


7118tp.indd   1 12/19/08   9:48:14 AM



This page intentionally left blankThis page intentionally left blank



N E W  J E R S E Y   •  L O N D O N   •  S I N G A P O R E   •  B E I J I N G   •  S H A N G H A I   •  H O N G  K O N G   •  TA I P E I   •  C H E N N A I  

World Scientific

edited by 

René Motro
Université Montpellier 2, France

7118tp.indd   2 12/19/08   9:48:16 AM



British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

Desk Editor: Tjan Kwang Wei

ISBN-13 978-981-283-720-2
ISBN-10 981-283-720-5

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2009 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

AN ANTHOLOGY OF STRUCTURAL MORPHOLOGY

KwangWei - An Anthology.pmd 6/2/2009, 9:09 AM1



v 

PREFACE 

Which definition could be provided for the expression “Structural 

Morphology”? This interrogation was the first one when Ture Wester, 

Pieter Huybers, Jean François Gabriel and I decided to submit a  

proposal of working group to the executive council of the International 

Association for Shells and Spatial Structures. We were discussing about 

topics of high interest for us, topics related to shapes, mechanical 

behaviour, geometry of polyhedra and surfaces, design, bionics…We had 

no clear answer to our first question, but hopefully our proposal was 

accepted by the executive council chaired by Steve Medwadowsky. Ture 

Wester was the chairman of this working group until 2004, and I 

accepted to “take the baton” for some years. The year after, during the 

annual symposium of the association, I proposed to my colleagues to 

collect some of the papers that had been published for IASS events 

(symposia and seminars). Pieter Huybers suggested calling it “An 

anthology of structural morphology”, and we agreed. This book gives our 

practical answer to our initial interrogation: while reading the thirteen 

chapters, a better understanding of “Structural Morphology” is possible. 

Several aspects of this discipline, which was introduced by famous 

pioneers like Leonardo da Vinci, Paxton, Graham Bell, E. Haeckel and 

more recently among others R. Le Ricolais, are illustrated by the 

contributions of many experts. 

Next October our working group will hold its 6
th
 international 

seminar in Acapulco. This seminar will be devoted to “Morphogenesis”. 

A new era is beginning with younger members and contemporary 

problems. It is also my pleasure to know that members of the 

International Association for Shell and Spatial Structures and its 

President Professor John Abel are always interested in the works 

produced by our group. This book simply aims to be a small milestone 

on the road of structural morphology. 

René Motro 

Montpellier 27 June 2008 
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CHAPTER 1 

THE FIRST 13 YEARS OF STRUCTURAL MORPHOLOGY 

GROUP — A PERSONAL VIEW 

Ture Wester 

Associate Professor, Royal Danish Academy of Fine Arts, School of Architecture 

Inst. for Design & Communication, Philip de Langes Alle 10,  

DK-1435 Copenhagen K, Denmark  

ture.wester@karch.dk 

1. The Background 

In this paper I will try to tell a short story about my personal 

experiences/adventures as chairman for the Structural Morphology 

Group, IASS working group No 15. I will describe the events as they are 

in my memory and my heart. This means that this paper is not a 

complete, even not a sketchy report of the many unique activities, papers, 

members, research etc. It is my own impression about the absolutely 

most important part of my professional life. I will go back in time and 

tell a little about why it is so: I graduated from the university at the age 

of 21 as structural engineer in 1963 and soon after became a teacher in 

Structural Design at the School of Architecture which had almost no 

tradition in research. My professor Jørgen Nielsen however was an 

exception and inspired my interest for research. After researching and 

teaching for 10 years in the topic of interactive dependency of shape and 

structural behaviour. These studies resulted in my discoveries of the 

geometrical characteristics and the necessary equation for the rigidity of 

pure structures in 3D and, most important, the concept about structural 

duality. At that time I had no contact with the international scientific 

world, but suddenly my “bubble burst” and thereafter everything 

developed extremely fast leading to the start of the group in 1991.  
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After a contact with Prof. Makowsky and Dr. Nooshin in Surrey, they 

encouraged me to write a paper for IASS’87 in Beijing. I went there and 

I was totally overwhelmed. I met wonderful people everywhere. Famous 

people I had read and heard about and, most important, people like me, 

researching on “useless” topics which made them isolated and maybe 

lonely in their university without sufficient local back up. As their 

research and the persons behind often were extremely fascinating and 

were dealing with the same interest of studying the intimacy between 

structure and shape, an obvious idea began to take shape: If these people 

were getting closer together they could fertilise and encourage each other 

and maybe even begin to collaborate on their “weird” research. The 

friendships made on these my first IASS events are still in the best of 

health. 

2. The Beginning 

For the rest of the paper I must apologise for any wrong or poor memory, 

any insult and all missing important information and mention - all 

unintended! In order to get a report over the activities please read the 

Newsletters of the group. 

The IASS Working Group No 15 on Structural Morphology (SMG) 

was founded during the IASS Copenhagen Symposium in 1991. There 

was a relatively short period of planning before launching the group. It 

must be admitted that I never expected an international group with some 

of the world elite in the field as members. The first exchange of the idea 

was with Huybers on a bench in a park during an excursion in ISIS’89 in 

Budapest. One month later at IASS’89 Congress in Madrid, the “gang of 

4” -Pieter Huybers, François Gabriel, René Motro, myself – established 

an action group with the aim to form a IASS working group. The specific 

name Structural Morphology was proposed by Michael Burt. Many of us 

had in the beginning a problem with the word “Morphology”, as it 

appeared to be a biological term connected to flowers and dusty natural 

museums - and very far from engineering terms. But slowly it was clear 

that it was exactly the right word, as all other words as “form”, “shape”, 

“configuration” etc. indicated too narrow concepts: “Morphology” 

simply means “Study of Form” and is used in many sciences. While I 
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was “captured” to be co-organizer for IASS’91 in Copenhagen, I had  

the real pleasure to work together with Mogensen, Støttrup-Andersen  

and not least Medwadowski, who became our President during that 

symposium. Medwadowski taught me a lot about IASS, international 

relations, and behaviour - and he supported the idea of a new working 

group on Structural Morphology. Based on an proposal from the ‘gang of 

4’ backed up by a number of outstanding scientists, the group was 

officially formed during the Copenhagen symposium. The first SMG 

meeting took place September 5, 1991 in a small Danish pub ‘Færge 

Cafeen’, with Heinz & Maria Isler, Shikiko Saitoh, John Chilton, Pieter 

Huybers, René Motro, Michael Balz, Tony Robbin, Koji Miyazaki, 

Philippe Samyn, N.K. Srivastava, A.H. Noble, Wolf Pearlman, François 

Gabriel and me as founding members. Isler was, as always, very 

supportive and full of ideas. Just after the symposium, the gang met  

at my farmhouse at Møn to agree on a strategy for the future and 

afterwards was held a small (first?) seminar with paper presentations and 

discussions at the School of Architecture. 

 

3. Group Activities 

In the following chapters I have tried to convey some of my 

unforgettable experiences with my group. Not only professional matters 

but also social and artistic events during particularly our seminars will be 

discussed. I will try to describe these activities in some text and some 

photos. However, I have to apologise for missing description of 

important activities, experiences and events in the following chapters. 

This is not because of unwillingness, but simply poor memory or lack of 

awareness. 
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3.1.1. SMG1 – Montpellier Seminar 1992 

This first Seminar had René Motro as the dynamic chief organiser.  

It was held at an impressive international level, very close to the standard 

of the IASS Symposia. Besides the traditional slide presentations, there 

were organized various workshops – or rather demonstrations – on e.g. 

Polyhedra and Architecture, Morphology and Computer Graphics,  

New Materials – New Morphologies, Tensegrity Systems, Surfaces  

and Membranes, Bionics, Foldables, Facetted Surfaces. Further four 

“Round Table” discussions on subjects as Natural Structures, Tensegrity 

Systems, Architecture Projects, Geometry and Architecture were 

arranged. These new types of activities were quite useful in an attempt to 

define the work and capabilities of the group, put a finger on the hot 

spots etc. A large impressive exhibition about the work of Le Ricolais 

was shown. The seminar is documented on video (unpublished) and in 

proceedings. 

 

3.1.2. SMG2 – Stuttgart Seminar 1994 

The two-day seminar was held in the best possible scenario for structural 

morphology: in the Balz/Isler concrete shells for the theatres at Stetten, 

and in the Institute for Lightweight Structures (IL), Frei Otto’s world 

famous research institute at the University of Stuttgart in Vaihingen. Can 

anyone think of better venues for a seminar in Structural Morphology – it 

was really beyond imaginations. The organizer for the first day was  

the Michael Balz family. This day was very unusual, indeed. Taking 
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advantage of the theatre stage, presentations were encouraged to be by 

physical models. The traditional type of slide-and-talk presentations was 

turned into performances with large models on stage – and even larger 

pneumatic models of airship garages outside. The most memorable 

performance was without any discussion Heinz Isler’s demonstration of 

his model technique. It balanced constantly on the edge of success and 

disaster. There was smoke, heat, light, plaster, water, cracks, pumping 

air, shapes – and not least Heinz Isler in centre of it all, of course. It was 

clearly shown that model technique is a sensitive thing to transfer to a 

stage, but the performance turned out to be a tremendous success both 

from a professional and entertainment point of view. My student 

Cathrine Leth and I presented a 14 m2 foldable model. She had earlier 

been working with theatre performances and therefore turned the 

presentation into a carefully planed show with composed music and 

designed T-shirts for the occasion. I remember clearly that I should take 

off my jacket, shoes and socks because of my role as temporary support 

for the relatively heavy and unhandy structure.  
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I was sitting besides Ekkehard Ramm on first row, and he whispered 

to me during my “striptease”: ‘I really hope that you know what you are 

doing!’ After a long hectic day a dinner was served in the theatre, and a 

stage show was put together by a local amateur theatre group and some 

of the participants such as Chilton, Huybers, Kolodziejczyk, Servadio 

and Leth, and many more arranged improvised stage shows. Some of the 

events were luckily taped on video. This video has been edited and 

includes a number of very good takes from the day and the evening. The 

second day was organized by IL. This day was arranged in the traditional 

way of presentations, but in the special IL-atmosphere. I am probably 

prejudiced, but this seminar stands for me, because of its professional 

vitality and transcendent form, as the most interesting conference in my 

life. 

3.1.3. SMG 3 – Nottingham Colloquium 1997 

The conference was held at the University of Nottingham with John 

Chilton as the all-embracing main organiser. I remember him as almost 

collapsing from overworking just before the start of this memorable 

event (see the picture), but of course the perfect and relaxed host  

during the conference. In my mind the most innovative event was Jürgen 

Hennicke and students’ “reconstruction” of Robin Hood’s Sherwood 

Forest as six m high air-inflated tubes made from double layer sausage 

skin! Our President Stefan Medwadowsky, who participated, challenged 

the group by frequently asking about the definition of Structural 

Morphology? This question has been asked many times in all the 13 

years and this is good because we should reflect about what we are 

doing. It is, however, in my opinion good that it has never been precisely 

answered. This would with no doubt bring some of our most interesting 

members in the periphery of our group – and what all this is about is 

getting these people in a synergetic contact with each other: Morphology 

means “Study of Form” and “Structural” is the same word with the  

same meaning as in the name of our association. The rest is up to  

oneself. This was the first time that our seminar was held in a university 

campus. 
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3.1.4. SMG 4 – Delft Colloquium 2000 

In connection with Pieter Huybers’ retirement from his university he 

organised a conference in Delft. As always with Pieter: everything must 

be perfect – and done in due time. This event was characterised by 

Pieter’s calm and authoritative temperament. I specially remember 

Jürgen Hennicke and students air-inflated installations and Chilton’s 

demonstrations of creating shells of clay. The technical tour went to the 

impressive Storm Surge Barrier – same size as two horizontal - and 

moving - Eiffel towers! 
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3.1.5. SMG 5 – Montpellier Seminar (workshop) 2004 

This seminar closed my circle from 1991 to 2004 in Montpellier again 

with René Motro as the engine. He arranged not only the IASS 

Symposium but also a SMG workshop just before the symposium. It was 

very satisfactory to realize our improved skills to run workshops during 

those years This huge event went very well; even some of us (including 

myself) were very exhausted afterwards. I also began to feel that my 

enthusiasm by being the chairman had declined, and fresh blood should 

be infused. Also this time it was extremely satisfactory to see so many 

young people joining our arrangements. Our group seems to have a real 

attraction to the young generation of researchers. In many ways it was 

appropriate for me to resign from the SMG chairmanship leaving the 

responsibility to tireless Motro. 
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3.2. SMG Newsletter 

Maybe the SMG Newsletters have been the most well-known and 

appreciated part of our group activities - worldwide as well as inside 

IASS. They have up to 60 pages with all kind of information: Detailed 

conference reports with paper abstracts, reports from our seminars, event 

calendar, reports from members, updated member list, book reviews, 

coming relevant events etc. have been included, and usually an original 

cover paper by a well-known researcher e.g. “A ‘Monolytic’ Granite 

Bridge in Beppu” by Mamoru Kawaguchi; “Metal Membrane Solar Disk 

Concentrators” by Jörg Schlaich; “Space and Structure” by Masao Saito; 

“Students Training in Form-finding and Analysis of Tension Structures” 

by Klaus Linkwitz; “Genesis of Structures, Structural Optimisation” by 

Ekkehard Ramm and Kai-Uwe Bletzinger; “Nexorades” by Olivier 

Baverel et al.; “A Sports Hall in the Shape of a Sword Guard” by 

Mamoru Kawaguchi; “Inflating Delft” by Jürgen Hennicke; “Adaptive 

Lightweight Structures” by Werner Sobek and Patrik Teuffel; “The 

Amsterdam Canopy: Designing and Prototyping a Computer Generated 

Structural Form” by Kristina Shea. 
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The extremely time consuming activity of editing of the Newsletter 

has circulated between the members of the “Gang of Four” while  

the financial support for the printing and distribution have been 

sponsored by the TU Delft and Ecole d’Architecture Languedoc-

Roussillon, independently of IASS. 

The Newsletter is the one and only way to get a real comprehensive 

report over the various activities of the group. 

3.3. SMG Activities at IASS Conferences e.g. Sessions, Meetings 

Since IASS’91 in Copenhagen we have at every IASS symposium  

had an open and very well attended SMG meeting, inviting participants 

to get information and join discussions on present and future activities. It 

was interesting to notice that the majority on these meetings were 

students and young researchers. In the recent years we also arranged 

sessions of our own at IASS symposia. At IASS’96 in Stuttgart there was 

a special afternoon dedicated to structural morphology, where Chuck 

Hoberman and Marek Kolodziejczyk were performing highly artistic 

demonstrations with structures. 
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3.4. The SMG Seminar Proceedings (see also chapter 3.1) 

1. Structural Morphology Proceedings of the First International  

Seminar on Structural Morphology. (ed. Motro & Wester). 479 pages. 

Montpellier, September 7-11, 1992.  

2. Application of Structural Morphology to Architecture Proceedings of 

the Second International Seminar on Structural Morphology. (ed. 

Höller, Hennicke & Klenk). 255 pages. Stuttgart, October 8-9, 1994.  

3. Structural Morphology – Towards the New Millennium Proceedings 

of the Third International Colloquium on Structural Morphology.  

(ed. Chilton, Choo, Lewis & Popovic). 375 pages. Nottingham, 

August 15-17, 1997.  

4. Bridge between Civil Engineering and Architecture Proceedings  

of the Fourth International Colloquium on Structural Morphology.  

(ed. Joop Gerrits). 432 pages. Delft, August 17-19, 2000. 

5. Fifth International Seminar on Structural Morphology held in 

Montpellier as a workshop. There exists no proceedings from this 

event but a short report is available in SMG Newsletter No 13. 

Montpellier, September 17-18, 2004. 

4. Further Recent SMG-Relevant Reading 

Publications with major relevance to Structural Morphology and written 

by a SMG member. I apologise my poor memory and lack of knowledge 

for missing items. 

1.  The International Journal of Space Structures edited by H. Nooshin 

and Z. Makowski. Most of our members have written articles and 

 



12 T. Wester 

 

other contributions to this unquestionable the best independent 

international journal with structural morphology as one of the major 

fields of interest. Also it is not a coincidence that half of the editorial 

board and the two chief editors are SMG members. 

2.  The International Journal of Space Structures, special issue on 

Geodesic Forms. Vol. 5, Nos. 3&4. 378 pages. Guest editor Tibor 

Tarnai. Contributions by SMG-members: Wester, Rebielak, Lalvani, 

Huybers, Miyazaki, Miura, Motro. 

3.  The International Journal of Space Structures, special issue on 

Tensegrity Systems, Vol. 7, No. 2. 90 pages. Guest editor René 

Motro. Contributions by SMG-members: Motro, Loeb, Hangai,  

K. Kawaguchi, Pellegrino. 

4.  The International Journal of Space Structures, special issue on 

Deployable Structures, Vol. 8, Nos. 1&2. 147 pages. Guest editor  

S. Pellegrino. Contributions by SMG-members: Pellegrino(2), 

Miura, Escrig, Verheyen. 

5.  The International Journal of Space Structures, special issue on 

Morphology and Architecture, Vol. 11, Nos. 1&2. 274 pages. Guest 

editor Haresh Lalvani. Contributions by SMG-members: Tarnai, 

Lalvani(2), Gabriel, Pearce, Burt, Miyazaki, Robbin, Loeb, Huybers, 

Verheyen, Wester, Motro, Rebielak. 

6.  HyperSpace. Japan Society for Hyperspace Science, edited by Koji 

Miyazaki. Frequent contributions by SMG-members: Burt, Lalvani, 

Miyazaki, Robbin, Tarnai, Wester. 

7.  Engineering a New Architecture (1996) by Tony Robbin, Published 

by Yale University Press 1996, 138 pages. 

8.  The Periodic Table of the Polyhedral Universe by Michael Burt. 

Published by Technion, Israel Institute of Technology 1996, 145 

pages. 

9.  Beyond the Cube edited by J. Francois Gabriel. Published by  

John Wiley & Sons, Inc. 1997. 510 pages. Contributions by SMG-

members: Loeb(2), Saitoh, Huybers, Motro, Wester, Nooshin, 

Hanaor, Lalvani, Robbin. 

10.  Geometric Forms in Architecture (in Japanese) by Koji Miyazaki. 

2000, 191 pages. Reference to many SMG-members. 
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11.  Heinz Isler by John Chilton. Published by Thomas Telford Ltd. 

2000, 170 pages. 

12.  Space Grid Structures by John Chilton. Published by Architectural 

Press UK. 2000, 180 pages. 

13.  Story of Space and Structure – Structural Design’s Future (in 

Japanese) by Masao Saitoh. 2003, 271 pages. 

14.  Tensegrity – Structural Systems for the Future by René Motro. 

Published by Hermes Science Publishing, UK. 2003, 236 pages. 

5. Tsuboi Awards 

Around 10 of our members have received the prestigious Tsuboi Award, 

and around one third of Executive Council is a SMG member, even one 

vice-president. This indicates the high standard and dedication of our 

members. 

6. Research and End Notes 

It is an impossible task to report on this topic as our members  

have through the 13 years written many hundreds – maybe more -of 

excellent and often innovative papers presenting completely new ideas, 

both for SMG-seminars, IASS Symposia and for other conferences, 

international journals, books, exhibitions, TV, and all other possibilities 

for publishing. I admire the energy, skills and hard-working members for 

bringing the concept of this important and fast growing field out to every 

corner the scientific world of engineering and architecture – and to have 

made the Structural Morphology Group - the IASS Working Group  

No 15 well-known and respected all over the world. 
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CHAPTER 2 

AN APPROACH TO STRUCTURAL MORPHOLOGY  

René Motro 

Laboratoire de Mécanique et Génie Civil. Université de Montpellier 2. Groupe 

de Recherche et Réalisation de Structures Légères pour l’Architecture 

This communication aims at following several lines of questions 

concerning structural morphology. This is re-positioned in the general 

context of the design of construction systems to restore the full 

organisational sense to the word ‘structure’. The system proposed 

makes it possible to classify design parameters in four categories: 

forms/ forces/ material and structure. All the data related to the four 

parameters are subjected to constraints. The system which is the subject 

of the design must among other things meet mechanical criteria.  

The problem of design can thus be handled by ordinary systems 

optimisation modelling. The position of structural morphology in  

this system is at the interface between the parameters ‘form’ and 

‘structure’; it expresses their interactions and meets the requirements of 

the material and the balance required. A number of landmarks give  

a glimpse of the potential that can be hoped for from research in 

structural morphology. They are chosen from fields in which they have 

already given results but without exhausting the potential: that of stone 

cutting and that of geometrical studies in which stress must be laid on 

both topological and dimensional aspects. More generally, structural 

morphology can draw on bionics on condition that this is not limited  

to surface of phenomena and that questions are raised about the 

underlying principles behind them. Some classes of systems cannot do 

without interactions between form and structure. This is the case of 

“equilibrium forms” illustrated by tensegrity systems and membranes. 

It can be considered that the form expresses the meaning of the 

structure, that is to say the meaning of the choice of organisation of 

matter decided by the designer. In fact it goes beyond the meaning of 

the structure to show that of architecture, and the final coherence of 

meaning should be sought. 
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Introduction 

The title of this communication fixes the limits - an approach rather than 

complete coverage. It cannot be otherwise in a seminar where one of the 

aims to draw together scattered items to give impetus to a field which has 

existed since man started building structures but which is not established 

as a discipline. We propose a method of approach which cannot be 

considered as modelling but which makes it possible to examine in the 

same way several landmarks in the past and present state of the building 

sciences before asking questions on the meaning which can be given to 

research on structural morphology with a view to enriching architectural 

design. 

1. Structural Morphology 

1.1. Structure and System 

1.1.1. Structure  

The word “structure” expresses a concept which has not been the subject 

of many controversies in spite of the inaccuracy associated with it. The 

very aim of our work required a more accurate approach to the concept. 

Systems theory and its definitions shed light on the concept of structure. 

‘Struere’, meaning ‘build’ is the Latin root of the word ‘structure’. 

Vitruvius used this meaning of the word in his treatise on architecture 

(27-23 B.C.). For Vitruvius/ ‘structura’ was brick or stone and mortar 

masonry. This means that the word had a building connotation from the 

outset. ‘Archeology’ of the idea of structure would have to establish the 

date and context of the first use of the word to indicate not just a mass of 

inert masonry but the building itself with its own order - that of a 

construction with both mechanical and functional determinants. 

Architectural metaphor has a somewhat unsuspected role in the 

archaeology of structural thinking in general. It has been the source of 

numerous models, generally of the mechanistic type based on the 

distinction between form and structure inherited from Viollet le Duc.
17

 

His main contribution was the study of the science of construction, of 

structure, which governs all the formal and decorative features of Gothic 
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architecture. Viollet le Duc thus showed the need for structural analysis 

of architecture, implying the abandoning of the strictly descriptive point 

of view. This model has been used in recent years in fields such as 

linguistics which, in the structuralist field is based on the architectural 

metaphor. 

“This structural analysis is first of all a desire to consider the 

architectural phenomenon in terms of “Systems”, which are linked and 

coherent to varying degrees, and in such a way that a change made to any 

part can but be felt in other parts of the constructed organism. 

This is an affirmation that architectural syntax, like the mechanisms 

of articulated language, is not reduced to a combination, a coordination 

of forms of equal value, but that it covers a ranked organisation of 

constituent units, the latter being disposed according to a strict order but 

whose subordination is variable. 

It is finally my intuition that, if the architectural phenomenon has a 

meaning, this should not be sought at component level but in the System 

itself”.
4
 

1.1.2. System  

Systems and structuralist movement theoreticians
1
 have drawn much of 

their vocabulary from the language of architecture. The problem for 

defenders of structural thinking is to go beyond the mechanistic model. 

However, builders -engineers in particular - should take advantage of 

progress in the deepening of method in the archaeology of which its 

objects have a decisive position. This point led to this description of the 

results of systems epistemology performed with a multi-field approach 

by researchers who have deepened concepts such as structure, system 

and form. Better understanding of terms, most of which are common in 

builders’ vocabulary, can open up new pathways in “structure design” 

related to morphology, the subject of this paper. 

The notion of “system”, as defined by P. Delattre is a first stage: 

“The notion of system can be defined very generally by saying that a 

system is a set of elements which interact between each other and 

possibly with the external environment.”
6
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One of Delattre’s axioms concerned elements: the behaviour of an 

element is related to the role that it plays in the System, i.e. its properties. 

Comparison of several elements involves comparison of their properties, 

enabling the definition of reference categories. Elements are material or 

abstract and defined by two types of characteristics: 

• qualitative characteristics, 

• quantitative characteristics. 

The qualitative predicate necessarily precedes the subordinate 

quantitative predicate. The latter represents the relationship to a certain 

frame of reference. 

Once the characteristics of the elements have been fixed, it is possible 

to define the “reference categories” grouping all the elements with the 

same characteristics. In the case of built systems, the number of elements 

in each category is reduced to one when the spatial position is one of the 

characteristics of the definition, since a geometrical point can only be 

occupied by one material point. 

The effect of interactions between elements is shown by the 

movement of elements from one reference category to another (which 

takes place continuously for example in beam deformation). The 

elements are either modifiable (modification of the quantitative data  

of all or some of the elements) or transformable (disappearance or 

appearance of qualitative characteristics). 

Following the interactions to which they contribute, the elements of a 

system may undergo transformations and run through various classes of 

equivalence successively. We refer to a transformation system in this 

case. Static systems can be considered as a special case of transformation 

Systems without change between categories. The relations between 

categories express the stresses between the elements of the system and 

which are responsible for its static equilibrium. 

Two types of relation can be envisaged in this case: 

∗ order relations established using comparison of the quantitative 

characteristics for a given qualitative characteristic, 

∗ topological relations of continuity and proximity. 
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Delattre used this as the basis for listing the parts of a full definition: 

∗ affirmation of the existence of categories and relations between 

categories, 

∗ the kinds of relations between categories (order, topology), 

∗ the kinds of elements in the different categories: listing of their 

characteristics, 

∗ the number of elements in each category, 

∗ the analytical form of the expressions linked to the relations between 

categories (assembly of the characteristics and the corresponding 

numerical values). 

1.1.3. Structure and System  

“Structure” is used in the broad sense here: “the manner in which the 

parts of a whole are arranged”. This definition serves only to affirm the 

existence of an Entity, parts and organisation without establishing the 

nature of the elements. This concept is therefore included in that of 

system whose dynamic aspect is inherent in the very nature of the 

elements which can alone account for the interactions. 

