 
satisfy, for an ellipsoidal W, 

li 
ó 

SP = in S, 
(12.5.10) 

where S is the Eshelby tensor corresponding to W. Indeed, the discrete Fourier 
series can be replaced by a continuous Fourier integral, as the dimensions of the 
unit cell become very large. For an ellipsoidal W, one can then retrieve 
Eshelby's tensor. It should be kept in mind that only for an ellipsoidal W, does 
the distribution of the exact eigenstrain become uniform in W as f goes to zero, 
and (12.5.10) reduces to Eshelby's tensor. For other shapes of W, the distribu-
tion of the exact eigenstrain may not be uniform as f goes to zero, or as the 
dimensions of the unit cell become very large. 

12.5.2. Modillcation for Multi-Phase Periodic Microstructure 

When each unit cell contains several inclusions with different elastic 
moduli and geometries, (12.5.5b), (12.5.~b), and (12.5.7a) of the preceding sub-
section require minor modifications. Denote the elasticity and the average 
eigenstrain in the ath inclusion, W, by Ca and ~*a (a = 1, 2, ..., n), respectively. 
Consistency condition (12.5.2b) for a two-phase periodic microstructure is 

13 See, e.g., (7.4.10a) with Al = (C —C 1)
-1

, of Subsection 7.4. 
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replaced by 

Ca : (e° + eR(x)) = C : (e° + ep(x) — e*(x)), x in W, (12.5.2c) 

and the g-integral and SP, defined by (12.5.5b) and (12.5.~b), are replaced by the 
ga integra114 and SP(Wa, Wr), which are defined by 

Jwa 
exp(~x.x) dVx (12.5.5c) 

and 

SP(Wpi, Wr) = S' fß g a(x) gr(
— 

x) FSP~x)• (12.5.6c) 

Hence, average consistency condition (12.5.7a) is replaced by the following 
average consistency condition over W: 

Ca : {e°+ r. SP(Wa, Wr) : ~*b} 

= C: {e° + S, (SP(Wa, Wr) — dap 1(4s)) : s*ß}, (12.5.7b) 

for a = 1, 2, ..., n, where15 fa - Wa/U. Then, the overall uniform stress is given 
by 

p 
C: e° =C: {e°— 

S 
fas*a}, 

a =1 
(12.5.8b) 

the overall elasticity C is computed from the solution of the set of linear ten- 

sorial equations (12.5.7b), for {s*a}, and hence s* _ E fas*a. 
a=1 

12.5.3. Properties of the g-Integral 

The geometry of W is represented by g(x), the volume integral of 
exp(tx.c) over W. The tensor S therefore applies to any anisotropic inclusion 
with any arbitrary shape. The g-integral can be related to the Fourier series 
coefficients of the Heaviside step function, i.e., 

H(x; W) =  
~~

 f exp(tx. (x — y)) dV y 

= f g(— x) eXr(tx•x). (12.5.1la) 
x 

Hence, the following identity holds (multiply both sides of (12.5.11x) by 

Note that, like SP, the correlation tensor SP(Wa, W) does not change if both W and are 
moved by the same rigid-body translation; see Subsection 12.5.3 for a more detailed explanation. 

15 Since FS(— x) = FS(x) and g'(— x) is the complex conjugate of g(x), SP(W„, Wb) defined 
by (12.5.6c), is real-valued. 
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exp(tz.x), and average over W): 

g() = E f g(- x) g(z + x)• 
x 

In particular, for z = 0, 

g(0) = 1 = C f g(- x) g(x)• 
x 

(12.5.11b) 

(12.5.11c) 

For illustration, consider an ellipsoidal W with the axis b1 parallel to the 
x1-direction, i = 1, 2, 3. Then, for x ~ 0, g(x) is given by

16 

g(x) = 
hR3 (s

~hh -11 cos 11) (h # 0), (12.5.12a) 

where 

h = p { h1 Sl }
2 + {h2 
~2 

}2 + {ri3 
a2 

}2 
~z 

(12.5.12b) 

The g-integral is real-valued in (12.5.12a), satisfying g(- x) = g(x). 
For the numerical computation, follow Nemat-Nasser et al. (1982) and 

Iwakuma and Nemat-Nasser (1983), and decompose SP into several parts. To 
this end, first define 

hi(x) = (xi)2, h2(x) = (x2)2, h3(x) = (x3)2, 

h4(x) = x2 x3, h5(x) = x3 x1, h6(x) = x1 x2, 
and 

htJ(x) = hi(x) hJ(x), for1,J= 1,2,...,6. 

Then, introduce infinite sums Si and StJ, as follows: 

S1 ' f g(- x) g(x) hi(x), S1 = S f g(- x) g(x) h1J(4)- 
x x 

Hence, SP for an isotropic reference elasticity tensor, becomes 

S jkl - 2 [ di1 S4(j k) + dik SR(j, 1) + (dj1 S1(1, k) + (djk St(i, 1)) 

(12.5. 13a-f) 

(12.5.13g) 

(12.5.14a,b) 

1  Sj)J(k,D 1 
+  v ji 1-v ( ' Uk' 

SI(, 
j) (12.5.15) 

where l(i, j) = I(j, i) = 1, 2, 3, 4, 5, or 6 for (i, j) = (1, 1), (2, 2), (3, 3), (2, 3), 
(3, 1), or (1, 2), respectively. 

Note that the product g(- x) g(x) is expressed by the double volume 
integral, 

16 Computation of (12.5.12) is straightforward, if elliptical coordinates, (r, f, 8), are used in- 

stead of Cartesian coordinates, (xi, c2, c3), where r2 = – (c;/bi)2, f is the angle between the x- and 
i=1 

x-directions, and Q is the angle of the projection of the x-direction onto the plane perpendicular to 
the x-direction, measured from a certain line on the projection plane which passes through the origin. 
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g(— x) g(x) =  S2 f W exp(— x .y) dVy) }{ 52 f W exp(ix.c) dVx) } 

= 12 ~n  stR eXr(i • (x — y)) dV x dVy (12.5.16) 

which is unchanged by an arbitrary rigid-body translation17 of the region W. On 
the other hand, a rigid-body rotation changes the value of g(— x) g(x). Hence, 
g(— x) g(x) is independent of the location of W but not of its orientation; this pro-
perty is also shared by the SP-tensor. Self-similar variations of W change g(x), 
and hence, S. Therefore, like the Eshelby tensor S, tensor S depends on the 
aspect ratios and the orientation of the inclusion when this inclusion is ellip-
soidal; however, unlike the Eshelby tensor, 

S 
does depend on the size of W 

relative to the unit cell. 

12.6. ELASTIC INCLUSIONS AND CAVITIES 

As shown in Subsection 12.5, the geometrical effects of the periodically 
distributed inhomogeneities can be separated from the effects of their material 
properties, when an isotropic reference elasticity tensor is used. With the aid of 
the g-integral, the Sr-tensor is defined, which plays a role in the periodic case 
similar to that of the Eshelby tensor in the homogeneous unbounded solid con-
taining an ellipsoidal inclusion. For the periodic case, however, it is rather 
difficult to compute the displacements and tractions on the boundary of the inho-
mogeneity. Hence, the Se-tensor is used to obtain the overall parameters of 
solids with periodic microstructures. In this section, periodic distributions of 
elastic inclusions are considered, including cavities which can be regarded as 
elastic inclusions with zero stiffness, and cracks which can be regarded as suit-
able limiting cases of cavities. 

12.6.1. Elastic Spherical Inclusions 

First, consider the case of equally spaced spherical inclusions in an iso-
tropic homogeneous elastic matrix. The unit cell U is then a cube of dimension 
a, containing a spherical inclusion W of radius b at its center; see Figure 12.6.1. 
For simplicity, it is assumed that both the matrix and the inclusion are isotropic, 
having the shear moduli M and MU, respectively, and a common Poisson ratio N. 

1
' This is quite reasonable, since SP expresses interaction effects among all W"s in the periodic 

structure. Such interactions are determined by the shape, size, and orientation of W, and should not 
depend on the relative position of W within the unit cell which can be defined somewhat arbitrarily 
within the (equivalent) homogeneous periodic structure. If W is moved by a rigid-body translation. 
say, d, then g(x) changes to exp(ix.d) g(x). However, the product g(— x) g(x) remains the same, and 
the sum in the right-hand side of (I 2.5.~b) does not change for such rigid-body translation of W. 
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Then, 

(C_CU)_ 1 : C _ m ~W  1(4'). (12.6.1) 

The overall elasticity C has cubic symmetry. Its components can be 
expressed in terms of three moduli, l, ii, and ~I', as follows: 

C1I I1 = C2222 = C3333 ± M' 

C I122 = C II33 = C221 L = "' =l 

C2323 = C3131 = C1212 = . .  _ 11, (12.6.2a--c) 

with all other Cük1 's vanishing. The overall bulk modulus K is given by 

K= = 3(3l+2m+('). (12.6.3a) 

    

 

/ 
/ 

 

Figure 12.6.1 

Cubic unit cell with spherical 
inclusion at center 

7
7 

 

The parameter ii' measures the degree of cubic anisotropy; it is zero for iso-
tropic materials (see Section 3). From (12.6.2), it follows that 

= C i i i -2C2323 -C1122. (12.6.3b) 

For a cubic unit cell, a1 = a2 = a3 = a, and for a spherical inclusion, 
b1 = b2 = b3 = b. The g-integral, (12.5.12), then becomes 

{sin(b) — (b x) cos(bx)1' (12.6.4) 

where x = I x I .  In this special case, the infinite sums Si and Su reduce to 

Si = S2 = S3  f g(— x) g(x) (x 1)2, 

S i i = S22 = S33 = ~ f g(— x) g(x) (x i )4, 



2323 1 Inclusion; mo/m = 3 

1212 

Voids 

1212 

2323 
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S44 = 555 = 566 =  f g(— x) g(x) (x2 x3)2, (12.6.5a--c) 

with all other terms vanishing. For a given b/a, or a given f, these infinite sums 
can be computed once and for all, and their values then used for various compu-
tations. 

Consider now two problems, one, a composite containing elastic inclu-
sions with Mw/M = 3, and the other, a solid with voids for which °/j = 0; the 
Poisson ratio is 0.3. Figure 12.6.2 shows the overall moduli K, l, M. and 
C 1 1 1 1 _ l + 2 ji + ii' for various f, when W is spherical. Results for indicated 
ellipsoidal voids and inclusions are also plotted in Figure 12.6.2. 

1.2 - 

K/K 0.8 

0.6 

0.4  
0 0.05 0.1 0.15 

f 

1.2 - 

C;iki / m 0.8 

0.6 - 

0.4 i i 

0 0.05 0.1 0.15 

f 

Figure 12.6.2 

Estimate of overall elastic moduli of a body with spherical or ellipsoidal 
(aspect ratios b2/b1 = 1 , b3/b, = 0.25) voids or inclusions; v = 0.3 

} Inclusion; m0 /m = 3 

 Spheres 

 Oblate Spheroids 

} Voids 

For spherical cavities, CU = 0, the overall bulk modulus, K defined by 
(l2.6.3a), becomes 
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= 
9 

{C: 
(1(4s)  

—f (1 ) —  

Since S has cubic symmetry, (12.6.6a) yields 

K= 1 — f 1 (1(as) — SP) . p —1 f 1   

K 3 i
_ 3SiPi 

and in view of xi xi = 1, it follows that 

(12.6.6a) 

(12.6.~b) 

Sipi = ~ +~  S' f g(-x) g(x) =   {S f g(— x) g(x) — f}. (12.6.7a) 

From identity (12.5.11c), 
 

±" (1  f). (12.6.7b) 

Hence, the overall bulk modulus k is 

— 1 ( (12 K 2(1-2v)+(1+v)f' .~.6c) 

Note that this coincides with the Hashin-Shtrikman upper bound discussed in 
Section 9. Indeed, as is shown in Section 13, in certain cases, estimates based 
on piecewise constant eigenstress (or eigenstrain) fields in a periodic solid and 
the Hashin-Shtrikman variational principle, provide the same set of equations 
for the unknown values of the eigenstresses, when a suitable reference elasticity 
(or compliance) tensor is used. Moreover, bounds for 

Ciiii 
are universal, and 

hence valid for any number and distribution of phases; see Subsections 9.6, 9.7, 
and 13.5. In the present illustration, this universal upper bound for voids is 
given by (12.6.6c), and is actually attained by spherical voids, as can be seen 
from the results in Figure 12.6.2 for the effective bulk modulus. While these are 
also upper bounds for oblate spheroidal voids (as seen from the results in Figure 
12.6.2), sharper upper bounds are obtained when the effect of geometry is 
included. Similar comments apply to the case of inclusions; see Subsection 
12.6.2, below. In this case, the results for the bulk modulus are the lower 
bounds, since the elasticity of the matrix is used as the reference one, and the 
inclusions are stiffer in this example; see Subsection 13.5 for more discussion. 

12.6.2. Elastic Ellipsoidal Inclusions 

Next, consider general ellipsoidal inhomogeneities, periodically embed-
ded in an elastic homogeneous isotropic matrix. The unit cell U is a cube of 
dimension a, containing at its center an ellipsoidal inclusion W, with its major 
axis b; parallel to the coordinate direction x; (i = 1, 2, 3). Only the infinite sums, 
Si and Su (I not summed), are nonzero, with all other infinite sums vanishing. 
The value of these sums depends on the volume fraction and the aspect ratios of 
the inclusion, i.e., on f, b2 /b1, and b3 /b1. Different geometries have been con-
sidered by Iwakuma and Nemat-Nasser (1983), where the required sums are 
tabulated, and several illustrative examples are given. 
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As an illustration, consider a composite whose matrix is isotropically elas-
tic and contains periodically distributed isotropic elastic inclusions. Let the 
common Poisson ratio be v. When b2/b1 = 1, it follows that 

C1111 = C2222, C3311 = C3322, C3131 = C2323, etc. (12.6.8) 

The relevant moduli for this case with b3/b1 = 0.25, are plotted in Figure 12.6.2, 
for voids, m'/m = 0, and inclusions with Mw/M = 3. For voids, the results are the 
upper bounds, and for inclusions, they are the lower bounds. 

12.6.3. Cylindrical Voids 

Consider now an isotropic elastic body which contains periodically distri-
buted circular-cylindrical voids of common radius b and length 1, with their 
common generator in the xl-direction. The unit cell is a cube of dimension a; 
see Figure 12.6.3. From the definition of g(&), (12.5.5b), obtain 

g(x) = 2 J1(Y) 
smx  

, (12.6.9a) 

where J1 is the order 1 Bessel function of the first kind, and 

C=p n1 a, y= p(llZ+n3)1/2 a> (12.6.9b,c) 

and the volume fraction f is given by18 pb2l/a3. 

Figure 12.6.3 

Cubic unit cell with circular-
cylindrical void at center 

Using (12.6.9), compute nonzero infinite sums, S1, S2 = S3, S11, S22 = S33, 
5i2 = S13, and S23, where 

S~1 = Si for I = 1, 2, 3 (I not summed). (12.6.10) 

18 Similarly to (12.5.12), computation of (12.6.9) is straightforward, if cylindrical coordinates, 
2 2 e 2 

(r, 8, x3), are used, where r2 = ± (xi/a)2, and ;x; = rxcosq, with x2 = E (ax;)2. 
i=1 i =1 i=1 
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The results for short cylindrical voids, 1/a = b/1= 0.5, are plotted in Figure 
12.6.4. 

N 
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f f 

Figure 12.6.4 

Estimate of effective moduli for periodically distributed short circular-
cylindrical voids; v = 0.3, 1 /a = b/1 = 0.5 

In the case when circular-cylindrical voids are infinitely long in the x1- 
direction, i.e., 

al = 1, 
b 
— 0 (a1 » a2 = a3 > b), (12.6.11a,b) 

the problem is reduced to the two-dimensional plane strain problem with circu-
lar holes in the x2,x3-plane. Then, it is necessary to evaluate only the quantities 
S2 (= S3), S22 (= S33), and S23, which are related to the inplane quantities, and 
S12 (= S 13) which is related to the antiplane quantities. For simplicity, consider 
the inplane quantities. Figure 12.6.5 shows the corresponding overall elastic 
moduli. For comparison, results for randomly distributed voids are also plotted. 
Figure 12.6.5 also gives the graph of the quantity 
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p = 2C2323 (C2222 — C2233)-1 (12.6.12) 

which is the ratio of the shear moduli for simple shearing of the x2,x3-directions, 
and for simple shearing at 45° with these directions. The parameter p represents 
the degree of cubic anisotropy. For the isotropic case, p = 1. 

m/m 

m /m 

PS 

0 0.1 0.2 0.3 0.4 0.5 

f 

Figure 12.6.5 

Estimate of effective moduli of a body with circular-cylindrical holes; plane-strain 

problem; PS: periodic structure, UB: upper bound, and SC: self-consistent method 

12.7. PERIODICALLY DISTRIBUTED MICROCRACKS 

In the preceding subsection, solids containing periodically distributed cav-
ities are considered. A crack with traction-free surfaces can be treated as a flat 
cavity whose thickness becomes infinitesimally small. As discussed in Subsec-
tions 12.5, the geometrical effects of cavities or inclusions in a periodic structure 
are represented only by the g-integral, the volume average of exp(tx.x) over the 
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cavity or inclusion. In this subsection, the limiting value of the g-integral is 
examined, as a flat cavity tends to become a microcrack. 

12.7.1. Limit of Eshelby's Solution 

Before considering a periodic structure, examine an infinite elastic body 
containing an ellipsoidal cavity, and take the limit as the cavity approaches a 
penny-shaped crack; Willis (1968). The limiting procedure must result in a 
measure for the crack density which then replaces the void volume fraction; see 
Section 6. This technique is illustrated in terms of the limiting values of the 
Eshelby tensor and the corresponding homogenizing eigenstrain field. Note that 
an infinite body problem may be viewed as a limiting case of a periodic struc-
ture, as the size of the inclusions relative to the size of the unit cell becomes 
very small. Therefore, the limiting procedure mentioned for the infinite body 
problem is applicable directly to the periodic problem. 

For simplicity, consider an infinitely extended homogeneous solid with 
isotropic elasticity C, containing an oblate cavity W', whose major axis ai is 
parallel to the x;-direction. Assume a1 = a2 » a3. Set 

a 
(12.7.1) 

and note that as h goes to zero, W' approaches a penny-shaped crack of radius 
a1, which is denoted by W. The solid is subjected to the farfield uniform stress 
s°. Solve this problem by introducing a suitable homogenizing uniform eigen-
strain e' in W'. Since W' has zero stiffness, the consistency condition becomes 

or 

0 =s°+C: {S: e*_ e*} 

(1(4s) —S): e*=D:s°, 

(12.7.2a) 

(I2.7.2b) 

where S is the Eshelby tensor for W'. As has been explained in Section 11, C : S 
is symmetric with respect to the first and last pairs of its indices, although S is 
not symmetric. For simplicity, rewrite (12.7.2b) as 

(C—C:S): e*= s°. (12.7.2c) 

Except for the symmetry of C : S, (12.7.2c) is a better form for the crack prob-
lem than (12.7.2b); see Subsections 12.7.2 and 12.7.3. 

The product of elasticity, C, and Eshelby tensor, S, for the oblate sphe-
roidal W' is expressed as 

C : S = C: S~0) + hC : S(1) + O(h2). (12.7.3) 

Here, in matrix form,19 C : S(0) and C : 5(1) are expressed as 

19 The matrix form of the product of C with S or similar tensors is the same as that of C, i.e., 
the components of the matrix coincide with the corresponding components of the tensor; see Sec-
tions 3 and 15. 
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[ 

[(C : S 8 )á] [lab] 

~ [(C : S~0))a6] _ [lab] [(C : 8(0))ab)1 
(12.7.4a) 

and 

 

[(C : S(1))a )] [lab] 
[lab] [(C : St i

>)áb)]  ' 

 

 

[(C : S 1 )ab] = (12.7.5a) 

    

where three by three matrices [(C : S~0))a ] and [(C : S 0 )a ] are 

[(C : S0))a~~)] = 
E   

(1 —1 2)(1 —2v) 

1 00 
[(C : S«»)á] = 2(1E n) 0 II 

and [(C : S(1))a
)] and [(C: SW)áb)] are 

n2 n2 v(1 —v) 
n2 m2 n(1 — n) 

1(1-1) 1(1—i) (1— n)2 

 

   

  

(12.7.4b,c) 

   

[(C : S 1 )a ] = 
E 

32(1  m2) 

13 —(1-16 n) —4(1 +2n) 
(1-16n) 13 —4(1±21) 

— 4(1 +2n) —4(1±21) —8 

[(C : S~i)
)áb)] = PE  

32(1_v2) 

— 4(2 — n) 0 0 
0  —4(2—i)  0 
0 0 7 -8n 

. (12.7.5b,c) 

   

Substituting (12.7.3), (12.7.4), and (12.7.5) into (12.7.2c), obtain 

_ (C — C : S)-1 : s0 = h U() : s0 + 0(h0 ), (12.7.6) 

where has the following three nonzero components: 

u -1 = 
4(1—v2) 

1151 = u-1 — 2(1—v2)  
pE (2—v) pE ' 

with UgkÍ ) = Uj kÍ ) = U jlk ) = Uklij )• 

If the limit of (12.7.6) as h goes to zero is taken, it is seen that the eigen-
strain e* for the penny-shaped crack W becomes unbounded, with the leading 
term given by 

l 
6ió e* = l ó h 

U(-~)
: 
s0. (12.7.8a) 

The volume integral (not the volume average) of e* over W, however, gives 

u m W' e* = U(1) : s0, (12.7.8b) 

where W = 40aß /3. From these results, it is seen that, as h goes to zero: 

1) although the limit of Eshelby's tensor, S, exists, the inverse of C — C : S 
becomes unbounded; and 

2) although the uniform homogenizing eigenstrain e* becomes unbounded in 
W, its volume integral over W remains finite. 

(12.7.7a,b) 
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Applying (12.7.8b) to analyze the RVE, write the volume average of the 
eigenstrain over V, as 

V ~~ e*dl= U( ) 
: (12.7.9) 

which is consistent with the results discussed in Section 6; in particular, use 
a /V = 3W/4pV as the measure of the cavity density; see Section 6. 

12.7.2. The g-Integral for a Crack 

Following the above limiting procedure, consider the limit of the g-
integral, as an ellipsoidal cavity reduces to a crack. As a simple example, con-
sider an oblate spheroid W' at the center of a unit cell, with its major axis b; 
being parallel to the xi-direction, and assume b1 = b2 = b and b3 - hb « b1. 

From definition (12.5.5b), the g-integral for W', denoted by g', becomes 

g'(x) = S2'.  ecp(t(xici +x2X2)) {j, ecp(tx3x3) dx3} dx idx2 

1 1  2 sin(x3h')  
f 

W 
eCp(l«x1x1 +42x2)) h

3 

} dxldx2, (12.7.10a) 

where W is a circle of radius b on the plane x3 = 0 (a penny-shaped crack), 
W - 4pb3/3 = W'/h, and 

h'=h'(xl,x2) 

Since 

lim sin(
x3h') 

=hb 

= 1, 

limit 

1 — { 

1-{ b }2 - { 
b 

}2
iz 

. (12.7.10b) 

(12.7.11) 

of the g'-integral becomes 

b 
}

2 — { 
b 

}2 I/2 eXr(t(xici + x2c2)) dx i dx2 (12.7. 12a) 

h-,0 
x3hr 

for any x1 and x2, the 

g(x) = h 
~~ g (x) 

= 2b 
J W W 

which is bounded. Indeed, with the aid of (12.5.12b), explicitly compute g 
defined by (12.7.12a), as follows: defining h' _ p(n? +n2)'/2 b/a, note that 

g(x) = h ~~ h3 (
sinh — hcosh) 

- 3h'
3 

(sine' - h'cosh'), for h' > 0 
- 1 for h' = 0, 

where h is given by (12.5.12b), i.e., h = p(h + h2 + h2n3 )½ b/a. 

(12.7.12b) 
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It should be noted that, in the above limiting case, a penny-shaped crack 
W is regarded as an oblate spheroid of an infinitely small thickness. If the limits 
of other flat cavities are considered, the corresponding g-integral will be dif-
ferent. For example, for a circ~lar-cylinder of radius b and height hb (« b) and 
generator along the x3-axis, the limit of the corresponding g-integral, denoted by 
g", becomes 

~~ ó g
, ~x) = ßb2 f ~ eXp(t( xix i + x2x2)) dx idx2. (12.7.13a) 

This, however, may not correspond to a penny-shaped crack. Indeed, with the 
aid of (12.6.9), explicitly compute g" as 

lim g"(x) = in 
2 

Ji(y)  sinx = Ji(y) (12.7.13b) n~o h~o y C y 

where x = pn3hb/a and y = p(n? +n2)b/a; see (12.6.9b,c). As is seen, 
(12.7.13b) is different from (12.7.12b). 

12.7.3. Piecewise Constant Distribution of Eigenstrain 

Now, consider an isotropic homogeneous cubic unit cell, containing a 
penny-shaped crack W of radius b, at its center, on the plane x3 = 0; see Figure 
12.7.1. As in Subsection 12.7.2, consider the limit of an oblate spheroidal void 
W' of radius b and thickness hb, and obtain the penny-shaped crack as h goes to 
zero. 

Figure 12.7.1 

Cubic unit cell with penny-
shaped crack at center 

For illustration, choose a constant distribution of eigenstrains, s* in W', 
i.e., H(x; W') *. According to definition (12.5.6), define SP' for this W' by 

f g(— x) g'(x) FSP(x), 
x 

where f' = W'/U. The volume average of the periodic strains taken over W' is 
given by SP' : ~*. Although FS is not symmetric with respect to the first and 
second pairs of its indices, the following tensor is symmetric: 

(12.7.14a) 



and [(C : FSP<<)')a(~)], [(C : FS1 1)')a
2 ], and [(C :  

[(C : FSP(1)
')O] — 

E 

x 

(1—V2) 

QQ QQ 2x1
x

— x1 
x 

n(x ~ + x2) — x1x2 — Vx2 —

x
S1S3 

n(xI +rr S2) 
xx

— x152 2x2 — x2 — V
x
x1 — 

g
52x3 

— mS2 — S 1 x3 — nx 1 — x2x3 — ( S I + S2)2 

are 
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C: SP' = S' (hi) g'(—  x) g'(x) C : FSP
(x). (12.7.14b) 

Since the periodic part of the eigenstrain field H(W')~* is (H(U') — f') ~*, the 
volume average of the periodic stresses taken over W', is given by 
C: Si" :Ý*—(1— f')C:Y*. 

Suppose that a homogeneous stress s° is prescribed. Then, the average 
consistency condition for ~* is 

s°+C: SP':s*—(1—f')C:s*=0 (12.7.15a) 

or 

{(1—f')C—C: SP'} : ~* _ s°. (12.7.15b) 

As h goes to zero, the inverse of (1 — f') C — C: SP' diverges, though SP' remains 
finite, as in the case of S (Eshelby tensor for the oblate spheroid); see Subsec-
tion 12.7.1. The proof is straightforward. First, taking advantage of I x I = 1, 
decompose C : FS', as 

C: FS' =C:FSP(0)'+C: FSP(1)'. (12.7.16) 

Here, in a manner similar to (12.7.4,5), C : FSP~O)' and C : FSR(1)' are expressed 
in matrix form as 

[(C : FSP(8)
')ai ] [lab] 

J 
[(C : FSP(°)')ab] = [lab] [(C :  

and 

[(C : FSP~ ~)')áb)]  [(C : FSP(1)
')ab)] 

[(C : FSP(1)')ab] = 
[(C : FS

Ps l)
')áb)]T [(C : FSP(1)

')áb)]  ' 

where three by three matrices [(C : FSR« ')al)] and [(C : FSP~O)')a
)] are 

(12.7.18a) 

[(C : FSP
(O)

')
(
b)] —  (1 — _ 12)(1 — 2 n) 

n2 n2 n(1 — n) 
12 n2 n(1 — n) 

n(1 — n) n(1 — n) (1 — n)2 

  

1 0 0 
[(C : FSP

)~6)] — 2(1 E m) 
0 0 0 

(12.7.17b,c) 

  

(12.7. 17a) 

[(C : FSP~1)')a )] = 
E  

(1 _n2) 
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— (1 — V
Q
)S1/2 — X

x

4 (1 — V) x6
x
/2 — i4S5  (1 — V)x5/2 — x̂4x6 

c (1 — V)
Q
i6/2— x4

x
55 — (1 — V)x2/2-53  (

1— V
xx
)i4/2— i5S6 

(1 — V)x5/2 — x4x6 (1 — V)x4/2 — x5x6 (1 — V)(S1 + x2)/2 — x6 

[(C 

	

	 =  
E  : FSP~1>'

)ab~l   
(1_1

2
) 

X 

V
x
S4 5

x
S6 

x

S4 — ~254 
S4 x3x4 

5—~
x
1~5 

Vx5 — 54x6 
x5 — x3x5 

x
56 — x1

x
56 

S6 — x256 
N ~- 45 

(12.7.18b--d) 

Qr Here, x ~~ ° x~, x2 = x, S3 = x3> S4 = x2x3, x5 = x3x1, and 
6 - xix2, with x being 

given by20 
x/IxI. 

From S' f'g'(— x)g(x) = 1— f' and from FSP(0)'(x) = S~O for x ~ 0, it fol- 

lows that 
x 

C:SP'=(1—f')C:S~ 0> + f' s' g'(— x) g'(x) C : FS'~1)'(x). (12.7.19) 

In the limit of h — 0, g' becomes independent of x3. Hence, the triple infinite 
summation for C: 

SP(1) 
with respect to xi, x2, and x3, reduces to the double 

infinite summation with respect to xi and x2, based on the following identities: 

coth(pa), 
a2 +m2 = a 

m (a2 + m2)2 2aa  {pa coth(pa) + (pa)2cosech2(pa) } ; (12.7.20a,b) 

for example, 

~~
 

g'(— x) g'(x) g(— x) g(x)x~ S (x? +x2)+x3 }' (12.7.20c) 
x x ,, xR, I x' 

since g is independent of x3. Substituting (12.7.19) into (12.7.15b), and using 
(12.7.18a--d), obtain 

~*_ {(1—f')C—C:SP'} -1 : s° 

= h 
uRH i: s° + O(h° ), 

 

(12.7.21) 

where UPl
-1) 

has the following three nonzero components: 

 

U33~33~ = 1 1— V2 1 
f  B s2' 

  

   

In (12.7.17) and (12.7.18), terms which involve odd powers of x; for i = 1, 2, or 3, may be 
omitted on account of the existing symmetry. This is discussed in Section 14. 
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Ui~z3 ~= U Pis i~ — 
1 1 — n2 1 

(12.7.22a,b) f  2B (3 — n) s i — s 2 ' 

with U;ji~ i~ = U~ k~ ~~ — U,P~ i~ - U >~y ~), and f - p(b/a)3/6. From (12.7.20), Si and 
s2  are given by 

s i - S' 
2 

g(— x) g(x) (ax') coth(ax'), 
x,, x2 

s2 = ' 2 g(— x) g(x) { (ax') coth(ax') + (ax')2cosech2(ax') }, (12.7.22c,d) 
x, x, 

where x' is given by x'i _ x i, x'2 = x2, and x'3 = 0, with x' = 1 x' 1 (= (x? + 
x )12), and x' = x'/ 1 x' I . Note that the following relations are used: 

g'(- x) g'(x) x? = g'(- x) g'(x) x, 
x x 

g'(— x) g' (x)xi = C g'(— x) g'(x) x;  
x x 

see (12.7.12b). 

As in Subsection 12.7.1, observe that 

(12.7.23a,b) 

li ó ~* 1
h ó h UP(

-u : s°, u i ó f ~* = f UP(-1 : s°. (12.7.24a,b) 

Hence, at the limit: 

1) although C : SP' is  bounded, the inverse of (1 — f') C — C : SP' is 
unbounded; and 

2) although ~* is unbounded, its volume integral f'  remains finite; 

see Subsection 12.7.1. 

As the oblate cavity W' approaches the penny-shaped crack W, the aver-
age strain over the unit cell becomes 

D: s°+ h óf's*=D: s°+ f{hi óh ~*}. (12.7.25a) 

Hence, using (12.7.24b), estimate the overall compliance D, as 

D = D + f UP( ). (12.7.25b) 

The limit in (12.7.25a) is finite. 

12.7.4. Stress Intensity Factor of Periodic Cracks 
It is interesting to estimate the stress intensity factor of the periodically 

distributed cracks. Here, the stress intensity factor is a measure of the singular-
ity of the stress field near the crack tip; if deformation is small and quasi-static 
and the material is linearly elastic, the stress field near the crack tip diverges 
proportionally to the square root of the distance from the crack tip, and the 
coefficient of that proportionality determines the stress intensity factor; see Sec-
tion 21. 
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As an example, consider an isolated penny-shaped crack with radius a1 in 
an unbounded solid, studied in Subsection 12.7.1. When subjected to a farfield 
uniform tension s33, s33 near the crack tip becomes 

s33(r) 

where K1 defined 

KI = 2 

= Kt r 

a l 
n 

by 

~ i2 

s33+ 

(12.7.26a) 

(12.7.26b) 

is called the Mode I stress intensity factor, and r measures the distance from the 
crack tip to points on the plane containing the crack. The crack-opening dis-
placement, denoted by [u3], vanishes near the crack tip, since 

{u31(R) = K1R'12 (12.7.27) 

where R is the distance to the crack tip from points on the crack. Due to the 
linearity of the problem, the coefficient for [u3] is proportional to the stress 
intensity factor, KI. 

From the uniform but diverging eigenstrains given by (12.7.8a), (12.7.27) 
is obtained. For the oblate spheroidal cavity W', uniform eigenstrains produce 
uniform strains in W', and hence the displacement field in W becomes 

u(x) = c . (e° + S : e*), (12.7.28a) 

where e° = D : s°. As W' approaches the penny-shaped crack, the difference of 
the displacements of the upper and lower surfaces of the cavity gives the crack-
opening displacement, [u].  Taking advantage of x3 = ± bh {1 -  (x1/b)2 

- (c2/b)2 }'12 on the cavity surfaces, obtain 

[u3] - 111 [X3] (e33 + (S : £*)33) 

= 2b11 - (x1/b)2 - (x2/b)2 (5(0) : U(-h : s°)33 

= 2b '11 - (x 
1/b)2 

- (x2/b)2 S 3 U 33I s33. (12.7.28b) 

Hence, (12.7.28b) coincides with (12.7.27). 

The above technique may be applied to periodically distributed penny-
shaped cracks, studied in Subsection 12.7.3. For diverging average eigenstrains 
given by (12.7.24a), the crack-opening displacement21 under uniform tension 
s33 is estimated by 

)) [u3] = 2b'/1_(ci/b)2_ (c2 )2 S333U33133)s33. (12.7.29) 

Taking advantage of linearity, now estimate the stress intensity factor for 
the periodic cracks. Since s* obtained in Subsection 12.7.3 is an average value 

221 It should be noted that, unlike an isolated crack, a uniform distribution of eigenstrains does 
not produce the exact solution for periodically distributed cracks. Hence, the exact crack-opening 
displacement (and hence the singularity of the stress field) varies along the crack edge. 
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of the eigenstrains, denote by KF the average of the stress intensity factor taken 
along the crack edge, and obtain 

~Z ~ .) 3333) 
Kt  U33: 

where Kt is given by (12.7.26b). 

12.7.5. Illustrative Examples 

The method of this subsection has been employed by Nemat-Nasser et al. 
(1992) to study stiffness degradation of elastic solids containing periodically 
distributed cracks. For illustration, some results obtained by these authors are 
briefly reviewed here. 

As the first example, consider a unit cell which contains a penny-shaped 
crack normal to the x3-axis, at its center; see Figure 12.7.1. The unit cell is a 
general parallelepiped with dimensions 2a (i = 1, 2, 3), and the radius of the 
penny-shaped crack is b. 

The overall compliance tensorD of the unit cell is given by (12.7.25b). 
The presence of the crack increases D3333 (the inverse of the Young modulus in 
the x3—direction, E3), and D2323 = D3131 (the inverse of the shear modulus for the 
x2,c3- or x3,x;-plane, ß..t3), since the crack is normal to the x3-axis. As an illustra-
tion, Figure 12.7.2 shows the graph of 113 in terms of the crack density parame-
ter f = 4pb3/3U. Estimates based on the differential scheme and the self-
consistent method are also shown for comparison. 

Figure 12.7.2 

Estimate of shear modulus for 
solids with penny-shaped cracks: 
SC: self-consistent 
DS: differential scheme 
PS: periodic structure 

 

0 0.2 0.4 0.6 0.8 I 
f 

For the periodic calculation, a constant eigenstrain is used within the 
entire crack. The result, therefore, is an upper bound, as discussed in Section 
13. It turns out, however, that remarkably accurate estimates are obtained by 
such a crude approximation; this is similar to the case of periodic voids (see 
Hunan and Keller, 1984). 

(12.7.30) 
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As the second example, consider a unit cell which contains a flat slit crack 
normal to the c3-axis with crack tips along the C1-axis; see Figure 12.7.3. This 
infinitely extended slit crack can be treated as a two-dimensional line crack 
under plane strain conditions. 

Figure 12.7.3 

Cubic unit cell with infinite-
ly long slit crack normal to 
the c3-axis 

The corresponding g-integral is given by the limit of an elliptical-
cylindrical cavity as its thickness vanishes. i.e., 

g(x) = l ó y' J ~
(y,)  sin x  

= J i(y) sinx  
U x 

where x = a2x2, y' = b(x? + h2x)½, and y = bx1, with hb being the thickness of 
the cavity.22 In essentially the same manner as shown in Subsection 12.7.4, 
UP(-11, the limit of h ((1 -  f') C - C : SP' }-1 as h goes to zero, is computed to be 

U33~33) = 
1 1- VZ 1 
f  E 12 ' 

URi~3 ~~= 
1 1-12 1   
f  4E g1 _V2

, 

U2~23 ~ = 
1 1 + V 1 
f 2E 11 ' 

(9.4.32a-c) 

where 11 and "s2 are 

s i = ~'g(-x) g(x)(atx i)coth(aixi), 

(12.7.31) 

22 

Note that under plane strain conditions, the Fourier series expansion in the x,-direction is 
not performed, and hence sin x/x = 1 for x2 = O. 
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g(— x) g(x) {(aixi) coth(aixi) + (aixi)2cosech2(aixi)1. (12.7.32d,e) 
x 

Note that sl and s2 are given by the infinite summation with respect to xi only. 
As an illustration, Figure 12.7.4 shows the graph of ji3 in terms of the crack den-
sity parameter f = (b/a)2. The results are again for a constant eigenstrain field 
within the entire crack. To check the accuracy of this upper-bound estimate, 
Nemat-Nasser et al. (1992) subdivide the slit crack into 200 elements, and using 
a piecewise constant eigenstrain field, obtain improved bounds which are shown 
by heavy dots in Figure 12.7.4. As is seen, the crudest approximation with a 
single uniform eigenstrain field provides rather accurate upper bounds. 

Figure 12.7.4 

Estimate of shear modulus for 
a solid with periodically 

distributed slit cracks 
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12.8. APPLICATION TO NONLINEAR COMPOSITES 

Suppose neither the matrix nor the inhomogeneities in a composite with 
periodic microstructure are linearly elastic. For illustration, consider only small 
strains and rotations. In the following, both rate-dependent and rate-
independent cases are examined simultaneously. For the rate-dependent 
materials, let e stand for the strain rate, whereas for the rate-independent cases, 
e continues to denote the strain. Consider an incremental formulation, and 
denote the increment of the strain (strain rate) and stress, respectively, by de and 
ds. Consider the constitutive relations, 

de = D' : ds, ds = C' : de, (12.8. l a,b) 

where D' = D'(x; s) is the instantaneous compliance tensor field, which, in gen-
eral, depends on the location within the unit cell, as well as on the stress and 
possibly on other material parameters; see Appendix A. For example, for the 
J2-plasticity model, D' is given by (A.2.9a), and its inverse, C', is given by 
(A.2.9b). For the rate-dependent case, various models may be considered. 
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As a simple illustration, consider the nonlinear viscoplastic model of Sub- 

section A.3.3, where the strain-rate increment23 relates to the stress increment 
through the instantaneous compliance given by (A.3.5b). Now, the entire for-
mulation of this section applies to this rate-independent (rate-dependent) elasto-
plastic (viscoplastic) unit cell. For example, in the case of metal-matrix compo-
sites, say, aluminum matrix-alumina inclusions, the matrix may be modeled by 
rate-independent J2-plasticity, so that 

DM  = DM +  
4T2 HM ' 

CM — CM —  (CM  : s') ®(CM : s') (12.8.2a,b) 
4 t2 HM + s': CM : s'' 

where s' = s — sh/3 1(2) is the deviatoric stress; t — (s' : s'12)½ is the work-
hardening parameter; and HM may be constant for linear hardening (Accorsi and 
Nemat-Nasser, 1986), or it may be fixed by considering a power-law fit for the 
uniaxial stress-strain relation of the material, i.e., 

~ 
N-1 

go ' 
where s is the initial yield stress, N is a material parameter, and go is the initial 
yield strain. When N = 1, the uniaxial stress-strain relation is bilinear. In gen-
eral, N is small, less than 0.1 for certain metals (about 0.08 for 4340 steels). 

As a further simplification, let the matrix elasticity tensor be isotropic. 
Then, (12.8.2b), for example, reduces to 

Cl = lM 1(2)® 1(2)+2mM 1(4s)  
(MM (+HM)T2 s'®0' 

= 211M 
VI 

1(2)® 1(2) 
1-211 +M) T2 

+ 1(4s)  ~M  '®~' 
(1 p  

where bM = HM /mm. Further, let the inclusions be isotropic and linearly elastic, 

Cl = 2mt n1  
1(2) ®1( 2) + 1(4s)}. 

1-2n
1 (12.8.3) 

Since the instantaneous moduli of the matrix material, (12.8.2d), depend 
on the state of stress at each material point, and since this stress field is not, in 
general, uniform throughout the matrix, for accurate calculation it may be neces-
sary to subdivide the matrix into finite elements and use the average stress 
within each element to determine the effective instantaneous modulus tensor of 
the element. Then the homogenizing eigenstrain (or eigenstress) field within the 
matrix may be assumed to be uniform, and the average stress taken over each 
element is computed in the same manner as for the linearly elastic case. It is 
also possible to subdivide the inclusion into suitably small regions and use the 
constant eigenstrain in each subregion. 

23 The strain-rate increment is denoted in Appendix A by d~, but here it is denoted by de. 

HI =  (12.8.2c) 

(12.8.2d) 
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In general, at each stage of incremental loading, the instantaneous 
modulus tensor field, C', of the unit cell is given by 

C'(x) = CM(
s') for x in M (12.8.4) 

CI for x in I. 

In this manner, each subdivision is assigned its instantaneous modulus tensor, 
depending on its location within the matrix or inclusion, where in the latter case 
the modulus tensor remains constant throughout the loading history. Denote by 
Ca (a = 1, 2, ..., n) the current values of the modulus tensor for the ath element. 
Then, with C as the reference modulus tensor, the results of Subsection 12.5.2 
are applied to obtain the overall instantaneous elastoplastic modulus tensor of 
the composite. From the system of linear equations (12.5.7b), the average 
eigenstrain in each element, ~*0G,  is obtained. Then, (12.5.8b) yields the 
corresponding overall modulus tensor C. 

As discussed in Section 13, this method provides upper and lower bounds 
on the moduli, provided that the reference elasticity tensor, C, is properly 
chosen. Since for each element, constant moduli are assumed at each stage of 
the incremental loading, approximations which may violate the bounds are 
necessarily introduced. Yet, bounds can be established if the instantaneous 
moduli of the elastoplastically deforming elements are suitably chosen. 

For the rate-dependent viscoplastic case, a similar analysis applies; see 
Nemat-Nasser et al. (1986). In this case, the strain-rate increment in each ele-
ment is related to the stress increment by (12.8.1a,b). For example, for the 
power-law model, D' is given in terms of the deviatoric stress tensor, s', by 
(A.3.5.b), i.e., 

D' = h t° { 1(48) +  n s'® s'}, (12.8.5) 

where h and n are material parameters. Hence, the same procedure can be used 
to obtain the instantaneous overall modulus tensor which relates the overall 
(e.g., prescribed) strain-rate increment de° to the corresponding overall stress 
increment < ds >; see Nemat-Nasser et al. (1986) for illustrative examples. 

Note that it is possible to treat the entire unit cell as an inhomogeneous 
cell, and directly apply the Fourier analysis to solve field equations, without the 
use of homogenization approaches, i.e., without the use of eigenstrains or 
eigenstresses. In such an approach, a large number of linear equations must be 
solved at each incremental loading. Moreover, even for the linearly elastic case, 
the benefit of automatically bounding the overall parameters is generally lost in 
such a direct approach. With the use of homogenization, on the other hand, 
accurate bounds are obtained with rather crude approximations. Indeed, it is 
possible to treat the entire matrix or the entire inclusion as a single element with 
uniform eigenstrains, and yet obtain reasonable bounds; see Accorsi and 
Nemat-Nasser (1986). This procedure provides an effective tool for design, 
where crude approximations are made at early stages of the material develop-
ment, say, using a single-element homogenization, and then, once a final design 
is obtained, a rather refined homogenization is employed to calculate the 
corresponding response. Indeed, this procedure can be used in large-scale 
finite-element codes, when micromechanics with crude approximations is 
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employed to obtain constitutive relations of the composite in each finite element, 
and then, when necessary, e.g., for damage evaluation, refined calculations are 
considered, in order to assess local material responses. 

Even for highly nonlinear elastoplastic metal-matrix-ceramic composites, 
the use of a single region with an average homogenization eigenstrain field leads 
to a closed-form result for the overall properties of the composite. In this case, 
it follows from (12.5.9b) that 

C =C1 : 1(4s) — f {(CI —
CM)-1 : CI —

SP}-1
}, (12.8.6) 

when the matrix is homogenized and the inclusion elasticity tensor is used for 
the reference modulus tensor. The result is an upper bound. Note that SP in this 
case is given by (12.5.~b) and (12.5.4a--d), where the g-integral over the matrix 
is simply given by 

m(x) = < exp(ix.x)>M = (1 —f) gu( x)  1 
f 

f gi(x), (12.8.7) 

with u(x) = 1 for x = 0, and = 0 otherwise. In this manner, SP and C1 remain 
unchanged in (12.8.6), and only CM is changed with continued loading. The 
results are explicit. Note that C1 need not be used for the reference elasticity, 
and one may use CTM, instead. Indeed, it is also possible to use the yet-unknown 
overall modulus tensor C for the reference one, and obtain estimates which are 
expected to be closer to the exact solution than the corresponding upper bounds; 
see Subsection 13.5 for further comments. 
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SECTION 13 OVERALL PROPERTIES OF SOLIDS 
WITH PERIODIC MICROSTRUC-
TURE 

In Section 12, an elastic solid with periodic microstructure is considered, 
and the representation of the corresponding field variables in terms of Fourier 
series is examined. The governing field (partial differential) equations are 
reduced to sets of linear algebraic equations for the Fourier coefficients. These 
can be solved exactly. Hence, the overall elasticity and compliance tensors of 
an elastic solid with periodic microstructure can be estimated to any desired 
degree of accuracy, and, at least in principle, the problem admits an exact 
(unique) solution. The actual evaluation of the moduli, however, in general 
entails considerable numerical effort, even though this can be reduced through 
the use of various symmetry and antisymmetry properties of the periodic struc-
ture, as discussed in Section 14. Furthermore, often, instead of an exact distri-
bution of the field quantities, the overall constitutive response associated with 
the average field variables may be of greater interest. The overall response of a 
periodically heterogeneous solid of this kind is defined in terms of the volume 
averages of the stress and strain taken over a typical unit cell. 

In this section, estimates of the overall response of solids with periodic 
microstructure, consisting of simple arrangements of linearly elastic uniform 
micro-inclusions (or defects) embedded in a linearly elastic uniform matrix are 
sought. To this end, first, relations between the average field quantities in the 
equivalent homogeneous solid are established by the introduction of suitable 
periodic eigenstrain or eigenstress fields. Then, the Hashin-Shtrikman varia- 

tional principle,1  discussed for an RVE in Section 9, is applied to solids with 
periodic microstructure, and bounds on the overall moduli are obtained by 
defining energy functionals for the eigenstrain or eigenstress fields in the 
equivalent homogeneous solid. Finally, this application is considered in some 
detail, bounds for the overall elastic energy of the unit cell, and, hence, bounds 
for the overall elasticity parameters of elastic solids with periodic microstructure 
are obtained. These bounds are exact and can be computed to any desired 
degree of accuracy. In Subsection 13.5 it is shown that there are always two 
overall elastic parameters (e.g., K and jI for the isotropic case) whose bounds 
obtained on the basis of the periodic and random (RVE) microstructure, are 
identical, and hence exact. Moreover, these bounds are valid for any number of 
inclusions of any shape, distribution, and elasticity. 

In this section, bounds on the overall moduli and compliances are 
developed with the aid of the Hashin-Shtrikman variational principles. As is 
pointed out in Subsections 9.5.6 and 9.7.2, these bounds for an RVE can be 

See Hashin and Shtrikman (1962), and Willis (1977). 
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obtained directly with the aid of Theorems I and II of Subsection 2.5.6, and by a 
suitable choice of the reference elasticity or compliance tensor. A similar 
approach can be used for the periodic case. In this approach, a reference, say, 
elasticity tensor C is chosen such that the difference C'(x) — C is positive-semi-
definite (negative-semi-definite), where C'(x) now is the elasticity tensor of the 
unit cell, U. Then, with the aid of the theorem of the minimum potential 

energy,2 computable bounds result from the properties of C' — C and the proper-
ties of the integral operators for the periodic structure. Similar comments apply 
when the formulation is cast in terms of the compliance tensor. This formula-
tion is presented in Subsection 13.2.4. 

13.1. GENERAL EQUIVALENT HOMOGENEOUS SOLID 

Consider an elastic solid consisting of a periodically arranged set of ident-
ical unit cells. Each cell contains n distinct linearly elastic micro-inclusions, Wa, 
embedded in a linearly elastic matrix, M. Consider a typical unit cell, and as 
before, denote the elasticity and compliance tensors of the matrix and micro-
inclusions by CM and DM, and C° and D«, respectively. Note that CM =  

and Ca _ (D 1, fore a = 1, 2, ..., n. 

13.1.1. Notation and Introductory Comments 

The notation used throughout this section is essentially the same as that 
used in Section 12. It is summarized as follows: the domain of a unit cell is 
denoted by 

U=M+ W= M+ O Wa; (13.1.1) 
a=1 

the elasticity and compliance tensor fields, C' and D', in U are 

C' = C'(x) = H(x; M) CM 
+ ± H(x; Wa) Ca, 
~= l 

D' = D'(x) _ H(x; M) DM + ± H(x; Wa) D«, (13.1.2a,b) 

where H(x; M) and H(x; Wa) are the Heaviside step functions. The volume 
fraction3 of the ath micro-inclusion Wa and that of all inclusions W are defined, 

2 The superscript M for CM and DM emphasizes that the elasticity and compliance tensors are 
for the matrix, which may not necessarily be the same as those for the reference homogeneous solid, 
which will be denoted by C and D. 

3 The volume fraction for the unit cell expresses the corresponding volume fraction for the un-
bounded periodic solid, as well as for a finite solid represented by the corresponding unit cell. 



§ 13.1 PERIODIC MICROSTRUCTURE 439 

respectively, by 

n 
f~ = 

U 
f  

U 
= 1— 

LMJ = }~1 f~. (13.1.3a,b) 
a 

As before, the volume average of a periodic tensor field T taken over the unit 
cell U of a typical micro-inclusion Wa is given by 

<T>= U U T(x)dV,  < T>~ _  1 ~WT(x)dV. 
a 

These are the corresponding averages of T in the unbounded periodic solid; 
< T>  represents the volume average in the entire solid, and < T >~, is that over 
the W - inclusion. Hence, these average quantities can be viewed either as 
corresponding to an unbounded periodic solid or to a finite body represented by 
the bounded unit cell. 

The results obtained in Section 12 may be applied to a periodic solid with 
a general distribution of micro-inclusions of arbitrary shapes. In this section, 
however, rather simple distributions of micro-inclusions with simple shapes are 
considered, where the application of the basic results for the general case is 
illustrated. In particular, in all illustrations, it is assumed that: 

(*) the unit cell remains unchanged upon reflection with respect to the plane 
xi = 0, for i = 1, 2, and 3, i.e., the unit cell is elastically and geometrically 
completely symmetric with respect to all three coordinate planes. 

In other words, the elasticity and compliance tensor fields, C' and D', satisfy 

three mirror-image reflections with respect to the coordinate planes,¢ i.e., 

C'(x') = C'(x2) = C'(cR3) = C'(x), 

D'(c1 ) = D'(c2) = D'(x3) = D'(x), (13.1.5a,b) 

where c 1 , x2, and x3 are the mirror images of point x with respect to the planes 
x1 = 0, x2 = 0, and x3 = 0, respectively. A unit cell with an isotropic matrix and 
an isotropic spherical micro-inclusion at its center is an example which satisfies 
(*) and (13.1.5a,b); see Figure 13.1.1. 

13.1.2. Macrofield Variables and Homogeneous Solutions 

As explained in Subsection 2.5, the macrofield quantities are given by the 
volume averages of the corresponding microfield variables. For an RVE, uni-
form boundary conditions completely determine the volume averages of the 
microfield variables: for example, uniform boundary tractions, t = n . s°, deter-
mine the average stress, s°, and linear boundary displacements, u = x.e°, deter-
mine the average strain, e°. The macrostress S and/or macrostrain E, which are 
the averages of the microstress and microstrain fields, completely fix these 

(13.1.4a,b) 

° This condition is referred to as the fourth MI sym/ant condition in Section 14; see Subsec-
tion 14.1 for explanation and details. 
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Figure 13.1.1 

Example of fully symmetric periodic 
structure: an isotropic matrix and an 
isotropic spherical inclusion at its 
center 
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simple boundary conditions for the corresponding RVE. Furthermore, with 
either boundary data, < s : e > _ < s >: < e > which, in general, may not hold 
for an RVE subjected to general fluctuating boundary data; see comments in 
Subsection 2.6, as well as discussions in Subsection 9.5.1. 

Similar notions cannot be applied directly to unbounded periodic solids, 
since the boundary data for a typical unit cell must be such that the periodicity 
of the field variables is ensured. The average microfield variables in a periodic 
solid cannot be defined through simple boundary conditions. On the other hand, 
the periodic field variables are unique for a prescribed homogeneous strain or 
stress; see Subsection 14.4. Each of these homogeneous field quantities is the 
volume average of the corresponding field variable in the unit cell; note that the 
volume average of the strain and stress fields associated with a continuous 
periodic displacement field is zero. Hence, the macrofield quantities for 
periodic solids are the associated homogeneous strain and stress fields: one to be 
prescribed, and the other to be determined. 

For example, suppose that the homogeneous strain field e° is prescribed. 
The associated average stress field then is given by 

s=<s>=< C':(e°+eR)> -C:e°, (13.1.6a) 
where eR is the periodic strain field (with zero average), and C is the overall 
elasticity tensor. Similarly, when the homogeneous stress field s° is prescribed, 
the associated average strain field becomes 

=<e>=< D':(s°+sR)>= D: s°, (13.1.~b) 

where sP is the periodic stress field (with zero average), and D is the overall 
compliance tensor. 

From the uniqueness of the periodic strain eP and stress SR, both with zero 
average corresponding to prescribed e° or s°, it follows that the overall elasti-
city and compliance tensors are each other's inverse, i.e., 

(13.1.7) 

The macrostress and macrostrain tensors are then related through 
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S= C:E, E=D:O. (13.1.8a,b) 

It is emphasized here that for an elastic solid with periodic microstructure, the 
microscopic and hence macroscopic responses are the same whether S = s° or 
E = e° is regarded prescribed, whereas, for an arbitrary finite RVE, the micros-
copic response is different depending on whether S _ s°, E = e°, or general 
fluctuating boundary data are regarded prescribed; see Subsections 2.5, 2.6, and 
9.5. 

13.1.3. Periodic Microstructure versus RYE 

It may be helpful to pause for a moment and review some important 
differences between the model of a heterogeneous solid with periodic micro-
structure, and a heterogeneous solid with more or less randomly distributed 
microheterogeneities, modeled by an RVE. 

The most obvious difference is a geometric one. The microstructure in 
the periodic case can be described exactly, through a representative unit cell, 
whereas for an RVE, in general, only a statistical description is possible. As 
pointed out before, a totally structured microheterogeneity and a totally random 
one can be viewed as extreme cases which provide limits and, therefore, useful 
information in actual applications. Moreover, while the unit cell in the periodic 
case is repeated in a regular manner, the structure and arrangement within the 
unit cell can be irregular, leading to an isotropic5 overall response. 

The second important difference between the concept of an RVE and the 
periodic model is that, through the application of a Fourier series representation, 
the periodic (elasticity) model can be solved essentially exactly in many impor-
tant cases, whereas in the case of an RVE, only estimates based on specialized 
models (e.g., the dilute distribution, the self-consistent, and the differential 
models) are possible. 

The third important difference relates to the boundary data and the 
uniqueness of the solution. For the periodic case, the unit cell is homogenized 
by the introduction of a unique eigenstress (or eigenstrain) field, resulting in: 1) 
a unique overall elasticity tensor for a prescribed overall uniform strain field; 
and 2) a unique overall compliance tensor for a prescribed overall uniform stress 
field. These overall elasticity and compliance tensors have an exact inverse 
relation and do not depend on whether the overall stress or strain field is 
regarded prescribed. On the other hand, the overall elasticity and compliance 
tensors for an RVE, in general, depend on the assumed boundary data and on 
the approximating model that is used to estimate them. In fact, as discussed in 
Subsection 2.5, the uniform boundary tractions for a prescribed overall strain 
and the linear boundary displacements for a prescribed overall stress, yield the 
smallest values for the total macro-stress and -strain potentials, respectively, for 

Complete randomness of the microstructure is a sufficient condition for the overall modulus 
tensor to be isotropic. Necessary and sufficient conditions for the isotropy of this tensor are dis-
cussed in Section 15. 
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a fixed finite RVE. Indeed, for an RVE, the energy-based definition of the 
overall moduli, in general, does not lead to the same quantities as those obtained 
through the average stress-strain relations, unless special boundary data are con-
sidered, whereas for the periodic case, the two definitions produce identical 
results. Furthermore, not all approximating techniques yield elasticity (for 
prescribed strain) and compliance (for prescribed stress) tensors which are each 
other's inverse6. 

Finally, there is a difference between the periodic case and the RVE prob-
lem when bounds on the overall moduli are sought, using the Hashin-Shtrikman 
variational principle. For the periodic case, as is shown, one can use a unit cell 
with a well-defined structure and obtain exact bounds. For the RVE model, on 
the other hand, certain approximations are often required to obtain computable 
bounds, and, as shown in Subsections 9.5, 9.6, and 9.7, it is still necessary to 
establish whether or not the involved approximations invalidate the bounds; as is 
shown in those subsections, with the aid of Theorems I and II of Subsection 
2.5.6, exact computable bounds are, nevertheless, obtained in the case of an 
ellipsoidal RVE. 

13.1.4. Unit Cell as a Bounded Body 

Before considering the Hashin-Shtrikman variational principle for a solid 
with periodic microstructure, the field variables in an RVE used in the Hashin-
Shtrikman variational principle are summarized, as follows: 

e°: a given uniform strain field associated with prescribed linear dis- 
placement boundary data 

e*, s*:  homogenization eigenstrain, eigenstress fields for which the func-
tionals I, J are respectively defined 

ed, sd: strain, stress fields produced by e* or s* in the homogenized solid. 

The homogenized unit cell in the periodic problem may be regarded as a 
homogenized bounded equivalent solid, with the corresponding eigenstrain, 
eigenstress fields as the homogenizing field. In this case, the basic fields then 
are: 

e°: a homogeneous strain representing the overall uniform strain 

e*, s*:  homogenization eigenstrain, eigenstress fields with homogeneous 
parts < e* >, < s* > and periodic parts e* — < e* >, s* — < s* > 

6 Since the global response of an RVE depends on the considered surface data, one may expect 
that the overall moduli are similarly dependent on the assumed surface data. However, in view of 
the limited information which can be had on the geometry, microstructure, and boundary data of an 
RVE, it is assumed that the results from two limiting sets of boundary data, i.e., uniform tractions 
and linear displacements (see Subsection 2.5), provide adequate information about the overall 
response of the RIB, especially since these, in general, provide bounds on the moduli associated 
with any other general boundary data; see Theorems I and II of Subsection 2.5.6. 
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eR, sR: periodic strain, stress fields produced in the homogenized solid by 
the periodic parts, e* — < e* >, s* — <s >, of 

e*, 
s*. 

For the bounded solid, e° prescribes linear displacement boundary condi-
tions, and hence the solution is unique; for the periodic problem, e° is accom-
panied by a unique set of periodic field variables, and hence the solution is 
unique. The uniqueness of the solution guarantees that, for a given homogene-
ous strain e°, there is only one exact eigenstress (or eigenstrain) field that gives 
the same field variables in the equivalent homogeneous solid as those in the ori-
ginal heterogeneous solid. Similar comments apply when the macrostress, s°, is 
regarded prescribed. Therefore, the unit cell of a periodic microstructure may 
be regarded as a bounded solid which is homogenized through the introduction 
of the corresponding eigenstress (or eigenstrain) field, even though the boundary 
conditions of the unit cell as an element of an infinite periodic solid, may not be 
explicitly defined a priori; see Subsection 14.4. 

13.1.5. Equivalent Homogeneous Solid for Periodic Microstructure 

Now consider a homogeneous solid which represents the original solid of 
periodic microstructure through a periodic distribution of eigenstrain or eigens-
tresses. The elasticity and compliance of the solid are denoted by C and D, 
satisfying C : D = 1(4s) or D : C = 1(4s). They can be the elasticity and compli-
ance of the matrix phase, CM and DM, or those of the ath inclusion phase, Ca 
and Da, or any other positive-definite reference elasticity and compliance ten-

sors. In order to obtain the most general results, leave C and D unspecified, to 
be defined in each case for the convenience of the analysis. 

As in Section 9, an eigenstrain or eigenstress field is denoted in the 
equivalent homogeneous solid by e* = e*(x) or s* = s*(x), respectively. The 
homogeneous and periodic parts of e* or s* are denoted by < e* > and 
e* — < e* >, or < s* > and s* — < s* >. Let eR and SR be the periodic strain and 
stress fields due to s*. Then, 

= D: 
{sR_(S*_< 

s >)} (13.l.9a) 

or 

sR =C: eR+(s* —<s * >). (13.1.9b) 

As shown in Subsection 12.4, the integral operator GP determines eR for given 
s*, as follows: 

— ep(c) = GP(c; s*) 

= S' FGP(x) : { LT 1u s
*(Y) eXP(Ix•(x — y)) d Ny}, (13.1.10a) 

where the fourth-order tensor FGP = FGP(x) is given by (12.4.12d). Then, the 

One requirement for C or D is that any arbitrary distribution of eigenstrains or eigenstresses 
should result in unique field variables in the equivalent homogenized solid. 
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associated periodic stress field is, 

sR(x) = — C : A 1'(c; s*) + (s*(x) — < s* >). (13.1.10b) 

In a similar manner, define the conjugate integral operator A1' for an 
eigenstrain field, e*. Again, denoting the periodic stress and strain fields due to 
e* by sR and em, obtain 

SR= C:{eR — (e*—<e* >)} (13.1.11a) 

or 

eR= D: sP+ (e* —< e* >). 