It is then possible to apply a reduction process to the elements of 

definition of the system to extract a definition of its structure. If one 

keeps to the first two elements of definition given by Delattre the nature 

of the elements is not specified. He called this a Relational Structure.  

This is the meaning used in mathematics for group structure of an 

ensemble, for example. 

A second level of definition is obtained by adding the third element 

of definition of systems - the list of the characteristics of the reference 

categories grouping the elements. The definition reached corresponds to 

the Total Structure of the system. Elements whose characteristics are 

specified may themselves be arranged in systems; the total structure 

implicitly contains the structure of subjacent levels at the description 

level chosen, which does not contain the relational structure. 

It is important to observe that one cannot talk in terms of relational or 

total structure without defining the system to which they are related. The 

level of description chosen must also be specified. The subject being 
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“design in structures”, research attention was paid to both the total and 

relational levels. 

1.1.4. Conclusion  

Going further into the notion of structure outlined in this part would  

be meaningless if the subsequent formalisation were aimed at replacing 

the models well known to engineers and technicians. The aim of this 

approach is to re-establish reflection on the design of structures by 

removing ail unrelated information. It then remains to be seen how this 

can be useful for structural design in the context of its close relation with 

architecture. 

1.2. Form and Structure 

An attempt at defining the concept of “structure” soon leads to 

simultaneous consideration of that of “form”. The two concepts are 

closely related and their history displays inverse evolution. Definition of 

one often makes reference to the other. Thus, the French Larousse 

dictionary defines “structure” as follows in the psychology section: 

“…an organic set of forms which, according to some psychologists, is 

perceived directly before each detail is isolated”.  

On form: “Form theory, a theory considering the perception of a set 

of organised structures before the details are perceived and which affirms 

in all domains the influence of the whole on its constituent parts.” 

Structure is defined as the “manner in which the components of a 

whole are assembled”. The definitions proposed for the concepts clearly 

show the existence of a whole and its parts; these notions can be related 

to that of System. 

In fact, the evolution of the two concepts can be clarified by noting 

that both are used in a limited sense to show the spatial existence of the 

object in question. Today, the concept of “form” is mainly used for the 

limited sense of spatial configuration and that of “structure” is used in a 

broader sense. It is known that the Ancients did the opposite - or at least 

“form” was the broad concept for them. The word “structure” replaced 

“form” little by little, leaving it only the limited sense. 
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The confusion still exists for example in the translation into  

French of “Gestalttheorie” / “Théorie de la Forme”
7
; an accurate 

translation would have used the word structure, although the theory 

effectively concerns our perception of an object. In line with modem 

comprehension of the two terms, we have chosen to consider the term 

“form” in its limited sense of spatial representation. 

1.3. The Design Process 

1.3.1. Structures and Constructions  

Although, as is stressed above, the vocabulary of Systems theory owes 

much to architectural metaphor, study of construction systems and 

constructions has certainly not drawn all the advantages that can be 

expected from a systemic approach. The term “constructive system” is 

used in the everyday sense here without giving it a specific character 

making it the field of the architect or the engineer. The difficulties in 

establishing or abolishing boundaries between constructions which may 

be attributed to one camp or the other are well known.
2,13

 Nevertheless, 

both use the word “structure” instead of “system” to signify what we 

shall call the “resistant” part of their constructions for want of a better 

word. If one keeps to the definitions in the preceding paragraphs, one 

takes the part as being a whole without separating the nature of the 

principle of organisation from its system. 

Complements and adjectives are added to the term “structure” to 

define construction Systems in specific cases. This is the case of the 

phrase “reticulate structures”, which provides information on the nature 

of the relations between elements; this information can be expressed by 

analytical formulae, which comes down to describing the system. The 

expression “metal structures” and all those concerning materials only 

specify one of the qualitative predicates of the elements. The same 

applies to names like “stressed structures” or “compressed structures” 

which describe a system characterised by a stress state. 

Confusion between terms is not a problem in a cognitive study or a 

design for which there is complete knowledge of the system. The 

situation is different in design problems which require the creation of a 
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system. It must be possible to clearly define and understand the share of 

each of the elements defining the System in order to achieve an 

“optimal” construction. 

Although research on the characteristics of the elements (especially 

the determination of a large number of those concerning the constituent 

material in “rheological” studies) and work on elaborating cognitive and 

forecasting mathematical models have been discussed at length, it has 

been based on principles of organisation which are rarely questioned. 

“Relational” structure as defined by Delattre is accepted without 

evaluation of its effect. Topological relations and relations of order are 

nevertheless of great importance in the properties shown by certain 

systems. Interesting results can be shown in particular on the basis of the 

relational structure of a system only; these results show intrinsic 

properties, that is to say features which are independent of the 

environment of the system. 

1.3.2. Design of Structures  

What methods should be used? The question does not require a  

single answer. It is first necessary to find the best way of identifying  

the problems and to show the dominant requirements. Although it  

is conceivable to draw up correspondence between a matrix of the 

categories of problems and another of categories of solutions/ a different 

approach would be to classify the solutions horizontally or vertically. In 

the first case, existing solutions are applied to the case covered or by 

pushing back the known limits. In the second case/ there will be a change 

in level through the design of an innovatory solution; this is when the 

weight of the influence of the dominant models must be accurately 

evaluated. The completion of innovatory solutions requires much more 

energy and conviction and structural morphology studies form a good 

basis. 

1.3.3. Modelling the Design Process  

As the construction system is the purpose of design, the formal 

framework of aid for design must be defined. It consists of the following 

items: 
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– definition of the properties expected 

– list of constraints 

– list of the design parameters. 

The study framework thus defined is the description of a System 

optimisation problem.
15

 The characteristic of the approach lies mainly in 

the listing and processing of the design parameters/ which consist of four 

families: 

– structure (in the relational and/or total sense described above)  

– form, considered as the projection of the entire structure in geometrical 

space, 

– force, consisting of all the mechanical notions related to the design of 

constructions (actions, stresses and strains, etc.), 

– material, study of mechanical, physicochemical properties, study of be 

behaviour. 

There remains, of course, the task of listing the properties expected 

and the constraints. The relation with architecture is effected at this level. 

It cannot be considered that the only meeting point is that of form, even 

if carries considerable weight. It would seem that the four families of 

parameters mentioned in connection with the “design of structures” is a 

sub-set of those involved in architecture. Each contributes to the general 

“meaning” of the result. 

For example, if the parameter “structure” is characterised by the 

notion of rhythm, this must not conflict with the rhythm induced by the 

circulation planned. Work in this field is in the very early stages in  

our research, but the aim is to combine different levels of structures 

(mechanical/ architectural, symbolic, etc.) with the relational meaning of 

the term to create synergy and not contradictions which would weaken the 

design itself. The modelling of the problem in this way does not provide 

answers to ail queries but sheds as much light as possible on the points 

which can be used for the development of research in structural design. 

1.4. Structural Morphology 

The position of structural morphology in the proposed modelling in the 

preceding paragraph is illustrated by the diagram in the figure opposite. 
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It is in fact the direct relation between the study of form and structure 

extended to cover the relational sense. This relation is affected by the 

behaviour of the material and by the need to ensure the static (and 

sometimes dynamic) equilibrium of the system S being designed. It is not 

complete theoretical modelling but a method of approaching the 

problem. Other parameters must be considered, and especially those 

related to the technological facilities available for the construction 

System. The cost of construction and operation is an important factor in 

evaluation. 

 
 

Fig. 1. Conceptual scheme. 

2. Landmarks 

The effect of the form-structure relation as described above is present  

in almost all construction systems. The importance of the role of the  

two other parameters depends on the case. Four examples are chosen as 

“references” and described briefly in the light of the conceptual procedure. 

2.1. Stone Cutting 

Stone cutting plays a very important role in the history of building. The 

material is characterised by a dominant property of compressive strength 

and gravity is the determinant element in all the actions applied. Careful 
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stereotomy is required to ensure static equilibrium among other things. 

The form of the elements governs their dead load and the structure 

conditions all the stresses. Setting aside purely vertical Systems in  

which single-direction compressive strength affects the material almost 

uniformly, we mention two solutions in which structural morphology 

plays a major rôle. Observing the limits imposed by the bending of stone 

material, builders devised other solutions whose common feature is the 

use of elements which are small in relation to span in a structural 

assembly which provides equilibrium. Whereas the transition from 

straight beam to arches with arch stones is well known, the solution used 

in the case of the lintel for the tympanum of a Gothic gate at Alba lulia 

(Romania) is less so (Fig. 2). Large blocks are not required and the form 

given to the elements is stable and original. 

 

 
 

Fig. 2. Stone cutting principle (Alba Iulia). 

2.2. Geometry 

Geometry plays a central role in the design of form in the broad sense. It 

is related to the partitioning of space, whether this is discrete or 

continuous. Designers make extensive use of polyhedral geometry in  

the first case and the geometry of surfaces in the second. The two 

approaches meet when the problem is not one of partitioning space but of 

handling special surfaces, such as geodesic domes. Examples can be 

found both in the work of Graham Bell at the beginning of the century 

and in the steel framework of the Zeiss planetarium in lena in Germany 

in 1923. 

Researchers like Le Ricolais and Fuller have taken the question 

further. The former established the basis for space-frames which were 

developed very widely; his observation of Radiolaria went beyond the 
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purely geometrical stage to cover examination of the relation between 

networks and induced forces. In his studies on “Structures comparées en 

deux et trois dimensions”,
11

 he drew a distinction between several classes 

of square, triangular and light or dense hexagonal mesh networks. Basing 

his work on Mayor’s research on graphic static, he then revealed the 

duality of geometry and forces by stressing their dual topology (Méthode 

Image,
12

); he stressed here the need to examine the constitution of the 

initial pattern and its multiplication. In contrast, Fuller’s contribution in 

the field of geodesic domes was directed towards what one could call 

geometrical regularity without explicit reference to the mechanical 

implications of the choices made. Until recent years it was almost 

obligatory to have the smallest possible number of different components 

in order to meet industrial and construction constraints; adaptation to 

stresses was and still is handled by modifying the straight sections of the 

elements. 

Today, these imperatives are less important thanks to progress in 

computer-aided manufacture. Several questions are now of interest: 

should one keep to simple geometrical regularity in the dimensional and 

angular sense or should topological aspects be stressed? Regular and 

semi-regular polyhedral geometry is certainly an interesting basis, but it 

does not cover the mechanical aspect of the behaviour of structures in  

a given environment of external actions. Under these conditions, the 

problem of the limits of useful investigation in polyhedral geometry  

is raised. Facilities such as Formex algebra on the one hand and 

homogenisation on the other will certainly make it possible to model the 

real behaviour of the systems on the basis of the constituent pattern  

and the relational structure rule chosen. In fact, it is known how to 

reconstitute a complex geodesic dome using a very small number of data 

(Schwarz’s triangle). Discussion of the question must be very broad. 

2.3. Bionics 

Structural morphology draws heavily on bionics, which can be 

considered as “the science of systems whose functioning is copied  

from that of natural systems or which display specific features of  

natural Systems or which are analogous”. This was how Y. Coineau’s 
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reported the definition of bionics given by Major Jack. E. Steele in the 

first congress on the subject in Dayton, Ohio in 1960.
3
 In construction 

systems, the work by Le Ricolais mentioned above has enabled the 

development of space-frames, and extremely important work was 

performed by Frei Otto and the researchers at his institute in Stuttgart. 

However, attention must always be paid to the intellectual procedure 

chosen in an approach to bionics. A simple “formal” copy in the strict 

sense of the word generally has no mechanical or other substrate. As 

Laënneck noted, “You can sit on china eggs for as long as you like but 

you’ll never get any chicks”. When Calatrava designed a structure 

deduced from the shape of birds’ wings he did not claim to give it the 

power of flight. The statement was more symbolic. Leonardo da Vinci’s 

approach to the functioning of bats was very different and was aimed at 

designing flying machines. Querying nature usually generates new 

solutions not through simple copies but through understanding the 

fundamental principles of operation. It may thus be erroneous to study a 

natural phenomenon without covering the whole of this phenomenon. 

Modelling the structure of trees is not the simple application of structural 

mechanics to a material, whether considered as anisotropic or 

heterogeneous; the mode of growth is important. The evolution in time of 

all living material must be taken into account so as not to make 

meaningless analogies. 

The environment in the broad sense affects design in the same way. 

The known analogy between the bone trabeculae in the head of a femur 

with the isostatic lines associated with a classic loading must be 

examined in other environments. Study of the evolution of bone structure 

in spacemen reveals what is reported to be a significant modification or 

reduction in the trabeculae. 

The principles underlying form must be discussed. D’Arcy 

Wentworth Thompson’s work on honeycombs revealed geometry which 

can be related to the partitioning of space by rhombic dodecahedra. On a 

different scale, some recent results on agar gels reveal the same type of 

geometrical layout. Agar was found for the first time by Payen in a 

substance called “Chinese moss” and it is found in some seaweeds (Java 

weed and common Gelidium). Gelatine and agar can be heated to form 

aqueous solutions which cool to form more or less elastic gel. It is 
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interesting to note that the resulting geometry divides space into a 

polyhedral layout with the matter forming the ribs. This is caused by Van 

der Waals forces resulted intermolecular attraction. Matter distribution is 

therefore not identical to that of honeycomb, where it forms the 

polyhedral faces, but the two phenomena nevertheless possess relational 

structures of the same type and their origin should be understood. This 

example alone should encourage prudence on the part of all those who 

venture into bionics: the meaning behind the appearance should be 

sought. Bionics is at a crossroads with several other sciences and requires 

both an open mind and a rigorous approach. 

 

 
 

Fig. 3. Cross-section of a bone. 

2.4. Equilibrium Forms 

The diagram (Fig. 1) in §1.4 places structural morphology as a link 

between form and structure but this does not mean that the two other 

parameters are without effect. There are construction systems in which 

form depends directly on the forces applied and their equilibrium. The 

stiffening of these systems in a definite form is the result of the forces 

applied. There are two categories of equilibrium form systems: 

– “funicular” systems (in the broad sense of the term) in which form 

depends on the external system of actions applied. The denomination 

results from the equilibrium of cables subjected to individual actions. 

The best-known application is that of Gaudi in “Colonia Guell”. He 

took advantage of the duality of compression and tension and defined 

compressed systems by inverting entirely tension systems, in this 
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Meaning 

Morphology and Art 

links between structural morphology and art can provide information 

for designers. A few examples show the richness of this type of 

approach, which is well illustrated in Gödel, Escher and Bach.
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Baigneuses” strongly marked within a triangle. Ucello made full use of 

structural morphology in his three paintings of the Battle of San Romano. 

The composition enabled him to add several dimensions to those usually 

shown in a painting on a flat surface. The play of the lances gave him 

access to time and shows the dynamics of the situation through subtle 

orientation of the lances of the attacking and attacked horsemen. The 

form shows the underlying meaning without clouding it. 

Painters showing particular interest in the notion of structure include 

Paul Klee, whose investigations went furthest. His study of trees and 

their growth is exemplary. It is in a work with the significant subtitle 

“Theoretical order of the means of creation related to study of nature and 

the constructive pathways of composition”.
9
 

3.2. Order and Harmony 

“All the orders in the world, not only the Greek which is particularly 

conscious, but also of the ancient East and of the American Indian, are 

spiritual” wrote Kerenyi. They invite the drawing up of a harmonious 

plan. The concept of harmony is essential for establishing order. It 

expresses all the relations between the revealed and the non-revealed, 

between the whole and the parts of the whole. The clearest illustration is 

that of the division of a segment considered as a unit into mean and 

extreme ratio. Given a segment AB, seek a point of division C so that the 

new segments are in harmony with the initial segment. The ratio which is 

the solution to the problem is the golden ratio. Unfortunately, the name 

gives it a “magic” aspect whereas it is one of the basic principles of 

symmetry in the Greek sense of the term. The result is harmony in the 

sense of coherence between the whole and its parts. The mathematical 

translation is only a result of the intention and shows its meaning. This 

division is such that the small segment is to the medium what the 

medium is to the large one. It is not surprising to see this construction 

when an icosahedron is generated from a tetrahedron.
14

 It is in fact 

another form of duality. Two figures or two concepts are dual; what the 

first is to the second the second is to the first in such a way that a twice 

performed dual transformation returns to the origin. Two dual elements 

are in balance and it is more appropriate to talk in terms of equilibrium 
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action for example on compressive and tensile stresses in reticulate 

Systems. 

3.3. Form and Meaning 

The “form” of construction systems is closely related to the relational 

structure and shows its organising aspect; it bears the meaning that the 

designer intends to give his project. It is useful to pay attention not only 

to the pertinence of the project but also to the permanence of its 

expression. However, the project is not usually the engineer’s or the 

surveyor’s but that of the client. The constraints to be met and the 

functions to be performed are not only mechanical or plastic. Its meaning 

must be closely related to that of architecture and its imperatives. It can 

thus be understood that the structure described here is that of a subsystem 

which, in harmony with others, should lead to a meaningful construction. 

The part cannot exist without the whole. Study of structural morphology 

cannot ignore its context; it must be in its position. 

Conclusion 

This discussion of structural morphology is not the definition of a 

theoretical position but a query addressed to everyone to open up 

pathways and avoid dead ends. We have set out an open intellectual 

“diagram” and mentioned a number of references. Structural morphology 

is an interface science, a difficult field in which superficial analogies can 

rapidly lead to serious mistakes. Rigour in investigation and discussion 

with specialists in the fields concerned are both necessary. This can lead 

to giving a meaning to new design solutions and to full expression in 

constructions. 
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THE STRUCTURAL MORPHOLOGY OF CURVED 

DIAPHRAGMS — OR THE STRUCTURAL BEHAVIOUR OF 

FLORAL POLYHEDRA 
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School of Architecture, Copenhagen 

The publication by Michael Burt The Periodic Table of the Polyhedra 

Universe [Ref. 2] interpret Euler’s theorem on polyhedra in three 

dimensional space to its extreme, and shows by this that the classical 

plane faceted convex polyhedra just are a tiny part of the full spectrum. 

Burt shows that polyhedra of any genus - including infinite polyhedra 

and so-called floral polyhedra where some are not imaginable with 

plane facets and straight edges - are included in the Euler-polyhedral 

universe. Structural Order in Space [Ref. 5] is investigating the 

structural behaviour of any plane faceted so-called conventional 

polyhedron, and deduces the necessary stability equation for structural 

configurations stabilised by shear forces alone – i.e., pure plate action - 

and it reveals the profound interrelation between lattice and plate 

structures - the structural duality - which follows the well known 

geometrical duality. These statical relations for shear-stabilised 

polyhedra and the structural duality turns out to be valid for any plane 

facetted configuration and they can be extended from the level  

of topology/stability to metric geometry/magnitude of forces and 

elasticity, as shown in [Refs. 6 & 7]. It is therefore a necessity to try to 

increase the statical considerations to cope with the full understanding 

of Euler-polyhedra as described by Burt where the floral type is the 

normal and the plane faceted type is a rare specialty. The present paper 

is an attempt to approach the full spectrum of polyhedra as suggested 

by Burt. 
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1. Basic Stability in 3-Dimensional Space 

The following statements on stability are the necessary but not sufficient 

requirements. 

� For lattice structures: 

A node is stabilized by three supports. 

Two nodes linked by one bar are stabilized by five supports. 

Three nodes linked by three bars - and any other 3-dimensional 

internally stable lattice configurations - are stabilized by six supports. 

As stated by Moebius-1837 [Ref. 4], an internally stable lattice 

structure in 3-dimensional space consisting of B bars, N nodes and S 

supports, is stable if B + S ≥ 3N. For considerations about S see 1, 2  

and 3. The redundancy of the system is: 

R = B + S - 3N 

� The similar considerations for plate structures: 

Three supporting shear lines stabilize a plane plate. 

Two plane plates linked by one shear-line are stabilized by five 

supports. 

Three plane plates linked by three shear-lines - and any other  

3-dimensional internally stable plate configurations - are stabilized by six 

supports. 

As stated by Wester [Ref. 5], an internally stable plate structure in  

3-dimensional space consisting of SL shear-lines, P plates and S 

supports, is stable if SL + S ≥ 3P. For considerations about S see 5, 6  

and 7. The redundancy is  

R = SL + S – 3P 

� For combined plate and lattice structures: 

As stated by Wester [Ref. 7], an internally stable combined plate and 

lattice structure in 3-dimensional space consisting of B bars, SL shear-

lines, BU buffer-forces (i.e., forces acting between equally positioned 

bars and shear-lines), N nodes, P plates and S supports, is stable if  

B + SL + BU + S ≥ 3(N + P) 

and the redundancy will become  

R = B + SL + BU + S – 3(N + P) 
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2. The Genus of Polyhedra 

The genus g is one of the parametrical axes in Burt’s three-dimensional 

table. It is related to the connectivity c, which is the maximum number of 

loops that can be drawn on the surface, without dividing it into two parts. 

g is defined as the number of handles h of the polyhedron. g = h = c – 1. 

A conventional single-connected polyhedron has no handles, hence  

g = 0. A torus has one handle, hence g = 1. Figure 3 shows polyhedra of 

different genus. 

3. Plane Faceted Polyhedra - Genus Zero 

 
 

Fig. 1. The five archetypal Platonic plane faceted polyhedra arranged in dual pairs. The 

topological duality is extended to a structural duality, relating the stability behaviour of 

pure plate and pure lattice action. If one side of a dual pair is stable as a pure plate 

structure, then the other is stable as a pure lattice structure. The Platonic master-solid – 

the tetrahedron - is so basic that it is self-dual, hence stable as both a pure lattice and a 

pure plate structure. (Courtesy of Ola Wedebrunn) 

 

This is the classic type of polyhedra, which follows Euler’s Theorem 

in its basic version: 

V + F – E = 2 
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Where the number of vertices is V, facets is F and edges is E. This 

case is structurally already described on the level of stability/topology 

[Refs. 5 & 7]. The summary of these investigations is that all plane-

faceted Euler-polyhedra of this genus are internally stable with zero 

redundancy. As the minimum of number of supports S is 6, the 

previously stated stability equations will be: 

� Pure lattice polyhedra: B + 6 ≥ 3N which implies the geometrical 

quality that all facets are trivalent. The redundancy is: 

R = B – 3N + 6 

� Pure plate polyhedra: SL + 6 ≥ 3P which implies the geometrical 

quality that all vertices are trivalent. The redundancy is: 

R = SL – 3P + 6 

� Combined plate and lattice polyhedra: B + SL + BU + 6 ≥ 3(N + P). 

The redundancy is R = B + SL + BU + 6 – 3(N + P). If we use 

geometrical terms then B, SL and BU are all equal to E and therefore  

R = 0 for any arbitrary combined plate and lattice structure which 

follows Euler’s theorem. This is valid for any combination of vertex and 

facet valences. The equations for pure plate and lattice polyhedra can be 

deduced from this, see [Ref. 7]. This stability behavior for genus zero 

polyhedra is probably the most important structural quality of all for 

polyhedra, as stability is – except for some rare configurations – inherent 

with the topology. 

It is seen that if B is interchanged with SL, and N with P, the 

equations in 10 and 11 become interchangeable, an unchanged for 12. As 

this type of interchange of elements is following the rules for the 

classical geometrical duality, it turns out also to be the basis for a 

structural duality, see Fig. 1. 

On the level of metric geometry/magnitude of forces the static 

relations are described in [Ref. 6] as follows: The geometrical part of the 

dual transformation is the polar reciprocation [Ref. 3] between vertices 

as nodes and planes as plates. It’s characteristic is that the distance from 

Origin to the point and the are reciprocal and the normal vectors are 

located in the same line through the Origin. 
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Fig. 2. Example of a non-polyhedral building-like structure, which utilizes plate action 

not only for stabilizing for horizontal loading, but also for carrying the two slabs.  

See later note on Buhelt, Nielsen & Staalby-76. 

 

 
 

Fig. 3. Examples of polyhedra of different genus. It also indicates the way of determine 

the genus of units for infinite polyhedra. (Courtesy of Michael Burt) 

 

The statical part of the dual transformation is that a force vector 

acting on a node is identical to a moment vector of the magnitude of the 

shear force times the distance to the Origin. This is based on the fact that 

a closed and uni-directed force vector polygon determines the static 

equilibrium of a node, while a closed and uni-directed moment vector 

polygon - based on the shear forces along the edges of a plate times their 

respective distances to the Origin - determines the static equilibrium of a 

plate. When these pairs of vector diagrams are identical, they form total 

equational identity between the two equilibrium systems. 
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This structural duality applies not only to all plane faceted polyhedra, 

but to all plane faceted structures in general (Fig. 2), and performs a 

method to do direct static analysis on any complicated plate structure by 

transforming it to its dual, do the analysis by one of the many lattice 

structure analysis software, and transform back the results. As the elastic 

properties also can be dual transformed [Ref. 6], then redundant 

structures may be analyzed through dual transformations. 

4. Plane Faceted Polyhedra - Genus above Zero 

For this case Euler’s extended theorem is as follows: 

V + F – E = 2(1-g) 

Where the number of vertices is V, the number of facets is F and the 

number of edges is E while g is the genus. See Fig. 3. 

As we still consider 3-dimensional finite structures, the basic stability 

equations are the same as for any genus number. This means that the 

stability equation for an arbitrary plane facetted polyhedron of genus g, 

is:  

B + SL + BU + S ≥ 3(N + P) 

for a free floating polyhedron (S equal to 6)  

B + SL + BU ≥ 3(N + P – 2) 

The redundancy is then 

R = 3(E – V – F + 2) = 6g 

This tells that the redundancy for combined plate and lattice 

polyhedral structure is only dependant of the genus, and is equal to six 

times the genus. 

This means that a fully triangulated polyhedron of genus g has a 

redundancy of 6g as a pure lattice structure and therefore 6g bars may be 

removed from the structure without affecting the stability. In the same 

way, a fully trivalenced pure plate polyhedron of genus g has a 

redundancy of 6g, and therefore 6g shear-lines may be removed from the 

structure without affecting the stability. 
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Fig. 4. Example of an infinite polyhedron of genus 2. It is stabilised as a combination of 

plate and lattice action. The redundancy is 6 for every internal unit, indicating that the 

structure might be structurally reduced without affecting the stability

Michael Burt) 

 

 

Fig. 5. Examples of floral polyhedra of genus zero. Many of these polyhedra are not 

imaginable with plane facets and straight edges, if they should enclose a volume

(Courtesy of Michael Burt)

5. Infinite Polyhedra

Infinite polyhedra are polyhedra, which are produced by sponge

open polyhedral units. An infinite number of these units are then 

connected and closed along the open facets in a translational or/and 

rotational system without any limi

described by the number of handles it will get (= 

on the unit are interconnected and closed with tubes, see 
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Example of an infinite polyhedron of genus 2. It is stabilised as a combination of 

plate and lattice action. The redundancy is 6 for every internal unit, indicating that the 

structure might be structurally reduced without affecting the stability. (Courtes

Examples of floral polyhedra of genus zero. Many of these polyhedra are not 

imaginable with plane facets and straight edges, if they should enclose a volume

ourtesy of Michael Burt) 

Polyhedra 

Infinite polyhedra are polyhedra, which are produced by sponge

open polyhedral units. An infinite number of these units are then 

connected and closed along the open facets in a translational or/and 

rotational system without any limit, see Fig. 4. The unit is topologically 

described by the number of handles it will get (= g), if the missing facets 

on the unit are interconnected and closed with tubes, see Fig. 3.  
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Example of an infinite polyhedron of genus 2. It is stabilised as a combination of 

plate and lattice action. The redundancy is 6 for every internal unit, indicating that the 

ourtesy of 

Examples of floral polyhedra of genus zero. Many of these polyhedra are not 

imaginable with plane facets and straight edges, if they should enclose a volume. 

Infinite polyhedra are polyhedra, which are produced by sponge-like 

open polyhedral units. An infinite number of these units are then 

connected and closed along the open facets in a translational or/and 

ig. 4. The unit is topologically 

), if the missing facets 
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As there are no support requirements for infinite polyhedra, the 

stability equation is 

B + SL + BU ≥ 3(N + P) 

And therefore  

R = 3(E – V – F) = 6(g-1) 

Stability considerations are referred to the repeatable unit, which 

means that only periodic systems can be dealt with. 

The number of bars and/or shear-lines that may be removed without 

affecting the stability situation is therefore 6(g-1) per unit. The stability 

considerations for infinite polyhedra are useful for describing the basic 

structural qualities for large systems i.e.; systems where the effect of the 

border is small compared to the effect of the internal.  

6. Floral Polyhedra 

Floral polyhedra i.e., polyhedra with curved faces and edges, could be 

regarded as the general type of polyhedra, as the plane and the straight 

are special cases while the curved is the general case, see Fig. 5. These 

floral polyhedra are included in Burt’s table simply because many can’t 

be imagined with plane facets and they need to be there as they comply 

with Euler’s theorem. A plane facetted polyhedron is a floral polyhedron 

where all the necessary curvature has been concentrated in the vertices. 

At the same time floral polyhedra increase the understanding of the 

polyhedral concept – and perform of course a tremendous challenge to 

bring them into a global structural framework which includes the 

framework described in the previous part of the paper. 

A floral polyhedron consists of a number of zero-dimensional 

vertices, one-dimensional arbitrarily curved edges and two-dimensional 

arbitrarily doubly curved facets. Many of the polyhedra in Burt’s table 

e.g., monogons, dihedrons, polydigons etc. can not be imagined as  

3-dimensional volumes with straight and plane elements.  

Not least because we know that undisturbed forces are acting along 

straight bar-lines, and shear fields are acting in plane plates, it could at 

the first glance seem quite impossible to describe any meaningful 
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structural quality of floral polyhedra – and how could the concept of 

structural duality possibly be have any meaning? If plate and lattice 

action are defined by the type of force acting along the polyhedral edges 

i.e., axial forces for lattice structures and shear forces for plate structures, 

then the facet – curved or plane – acts as a stabilizing membrane between 

the edges, transferring forces which are either tangential (shear) or 

perpendicular (lattice) to the edge - all in equilibrium. If so, then we 

might describe the structural behavior of such polyhedra, see Fig. 6.  

 

 
 

Fig. 6. We might define the structural type according to what kind of forces is transmitted 

from the curved facets to the curved edge. If the edge is in tension or compression and no 

shear is transferred, we talk of pure lattice action, while if it is only transferring shear 

forces, we talk about pure plate action. In all other cases we talk about combined action. 

 

 

Fig. 7. A cylindrically curved plate is an approximated by a number of plane plates, 

intersecting in parallel straight shear-lines. The two curved horizontal shear-lines can be 

substituted with a straight shear-line with identical stabilising effect, using Bredt’s 

equation.  
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This viewpoint is supported by what we already know about 

arbitrarily fine faceted i.e., curved polyhedra: 

All closed plane faceted polyhedra – no matter how fine-faceted - are 

potentially stable, and the redundancy is only related to the genus. 

• Any floral polyhedron may be regarded as consisting of many small 

plane facets and straight edges (as the discrete net in FEM), hence 

stable as a plane faceted pure lattice (triangles), pure plate (trivalent 

vertices) or combined structure with unchanged redundancy. Note that 

the structural action is unambiguously determined by the choice of 

faceting method. 

• This also indicates that the stability of a floral polyhedron may be 

described in the same terms as for the plane faceted polyhedra. 

Also we know from [Ref. 1] that some curved plates in combination 

with other plates in a building like structure can act exactly the same way 

as a plane plate i.e., it can be substituted structurally by a virtual plane 

plate which is located according to some simple static considerations. 

The considered plates are curved with straight generators, such as 

cylindrical, conical and HP-shapes.  

The curved plate e.g., a vertical cylindrical wall is placed between 

two horizontal plates (slabs) in a building, where the lower plate is 

stabilized for all horizontal forces and the two lower ends of the curved 

plate stands on vertical columns. The task is then to find the horizontal 

straight line in the upper plate where the curved plate resists external 

load. This line turns out to be parallel to the line between the upper end 

points of the cylindrical wall, and the distance to this line - the 

eccentricity e of the force - is found by Bredt’s equation, which tells that 

e = 2A/a, where A is the area between the trace of the curved plate and 

its chord – and a is the distance between the same two end points, see 

Fig. 7. 

The polyhedral situation is different from the above consideration as 

intersecting facets creates edges and vertices, altogether forming closed 

configurations. If the configuration with the previously mentioned 

cylindrical plate is changed so it is inserted and connected as a 

diaphragm into a close-fit rectangular tube, which is open in both ends, it 

forms an unstable polyhedron which miss one facet to be closed. This 
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configuration is applicable for investigating the efficiency of the 

diaphragm as a stabilizing element. 

 

 
 

Fig. 8. Left is shown the pyramid with open rectangular bottom; inserted in a rectangular 

tube, which is open in both ends. The height of the tube is H and the distance from the 

base of the pyramid to the plane virtual plate with the identical stabilizing effect is called 

the eccentricity e. To the right is the diagram of forces is equilibrium for the system. The 

forces perpendicular to the plane of the paper are creating the moment that moves the 

applied shear-force the distance e, following Bredt’s equation. 

 

 
 

Fig. 9. If the pyramid is truncated, then the system is changed to plate action. The 

diagram of forces in equilibrium is shown to the right. In this case e is not following 

Bredt’s equation, as the shear stresses transferred are not of the same intensity. 

 

The eccentricity e creating the moment, which is needed for 

stabilizing the configuration is therefore acting on four side sides of the 

tube instead of the two horizontal plates. This leads - according to 

Bredt’s equation - to a position of the virtual plane plate with an 

eccentricity e = A/a.  

A method to determine the structural action of a plate (or manifold) 

with positive Gaussian curvature is to approximate its shape with plane 

facets, and perform the necessary statical considerations. A simple 
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approximation is a four-sided pyramid as a half octahedron with an open 

bottom.  

The half octahedron Fig. 8 is an unstable lattice net of four closed 

triangles and one open rectangle with variable height H - substituting  

a positively doubly curved plate - is inserted as a diaphragm in the 

rectangular tube. A physical model shows clearly that stability is 

achieved for certain positions of forces applied to the planes of the tube. 

The moment produced in the planes of the tube moves the virtual plane 

plate to a distance e = H/2 from the shear line at the bottom edge of the 

pyramid. This case follows Bredt’s equation as the shear-line has the 

length of a, the area A = aH/2, hence e = A/a = H/2.  

A better approximation to the elliptically curved plate is the truncated 

pyramid Fig. 9. If the height of the full pyramid is H and the height of 

the truncated pyramid is h, then the statical consideration leads to the 

nice equation:  

h

1

H

1

1
e

++++

====  

If H→0 or if h→0 then e→0, which is correct as this corresponds  

to a plane plate. If h→H then e→H/2, which is also correct as this 

corresponds to the previously investigated pyramid. Because the forces 

in the edges of the truncated pyramid are not constant, then e does not 

follow Bredt’s equation. 

 

 
 

Fig. 10. If the pyramid is rotated 45°, then the system appears like this. The equilibrium 

is achieved as pure plate action. The eccentricity e is found to follow Bredt’s equation.  
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If the half lattice octahedron is rotated 45° as Fig. 10, then the 

configuration is changed to plate action, and the eccentricity to the stable 

plane virtual plate is found to e = H/2, hence still complying with Bredt’s 

equation. The four edges meeting in the top of the pyramid can obviously 

not transfer axial forces; even the valence is bigger than what is required 

for pure plate action. 

If the top of the pyramid on Fig. 10 is truncated, then the eccentricity 

is not changed at all. This means that the rectangular plate positioned in 

the truncation is not structurally active, and may therefore be omitted. 

7.  Conclusion 

My recent work on doubly curved plates, which is initiated by Burt’s 

inspiring work on geometry and topology, and based on Jørgen Nielsen’s 

work on the static of cylindrically curved plates, seems to indicate, that it 

is absolutely possible to deal with the structural behavior of floral 

polyhedra in a meaningful way. We can describe the stability behavior  

of curved plate or lattice or combined plate and lattice membrane 

diaphragms and we can find the position of a virtual plane plate with 

identical stabilizing qualities as the curved one. The investigations of 

curved plates in the present paper should be extended to saddle shapes 

and to intersecting curved shapes. 

It is still not investigated exactly how the structural duality apply to 

floral polyhedra, but it is beyond any doubt that there is a dual relation of 

the structural content, and that the concept will include my earlier work 

on the structural duality behavior of plane faceted polyhedra.   
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CHAPTER 4 

POLYHEDROIDS 
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Stevinweg 1, Delft, The Netherlands 

The title of this paper refers to the group of figures, that are related to 

polyhedra, that are - so to say - ‘polyhedron-like’. They are derived 

from the Platonic (or regular) and Archimedean (or semi-regular) 

polyhedra, that are composed of regular polygons. They can be quite 

different from the original figures, that they are based on. This paper 

pays attention to a family of forms related to these so-called ‘uniform’ 

polyhedra. Possibilities are shown to mitigate the rigidity of the 

polyhedral geometry and to make them more suitable for application in 

building construction.  

1. Definition of Polyhedra 

A common definition of a polyhedron is [Ref. 1]: 

(i) It is covered by a closed pattern of plane, regular polygons with  

3, 4, 5, 6, 8 or 10 edges.  

(ii) All vertices of a polyhedron lie on one circumscribed sphere. 

(iii) All these vertices are identical. In a particular polyhedron the 

polygons are grouped around each vertex in the same number, kind 

and order of sequence.  

(iv) The polygons meet in pairs at a common edge. 

(v) The dihedral angle at an edge is convex. In other words: the sum of 

the polygon face angles that meet at a vertex is always smaller than 

360° (see Table 2). 



50  

 

2.  Regular and Semi

Under these conditions a group of 5 regular and 13 semi

principally different polyhedra is found.  There are actually 15 semi

regular solids, as two of them exist in right

uniform polyhedra consist of one or more 

polygons. 
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Fig. 1. Review of the regular (1 to 5) and semi

 

Four of the regular polyhedra are always inscribable in the remaining 

one: they are dual to each other in pairs. Fig

the non-square faced polyhedra with the cube. All other polyhedra also 

have dual or reciprocal versions (Fig. 3) [Ref. 3

 

 

 Fig. 2. The relations of the 5 regular solids
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Regular and Semi-Regular Polyhedra 

Under these conditions a group of 5 regular and 13 semi-regular, 

ipally different polyhedra is found.  There are actually 15 semi

regular solids, as two of them exist in right- and left-handed versions. All 

uniform polyhedra consist of one or more - maximally 3 - sets of regular 
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Review of the regular (1 to 5) and semi-regular (6 to 18R) polyhedral.

the regular polyhedra are always inscribable in the remaining 

one: they are dual to each other in pairs. Figure 2 shows the relation of 

square faced polyhedra with the cube. All other polyhedra also 

have dual or reciprocal versions (Fig. 3) [Ref. 3].  

 
 

The relations of the 5 regular solids. Fig. 3. Models showing the principle of
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Table 1. The regular polyhedra in relation to the cube. 

cube tetrahedron octahedron dodecahedron icosahedron 

1 √2 1 : √2 1 : (φ + 1) = 1 : φ2 1 : φ = φ -1 

1.000000 1.41421356 0.70710678 0.381996601 0.61803399 

φ, also known as the Golden Section, is defined as: φ = (1 + √5) : 2 = 1.6180339887499…. 

 

Table 2. Some characteristic aspects of the Platonic and Archimedean polyhedra. 

No 

P 

code name F E V Total 

angle 

DA* Radius 

1 3-3-3 Tetrahedron 4 6 4 180 180 0.612 

2 4-4-4 Cube 6 12 8 270 90 0.866 

3 3-3-3-3 Octahedron 8 12 6 240 120 0.707 

4 5-5-5 Dodecahedron 12 30 20 324 36 1.401 

5 3-3-3-3-3 Icosahedron 20 30 12 300 60 0.951 

6 3-6-6 Truncated Tetrahedron 8 18 12 300 60 1.172 

8 4-6-6 Truncated Octahedron 14 36 24 330 30 1.581 

9 3-8-8 Truncated Cube 14 36 24 330 30 1.778 

10 3-4-4-4 Rhombicuboctahedron 26 48 24 330 30 1.398 

11 4-6-8 Truncated Cuboctahedron 26 72 48 345 15 2.317 

12 3-5-3-5 Icosidodecahedron 32 60 30 336 24 1.618 

13 5-6-6 Truncated Icosahedron 32 90 60 348 12 2.478 

14 3-10-10 Truncated Dodecahedron 32 90 60 348 12 2.969 

15 3-3-3-3-4 Snub Cube 38 60 24 330 30 1.343 

16 3-4-5-4 Rhombicosidodecahedron 62 120 60 348 12 2.232 

17 4-6-10 Truncated 

Icosidodecahedron 

62 180 120 354 6 3.802 

18 3-3-3-3-5 Snub Dodecahedron 92 150 60 348 12 2.155 

P = polyhedron index 

Code = side-numbers of respective polygons that meet in a vertex 

V, E and F = number of vertices, edges and faces 

Total angle = summation of face angles that meet in a vertex 

*DA, Deficient angle = angle of missing part of plane, or 360° (or flat situation) minus Total angle 

Radius = radius of circumscribed sphere 

3. Index Numbers for Polyhedra 

The index numbers for the various polyhedra in Table 1 and 2 were 

introduced by the author [Refs. 2, 3]. They are useful to give reference  

to the individual polyhedra, without having to make use of their 
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uncomfortably difficult scientific names, but they can also be used in a 

more or less “administrative sense”. If one utilizes computer programs 

for the calculation of their geometry or for their visual presentation, it is 

often necessary to indicate them by a unique number. That is why they 

are numbered here in a certain order of sequence that is dictated by the 

following consecutive criteria: 

1. Number of faces 

2. Number of edges 

3. Radius of the circumscribed sphere 

If only criteria 1 and 2 were applied, the truncated dodecahedron and  

the truncated icosahedron would have obtained the same number. The 

left- and right-handed snubs have the same identification numbers, 

because they are geometrically identical, although they have different  

co-ordinates. They are sometimes called ‘chiral’ [Ref. 14]. The two 

‘enantiomorphic’ versions can be distinguished by the addition of an L or 

an R to the index number. The polygons are facets of the circumscribed 

 
Table 3. Review of the numbers in which the polygons occur in the different polyhedra 

and their Volume, Area and Compactness, expressed in unit edge length. 

P 3 4 5 6 8 10 Volume Area Compactness 

1 4 - - - - - 0.11785 1.73205 0.67113 

2 - 6 - - - - 1.00000 6.00000 0.80599 

3 8 - - - - - 0.47140 3.46410 0.84558 

4 - - 12 - - - 7.66311 20.64572 0.91045 

5 20 - - - - - 2.18169 8.66025 0.93932 

6 4 - - 4 - - 2.71057 12.12435 0.77541 

7 8 6 - - - - 2.35702 9.46410 0.90499 

8 - 6 - 8 - - 11.31370 26.78460 0.90991 

9 8 - - - 6 - 13.59966 32.43466 0.84949 

10 8 18 - - - - 8.71404 21.46410 0.95407 

11 - 12 - 8 6 - 41.79898 61.75517 0.94316 

12 20 - 12 - - - 13.83552 29.30598 0.95102 

13 - - 12 20 - - 55.28773 72.60725 0.96662 

14 20 - - - - 12 85.03966 100.99076 0.92601 

15 32 6 - - - - 7.88947 19.85640 0.96519 

16 20 30 12 - - - 41.61532 59.30598 0.97923 

17 - 30 - 20 - 12 206.80339 174.29203 0.97031 

18 80 - 12 - - - 37.61664 55.28674 0.98201 



 

 

sphere that can be thought to pass through the vertices. The volume of

this sphere is therefore larger than that of the corresponding polyhedron.

This is also the case for the area of their envelopes. The closer these two 

values are, the better is the approximation of the sphere that is reached by 

a particular polyhedron. The closeness of this approximation can be 

expressed in a value that is called: the Co

Compactness C

volume as the polyhedron with the index P, divided by the surface area 

of this polyhedron.

This value is given in the equation:

 

The dual or reciprocal versions of the polyhedra can be indicated by 

the same number as their mates, but this time

capital R. 

4. Close-Packings

Some of the polyhedra lend themselves to being put together in tight 

packed formations (Fig. 4). In this way q

realized. It is obvious hat cubes and rectangular prisms ca

most densely, but many of the other polyhedra can also be packed in 

certain combinations. Critchlow [Ref. 1] gives an extens

theoretical possibilities.
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sphere that can be thought to pass through the vertices. The volume of

this sphere is therefore larger than that of the corresponding polyhedron.

also the case for the area of their envelopes. The closer these two 

values are, the better is the approximation of the sphere that is reached by 

a particular polyhedron. The closeness of this approximation can be 

expressed in a value that is called: the Compactness of a polyhedron.

Compactness Cp = Quotient of the area of a sphere with the same 

volume as the polyhedron with the index P, divided by the surface area 

of this polyhedron. 

This value is given in the equation: 

Compactness CP = 
36

23
π * Vol

Area

P

P

 

The dual or reciprocal versions of the polyhedra can be indicated by 

the same number as their mates, but this time, they are preceded by the 

Packings  

Some of the polyhedra lend themselves to being put together in tight 

formations (Fig. 4). In this way quite complex forms can be 

ed. It is obvious hat cubes and rectangular prisms can be stacked 

most densely, but many of the other polyhedra can also be packed in 

certain combinations. Critchlow [Ref. 1] gives an extensive review of all 

theoretical possibilities. 

  
 

Fig. 4. Examples of tight polyhedral packing. 
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5.  Prisms and Antiprisms

Other solids that also respond the previous definition of a polyhedron are 

the prisms and the anti

the lid and the bottom of a box and square side

the prisms but have one of the polygons slightly rotated so as to turn the 

side-faces into triangles. 

 

 (5)

Fig

 

The simplest forms are the prismatic shapes. They fit usually well 

together and they allow the formation of many variations of close

packing. If a number of anti

polygonal faces, a geometry is 

the appearance of a cylindrical, concertina

                    

Fig. 7. Variables that define the shape of antiprismatic forms

P. Huybers 

Prisms and Antiprisms 

Other solids that also respond the previous definition of a polyhedron are 

the prisms and the anti-prisms. Prisms have two parallel polygons like 

the lid and the bottom of a box and square side-faces; anti-prisms are like 

the prisms but have one of the polygons slightly rotated so as to turn the 

faces into triangles.  

    
(5) (6) 

 

Figs. 5 and 6. Models of prisms and anti-prisms. 

The simplest forms are the prismatic shapes. They fit usually well 

together and they allow the formation of many variations of close

. If a number of anti-prisms is put together according to their 

polygonal faces, a geometry is obtained of which the outer mantle has 

the appearance of a cylindrical, concertina-like folded plane. [Ref. 6]

 
 

Variables that define the shape of antiprismatic forms. 

Other solids that also respond the previous definition of a polyhedron are 

two parallel polygons like 

prisms are like 

the prisms but have one of the polygons slightly rotated so as to turn the 

 

The simplest forms are the prismatic shapes. They fit usually well 

together and they allow the formation of many variations of close-

prisms is put together according to their 

obtained of which the outer mantle has 

like folded plane. [Ref. 6] 
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These forms can be described with the help of only few parameters, a 

combination of 3 angles: α, β and γ. The element in Fig. 7A represents  

2 adjacent isosceles triangles. 

 α = half the top angle of the isosceles triangle ABC with height a and 

base length 2b. 

 γ = half the dihedral angle between the 2 triangles along the basis. 

 φn = half the angle under which this basis with the length 2b is seen from 

the cylinder axis. = π/n.  

The relation of these angles α, γ and ϕn [Ref. 3]: 

 tan α = cos γ  cotan (ϕn/2) (2) 

These three parameters define together with the base length (or  

scale factor 2b) the shape and the dimensions of a section in such a 

structure. This provides an interesting tool to describe any anti-prismatic 

configuration. Two additional data must be given: the number of 

elements in transverse direction (p) and that in length direction (q).  

6. Augmentation 

Upon the regular faces of the polyhedra other figures can be placed that 

have the same basis as the respective polygon. In this way polyhedra can 

be ‘pyramidized’. This means that shallow pyramids are put on top of the 

polyhedral faces, having their apexes on the circumscribed sphere of the 

whole figure. This can be considered as the first frequency subdivision of 

spheres. In 1582 Simon Stevin introduced the notion of ‘augmentation’ 

by adding pyramids, consisting of triangles and having a triangle, a 

square or a pentagon for its base, to the 5 regular polyhedra [Ref. 4]. 

Recently, in 1990 D.G. Emmerich extended this idea to the semi-regular 

polyhedra (Fig. 8). He suggested to use pyramids of 3-, 4-, 5-, 6-, 8- or 

10-sided base, composed of regular polygons, and he found that 102 

different combinations can be made. He calls these: composite polyhedra 

[Ref. 5]. 
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Fig

7. Sphere Subdivisions

For the further subdivision of spherical surfaces generally the 

icosahedron – and in some cases the tetrahedron or the octahedron 

used as the starting point, because they co

that can be easily covered with a suitable pattern that is subsequently 

projected upon a sphere. This leads to economical kinds of subdivision 

up to high frequencies and with small numbers of different member 

lengths [Ref. 7]. 

 

 
 

Fig. 11. Models of various dome subdivision methods
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Fig. 8. Augmented P17. 

 

        
(9) (10) 

 

Figs. 9 and 10. Models of zonohedral additions. 

Sphere Subdivisions 

For the further subdivision of spherical surfaces generally the 

and in some cases the tetrahedron or the octahedron 

used as the starting point, because they consist of equilateral triangles 

that can be easily covered with a suitable pattern that is subsequently 

projected upon a sphere. This leads to economical kinds of subdivision 

up to high frequencies and with small numbers of different member 

 

11. Models of various dome subdivision methods. Fig. 12. Great circle subdivisions

 [Ref. 8]. 

 

For the further subdivision of spherical surfaces generally the 

and in some cases the tetrahedron or the octahedron - are 

nsist of equilateral triangles 

that can be easily covered with a suitable pattern that is subsequently 

projected upon a sphere. This leads to economical kinds of subdivision 

up to high frequencies and with small numbers of different member 

 

reat circle subdivisions 



 

 

All other regular and semi

as well as prisms and anti

polygonal faces are first subdivided and then made spherical.

8.  Sphere Deformation

The spherical co-ordinates can be written in a general form, so that the 

shape of the sphere may be modified. This 

shapes that all have the same b

parameters (Fig. 13A). According to H. Kenner [Ref. 9] the equation of 

the sphere can be transformed into a set of two expressions, describing it 

in a more general way:

 

 R

 

 

  

Fig. 13. Form variation of domes by use of different variables

n1 and n2 are the exponents of the horizontal and vertical ellipse and 

E1 and E2 the ratios of their axes. The shape of the sphere can be 

altered in many ways, leading to a number of transformations. The 

curvature is a pure ellipse if n

which approximates the circumscribed rectangle. 

curvature flattens until n

rhombus with straight sides, connecting the maxima on the co

axes. For n < 1 the curvature becomes concave and obtains a shape, 

 A 
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All other regular and semi-regular solids, and even their reciprocals 

as well as prisms and anti-prisms can be used similarly [Ref. 12]. The 

polygonal faces are first subdivided and then made spherical. 

Sphere Deformation 

ordinates can be written in a general form, so that the 

shape of the sphere may be modified. This leads to interesting new 

that all have the same basis but are governed by different 

parameters (Fig. 13A). According to H. Kenner [Ref. 9] the equation of 

the sphere can be transformed into a set of two expressions, describing it 

in a more general way: 

R1 = E1 / (E1
n1

 sin
n1

ϕ + cos
n1

ϕ)
1/n1 

              

R2 = R1E2 / (E2
n2 

sin
n2

θ + R1
n2 

cos
n2

θ)
1/n2

        

  
 

Form variation of domes by use of different variables. 

 

n1 and n2 are the exponents of the horizontal and vertical ellipse and 

E1 and E2 the ratios of their axes. The shape of the sphere can be 

altered in many ways, leading to a number of transformations. The 

curvature is a pure ellipse if n = 2, but if n is raised a form is found, 

which approximates the circumscribed rectangle. If n is decreased, the 

curvature flattens until n = 1 and the ellipse then has the form of a pure 

rhombus with straight sides, connecting the maxima on the co-ordinate 

1 the curvature becomes concave and obtains a shape, 

B C 
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reminiscing a hyperbola. For n

the X-, and Y-axes. By changing the value of both the horizontal and the 

vertical exponent the visual appearance of a hemispherical shape can be 

altered considerably. [Ref

9. Polyhedra in Building

The role that polyhedra can play in the form

important, although this is not always fully acknowledged. Some 

possible or actual applications are referred to here briefly.

9.1. Cubic and Prismatic Shapes

Most of our present

cube as the most generally adopted 

in a vertical or in a horizontal position, in pure form or in distorted 

versions. This family of figures is therefore of utmost imp

building. 

 

 

Figs. 14 and 15. Models of a space frames made of square plates or of identical struts.