Define the integral operator which determines sP due to a*, as 

— SR(c) = A1'(x; e9) 

(13.1.11b) 

= S' FAP(t) : { v Ju e*(u) eXp(tx • (c — y)) dNy } . (13.1.12a) 

Then, the associated periodic strain field becomes$ 

eR(x) = — D : A (x; a*) + (e*(x) — < e* >). (13.1.12b) 

Since the periodic fields due to e* are the same as those due to s* 
= — C : e*, the fourth-order tensor FAP = FA '(x) in (13.1.12a) can be expressed 
in terms of FAP, as 

FA '(x)= —C:F GP(x): C+C for x ~0; (13.1.13) 

see Subsection 12.4. It should be noted that, similarly to the corresponding 
integral operators, AA and Gl, for an infinite homogeneous solid, the two 
integral operators, AP and G ', for the unit cell are related to each other; see 
Table 13.1.1. 

Although the homogeneous parts of the eigenstress or eigenstrain field, 
< s* > or < e* >, do not produce periodic strain and stress fields, they are related 
to the (prescribed) homogeneous strain and stress,9 e° and s°, in the homogene-
ous solid. Indeed, corresponding to (13.1.9a,b), 

e° = D : (s° — < s * >) or s° = C: e° + < s* >, (13.1.9c,d) 

and corresponding to (13.1.11a,b), 

$ If the periodic parts of the eigenstress and eigenstrain are denoted by s*R and a*P, then, 
(13.1.1 oa,b) are rewritten as — eR(x) = G1(c; s*P) and SR(x) = —c : G1'(c; s*P) + s*R(c), and 
(13.1.12a,b), as — sR(c) = l1(~; a*P) and eR(c) = — D : A5(a; a R) + e*R(c). These are similar to the 
presentations used in Subsections 9.5 and 9.6. 

Special attention must be paid to the difference between the homogeneous fields in the 
equivalent homogeneous periodic structure and those in the original heterogeneous periodic struc-
ture; in the former, the homogeneous fields are related through (13.1.9c,d) when s* is prescribed or 
(13.1 11 c,d) when e* is prescribed, while, in the latter, they are related through the exact overall elas-
ticity or compliance tensor. i.e., s° = C : e° or e° = D : s°. 
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Table 13.1.1 

Relation between integral operators A ' and GP and between 
A^ and G^ 

periodic fields AR G 

e 
sR 

— D: AR(e) 
+ e*R 

— AR(e*) 

— GR(s*) 

— C : GR(s*) + s*R 

disturbance fields Â  G^ 

ê  

s^ 

— D : AA(e ) + e 

— A^(e*) 

G^(s*) 

— C: G^(s*) + s*d 

s°=C:( e°-<e*>) or  e°=D: s°+< e*>. (13.1.11c,d) 

As is shown in Section 12, the exact eigenstrain or eigenstress fields, 
= e*(x) and s* _ s*(c), produce the same field variables in the equivalent 

homogeneous solid as those in the original heterogeneous periodic one. From 
(13.1.9a-d) and (13.1.11a--d), it can be concluded that 1) the periodic parts of e* 
and s* produce the periodic fields, and 2) their homogeneous parts correspond 
to the homogeneous fields. In the Hashin-Shtrikman variational principle, it is 
convenient to use an eigenstrain field if a homogeneous stress is prescribed, and 
an eigenstress field if a homogeneous strain is prescribed. Therefore, 
throughout this section, use the following consistency conditions:

10 

(D' - D) : e* + AR(e*) - s° = 0, 

(C' - C)
-

t : s* + AR(s*) - e° = 0, (13.1.14a,b) 

where, to simplify notation, the argument x is not displayed explicitly. The 
exact eigenstrain and eigenstress fields depend on the elasticity or compliance of 
the equivalent homogeneous solid, C or D, which is the reference elasticity or 
compliance tensor. It is emphasized that, unlike for an RVE, for a prescribed 
microstructure, (13.1.14a) and (13.1.14b) are exactly equivalent, and hence only 
one of them needs to be considered. In general, however, both alternative 
representations are examined simultaneously, in order to display the elegant 
duality of this formulation. 

10 Consistency conditions (13.1.14a,b) are essentially the same as (12.4.22a,b). In this section, 
only (13.1 .1 4a,b) are used, since they are the Euler equations of the energy functionals in the 
Hashin-Shtrikman variational principle. 
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Note that when s* and e* are the exact eigenstress and eigenstrain fields, 
s* and e*, then the homogeneous stress and strain fields prescribed in the 
equivalent homogeneous periodic structure are related by the exact overall elas-
ticity and compliance tensors, C and D, of the original heterogeneous periodic 
structure. For arbitrary eigenstress and eigenstrain fields, s* and 

e*, 
the overall 

elasticity and compliance tensors given through (13.1.9c,d) and (13.1.1Ic,d) do 
not coincide with C and D. However, these overall tensors are each other's 
inverse when s* = —C : e * or e* = —D:  s*. 

13.2. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE APPLIED 
TO PERIODIC STRUCTURES 

In this subsection, it is proved that the Hashin-Shtrikman variational prin-
ciple can be applied to a periodic distribution of eigenstrains or eigenstresses, 
prescribed in the equivalent homogeneous solid.11 Using the integral operators 
introduced in Subsection 13.1, two functionals, I and J, are defined for arbitrary 
eigenstrain and eigenstress fields in the unit cell, respectively as 

I(e*; s°) =  < e*
: { (D' — D)-1 : e* + AR(e*) — 2 s° } >, 

J(s*; e°) =  < s* : { (C' — C)-1 : s* + GP(s*) — 2 e° } >, 

where s° and e° are the prescribed homogeneous stress and strain. 

(13.2.1a,b) 

13.2.1. Self-Adjointness 

Since D' and D or C' and C are symmetric with respect to the first and 
last pairs of their indices, (D' - D)-1 or (C' — C) -1 has a similar symmetry. 
Hence, if AP(x; e*) and G '(c; s*), associated with the averaging operator < >, 
are self-adjoint, the integral operators in the functionals I and J become self-
adjoint. 

To prove the self-adjointness of < : AP() > or < : GP() >, consider the 
volume average of the inner product of a periodic stress field and a periodic 
strain field. Let sP = ~R(c) and eP = eR(c) be arbitrary periodic strain and stress 
fields, which may be unrelated, but respectively are statically and kinematically 
admissible. According to the averaging theorem (Section 2), 

< sP : eP > = 1 Jau tP.uP dS, (13.2.2a) 

where the tractions tP are given by n.sR, and uP is the displacement field 

1 1 As pointed out before and discussed in Subsection 13.2.4, the final bounds can be obtained 
directly by a proper choice of the reference elasticity or compliance tensor. 
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associated with 1P. Since sP and uP are periodic, the surface integral of tR.uP 
over 

r

au must vanish, i.e.,
12 

J au tP.uP dS = O. 

The proof is straightforward. As shown in Subsection 12.3, the periodicity of UP 

and s implies 

uR(c+) R(C) (13.2.3a) 

and 

(n.sR)(x+) = — ( N.sR)(c ), (13.2.3b) 

for x+ and x on c; _ – a1 (i = 1, 2, 3), since s(x+) _ s(C) and n(C) 
= — n(c ). Hence, 

tR(x+).uR(x+)=—t R(x-).uR(x ). (13.2.3c) 

On the boundary surfaces, say, the (c; = + a;)-plane and the (x; = — a;)-plane, 
(13.2.3c) yields 

1x = +a 
tP(c).uP(c) dS = —J 

= a 
tR(x).uP(x) dS. 

C, - 

Hence, (13.2.2b) is proved. 

Use (13.2.2b) to prove the self-adjointness of the AP-integral operator 
associated with the averaging operator < >. Now, let (P and eP be the periodic 
stress and strain fields due to 13 e*, s = — AR(e*) and e = D : SP + (e* — < e* >). 
Then, 

<e*:AP(e*)>=<(e —D: s):(— sR)> 

= < (eR — D : sR) : (— sR)> 

=<6P:D:6P>, (l3.2.5a) 

where e and s are the total strain and stress fields, given by the sum of the 
homogeneous part and the periodic part, and the fact that the volume average of 
the periodic fields vanishes, is used. Hence, < : AP( ) > is self-adjoint. In a 
similar manner, if e is the periodic strain field due to s*, e = — GP(s*), with the 
associated periodic stress field, sP = C : 1 + s* — < s* >, then 

< : GR(s*) > = < eR : C: eR>. (13.2.5b) 

Hence, < : GP( ) > is also self-adjoint. In view of the self-adjointness, notation 
: AP(e*) >  <e* : A : e*> and <s : GR(S*) > <s*: G: s*> are used; 

see (9.1.7f) and (9.1.15a) of Subsection 9.1. 

'2 In view of this fact, the energy-based and the stress, strain-based definitions of C = D-1 are 
identical in the periodic model, i.e., in this case, < s : e > = s° : e°. 

13 

Here and in the sequel, the spatial variable x in A (c; a*) or GP(c; s*) is not displayed (but 
implied), whenever this variable is implied but not displayed in sR(x) or eR(x). 

(13.2.2b) 

(13.2.4) 
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The self-adjointness of < : 1: > and < : G ' : > can also be proved using 
the Fourier series. From (13.1.9) and (13.1.11), for the periodic strain and stress 
fields, eP and (V, produced by an arbitrary eigenstrain, e*, or an arbitrary eigen-
stress, s*, 

S' Fe*(— x) : (FAP)T(_ x) : { D : FAP(x) — 1(4s) } : Fe*(x) 
x 

S FS*(— x) : (FAP)T(_ x) : { C : FrP(x) — i(a5) } : Fs*(x), 
x 

(13.2.6) 

where Fe* and Fs* are Fourier series coefficients of e* and s*; in deriving 
(13.2.6), the fact that < exp(ix.c) > = O for x ~ 0, is used. Since FGP(x) = 
sym {xâ(x.C.x)-~ âx} for x ~ 0 and C = = Cijik,  it  follows that 

(FAP)T(— x) = FGP(x), and 14 

FGP(x) : C: FGP(x) = sym {xâ(x.C.x)-1 âx} : C: {xâ(x.C.x)-1 âx} 

= sym {xâ(x.C.x)_iâx} 

= FGP(x). (13.2.7a) 

In a similar manner, (FAP)T(— x) = FAP(x), and 

FA (x) : D : FAP(x) = FAP(x). (13.2.7b) 

Hence, each element of the infinite sums in (13.2.6) vanishes for all x's, and the 
self-adjointness of the integral operators associated with the averaging operator 
is proved. 

13 2 2 Hashin-Shtrikman Variational Principle and Bounds on Overall 
Moduli 

The operators < : AP : > and < : GP : > in the energy functionals I and J 
are self-adjoint. From this, three basic results follow: 

1) The variations of I and J are given by 

dI(e*; s°) _ < de* : { (D' — D) : e* + AR : e* — s° } >, 

dJ(s*; e°) = < ds* : { (C' — C)_ 1 : s* + GP : s* — e° } >. (13.2.8a,b) 

The Euler equations of I and J are consistency conditions (13.1.14a,b) 
which yield the exact eigenstrain field e* and the exact eigenstress field 
s*, respectively. 

'4 Compare with (9.1.15c) and (9.1.7g). 
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2) The stationary values of the functionals I(e*; s° ) and J(s*; e°) are given 
by 

I(e*; s° ) = — > : s° = Zs° :(D—D): s° , 

J(s*; e° ) _ —  < s* >: e° =  e° : (C — C) : e° , (13.2.9a,b) 

where D and C are the overall elasticity and compliance tensors of the 
unit cell. 

3) If the tensor field C' — C (tensor field D' — D) is positive-definite in the 
entire unit cell, then the functional I has the global maximum (the global 
minimum) and the functional J has the global minimum (the global max-
imum), i.e., for any arbitrary eigenstrain e* and eigenstress s*, and when 
C' — C (when D' — D) is positive-definite, 

I(e*; s°) ? (ß) 1(e*; s° ), J(s*; e°) < O J(s*; e° ), (13.2.10a,b) 

where equality holds only when e* _ e* and s* = s*, respectively; see 
Section 9 for a detailed derivation. 

Table 13.2.1 provides a comparison between the Hashin-Shtrikman variational 
principle as applied to an RVE and as applied to a periodic solid. 

From 2) and 3) and the corresponding functionals, bounds are obtained for 
the overall elasticity and compliance tensors of the unit cell. Since C and D are 
each other's inverse, (13.2.10a) and (13.2.10b) give two pairs of upper and 
lower bounds for the overall moduli. These bounds can be computed exactly, 
since the exact integral operators A ' and GP are given by the corresponding 
Fourier series. These two pairs of bounds are exactly equivalent, and hence 
there is only one upper and one lower bound obtained from (13.2.10a,b), as 
shown in the sequel. 

13.2.3. Equivalence of Two Energy Functionals 

The two energy functionals defined for an RVE may not be related, in the 
sense that they are associated with field variables which are produced by dif- 
ferent boundary conditions.15 For the periodic structure, however, both the local 
and global responses of the unit cell remain the same whether homogeneous 
strains or stresses are prescribed. The two energy functionals I and J are related, 
and from (13.2.9a,b), they yield the overall elasticity and compliance tensors 
which are each other's inverse. Indeed, the two functionals are equivalent if e* 

= —D: s, with s° = C: e° +z s>. 

15 When a homogenized RVE is embedded in an unbounded uniform solid of reference elasti-
city, and the infinite-body Green function is used, then, as shown in Subsection 9.5, the correspond-
ing functionals, 1A and JA, become equivalent if equivalent eigenstrains and eigenstresses are used. 
In this case, the boundary data of the embedded RVE depend on the homogenizing eigenstrains (or 
eigenstresses) and cannot be prescribed n priori. This is similar to the periodic case. 
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Table 13.2.1 

Hashin-Shtrikman variational principle as applied to RVE and as applied 
to periodic structure 

RVE periodic structure 

operator 
A (uniform tractions) AR (periodic) 
G (linear displacements) GR (periodic) 

I(e; s°) 

J(so; es) 

e : {(D'-D) 1 –A} : eo> 2<e*: {(D'-D)-1 +AR}:e* > 

-<e*>:s° -<e*>:s° 

2<s* : {(C'-C)-'+G}:s* > 2 <s*:{(C'-C)-'+GR}: s*> 

-<s*>:e° -<s*>:e° 

dI(e*; s°) 

dJ(s*; e°) 

< de* : { (D' - D)-i : e* + A : e* < de* : {(D'-D)-' : e* + AR : e* 

< ds* : {(C'- C)-i : s* + G : s* < ds* : {(C'- C)-i : s* + GR : s* 

I(e*; s°) 

7(s*; e°) 

- 2
< e* >: s° = Z s° :(D - D) : s° 

- 2 <s* >: e° = Ze°: (C-C): e° 

C' C is p.d. 

D' - D isp.d. 

1(e*; s°) ? I(e*; s°) 
1(s*, e°) < J(s°; e° ) 

1(e*; s°) < I(e°; s°) 
1(s*; e°) ? 1(s*; e°) 

To prove this, recall the relation between the two corresponding integral 
operators, A1° and G1'; see Subsection 13.1.5. For an arbitrary eigenstress field 
s*

, 

GP(s*) = D: {AP(— D: s*)+(s*
— < so >)}. (13.2.11a) 

Furthermore, the following identity holds: 

(C'—C) = — D : (D'—D) 1 : D'=—D—D: (D'—D) : D; (13.2.11b) 

see Subsection 9.3. From (13.2.11a,b), 

(C'- C)-1 : s* + AP(s*) = D: { (D' - D)-1 : (- D : s*) + AP(- D : s*) } 
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— D:<s*>, (13.2.11c) 

and J(s*; e°) is computed as 

J(s*; e°) _ —  < ( —D : s*) :_ { (D' — D) -1 : (—D : s*) + 
AP: 

(—D : s*) 

—< s* >-2(C : e°)} >. (13.2.11d) 

Therefore, I and J are related through 

I(—D: 
s*; 

C : e°–< s >) = _J(s*; e°)+ 2< s*>:D:<s*> (13.2.12a) 

or 

I(—D: s*; C: e°) = _ J(s*; e°) —  < s* >: D : < s* >. (13.2.12b) 

This is the equivalence relation between the functionals I and J. Note that, in 
(13.2.12a), the second argument of I is given by C: e°+< s* >, so that if s* is 
the exact homogenizing eigenstress, s*, then, C : e° + < s* > is the homogene-
ous stress, s°, given by s° = C : e°. This equivalence relation, (13.2.12a), is 
considered in greater detail in the following.

16 

It is seen that, if the average eigenstress is fixed, then I in the left side of 
(13.2.12a) is stationary when J in the right side of (13.2.12a) is stationary. More 
precisely, consider a suitable class of eigenstress fields, and let s* be the eigen-
stress field which renders J(s*; e°) stationary. Then, in the corresponding class 
of eigenstrain fields, the eigenstrain e* = — D : s* renders I(e*; s°) stationary, 
where s° is given by C : e°+< s* >. This can be proved directly from the con-
sistency condition. With the aid of (13.2.11a) and (13.2.11b), the left side of 
consistency condition (13.1.14b) is rewritten as 

(D' — D)
-1 

: (— D : s*) + AP(— D : s*) — (C : e° + < s* >). 

Hence, e* = - D : s* is the exact eigenstrain that satisfies (13.1.14a) when s° is 
given by C : e° + < s* >. 

Since the class of eigenstresses used to obtain the optimal s* may not 
include the exact homogenizing eigenstress, the stationary value of J yields a 
bound for the overall elastici y tensor, C. Denote this bound by C

t
', i.e., in terms 

of the stationary value of J, CP is defined by 

J(s*; e°)  e° : (C — CP) : e°. (13.2.13a) 

Then, the stationary value of the corresponding I is given by 

I(e*; s°) = 2 s° : (D — (C 1')-1) : S0. (13.2.13b) 

Hence, (CP)-1 is a bound for the overall compliance tensor D. For the periodic 
structure, the overall compliance tensor D is the inverse of the overall elasticity 

ie See Subsection 9.6.1 for the case of an RVE. 
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tensor C, and hence bounds given by CP and (CP)
-1 

are the same. The proof is 
essentially the same as that presented in Subsection 9.6.1. Indeed, taking advan-
tage of < s* > = (CP — C) : e°, compute I(e*; s°) as 

I(e*; 0°) = — J( s*; e°) + 
2 

< s* >:D:<  s* > 

= 
1 

(Cr. : e°) : (D — (CP)-1) : (CP : e°). (13.2.14) 

Since CP : e° equals C: e° + < s* > = s°, (13.2.13b) is obtained. 

13.2.4. Alternative Formulation of Exact Bounds 

Exact computable bounds for the overall elasticity or compliance tensor of 
a solid with a periodic microstructure can be obtained without invoking the vari-
ational principle, in essentially the same manner as those obtained for an ellip- 

soidal RVE; see Subsection 9.5.6.~7 While the overall response, and hence the 
overall elasticity and compliance tensors of an RVE depend on the nature of the 
prescribed boundary data, the overall elasticity and compliance tensors in the 
periodic case are unique, since the stress and strain fields in the corresponding 
unit cell are uniquely determined when periodic boundary conditions are 
prescribed. Theorems I and II of Subsection 2.5.6 are, therefore, not needed for 
formulating bounds on the overall parameters in the periodic case. Instead, the 
theorems of the minimum potential energy and the minimum complementary 
potential energy are employed for this case. 

Now,_ obtain an exact inequality which yields bounds for the overall elasti-
city tensor, C, in the periodic case. To this end, a reference elasticity tensor C is 
chosen such that C' — C is negative-semi-definite. In addition, the properties of 
integral operators GP and the theorem of the minimum potential energy18 are 
used. 

First, let C' — C be negative-semi-definite. Then, for any two strain fields, 
e and e, 

0 >_ (e — e) : (C' — C) : ( e — e). (13.2.15a) 

Replacing e in (13.2.15a) by (C' — C) -1 : s* for some eigenstress field s* defined 
in the unit cell, and taking the volume average of the resulting inequality over 
the unit cell, obtain 

0—> 1 < e:(C'—C): e-2s*: e+ s*:(C'—C) -1 :s*>, (13.2.16a) 

where equality holds if and only if e = (C' — C)-1 : s. 
Next, let e be given by 

See also Subsection 9.7 for exact bounds for nonmechanical overall properties. 

° See Subsection 2.5 or Subsection 19.4 of Part 2. 
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e = e°+ eR = e° —AP(s *), (13.2.17a) 

where e° and eP are homogeneous and periodic strain fields. Since inequality 
(13.2.16a) holds for any pair of e and s*, obtain 

0? 2 (<e:C':e> — e°: C: e°) 

+ 
2 

<s : (C' — C)
-1 

: s* — s * : (eR + 2e°) > + 2U f au (n . sP) . uP dS, 

(13.2.18a) 

where uP and sP are the periodic displacement and stress fields associated with 
e = — AP(s*), through e = sym ~~ V ® uR } and sP = C: e + s* — < s* >, respec-
tively. Due to the periodicity of s and uP, the surface integral in the right side 
of (13.2.18a) vanishes. Hence, (13.2.18a) becomes 

0? 1 (< e: C': e > — e°: C: 
e0)– J(s*; 

e°), (13.2.19a) 

where J is the energy functional defined by (13.2.lb). 

Finally, evaluate < e : C' : e >, using the theorem of the minimum poten- 
tial energy.19 Since uP due to s* satisfies the periodic boundary conditions on the 
boundary of the unit cell, u = x . e° + u is a kinematically admissible displace-
ment field. Hence, < e : C' : e >/2 is the volume average of the strain energy of 
the unit cell evaluated for this u. According to the theorem of the minimum 
potential energy, among all kinematically admissible displacement fields, u, 
< e : C' : e >/2 takes on the minimum value when C' : (V ®u) satisfies the equa-
tions of equilibrium. This minimum corresponds to the volume average of the 
exact strain energy when the unit cell is subjected to the homogeneous strain 
field e°. Therefore, for any e = e°  

0> 
2 

e°:C: e° — 2 <e:C':e>, (13.2.20a) 

where C is the overall elasticity tensor. 

From (13.2.19a) and (13.2.20a), it follows that 

0 >_ 2 e° : (C — C) : e° + J(s*; e°). (13.2.21a) 

This is an exact inequality which holds for any arbitrary heterogeneous elastic 
solid with a periodic microstructure. Note that equality in (13.2.19a) holds if 
e _ (C' — C)

-1 
: s*, and equality in (13.2.20a) holds if C' : e satisfies the equa-

tions of equilibrium. Hence, equality in (13.2.21a) holds for the exact homogen-
izing eigenstress field, s*, for which e _ e° — GP(s*) satisfies both conditions. 

In a similar manner, an exact inequality which yields bounds for D, the 
overall compliance tensor of a solid with periodic microstructure, is derived 

Hill (1963) uses the principle of the minimum potential energy to obtain an exact inequality 
similar to (13.2.20a) for an RVE, subjected to linear displacement boundary conditions. When an 
RVE is subjected to general boundary data, on the other hand, Theorem II of Subsection 2.5.6 is 
necessary, as discussed in Subsection 9.5. 
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from: 1) the negative-semi-definiteness of D' — D; 2) the properties of integral 
operators AP; and 3) the theorem of the minimum complementary potential 
energy. Indeed, if a reference compliance tensor, D, is chosen such that D' — D 
is negative-semi-definite, then for any two stress fields, s and s, 

0 >_ (s — s) : (D' — D) : (s — s). (13.2.15b) 

If s is replaced by (D' — D) -1 : e* for some eigenstrain field e* defined in the unit 
cell, the volume average of (13.2.15b) becomes 

0 >-
2

<s:(D'— D): s-2s*:s+ e*:(D'—D )-1:e*>. (13.2.16b) 

Then, introducing homogeneous and periodic stress fields, s° and s = — AP(e*), 
define s by 

s = s° + sR = s° — AR(e*). (13.2.17b) 

Substituting (13.2.17b) into (13.2.16b), obtain 

0>_ 2 (<s:D':s> — s°:D:0°) 

+2 < e* : (D' — D) -1 : e* — e* : ( sR + 2s°) > + 2
U f 

au (n . sP) . uP dS, 

(13.2.18b) 

where u2 is the periodic displacement field associated with s. Since SR and uP 
are periodic, the surface integral in the right side of (13.2.18b) vanishes, and 
(13.2.18b) becomes 

0>_
2

(<s:C':s> — s°:D:0°)+I(e*; s°), (13.2.19b) 

where I is defined by (13.2.1a). Since s produced by e* satisfies the equation 
of equilibrium and the periodic boundary conditions, s = s° + sR is statically 
admissible. According to the theorem of the minimum complementary potential 
energy,20 among all statically admissible stress fields, < s : D' : s >/2 is minim-
ized by the stress field which renders D' : s compatible. The minimum 
corresponds to the volume average of the exact value of the complementary 
potential energy of the unit cell under the overall stress s°, i.e., s° : D : s°/2. 
Therefore, for any s = s° — ~P(e*), 

0>-
2

s°:D:e° — 2 <s:D':s>. (13.2.20b) 

From (13.2.19b) and (13.2.20b), it follows that 

0 >_ 2 s° : (D — D) : s° + I(e*; s°). (13.2.21b) 

This inequality is exact, and holds for any arbitrary elastic solid with a periodic 

20 The principle of the minimum complementary potential energy is used to obtain an inequal-
ity similar to (13.2.20b) for the case of an RVE subjected to uniform traction boundary data; see Hill 
(1963). When general boundary data are considered, Theorem I of Subsection 2.5.6 is necessary; see 
Subsection 9.5. 
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microstructure. Note that equality in (13.2.21b) holds, if the exact homogeniz-
ing eigenstrain field e* is used. 

13.3. APPLICATION OF FOURIER SERIES EXPANSION TO ENERGY 
FUNCTIONALS 

Since the Hashin-Shtrikman variational principle applies to solids with 
periodic microstructure, it can be used to obtain exact bounds for the overall 
elasticity or compliance tensor of the unit cell. Moreover, one of the bounds 
always approaches the exact solution, as the estimate of the corresponding 
eigenstrain or eigenstress field is improved. In this section, the Fourier series 
expansion is applied, and the results are illustrated and discussed. Since func-
tionals I and J in (13.2.1a,b) are equivalent, only functional J is used. To reduce 
algebraic manipulation, rewrite the J-functional using (13.1 .2a), as 

J(s*, e) = (1 - Ix) <z 
s*: 

(CTM C)-1 : s* >1 

n 
+ S fa, < s* : (C° ~~ - C)-1 : 

a = 1 

+ < * : G: s >—< s  (13.3.1) 

In this and the following subsections, the homogeneous parts of the eigenstress 
and eigenstrain fields are denoted by < s* > = i* and < e* >  

13.3.1. Fourier Series Representation of Eigenstress 

As shown in Subsection 13.2.2, the Euler equation of the functional J 
obtained from (13.2.8b) is consistency condition21 (13.1.14b). Hence, another 
form of the Fourier series expansion of the consistency condition can be 
obtained, if the functional J given by (13.3.1) is used, yielding 

S (1 - f) gNi(x + z) (CM - C)-i + 
aS1 f a ga(x + z) (Ca - C)-i ~ : Fs*(z) 

+ FGR(- x) : Fs*(- x) - gu(x) e° = 0, (13.3.2) 

where 

2! In Subsection 12.4, a general Fourier series expansion of the consistency condition is given; 
see (12.4.23b). 
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u(x) = < exp(ix . c) > = 1 if x=0 
O otherwise, 

(13.3 .3a) 

  

and 

m(x) = < exp(ix.c) >m, g(x) = < exp(tx•x) >«; (13.3.3b,c) 

see Subsection 12.5.
22 

Now substitute the Fourier series representation of the eigenstress field 
into the functiona123 J to define the following function J for the Fourier series 
coefficients of an eigenstress field, Fs*(x)'s: 

J({ FS*}; e°) - J({S Fs*(x) exp(ix.c)}; e°) 
x 

2 SS FS*(x) ' 
x z 

(1 - f) gM(x + z) cTM 
- C)

-1 

+ S : Fs*(z) 
a=1 

+ 2 S Fs'(&) : FGP(— x) : Fs*(— x) — Fs*(0) : e°, (13.3.4a) 
x 

where the homogeneous part s* = < s* > of the eigenstress is given by Fs*(0), 
and correspondingly, FGP(0) = O. As is seen, J is quadratic (with linear terms) 
in the Fourier series coefficients Fs*(x). 

The derivative of] with respect to Fs*(x) is 

IFS**(x) ({ Fs) ; e°) = S (1 — 0 gM(x + C) (Cm — C)
-1 

+ aS1 f + C) (Ca — C)-1 
} 

: Fs(z) 

+ FA1'(— x) : Fs*(— x) — g u(x) e°• (13.3.4b) 

The set of linear tensorial equations, aJ/aFs* = 0, corresponds to the Fourier 
series expansion of the Euler equations of the functional J, that is, to consistency 
conditions24 (13.3.2). In terms of 

ajlas*, 
express function ] as 

22 

Note that (13.3.3x) holds for all x, including 0, if FGP(0) is defined as O. 
23 

The functional is denoted by Latin J, and the corresponding function by italic J. 
24 Since the Euler equations of J are the consistency equations, it is expected that the Euler 

equations of ] coincide with the corresponding Fourier series expansion. In other words, the opera-
tion of taking the variation of functional J is commutable with the operation of expanding its argu-
ment function s* in the Fourier series. 
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J({FS*}; e°) = 2 S Fs*(x) : { aFSa( t) }  
Fs*(0) • e°• (13.3.4c) 

Hence, for the exact eigenstress field s* whose Fourier series coefficients satisfy 
aJ/aFs*({Fs*}; e°) = 0, the value of the J-function is given by — ~* : e° /2, since 
Fs*(0)=< s*>= d*. 

13.3.2. Truncated Fourier Series of Eigenstress Field 

As shown in Section 9, the Hashin-Shtrikman variational principle holds 
for any sufficiently smooth distribution of eigenstresses. Hence, if a Fourier 
series representation of the eigenstress field up to, say, N is truncated, i.e., if a 
trial eigenstress field of the form 

s*(x) = S (x) exp(tx•x), (13.3.5) 
x 

where — pN/a; <_ x; <_ pN/a; (i = 1, 2, 3), is used, then the most suitable 
corresponding Fourier coefficients are obtained by optimizing the associated 
quadratic form. Indeed, if C' — C (if D' — D) is positive-definite, the sharpest 
upper or lower bounds on the overall moduli that can be computed for the class 
of eigenstress fields defined by (13.3.5), are obtained. 

Now, define a new quadratic form, J, for the truncated eigenstress field, 
by 

.i({Fs*}; e°) - 7({S Fs*(x) exp(ix.c)}; e°) 

x 

2 
 +N +N 
S S Fs*(x) :. 
x z 

(1 —1 ) gM(x + z) (CM — C)- i 

+ S fa ga(x + z) (Ca — C)-i 
a =1 

+ 

 : Fs*(z) 

1 S Fs*(x) : FGP(— x) : FS*(— x) — FS *(0) : e°. (13.3.6a) 

It should be noted that if instead of (13.3.1), (13.2.1b) is used as the energy 
functional, then it would be necessary to expand (C' — C)-1 into the Fourier 
series. The truncation of the Fourier series expansion of (C' — C)-1, however, 
alters the elasticity of the periodic structure. In the functional (13.3.1), on the 
other hand, (C' — C) -1 is piecewise constant, and (13.3.6a) represents this 
exactly. 

The derivative of f with respect to Fs*(x) is given by 

uFS (½) Ws*}; e° ) = ±1' (1  — 1)gM(x+z)(CM —C)-1 
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: Fs*(z) 

+ FA1'(— x) : Fs*(— x) u(x) e°. (13.3.6b) 

And J is expressed as 

.%({Fs*}; e°) = 2 SR Fs*(x) : { aFSa~ ) 
} FS*(0) : e°. (13.3.6c) 

Note that the set of linear tensorial equations, a /aFs*(x) = 0 for (21+ 1)3 x's, 
coincides with the Fourier series expansion of the consistency condition, trun-
cated up to N, i.e., with 

s { (1 
— f) g m(x + z) (C

M 
— C)

-1 ±  : Fs*(z) 
ci=1 

+ FGP(— x) : Fs*(— x) — g u(x) e° = 0. (13.3.7) 

The solution of this set of equations produces the optimal value of .. Further-
more, if C' — C (if D'—D) is positive-definite, J ({ Fs* } ; e°) gives the sharpest 
upper and lower bounds of the overall elasticity and compliance that can be 
obtained, on the class of eigenstress fields given by (13.3.5). 

13.3.3. Matrix Representation of Euler Equations 

The set of linear tensorial equations (13.3.7) for the Fourier coefficients of 
the eigenstress field optimizes the function J on the class (13.3.5). As men-
tioned in Subsection 13.1, the exact distribution of the periodic eigenstress field, 
s* = s*(x) is not needed, but its average, d* = < s* > is, in order to estimate the 
overall response of the solid with periodic microstructure. Hence, (13.3.7) need 
not be solved for Fs* = Fs*(x) for all x's, but only for Fs*(0) which equals 
< s* >. Instead of solving (13.3.7) exactly, estimate Fs*(0) from (13.3.7). 

From (13.1.3), the g-integral for M can be expressed in terms of the g-
integrals for U and Wa's, as 

(1 — f) g m(x) = gu(x) — 
a±l 

fa g~(x)• (13.3.8) 

Hence, (13.3.7) becomes 

Si  S fa ga(x + b) { (Ca — C)- 1 — ( VM — V)  }  :Fs*(z) 

+ {FGR(— x) — (CM — C) i } : Fs*(— x) = gu(— x) e°. (13.3.9) 

As will be shown later, this form of the consistency conditions makes it possible 
to estimate the asymptotic behavior of s*(0), as fa's go to zero. 
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For actual calculations, it is convenient to use the matrix form of second-
and fourth-order symmetric tensors. Let [Fsá ] = [Fsá (x)] = [Fsá ] (h;) be a six 
by one column matrix corresponding to Fs*( x), where a = 1, 2, ..., 6, and n; = 0, 
±1.....±1 for i = 1, 2, 3. Note that the index n ; relates to the Fourier variable x; 

by x; = pn;/a;, (i = 1, 2, 3 ; i not summed). By arranging [Fsá](n;, n2, n3) in 
rows in accordance with the indexes (n1, n2, n3), a 6(2N+1)3  by one column 
matrix [Fs*] is formed, 

[Fs*] _ [[Fa]T(l, 0, 0), [Fsa]T(1, 0, 0), -Sr. (13.3.10a) 

For the right-hand side of (13.3.9), form another 6(21 + 1)3  by one column 
matrix 

[e°] _ [[e~]T, [0]T, ...]T (13.3. l Ob) 

which is nonzero only in its first six rows. In a similar manner, form six by six 
matrices 

[Aar] (n1, n2, n3; mi, m2,  

[FGab(- x) + (CM - C)ab ] 
[lab] 

[Babi(nl, n2, n3; m i, m2, m3) = S, 
a1 

fa ga(x + z) 
= 

if z = - x 
otherwise, 

C [(Ca - C)ae - 
(CM 

- C)ati ],  (13.3.1Oc,d) 

from which the following 6(21 + 1)3  by 6(21 + 1)3 square matrices, [A] and [B], 
are constructed: 

[Aab](0, 0, 0; 0, 0, 0) [Aab](0, 0, 0; 1, 0, 0) ... 
[A]  [Aab](

1, 0, 0; 0, 0, 0) [Aab](1, 0, 0; 1, 0, 0) ... 

[Aab](l, 0, 0; 0, 0, 0) [lab] ... 
[lab] [Aabi(1, 0, 0; 1, 0, 0) ... 

[Bab](0, 0, 0; 0, 0, 0) [Bab](0, 0, 0; 1, 0, 0) ... 
[B]  [Bab](l, 0, 0; 0, 0, 0) [Bab](

1, 0, 0; 1, 0, 0) ... (13.3. l0e,f) 

where the index m, relates to the Fourier variable z; by z; = pm;/a; (i = 1, 2, 3 ; i 
not summed). In (13.3.10e,f), [lab] stands for a six by six zero matrix. As is 
seen, matrix [A] contains the effect of the material properties of the original 
heterogeneous solid through GP, while matrix [B] brings in the material proper-
ties and the geometry of the micro-inclusions through Ca and the integral g. 

Using (13.3.10a-f), consider the following matrix form of the consistency 
condition: 
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([A] + [B])[Fs*] = [e0
]. (13.3.11) 

In the absence of W~'s, the volume fraction ff is zero for all a's, and (13.3.11) 
yields 

[Fs*] = [A] 1 [e°], (13.3.12a) 

where, from definition (13.3.1Oc), the inverse of matrix [A] is given by 

[A]~1 = 

 

[Aab]-1(0+ 0, 0; 0, 0, 0) [lab] 
[lab] [Aab]-1(1, 0, 0; 1, 0, 0) ... .  (13.3.12b) 

    

Here, [Aab]~1 is the inverse of [Aab], since the square 6(21 + 1)3 by 6(21 + 1)3 

matrix [A](ni; mi) is diagonal with respect to (ni) and (mi). 

Taking advantage of (13.3.12b), compute the inverse of the matrix in the 
left-hand side of (13.3.11), as 

([A]+[B])
-1 

= {[A] ([1]+[A]_1[B])}
-1 

= ([1] + [A]-1 [B])1 [r]-i, (13.3.1 3a) 

where [1] is the 6(21 + 1)3 by 6(21 + 1)3 unit matrix. Therefore, for 
det([A]-1[B]) < 1, 

([1] + [A]-1[ B])-1 = kSO {- [A]-1[B] }k• (13.3.13b) 

Since only the first six elements of the column matrix [e0] are nonzero, only the 
corresponding terms in the inverse matrix ([A] + [B])-1 contribute to the value of 
[Fs*]. Hence, [Fsá ](0) is given by 

[Fá](0, 0, 0) _ k}~c {- [Aab]-1 [Bbc] }k(O, 0, 0; 0, 0, 0) } 

x [Acd]
-1(0, 0, 0; 0, 0, 0) [e8](0, 0, 0). (13.3.14) 

Estimate (13.3.14) holds for any arbitrary C for which (CM - C)-1 and 
(Cc' _ C)-1 exist. 

In particular, if the summation in (13.3.14) is truncated up to k = 1, or if 
the Fourier series expansion of the eigenstress for x = 0 is taken, (13.3.14) or 
(13.3.9) immediately yields 

{ [Aab](0, 0, 0; 0, 0, 0) + [Bab](0, 0, 0; 0, 0, 0)) [Fsi ](0, 0, 0) 

= [ea](0, 0, 0). (13.3.15a) 

Using (13.3.8) again, observe that the tensor form of (13.3.15a) is 

(13.3.15b) { (1 - f) (CM - C)
-i + S fa (Va - C)-i } : Fs*

(0) = e°, 
a= I 
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where FA1'(0) = 0 and gß ,(0) = 1 are used. This is the first-order asymptotic 
expansion of the exact eigenstress field, which is a good estimate if the ff's are 
suitably small Since (13.3.15b) gives 

Fs"(0) _ {(1 _ f) (CM — C)-1 + j fa (C a — C)-1 }-1 : e°, 
a=1 

the overall elasticity tensor C is estimated by 

C C+{(1—)(CM—C)
-1 +  fa(Ca —C)-1}- i. 

a= i 
(13.3.15d) 

Note that the one-term approximations (13.3.15d) are valid only if fa's are suit-
ably small If C' — C (if D' — D) is positive-definite, however, the right-hand 
side of (13.3.15d) is the exact lower (upper) bound, respectively. Furthermore, 
as shown in Subsection 13.2.3, the inverse of the right side of (13.3.15d) is the 
exact upper (lower) bound for the overall compliance tensor, D, if C' — C (if 
D' — D) is positive-definite. For finite values of fa's, these bounds are not 
expected to be sharp. They can be improved by including additional terms in 
the truncated Fourier series representation (13.3.14). 

13.4. EXAMPLE: ONE-DIMENSIONAL PERIODIC MICROSTRUC-
TURE 

In order to illustrate the application of the Hashin-Shtrikman variational 
principle to solids with periodic microstructure, consider a simple one-
dimensional two-phase example of a string with a periodic structure. All ten-
sorial expressions reduce to scalar ones, while the form of the equations remains 
unchanged. Furthermore, the problem admits an exact solution which can be 
used as a reference point. Moreover, if u = u(x) is identified with temperature, 
s = s(x) with the heat flux, and C' = C'(x) with the conductivity, the formula-
tion then corresponds to steady heat conduction in a periodic infinite space, with 
conductivity varying periodically in the x-direction only. The objective then is 
to estimate the effective conductivity C, together with the bounds.

25 

13.4.1. Exact Solution 

Consider an infinitely long straight string (or an infinite space, in the heat 
conduction case) consisting of a periodic arrangement of a matrix M of elasti-
city (conductivity) CM and an inclusion W of elasticity (conductivity) CU; see 
Figure 13.4.1. The string lies along the x-coordinate line, and is viewed as an 
infinite set of identical unit cells, U = {x I I x I <_ a}, with the elasticity field, 

(13.3.15c) 

25 

Since the analogy with heat conductivity is obvious, it is not explicitly stated at all appropri-
ate occasions. 
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C'(x) = H(x; M) CM + H(x; W) Cam, (13.4.1 a) 

where the Heaviside step functions H(x; M) and H(x; W) are 

Hence, the volume fraction of the inclusion is 

f= =]? 

H(c; M) = f 
0 

H(c, W) — { 

ifb< lxi < a 
otherwise, 

if 1x1 <b 
otherwise. 

(13.4.1b,c) 

(13.4.2) 

Figure Figure 13.4.1 
An infinitely long straight string 
consisting of periodic arrangement 
of a matrix and an inclusion 

The governing equations for the displacement, strain, and stress fields, 
denoted by u, e, and s, are 

e(x) _ Nu(c), Ns(c) = 0, s(c) = C'(x) e(x), (13.4.3a—c) 

where 0 = d/dx. These fields are divided into uniform and periodic parts, 
{ u°, e°, s° } and { up, e, sR } , respectively, where e° and s° are constant, 
u° = e° x is linear, and uR, eR, and SR are periodic, satisfying 

uR(x + 2a) = uR(x), eR(c + 2a) = ep(x), sR(c + 2a) = SR(x). (13.4.4a—c) 

When a uniform overall strain e° is prescribed, the equilibrium equation is 

N { C'(c) (DuR(x) + e°) } =0 for x in U (13.4.5a) 

or, equivalently, 

0 { C'(c) (eR(x) + e°) } =0 for x in U. (13.4.5b) 

The compatibility of the strain field is always satisfied in one-dimensional prob-
lems. 

A general solution of (13.4.5b) is C'(c) { eR(x) + e° } = constant. The boun-
dary conditions for uR(x) at x = ± a need not be defined explicitly. From the 
vanishing of the volume average of the periodic disturbance strain, 

< eR > = LT f u eR(0) dx = 0, (13.4.6) 

the exact solution for (13.4.5) is obtained, as 
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eR(c) = H(x; M) 
epM 

+ H(c; W) een, (13.4.7a) 

where 
eRM = {(CM)-1C-1)  e°, ePW = { (C2)

-1 
C —1 } e°, (13.4.7b,c) 

with 

C {(1-1)(CM)-1+f(CU)-1}-1. (13.4.7d) 

In this one-dimensional example, the uniform strain e° produces only a uniform 
stress, 

C e0; (13.4.8) 

the periodic disturbance stress SR is identically zero. This is the exact solution 
of the problem. 

The overall elasticity of this heterogeneous solid, C, is the same as that 
obtained by the Reuss assumption; see Subsections 7.1 and 7.5. This is the 
consequence of the required continuity of stress, which leads to a uniform stress 
field. If the strain is assumed to remain continuous, then the Voigt model would 
result, but this does not satisfy the compatibility of deformation, and hence, is 
not an acceptable solution for the present problem. 

13.4.2. Equivalent Homogeneous Solid with Periodic Eigenstress Field 

An equivalent homogeneous one-dimensional solid of elasticity C, with a 
periodically distributed eigenstress s* is introduced. Instead of solving (13.4.5) 
directly, consider the following consistency condition: 

(C'(x) — C) -1 s*(c) + GP(x; s*) — e° = 0 

or 

x in U (13.4.9a) 

— C)-1 s*(c) + GR(c; s*) — e° = 0 x in M {(Cm 
(13.4.9b) 

(CU_ C)
-1 

s*(c) + GP(x; s*) — e° = 0 x in W, 

where GP(c; s*), operating on the eigenstress field s*, determines the corre-
sponding periodic strain field, 

— eR(x) = GP(c; s*) 

= S' FGR(x) { Ü f u s*(y) eXr(Ix(c— U)) dy }• (13.4.10a) 

From V(C eR+ s*) = 0, the coefficient FGR is 

FGR(x) = C-i, for x ~ 0. (13.4.1Ob) 

Hence, GR(c; s*) is explicitly given by 

GR(c; s*) = C-i { s*(c) —< s* >}. (13.4. l Oc) 
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The uniform part of s* produces no periodic strains and stresses, and is only 
related to the homogeneous strain and stress through s° = C e° + < s* >. 

Substituting (13.4.1Oc) into (13.4.9b), obtain the following equation for 
the exact eigenstress field: 

{ (CM — C)-1 + C-I } s*(x) _ (e° + C-1< s* >) = 0 x in M 

{ (CU — C) -1 + C-1 } s*(x) _ (e° + C-I< s* >) = 0 x in W. 

Hence, in terms of < s* >, the exact eigenstress field is expressed as 

s*(c) = H(x; M) s*M + H(x; W) s, (13.4.12a) 

where 

s*M = { (CM — C) + C 1}  (e0 + C-1< s* >), 

s*W = 

 

{(C C) 
±C-~ ) (e°+ C-I< s* >). (13.4.12b,c) 

Since < s* > = (1 — f) s*M + fs*w, it follows from (13.4.12b,c) that 

< s* > = [ 1 —C{(1 _ f)(CM)
-i.+ f(CW)

-
i }] {(l _ t)(CM)-i + f(Vtt)-i }-i e° 

= (C — C) e°. (13.4.12d) 

Substituting (13.4.12d) into (13.4.12b,c), obtain s*, as 

s*(c) = H(c; M) (1 — (C M )-i C) (C E°) + H(c; W) (1 - (Cw)-I C) (C e° )• 
(13.4.12e) 

This is the solution of consistency condition (13.4.11). Note that it is easily 
shown that the exact eigenstress field produces the same fields as in the original 
heterogeneous periodic structure. Compute a periodic strain field as an exam-
ple. In terms of ePM and 0'12 given by (13.4.7b,c), s* is expressed as 

s*(c) = < s* > — H(x; M)(C ePM) — H( c; W)(C ePW). (13.4.12f) 

Hence, from eP = — GP(s*) = — ( s* — < s* >) C-1, it is shown that the periodic 
strain due to s* coincides with that given by (13.4.7a---d). 

13.4.3. Hashin-Shtrikman Variational Principle 

Following the procedure discussed in the preceding subsections, apply the 
Hashin-Shtrikman variational principle to this one-dimensional periodic struc-
ture. The functional J is now given by 

J(s*; e°) = Z 
<s* { (C' — C)_ i s* + GP(s*) — 2 e° } >, (13.4. 13a) 

(13.4.11) 

where C is any (constant) reference elasticity and GP is defined for this reference 
elasticity by (13.4.1Oc). The variation of J becomes 
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5J(s*; ε°) = < 5s* { ( C - Q - V + rVJ -e 0 } >, (13.4.13b) 

and the Euler equation of (13.4.13b) coincides with consistency condition 
(13.4.9a). 

As an exercise, it is shown that the exact eigenstress field indeed renders 
the energy functional J stationary. To this end, rewrite (13.4.13a) using 
(13.4.1), as 

J(s*; ε°) = -i- J (1 - f) < s* ( C
M
 - C)-

1
 s* > M + f < s* ( C

n
 - C)"

1
 s* > Ω } 

+ i - < s * ( r
p
( s * ) - 2 e ° ) > , (13.4.14) 

and define the g^- and gM-integrals as 

g o © = < εχρ(ιξχ) > Ω, &Λ(ξ) = < βχρ(ιξχ) > Μ· (13.4.15a,b) 

Also, define the gu-integral as 

g u © . < e x p ( l W > , { J 03.4..5O 

see Subsection 12.5. 

First, consider the Fourier series expansion of an arbitrary eigenstress 
field, s*, 

s*(x) = Σ εχρ(ιξχ) (13.4.16a) 

which includes a uniform part < s* > = Fs*(0). Then, apply the operator Γ
ρ
 to 

this eigenstress field, 

Γ
ρ
(χ; s*) = ^ Γ

ρ
( ξ ) Λ * ( ξ ) β χ ρ ( ι ξ χ ) , (13.4.16b) 

where FT
p
(0 ) is set equal to zero for any C, since the uniform eigenstress does 

not cause any deformation in the homogenized infinite solid. Substituting 
(13.4.15a,b) into (13.4.14), define J as a function of the Fourier coefficients of 
the eigenstress, Fs*, 

7({FS*}; ε°) = Ι({Σ/**(ξ)βχρ(ιξχ)}; ε°) 
ξ 

= τ Σ Σ ^*(ξ) { ( ΐ - f) §Μ(ξ+ζ) (cM - c) _ 1 

+ ί 8 Ω( ξ + ζ ) ( €
Ω

- 0 -
1
) ^ * ( ζ ) 

+ Τ Σ ^ * ( ξ ) ^
Γ Ρ

( - ξ ) ^ * ( - ξ ) - ^ ( 0 ) ε ° . (13.4.17a) 
1
 ξ 

As is seen, J is a quadratic (with linear terms) form in the Fourier series 
coefficients, /^*(ξ). 

ξ = ο 
otherwise; 



466 CHAPTERIV § 13.4 

The extremum of J is obtained by taking partial differentiation with 
respect to Fs*(x), i.e., 

aFs () ({Fs*}; e°)=s{ (1 — gm(x+z)(CM — C) 

+ f gW(x + z) ~CW - C)-1 } F5() 

= 0, (13.4.17b) 

for all x. Then, J is expressed as 

J({Fs*}; e° ) = 
2 

S FS*(x) { aFS**( x) }  2 FS*(0) e° 

As mentioned in Subsection 13.3, the Fourier series representation of the con-
sistency condition is identical with 

aFs (xR) ({FS*}; e°) = 0 for any x, (13.4.17d) 

and the solution of this set of equations, {Fs*(x)}, is the Fourier series 
coefficient of the exact eigenstress field. 

It is shown that the exact eigenstress field given by (13.4.12e), s*, indeed 
satisfies (13.4.17d). Since s* given by (13.4.12e) is rewritten as 

s*(x) = H(x; M) s*M + H(x; W) s*w, (13.4.18a) 

where s = (1 — (C M)-1 C) (C e° ) and s = (1 — (CU) 1 C) (C e° ), the Fourier 
series representation of s* is 

s*(X) = s { (1 — f) g1(— z) s*M + f gW(— z) s*n 
} eXP(tzc)• (13.4.18b) 

As shown in Subsection 12.5.3, the g-integrals satisfy 

w(x) = S f gw( + x) gW(— ), m(x) _   (1 — f) gm(z + x) g1(- 1(— 

0 = S (1 -f) gst(z + x) gi(— z) = S f gM(z + x) gst(— z)• (13.4.19a--c) 
z z 

Hence, the value of aJ/aFS*(x) can be computed for these Fs*'s, as follows: 

aFS*(x) 
({ Fs* }; e°) = (1 — f)(C M — C)1 gM(x) s*M + f(CU — C) gW(x) s*W 

+ FGR(- x) {(1 - f) m(x) 
s + f gw (x)s

*W 

} - u(x) e°. (13.4.20a) 

From (CM — C) 1 s = (CM) 1 (C e°) and (CU — C) 1 s = (C 1 (C e° ), it fol-
lows that the right side of (13.4.20a) becomes 

{(1 —  f) (CM)-igM(x) + f (CW
)-i8st(x) } (C e° ) 

+ 1(1 —  f) (C 1 — (C M)-i)gM(x) + f (C1 — (C W)-i)gW(x) } (C e° ) + gu(x)eo 

(13.4. 17c) (13.4.17c) 
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= ~ (1 — f) gm(x)+ fgn(x)} C-1 C e° —gu( x) C
-1 C e°, (13.4.20b) 

where FGP(x) = (1 — g u(x)) C-1 and gu(0) = gw(0) = 1 are used. From gu = 
(1 — f) g M + f go, since V is given by (13.4.7d), the right side of (13.4.20b) van-
ishes for any x. Hence, it is shown that for the Fourier series coefficients of the 
exact eigenstress s*, the extremum conditions of J are satisfied identically. It is 
seen that for any choice of the reference elasticity, the energy functional col-
lapses into the exact solution, for this one-dimensional case. 

13.5. PIECEWISE CONSTANT APPROXIMATION AND UNIVERSAL 
BOUNDS 

In Subsection 12.6, the overall bulk modulus for the unit cell in a periodic 
microstructure containing spherical cavities has been estimated, arriving at 
(12.6.6c). As is pointed out, the expression is actually an exact upper bound fir 
a solid with cavities, independently of the shape and structure of the cavities 
within the unit cell. Universal upper and lower bounds of this kind can be 
obtained for solids containing periodically distributed inclusions of arbitrary 
geometry and elasticity. Moreover, a similar result can also be extracted for at 
least one other overall modulus, as will be discussed in the sequel. The impor-
tant point to emphasize is that, for a periodic microstructure, these bounds are 
exact, and can be evaluated to any desired degree of accuracy. As shown in 
Subsections 9.5.5, 9.6.3, and 9.6.4, similar exact computable bounds are 
obtained for any linearly elastic solid of any heterogeneities, as long as the 
overall geometry of the RVE is ellipsoidal. 

13.5.1. Piecewise Constant Approximation of Eigenstress Field 

As discussed in Subsection 9.4, for a general finite RVE, approximations 
are required in order to calculate the correlation tensors in terms of the Green 
function for the unbounded homogeneous elastic solid with the chosen reference 
elasticity tensor. However, if an ellipsoidal RVE is embedded in the unbounded 
homogeneous solid, exact bounds for the overall moduli can be obtained with 
the aid of Theorems I and II of Subsection 2.5.6. 

The remarkable result presented below is that the exact bounds for two 
overall elastic moduli obtained on the basis of the periodic microstructure, i.e., 
those obtained by considering an RVE and using Willis' approximation., and 
those obtained for an ellipsoidal RVE in the infinite homogeneous solid: (1) 
actually coincide; and (2) are valid for inclusions of any geometry and elasticity, 
as long as the matrix and the inclusions are both Piecewise uniform.26 Since the 
relation between the last two bounds is shown in Subsection 9.6, the relation 

26 This is not a major restriction, since any variable elasticity can be approximated by a Piece-
wise constant tensor field, to any desired degree of accuracy. 
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between the first two bounds is shown in this subsection.27 

To this end, and referring to Subsection 9.5 for the RVE and Subsection 
13.2 for the periodic microstructure, compare the corresponding energy func-
tional associated with a trial homogenizing eigenstress field, s*, i.e., 

JA(s*; e°) =  < s* : {(C'— C)-1 : s*+ AA(s*)-2 e°} >1, (13.5.1a) 

for the RVE, and 

JP(s*; e°) =  < s* : {(C'—C) -1 : s* + AP(s*) — 2 e° } >U, (13.5.2a) 

for the periodic microstructure, where superscript A or P emphasizes whether 
the corresponding quantity is for the RVE (as approximated by using the infinite 
body Green function) or the periodic structure. Use a common reference elasti-
city C, for both JA and JP. The integral operator GA(s*) is defined in terms of the 
Green function28 for an infinite homogeneous body with elasticity C, while the 
integral operator GP(s*) is defined for the equivalent homogeneous unit cell with 
elasticity C, associated with the original periodic microstructure. 

Now, assume that the geometry and material properties of the RVE and 
the periodic solid have the following in common: 

1) n + 1 distinct inclusions, ~a, with elasticity Ca and volume fraction fa, for 
=0 (1,. ,n); 

2) n + 1 constant eigenstresses, s*a, respectively, distributed in W, for a = 0, 
1, ..., n; and 

3) the reference elasticity C is isotropic, C = { 2mn/(1 — 2n) } 1(2) ® 1(2)± 

2 l 
1(4s), 

with the shear modulus M and the Poisson ratio v. 

Here, for simplicity, the matrix is regarded as the 0th micro-inclusion with elas-
ticity C° = CM and volume fraction f ° = M/V; see Subsections 9.3 and 9.4. 
From 2), C' and s* in JA and JP are given by 

C'(x) = S, H(x; W) Ca S*(x) = 
S, 

H(x; 
W«) s*0G, 

a =0 a=0 
(13.5.3a,b) 

where H(x; W) is the Heaviside step function with the value one when c is in W, 
and zero otherwise. 

27 As is shown, the bounds for the periodic case are essentially the same as those for the ellip-
soidal RVE, except for the difference in the integral operators for the eigenfield; the former is given 
by the Fourier series expansion, while the latter is given by the Fourier transform. 

28 As shown in Subsection 9.4, the Green function for the infinite domain approximates the 
Green function for V, except for the region near the boundary, if V is a sufficiently large finite 
domain subjected to linear displacement boundary conditions. 
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13.5.2. Computation of Energy Functions and Universal Bounds 

As discussed in Subsection 9.4, substitution of (13.5.3a,b) into (13.5.1a) 
yields energy function JA' for piecewise constant s*a's, 

JA'({s*a}; e°) = 
2 

aSO fa s*a: {(Ca—C) -I : s*a+ P} : s*a 

— ~s* :R:s* — s* :£°, (13.5. lb) 

where s* = fa s*a, and R is defined by 
a= 0 

P= 1  1  ~ 1 
1(2) ®1 (2) + 

2(4-5v) 1(4S)}; 
2m 1 —v 15 15 

see Subsection 9.4 for detailed derivation of R. 

Similarly, substitution of (13.5.3a,b) into (13.5.2a) yields 

JP'({s*a); e°) = 2 aSo fa s*0G: {(C1—C) -1 : s*c1+ ~O frGPaß: s* rR -2e°}, 

(13.5.2b) 

where 

GRar = S' g(— x) ga(x) FrP(x), 
x 

S' g(— x) gb(x) 1 
 
{ 2(1

1 v) x âx âx âx + sym (I 
@1(2) 

âX) }, 

(13.5.5) 

with x = x/ I x I; see Subsection 12.4.4 for detailed derivation of FGP. 

As mentioned in Subsection 12.5.3, the g-integral, ga(x), corresponds to 
the coefficients of the Fourier expansion of the Heaviside step function associ-
ated with the region Wa (a = 0, 1, ..., n). Hence, 

S' fa ga(— x) gß( x) 1 faa 

x 

if a = b 
otherwise, 

(13.5.6) 

for any Wa and Wr. Therefore, taking advantage of identities, 

FG _ m 2(1 n) 
' FG~j = 1 2(1—i)' 

(13.5.7a,b) 

obtain the following exact results: 

(13.5.4) 

Gb 
(1 — fa) m1   

2{ 1 — i) 

_fa 1   1 -2v  
m 2(1— n) 

ifa=(3 

otherwise 
(13.5.8a) 

   

and 



(1 — f0) 1  3-4v  
~~ 2(1—v) 

1  3-4v  — f otherwise. ° m 2(1 —i)   

if a = b 
(13.5.8b) 
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Since R satisfies R j = (1 — 2\)/211(1 — v) and Ryij = (3 — 4 n)/2m(1 — n), rewrite
29 

(13.5.8a,b) as 

and 

G ß = 
(1—f a) Riijj if a=b 
— fn Piijj otherwise 

(13.5.8c) 

G
~

a (1—f a)Rijij if a=b 
— fa Pijij otherwise. 

(13.5.8d) 

Since the above properties of 1 are essentially the same as those of the 
integral operator for the infinite solid, Gl, the procedure used in Subsection 
9.6.3 can be applied to the periodic case. First, suppose that the uniform overall 
strain is dilatational, e° = e°1. Then, setting s*a = s*51, compute JA' as 

JA'({ S*al } ; e°1 ) = a O fa 5
*
a { (C° — C)iijj + Piijj } S*a 

— 

 

1 *

s* — 3s * e°, 

and taking advantage of (13.5.8c), compute JP' as 

JP'({s*a1}; e°1) 

(13.5.9a) 

i n 

 = 
_ fa s  { (C0 — S*a + 2 a = 0 

G aßS *b — e°} 

2 
s* r» s* — 3 * °, (13.5. h a) 

where s* _ fa s*a. As is seen here, the value of the energy function JP' coin- 
a=0 

tides with that of the energy function JA'. Hence, the optimal value of JP' also 
coincides with that of JA'. The overall elasticity C for prescribed e° = e° 1 is 
C j which is proportional to the overall bulk modulus, K; see (12.6.3a). There-
fore, the bound for K estimated from the periodic microstructure is the same as 
that from an RIB. These results are valid for inclusions Wa with arbitrary 
shape, elasticity, and relative location. For the periodic case, the bound involves 
no approximation. 30 

29 It should be noted that (13.5.8c,d) are exact expressions for the correlation tensors for ~a 

and of any shape and location within the unit cell, whereas P in (13.5.9a,b) only approximately 
determines the correlation tensors in an RVE, unless statistical homogeneity and isotropy hold; see 
Subsection 9.5. 

'o The fact that bounds on the bulk modulus are universal for two-phase composites with sta-
tistically homogeneous and isotropic microstructure, has been known; see, e.g. Milton and Kohn 
(1988). Here, and in Subsections 9.6 and 9.7, it is shown that this result is valid for any microstruc- 
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Next, consider three cases of overall biaxial shearing with nonzero strain 
components, e°(ei ®e 1 —e2®e2), e°(e2®e2—e3®e3), and e°(e3®e3—el®el), and 
three cases of overall pure shearing with nonzero strain components, 
e°(e2®e3+e3®e2), e°(e3®e l +el ®e 3),  and e°(el ®e2+e2®el). In the same 
manner as in Subsection 9.6.3, the tensor products of the unit base vectors asso-
ciated with these six cases are denoted by st = et ®e l — e2®e2, ..., s4 = 
e2 ®e 3 + e3 ®e2, .... For each e° = e°s!, set s*a = s*as~, and write the correspond-
ing energy function JA' as JA'({s*asi}; e°s1). Then, compute the following func-
tion: 

3[ IA'({s*as
i}; e°si)+I^'({s

*a

s2}; e°s2)+7"'({s*a
s3}; e°s3)j 

+ i I`4'({S*aS4}
; e°S4)+J A'({s

*a

S5}; e°S5)+ IA'({s*a
s6}; e°S6), 

=  2 S
Vn+ _ 

0 fa S*a { (<a — Cij — 3 (
<a 

— <)üjj } s
*a 5 S* eo 

1  p *  * 1 
+ 

2 
So fa(as  —s 

){R,mj- - -R} (S a — 
*

s ) 

= f s
*a {(<a — C)J — 3 (C a _<)üjj + R~j~j — 3 R~~jj } S 

{ P~jij — 3 R~~jj } s* — 5 s * e° (13.5.9b) 

and 

3~ IR'({s
*asi

}; e° si)+ IR'({s
*us2

}; e°s2)+IR'({s*as3}; e°s3)] 

+ 2l J
1"( { }; e°S4)+ JP'({S

*aS5}; 
e°S5)+IP'({S

*a

S6}; e°S6) J 

= 

 

i n 
 S fa S*

a {(<a — <)~l~j
-

3
(Ca— C ) }S

*a
-5s* £° 

2 a =0 

1  ° 1 
+ 2 aO 

f (S*q — 
* 

S ) {R~j~j — 3 R~~jj } (
*a *

S  — S ) 

= 
2 aS0 fa s {(C—C)J — 3 (<a — C ) ~~jj + Ry~j — +iii } S

*a 

— 
2 

 

* ~r _ ir.. } *_5*es (13.5.1Ob) 

As is seen, here again, the value of the sum of the energy functions JP' coincides 

ture with any number of phases as long as the RVE is ellipsoidal or it is a unit cell of a periodic mi-
crostructure. These observations and the result that C;;jj is also universal, enjoying similar attributes 
as C;j,j — C 1133l3, are, however, new. 
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with that of the sum of the energy functions JA'. Hence, the optimal value of the 
sum for the periodic case coincides with that for the RVE. These sums 
correspond to the value of the overall elasticity parameter, C,~y — C 11 /3, which 
yields the overall shear moduli, i, if C is isotropic. Therefore, the universal 
bound for , estimated from the periodic microstructure is the same as that from 

the RVE when the latter is statistically both homogeneous and isotropic.3 I The 
expression for C i — C„ ~i/3 is valid for any Wa, with any shape or elasticity. 