9.2. Solitary Polyhedra

Architecture can become more versatile and interesting with macro

forms, derived from one of the more 

reciprocal (dual) forms, although this h

of augmented polyhedra form 

the traditional building shapes.

P. Huybers 

hyperbola. For n = 0 the figure coincides completely with 

axes. By changing the value of both the horizontal and the 

vertical exponent the visual appearance of a hemispherical shape can be 

altered considerably. [Refs. 9 and 10] 

n Building 

The role that polyhedra can play in the form-giving of buildings is very 

important, although this is not always fully acknowledged. Some 

possible or actual applications are referred to here briefly. 

Prismatic Shapes 

esent-day architectural forms are prismatic with the 

cube as the most generally adopted representing shape. Prisms are used 

in a vertical or in a horizontal position, in pure form or in distorted 

versions. This family of figures is therefore of utmost importance for 
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15. Models of a space frames made of square plates or of identical struts.

Polyhedra 

Architecture can become more versatile and interesting with macro

forms, derived from one of the more complex polyhedra or from their 

reciprocal (dual) forms, although this has not often been done. Packing

of augmented polyhedra form are sometimes interesting alternatives for 

the traditional building shapes. 
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sometimes interesting alternatives for 
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Figs. 16, 17 and 18. 

Mali). 

9.3. Combinations

Close-packing is 

frames, because of their great uniformity. If these frames are based on 

tetrahedra or octahedra, all 

angles. Many of such structures have been built in the recent past and 

this has become a very important field of application. The members 

usually meet at joints having a spherical or a polyhedral form (Fig. 15)

9.4. Domes 

R.B. Fuller re-discovered the geodesic dome principle. This has proven 

to be of great importance for the developments in this field. Many domes 

have been built during the last decades, up to very large spans. A new 

group of materials with promisi

which has molecules that basically consist of 60 atoms, placed at the 

corners of a truncated icosahedron or P13 (See Fig. 20).

10. 3D-Slide Presentation

The author has show

help of a 3-D colour slide presentation. Two pictures with different 

orientation of the light waves are projected simultaneously on one 

screen. The screen must have a metal surface which mai
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. 16, 17 and 18. Models of houses based on P10, truncated R7 and P10 (built in 

Combinations 

 also suitable as the basic configuration for space 

frames, because of their great uniformity. If these frames are based on 

tetrahedra or octahedra, all members are identical and meet at specific 

angles. Many of such structures have been built in the recent past and 

this has become a very important field of application. The members 

usually meet at joints having a spherical or a polyhedral form (Fig. 15)

discovered the geodesic dome principle. This has proven 

to be of great importance for the developments in this field. Many domes 

have been built during the last decades, up to very large spans. A new 

group of materials with promising potential has been called after him, 

which has molecules that basically consist of 60 atoms, placed at the 

corners of a truncated icosahedron or P13 (See Fig. 20). 

Slide Presentation 

shown during the conference a few applications w

D colour slide presentation. Two pictures with different 

orientation of the light waves are projected simultaneously on one 

screen. The screen must have a metal surface which maintains these two 
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ways of polarization, so that the two pic

polaroïd spectacles that disentangle them again into a left and a right 

image. These pictures are made either analogously, which means: with 

normal photo cameras and with the two pictures token at a certain 

parallax. The same tec

pairs of pictures are made by computer and subsequently written directly 

onto positive film. This technique allows 

a really three-dimensional way and gives thus a true impressi

spatial properties of the object [
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ation, so that the two pictures can be observed with 

d spectacles that disentangle them again into a left and a right 

image. These pictures are made either analogously, which means: with 

normal photo cameras and with the two pictures token at a certain 

parallax. The same technique can be used for digital slides, were the 

pairs of pictures are made by computer and subsequently written directly 

onto positive film. This technique allows colored pictures to be shown in 

dimensional way and gives thus a true impression of the 

spatial properties of the object [Ref. 15]. 

   
 

Fig. 19. Pair of stereoscopic pictures. 

 

 

 
 

Fig. 20. Model of small ‘Fullerene’. 
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Fig. 21. Review of a great number of polyhedron based models.
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The term ‘novational transformation’ is used to refer to a particular 

kind of geometric transformation that allows the shape of a 

configuration to be modified by specifying one or more ‘movements’. 

Novational transformations are of great value in configuration 

processing, in particular, in relation to shape generation for space 

structures. The objective of the present paper is to explain the general 

idea of a novational transformation and to describe the details of  

the novational transformations that are available for use in the 

programming language Formian. The material is presented in terms of 

a number of examples. 

1. Introduction 

‘Configuration processing’ is concerned with computer aided creation 

and manipulation of configurations and the programming language 

‘Formian’ provides a suitable medium for configuration processing  

[Ref. 1]. Configuration processing activities are performed through a 

variety of conceptual tools. The tools include a number of families of 

transformations that allow the body of a configuration to be deformed in 

various ways. One such family of transformations is discussed in the 

present paper. 
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2. An Example 

Consider the configuration shown in Fig. 1(a). This is a spatial 

configuration consisting of 17 line elements that are connected together 

at 12 nodes. The nodes are numbered in the manner shown in Fig. l(b). 

Now, suppose that the configuration is required to be ‘deformed’ so that 

it fits in a particular location and suppose that the manner in which the 

configuration is to be modified is given by a number of specifications 

regarding nodal positions, as follows: 

(1) Nodes 1, 6 and 8 are to be moved to the positions shown by little 

circles, as indicated by arrows in Fig. l(b). 

(2) The positions of the other nodes may be altered without any 

restriction except for nodes 3 and 9 that are to remain in their 

original positions. 

A possible modified shape of the configuration that satisfies 

conditions (l) and (2) is shown by dotted lines in Fig. 1(c) together with 

the original configuration. The modified configuration is also shown in 

Fig. l(d). It is seen that in addition to satisfying the ‘specified conditions’ 

for nodes 1, 3, 6, 8 and 9, the modified configuration involves 

movements of the other nodes. These additional nodal translocations 

(movements) have the effect of bringing the nodal positions throughout 

the configuration into ‘harmony’ with the specified nodal positions. In 

other words, a node whose position is not directly dictated is moved in a 

manner that ‘conforms’ with the trend of the specified nodal movements. 

Such a nodal translocation is referred to as a ‘conformity translocation’. 

(a)        (b)  

      (c)       (d)  
 

Fig. 1. An example of novational transformation. 
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A process of the kind used to transform the configuration of Fig. 1(a) 

into that of Fig. 1(d) is referred to as a ‘novational transformation’ or 

simply a ‘novation’. The term ‘novation’ may also be used to refer to a 

configuration that is obtained through a novational transformation. For 

instance, the configuration of Fig. 1(d) may be said to be a novation of 

the configuration of Fig. 1(a). 

3. Novations 

A novation involves two kinds of translocations, namely, ‘specified 

translocations’ and ‘conformity translocations’. In the case of the 

example of Fig. 1, nodes 1, 3, 6, 8 and 9 have specified translocations 

and the other nodes have conformity translocations. Note that a node 

such as 3 or 9, whose position is required to remain unchanged, is 

classified as having a specified translocation. That is, it is regarded as 

having a specified ‘null translocation’. 

Novational transformations may be divided into two basic types, 

namely, ‘sharp novations’ and ‘conformity novations’.  

In the case of a sharp novation, all the conformity translocations are 

equal to zero. Thus, the process of novation simply consists of the 

imposition of the specified translocations. In contrast, a conformity 

novation does involve conformity translocations in accordance with a 

rule of some kind. 

In addition to sharp novations, Formian allows the use of a class of 

conformity novations that are based on an ‘exponential decay’ rule for 

determination of conformity translocations. These novations are referred 

to as ‘exponential decay novations’ or ‘ED novations’ (ED stands for 

Exponential Decay). 

4. Sharp Novations 

To illustrate the effect of a sharp novation, consider the configuration 

shown by full lines in Fig. 2(a), which is the same as the configuration of 

Fig. 1(a). Let it be required to subject this configuration to a sharp 

novation with four specified translocations, as indicated by arrows at 

nodes 6 to 9. The result is the configuration shown by dotted lines in  
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Figs. 2(a) and 2(b). Thus, the position of a node remains unchanged 

unless it has a directly specified translocation. 

 

(a)    (b)  
 

Fig. 2. An example of a sharp novation. 

5. Exponential Decay Novations 

Consider the planar configuration shown in Fig. 3 and let it be required 

to subject the configuration to an ED novation with a single specified 

translocation. In general, a specified translocation may or may not be at a 

nodal position. In the case illustrated in Fig. 3, the specified translocation 

is at a non-nodal position. To apply the ED novation, all the nodes of the 

configuration are considered one after the other starting from the first 

node. For a typical node j, the coordinates in the UI and U2 directions are 

modified as follows: 

The k
th
 coordinate of node j is modified by adding to it the quantity  

Tk = Tsk(10
-Cdj

) 

Where 

k is either 1 or 2, indicating the 1
st
 or 2

nd
 coordinate direction, 

Tsk is the k
th
 component of the specified translocation, that is, TS1 or TS2                                        

as shown in Fig. 3, where the subscript s indicates that TS1 and TS2 

are components of the ‘specified’ translocation. 

dj is the ‘relative’ distance of node j from the position of the specified 

translocation and is given by the ratio Dj/D, where, 

D is the length of the diagonal of the ‘box frame’ of the configuration, 

as shown in Fig. 3, where, the box frame of a configuration  

is defined as the smallest rectangle (or rectangular solid or  
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hyper-rectangular solid) that contains the configuration and whose 

edges are parallel to the coordinate axes, 

Dj is the distance of the node j from the position of the specified 

translocation, as shown in Fig. 3, and 

C is referred as the ‘control parameter’. 

 

 
 

Fig. 3. A planar configuration with a specified translocation. 

 

 
 

Fig. 4. Exponential decay curves. 

 

The quantity Tk = Tsk(10
-Cdj

) is plotted against dj, in the range dj = 0 to 

dj = 1, for different values of C in Fig. 4. The purpose of this figure is to 

illustrate how a component of specified translocation (that is, TSk) affects 

the coordinates of a typical node j. When C > 0, then the proportion of 

TSk that is transferred to node j (that is, Tk) varies between zero and 

unity, as shown in Fig. 4. 

The curves in Fig. 4 relate to different values of C. It is seen that the 

proportion of TSk that is transferred to node j always decreases with 

increasing dj. However, the higher the value of C, the more rapid is the 

‘decay’ of the curve. That is, the value of C is a measure of the rate of 
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decay of the curve. In other words, the higher the value of C, the less the 

effect of TSk will be on the coordinates of the nodes of the configuration. 

An example of the application of the ED novation is shown in  

Fig. 5(a). The planar configuration shown by full lines in Fig. 5(a) has  

8 line elements and 6 nodes. There is only one specified translocation 

which is indicated by an arrow at node 5. The components of this 

translocation in the first and second directions are TS1 = 2 and TS2 = 1, 

respectively. The configuration is subjected to an ED novation with  

C = 1. The resulting configuration is shown by dotted lines, with the 

numerical values of the nodal coordinates and translocation components 

given in Fig. 5(b). The values given for node 5 in the last two columns of 

the table in Fig. 5(b) are the components of the ‘specified’ translocation 

but the values for the other nodes in these columns are the components of 

‘conformity’ translocations. 

 

 

 

        (a) Control parameter C is 1 (b) 

                     
       (c) Control parameter C is 0.5                           (d) Control parameter C is 1.5 

 

Fig. 5. Example of ED novations with a single specified translocation. 

Node  U1  U2  
Translocation  

T1  T2  

1  1  1  0.32394  0.16197  

2  4  1  0.63246  0.31623  

3  1  4  0.39258  0.19629  

4  4  4  0.88608  0.44304  

5  7  4  2 1  

6  4  7  0.63246  0.31623  
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To illustrate the effect of the control parameter C, the configuration 

of Fig. 5(a) is subjected to ED novations with another two values of  

C and the results are shown in Figs. 5(c) and 5(d). The value of the 

control parameter C in Fig. 5(c) is equal to 0.5. The comparison of  

Figs. 5(a) and 5(c) indicates that the conformity translocations in  

Fig. 5(c) are larger than the corresponding ones in Fig. 5(a). The reverse 

is true for the example shown in Fig. 5(d) where the control parameter C 

is equal to 1.5. 

6. Multiple Specifications 

Now suppose that the configuration of Fig. 5(a) has two specified 

translocations, as shown in Fig. 6(a). In this case, in addition to node 5 

that has the same specified translocation as before, node 6 has a specified 

translocation whose components in the first and second directions are  

1 and -1, respectively. In applying the ED novation in this situation, one 

may be tempted to think that the problem can be handled by a ‘double 

application’ of the procedure used in the example of Fig. 5. That is, by 

combining the results of the separate applications of the procedure  

for nodes 5 and 6 in Fig. 6(a). However, this strategy will fail to  

produce the desired effects. The problem is due to the ‘interaction’ 

between the specified translocations at nodes 5 and 6. Thus, if the 

‘double application’ strategy is followed, the final translocations at nodes 

5 and 6 will be different from the specified ones.  

 

          (a) Control parameter C is 1                                               (b) 

 

Fig. 6. Example of an ED novation with two specified translocations. 

Node U1 U2 
Translocation 

T1 T2 

1 1 1 0.36917 0 

2 4 1 0.67178 0.17541 

3 1 4 0.49637 -0.17541 

4 4 4 1.00980 0 

5 7 4 2 1 

6 4 7 1 -1 
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The question is: What components of translocation should be 

imposed at nodes 5 and 6 so that the combined effects produce the 

correct values of the specified components of translocation? To answer 

the question, let the components of translocation that should be imposed 

at nodes 5 and 6 be denoted by T1W1, T1W2, T2W1, and T2W2. These  

are referred to as ‘working translocation components’ and correspond, 

respectively, to the specified translocation components T1S1, T1S2, T2S1, 

and T2S2, shown in Fig. 6(a). In general, a component of a specified 

translocation is denoted by TiSk. This represents the component in the k
th
 

coordinate direction of the i
th
 specified translocation. The general form of 

a component of working translocation is TiWk. The notation is similar to 

that of TiSk except for the subscript w (for working) that appear instead of 

s (for specified). The relationships between the two sets of components 

for the example of Fig. 6(a) may be written as follows: 

 

where d12 is the ‘relative distance’ between the positions of the first and 

second specified translocations. The first equation states that the 

combination of  

• the first component of working translocation at node 5 and  

• the translocation in the first direction of node 5 caused by the first 

component of the working translocation at node 6  

must add up to the first component of the specified translocation at  

node 5. The remaining three equations have similar implications. 

The above equations in matrix notation will assume the form: 
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where 

 

and since 

 

then 

 

The above matrix equation may be represented as 

A Tw = Ts 

where A is referred to as the ‘interaction matrix’, Tw is referred to as the 

‘working translocation vector’ and Ts is referred to as the ‘specified 

translocation vector’. With the actual values of the components of  

the specified translocations inserted in Ts, the above matrix equation 

becomes: 

 

The solution is found to be: 

 

With the value of the control parameter C chosen as 1, 

 

and the working translocation components are found to be: 

T1W1 = 1.870858, T1W2 = 1.462475, T2W1 = 0.408383 and T2W2 = -1.462475 
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It should be noted that the above system of simultaneous equations 

has a solution if and only if E <>   1, that is, if and only if C <>   0.  

In general, an interaction matrix is a square symmetric matrix with a 

simple constitution. To illustrate the characteristic form of an interaction 

matrix, the equation 

A Tw = Ts  

for a three-directional configuration with specified translocations at four 

points is shown below: 

 

where 

•  

•  

• D12 is the distance between the point that has the first specified 

translocation and the point that has the second specified translocation. 

D13 is the distance between the point that has the first specified 

translocation and the point that has the third specified translocation, 

…etc and  

• D is the length of the diagonal of the box frame of the configuration. 

The number of coordinate directions in the above matrix is taken  

to be three. However, the concept of novation is applicable to 

configurations with any number of coordinate directions. 
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When there are two or more specified translocations then the control 

parameter C is required to be nonzero. This is due to the fact that when  

C = 0 then the interaction matrix A will be singular and the system of 

simultaneous equations ATW = TS will not have a unique solution (With  

C = 0, all the nonzero off-diagonal elements of A will be equal to 1 and 

the matrix will have a number of identical rows and columns and a 

vanishing determinant). However, when there is only one specified 

translocation then the control parameter C may have a zero value without 

any problem. In this case every node of the configuration will undergo a 

translocation identical to the specified translocation. 

When the system of simultaneous equations ATW = TS has a unique 

solution then an efficient way of obtaining this solution will be to solve 

the following equivalent system of simultaneous equations: 

 

Returning to the example of Fig. 6, once the working translocations 

are in hand, a generalised form of the procedure used for the example of 

Fig. 5(a) can be employed to deal with multiple specified translocations. 

This generalised procedure is given by the formula: 

 
where 

Tk  is the k
th 

component of translocation at a typical node j, 

n  is the number of points that have specified translocations, 

TiWk  is the k
th

 

component of the i
th

 

working translocation, 

dij  is the relative distance of node j from the position of the i
th 

specified 

translocation and is given by the ratio Dij/D, where, 

Dij is the distance of node j from the position of the ith
 specified 

translocation, 

D is the length of the diagonal of the box frame of the configuration and 

C is the control parameter. 
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The application of this procedure to the configuration of Fig. 6(a) will 

give rise to the configuration shown by dotted lines, with the numerical 

results given in the table of Fig. 6(b). 

7. Further Examples 

Some examples of novational transformations are given in Fig. 7. The 

configuration shown in Fig. 7(a) is a planar configuration consisting of 

I8xI2 square elements. The configuration shown in Fig. 7(b) is obtained 

by a sharp novation of the configuration of Fig. 7(a) with the specified 

translocations being at the four corner nodes. These translocations are 

along the diagonals of the configuration. It is seen that the novation has 

only affected the four corner nodes that have specified translocations and 

all the other nodes are left in their original positions. 

The configurations shown in Figs. 7(c), 7(d) and 7(e) are obtained 

using ED novations with the same specified translocations as in  

Fig. 7(b). The difference between the novations that have resulted in the 

configurations of Figs. 7(c), 7(d) and 7(e) is in the value of the control 

parameter C. The values of C for Figs. 7(c), 7(d) and 7(e) are 2, 1 and 6, 

respectively. The value of C controls the ‘spread’ of the influence of the 

specified translocations. The higher the value of C, the greater the 

‘decay’ in the spread of the influence of the specified translocations will 

be. That is, the higher the value of C, the more localised the influence of 

the specified translocations will be. In other words, the lower the value of 

C, the larger the conformity translocations will be. That is, the lower  

the value of C, the more far reaching the influence of the specified 

translocations will be. 

The configurations of Figs. 7(f), 7(g) and 7(h) are obtained using ED 

novations with the control parameter C being equal to 1. The specified 

translocations for these configurations are at the mid-points of the edges. 

In Fig. 7(f), the translocations are outward in both UI and U2 directions. 

In Fig. 7(g), the translocations are outward in the U1 direction and 

inward in the U2 direction. In Fig. 7(h), the translocations are inward in 

both U1 and U2 directions. 
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Some examples of novational transformations in a three-directional 

space are shown in Fig. 8. The configuration in Fig. 8(a) consists  

of an array of I6x24 square elements lying in the UI-U2 plane. The 

configurations in Figs. 8(b) to 8(h) are obtained using ED novations with 

the control parameter C being equal to 1. 

 

 

Fig. 7. Examples of planar ED novations. 
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Fig. 8. Examples of spatial ED novations. 
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The configurations of Figs. 8(b), 8(c) and 8(d) are obtained by 

holding the four corner nodes in their original positions and raising one 

or more of the other nodes in the U3 direction. In Fig. 8(b), the central 

node is raised by 6 units. In Fig. 8(c), two internal nodes are raised by  

4 units. In Fig. 8(d), the mid-points of the edges are raised by 4 units. 

Fig. 8(e) is obtained by creating a parabolic arch along one edge 

while holding all the nodes along the other three edges at their original 

positions. The specification of the translocations that produces the 

parabolic arch is achieved using the equation 

 

where L is the span of the arch (16 in the present example) and h is the 

height of the arch at the middle (4 in the present example). The actual 

specification of the translocations for this example is given in section 9. 

The configuration of Fig. 8(f) is obtained in a similar manner except 

for the position of the arch which is along a central line. The same 

approach is used for the creation of Fig. 8(g) that involves three arches. 

Finally, the configuration of Fig. 8(h) is obtained by creating arches 

along all four edges. 

8. Indirect ED Novations 

In the case of a sharp novation, the specified translocations are required 

to be at nodal positions of the configuration. However, as far as an ED 

novation is concerned, the specified translocations need not necessarily 

be at nodal positions. An ED novation in which all the specified 

translocations are at nodal positions is referred to as a ‘nodal ED 

novation’ or a ‘direct ED novation’. In contrast, an ED novation that 

involves one or more specified translocations at non-nodal positions is 

referred to as a ‘non-nodal ED novation’ or an ‘indirect ED novation’. 

The process of ED novation as described in the paper will be identical 

for both direct and indirect ED novations except for a minor difference 

that for a direct ED novation the relative distance dij is always in the 

range 0 to 1 but in the case of an indirect ED novation the value of dij 

may be greater than 1. 
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Fig. 9. Examples of direct and indirect ED novations. 

 

One reason for using an indirect ED novation is to smooth out the 

‘cusp effect’ of a specified translocation. The smoothing effect of 

indirect novations is exemplified in Fig. 9. Figs. 9(a) to 9(f) are obtained 

by subjecting the configuration of Fig. 8(a) to ED novations with the 

control parameter of 1 and with the four corner nodes held at their 

original positions. In Fig. 9(a) the node whose UI-U2-U3 coordinates are 
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(16,12,0) is specified to move to point (16,12,6). In Fig. 9(b) the point 

whose coordinates are (16,12,2) is specified to move to point (16,12,10) 

and in Fig. 9(c) the point whose coordinates are (16,12,10) is specified to 

move to point (16,12,30). Also, Figs. 9(d) to 9(f) are obtained using the 

indicated specified translocations. The maximum rise in the U3 direction 

for all the configurations in Fig. 9 is around 6 units. 

The examples in Fig. 9 show that the smoothing of the cusp effect is 

achieved by placing the specified translocations away from the 

configuration, where, 

• the further away the translocation is placed, the greater the smoothing 

effect will be and 

• to obtain similar maximum rises, the further away the translocation is 

placed the greater the magnitude of the translocation should be. 

9. Novation Function 

The ‘novation function’ is the mechanism through which novational 

transformations are carried out in Formian. The particulars of this 

function are given in Fig. 10. For example, the following sequence  

of Formian instructions will produce a formex that represents the 

configuration of Fig. 8(e): 

fa = rinid(l6,24,1,1) I [0,0,0; 1,0,0; 1,1,0; 0,1,0] 

Lo = rin(l,17,1) I [0,0,0] 

La = lib(i = 0,16) I [i,0, i-i*i/16] 

Lb = rin(l,17,l) I [0,24,0] # rinid(2,23,16,1) I [0,1,0] 

fe = nov(2,1,Lo#Lb,La#Lb) Ifa 

where 

• fa is a formex representing the configuration of Fig. 8(a),  

• Lo is a formex listing the nodes along the U1 axis,  

• La is a formex listing the translocated positions of the nodes along the 

U1 axis, where, the formulation uses the parabolic equation given in 

section 7,  

• Lb is a formex listing the nodes along the other three edges and  

• fe is a formex representing the configuration of Fig. 8(e). 
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Fig. 10. Particulars of novation function. 
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Details regarding the formulations, notation and terminology used in 

the above example (as well as in Fig. 10) are given in Reference 1. 

The novation function has been in use in formex configuration 

processing since the mid-eighties.
2
 However, the definition of this 

function has been in a form equivalent to what is called ‘sharp novation’ 

in the present work. The extended definition of the novation function, as 

described in this paper, has been recently implemented in Formian and is 

available for use.   
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CHAPTER 6 

SOME STRUCTURAL-MORPHOLOGICAL ASPECTS OF 

DEPLOYABLE STRUCTURES FOR SPACE ENCLOSURES 

Ariel Hanaor  

Sr. Research Associate, National Building Research Institute, The Technion, 

Israel Institute of Technology, Technion City, Haifa 32000, Israel 

The paper is a review of deployable structural systems that have  

been proposed recently for the purpose of space enclosure. The 

structural systems are characterized and classified by their structural-

morphological properties and by the kinematics of deployment. Some 

retractable and dismountable configurations are also reviewed. The 

systems are evaluated in terms of their structural efficiency, technical 

complexity and deployment/stowage efficiencies. The paper includes 

an extended list of references. 

1. General Principles 

1.1. Definitions and Scope 

Deployable structures are generally used in two types of applications:  

a) as temporary structures; b) in inaccessible or remote places, such  

as outer-space. The first application implies a reversible process of 

deployment and undeployment, while the second may not. Two extreme 

types of deployable structures can be distinguished: Fully deployable 

structures are fully assembled in the stowed state, and the deployment 

process involves no component assembly. In fully dismountable 

structures (assemblable according to Ref. 9), on the other hand, the 

structure is stowed as separate components (at member level). It is 

assembled on site from these components and can be disassembled back 

into the stowed state.  
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The paper deals primarily with structures that are fully deployable or 

composed of large deployable sub-assemblages, and with the specific 

application of space enclosure. However, some reference is made to 

some types of dismountable structures and also to certain types of 

retractable roofs. Although outer-space applications are excluded from 

the scope, some technologies that have been proposed for outer-space 

applications are adaptable to terrestrial space enclosures and are included 

in this review and in the reference list. 

1.2. Classification 

The purpose of a classification system is to highlight in a hierarchical 

fashion the principles governing the set of objects under discussion. The 

present paper is concerned with the structural-morphological properties 

as the primary interest. The overall classification system is presented in 

the chart in Fig. 1, in the form of a two-way table. The columns of the 

table represent the morphological aspects and the rows the kinematic 

properties, which are of primary significance in the context of deployable 

structures.  

Two subcategories are considered for each of the main classification 

categories. The two major morphological features are lattice or skeletal 

structures, and continuous or stressed-skin structures.  It should be noted 

that in the context of space enclosures, all structures have a functional 

covering surface. The difference between the two classes of structures 

mentioned above is that in skeletal structures, the primary load-bearing 

structure consists of discrete members, whereas in continuous structures 

the surface covering itself performs the major load-bearing function. A 

third class, namely hybrid structures, combines skeletal and stressed-skin 

components with approximately equal roles in the load-bearing 

hierarchy, but in the present classification each of the components is 

dealt with in its respective class. The two major kinematic subcategories 

are systems comprised of rigid links, such as bars or plates, and systems 

containing deformable or soft components, which lack flexural stiffness, 

such as cables or fabric. In general, the deployment of structures 

composed of rigid links can be more accurately controlled than that of 
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deformable structures, but usually at a cost of increased mechanical 

complexity. 
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Fig. 1. Deployable structures classification chart. Numerals indicate illustration 

references. 