With the aid of the equivalence relation between the functionals J and I, it 
is shown that the universal bounds for the overall compliance tensor D obtained 
through IA, coincide with those obtained in Subsection 9.5 through IA', where IA 
is a function obtained from I for piecewise constant eigenstrains; see Subsection 
9.6 for detailed derivations to obtain the bounds for D from the equivalence 
relation between the functionals. 

Note that, in the periodic case, improved bounds are obtained when the 
optimal eigenstrain (or eigenstress) tensor field is used. These improved bounds 
then include the effect of the geometry and relative locations of the inhomo-
geneities. They are always within the universal bounds; see Subsections 12.6 
and 13.6 for illustration. 

13.5.3. General piecewise Constant Approximation of Eigenstress Field 

Now, consider the piecewise constant approximation of the eigenstress 
field, in a more general manner. As shown in Subsection 13.5.1, such an eigen-
stress field is given by 

s*(x) = S Ha(x) S*a, a = 0 
(13.5.1 la) 

where the s's are constants, and H(x) is the Heaviside step function for W,, 
i.e., H(x) - H(x; W0). For this eigenstress field, functional J, given by (13.3.1), 
becomes 

J({ 
S 

Ha s*a}; S°) 
a =0 

= 
aS0 

f« s*a : J (Ca — C) -1 : s*a + < GP( { ~o Hr s*p } ) >0 — 2 e° }, 

l (13.5.11b) 

and its variation with respect to s*a is given by 

dJ({ 
j 

H0s*a}; e0) 

31 As mentioned, the results obtained for the periodic microstructure and for the ellipsoidal 
RVE are exact. 
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=S ~ fa a 0  
cSs*a. 

 
(Ca—C) -1 : S*a+< GP({ S Hr s*r}) >a — e° 

Il~i 0 

(13.5.1 lc) 

The Euler equation of (13.5.11c) coincides with the volume average of con-
sistency condition (13.1.14b) taken over W. 

In (13.5.11a--c), the volume average of the periodic strain produced by 
s*°'s needs to be computed over Wp. The correlation tensor GPaß determines the 
average strain over Wa produced by the eigenstress field which takes on a con-
stant value, s*ß, in Wr. Since integral operator GP is explicitly given by the Fou-
rier series expansion, this correlation tensor becomes 

< GP(Hr s*ß)>~, = fp GPaß : s*ß (b not summed), (13.5.12a) 

where Hm is the Heaviside step function for Wr; see Subsection 9.3. In terms of 
FGP, correlation tensor GPaß can be exactly expressed as 

GPab = S (x) gß( — x) FGP(x). (13.5.12b) 

Note that GPaß is real-valued, since g(— x) is the complex conjugate of g0(x) 
and 

FAI?(_ x) is equal to FGI (x)32. Since FGP(x) is symmetric with respect to the 
first and last pairs of its indices, correlation tensor GPaß satisfies 

GPaß = (Apßa) T = [ lk( (13.5.12c) 

or 

Gyk P = G F~i~ß a; (13.5.12d) 

compare these with (9.3.5).33 It should be noted that tensor SP(Wa; Wr) defined 
by (12.5.6) is given by 

SP(W0; Wr) = fß GPaß : C, (13.5.12e) 

since FS(x) = FGP(x) : C; see (12.4.13a). 

Taking advantage of the above-defined correlation tensors, use a piece-
wise constant approximation of the eigenstress field, where s*a is constant (ten-
sor) in region Wa which has constant elasticity tensor Ca. This region is viewed 
as an inclusion, 

Wa,3a 
Expressing (13.5.11b) in terms of the correlation tensors 

GPaß, define J' as a function of the constant eigenstresses, s*a, 

32 As mentioned in Subsection 12.5, the correlation tensor GPaß does not change, if gy p, and Wb 
are moved by the same rigid-body translation. 

"Another correlation tensor, APaß can be defined through the AP-integral operator. Since AP 
is essentially the same as G1', tensor lPaß satisfies the same symmetry conditions as (13.5.12c,d). 

i4 Note that each actual inclusion can be divided into a finite number of subregions, and then 
each subregion treated as an inclusion; see Iwakuma and Nemat-Nasser (1983), Accorsi and Nemat-
Nasser (1986), and Nemat-Nasser etal. (1986). This method is practically useful when an incremen-
tal formulation for composites with nonlinear material properties is considered; see Subsection 12.8 
and Appendix A of Part I. 



474 CHAPTER IV § 13.5 

J'({S*a}+ e°) - 2  
where 

0 
 a: JPaß : s*ß — s * : e°, (13.5.13a) 

(13.5.14a) 

(a not summed). (13.5.14b) 

a =0 

and JP«ß is defined by 

Jpa(3 =_ f«, 
d 

(Ca _ C)-1 + xa  
b 

Gpab 

Note that JPaß is symmetric with respect to the superscripts and the first and 
second pairs of its subscripts, i.e., JPaß = JPp a = (~.P4)T, where transpose, T, 
refers to the subscripts. 

As in Subsections 9.3 and 9.4, 1' defined by (13.5.13a) is quadratic (with 
linear terms) in f 

S*a 
}. The optimal (or stationary) value of this quadratic form 

is computed by setting the corresponding derivative with respect to s*ß equal to 
zero, i.e., 

as *R 
({s*a}, e°) = So J1 s*7 — fp e° 

7= 

=fp{ 7
y0 {

dß 7(Cß—C)
-1 +f GPR7

} : s*7 — e°}.  (13.5.13b) 

Hence, a set of linear equations, aJ'/as*a = 0, is obtained, for the s*a's. The 
quadratic form J' is now expressed in terms of aJ'/as*a, as 

J'({s*«}, e°) 
2 (3  0 

s*ß: {ásß  } 2 s* : e°. (13.5.13c) 

Denote the solution of the set of linear tensorial equations, aJ'/as*ß({s*a}; e°) = 
0, by {s*a}, and observe that the optimal value of J' is —~* : e°12, with ~* 

given by (13.5.14a), with s*a = s*a. 

Similarly to all the previous cases, the set of linear equations obtained 
from (13.5.13b), is the same as the averaged consistency conditions. Indeed, the 
right side of (13.5.13b) corresponds to (12.5.7b) which is derived by taking the 
volume average of the consistency condition over 

Wa3s 
However, (13.5.13b) is 

an approximation of the averaged consistency condition with piecewise constant 
eigenstresses. That is, the volume average of the consistency condition taken 
over Wa is 

(Ca _ C)
-1 

: < s* >a + < G(s*) >« — e° = 0  (a not summed), (13.5.15a) 

and the approximation of s* by S H« s*a yields 
=0 

iRs Note that SP(W0; Wp) in (12.5.7b) exactly corresponds to the correlation tensor GPaß; see 
(13.5.126). 
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(Ca - C)-1 : s
*

a + ~o fp GP4 : s*ß _ e° = O  (a not summed) (13.5.15b) 

which coincides with the equations obtained from (13.5.13b). 

13.6. EXAMPLES 

This subsection includes two examples which illustrate the application of 
a piecewise constant eigenstress field to the energy functional of the Hashin-
Shtrikman variational principle. The first example is a one-dimensional periodic 
structure examined in Subsection 13.4. The exact solution is obtained by using 
a piecewise constant distribution of eigenstresses, as expected from the results 
of Subsection 13.4. The second example is a three-dimensional periodic struc-
ture with a unit cell which contains an ellipsoidal inclusion. The geometry of 
the inclusion varies from a sphere to an oblate or prolate ellipsoid. The upper 
and lower bounds of the overall moduli are computed. 

13.6.1. Example (1): One-Dimensional Periodic Structure 

As a simple illustrative example, consider the one-dimensional periodic 
structure examined in Subsection 13.4. The one-dimensional elasticity field is 
given by 

C'(x) = H(x; M) CM + H(x; W) Cw, (13.6.1) 

where CM and CU are the elasticity tensors of the matrix and inclusion phase; 
see Figure 13.4.1. The energy functional for this periodic structure is 

J(s*, e°) = 2 < s* { (C' - C)-' s* + AR(s*) - 2 e°} >, (13.6.2a) 

where GP is given by (13.5.10a), i.e., 

GP(x; s*) =  ' FGP(x) { Ü f U 
s(y) 

eXp(Ix(c-y)) dy } 

= C-1 {s*(c) —< s* >}. (13.6.2b) 

As shown in Subsection 13.4.2, the exact eigenstress is piecewise con-
stant. Hence, if a piecewise constant distribution of the eigenstresses is used for 
the energy functional J given by (13.5.17), then the exact solution results. 
Indeed, for a piecewise constant eigenstress of the following form: 

s*(c) = H(c; M) s*M + H(x; W) s*W, (13.6.3) 

with s*M and s*W constants, the energy functional becomes 
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J(s*; e°) = 2 (1-f) s 1 { (CTM C)-1 s 1 + < GP(s*) >1 — 2e0 
} 

+ 
2 

f s*~ (CU _ V)-1 s*W + < GP(s*) >W —2 e° }, (13.6.4) 

where < GR(s*) >1 and < GP(s*) > are 

< GP(s*) >1 = f C-1 s1 — f C -1 s*W, 

< AP(s*) >w = —(1 — f) C -1 s*M + (1 — f) C -1 s*~. (13.6.5b,c) 

The optimal conditions of this function are given by 

as 
*M (S*; e°) = (1 — f) { (CM — C) -1 s*M + < GP(s*) > M — e° } = 0, 

as 
~ (s*; e°) = f { (C'—C) s* W+< GP(s*)  = O. (13.6.6a,b) 

These two equations are the averages of the consistency condition taken over M 
and W, respectively; see (13.4.9b). Indeed, in view of (13.6.5b,c), (13.6.6a,b) 
yield 

{ (CM — C) + C} s
*M _ (e° + 

C-1< s* >) = 0, 

{(CW —C) -1+C-1) s*w —( e°+ C-1< s* >) = O. (13.6.7a,b) 

These two equations are identical with (13.4.11). Hence, the solutions of 
(13.6.6a,b) coincide with the exact eigenstresses, s*M and s*~, given by 
(13.4.12). 

13.6.2. Example (2): Three-Dimensional Periodic Structure 

Next, consider a three-dimensional two-phase composite which consists 
of matrix and inclusion phases, M and W, with elasticity tensors CM and CU. In 
order to approximately homogenize this composite, apply a piecewise constant 
eigenstress field, which equals s*M in M and s*W in W. Hence, the elasticity and 
eigenstress fields are 

C'(x) = H(x; M) CM + H(x; W) Cam, 

s*(c) = H(x; M) s*M + H(x; W) s*w, (13.6.8a,b) 

where H(x; M) and H(x; W) are the Heaviside step functions for M and W, 
respectively. 

For C' and s* given by (13.6.8a,b), the energy functional J given by 
(13.3.1) becomes an energy function J', 

J(s*; e° ) = J'(s*M, s*U; e°) 
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= 1 { s*M : JRMM : S*M + 2 S*M : jPMU: ~*W ~ ~*W : JPUU : *W } 
2 

—s : e°, (13.6.9a) 

and the stationary value of J' is attained when 

aJ  = JRMM : s*M + JRMW : 
s

*W _ (1 _ f) eo = O, 
as*M 
aJ'  = JRww : S*1 + JRMw : S*M — f e° = 0. 

as*W 
In (13.6.9a--c), s and JP"ß's are given by 

s 

 

= (1 _f) s*I ± f s*U, (13.6.10a) 

and 

jPII = (1 f) (CM C)-1 + (1 - f)2 GPMM, 

JPUU = f (CW — C) 1 + f2 GRRWW, 

JPMU = f(1 — ~~ GRrm°, 

where the correlation tensors, GPOCb's, are defined by 

GRab = S g(x) gR(— x) FGR(x), 
x 

(13.6.1 Ob— d) 

(13.6.11) 

for a, ß = M, W. In terms of aJ'/as*M and aJ'/as*W, the quadratic form J' is 
given by 

J'(s*M, s*W; e°) - 1 . s" .  a7'  + s : aj'  
as*M 

 

as*U (13.6.9d) 

for detailed derivations, see (13.5.12), (13.5.13), and (13.5.14) of Subsection 
13.5.3. Since the correlation tensors can be computed, the set of tensorial equa-
tions (13.6.9b,c) can be solved directly. 

It should be noted that for a two-phase composite, the correlation tensors 
given by (13.6.11) are related. Since the g-integrals, gm and gw, satisfy 

(1 — f) gm(t) +f gw(t) = 0 for x ~ 0, (13.6.12) 

GRPMM and G
RMW 

are expressed in terms of 
GRRww, 

as 

GRMM = ]  GRWW, GRMW — f  GRWW 
1 —f 1 —f 

(13.6.13a,b) 

If CM — C and Cf 2 — C are positive-definite (negative-definite), the solution 
of (13.6.9b,c) gives lower bounds (upper bounds) for the overall elasticity tensor 
C. For simplicity, assume that the inclusions are stiffer than the matrix, i.e., 
CU — CM is positive-definite. Then, the reference elasticity C is set to be either 
CM or CU. Computing-the stationary value of J' for these cases, obtain the upper 
and lower bounds for C, as follows: 

(13.6.9b,c) 
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Case (1), C = CTM: since s*M is zero, the set of tensorial equations (13.6.9b,c) 
reduces to the following tensorial equation for s*l: 

(CU_CM)_1 : S*U ± fAPUU(CM) : s = e°, (13.6.14a) 

where CTM in the argument of 
rPUU 

emphasizes that GPWW is computed for the 
reference elasticity C = CTM. From (13.6.14a), s*W is obtained, as 

s  
= { (CU — CM)-1 + f G

PWW
(CM) }-1 : e°. (13.6.14b) 

Thus, the lower bound for the overall elasticity, denoted by C , is 

C = CM + f { (CW — C M)-1 + f GP~W(CM) }-I 

Case (2), C = CW: since s is zero, (13.6.9b,c) reduces to 

(CM — Cam) -1 : s*M + (1 — f) GPmm(CW) :  

from which 
s*1v1 

is 

s*I = { (CM 
CW)-1 

+(1 — f) GRMM(CW) }-~~ : e°, 

and the upper bound for the overall elasticity, denoted by C+, is 

C 
CU 

±(1 —1) {(CM C°) 1 ±(1 —1) G 1(C°)} 

(13.6.14c) 

(13.6. 15a) 

(13.6.15b) 

(13.6.15c) 

From (13.6.14c) and (13.6.15c), the bounds of the overall elasticity are expli-
citly obtained, as follows: 

e°:C : e°<_ e°: C: e°<_ e°:C+: e°. (13.6.16) 

Now, as a simple example, consider a cubic unit cell which contains a 
sphere, an oblate spheroid, and a prolate spheroid at its center. To obtain results 
for different volume fractions of the inclusion phase, the size of the inclusion is 
increased until it touches the edges of the cube, while the shape of the inclusion 
remains self-similar: for an oblate spheroid, b2/b1 = 1.00 and b3 /b1 = 0.25; and 
for a prolate spheroid, b2 /b1 = 0.25 and b3 /b1 = 0.25; see Figure 13.6.1. 

Figure 13.6.1 

Cubic unit cell with sphere, oblate spheroid, and prolate spheroid 
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_ Figures 13.6.2 and 13.6.3_show the corresponding bounds for C;  and 
The universal bounds for Cm) obtained in Subsection 13.5 coincide with 

the bounds obtained for the sphere, since, due to the symmetry with respect to 
the (c1 = 0)-, (c2 = 0)-, and (x3 = 0)-planes, the optimal eigenstress given by 
(13.6.14b) and (13.6.15b) satisfies si! = s2 2 = s33 and sI M = s2M = s33M 

Estimate of upper and lower bounds for C;;iJ and of periodic structure con- 
taining sphere, oblate spheroid (b2 / b, = 1, b3 / b; = 0.25), and prolate spheroid 

(b2/b1 = 0.25, b3/b1 = 0.25) 
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Estimate of upper and lower bounds for C;; and of periodic structure con- 
taining sphere, oblate spheroid (b2/b1 = 1, b3/b1 = 0.25), and prolate spheroid 
(132/b, = 0.25, b3/b1 = 0.25) 
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The maximum value of f for the oblate spheroidal inclusion is around 
0.03, which corresponds to the case when the inclusion just touches the walls of 
the unit cell. Figure 13.6.3 shows more details for this and other cases, when f 
is rather small; for additional results and illustrations, see Nemat-Nasser et al. 
(1992). Note that, as discussed in Section 10, when the volume fraction of the 
inclusion goes to zero, the overall moduli tend to approach the solution of the 
dilute distribution, which, in this case, coincides with the corresponding lower 
bound. 
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SECTION 14 MIRROR-IMAGE DECOMPOSITION 

OF PERIODIC FIELDS 

As is illustrated, the general formulation of Sections 12 and 13 can be 
applied to solve a variety of problems based on periodic microstructure. In 
many of these problems, the appropriate boundary conditions which ensure 
periodicity and uniqueness of solution, can be established intuitively by inspec-
tion. Furthermore, in the actual calculation, the exponential representation can 
be used directly and, essentially, with impunity. 

On the other hand, the periodic fields associated with a solid of periodic 
microstructure, and the corresponding boundary conditions for the representa-
tive unit cell can be systematically decomposed into symmetric and antisym-
metric fields, using a sequence of mirror-image reflections with respect to the 
rectangular Cartesian coordinate planes. This will then allow: (1) clear 
identification of the restrictions on the boundary data that must be prescribed for 
the unit cell, to ensure uniqueness of the solution; and (2) considerable reduction 
in the actual calculation, by exploiting various existing symmetry/antisymmetry 
properties of the Fourier series representation of the field quantities. 

In this section, first the concept of mirror images of points and vectors is 
introduced, and then this concept is used to decompose tensor-valued functions 
defined on the unit cell, into their symmetric and antisymmetric parts. The 
decomposition is then applied to Fourier series representation of tensor-valued 
field quantities such as strain, stress, and elastic moduli, resulting in consider-
able economy in numerical computation and clarity in restrictions, which must 
be imposed on the boundary data. 

In this section the term mirror image, abbreviated to MI, is used to desig-
nate quantities obtained by means of reflection with respect to one, two, or three 
coordinate planes, in a well-defined manner. Furthermore, the term mirror 
image symmetry/antisymmetry is used to collectively refer to various decompo-
sitions of field quantities into parts which possess symmetry or antisymmetry 
properties with respect to reflections about various coordinate planes. For sim-
plicity, the abbreviation MI sym/ant is used to designate this. 

14.1. MIRROR IMAGES OF POSITION VECTORS AND VECTORS 

The unit cell will continue to be defined by a parallelepiped with sides 
parallel to the rectangular Cartesian coordinate planes, as in (12.3.2), where the 
origin of the coordinate system is at the center of the parallelepiped. With 
respect to the coordinate planes, to any point within the unit cell, except the 
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origin of the coordinates and points on the coordinate axes, can be associated a 
unique set of seven images obtained by a sequence of reflections with respect to 
the coordinate planes. Together with the initial point, a unique set of eight 
points, which are mirror images of each other, is obtained. 

Superscripts ±1, ±2, ±3, and ±4 
are introduced, to denote these mirror 

images; see Figure 14.1.1. Consider a typical point x and, for simplicity, 
assume (unless otherwise stated to the contrary) all its components are nonnega-
tive. Identify this point by x4, i.e., set 

c4 - x. (14.1.1) 

Then define three mirror images of c4, denoted by x' which are obtained by the 
reflection of x4 with respect to the plane x; = 0, for i = 1, 2, 3, i.e., set 

(ci Xi c3) = (— Xi, + +x3), 

(c1, c2, c3) = ( +c1, — c2, +c3), 

(c , c , c3) = (+c, + X, — c )• (14.1.2-4) 

In this notation, the superscript, i, ranging over positive integers 1, 2, 3, denotes 
the plane of reflection, so that all components of x' are identical with the 
corresponding components of the original point x = c4, except the ith com-
ponent which is equal in magnitude to the ith component of c4, but has a 
reversed sign, i.e., xl = xi4 for j ~ i, and x? _ — x4 (i not summed). 

R I 

Figure 14.1.1 

Eight mirror images x' of position vector x 
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Next consider images of the point c4, obtained by double reflection with 
respect to the coordinate planes. To this end, it is convenient to denote the point 
- x`" by x-`", and let c 1, x 2, or x 3 denote points obtained by double reflection 
of x4 with respect to the two planes x2 = 0 and x3 = 0, x3 = 0 and x1 = 0, or 
x1 = 0 and x2 = 0, respectively. In this notation, the negative superscript indi-
cates the coordinate plane excluded in the double reflection; the double 
reflection refers to consecutive reflections with respect to two distinct coordinate 
planes. Thus, except for the ith component which is identical with the ith com-
ponent of c4, the sign of the two other components of c ' is reversed by the dou-
ble reflection, i.e., xj ' _ - xj4 for j # i, and xj 

i = xj
4 for j = i. 

To complete the set, denote by c 4 the image obtained by three consecu-
tive reflections with respect to the three coordinate planes x1 = 0, x2 = 0, and 
x3 = 0, arriving at the diagonally symmetric image of x4. In this manner, for 
any given point, x, in the unit cell, a unique set of eight points, xi (i = ±1..... 
±4), is defined, which are mirror images of each other, with the original point 
denoted by x4. As shown in Figure 14.1.1, this set of eight points forms a paral-
lelepiped, with each point at one of its corners. Points xm and x m (m = 1, ..., 4) 
are centrally symmetric and located at the ends of the four diagonals of the 
parallelepiped. It should be noted that this way, a set of eight mirror-image 
points can also be formally defined for the origin of the coordinates or for a 
point on a coordinate axis, even though the eight images are not distinct. 

The process of mirror imaging of points, described above, can con-
veniently be expressed in terms of a transformation induced by an eight by eight 
matrix with coefficients ai3 which take on values + 1 or - 1; see Table 14.1.1. 
For j = 1, 2, 3, c is determined by the relation between the jth component of xi 

and the jth component of c4.  Definitions (14.1.1-4) then are collectively 
expressed as 

xj1 = aIi xj
4 

(i = ±1, ±2, ±3, ±4; j not summed; j = 1, 2, 3). (14.1.5a) 

Table 14.1.1 

Mirror-image coefficients a'j 

i =4 3 2 1 —1 —2 —3 —4 

j =4 +1 +1 +1 +1 +1 +1 +1 +1 

3 +1 —1 +1 +1 —1 —1 +1 —1 

2 +1 +1 —1 +1 —1 +1 —1 —1 

1 +1 +1 +1 —1 +1 —1 —1 —1 

—1 +1 —1 —1 +1 +1 —1 —1 +1 

—2 +1 —1 +1 —1 —1 +1 —1 +1 

—3 +1 +1 —1 —1 —1 —1 +1 +1 
—4 +1 —1 —1 —1 +1 +1 +1 —1 
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Hence, the components of aii are the identity transformation (i = 4), the single 
reflection (i = 1, 2, 3), the double reflection (i = - 1, - 2, - 3), and the triple 
reflection (i = -4) for j = 1, 2, 3. 

The definition of aii is now sought to be expanded to include elements for 
both i and j over the range ±1, ±2, ±3, and ±4; note that (14.1.5 a) defines a i for 
j = 1, 2, 3, only. To this end, define aii for the remaining j = 4, - 1, - 2, - 3, 
and - 4, as follows: 

11i4 - 1, 

ai2 a ai-2 = a~3 ail ai-3 = ap a~2 

a; ~ 0i2 ai3 (i not summed). (14.1.5b--f) 

As is seen, a1i defined by (14.1.5a-f) is symmetric, 

a'U = c (i, j = ±1, ..., ±4). (14.1.6) 

aii are called the reflection coefficients. Note again that, in (14.1.5a), j takes on 
only the values 1, 2, and 3. It is only in the definition of the reflection 
coefficients, ai~, that i and j are allowed to range over ±1 to ±4, rendering the 
corresponding matrix symmetric. 

The mirror image of a vector v is defined in exactly the same manner. 
Indeed, for a given vector v, set  

(14.1.7a) 

and using the reflection coefficients a1J, introduce its reflections n' by 

vj' = a11 1i
4 

(j not summed), (14.1.7b) 

for i = +1, +2, ±3, and ±4. 

Attach the vector ni to the point x', and observe that it can be regarded as 
the mirror image of the vector n4 attached to the point x4, where the correspond-
ing reflections for both the vector and the point to which it is attached (i.e., its 
position vector) are made by the same set of reflection coefficients. For exam-
ple, the mirror image of n4 at x4 with respect to x1 = 0 is n1 at x1; the double 
mirror image of n4 at x4 with respect to the planes x2 = 0 and x3 = 0 is v 1 at 
x 1; and the triple mirror image with respect to x1 = 0, x2 = 0, and x3 = 0 is v4 

at x 4. Figure 14.1.2 shows the eight vectors v at the corresponding eight posi-
tion vectors x'. Like x', the vector n' is called the ith mirror image of v. It 
should be noted that the set of the above defined eight mirror images of a posi-
tion vector (a vector) is closed in the sense that the ith mirror image of the jth 
mirror image is one of the eight mirror images for any i and j. 

This subsection is closed by briefly commenting on mirror-image con-
struction in two dimensions. In this case, the subscripts take on values 1, 2, and 
the superscripts, the values ±1, ±2, ±4. Denoting the original point x, by x 4, and 
using the same reflection coefficients defined by (14.1.5), observe that xii = a~i c~4 

for i = ±1, ±2, ±4 
and j = 1, 2 (j not summed). Then, x1 and x2 coincide with 
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Figure 14.1.2 

Eight vectors v' at the corresponding eight position vectors x' 

x2 and x1, respectively. Properties of the reflection coefficients for three dimen- 
sions, (i, j = ±1, ..., ±4), then do not change when one goes from three to two 
dimensions, for which i, j = ±1, ±2, and ±4. Indeed, a1 is defined for j = 4, — 1, 
— 2, —4 by ai4 = 1, a`-1 = ai2, ai_

2 

= 0i1, and ai-4 = ai1 &2 (i not summed), and 
aii remains symmetric. Then, the identity transformation results for i = 4, and 
á 

41 
defines the double reflection. There are four mirror images for any point 

(except for the origin and for points on the coordinate axes) one at each corner 

of a corresponding rectangular parallelogram. ) 

In a similar manner, mirror images of two-dimensional vectors attached to 
points in a plane are defined. Here again, set v and vì  = a'J 

vi4 
for i = ±1, 

±2, and ±4, j = 1, 2 (j not summed). Figure 14.1.3 shows the four mirror images 
of n4 = v, each attached to the corresponding mirror image of x4 = x. 

In general, 2" mirror images can be obtained for an n-dimensional vector, (v i , 12,..., v"), by 
changing the sign of each component, i.e., (± n, ±v2, 

..., ±v"). The mirror image can be written 
(á1v1, á2v2, ..., á„v"), with óir = ±1 for p = 1, 2, ..., n. These á1's are the reflection coefficients of 
an n-dimensional vector; aR = + 1 or áP = — 1 corresponds to the MI sym or MI ant with respect to 
xr = O for each p. Indeed, in the three-dimensional case, a'i can be rewritten as a1 á2 á3. However, 
in the three-dimensional or two-dimensional cases considered here, the notation a'i tends to reduce 
the number of required superscripts or subscripts for denoting the mirror images. 
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Figure 14.1.3 

Mirror images of a vector v - v4 

attached at the point x - x4 

n at c 1 line x i = o na at c4 

14.2. MIRROR-IMAGE SYMMETRY/ANTISYMMETRY OF TENSOR 
FIELDS 

Now consider in a unit cell, a general tensor field that satisfies particular 
symmetry/antisymmetry conditions with respect to positions and associated vec-
tors. The basic concept is similar to that for a scalar-valued function of a one-
dimensional spatial argument. Let f(x) be such a scalar-valued function. Then, 
its symmetric and antisymmetric parts with respect to the origin x = O are 
defined by 

fsYm(x) - Z {f(x) + f(— x) } , fapt(c) = { f(c)  f(— x) } (14.2.1a,b) 

These satisfy 
fsym(— c) _ + f sYm(c), 

fapt(— x)  — fant(
c), (14.2.1 c,d) 

and therefore, 

f(x) = fSYm(x) + fan
t
(x). (14.2.1 e). 

For a tensor field in a multi-dimensional space, a similar decomposition involves 
both the position argument and an associated set of vector arguments, as is dis-
cussed below. 

14.2.1. Mirror-Image (MI) Sym/Ant of Tensor Fields 

Let T = T(x) be an nth-order tensor field defined on a unit cell. Regard T 
as a linear operator which maps sets of n vectors, v, ..., w, into real numbers, 

Tq ... q(x) vg ... wq R, (14.2.2) 

where R is the set of real numbers. Replacing both the position and the vector 
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arguments by their mirror images with respect to the plane x1 = 0, define the fol-
lowing two tensor fields, 

Tsym 
and T t: 

Tq~mq~(x) nq ... Wq.. _ i~~ { Tq, ... q,(x4) n ... Wq + Tq ... q,(x1) ni 1 ... w'}, 

Tqh[ gL(c) vq ... Wq = ~ { rg, ... g (C4) u9i ... Wq — T9i . 9 (c
1 ) n9i ... w}. 

(14.2.3a,b) 

The tensor fields R '"' and Ta"t satisfy 

sym 1 1 l = sym 4  4  W 4 1q , ...q(%) Vg...Wg + Tg ...9 (x)~q q 

Tgnt 
q (x 1) ni 1 ... Wi  — — rr

gnt 
q (x4) ni , ... Wq , (14.2.3c,d) 

for any x and v, ..., w, and therefore 

T(x) _ Tsym(x) + Ta° t(c). (14.2.3e) 

The tensor fields 
Tsym 

and T
am 

obtained in this manner are respectively, sym-
metric and antisymmetric with respect to the plane x1 = 0. 

The above example is followed and the mirror-image symmetry and 
antisymmetry for a tensor field T are defined. If T satisfies 

Tq,... q (C1) vy ... Wq = a Tq q (C4) v ... Wq~ (i not summed), (14.2.4) 

then T is called mirror-image symmetric (MI sym) when c _ + 1, and mirror-
image antisymmetric (MI ant) when a _ —1, with respect to the plane x, = 0, for 
i = 1, 2, 3. Note that, here, MI sym/ant is introduced for a tensor field and not 
for its components; this will be examined further below. In definition (14.2.4), 
the reflections of both the position and the vectors attached to that position are 
involved. The range of the superscript i in (14.2.4) can be easily extended to 
include double and triple reflections in the manner discussed in Subsection 14.1. 
It is this extended definition of symmetry and antisymmetry that is considered in 
the following. 

14.2.2. MI Sym/Ant Decomposition of Tensor Fields 

Using the reflection coefficients ct , introduce eight tensor fields, T' 
(i = ±1, ..., ±4), for any given tensor field T, as follows: 

Tq~ ... q (x) Vg ... Wq — g SR a`' Tq ... q (x') v9 ... w q . 
1  4 

=-4 
(14.2.5a) 

Then, each '1' satisfies the MI sym/ant relation, 

Tq ••• q (xk) V9 ". w9 =
ask T

9  q (x
4) vq ... wq , (i not summed), (14.2.5b) 

for k = ±1, ±2, ±3, and ±4. 

The proof is straightforward. As pointed out in Subsection 14.1, the jth 
mirror image of the kth mirror image of a position vector belongs to the set of its 
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eight mirror images. Hence, there exists a certain j' in ±1, ..., ±4, such that 

(xk)1 = ~1' for k, j = ±1, ..., ±4. (14.2.6a) 

Then, from (14.1.5a), 

a)i (a1i x4) = oiI'i x4 (i not summed). (14.2.~b) 

Since x4 is arbitrary, a)'aki = aJ'i (i = ±1,..., ±4; i not summed). Therefore, 
from the symmetry of aij = a)i, define j' in terms of j and k by 

j' = j'(j; k); &j' = aij aik (i not summed). (14.2.6c) 

From (14.2.6c), the reflection coefficient aij becomes 

pcij - aij (aik)2 = aik (aij aik) = aik aij 

Hence, in view of (14.2.5a), the left-hand side of (14.2.5b) becomes 

i k k k 1 4 i kI k j k j "q ... q (x ) vq ... wq = ó ' u, a1 T9 ... q,,((x ?7 (V )q  ... (Vi )9t 

= aik 
i 8 
(  1 4  ..  '~  } S 9i  g

(~~ ) v~ w9~ 9i ' 
j'= 4 

a ~I 

= aik T i ... 9 (x4) váß ... wq . (14.2.7b) 

Since x4 = x, the MI sym/ant condition (14.2.5b) is proved. 

Since MI sym/ant is defined for each plane xi = 0 (i = 1, 2, 3), there are 
eight combinations of MI sym/ant. Indeed, for T', 

T4 
.r3 

T2 
T1 

T1 .G-2 T
-3 

T-4 

x1 = 0 sym sym sym ant sym ant ant ant 
x2 = 0 sym sym ant sym ant sym ant ant 
x3 = 0 sym ant sym sym ant ant sym ant 

These correspond to aij for i = 1, 2, 3, where aij = + 1 is regarded as MI sym 
and aij = - 1 is regarded as MI ant. Hence, the elements of the set { T' } are 
linearly independent in the sense that 

4 
1:4 01(c)=0  P-4= r-3=•••= r4= 0. (14.2.8a) 

Therefore, the decomposition of the tensor field T into Ti, 
4 

T(c) =  
= -4 

(14.2.8b) 

is unique. Conversely, the set 
Ti 

determines a unique T. and thus 

T(x) {T'(x)}. (14.2.8c) 

The tensor field T is called the ith MI sym/ant part of T, satisfying the ith MI 
sym/ant condition defined by the above. 

(14.2.7a) 
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14.2.3. Components of MI Sym/Ant Parts 

From definition (14.2.5a), the components of the ith MI sym/ant part, T', 
of the tensor field T in the c;-coordinates are given by 

4 
Tq,...q (x)= 

8 ~
±

4
a'JTq, ...q(x) a'w... a' . (14.2.9) 

Note that these components are different from the components of the following 
tensor field: 

g S 0°T(xx) = g E a Tq'...q(x') eq ®....®e q (14.2.10) 

which satisfies the symmetry or antisymmetry condition only for the position 
argument, but not for the corresponding vector arguments. 

As discussed in Subsection 14.2.2, the product of a'J with a' , ..., and a' 
corresponds to the n+1 sequence of the ith, the q ith.....and the q„th mirror 
image operations. Hence, i' and a

~~ 
are expressed as 

= i'(i; q , ..., qn);  a _ a° a ... aqa (j not summed). (14.2.11) 

In terms of the above-defined i', (14.2.9) is rewritten as 

Tq,...q(x)= g
=S4 a

Tq,...q»(x)• (14.2.12a) 

Hence the components satisfy their own symmetry or antisymmetry conditions 
which are different from the MI sym/ant defined for T'. The symmetry or 
antisymmetry properties of the components are now given by 

T ~, ... go(xk) = a''k Tq ... q(x4)• - (14.2.12b) 

The proof for (14.2.12b) is exactly the same as that for (14.2.5b). 

From the definition of i', (14.2.11), the symmetry/antisymmetry of the 
components Ty ,. q depends on the superscript i as well as subscripts qi.....qn. 
For example, the fourth MI sym/ant parts, a4 and A4, of the first-order tensor 
field a and the second-order symmetric tensor field A (A;j = Aj;) have the fol-
lowing components: 

a1 
 a2  a3  All A22 A33 A23 A31 Al2 

x iR = 0 ant  sym sym sym sym sym sym ant ant 
x2 = 0  sym ant sym sym sym sym ant sym ant 
x3 = 0  sym sym ant sym sym sym ant ant sym 

and the first MI sym/ant parts, a1 and AI, of a and A have the following com-
ponents: 

a1  a2  a3 A11  A22 A33 A23 A31 Al2 
x1 = 0  sym ant ant ant  ant ant ant sym sym 
x2 = 0  sym ant sym sym sym sym ant sym ant 
x3 = 0  sym sym ant sym sym sym ant ant sym 
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Note that with respect to the plane x t = 0, the respective "sym" and "ant" of a t 

and AJ are the reverse of those of a4 and Ay, while with respect to the planes 
x2 = 0 and x3 = 0, the respective "sym" and "ant" of a;1 and Aij are the same as 
those of a 4 and Ai~ . 

14.2.4. Operations on MI Sym/Ant Parts of Tensor Fields 

From a physical point of view, the above-defined MI sym/ant parts, Ti 
(i = ±1, ..., ±4), of tensor field T have an intuitive appeal. Moreover, the gra-
dient of T' also satisfies the same MI sym/ant conditions. This allows for 
decomposing a physical field variable, defined in a unit cell, into eight indepen- 

dent parts, as shown later in Subsection2 14.4. Each part may be treated 
independently. The final results may then be combined to construct a complete 
solution. 

From definition (14.2.9), the gradients of the components of T' are com-
puted as 

1 4 a  
Tq~...q (x)=— ó 

a'
i 

Tq~... q
(
xJ)a

q~ i ... aga. (14.2.13a) axk  i-_q  OCk 
Since ac1/ack = dtk aki (k not summed), 

ahi { aki Tqi ... q (x) } p(ga 

= { aak Tq,... q }`(x), (14.2.13b) 

where aTq ... 
q 

/axk is regarded as an (n + 1)th-order tensor field. 

From (14.2.13b), it follows that the gradient, divergence, and curl of the 
ith MI sym/ant part of T(x), respectively, are the ith MI sym/ant part of the gra-
dient, divergence, and curl of T(x). That is, 

V.(T') = (V.T)', 

V®(Ti ) = (V ®T)', 

V x (T') = (V c T)', (14.2.14a- c) 

for i = ±1, ±2, ±3, and ±4. 

For two arbitrary tensor fields, S(x) and T(x), the following identities 
hold with respect to the tensor product or the partial or full contraction of 
indices: 

S'(xk)*Ti(xk) = (&k aik) S'(xg)*T3(xg), (14.2.15a) 

2 Other definitions of symmetric or antisymmetric rai(, of a tensor field, say, (14.2.10), may 
not yield mathematical properties of this kind. 
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where * denotes a tensorial operation. As is seen, S`(c)*TJ(c) satisfies the i'-th 
MI sym/ant condition; i' is determined by the relation a'kakJ = ai'k. In particu-
lar, for i = 4, 

S4(ck)*T'(xk) _ aik S4(c4)*T (c4). (14.2.15b) 

Hence, the MI sym/ant condition of a tensor field T(x) is preserved with respect 
to the tensor product or contraction with the tensor, satisfying the fourth MI 
sym/ant condition, S4(c), i.e., 

S4(c)*TJ(c) = (S4*T)1(c). (14.2.15c) 

A tensor field which satisfies the fourth MI symlant condition is fully symmetric 
with respect to reflection about all three coordinate planes. 

14.3. MIRROR-IMAGE SYMMETRY AND ANTISYMMETRY OF FOU-
RIER SERIES 

In Subsection 14.2, the mirror-image symmetry and antisymmety (MI 
sym!ant) of tensor fields have been defined, and the decomposition of a tensor 
field into eight linearly independent parts has been examined. Similar opera-
tions can be performed on the coefficients of Fourier series of tensor fields. This 
is examined in the present subsection. 

14.3.1. MI Sym/Ant of Complex Kernel 

The Fourier series expansion of periodic field variables has been expres-
sed in terms of the complex kernel, exp(tx.c). In terms of cosine and sine func-
tions, exp(ix.c) becomes 

exp(ix.c) = c1c2c3 — c 1S2s3 — S 1c2s3 — s 1s2c3 

— 1{S1S2S3 — S 1c2c3 — c1s2c3 — cIc2S3}, (14.3.1) 

where c; and s; are 

c; = cos(R;), s; = sin(R;), R; _ x;x; (i not summed). (14.3.2a—  c) 

The functions c; and s; are respectively, symmetric and antisymmetric with 
respect to R; = O. Hence, (14.3.1) is the decomposition of exp(tx.~) = 
exp(i(P1 + R2 + R3)) into eight symmetric/antisymmetric parts with respect to 
R; =0,fori= 1,2,3. 

Based on the above observation, using the reflection coefficients V0, 
define the MI sym/ant part of the kernel exp(ix.x) by 

4 
exp`(ix.c) = 1 c'j exp(ix.cc); (14.3.3a) 
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from (14.3.1), exp
!
0£.x)'s are given by 

εχρ
4
(ιξ.χ) = cic2c3, exp~

4
0£.x) = - i S i s 2S 3 , 

εχρ
3
( ΐξ ·Χ) = l C i C 2S 3, exp~

3
(l^.x) = - S ! S 2C 3, / u au 2/ t χ - 2 / t \ (14.3.ib~i) exp

z
(iq.x) = I C 1 S 2 C 3 , exp (ις.χ) = - s i c 2S 3 , 

εχρ^ιξ .χ) = i s i c 2C 3 , εχρ
_ 1

(ιξ .χ) = - c i S 2S 3 . 

The eight mirror images of the Fourier variable ξ can be defined in the 
^i^2^3-space with respect to the three planes, ξι = 0, ξ 2 = 0, and ξ 3 = 0, in 
exactly the same manner as is done for the point χ in the xi,x2,x3-space. For 
simplicity, set 

ξ
4
 = ξ, (14.3.4a) 

and using the reflection coefficients a
l
K define ξ

1
 by 

ξ/ = cÄ ξ/ (j not summed; j = 1, 2,3), (14.3.4b) 

for
3
 i = ±1, ±2, ±3, and ±4. Since Pi = ξιχι (i not summed), εχρ^ιξ.χ) can be 

regarded as the ith mirror image of βχρ(ιξ.χ) in the ξ-space, instead of the x-
space, i.e., 

βχρ*(ιξ.χ) = -J- Σ oc
i j
exp(i£.x); (14.3.3J) 

ο j = - 4 

compare with (14.3.3a). Hence, εχρΧιξ.χ) can be regarded as the MI sym/ant 
part of εχρ(ιξ.χ) with respect to either χ or ξ. 

Using the definition of the kth mirror image, x \ when the argument of 
exp

1
 is changed from ιξ .χ = ι ξ

4
· χ

4
 to ιξ

κ
· χ

4
, obtain 

e x p H
k
- x ) = 1 χ c0exp(i£

k
)i .x) 

ö j ^ T 4 

= j ί α*οΑβχρ(ιξ].χ). (14.3.4c) 
ο j = - 4 

Equation (14.3.4c) remains valid if ξ and χ are interchanged. Indeed, the fol-
lowing identity for εχρ^ιξ.χ) follows from (14.3.4) (or from the general result 
(14.2.7b)): 

exp*0£
k
.x) = exp

[
(i^.x

k
) = oc

ik
 εχρ^ιξ.χ) (i not summed). (14.3.5) 

Identity (14.3.5) plays a key role in calculating the MI sym/ant of the Fourier 
coefficients in the next subsection. 

14.3.2. MI Sym/Ant of Fourier Series 

First, consider the Fourier series coefficients of the ith MI sym/ant part of 
a tensor field with respect to the kernel function εχρ(ιξ.χ). As in the previous 

Unless stated otherwise, assume c; > 0ίο Γξ = ξ
4
 ( i = 1,2, 3). 
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subsection, let T = T(x) be an nth-order tensor field, and let FT = FT(x) be its 
Fourier series coefficients. In the same manner as F'G is defined for a given T, 
the Fourier series coefficient of T' = T1(c), denoted by F(T') = F(T')(x), is 
defined by 

F(T')(x) = Ü f U T
1(x) exp(tx.x) dV. (14.3.6a) 

Using the definition of T', and taking advantage of x c = . c (j not summed), 
compute the component of F(T'), as 

q)(x) = LT f u { 8 – a' Tq ... q (xj)} exp(i .x) dVx, 

4 

S4
a'i

{ Ufu
Tq, ... q.(x~)

exp(ixx.xC) dVx}, 

where is defined by (14.2.11), and subscript x for dV emphasizes that the 
integral is taken with respect to x, and not xx. Since the volume integral over U 
does not change if the integral argument x is replaced by xJ, then 

F(Tq, ... q )(x) = 8 ±4 a;q 
{ i7 f u 

Tq, ... q (x) exp(ixx.x) dVx }, 

=  S j (14.3.6c) 

for i = ±1, ±2, ±3, and ±4. 

In view of (14.3.6c), define the ith MI sym/ant part of the Fourier series 
coefficient, denoted by (FG)'(x), with respect to x, as follows: regarding FT(x) 
as an nth-order tensor field in the xt,x2,x3-space,4 construct its eight MI sym/ant 
parts, (FT)'(x), as 

(FT) ~ F`'q , ... q(x~), ( )g, ... g (x) 
g 

= 
; S4 

(14.3.7a) 

fors i = ±1, ±2, ±3, and ±4. Here, i' is also defined by (14.2.11), and hence,, this 
definition is essentially the same as T1(x) for T(x); see (14.2.12a). From 
definition (14.3.7a), (FT)' satisfies  

q,(
k) = a' k (iT)4i ... q(x4), (14.3.7b) 

in the same manner as T satisfies (14.2.12b). 

From comparison of (14.3.6c) and (14.3.7a), it is seen that the Fourier 
series coefficient of the ith MI sym/ant part of the tensor field T(x) with respect 
to x coincides with the ith MI sym/ant part of the Fourier series coefficient 
FT(x) with respect to x. For simplicity, both F(T') and (FT)' are designated by 

° Note that 'T(x) is not continuous in the x-space, since its arguments take on discrete values, 
i.e., 4p = npp/aP (p not summed). 

5 Although T as a linear operator maps n given vectors to a real number, ~
I' as a linear opera-

tor maps n given vectors to a complex number, since the components of "T are complex-valued. 

(14.3 .~b) 
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Fes', i.e., 

F(T`)(x) = (FT)1(x), (14.3.8) 

for i = ±1, ±2, ±3, and ±4. 

Next, consider the Fourier series expansion in terms of the MI sym/ant 
parts of the kernel function, expi(~x.x)'s. In essentially the same manner as the 
ith MI sym/ant part of the tensor field T` is expanded in terms of exp(ix.x) in 
the above discussion, T' can be expanded in terms of expi(ix.c)'s. To demon-
strate this, first expand the original tensor field T in terms of exp(ix.x), as 

Rq ... cL(C) _ 114'q, ... q (x) eCP(Lx • x)• (14.3.9a) 

Then, applying the MI sym/ant decomposition to the kernel function, exp(ix.), 
obtain the expansion of the ith MI sym/ant part, T1, as 

x V FT 1 
 ± &'i ex t.x

i) (14.3.9b) 
J=-4 

where i' is defined by (14.2.11). 

In (14.3.9b), the infinite summation with respect to x may be performed as 
follows: Select all ' s with nonnegative components, i.e., xi ? 0, and order them. 
For simplicity, this x is denoted by x4. Although eight mirror images, xk 

(k = ±1, ..., ±4), can be defined for x4, some of them may coincide with each 
other. The number of distinct mirror images is at most eight and at least one 
which corresponds to the origin, and is given by 2Y, where K is the number of 
nonzero components of x4, i.e., K = 0, 1, 2, or 3. Then, for each x4, sum all 
corresponding distinct mirror images, xk's, to obtain a contribution associated 
with that x4, and sum all these terms over all x4's. To represent the summation 
in accordance with the above procedure, write 

(...)( ) = S+ i* (...)(xk), (14.3.10a) 
 k=-4 

where superscripts + and * on the summation S denote that the sum is taken 
only for x4's with nonnegative components, and that the sum is taken only for 
distinct xk's. Furthermore, the sum for distinct xk's is given by dividing the sum 
for all eight mirror images by 23 - K = 8 / 2K, i.e., 

k -
4 (...)(xk) = 2K { g 

k 4 
(...)(xRk)}. (14.3.10b) 

Using (14.3.10a,b), and taking advantage of aii = ±1 for any i and j and 
xk.xj = x.(xj)k, rewrite the Fourier series expansion (14.3.9b) as 

Tq, ... q•(%) = + 2k{ 
ó k ± 4 

F'I q ... q•(xk){ó i 
± a+ J exp(Lxk. 0J) } } 

S= S + 2k{ g k ~ 4 (a~~ k)2 
~qi . q (xk) { g a'' eXR(ix • (xJ)k) } } 

ca J = -4 
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= S+ 2K 
x' 

1  S a''k ~q, ... q~(xk) { 1.  8 k = -4 8 ~ = 

V
4 S+ 2K 

_  8 k – 4 a~~ q, ... q,,(xk) , ecrI (ix4. c). 

Finally, using (14.3.7x) and (14.3.8), obtain 

Tq ... q..(x) = S+ 2K FT1
~ ... q,(x4) exri (ix4.cR). 

x' 
As is seen, the components of T can be expanded by the corresponding kernel 
exrl (tx.c), and the coefficient of the expansion is given by 2K FT`, with FT1 

being the Fourier series expansion of T' with respect to exp(tx.x). 

Kernel function exp(x.c) satisfies the following orthonormality: 

< ecr(x.c) ecr(z•x) > = 
{ 

if x + z = o 
otherwise. 

(14.3.11) 

On the other hand, its ith MI sym/ant part, exp'(x.c), satisfies a slightly more 
complicated orthogonality. Indeed, for i = ±1, ±2, ±3, and ±4, 

< exp'(x.x) exr~(z.x) > = 0 for x # z (i not summed), (14.3.12a) 

and 

> _ 
{ 

01/2K if exp'(x.x) ~ 0 
otherwise. 

(14.3.12b) 

Therefore, from (14.3.12a,b), the Fourier series coefficient FTq ... 
q 
(x4) is given 

by 

F'Tq ... 
q 

(x) = < T ' ... q (x) exp''(ix.c) >. (14.3.13) 

As is seen, the factor 2K for FT' in summation (14.3.9d) corresponds to the 
above properties of exp`(x.x). 

The real-valued tensor field T admits the following decomposition: 

4 
Tq, ... q.(x) = . Tq, ... qt(x) -4 

– { S+  

where the Fourier coefficients in the right-hand side are given by (14.3.13). As 
shown in Subsection 14.3.1, the MI sym/ant part of the kernel exp'(tx.x) is 
either real or purely imaginary. Therefore, the Fourier coefficients Fly ... q are 
real (imaginary) if exp'(ix.x) is real (imaginary). Indeed, since F T(- x) is the 
complex conjugate of FT(x), and the reflection coefficients satisfy 

a'(-)) = (a'ia12a'3) a1 = a'(-4> a'i (i not summed), (14.3.15a) 

for all j = 1, 2, 3, and 4, definition (14.3.7a) can be rewritten as 

(14.3.9c) 

(14.3.9d) 

(14.3.14) 
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1 4 a ;~ 
FT , 

... a,(x) = 8 ~ 4 2 { FTg ... 
q fl( J) 

+ a' —4 F Tg ... qf— x) (14.3.15b) 

Therefore, the components of FT are either real or purely imaginary,6 depend-
ing on whether a''-4 is + 1 or — 1. 

14.4. BOUNDARY CONDITIONS FOR A UNIT CELL 

In Subsections 14.1 and 14.2, mirror images are defined for position vec-
tors and vectors, and MI sym/ant parts of a tensor field are introduced in terms 
of these mirror images. The MI sym/ant decomposition is applied to periodic 

field variables u, e, and s, defined in a unit cell. 

14.4.1. Symmetry of Unit Cell 

In Subsection 12.2, it is shown that the location of the unit cell relative to 
the coordinate axes can be chosen arbitrarily, while the shape of the unit cell 
(parallelepiped) is uniquely determined by the regularity vectors, aa's. The 
location of the unit cell is chosen such that the eight parts of any field variable, 
decomposed through the MI sym/ant operation within the unit cell, are linearly 
independent. 

Based on the results prescribed in Subsection 14.2.4, the following 
governing field equations are immediately derived from (12.2.3a) and (12.2.3b), 
for the ith MI sym/ant parts of the field variables, u', e', and s': 

e'(x) = 2 {O® u'(c)+(O®0`(,))T}, O.s`(c) = O. (14.4.1a,b) 

Let a general heterogeneous elasticity tensor, C' = C'(x), be decomposed into 
eight MI sym/ant parts, as 

4 
C'(x) = (14.4.2a) 

Then, the second-order contraction between C' and e' is 
4 

C'(x) : e~(x) 
= 

± C'
3
(x) : e`(x), (14.4.2b) 

= -4 

where C'j : e` satisfies a distinct MI sym/ant condition depending on the value of 
j. In order that C' : e` satisfy the ith MI sym/ant condition, C' must satisfy the 
fourth MI sym/ant condition, i.e., C" = 0 for i ~ 4, and hence C' = C'4. This 

6 Similarly to a'-4, the corresponding kernel function exp'(ix.x) determines whether i Gq ... q 
is real or purely imaginary. Indeed, if exp'(ix.c) is real, F G q is real, and if exp'(ix.c) is purely 
imaginary, FT' ... q is purely imaginary; see (14.3.3b—i) and (14.3.13). 

For simplicity, superscript p for periodic fields is omitted in this subsection. 
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means that the unit cell must be both geometrically and elastically symmetric 
with respect to single, double, or triple reflections about all three coordinate 
planes. It then follows from (14.4.2b) that 

C'(x) : e(C) _ s'(x), (14.4.1c) 

for i = ±1, ±2, ±3, and ±4. 

As is clear from the three governing field equations, (14.4.1a--c), if the 
unit cell is such that C' = C'4, i.e., it is symmetric with respect to all three coor-
dinate planes, then the ith MI sym/ant part of the stress field will depend only on 
the corresponding ith MI sym/ant part of the displacement and strain fields, i.e., 
no other MI sym/ant parts of these fields will be involved. In this case, the set of 
fields, {u, e, s}, can be decomposed into eight mutually independent sets, 
{ u', e', s' } for i = ±1, ±2, ±3, and ±4, with each set satisfying its own MI 
sym/ant condition. 

It should be noted that decomposition to mutually independent sets of 
fields is still possible when C' satisfies a certain MI sym/ant condition other than 
C' = C'4, but then the stress field corresponding to e' (or u') will no longer be 
S1. 

14.4.2. MI Sym/Ant Fields for a Symmetric Unit Cell 

Now consider an alternative expression for a set of field variables which 
satisfies a particular MI sym/ant condition. To this end, for an arbitrary set of 
field variables, denoted by G = G (x) = { u(x), e(x), s(x) } , define the following 
four MI operators, m , which determine a set of new field variables from G: 

M
w

(c; G ) = { u
w

(c), e
w

(c), s(c) }, 

for i = 1, 2, 3, 4, where 

u (x) __ a1R up(c'), 

e (C) = a'Ra'9 enq(x'), 

(l4.4.3a) 

s (C) _ oi'pa'q srq(c'), (i, p, and q not summed). (14.4.3b--d) 

As is seen, M 4)(G ) gives the original set of field variables, G. For i = 1, 2, 3, 
the set of field variables, M (~)(G ), is the reflection of G with respect to the plane 
x; = O. The set 

Mw(G ) is called the ith MI reflection of the set of the original 
fields G. By connecting (14.2.9) and the MI operation, it is proved that the ith 
MI sym/ant part of the original set of field variables is constructed by a suitable 
combination of its reflections. 

Suppose that the three field variables {u, e, s} in U are such that they 
remain unchanged upon reflection about the plane x, = 0, i.e., 

{ uP(x), erq(x), srq(x) } 
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_ {+ a'R ur(x'), + erq~x'), + a'R c q srq(x') } , (14.4.4a) 

where i, p, and q are not summed; see Figure 14.4.1. Using the MI operation 
defined by (14.4.3), abbreviate this by Mw'w(G ) = + M 4)(G ). 

c2 

Figure 14.4.1 

Fields satisfying MI symmetry 
with respect to (x, = 0)-plane 

Similarly, if the three fields are such that their signs are reversed upon 
reflection about the plane x; = 0, i.e., if 

{up(x), erq(x), srq(x)} 

= {- af up(x'), `r ciq erq(x'), — a'Ra'q srq(x') }, (14.4.4b) 

where i, p, and q are not summed, then abbreviate it by M wQ(G) = — M (4)(G ); 
see Figure 14.4.2. Therefore, the notation M 4)(G) = + M(~ )(G ), (M (4)(G ) 

(i means that the set of field variables, G = {u, e, s}, is symmetric 
(antisymmetric), upon reflection with respect to the plane x = 0. 

O xl 

c2 e, s  — 

Figure 14.4.2 

Fields satisfying MI anti-symmetry 
with respect to (xi = 0)-plane 

Now, examine the relation between the ith reflection Mw'w(G) = 
{uw, ew, sw} of the fields G = {u, e, s}, and the ith MI sym/ant part of 
G' _ { u', e `, st } of these fields. Note that$ the superscript i without parentheses 
refers to the ith MI sym/ant part of the corresponding fields, whereas superscript 
i with parentheses refers to their ith reflection, i.e., the reflection with respect to 

xi 
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the plane x; = O. From (14.2.5a) and (14.4.3b—d) it is easily seen that the ith MI 
sym/ant Gi of G is given by 

G' = 1 S a11 M (G), (14.4.5a) 
ó j = -4 

where the addition of a set of field variables is defined by a set of field variables 
which is obtained by adding the corresponding fields. Conversely, from 

p(U akJ = 8 lSik, 
i= -4 

M(G) = – Vt;i G~. (14.4.5b) 
=-4 

Therefore, it follows that the MI sym/ant part of a set of field variables, defined 
purely mathematically, coincides with the corresponding results of the MI 
operations. These results emerge from the physical operation of taking mirror 
images of actual field variables. 

In particular, the following identity holds: 

M(k)(x; G 1) = aik G1(x) (i not summed). (14.4.5c) 

That is, the kth reflection of the ith MI sym/ant part G of the set of fields G, is 
given by aik G' (i not summed). Furthermore, since (aik)2 = 1, multiplying both 
sides of (14.4.5c) by aik, gives 

GI(x) _ aik M (k)(x; G'), (14.5.5d) 

or 

G' = M(4)(G7 = ail m(t)(G
i
) = ai2 M (2)(G') ai3 M(3)(G') 

(i not summed). 

Hence, G' is essentially unchanged through the MI operations. 

(14.4.5e) 

14.4.3. Surface Data for MI Sym/Ant Set of Periodic Fields in a Symmetric 
Unit Cell 

From now on, it is assumed that the unit cell is completely symmetric with 
respect to all three coordinate planes. Then, C' satisfies the fourth MI sym/ant 
condition, i.e., C' = C'4. Now consider the surface tractions and displacements 
of the MI sym/ant sets of periodic fields in a fully symmetric unit cell. For sim-
plicity, the implications of MI sym/ant conditions for periodic fields are exam-
ined with respect to, say, the plane x1 = 0, i.e., the implications of M (4)(G) 
= + M(t)(G) or M(4)(G) = — M (1)(G) are examined. Let u and s be the periodic 

$ To clarify these differences, consider a one-dimensional scalar-valued function f = f(x). The 
MI reflection corresponds to defining new functions, say, M (+)(f) = f(+ x) and M(-)(f) = f(— x), while 
the MI sym/ant part corresponds to the symmetric and antisymmetric parts, { f(+ x) + f(— x) }/2 and 
{f(+x)—f(—x))/2, which are denoted by f 5Ym and f'"t,  respectively.  Then, fsYm= 
(L1(+)(f)+M(-)(0)/2 or fa"t = (i(±)(f) — M()(f)i)/2, and i(±)(f) = fsym+ fa"t and M(-)

(f) = fsym— f
an 

For the set of three-dimensional tensor fields considered here, similar relations between the MI 
reflection and MI sym/ant parts are obtained by using the MI operation defined by (14.4.3). 
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displacement and stress fields, and t = n.s be the periodic tractions on the sur-
face boundaries x1 = ±a 1, where v = ±e 1 . For x on the plane x1 = a1, and since 
c4 - x 1 = 2a1 e1, the periodicity of the boundary data requires u and s to satisfy 
u(x1 ) = 11(x4) and S(x1 ) _ s(x4).  Hence the tractions t satisfy t(c1 ) _ -t(x4). 
In component form, this can be written as 

(11, u2, 113)(x1 ) = (+u1, + u2, +u3)(x4), 

(t1, t2, t3)(x 1) = (- ti, - t2, -13)(x
4). (14.4.6a,b) 

From the definition of M 4)(G) = + M m 1 m(G) and M(4)(G) _ - MW 1 W (G ), the 
following relations for the displacements and tractions on the boundary surfaces 
are obtained: for the case when M ~4)(G) = + Mm 1 m(G ), 

(u1, u2, u3)(x1) = (-u1, + u2, + 113)x4), 

(t1, t2, t3)(x 1 ) = (- t1, + t2, + t3)(x4), (14.4.7a,b) 

and for the case when M 4)(G) = - M(1)(G ), 

(u1, u2, 113)(x1) = (+u1, -112, -113)(x4), 

(t1, t2, t3)(x 1) = (± t1, - t2, - 13)(x4), (14.4.7c,d) 

for x on the plane x1 = a1. 

From comparison of (14.4.6a,b) with (14.4.7a,b) and (14.4.7c,d), the fol-
lowing components of the periodic displacements and tractions must vanish on 
the boundary surfaces x1 = ±a i: 

u1 = t2 = t3 = 0  for M (4)
(G) = + M 1)(G ), 

t1 = 112 = u3 = 0 for M 4~(G) = -M(1)(G). (14.4.8a,b) 

Similar boundary conditions can be obtained on the boundary surfaces x2 = ±a2 
and x3 = ±a3 from the MI sym/ant conditions, by appropriately relating to 
M 4)(G) = + M (2)(G) or M 4)(G) = - M 2)(G) and M 4)(G) =. + M(3)(G) or 
M 4)(G) = - M (3"(G ), respectively. Indeed, denoting the normal and tangential 
components of the displacements and tractions by 

(v . u) v, ut = u-&,  t° - (v . t) v, t1 - t t°, (14.4.9a--d) 

the periodic boundary tractions and displacements must be such that 

a° = 0 and tt = 0, (14.4.10a,b) 

or 

t° = 0 and ut = 0, (14.4.10c,d) 

on the boundary surfaces of the unit cell. Note that (14.4.10a,b) correspond to 
the case of MI sym, and (14.4.10c,d) to the case of MI ant. 

The surface data (14.4.10a,b) or (14.4.10c,d) produce unique displace-
ment, strain, and stress fields in a unit cell, U, as well as in a finite body bounded 
by U. Since the periodic field variables in an MI sym/ant set satisfy either 
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(14.4.10a,b) or (14.4.10c,d) on the boundary surfaces, these field variables are 
uniquely defined. It should be noted that even though each part of the decom-
posed set of the periodic fields has null surface data, the original periodic fields, 
obtained by the sum of the decomposed parts, may have more complex boun-
dary conditions. The uniqueness of the solution of the original periodic fields is 
then guaranteed by the uniqueness of the decomposition of these fields into eight 
MI sym/ant sets, and by the uniqueness of the solution of each set. 

14.4.4. Homogeneous Fields 

As mentioned in Section 12, the homogeneous field variables are 
excluded from the periodic fields, since the corresponding (continuous) linear 
displacement field does not satisfy periodicity. However, the uniform strain or 
stress field, e° or s°, can be regarded as input data which produce the periodic 

(disturbance) stress and strain fields in a periodically heterogeneous solid.9 The 
uniqueness of these periodic fields, produced by the prescribed homogeneous 
stress or strain field, is also guaranteed. Since e° and s° produce linear dis-
placements u° = . e° and uniform tractions t° = n.s°, respectively, the surface 
data (14.4.10a--d) must then be replaced by 

u" — u°° = 0 and  tt — t°t = 0, 

or 

t" — t°° = 0 and  Ut — u°t = 0, 

where 

U° (n .u°) V uO1 - u° — u° P, 

(14.4.1la,b) 

(14.4.11c,d) 

ton = (v . t°) v, tot = t° — t°". (14.4.12a--d) 

These surface data may also be associated with the boundary of a finite body 
which is represented by the unit cell. 

Now consider the MI sym/ant set of fields that corresponds to, say, a 
homogeneous strain field e° .  From the definition of the MI sym/ant of a 
second-order tensor field, and since the unit cell is assumed to be completely 
symmetric, the components of the prescribed uniform strain field produce the 
following MI sym/ant sets: 

e,i : G4 

er,3: G 1 

4th MI sym/ant set 
M (4)(G) = ± M 1 (G) = +M (2)(G) =  
— 1st MI sym/ant set 
M (4)(G) = +MW (G) = — M«)(G) = — M 3)(G) , 

9 Recall that the homogeneous strain e° and the homogeneous stress s° are related through the 
overall elasticity or compliance tensor, C or D. Hence, if e° is prescribed, the traction boundary data 
are yet to be determined, since the corresponding homogeneous stress s° is not known until C is cal-
culated. 
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— 2nd MI sym/ant set 

M 
4)(G) = —Mm(G) _ + M121(G) = — M13>

(G) , 
— 3rd MI sym/ant set 

_Mm(G) = — M 2 (G) = –M 3 (G) . 

The four other remaining sets are always zero for homogeneous strain fields. 
Furthermore, only the above four indicated sets can have nonvanishing volume 
averages. It must be emphasized here again, that each of the eight MI sym/ant 
sets of periodic strain and stress fields is mutually independent if the elasticity 
tensor field C' satisfies the fourth MI sym/ant condition, i.e., if there is complete 
symmetry with respect to all three coordinate planes; otherwise each of the eight 
MI sym/ant parts of, say, the stress field, may depend on some or all MI sym/ant 
parts of the strain field. 

14.5. FOURIER SERIES EXPANSION OF MI SYM/ANT SET OF PERI-
ODIC FIELDS 

In the equivalent homogeneous solid, obtained by the introduction of suit-
able periodic eigenstrains or eigenstresses, all the periodic fields can be decom-
posed into eight MI sym/ant parts. It will be shown that for each MI sym/ant 
part, the governing equations for the corresponding Fourier series coefficients 
reduce to a simple real-valued form. 

14.5.1. MI Sym/Ant Decomposition of Governing Field Equations 

In Section 12, the equivalent homogeneous solid with a constant elasticity 
tensor C (= D-1) is introduced for a solid with a periodic elasticity tensor C' (= 
D'-1), through a periodic eigenstress field s* (or eigenstrain field e*)10. The dis-
placement field u produced by s*, is defined by the following governing equa-
tions: 

V. {C : (V ® u(c))} + V.s*(c) = O. (14.5.1a) 

The Fourier series coefficients of u are given in terms of those of s*, through 

: (xâFU(x))} +i x.Fs*(x) = 0, (14.5.1b) 

for x # 0; see (12.4.5a,b). 

Now consider the MI sym/ant decomposition of the periodic fields in the 
equivalent homogeneous solid with periodic eigenstress. Choose the uniform 
elasticity tensor C of the equivalent homogeneous solid such that it satisfies the 

1° As mentioned, uniform eigenstress or eigenstrain does not produce periodic fields in the 
equivalent homogeneous solid, although they are related to the homogeneous fields. In this section, 
attention is focused on the periodic fields, and the homogeneous fields are not considered. 

o   e31 :  G 2 
 

eF2: G-3 
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fourth MI sym/ant condition; note that this choice is always possible whatever 
the nature of the symmetry of C'(x). However, a completely symmetric unit cell 
continues to be assumed. Therefore, the eight MI sym/ant sets of periodic fields, 
{ u, e1, s') are mutually independent. 

Since C satisfies the fourth MI sym/ant condition, its components satisfy 

1 44 

Cpqrs = a i aJR 
aiq 

ajG aJS Cpqrs 
1 =-4 

_ 1 

ó j 
V 4 ~~P 004 Oar OWs Crgrs, (14.5.2a) 

for p, q, r, s = 1, 2, 3. Since Cpqrs is constant and aJR is either + 1 or — 1, 
(14.5.2a) is satisfied if 

aJR aJq c')r a)s CPgrV = Cpgrs (p, q, r, snot summed), (14.5.2b) 

which means that 

0 (14.5.2c) 

As shown in Subsection 14.3, if (14.5.2c) is satisfied, the governing equations 
(14.5.1a,b) for the field variables u and s* can be decomposed into those for 
each MI sym/ant part of these fields, u' and s*', and the corresponding Fourier 
series coefficients Fu and Fs* can be decomposed into Fu' and Fs*'. 

Now this decomposition is demonstrated in greater detail. The governing 
field equations (14.5.1a) may be regr+~ded as a first-order tensor operator which 
assigns zero to a vector. From definition (14.2.5a), the ith MI sym/ant of 
(14.5.1a) is 

. 1 S 8 ~= -4

a'J 

 
ar { CPgrs(arUs(x~) } + aR{ sR9(c1) } } n 0, (14.5.3) 

where v is an arbitrary vector and 3r = a/acr. The corresponding MI sym/ant 
part of the Four~er series expansion of (14.5.3) is 

~
S' 
! 4 

a'J {— C Pgrs xR xr ~s(x) + t xr F6Pq(x) } exp(I x• x~) v9 

S' FUs 
c

t  Fs * 

c f 4 
an

4 

ex = S { — C 
Pgrs xR xr  (x)+ xR  R9x( ) } { 

~~ 
j S 

4

a'~ ( n g)  R(t~•
c~ )~ 

= S' { — C Pgrs xR xr ' s(x) + I xR FsRq(x) } vq 
expi'(l x .c), (14.5.4a) 

where ~~ is given by 

~~ = i'(i; q); a'' = a1i a' 
and exp'(t ~.x4) is the ith MI sym/ant part of exp(t ~.x) defined by (14.3.3). 

The uniqueness of the solution has been proved in Subsection 14.4. The 
value of the infinite sum (14.5.4a) does not change with a change in the order of 
summation with respect to x. As explained in Subsection 14.3, for the right side 

Cpqrs 
j = 0 if a aJg aJr a)S =  I. 

(j not summed), (14.5.5) 
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of (14.5.4a), taking the summation first with respect to xR with nonnegative com-
ponents, together with a finite summation with respect to the distinct images, 
xRk s, associated with xR, obtain 

Z+ ~* 

 

1 — Cpgrs xP xr s(x) + 1 
xP 

FKUpq(xk) } nq exp' (1 xR k . c) 
xR,  k=-4 

= S+ 2k { 
ó ~ k ± 4 { — Cpgrs xp x (  s(xRk) + 1 xp 

Fspq(xk) } vq exp' (1 xRk . c) 
xR, 

= S+ 2k 

x 
~

f 4 
k ~ 4 {— Cp grs xi x FUs(xk) + 1 x F6pg(xk) } vg a' k eXP~ (1 x4. c) 

(14.5.4b) 

From definition (14.5.5) of ~~ , summation with respect to k in (14.5.4b) pro-
duces, 

1  4 
kp 4  kt 4 k 4 k ik 

S { — Cpqrs (a xR ) (a xr ) ~s(x )+ 1(a
kR 

xR )F6pg(x )} gk 

k 
S 4 a a 

1 
– S { — x4 x 4 (Cpgrs 

akp kq akr aks) (aik aks  s(xk)) 8 k=-4 p,r,s 

+ 1 
xP 

(ca~k akr akq Fspq( k)) } . (14.5.4c) 

Since Cpgrs satisfies (14.5.2b), the above sum equals 

Cpgrs xp 4 ( s)1(xR4) + 1 xp (FsPq)i(x4), 

where x4 has nonnegative components. 

As shown in Subsection 14.3.2, (Fu)1(x4) = F(ui)(x4) = F
u (x4) and 

(Fs*)'(x4) = F(s*')(x4) = Fs*'(x4), for x4 with nonnegative components. There-
fore, it follows from (14.5.4a--c) that the ith MI sym/ant part of the governing 
equation (14.5.1a) is11 

V. { C : (0 âu'(x)) } + 0. s*'(c) = 0, (14.5.6a) 

and is expanded in the Fourier series, as follows: 

— x4. { C : (x4 âFul(x4)) } + l x4. Fs*'(x4) = 0, (14.5.~b) 

for x4 with nonnegative components. Comparison of (14.5.1b) and (14.5.~b) 
shows that the governing equation for Fu' with Fs*' is identical with that for Fu 
with Fs*. 

The governing equation (14.5.6a) of the ith MI sym/ant part of the peri-
odic fields has the two following significant advantages over the governing 
equation (14.5.1 a) of the original periodic fields: 

" Note that (14.5.6a) and (14.5.~b) are obtained from (14.5.1a) and (14.5.1b), with the aid of 
the results obtained in Subsection 14.2.4. 
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1) Fa t and Fs*1 are either real or purely imaginary, while Fu and F6* are, in 
general, complex-valued. And (14.5.~b) is either real or purely ima-
ginary, while (14.5.1b) is complex-valued; 

2) (14.5.~b) holds for x4 with nonnegative components, while (14.5.1b) 
holds for all x. Hence, if the summation is truncated to N, there are 
(N + 1)3 — 1 terms for x4 in (14.5.~b), but (21 + 1)3 — 1 terms in (14.5. lb). 

Therefore, the MI sym/ant decomposition of the periodic fields considerably 
reduces the numerical computation, although the form of the governing equation 
remains the same. 

14.5.2. Isotropic Equivalent Homogeneous Solid 

The elasticity tensor C of the equivalent homogeneous solid is required to 
be uniform and to satisfy the fourth MI sym/ant condition. From (14.5.2c), if C 
is 

Cpqrs = 0 except for Cppgq, Cpgpq, and Cpggp (p, q not summed), (14.5.7) 

then the above requirements are satisfied. An isotropic elasticity tensor C 
apparently satisfies (14.5.7). For the isotropic case, the equations defining the 
Fourier series coefficients of the displacement field are given in Subsection 12.4. 
The corresponding ith MI sym/ant part is 

— {(l+m)x4âx4+11(x4.x4) 1(2)} .Fu(x4) 
+x4.Fs*1(x4) = 0, (14.5.Sa) 

for x4 with nonnegative components. The coefficient of the periodic strain field 
Fe' is given by 

Fe'(x4) _ — 1 {sym ( 4 ®1(2)®4) 
+2~ x4âx4âx4âx4} : Fs*1(x4), 

(14.5.8b) 

where x = x/ I x 1. 

For illustration, consider two cases: (1) full symmetry with respect to all 
three coordinate planes, i.e., the fourth MI sym/ant condition is satisfied, and 
hence M(4)(G) = + M (1)(G) = + M (2)(G) = + M (3)(G); and (2) symmetry with 
respect to the plane x1 = 0, and antisymmetry with respect to the planes x2 = 0, 
x3 = 0, i.e., the — 1st MI sym/ant condition is satisfied, and hence M(4)(G) = 
+ M (1)(G) _ — M 2)(G ) = — M 3)(G ); the reference elasticity tensor C is isotro-
pic. 

Case (1), M(4 )(G) = + MW 1W ( G) = + M (2)(G) _ + M (3)(G ): As shown in Subsec-
tion 14.2, the components uP and sPy satisfy their own MI sym/ant conditions. 
u and s*4 can be expanded in the following real-valued Fourier series: 

u (x) =  + FRul (x4) s1e2e3, 
x° 
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ui (x) = S+' FRUZ (x4) c s2c3, 
x° 

u3 (c) = S+' FRu3 (x4) c ~c2s3, 
x° 

6L4(c) = S+ FR611(x4)e1e2C3+ s23(c) = S+ — F R623(x4)c1s2s3+ 
xa x° 

s22(c) = S+ FRs22(x4) eIC2e3, s34(c) = S+ — FRs3~(x4) SIe2s3, 
x x' 

633(c) = S+ FR633(x4)CIe2C3+ s(C) = S+ — F Rs12(x4)SIS2e3, 
x

a xa 
(14.5.9a--i) 

where FR( ) stands for the real part of the corresponding Fourier series expansion 
of(). 

Case (2), M (4)(G) = +M (1)(G) = — M (2)(G) = — M 3)(G): In a similar manner, 
u1 1 and sPq 

1 
can be expanded in the following real-valued Fourier series: 

u1 1(x ) =  ±' FRuI 1(x4) s1s2s3, 

u21(x) _ S+' — FRuz 1(x4) c I c2s3, 

ü3 1(x) =  + — FRü3 1(x4) C I s2c3, 
x° 

s1I 1(c) = S+ FR61I 1(x4)c1s2s3, 623 1(x ) = S+ —F Rs23 1(x4)c~ e2c3, 
x° x° 

s22 1(c) = S+ FR622 1(x4) els2s3, s1 1(x) = S+ 
FR631 1(x4) Sls~c3, 

s33 1(c) = S+ FRs33 1(x4) e1s2s3, s12 1(c) = S+ FRs121(x4) s1e2s3• 
xa xa 

(14.5.10a---i) 

The governing equation for FRu' (i = 4, — 1) then becomes 

— {(l+ m)x4âx44-11(x4•x4) 1
(2)}.FRu1(x4) — x4.FRs*'(x4) = O. (14.5.11a) 

The kernel functions of the first, second, and third displacement components are 
s1c2c3, c is2c3, and c1c2s3 for i = 4; and s1s2s3, c1C2s3, and c1s2c3 for i = — 1. 
These kernels correspond to exp' (t x.c) with i = i'(i;  1), i' = i'(i;  2), and 

= i'(i; 3) for i = 4 and i = — 1; see (14.3.3b--i) and definition (14.5.5) of i'(i; q). 

Then, the real-valued coefficients of the expansion of the strain field, FRe`, 
are 
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FRe'(x4) _ — m {
sym (x4® 1(2)

âx4) %i+2m : FRs*'(x4) 
(14.5.11 b) 

which is exactly the same as (14.5.8b). Hence, it can be concluded that there is 

one-to-one correspondence between {F&, Fe', Fs1 } and { FRu', FRe', FRS' }, for
12 

i = ±1, ±2, ±3, and ±4. 

14.6.  APPLICATION OF HASHIN-SHTRIKMAN VARIATIONAL 
PRINCIPLE 

In Subsection 13, upper and lower bounds for the overall moduli of a peri-
odic structure have been obtained, by applying the Hashin-Shtrikman variational 
principle to the eigenstress field in the equivalent homogenized solid, represent-
ing the periodic microstructure. In the periodic case, the bounds are exact. To 
calculate sharp bounds, a relatively large number of Fourier terms must be used. 
As mentioned before, the MI sym/ant decomposition of the periodic field vari-
ables is effective in reducing the numerical effort. Since a homogeneous strain 
e° has only four sym/ant parts (see Subsection 14.4), only these need to be con-
sidered in computing bounds. Furthermore, the number of terms in the sums in 
the Fourier series expansions can be reduced by about a factor of eight. In this 
subsection, the MI sym/ant decomposition is applied to the eigenstress field, and 
the energy functional J and the associated quadratic forms defined in Subsection 
13.4 are computed. 

14.6.1. Inner Product of Stress and Strain 

As shown in Subsection 13.2.2, the key to the applicability of the Hashin-
Shtrikman variational principle is the vanishing of the average of the inner pro-
duct of the stress and strain fields produced by the homogenizing eigenstress. 
Due to periodicity, however, the following identity results from (13.2.2), for any 
arbitrary statically admissible periodic stress field, s1), and any arbitrary 
kinematically admissible periodic strain field, eP, 

: e> 0, (14.6.1a) 

whether these fields are related through the constitutive relations or not. Hence, 
the ith and jth MI sym/ant parts of these periodic stress and strain fields, sP1, and 
e23, satisfy 

(14.6.1b) 

for i, j = ±1, ±2, ±3, and ±4, due to their periodicity. 

12 From comparison of (14.5.9) or (14.5.10) with (14.3.9d), it is seen that F'(...)`(x)= 
2K F(...)'(x)• 
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From the requirements of periodicity and MI sym/ant, each MI sym/ant 
part of the periodic fields must satisfy certain null conditions on the boundary of 
the unit cell and admit a certain real-valued Fourier series expansion. With the 
aid of these properties, (14.6.1b) can be proved in an alternative manner. First, 
consider the case of i = j. It is shown in Subsection 13.4 that, on the boundary 
of the unit cell, the periodic field variables of each MI sym/ant set satisfy either: 
1) zero normal tractions and zero tangential displacements, or 2) zero tangential 
tractions and zero normal displacements. Hence, 

< sp' : e' > = ~J f au dS = 0 (i not summed) (14.6.2) 

which proves (14.6.1b) for i = j. 

Next, consider the case of i ~ j. For simplicity, compute the volume aver-
age of Fugexp' (tx.x) and Fe1 exp' (tz.x), for each pair of p and q. As dis-
cussed in Subsection 13.2, i' and j' are given by i'(i; p, q) and j'(j; p, q). If i ~ j, 
then, i' and j' are also different, and 

< exp' (tx.c) exp1 (iz.x) > = 0, (14.6.3a) 

for any x and z, including x = O or z = O. This is because the volume average 
taken over the unit cell vanishes for any sine function. As given by (14.3.3), 
each kernel exp'(tx.x) is a particular combination of cosine and sine functions. 
Since 

cos(xrx) sin(zrx) = 
2 

{ sin((xr + z)) — sin(( xr — z)) 

(p not summed), (14.6.3b) 

the product exr1(tx.c) exp1(tz.x) includes a sine function of at least one coordi-
nate variable as a factor, if i ~ j. Hence, (14.6.1b) is proved for the case of i ~ j. 

While (14.6.1b) is only for periodic fields, (14.6.3a) also applies to 
homogeneous fields. Indeed, for the ith and jth parts of the homogeneous stress 
and strain, sO1 and e°1, 

< s°1 : e°' > _ s°` : e° 0, (14.6.1 c) 

if i ~ j. Furthermore, (14.6.3b) applies to the MI sym/ant part of other field vari-
ables. For example, the inner product of the ith MI sym/ant part of the eigen-
stress field, s*', and the jth MI sym/ant part of the strain field, e', satisfies 

<s*':e>>=0 fori~j, (14.6.4) 

which holds, even if s* and & include homogeneous parts. 

14.6.2. Application of MI Sym/Ant Decomposition to Energy Functional 

In the same manner as shown in Subsection 13.2.2, three conclusions on 
the properties of energy functional J for the ith MI sym/ant part of the eigen- 
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stress field can be drawn, from the fact that < : GP : > is self-adjoint. Then:13 

1) The variation of J is given by 

8J(s*; eO1) = < ds
*1 

: {(C'—C) -1 : S*'+AP: s*'— e°1} > (14.6.5a) 

Hence, the Euler equations of J, 

(C' — C)
-1 

: s*1 + GP(s*1) — e°' = 0, (14.6.5b) 

coincide with the ith MI sym/ant part of consistency conditions (13.1.14b) 
for the ith MI sym/ant part of the exact eigenstress field s*'. 

2) The stationary value of the functional J(s*'; eO1), is given by 

J(s*1; e°') _ — 2 < s > : e°I = 2 e
01 : (C — C) : e°I , (14.6.6) 

where D is the overall elasticity tensor of the unit cell. 

3) If tensor field C' — C (if D' — D) is positive-definite in the whole domain 
of the unit cell, functional J becomes positive-definite (negative-definite), 
i.e., for the ith MI sym/ant part of any arbitrary eigenstress s* , 

.1(s*1; e°i) < (~) J(s*l; e
°1

), (14.6.7) 

where equality holds only when s*1 = s*'; see Section 9. 

Similar conclusions are also obtained for energy functional I and the ith 
MI sym/ant part of an eigenstress field, e*'.  Furthermore, the equivalence rela-
tions obtained in Subsection 13.2.3 are still valid for J(s*'; eO1) and I(e*'; s°1 ), as 
follows: 

*~ of *i 0i *i 1 ' *i J(s ;~ )=—I(—D:s ; C:~ +<s >)+ 2<s > : D : < s >, 

=—I(—D:s *I; C: e01)_ s >: D : < s >, (14.6.8) 

for i = ±1, ±2, ±3, and ±4. 

From the results obtained in Subsection 14.6.1, it is proved that J(s*; e°) is 
given by the sum of J(s*1; eÓ1 ) for i = ±1, ±2, ±3, and, ±4. Indeed, since any 
arbitrary eigenstress field, s*, can be decomposed as 

s*(x) _ 4 s*1(x), (14.6.9) 
=-4 

direct substitution of (14.6.9) into J yields 

J(s*; e°) _ < I  S : (V' — C)
-1 : { . S s*11 

1= -4 ~ 

±AP({ 
 S s*J}) -2 e° } > 
=-4 

13 
For simplicity, repeated superscripts designating MI sym/ant parts are not summed in the 

remainder of this subsection, unless stated otherwise. 
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= S { 2 < s*' : { (C' — C) -1 : s + GR(S*') —2 e01} >} 

4  

, S 
 

= 
J(s*i; eoi). 

4 
(14.6.10) 

Hence, the contribution of each MI sym/ant part of the eigenstress to the energy 
functional can be separated, and is given by J(s*i; £O1) 

14.6.3. Application of MI Sym/Ant Decomposition to Quadratic Forms
14 

In Subsection 13.4, three quadratic forms, J, J, and J' have been defined 
from the energy functional J. These quadratic forms are obtained by substitut-
ing a particular class of eigenstress fields into J; J is for an infinite number of 
Fourier series coefficients of the eigenstress fields; J is for a finite number of 
Fourier series coefficients of the eigenstress fields; and J' is for a piecewise con-
stant eigenstress field. Table 13.4.1 summarizes these three quadratic forms. 
Therefore, the MI sym/ant decomposition can be applied to the arguments of the 
quadratic forms. Indeed, in the same manner as (14.6.10), 

J({ FS*}; e°) 
J({Fs*}; e°) 
J'({S*a}; e°) , 

J({Fs
*1

}; eO1) 

J({Fs
*1

}; eO1) 
J({s* }; e01) 

(14.6.11) 

where Fs*1 and s"° are the ith MI sym/ant parts of the Fourier series coefficient, 
Fs*, and the constant eigenstress, s*a, respectively. 

Besides separating the contribution of each MI sym/ant part of the eigen-
stress field to the energy functional and the associated quadratic form, the MI 
sym/ant decomposition can reduce the numerical effort required to compute the 
Fourier series expansions. The number of summed terms in Fourier series is 
reduced to almost one-eighth, if kernel exp(tx.c) is replaced by exp1(tx.c). For 
example, s*1(c) and G1'(x; s*') are expanded in terms of the ith MI sym/ant part 
of kernel function, exri(tx.x), as 

sP4(x) = S+ 2k(x) Fs 4(x) exp' (44.3), 
xR 

Gpq(x; s*1) = S+ 2KlxR) FGpgrs(x) Firs (x) exp' (tx.c), 
x 

where superscript + on summation emphasizes that the sum is taken for x's with 
nonnegative components, and i' is determined by the subscripts p and q of sPq or 
1P9, i.e., i' = i (i; p, q), and K(x) denotes the number of nonzero components 15 

of x. Although superscript i' is not fixed, for simplicity, write (14.6.12a,b) in 

14 As before, a quadratic form with linear terms is involved. 

15 For simplicity, superscript 4 for  or z of nonnegative components is omitted in this sec- 
tion. 

(14.6.12a,b) 
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tensor form, 

s*'(x) =  + 2K(ß ) Fs*'(x) exp' (tx.c), 
x 

GP(x; 6*1) = S+ 2k(x) A-T(x) : F6*1(x) exp' (ix.c), 
x 

if the dependence of i' on the tensor components is clear from the context. The 
detailed derivation of (14.6.12) is given in Subsection 13.5. 

When the ith MI sym/ant part of kernel function, exp'(ix.x) is used, the 
associated g-integrals need to be computed. Note that unlike exp(tx.x) which 
satisfies exp(ix.x)exp(iz.x)=exp(i(x+z).c), exr'(iRx.x) does not satisfy 
exp'(ix.x)exp'(ix.x) ~ ecr(i( + z)•x). Define g~}(x; z) for exp'(ix.c) and 
expt(tz.x), corresponding to the gU-integral for exp(tx.c), by 

g&(x; C) _ < exp'(tx.c) exr
1(iz.c) > 

f 2k(x)-3 for x _ z i = j, and exp'(ix.c) ~ 0 (14.6.13a) 
0 otherwise. 

In a similar manner, corresponding to the g-integral, define g(; z) by 

g(; z) _ < exp'(tx.c) expt(~~.x) >a 

f < exp'(tx.c)expt(iz.x) >a for i = j (14.6.13b) 
. 0 otherwise; 

see16 Subsection 14.6.1. 

Using (14.6.12) and (14.6.13), obtain new quadratic forms, J', J, and J', 
for the ith MI sym/ant part of the eigenstresses of a particular form, in the same 
manner as J, J, and J', respectively, are defined. First, consider J and J. Sub-
stituting the ith MI sym/ant part of the Fourier series expansion of an eigenstress 
field of the same class as that used for J and J , and paying attention to the 
orthogonality of exp'(ix.c)'s, define 

J1({FS*h}; s°i ) = J((S+ 2K(x)
FS*'(x) eXp''(tx• x)}; e°) 

x 

= 

 

1 
S+ Fs*'(x)  { aFS( x) } 

2 Fs*'(0) :  

J({FS
* }; 

e°1 ) -J({~+ 2k(x) FS*I(x) ecr '( x . c) }; e°) 
x 

= 
Z S+ ~ 

*'(x) 1(x): { a
Fs 

Fs 
(c) 

} 2 FS(O) : eO1
, (14.6.14a,15a) 

'6 The proof of g(; z) = 0 is essentially similar to (14.6.3); the geometry (shape and loca-
tion) of Wa must be fully symmetric with respect to all three coordinates, and hence, the volume in-
tegral of a sine function over Wa vanishes. 

(14.6.12c,d) 
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where the derivative of these quadratic forms are expressed in component form 
as 

, q 

aFSp~(x) — S+ { S { fa gá' 
"(x; z) (C« — <)P9rs } } Fsrs'( z) 

+FGPgrsFs(x) — gi7( x; 0)  

aJ'  _ 
S+ - 

 n g 
aFSPq(x) z a = r fa gá' (~; ~) (~~ — C)Pgrs }} Fsrs'(z) 

+ FGP9rs Fs(x) — g '(; 0) £pg, (14.6.14b,15b) 

where i' = i'(i; p, q) and i" = i"(i; r, s). In the same manner as the derivatives of 
J and J correspond to the Fourier series expansion of the consistency conditions 
and the truncated Fourier series expansion of the consistency conditions, 
(14.6.14b) and (14.6.15b) correspond to the ith MI sym/ant part of the Fourier 
series expansion of the consistency conditions and the truncated Fourier series 
expansion of the consistency conditions, respectively. 

In order to obtain the extremum (stationary) value of the above-defined 
quadratic form, J',  which is obtained by truncating the infinite Fourier series 
expansion in J1 up to N, (N + 1)3 terms have to be summed. On the other hand, 
to obtain the extremum value of the original J' and J', (21 + 1)3 terms must be 
summed. Furthermore, the g-integrals involved in J" are either real or purely 
imaginary, while the g-integrals involved in J' are complex-valued. Besides the 
decomposition of the quadratic form J' into eight mutually independent J''s, 
the MI sym/ant decomposition of the field variables reduces the numerical effort 
by almost an order of magnitude, without changing the mathematical structure 
of the original quadratic form. 

Next, consider J'. From the definition17 of the correlation tensor GRab, 
(13.4.17a), it follows that 

< GP(Hps*ß`) >", = fp [P4 : s *ß i (b not summed). (14.6.16) 

Hence, the quadratic form for the s*""s coincides with that for the s*"'s, i.e., 

J'({ s } ; e°1) - J( { S }Ias
*a~~ } ; e°) 

a=8 

= aV,o S*ai : I (Ca _ C)_1 : s' ±. 

17 Since C' satisfies the fourth MI sym/ant condition, the computation of GP“ P is simplified by 
applying the MI sym/ant decomposition to the g-integrals; see Subsection 14.6.3. 
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+ io ~~3rP, 3: s*ß'- 2eO1}; (14.6.17) 

see Subsection 13.4.4. Therefore, from (14.6.17), it is seen that for piecewise 
constant eigenstresses, the same quadratic form J' is obtained, even if the ith MI 
sym/ant part of the eigenstress field is used. 

14.6.4. Two-Phase Periodic Structure 
As a simple example, consider a two-phase periodic structure consisting 

of the matrix phase M and the inclusion phase W, to demonstrate the effective-
ness of the MI sym/ant decomposition. For C' to satisfy the fourth MI sym/ant 
condition, the geometry (shape and location) of W must be fully symmetric with 
respect to all three coordinates. Hence, as shown in Subsection 14.6.3, the g-
integral for W must satisfy 

g`i(z; z) = 0 if i ~ j. (14.6.18) 

For simplicity, subscript W is omitted in g'.1(x;  ). 
First, consider the case of the (truncated) Fourier series expansion of the 

eigenstress field. In expressing a set of tensorial equations in matrix form, as in 
Subsection 13.4.3, with the aid of (14.6.18), certain components of the matrix 
may be set to be zero. To illustrate this, for a fourth-order tensor, say, 
(C2 — C) -1 which appears in (14.6.17), express the product with g1 1 in a six by 
six matrix. From the definition of i', i'(i; 1, 1) = i'(i;  2, 2) = i'(i;  3, 3), i'(i;  2, 3), 
i'(i; 3, 1), and i'(i; 1, 2) are different for i = ±1, ±2, ±3, and ±4. Indeed, for the 
case of i = 4, 

i'(4; 1, 1)= ~(4; 

i'(4; 2, 3) 

Then, denoting 

[g" 4a6] = 

where 

2, 2) = ~(4; 3, 3) = 4, 

= — 1, i'(4; 3, 1) _ — 2, i'(4; 1, 2) _ — 3. 

(C°~~ — C)-1 by D, express g''' " D a818 

g'y'
a4iiii g 

'4 '{Dii22 g '''
aD i i33 0 0 

o ., ^ ., '~a42233 0 0 g" 422 i i  g" 42222 g" 
i n a•a u

' 0 0 g''4 ' ~ 4 33 i i g 3322 g~'43333 

0 0 0 g D2323 0 

0 0 0 0 gi ' D3131 
0 0 0 0 0 g D1212 

(14.6.19a—d) 

0 

0 
0 

0 

0 

(14.6.20) 

18 This also applies to the case of multi-phase periodic structures, if each inclusion phase 
geometrically satisfies the fourth MI sym/ant condition. 
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i4 = i'(4; 1, 1) - ~(4; 2, 2) __ ~(4; 3, 3), 

i'(i; 2, 3), i 2 - i'(i; 3, 1), i 3 = i'(i;  1, 2); (14.6.21a--d) 

see (14.6.19). Therefore, in expressing the quadratic forms in matrix form, two 
three by three matrices need to be considered, instead of a six by six matrix, 
because the six by six matrix corresponding to tensorial equations may be writ-
ten as 

[(.••)] = 
[(...)ab](1) [lab] 

[lab] [(•••)ab] (2) (14.6.22) 

   

where [(...)ab](1) and [(...)ab](2) are three by three matrices, and [(...)ab](2) is diago-
nal. 

Next, consider the case of the piecewise constant distribution of an eigen-
stress field. As shown in Subsection 14.6.3, the reduction of the Fourier series 
expansion due to the MI sym/ant decomposition does not appear in the average 
consistency conditions nor in the quadratic forms which are defined from the 
energy functional. However, the six by six matrix representation of the correla-
tion tensor, say, 

GRww, 
attains the form given by (14.6.22), if the geometry of W 

is fully symmetric with respect to all'hree coordinate planes. In this case, the 
g-integral"satisfies 

g(i) = g(), (14.6.23a) 

for i = ±1, ±2, ±3, and ±4, and components of F G' satisfy 

R 
rs 

FG 
+ FG(x)

P9rs(xi) — { — F GP9rs(x) 
for ~~ (i; p, q) = + i'(i; r, s) 
for i'(i;  p, q) = — ~~ (i; r, s). 

(14.6.23b) 

The proof is straightforward: since C satisfies the fourth MI sym/ant condition, 
from definition of FrPgrs and x1, 

FGArs(x1) = sym { x (xt Ctgru 4ú) 
1 

4s I 

= a1P a~q air ais sym 
{ x (x 4 Ctgrux u) 1 x I. (14.6.23c) 

Since aij takes on either + 1 or — 1, obtain (14.6.23b). As shown in (13.4.17b), 
GRfm is the sum of g0(— x) w(x) FGP(x) for all ' s, and hence, the matrix 
representation Of 

rPUU 
is 

GRww (1) 

[Gab°°] [ [dab] [Fá6 M](2)~~ 

where [G bsm](1) and [G bs°](2) are three by three matrices, and [G ] 2 
is diag- 

ona1.19 The other correlation tensors, GRwM = GRMw 
and 

GPMM, 
can be expressed 

in the same matrix form as (14.6.24). 

19 The same comments apply to the approximate correlation tensors obtained by truncating the 
infinite sum of gw( — x) gw(x) FG1'(x). Furthermore, for a multi-phase periodic structure, either the 
exact or the approximate correlation tensors for any two W and Wp, can be expressed in the form 
(14.6.24). 

(14.6.24) 



§ 14.6 MIRROR-IMAGE DECOMPOSITION OF PERIODIC FIELDS 515 

In terms of these correlation tensors, the average consistency conditions, 
or the tensorial equations which optimize the energy functional , aJ'/as*M = 0 
and aJ'/as*U = 0, for the two-phase periodic structure, are expressed as 

(CM — C)-1 : s*M + { (1 — f) I- PMM : s*M + f GPMW : s*~ } — e° = 0, 

(CW — C)-1 : s*~ + { (1 — f) GP'M : s0M + f TRWW : s*~ } — e° = 0; 
(14.6.25a,b) 

see Subsection 14.6.3. Therefore, if C, CTM, and CU are expressed in a matrix 
similar to (14.6.24)20, then, the matrix form of (14.6.25a,b) becomes 

([C ~(1)] — [CSD
-1 

[si;M
w] + {(1—f) [ G e 

M(m) 

[sVM(1)] 

~[

+ f [G b W(1)] [s 1 ]) — [e ] = [0a], 

([C ] — [Ca (e)D-t [shW(t)] + {(1 — f) [TabWM(1) [ßb M(1)] 

+ f [GabWW(1)] [Sh W(1)] } — [ ea (1)] = [lal, (14.6.25c,d) 

for I = 1, 2, where [ea(t)] is a three by one vector, defined from a six by one vec-
tor [ea] through [ [ea (1)]r [ea lr ]T - [ea], and [0a ] is a three by one zero vector. 
The solution to (14.6.25c,d) is 

[sa 
M(1)] _ :[W~~)] — f(1 — f) [Ta~W(1)] [M~e)]- i [TMWa)] . i 

[1cb] — f [T ~'W(1)] [M#~)]-1 } [ei,(1)], 

[sá W( p] = { [M1 — f(1 _  f) [G ~W(°] [Wc~e ]-1 [t'MW(1)] }_-1 

{ [1cb] —(1 — f) [ TMW(i)] [W]-1 

where the three by three matrices, [Ma%)] and [Wa(e)], are defined by 

[Máb)] _ [Cab(1) — C ab)]-1 ±(l —f) [ GabM(1)], 

[Wa)] _ [Cab°) — Ca)]-t + f [TabW(1)], 

(14.6.26a,b) 

(14.6.26c,d) 

and [lab] is a three by three identity matrix. It should be noted that since [C0], 
[C 2 ], and [C 2 ] are diagonal, (14.6.26) for I = 2 reduces to the correspond-
ing scalar equation for the diagonal components. 

20 As shown in Section 3, if the matrix or the inclusion satisfies a certain material symmetry, 
the matrix form of its elasticity tensor, CM or C2, is given by (14.6.24). Note that the reference elas-
ticity, C, can always be chosen to satisfy a certain desired symmetry. 
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As shown in Subsection 14.6.3, (14.6.26) can be applied to any MI 
sym/ant part of the homogeneous strain and the corresponding eigenstress. 
Since the fourth MI sym/ant part of e° is ePp, obtain the corresponding fourth MI 
sym/ant part of the eigenstresses, sPP and sPP , from (14.6.26) for I = 1 (p not 
summed). For the other MI sym/ant parts of e°, e23, e3iR , or ßi2, (corresponding 
to the — 1st, — 2nd, — 3rd MI sym/ant part), obtain 21 the corresponding eigens-
tresses from (14.6.26) for I = 2. 

2' Since (14.6.26) for I = 2 can be reduced to scalar equations for the diagonal components of 
the matrices, the three MI sym/ant parts of the eigenstresses are obtained independently. 



APPENDIX A APPLICATION TO INELASTIC HET-
EROGENEOUS SOLIDS 

The material presented in Part 1 provides a fundamental framework for 
quantitative evaluation of overall properties and failure modes of a broad class 
of solids with microheterogeneities and defects. While the concepts are 
presented and illustrated in the context of linear elasticity, essentially the entire 
formulation translates directly and applies to inelastic solids within the frame-
work of small-deformation theories, provided expressions are properly inter-
preted in terms of appropriate strain and stress rates, or strain and stress incre-
ments. Indeed, with suitable interpretation of the rate quantities, the theory also 
applies to geometrically nonlinear problems involving finite deformations and 
rotations. This appendix provides a brief guide for the application of the basic 
results presented in this Part 1, to heterogeneous solids with inelastic consti-
tuents. 

A.1. SOURCES OF INELASTICITY 

Geometrical changes at the microscale often produce irreversible defor-
mations and hence, serve as sources of inelasticity. Microcracking and micro-
crack growth are examples which are treated in some detail in Section 6. Cavita-
tion and void growth, dislocation, twinning, and phase transformation are other 
examples of micro-events which lead to macroscopic inelastic response of 
materials. These processes are generally highly history- and rate-dependent. 
Since a detailed examination of any of these basic issues will require a treatise 
in its own right, here attention is limited to a cursory examination of a few basic 
concepts which are presented to provide guidance for the reader in seeking to 
apply the general theories of the preceding sections to problems of this kind. 

To be specific, two classes of inelastic solids are briefly examined: (1) 
solids whose constituents may be characterized through phenomenological ine-
lastic models such as rate-independent plasticity and rate-dependent viscoplasti-
city; and (2) inelastic solids whose constituent properties require description at a 
yet-smaller length-scale. An example of this second class is slip-induced plastic 
deformation of single-crystal constituents in a polycrystal aggregate. Examples 
of the first class of problems include metal-matrix composites, such as alumi-
num matrix-alumina inclusions, aluminum matrix-silicon inclusions, intermetal-
lics with various toughening or hardening precipitates and inclusions, such as 
titanium-aluminide, nickel-aluminide, niobium-silicide, and related alloys with 
toughening ductile or hardening brittle reinforcements, and finally, ceramic 
matrix-metal composites, such as boron carbide-aluminum cermet. 



518 APPENDIX § A.1 

In the remainder of this appendix, illustrative constitutive relations for 
both classes of problems mentioned above are briefly presented, and their imple-
mentation in terms of the general theories of the preceding sections is pointed 
out. First, certain rate-independent phenomenological plasticity theories are out-
lined, with a brief examination of slip-induced crystal plasticity. Then their 
interpretation in terms of rate-dependent processes is mentioned. A general 
review of large-deformation phenomenological plasticity with an extensive list 
of references is given by Nemat-Nasser (1992), and a comprehensive account of 
single-crystal plasticity has been provided by Havner (1992). In view of these 
timely expositions, no attempt is made in this appendix to provide a comprehen-
sive literature account. 

A.2. RATE-INDEPENDENT PHENOMENOLOGICAL PLASTICITY 

The classical rate-independent plasticity is based on the concept of the 
yield surface, either in stress space or in strain space. Traditionally, these 
theories have been developed for pressure-insensitive plastically incompressible 
solids, approximating in general the plastic response of metals. For application 
to porous metals and other materials such as granular masses where pressure 
sensitivity and inelastic volumetric strain are significant and often dominating 
features, the classical theories have been modified to include pressure and 
volumetric effects. 

In the absence of microstructural changes, the response of elastoplastic 
materials is purely elastic; see, e.g., Havner (1982, 1992), Hill (1950, 1972, 
1978), Naghdi (1960), and Nemat-Nasser (1983, 1992). The rate of change of 
the strain decomposes exactly into an elastic, ~eI , and a plastic, ~r~ , contribution 
as l 

~~ = ~el +~P~ . (A.2.la) 

The stress rate relates to the elastic part of the strain rate by the elasticity rela-
tion 

= C : Y e1 , (A.2. Ib) 

where ~~ is the stress rate,2 and C is the current elasticity tensor, with inverse D, 
the corresponding compliance.3 

This holds even at large strains and rotations, independently of the particular material strain 
measure or the reference state which may be employed, as long as the same reference state is used to 
measure the elastic and inelastic rates; Nemat-Nasser (1979, 1982). 

2 For finite deformations, an objective stress rate must be used. 

Note that both of these tensors depend on and vary with the strain measure and the reference 
state, and both are symmetric, e.g., C;jkl = Cksj = CJjkj = Cjjlk when a fixed rectangular Cartesian 
coordinate system is used. 
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The classical theory of elastoplasticity is based on the concept of the yield 
surface which, either in the stress space or in the strain space, defines a region 
within which the material response is elastic and on which the response may be 
elastoplastic. The shape and size of the yield surface vary with the history of 
the inelastic deformation. It may be smooth, with a continuously turning 
tangent plane, or it may possess corners or vertices, each consisting of a set of 
smooth intersecting surfaces. The existence of such vertices is an integral part 
of the physics of crystal plasticity. It plays a dominant role in phenomena such 
as instability by localized deformation, necking, and shed banding. In the 
sequel, first, cases associated with a smooth yield surface are considered, and 
then the response at a vertex is briefly discussed. 

A.2.1. Constitutive Relations: Smooth Yield Surface 

The rate-independent phenomenological plasticity essentially generalizes 
the results of uniaxial and torsional deformation of metals, where over a range 
of stresses (or strains) the sample behaves essentially elastically, but once a crit-
ical stress (strain) is reached, the response becomes elastoplastic in continued 
loading, and elastic upon unloading. The theory has been formulated in both 
stress and strain space; Hill (1967a, 1978). 

In stress space the yield surface marks elastoplastic states. For stress 
points within the yield surface the material response is elastic. For points on the 
yield surface the response is elastoplastic. When the change in the stress state 
tends to lead into the yield surface, the material element undergoes elastic 
unloading. When the stress point moves on the current yield surface, the 
material element undergoes neutral loading. When the change in the stress state 
tends to lead out of the current yield surface, the material element undergoes 
loading. In this case the yield surface moves with the stress point and the stress 
point remains always on the yield surface. The yield surface may expand, or 
simply move, or do both. This is called work-hardening. When the yield surface 
expands self-similarly, the work-hardening is called isotropic hardening. On 
the other hand, when the yield surface does not change size but simply moves 
with the stress point, the material is said to be kinematically hardening. In gen-
eral, a combined isotropic-kinematic hardening can be considered. These are 
idealizations, since in general, the yield surface changes shape in a complex 
manner, as is the case for polycrystalline metals; Hutchinson (1970), Kocks 
(1970), Iwakuma and Nemat-Nasser (1984), and Nemat-Nasser and Obata 
(1986). 

Let m be normal to the yield surface in the stress space, and let m define 
the direction of the plastic strain. Then, 

~~ _ ~eI +~R1 = D' : ~, D' = D+m®M, (A.2.2a,b) 

where D' is the instantaneous elastoplastic compliance tensor. 

In a similar manner, let l be in the direction of the normal to the yield sur-
face at a point in the strain space, and denote by 1 the direction of the inelastic 
stress "decrement". Then 
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~ = C':~ , C' C - I âl, (A.2.3a,b) 

where C' is the instantaneous elastoplastic modulus tensor. It is required that 
C' and D' be each other's inverse. From this and the symmetry of the elastic 
modulus and compliance tensors, it follows that (Hill, 1967b) 

l =C:m, m= D: l, 1 =  C:m __  D:1  
l+l:m' 

m 

1-m: l' 

(1 +l: m)(l -M: !) = 1. (A.2.4a-e) 

The conditions for loading or unloading are: l : ~~ > 0 for loading, = 0 for neu-
tral loading, and < 0 for unloading. The corresponding conditions in the stress 
space are obtained by direct substitution. In addition, the conditions for strain-
hardening, perfect plasticity, or strain-softening respectively correspond to 

= l,and>1. 

A.2.2. Flow Potential and Associative Flow Rule 

In the stress space, consider the following yield and flow potential sur-
faces: 

f = f(s, ...) = 0, g = g(s, ...), (A.2.5a,b) 

where dots stand for temperature and for internal variables that characterize 
material hardening. The plastic strain rate is 

~p1 - 
'g 2~ . (A.2.5c) 

Comparison with (A.2.2) shows that m = ag/as and' = M. : s. For continued 
plastic flow, f = (af/as) : ~~ +... = 0, from which it follows that ~~ = H-1(af/as) 
: ~~ and m = H-1(af/as), where H, the work-hardening parameter, depends on 
the manner by which the yield surface changes in the course of plastic flow. 
Hence, the instantaneous compliance tensor is defined by 

D' = D + 
H a~ ® ate . (A.2.6a) 

The inverse relation is easily obtained by calculating l and 1 in terms of m and 
m, 

H
+ ~s 'C'~s{ C. ~~ {®{C: ás}. (A.2.6b) 

Equations (A.2.6a,b) are the required instantaneous compliance and 
modulus tensors of the material. As is seen, these are dependent on the stress 
state at each material point. They apply to plastically compressible or 
incompressible cases. Note that the dependence of the yield function and flow 
potential on the internal state variables can be quite general, including any 
desired work-hardening rules. 

When the functions f and g are identical, tensors m and m become uni-
directional in the stress space. In this case the plasticity is said to be governed 
by an associative flow rule, otherwise the flow rule is said to be nonassociative. 
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Some examples are given in the following subsections. 

A.2.3. The J2-Flow Theory with Isotropic Hardening 

A widely used phenomenological plasticity is the so-called J2-flow theory. 
The yield function and the flow potential are defined by 

f-g- t —F( g), 

t = (' s' : s')'h ='1J2, = (2~R" : ~RI ')viz (A.2.7a— c) 

where prime denotes the deviatoric part and F is an arbitrary function. 

Here the plastic flow is volume-preserving and pressure-independent. 
Hence, hydrostatic pressure or tension induces only elastic deformation. The 
deviatoric plastic deformation rate is given by 

~ri' = (
2H ') - = 2t , H = á~ 

. (A.2.8a--c) 

In the deviatoric stress space, f = O for F positive, is a sphere of squared 
radius 2F2. The quantity t is the effective stress, and g is the effective plastic 
strain. In pure shearing, t is the shear stress and g is the corresponding shear 
strain. Then dT/dy = F' defines the slope of the shear stress versus the plastic 
shear strain curve. Depending on whether F' is positive, zero, or negative, the 
radius of the yield surface increases (work-hardening), remains constant (perfect 
plasticity), or decreases (work-softening). 

The final instantaneous compliance tensor is 

D' = D + s' âs'  
4t2 H 

with the following inverse: 

C' = C (C: s')®(C: s')  
4t2 H+ s':C:s' 

It is seen from (A.2.9a,b) that for elastoplastic materials, the instantaneous 
compliance and modulus tensors are dependent on the stress state and the his-
tory of deformation. Hence, the eigenstrain or eigenstress fields necessary for 
homogenization of a composite with elastoplastic constituents in general will 
have nonuniform spatial variation, and change as the deformation develops. In 
this case, the composite may be subdivided into elements, and piecewise con-
stant eigenstrains or eigenstresses may be considered for homogenization. This 
procedure has been used by Accorsi and Nemat-Nasser (1986) and Nemat-
Nasser etal. (1986) for periodic microstructures. Since in the periodic case, the 
unit cell is finite, at least in principle it is possible to homogenize the unit cell to 
any desired degree of accuracy by piecewise constant fields. 

Alternative approximate procedures have been developed and applied to 
calculate the overall elastic-plastic response of composites consisting of an ine-
lastic matrix and inelastic inclusions. A procedure which seeks to include both 
the inclusion-matrix and the inclusion-inclusion interactions, has emerged 

(A.2.9a) 

(~.2.9b) 



522 APPENDIX § A.2 

through the work of several authors, e.g., Taya and Chou (1981), Taya and 
Mura (1981), and Weng (1981, 1982, 1984, 1990). The method exploits a 
simplified version of Hill's (1965) self-consistent formulation of the overall 
response of elastic-plastic aggregates (Berveiller and Zaoui, 1979) in order to 
account in an approximate manner for the inclusion-matrix interaction, and the 
Mori-Tanaka (1973) mean field approach in order to incorporate the inclusion-
inclusion interaction. The approximation involved in the modification of the 
self-consistent method limits the theory to proportional loading. The method 
has been applied to other problems, e.g., to study the inclusion-shape effect, 
again for proportional loading. Other related studies are Tandon and Weng 
(1988) and Teply and Dvorak (1988). 

A separate and rigorous approach to nonlinear composites has been ini-
tiated by Willis (1983), where the Hashin-Shtrikman variational principle is 
extended for application to nonlinear problems. This line of thought has been 
continued by Talbot and Willis (1985, 1986, 1987), Duva (1984, 1986), Duva 
and Hutchinson (1984), Ponte Casta~eda and Willis (1988), Toland and Willis 
(1989), Willis (1986, 1989), and more recently by Lee and Mear (1992a,b), who 
use the extended variational principles to produce bounds on the overall parame-
ters of nonlinear composites, with particular application to the power-law 
model. 

A.2.4. The J2-Flow Theory with Kinematic Hardening 

For a purely kinematic hardening model, the radius of the yield surface in 
the deviatoric stress space remains constant, while its center moves as plastic 
flow takes place. Let b be a symmetric deviatoric second-order tensor defining 
the location of the center of the yield surface in the deviatoric stress space. The 
yield surface is then expressed as 

f = ~ — tY, (A.2.10a) 

where tÝ is a constant defining the yield stress in pure shear, and 

_ { ½(s' — ß) : ( s' — ß) }'%. (A.2.10b) 

The compliance tensor is now given by 

D' - D±   
2l. 
  (A.2.11 a) 

where 

JL —_ s —ß 
12  2  ' 

and ~~ is obtained from the condition of continued plastic flow, i.e., from the so-
called consistency condition f = 0 which yields, 

(A.2. 1 i b) 

(A.2.11 c) 

Additional assumptions are required to define the evolution of the parame-
ter % and hence the work-hardening quantity ~. For this it is observed that the 
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parameter ß is a macroscopic back stress representing the effect of local resi-
dual stresses and strains on the overall plastic flow of the material. For the evo-
lution of the back stress ß, it is often assumed 

b= g Am,  A=A(y). (A.2.11 d) 

For combined isotropic-kinematic hardening, the yield function and the 
flow potential in the J2-flow theory become 

f - g - t — F( g). (A.2.12a) 

The hardening parameter H in this case is given by 

H = H + ~. (A.2.12b) 

The compliance tensor is 

D'= D + (s'— b)â(s'— ß) (A.2.12c) 
4t2 H 

The inverse_ relation is obtained from (A.2.9b): replace in the right-hand side, t 
by T, Hby I-I, and s'by(s'— ). 

A.2.5. The J2-Flow Theory with Dilatancy and Pressure Sensitivity 

For geomaterials, volumetric strains, frictional effects, and pressure sensi-
tivity are of prime importance, especially in the study of localized deformation. 
The volumetric strain is also of importance in porous metals. The pressure sen-
sitivity and plastic volumetric strains may stem from a variety of possibly 
interacting micromechanisms. 

Classical plasticity has been modified for application to problems which 
involve inelastic volumetric strains as well as pressure effects. This has been 
done by including in the yield surface the dependence on the first stress invari-
ant; see, e.g. Drucker and Lager (1952), and Berg (1970). A derivation of the 
constitutive relations based on the concepts of yield surface and flow potential 
has been given by Nemat-Nasser and Shokooh (1980) for large-deformation 
problems. In this formulation the effects of inelastic dilatation (or densification) 
and friction (pressure sensitivity) are delineated and discussed. The theoretical 
predictions have been compared with experimental results showing reasonably 
good success; see Donis and Nemat-Nasser (1982), and Rowshandel and 
Nemat-Nasser (1987). Another feature of geomaterials, which stems from their 
frictional property, is the noncoaxiality of the plastic strain and the stress devia-
tor; Mandel (1947), Spencer (1964, 1982), Rudnicki and Rice (1975), Mehra-
badi and Cowin (1978), Nemat-Nasser etal. (1981), and Nemat-Nasser (1983). 

As an illustration, consider isotropic and kinematic hardening with the fol-
lowing yield surface and flow potential: 

f = — F(I, D, g), g - t + G(I, D, g), (A.2.13a,b) 

where 
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D =lo
~~dt,  I=s~, (A.2. 13c,d) 

and where t is defined by (A.2. lOb) and g (as before) is the accumulated effec-
tive plastic strain. The quantity D is the total accumulated plastic volumetric 
strain. 

Following the procedure of the previous subsections it is easy to show that 
the corresponding compliance tensor (including dilatancy or densification) is 
given by 

r 
D' = D+ ~~ j - +  aI  1} ®j - L — áÍ 1J , (A.2.13e) 

where the hardening parameter H is 

H 	aD~+aY + ~. 

A.2.6. Constitutive Relations: Yield Vertex 

As pointed out before, vertices or corners are an integral part of crystal 
plasticity. They play a central role in proper modeling of material instability by 
localization. Therefore, effective phenomenological models must also include 
vertices or, at least, account in some sense for the effect of the vertex structure 
in the elastoplastic response of materials. Since the vertices are part of single-
crystal plasticity, (Hill, 1966; Hill and Rice, 1972; Asaro, 1983; and Havner, 
1992), many ideas and concepts may be borrowed from the theory of single-
crystal plasticity, although a certain degree of arbitrariness is inherent in the 
phenomenological developments, since these are not as closely related to the 
physics and micromechanics of the phenomena, as are the concepts in slip-
induced crystal plasticity. 

A corner on the yield surface is formed by the intersection of several 
smooth surfaces, each characterizing a portion of the overall yield surface. In 
the strain space, consider a corner formed by the intersection of n surfaces, 

= fa (e, g) (a = 1, 2, ..., n), where g with components ya represents n scalar 
parameters characterizing the work-hardening associated with each segment of 
the yield surface. The stress rate for continued elastic-plastic flow is expressed 
as 

• = C: ~~ — ~a Ca (cc summed; a = 1, 2, ..., n), (A.2.14a) 

where la is normal to the a'th yield surface, and is calculated from the con- 
sistency conditions that, for continued plastic flow with the state remaining at 
the corner, 'a = 0. It thus follows that 

— la : ~~ + gaß ß = 0  (b summed), (A.2.14b) 

where 

• 

afa/ae, gaß = afa/lg ß. (A.2. 14c) 

When the n x n matrix with components gab admits an inverse with components 

(A.2. I 3f) 
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g a~, then (A.2.14b) is solved to obtain 

, i a = g ~ß lß : ~. (A.2.14d) 

Hence, the modulus tensor becomes 

C' = C — g a P la âlß. (A.2.14e) 

In a similar manner, consider a typical corner of the yield surface in the 
stress space, defined by the intersection of n surfaces 0a = Ya~s, y). The strain 
rate for a continued plastic flow, with the stress point remaining at the corner, 
becomes 

~~ = D : ~~ + Ua Ma, (A.2.15a) 

where Ma is normal to the a'th surface at the corner, and 

Ma : ~~ + hßß ~~ P = 0, (A.2.15b) 

where 

Ma = aya/as, haß = a ya/aga. (A.2.15c) 

Again, when the matrix of haß admits an inverse with components h aP, from 
(A.2.15c) obtain 

_. — ha~mß:&. (A.2.15d) 

The compliance tensor is 

D' = D—h maâMß. (A.2.15e) 

For consistency, y obtained from (A.2.14d) and (A.2.15d) must be the 
same. Since (A.2.14a) and (A.2.15a) must be consistent, it follows that 

la= C: m
a,  Ma= D: la, (A.2.16a) 

and (A.2.14b) and (A.2.15b) then yield 

{ (gaß + haß) — ( Ma : C: Mb) } ~~ R = O. (A.2.16b) 

This is automatically satisfied if 

gaß + haß = Ma : C: Mß, (A.2.16c) 

in which case, while neither gaß nor haß need to be symmetric, their sum must 
be. 

In general, the matrix of gaß may be singular and may not admit an 
inverse. The situation is similar to that of crystal plasticity. Here, however, 
there is little physically-based guidance for further development. Some simpli- 
fying assumptions can be made. For example, if each surface, or 

0, 
is 

regarded to depend only on one scalar parameter ya, then the matrices of both 
gaß and haß are diagonal and can easily be inverted. Other assumptions may be 
made. These have been discussed in connection with crystal plasticity by Hill 
and Rice (1972), and in the phenomenological context by Sewell (1972, 1974), 
and summarized by Hill (1978). 
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A.2.7. Crystal Plasticity 

As an illustration, the results of the preceding subsection are applied to 
examine a simple version of constitutive relations for plastic flow of single crys- 
tals which deform by slip on crystallographic planes.4 Both rate-independent 
and rate-dependent plastic flow by slip are included; see also Subsection A.3.4. 
A basic feature of crystal plasticity is that material flows through the crystal lat-
tice via dislocation motion, and the lattice itself can deform only elastically, in 
addition to possible rigid rotations. Thus, two different mechanisms are 
involved in the deformation: (1) plastic slip, and (2) elastic lattice deformation. 
For fcc (face-centered cubic) crystals considered here, there are a total of four 
crystallographic planes, each containing three slip orientations. When slip rates 
are viewed as nonnegative quantities, then there are a total of 24 slip systems in 
fcc crystals, in which no more (and generally less) than 12 can be active at each 
instant; see, e.g., Havner (1992) for a comprehensive account. Let the orthogo-
nal unit vectors sa and 

a, 
respectively define the ath slip direction and its 

plane, and set 

Ma = 1 (Sa®na+rya®sa) (a not summed; a = 1, 2, ..., n), (A.2.17a) 

where n is the number of slip systems; a slip system is defined by a pair of sa 
and rya, for fixed a. The plastic strain rate is then defined by 

Epp  ~a ma, (A.2. 17b) 

where c is summed on all active slip systems; is the rate of slip, and a slip 
system is regarded as active when its corresponding slip rate is positive. Note 
that with this convention, sa and — sa constitute two separate slip directions, 
since a is always nonnegative. Comparison with (A.2.15a) now shows a direct 
correspondence with the phenomenological theory. 

The condition for slip is defined in terms of the resultant shear stress in 
the direction of slip, i.e., in terms of the resolved shear stress 

Ta = s : Ma. (A.2.18a) 

In the rate-independent theory, the Schmid law is often used to define the flow 
condition. According to this law, yielding may begin on the slip system c, when 
Ta reaches the current value of the slip system's flow stress ta which is deter-
mined by the current dislocation density and the corresponding substructure. 
The set of systems for which Ta = ta is called potentially active or critical. For 
the system a to remain active, Ta must increase to, and remain at the critical 
value T . A hardening law similar to (A.2.15b) may be used to define changes of 
the critical values of the resolved shear stress. Thus, for active slip systems, 

For detailed discussions of slip-induced inelastic strain in crystalline solids, see Taylor 
(1934, 1938), Cottrell (1953), Hershey (1954), Lin (1954), Kicks (1958, 1970), Budiansky and Wu 
(1962), Mandel (1966), Hill (1967a,b), Rice (1970), Hutchinson (1970, 1976), Zarka (1972, 
1973a,b), Hairier and Shalaby (1977), Nemat-Nasser et al. (1981), Nemat-Nasser (1983, 1986), and 
Rainer (1992) who also provides a comprehensive historical account. 
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" =t"=h«R~P for g~ > 0, (~.2.18b) 

where ß is summed over all active slip systems. When a critical system is inac-
tive, 

tia < ti" = haR ~~ R for j
,
a = 0. (A.2.18c) 

Finally the noncritical systems are characterized by the inequality 

Ta < T" for ya = 0. (A.2.18d) 

The results of this subsection apply to both small and large deformations 
of single crystals. For large deformations, the crystal spin which leads to textur-
ing of a polycrystal aggregate, must be included. This is defined by 

~= earl (a summed), 

where 

(A.2.19a) 

ra 
= 2 

(Sa®II a — II a®S a) (a not summed; a = 1, 2, ..., n). (A.2. 19b)  

The plastic part of the velocity gradient, Nâii, becomes 

11 = (0®U)''1 
= ~ ~a sa®D a, 

a=1 

and the total velocity gradient is 

(A.2. 19c)  

I = le! +1p1. (A.2. 19d)  

A.2.8. Aggregate Properties 

It is reasonable to regard the stress and deformation fields to be uniform 
within each crystal in a suitably large aggregate representing an RVE of a 
polycrystal, since, by necessity, the grains must be very small relative to the size 
of the RVE. As discussed before, such an assumption is in accord with the 
usual continuum formulation of the flow and deformation of matter. It is also 
the basis of the general theory of single crystals. 

The procedure for calculating the overall elastic-plastic moduli of an 
aggregate of single crystals, follows the one outlined in Subsection 7.5.4 for the 
corresponding overall elasticity tensor, except a rate formulation is now 
involved. For the self-consistent method, for example, (7.5.16) may be used. 
When an aggregate of essentially the same crystals of different orientations is 
considered, it is more transparent to use the averaging operator < >, to denote 
the average over all orientations, shapes, and sizes of the crystal constituents. 
Denote the concentration tensors of a typical crystal, W, by A and 01 °. These 
are defined as 

~° = A tRz : ~°, (A.2.20a) 

when the macrostrain rate, ~°, is prescribed, and 
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Bw : jy°, (A.2.20u) 

when the macrostress rate, &°, is prescribed. As discussed in Section 10, the 
functional form of these concentration tensors depends on the type of averaging 
method which is employed. 

Now, suppose that the current instantaneous modulus and compliance ten-
sors of W are CU and D 

W, 
respectively. Then, it immediately follows that the 

overall instantaneous modulus and compliance tensors are respectively given by 

C = <C0 : A U>  and D = <DW : BW>, (A.2.20c,d) 

where the summation is over all crystal orientations, shapes, and sizes in the 
aggregate. For self-consistency and upon averaging (A.2.20a,b), observe that 
the concentration tensors must satisfy 

<AW> = 1(4s) and <BU> = 1(4s). (A.2.21a,b) 

When an individual grain in an aggregate is regarded to be an ellipsoid 
embedded in a homogeneous matrix with moduli C, then the concentration ten-
sors A and B can be calculated from the formulae given in the preceding sec-
tions. This tensor then depends on the orientation of the ellipsoid, as well as on 
its aspect ratios, but not on its size. Unless all the grains are aligned, the con-
centration tensors may not satisfy the consistency conditions (A.2.21a,b). This 
is an inherent problem also shared by linearly elastic composites; Hill (1965) 
and Walpole (1969). To remedy this, the concentration tensors must be normal-
ized. This normalization, however, can be implemented in different ways; 
Nemat-Nasser and Obata (1986). A technique proposed by Walpole (1969) is to 
replace the concentration tensors by 

Aw Lw : <AW>-1, 
Bw - Bw : <BW>-1, (A.2.21c,d) 

which automatically satisfies (A.2.21a,b). Iwakuma and Nemat-Nasser (1984), 
and Nemat-Nasser and Obata (1986), in their self-consistent computation of 
both rate-independent and rate-dependent finite deformation of polycrystalline 
solids, observe that this normalization leads to a stable computational procedure. 