65 
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Each of the four major classes generated by this two-way division is 

further subdivided according to more specific morphological features, as 

indicated in Fig. 1 and discussed in more detail below. The extended 

reference list at the end of the paper is arranged in accordance with the 

classification scheme. References 1-13 deal with topics common to 

several differing systems. 

1.3. Kinematics 

Kent
5
 defines a kinematic structure as one having a single kinematic 

degree of freedom (KDOF), namely, the positioning of one node in the 

structure relative to the others, determines uniquely the geometry of the 

structure. Such systems represent the ultimate deployment control, since 

only one point needs to be controlled to determine the geometry at any 

instant during the deployment.  While such feature is of great advantage 

in outer-space applications, it is of lesser significance in terrestrial 

applications, where several degrees of freedom are normally constrained 

(e.g. along the boundaries) and where manual intervention is feasible. 

Obviously, such kinematic control is possible only in structures 

consisting of rigid links, since deformable components have infinite 

degrees of freedom. The majority of deployable space enclosure 

structures are based on hinged mechanisms. The “minimal” hinged 

mechanism possessing a single kinematic degree of freedom (SKDOF) is 

one composed of four links (members) and four hinges – Fig. 2a. This 

KDOF can be propagated in the plane or in space by extending the links 

and connecting units to generate periodic structures (Fig. 2c presents a 

simple planar example). In space, more complex basic mechanisms are 

possible,
5
 but in practice most deployable structures, particularly in 

terrestrial applications, consist of combinations of planar mechanisms. 

The constraint of SKDOF and the limited range of basic mechanisms 

notwithstanding, the range of kinematic configurations that can be 

constructed is vast, although only part of the configurations presented in 

Ref. 5 are applicable for deployable structures. 
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a         b            c  
 

Fig. 2. Planar SKDOF mechanisms: a) Basic minimal mechanism with rotational 

releases; b) Basic mechanism with slide releases; c) Propagation of basic rotational 

mechanism – pantographs. 

1.4. Design and Evaluation Criteria 

General design criteria for deployable structures are derivatives of the 

function of these structures as temporary, possibly multi-purpose and of 

repeated use. Design criteria relate generally to three phases in the 

structure’s life cycle. These phases are: design; storage and haulage;  

site operations (deployment/dismounting). Structural-morphological 

(including kinematic) considerations affect and are associated with  

all design criteria to a larger or lesser extent. Howeveer, The present 

paper is concerned primarily with structural-morphological aspects of 

deployable structures, rather than with the deployment process and its 

efficiency, and the discussion that follows is focused on these aspects.  A 

primary structural criterion is structural efficiency, defined as the ratio of 

load bearing capacity to weight (for a given material). The primary 

parameter affecting structural efficiency is structural depth, which 

controls the magnitude of internal forces and stresses. The review is 

arranged in the sequence of the classification chart (Fig. 1), where each 

system is described in terms of its main morphological, kinematic and 

structural characteristics. 

2. Double-Layer Grids 

2.1. Pantographic Grids 

Morphology and kinematics: Double-layer pantographic grids are  

mostly based on prismatic units composed of scissors.  These units are 

connected at the apices or along the sides of their base polygons to 
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generate tessellations, with vertices lying in two parallel surfaces 

connected by scissor units. There are no bars actually lying in the 

surfaces to form chords. Two basic types of scissor units can be 

identified – Fig. 3: The more common type of grid is composed of units 

of peripheral scissors, where each side face of the basic prism is formed 

by a pair of scissors (Fig. 3a). The less common type is composed of 

radial scissors, where scissor-arms intersect with a common composite 

hinge at the centroid of the prism (Fig. 3b). It is possible to generate 

basic units that combine peripheral and radial units,
50

 but these are too 

complex mechanically, to be of practical use. Some composite basic 

units have been proposed in the literature,
30,31,42,43

 which combine several 

peripheral triangular prisms in a “clicking” mechanism, providing 

improved stiffness and a locking device. Such a unit, composed of four 

right-angle triangles, is shown in Fig. 3c.  

a       b        c  

 

Fig. 3. Basic scissors units: a) Peripheral scissors – triangular and rectangular prisms22;  

b) Radial scissors – triangular antiprism, rectangular prism22; c) A “clicking” unit.43 

 

Configurations based on triangular and rectangular or rhomboid units, 

are the most common that have been proposed to date for actual 

implementation, but a large variety of geometries can be found in the 

literature. In the chart in Fig. 1 are shown a structure based on 

rectangular peripheral units
19

 and one based on triangular radial units 

connected at their vertices (with “holes” between units).
22

 The latter 

configuration, favored by Piñero
36

 has a low bar density but also low 

stiffness. Some configurations have been proposed in the literature, 

which are not based on propagation of basic units. These are mostly grids 

with radial deployment.
5
 In the chart of Fig. 1 is shown a domical 

configuration based on radial and ring scissors.
51

 

The kinematic motion of the scissors is propagated along the two-way 

or three-way pantograph as a single degree of freedom. However, 



 Structural-Morphological Aspects of Deployable Structures 89 

 

structures forming non-triangular grids have additional in-plane degrees 

of freedom, implying that the generated grid is not geometrically  

rigid and requires stiffening of the surface, particularly when the  

surface is curved. A doubly curved triangular grid, on the other hand,  

is geometrically rigid but kinematically incompatible, except at the 

deployed and the folded states. At intermediate states, there is some 

resistance to motion, depending on the stiffness of the components and 

joints. A “clicking” effect is thus generated in triangular grids. 

Structural efficiency: The pantograph on its own lacks structural 

depth, beyond the depth of the individual bars, and therefore would have 

an extremely low structural efficiency as a planar surface. The double-

layer aspect is a geometrical, not a structural feature, unless chords are 

added in the form of additional bars or tendons.  This is the reason that 

curved surfaces are favored, providing a structural depth and enabling 

direct (axial) action as the primary mode. Flexure in the bars as a 

secondary action nevertheless remains a major feature that detracts from 

structural efficiency. The need for articulation at joints reduces stiffness 

and introduces a source of imperfections. The surface membrane, 

commonly employed in these structures, can be used as a bracing 

element, as well as to control member buckling. Unfortunately, very little 

attention has been given to this topic. Such treatment as exists has been 

limited primarily to geometric and kinematic compatibility aspects.
23

  

2.2. Other DLG Bar Systems  

It appears that the pantograph principle, or variations on it, is the 

simplest technique for producing deployable bar structures. Few 

alternative concepts for double-layer grids have been proposed that 

consist entirely of bars, and the majority of those were developed for 

outer-space applications. The main motivation for these concepts is the 

high degree of reliability in deployment required in outer space. These 

concepts often involve complex articulated joints and mechanisms, 

including sliding joints (see for instance illustration in Fig. 1
56

). 

Adaptation of these concepts to terrestrial applications is feasible, but 

even when simplifications are introduced, such concepts are expected to 

be costly and limited to highly specialized applications.  
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2.3. Strut-Cable Systems   

Several deployable concepts have been proposed in the literature,  

which combine rigid bars with cables in a variety of configurations.  

The principle has high application potential in that it enables to  

optimise between the sometimes conflicting requirements of deployment 

reliability, technical simplicity (limitation of articulated mechanical 

joints) and structural efficiency (weight reduction).  

Morphology and kinematics: This class of structures combines 

together a number of morphologically and topologically distinct systems. 

The predominant concept in this group is the so-called “tensegrity” 

structures. The term is ill defined and widely differing concepts have 

been proposed in the literature under this catchy label. In its “pure” form, 

a tensegrity structure consists of a network of bars and cables, in which 

any bar is connected only to cables and to no other bar. Such restrictive 

definition is important in the context of deployable structures because it 

implies the complete absence of articulated joints. The deployability is 

provided by the deformable cables. The deployment process of such 

structures requires the change in length of members. Accordingly, two 

deployment techniques have been proposed. One technique involves  

the change of bar length by means of energy supply (hydraulic or 

mechanical) to telescoping bars. The other technique involves the pulling 

of cables over a system of pulleys attached to the bars. Each method  

has its advantages and drawbacks regarding mechanical complexity, 

deployment reliability and structural efficiency. A generalized tensegrity 

concept can be defined as having a disconnected (in the graph-theoretical 

sense) system of bars, namely, consisting of disjoint groups of connected 

bars. In this case some articulation is required. The illustration of the 

tensegrity concepts in Fig. 1
64,85

 is an example. 

Other concepts involving combinations of bars and cables have been 

proposed. The second illustration of a DLG system in Fig. 1 involves 

pantographic spines that in their deployment prestress a network of 

octahedra consisting of bars and cables.
65

 The system has a single KDOF 

and it was proposed for outer-space applications, but it is readily 

implementable in terrestrial applications. The configuration shown lacks 

substantial chords. To achieve structural depth, curved surfaces need to 
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be generated, or chords added (in the form of either bars or prestressed 

tendons). 

Structural efficiency: Structural efficiency of pure tensegrity 

structures is governed by the long unbraced bars. Structural efficiency of 

configurations with bars joined between the two layers, as in the 

configuration in Fig. 1,
64

 is considerably improved. Employment of the 

cover membrane to brace struts in configurations which facilitate this can 

further improve efficiency. 

3. Single-Layer Retractable and Dismountable Grids 

3.1. Angulated Pantographic Grids   

Two types of pantographic angulated scissors retractable roofs are 

illustrated in Fig. 1. The better known Hoberman concept
70

 involves 

individual “two-armed” scissors, whereas the second type
71

 involves 

continuous rigid angulated arms curving from the centre of the circular 

or oval roof (in the closed position) towards the perimeter in two 

crossing families. This latter configuration can be surfaced with rigid 

covering panels attached to one of the families of rigid arms (one panel 

per arm). During closing and opening each of these arms rotates around a 

fixed point. 

3.2. Reciprocal Grids and Ruled Surfaces  

Reciprocal grids are essentially domical surfaces consisting of mutually 

supported beams. As such they are subjected to considerable flexure and 

therefore possess low structural efficiency. Configurations consisting of 

non-triangular cells (usually rhomboid cells) are theoretically foldable to 

a bundle, but in practice the members are long and bulky and the bundles 

are not very compact. For this reason the concept is suitable for 

dismountable rather than deployable applications. The surface can be 

assembled simply and rapidly from the individual members using very 

simple joints (seated joints are sufficient). The surface is suitable for 

rigid covering, which can serve both for bracing and for improving 

structural efficiency, but the attachment of this surface detracts from the 

speed of erection of the structure. 
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A large variety of ruled hyperbolic surfaces and composites of  

such surfaces can be generated, consisting of two families of straight 

members.
5,78

 Theoretically, these surfaces, which consist of rhomboid 

cells, fold to a bundle but in practice they are subject to the same 

limitation as reciprocal grids and are suitable for dismountable, rather 

than deployable structures. 

4. Masts and Spines for Fabric and Hybrid Structures   

4.1. Rigid Bar Grids 

Pantographic grids: A pantographic spine is produced from any of the 

basic prismatic scissor units (Fig. 3) by joining them not side by side, but 

at the prism bases. Straight or arched configurations can be generated.
16

 

These configurations do not fold to a bar bundle but to polygonal stacks. 

Furthermore, the joints involved are mechanically more complex than the 

essentially planar joints of the DLG configurations. Planar pantographs 

can also be used, which fold into a bar bundle. Such configurations rely 

on the surface membrane to restrain lateral buckling.
91,93

 

Other bar grids: Several concepts employing articulated joints  

have been proposed,
86,88

 particularly for booms in outer space, but  

these often involve complex articulated joints and are thus very costly. 

However, it should be borne in mind that spine elements are few and far 

between, so the cost is spread over the large area covered. High stiffness 

and strength are often required from these structures due to the high 

loads they may be subjected to and such requirements may not be 

satisfied by pantographic or strut-cable systems. 

4.2. Strut-Cable Systems 

As observed for DLGs, pure tensegrity structures possess low structural 

efficiency and low stiffness, and therefore they are unsuitable for use as 

spines, which collect loads from a large area. Other types include 

generalized tensegrity grids, namely involving strut-strut contact
83,85

 and 

configurations that combine rigid bar units with cables as means of 

deployment and prestress.
92

 A super-light application
84

 for fabric 
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structures involves spines c

rods and fabric web (rather than cables). These concepts are often semi

deployable or dismountable

the deployability of the system as a whole is not significantly affected.

5. Plate Structures

5.1. Folded Plates

Kinematics and Morphology

of plate structures consists of four plates connected by hinges. Two 

configurations can be distinguished as shown in Fig. 4a, one consisting 

of parallel hinges and 

The parallel fold gives rise to planar folded surfaces whereas the 

intersecting fold enables curved configurations. Both configurations fold 

to (theoretically) flat planes in two ways, provided certain geomet

relations between the links are observed

combined to generate a very large array of folded surfaces

“four-fold” configurations (Fig. 4b) have a single KDOF.  In practice,
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Fig. 4. a) Basic “minimal” SKDOF mechanisms for generating folded plate structures

b) Four-fold folded surface
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structures involves spines consisting of chords made of fiber composite 

rods and fabric web (rather than cables). These concepts are often semi

deployable or dismountable,
83,84,92

 but since few elements are involved, 

the deployability of the system as a whole is not significantly affected.
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Plates 

Kinematics and Morphology: The basic “minimal” SKDOF mechanism 

of plate structures consists of four plates connected by hinges. Two 

configurations can be distinguished as shown in Fig. 4a, one consisting 

of parallel hinges and the other with hinges intersecting at a point. 

The parallel fold gives rise to planar folded surfaces whereas the 

intersecting fold enables curved configurations. Both configurations fold 

to (theoretically) flat planes in two ways, provided certain geomet

relations between the links are observed.
5
 These basic units can be 

combined to generate a very large array of folded surfaces.
5,94 

fold” configurations (Fig. 4b) have a single KDOF.  In practice,
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a) Basic “minimal” SKDOF mechanisms for generating folded plate structures

fold folded surface94; c) Merging of four-fold to six-fold pattern. 
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fold” configurations (Fig. 4b) have a single KDOF.  In practice, 

 

a) Basic “minimal” SKDOF mechanisms for generating folded plate structures5; 
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folded surfaces are usually generated with six folds, rather than four, 

meeting at a point (see, for instance illustration of linear deployment in 

Fig. 1
101

). This configuration is, in fact, a merging of two four-fold 

vertices – Fig. 4c. This merging enables increasing the surface curvature 

but results in increasing also the number of KDOFs. This is not a major 

drawback, since definition of the boundaries uniquely defines the 

geometry and provides control of deployment. 

The majority of folded plate structures proposed to date have a linear 

(or curvilinear) deployment and they fold into a compact slab of stacked 

plates. Some configurations have been proposed in the literature that fold 

to a compact cylinder and deploy radially out of the cylinder to form a 

folded “disc”.
5,97

 The illustration in Fig. 1
5
 shows such a disc with 

circumferential folds in the deployed state (domical configurations are 

also possible). To fold it, a radial “cut” is made and the edges overlap 

(several turns, theoretically) until a compact spiral cylinder is produced. 

To realize such configurations with curved folds in practice, the material 

has to be very thin and flexible. A configuration with spiral folds  

that folds to a compact cylinder has been proposed
97

 originally for 

deployment of membrane in outer space, but it can also be realised as a 

folded plate. This pattern does not involve overlap and is therefore more 

suitable for implementation as deployable structure. 

Structural efficiency and weight: Folded plate structures inherently 

possess high structural efficiency. This inherent efficiency, however, 

does not automatically translate into light weight, since the plates 

themselves, which are subject to compression and flexure, require 

minimum dimensions. The resulting overall weight may be higher than 

in structures surfaced with membrane. 

5.2. Curved Surfaces 

Doubly (and singly) curved surfaces can be discretised into plate 

elements. In general, these surfaces cannot be folded and deployed as 

one unit. Unfolded planar patterns can be obtained by disconnecting 

certain joints between plates and these patterns can, in principle, be 

further folded into compact stacks. The concept is more suitable for 
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dismountable or semi-dismountable implementation than to primarily 

deployable ones – See illustration in Fig. 1.
96

  

6. Tensioned Membrane Systems 

6.1. Fabric and Hybrid Structures 

Morphology and kinematics: As a rule, a pure tension structure does not 

exist. To maintain equilibrium some compressive elements must be 

present. In fabric structures these elements are composed of rigid bars, 

singly or as skeletal elements (in pneumatic structures the compressive 

element is primarily air pressure). Two main types of fabric structures 

are distinguished: In tents, the compression elements, usually in the form 

of masts, are external to the fabric surface and act separately from it. In 

ribbed structures, the compression elements form part of the surface, and 

usually interact structurally with the membrane. In hybrid structures the 

compression element is a self-supporting structure separate from the 

membrane and supporting it. In this sense these are different from the 

two other types, where the compression elements are both supporting and 

are supported (or braced) by the membrane. 

Since the membrane itself is inherently deployable, the kinematics 

and deployability are governed by the deployability of the compressive 

elements. This aspect is discussed under section 4 above – “Masts and 

spines for fabric and hybrid structures”. The illustrations in Fig. 1 show  

a deployable structure that can be considered a tent or a hybrid  

structure,
111

 and a ribbed fabric structure.
83

 The tent is used as a cover for 

a mobile stage and each of the three external masts folds in half and 

occupies a semi-trailer in transportation. The low stowage efficiency is 

made up for by rapid deployment. The ribbed structure employs a 

dismountable strut-cable spine. 

Structural efficiency: Structural efficiency is extremely high when 

adequate structural depth is provided by the surface. Overall weight is 

governed by the compression elements rather than by the surface 

covering. Ribbed structures, in which the membrane restrains lateral and 

overall buckling, are particularly efficient and light. In general, fabric 
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structures are the lightest known, with the exception, perhaps of 

pneumatic structures. 

6.2. Pneumatic Structures  

Pneumatic structures are tension membrane structures in which the 

compression required to balance the membrane tension is provided by air 

pressure. These are probably the most efficient deployable structures 

from the point of view of stowage efficiency, particularly if auxiliary 

equipment – compressors and anchorage components are ignored.  Two 

distinct types are distinguished, According to the way that air pressure is 

used to prestress the membrane: low-pressure and high-pressure. 

Examples of the two types are shown in the relevant illustrations in  

Fig. 1.
115

 

Low-pressure pneumatic structures: In this type, the whole functional 

space is pressurised to the extent required to balance the external applied 

load (self weight, snow, wind). The structural depth is the full depth of 

the structure and hence structural efficiency is extremely high, if the 

anchorage system is ignored. Because a substantial uplift acts on the 

membrane, it has to be anchored to the ground or weighted down along 

the boundary. Additional architectural drawbacks of this system stem 

from the need for the enclosed space to be essentially sealed and for air 

to be pumped continuously, thus limiting architectural flexibility and 

range of applications. 

High-pressure pneumatic structures: These structures consists of 

closed cellular spaces, such as tubes, filled with air at relatively high 

pressure. Individual tubes or cells can be combined to form enclosures of 

varying architectural and geometrical shapes. The cells themselves are 

not normally part of the functional space, although the functional space  

is sometimes independently pressurized at low pressure to improve 

stiffness and stability. The shape of the cells can be manipulated by 

means of additional elements such as cables, struts and bar grids. 

Deployability and stowage efficiency may be hampered by such 

auxiliary members. 

The structural depth of these structures is limited to the “thickness” of 

the individual cells and stiffness is largely affected by the air pressure, 
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hence the need for high pressure. Stiffness is generally very low and is 

often a limiting factor in their application. The thickness and toughness 

of the membrane is higher than for low-pressure structures and, in 

addition, the total membrane surface area is large due to the closed cell 

requirement. Consequently, stowage efficiency is reduced compared to 

low-pressure structures and to fabric structures. 
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SHAPES OF THE WORLD AND HOW TO LOOK ON  
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Human feeling as wellness depends on the situation in space which is 

given by the environment. Our visible surroundings are touched by eyes 

when we look at them. We always have to imagine a certain room to 

describe our situation in space. 

If we close our eyes we produce a room in our imagination or very 

different rooms may be seen by our mind. But also when dreaming I 

suppose we can see only things and spaces situations similar to the real 

visual experiences. 

 

 

 
 



 

 

When we open our eyes it is nice to have a reason not close them 

immediately again.

Therefore, what do

There are the difficult questions on beauty, harmony and safety by 

which our decisions are influenced, but they are certainly made in 

agreement with a situation or a certain picture.

Human eyes stimulate phantasies in our mind.

and bleak landscapes can hardly evoke enjoyable atmospheres.

Originally the human brain is used to enable surviving. For this aim it 

is very important to define the spaces that surrounds us

To develop a sense of direction we need to l

position. 

To understand space it must be measured and must be brought in 

relation with the individuum. For this measuring we need rather solid 

fixpoints or lines as well as edges and plains and other surfaces.

Between sharp edges or co

 

Phantasy in Space  

When we open our eyes it is nice to have a reason not close them 

immediately again. 

Therefore, what do we like to see doubtlessly? 

There are the difficult questions on beauty, harmony and safety by 

which our decisions are influenced, but they are certainly made in 

agreement with a situation or a certain picture. 

Human eyes stimulate phantasies in our mind. Therefore bare rooms 

and bleak landscapes can hardly evoke enjoyable atmospheres. 

Originally the human brain is used to enable surviving. For this aim it 

is very important to define the spaces that surrounds us 

To develop a sense of direction we need to locate our individual 

To understand space it must be measured and must be brought in 

relation with the individuum. For this measuring we need rather solid 

fixpoints or lines as well as edges and plains and other surfaces. 

Between sharp edges or corners orientation becomes possible. 
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When we open our eyes it is nice to have a reason not close them 

There are the difficult questions on beauty, harmony and safety by 

which our decisions are influenced, but they are certainly made in 

Therefore bare rooms 

Originally the human brain is used to enable surviving. For this aim it 

ocate our individual 

To understand space it must be measured and must be brought in 

relation with the individuum. For this measuring we need rather solid 
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Human mind always tries to define a sense behind the pure optical 

impression. Therefore it is logical that chaotic looking picture rarely give 

a satisfaction in terms of harmony.

Our mind together with the eye 

structures which show or seem to show sense in themselves.

This sense does not always have to be completely understood by the 

observer often the pure rhythm of the object is enough to stimulate us

Especially the shapes of na

landscapes stimulate human feeling in a positive way.

All shapes in nature are the result of physical and chemical processes 

which go on since the beginning of life and even before that date.

Human being is a result of 

Consequently it seems obvious that man prefers to have a sight on 

“natural looking” objects and structures when looking around.

 

Looking at this picture, nearly every 

instance a different and new pattern 

becomes visible. Our sense of sight 

is permanently looking for scheme of 

geometrical order. 
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Human mind always tries to define a sense behind the pure optical 

impression. Therefore it is logical that chaotic looking picture rarely give 

a satisfaction in terms of harmony. 

Our mind together with the eye always seeks for understandable 

structures which show or seem to show sense in themselves. 

This sense does not always have to be completely understood by the 

observer often the pure rhythm of the object is enough to stimulate us

Especially the shapes of natural developed creatures, plants or 

landscapes stimulate human feeling in a positive way. 

All shapes in nature are the result of physical and chemical processes 

which go on since the beginning of life and even before that date. 

Human being is a result of this endless process as well: the evolution. 

Consequently it seems obvious that man prefers to have a sight on 

objects and structures when looking around. 

Looking at this picture, nearly every 

instance a different and new pattern 

becomes visible. Our sense of sight  

is permanently looking for scheme of 

Human mind always tries to define a sense behind the pure optical 

impression. Therefore it is logical that chaotic looking picture rarely give 

always seeks for understandable 

This sense does not always have to be completely understood by the 

observer often the pure rhythm of the object is enough to stimulate us 

tural developed creatures, plants or 

All shapes in nature are the result of physical and chemical processes 

this endless process as well: the evolution. 

Consequently it seems obvious that man prefers to have a sight on 

 



 

 

 

 

 

 

Ophiodea - Star of Snakes

Rigid corpus with moving arms (Like a space shuttle under water).

 

Phantasy in Space  

Destroyed structure may look dramatic but they do 

not give a picture of harmony. 

 

 

Axis of symmetry are often understood as principles 

of esthestics. 

 
Star of Snakes 

Rigid corpus with moving arms (Like a space shuttle under water). 

113 

Destroyed structure may look dramatic but they do 

 
Axis of symmetry are often understood as principles 
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Hexatinellid Sponge -

Horizontal section of a trunk of sponge. The

This graphic picture could also be seen as a layout of a village with central place and 

neighborhoods of house groups.

 

 

 

 

 

 

 

 

 

 
 

Redcurrant berries en leaves. Shapes are pneumatic minimal

characteristic. 
 

 

 

Tubularid Hydroids 

Polyp-like creatures between plant 

where the sun provides energy and where the water supplied nourishing value.

Between submarine gardens with phantastic colours

M. Balz 

 

- Glass Sponge 

Horizontal section of a trunk of sponge. The inside surface is filtering the fluids. 

This graphic picture could also be seen as a layout of a village with central place and 

of house groups. 

 

Redcurrant berries en leaves. Shapes are pneumatic minimal. the inside pressure is 

 

 

like creatures between plant and animal. They can only exist in the sea on rocks 

where the sun provides energy and where the water supplied nourishing value. 

Between submarine gardens with phantastic colours. 

This graphic picture could also be seen as a layout of a village with central place and 

. the inside pressure is 

and animal. They can only exist in the sea on rocks 



 

 

 

Lepto Medusa - Wrinkling Jellyfish

Transitory transparent creature with 

fascinating tenderness using the embracing and including liquid which penetrates the 

whole being. 

 

 

All life comes out of the water. Here is demonstrated how an idea 

becomes a very tender veil and starts 

 

Hexa Timella - Glass sponge

A water-penetrated structure. Developed as a filtering system with a quite organic 

growing scheme of pipes.

Pipes with synclastic surfaces which bring high stability and inside surface adequate to 

the stream of liquid.  

Phantasy in Space  

Wrinkling Jellyfish 

Transitory transparent creature with very short living phase. Pneumatic structure with a 

fascinating tenderness using the embracing and including liquid which penetrates the 

comes out of the water. Here is demonstrated how an idea 

becomes a very tender veil and starts to move and to be. 