A.3. RATE-DEPENDENT THEORIES 

Inelastic deformation of solids and geomaterials in general is rate-
dependent. Rate-independent plasticity theories represent idealizations with 
limited applicability. The rate-dependency is especially dominant at high 
strain-rate deformations. 

To deal with rate effects within a phenomenological framework, two 
classes of constitutive models may be identified: (1) fully rate-dependent plasti-
city; and (2) viscoplasticity. In the first approach, the deformation rate consists 
of an elastic and an inelastic constituent, throughout the entire deformation his-
tory, i.e. there is no yield surface, whereas in the second approach, a yield sur-
face is considered within which the response is elastic and on which the 
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response may be elastic-viscoplastic, where the plastic flow is rate-dependent. 
In this latter case, loading and unloading, analogous to the rate-independent 
theories, are included. 

A.3.1. Rate Dependent J2-Plasticity 

The simplest model is obtained when the plastic part of the deformation 
rate is expressed as 

ßp1 
= ~

2 
Y 11, (A.3.1) 

where m is defined by (A.2.8b). The difference between the rate-dependent and 
the rate-independent J2-plasticity then is in the manner by which ~~ is character-
ized. Whereas in the rate-independent case, ~~ is proportional to the rate of 
change of the deviatoric stress, for the rate-dependent case ' is expressed in 
terms of the effective stress t and relevant parameters which characterize the 
rate-controlling processes and the current microstructure. Therefore, depending 
on the history and the deformation regime, different descriptions of ~, in terms 
of t and other parameters, may be used. 

As an illustration consider 

U = Uo m(t, U, T), (A.3.2a) 

where g is some suitable function, o is a reference strain rate, and T is tempera-
ture. An example is the power-law, 

t m g =g o tr 
(A.3.2b) 

where m is a fixed parameter, usually very large, e.g., of the order of 100 at 
strain rates less than about 104 s-1, and T is the reference shear stress. In this 
representation, the reference stress T includes the essential physics of the defor-
mation. In general, Tr is dependent on the accumulated plastic strain, on the 
temperature, and on other parameters which define the current state of the 
microstructure. A simple representation often used is  

= to(1+U/go)N exp{— lo (T— To)}, (A.3.2c) 

where T0 and Yo are normalizing stress and strain measures, N and l0 are 
material parameters, and To is the reference temperature. Here, N is the strain-
hardening parameter, whereas l0 is a parameter characterizing thermal softening 
effects. The total deformation rate is the sum of the elastic and plastic parts, as 
in (A.2.1a). From (A.3.2b), with m of the order of 100, it is clear that the plastic 
strain rate is negligibly small if the effective stress t is much less than the refer-
ence stress Tr.  Once t reaches the value of T, and especially when it tends to 
exceed this value, the plastic strain rate dominates, and therefore, the overall 
response for large values of m resembles that of the elastic-plastic rate-
independent model. 
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A.3.2. Viscoplastic J2-Flow Theory 

In the preceding subsection, the plastic part of the deformation rate is 
always nonzero, although it may be negligibly small, when t/Tr is less than 1. 
A viscoplasticity model is obtained if a rate-dependent yield stress is introduced, 
so that, whenever the effective stress t falls below the current value of the yield 
stress, the plastic strain rate vanishes. There are a number of phenomenological 
models of this kind discussed in the literature; see, for example, Perzyna (1980, 
1984). 

As an illustration, consider the plastic deformation rate given by (A.3.1), 
with ~~ defined by (A.3.2a). The viscoplastic version of this simple model would 
be 

~rI = 

where 

TV = Tr 

U MI 'i 

0 

(Í' /.0)1/m 

when T > TV 

when T < Ty, 
(A.3.3a) 

(~.3.3b) 

and T is given, e.g., by (A.3.2c). 

A.3.3. Nonlinear Viscoplastic Model 

For application of the general homogenization theory to nonlinear visco-
plastic materials, consider an incremental formulation in terms of the strain-rate 
increment, i.e., d~. From the models illustrated in this subsection, the strain rate 
for materials of this kind may be expressed as 

~~ = F(s, ...), (A.3.4a) 

where F is some suitable function of stress and other relevant state variables. 
For example, in the power-law model, ~~ depends on both the stress through the 
effective stress t, and on the stress rate. In the absence of elasticity, the depen-
dence on the stress rate disappears, and an expression similar to (A.3.4a) results. 
The incremental relation then becomes 

or 

d~~ = (aF/as) : ds, 

d~~ = D' : ds. 

(~.3.4b) 

(A.3.4c) 

The pseudo-compliance D '(s) now is a function of stress, but the relation 
between the strain-rate increment and the stress increment is linear. This means 
that the results of the theories of the preceding sections now apply to this class 
of problems; see Nemat-Nasser et al. (1986) for worked out examples of com-
posites with periodic microstructures. 



§ A.3 INELASTICITY 531 

A.3.4. Rate-Dependent Crystal Plasticity 

For crystals with rate-dependent plastic slip, the slip rates are given as 
functions of the current stress state, temperature, and the current state of 
material hardness. To model this, let the slip rate in (A.2.17b) be represented 
as 

~« = 1ó ga(ta, ta, T) (a not summed), (A.3.5a) 

where ga is some suitable function of its arguments, 
1'ó 

is a reference strain rate 
for the ath slip system, ta defines the hardening state of this slip system, and T 
is temperature. As an example, consider the power-law, 

ta m 
(~.3.5b) 

where m, again here, is a fixed parameter, usually very large, similar to the phe-
nomenological case, and the reference stress ta depends on the accumulated 
plastic strain of all slip systems, on the temperature, and on other parameters 
which define the current state of the crystal. These effects can be included 
through a hardening rule. For example, consider 

haP  +aT, (A.3.5c) 

where haß is the strain hardening matrix, and T is the rate of change of tempera-
ture. The parameter a represents strain softening due to temperature increase. 
At high strain rates, where an almost adiabatic regime may prevail, strain 
softening due to heating caused by plastic flow may play an important role in 
inducing localized deformations and hence, failure. For quasi-static deforma-
tion, however, an isothermal condition is often assumed, in which case T = 0. 

For rate-dependent slip, it may be more effective to directly ensure the 
coincidence of the signs of the slip rate and the corresponding driving shear 
stress. For the present illustration, this may be accomplished as follows: 

= ~ó sign (ta) 
[  1 ta 

1 ~~
 m (A.3.5d) 

~a 
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PREFACE TO PART 2 

Certain basic elements in the mathematical theory of elasticity, which 
form an essential background for the micromechanics covered in Part 1, are 
briefly reviewed here in Part 2, rendering the book essentially self-contained. 
We begin here with a brief statement of purpose. The theory of elasticity is con-
cerned with the response of an elastic solid to applied loads or imposed surface 
displacements. Depending on the rate at which these loads or displacements are 
imposed and varied in time, the inertia of the elements of the elastic solid may 
or may not be relevant to the determination of its response. Accordingly, the 
considered problem may be in elastodynamics or elastostatics. 

Depending on the practical background of a given problem, the 
"response" may refer to one or all of the following fields: the stress field, the 
strain field, and the displacement field. These fields are specified by sets of func-
tions of position and time, describing the spacewise and timewise variations of 
internal forces, local deformations, and particle displacements. 

The theory of elasticity is a continuum theory. Thus, the term "internal 
forces" does not refer to forces at the atomic, molecular, or crystalline levels, 
but rather to forces between adjacent macroscopic elements that, though small 
in comparison with typical dimensions of the considered body, are large in com-
parison with typical dimensions of crystals. As used above, the terms "local 
deformation" and "particle displacement" also refer to macroscopic elements. 

Even when viewed in this macroscopic manner, the mechanical properties 
of real solids are extremely complex. Any attempt at including a wide range of 
these properties leads to a theory that is far too unwieldy for the practical 
analysis of stresses and strains in many applications. Instead of a comprehen-
sive but unwieldy theory of this kind, simpler models have been developed that 
only describe a limited range of mechanical behavior. Depending on the prob-
lem at hand, the use of only one of these models may be adequate, or a switch 
from one model to another may be necessary at some stage of the loading pro-
cess. Each theory of this kind describes the behavior of an ideal (rather than an 
actual) solid. 

The theory of elasticity is concerned with such an idealization, the per-
fectly elastic solid. Starting from the natural state, in which there are no loads or 
internal forces (stresses), let such a solid be brought to a final deformed state by 
the quasi-static application of a set of loads. By following different loading 
paths, the same final state may be reached. Each set of loads then does the same 
amount of work in the transition that it produces from the natural to the final 
state, if the solid is perfectly elastic. Moreover, this work is fully recovered on 
any return to the natural state by a slow removal of the loads. 

There are no real solids that exhibit this perfectly elastic behavior under 
all conditions of loadings and deformation, but for many such solids an elastic 
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range may be specified in which they essentially behave in this manner. As is 
implied by the word "essentially", the specification of an elastic range is to some 
extent a matter of convention: what is a negligible departure from perfectly 
elastic behavior in one context may well become a significant departure in 
another context. 

For some materials, for instance unvulcanized rubber, the elastic range 
extends to very large deformations; for others, for instance structural steel, it is 
restricted to very small deformations. Within this latter kind of elastic range, a 
typical deformation component is found to grow in proportion to a typical load 
component. The classical theory of elasticity, which is the subject of this intro-
ductory account, is exclusively concerned with mechanical behavior character-
ized by a homogeneous linear relation between stresses and extremely small 
(infinitesimal) strains. 



CHAPTER V 

FOUNDATIONS 

The fundamental concepts and relations used in the theory of 
elasticity may be class~fied as geometric, kinematic, dynamic, and con-
stitutive. Three-dimensional vector and tensor algebra, and analysis 
form the geometric foundations. As is customary, the term "kinematic" 
implies a study of the motion of a solid without reference to the forces 
that cause this motion. The term "dynamic", however, is used here in 
its original sense, indicating a study of the external and internal forces 
without reference to the motion they produce. Finally, the kinematic 
and dynamic ingredients of the theory are related by constitutive equa-
tions which are used to characterize the constitution of the material 
comprising the considered solid. 



SECTION 15 GEOMETRIC FOUNDATIONS 

Certain aspects of three-dimensional vector and tensor analysis that are 
essential for the present study are reviewed in this section. Only the description 
of tensorial quantities in a right-handed system of rectangular Cartesian coordi-
nates is considered. A tensor quantity is, however, viewed as a geometrical or 
physical entity that exists independently of any coordinate system to which it 
may be referred for the purpose of specification of its components. This permits 
an easy extension of the results to coordinate systems other than the rectangular 
Cartesian, as is briefly discussed in Subsection 15.7 at the end of this chapter. 

Once a suitable system of physical units is selected, certain physical quan-
tities can be placed into one-to-one correspondence with real numbers. Quanti-
ties of this kind are called scalar. The length 1 of a bar, the mass m of a piece of 
metal, and the distance d between two points in space are familiar examples of 
scalar quantities. There are other physical quantities, however, such as force, 
state of stress in a deformed solid, etc., whose mathematical description requires 
more than the field of real numbers. A subclass of such quantities comprises 
those physical or geometrical quantities which can be represented by vectors, 
i.e., directed line segments in space. The magnitude of the vector quantity is 
represented by the length of the line segment whose direction indicates the 
direction of the vector quantity. With this definition, two line segments of equal 
length that are parallel and have the same direction represent the same vector. 
In the following, a somewhat more precise description of these concepts is 
presented. This account, of necessity, is brief and the interested reader should 
consult standard texts'. 

15.1. VECTOR SPACE 

The real number system is denoted by R. With an arbitrary origin and an 
arbitrary unit, elements in R are identified with points on the real number line 
which defines a one-dimensional Euclidean space. Elements in this space are 
called points. The set of all ordered pairs of real numbers is denoted by R2

. 
Each element in this set is associated with a point in a two-dimensional 
Euclidean space. An orthogonal pair of real lines intersecting at the origin form 
a Euclidean plane. These lines are called the coordinate axes. Again, with an 
arbitrary unit of length, points in this plane are identified by ordered pairs of real 
numbers. In a similar manner, one can define an n-dimensional Euclidean 

See, for example, Kellogg (1953), Halmos (1958), Coburn (1960), Borisenko and Tarapov 
(1968), and Williamson etal. (1972). 
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space, each point of which is associated with an element in R" , i.e., a set of n 
ordered real numbers. Such a Euclidean space is denoted by E .  .  For the most 
part, the two- and three-dimensional Euclidean spaces, E2 and E3, are con-
sidered. However, for the time being, a general n-dimensional space is con-
sidered. 

A point in E" is also associated with a vector x which connects the origin 
to that point and its components with respect to the n mutually orthogonal coor-
dinate axes, when properly ordered, define the corresponding element in R'. In 
this manner geometric points in E" are associated with elements in R'2 . The 
quantity x is called the position vector of the corresponding point in E .  .  Denote 
the components of x by x; (i = 1, 2, ..., n). Let x and y with components x; and 
y; be position vectors in E. . Then, v = x — y defines a vector in the sense that it 
can be identified by an ordered set of n real numbers, vi = x; — y ;, namely an ele-
ment in R. .  The collection of all such vectors is denoted by V and it is called 
an n-dimensional vector space. Note that the set of all such v's is translation-
invariant, that is, for any z in E" , n = y - x = (y + z) - (x + z), so that parallel 
translation of v leaves its components unchanged. This can be most clearly 
understood in terms of two- and three-dimensional vector spaces in which trans-
lation of a vector parallel to itself does not affect the values of its components. 

A vector v is also called a first-order tensor when viewed as an operator 
in a linear transformation or a linear mapping of vectors to real numbers, i.e., 
mapping of elements in V to elements in R. This is done through the inner or 
dot product of v and any element in 1, which yields a real number. If a general 
tensor is defined as an operator in a linear transformation of vector fields to real 
numbers, then vectors may be regarded as special tensors. 

Let B be an operator with its domain in V. The corresponding transfor-
mation is called linear if and only if for every pair v and w in the domain of B, 
and every pair of real numbers a and b, 

B*(av+bw) = aB*v±bB*w, (15.1.1) 

where * defines the nature of the transformation which need not be specified at 
this point. Henceforth only linear transformations are considered. 

15.2. ELEMENTARY CONCEPTS IN THREE-DIMENSIONAL SPACE 

15.2.1. Rectangular Cartesian Coordinates 

In a three-dimensional Euclidean space E3, a vector is defined by three 
real numbers, i.e., its components with respect to a system of coordinates. Con-
sider a right-handed system of rectangular Cartesian coordinates xl, x2, x3. A 
point P is represented by its position vector x, the directed line segment OP. Let 
el, e2, and e3, be three unit base vectors, that is, vectors of unit length in the 
positive coordinate directions. By the definition of vector summation and scalar 
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multiplication (see Figure 15.2.1), 
3 

x = C1 e + C2 C2 + C3 e3 = x, e;, 
=i 

where the components of x are 

ci = c.ei, x2 = x.e2, c3 = x.e3. 

Figure 15.2.1 

Three-dimensional Euclidean 
space and vector addition 

Accordingly, (15.2.1a) may be written in the form 
3 

x = Z 
i 1 

(x . e;) e;. 
= 

(15.2.1c) 

Equations (15.2.1a,b) are more compactly written with the aid of the following 
summation convention: 

Summation Convention. A repeated subscript in a monomial 
represents the sum of the three terms which are obtained by set-
ting this subscript equal to 1, 2, and 3. 

For this rule to be meaningful, a subscript can occur at most twice in each 
monomial. In view of this rule, (15.2.1a,c) becomes, 

x= c; e;=(x.ee) e;, i =1,2,3. (15.2.2) 

The summation convention can be used for vectors in the vector space V in the 
same manner as for points in E. Let n, and w; denote the components of vec-
tors v = v; e; and w = wi ei (i, j = 1, 2, 3). The dot product of v and w then is 

v.w = (ve1).(we) = (v;wi)e;.ei, i, j = 1, 2, 3. (15.2.3a) 

From the definition of the unit base vectors it follows that 

f 0 ifi~j 
e;.eJ =11 ifi =j. (15.2.4) 

It is convenient to introduce a new symbol d;j, called the Kronecker delta, 
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defined by 

J0 ifi~j 
(15.2.5) ifi=j. 

Equation (15.2.3a) then becomes 

v.w = (n w)d = n w = Ii w1 + n2 w2+ n3 w3. (15.2.3b) 

The magnitude v of the vector v is given by 

v - w; v;. (15.2.6) 

The cross product of v and w is 

v x w = (v; e;) x (wi ei) = (v; w~) e; x e~. (15.2.7a) 

The cross products of the unit base vectors are 

e1 x e2 =e3, 
e2 x el =—e3,  
elxel =0, 

e2 x e3 = e1, 

e3 xe2 =—e i, 
e2 c e2 = 0, 

e3 c e1 = e2, 
el x e3= —e2, 
e3 x e3 =0. 

(15.2.8a—i) 

It is convenient to introduce a new symbol e ;jk, called the permutation symbol, 
defined as follows: 

+ 1 form an even 
e;Jk = —1 if i, j, k form an odd permutation of 1, 2, 3. 

0 do not form 

Based on this definition, relations (15.2.8a--i) are concisely written as 

e; x e3 = e;Jk ek. 

Accordingly, (15.2.7a) yields 

vxw = (v1w)e k ek 

(15.2.9) 

(15.2.8j) 

= (v2w3 — v3w2) e l + (v3wi — v 1w3) e2 + (viw2 — v 2w1) e3. (15.2.7b) 

If u = uk ek = v x w, it then follows from (15.2.7b) that 

Uk = v we k = (15.2.7c) 

The following relations are direct consequences of the summation convention 
and definitions (15.2.5) and (15.2.9): 

e;jk e;jk = 6, e ijk e ii! = 2 dki, 

The repeated subscripts are called dummy subscripts. A dummy subscript 
may be replaced by any other subscript letter which is not otherwise used in the 
same relation. The subscripts that occur only once in each monomial of an 
equation are called live subscripts. Equation (15.2. ha), for example, contains 
only dummy subscripts, while in (15.2.1Ob), 1 and k are both live subscripts and 
i and j are both dummy subscripts. 

e i~k e iim = d;l dkm — d;m dkl. (15.2.10a--c) 
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15.2.2. Transformation of Coordinates 

Consider now a coordinate transformation. Let x1, x2, x3 and x6, cz, c3, be 
the coordinates of a point P with position vector x in two systems of right-
handed rectangular Cartesian coordinates that have the same origin O. Let ei 

and e' (j = 1, 2, 3) denote the base vectors of the unprimed and primed coordi-
nates, respectively. The vector x is expressed as 

x =xjej =xj'e, j = 1,2,3. (15.2.11) 

The the dot product of this equation, first with e; and then with e;, yields 

x; = (e;•e')X~, xi = (e;.ei)xi, i, j = 1, 2, 3. (15.2.12a,b) 

Since e; and ei' are unit vectors, e;.e' is the cosine of the angle formed by the xi-
and x'-axes. The cosine of this angle is denoted by Q, i.e., Q = e;.e', 
(15.2.12a,b) is rewritten as 

x; = Q;~ x', x=Qx, i, j = 1, 2, 3. (15.2.12c,d) 

In accord with the summation convention, for fixed i, the terms on the right-
hand sides of (15.2.12c,d) are summed on j, for j = 1, 2, 3. 

Equations (15.2.12c,d) define the transformation for components of x in 
E3. These rules also govern the transformation of the base vectors, 

e; = (eÍ.e~)e = Qe j, i, j = 1, 2, 3. 
(15.2.13a,b) 

Substitution of (15.2.12c) into (15.2.12d) yields the identity x = Qj,QJk xk so 
that 

Q; Qik = d;k. (l5.2.14a) 

Similarly, substitution of (15.2.12d) into (15.2.12c) results in 

Q;i QkJ = d;k. (15 2.14b) 

15.3. TENSORS IN THREE-DIMENSIONAL VECTOR SPACE 

A vector space V is defined as a set of all vectors which can be expressed 
in terms of the difference of any two position vectors in E3, i.e., v = y - x. A 
right-handed rectangular Cartesian coordinate system is used to represent the 
components of any element v in V . 

15.3.1. Vector as First-Order Tensor 

Consider a vector v with components v; and v; in the unprimed and 
primed coordinate systems, respectively, i.e., 

e; = (e.e') ei' = Q ei', 
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n= v;e;= n e. (15.3.1) 

The dot product of both sides of (15.3.1), first with e; and then with e;, yields 

vi = Qiivj', v; = Q~ivi• (15.3.2a,b) 

With reference to the unprimed coordinate system, the vector v is 
specified by its components n;. These components change to n , as a new 
(primed) coordinate system is introduced. The rule (15.3.2a,b) links the com-
ponents of v in the two coordinate systems. Therefore, a vector may be defined 
by the triple components v; which transform in accordance with rule (15.3.2a,b) 
under the coordinate transformation (15.2.12c,d). 

As pointed out before, it is customary to refer to vectors as tensors of 
order 1, in the sense that through dot or inner product, a vector v maps vectors 
in V to real numbers. In this sense, scalars are tensors of order O. 

15.3.2. Second-Order Tensor 

The definitions of tensors of order O (scalars) and 1 (vectors) are easily 
generalized to tensors of higher order. A tensor of order 2 is a geometrical or 
physical quantity which may be specified by its 32 components with respect to a 
given coordinate system. Let T be a second-order tensor with components Ty 
and T in the unprimed and primed coordinate systems, respectively. Express T 
in terms of its components and the corresponding coordinate base vectors, as 

T = T;i e; ®ej = T;~ e~~ ®ej', (15.3.3a) 

where repeated indices are summed. In this manner, to each ordered pair of unit 
vectors, say, the dyad el ®e 2, the corresponding component of T, here 1'12 for 
el ®e2, is associated. The entire tensor T is then expressed by 

T = T11e1®e1 + T12 e1 ®e2+... + T33 e3 ®e 3 

= R~ 1 e~ ®e ~~ –R~2e~ ®e + ... ± R e®e (15.3.3b) 

which is the dyadic representation of this tensor. 

Let v and w be any two vectors in V. Their ordered dyadic product is 
defined by v uw, which has the following coordinate representation: 

mw = vwe®e =v ; w3 e;®e ,. (15.3.4) 

The collection of all such dyadic pairs of vectors forms a linear space which is 
denoted by V x V. 

For dyads e;  ®e and e k®e l, the double dot operator, :, is defined by 

(ei®e~) : (eknel) = (ei•ei) (ee•e i) = dik djI, 

(e; ®e,') : (e ne) = (e; •eI) (ej .e~) = d;k d;i. (15.3.5a,b) 
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Now a second-order tensor T is viewed as a linear operator which maps 
an element in V x V to a real number, i.e., 

T: (v® w) e R fore®w in V x V. (15.3.6) 

For components in the unprimed and primed coordinate systems, (15.3.6) is 
written as 

(Ti; ei ®e;) : (vkwl ek®e l) = (Ti; vk wi) 801( d;i =  

(Tije~®ej'):(nk w ekâe~)_(Tip nI w~)dikdii= T1J nÍw~. (15.3.7a,b) 

In particular, if v®w is chosen to be e i ®e; or eÍ ®e j', the components, 
Tit 

and T 
in the corresponding coordinate system, are obtained, 

Tii - T : (ei®e) , T T : (e®  e3'). (15.3.8a,b) 

Furthermore, the relation between the unit vectors e, and e; (i = 1, 2, 3) leads to 
the following component transformation rule for any second-order tensor, T: 

Ti; = Qi~ Q;i Tki, T = Qki Qi; Tki. (15.3.9a,b) 

From (15.3.2a,b) and (15.3.9a,b) it follows that 

T: (m w) = T1 vw = T vj'wj'. (15.3.10) 

Therefore, the linear transformation of V x V to real numbers through the 
second-order tensor T is independent of the coordinate system which may be 
used to represent the corresponding components. 

Tensor T may be viewed as a linear operator which maps the vector space 
V to itself, i.e., 

T 
~.; ~ V for v in V, (15.3.11)  

where the dot product between the dyad ei ®e 3 and the unit vector ek is defined 
by 

ei.(e;®e k) = (ei•ej)ek = diJ ek. 
(15.3.12a,b) 

In general, T .1 and v.T are two distinct vectors. In terms of the components in 
the unprimed and primed coordinate systems, (15.3.11) is written as 

(ei ®e;) • Ck = ei (e; • ek) = d;k ei, 

(T.n)i =  

(T.n); = Ti vi', 

(n.T)j = niTij, 

(n.T)j  (15.3.13a--d) 

Again, with the aid of (15.3.2a,b) and (15.3.9a,b), it follows that 

(T.n)i = Qi; (T.n)~, (T.n); = Q;i(T.n)3, 

(n.T)i = Q (n.T)j, (n.T); = Q;i (n.T);. (15.3.13e--h) 

This linear transformation of V to V through T is also independent of the coor-
dinate system. 
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15.3.3. Higher-Order Tensors 

Equations (15.3.9a,b) are used to define a tensor of order 2 as follows: 
with reference to the coordinate system x1, the 32 components T1j define a 
second-order tensor if these components transform according to (15.3.9a,b) 
under the coordinate transformation (15.2.12a,b). Similarly, a tensor of order 3 
is specified by 33 components, Tijk and T~ k, in the unprimed and primed coordi-
nates, as 

T = Tyk e1 ®e Ec k = TiJk e~ ®e J Eck. (15.3.14) 

The components of T transform according to 

Tijk = Qi1 Qjm Qkn Timn. (15.3.15) 

The tensor T maps the triple product of V, V3 = V x V x V, to real numbers, 

Tijk Vi wj uk E R for every v, w, u in V. 

This is independent of the corresponding coordinate system. 

In general, a tensor of order n is expressed as 

T = T~,~z ...~ e~,®e1z ®...®ei = Ti,~z ...1e e 

i1>iz, ...,ih= 1, 2,3, 

(15.3.16) 

(15.3.17) 

where the 3n components Ti i2 ,,. i 's in the unprimed coordinates are linked with 
T~~ 12 ..;'s in the primed coordinates by the following transformation: 

1z ... . = Qj11Q 2.  

Ii, i2, •••, i n, ii, J2, •••, in = 1, 2, 3. (15.3.18) 

The tensor T maps the n product of 1, In = V x V x ... x I, to real numbers, 

T1 12 „.1 v11v?...vn E R for n1, n2, ..., vn in V, (15.3.19) 

which is also independent of the corresponding coordinate system. 

15.3.4. Remarks on Second-Order Tensors 

As explained in Subsection 15.3.2, a second-order tensor T is regarded as 
a linear operator which transforms a vector to another vector. Transformation 
(15.3.11) is called orthogonal if T is an orthogonal tensor, that is, if 

Tij Tkj = d jk. (15.3.20) 

The tensor Q = Qij e1 ®e with components Qij = ei.e' satisfies (15.3.20). It is an 
orthogonal tensor. In the dyadic representation, Q (or any orthogonal tensor) is 
expressed as 

Q = ek®e k = e ®e 1 +ez®e 2 +e3®e 3, (15.3.21) 

whose components, Qij and Q;,, in the unprimed and primed coordinate systems 
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are 

Q = Q : (e;®e i) = (ek.e)(ek.e) =  

Q,j = Q : (e~~ ®e') = (eI•ei) (ek•e~) = e1.e3'. (15.3.22a,b) 

Hence, Q = Q. As is seen, Q transforms the unit base vector e; of the 
unprimed coordinate system to the unit base vector e of the primed one, 

e; = Q.e;, e; = e.Q = QT.e;, i = 1, 2, 3, (15.3.23a,b) 

where QT = ek®e I. In this context, (15.3.23a) may be interpreted as follows: 
through Q.v, vector v with components n; in the unprimed coordinate system is 
rotated into vector w with components w  v; in the primed coordinate system. 

An orthogonal tensor that transforms a vector v into itself is called the 
unit tensor. From definition (15.3.21), 

1(2) - e;  ®e ; - d;, e;®e i, (15.3.24) 

is the unit tensor. Or, from the definition of the Kronecker delta, v; _ d;; vi. The 
superscript (2) in (15.3.24) denotes that this is a second-order unit tensor. 
Definition (15.2.4) now yields 

(e® ej).(ej®ej') = (e; • e;) e~ ®e j' = e~~ ® e~~ = 1(2), 

(e;®e 1').(ej' ®ei) = (e~.ej') ej® ej = e;  ®e; = 1(2). (15.3.25a,b) 

A second-order tensor is called symmetric if it is equal to its transpose, 
T = TT, where if T are components of T. then those of TT are i.e., 

TT= (T;fie;®e j)T -T;j ej®e ; =T e;®e~. (15.3.26) 

A tensor T is called antisymmetric (or skew symmetric) if T = — TT. In general, 
any second-order tensor T can be written as a sum of two parts, a symmetric and 
an antisymmetric part, i.e., 

TR1 = 2 (T1 + T) + 
2 

(TR~) — = T(;j) + T[ ], (15.3.27) 

where the components of the symmetric and antisymmetric parts of T are 
denoted by T(;.j) and T[], respectively. It is, therefore, important to keep in mind 
that, in the dyadic representation of a tensor, the order of various dyads must 
remain intact, unless the corresponding symmetry conditions are satisfied. 

The tensor (or dyadic) product of a second-order tensor T and a vector v 
is a tensor of order 3, defined as 

T® n = (Te~vk) e1®ej ®ek, nâT = (]Tjk)e,®e~®ek. (15.3.28a,b) 

For any two tensors T and S of any order, say, orders n and m, the (n + m)th-
order tensors T uS and S®T are distinct quantities, i.e., in general T and S are 
not commutative, T®S ~ S®T. 

Setting j = k in the expression T;~ vk, the dot product of T and v, namely a 
vector, say, u, is obtained. This is called contraction. In general, if two letter 
indices of the components of a tensor of order k are made identical, the 
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components of a tensor of order k —2 are obtained. Contraction of the indices of 
a second-order tensor T13 results in a scalar which is called the trace of T and is 
denoted by 

trT - T;;. (15.3.29) 

15.4. DEL OPERATOR AND THE GAUSS THEOREM 

This section addresses certain elementary topics in tensor calculus. In 
particular, attention is focused on the Gauss theorem, since it plays a central role 
in computing the volume average of various physical field quantities, in terms of 
their boundary data. 

Let T = T(x) be an nth-order tensor-valued function of position x in a 
finite region D in E3; in short, T(x) is called an nth-order tensor field in D. In 
terms of the base vectors e;, T(x) is expressed as 

T(x) = T z ...~ (x) e,, ® e;2 ®... ®e; , (15.4.1) 

where each component of T(x) is a scalar-valued function of x in D. When all 
components of T(x) are continuous functions of c in D, the tensor field T(x) is 
said to be continuous in D. Similarly, when all components of T(x) are dif-
ferentiable in D, T(x) is said to be differentiable in D. In this manner, various 
mathematical properties of T(x) are defined in terms of the properties of its 
components. In general, tensor fields considered in micromechanics are 
assumed to be suitably smooth everywhere in their domain of definition, except 
on some planes such as interfaces between microconstituents or cracks. These 
surfaces are called discontinuity surfaces. Across a discontinuity surface, the 
tensor-valued function or some of its derivatives may not be continuous. 

Differentiation of a suitably smooth tensor field produces another tensor 
field. The del operator is used to express such differentiation. The del operator 
is a vectorial differential operator, denoted by 

(15.4.2) 

where a; - a/ax; is the partial differential operator. The differential operator a; 
transforms according to the component transformation rule, given by 
(15.3.2a,b). The proof is straightforward. With respect to the base vectors e, 
any point x is expressed by 

c =x;e;= c~e~. 

Then, since Q = e;.ed', differentiation of x with respect to x; gives 

ax axe , 
a — a 

(- e; = Q,i e~) —   
x; x; 

Hence, ax,iax; = Q. According to the chain rule, 

( 15 .4.3 a) 

(15.4.3b) 
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a; = a = 
ax; 

a = Q a,, (15.4.3c) 
ax; — ax; axe 

where a, - a/ax;. Relation (15.4.3c) is the same as the vector component 
transformation given by (15.3.2a). 

The del operator V is independent of the particular coordinates which 
may be used to express the differential operator a;. Since Q;i Qik = d,k, the del 
operator satisfies 

V =a;e;=(Qik a~) (Qaei)= a;e;. (15.4.4) 

The del operator is a vector operator which may act on suitably smooth 
tensor fields. Its tensor (dot) product with a suitably smooth tensor field pro-
duces a tensor field one order higher (lower). The dyadic symbol " ®" and dot 

" are used to denote the tensor and dot product operations. Assume that 
T = T(x) is suitably smooth in its domain D The two operations, "®" and ".", 
of V with T are denoted by V ®T and V . T, i.e., 

N T = (V ®T)( c) = (aT;z ..., )(l)  

V.T = (V.T)(x) = ~) e,, ®e; 2...e;  . (15.4.5a,b) 

The first operation yields a tensor field one order higher than T, and the second 
operation, a tensor field one order lower. 

In vector analysis, gradient and divergence are defined, respectively, for 
suitably smooth scalar-valued and vector-valued functions. Let f = f(x) and 
F = F(x), respectively, be such scalar- and vector-valued functions. The gra-
dient off, and the divergence of F are defined by 

gradf =Vf=(a;f)e;,  divF =V.F=a;F;, (15.4.6a,b) 

respectively. Comparison of (15.4.5a) with (15.4.6a), and (15.4.5b) with 
(15.4.~b), lead to the introduction of gradient and divergence of the tensor field 
T = T(x), respectively, by 

gradT = I nT, divT = V.T. (15.4.7a,b) 

For the nth-order tensor field T, gradT and div T are the (n + 1)th- and the 
(n — 1)th-order tensor fields, respectively. 

The permutation symbol, e;ik, can be used to obtain the curl of a suitably 
smooth vector field F, 

curl F = V x F = (e,jk a~ Fk) ei. (15.4.6c) 

Similarly, the curl of the smooth tensor field T of order n is given by 

curl T = V x T = V x T(c) = Tk;~.,,;) ®e;...e ; , (15.4.7c) 

which is also an nth-order tensor field. 

Similarly to differentiation, the integration of a tensor field T on a domain 
D can be defined in terms of the integration of its components. If the tensor 
field is integrable on its domain D in E3, the volume integral of T over D 
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becomes 

JD T dV = { JD T, i2... i dV } ei ® eiz...ei (1 5.4.8a) 

Here, again, advantage is taken of the fact that base vectors ei are fixed. In the 
same manner, if the tensor field T is defined on some suitable surface A in E3, 
the area integral of T over A is 

fA T dS={fA Tii2 ...i dS}ei®ej Z..e;. (15.4.8b) 

Note that integration of an nth-order tensor field produces an nth-order tensor. 

The Gauss theorem or the divergence theorem relates the divergence of a 
vector-valued function F in a domain D, to its flux across the boundary aD of 
this domain, under suitable smoothness conditions. Let F = F(x) be a smooth 
vector-valued function in domain D which is bounded by a suitably smooth D. 
Then, the Gauss theorem states 

ID dw F dl = f aD V F dS, (15.4.9a) 

or 

fD a'F'dV= faoviFidS, (15.4.9b) 

where v is the exterior unit normal on )D. A suitably smooth scalar-valued 
function f also satisfies a similar transformation, 

f D gradf dV = faD f v dS, (15.4.10a) 

or 

fD ai f dV = JaD fhj dS. (15.4.10b) 

Moreover, it can be shown that 

JDcurl FdV = faDVxFdS, (15.4.11a) 

or 

ID eyk a~ Fk dV = f D eijk njFk dS. (15.4.11b) 

These theorems may be applied to any smooth tensor field, say, T = T(x); 
for fixed i1, i2, ..., i _ 1, the divergence of the components of T satisfies 

JD dV = IaDhj T j . h dS; (15.4.12a) 

for fixed i1, i2, ..., in+ 1, the gradient of the components of T satisfies 

ID a1 T dV = f Vi T~ i dS; (15.4.12b) 

and for fixed i1, i2, ..., in, the curl of the components of T satisfies 

ID eijka Rk 2 ..., dV = e i1jk ii dS. (15.4.12c) 

Therefore, 
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fD div T dV = J
D VT dl = faD V.TdS, 

ID gradT dl = fD V®TdV = .[aDm®T dS, 

f
D 

curl T dV= 
.[D1 

c T dl = faDVxTdS. (15.4.13a—c) 

These are statements of the Gauss theorem. They can be summarized by 

ID V*TdV= faD n*T dS, (15.4.14) 

where * may stand for ".", "®", or " x ". Note that for the Gauss theorem to 
apply, certain smoothness conditions must be satisfied by the tensor field and the 
domain D. 

15.5. SPECIAL TOPICS IN TENSOR ALGEBRA 

This subsection focuses on certain special properties of second- and 
fourth-order tensors. Second-order base tensors are introduced, and certain 
symmetry properties of fourth-order tensors are examined, together with their 
corresponding matrix representation. Attention is again confined to quantities in 
three-dimensional vector space, and fixed rectangular Cartesian coordinate sys-
tems are used to represent tensor components. 

15.5.1. Second-Order Base Tensors 

In terms of the base vectors e, (i = 1, 2, 3), it is convenient to define the 
second-order base tensors by 

ei®e i, (15.5.1) 

and their second-order contraction by 

: eke _ 8,kdJ1; (15.5.2) 

see (15.3.5). The second-order identity tensor 1(2), (15.3.24), now becomes 

1(2) = dii eii = ei. (15.5.3) 

As pointed out before, this identity tensor maps a vector, i.e., a first-order tensor, 
to itself. 

Let S = Sii ei ®e i be a second-order tensor and T = Tiiki ei ®ei ®e k ®ei be a 
fourth-order one. In terms of the second-order base tensors, they become 

S = Sii eii, T = Tiiki eii ® eld. (15.5.4a,b) 

Denote the collection of all such second-order tensors by T(
2
>, and that of all 

fourth-order tensors by T(4), i.e., 
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T{2> = ISIS = , T(4> = {TIT= Tiikj eii®e kj}. (15.5.5a,b) 

T(2 and t{4) are referred to as second-order and fourth-order tensor spaces, 
respectively. Note that, for every v in V and S in T(

2
), it follows that S .1 is in 

V; see (15.3.11). Similarly, from the second-order contraction (15.5.2), it is 
observed that, for every S in T(

2
), T : S is in T(2). Hence, an element of T(4) 

transforms an element in T(2) to an element in  

15.5.2. Matrix Operations for Second- and Fourth-Order Tensors 

With the aid of the components in a rectangular Cartesian coordinate sys-
tem, a vector, v, and a second-order tensor, S, may be represented respectively, 
by a three by one column matrix and a three by three matrix. Denote the 
column of the components of v by [vi], and the matrix of the components of S 
by [Sii]. Dot operation between v and S is now reduced to matrix multiplication 
of [vi] and [Sid]. The correspondence between some elementary tensorial and 
matrix operations are, 

v [v,], S == [Sii], S.v  

ST 
[S], S-i ~~ [S]-1 S-T [S,j]

-T. (15.5.6a--f) 

Here, superscript T denotes the transpose, and superscripts —1 and — T, respec-
tively, denote the inverse and the transposed inverse (when they exist). 

The nine second-order base tensors are ordered as a one by nine row vec- 
tor, 

{ei~} = (ei1, e12, e13, e21, e22, e33, e31, 
e32, e33}• (15.5.7) 

This arrangement is collectively denoted by the subscript (ii). Then, tensorial 
operations between elements in T{2> and t{4> are reduced to nine-dimensional 
matrix operations. A second-order, S, and a fourth-order, T, tensor is now 
represented, respectively, by a nine by one column matrix and a nine by nine 
matrix, consisting of the corresponding components-in a rectangular Cartesian 
coordinate system. The column of the components of S is denoted by [S{,,}], 
and the matrix of the components of T by [T{i~}{I'J}]. As before, superscripts T, 
—1, and — T denote the transpose, the inverse, and the transposed inverse, 
respectively. The following correspondence between tensorial and matrix 
representations is obtained: 

S == [S{ }], T [T{i;}{ki}], T : S ==' [T{jj){kj}][S{kj}1, 

TT [T{,;}{ki}] i , T-T ~~ [T{,~}{kiS]
-T. 

(15.5.8a—f) 

The fourth-order unit tensor, 1{4}, with the components 

1,ßf3 = dikdjI (15.5.9a) 
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is expressed by 

1{4) = e ®  e3. (15.5.9b) 

For any S in T{2), it follows that 1(4) : S = S : 1~4) = S. In view of (15.5.8), the 
inverse of [T{jj}{~i}}, i.e., [T{jj}{}l 1, satisfies 

: T = T : T = 1(4). (15.5.10) 

The magnitude (or norm) of a vector v is Iv I = iv.v. The magnitude (or 
norm) of a second-order tensor S is similarly defined by 

151 = iS : S =']S;j S;j. (15.5.11) 

If a fourth-order tensor T satisfies2 TT : T = 1(4), or = d;  d;m, then 
transformation T : S preserves the norm of S, i.e., 

(T: S) : (T:S) = S : (TT : T) : S: =S:S, (15.5.12a) 

or in component form, 

(Tijki S~~) (~~jmn SImn) = Skl (T;ji l ~ijmn) 5mp = Sid Ski. (15.5.12b) 

15.5.3. Second-Order Symmetric Base Tensors 

In general, a tensor S in T{2) is called symmetric if ST = S. To represent 
symmetric tensors in a concise manner, the second-order symmetric base ten-
sors, e , are introduced as follows: 

e 1 (e;j +e;j) = 2 (e;®ej+ej®e;). (15.5.13) 

While the second-order base tensors, {e;j}, are orthonormal, the symmetric base 
tensors, {e;]}, are only orthogonal, i.e., they are not unimodular, 

e;~ : e~; = 2 (d;k dj; + d~i 0j0); (15.5.14) 

for example, eft : eft is 1 but e 2 : e 2 is 1/2. 

Now consider the set of all second-order symmetric tensors, T~2s), and the 
set of all fourth-order symmetric tensors, 

T~4s), which map second-order sym-
metric tensors to second-order symmetric tensors. In terms of e, these two sets 
are 

T(2s)= {SIS =S;je;~, Sij =Sj;}, 

T(4s) -{ T 1 T= ®e, Tjjkj = Tj~ki =  (15.5.15a,b) 

2 Denoting e; ®ej by e, one can define a fourth-order tensor R = ey®e which satisfies 
RA : R = 1(4).  Tensor R transforms a second-order tensor S (with components S;j in the e1-bases) to 
another second-order tensor whose components in the e;-bases are also Sij; compare fourth-order ten-
sor R with second-order tensor Q of Subsection 15.3. 



558 CHAPTER' § 15.5 

Note that, while S = ST, in general T need not equal TT. 

Associated with the second-order base tensors there are three (nonzero) 
second-order antisymmetric base tensors defined by 

ey = 2 (ey — e, ) = Z (e; ®e i — e i ®e;). (15.5.16) 

The double contraction of ey and eke satisfies : ejj = e;j : e 1 = 0, for all i, j, k, 
1. Therefore, a fourth-order tensor T in 

T(4s) 
maps ey to 0, i.e., 

T :e;j=0, i,j=1,2,3. (15.5.17) 

Hence, the mapping of t 2 to T{2} by an element T in 
T(4s) 

is not unique. The 
nine by nine matrix of T in 

T(4s), 
i.e., [T{;j}{u}I, is always singular. 

15.5.4. Matrix Operations for Second- and Fourth-Order Symmetric Ten-
sors 

Since the second-order symmetric base tensors {e } and their tensor pro-
duct led ®e1 } span 

T(2s) 
and 

T(4s), 
respectively, tensorial operations between 

T(2s) 
and 

T(4s) 
can be related to six-dimensional matrix operations. For simpli-

city, denote the six second-order symmetric base tensors {e;j} by {ba} (a = 1, 2, 
..., 6), as follows: 

b1 = ef 1 , b2  e 2, b3 = e33, 

b4 = ez3, b5 = e3i, b6 = eft• (15 .5. 18a—f) 

The double contraction of elements of 
elements of { ba } .  From (15.5.14), ba 

define a six by six matrix [WI = [Wahl 

1 00000 
010000 
00100 0 
000200 
000020 
000002 

{ e } is then reduced to the dot product of 
is an orthogonal set. It is convenient to 
by 

(15.5.19) [W] 

and express the dot product, ba.bb (or the corresponding e .e6), in terms of the 
elements Wab of [WI, as 

ba.bb = 
1/Wab ifa=b 
0 ifa~b. 

(15.5.20a) 

Hence, 

Wabba.bh = dab (a, b not summed; a, b = 1, 2, ..., 6), (15.5.20b) 

which shows the weighted orthonormality of base tensors ha with the weighting 
factor Wab. This then results in the corresponding weighted matrix multiplica-
tion with the weighting matrix [Wahl, as shown below. 
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Let S and T be tensors in 
T(2s) 

and 
T(4s), 

respectively. Their components 
in a rectangular Cartesian coordinate system are used to express S and T in 
terms of {ba}, as 

S = S 11 b 1 +S22 b2 +S33 b3 + 2S23 b4 + 2531 b5 + 2S 12 b6, 

T =  

+ 2
T1211 b6®b1+ 2

T1222b6® b2+... + 4T1231b6®b5+ 4
T1212b6®b6. 

(15.5.21a,b) 

From these expressions, a six by one column matrix [Sal for S is defined as 

[Sal _ 

Si! 

S22 
S33 
S23 ' 
S31 

S12 

(15.5.22a) 

   

and a six by six matrix [Tab] for T, as 

[Tab] = 

1'1 111 1'1 122 1' I 133 1'1 123 1' 11 3 1 1' ~~ 112 
1'221 ~~ 1'22221'2233 1'22231'2231 1'2212 
1'3311 1'33221'3333 1'33231'3331 1'3312 
1'2311 1'23221'2333123231'2331 1'2312 
1'3 1 11 1'3122 1'3 i 33 1'3 123 1'3 13 1 1'3 1 12 
1'1211 1'12221'1233 1'12231'1231 1'1212 

(15.5.22b) 

   

Then, with the aid of matrix [Wab], (15.5.19), the second-order contraction of S 
and T becomes 

T : S [Lab][Wbc][Scl. (15.5.23a) 

Note the correspondence between the tensorial double contraction and the 
weighted matrix multiplication. This arises from the weighted orthonormality of 
the base tensors, ba; see (15.5.20b). Hence, if tensors S' and T' are in 

T(2s) 
and 

1'(4'), respectively, then S : S' and T : T' become 

S : S' [Sa][Wab][S'b], T: T' [Tabl[Wbcl[T'cdl. (15.5.23b,c) 

As is seen, the double contraction reduces to a weighted matrix multiplication, 
with the weighting factor [Wab]• 

From the fourth-order identity tensor, 1(4), the fourth-order symmetric 
identity tensor, 

1(4s), is defined such that 
1(4s) 

maps a second-order tensor in T(2s) 
to itself. This may be defined as 

1(4s) = e~®e~ = 2 (ey®e; i +e;~®e~ ;), (15.5.24a) 

with components, 1 ski), given by 
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l ) 

= 2 
(dik dlt + dii dlk). (15.5.24b) 

Therefore, in terms of {ba] tensor 
1(4s) 

is expressed as 

1(4s) = b1 ®b 1 +b2®b2+b3®b3+2b4®b4+2b5®b5+2b6®b6. (15.5.25) 

Hence, the corresponding six by six matrix, [1 a 1, is the inverse of matrix 
[Wab], 

[1ábs~] _ [Wab] 1 = 

1 00000 
01 0000 
0 0 10 00 
0001/200 
00001/20 
000001/2 

(15.5.26) 

   

which is not the six by six unit matrix; note that 
1(4s> 

is, in fact, the identity ten-
sor, in the sense that it maps any element in 

T(4s> 
to the same element. 

As pointed out before, fourth-order tensors T in 
T(4s> 

are singular. How-
ever, for a T in 

T(4s), 
there may exist another element in 

T(4s> 
such that its 

second-order contraction with T yields the fourth-order symmetric identity ten-
sor 

1(4s). 
Then, this element is denoted by T-1, and is called the inverse of T in 

T(4s) i.e., 

T-1 : T = T : T-1 = l(as). (15.5.27) 

From (15.5.27), the six by six matrix corresponding to T, i.e., [Tab], must 
satisfy 

[TAP ] [W pq] [Tqb] = [Tap] [W pq] [T9~1 ] _ [Wab]-1 • (15.5.28a) 

Multiply (15.5.28a) by [Wab] either from the left or right, and using (15.5.26) 
obtain 

([Wap][Tpq ][Wgb]) [Tbc] _ [1 ac], or [Tab] ([Wbp][Tpq ][Wgc]) = [1 ad, 
(15.5.28b,c) 

where [1 ab] is the six by six identity matrix. From (15.5.26), 

[lab] _ [Wap][1pb V](=[1áps)][Wpb]). (15.5.29) 

As is seen, matrix [Wap] [Tpgl ] [ Wqb] is the inverse of [Tab], and, similarly, matrix 

[Wap] [Tpq] [ Wqb] is the inverse of3 [Tae ]. 

The second-order strain and stress tensors, e and s, are both symmetric 
and belong to 

T(2s). The corresponding six by one column matrices, [ea] and 
[sa], are given by (15.5.22a), if the letter S is replaced by e and s, respectively. 
The fourth-order elasticity and compliance tensors, C and D, respectively, map 
e to s and s to e, and hence belong to 

T(as). 
The corresponding six by six 

matrices, [Cab] and [Dab], are given by (15.5.22b), if the character T is replaced 

s Attention should be paid to the fact that in matrix form, T , the inverse tensor of T. is ex- 
pressed as [T 1] = [Wap]-1[Tpq]-1[Wgb]-1 = [I I[Trq1 

1
[1

i
P5)] with [Tab]-1 being the inverse matrix 

of [Tab]• 
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by C and D, respectively. In Section 3, the engineering strain and stress are 
introduced by six by one column matrices, ['a] and [Ta], which are expressed in 
terms of [ea] and [sa], as 

[ya] _ [Wab][eb], [Ta] = [sa]. (15.5.30a,b) 

Then, in terms of the elasticity and compliance tensors, C and D, the matrices 
which relate [Ua] and [Ta] are defined by4 

[Cab] = [Cab], [Dab] = [Wap][Dpq][Wgb], (15.5.30c,d) 

where [Ta] = [Cab] [yb] and [Ua] = [Dab][Tb] 

From (15.5.23a—c) and (15.5.30a--d), the following relations between the 
tensor and matrix representations of e, s, C, and D are obtained: 

s = C : e [sa] _ [Cagy] [ Wpb] [eb] [Ta] = [Cab] [Ub], 

E = D : S [ea] = [Dar][Wrb][sb] [Ua] = [Dab][Tb]; (15.5.31a,b) 

and, the inverse relations between C and D a

~~

r

hh

e, 

C : D = I' [Cap][Wpq][Dgb] = [labs)] [Cac][Dcb] = [lab], 

D : C = [Dap][Wpq][Cgb] = [1á~s)] [Dac][Ccb] = [lab]. 
(15.5.31c,d) 

The matrix notation used in Part 1 follows the above definitions for [Ua], [Ta], 
[Cab], 

and 
[Dab]. 

The tensor J is defined in Section 4, such that the cavity strain ec is deter-
mined, for a prescribed overall strain e°, by ec = J : e°. This tensorial equation 
has the following matrix representation: 

[e] = [Jar][Wrb][eb°], (15.5.32) 

where the matrix [Jab] is given by (15.5.22b), if the letter T is replaced by J. 
Therefore, in matrix form, 

[+'d] = [Wab][eb] _ [Wab] ([Jbc][Wcd][e,P]) 

([Wab][Jbc]) ([Wcd][e8]) = [Jab][Ub°], (15.5 .33a) 

where matrix [Jab] is 

[Jab] = [ W ap] [Jpb] (15.5.33b) 

Hence, the matrix representation of tensor J may not result in a symmetric 
matrix, even if matrix [Jab] (and hence tensor J) is symmetric. Note that the 
fourth-order symmetric identity tensor 

1(4s) 
and the corresponding six by six 

identity matrix [1 ab] are also related in the same manner as are J and [Jab]; see 
(15.5.29). 

In this notation, the matrix formed from the components of the tensor D is denoted by [Dab], 
and the inverse of [Cab] is denoted by [Dab]. 
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15.6. SPECTRAL REPRESENTATION OF FOURTH-ORDER SYM-
METRIC TENSORS 

A second-order symmetric tensor, say, e, can be expressed in terms of its 
three principal values ea and the corresponding principal directions, Nom, as (see 
Subsection 16.2) 

3 
e = S ea Na âNa. 

a = 1 
(15 .6. la) 

The principal directions are mutually orthogonal, forming an orthogonal triad, 

Na.NO = ~~(3• 

Hence, for a vector V, 
3 

e.V = S ea(V.Na)Na. 
a 1 

(15.6.Ib) 

(15.6.1c) 

The principal values and directions of e are the same as the eigenvalues and 
eigenvectors of the corresponding three by three matrix [eab]. 

In a manner similar to (15.6.1), a fourth-order symmetric tensor, say, 
C = CT, can be expressed in terms of six principal values C1, and the 
corresponding principal second-order symmetric tensors E1, as follows: 

6 
C = 

~ 1 
C1 E1 âE1, (15.6.2a) 

where the principal second-order symmetric tensors are orthonormal in the 
sense that 

E1 : EJ = d1J. (15.6.2b) 

Hence, for an arbitrary second-order symmetric tensor e, 
6 

C : e C1 (e : E1) E1. (15.6.2c) 
t=i 

The principal values and principal second-order symmetric tensors of C are 
related to the eigenvalues and eigenvectors of the corresponding six by six 
matrix [Cab], but unlike in the case of a second-order symmetric tensor, they are 
not the same. The spectral decomposition of a fourth-order symmetric tensor 
(15.6.2a) is examined in this subsection. 

In Section 3 and above, it is pointed out that a fourth-order tensor C satis-
fying C;tu = Cj;kl = Glk = Cry, and a second-order symmetric tensor e satisfy-
ing e;i = ei;, can be expressed in terms of a six by six square matrix [Cab], and a 
six by one column matrix [ea], respectively. Their second-order contraction 
C : e then is given by a weighted matrix product involving the six by six square 
matrix [Wab] defined by (3.1.6c), i.e., 

s = C : e [sa] _ [Cab][Wbc][ec], (15.6.3) 

where the matrix components, sa, ea, and Cab, are the same as the corresponding 
tensor components, ~;i e;i, and C;tkl; see (3.1.3a) and (3.1.3c). Therefore, there 



15.6 GEOMETRIC FOUNDATIONS 563 

exists the following correspondence between tensor and matrix operations asso-
ciated with the principal values and the principal second-order symmetric ten-
sors of C: 

and 

C1 E1 = C: E1 C1 
[Ei] = ~Cab][Wbc] [E~] (I not summed), (15.6.4a) 

E1 : E = dU [Eá]iW Wab][Eli] = di1. (15.6.4b) 

Equation (15.6.4b) shows the orthonormality of the principal (second-order 
symmetric) tensors of C. 

Since [Wab] is a positive diagonal matrix, its square root is given by a 
diagonal matrix consisting of the square roots of the elements of [Wab], i.e., 
['iWab]. Then, the matrix relation in (15.6.4a) may be expressed as 

C1 ([NW1[E1) _ I ['iWap][Cpq]['iWqb] } (h Wbr][Er]), (15.6.5) 

where I is not summed. Since the C-tensor is symmetric with respect to the first 
and last pairs of its indices, Cum = Ckljj, the corresponding [Cab]-matrix is sym-
metric, Cab = Cba. Defining a six by six symmetric matrix [Cab], 

[Cab] = h/Wap][Cpq]['/Wqbl, (1 5.6.~a) 

compute the (real-valued) eigenvalues and eigenvectors from [dab] [b] = C[Ea]. 
There are, in general, six pairs of {C1, [E ]} (I = 1, 2, ..., 6), for this matrix, 
although the eigenvalues may not be distinct. The [Cab]-matrix and the ortho-
normality of [É a]'s may be expressed by 

6 
[Cab] _ ±C1 

[ ][ jT, [Eá] [Eá] = dij. (15.6.6b,c) 
I=i 

Note that if the eigenvalues are not distinct, the associated eigentensors in gen-
eral, are not uniquely defined. Nevertheless, suitable orthonormal eigenvectors 
can always be chosen to complete this spectral representation. Therefore, if [Eá] 
is defined by 

[Eá] = [ /Wab][Eb], (15.6.7) 

then the following matrix relation holds: 

[Cab] [Eb] = C
1 

[Eá] [Cabl[Wbc][Ej] = C
1 
[Eá] (I not summed). 

(15.6.8) 

From comparison of (15.6.4) and (15.6.8), it follows that the principal 
values of C are the eigenvalues of [Cab], and the associated principal second-
order symmetric tensors, E1, are given by the associated eigentensors through 
(15.6.7). Hence, the following spectral representation of the C-tensor is 
obtained: 

6 
C= S CI Et â Et. 

t =i 
(15.6.9a) 

Furthermore, since E1' s are second-order symmetric tensors, they admit their 
own spectral decomposition similar to (15.6.1a). Denoting the three principal 
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), (2m, 
0 
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0 1 

[1, 1, 1, 0, 0, 0]T-matrix corresponds to dilatation, and the 

0 
0 

(2m, ~~ 
0 
0 

Note that the 
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values and directions of Et by 
EIa 

and 
N1° 

for a = 1, 2, 3, observe that 
3 

C = 
6 
~ 

± CI EIaNIa® NIa® NIa ® NIa 
1=1  a=•i 1 

(15.6.9b) 

Since the elastic strain energy density e is given by 

e = Z e:C:e= 
6 

Z 1~1
Cl(E1:e)2, (15.6.10) 

it is concluded that C is positive-definite, if and only if C1 is positive for all I, 
leading to a non-negative elastic strain energy density. Furthermore, from the 
normality of the eigentensors, it follows that the elastic energy associated with 
any eigentensor (mode) is decoupled from that associated with each of the 
remaining eigentensors. These issues have been examined by Mehrabadi and 
Cowin (1990) using a different approach;5 see also Kelvin (1856). 

As an example, consider the isotropic tensor C = l 1(2) â 1(2) + 2m 1(4s) 

The associated [Cab]-matrix is 

[Cab] = 

l+2m 
l 
l 
0 
0 
0 

l 
l+21 

l 
0 
0 
0 

l 
l 

l+2m 
0 
0 
0 

0 
0 
0 

2m 
0 
0 

0 0 
0 0 
0 0 
0 0 
2m 0 
0 2m 

(15.6.11) 

and the six pairs of eigenvalues and eigentensors are 

1 1 0 
1 —1 1 
1 0 -1 
0 
0 

), (2.i, 
~2 0 

0 
), (2M, 

~2 0 
0 

), 

0 0 

(3l+2m, ~3 

or (2m,
~2 
1 

-1 
0 
1 
0 
0 
0 

5 The material presented in Subsections 15.5 and 15.6 were completed in 1988 and used for 
class instruction; Nemat-Nasser and Hon i (1989). 
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[1, —1, 0, 0, 0, 0]T- and [0, 0, 0, 1, 0, 0]T-matrices correspond to shearing. 
Hence, the isotropic tensor C may be expressed by 

C = N3K (ei ®e l +e2 ®e 2 +e3®e 3)®(e i ®e l +e2®e2+e3®e3) 

+ N2m [ (ei ne1 — e2 ®e2) ®(e 1 ®el — e 2 ®e 2) 

+ (e2 ®e2 — e 3 ®e 3) ®(e2 ®e2 — e3 ®e3) 

+ (e2 ®e 3 + e3 ®e 2) ®(e2 ®e3 + e3 ®e2) 

+ (e3 ®e j + el ®e3) ®(e3 ®e1 + eine3) 

+(e i ®e 2 +e2 ®e i)®(ei®e2+e2®e i) j, 

where K is the bulk modulus given by (3l + 2m)/3. 

(15.6.13) 

15.7. CYLINDRICAL AND SPHERICAL COORDINATES 

The treatment of a special problem may often be simplified by the use of a 
suitable coordinate system that reflects the particular symmetry of the problem. 
For problems with cylindrical or spherical symmetry, it is appropriate to employ 
cylindrical or spherical coordinates. 

First, consider the cylindrical coordinates; see Figure 15.7.1. At a generic 
point P, consider a right-handed triad defined by the unit base vectors er, e8, and 
e3, which, respectively, are in the radial, circumferential, and axial directions. 

Figure 15.7.1 

Cylindrical coordinates c2 
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From 

er = e1 cosO + e2 sinl, 

it follows that 

ee = - e1 sinq + e2 cosq, (5.7.1 a,b) 

ae. _ aer aer _ aer _ aee _ aee 

ar ax3 — O aq = 
ee, ar ax3 — 0, aq = — er. 

(15.7.2a-d) 

At a point P with coordinates r, Q, and x3, the coordinate curves are: a 
straight line normal to the x3-axis (Q = constant, x3 = constant), a circle parallel 
to the xi,x2-plane (r = constant, x3 = constant), and a straight line parallel to the 
x3-axis (r = constant, Q = constant). A neighboring point P' with coordinates 
r + dp, Q + dl, and x3 + dx3, is at a distance ds from P, where 

ds2 = dr2 +r2dq2 +dx3. (15.7.3) 

The vector operator N is given by 

N xx e, 
ax, 

ar  
° (ei axi ) ar +(e~ a q) aq 

+ e3 aa 3 

er 
aU 

+ ee 
Uaq 

+e3 
 
e3 aa , 

3 
(15.7.4) 

where, in addition to (15.7.1), the relations r = (xi +x3)'ß and Q = tan-1 (c2/x1) 
are used. 

Now, let u(r, Q, c3) = ur er + u0 e0 + u3 e3 be the displacement field of the 
solid. Using (15.7.2) and (15.7.4), obtain the displacement gradient 

V ® u =er ®er 
arr 

+er®e q 
as 9 +er ®e 3  as 3

r 

a  + ee ®e r 
1( ur a — uq) + ee ®e e 1 (  auq + ur) + ee ®e 3 

1  u3 
r  aq r  aq r aq 

(r, Q are not summed). 

(15.7.5) 

From this, div u = N.u and curl u = N x u are readily calculated. For example, 
divu is 

~ G ae ~x3n.0 +  +ur)+    (15.7.6) 

+ e3 ®er aXe 
+ e3 ®e e ac3q + e3 ®e 3 aX3 

Since the strain tensor is defined by the symmetric part of the displacement gra-
dient, the components of this tensor may be written down from (15.7.5); they are 
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err = árr , Eer = eer = 2 { r áe + áre — 
u8 

},r 

eee — 
1 (  a8 

+ur), £r3 = £3r = ~ a r 
{  

~~  
+ 

au3  

}, aq 2 aC3  ar 

e33 = 
au3 eQ3 

= e36 =  
i { au8 + i  au3 

ax3 ~ 2 aC3 ao 

(15.7.7a—f) 

Now, consider the conservation of linear momentum. In an invariant 
form, this equation reads 

O.s+ rof = poü, (15.7.8) 

where Ro is the mass-density of the solid. The stress tensor s in cylindrical 
coordinates is expressed as follows: 

s _ SA eA®es (A, B = r, Q, 3), (15.7.9) 

where the upper case Roman subscripts have the range, r, Q, and 3, and the sum-
mation convention applies to these subscripts. Using (15.7.2) and (15.7.4), 
obtain from (15.7.8) 

aO,r + ~~er + 

ax3 

3r + 
r 1 (Orr- see) + Pofr = Pour, ar ao r, 

asrr + 1  aseQ + as3q + 2 s
re + R ofe = Ro~e, ar  r aq  ax3  U  

asr3  + 
ao ar 

~sQ3 +  a
x3 

~s33 + 1 Sr3+ rof3 = pou3• (15.7.1Oa--c) r   

Note that, as a consequence of the conservation of angular momentum, the 
stress tensor is symmetric. 

Finally, the generalized Hooke Law becomes 

SAB = ledAB +2MeAB (A, B = r, Q, 3), (15.7.11) 

where dAB = O if A # B, and dAB = 1 if A = B. 

Consider next the spherical coordinates, r, f, 8; see Figure 15.7.2. The 
unit base vectors, in this case, are er, ef, and ee, which respectively, define the 
radial, the meridional, and the circumferential directions. In terms of the rec-
tangular Cartesian base vectors e; (i = 1, 2, 3), the spherical base vectors are 
er = (ei cosq + e2 sins) sinf + e3 cosf, ef = (ei cosO + e2 sinq) cosf — e 3 sinf, and 
e0 is the same as for the cylindrical coordinates. The element of length is 

ds2 = dr2+r2df2+ r2sin2f d82, (15.7.12) 

and the operator N is given by 

e' ax; 

— (e' ac; ) -a - + (e' ~~ 
f  ) 
~f 

+ (e; axq; ) aq 
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Figure 15.7.2 

Spherical coordinates c2 

— er ar + e0 r af + eo rsinf aq (15.7.13) 

Using the same line of reasoning as in the case of the cylindrical coordi-
nates, obtain the following strain-components: 

au. 
egg = 

ar ' 
_ 1  auf  ug 

eff — r  af+r
, 

i auo  ug + cotf  
88  r sinf ao + r r  uf' 

i  1 au,  auf  uf 
egf  2 { r af +  ar — r }, 

o ere — 2{ r sinf aq + ar  to 

1  1 aus 1  au0 _ cots  60— 2
1
r a + rsinf ai r  u~}. 

Similarly, the equations of motion become 

asn  asfr  1   a
8 

ar + r af + rsinf ao 

+ 
r 

(2s  S00 — s8 + sgf cotf) + Pofr = roür, 

a 0 + 1 asFF +  1   asof  
ar r  af r sinf  ao 

+ r { 3s 0 + (s00 — s88) cotf I + roff = ro~~f, 

a8 i 
+  

asfo  1   asoo  
ar r  af + r s~hf  ao 

(15.7.14a—f) 
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+ r (3srq + 204)9 — c otf) + pofe = Pouq• (15.7.15a--c) 
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SECTION 16 KINEMATIC FOUNDATIONS 

In this section the deformation of certain solid bodies is studied without 
reference to the forces that cause the deformation. The molecular structure of 
matter is disregarded and it is assumed that matter is continuously distributed 

throughout the space occupied by the solid.1 

16.1. DEFORMATION AND STRAIN MEASURES 

In the mechanics of solids, material points or particles of a solid are dis-
tinguished from the spatial points or positions that they happen to occupy at a 
given instant. In the undeformed configuration Co of the solid, let a typical par-
ticle P occupy the position with position vector C (the position C for short). 
When the solid has moved to a deformed configuration C, the typical particle P 
occupies a new position x. The deformation is described in terms of either the 
initial position C or the final position x of a typical particle P as the independent 
variable, obtaining the so-called Lagrangian or Eulerian formulation of the 
motion. As will be seen later, in the theory of infinitesimal deformations, the two 
formulations lead to identical results. For immediate use, however, adopt the 
convention of designating the coordinates of the particles in their undeformed 
state by capital letters with capital subscripts, and denote the positions of the 
particles in the deformed state by lower case letters carrying lower case sub-
scripts. Since all quantities will be referred to a fixed system of right-handed 
rectangular Cartesian coordinates, no confusion will arise if the tensorial quanti-
ties are identified by their components; for example the brief expression "tensor 
E1 " is used instead of the more precise but longer expression "tensor E with 
components Eu". 

The mapping of particles from Co to C is expressed by 

= f(C) or x; = Y (C , C2, C3) (16.1.1a,b) 

which must be one-to-one and hence invertible, so that 

C = f-1(x) or C1 = f~~ 1 (x1, x2, x3). (16.1.2a,b) 

Assume that the single-valued functions (16.1.1) and (16.1.2) are as many times 
differentiable as is required in the context in which they are considered. The 
existence of a single-valued, continuously differentiable inverse of (16.1.1) is 

For introduction to fundamentals of continuum mechanics, see, e.g., Truesdell and Toupin 
(1960), Prager (1961), Fung (1965), Jaunzemis (1967), Green and Zerna (1968), Malvern (1969), 
Gurtin (1972), Eringen and Suhubi (1975), Chadwick (1976), and Spencer (1980). 
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actually guaranteed if the functions 0;(ßl, C2, C3) are once continuously dif-
ferentiable and the following determinant, 

J = det I XI I = det I f;,i I = 6 e iik e uk f;, i fi, J fk, k, 

for i,j, k, I, J, K= 1,2,3, (16.1.3) 

called Jacobian,2 does not vanish for any X in Co; without loss in generality, J 
will be taken positive. 

The change of length of a material line element emanating from a generic 
particle P, and the change of the angle between two such elements are com-
monly used as measures of the deformation of the neighborhood of P. Let dX 
and dY be two material line elements, emanating from P and having spatial 
representations dX and dY in Co, and dx and dy in C, respectively. The change 
in the scalar product of dX and dY is given by 

dx.dy—dX.dY = {dX.(V câf)}.{dY.(Vcâf)} —dX.dY 

= (dX®dY) : {(VX® f)•(Vcâf)T — 1( 2)} 

= dx.dy— {dx.(V xâf-1). {dy.(Vxâf-
I)} 

= (dx ®dy) : { 1(2) — (nx ® f-1) . (Ox (16.1.4a) 

or in component form, 

dx; dy; — d Ct dUt = ( j  ;,t — dh) dXl dYJ 

= (d,~~ — ft 1 Ft,-~~ ) dx; dy, (16.1.4b) 

where Vc and Vx are the V operators (differentiation) associated with X and x, 
respectively; see (15.4.2) and (15.4.5). Since the left-hand side of (16.1.4) is 
scalar, and since this equation is valid for all choices of dX and dY, or dx and 
dy, the deformation measures 

E = 2 {(VcâY)•(Vcâf)T— 1(2)}, 

e  

or in component form, 

`Y 

Ep = 2 (F;,t F;,t — dt.t), e,~~ ° 2 (d;~~ — ft,-;i ft,-j1), 

(16.1.5a,b) 

(16.1.5c,d) 

   

2 A comma followed by a subscript denotes partial differentiation with respect to the 
corresponding coordinate of the initial or final position of the particle, i.e., 1);,I = af;/ac1 and 

afr1/acl. In terms of the del operators, VX = aie I and Vx = a,e„ associated with coordinates 
X and x, note that (Vcâ f)i = and (Vx® 0 -1) i = a~f 1• 
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are second-order symmetric tensors. E is known as the Lagrangian and e as the 
Ealerian3 strain tensor, respectively. 

If dX and dY are one and the same material line element with initial 
length dS and final length ds, (16.1.4) reduces to 

ds2 — dS 2 = 2(dCâdC) : E = 2(dx®dx) : e 

= 2E1 dXl dCt = 2e dx; dxi, (16.1.6) 

which defines the change in the square of the element's length. Let dX and dY 
be two orthogonal elements, denote by g the decrease of the angle between 
them, and obtain 

ds ds' siny = 2(dC âdY) : E = 2(dx ®dy) : e 

= 2Eu dxi dU = 2e;i dxi dyi, (16.1.7) 

where ds' is the final length of the element dY. 

The strain measures (16.1.5a,b) are now expressed in terms of the dis-
placement field of the solid. Let x — X be the displacement of a typical particle 
P, and express it as U(C) _ f(X) — X and u(x) = c — 4) -1(x) for X and x, in the 
configurations Co and C, respectively. Here, U is for the Lagrangian formula-
tion while u is for the Eulerian formulation. From definitions of f and f-1, 
(16.1.1) and (16.1.2), U(C) - u(f(X)) and u(x) = U(f-1(x)). Then, equations 
(16.1.1 a,b) and (16.1.2a,b) may be written as 

f(X) = X±U(X) or  f(C) _ d1I {C1+UI(X)}, (16.1.8a,b) 

and 

F(x) = x — u(x) or fI 1(x) = d11 { xi —1i(x) }, (16.1.9a,b) 

from which it follows that 

VX® f = 1(2)+VX®U, Vx®.
-1 

= 1(2)— Vx âu, (16.1.10a,b) 

or in component form,  

= 8.;ß (53 t + Ut,t), FF 1, (16.1.10c,d) 

Substitution into (16.1.5a,b) now yields 

E = 2{(VX®U)+(V X ®U)T +(VX®U).(V X®U) T}, 

e= 2 {(Vxâu)+(Vx âu)T—(V xâu).(Vx âu)T}, (16.1.11a,b) 

or in component form, 

Eu = 2 
(UI,t + Ut I + Uk,I Uk,j), ey = 2 (u;,i + uj,; — uk,i ukj).  (16.1.11 c,d) 

3 This is also called Almansi's strain tensor; see Truesdell and Toupin (1960). 
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16.2. INFINITESIMAL STRAIN MEASURE 

The infinitesimal deformation theories are based on the assumption that 
the displacements as well as their gradients are infinitesimal quantities. With 
this assumption, the quadratic terms in (16.1.11a,b) can be neglected. In addi-
tion, the difference between the displacement gradients formed with respect to 
the Lagrangian and the Eulerian variables disappears. Therefore, both strain 
tensors E1 and ey may be expressed by the following symmetric strain tensor: 

e  
2 

{(V® u)+(V ®u)T}, (16.2.1a) 

or in component form, 

i = Z (ui,i + uj,]) = u(,]), (16.2.1 b) 

where, here and throughout the rest of this book no distinction is made between 
the Lagrangian and the Eulerian descriptions; all quantities are expressed in 
terms of x which is interpreted as the initial particle position. The right-hand 
side of (16.2.1) is the symmetric part of the displacement gradient, Vnu or 

= au;/axe. Thus, in the infinitesimal theory, the deformation of a material 
neighborhood of a particle is completely described by the spatial gradient of the 
displacement vector at that particle. To demonstrate the role that the displace-
ment gradient V ®u plays in describing the motion of a material neighborhood, 
let u = u(x) be the displacement of a particle P situated at x, and consider a 
neighboring particle P' at x + dx. For a sufficiently smooth displacement field, 
the displacement of P' can be expressed as 

u(x+dx) = u(x) + dx.V®u(x) + .... (16.2.2) 

Hence, within the context of the considered infinitesimal theory, the displace-
ment of P' relative to P is given by 

u(x+dx)—u(x) = dx.{V®u(x)} = dx.( e+w), (l6.2.3a) 

or in component form, 

u;(x + dx) — u,(x) = u 1 (c) dxi = (e,, + oi;) dxl, (16.2.3b) 

where the symmetric part e is defined by (16.2.1), and the antisymmetric part w 
is given by 

w= 
2 

{(Vâu)—(V® u)T}, (16.2.4a) 

or in component form, 

0Ni = 2 (ui,i - uij) - u[i,i] • (16.2.4b) 

Since it follows from (16.1.6), (16.1.7), and (16.2.2), that all changes of length 
and angle in the neighborhood of P are specified by e, the tensor w represents a 
rigid-body rotation of this neighborhood, as is further discussed below in con-
nection with (16.2.5) and (16.2.6). 
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16.2.1. Extension, Shear Strain, and Rotation 

To bring out the physical significance of the strain tensor e, denote the 
unit vector along the material element dX by m, and reduce (16.1.6) to 

~: m®m __ 1 ds2 —dS 2 _ 1 ds—dS ds+dS _ ds — dS  2.5 
( ) dS  2 2  dS dS dS 

(1~. a) 

which defines the extension of the material line element dX. The extension, in 
general, depends on the direction of the considered material line element. The 
notation l(m) is used to denote this quantity, 

e : (m®m) = eii m; mi = l(m), (16.2.5b) 

where the subscript m in the parentheses is to indicate that the extension of a 
line element with the direction of the unit vector m is being considered. In gen-
eral, l(m) is also a function of position x (and also time t for dynamic problems). 
The left-hand side of (16.2.5b) is called the normal component of the strain ten-
sor e in the direction of the considered material line element. It is therefore con-
cluded that the extension of a material element is equal to the normal component 
of the strain tensor e in the direction of this element. For an element along the 
c1-axis, e11 represents its extension. Similar remarks apply to £22 and £33. 

Next, consider two orthogonal material elements dX and dY with direc-
tions defined by the unit vectors m and n, respectively. Equation (16.1.7) now 
becomes 

2e : (m®n) = siny. (16.2.6a) 

Since g is infinitesimal, 

e: (m®n) 2g, (1 6.2.~b) 

where y/2 is called the shear strain4 for the orthogonal directions m and n. The 
dependency of the shear strain on the considered directions is brought out by the 
notation g(m, n)/2 for this quantity. Hence, 

(m ®n) _ m, n = 2 U(m, n). (16.2.6c) 

The left-hand side of this equation is called the tangential component of the 
strain tensor e in the orthogonal directions m and n. It therefore follows that the 
shear strain for two orthogonal material line elements is equal to the tangential 
component of the strain tensor e with respect to the directions of these elements. 
In particular, £12 = £21, £23 = e32, and £31 = £13 are the shear strains correspond-
ing to the three pairs of coordinate directions. 

From (16.2.5) and (16.2.6) it follows that a material neighborhood will 
only undergo (infinitesimal) rigid-body translation and rotation if the strain 

° In the engineering literature the total decrease in an initially right material angle is common-
ly called the shear strain. However, in mathematical treatments, half of this decrease, which is equal 
to the tangential component of the tensor e in the considered directions, is commonly termed the 
shear strain. The first is convenient in matrix representation, and the second, in tensorial representa-
tion; see Section 15. 
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tensor e vanishes there. The infinitesimal rotation is completely defined by the 
antisymmetric tensor w. Denote by dur the displacement of P' relative to P that 
corresponds to this rigid-body rotation, 

dur = dx.w, (16.2.7a) 

or in component form, 

du; _ wj,dxj. (16.2.7b) 

If W is the dual vector of the antisymmetric tensor w, namely, 

W~~ _ -2 e ijk ~jk, (16.2.8) 

then, 

dur = W x dx  or du; = e Vjk Wj dxk. (16.2.9a,b) 

This equation states that P' rotates relative to P by an infinitesimal angle equal to 
the magnitude of W. The sense of this rotation is that of a right-handed screw 
which progresses along the positive direction of W. 

16.2.2. Pure Deformation 

If the rotation tensor w is zero, the neighborhood of P, in general, under-
goes a rigid-body translation and a pure deformation. Corresponding to the pure 
deformation, the displacement dud of the particle P' relative to P is given by 

dud = dc.e = ds (m.e), (16.2.10a) 

where dx = ds m. Thus a pure deformation, in general, changes the direction of 
the material line elements. There are, however, certain line elements whose 
directions are unaltered in a pure deformation, and whose extensions have 
extreme values. Indeed, if the pure deformation is to leave the direction of the 
element PP' unchanged, then 

dud = ds(e.m) _ l dsm, (16.2.10b) 

where l is a scalar. Hence, 

(e — l1(
2
)).m = 0, (16.2.10c) 

or in component form 

(e1 — ld,j) mj = 0, i, j = 1, 2, 3. (16.2.10d) 

Consider now the extension in the direction defined by a unit vector m; see 
(16.2.5). To obtain a direction for which the extension has an extreme value, 
introduce the constraint 

m.m-1 = 0, (16.2.11) 

and let l denote the Lagrangian multiplier. Now seek the stationary values of 
the quadratic form 
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I(m) _ e: (m®m)— l(m.m— 1), (16.2.12) 

by setting its derivative with respect to m equal to 0, obtaining (16.2.1Oc). It is 
therefore concluded that pure deformation leaves unchanged the directions of 
those material line elements whose extensions have stationary values. 

System (16.2.10d) is a set of three linear, homogeneous equations in mj, 
j = 1, 2, 3. Nontrivial solutions for these equations exist if and only if the deter-
minant of the coefficients of the unknowns mj is zero, that is, if 

det l eij— ld;jl =0 (16.2.13a) 

which defines a polynomial of third degree in l. Expanding (16.2.13a), obtain 

l3 —I, l2 +II,l — III = 0, (16.2.13b) 

where the coefficients IeR, III, and III, are scalars; they are called basic invariants 
of the second-order symmetric tensor e, and are given by 

Ie = tr e =  

1 IIe = 2 e;jk ilm £j1 ekm  

IIIe = det S= 
6 

(2Ey ejk Ek, — 3Ie e: e + I~~ ). (16.2.14a—c) 

Equation (16.2.13b) has three roots, l1, l11, and l1hh, which are called prin-
cipal values (or proper numbers, or characteristic values) of the second-order 
tensor e. To each principal value lj, there corresponds a principal direction m~ , 
i.e., for J = I, II, and III , 

e.m' — lI m = 0  (J not summed), (16.2.13c) 

which defines the first, second, and third principal directions, respectively, as J 
takes on values I, II, and III. 

Since e is a symmetric tensor, all its principal values are real. This can be 
shown as follows: The polynomial (16.2.13b), whose coefficients are real, has, 
at least, one real root; the other two roots are either both real or are complex 
conjugates of each other. Let us assume the latter and show that this leads to a 

contradiction. If l1 is the real root, then5 lII = a + tb and lttt = lp = a — tb, 
where  = 'i-1, and superposed bar denotes complex conjugate. The 
corresponding principal directions thus are mj I and mj ~1 = ~T I, and from 
(16.2. l Od), 

ejk miiI = lII mj 
I, ejk mk

i = lII mjII. (16.2.15a,b) 

Multiplying the first equation by mjII, and the second by mj I, and then taking 
their difference, arrive at 

2tb(mj i mj i) = 0. (16.2.15c) 

5 A superposed bar denotes complex conjugate. 
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This is possible if and only if b = 0. 

Multiplying both sides of (16.2.13c) by mJ, obtain 

e : (m1 ®mJ) = lJ (J not summed), (16.2.16) 

for J = I, II, and III. This result shows that the principal values, lI, lhh, and l h 
are the extremum values of the extension; they are called principal extensions. 
It will now be shown that the principal directions corresponding to distinct prin-
cipal extensions are orthogonal. To this end, write 

e.m1 = lIm1, e.mI~ = 444 m"
ß 

(16.2.17a,b) 

which define the principal directions m1 and m1~, respectively. Now, multiplying 
(16.2.17a) by m and (16.2.17b) by m1, and then taking their difference, obtain 

(li — lh) m1.m11 = 0. (16.2.17c) 

Therefore, if l1 # lh, then m1 is orthogonal to mII. Similar results hold relative 
to the other principal direction 

mm. 
Thus, if l1 ~ ltt ~ lih, the principal direc-

tions mJ, J = I, II, III, form an orthogonal triad, that is, 

mJ.mK= dJK =}  
if J = K 
ifJ~K. 

(16.2.18) 

This and (16.2.10c) show that the shear strains for the pairs of the principal 
directions are zero. If two of the principal extensions are equal, then there is 
only one unique principal direction which corresponds to the distinct principal 
extension. Normal to this direction, any two principal directions may be taken 
as principal directions. If all three principal extensions are equal, any orthogo-
nal triad constitutes a principal triad. In this case, the deformation is locally iso-
tropic, i.e., e = l1(2), where l denotes the extension common to all elements 
emanating from the considered point. 

Since the principal values of e are the roots of (16.2.13b), this equation 
may also be expressed as 

l3 -1,l2 +II l —III,=( l — l1)(l — lh)(l — lhhi) = 0. (16.2.19) 

In terms of the principal extensions, the basic invariants of e now become 

IeR = li + ltt + lttt, IIe = li lit + ltt lttt + lttt li, 

IIIe = l~ ltt lttt• (16.2.20a--c) 

Finally, the strain tensor e may be expressed as 
III 

e = S lJmJ ®m J, (l6.2.21a) 
J =I 

or in component form, 
III 

E~J  J~I
~Jm?m~ (16.2.21b) 

which shows that, in the principal triad, the matrix of the strain tensor is diago-
nal. 
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Next, examine those pairs of orthogonal directions for which the shear 
strains have extreme values called principal shear strains; the corresponding 
directions are called principal shear directions. Let m and n be two orthogonal 
unit vectors, 

m.m— 1 = 0, n.n— 1 = 0, m.n = 0. (16.2.22a--c) 

The shear strain for these directions is e : (m®n). This is to be maximized 
(minimized) subject to the constraints (16.2.22a--c). Let 11, h, and v denote the 
Lagrangian multipliers, and consider the following expression: 

J(m, n) e :(m®n)— 1m(m.m-1)— 1h(n.n-1)— n m.n. (16.2.23) 

Setting aJ/am and aJ/an equal to zero, obtain 

e.n=Mm+vn, e.m=nn+vm, (16.2.24a,b) 

from which it immediately follows that 

= h and e : (m ®n) _ M. (16.2.24c,d) 

Equations (16.2.24a,b) then yield 

e.(m+n) = (V+M)(m+n), e.(m—n) _ (V—M)(m—fl), (16.2.25a,b) 

which state that v + M and v — M are the principal extensions; the corresponding 
principal directions are given by m + n and m — n, respectively. Thus set 

v + M = lJ, mJ = 
I m + n I = 1= (

m + n), 
2 

n — m= lk, mK =  rn -n  1 (rn —n) 
I m—nl ~2 

J, K = I, II, III, J ~ K, (16.2.26a--d) 

and conclude that the principal shear strains are given by 

=  (l3 lk), J ~ K, (l6.2.27a) 

with the corresponding principal shear directions defined by 

m= J= (mJ + n1 ), and  n= 
J= 

(mJ — n k),  J # K, (16.2.27b,c) 

or in component form, 

m, =  (m; + n K), and  n. = 
2 

(m? — n K),  J ~ K. (16.2.27d,e) 

The principal shear directions m and n, therefore, lie in the plane of the princi-
pal directions mJ and n

K
, and bisect the angle formed by these latter vectors; 

half of the difference between the corresponding principal extensions is equal to 
the principal shear strain. 

It is often useful to decompose the strain tensor e into two parts, a dilata-
tional part and a distortional part. The dilatation is defined by the first invariant 
I  of the strain tensor. For the considered infinitesimal deformation, I, 
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represents the expansion of a unit volume. Instead of I~, the symbol e will be 
used to denote the dilatation, i.e., 

e = IE = e;; _ l1+l11 +l ~~. (16.2.28) 

To show that e represents the expansion of a unit volume, consider a small rec-
tangular parallelepiped whose edges are directed along the principal directions 
of the strain tensor, having the lengths 11, 12, and 13, respectively. Since the shear 
strains for the principal directions vanish, the infinitesimal deformation maps 
this element into another rectangular parallelepiped whose edges are of lengths 
11 (1 + l1), 12 (1 + lh), and 13 (1 + lhh1), respectively. Therefore, to the first order 
of approximation in 24, 241, l1hh, the change in the volume per unit initial volume 
is equal to e = l1 + ltt + 24'1. Obviously, the tensor e 1(2)/3, which has equal prin-
cipal values of magnitude e/3, involves the same volume change; it is called the 
dilatational part of the strain tensor e. 

The distortional part of the strain tensor is called the strain deviator; it is 
defined by 

e' = e — 
3 

e1(2), (16.2.29a) 

or in component form, 

e' 
— 3 

e d;~ . (16.2.29b) 

Since e' does not involve a volume change, it is a measure of distortion, and, for 
this reason, it is often called the distortion tensor. 

16.2.3. Compatibility Conditions 

Having studied certain general properties of the strain tensor, now con-
sider conditions for the compatibility of a given strain field, that is, seek condi-
tions under which an arbitrarily prescribed strain field in a simply connected 
region6 corresponds to a continuous single-valued displacement field. At the 
outset, note that such a displacement field can be unique only to within a rigid-
body displacement, because rigid-body translations and rotations do not affect 
the strains. Thus, a "unique displacement field" shall mean that it is unique to 
within a rigid-body displacement. 

For a prescribed displacement field, the strains may be calculated by sim-
ple differentiation; see (16.2.1). Given a strain field, on the other hand, six dif-
ferential equations  

= (16.2.30) 

yield continuous single-valued solutions for the three functions u;, only when 
certain restrictions are met by the six components of the strain tensor These 

6 A region is called simply connected if, by a continuous deformation, every closed curve in 
this region can be reduced to a point without crossing the boundaries of the region. 
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restrictions are known as integrability or compatibility conditions. 

Let the displacement of a point x° be denoted by u°. If, to a given 
sufficiently smooth strain field, there corresponds a unique, continuous, single-
valued displacement field u = u(x), then the displacement u1 of a point x1 can 
be expressed as 

1_0 = J:o du = J:o (o ® u)T. dx = JX
0 
(e — w) . dx, 

or in component form, 

Uil — u ° = JX
O (eij — wij) dxj, 

C 

(16.2.31a) 

(16.2.31b) 

where the integration path, (assumed to be a rectifiable curve) may be selected 
arbitrarily in the considered simply connected region R. Note that the assump-
tion of R being simply connected is rather essential here, since for a multiply 
connected region the displacement field may turn out to be multiple-valued. 

Equation (16.2.31b) may be written as 

xl 
uil = Ui° ± (Xjl — Xj ° ) wjQ + J o 

{ eij + (xk — Xk) wki,j } dXj, C 
(16.2.32a) 

where integration by parts is used, and where w° is the value of the rotation ten-
sor at point c8. Noting that 

wk~,j = 
Z (ui,k — uk,i),j = e jj,k — ekj,;, (16.2.32b) 

reduce (16.2.32a) to 

u1( c1) = u° + (xi — X j°) wj~ +Jx
u 

+ (C  Xk) (Eij,k — Ekj,i) } dxj. 
C 

(16.2.32c) 

For a smooth, single-valued displacement field, u1 is uniquely defined by 
(16.2.32c), independently of a particular path of integration from x° to x 1. 
Therefore, the integrand 

Uij = eij + (xk — Ck) (eij,k — ekj,i) (16.2.33a) 

in (16.2.32c) must be an exact differential, that is, it must follow that 

Uij dxj = dfi, i = 1, 2, 3. (16.2.33b) 

Necessary and sufficient conditions for this are 

0ijk = F1,kj ==' U;ikR = Uik,j (16.2.33c) 

from which it follows that 

(xk — Xk) + ekl 1j — eik jl — ejhik) = O. (16.2.33d) 

This is satisfied for all xk in R, if 

eij,kl + ekl ij — eik,jl — ejl,ik = O (16.2.34) 

which are the desired integrability conditions. Note that if (16.2.24) is satisfied, 



e11,23 = (e12,3 +e31,2 — e23,1),1, e12,12 

e22,31 = (e23,1 + eI2,3 — e31,2),2, e23,23 

e33,12 = (e31,2 + e23,1 — e12,3),3, e31,31 

= Z 
(e11,22 +e22,ii), 

= 2 (e22,33 + e33,22), 

= ~ (e33,11 +e11,33)• (16.2.36a—f) 
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the integrand in (16.2.32c) becomes an exact differential, rendering the dis-
placement u1 independent of the considered path of integration. This implies 
that (16.2.34) are sufficient conditions for the integrability of (16.2.30). To 
show that they are also necessary, assume the existence of a single-valued con- 

tinuous displacement field u(x) of class C3, and by successive differentiation 
obtain 

eij,k1 = 2 (ui,ikl + ui,iki). (16.2.35a) 

Now, interchanging the subscripts, obtain 

ek!,;j = 
2 (

uk,li + ul,i). (16.2.35b) 

Interchanging i and k in (16.2.35a), and k and i in (16.2.35b), now combine the 
results to arrive at (16.2.34). 

Therefore, in a simply connected region, conditions (16.2.34) are both 
necessary and sufficient to ensure the existence of a single-valued continuous 
displacement field. There are 81 equations expressed by (16.2.34), out of which 
only 6 are independent; the others are either identities or repetitions of these six 
equations. The six independent equations are 

When R is a multiply connected region, conditions (16.2.36a--f), while 
still necessary, are no longer sufficient for the existence of a continuous single-
valued displacement field. Since a multiply connected region can be reduced to 
a simply connected one by the introduction of suitable cuts, (16.2.32c) yields a 
unique displacement u1, if the integration path does not cross any one of these 
cuts and (16.2.36a—f) are also satisfied. Additional conditions are now obtained 
by the requirement that the displacement should be continuous across the cuts. 
In general, m — 1 cuts are needed to render an m-tuply connected region simply 
connected, and for each cut three conditions are required to ensure the con-
tinuity of three displacement components. Indeed, these three continuity condi-
tions are satisfied if and only if the following integration taken along an arbi-
trary loop La surrounding the nth "hole" in R vanishes: 

f { E;i + xk) ~Eij,k — ekj,,) } dx,l = 0, j = 1, 2, 3, (16.2.37) 

where x1 is on L. Equation (16.2.37) states that the displacement has zero jump 
when its gradient is integrated around the nth hole; see Figure 16.2.1. A 

A function is of class C" in a given region if it is continuous there, together with all of its 
derivatives up to and including the nth order. 
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multiply connected region can be reduced to a simply connected region by the 
introduction of suitable cuts. Therefore, there are, in general, 3(m — 1) addi-
tional conditions which must be met, if the displacement field in an m-tuply con-
nected region is to be single-val~ed and continuous. 

branch cuts 

Figure 16.2.1 

Branch cuts for m-tuply connected body, and integral path L„ 

16.2.4. Two-Dimensional Case 

Consider a special deformation called plane. A deformation is said to be 
plane if, with a suitable choice of the rectangular Cartesian coordinate system, 
the displacement field can be written in the form 

u1 = u!(x1, x2), u2 = u2(x1, x2), u3 = constant. (16.2.38a--c) 

The rotation vector W, with the components, 

W1 = 0, W2 = 0, W3 = - - (u21 — 111,2), (16.2.39a-c) 

is parallel to the x3-axis. A positive value of W3 represents a counter-clockwise 
rotation of the considered material neighborhood about an axis that is parallel to 
the x3-axis. The non-vanishing components of the strain tensor are 

eab = (up, a+ua, R). (16.2.40) 

Here and throughout the rest of this subsection, Greek subscripts have the range 
1, 2. 

The extension in the direction of the unit vector m with components 

m1 = cosf, m2 = sinf, m3 = 0, (16.2.4la- c) 

is given by 
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l(m) = e11 03820 + e22 sin2f+ e12 sin2f 

= - -(e11 + e22) + 2(e11 — e22) c382f + e12 sin2f, (16.2.42) 

where f is the angle formed by the direction of m and the positive xl-direction. 
If n is a unit vector in the x i,x2-p1ane, chosen in such a manner that m, n, and 
the c3-direction form a right-handed orthogonal triad, then 

n1 = — sin, n2 = cosY, n3 = O. (16.2.43a—c) 

The shear strain for the direction m and n then is 

1 1 
n) _ — 2 (ei i — e22) sin2f + e12 cos2~. (16.2.44) 

In the plane x3 = 0, and along the principal directions, now choose a new 
system of rectangular coordinates x~ ,x2, and x3 = c3, and label them in such a 
manner that the principal extensions l1 of the x~-direction and lh of the --
direction, satisfy the condition l1 >_ kn. Denoting by f' the angle formed by the 
direction of m and the positive xi-direction, reduce (16.2.42) and (16.2.44) to 

l(m) = 2 
(lt + lh) + 

2 
(lI — lh) cos2f', (16.2.45) 

and 

Z
U(m n) = - - -(l1 — l11) sin2f'. (16.2.46) 

A line element parallel to the x~,x2-plane undergoes an infinitesimal rotation W 
parallel to this plane and equal to the sum of (16.2.39c) and (16.2.46), i.e., 

W = W3 — 2 (li — lh) sin2f'. (16.2.47) 

In the l, W-plane, consider a circle defined by 

l = 2 (l + lh) + 
2 

(l1 — lh) cos2f', 

W = W3 — Z ( ll — lh) sin2f', 0 <_ f' < P. (16.2.48a,b) 

Since f' is the direction of a typical material element along the unit vector m, 
points on this circle define the strain and rotation of material-line elements of 
the corresponding orientations, measured from the x~-axis. If W3 is excluded in 
(16.2.48b), then the construction known as Mohr's strain circle is obtained. 
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SECTION 17 DYNAMIC FOUNDATIONS 

In this section the basic equations that govern the instantaneous (dynamic) 
equilibrium of a solid which may or may not be elastic are considered. From the 
balance of linear and angular momenta (Euler's laws), applied to an arbitrary 
part of a solid, the local field equations (Cauchy's laws) are obtained. Although 
in this book attention is focused on small-deformation theories and, particularly, 
elasticity, these balance laws are valid for any continuum and for small, as well 
as large, deformations, provided they are interpreted in an appropriate manner. 

17.1. EULER'S LAWS 

In continuum mechanics one is concerned with the response of continua 
to applied forces (loads) and imposed surface displacements. Attention is 
confined to solid bodies, where the applied forces act over a part, or the entire 
surface of the solid in its contact with other bodies. These forces are usually 
specified per unit area of the surface element upon which they act, and are 
called surface tractions (or traction vectors). Hydrostatic pressure on 
submerged bodies is an example of surface tractions. The symbol t is used to 
denote the applied surface tractions. The physical dimension of t is force 
divided by squared length. 

In a gravitational field, particles of a body are subjected to forces which 
are proportional to their mass. Since the mass of a continuum is regarded as 
continuously distributed throughout the space occupied by the body, the forces 
which relate to mass are likewise continuously distributed. These types of 
forces are defined per unit mass of the body, and are called body forces. The 
symbol f is used to designate body forces. The physical dimension of f is force 
divided by mass. Body forces may also stem from the interaction of pairs of 
particles forming the solid, as in the case of a solid under its own gravitation. 
Since forces of this kind, called mutual loads, may be prescribed a priori, it is 
assumed that they are accounted for in the specification of f. 

In addition to surface tractions and body forces, one may consider surface 
and body couples acting on a solid. For example, material points of a polarized 
continuum may be subjected to body couples, in addition to possible body 
forces, when this continuum is placed in an electromagnetic field.' However, the 

Note that surface and body couples should not be viewed as moments of surface and body 
forces. The existence of these couples may be postulated independently of, and in addition to the 
other types of forces and their corresponding moments. 
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study of the couple-stress theory is not pursued in this book.2 

The forces defined above present the mechanical environment of the solid. 
They are prescribed a priori, and thus may be termed applied loads. Therefore, 
at each instant t, a considered solid that occupies the region R with surface aR 
may be subjected to the following loads: a resultant force F given by 

F faR tdS+f pfdl, (17.1.1) 

and a resultant moment (torque) L (taken with respect to the origin O of the 
coordinate system) defined as 

L=LxxtdA+ f r xxfdV, (17.1.2) 

where p is the mass-density of the solid. Note that (17.1.1) and (17.1.2) are not 
restricted to elastic continua but are valid for continua of all types. 

The motion of a solid is assumed to be governed by Euler's laws which 
are assertions regarding the manner by which external loads affect linear and 
angular momenta of the bodies. The first law is concerned with linear 
momentum. It states that the instantaneous rate of change of the linear 
momentum P of a body R is equal to the resultant external force F that acts on 
the body at the considered instant. Let v(x, t) be the velocity field of the solid at 
instant t. Euler's first law may be written as 

R .f tds± I pf dl, 

or in component form, 

= JaR t, dS+JR pf; an, 

where 

P= d P= d {fR p»dV} 

or, in component form, 

P;= dt v;= dt
{IR pvi dl}. 

(17.1 .3a) 

(17.1.3b) 

(17.1.3c) 

(17.1.3d) 

Here a superposed dot (= d/dt) is the material time-derivative which for the 
infinitesimal theory may be interpreted as the partial time-derivative, since in 
that case there exists no difference between the material and spatial time-
derivatives. 

Euler's second law is concerned with angular momentum or moment of 
momentum. It states that the instantaneous rate of change of angular 
momentum H of a body R is equal to the resultant external torque L that acts on 
the body at the considered instant. The second law becomes 

H= faR xxtdS+JR pxxfdV, (17.1.4a) 

2 Interested readers will find a simple account in a paper by Koiter (1964). 
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or in component form, 

H,— f LA elJk CJ tk dS+JR r e1jk x~fk dl, (17.1.4b) 

where the angular momentum relative to the origin of coordinates is defined by 

H= fR r xXVdV or 
H`= fRpeiJkxJvkdV. (17.1.4c,d) 

17.2. TRACTION VECTORS AND STRESS TENSOR 

Two key continuum concepts are introduced in this section. They are the 
concept of internal surface tractions and the concept of stress tensor which are 
then used to express tractions transmitted across any elementary material 
surface. Then applying Euler's laws to an arbitrary region of a continuum, local 
field equations if equilibrium, called Cauchy's laws, are obtained. 

17.2.1. Traction Vectors 

A basic concept which characterizes the continuum theory, that is, the 
concept of internal surface tractions is now introduced. This concept may be 
stated as follows: the mechanical action of the material points which are situated 
on one side of an arbitrary material surface within a body, upon those on the 
other side, can be completely accounted for by prescribing a suitable set of 
traction vectors on this surface. With this concept (assumption), a part of a body 
can be removed and in its place suitable surface tractions prescribed on the 
newly formed boundaries, without affecting the motion and deformation of the 
remaining part of the body; such a removal of matter must not, of course, alter 
body forces which may include the mutual loads acting on the remaining part of 
the solid. 

At a generic point x, consider a surface element dS and let n denote a unit 
vector normal to this element. The mechanical action of the material points 
situated on the side of dS toward which n is pointing, upon those on the other 
side, is represented by surface tractions t(°) acting on dS; see Figure 17.2.1. 
Clearly enough, one expects that these surface tractions should, in general, 
depend on the orientation of the element dS, specified by n, as well as on its 
position x, but not on its shape. Since infinitely many directions can be 
identified at a given point, it is clear that at each point, infinitely many traction 
vectors can also be identified, each acting on an element with a given unit 
normal. These traction vectors are not, however, all independent, and 
according to Cauchy 's theorem, they may all be expressed in terms of traction 
vectors on three distinct planes that pass through the considered point. 

At point x, choose three orthogonal planes which are parallel to the 
coordinate planes and have — e, (i = 1, 2, 3), as unit normals. Denote by  



590 CHAPTER V § 17.2 

Figure 17.2.1 

Surface traction t acting on 
elementary surface dS of body R 

R 

(i = 1, 2, 3), the traction vector on the plane whose unit normal is — e;. Then, 
consider a small tetrahedron with vertex at x, and three faces that pass through x 
parallel to the coordinate planes and have —e; (i = 1, 2, 3), as exterior unit 
normals. Let the fourth face of this tetrahedron be at a distance h from x, and 
denote its area b' dS, its exterior unit normal by n, and the traction vectors 
acting on it by t(° which represents the action exerted by the material outside of 
the tetrahedron upon that inside. Now this tetrahedron can be isolated from the 
rest of the body and its motion can be studied. Apply Euler's first law (17.1.3), 
and, as height h shrinks to zero, obtain (see Figure 17.2.2) 

— (t l°i n1 + 
t(e2)n2 

+ tte'ln3) + t
~
°)  (17.2.1) 

where inertia and body forces are neglected because they are proportional to the 
volume which, compared with the surface area of the element, constitutes an 
infinitesimal quantity of a higher order. 

Figure 17.2.2 

Tetrahedron with tractions 
acting on its surfaces, t("), 
t(e,) (i = 1, 2, 3) - C3 
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17.2.2. Stress Tensor 

Equation (17.2.1) may be written as 

t(°) = t
(e') n;, (i = 1, 2, 3; i summed), (17.2.2) 

which states that, at a typical point x, the traction vector on an arbitrary plane 
with exterior unit normal n is given as a linear and homogeneous vector-valued 
function of the direction cosines n;; the coefficients in this linear relation are the 
traction vectors 

t(e') 
of the three orthogonal planes which pass through the 

considered point and are parallel to the coordinate planes. This is Cauchy's 
theorem. 

If a plane with unit normal m = — n is chosen, then 

t(m) = [1 
n) t(e,) m = — 1(n) (17.2.3) 

which states that traction vectors acting on opposite sides of the same surface 
element are equal in magnitude but opposite in direction. 

Let 0;3 denote the jth component of the traction vector on the surface with 
unit normal e;. Then 

= tle'~ .e~. (17.2.4) 

The traction vector t can also be expressed in terms of its components along 
the coordinate axes, i.e., 

(n) 
= tj(°) e, (17.2.5a) 

and thus (17.2.3) yields 

tj
(°)

= n;~;;. (17.2.5b) 

The quantity s = s;; e; ®e j is called the stress tensor.3 At a typical point, 
the traction vector is given by 

t(°) = n.6 = (h; s) ej (17.2.6) 

which is the dot product of n with s. The component G;i of the stress tensor 
represents the orthogonal projection along the x~-axis of the traction vector that 
acts on the plane normal to the x;-direction. For the positive face4 of this plane, 
positive s1 denotes a component that is directed toward the positive x~-direction. 
This commonly employed sign convention is illustrated in Figure 17.2.3, where 
it is assumed that the components of s are all positive; they are shown for all 
positive faces, and also for the negative face that is normal to the c2-direction. 
The components s jj, s, and s33, which are normal to the corresponding 
coordinate planes, are called normal stresses. The tangential components s12, 
s23, and s31 are called shearing stresses. Note that the normal stress sll, for 

The tensor character of s follows from the fact that the left-hand side of (17.2.5b) is a vector 
for all choices of the unit vector n. 

° The positive face of the plane normal to the c direction is the one whose unit normal points 
in the positive c; direction. 
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example, is the normal component of the stress tensor along the xi-direction, 
while the shearing stress s12 is the tangential component of this tensor along the 
xi ,x2-directions. 

Figure 17.2.3 

Components of Cauchy 
stress tensor 

The normal stress on an element of area dS with unit normal n is the 
normal component of the corresponding traction vector in the direction of n. 
Denote this quantity by N(°) , and obtain 

t(II).n = s : (n®n) = s j n, nj. 

The shearing stress on dS is the tangential component S(II) of t(°) ; it is given by 

(S )2 = t0°) .t(°) - (\(11 )2. (17.2.7b) 

Note that S is defined as an unconditionally positive quantity. 

17.2.3. Cauchy's Laws 

Consider now the motion of a part B1 of the solid. Denote by R1 the 
instantaneous region occupied by B1, and let aR1 with the exterior unit normal n 
be its boundary surface. According to basic assumptions, the effect of the 
material points outside of this region upon those within the region is completely 
defined by the specification of surface tractions t(°) on aR1. Euler's laws of 
motion then yield 

JR r (f — n) dV + JaR n. s dS = 0, 

JR 
rcc (f — n) dV+ JaR cc(h.s) dS = 0, 

or in component form, 

JR p (fj — nj) dV + 
JaR 

h; s;j dS = 0, 

(17.2.Sa,9a) 

(17.2.7a) 
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I 
r e;jk Cj (fk — Vk) dV + 

JlA e ijk Cj (h1s1k) dS = 0, (17.2.8b,9b) 

where (17.2.4) is used, and f; is the component of the body force. Using the 
Gauss theorem,5 these equations are reduced to 

.{R , 
+ p(fj — ~)) 

dl =0 (17.2.8c) 

and 

JR e k sjk dl = 0, (17.2.9c) 

where (17.2.8c) is used for deriving (17.2.9c). Since these equations are valid 
for an arbitrary part B1 of the solid, the integrand must vanish, yielding the 
Cauchy laws 

N.s+rf= rn, sT= s, (17.2.10a,11a) 

or in component form, 

+ r fj = r vj, (7j; = (17.2.10b,1 l b) 

Equation (17.2.10) expresses the conservation of linear momentum, while 
(17.2.11) is the statement of the conservation of angular momentum, when 
surface and body couples are absent; (17.2.11) shows that the stress tensor s is 
symmetric. 

For a surface element with the exterior unit normal v, the traction vector 

v.s = t° or n, s;j = tj° on aR0, (17.2.12a,b) 

where aR denotes that part of the boundary of aR, upon which the surface 
tractions are applied. If aR is traction free, then v • s = O on R0. 

17.2.4. Principal Stresses 

Since s is a real, symmetric, second-order tensor, it has all the properties 
of such a tensor. Therefore, at each point x at time t, there exist three 
orthogonal planes upon which the traction vectors t(n) are normal, the 
corresponding shearing stresses are zero, and the normal stresses are extrema. 
The directions of these planes are given by the principal directions of s. These 
orthogonal directions are called the principal directions of stress. The 
corresponding principal values NJ, J = I, II, III, are the principal stresses which 
are the roots of the equation 

det l sy — N d;j l = 0, (17.2.13a) 

or, equivalently, the equation 

Note that the Gauss theorem can be used only if the stress tensor is sufficiently smooth; see 
Section 15. Hence, (17.2.8) is actually more than just a statement of the conservation of linear mo-
mentum. 

t(1) = v . s must equal the externally applied surface traction t°. Thus 
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N3 — Is N~+ Ps N — IIIs = 0, (17.2.13b) 

where 

Is = tr s = s,, = Ni + Nh + 1m 

IIs = Z e iik e iim sii siPi = 2(I~ — s : s) = Nt Nii + Ntt Nttt + Nttt Nt, 

III = det I s I =  (2sy srk ski — 3I~ s : s + 14) = Ni Ntt Nttt, (17.2.13c—e) 

are the basic invariants of the stress tensor G. The principal stresses may be 
positive, negative, or zero; a positive value denotes tension, and a negative 
value, compression. The principal directions of the stress tensor are defined by 

nJ . s = NJ nJ, J = I, II, III (J not summed), (17.2.14) 

which shows that the corresponding shearing stresses are zero, and that the 
principal triad nJ, J = I, II, II~ is orthogonal, i.e., 

niR.n
k_{ 0 ifJ K. 

(17.2.15) 

With respect to the principal triad, the matrix of the stress tensor is diagonal, and 
this tensor can be expressed as 

s _ Ni nJ ®ni, (17.2.16a) 

or in component form, 
ttt 

s1 = NJ n, nj . (17.2.16b) 
I 

Employing an analysis similar to that which led to (16.2.27), it is 
concluded that 

S= - INJ— NkI J#K, (17.2.17a) 

defines the extremum values of the shearing stresses acting on the orthogonal 
planes with unit normals 

m= _= (h1 ±nK) J#K. (17.2.17b) 

17.3. GEOMETRICAL REPRESENTATION OF STRESS TENSOR 

Two geometrical representations of the second-order symmetric stress 
tensor s are often considered. They are Mohr's circle and a quadratic form. 
These representations apply to any second-order symmetric tensor, e.g., the 
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strain tensor. 

17.3.1. Mohr's Circles 

Tractions transmitted across a plane at a point can be represented by the 
coordinates of a point in a two-dimensional space, with the aid of the Mohr 
circle. Let the directions of the coordinate axes x1, c2, and x3 coincide with the 
principal directions of the stress, and label them in such a manner that N~~ > Nh > 
liii. The normal stress N(°) transmitted across an element with the unit vector n 
is 

Im?+Nhnz + 1h1n, (17.3.1a) 

and the corresponding shearing stress is given by 

(SO)2 = N1 n? + Nii nz + N~t n3 — ( N(n))2. (17.3.1b) 

To simplify the notation, set N - 1(a) and S = 5(P), and using the condition 

ni + nz + n3 = 1, 

solve (17.3.1a) and (17.3.1b) for the direction cosines n1. Thus, 

2 _ (111 — N) ( N111 — N) + S 2  

nl 
(Ntt — Ni) (Nttt — N1) ' 

112  2 __ (Nitt — N) (Ni — N) + S2  

(Nttt - Nh) (Nt - Nh) ' 

(17.3.2) 

2 (Ni — N) (Nh —1) + 
n3  (Ii— N11) (Ntt — Nitt) 

(17.3.3a c) 

Since the denominators of (17.3.3a) and (17.3.3c) are positive and that of 
(17.3.3b) is negative, the admissible values of N and S must satisfy the 
following inequalities: 

S2 + [ N — 2 (Ntt + Nttt) ] 2 — 4 (N i — 1111)2 
>0 

s2 – N — 2 (Niii + Ni) 
2 11)2 < 0, 

S2 + N— 2 (N1 + Nll)  2 

— 4 
(Ni — Nit)2 > 0. (17.3.4a- c) 

In the 1,5-plane, a stress point with abscissa N and ordinate S corresponds to a 
real direction n if (17.3.4a--c) is satisfied. Setting the left-hand side of 
(17.3.4a- c) equal to zero, the equations of three circles which are labeled as I, 
II, and III, respectively are obtained. The centers of these circles lie on the 1-
axis at points C1  (Nh + 1100)/2, C11 = (N i + Ni)/2, and CIIJ = (Ni + Nh)/2, 
respectively, and their respective radii are R1 _ (Nh — Nn~)/2, R11 = (Nh — X1)/2, 
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and R111 = (N1 — N iI)/2. All admissible stress points are in the upper half-plane 
(since S is by definition nonnegative), inside or on circle II, and outside or on 
circles I and III. The stress points on circle I correspond to the directions that lie 
in the x2,x3-plane, since for these directions n1 = O. Similarly, stress points on 
circles II and III correspond to the directions for which n2 = 0 and n3 = 0, 
respectively. The stress point associated with a plane defined by any two 
directions can now be easily obtained; see Prager (1961) for details. 

When two of the principal stresses vanish at a point, the state of stress is 
said to be locally uniaxial, with the axis of stress defined by the principal axis 
that is associated with the nonzero principal stress. The stress field is said to be 
uniaxial, if the state of stress is uniaxial everywhere in R. 

The state of stress is said to be plane at a point, if one principal stress 
vanishes there. The plane of the stress is specified by the principal axes which 
correspond to the nonzero principal stresses. The stress field is said to be plane 
if the state of stress is plane everywhere in R. 

Suppose that the state of plane stress at a point is specified by three stress 
components, SI!, s22, and s12 = s21, where 011 and s22 are not the principal 
stresses. To obtain the corresponding stress circle, locate in the N,S-plane two 
points P and P' with coordinates (si i, — 012) and ( s22, s12), respectively. The 
line PP' intersects the N-axis at the center C = (s1 1 + s22)/2 of the stress circle 
whose radius is defined by R2 = s?2 + (s11 — s22)

2
/4. The principal stresses then 

are 

N~11 = Z(si i +s22)–{s1i + 4(11 — s22)2}' (17.3.5) 

and the angle between the orientation of the plane of the major principal stress 
and the plane with traction (s11, s22), Y, is defined by6 

tan2Y _ 2s12 
(17.3.6) S11 — S22 ' 

17.3.2. Quadratic Form 

There exists another geometric representation for a second-order 
symmetric tensor that may be used to study the stress or strain at a point in the 
solid. This is briefly discussed in connection with the stress tensor s. At a point 
x in the solid, a right-handed rectangular Cartesian coordinate system with the 
axes y;, i = 1, 2, 3, is introduced parallel to the corresponding c; axes. The 
quadratic surface 

± = s: (y ®y) = yi yi (17.3.7) 

is called Cauchy 's stress quadric, where the sign of the left side is chosen so 
that (17.3.7) represents a real surface. The normal stress, transmitted at this 

Note that the sign convention for Mohr's circle is usually not the same as that defined in Fig-
ure 17.2.3. 
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point across an element with the unit vector n, is 

NO_ s :(nun)= i s: (y®y) = ± i $, (17.3.8a) 
r r 

where y = r n, and r is the length of the radius vector of the quadratic surface 
measured along the unit normal n. The traction vector acting on this element is 

t(n) = n.s = r y•s = 
Zr 

Ny(± 4). (17.3.8b) 

Since the right-hand side of (17.3.ßb) is proportional to the gradient of f, it is 
concluded that the direction of the traction vector on the considered element is 
perpendicular to a plane tangent to the quadratic surface at the terminus of the 
radius vector normal to that element. The magnitude of the traction vector is 
inversely proportional to the length of this radius vector. 

A quadratic form has three principal axes which are orthogonal, and 
correspond to radius vectors with stationary lengths. These directions coincide 
with the principal directions of stress, and, as is clear from (17.3.8a), define the 
orientation of surface elements with stationary normal stresses. 

The stress quadric may be an ellipsoid, a hyperboloid, or any one of their 
degenerate forms. The quadric is ellipsoidal if the principal stresses are distinct 
and of the same sign, and it is a hyperboloid if these stresses are distinct but one 
has a different sign from the other two. When two of the principal stresses are 
equal at a point, there is only one unique principal axis for the stress quadric 
which, in this case, reduces to a surface of revolution. The axis of revolution is 
defined by the direction of the distinct principal stress. Normal to this axis, any 
two orthogonal directions may be taken as the principal axes. If all three 
principal stresses are equal at a particle, then the stress quadric reduces to a 
sphere. In this case, the state of stress is isotropic, i.e., si; = p d;;, where p 
denotes the normal stress common to all elements of the area passing through 
the considered point. A state of stress of this type is called spherical. Note that, 
in general, the stress tensor s may be decomposed into a spherical part and a 
deviator s' whose trace is zero, i.e., 

s 

 

= '± 3 I 1(2), (17.3.9) 

where I = s is the first stress-invariant. The spherical part of the stress tensor 
is also called the mean normal stress. 

17.4. REFERENCES 

Koiter, W. T. (1964), Couple stresses in the theory of elasticity, Parts I and II, 
Akademe van Wetenshappen Series B, Vol. 67, 17-44. 

Prager, W. (1961), An elementary discussion of definitions of stress rate, J Q. 
Appl. Math., 403-407. 



SECTION 18 CONSTITUTIVE RELATIONS 

Within the context of the considered infinitesimal theory, certain aspects 
of the kinematics and dynamics of deformable continua are discussed in the 
preceding two sections. With the stated qualifications, these results apply to 
continuous media of various kinds that consist of materials of diverse constitu-
tions. To characterize the constitution of a material that comprises a continuum, 
the constitutive relations which relate the kinematic and dynamic ingredients of 
the theory are introduced. In this section constitutive relations of certain solid 
bodies whose behavior can be characterized with sufficient accuracy by assum-
ing that they consist of a perfectly elastic material are considered. 

In order to define the constitutive equations for elastic materials, start 
from the conservation of energy and relate the strain and stress in the continuum 
to the internal energy stored in the material. The elastic strain energy and its 
conjugate, the complementary elastic energy, are then defined in terms of the 
strain and stress as a special case. For linear elasticity, the elastic strain (com-
plementary) energy is quadratic in strain (stress), with the fourth-order elasticity 
(compliance) tensor defining the corresponding coefficients. The symmetry pro-
perties of the material are then represented by those of the fourth-order elasticity 
(compliance) tensor; see Section 3. 

18.1. STRAIN ENERGY DENSITY 

18.1.1. Conservation Laws 

There are four conservation laws governing the motion and deformation 
of a continuum: 1) conservation of mass, 2) conservation of linear momentum, 
3) conservation of angular momentum, and 4) conservation of energy. For the 
infinitesimal theory of elasticity, the first conservation law implies that the 
mass-density of the solid does not change in time, i.e., 

p = p(x; t) = ro(x), (18.1.1) 

where ro and p are the initial and instantaneous mass-densities, respectively. 
This is because the mass of an arbitrary part of the continuum, R1, is given by 

f R p(x; t) 
J(x; 

t) 
dV = f R po(x) dV, (18.1.2) 

where J is the Jacobian, and the left-hand side of (18.1.2) is the mass of R1 at the 
initial state. Since J equals 1 for an infinitesimally small deformation, and since 
the above integral remains constant for arbitrary R1 and t, the field equation 
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(18.1.1) must hold for every point in the continuum. 

The second and third conservation laws are discussed in Section 17 in the 
form of Euler's laws. Both are stated for a finite part of the continuum. In the 
same manner that (18.1.1) is derived from (18.1.2), the two field equations, 
(17.2.10) and (17.2.11), which hold at every point of the continuum, are derived 
from Euler's laws. These field equations are Cauchy's laws, or the equations of 
motion. 

Now consider the last conservation law, namely, the conservation of 

energy.1 To this end, the instantaneous specific internal energy density (per unit 
mass), denoted by e, which is the measure of the stored energy in the contin-
uum, is introduced. Let v be the instantaneous velocity field of an arbitrary 
region R1 with a regular surface aR i within the continuum R. The internal and 
kinetic energies contained within R1 then are 

E = JR 
p 
e dl,  K =1R 

2 
r n.n dV. (18.1.3a,b) 

If the rate of heat supply is L, the conservation of energy asserts that 

K+E =F+L, 

where 

F = 
(n)  dS 

±fR 
pf.v dl 

(18.1.4) 

(18.1.3c) 

is the rate at which the prescribed surface tractions t(°) and body forces f do 
work on the body R1. Note that, (18.1.4) may be viewed as defining the internal 
energy E, since the heat supply L is supposed to be known. 

Let q denote the heat flux through the surface aR1, and h the heat created 
per unit mass in the body; h may be, for example, created by radiation-
absorption. The heat supply L then is 

L =— ~~ q.ndS+JR 
r h 

dV=J~ 
(—V.q+ r h)dV, (18.1.3d) 

where n denotes the exterior unit normal to aR1. Substitution of (17.2.6) into t(°) 

in (18.1.3c) and then (18.1.3a—d) into (18.1.4) now yields 

JR {{pe —( s:~ —V.q+ph)}—{ s:~}— n.{V.s+r f—pv}{ dl =0, 

(18.1 .5a) 

where ~~ and ~~ are the strain- and rotation-rate tensors, respectively, i.e., 
~~ = {(V® n)+(V® n)T}/2 and ~= {(V® n) —(V® n)T}/2. Since the body R1 is 
arbitrary, 

{pe —( s :~ —V.g+ r h)}—{ s:~}— n.{V.s+r f— rn} = 0. (18.1.5b) 

In a purely thermomechanical system, the conservation of energy asserts the equivalence of 
heat energy and mechanical work. 
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The quantities in the last two sets of curly brackets vanish because of the 
conservation of linear and angular momenta, (17.2.10) and (17.2.11), leading to 

r e = s:~ —D.q+ r h, (18.1.6a) 

or in component form, 

Pe= (18.1.~b) 

which is the statement of local energy conservation. It states that the change of 
internal energy density is due to the rate of stress work, s : ~~ _ s ~;,, and heat-
ing. 

It is of interest to note that (18.1.4) includes, in addition to the energy con-
servation (18.1.6), statements of the balance of linear and angular momenta. 
(For finite deformation, it also contains the conservation of mass.) Indeed, it is 
argued by some authors that Cauchy's laws can be deduced from the energy bal-
ance (18.1.4), using the invariance of the quantities e, s, and f under super-
posed rigid-body motions. To this end, one writes (18.1.5) for a body that is in 
the same configuration at time t, but has a velocity field v + v°, where v° is a 
constant velocity field, and then subtracts the resulting equation from (18.1.5), to 
obtain 

v°.{ O.s+r f—pv =0. (18.1.7) 

This must hold for all v°, yielding (17.2.10). One now repeats the same argu-
ment, using the velocity field v+x.w°, where wo is a constant antisymmetric 
tensor, and obtains 

s : w°= 0. (18.1.8) 

This must hold for all w°, yielding (17.2.11). Finally, (18.1.4), (18.1.7), and 
(18.1.8) yield the local energy equation (18.1.6). 

18.1.2. Strain Energy Density Function w 

When the heat supply L is zero, and the heat produced in the solid by the 
deformation is neglected (uncoupled thermoelasticity theory), (18.1.6) becomes 

p e = s : ~. (18.1.9) 

From (18.1.9), and for elastic materials, define the strain energy density function 
w such that the rate of internal energy density re is the rate of change of w, i.e., 

~~ - r e. (18.1.10) 

Equation (18.1.4) then takes on the form 

F dt 
l 

J ~ 
w dl +K (18.1.11) 

which states that the rate of work of the applied loads is equal to the sum of the 
rates of change of the strain and kinematic energies of the solid. This equation 
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is a consequence of, and can be deduced from the conservation of linear 
momentum (17.2.10). To this end, multiply both sides of (17.2.10) by v, 
integrate the results over R1, and using the Gauss theorem, obtain (18.1.11). 

If the deformation is infinitesimally small, integrating (18.1.10) with 
respect to time t, obtain 

w
— JL S : de = Jt siideii, (18.1.12) 

where L stands for the integration path in the strain space. 

18.2. LINEAR ELASTICITY 

18.2.1. Elasticity 

First, assume that the integral (18.1.12) is path-independent. The change 
in the strain energy density function from an initial strain e° to a final strain e1 

over any path in the strain-space then is given by 

w(e1 )— w(e°) = Je s: de. (18.2.1) 

Since, for an elastic material the stress tensor s depends only on the strain ten-
sor e (thermal effects are neglected), then 

= 0(0), (18.2.2a) 

and hence 

w(e) = 
Jó s(e) : de. (18.2.2b) 

Here, e = O at the initial state corresponds to a preferred natural state, to which 
the body returns whenever all external loads and imposed surface displacements 
that maintain the body in a deformed state are slowly released. The strain 
energy density at the preferred natural state is set at zero. From (18.2.2b) it fol-
lows that 

aw  
aw (e) = G(E), 

or in component form, 

aw (e) = s(e), i, j = 1, 2, 3. 
clei; 

(18.2.2c) 

(18.2.2d) 

By means of a Legendre transformation, the relation (18.2.2) can be 
inverted and the strain expressed in terms of the stress. To this end, define W' 
by 
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wc - Wc(s) _ s: e —w( e), 

and by direct differentiation, obtain, with the aid of (18.2.2c,d), 

(18.2.3a) 

(18.2.3b,c) 
w (

s) _ 0(1), 

or 

i w (s) = eij(s), i,j = 1, 2, 3. 

The function we is called the complementary strain energy density. Since 

d(s : e) = s : de + ds : e = dw(e) + dwc(s), (18.2.4) 

the complementary strain energy density is expressed by the following integral: 

wc(s) = Jo e(s) : ds. (18.2.5) 

18.2.2. Linear Elasticity 

The simplest form of (I 8.2.2a) is linear elasticity which is characterized 
by the assumption that the stress tensor s is connected to the strain tensor e by a 

linear relation called the generalized Hooke 's Law,3 i.e., 

= C: e, (18.2.6a) 

or in component form, 

~ij = Cijkl ekI. (18.2.~b) 

The fourth-order tensor C is called the elasticity tensor, and its components, the 
elasticity coefficients. For heterogeneous solids the elasticity tensor depends on 
the position x. For a homogeneous material, C is constant; the elastic 
coefficients in this case are referred to as elastic constants. 

The strain energy density function w now becomes 

w(e) = ZE: C:e= Ze;j CijkIek I• (18.2.7) 

Hence, without any loss in generality, regard CT = C, i.e., Cijkl is symmetric 
with respect to the exchange of ij and kl. Therefore, C belongs to T(4s) (Section 
15), and its corresponding six by six matrix is symmetric. 

The compliance tensor D is defined as the inverse of C in T(4s), i.e., 

D:C=C:D= 1(4s). (18.2.8) 

Hence, strain e is given by the linear transformation of stress s, 

The relation must be homogeneous, since zero strain is to correspond to zero stress. 

Possible thermal stresses and strains are excluded from consideration, and an isothermal con-
dition is assumed. 
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e = D : s,  or  £y=Dykl skl. (18.2.9a,b) 

From (18.2.5), the complementary strain energy density function W' becomes 

1 1 W°( s) = 2 ~ : D : s = 2 sij Dijkl ßk1• (18.2.10) 

18.3. ELASTICITY AND COMPLIANCE TENSORS 

In this subsection the positive-definiteness and ellipticity of the fourth-
order tensors C and D, which guarantee the uniqueness of the solution and 
material stability, are briefly examined. 

18.3.1. Positive-Definiteness 

For any arbitrary nonzero strain and stress, measured from the preferred 
natural state, the elastic energies w and we must be nonnegative, i.e., 

1 1 w(e) = 2e. C: S= 2C i e;i e _ 0, 

Wc(s)= Z6:D:s = ZD;~k1 s1~ sk1? 0, (18.3.1a,b) 

where equalities hold only for e = 0 and s = 0, respectively. 