 

 

 

Glass sponge 

penetrated structure. Developed as a filtering system with a quite organic 

growing scheme of pipes. 

Pipes with synclastic surfaces which bring high stability and inside surface adequate to 
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very short living phase. Pneumatic structure with a 

fascinating tenderness using the embracing and including liquid which penetrates the 

comes out of the water. Here is demonstrated how an idea 

penetrated structure. Developed as a filtering system with a quite organic 

Pipes with synclastic surfaces which bring high stability and inside surface adequate to 



116 

 

 

 

For Structural Morphology the connection and links between 

biological growth and the chances to learn from that for our building 

praxis are extremely worthful. It is proves that when using such 

connections consequently, the results can 

but also esthetic in the way as we consider beauty.

 

1. Haeckel, Ernst: Kunstformen der Natutur, Neudruck der Erstausgabe 

von 1904, Prestel Verlag, MŸnchen, 1998.
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For Structural Morphology the connection and links between 

biological growth and the chances to learn from that for our building 

praxis are extremely worthful. It is proves that when using such 

connections consequently, the results can be notably functional effective 

but also esthetic in the way as we consider beauty. 

 

 

Reference 

Haeckel, Ernst: Kunstformen der Natutur, Neudruck der Erstausgabe 

von 1904, Prestel Verlag, MŸnchen, 1998. 

For Structural Morphology the connection and links between 

biological growth and the chances to learn from that for our building 

praxis are extremely worthful. It is proves that when using such 

be notably functional effective 

Haeckel, Ernst: Kunstformen der Natutur, Neudruck der Erstausgabe 
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CHAPTER 8 

AN EXPANDABLE DODECAHEDRON 

Kovács Flórián and Tarnai Tibor  

Dept. of Structural Mechanics,  

Budapest University of Technology and Economics, Budapest 

In this paper we investigate motions of a cardboard model of an 

expandable dodecahedron that is in fact a dipolygonid composed of 30 

digons and 12 regular pentagons. One of the motions makes it possible 

to convert a dodecahedron to a truncated icosahedron with a continuous 

process. 

1. Introduction 

Certain viruses having the shape of a truncated icosahedron [Ref. 6] 

expand under the effect of pH change. The pentamers and hexamers 

depart from each other while rotating but remaining in contact by  

protein links. This discovery called our attention to expandable 

polyhedra. 

The characteristic of the motion of these viruses is different from that 

of Hoberman’s popular toy, the expanding globe. Hoberman’s globe is a 

polyhedron, represented by its edges, in which the faces preserve their 

orientation while expanding. The basic transformation is a uniform 

enlarging where all the edges are increased in the same proportion. In  

the viruses, however, the faces preserve their size in principle but  

are subjected to a translation-rotation along their symmetry axes; and 

simultaneously, interstices appear between faces. So, the motions of 

these viruses are similar to a special type of deformation of honeycombs 

[Ref. 3] and to the motion of Fuller’s “jitterbug” [Ref. 2], but the actual 
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mechanism of swelling is much 

In order to have a better insight into the problem of the swollen form of 

viruses, we started with the investigation of the motion of a simpler 

object: an expandable dodecahedron.

 

 

In the research of fullerene chemistry, the leapfrog transformation is 

known [Ref. 1]. If the polyhedron of the original fullerene is capped on 

every face, a deltahedron is obtained. If this deltahedron is then 

converted to its dual, a new f

as many vertices is obtained. This procedure called leapfrog is a 

discontinuous transformation because it jumps one fullerene to another 

over the intervening deltahedron. The leapfrog transformation converts 

a dodecahedron to a truncated icosahedron. It turns out that the 

dodecahedron → truncated icosahedron leapfrog transformation can be 

described as a continuous process using Verheyen’s dipolygonid [Ref. 7] 

composed of 30 digons and 12 pentagons, denoted by 30{2} + 

12{5}│31.717474°.

We have made a cardboard model that expands from a dodecahedron 

to a truncated icosahedron by applying a rotation on one pentagon while 

keeping the opposite pentagon fixed (Fig. 1). The model represents a 

mechanism composed of rigid bodies

more infinitesimal degrees of freedom; one of them is responsible for 

swelling. In this paper we investigate the motion of our expanding 

structure. 

K. Flórián & T. Tibor 

mechanism of swelling is much more complicated and is not understood. 

In order to have a better insight into the problem of the swollen form of 

viruses, we started with the investigation of the motion of a simpler 

object: an expandable dodecahedron. 

 

Fig. 1. An expandable dodecahedron. 

In the research of fullerene chemistry, the leapfrog transformation is 

known [Ref. 1]. If the polyhedron of the original fullerene is capped on 

every face, a deltahedron is obtained. If this deltahedron is then 

converted to its dual, a new fullerene polyhedron with three times 

as many vertices is obtained. This procedure called leapfrog is a 

discontinuous transformation because it jumps one fullerene to another 

over the intervening deltahedron. The leapfrog transformation converts 

edron to a truncated icosahedron. It turns out that the 

→ truncated icosahedron leapfrog transformation can be 

described as a continuous process using Verheyen’s dipolygonid [Ref. 7] 

composed of 30 digons and 12 pentagons, denoted by 30{2} + 

31.717474°. 

We have made a cardboard model that expands from a dodecahedron 

to a truncated icosahedron by applying a rotation on one pentagon while 

keeping the opposite pentagon fixed (Fig. 1). The model represents a 

mechanism composed of rigid bodies with hinged connection. It has 

more infinitesimal degrees of freedom; one of them is responsible for 

swelling. In this paper we investigate the motion of our expanding 

more complicated and is not understood. 

In order to have a better insight into the problem of the swollen form of 

viruses, we started with the investigation of the motion of a simpler 
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known [Ref. 1]. If the polyhedron of the original fullerene is capped on 

every face, a deltahedron is obtained. If this deltahedron is then 

ullerene polyhedron with three times  

as many vertices is obtained. This procedure called leapfrog is a 

discontinuous transformation because it jumps one fullerene to another 

over the intervening deltahedron. The leapfrog transformation converts  

edron to a truncated icosahedron. It turns out that the 

 truncated icosahedron leapfrog transformation can be 

described as a continuous process using Verheyen’s dipolygonid [Ref. 7] 

composed of 30 digons and 12 pentagons, denoted by 30{2} + 

We have made a cardboard model that expands from a dodecahedron 
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with hinged connection. It has 

more infinitesimal degrees of freedom; one of them is responsible for 
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2. Physical Model

Both expandable polyhedral viruses and fullerene molecules

the basic property that all pentagons (or hexagons) are situated 

symmetrically at any position. Therefore, our first aim was to find a 

mechanism producing this symmetrical motion.

 

Fig. 2. A cardboard model of the expandable dodecahedron

2.1. The Structure

Our cardboard model (Fig. 2) was designed upon the following 

principles: 

 (i) the structure may only consist of rigid bodies (pentagons) and 

connecting elements (bars, plates),

 (ii) all conditions of compatibility should be satisfied in any 

while expanding,

 (iii) all joints in the structure are considered to be hinges or ball

(no sliding connections should be applied),

 (iv) all connecting elements (or structures, if the connection itself 

contains more rigid elements) between

identical and have to have a two

Note that principle (iv) is a necessary but not sufficient condition in 

order that two-fold rotational symmetry between adjacent elemen

the symmetrical beh

An Expandable Dodecahedron 

Model 

Both expandable polyhedral viruses and fullerene molecules 

the basic property that all pentagons (or hexagons) are situated 

symmetrically at any position. Therefore, our first aim was to find a 

mechanism producing this symmetrical motion. 

 

A cardboard model of the expandable dodecahedron. 

Structure 

Our cardboard model (Fig. 2) was designed upon the following 

the structure may only consist of rigid bodies (pentagons) and 

connecting elements (bars, plates), 

all conditions of compatibility should be satisfied in any position 

while expanding, 

all joints in the structure are considered to be hinges or ball

(no sliding connections should be applied), 

all connecting elements (or structures, if the connection itself 

contains more rigid elements) between adjacent pentagons are to be 

identical and have to have a two-fold rotational symmetry (C2).

Note that principle (iv) is a necessary but not sufficient condition in 

fold rotational symmetry between adjacent elements (and 

the symmetrical behavior of the whole structure as well) is preserved, 
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all joints in the structure are considered to be hinges or ball-joints 

all connecting elements (or structures, if the connection itself 

adjacent pentagons are to be 

). 

Note that principle (iv) is a necessary but not sufficient condition in 
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r of the whole structure as well) is preserved, 
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since two connected pentagonal members may incline to the same 

connecting element under different angles even if it is symmetrical.

In this particular model pentagon

elements (triangles and rectangular quadrangles) were applied, the 

connection between them was made by hinges in any case. In Fig. 3 two 

prisms and their connection are shown.

2.2. Type and Range

A clearly detectable motion of the structure 

requirement – is a symmetrical expansion. It means that each pentagon 

rotates about its axis of symmetry by the same angle and moves radially 

outwards with the same speed 

is parallel to its initial one. In other words, all inclination angles between 

adjacent pentagons remain constant 

∠DEF are equal to 

  

Fig

 

If any of the pentagons appear

independent) motions, a geometrical relationship can be determined 

between them. For an easier discussion, let us consider a simplified 

network of the model where only the inner v
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since two connected pentagonal members may incline to the same 

connecting element under different angles even if it is symmetrical.

In this particular model pentagon-based prisms and planar connecting 

ments (triangles and rectangular quadrangles) were applied, the 

connection between them was made by hinges in any case. In Fig. 3 two 

prisms and their connection are shown. 

Range of Expansion 

A clearly detectable motion of the structure – according to the main 

is a symmetrical expansion. It means that each pentagon 

rotates about its axis of symmetry by the same angle and moves radially 

outwards with the same speed – consequently, any position of a pentagon 

is parallel to its initial one. In other words, all inclination angles between 

adjacent pentagons remain constant – let it be denoted by i, so ∠ABC

are equal to i/2 in Fig. 3. 

 

Fig. 3. Two pentagonal prisms and their connection. 

If any of the pentagons appears to have two different (but not 

independent) motions, a geometrical relationship can be determined 

between them. For an easier discussion, let us consider a simplified 

network of the model where only the inner vertices of the pentagonal 

since two connected pentagonal members may incline to the same 

connecting element under different angles even if it is symmetrical. 

based prisms and planar connecting 

ments (triangles and rectangular quadrangles) were applied, the 

connection between them was made by hinges in any case. In Fig. 3 two 

according to the main 

is a symmetrical expansion. It means that each pentagon 

rotates about its axis of symmetry by the same angle and moves radially 

any position of a pentagon 

is parallel to its initial one. In other words, all inclination angles between 

ABC and 
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independent) motions, a geometrical relationship can be determined 

between them. For an easier discussion, let us consider a simplified 

ertices of the pentagonal 



 

 

prisms are taken into account (Fig. 4). Let the edge length be denoted by 

a. Since the rotation of two adjacent pentagons about their own axis 

requires the rotation of the linking element (digon) as well and the digons

also rotate about their radial symmetry axis, we can define 

of simplicity – this angle of rotation (

the circumscribed sphere.

 

Fig. 4. Simplified network of two pentagonal members (inner edges and 

 

Let us project the mid

dodecahedron to the circumscribed sphere (points 

  

 

Fig. 5. A vertex with 3 adjacent faces (spherical projection)
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prisms are taken into account (Fig. 4). Let the edge length be denoted by 

. Since the rotation of two adjacent pentagons about their own axis 

requires the rotation of the linking element (digon) as well and the digons

rotate about their radial symmetry axis, we can define – for the sake 

this angle of rotation (α) as a function of the radius (

the circumscribed sphere. 

 

Simplified network of two pentagonal members (inner edges and vertices only)

Let us project the mid-points of three mutually adjacent faces of a 

dodecahedron to the circumscribed sphere (points X, Y, Z, Fig. 5). 

 
 

A vertex with 3 adjacent faces (spherical projection). 
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prisms are taken into account (Fig. 4). Let the edge length be denoted by 

. Since the rotation of two adjacent pentagons about their own axis 

requires the rotation of the linking element (digon) as well and the digons 

for the sake 

) as a function of the radius (R) of 

 

vertices only). 

points of three mutually adjacent faces of a 
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Now the arc drawn from the vertex V to the mid-point of arc XY (M) 

is perpendicular to arc XY. The cosine theorem for the spherical triangle 

VMX shows that: 

XMMXVVMXMXVVMXXVM cossinsincoscoscos ∠∠+∠∠−=∠ , 

where XM = i/2, ∠XVM = π/3, ∠VMX = π/2, ∠MXV = π/5. 

From this equation 

5
sin2

1

5
sin

3
cos

2
cos

ππ

π

==
i

 

is obtained. 

Looking at Fig. 4 again, another formula of the same theorem for 

triangle PSV says: 

PSVSVPSSVPSVP ∠+= cossinsincoscoscos , 

where 

R

a
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5
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2
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From this formula, cos α can be expressed: 
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and its inverse function (2): 

( ) ( ) ( )

2

2539549cos525cos2cos54
22

+++++++

=

ααα

a

R
  

Since α = π/2 means the most compact (dodecahedral) configuration  

(R = Rmin) while α = 0 the fully expanded (truncated icosahedral) one  

(R = Rmax), we can calculate the minimum and maximum values for R/a: 

,401.1min
≈

a

R
 

.478.2max
≈

a

R
 

The quotient of these values shows that the circumradius of our 

model can increase by about 77% during the expansion. 

As to the volumes of the polyhedra, another calculation can be carried 

out. The volume of the dodecahedron is 
33 6631.7

8

5105235
aa ≈

+
, 

while the same number for the truncated icosahedron is 

( ) 33 2877.55
2

5515
53

4

45
aa ≈














+

−+ . Consequently, the volume  

of the expanded structure is 7.215 times larger than that of the 

dodecahedron. 

3. Numerical Models 

In the previous chapter we analysed a special motion of the expandable 

dodecahedron. It is still not known, however, whether the structure is 

able to move only in that way or it has other independent motions. In 

order to answer this question, it is necessary to execute a detailed 

analysis of the compatibility matrix of the structure. 
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3.1. A Bar-and-Joint Structure

The simplest way t

is to consider a pure bar

(or Jacobian) matrix be denoted by 

the number of rows by 

number of free nodes (

structure. 

In Fig. 6 a possible network is shown that is sufficient to ensure 

the rigidity of both the prism and the quadrangular element of the 

connection. It is known 

v vertices can be made rigid by applying 3(

means 3(10-2) = 24 for each prism. A planar quadrangle, however, 

cannot be considered as a gener

non-coplanar vertex is needed to exclude the infinitesimal motion 

that will require 3(5

triangles can now be represented by only one bar each (e.g. bar 

Fig. 6). 

 

Fig

 

As to the number of free nodes, we need to take into consideration on 

one hand that two of the five nodes of the ‘digon’ coincide with one node 

of the adjacent prisms; on the other hand, it seems to be useful to avoid 

rigid body motions, so we 

K. Flórián & T. Tibor 

Joint Structure 

The simplest way to investigate the kinematical behaviour of the system 

is to consider a pure bar-and-joint assembly. Let the compatibility 

(or Jacobian) matrix be denoted by J, the number of its columns by 

the number of rows by r. In this case, c will be equal to the triple of the 

number of free nodes (n) in 3D, r will give the number of bars in the 

In Fig. 6 a possible network is shown that is sufficient to ensure 

the rigidity of both the prism and the quadrangular element of the 

connection. It is known that, in a generic case, a polyhedron with 

vertices can be made rigid by applying 3(v-2) bars for bracing 

24 for each prism. A planar quadrangle, however, 

cannot be considered as a generic arrangement of the four nodes: an extra 

coplanar vertex is needed to exclude the infinitesimal motion 

that will require 3(5-2) = 9 bars for each quadrangle. The remaining 

triangles can now be represented by only one bar each (e.g. bar 

 

Fig. 6. Network of the bar-and-joint structure. 

As to the number of free nodes, we need to take into consideration on 

one hand that two of the five nodes of the ‘digon’ coincide with one node 

of the adjacent prisms; on the other hand, it seems to be useful to avoid 

rigid body motions, so we imagine one of the prisms fixed. It means that 

r of the system 

joint assembly. Let the compatibility  

, the number of its columns by c and 

e triple of the 

will give the number of bars in the 

In Fig. 6 a possible network is shown that is sufficient to ensure  

the rigidity of both the prism and the quadrangular element of the 

a polyhedron with  

2) bars for bracing – this 

24 for each prism. A planar quadrangle, however, 

arrangement of the four nodes: an extra 

coplanar vertex is needed to exclude the infinitesimal motion  

9 bars for each quadrangle. The remaining 

triangles can now be represented by only one bar each (e.g. bar AC in 

 

As to the number of free nodes, we need to take into consideration on 

one hand that two of the five nodes of the ‘digon’ coincide with one node 

of the adjacent prisms; on the other hand, it seems to be useful to avoid 

imagine one of the prisms fixed. It means that 
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ten nodes are excluded from the free ones, consequently, the total 

number of free nodes will be equal to: 

n = (12-1) × 10 + 30 × (5-2) = 200  

and 

c = 3n = 600. 

Under the same conditions, r can also be determined as follows: 

r = (12-1) × 24 + 30 × 9 + (2 × 30) × 1 = 594. 

Since c represents the number of unknowns, r that of the conditions, 

we have got an important information about the kinematical behaviour, 

namely, c - r = 6 means six independent infinitesimal motions for the 

structure. 

This calculation, however, still does not give the final answer for the 

question that how many independent motions the structure has – it can 

only be decided by investigating the rank deficiency of J. It implies 

another problem, because the computational process (especially if we 

want to get information about the characteristics of the detected motions) 

is very sensitive to the size of the matrix. It was this recognition that led 

us to a new approach of numerical modelling. 

3.2. An Alternative Model 

In our previous model there was only one type of unknowns (the nodal 

coordinates). At the same time it was necessary to use only one type of 

constraint functions that expressed the difference between actual and 

original (lij) length of a bar PiPj: 

 
( ) ( ) ( ) 0

222
=−−+−+−= ijijijijij

b
lzzyyxxF

 
(3) 

The derivative of F
 b

ij according to any coordinate gives the entry of J 

in the column corresponding to the coordinate and in the row 

corresponding to the bar PiPj. For example: 
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Now let us consider again the simplified network of Fig. 4, that is, all 

nodes and bars are ignored except those on the ‘lower shell’ of the 

structure. Our task is now to determine additional types of constraints 

(and unknown ‘pointers’ if necessary) that are sufficient to make the 

elements of the structure rigid. 

A pentagon can be made rigid in its plane by two additional  

bars but it is not enough for complete rigidity. If we look at four points 

(Pi, Pj, Pk, Pl) in the space, the following expression can be formulated: 
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(4) 

where the determinant equals six times the actual volume of the 

tetrahedron spanned by the four points, while Vijkl is its original volume 

[Ref. 4]. The non-zero derivatives can be written as a sub-determinant 

like this: 

kji

kji

l

ijkl
v

zzz
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111
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∂
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 . 

If the four points are different vertices of a pentagon, the initial 

volume is zero that will only be preserved if the points remain coplanar. 

Since one function guarantees the coplanarity of only one point with 

three more nodes, two of them should be applied for each pentagon. 

By ignoring all but one of the bars of a quadrangle, its orientation 

seems to be lost. A possibility to avoid this is to assign an orthogonal 

vector v to each digon, pointing radially outwards in the plane of the 

original element.  



 

 

Fig

 

This vector has to satisfy three different conditions during motion.

 (i) v must remain perpendicular to its related edge (

Orthogonality is simply expressed by a scalar product of zero value, 

so if the original product of 

 
= ijij
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 (ii) v must keep its inclination angle 

the adjacent pentagons. In Fig. 7, points 

tetrahedron. Since each coordinate of 

vBE, the volume can only change if the 

as well. This fact implies a constraint function 

(here the index 

node Pk): 

 

F
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Fig. 7. Vectors and angles in the alternative model. 

his vector has to satisfy three different conditions during motion.

must remain perpendicular to its related edge (BE in Fig. 7). 

Orthogonality is simply expressed by a scalar product of zero value, 

so if the original product of vectors vij and PiPj was pij then: 

0)()()( =−−+−+− ijijijijijijij pzzzyyyxx . 

must keep its inclination angle i/2 to the normal vectors of 

the adjacent pentagons. In Fig. 7, points B, B1, B2 and B3 span a 

tetrahedron. Since each coordinate of B3 is the sum of that of 

, the volume can only change if the i/2 inclination angle changes 

as well. This fact implies a constraint function F
a

ijkl similar to 

(here the index l belongs to the vector vl that points from the third 
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his vector has to satisfy three different conditions during motion. 

in Fig. 7). 

Orthogonality is simply expressed by a scalar product of zero value, 

(5) 

/2 to the normal vectors of  

span a 

is the sum of that of B and 

/2 inclination angle changes 

similar to F
v
ijkl 

that points from the third 

 (6) 
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 (iii) The previous statement is true only if the length of vl does not vary. 

If the original length was vl then: 

 
0

222
=−++= lllll

l
vzyxF . (7) 

In this new model c will involve not only nodes but vector 

coordinates as well. Keeping a supposition that one of the pentagons is 

fixed and calculating with 7 bars per pentagon and one per digon the 

following values are obtained for c and r (the terms are in the order of 

constraint functions): 

c = 3 × ((12-1) × 5 + 30 × 1) = 255, 

r = ((12-1) × 7 + 30 × 1) + (12-1) × 2 + 30 × 1 + 2 × 30 × 1 + 30 × 1 = 249. 

It is seen that  c - r = 6  is unchanged, so this model gives the same 

result with a less than half-size matrix. 

4. Analogies and Results 

It is possible to construct similar assemblies not only for dodecahedron 

but for an arbitrary polyhedron (some angles and lengths may be 

changed but not the topology of the system). Note that nothing can be 

stated about the movability of these structures in general. Let us  

denote the number of faces, edges and vertices of the base polyhedron  

by F, E and V respectively. If the number of edges intersecting at one 

vertex of the polyhedron is the same for each vertex, let then this number 

be Q. 

For this case the following equation holds: 

 (VQ)/2 = E. (8) 

In the followings we will determine values c-r for these structures 

based on ‘Q-valent’ polyhedra. 

Our models can be imagined as assemblies of rigid bodies and hinges, 

exclusively. It is known that a rigid body in space has 6 degrees of 

freedom of motion, while a hinge is a connection that means a 5-degree 
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constraint, allowing for only one motion. The connecting structure 

between two polygon-based prisms can be decomposed into three rigid 

bodies (two triangles and a quadrangle) and four hinges. If we count all 

the rigid bodies (B) and hinges (H) in a structure (the fixed prism is still 

excluded), we get the following values: 

B = (F-1) + 3E, 

H = 4E. 

Now calculating the value of c-r the result is: 

 c - r = 6B - 5H = 6(F-1) - 2E.  (9) 

From the Euler polyhedron theorem it is known that 

 E + 2 - V = F.  (10) 

Substituting (10), then (8) into (9) we obtain 

 c - r = 2VQ - 6V + 6. (11) 

If the polyhedron is trivalent (Q = 3), the right-hand side of (11) 

becomes equal to 6. It can be stated that any of these structures based  

on a trivalent polyhedron has six columns more than rows in its 

compatibility matrix regardless of the number of faces, edges or vertices. 

This theorem can also be used for the analysis of a case analogous to 

that of the dodecahedral model. Among the five regular polyhedra there 

are three trivalent ones: the dodecahedron, the cube and the tetrahedron. 

This fact permits the supposition that an expandable tetrahedral model 

shows characteristics similar to those of a dodecahedral one, and because 

the first case needs much less computation, its analysis has been 

executed by using singular value decomposition of J [Ref. 5]. 

Following the second numerical method, 9 free nodes and 6 free 

vectors were taken into account, while the number of constraints came 

from the sum r = ((4-1) × 3 + 6) + 0 + 6 + 2 × 6 + 6, that is, c = 45 and  

r = 39. The computational analysis gave the result that the compatibility 

matrix had a single rank deficiency, in other words: the structure had 
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seven infinitesimal motions from which one was the symmetrical 

expansion. Note that the calculation was made for a general position but 

it can easily be seen that in a fully expanded position each pentagon can 

be rotated independently with an infinitesimal motion about its symmetry 

axis that suddenly increases the rank deficiency of J. 

5. Conclusions 

Verheyen’s dipolygonid can be physically realized as an expandable 

dodecahedron, but the model shows some extra degrees of freedom. It 

remains to be seen whether they are finite or only infinitesimal. The 

actual physical meaning of the additional degrees of freedom should be 

identified, that is, it should be shown how the free motions, in addition to 

the expansion, look like. 

The difference between the number of columns and the number of 

rows of the compatibility matrix of the model is 6, but the number of 

degrees of kinematical indeterminacy (the infinitesimal degrees of 

freedom) is 7. Therefore, due to the generalized Maxwell rule, the model 

has a one-parameter state of self-stress. The properties of this state of 

self-stress should be determined in the future. 

In the expandable viruses, between two adjacent morphological units 

(pentamers and hexamers) there is a double-link connection, contrary to 

that of our model, where there is a single-link connection. According to 

some pilot studies it seems to be possible to construct an expandable 

dodecahedron model with double links between the pentagonal units. In 

this case, however, the rectangular units in the links should have a free 

rotation about an axis parallel with their longer sides. 
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CHAPTER 9 

EXAMPLES OF GEOMETRICAL REVERSE ENGINEERING: 

DESIGNING FROM MODELS AND/OR UNDER 

GEOMETRICAL CONSTRAINTS 

Klaus Linkwitz  

Geometrical reverse engineering’ comprises a number of techniques 

applied in cases, when the (geometrical) design of a structure is so 

complicated that neither conventional CAD nor numerical formfinding 

by figures of equilibrium are adequate means to transform the ideas and 

visions of a designer into reality. 

1. Physical Models as Essential base of Design and Subsequent 

Reverse Engineering 

In one class of cases a combination of model making and subsequent 

mathematical modeling is applied. Here the model can take on almost 

any aesthetically justified form of the sculptor’s imagination. Forms and 

structures created in this way need be neither mathematically describable 

free forms nor equilibrium forms in the physical sense. A famous 

example is O.Gehry’s Guggenheim Museum In Bilbao, Spain. Probably 

also Le Corbusier’s Church in Ronchamps was thus created. 

Geometrical reverse engineering has been applied for the design  

of the Main Beams in the project House of the Anthroposophia in 

Maulbronn. 

The project House of the Anthroposophia in Maulbronn has been 

described in Ref. 5. Within this context the two main beams of that 

structure are of exemplary significance for the technique of geometrical 

reverse engineering, especially if the models of a ‘sculptural design’ can 

but convey an idea of the designers vision and ideas which thereafter 
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have to be completely newly created with the aid of model measurements 

and reengineering in the computer. 

Here the two main beams of the structure - completely independent 

from the shell - were always meant to be of strongest and genuine 

expression for the main assembly hall in the building. Already their 

preliminary form, approximated in a couple of models, showed their 

specific properties: continuously changing instantaneous radius, strong 

occurrence of torque. Due to the complexity of their shape their models 

in a scale of 1:25 came out rather poorly. Additionally they could not  

be photographed adequately by stereo photogrammetry. An attempt to 

measure them in a 3-D mechanical measurement device met similar 

difficulties.  

Thus only a limited number of coordinates of significant points on the 

surfaces and edges could be obtained, supposedly not very exact and 

moreover liable to errors for lack of identification, moreover, due to the 

unfavorable position of this edge-line with respect to the position of the 

camera, rather large errors in the measured co-ordinates were to be 

expected.  

But even if one had succeeded in measuring the models most exactly 

this would not have been sufficient to base premanufacturing on the 

measurements only: 

• Contrary to their representation in the model the real shells were 

reshaped at their mutual joint lines and the main beams given special 

significance by “extracting them” from the continuous surface of the 

shells to become independent primary architectural elements.  

• The vertical beams ends were to contact directly in thin seams the 

vertical walls of the internal large assembly hall, constructed of bricks. 

This constraint had not been realized in the model. 

• The two main beams are distinctive elements of expressive shapes. As 

such they had been sketched, experimented with in models, and 

thoroughly discussed between client, architect and engineers during a 

long time. However the client could not - and this is quite natural - 

express his vision using a language of geometry and mathematics. 

However, his vision was by no means blurred and foggy but vivid and 

clear. It took considerable time until the engineers could emphatically 

sense what the client had in mind. 
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- Also the glulam premanufacturer issued further constraints defining 

minimum radius of curvature and torque to be adhered to. 

 

As a consequence the main beams had to fully redesigned using 

geometrical reverse engineering, using as point of departure models, 
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intermediate results in due course shown to the client asking his 
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the vision of the client with the parameters of the mathematical tools and 

to improve the red

achieving finally congruence of imagination and computer model.

The shape finally adopted then had to be translated, as is usual, into 

digital numbers to monitor the manufacturing machinery of the glulam

factory. In this process it became also necessary to subdivide each main 

beam into five separate pieces, constituting the assembly units to be 

joined on the building site with wedge

2. Geometrical/Mechanical Constraints Imposed

Execution Feasible

and Push Method

Geometrical Reverse Engineering Applied 

The “Build and Push Method” (B&P 

The Build and Push Method originates

partner Bauer of the consulting engineering firm 

Examples of Geometrical Reverse Engineering 

Also the glulam premanufacturer issued further constraints defining 

minimum radius of curvature and torque to be adhered to.  

 
 

Fig. 1. Geometrical reverse engineering. 

 

As a consequence the main beams had to fully redesigned using 

geometrical reverse engineering, using as point of departure models, 

measurements, and discussion.  

Starting from here a considerable number of geometrical/

mathematical experiments were undertaken in the computer and the 

intermediate results in due course shown to the client asking his 

judgment and comments. Progressively it became possible to correlate 

the vision of the client with the parameters of the mathematical tools and 

to improve the redesign step by step with an ever steepening gradient, 

achieving finally congruence of imagination and computer model. 

The shape finally adopted then had to be translated, as is usual, into 

digital numbers to monitor the manufacturing machinery of the glulam

factory. In this process it became also necessary to subdivide each main 

beam into five separate pieces, constituting the assembly units to be 

joined on the building site with wedge-joints. 

Mechanical Constraints Imposed on Design to make 

xecution Feasible and Subsequent Reverse Engineering. “Build 

and Push Method” (B&P-Method) of Bridge Construction: 

Reverse Engineering Applied to the Loisach Bridge

The “Build and Push Method” (B&P – Method) 

The Build and Push Method originates from Stuttgart. Invented by the 

of the consulting engineering firm Leonhardt & Andrä, 
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Also the glulam premanufacturer issued further constraints defining 

As a consequence the main beams had to fully redesigned using 

geometrical reverse engineering, using as point of departure models, 

Starting from here a considerable number of geometrical/ 

ken in the computer and the 

intermediate results in due course shown to the client asking his 

judgment and comments. Progressively it became possible to correlate 

the vision of the client with the parameters of the mathematical tools and 

esign step by step with an ever steepening gradient, 

 

The shape finally adopted then had to be translated, as is usual, into 

digital numbers to monitor the manufacturing machinery of the glulam 

factory. In this process it became also necessary to subdivide each main 

beam into five separate pieces, constituting the assembly units to be 

to make 

Build 

to the Loisach Bridge 

from Stuttgart. Invented by the 

Leonhardt & Andrä, 
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Stuttgart in the sixties, it was applied for the first time for the 

construction of the Caroni-River-Bridge in Venezuela. Stimulating the 

introduction of the new method was the fact, that the Caroni-River varies 

about 10m in height between low and high waters, has a swift currency 

and is notoriously susceptible to quick changes in water level caused by 

unstable weather condition in its region of inflowing rivers. Thus the 

erection of a strong and reliable scaffolding for the construction of the 

bridge body would have been complicated and expensive. 

The - at that time revolutionary - -idea of Bauer was, to have the 

whole bridge body of about 200 m length constructed off the river on one 

of the banks; then lying there on rails after termination of these partial 

works. Simultaneously, in the river, the pillars of the bridge were to be 

constructed. Then, in the final step of construction, the bridge was to be 

pushed from the bank over the pillars with the aid of hydraulic pressure 

gadgets, gliding on its path from the original construction site to its final 

position, first on the rails and then on the pillars. To lower friction during 

this process the pillar bearings would be coated by Teflon, also newly 

invented at that time.  

The CEO Lenz of the executing Company Züblin, also from Stuttgart, 

highly attached to new progressive if economic methods of execution 

and not afraid of calculated risks, and after promising to nail and hang 

Fritz Leonhardt, Senior CEO of Leonhardt & Andrä to the first pillar  

if the construction should fail, got the contract and succeeded with 

execution. 

Ever since then bridges have been constructed using the B&P-

Method. First only bridge designs of simple geometries were considered 

for pushing: Elevation and plan of the bridge are straight lines. Then 

combinations of straight lines and circles in elevation and plan were tried 

and successfully executed. An attempt in Switzerland of building and 

pushing a bridge the geometry of which consisted of both circles in 

elevation and plan failed. During midway construction, the bridge being 

pushed progressively encountered ever increasing friction on the pillars 

and finally seized to a standstill like the piston in a cylinder when oil is 

drained out. 
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 Fig. 2. Single screwline, elevation.  Fig. 3. Screw line, parall. Proj. 

 

                 
 

 Fig. 4. Double Screw line. Fig. 5. Screw surface. 

 

        
 

 Fig. 6. Transversal inclination of surface. Fig. 7. Bridge segments gliding.   

 

If we want to check, whether the design of a bridge can be 

constructed by the P&B-Method, i.e. whether the design is “pushable”, 

we can make a mental experiment. We imagine instead of the actual 

small number of pillars supporting the bridge now a rather indefinite 

number of such pillars, forming consequently a continuous track upon 

which the bridge will glide when pushed. This gliding track would reach 

from either abutment to the middle of the bridge if we would construct 

the bridge in two halves and push it then from both sides, or it would 
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reach from the abutment on the one side of the river/valley to the 

abutment on the other side of the river/valley if the bridge were 

constructed in one piece and then pushed from abutment to abutment.  

During pushing each bridge segment has to glide from its original 

construction site to its final position of the bridge in situ. (Fig. 7) 

Imagining the most favorable case of a bridge being prefabricated in two 

pieces and then pushed from the abutments on the banks on either side, 

the front segment of the bridge has to glide from the abutment unto the 

middle of the bridge, the second segment has to glide until it reaches  

its location behind the middle segment, and so on. As each segment  

has to glide smoothly it has to fit perfectly into the form of the gliding 

track - i.e. the bearings on the pillars - in its transition from site of 

premanufacturing to its final location in the bridge. 

 

      
 (8) (9) 

 

Figs. 8 and 9. Inclination of axis as a further means of fit. 

 

As a result of our mental experiment we conclude, that the geometry 

of all gliding parts of the bridge has to be exactly identical with the 

geometry of the gliding track, materialized by the discrete locations  

of the pillars. As a consequence - this is noted here without proof – 

“pushing lines” and “pushable designs” must be - regarded in  

3-dimensional space! - straight lines, circles or screwlines (Fig. 2), and 

the appertaining surfaces. Hence, for example, a design consisting of a 

combination of circles in plan and circles in elevation generally is not 

pushable. 

In the case of the Loisach-Bridge, permitting the highway crossing  

of the river Loisach near the Alps in Southern Bavaria, one of the 
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competing construction companies had been awarded the contract based 

upon its alternative design proposing the bridge to be constructed by the 

P&B-method and consequently was the cheapest among the competing 

bids. However, the contract of execution had been allotted by the client 

without a thorough control, whether the already finalized engineering 

design was pushable or not. To quieten his conscious and to support his 

ideas the contractor had made a model of bridge and pushing track. 

Experiments with these seemed to support feasibility of the method and 

the client could be convinced to accept the alternative design. 

Thus the first question to be answered was “Is this design - consisting 

essentially of compound circle-like curves - pushable or not?” 

As a first answer, a mechanical model was made once again, this time 

with more consequent rigor, by sawing in elevation with a circular seam 

through a box like trough shaped in plan as a perfect circle, yielding after 

the cut two halves of the trough. Consequent experiments with these two 

halves demonstrated clearly, that they would fit only in their final 

position but could not slide over each other without gaps at the seam. 

Obviously, the design, as it was, could not be executed by the P&B-

Method! 

Geometrical Reverse Engineering of essential parts of the design 

Here the reverse engineering consisted of three essential parts, namely  

(i) Geometrical analysis of the finalized engineering design; especially 

with respect to curvature and torque of all lines/surfaces which have 

to be glided 

(ii) Computer aided mathematical generation of feasible sliding 

curves/surfaces and approximation and reshaping of all relevant 

gliding parts of the finalized engineering design using slidable 

curves/surfaces 

(iii) Analytical modeling and simulation of all stages of the pushing 

process with the reengineered shape and control of the achieved fit 

of the bridge on the (also redesigned) pillar bearings. 

The drawings for the design of execution comprehended also an 

exhaustive and complete geometrical description of the bridge i.e. in plan 
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and longitudinal section the radius of all circles, parameters of the 

transition curves, lengths of all successive curves; in the cross sections 

the “twisting movements” of the roadway as a function of the radius of 

the curves in plan, including descriptions of the rotation centers of these 

movements, etc. 

Using differential geometry - extended to discrete difference 

geometry - in analyzing the contents of the plan and descriptions the 

actual instantaneous 3D-curvature and -torque of the design’s gliding 

lines and surfaces at densely spaced discrete points could be determined. 

The spatial radius varied between 1795 and 1805 m and radius of  

spatial torque between 80 000 and 100 000 meters, indicating clearly that 

the actual design was not pushable. However, the variations of both 

radius were so small - compared to the dimensions of the bridge - that 

approximating screw-lines could be calculated, to be fitted with the aid 

of least square techniques to the design.  

However, as is very obvious, actual gliding is not performed on two-

dimensional lines in space but on three-dimensional surfaces. Thus every 

two calculated glidable screw-lines had to be put together to screw-

surfaces. In the assembly of every two gliding lines into one gliding 

surface also the lateral rotation of the roadway in its longitudinal 

development had to be accommodated. This however could only be 

achieved by again slightly distorting the theoretical perfect gliding lines. 

As a result, also after reengineering the bridge had no perfect pushing 

shape. Comparing ideal lines and surfaces with the consequent reshaping 

of relevant parts of the bridge, small gaps between bridge and pillars 

during the process of pushing were unavoidable resulting in frictions and 

elastic deformations to be expected when the bridge would be pushed. 

To know the frictions to be expected and to estimate the elastic 

deformations necessary to slide the trough of the bridge, about 30 

different progress stages of the pushing procedure were calculated in 

advance and the gaps, then to be compensated by elasticity, determined. 

Altogether it became possible to approximate the ideal pushable lines 

and surfaces so closely by the geometrically reversed design that the 

remaining deviations were so small as to become nearly unnoticeable on 

eyesight and the remaining constraints could be overcome by elastic 

deformations as a new structural analysis showed. 
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3. Shape of an Existing Structure as Essential Constraint for 

Subsequent Reverse Engineering: Geometrical Reverse 

Engineering at Recent Optimisation Works at the  

Timber Shell Bad Dürrheim 

Timber shells and building physics 

When the interior of timber shells is permanently exposed to humidity, 

the efficiency of the insulation and the reliability of the vapor barrier are 

especially important. Every incident of leakage permitting the humid and 

warm air to escape from the bathing environment in a non controlled 

manner would not only induce high costs of energy losses but also have 

the dangerous potential of generating condensing humidity at the places 

of escape causing unpredictable interactions with the surrounding timber. 

In the example outlined, after more then 10 years of use, the daily 

operation of the spa covered by the shell was to be improved 

economically by energy optimizing measures acting simultaneously as a 

precautionary measure against hidden leakages: The crucial upper parts 

of the glass-facade and its adjoining edge-beams and ribs become  

object of sanitation measures by which especially the edge beam  

was to be removed completely and replaced by another one, reinforced 

simultaneously by unto date means of insulation. 

The new, improved edge beams as objects of geometrical reverse 

engineering. 

 
 

Fig. 10. Four out of the total of seventeen edgebeams. 

 

For the optimization process, the existing edge beam consisting  

of seventeen individual double beams with dimensions 0,29 x 1,20 m in 
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cross sections and a total length of above 200 m, was completely to be 

removed, taken out of use, and then replaced piece by piece. This had to 

be performed under the constraint, that the use of the spa inside must 

continue all the time. Consequently a building  procedure was adopted of 

working at the same time only at one or two of the total of 17 edge-

beams. The selected beams for renewal were then subjected to the most 

delicate and sensitive work of vertically cutting them with a compass 

saw in the night and covering the resulting slot with carefully prepared 

planks immediately. Indeed almost nobody of the spa’s guests realised 

the ongoing very difficult and most professionally performed works 

undertaken with much prevision and observing all means of security 

possible. 

Then the newly pre manufactured edge beams were to be put into the 

slot, connected to the insulation, laid on their bearings and connected at 

their abutments. This is a most sensitive and delicate work. Due to 

double curvature of the old, removed edge beam, naturally also the slot 

created by their removal has double curvature everywhere. The slot has 

not only to accommodate the insulation layers but also the freshly pre 

manufactured new edge beams, supposed to fit exactly into the gap. Due 

to their voluminous dimensions, their weight, and the very limited space 

of manoeuvring practically no corrections on site were possible. 

Due to the new insulation and an overall optimization the position 

and shape of old and new edge beams are distinctively different and  

the new pre manufacturing could not use the old manufacturing data. 

Moreover, all computations performed for the original design and pre 

manufacturing about 15 years ago had been performed on mainframes no 

longer existing and the old data were either destroyed or no more 

readable. 

Under these circumstances the only possibility of performing the 

work was that of a complete fresh creation of the edge beams using the 

technique of geometrical reverse engineering. 

This was achieved by starting from the old shape of the shell in the 

immediate neighborhood of the edge beams and create from there - using 

their new design dimensions - new edge beams. Due to the strong double 

curvature of the shell enough points of identification in unequivocal 

manner could be found which were usable to fit the edge beams 
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mathematically into the shell. Interpreted as a fitting problem this is 

highly redundant because the fitting has to be performed following the 

continuous common lines of beams and the shell. 

The solution, based on the methods of least squares, was newly 

conceived from scratch, translated into appertaining algorithms and 

implemented in a new computer program consisting of many modules. 

Thus it became possible to calculate anew all necessary data for  

the digital monitoring of pre manufacturing with high accuracy and 

reliability. 

Another difficult detail was the redesign of the bearings and metal 

junction pieces at 17 bearing points, one at either side of each edge 

beam, as also location and type of all abutments  had changed. This was 

further complicated by the fact, that the actual locations of the 

constructed  bearing differed slightly - but still too much to be neglected 

- from their design locations shown in the original execution drawings. 

These differences were determined on spot by measurements and then 

included into the geometrical reverse engineering process, resulting 

finally in new drawings and consequent new manufacturing of all 

bearings.  

The challenging works outlined here and demonstrated in the oral 

presentation with a number of sketches and slides demanded a close co-

operation between the glulam company, the principal engineers involved, 

and the author responsible for providing the necessary computational 

reconstructions and the digital instructions for monitoring the pre 

manufacturing. The works were successfully terminated about a year ago 

without any accident or misfitting. 

4. Conclusion 

Geometrical reverse engineering is the adequate method when the 

essential concept of a design and its geometry can only be materialized 

through a model, or when other complex geometric constraints must  

be regarded to make a design at all feasible. Then a complete new - 

computer aided - recreation of the design so far only conceivable from 

models or a computer aided recreation of the design adhering now 
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exactly to the constrains imposed by the method of execution, pre 

manufacturing or the material, becomes imperative.  

The methods in detail to be applied vary considerable from case to 

case and normally no standard solutions exist. In spite of existing highly 

developed CAD programs, nearly always specific new computer tools 

and modules have to be created from scratch, tailored to the individual 

and often unique tasks of the project. This renders this type of work 

highly challenging and gratifying. 
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Architects such as Ton Alberts and R. Buckminster Fuller have used 

the adjective organic to indicate that their designs were based on forms 

found in nature. Specifically, whereas traditional twentieth-century 

architecture tended to make use of stacked two-dimensional designs, 

the new millennium is beginning to derive structures from stacked 

three-dimensional polyhedra. The right angle, which is rare in natural 

forms, and unstable, is eschewed by these architects. Crystallographers 

and solid-state scientists, attempting to understand the reasons why 

crystalline forms are the way they are, and working in the same 

Euclidean space on a much smaller scale than architects, tend to have 

their own perspective on that space.  We present here a number of 

concepts from crystallography and molecular spectroscopy relevant to 

architecture and vice versa in the hope that the spatial repertoire in both 

disciplines will be enriched.  

1. Introduction 

This paper is dedicated to the memory of the late Dutch architect Ton 

Alberts, who gained special celebrity through his ING Bank headquarters 

in southeastern Amsterdam, and the Gasunie building in Groningen.  

In the impersonal wasteland of the Bijlmermeer, Alberts’s ING 

headquarters and the adjacent town square De Amsterdamse Poort 

constitute an oasis of humanity. Characteristic of Alberts’s architecture 

are the undulating and inclined surfaces of his structures, and the use of 



146 A. L. Loeb 

 

five-fold rotational symmetry, none of them part of the traditional 

architectural vernacular.  

Alberts called his architecture organic because it reflected structure 

found in nature, and used natural phenomena such as the angle of 

incidence of sunlight and the storage of energy in plants. His designs 

thus blend with their contexts, and provide the occupants an environment 

in which they can be comfortable and adjust an optimal temperature, 

humidity and illumination. 

The American architect and philosopher R. Buckminster Fuller
6,7

  

was concerned with the conservation of material resources as well as 

energy, being of the opinion that metal and mineral resources can always 

be recycled, using the virtually unlimited solar energy entering our 

global environment. His dome structures and the tensegrity structures 

invented by Fuller and his student Kenneth Snelson permit dwellings to 

be mobile, and to shelter large areas from climatic variations. 

These architects needed a new vernacular,
28

 for designing buildings 

that met their criteria for functional, aesthetical buildings. Both eschewed 

the traditional stacked two-dimensional floor plans, and instead worked 

directly in three dimensions. They took their cue from natural structures
34

 

which have proven durable and aesthetically pleasing; this paper aims to 

survey some of the grammar underlying the fundamentals of what has 

become known as Design Science.
30,31,33

 Because relevant publications 

are scattered over a large variety of journals and books, we have 

appended an extensive bibliography. We shall see that material science 

has contributed to this grammar, but has in turn benefited from 

discoveries and inventions made in non-traditional architecture. 

2. Symmetry  

The world of crystals is very democratic: atoms and ions of a  

given element are identical to each other, and expect identical 

contexts.
24,25,34,40,42,44

 Symmetry is the quantitative parameter describing 

the way in which identical components in a pattern are constituted with 

respect to each other.
2,10,11,26,29
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Translational and rotational symmetry relate components that are 

directly congruent to each other, whereas mirror and glide symmetry 

relate oppositely congruent components. Color symmetry
26,29

 relates 

components that are mutually congruent, but are colored differently. 

Dynamic symmetry will be discussed in the next section. 

Two parallel axes of rotational symmetry imply a third axis of 

rotational symmetry, but the symmetry values of these axes, k, l and m 

are limited by the equation 

 1/k + 1/l + 1/m = 1 (1) 

Accordingly, periodically repeating patterns are limited to the 

rotational symmetry values 2, 3, 4 and 6, and since the value 5 is not a 

solution of this equation, there can only be a single axis of five-fold 

rotational symmetry. Alberts, Fuller as well as the Israeli architect Zwi 

Hecker
12

 have designed structures having five-fold symmetry, but which 

are not periodic. 

Perfect symmetry can be tedious; it represents a state of equilibrium. 

Slight deviations from symmetry will create tensions toward equilibrium. 

We tend to perceive more symmetry than is actually present: human 

faces are generally imagined to be mirror-symmetrical when actually 

they are not. An interesting example of symmetry breaking occurs in  

the recently restored royal palace Het Loo near Apeldoorn in the 

Netherlands. Although the palace and its gardens are mirror-symmetrical, 

the window in the study of former Queen Wilhelmina does not  

have a symmetrically situated partner. However, apparently a trained 

crystallographer was the first visitor, and possibly the only one to date to 

observe this breach of symmetry.     

3. Quasi-Symmetry  

About twenty years ago,
3,39,54-56

 some alloys were found whose X-ray 

diffraction patterns exhibited five-fold symmetry. Counter to commonly 

held beliefs, these patterns did not imply that these alloys themselves 

were five-fold symmetrical, for diffraction patterns are primarily 

generated by the interaction between nearest atoms. The mathematician 
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Roger Penrose had already demonstrated
8
 that the Euclidean plane can be 

tiled by two rhombuses, one having angles 36° and 144°, the other 72° 

and 108°, such that the symmetry appears to be five-fold locally, but 

does not extend throughout the pattern. Analogously, three-dimensional 

space may be filled by two kinds of parallelipipedeons, yielding models 

for alloys whose symmetry has no five-fold rotational symmetry, but 

whose X-ray diffraction pattern does. Such crystals are called 

quasicrystals. Linear quasi-symmetrical strings are of interest to the 

designer. 

 

 
 

Fig. 1. Quasi symmetrical string. 

 

Take, for instance, the pattern in Figure 1, which has an apparent 

irregularity near the middle. It was generated by the transformation y->x, 

x->xy as follows: 

 

y 

xy 

xyx 

xyxxy 

xyxxyxyx 

xyxxyxyxxyxxy 

etc. 
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Such strings have two notable properties, namely that: 

(a) The number of characters, the number of xes, and the number of ys 

all equal Fibonacci numbers, and 

(b) Each string equals the previous one followed by the next previous 

one.  

Although apparently irregular, such a quasi-symmetrical string is 

actually quite predictable. 

4. The Adamantine Angle  

When asked about the angles of inclination of Alberts’s walls, his 

collaborator and widow, Lani Van Petten, replied that it was most likely 

the angle 72° associated with five-fold symmetry. In practice this angle 

does not differ substantially from the dihedral angle arc cos (1/3) of the 

regular tetrahedron, which is slightly under 71°, but conceptually there  

is a world of difference. The regular tetrahedron and octahedron together 

can fill space, whereas the polyhedra having five-fold symmetry,  

such as the regular dodecahedron, the icosahedron and the rhombic 

triacontahedron because of their symmetry, do not.
44,48,51

 Therefore, 

multi-storied buildings such as the Gasunie and the ING would be apt to 

use the tetrahedral angle. 

The difference between these two angles is illustrated in Figures 2, 3 

and 4. The first of these figures is a cross section of the regular 

tetrahedron shown in Figure 3. The triangle ABP is isosceles, and has the 

following remarkable properties: 

(c)  

(i) The point O, the center of the tetrahedron, is equidistant from its 

vertex P as from its base AB.  

(ii) Since the point Q is itself the center of a face of the tetrahedron, the 

length PQ equals one third the length PB.   
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Fig. 2. Mirror plane bisecting the regular tetrahedron. 

 

The cosine of the dihedral angle of the regular tetrahedron, APB, 

therefore equals 1/3. Because this angle is the angle between valence 

bonds of the carbon angle in organic compounds as well as in diamond, it 

is of great interest to natural scientists, and is known as the adamantine 

angle. 

 

 
 

Fig. 3. Bisection of the regular tetrahedron. 

 

The geometry of icosahedron
41,47

 is characterized by the golden 

fraction, ø, which is defined by the equation 1/ø = 1+ ø.  
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Fig. 4. The regular icosahedron deconstructed. 

5. Vector Equilibrium and Stability  

In many crystals larger ions tend to surround themselves by twelve 

identical ions situated at the vertices of a cuboctahedron (Figure 5).
25

 

Buckminster Fuller called this polyhedron the vector equilibrium
7,27

 

because its edge length equals the distance of each of its vertices from  

its centre. The cuboctahedron is not a space filler, but together with a 

regular octahedron does fill space in a 1:1 ratio. 

In molecular spectroscopy it is necessary to know the modes of 

vibration of atoms in a molecule. From this analysis comes the notion of 

degrees of freedom: a polyhedron having V vertices and E edges has Ø 

internal degrees of freedom,
35,45

 where: 

Ø = 3V-E-6. 

Such a polyhedron can only be stable if Ø<0. Accordingly, the 

cuboctahedron, having twelve vertices and twenty four edges, has six 

degrees of freedom, hence is unstable. Fuller stabilized it by placing a 

vertex in the center, connecting it to its twelve neighbors, thus in effect 

creating an octet truss. We have found, however, that in a space frame 

made up of stacked cuboctahedra having octahedral interstices, the 

number of edges increases faster with increasing size than three times the 

number of vertices, with the result that the number of degrees of freedom 

decreases and the stability of such frames increases with size. Such 

frames are lighter and more open than octet trusses because there is no 

vertex in the centers of the cuboctahedra.   
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Fig. 5. Cuboctahedron inside a cube. 