In the six-dimensional matrix representation used in Section 15, 
(18.3.1a,b) are expressed as 

w = 2 [ea]T[war][Cpq][Wqb][eb] = 2 ([Wpa][eaJ)T[Cpq]([Wgb][eb]), 

WC = 2 [sa]T[Wap][DPq][Wgb][sb] = --([Wpa][sa])T[Dpq]([Wgb][sb])• 

(18.3.2a,b) 

Therefore, the six by six symmetric matrices [Cab] and [Dab] are positive-
definite. Their eigenvalues and eigenvectors are all real. Furthermore, for [Cab] 
and [Dab] to be positive-definite, it is necessary and sufficient that their six 
eigenvalues be positive. This is guaranteed when the six principal minors of 
these matrices are all positive, i.e., when: 

[C11 C121 
 det C21 Czz, det 

C11 C12 C13 

C21 C22 C23 

C31 C32 C33 

det[Cab], 
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D11 D12 D13 

D21 D22 D23 

D31 D32 D33 

 

D11, det 
D11 D12 

D21 D22 
det det[Dabl, 

    

     

(18.3.3a,b) 

are all positive; see Fedorove (1968). Note that the positive-definiteness of C 
(or [Cabl) is equivalent to that of D (or [Dab]). 

The positive-definiteness of C implies the uniqueness of the solution of 
the boundary-value problem for a finite body. The proof is straightforward. Let 
R be a linearly elastic solid with boundary aR, and C be its elasticity tensor. 
Using the averaging theorem, express the volume integral of the elastic strain 
energy density by 

JR 2wdV = JR s:e dV = JaR t.udS, (18.3.4) 

where t is the surface traction on R. If the integrand of the right-hand side of 
(18.3.4) satisfies 

t.0 = 0 m a  R, (18.3.5a) 

then, from the positive-definiteness of w, 

e = 0 and s = O. (18.3.5b,c) 

Therefore, if there are two solutions for the same boundary data, the difference 
solution corresponds to zero strain and zero stress fields. 

18.3.2. Strong Ellipticity 

Excluding body forces, from the equations of motion (Cauchy's laws), 
(17.2.10,11), and Hooke' s law (18.2.6), obtain 

V.(C:V®u)=p 
atu , 

(18.3.6) 

where the symmetry of C is also used. For an infinitely extended solid with 
constant C, (18.3.6) admits plane-wave solutions of the form u = u(w . x — Vt), 
where w is the unit normal of the plane, and V is the wave speed. For the wave 
speed V to be nonzero and real, the elasticity tensor C must satisfy the following 
condition: for arbitrary nonzero vectors v and w, it must follow that 

(v®w): C: (m w) = CkI vvkww~~ > 0. (18.3.7a) 

This is called the strong ellipticity condition.¢ 

Since the strain tensor e can be expressed in terms of its principal values 

and directions by e = 1
~ 

lJ m½  m, (16.2.21 a), the strong ellipticity (18.3.7a) 
J=I 

If inequality > is replaced by ? in (18.3.7), Haadamard's inequality is obtained, which is the 
basic stability theorem for infinitesimally small deformations; see Truesdell and Noll (1965). 
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implies the positive-definiteness of C, and, conversely, the positive-definiteness 
of C implies the strong ellipticity. Because of the symmetry of C, (18.3.7a) can 
also be written as 

{ +wân) : C : [ Z (nâw+wân)] > 0. (18.3.7b) 

The tensor (v ®w + w ® n)12 belongs to 
T(2s). 

Hence if C is positive-definite, 
then the strong ellipticity is satisfied. Since the positive-definiteness of C is 
equivalent to that of D, the strong ellipticity of C is also equivalent to that of D. 
Furthermore, the strong ellipticity implies the uniqueness of the solution to elas-
tostatic boundary-value problems. 
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CHAPTER VI 

ELASTOSTATIC PROBLEMS 

OF 

LINEAR ELASTICITY 

In this chapter, attention is focused on certain general properties 
of boundary-value problems in elastostatics. First, the displacement 
and traction boundary-value problems are formulated and the field 
equations and the corresponding solutions are related to fundamental 
extremum principles of linear elasticity. In addition, general varia-
tional principles which contain all basic kinematical, constitutive, and 
balance field equations as the associated Euler equations, are formu-
lated and discussed. Then, attention is focused on two-dimensional 
problems, and, with the aid of Airy's stress function, a general solution 
for a class of problems is derived and discussed. Similarly, general 
solutions for three-dimensional problems in terms of potentials are 
examined, together with the Green function for a special class of prob-
lems. 



SECTION 19 BOUNDARY-VALUE PROBLEMS 

AND EXTREMUM PRINCIPLES 

First, a general boundary-value problem of an elastic solid R, is con-
sidered and formulated for either a displacement field or a stress field which 
satisfies the governing field equations in R and the prescribed boundary condi-
tions on the surface R. Next, an equivalent variational formulation of the 
boundary-value problem is given. To this end, two functionals, the total poten-
tial and complementary energies, are defined for the displacement and stress 
fields, respectively. The Euler equations for these functionals coincide with cer-
tain governing field equations in the boundary-value problem, and the natural 
boundary conditions for the Euler equations correspond to the prescribed boun-
dary conditions on R. Then the extremum principles for these variational prob-
lems are examined: the potential and complementary energies are not only sta-
tionary but are also extrema, if and only if the field variables satisfy all 
corresponding field equations. 

19.1. BOUNDARY-VALUE PROBLEMS 

For an elastic solid with a given geometry, the displacement, stress, and 
strain fields that correspond to prescribed sets of body forces f° = p f, surface 
tractions t°, or surface displacements u° (or a suitable combination of them) are 
sought. All three components of body forces f° must be prescribed (they may 
be zero) everywhere within the region R that is occupied by the solid. On the 
surface aR which bounds the solid, on the other hand, some components of the 
surface tractions and the complementary components of the surface displace-
ments can be defined, resulting in the so-called mixed boundary-value problem, 
e.g., either 

u1 =u1
0, or t; = t°, i 1, 2, 3 on aR, (19.1.1) 

is satisfied.1  Envisaged also are problems in which surface tractions t° are given 
on a part aRT  and surface displacements u° on the remaining part aR U  = 
aR — aR T  of the surface boundary aR. For stress boundary-value problems, all 
three components of t° are prescribed on the entire 2  aR, while for displacement 
boundary-value problems, three displacement components u° are specified on 

For example, t1, t3, and u2  may be prescribed on a part of cdR. 

z These forces, together with the body forces, must constitute a self-equilibrating system of 
forces. 
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the entire R. 

The stress, strain, and displacement fields are to be determined from the 
following field equations: 

V.s+ f° = 0, or s..;+f. = 0, 

s = C : e, or s~j = Cjd ej, (19.1.2a--4b) 

e = 2 {(Nâu)+(Nâu)T}, or =  

They must satisfy the prescribed boundary conditions on R. For displacement 
boundary-value problems it is convenient to express (19.1.2) in terms of the dis-
placement vector and its derivatives. Substitution from (19.1.4) and (19.1.3) 
into (19.1.2) yields 

V.{C: (V®u)}+pf = 0, (l9.1.5a) 

or in component form, 

Cijid ui,iu + r fj = 0. (19.1.5b) 

These are Navier's equations. Note that (19.1.5) requires that u and f° be of 
class C2 and C° respectively, while in (19.1.2), s must be of class C1 in R. If 
f°, for example, is not continuous in R, then derivatives of u may not be defined 
everywhere in R. If this occurs at a finite number of isolated points or surfaces 
in R, then (19.1.5) may still be satisfied "almost" everywhere in R. Navier's 
equations, (19.1.5), must be solved for u, subject to the boundary conditions 

u = u° on aR, (19.1.6a) 

or 

u; = u °  ma  R. (19.1.~b) 

The compatibility conditions (16.2.36) are redundant in the present case, since 
the displacement field u is being sought directly. Having obtained u, the strain 
and stress fields are readily calculated from (19.1.4) and (19.1.3), respectively. 

Consider now a traction boundary-value problem. In this case, (19.1.2) 
must be solved for the stress field s, subject to the boundary conditions 

n.s = t° on R, (19.1.7a) 

or 

n~~ s1j = tj° or aR. (19.1.7b) 

The strain field is then given by 

=C-1 : s =D:s (19.1.8) 

which must satisfy the following compatibility conditions,3 in order to 
correspond to a unique displacement field: 

These conditions are obtained from (16.2.34) by setting k =1. 
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£ij,kk + Egg ij = £;k,jk + £jk,ik. (19.1.9a) 

Note that since the stress and strain fields are unaffected by rigid-body displace-
ments, uniqueness here is implied to within such rigid-body displacements. For 
the considered traction boundary-value problem, it is convenient to express 
(19.1.9) in terms of the stress components. In this case, the strain field given by 
D : s must be compatible, i.e., s must satisfy 

(Dijkl skl),mm + (Dmmkl skl),ij = (Dimkl skl),jm + (Djmkl skl),im• (19.1.9b) 

In particular, assuming isotropy, substitute (19.1.2) into (19.1.9b), and after sim-
ple manipulations, obtain 

s11,a  
3~+ 

skJ',~+ 

l+2m fkk dij +f +fj, = 0 (19.1.10x) 

which, because of the symmetry with respect to k and 1, denotes six distinct 
equations that are known as the Beltrami-Michell compatibility conditions.¢ A 
stress field satisfying the equilibrium equations (19.1.2) and boundary condition 
(19.1.7) must also satisfy (19.1.9b), if it is to correspond to a continuous dis-
placement field. Note that in terms of the Poisson ratio v, (19.1. h a) becomes 

1  
s

`'°  ` + 1+1 
s~,d+ 1

v v fk,k dij +fib+fj;= 0. (19.1.10b) 

While it is of interest to establish the precise conditions under which the 
general elastostatic problems formulated above admit solutions, such an 
existence consideration is outside the scope of this book. Instead, it is assumed 
that the problems are suitably posed so that solutions exist. It should be recalled 
that, as shown in Section 18, if the elasticity tensor C (or the compliance tensor 
D) is positive-definite, or strongly elliptic, then the solution to the boundary-
value problem for a finite elastic solid is unique. 

19.2. KINEMATICALLY AND STATICALLY ADMISSIBLE FIELDS 

19.2.1. Kinematically Admissible Displacement Field 

A sufficiently smooth (actually of class C1 ) displacement field that com-
plies with all the geometrical (displacement) boundary conditions of a given 
elastostatic boundary-value problem is referred to as a kinematically admissible 
displacement field. Denote the set of these displacement fields by 

1k, 
i.e., 

° Note that if (19.1.10x) is to be satisfied strictly everywhere in R, then f° must be of class C 1 

in this region. The stress field then is of class C2, resulting in a displacement field which is of class 
C3 everywhere in R. A function f(x) is called of class C" in R if the function and all its derivatives 
up to and including the nth derivative are continuous in R. 
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Vk - {u ~ u e Cl inRandu=u° onaRU}, (19.2.1) 

where aRU is the part of the surface aR on which u° is prescribed. 

The kinematically admissible displacement field, u, is accompanied by the 
strain and stress fields, e and s, through the strain-displacement and constitutive 
relations. That is 

e = e(u) =  

s=s(u)=C:e= C:(V® u). 

Both the strain and stress tensors are symmetric, 

eT(u) = e(u), sT(u) = s(u). 

(19.2.2a,b) 

(19.2.2c,d) 

Although e(u) is compatible, s(u) may not necessarily satisfy the equations of 
equilibrium (19.1.2). Since a properly posed elastostatic problem admits a 
unique solution, there exists, for a given problem, only one kinematically admis-
sible displacement field that possesses the stress field which satisfies the equa-
tions of equilibrium and the traction boundary conditions. 

The difference between two (arbitrary) kinematically admissible displace-
ment fields is called a virtual displacement field, and is denoted by du. Hence, 
the virtual displacement field du satisfies the following boundary condition: at 
any point on aRU where some components of the displacement vector u are 
prescribed by u°, the corresponding components of the virtual displacement 
vector du vanish, i.e., 

du = 0 on aRU. (19.2.3) 

From the virtual displacement field, obtain the virtual strain field, 

de _ de(du) =  {(V® du)+(V® du)T}, (19.2.4) 

and the corresponding virtual stress field, ds = ds(u) = C : de. 

19.2.2. Statically Admissible Stress Field 

A sufficiently smooth (actually of class C1 ) stress field that satisfies the 
equations of equilibrium and all the stress boundary conditions of the considered 
problem is referred to as statically admissible. Denote the class of all such 
stress tensors by VS, i.e., 

Vs - {s I s EC1, V.s+ f° =0inR, and n.s= t° onaRT}, (19.2.5) 

where aRT is the part of the surface aR on which t° is prescribed.5 

5 Note that, in general, aRU +aRT is not necessarily equal to aR for a mixed boundary-value 
problem. 
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From a statically admissible stress field, obtain the corresponding strain 
field through Hooke's law, 

e _ e(s) = D : s. (19.2.6a) 

From the symmetry of the compliance tensor D, this strain tensor is symmetric, 

et(s) = e(s). (19.2.~b) 

However, e(s) is not necessarily compatible. From the uniqueness of the solu-
tion of the elastostatic boundary-value problem, for a given problem, there 
exists only one statically admissible stress field that possesses the strain field 
which satisfies the compatibility conditions. 

Like the virtual displacement field du, the virtual stress field ds can be 
defined by the difference of two (arbitrary) statically admissible stress fields. 
The virtual stress field ds satisfies the following boundary conditions: at any 
point on aR where some components of the traction vector t° are given, the 
corresponding components of the virtual traction N.ds vanish, i.e., 

n.ds=0 onaRt. (19.2.7) 

In the region R, ds is divergent-free, 

V.ds = 0, (19.2.8) 

and is accompanied by the virtual strain field de, 

de _ de(ds) = D : ds, (19.2.9) 

which, from the symmetry of D, is symmetric. 

19.3. POTENTIAL ENERGY 

In this subsection the variational principle for kinematically admissible 
displacement fields is considered. First the virtual work principle is obtained. 
Then the total potential energy of the elastic solid is introduced, and the 
minimum potential energy theorem is discussed. 

19.3.1. Virtual Work Principle 

Consider a solid occupying a region R bounded by a regular surface R. 
Let it be in equilibrium under prescribed body forces f° and suitable mixed 
boundary conditions t° or u°. The virtual work of the applied loads, f° and t°, 
acting through the virtual displacement du, is defined by 

dE JR f°. du dV + f all t°. du dS, (19.3.1a) 
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where the prime on 
J2R 

shows that the integration is taken over points on aR 
where some components of t° are prescribed. From the Gauss theorem, the 
actual stress field s satisfies 

0 = JR {D.s+ f°}. du dV 

= J
R 

{f0 .  du — s : de } dV + 
JAR 

(1. s) . du dS. 

Since du = 0 at points where u = u°, the surface integral in the right side of 

(19.3.1b) is replaced by JaR (n.s).du dS. Hence, the virtual work dE becomes 

dE= J s:de dV. (19.3.2) 

Note that the virtual work theorem (19.3.2) applies to continua of all kinds, 
since its derivation does not rest on the particular constitutive relations that may 
be involved. 

19.3.2. Variational Principle for Kinematically Admissible Displacement 
Fields 

The elastic strain energy is given by w = e : C : e / 2. The right side of 
(19.3.2), therefore, is the change in the total stored elastic strain energy 
corresponding to the virtual strain field de. Defining the total strain energy W as 
a functional of the strain field, e, by 

W(e)=
J

w(e) dV—
JR 

2e:C: e dV, (19.3.3a) 

observe that 

dW(e)= J d{ Ze:C: e} dV= J(C: e):de dV= J s :de dV. (19.3.3b) 

It therefore follows that the potential energy P defined by 

P P(u; t°, f°)  W(e) — JR f°.0 dV — JaR t°.0 dS, (19.3.4) 

is stationary, i.e., 

dP(u) = 0, (19.3.5) 

for the set of virtual variations du of the equilibrium displacement field u. 

19.3.3. Minimum Potential Energy 

The following minimum theorem is now proved. 

(19.3. lb) 
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Theorem of Minimum Potential Energy: Among all (infinitesimal) 
kinematically admissible displacement fields, that which is also stati-
cally admissible renders the potential energy P an absolute minimum. 

To prove this assertion, let u denote the actual displacement field, and designate 
by u' a displacement field which is kinematically admissible but is not identical 
to u, i.e., 11' E Vk and u' ~ u. Then calculate the stored elastic strain energy for 
the difference displacement field, u' — u, which can be regarded as a virtual field 
du. Since C is positive-definite, W(de) becomes 

W(de) = W(e') + W(e) — J e : C : e' dl >0, (19.3.6a) 

where the strain fields corresponding to the displacement fields u, u', and du are 
denoted by e, e', and de, respectively. From definition (19.3.3a), (19.3.6a) leads 
to 

W(e') — W( e) > jR (C : e) : (e' — e) dV. (19.3.~b) 

Noting that C : e for the actual strain field belongs to V', rewrite the right side of 
(19.3.~b), as 

JR(C : e) : (e' — e) dV = JR dV + JaR t. (u - u) dS, (19.3.6c) 

where the Cauchy laws and the Gauss theorem are employed, and t = v .s. Ine-
quality (19.3.~b) now becomes 

> W(e) — J R f°.0 dV — J aR t°.0 dS, 

(19.3.7) 

where traction vectors t and the surface integral are replaced by t° and JaR; this 

is because t (= (v.(C : e)) = t° at points where t° is prescribed, and u' = u = u° 
at points where t° is not prescribed. The left side of (19.3.7) is the potential 
energy corresponding to the kinematically admissible displacement field u', and 
the right side corresponds to that of both the kinematically and statically admis-
sible field u. Hence the asserted theorem is proved. 

The converse theorem also holds, that is, a kinematically admissible dis-
placement field which renders P minimum is statically admissible. To prove 
this, let u be a displacement field which makes P minimum, and take the virtual 
displacement du from u. Then, defining the strain field associated with u by e 
_ ((N âu) + (V ® u)T)/2, 

P(u + du) — P(u) = W(e + de) — W( e) — J R f°. du dV — J aR t°. du dS 

= dP(u) + d2P(u), (19.3.8a) 

where 



616 ckprrek nt § 19.3 

dP(u) _ — fR {V.(C : e)+ f°}. du dV + jaR {v.(C : e) — t°}. du dS, 

d2P(u) = W(de). (19.3.8b,c) 

Note that the first variation of P equals the virtual work associated with du and 
the second variation of P is positive-definite for nonzero de. Therefore, in order 
that the strict inequality P(u + du) — P(u) > 0 holds for nontrivial du, it is neces-
sary and sufficient that 

V.(C: e)+ f°=0 in R, 

n . (C : e) — t° = 0 on aRT, (19.3.9a,b) 

which states that the corresponding stress field C : e = s is statically admissible. 
Note that (19.3.9) can be obtained as the Euler equations and the corresponding 
natural boundary conditions associated with a variational problem in which the 
potential energy functional P is minimized over all kinematically admissible 
displacement fields, i.e., over 1/k. 

19.4. COMPLEMENTARY ENERGY 

Whereas in the virtual work theorem, in the corresponding variational 
principle, and in the theorem of minimum potential energy considered in Sub-
section 19.3, the displacement is allowed to vary over all kinematically admissi-
ble displacement fields, it is sometimes convenient to consider a variation of the 
statically admissible stress field. In this subsection the virtual work theorem, the 
variational principle, and the theorem of minimum complementary energy for 
statically admissible stress fields are considered. 

19.4.1. Virtual Work Principle for Virtual Stress 

Consider the boundary-value problem stated in Subsection 19.3.1. The 
virtual work of the arbitrary tractions acting through the prescribed surface dis-
placement u° is 

dEC - 
JaR 

dt.u° dS, (19.4.1a) 

where the double prime on L. stands for the integration over those points at 

which u° (or some of its components) is prescribed. The virtual tractions dt are 
determined by the virtual stress ds through v . ds. Since the virtual stress ds is 
divergence-free, 

JR ds : e dl = J
aR 

(n.ds).u dS = JaR dt.u° dS, (19.4.1b) 
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where the facts that n.ds = O at points where t° is prescribed, and u = u° at 
points where u° is prescribed have been used. Therefore, the virtual work dEC 
becomes 

dEc= 
JR 

ds : e dl. (19.4.2) 

Note that, similarly to (19.3.2), the virtual work theorem (19.4.2) applies to con-
tinua of all kinds. 

19.4.2. Variational Principle for Statically Admissible Stress Fields 

For an elastic solid, the complementary strain energy is w' = s : D : s/2. 
Then the total complementary strain energy becomes 

W° - W'(s) = JR wc(s) dV = JR  s : D : s dV, (19.4.3a) 

and the right-hand side of (19.4.2) can be expressed as 

dW°(s)= 
JR 

d{ Zs : D: s} dV = JR s : D : ds dl. (19.4.3b) 

It then follows that the complementary energy P', defined by 

hc(s; a°) — W'( s) — J aR (n.s).u° dS, (19.4.4a) 

is stationary, i.e., 

dP°(s) = 0, (19.4.5) 

for the set of statically admissible variations ds of the actual stress field. 

To emphasize that only statically admissible stress fields are considered, 
the complementary energy is redefined as 

hc(s; u°; f°) - W°( s) — J aR (n.s).u°dS + JR l.{V.s+f°} dV, (19.4.4b) 

where l is a Lagrange multiplier (a vector field). In (19.4.4b), the stress field 
need no longer satisfy (19.1.2). However, for statically admissible stress fields, 
functional GI° defined by (19.4.4b) reduces to (19.4.4a). Therefore, (19.4.5) still 
holds, i.e., the complementary energy (19.4.4b) is stationary for the set of stati-
cally admissible variations of the actual stress field. 

19.4.3. Minimum Complementary Energy 

An absolute minimum principle known as the theorem of minimum com-
plementary energy is now obtained. To this end, in addition to the actual stress 
field s, consider a statically admissible stress field s', i.e., s' e V5, and s' # s. 
Employing an argument similar to that which led to (19.3.~b), obtain 
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W°(s') — W°( s) > JR e : ds dV, (19.4.6) 

where ds = s' — s is regarded as a virtual stress field. This inequality may be 
written as 

W°(s') — JaR (n.s').u° dS > W°( s) — J aR (n.s).u° dS, (19.4.7a) 

or, taking advantage of the statical admissibility of s' and s, 

W°(s') — JaR 
(n.s').u° dS +J

R 
l'. { V.s'+f°} dV 

> W°( s) — JaR (n . s) . u° dS + J R l. { V . s + f° } dV.  (19.4.7b) 

Thus follows the extremum theorem: 

Theorem of Minimum Complementary Energy: Among all statically 
admissible stress fields, the actual stress field renders 11° an absolute 
minimum. 

The converse theorem also holds, that is, a statically admissible stress field 
which renders P° minimum satisfies the compatibility conditions. 

The proof of the minimum complementary energy and its converse is 
straightforward. The potential energy 11° is defined by (19.4.4b). The variation 
of P° for a general (symmetric) stress field s is considered first, and then it is 
assumed that s actually belongs t06 Vs. Let the general and associated virtual 
stress fields be s (= s) and ds (= dsT), respectively, and denote the variation 
of the Lagrange multiplier for the equilibrium conditions by dl. Then, the first 
variation of ° becomes 

dP° = fR {ds : (D : s)+l.(V.ds)+dl.(V.s +f°)} dV 

lau (n.ds).u° dS 

= JR {ds: {D :s_N® l}–dl.{N.s– f0}} dV 

+ lau 
(1. ds) . (l — u°) dS, (19.4.8a) 

and the second variation of ° becomes 

d2P° = W°( ds)+ JR
dl.(V.ds) dV. (19.4.8b) 

Since the virtual stress field is symmetric, 

6 Functional IIC, defined for a general stress field, is stationary and minimum for the actual 
stress field, s, since d2H° is positive-definite in this case. 
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ds :(D : s — N âl) ds :{D : s — {(Nâl)–(N ® l)T)}. (19.4.9) 

Therefore, in view of (D : D : s, the Euler equation for HC for the stati- 
cally admissible s ensures the kinematic admissibility of D : s, i.e., it follows 
that 

D: s= 
2 

{(Vâl)+(V® l)T} inR, (19.4.10a) 

with the corresponding natural boundary conditions, 

= u° on aRu. (19.4.10b) 

Equation (19.4. ha) is the compatibility condition for the stress field in R; it 
ensures that D : s is the symmetric part of the gradient of a vector field, and 
hence is compatible. Equation (19.4.10b) is the corresponding kinematic boun-
dary condition on R. Since the virtual stress ds associated with the statically 
admissible stress s in VS is divergence-free, the second variation of flc becomes 

d2P° = W°( ds) > 0, (19.4.11) 

for nonzero ds. Therefore, the asserted theorem and its converse are proved. 

19.5. GENERAL VARIATIONAL PRINCIPLES 

In this subsection a new energy functional is defined from the sum of the 
total potential and complementary energies, and the sequences of the resulting 
general variational principles are formulated. Furthermore, including the effects 
of possible discontinuities in the field variables, the class of admissible functions 
is broadened to sectionally continuous fields. General variational principles of 
this kind have been discussed by Prange (1916), Reissner (1950), Hu (1955), 
and Washizu (1955), for continuous fields, and by Prager (1967) and Nemat-
Nasser (1972), for fields admitting discontinuities; see Washizu (1968) and 
Nemat-Nasser (1974) for comprehensive accounts. Here, the most general form 
of such variational principles is presented. 

19.5.1. General Potential Energy 

In the preceding subsections, kinematically admissible displacement fields 
and statically admissible stress fields have been considered. Then, the strain 
field is expressed either in terms of the displacement field through the strain-
displacement relations, or in terms of the stress field through Hooke's law. As 
shown in Subsection 19.4, for statically admissible stress fields, the strain field 
may be regarded as an independent field subject to arbitrary variations if the 
corresponding kinematical or constitutive relations are included in the 
corresponding variational statement by means of suitable side conditions, or 
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constraints. The resulting variational principles, therefore, take on a slightly dif-
ferent form. This is illustrated for the general case of the sum of the potential 
and complementary energies, as follows. 

To this end, the potential energy P* is regarded as a functional of the 
independent field variables u, e, and s, and its stationary value is sought, sub-
ject to the following side conditions: in the region R, 

V.G+f° = 0, e =  {(V® u)+(V®u)T}; (19.5.1a,b) 

and on the boundary R, 

{v. uo at points where {t°} is prescribed. (19.5.2a,b) 

To include these conditions in the variational statement, introduce the following 
four Lagrangian multipliers: a vector field l°, and a second-order symmetric 
tensor field As, both of class C1 in R, for the side conditions (19.5.1a,b); and 
two vector fields, Mu and p.t, of class C on R, for the boundary conditions 
(19.5.2a,b). Taking the sum of P and HC, define functional P* by 

fl* ° P*(u, e, s, l°, As, M`, m`; f°, t°, u°) 

= J
R 

{w(e) +wc(s)} dV — J R f°.0 dV — J aR t°.0 dS — f aR (n.s).u° dS 

+ JR { l° .{V.s+ f°} — As: 
l  

{(V âu)+(V® u)T} _e] 
} 
dl 

—Ja R 
Mu.{n.s_ t0} dS—

JaA mt.{u —u°} dS, (19.5.3) 

where the independent fields subject to variations, now are the field variables u, 
e, and s, and the Lagrange multipliers, l°, As, Mu,  and Mt. There are no side 
conditions imposed on these independent fields, except the symmetry of e, s, 
and As (even this symmetry can be accounted for through Lagrange multi-
pliers). 

Setting dP* = 0, and integrating by parts the terms that involve 1. ds and 
V ® du, obtain$ 

dn* = J
R 

dpl dV + JaR dp2 dS + JaR dp3 dS, (19.5.4) 

where the integrand dp in the volume integral is given by 

Note that only a stationary value of P is being sought, that is, a minimum principle is no 
longer considered. 

B Variational theorems of this kind but not with the same generality have been considered by, 
for example, Bellinger (1914), Prange (1916), Reissner (1950), Hu (1955), Washizu (1955, 1968), 
and Prager (1967). 
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dp~~ = { V . As + f° } . (— du) (dual equilibrium) 
+ { C : e — As } : de (Hooke's law) 

+ {D : s —  { (V ® l°) + (V âl°)T)} : ds  (compatibility) 

+ {V.s+ f°}.( dl°) (equilibrium) 

+ : dA (strain—displacement); 

(19.5.5a) 

and the integrands dp2 and dp3 in the surface integrals are given by 

dp? = {n.As — t°}. du 
+ {l° — m°}.(n.ds) 
+ {n.s — t°}.( — dm°)  

(dual tractions B.C.) 
(dual displacements B.C.) 
(tractions B.C.), 

(19.5.5b) 

and 

dp3 = {n.As -11t}.du (dual tractions B.C.) 
+ { V° — u° } . (n . ds) (dual displacements B.C.) 
+ { u — 11° } . (— dMt) (displacements B.C.), 

(19.5.5c) 

where B.C. stands for "boundary conditions". The consequence of the arbitrari-
ness of the variation of each field is stated on the right of the corresponding 
term. 

As is seen from (19.5.4) and (19.4.5a—c), dP* = O yields the proper kine-
matical and constitutive relations among the displacement, strain, and stress 
fields, and gives the appropriate field equations and boundary conditions. Furth-
ermore, each Lagrange multiplier in P* is associated with a field variable, and 
indeed is the corresponding dual field quantity. This leads to the following 
correspondence between field variables and their dual fields: 

u l°, 
u m°, 

s  A 
n.s ='  t 

in R, 
on R. (19.5.~a—d) 

Therefore, the vanishing of the integrand of the right side of (19.5.5a) for arbi-
trary field variations du (with de) and ds, implies the field equations which 
govern the dual field variables As and l°. Conversely, arbitrary variations of 
the dual field variables dl° and dlt give the governing field equations for the 
field variables s and u. Similarly, the vanishing of the integrand of the right-
hand side of (19.5.5b,c) provides the corresponding boundary conditions. 

19.5.2. Jump Conditions at Discontinuity Surfaces 

Thus far, certain rather strong continuity requirements have been imposed 
on the displacement, strain, or stress fields which enter the statement of the van- 
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ational principles. In application,9 however, it may prove useful to relax some 
of these continuity requirements and admit, for example, strain or stress fields 
which may be discontinuous across certain isolated surfaces. In such a case, the 
energy functional P must then be suitably modified to account for such discon- 
tinuities.10 This may be accomplished as follows. 

Let the region R be divided into a finite number of subregions, within 
each of which the admissible displacement, strain, or stress fields are sufficiently 
continuous and differentiable, as is required by the basic elastostatic field equa-
tions. Refer to these subregions as the domains of regularity which are 
separated from each other by discontinuity surfaces across which some com-
ponents of the traction and the complementary components of the displacement 
vector may suffer finite discontinuities or jumps. Let S be the collection of sur-
faces of this kind. Denote bg n the unit normal which points outward from one 
subdomain of regularity, say, subdomain +, toward the adjacent subdomain, 
say, subdomain —. The jump Dq of a field quantity q at P on S may now be 
defined by 

Dq = q± —q , (19.5.7a) 

where q+ and q are the limiting values of q at P, as this point is approached 
along n from the interior of the domains + and —, respectively. For simplicity, 
denote 

q = 2(q + +q-), 

which is the average value of q across S. 

A jump in the displacement components across an interior surface may be 
viewed as a geometric boundary condition similar to (19.1.1), and, therefore, 

Du = Du° on S, (19.5.8a) 

where Du° denotes the jump in the displacements across S. Let the jump across 
S of the tractions be denoted by Dt°, that is, 

D(n.s) = Dt° on S. (19.5.8b) 

It should be noted that jump conditions (19.5.8a,b) are sufficient conditions to 
determine uniquely the field variables in R. This is proved as follows: Prescribe 
displacement boundary conditions on both sides of S, u = u°+ on S +, and 
u = u°- on 5-, where u°+ and u° - satisfy u°+ — u° _ Du°. Since sufficient boun-
dary conditions are prescribed for regions + and —, the corresponding 
boundary-value problem can be solved separately. Using the stress fields of the 
subregions + and —, then compute the tractions acting on both sides of S, i.e., on 
S+, denoted by n.s+, and on S, denoted by n.s-. If particular u°+ and u° - 

9 For example, when approximate solutions of elastostatic boundary-value problems are being 
sought, see Prager (1967, 1968), or when eigenfrequencies of a composite elastic solid are being es-
tablished; Nemat-Nasser and Lee (1973), Nemat-Nasser et al. (1975), Minagawa and Nemat-Nasser 
(1976), and Minagawa et al. (1992). 

10 A systematic treatment of this problem was first presented bg Prager (1967, 1968). Our 
presentation here closely follows his, and Nemat-Nasser (1972, 1974). 

(19.5.7b) 
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satisfying u°+ — u° = Du are chosen, the traction jump n.(s+ — s-) equals Dt°. 
Hence, the resulting field variables in R satisfy both jump conditions (19.5.8a) 
and (19.5.8b). 

On the discontinuity surface S, the jump in the product t.0 is given by 

D(t.u) = t+.u+ —t -.u- = Dt.ii+t.Du. (19.5.9) 

Taking advantage of (19.5.9), consider now the energy functional 
fl** _ fl* Js IAt0.ii± (n.U).Auh} dS 

—Is { m°*.{n.Ds — Dt°}+ Mt*.{Du — Du°}} dS, (19.5.10) 

where the two vector fields Mt* and fl°* on S are the Lagrange multipliers, and 
p* is given by (19.5.3). From (19.5.4),11 now obtain 

dP** = dP* + f 
s 
 {h.DAs — Dt°} . dp+ {h.As — mt* } .dDu 

+ {Dl° — Du°} .( h.ds) + {l° — m°*} .(h.dDs) 

+ {n.Ds — Dt°}.(— dm°*)+ {Du — Du°}.(— dmt*) } dS, (19.5.11a) 

where dP* is given by (19.5.4) and (19.5.5). 

To clarify the meaning of dP**, assume that either tractions or displace-

ments are continuous across S, i.e., Dt°. Du° = 0 on S. Let f s denote the integra- 

tion on parts of S where Dt° is prescribed but u is continuous, and f 
s 

denote the 

integration on parts of S where Du° is prescribed but n • s is continuous. Then, 
(19.5.1 la) becomes 

dP** = dP* + f 
s 
 {h.DAs — Dt°}.d~+ {Dl°}.(h.ds) 

+ {l° — m°*}.(n.dDs)+ {h.Ds — Dt°}.(— dm°*) } dS 

±J{ {h.Dps}.du+{h.l — mt*}.dDu 

± ~Alu_Lu0}.(W.A~)±{Au_Lu0}.(_dmt*)} dS. 

(19.5.11 b) 

" Care must be taken in applying the Gauss theorem to the volume integral of 1. ds or Nâdu. 
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The integrand of the surface integrals on S in the right-hand side of (19.5.1 lb) 
displays the duality between the_Lagrange multipliers and the average field vari-
ables across S, i.e., Mu* and 

Mt* 
correspond to ii and n., respectively. Further-

more, it is seen that even if the components of Du° vanish on S, the variation dú 
is still arbitrary there, and hence n.AAi — Dt° = 0 provides the jump condition 
for the corresponding components of the dual tractions. Similar remarks apply 
to the case when the components of Dt° vanish. On the other hand, due to the 
arbitrariness of d or 814 on S, the jump of the dual displacements, Dl°, or the 
dual tractions, n.AAO, is zero, where Du° = 0 or where Dt° = 0, respectively. 
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SECTION 20 THREE-DIMENSIONAL PROBLEMS 

In this section, integration of the elastokinematic field equations is con-
sidered for three-dimensional bodies, using the apparatus of the potential theory. 
Equations governing the propagation of dilatational and rotational waves are 
obtained and their solutions are discussed. For elastostatic problems, the 
Papkovich-Neuber and the Galerkin representations of the solutions are 
developed. Several examples are worked out in detail to illustrate the basic 
approach. 

20.1. HELMHOLTZ'S DECOMPOSITION THEOREM 

Let u be a sufficiently smooth vector-valued function defined in a convex 
region R that is bounded by a regular surface R. The Helmholtz decomposition 
theorem states that u in R can be written as a sum of the gradient of a scalar 
potential U, and the curl of a vector potential V whose divergence vanishes, i.e., 

u(x) = VU(x) + V x V(c), V . V(c) = 0 

or in component form, 

u(c) = U,,(x) + e,Jk uk,i(x), 
Vi,i(x) = 0. 

To show this, consider the Newtonian potential given by 

W(c) 4p JR r(x,xx) dVx, 

or 

(20.1.1 a,2a) 

(20.1. Ib,2b) 

(20.1 .3a) 

W;(x) = — 4p JR r(x xI) dVx, (20.1.3b) 

where r = Ì(c — x) . (x — x) and the integration is with respect to  = xi ei (i = 1, 
2, 3), with x fixed. Operating on (20.1.3a,b) by the Laplacian, 12 - a2/ax; + 
a2

/axz + a
2
/ax3 , obtain1 

12W = u, (20.1.4a) 

or 

= ui. (20.1.4b) 

Now, with the aid of identity 

Note that in terms of 1, 12W is given by 12W = V.(V ®W). 
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V2W = V(V.W) — V x V x W (20.1.5a) 

or 

W~,jj = W.j,j  e  elm Wm,ij, (20.1.5b) 

arrive at 

u= V®(V.W)+Vx(—VxW) (20.1.6) 

which is equivalent to (20.1.1a), provided that 

U=V.W, V=—VxW. (20.1.7a,b) 

Note that region R need not be convex as long as it is "star-shaped"2 with 
respect to an interior point. Moreover, unbounded regions are admitted, pro-
vided that I x 1 2 I u(x) I remains bounded as 1 x 1 becomes large. 

20.2. WAVE EQUATIONS 

For simplicity, assume isotropic elasticity, C = l1(2) ®1( 2) + 2m114s>. In the 
absence of body forces and thermal effects, but when inertia forces are included, 
lav er's equations become 

m02 u+(l+m)V®(V.u)=pii. (20.2.1) 

Assume u(x, t) is sufficiently smooth for x in R and — oo < t < + 00. Operating on 
both sides of (20.2.1) first by 1. and then by Ix,  obtain 

z 
12(1.u) = 

Ci lR 2 (V.u) (20.2.2) 

and 

z 12(1 c u) = CZ at2 
(V c u), (20.2.3) 

where 

C?= 
l–

p2
m  = M. 

r 

(20.2.4a,b) 

are the speed of the dilatation and shear waves, respectively. Set V.u = e and 
I x u = 2 W, and write (20.2.2) and (20.2.3) as 

qi e = 0, q2 W = 0, (20.2.5a,6a) 

where 

2 

R is said to be "star-shaped" if there exists a point in R from which all other points in R can 
be reached by means of straight lines. 
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2 2 n2 _ 
C 2 ate 

, q2 = 0
2 
- C 2 a 2 (20.2.5b,6~) 

1 2 

Equations (20.2.5) and (20.2.6) are a pair of wave equations governing the pro-
pagation of the dilatational, e = V . h, and rotational, W = V x u /2, waves in an 
isotropic elastic body. These equations are obtained by Stokes (1851). 

Consider a decomposition of u(x, t) in accordance with Helmholtz's 
theorem. Set u = V ®U + 0 x V, where 1.1  = 0, and substituting into (20.2.1), 
obtain 

(l+ 2m) V ®(H? U) + M V x (qZ V) = 0, (20.2.7) 

where it is assumed that U and V are sufficiently smooth, so that the order of 
differentiation with respect to the coordinate variables and the time can be inter-
changed. From (20.2.7), deduce that if 

qÍ U = 0,  qj V = 0, (20.2.8a,b) 

then the lav er equations (20.2.1) are identically satisfied. 

On the other hand, it is not immediately obvious that every solution of the 
lavier equations admits a representation in terms of a certain scalar, say, f, and 
vector, say, ', potentials which satisfy, respectively, the wave equations 
(20.2.8a,b); it must also be required that V. = 0. The proof of this converse 
assertion, which is known as the completeness of the considered representation, 
has been discussed by a number of authors; for a historical account and detailed 
discussion, see Sternberg (1959). To establish this proof, operate on (20.2.7) by 
V. andlx,toarriveat 

02 (qi U) = 0, 02 (q2 V) = 0, (20.2.9a,b) 

respectively. Integrating these equations, write 

q U = a(x, t), qz V = b(x, t), (20.2.10a,b) 

where it must be required that 

12a = 0, 12b = 0, V.b = 0. (20.2.10c--e) 

Define A(x, t) and B(x, t) such that 

A(x, t) = Ci f t dt { f ~ a(x, l) dl}, 
o o 

B(x, t) = C~ f t dt { f 
t 

b(x, l) dl}, 
to to 

and obtain 

1  a2l i  a2B  a = b = ate ,  CZ ate 

Then, in view of (20.2.100---e), 

12A=0, 12B=0, V.B=0. 

(20.2.11 a,b) 

(20.2.12a,b) 

(20.2.12c--e) 
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Hence, set 

Fi = U + A, Yi = V + B, (20.2.13a,b) 

and obtain 

qi ~i = 0, qIIU~~ = 0. (20.2.14a,b) 

Now, substitution from (20.2.13a,b) into u = V ®U + V x V, yields 

u= V ® fI + V x YI + u*, (20.2.15a) 

where 

u*=—V®A—Vx13. (20.2.15b) 

From (20.2.15a,b) and identity (20.1.4), 

V.0* = 0, V x u* = 0, (20.2.16a,b) 

from which it immediately follows that u* is the gradient of a scalar field whose 
Laplacian vanishes in R, i.e.,3 

u* = V ®42( c, t), 12 
02 = 0 in R. (20.2.16c,d) 

Substitution from (20.2.16c,d) into (20.2.15a), and then from (20.2.15a) into the 
lav er equations, (20.2.1), now yields the following differential equation for 
f2(x, t): 

V ® = 0 at2 

which upon integration gives 

4)2 = a(t) + t b(c) + g(c), 

where 

N2 0=
0,  Vey=0. 

Hence, if 

F = Fi(x, t) + 4)2(x, t) — a(t), n = Y1(x, t), 

then, 

u=V® f+ Vx Y, V.Y=0, 

where 

q?O=0,  qZY=0.  

(20.2. lIa) 

(20.2.17b) 

(20.2.17c,d) 

(20.2.18a,b) 

(20.2.19a,b) 

(20.2.19c,d) 

This completes the proof. The above theorem is named after Clebesh, but its 
proof has been given by Duhem; see Sternberg (1959) for references. 

3 Note that the Laplacian of 02 is given by 12 f2 = N .(N âf2) in terms of N. 
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20.3. PAPKOVICH-NEUGER REPRESENTATION 

Consider now the solution of lav er's equation for elastostatic problems. 

20.3.1. Papkovich-Neuber Representation 

Since thermal effects can be included through equivalent body forces and 
surface tractions, they are not considered explicitly. Hence, examine the solu-
tion of 

12u+ 
l+11 

V®(V.u) + 
1 

f° = 0, f°= pf, (20.3.1a,b) 

which satisfies certain appropriate boundary conditions. To this end, decompose 
u in accordance with Helmholtz's theorem, 

1 = V ® F* +V cY*, 1.0* = 0, (20.3.2a,b) 

and substituting into (203. la), obtain 

Q2{a V® f*+V cY*}+ 
1 

f° = 0, (20.3.3a) 

where 

a_ l+2m _ 2(1— v)
' 

(20.3.3b) 
1-2v  

with v being the Poisson ratio. 

To obtain the Papkovich-Neuber representation, set 

0= aNâf*± NcY*, (20.3.4) 

and substituting into (20.3.3a), arrive at 

120 = — f° , (20.3.5a) 

where 

1.0 = a 12F*. (20.3.5b) 

Equation (20.3.5b) admits a solution in the form 

F* = 
Z~ 

(c.Y+F), (20.3.6a) 

where the scalar potential F is given by 

12f = x.f°. (20.3.~b) 

To verify this assertion, substitute from (20.3.6a) into (20.3.5b), to obtain 

a12F* — V.Y= 212(c.Y +F) —V. Y 
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- 2 x.V2Y+ ±x.f° 

= 1 x.{0241+ 1 f
° }, (20.3.7) 

where the identity 12(x.0) = 20.1'+x.020 is also used. Note that in view of 
(20.3.5a), (20.3.7) is identically satisfied. 

The displacement u may now be expressed as 

u = Y 
4(1—i) 

0®(x.0+01), (20.3.8a) 

where 

02~ _ x.f°, 120 = — 1 f °  in R. (20.3.8b,c) 

Hence, the solution of lav er's equation (20.3.1) is reduced to the solution of 
Poisson's equation (20.3.8b,c). When the body forces are zero, these equations 
reduce to Laplace's equation, 

12f = 0, 120 = 0  in R. (20.3.8d,e) 

The relations between the potentials F and x considered in Subsection 20.2, and 
F and Y considered above, have been obtained by Sternberg (1959). 

A basic question regarding the solution (20.3.8a---c) of (20.3.1) is that, 
inasmuch as there are only three displacement components involved in (20.3.1), 
the four unknown potentials, namely three components of Y and the scalar F, 
cannot be entirely independent. Hence, it is expected that one of these poten-
tials can be defined arbitrarily, without impairing the validity or the complete-
ness of the representation (20.3.8a). This question has been the subject of a 
number of papers, and has been satisfactorily resolved by Eubanks and Stern-
berg (1956). These authors proved that when R is "star-shaped" with respect to 
an interior point which is to be taken as the origin of the coordinates, and when 
4n is not an integer, then F in (20.3.8a) can be set equal to zero without a loss in 
the completeness of the representation. Moreover, if R is "star-shaped" with 
respect to an axis, say, the x3-axis, and if the distance of any point of R from this 
axis is bounded, then 03 can be taken as zero everywhere in R, without impair-
ing the completeness of the Papkovich-Neuber representation. For problems 
which possess an axis of symmetry, and for which the displacement field in 
polar coordinates can be expressed as 

= ur(r, c3), u8 = 0, u3 = u3(r, c3), (20.3.9a--c) 

0i and 02 may be taken to be identically zero, without a loss in completeness. 
Problems of this latter kind are known as "torsionless axisymmetric problems." 

For the solution of boundary-value problems in which tractions are 
prescribed on a portion of the boundary of the solid, express the stress tensor in 
terms of the potential functions F and Y. To this end, use (20.3.8a), to obtain 
the strain tensor, as 
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=  {(V® Y)+(V® Y)T}— 4(1 1 v) V®{V( c.Y+F)}, (20.3.10a) 

or in component form, 

= 
2 
(=i,; + ~;,~) - 

4(1—i) 
(xkYk + f),ij. (20.3. l0b) 

The dilatation field is thus given by 

E =  
2(1 —v) = 2(1—v) 

1 — 2v  ~kR kR (20.3.11) 

where (20.3.8b,c) is also used. Hence, from Hooke's law, 

s = le 1(2)+2me, (20.3.12a) 

obtain 

s= m{  l ~ v (V.Y)1(z)+ {VâY+(VâY)T} 

1 V®{V( c.Y +F)}}, 
2(1— n) 

or in component form, 

- m 1 
n 

n 
0k,k d + (Yi,; + Y;,~ ) — 2(1 n) (ckYk +  

(20.3.12b) 

(20.3.12c) 

20.3.2. Galerkin Vector 

Before closing this section, consider another representation of the solution 
of lav er's equations in terms of a vector-valued function known as the Galer-
kin vector. To this end, noting (20.1.7) and (20.3.4), set 

F* = á V.G,  Y*=—VxG, (20.3.13a,b) 

and from (20.3.3) obtain 

D4 G = — 
~ 

f°, (20.3.14) 

where 
14 

is the biharmonic operator, 14 = 1212. In terms of G, the displace-
ment field is given by 

u = O2 G 2(11 
n) 

V®(V.G). (20.3.15) 

Relations between the Galerkin vector and the Papkovich-Neuber potential have 
been discussed by Mindlin (1936). 
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20.4. CONCENTRATED FORCE IN INFINITE AND SEMI-INFINITE 
SOLIDS 

Consider solutions for the problem of a semi-infinite elastic body sub-
jected to a concentrated force in the interior or on its plane boundary. To this 
end, use the systematic method developed by Mindlin (1953). In this method, 
potentials F and 0 are obtained which satisfy (20.3.8b,c) and the corresponding 
boundary conditions on the plane boundary of the solid. When a concentrated 
force acts in the interior of an infinitely extended elastic body (unbounded 
solid), there are no boundary conditions to consider except for the regularity 
requirements at infinity. The solution of this problem was obtained by Kelvin in 
1848. The solution of the problem of a semi-infinite body subjected to a normal 
concentrated force on its plane boundary was obtained by Boussinesq in 1885, 
and the same problem, except for a tangential force, was solved by Cerruti in 
1882; see Love (1944), for a detailed discussion; see also Westergaard (1952). 
Mindlin (1936) obtains the solution for the problem of a single force in the inte-
rior of a semi-infinite solid bounded by a plane. 

20.4.1. Green's Second Identity 

Consider Green's second identity, and choose the function w such that: 1) 
O2w = 0 in  R; 2) w = —1 /r on aR; and 3) w is regular everywhere in R + R, 
where r = 4(x — x) . (x — x), with x being the position vector of a fixed point P in 
R, and x being that of the variable point Q. Green's second identity now 
becomes 

 
p u = .[RR G(x, x) 12u(x) dux - 

JAR u(x)  (c, x) dSx, (20.4.1) 

where G = (1/r) + w is Green's function, and where p is equal to 4p, 2p, or zero 
according to whether P is taken in R, on R, or outside of the region R. In 
(20.4.1), a/av - ij / j = v . V, where v is the exterior unit normal to R. From 
the assumed regularity of u at infinity, for unbounded regions, instead of 
(20.4.1), it follows that 

r 2 
4p u= —JR 

u
u 
-dl 

which is a consequence of Green's third identity. 

(20.4.2) 

20.4.2. Infinitely Extended Solid 

Asa example, consider an infinitely extended body with a concentrated 
force p applied at a point, say, the origin 0, in a given direction. Consider a 
small region R0 with boundary R' about the origin 0, and distribute f° in R0 

such that 
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R
u m  

 
f ~ f° dV = p, Rloi 

ó f ~ x x f° dV = 0, (20.4.3a,b) 

where f° is the intensity of the distributed load per unit volume. From 
(20.3.8b,c), it follows that (see Figure 20.4.1) 

12f _ { 1/m x.f° for Q in R0   
(20.4.4) 

0 for Q in R — Ro,   

and 

— 1/11 f° for Q in R0 120_f 0 
for Q in R — Ro. 

(20.4.5) 

Substitution from (20.4.4) and (20.4.5) into (20.4.2) now results in 

F= 0, 0— 4
pM I x l' (20.4.6a,b) 

where, in addition to (20.4.3), the mean-value theorem of the potential theory is 
also used; see Kellogg (1953). The displacement field now becomes 

u(c) = 4nm { i r — 
4(11 n) 0â{r c.r}}, (20.4.7) 

where r = 1 x I . Suppose now that p acts along the x3-axis, p = p e3. In polar 
coordinates 

1 r 1   ~ z 
u = 4 m 4(1—i) 

P
r3

3 eo + {  — 4(1—i) 
( r  r3 )} e3 

where p2 = xi + x2. The corresponding displacement components 
tangular coordinates are 

__ p  3-4v x3 x, 
u`  16p M (1—V) r ~ r3  }' 

fori=1,2,3. 

(20.4.8a) 

in the rec- 

(20.4.8b) 

Figure 20.4.1 

Small region R0 around origin 
where f° is distributed 
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20.4.3. Semi-Infinite Body with Normal Concentrated Forces 

Now consider the problem of a semi-infinite elastic body which is loaded 
on its plane boundary or in its interior by arbitrary distributed forces. For this 
class of problems, it suffices to obtain a solution for concentrated loads applied 
on the boundary or in the interior of the body, and then employ a superposition 
procedure to arrive at the solution for other distributed loading situations. 

Consider then the semi-infinite (half-space) body shown in Figure 20.4.2, 
where the x3-axis is taken perpendicular to the plane boundary of the region, and 
the x2-axis is normal to the plane of the figure. Let P with the position vector x 
be a fixed point, and denote the position vector of the variable point Q by x. In 
addition to these points, consider the mirror image Q' of Q with respect to the 
plane boundary 0c1x2, and denote its position vector by x'. Let Qo be the inter-
section of QQ' with the Oxtx2-plane, and x0 be its position vector. 

Figure 20.4.2 

Semi-infinite body R and 
points P, Q, and Q' 

Referring to Figure 20.4.2, it follows that 

r= Ix— xI, r'= Ix— x'I, r0= I x— x01. (20.4.9a—c) 

Now examine the consequence of choosing the Green function G in (20.4.1), as 

G(x, x) = r — r 

Since the exterior unit normal to aR is v = — e3, 

aG _ _ aG _ _ 

 

a 1 _ 1 X3 - x3  X3 + x3 
av a43 aI3 { r r' } — — r3 r 3 (20.4.11a) 

which on aR (x3 = 0) reduces to 

2x 
_ —  r~3 = 2 ~aa 

{ 
ro }. (20.4.11b) 

Substitution from this equation into (20.4.1), for P inside R, now yields 

J  1  
2 

o {
J — } 4p u = — R { r - r }  u dV~ — 

2 ax3  2R r0 dS~ 

where the integrations are carried out with respect to x, while x is held fixed. 

(20.4.10) 

(20.4.12) 
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In the sequel, (20.4.12) is used to obtain the appropriate potential func-
tions F and 0 for two problems: (1) a half-space subjected to a concentrated 
interior force which acts perpendicular to the plane boundary, and (2) a half-
space subjected to a concentrated interior force which acts parallel to the plane 
boundary. The solution for a half-space subjected on its plane boundary to a 
concentrated force can then be obtained as a special case. 

Consider first a concentrated interior force normal to and at a distance c 
from the Ox1x2-plane which forms the boundary of the half-space x3 >_ 0; see 
Figure 20.4.3. Let p = p e3 be applied at a point on the x3-axis, a distance c 
from the origin O. Consider a small region R0 with the boundary aRo about the 
point of the application of p, and distribute f° within this region in accordance 
with (20.4.3). 

Figure 20.4.3 

Concentrated force normal to 
boundary of half-space 

Since this problem is torsionless and axisymmetric, set Y1 = Y2  = 0, and 
from (20.3.8a) obtain 

u= 03 e3 
4(1 — i) 

Nâ(c303+f). (20.4.13) 

Equation (20.3.8b,c) now reduces too 

and 

12f —{ 
  1/mR x3 f3 

 0 

1203 
1/m f3 

= 0 

for Q in R0 

for Q in R — R 0, 

for Q in R0 

for Q in R — R0. 

(20.4.14) 

(20.4.15) 

From (20.3.12), moreover, the stress components are 

4 Note that p = lim 
J  

f3 dV. 
Ro-O Ro 
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i –2 n (x303,3 + 
F,3)} 

(i = 1, 2), 

S33 = {a X3,3  1 12n (x303,33 + F,33)), (20.4.16a,b) 

which, because aR is traction-free, reduce to 

s3i = a {~3,i –  1 -2v F,3i} = 0 (1 = 1, 2), 

s33 = a {a03,3 – 1 
1
2v 0,33} = 0, (20.4.17a,b) 

where a = 2(1 – v)/(1– 2v). 

Inspection of (20.4.17) now reveals that the expressions 2(1 –1)03, 3 

– 0, 33 and (1 – 21)03 – 0, 3 have known Laplacians in R and vanish on DR; the 

vanishing of (1 – 21)03 – 0, 3 on R follows from the fact that J  s3i dxi = 0 

on R. It therefore appears reasonable to choose for u in (20.4.12) quantities 
defined by 2(1 –1)03,3 – 0,33 and (1 – 21)03 – 0,3. Substitute from 2(1-1)03,3 

– 0, 33 into (20.4.12), and noting (20.4.14) and (20.4.15), obtain 

21–v 0 0, 1  
4pMIRLx 7

1  1 

v)  
(.113

+ 
a2 

a3f 
~)  } dV. (20.4.18) 

Now integrate the first integral corresponding to the first term inside the brackets 
in the right-hand side of (20.4.18) once by parts, the second integral correspond-
ing to the second term inside of the brackets twice by parts, and taking the limit 
as R0 goes to zero, obtain 

hrn 1 1  af3 
dl – a 1 + 1 ) 

R0-40 JRo { r G} X3 r ax3 { G r2 

and 

him 1 1  a2(x3 f3) dl = c  az 1 1 
J~ { r r' }  ax3 p ax3 

{  

where 

ri = xl + x? + (c3 – c) 2, r2 = c? + x? + (x3 + c)2, 

and where the following results, as R0 approaches zero, are used: 

(20.4.19) 

(20.4.20) 

(20.4.21,22) 

aG = a  
1 r1  r2 ax;  ax, rl  r2 

2 z axG 
ax3 { r — 

t2 
}. 

(i = 1, 2), aG  a  i  i +— 
ax3  ax3 r1  r2 

(20.4.23a–c) 

From (20.4.19), (20.4.20), and (20.4.21), it follows that 
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2(1—v) 413 -41,3 = 4 }2(1— n){ + r }+c{r —
~z

},33 ~  (20.4.24a) 

Next, set u = (1 — 2 n)Y3 — 0,3 in (20.4.12), and arrive at 

2(1-2n)03 — F,3 = 44 }(1-2n){ 1 —
r

2}+c { rte _ 

Combining (20.4.24a) and (20.4.24b), finally obtain 

03 = _ 1 + 3 — 4 n + 
2c (c3 + c)  

4pM r iR r2 r23 

F = 4 m {4(1 — v) (1 — 2 n)1h(r2 + c3 + c)  c (3 4v) c I  (20.4.25a,b) 

which completes the solution. 

The displacement field can be calculated from (20.3.8) and the stress field 
from (20.3.12). The solution for the case of a concentrated load acting normal 
to the plane boundary of a half-space (Boussinesq's problem) corresponds to 
c = 0 in (20.4.25a,b). This gives 

03 = (1— v) p 1 (20.4.26a) 

and 

(1 — v )( m —2v) p ln(r + x3), (20.4.26b) 

where, as before, r = I x I . Using the cylindrical coordinates, obtain the follow-
ing displacement components: 

u`  4pm r r2 r + x3 }' 
u8= 0 

c 2 

u3
_ 

4 mR r {2(1—v)+ rz }, 

where r2  = x? +xz. The corresponding nonzero stress components are 

__ r 1— 2 n _ 3r2C3  
s" 2p r {  r+x3 r4  ~, dee = r (1 — 2v) { C3 1   } 

2p r r2 r +C3 

s33 = — n 3x3  , st3 = 63t = — p 3PX3  
2p 

 

r5 2p r5 
(20.4.28a--d) 

20.4.4. Semi-Infin~te Body with Tangential Concentrated Forces 

Now consider a half-plane subjected in its interior to a concentrated force 
applied parallel to it, and at a distance c from its plane boundary R. Choose the 
c i-axis parallel to the load q = q el, as in Figure 20.4.4. Distribute f° in a small 

. (20.4.24b) 

pm  r 

(20.4.27a--c) 
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region R0 in the manner defined by (20.4.3), and note that fz = f3 = 0. Choosing 
02 = 0, write the boundary conditions on DR, as 

631 = ((1— 21) (03,1 +01,3)—x i 01,31 F 31) = 0, 2(1m V) 

632 = xj 0, 1(1 — 2v) 03,2 — Y1,32 — 0,32} = 2(1 v) 

633= 2(1m V) {2(1 -1)03,3+ 2101,1 —
X1 1,33-0,33} = O on R. 

(20.4.29a--c) 

Differentiate (20.4.29a) with respect to x2, and (20.4.29b) with respect to xi, and 
forming the difference of the resulting equations, arrive at 

01,23 = 0 on iR. (20.4.30a) 

Integrating this equation with respect to x2, obtain 01,3 = f(xl) on aR, where, 
without a loss in generality, it is assumed that f(xl) = 0. It now appears reason-
able to choose u in (20.4.12) equal to 01,3 which vanishes on aR and has a 
known Laplacian in R. Equation (20.4.12) thus yields 

o 
Yi 3 = 1  

f { 1  
1 

}  fl~ dV ~ ~ { 1 + 1 },3  (as Ro — 0). 
4pm J~t~ r r ax3 4pm r1 r2 

(20.4.30b) 

Upon integration with respect to c3, this equation becomes 

01= 
_q_  

 

(20.4.31) 

   

Figure 20.4.4 

Concentrated force parallel to 
boundary of half-space 
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Now consider (20.4.29b). Noting that, f2 s32 dx2 = 0 since aR is 

traction-free, obtain 

(1 — 2 n) 03 — 0, 3 = Xi 01,3 = 0, (20.4.32a) 

where the fact that 01,3 = 0 on aR is also used. Therefore choose u in (20.4.12) 
equal to (1 — 21)03 — F 3, and employing (20.4.32a), arrive at 

0 
(1— 2 n) 03 — 0 ,3 = 41M f   { r  r } ~1 ax3 

dl. 

At the limit when Ro goes to zero, (20.4.32b) yields 

(1 —2 n)03 — f,3 = 0. 

Finally, write (20.4.29c) as 

2(1 — n) 03,3 — 0,33 + 2v 01 ,1 — X i 01,33 = 0, 
and note from (20.4.31) that on aR, 

2vß 
(1— 2n) ci q  3g c2 x i 

—x~`~~ ,33= 2pm r 2144 ' 

where ro = x? + x + c2. Moreover, —(1 —21)01,1 = (1 — 21) C1 q/pm ro on aR, 
qc/2pm (1/r2),13 = 3gc2x1/2pm ró, and hence (20.4.33 a) becomes 

X = 2(1 —v)0 3,3 — 0,3 3 —(1 — 21) 41 1,1  ~ { 1 },13 = 0, (20.4.34a) 2pm r2 

on R. Now, in R0, 

1 -2v   
02X = - mR x1 f?,33 

+ M ?,1, (20.4.34b) 

and therefore (20.4.12) yields 

I 20 0 

4pm f { r — r axR } {x i ax —(1 -2v) 
R ~ i } dl (20.4.34c) 

which vanishes on aR, and which, as R0 goes to zero, reduces to 

X (l  ‚ 1 1 
 4pM i 2 },i. (20.4.34d) 

Combining (20.4.34a) and (20.4.34c,d), obtain 

21—v ~ ~ (1 -21)q xi  3gcx1 (x3+c) 
3 3 —  33 — 2p r2 + 2p M r2 

(20.4.35a) 

which, upon integration with respect to c3, yields 

1—v 
(1-2n) g c j g cx j  2(1 )  3 — 3 = — 2p M r2(r2 + x3 + c) 2p mR rZ 

(20.4.35b) 

From this and (20.4.32c), 

(20.4.32b) 

(20.4.32c) 

(20.4.33a) 

(20.4.33b) 
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_  (1-2n) gxj  Qc c1  03-

2p m r2(r2 + x3 + c)  2p M rz ' 

--  (1-2n)2 gx1 (1-2n) gx1 
(20.4.30c,d) 2pm(r2 +x3 +c)  2pm r2 (r2 +x3 +c)' 

which, together with (20.4.31), completes the solution. 

It is interesting to note that when the Poisson ratio v equals 1/2 
(incompressible elastic materials), F vanishes and 03 reduces to — qc x i/2pm r2 ; 
a similar observation can be made regarding the solution (20.4.26a,b). This fact 
has been exploited by Westergaard (1952) to simplify the solution of this class 
of problems. Observe that when c = 0 (Cerruti's problem), 

u1  4p M r 
: 1+ T2  +(1-2n) { 

r+x3 (r+x3)2 

= q12 1 1-2v  u2 4p m r  r2 (r + c3)
2 ' 

gx1  1 C3  1-24 u3 = 4pM r l r2 r+ c3  ' 

and the corresponding stress components are given by 

Qxj  3x? 1-2v 2  2rxi 
sII = 2p r3 { r2 + (r + x3)2 

{r —x~ r + x3 }} 

(20.4.36a- c) 

s22 = 
q x j  

2p r3 

3x? 1-2v  2 { 3r2 — c~  
2r c2 

r2 
+ 

(r+x3) r+x3 }' 

S12 = 
q x2  j 
2p r3  

3x? 
 r2 

+ ( r +C3)2 
{  r2  c1 2rx2 

} 
r+x3  

3

2 3 c c c
3 

s3i=s13 =-

2nrs 3 a ,  s32=s23 = 2p r5  ' 

s — - 3g xl x 33 3  

2n r5  ~ 
(20.4.37a--f) 
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SECTION 21 SOLUTION OF SINGULAR PROB-

LEMS 

In this section certain basic mathematical foundations of two-dimensional 
elasticity problems are summarized. Airy's stress function and Muskhelishvili's 
(1956) complex potentials are introduced. Emphasis is placed on problems 
involving singularities. Included also are certain basic topics in two-
dimensional anisotropic elasticity. 

21.1. AIRY'S STRESS FUNCTION 

Airy's stress function is a scalar potential which is introduced to satisfy 
the two-dimensional equations of equilibrium in the absence of body forces. 
The compatibility requirement then leads to a differential equation for Airy's 
stress function, which, together with the boundary conditions, defines this func-
tion uniquely. For isotropic elasticity, a bi-harmonic equation is obtained for 
Airy's stress function. 

The introduction of complex-valued functions considerably simplifies the 
solution to this bi-harmonic equation and the expressions of the corresponding 
stress, strain, and displacement fields. Airy's stress function can be expressed in 
terms of Muskhelishvili's complex potentials, with immediate application to 
anisotropic two-dimensional problems. This and related issues are briefly dis-
cussed in this and subsequent subsections. 

21.1.1. Solution to Equilibrium Equations 

In the absence of body forces, the equations of equilibrium in two dimen-
sions are given by 

s =0 fori,j=1,2 (21.1.1a) 

or, more explicitly, 

Shh,1 +021,2 = 0, S12,1 + s22 = 0, (21.1.1b,c) 

where s12 = s21, and comma followed by indices denotes partial differentiation 

If body forces are conservative or given by the gradient of a certain potential, then the field 
variables can be formulated in a manner similar to the one presented here. 
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with respect to the corresponding coordinates; see Subsection 17.2. Consider a 
stress function, U = U(x1, x2), such that 

ßl1 = U,22, X22 = U,11, X12 = S21 = — U,12• (21.1.2a--c) 

These stress components always satisfy the equations of equilibrium. Function 
U is called Airy's stress function. 

Conversely, if a stress field satisfies (21.1.1), then the stress components 
are given by (21.1.2) in terms of a certain function, U = U(xl, x2). The proof is 
straightforward. From (21.1.lb), there exists a certain function, F1, such that 

s1i = F1,2 and s12 = —F1,1. (21.1.3a,b) 

Similarly, from (21.1.1c), there exists another function, F2, such that 

X22 = F2,1 and s21 = -F2,2. (21.1.3c,d) 

Since s12 = X21 leads to F1,1 = F2,2, functions F1 and F2 are expressed as 

F1 = F,2 and F2 = F,1, (21.1.4a,b) 

in terms of a certain function, F, which is identified with the Airy stress func-
tion, U. 

21.1.2. Governing Equation for Airy's Stress Function 

First, for simplicity, consider an isotropic material. The constitutive rela-
tions for linear elasticity in two dimensions then are 

      

eii 
e22 
2e12 

1 = 
m 

(k +1)/8 (k-3)/8 0 
(k -3)/8 (k +1)/8 0 

0 0 1 

 

S11 
s22 
S12 

(21.1.5) 

     

      

where m is the shear modulus, k = 3 -4v  for plane strain and (3 — v)/(1 + v) for 
plane stress, with v being the Poisson ratio; see Subsection 3.1 or 5.1. 

The compatibility condition for two-dimensional plane problems is given 
by 

X11,22 -2~l2,12+~22,1 i = 0; (21.1.6) 

see Subsection 16.2. From (21.1.2), (21.1.5), and (21.1.6), Airy's stress func-
tion must satisfy 

U,iiii+ 2 U,i2i2+ U,2222 = 0 (21.1.7a) 
or 

14U = 0, (21.1.7b) 
where 12 = a2/ax? + a2/ac2. Hence, U is bi-harmonic. 

Note that (21.1.7) is restricted to isotropic materials, although the equation 
of equilibrium, (21.1.1), and the compatibility condition, (21.1.6), hold for any 
material, when there are no body forces and only small deformations are con-
sidered. 
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21.1.3. Analytic Functions 

A complex number, z, is defined in terms of a pair of real numbers, x1 and 
c2, as 

z=x1+tx2, (21.1.8) 

where i - '1-1 is the imaginary number. A point in a two-dimensional plane is 
given by its position vector measured from the origin, x, or by the corresponding 
Cartesian coordinates, x1 and x2.  This provides a unique correspondence 
between complex number z and point c in the two-dimensional plane. The 
two-dimensional plane is then identified with the complex plane. 

The real part of a complex number z is defined as Rez - xi, and the ima-
ginary part as Jmz = x2. The complex number conjugate of z is defined by 

— t x 2. Hence, from Rez = Rez and Imz = — Imz, it follows that 

z =c1+ tx2 c j= 
2 

(z+z) 

(21.1.9) 

Z = c1 — i c2 X2 = — 
2 

(z — ). 

A two-dimensional vector-valued function is written as 

f = f(x), (21.1.10a) 

with components, 

fi = fi(xi, c2), f2 = f2(c1, x2). (21.1.10b,c) 

As mentioned, the complex number z corresponds to vector x, if the two-
dimensional plane is regarded as a complex plane. In a similar manner, a com-
plex number can be associated with the value of the vector-valued function f if 
the domain of f is regarded as a region in another complex plane. Hence, 
defining the complex-valued function as f - f1 + i f2, (2.1.9) leads to 

f = f(x) f = f(z, z). (21.1.11) 

The complex-valued function f is simply called a complex function.2 

Taking advantage of (21.1.9), consider the following relation between dif-
ferentiation with respect to z and z and that with respect to x1 and x2: 

a _ ax1 
a ax 2 

az — az ax 1 + az ax 2 — 2 ax1 — 2 ax2 ' 

a  ac i  a  
ax2  a  i  a  i  a 

az — ai ax 1 + az ax 2 — 2 ax1 + 2 ax2 

Hence, it follows that 

a _ i a  i a 

(21.12a,b) 

2 Usually, a complex function is regarded as a function of a complex number, z, and is denoted 
by f(z). This expression means that f is a function of two independent variables, Rez = x1 and 

/mz = CZ. 
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2  

aaaZ a

a

az 4 { ac1 + ax  2 }  4 12 (21.1.12c) 

From (21.1.12c), it is seen that if complex function f = f(z, ) satisfies 
a2f/aza = 0, then its real and imaginary parts, Ref = fl and Imf = f2, are har-
monic. Since a2f/azaz = 0 means that f is a function of either z or z but not 
both, assume f = f(z) and obtain 

az 2 {  aa
l 

+  a

ax2 
}(f1+tf2) 

1 af I af2 1 f2 af I = 2 { ac1 — ac2 } +i 2 { ac1 + a
C 2 

} = 0. 

Hence, 

aRef  aimf _ aimf  aRef 
ax1 ax2 °' ax1 

+ _ 
aX2 0. 

(21.1.1 3a) 

(21.1.13b,c) 

If complex function f satisfies (21.1.13), and the indicated partial derivatives are 
continuous, then, this function is called analytic,3 and its real and imaginary 
parts are harmonic; the Cauchy-Riemann theorem. Note that a harmonic real-
valued function may be regarded as the real (or, equivalently, the imaginary) 
part of a complex analytic function. 

Differentiation of an analytic function, say, f, with respect to z is denoted 
by f' = df/dz. It can be proved that an analytic function can be differentiated as 
many times as desired, and the resulting derivatives are also analytic. Further-
more, it can also be proved that integration of an analytic function with respect 
to z also yields another analytic function. An analytic function may not be 
single-valued. For example, In z is analytic but not single-valued in a region 
containing z = 0. In order to express physical field variables in terms of analytic 
functions, special attention must be paid to address the question of the single- 
valuedness4 of the analytic function. 

21.1.4. Bi-Harmonic Functions 

Based on the above summary, consider expressing Airy's stress function 
in terms of complex analytic functions. From (21.1.12), 

3 See, e.g., Hille (1959). In the present book, a general complex function is expressed by 
f(z, i), and a general analytic function by f(z), to emphasize the difference between a complex func-
tion and an analytic function. 

A single-valued analytic function is called holomorphic; see Subsection 21.3.1. 
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{  a2_ }2 = {  a2  
}2 -  1 

{ a2 + 
2 

12_ 1 04. 
azaz aia~~ 16.  ax?  axe — 16 

Hence, a bi-harmonic function is given by the real or the imaginary part of a 
complex function f = f(z,) which satisfies (a2/aza)

2 
f = O. 

A bi-harmonic function can be expressed in terms of two complex ana-
lytic functions, in the same manner as a harmonic function is given by the real 
or imaginary part of a complex analytic function. From (a2/aza )2 f = 0, it fol-
lows that f = f(z, ) can be expressed as 

f(z, ) = g(z) + z h(z) + g() + z h(z), (21.1.15) 

where g(z) and h(z), and g(z) and h(i) are complex analytic functions of z and z. 

In view of (21.1.15), Airy's stress function, U = U(xl, x2), is expressed in 
terms of two analytic complex functions, f(z) and c(z), as 

U(x j, c2) = Re { f(Z) + c(z) } (21.1.16a) 

which is equivalent to (21.1.15) when the last two terms in the right side of 
(21.1.15) are taken to be the complex conjugate of the first two corresponding 
terms. Complex function c is often replaced by f y dz, such that f and ', have 
the same physical dimensions, since i has a dimension of length. Note that yi is 
analytic, since differentiation or integration of an analytic function results in an 
analytic function. Hence, (21.1.16a) is replaced by 

U(xl, C2) = Re 1 Z Y(z) +f Z Y(z ) dz'}. (21.1.16b) 

The two analytic functions, f and hi, are Muskhelishvili's complex potentials. 

Once Airy's stress function is expressed in terms of Muskhelishvili's 
complex potentials, the resulting stress, strain, and displacement fields are 
obtained by simple manipulation. These fields satisfy the three governing field 
equations, namely, the equations of equilibrium, the constitutive relations for 
isotropic materials, and the compatibility conditions (or the strain-displacement 
relations). Hence, a boundary-value problem of two-dimensional elasticity can 
be solved by choosing a suitable pair of Muskhelishvili's complex potentials, 
such that the resulting fields satisfy the prescribed boundary conditions. 

In Table 21.1.1, the stress and displacement components, and u;, are 
given in terms of Muskhelishvili's complex potentials. This table also gives the 
resultant force and moment, F; and M, transmitted across any simple arc which 
connects points A and B, 

a 
F;= n d/, 

M= fA {c i (si2ni+s22n2) — C2(si i n i +si2n2)} dl, (21.1.17a,b) 

(21.1.14) 

where v is the unit normal of the arc pointing from the — to the + side of AB, as 
shown in Figure 21.1.1. 



field variable expression 

+s22 

s22-s11 + 2t s12 

2m (ui + t u2) 

Fi+ tF2 

M 

4Ref' 

2 (xY" + hi) 

— z — 0 

— (F + z ' + hi) 

Re{Jy dz—z y —zz f'} 
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Table 21.1.1 

Expressions for stress, strain, resultant force, and 
the resultant moment in terms of Muskhelishvili's 
complex potentials 

Figure 21.1.1 

Arc AB with unit normal v; resultant 
force and moment pointing from — to + side 

21.2. GREEN'S FUNCTION AND DISLOCATION 

The two-dimensional Green function for an infinitely extended, homo-
geneous, isotropic, linearly elastic solid will be derived in terms of 
Muskhelishvili's complex potentials. Associated with this, and preliminary to 
formulating the crack problem, the complex representation of a dislocation is 
also obtained. 

21.2.1. Green's Function 

To solve a boundary-value problem in two-dimensional elasticity, a suit-
able Airy stress function, or equivalently, a suitable pair of Muskhelishvili's 
complex potentials must be constructed such that the prescribed boundary con-
ditions are satisfied, since all other governing field equations are already 
satisfied by these potentials. 

Suppose that only a concentrated force, P = (R1, R2), acts at the origin, 0; 
see Figure 21.2.1. The force condition at the origin and the boundary conditions 
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at infinity then are: 1) in the neighborhood of the origin, the stress field must be 
in equilibrium with P1 and P2; and 2) far from the origin, the stress field must 
vanish. 

The resultant force transmitted over a closed loop which surrounds the 
origin is used as the prescribed boundary condition, i.e., for any small loop sur-
rounding the origin, the resultant force is required to equal R. Hence, 

[F1 + t F2] = R1 + i R2, (21.2.1) 

where [ ] denotes the corresponding resultant quantity around an arbitrary loop 
surrounding the origin. The farfield boundary conditions are 

lim sii(z) = O for i, j = 1, 2, (21.2.2) 

where I ~ I  

c2 

Figure 21.2.1 

Point force P at origin of infinitely 
extended solid 

  

  

c1 

In view of (21.2.1), set f = A In z and y~~ = B In z, with unknown complex 
constants, A = Al + i A2 and B = B 1 + i 12. These complex potentials satisfy 
(21.2.2). Since (21.2.1) is equivalent to two independent real equations, two 
other real equations are needed in order to determine the four real unknowns, 
A1, A2, B, and B2. Consider the continuity of the displacement around a loop 
which surrounds the origin, i.e., 

2 i [ui+iu2] = [kF(z)—z$'(z)— Y(z)] = 0. (21.2.3) 

This provides the additional two equations. 

From [in z] = 2pi and [ln z] = — 2i for any loop surrounding the origin, it 
follows that 

[F1 +i F2] = 2n (A — B) 

= 2n (A1 — B 1) + 2pi (A2 + B2), (21.2.4a) 

and 

211[u l +(u2] = 2pi(kA+ B) 

= 2p(— kA2 +B2)+2pi(kA1 +B1). (21.2.4b) 

Substituting (21.2.4a,b) into (21.2.1) and (21.1.3), obtain A1, A2, B1, and B2, as 



650 CHAPTER VI § 21.2 

1i _ P2 A1__ 
2p(1+ k) ' A2 2p(1+k) ' 

(21.2.5a--d) 
kP i _  kP2 B1_ _ 

2p(1 +k) ' 
B2 2p(1+k) ' 

Hence, complex potentials, f and Y, for force P concentrated at the origin are 
given by 

F(z) — 2(1
1)
±) In z, Y(z) = 2p(1P k) In z, (21.2.5e,f) 

where P = P1 + t P2. 

The Green function for a concentrated force acting at a typical point, 
x° = (xl, x2) is obtained through a translation. To this end, let U(xl, x2) be 
Airy's stress function defined by f and hi of (21.2.5), and denote by U(X1, x2) 
Airy's stress function with the origin of the coordinate system at — x °, where 
z = x + x°, and z = (x1, x2) or 2 = x1 + t x2. Then, Ü is given by 

0(X1, x2) = U(x1, c2) = U(R1 -xi, x2—x2). (21.2.6a) 

Denote the complex potentials for U(cl, x2) by F(z) and c(z), and those for 
U(X1, X2) by F(2) and c(2), where c'(z) = Y(z) and c'(2) = Y(). Rewrite 
(21.2.6a) as 

Re{2F(2)+c(2)} = Re{Z f(z)+c(Z)} 

= Re{2F(2 —z ° ) +c(2 — z° )— Z° f(2 —z °)}. (21.2.6b) 

Hence, f(2) and c(2) are 

f(2) = f(2 — z°), c(2) = C(2 — z° ) — z ° f(2 — z ° ). (21.2.7a,b) 

From (21.2.7b) and d/d2 = d/dz, y(2) = c'(2) is given by 

(2) = Y(2 — z° ) — z° f'(2 — z°). (21.2.7c) 

This is the coordinate transformation rule for Muskhelishvili's complex poten-
tials, which is different from that for Airy's stress function, (21.2.6a). 

From (21.2.7), the complex potentials for a concentrated force P applied 
at x° are obtained, as follows: 

f(z; P, z°) = 2 p( 
R 

k) In (z — Z°
), 

Y(z; R, z°) = ~ In (z — z ° ) + R  z°  

2p(1 + k) 2p(1 + k) z — z ° ' 

where P = P1 +1R2 and z° = c? + txz. 

(21.2.8a,b) 
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21.2.2. Dislocation 

The Green function is obtained under the assumption that the resultant 
force transmitted across a small loop is prescribed, while there are no displace-
ment gaps across this loop, i.e., [F] = P and [u] = 0, where F = F1 +t F2 is the 
resultant force and [u] = [u1] +t [u2] is the displacement gap. It is of interest to 
consider the physical phenomenon corresponding to a case where the resultant 
force across a small loop is zero while a nonzero displacement gap is prescribed, 
i.e., when [F] = 0 and [u] = b with b = b1 + t b2. This defines a dislocation. 

The displacement jump caused by a dislocation is interpreted as follows: 
since the displacement field must be continuous, a dislocation produces a dislo-
cated line in the plane, across which the displacement field is discontinuous 
while the tractions are continuous; see Figure 21.2.2. 

Figure 21.2.2 

Dislocation with Burgers vector b at 
origin of infinitely extended solid 

A dislocation is characterized by the Burgers vector which determines the 
direction and the magnitude of the slip induced by the dislocation. In two-
dimensional elasticity, the Burgers vector is expressed by b = (b1, b2). In view 
of (21.2.4a,b), the complex potentials f and Y for a dislocation with Burgers' 
vector b at the origin become 

F(z) _ — p(k+bl) In z, Y(z) _ p(k bl) In z. (21.2.9a,b) 

Furthermore, from (21.2.7), the complex potentials for a dislocation with 
Burgers' vector b at z° are 

p(k+bl) In (z — z°), 

Y(z; b, z°) = p(k b1) ln (z — z°) + n(kmb1) 
z° (21.2.10a,b) 

z — z° 
Note that in (21.2.10) or equivalently, in (21.2.9), the line of the displacement 
discontinuity is not specified, although its magnitude and orientation are given 
by Burgers vector b. Since In (z — z°) is a multi-valued function, a suitable cut is 
required to render it single-valued. This cut starts form z° and extends to 
infinity without intersecting itself. It corresponds to the line of discontinuity. 
Hence, (21.2.10) corresponds to various dislocations with different lines of 
discontinuity. 
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21.2.3. Center of Dilatation and Disclination 

Muskhelishvili's complex potentials with elementary functions (or, 
equivalently, the corresponding Airy's stress function) may be used to examine 
fields associated with interesting physical phenomena. As an example of such 
elementary functions, consider In z which produces fields with a singularity at 
the origin. As shown in Subsections 21.2.2 and 21.2.3, a point force and a dislo-
cation can be expressed in terms of In z. The resulting stress, strain, and dis-
placement fields are not bounded at the origin in this case. 

A center of dilatation and a disclination are other phenomena that produce 
fields with singularities. Here, a center of dilatation is a point with finite expan-
sion, or the limit of a circular region undergoing finite expansion, as its radius 
vanishes, with the product of the expansion and the area of the region remaining 
constant; see Figure 21.2.3. A disclination is a semi-infinite cut, with the dis-
placement jump across the cut increasing linearly with the distance from the ori-
gin of the cut. A center of dilatation corresponds to the case where a region 
with finite expansion is viewed from far away, and a disclination corresponds to 
the case where a sharp wedge is driven into a plate; see Figure 21.2.4. 

Figure 21.2.3 

Center of dilatation with expansion e at 
origin of infinitely extended solid 

c2 

~e l 

O/ 
\ ci 

Figure 21.2.4 

Disclination with magnitude l at origin 
of infinitely extended solid 

In the polar coordinate system, (r, Q), Airy's stress function for a center of 
dilatation located at the origin is given by 

U(r, Q) = e In r, (21.2.11) 
where e is the amount of volume expansion; see Figure 21.2.3. Similarly, Airy's 
stress function for a disclination starting from the origin is given by 

U(r, 13) = y r2 In r, (21.2.12) 
where y(K+ 1)/2p is the disclination angle; see Figure 21.2.4. These Airy stress 
functions do not depend on Q. 
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In terms of Muskhelishvili's complex potentials, (21.2.11) is expressed as 

U(r, q) = Re { e lnz} == f = 0, Y = Z, (21.2.13) 

and (21.2.12) is expressed as 

U(r, 8) = Re{7(g zlnz)} f = yz lnz, 0 = 0. (21.2.14) 

The complex potentials for the dislocation can be obtained by taking the limit of 
a doublet of disclinations as they approach each other, leaving an infinitesimally 
small distance. This can be shown directly from the coordinate transformation 
rule (21.2.7). Suppose that a pair of disclinations with the disclination angles U 
and — y are located at the origin and at z°, respectively. Superposition of these 
two disclinations yields 

f = yz ln z —y(z — z) ln (z — z 0), 

=-z° U{In(z—z°)-1}. (21.2.15a,b) 

In the limit as z° approaches 0 with yz 0 = C fixed, these potentials become 

lim f = lim { z In z — (z — z°) In (z — z°) } = C (ln z —1), 
z°_*o z°—* O z 

him y = lim < { z° (1h(z — z°) —1) } = C (ln z —1). 
z°--io z°4o z° 

(21.2.15c,d) 

Since a constant term in the complex potentials does not produce any fields, 
(21.2.15c,d) coincide with (21.2.9) if C is replaced by — t mb/p(k + 1). Hence, it 
follows that a dislocation is obtained by taking a suitable limit of a doublet of 
disclinations. 

In a similar manner, a center of dilatation can be obtained by taking the 
limit of a doublet of dislocations. If two dislocations with Burgers' vectors b 
and — b are located at the origin and at z°, respectively, the corresponding 
Muskhelishvili potentials are given by 

F = Cln Z —Cln( Z — Z0), 

‚ji =Clnz+{—Cln(z —z °) +C  
z°  

}, 
Z — Z

0 
(21.2.16a,b) 

where C = — i Mb / p(1V + 1). As z° approaches 0 with C z° = e (real) fixed, these 
potentials become 

lim f = 1im ?° e ' z°— i0 z°10 o Z 

o 
lim y = lim  
z°_ o z°-io  o z z (21.2.16c,d) 

If the orientation of z° is fixed as O, then, the limit of z°/ z° is defined by ez~o 
Hence, superposition of potentials for another doublet of dislocations with the 
same magnitude C but opposite orientation, O ± p/2, yields 
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f =0,  Y = 2 . (21.2.16e,f) 

As is seen, these potentials are the same as those for a center of dilatation, 
(21.2.13), except for a nonessential factor of 2. 

21.3. THE HILBERT PROBLEM 

In two-dimensional elasticity, a crack is viewed as an arc in a plane. Since 
boundary conditions for the crack are prescribed on both upper and lower sur-
faces of the crack, this problem can be stated as a Hilbert problem. Here, a Hil-
bert problem is a boundary-value problem with boundary data prescribed on 
both sides of an arc. In this subsection, holomorphic functions which are used 
in the Hilbert problem are briefly reviewed as a mathematical preliminary, and 
then the Hilbert problem is stated. Finally, a traction-free crack in an infinite 
domain subjected to uniform tension is examined as an example of the Hilbert 
problem. 

21.3.1. Holomorphic Functions 

A complex-valued function, f(c1, x2), in a region, D, is analytic, if it 
satisfies the Cauchy-Riemann equations, aRef / axl = almf / ax2 and aRef / ax2 = 
— a',, f / ax1, and the partial derivatives are continuous. Complex function f is 
called holomorphic in D if it is analytic and single-valued everywhere in D. 
The single-valuedness is important, as it is necessary that the physical fields 
defined by these functions be single-valued. 

The basic properties of a holomorphic function in D are as follows: 

1) derivatives of a holomorphic function are holomorphic in D; 

2) the integral of a holomorphic function, however, is not5 necessarily holo-
morphic in D; 

3) a holomorphic function admits a unique convergent power series, called 
Laurent's series, over the corresponding annulus; 

4) both real and imaginary parts of a holomorphic function are harmonic and 
single-valued; and 

5) if two functions holomorphic in D 1 and D2 take the same value on the 
intersection of D 1 and D 2, then a new holomorphic function can be 
defined in D1 + D2, which coincides with each function in its own domain 
(continuation theorem). 

5 The integral of a holomorphic function is analytic, but not necessarily single-valued; for ex-
ample, 1/z is holomorphic in the region excluding the origin, but its integral, In z, is not single-
valued, though it is analytic there. 
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Holomorphic functions are used6 to determine Muskhelishvili's complex poten-
tials, since these potentials must produce analytic and single-valued fields, in 
order to correspond to the physical quantities. 

21.3.2. The Cauchy Integral 

Let C be a finite (open) simply-connected part of an unbounded domain, 
D, and denote its boundary by aC; see Figure 21.3.1. If f= f(z) is holomorphic 
inside of C and continuous on aC, then the values of f on aC completely define 
this function within C by the following integral: 

1  r  f(t)  dt = 2p1 1 ac t — z 
 

f(z) if z e C 

0 ifzE D —C, 
(21.3. la) 

   

where D — C is the remaining part of D, excluding C. If, on the other hand, f 
is holomorphic outside of C and continuous on aC, it then follows that 

1  r f(t)  dt = 27p Jac t — z 

f(f) 

f(f) - f(z) 

ifze C 

ifzE D—C, 
(21.3.1 b) 

    

where f(oo) is the farfield value of f. Equations (21.3.1a) and (21.3.1b) are the 
Cauchy integral theorems. 

Figure 21.3.1 

Simply connected region C 
for Cauchy integral theorem 

 

D 

Next, consider a sufficiently smooth complex-valued function g defined 
on a nonintersecting arc, L, in D; see Figure 21.3.2. The Cauchy integral of g 
over L, 

G(z) = Zi
t f g(t)  dt, (21.3.2a) 

6 Precisely speaking, Muskhelishvili's complex potentials need not be given in terms of holo-
morphic functions; see Subsection 21.2 where a logarithmic function is used to determine 
Muskhelishvili's complex potentials. 

The boundary of C, aC, is not included in D — c nor in C. 
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is holomorphic in D, except possibly on arc L. Function G(z) is continuous on 
both sides of arc L, although it may be discontinuous across L. Let a and b 
denote the end points of arc L; see Figure 21.3.2. Then, 

him (z - a) G(z) = 0, li m (z - b) G(z) = 0. (21.3.2b,c) 

Function G = G(z) is the Cauchy integral of g(s) on arc L. Note that g(s) is 
defined for s on L only. 

Figure 21.3.2 

Cauchy integral on arc L 

On arc L in D, a plus (+) and a minus (-) side can be defined, as shown 
in Figure 21.3.2. The limiting values of G(z) as z approaches a point s on L 
(excluding the end points of L) from the + and the - sides, are denoted by G+(s) 
and G(s), respectively, i.e., 

G+(s) - lim G(z+), G-(s) = lim G(z-), 
Z + -s Z - -is 

where z+ and z are in the + and - sides of L. For G+ and G-, the following 
equalities hold: 

G±(s)-G(s) = g(s) 

G+(s)+G-(s) = 1 1 dt. (21.3.4a,b) ttt  Lt-s 

Equations (21.3.4a,b) are called the Plemelj formulae. 

21.3.3. The Hilbert Problem 

For a given function, g(s), on an arc, L, consider the following boundary-
value problem with a given constant, a, for a complex-valued potential, G(z): 

G+(s)-aG-(s) = g(s) se L, (21.3.5) 

where G+ and G- are defined by (21.3.3). Consider a solution which is holo-
morphic in D - L and behaves as O(z) at infinity, with n being a positive 
integer, i.e., as I z I - 

oo, the function becomes unbounded like z". 
The general solution of (21.3.5) is then given by 

G(z) = IL X+O (t - z) 
dt + X(z) P(z). (21.3.6) 

Here, P(z) is an arbitrary polynomial of degree n + 1, and C(z) is defined by 

(21.3.3a,b) 
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X(z) - (z—a) -xR (z—b) x -1, (21.3.7a) 

where a and b are the end points of L, and x is given by 

x = 2itt log a. (21.3.7b) 

A detailed proof of (21.3.6) can be found in Muskhelishvili (1956). An outline 
is as follows: from definitions (21.3.7a,b), it follows that 

X+(s) = cX-(s)  for s E L. 

Hence, (21.3.5) can be written as 

G  G(s) + _ G(s)  
i X(S) . X(S) 

Thus, (G(s)/X(s)) and g(s)/X+(s) in (21.3.8b) are viewed as G(s) and g(s) in 
Plemelj formula (21 .3.4a). When the domain D is unbounded and simple poles 
of order less than n + 1 are admitted at infinity, then (21.3.2a) yields (21.3.6). 

Kernel X(z) satisfies 

lim z X(z) = 1. iZi --goo 

Since X±(s)  = a X (s) for s on L, the line integral in the right side of (21.3.6) 
can be replaced by the following contour integral: 

g(s)  
ds = 

1 g(t) 
 

dt (21.3.9b J J
) 

X+(s)(s — z) 1  a 
L' 

X(t)(t — z) 
, 

 

where L' is a contour which surrounds arc L but does not contain point z; see 
Figure 21.3.3. If g on L is smoothly connected to an analytic function in L', the 
contour integral in the right side of (21.3.9b) can be evaluated by using 
(21.3.1a,b). Indeed, if g = 1 on L and b = —a, then, 

1 g(t)  dt =  2p1  {  1  (z — (2 x — 1) a) }, (21.3.10) 
1 — a JL' X(t)( t — z) 1 — a X(z) 

where x is given by (21.3.7b). In this manner, the general Hilbert problem 
defined by (21.3.5) can be solved for a broad class of functions g(s) defined on 
arbitrary smooth arcs. The application to two-dimensional crack problems is 
examined below; see Erdogan (1977). 

_  g(s)  
C + (S) 

for s e L. 

 

(21.3.8a) 

(21.3.8b) 

(21.3.9a) 

Figure 21.3.3 

Contour L' around arc L 
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21.3.4. Examples 

As an illustration of the application of the Hilbert problem, consider a slit 
crack in an unbounded isotropic linearly elastic solid, subjected to uniform ten-
sion s° at infinity; see Figure 21.3.4. From Table 21.1.1, analytic functions f(z) 
and Y(z) must be obtained such that the following boundary conditions are 
satisfied: 

sii, S12 0 and  s22 —i s°  as I z I — 
f, 

012 = s22 = 0 on both sides of L, (21.3.11a,b) 

where L is a straight line from (— a, 0) to (+ a, 0). 

1 t  t t t t 
so 

cZ 

Figure 21.3.4 

A single crack in an infinitely 
extended solid subjected to uni-
form tension at infinity 

From real-valued equations (21.3.11b), complex-valued boundary condi-
tions are constructed, as 

(s12 — t s22) + =0 and (s12 — t s22) - =0 on L. (21.3.1 l c,d) 

The first two equations in Table 21.1.1 give the left side of (21.3.11c,d), as 

2 
(s22 — t s12) = 0'(z) + Y'(z) + z f"(z) + 1(z). (21.3.12a) 

In view of (21.3.11c,d) and (21.3.12a), the following complex potential is 
defined: 

       

W(z) = F'() + z 
f
"P + 1(i) (21.3.13) 

Here, say, h'hR is analytic, though 1(z) is not. Hence, W defined by (21.3.13) 
is analytic. Substitution of W for hi in (21.3.12a) yields 

2 (s22 — t s12) = $'(z) + (z — ) F"(z) + W(z). (21.3.12b) 

a'  

O 
xl 

Since z — z vanishes on L, S22 — t S12 can be expressed in terms of the two holo-
morphic complex functions, f' and W. 
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For simplicity define f'(z) _ F(z), and substitute (21.3.12b) into boundary 
conditions (21.3.11c,d) to arrive at 

F+(s)+ W-(s)=0  z–iswith c2>0 
(21.3.14a,b) 

F (s) + W+(s) = 0 z - s with x2 < 0, 

where s is a point on the crack. It thus follows that 

{ V(s) + W(s) } + + { V(s) + W(s) } = 0, 
(21.3.14c,d) 

{V(s)–W(s)}+–{V(s)–W(s)} = O. 

The crack problem is now reduced to two Hilbert problems for two holomorphic 
functions, F(z) + W(z) and F(z) – W(z), with an additional restriction that F(z) 
and W(z) must be bounded as I z I - oo, since the stress field is bounded at 
infinity 

Equation (21.3.14d) requires that holomorphic function F(z) – W(z) be 
continuous across the crack. Since this function is bounded at infinity, it must 
be a complex constant, 

F(z) – W(z) = c1. (21.3.15a) 

Equation (21.3.14c) defines a Hilbert problem for F + W, (21.3.5), with g(s) = 0 
and a = – 1, and (21.3.6) leads to 

Z + w Z 
c2+c3Z 

– > (21.3.15b) 
1z2 – a2 

 

where polynomial P(z) in (21.3.6) is set to be c2 + c3z, to render F and W 
bounded at infinity. From (21.3.15a,b), it now follows that 

f'(z) = F(z) = Z { ci + ~za c á2 
}, 

W(z) = Z { –c i + 
c2 c3 z  

{. (21.3.15c,d) 
~z a 

From the traction-free conditions on L, and the symmetry of the stress field 
about x1 = 0, conclude that Rec1 = — s°/2, c2 = 0, and c3 = s°. Since only Reel 
enters the stress field, this completes the solution. Note that c2 = 0 also follows 
from the requirement of the single-valuedness of the displacement field. 

21.4. TWO-DIMENSIONAL CRACK PROBLEMS 

In this subsection, an alternative method to solve a crack problem in two-
dimensional elasticity is presented. The results obtained in Subsection 21.2.2 
are used to formulate integral equations which define the distributed dislocations 
necessary to satisfy the traction-free (or other) boundary conditions on a crack. 
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21.4.1. Crack and Dislocations 

In two-dimensional elasticity, a crack may be regarded as an (straight or 
curved) arc across which a displacement field is suitably discontinuous, and the 
continuity of tractions is maintained in the absence or presence of internal forces 
or pressures in the crack. If concentrated or distributed forces act on the sur-
faces of the crack, the corresponding traction boundary conditions must be 
satisfied on each of the crack surfaces. 

It has been emphasized that boundary-value problems in elasticity can be 
solved by applying the Green function for a concentrated force on the boundary: 
(1) for traction boundary-value problems, the field variables are obtained by 
integration of the Green function weighted with the prescribed tractions, and (2) 
for displacement or mixed boundary-value problems, the specification of 
unknown boundary tractions or displacements in terms of the known data leads 
to integral equations which ensure that the field variables satisfy the required 
boundary conditions. 

The application of the Green function to the crack problem, however, is 
not quite straightforward, since the displacement field has discontinuities. The 
dislocation formulation, however, provides advantages when the tractions are 
continuous. An effective approach is to obtain the required dislocations which 
produce suitable discontinuous displacement fields. A crack is then expressed in 
terms of these dislocations distributed on the arc where the crack lies. 

21.4.2. Integral Equation for Dislocation Density 

Consider a straight crack of length 2a, lying on the c1-axis from (—a, 0) to 
(+ a, 0). Suppose that a single dislocation with Burgers vector b = (b1, b2) 
exists at x1 = x° (I x° I <a). Referring to Subsection 21.2.2, let the cut for 
In (z — x°) be the semi-infinite line starting from (x°, 0) to (cc, 0). The displace-
ment discontinuity across the c1-axis then is 

[u](X) _ [u i](X) 
+t [u2](c) ={ 

b 
0 

if c > c 
if c < x°, 

(21.4.1) 

where b = b1 +1. b2. The tractions on the x1-axis are 

t(x) = s12(x) + t s(c) =  2mb 1   
p(1+1) x—x 

(21.4.2) 

Note that the same tractions act on the upper and lower edges of the cut, since 
the stress field due to the dislocation is continuous. 

According to the principle of superposition, the desired displacement gap 
across L or the desired tractions acting on L, can be obtained by distributing 
suitable dislocations there. Thus, with b as a function defined on L, i.e., 
b(x) = b j(x) + t b2(c) for x on L, obtain the following expression for the dis-
placement gap and traction: 

[u](x) = — f X
a b(z) dz for x on L , (21.4.3) 
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and 

t(x) = a 2mb(z) 1   dz for x on c1—axis. (21.4.4) 
—a p(K+ 1) x— z 

Function b = b(x) is called the dislocation density, and the displacement gap 
given by (21.4.3) is the crack-opening-displacement (COD). It should be 
recalled that for a dislocation at z, the cut for In (z —  ) is a semi-infinite line on 
the xl-axis, starting from (z, 0) to (.0, 0). 

If the left side of (21.4.3) or (21.4.4) is prescribed as the boundary condi-
tions, each equation can be regarded as an integral equation for b(z). For exam-
ple, if the displacement gap across the crack surface is given by [u°1, (21.4.3) 
yields 

1 ca 
b() d = — [uhj(x), (21.4.5) 

and if the tractions on the crack surfaces are t°, (21.4.3) yields 

j a 

a c 
1 

z 
dz = — t°(x). (21.4.6) 

Integral equation (21.4.6) is called the Cauchy integral equation of the first kind. 
Although the form of (21.4.6) is similar to the Cauchy integral on arc L, 
(21.3.2), b(z) is the distribution of the dislocation density defined only on L, and 
it may not be possible to extend it as a holomorphic function in the neighbor-
hood of L. 

Solutions of crack problems with prescribed traction conditions can be 

obtained from solving the integral equation (21.4.6).8 To this end, the following 

additional condition is required:9 the COD must be zero at the ends of the crack, 
such that the displacement discontinuity is limited to 1 x1 I <a. From (21.4.3), 
this condition is written as 

Ia b(z) dz = 0. a (21.4.7) 

This is the consistency condition for the dislocation density function b(z). 

21.4.3. Example 

Consider the example studied in Subsection 21.3.4. By superposing a uni-
form compression, — s°, the traction-free crack in a plane under uniform tension 
represents a crack subjected to a uniform compression on its upper and lower 

Equation (21.4.6) is also applicable to the case when prescribed tractions are not the same on 
the upper and lower surfaces of the crack. In this case, suppose that suitable forces are distributed on 
say, the upper crack surface only. Then, the traction boundary conditions on both crack surfaces can 
be satisfied by the dislocations (which produce the same tractions on both surfaces) and the distribut-
ed forces (which produce the different tractions). Note that the tractions due to the distributed forces 
can be expressed in terms of Green's function. 

In general, the solution of the Cauchy integral equation is not unique. 
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surfaces. Since tangential tractions acting on the crack surfaces are zero, the 
tangential Burgers vector vanishes. Integral equation (21.4.16) is reduced to the 
following real-valued expression: 

J
a 2!-tb2(z) 1  d = s°; (21.4.8a) 

-a 7[(K+1) c — z 
and consistency condition (21.4.7) becomes 

j a
a b2(z) dz= 0. (21.4.8b) 

The solution of (21.4.8a) with (21.4.8b) is 

b2(x) = 
s°(k+ 1) x 

(21.4.9) 211 '1a2 _ x2 

As is seen, the dislocation density function is singular at the ends of the crack, 
so that the corresponding stress field similarly becomes singular there. For 
example, S22 on x2 = 0 is 

s22(c) = 
— s° IxI<a 
— s°(IcI /~c2 —a 2 -1) lxi >a, 

(21.4. h a) 

and from (21.4.3) and (21.4.9), it follows that 

~u](c) = 
s

°(2m 1) '1a2 — c2 I x l <a. (21.4.1Ob) 

21.4.4. Alternative Integral Equation for Crack Problem 

It is shown in Section 6 that COD plays a direct role in estimating the 
overall strains due to the presence of microcracks in an elastic RVE. It is, there-
fore, effective to formulate the crack problem in linear elasticity, directly in 
terms of COD, [u](z). This approach is considered briefly in this subsection in 
terms of Hadamard's "finite part integral"; Hadamard (1952), and Kaya and 
Erdogan (1987). The method also applies to the case when a crack is partially 
or fully bridged due to the presence of whiskers, fibers, or second-phase inclu-
sions, as well as unbroken material ligaments; see Nemat-Nasser and Hon 
(1987). Mechanisms of this kind are considered as sources of toughening in the 
design of ceramic composites; see, for example, Evans (1990), and Li (1990). 

In view of (21.4.3), the dislocation density at x is given by the derivative 
of COD at x, i.e., 

b(x) d
dx

] (x)• (21.4.11) 

The consistency condition (21.4.7) ensures that the COD is zero at the ends of 
the crack. Thus, from [u](x) = 0 at x = ±a and integration by parts, rewrite the 
right side of (21.4.4) in terms of [u], as 
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(a 2mb(z) 1 a 2m [u](z) 1   

J-a p(K+1) x— 
d~

— a p(K+1) (
X

_z)2  

As is seen, the kernel of the integral in the right side of (21.4.2) has a squared 
singularity. Therefore, this integral must be interpreted in a special manner 
which has been considered by Hadamard (1952) in great detail; see also Kaya 
and Erdogan (1987). As it stands, the integral is only meaningful when viewed 
in terms of Hadamard's "finite part integral". A brief outline is given in Subsec-
tion 21.4.6. The notation # in this integral is used to emphasize that the finite 
part integral is involved. 

With the aid of (21.4.12), the integral equation for the dislocation density, 
(21.4.6), is rewritten as an integral equation for the COD, 

as ~((K +( )) (c 1 z)2 d

g 

S = — t°(X), 

where t° is the given tractions. An additional advantage of formulation 
(21.4.12) compared with (21.4.6) is that the consistency condition (21.4.7) is 
reduced to simple boundary conditions, [u] _ O at the ends of L. 

Although the singularity of the kernel is higher than that in (21.4.6), the 
strongly singular integral equation (21.4.13) can be solved directly. Indeed, 
expansion of the COD in terms of the Chebychev polynomials of the second 
kind reduces (21.4.13) to a set of linear equations for the unknown coefficients 
in this expansion. The nth order Chebychev polynomial of the second kind, Un, 
is defined by (Luke, 1969) 

U(c) csc Q sin{(n + 1)8) (8 = arccos x; Ixl <_1), 

and has the following orthogonality: 

f _l
l W(x) U0(c) Um(X) = { 01 

where W(x) = '11— c2. Furthermore, Un satisfies 

)2 r 

a 
1   

(y

W(y) U(y) dy = — n (n + 1) U n(c). 
a  — c 

In view of (21.4.15a), expand [u](z) as 

[u](z) = W(z/a) { i, u,'Un(z/a) ; , 
n= o 

where   

un = pR f 
a
s [u](z) Un(z/a) dt. 

Now, multiply both sides of (21.4.13) by 2W(x/a) Un(x/a)/ pa, and 
from — a to a, to obtain 

p(n + 1) un = ? f a t(c) W(x/a) Un(x/a) dx. 
a ita  a 

(21.4.12) 

(21.4.13) 

if n = m 
otherwise, 

(21.4.14) 

(21.4.15a) 

(21.4.15b) 

(21.4.16x) 

(21.4.16b) 

integrate it 

(21.4.17) 

In this manner, [u](z) can be computed directly. Note that term W(xla) in the 
expansion of [u](z) corresponds to the singularity of the dislocation density 
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function. 

21.4.5. Finite-Part Integral 

The integrand in the integral 

I = !á dt fora < to < b, (21.4.18a) 

is unbounded at t = to when f(t0) ~ 0. Nevertheless, this integral exists in the 
sense of the Cauchy principal value when f(t) is suitably smooth; see Muskhel-
ishvili (1956). Indeed, from 

I 

 

= rb f(t) — f(to) 
dt + f(to) Jb  

dt  
Ja t — to a  

it follows that when 

u m I f(t) — f(t o) I <_ A lim I t — to  
[  t° t -a t° 

for a < 1 and a constant A, then the first integral in the right side of (21.4.18b) 
can be evaluated directly, and the last integral in the sense of the Cauchy princi-
pal value becomes 

rh 
dt  dt b  dt `° +e  dt  l 

a 
f(to) J = f(to) lim 

f° 
+ f + J  

at— to e ~0 a  t—t o t° + e t —
to t° — e t — t0 

= f(t0) { In (-1) + In [   — t
o ] }, 

(21.4.20) 

where the value In (-1) = tp maybe used; see Figure 21.4.1. 

Figure 21.4.1 

Integration path for Cauchy 
principal value 

In a similar manner, the integral 

J = 
b 

 

f(t)  dt 
a (t — t ß )

2 (21.4.21a) 

which is clearly unbounded, may be interpreted to equal its finite part, or to be 
identified as a finite-part integral; see Hadamard (1923, 1952). For illustration, 
assume that f(t) and f'(t) both exist and are suitably well-behaved within the 
interval (a, b). Then, integral J may be rewritten as 

a to 

to — e to +e 



Function f(t) Finite-Part Integral # ~ i (~ f(t)
)2 

dt 

R(t) 

T~(t) I N l — t 2 

U(t)']l — t2 

2(n+1) {t0Q(t0) —Q±1()} 
(1 — t ) 

2(1p 
tó) {— 

(n- 1) U~(t0)+(n+1) U 2(t0)} 

— p(h + 1) U(t0) 
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_ b f(t) — f(t~) — (t — to) f'(to) dt J — Ja 
(t — t~) 2 

b -  
+ f(t0) [ — b 

1 

to + a 1 to ] + f '(to) { In (-1) + 
In . a — t o 

(21.4.21b) 

Since the first integral in the right side of (21.3.21b) is bounded for suitably 
smooth f(t), the finite-part integral has a finite value and is well-defined. 

Recently, Kaya and Erdogan (1987) have examined various properties of 
the finite-part integral, particularly in relation to problems in linear fracture 
mechanics. These authors list a number of interesting properties of finite-part 
integrals, when the function f(t) is identified with various special functions. As 
illustrations, consider the Legendre polynomials of the first and second kind, 
R(t) and Q„ (t), and the Chebychev polynomials of the first and second kind, 
T„ (t) and U.(t), with weighting functions (1 — t 2)

-v
iz and (1 — t 2) ß%, respectively. 

Table 21.4.1 gives the corresponding finite-part integral from —1 to 1. 

Table 21.4.1 

Finite-part integral of some special functions 

As pointed out before, the finite-part integral is effective when dealing 
with calculation of the COD under complicated conditions, e.g., bridged cracks, 
as is briefly examined by Nemat-Nasser and Hon (1987). 

21.5. ANISOTROPIC CASE 

The preceding subsections deal with isotropic materials, for which consti-
tutive relation (21.1.5) is assumed. For general anisotropic materials, Airy's 
stress function and the associated Muskhelishvili's complex potentials require 
some modification. The formulation based on these potentials still enables one 
to solve two-dimensional anisotropic elasticity problems, as effectively as the 
isotropic ones. In this subsection, a basic formulation of cracks in anisotropic 
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materials is presented in terms of these potentials, and solutions to illustrative 
problems are given. 

21.5.1. Airy's Stress Function and Muskhelishvili's Complex Potentials for 
Anisotropic Materials 

Consider a general two-dimensional anisotropic material with the follow-
ing constitutive relations: 

eii D11 D12 D16 S11 

e22 D12 D22 D26 s22 (21.5.1) 
2e12 D16 D26 D66 S12 

see Subsection 3.1.4. Equations of equilibrium, (21.1.1), are satisfied by the 
Airy stress function, U. Compatibility condition (21.1.6) with constitutive rela-
tions (21.5.1) now leads to 

D 2211,1111 — 2D 26 U,1112 + (2D 12 + D 66) U,1122 

—2D 16U,1222±D11U,2222 = O. (21.5.2a) 

This is the governing equation for Airy's stress function in general (two-
dimensional) anisotropic materials. 

A general solution of (21.5.2a) can be obtained in the form of f(C) with 
X = x i + s x2. Then, a/ax1 and a/ax2 in (21.5.2) are replaced by d/dX and 
s d/dX, respectively, and (21.5.2) is rewritten as 

{D22-2D26s+(2D12+D66)s2-2D16s3+DIl s4  
dX4 

—0 (21.5.3) 

which leads to the characteristic equation, 

D 11 s4- 2
D16s3 +(2

D12±D66) s2-2D26s+D22 = 0. (21.5.4) 

Denoting the four roots of (21.5.4) by si, 52, 53, and s4, consider a general solu-
tion of (21.5.2a) in the form 

4 
U(c1, c2) = – f,(x i + s1 

X2), (21.5.2b) =i 

where f l, f2, f3, and f4 are suitably smooth but arbitrary functions. 

Due to the positive-definiteness of the elastic complementary strain 
energy, there are no real roots for (21.5.4). Hence, two of the four roots, say, s1 
and s2, are complex conjugates of the other two, s3 and s4, since D;i's are real; 
e.g., Eshelby et al. (1953), Lekhnitskii (1963), or Dundurs (1968). As in the 
case of isotropic materials, general solution (21.5.2b) can be expressed in terms 
of the real or imaginary part of analytic functions of suitable complex variables. 
Define two complex numbers, z1 and z2, as 
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Z1 = C 1 + S1 x2 C 
S1 Z1 — S1 Z1 

S1- 1 

(I not summed) (21.5.5a,b) 

Z1  C1 + SIC2 
Z1 — Z1 

C2 —  
s1 — s1 

for I = 1 and 2. Define differentiation with respect to z1 and z1 by 

a i  s1 a + a  
az1 = S, — s, ax1 axe 

a i   
[ Si  

a  

aZ1 = 
 

Si—Si ax1 

a ll 
ax2 

(I not summed). (21.5.5c,d) 

Complex number z1 corresponds to z = x1 +tx2 when the material is isotropic; 
see Subsection 21.1. 

Since the left side of (21.5.2a) can be expressed in terms of s1's and s1's, 
as 

2 

i( a a  
ll 

a a  
ll Dui{ I P1 I SI a

~1 — ac21 ,SI ax1 — ac2 1 

in view of (21.5.5c) and (21.5.5d), (21.5.2a) is rewritten as 

a2 a2   
U = 0. (21.5.6) 

azlaz1  az2az2 

A complex function, f(z, ), which satisfies a2f/azaz = 0, is analytic. Thus, a 
general solution of (21.5.6) can now be expressed in terms of two complex ana-
lytic functions. Indeed, if s1 and s2 are distinct, 

U(xi, c2) = Re { c1(z1)+c2(z2)} (21.5.7a) 

or 

U(c1, c2) = Re{ f  yi(zi') dzi'+f 
2 

12(22') (112'1, (21.5.7b) 

wherei(zi) and Y2(z2), or X1(z1) and c2(z2) are analytic with respect to their 
arguments. If si and s2 are equal, (21.5.6) becomes 

azlaz1 

a2 
.2 

U = 0, (21.5.8) 

and a solution is given by 

U(xu c2) = Re{zt0(z0)+c(zi)} 

= Re{zlf(zl)+f Y(z I') dz1'}, (21.5.9) 

where yy, c, and Y are analytic functions of z1. An isotropic medium 
corresponds to this special case, since the roots of the characteristic equation for 
isotropic Dy are ±1. 



field variable expression 

sii Re{S i2 yi'+S22y2 } 

s22 Re{y1'+Y2} 

s12 — Re{Siyi'+S2 Y2} 

Re{(Dii s12— D i6 si+ D it)Yi 
U1 

+(D Vi S22—D16S2+D12) Yt} 

Re{ (D 12  2 D26 s1 + D22) Yi / i u2 
+(D V2 s22—D26S2+D22) Y2 /s2} 

F1 Re{Siyi+ S2 y2} 

F2 —Re{ yi+y2} 

M — cV Re yV — c2 Re{sVyV}+ Re{ f yi dZi} 

— CV Rey2 — C2 Re{S2 y2} +Re{ f y2 dz2} 
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For simplicity, it is assumed that s i # s2, and two complex potentials 
Yi (zi) and Y2(z2) are used from now on. Table 21.5.1 presents the stress, dis-
placement, and resultant force components, produced by 1 and 02. 

Table 21.5.1 

Expression of stress, displacement, resultant force, and 
resultant moment in terms of Muskhelishvili's complex 
potentials for anisotropic materials 

21.5.2. Dislocation in Anisotropic Medium 

As shown in Subsection 21.2, a dislocation at the origin of the coordinate 
system in a two-dimensional isotropic medium is obtained by enforcing: 1) zero 
resultant forces around a loop surrounding the origin; and 2) a displacement 
jump around the loop equal to Burgers' vector b. Essentially the same formula-
tion applies when a dislocation in a two-dimensional anisotropic material is con-
sidered. Indeed, 01 = Al In z i and 02 = A21n z2 produce the following com-
ponents of the resultant force and displacement jump: 

[F1] _ —2 p Im{si Al + s2 A2}, 

[F2] = 2p tm{Ai + A2}, (21.5.10a,b) 

and 
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{ui] = -2n Im{PIAi+ P2 A2}, 

[112] =-2p Im{g1 A1+ g2 A2}, 

where p1 and Q1 are complex constants defined by 

s2 

Pt ° D j i st — D 16 s t + D 12, q1 _ D 2 — DI 6s ~+D 22  
Si   

(21.5.1 Oc,d) 

(21.5.11a,b) 

for I = 1, 2.
10 

Unknown constants A1 and A2 are determined such that boundary condi-
tions [Fi] = 0 and [ul] = b, are satisfied, i.e., 

ImSl 

0 
Impl 

Imgl 

ReS1 

1 
Repl 

ReQI 

/m52 ReS2 

0 1 
ImP2 Rep2 
7mg2 Reg2 

ReAI 

ImAl 

ReA2 
ImA2 

0 
0 

-b1 /2p 
—b2 /2p 

(21.5.12) 

which leads to 

ReAI = 2pD { { ImQ2  
ReSI — Re S2 

ImS2} b1 

— { Imp2 — 
Rep1 — Rep2 

~tts2 } b2 
ReS1 — Re52 

ReA2 = 2pD { 
{ Imgl — 

ReSI — 
ReS2 Ims1 } bl 

+{Impl 
Rep1—Rep2

ImS1}b2}, 
ReS1 — ReS2 

ImA1 -- 1  {Imsl ReAi +ims2ReA2}, 
ReS1 — ReS2 

ImA2 — 
1 {ImSI ReAi + Im82 ReA2}, 

Resl — ReS2 

where 

(21.5.13a--d) 

Repl — Rep2 ReQ1 — ReQ2 
D = {/mp1— Ims1} {ImQ2 ImS2} 

ReS1 — Re52 ReS1 — ReS2 

Repl — Rep2 Reg]. — Reg2 
Ims2 } {Img, Imsl}. (21.5.13e) 

ReSI — ReS2 ReSj — ReS2 

Denoting the above solution by AI(b) = ReA1(b) + I1mA1(b) with b = b1 + tb2, the 
complex potentials for the dislocation with Burgers vector b at the origin are 
expressed as 

10 At this point, assume ReSi — Re52 is nonzero. 
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Yi(zi) = A1(b) In z1 (21.5.14a) 

for I = land 2. 

In anisotropic materials, Airy's stress function is given by the real part of 
Muskhelishvili's potentials; see (21.5.7). Hence, the coordinate transformation 
rule for complex potentials in an anisotropic medium is the same as that for 
Airy's stress function of the isotropic medium. Thus, for a dislocation with 
Burgers' vector b at x° = (xi , x2 ), the complex potentials are given by 

411(zß; b, z t) = A1(b) In (z1 —z 10), (21.5.14b) 

where z1 = x f + s1 c2 , for I = 1 and 2. 

As an illustration, consider the special case of a transversely isotropic 
material, where D16 = D26 = 0 in (21.5.1); see Section 3.1. The characteristic 
equation now becomes 

D11 s4 +2(D66+D12)s2 +D22 = 0, (21.5.15a) 

and assuming that (D66 + D 12)2 — D 1 1 D 22 > 0 and D66 + D 12 > 0, note that the 
roots of the characteristic equation are 

s  ±t bi, 
±t 

b2 (bi, b2 > 0). (2.5.15b) 

Now, compute the Airy stress function for a dislocation with the Burgers vector 
b = b1 +tb2. Since s1 and s2 are purely imaginary, the matrix in the left side of 
(21.5.12) is replaced by 

bi 0 b2 0 
0 1 0 1 
0 —Dii b?+ D12 0 —D11 bi+D i2 

(D12bi — D22)15h1 0 (D i2bi — D22)IbhR2 0 

Hence, the Airy stress function is given by 

U(ci, X2) = 2 2 Re{ -bIb2 b2 +t  b1  zl (lnz1 -1) 
2p(b l — b2) D22 D 11 

+~ bib2 1 -t  j  ] z2 (lnz2 -1)}. (2.5.16) 

The corresponding stress field then is 

1 fjJk(q) bk for i, j, k= 1, 2, (2.5.17a) 

where polar coordinate z = r e8 is used, and the coefficients f~Jk are given by 

fill = k1(— bi'i + bi U2) sinq f112 = k2 b? b (b1 U1 — b2 U2) cosq, 

f221 = k1 (bi U1 — ß 2 U2) sinO 
f222 = k2 ß i b2 (— b2 U1 + ß i U2) cosO, 

f121 =f211 = ki (bi Ui - b2U2) cosq, 
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f122 = f212 = k2 b? b (bi 7i — b2 7z) sinq, (2.5.17b---g) 

with k1 = 1 / 2p(bi — ßi) D i i, k2 = 1 / 2p(b ~ — ßi) D z2, and 

= 2 1 z 2 for I = 1, 2. (21.5.17h) 
cos Q + bI sin q 

21.5.3. Crack in Anisotropic Medium 

In anisotropic materials, a Hilbert problem can be formulated to solve the 
crack problem. As explained in Subsection 21.3, this formulation is effective 
when conditions on the crack surfaces are simple such that the required Cauchy 

integral can be computed. An alternative method11 is a formulation in terms of a 
suitable distribution of dislocations. This formulation leads to a singular integral 
equation for the dislocation density function. Since Muskhelishvili's complex 
potentials for a dislocation in anisotropic materials are given by a logarithmic 
function, as in isotropic materials, the corresponding integral equations also 
have a form similar to that in the isotropic case. 

Consider the isolated crack, L, examined in Subsection 21.4, i.e., a 
straight crack lying on the xl-axis from (— a, 0) to (+ a, 0). If dislocation density 
function, b(z) = b1(z)+ tb2(z), is prescribed on L, the COD, [u](x) _ [u1](c) 
+ ~[u2](x), becomes 

[u] (X) _ — J Xa b( z) d~, (21.5.18) 

and tractions on the crack surfaces, t(x) = t1(c) + tt2(c), are given by 

t(x) = fa a x 
z 

1 [ Re { s? A I (b(z)) + si A2(b(z)) } 

— iR Re { 81 A1(b(z)) + s2 A2(b(z)) } ] d~, (21.5.19) 

where Al and A2 are given by (21.5.13). 

If the COD is prescribed as the boundary conditions, b(z) is directly 
obtained from (21.5.16). If tractions acting on the upper and lower surfaces of 
the crack are the same and given by t° (x) = t? (x) + t tz (x), then, (21.5.19) yields 
the following integral equation for b(z):  

y 
L  

as 

x 
1   [ Re{ sl A1(b(z))+ si A2(b(z)) } 

—tRe{ S1 Ai(b(z))+ S2 A2(b(z)) } 
 

dz = — t° (x). (21.5.20) 

Similarly to (21.4.6), this equation is a Cauchy integral equation of the first kind, 
and the consistency condition is required to obtain b(z) uniquely, i.e., 

" This method can be applicable to relatively complicated boundary conditions. 
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1 aa b(z) d = 0> (21.5.21) 

which ensures that the crack is closed at its ends. 

As pointed out in Subsection 21.4.4, an alternative integral equation is 
formulated from (21.5.20), if dislocation density function, b(z), is replaced by 
COD, [u](x). From the linear dependence of A1(b) on b, and from b(x) = 
— d[u]/dx(x), it follows that 

A1(b(x)) = Ai(— 
dd[X] 

(x)) = — d~ A I([u](c))• (2 1.5.22) 

Therefore, with the aid of consistency condition (21.5.19), or equivalently, 
[u](±a) = 0, an integral equation for [u](x) is derived from (21.5.18), as follows: 

#a 1 
l 

Re{ Sl A1([u]( z))+ S2 A2([u]( z)) } 
a (x z)2 

— t Re{ s1Al([u]( z))+ s2 A2([u](z)) } d1 = —t( c). (21.5.23) 

As shown in Subsection 21.4.4, integral equation (21.5.23) with a squared 
singularity can be solved directly for [u](c) by expanding [u](x) in terms of the 
Chebychev polynomials of the second kind. 

As an illustration, consider a crack in a transversely isotropic medium, 
normal to the axis of isotropy, lying on the c1-axis. The corresponding stress 
fields associated with a single dislocation are given by (21.5.19). Since the 
stress field of the dislocation on the x1-axis is written as 

s(x) = fyk j a
a 

bk(z) d~ 

it follows that 

f21j 
J 

as 
b(z) 

d = — t°(x) for i = 1, 2, 

defines the required dislocation density function b(c) such that the crack 
remains traction-free. In terms of the finite-part integral, (21.5.24b) becomes 

f2y  ~aa 
([ut](z) dz = — t°(c) c — 

, for i = 1, 2. (21.5.24c) 

21.5.4. Full or Partial Crack Bridging 

The formulation of crack problems in anisotropic solids, in terms of a 
finite-part integral, directly involves the COD, [u;](c). This then provides a con-
venient technique to solve a problem of partially or fully bridged cracks in rein-
forced composites. Figure 21.5.1 shows a crack in a unidirectionally reinforced 
composite. The crack is bridged by unbroken fibers. It is expected that with a 
suitable design of the interface between the fiber and the matrix, improved 
toughness can be attained; see, e.g., Budiansky et al. (1988), Rose (1987), and 
Evans (1990). 

fori,j =1,2, (21.5.24a) 

(21.5.24b) 
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c2 

Figure 21.5.1 

Crack which is partially bridged by 
unidirectional reinforcing fibers 

As a simple example, assume that the bridging force is linearly dependent 
on the COD, i.e., 

pj(X) = 
— Ko [ui](c) for b< I x l < a 
0 for IcI < b. 

(21.5.25) 

In view of notation (21.5.25), the integral equation (21.5.24c) becomes 

as ([xu1] z) 
d — K 0 H(b — I c I) [u~](c) = — t°(X), 

-  

for I x I <a, where H(x) = 0 for x <O and 1 for x > 0. For simplicity, set 

C = xla, B = b/a, Fii ° F2ij/Em, ao = Er/K0, 1 = a/a0, 

U1(C) = [ui](C)/a, T(C)  (21.5.27a—g) 

where Ems, is a certain reference Young modulus, which might be identified as 
Young's modulus of the matrix of the fiber-reinforced composite. Then, 
(21.5.26a) is rewritten as 

Uj(Z)

2 
dZ + 1 H(B — I C I) U (C) = R (C), (21.5.26b) 

for I C I < 1. The solution of this equation in terms of the Chebychev polynomi-
als of the second kind, has been discussed by Nemat-Nasser and Hon i (1987) 
who also consider other examples of bridging forces, and provide numerical 
illustrations, for fully and partially bridged cases. 

Rose (1987) formulates a partially bridged crack in terms of the distri-
buted dislocations, for both a linear and a nonlinear relation between the bridg-
ing forces and the COD. Solutions are then given through an asymptotic 
approach for "small" cracks, i.e., 1 = a/ao<1. Budiansky (1986) and Horii et al. 
(1987) have examined the effect of small-scale bridging in a narrow zone close 
to the crack tip for isotropic materials; Horii et al. also have studied the finite-
crack problem. 

O xl 

(21.5.26a) 
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When the crack is "very small", i.e., / - a/a0 « 1, the standard perturba-
tion may be used to construct the solution for both linear and nonlinear cases; 
see Rose (1987) and Hon and Nemat-Nasser (1990). On the other hand, when 
1 » 1, the crack is considered to be "very big" and the usual perturbation 
methods do not apply. Set e = 1/1, and rewrite (21.5.26b) as 

— e F;  1  U' ) 
2 

dZ + H(B — I C I) U;(C) = e T1(C). (21.5.26c) ~  

A singular perturbation solution technique is given by Willis and Nemat-Nasser 
(1990) for this class of strongly singular integral equations. The method also 
applies to the case when the bridging force is nonlinear. 
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