6. Buckminsterfullerene  

In 1985, Robert F. Curl, Harold W. Kroto, and Richard E. Smalley
5
 

discovered a new form of elemental carbon, having the chemical formula 

C60. Kroto was working in microwave spectroscopy when he became 

interested in long chains consisting solely of carbon and nitrogen. At this 

time, Smalley was studying cluster chemistry. Smalley had designed a 

cluster beam apparatus which was able to vaporize almost any known 

material.  On September 1st, 1985 the three got together in Smalley’s 

laboratory; in trying to devise the structure of the new carbon molecule, 

Smalley recalled having bought a Fuller dome kit  for his young son, and 

was able to use this kit to construct a model for the new carbon molecule, 

which was accordingly named Buckminsterfullerene. 

It is possible to tile the plane with regular hexagons, but a sphere 

needs some polygons having fewer sides. When a sphere is tiled by a 

combination of hexagons and pentagons, regardless of the number of 

hexagons the number of pentagons must be exactly twelve. A soccer ball 

has twelve pentagons and twenty hexagons; many domes have more 

hexagons, as do carbon molecules found subsequently, for example C70. 
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7. Tensegrity  

Buckminster Fuller and Kenneth Snelson invented a class of structures 

comprising compression members which do not touch, but are held in 

equilibrium by tension members; each compression member is 

surrounded by a loop of tension members into which other compression 

members hook. Particularly stable is the six-strut tensegrity, of which an 

octant is shown in Figure 6. The other octants are reflections of adjacent 

octants across the cartesian planes. Three pairs of mutually parallel 

compression members lie parallel to the cartesian axes; the tension 

members lie along the edges of the shaded triangle. The distance between 

parallel compression members equals exactly half of their lengths at 

equilibrium, and any attempt to alter that distance, either by pushing 

compression members together or by pulling them apart, will increase 

the length of the tension members, which will resist these attempts, 

holding the structure in equilibrium. When one pair of compression 

members is made to approach each other, the other ones will also 

approach each other; when they are pulled apart, the others will again 

follow suit. 

Once more, these architectural inventions have influenced molecular 

science. Donald Ingber and his associates
4,13-17,57,58

 have applied the 

tensegrity concept to molecular biology with much success.  
 

 
 

Fig. 6. Octant of a six-strut Tensegrity structure. 
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8. Conclusions  

We note that the fundamental equations governing these examples from 

the grammar of Design Science are quite simple and elegant. Although 

upon initial analysis natural structure might appear to be complex, it  

will be understood if perceived as generated from simple modules  

by a simple generating rules or algorisms.
36

 Alberts, for instance, 

generated his building designs by a dynamic process, working with the 

client on a three-dimensional model while the design work was in 

progress. Our three-dimensional space is not a passive vacuum, but poses 

constraints. Only when these constraints are well understood, can one 

build the extensive repertoire permitted by these constraints.  
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This work is part of the PhD thesis THE SWIVEL DIAPHRAGM: a 

geometrical examination of an alternative retractable ring structure  

in architecture by C. Rodriguez Bernal undertaken at The School  

of the Built Environment, The University of Nottingham between  

2001-2006.
6
 It explores various designs of flat kinetic grids employing 

the Swivel Diaphragm system. It evaluates the advantages of using this 

alternative deployable ring structure over other similar systems within 

grid configurations. The principal aim of this study is to establish a 

variety of choices for grids offering diverse types of movement. This 

procedure is unlikely to be exhaustive since the options of grid 

configurations are so numerous. Hence, in order to avoid a long and 

repetitive exercise of searching for new configurations, the exploration 

process has been limited to three different methods. The results of this 

design process serve as a platform for future research into the possible 

applications of these types of grids within architectural devices. 

Introduction 

Scissor structure is a generic name given to certain types of kinetic 

systems that make use of a particular mechanism where two rigid 

components are connected by a rotational hinge or pivot and move freely 
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against each other. When various series of scissors are interconnected 

within more complex assemblies they change in shape and size as a 

result of the collective action of all the mechanisms working together. 

Such behaviour is further enhanced when large numbers of units are 

operating simultaneously. The relationship between the pivots in the 

mechanism determines the type and direction of movement achieved by 

the scissor grid.  Numerous variations can be made to the basic scissor 

mechanism in order to modify its kinetic characteristics.  Amongst the 

most widely known are: straight-scissors with a central pivot, straight-

scissors with an offset pivot, angulated-scissors and multi-angulated-

scissors. There are also different methods for linking scissors within grid 

configurations.  In the particular case of grids employing angulated 

or/and multi-angulated scissors, there are two main methods that have 

been developed to configure the grids. The fist involves several 

concentric layers of scissors that produce a large radial expansion. This 

method was developed by C. Hoberman et al.
1
 and was used for his 

‘Retractable Iris Dome Project’. Other researchers have also studied 

grids of this type, for example, P. Kassabian, S. Pellegrino and Z. You  

et al.,
3
 and F. Jensen.

2
 The second method proposes grids with identical 

deployable rings linked one to the other. As a result the individual rings 

work in a co-ordinated cyclical sequence of movement where closed and 

open positions of the grid are not necessarily established. This method 

was fist explored in the research ‘Metamorphic Architecture’ by  

C. Rodriguez.
4
 In both methods the grids present difficulties when 

attached to an external support because the expansion of the grid 

magnifies or decreases during the deployment process. Hence, it is 

necessary to use rails or movable supports in order to support the grid.  

A recently developed alternative system, named ‘Swivel Diaphragm’ 

achieves a similar retraction to that of angulated-scissor and at the  

same time provides fixed external supports within the ring configuration. 

Such an attribute helps to overcome support inconvenience associated 

with the use of angulated-scissors. This system was first proposed  

by C. Rodriguez and J. Chilton.
5
 The present paper explains the  

ongoing research, exploring the design of flat grids employing this new 

system.   
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1. Brief Explanation of the Swivel Diaphragm System   

The Swivel Diaphragm [SD] comprised of a concentric series of 

angulated and straight elements, linked together through elementary 

pivot joints, as illustrated in Figure 1. Such an assembly forms a closed 

circuit where all the elements expand and contract simultaneously from 

or towards the centre of the structure. Therefore, any force applied to a 

single component is spread throughout the rest of the system. This type 

of movement is comparable to that of an angulated scissors ring.
1
 

However, in a SD the components rotate around external fixed supports 

during the deployment. Thus, the polygonal shape formed by the outer 

joints will not vary from the closed to the open position. This 

characteristic is of significance when designing flat grids since the 

overall structure can be fixed to the support without the need for rails or 

complex mechanisms.  

 

Fig. 1. Hexagonal Swivel Diaphragm with plates. 

 

The number of elements in a SD depends on the desired polygonal 

shape for the ring. This system admits several regular and irregular 

polygonal configurations. The present work shows examples of SD and 

grids using the SD based on basic regular polygon (Figure 2). Other SD 

Angulated elements 

Straight elements 

External fixed pivot/support 

Outer pivot joint 

Inner pivot joint 
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based on more complex regular and irregular polygons can be found  

in Ref. 6. The total deployment of the ring depends on the degree of 

rotation of each angulated element from its fixed in position support. 

There are various types of deployments possible with the SD.  In the 

examples of Figure 2 the maximum deployment is achieved when the 

angulated elements meet or are aligned with the centre of the ring.  In 

these types of rings the deployment is proportional to the number of sides 

in the polygon. Thus, the more sides in the figure, the less the degree of 

rotation needed in the angulated elements to achieve a maximum 

deployment of the ring. This theoretical degree of rotation can be 

calculated as follows:   

Maximum degree of rotation = 360/n (1)   

n = number of sides in the polygon 

 

 

 

 
Fig. 2. Examples of polygonal configurations with the SD. 

 

 

Hexagon Heptagon Octagon Nonagon 

 

Decagon Hendecagon Dodecagon 
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Rings with the SD can adopt three different bar configurations as 

represented in Figure 3 using distinct linkage patterns but employing an 

equal number of elements and preserving the same type of deployment 

and polygonal shape.  

 

 

Fig. 3. Possible bar configurations. 

2. Flat Grids  

2.1. Diaphragm Morphology  

For physical and practical applications the morphology of the swivel 

diaphragm may vary depending on the use, the scale, and/or the loading 

of the structure. The members that constitute the diaphragm can adopt 

nearly any shape as long as the relationship between the pivots is 

preserved and overlapping of the elements is avoided. As may be seen in 

Figure 1, each angulated element compromises three pivots that form a 

triangle; the fixed pivots transport the loads to the external support, and 

the other two help to hold up the straight elements that link each module 

to the proceeding. The load conditions differ when the diaphragm is 

placed vertically, horizontally or tilted. The diagrams in Figure 4 show 

the loading distribution in the horizontal and vertical positions. Precise 

loading and actions in Figure 4 will depend on the detailed structural 

design of the diaphragms and link bars. Using the appropriate bending 

moment diagrams as guidelines the members of the SD can be sculpted 

into more efficient shapes eliminating any unnecessary excess of 

material. This is of central importance for this type of structure, since 

Fixed pivot 
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substantial weight will significantly affect the retraction of the overall 

system. It is also ideal to reduce the joint size to the minimum possible  

in order of reaching the maximum deployment for the diaphragm. 

Section 2.2 illustrates various 3D proposals developed using different 

polygonal SDs.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Weight of the straight element 

Fixed support 

Dynamic load generated during the movement 
Weight of the angulated element + cover 

Fig. 4. Diagram of loading in horizontal and vertical position. 

Weight of the straight 

Additional horizontal loads 

Weight of the angulated 

element 
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2.2. Module Designs 

Figure 5 shows a hexagonal SD positioned vertically. The depth of the 

hexagonal frame that supports the ring has been increased to provide 

more stability to the structure. The diaphragm deploys internally. The 

angulated elements are designed with a open tetrahedral shape with rigid 

edges and lightweight surfaces where the maximum height is near the 

fixed pivot. The linking bars run inside the tetrahedron.   

 

 
  

 

Fig. 5. Vertical hexagonal SD. 

 

Figure 6 shows a heptagonal SD positioned horizontally. The covers 

are conical segments that meet at the centre of the ring in the fully closed 

position. The angulated elements compromise sections of arcs that 

support the conical covers. The arcs are tensed in the base by trusses. 

Straight bars link the underside of neighbouring elements.   

 
 

 

Fig. 6. Heptagonal SD with curved beams and covers. 

 

Figure 7 shows an octagonal SD positioned horizontally. Two 

triangular beams form the angulated elements and the straight bars that 

link them run over the top. The design of the plates allows a complete 

coverage when the ring is fully closed.  
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Fig. 7. Octagonal SD with plate covers. 

 

Figure 8 shows a decagonal SD positioned horizontally. The 

angulated elements are suspended from the fixed pivot position and the 

covers are tilted forming a turbine shape when the diaphragm is fully 

closed.   
 

Fig. 8. Decagonal SD with suspended beams and tilted plates. 

 

As demonstrated in the examples of SD modules shown above, some 

elements of the ring have a different structural function than others. For 

example, the angulated elements carry the weight of the covers and the 

straight element plus dynamic loads generated during the process of 

movement, whilst the straight elements suffer mainly axial compression 

or tension during the process of transporting forces from one element to 

the next. Additionally, the pivots need to absorb loads in different 

directions and at the same time allow rotation. Materials that are 

lightweight and offer high strength are the most effective for frames of 

this type, whereas the covers can be built with light and flexible material 

such as textiles or other synthetic materials.       

3. Interconnections for Flat Grids 

In flat networks of swivel diaphragms, the modules can be operated 

either by individually employing an independent mechanism of motion 
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or they can be interconnected to function cooperatively. When the rings 

are interconnected they may share components such as bars, plates  

or joints, saving cost in production and assembly. The beauty of 

interconnected grids lies in the reciprocity of the movement; therefore 

any force applied to a single component activates the motion of the 

overall grid. However, in physical models the friction of the pivots 

and/or the weight of the rigid elements can affect the transmission of 

these forces from one component to the next. To reduce this problem, the 

movement could be activated from various points strategically placed 

throughout the structure.  

The possibilities of grid design with SD are limited only by the 

imagination of the designer. The direction and type of motion can be 

manipulated depending on the use of the grid or the desired effect. For 

example, the grid could combine rings moving clockwise with rings 

operating anti-clockwise or vice versa so that when some rings open, 

others close. Alternatively, the diaphragms can be added concentrically 

to create radial movement, or, if not, they may be placed more 

organically to produce disordered kinetic sensations. Despite this variety 

of choice, it is important that the rings are strategically and carefully 

placed to avoid interfering with the adjacent rings. Three methods of 

grouping swivel diaphragms within grids, developed by the authors are 

illustrated here. The three proposals use the same swivel diaphragm 

configuration but achieve completely different grid operation. Other 

methods used to create two and three dimensional grids can be found in 

Ref. 6.   

3.1. The Fractal Method 

In this method various SDs are jointed concentrically around a central 

SD. As a result the overall grid twists towards/from a common centre. 

The central ring is of first order; hence one angulated element is placed 

on each side of the polygon described by the fixed pivots. The next ring 

is of second order; therefore two angulated elements are placed on each 

side of the polygon. The subsequent rings increase in order using the 

same pattern. With this method the grid behaves as a fractal, the 

assembly can grow endlessly and at any point of the process the shape of 
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the grid will always be the same as the polygonal figure used for the first 

central ring. The hexagonal grid shown in Figures 9 and 10 is of third 

frequency; the angulated elements spin around fixed pivots linked by 

straight bars. Groups of straight bars operating over the same axis move 

in unison, thus the bars can be fused into one longer bar connected to 

various angulated elements. The following equations serve to calculate 

the number of components needed for the grid according to its polygonal 

shape and frequency: 

Number of angulated elements = p* 0.5f * ( f+1) (2) 

Number of straight bars = p * f  (3) 

Number of joints in the straight bar = f+1 (4) 

f = order of the grid, p = number of sides of the desired polygonal shape 

 

Fig. 9. Hexagonal SD grid generated to third order using the fractal method. 

 

Fig. 10. Model of a hexagonal SD grid generated to third order using the fractal method. 
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3.2. The Hexapus Method 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11. Hexagonal SD grid using the hexapus method. 

 

Compared with the fractal method, this is a less mathematically based 

and a more ‘organic’ technique of linking SDs. It involves creating an 

arm from each side of the central ring using more complex multi-

angulated elements. The central SD is the only completely closed ring, 

the others are fractions of a ring that form a network of polygons when 

the grid is fully open and a ‘hexapus’ shape when the grid is fully closed. 

Notice that other types of angulated bars have replaced some of the 

straight bars. 

3.3. Equivalent Link Method  

This is a completely different approach to those described above: in this 

method isolated SDs are linked by additional straight bars. These 

additional bars can be placed in many ways as long as they join 

equivalent pivots in each diaphragm. For example, in Figure 12 pivot 1 is 

joined pivot 1in the proceeding ring, pivot 2 is jointed with pivot 2 etc. 

When the grid is fully closed it forms separate polygons with blank 

spaces in between, whilst when the grid is fully open identical interlinked 

‘star’ shapes are formed. 
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Fig. 12. Hexagonal SD grid using the external link method. 

 

 

 

 

Fig. 13. Equivalent link method grid with hexagonal SD. 

Conclusion 

The Swivel Diaphragm system shows potential to be used with in flat 

grid configurations. It offers important structural advantages due to  

the use of fixed supports. Additionally, it allows very different 

configurations of grids, providing the designer with a very wide range of 

options to choose from. Further research needs to be carried out 

regarding the capabilities of these types of grids with in practical 

 

Pivot 2 

Pivot 2 

Pivot 1 

Pivot 1 
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applications.  This paper is a step towards achieving this and aims to be a 

platform to help advance further exploration. The authors strongly 

believe that there is potential for these grids to be used in architectural 

devices such as retractable roofs or screen systems for day lighting 

control. However, this has to be explored through future research.  

References 

1. Hoberman, C. Web Page, Available At:  

 URL> WWW.Hoberman.Com, Last Accesed: 01/10/03 

2. F. V. Jensen, (2001), Cover Elements for Retractable Roof Structures, 

First Year Report, PhD University of Cambridge. 

3. P. Kassabian, Z. You, and S. Pellegrino, (1997), “Retractable 

Structures Based on Multi-Angulated Elements”, in Proceedings of 

the International Colloquium Structural Morphology: Towards the 

New Millennium, Chilton J.C et al (eds), University Of Nottingham, 

UK, 92-99. 

4. C. Rodriguez, (2000), Arquitectura Metamórfica, Eds. ICFES- 

National University of Colombia, Bogotá, Colombia. 

5. C. Rodriguez and J. Chilton, (2003), “Swivel Diaphragm a New 

Alternative for Retractable Ring Structures”, in Proceedings of the 

International Symposium on New Perspectives for Shell and Spatial 

Structures, Extended abstract, 254–255, and paper on CD-ROM, 

Taipei, Taiwan. 

6. C. Rodriguez, (2006). THE SWIVEL DIAPHRAGM: a geometrical 

examination of an alternative retractable ring structure in architecture, 

Thesis submitted to the University of Nottingham, UK for the degree 

of Doctor of Philosophy, 224p. 



This page intentionally left blankThis page intentionally left blank



173 

CHAPTER 12 

FORM-OPTIMIZING IN BIOLOGICAL STRUCTURES — THE 

MORPHOLOGY OF SEASHELLS 

Edgar Stach 

University of Tennessee, College of Architecture and Design,  

1715 Volunteer Boulevard, Knoxville, TN 37996, USA  

Fax 001- 865 9740656 

stach@utk.edu 

The purpose of this case study is to analyze, the structural properties of 

natural forms in particular seashells based on digital methods. This is 

part of a larger architectural study of lightweight structures and form-

optimizing processes in nature. The resulting model was used to 

visually display the internal structure of a seashell and also as input to 

structural analysis software. The generated renderings show the 

algorithmic beauty of sea shells. 

1. Introduction 

Henry Moseley
1
 started in 1838 the study of seashells and in particular 

the mathematical relationship that controls the overall geometry of shells. 

He was followed by many researchers such as Thompson,
2
 Raup,

3,4
 

Cortie,
5
 and Dawkins

6
 and others. 

The shape of seashells is caused by a logarithmic natural growth  

(Fig. 4-5). There are three basic shapes: the Planispirally coiled shell 

(Fig. 1), the Helically coiled shell (Fig. 2), and the Bi-valve shell  

(Fig. 3).  Environmental factors such as the availability of raw materials, 

the type of substrate, the amount of calcium present, as well as many 

other factors contribute to deviations from the three basic forms. 
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Fig. 1. Planispirally Coiled Shell (Wye 

p. 277). 

 Fig. 2. Helically Coiled Shell (Harasewych 

p. 162). 

          

 

Fig. 3. Bi-Valve Shell (Wye p. 243). 

2. Growth 

                     

Fig. 4. Computer simulation of a planispirally coiled shell and of three helically coiled 

gastropod shells (Harasewych p. 17). 
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Fig. 5. Computer simulation of one valve of the bi-valve Meiocardia moltkiana 

(Harasewych p. 17).  

 

Increases in height greatly benefit shells. It allows for greater tissue 

volume and more capacious mantle cavities, which in turn provide  

space for larger and more elaborate mantle cavity organs.  The downside 

for the increase in height is the shift of the center of gravity making  

the shell very unstable for the animal inhabiting it. Not only is  

coiling a great solution to this problem, it also maintains constant  

shell proportions.  Examples of shells that conform to some portion  

of a logarithmic spiral can be found in all classes of single-shelled 

mollusks. 

3. Seashell Geometry 

The seashell geometry can be expressed by four basic parameters. As 

shown in Figure 6, A is the shape of the aperture or the shape of shell 

section, B is the distance from the coiling axis to the center of the shell 

section, C is the section radius, and D is the vertical distance between 

sections. The columella is the elongated cone around the coiling axis, the 

internal structural support of the shell. The suture line is the intersection 

of the sections vertically. The columella and the suture line are the result 

of the spiral growth of the seashell. 
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Fig. 6. Seashell geometry (Kamon Jirapong and Robert J. Krawczyk, Illinois Institute of 

Technology). 

4. Formation of the Shell

All mollusks have a mantle. This is a specialized secretary region on the 

animal’s upper surface. It produces a thin, flexible covering or cuticle 

make of a specialized protein known as conchiolin. All mollusk mantles 

also contain unique cells that secrete a fluid from which the various 

forms of calcium carbonate can be crystallized. Crystallization occurs 

along the inner surface of the conchiolin, creating a continuously 

mineralized shell. The molluscan shell, a complex structure com

mineral and organic components, forms outside of the animal’s tissues.

Fig. 7. An electron microscope photograph of the shell of Busycon carica broken parallel 

to the edge of the shell. Three different crystal layers can be seen (Harasewych p.
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Fig. 8. A cross-sectional view of the mantle and shell at the growing edge of a bi-valve 

(Harasewych p. 16). 

 

The molluscan shell contains multiple layers that vary in thickness, 

crystalline form and orientation. Adjacent layers are often deposited with 

their crystal planes at right angles to each other, resembling the pattern 

seen in plywood. 

This dramatically increases the strength of the shell. Most shells 

consist of three major components, each produced by a different region 

of the mantle. The outer most protein layer is added along the edge of the 

shell by a specialized region of the adjacent mantle edge.  Next, an outer 

calcified layer is underneath. The inner calcified layers follow, and 

finally, the largest region is the mantle. An unavoidable consequence of 

this type of calcification, common to all shelled mollusks, is that growth 

can only happen by the addition of material to the shell edge. Once 

formed, the shell cannot be modified except for its internal layers. This 

creates limitations on the general architecture of the shells. 

5. Digital Modeling 

The three basic seashell shapes, the Planispirally coiled shell (Fig. 1), the 

Helically coiled shell (Fig. 2), and the Bi-valve shell (Fig. 3) can be 

reconstructed in a digital model as a variation of the mathematical 

relationship between the four parameters: 1. The shape of the aperture/ 

shell section. 2. The distance from the coiling axis to the center of the 

shell section. 3. The section radius. 4. The vertical distance between 

sections. The result of a specific mathematical combination reflects the 

shell form for specific seashell species. 
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Planispirally coiled shell Nautilus Planispirally 

 

Fig. 9. Elevation and X-ray view of Chambered Nautilus (Conklin p. 189). 

 

   

Fig. 10. Rendered computer model of nautilus planispirally coiled shell. 

 

 

Fig. 11. Diagram of proportioning system of planispirally coiled shell.  

 

 

Fig. 12. Computer wire frame model of nautilus planispirally coiled shell. 
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Helically coiled Gastropod shell 

 

Fig. 13. Elevation and X-ray view of helically coiled gastropod shell (Conklin p. 45). 

 

 

 

 

Fig. 14. Diagram of proportioning system 

of helically coiled gastropod shells.  

 Fig. 15. Computer wire frame model of 

helically coiled gastropod shells. 

 

          

    

Fig. 16. Rendered computer model of helically coiled gastropod shells. 
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Helically coiled gastropod shell 

 

Fig. 17. Elevation and X-ray views of helically coiled gastropod shell (Conklin p. 153). 

 

 

Fig. 18. Diagram of proportioning system of helically coiled gastropod shells. 

 

 

Fig. 19. Computer wire frame model of helically coiled gastropod shells. 
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Fig. 20. Rendered computer model of helically coiled gastropod shells. 

Bi-valve shell 

 

Fig. 21. View of Bi-Valve Shell (Harasewych p. 209). 

 

 

Fig. 22. Elevation of computer wire frame model showing exponential curve of shell 

growth. 

 

 

Fig. 23. Three dimensional representation of proportioning system used to develop 

curvature bi-valve shell. 
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Fig. 24. Computer wire frame model of of bi-valve shell. 

 

 

Fig. 25. Rendered computer model of bi-valve shell. 

6. Structural Optimization in Engineering — Seashell Structural 

Properties 

The shell geometry responses to any external and internal loads by 

redirecting forces within a very thin section of shell structure along its 

natural multiple curvatures. Finally these forces are transferred to the 

supported area such as ground, rock or sand depending upon how the 

seashell positions itself in the environment. 

Genetic algorithms 

In engineering fields, accomplishing an objective with a minimum of 

effort, either in terms of material, time or other expense, is a basic 

activity. For this reason it is easy to understand the interest designers 

have in different optimization techniques like the seashell structure. 

Mathematical, as well as, model based tools have traditionally been 

employed for such optimization. In recent times, mathematical methods 

executed on computers have become predominant. Unfortunately, 

computer derived solutions often obscure the range of possible solutions 
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from the designer by only exhibiting a final, ‘best’ solution. Naturally, 

optimization methods can only respond to the objective parameters 

which are coded into the problem, and as a result, non-coded parameters, 

such as aesthetics, or context are left out of the optimization process, and 

ultimately left out of the final design solution.  

Structural optimization in engineering takes natural constructions  

as an example. Similar to nature itself, computer-generated genetic 

algorithms can be calculated using stated goals to achieve global 

optimization - the search strategy is, like in nature, goal-oriented. An 

evolutionary algorithm maintains a population of structures (usually 

randomly generated initially), that evolves according to rules of 

selection, recombination, mutation and survival, referred to as genetic 

operators. A shared ‘environment’ determines the fitness or performance 

of each individual in the population. The fittest individuals are more 

likely to be selected for reproduction (retention or duplication), while 

recombination and mutation modifies those individuals, yielding 

potentially superior ones. Using algorithms, mechanical selection, 

mutation and recombination improves generationally with a fixed 

parameter size and quality. 

                  

Fig. 26. Structure optimization in the shell structure of a sea urchin. 

 

Fig. 27. Finite Element analysis of sea urchin shell, color coded stress analysis [Process 

und Form, K. Teichmann]. 
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Computer-compressed evolution 

Design space and finite elements 

Computer-compressed evolution like the SKO method (Soft Kill Option) 

(Fig. 28) follows the same construction principle that nature employs to 

promote for example the shell growth of a sea urchin (Fig. 26/27) or the 

silica structure of sea shell (Fig. 1/3). Building material can be removed 

wherever there are no stresses, but additional material must be  

used where the stresses are greater. This is the simple principle that 

evolution has used for millions of years to produces weight optimized 

‘components’. Using computer programs based on computer-generated 

genetic algorithms like the SKO method, scientists are now able to 

simulate this evolution and compress it into a short time span.
9
 

 

 

Fig. 28. SKO method (Soft Kill Option). [Hightech Report 1/2003, pp. 60–63]. 

 

In order to simulate lightweight engineering strategy according to 

nature’s guidelines, scientists using the SKO method must first define a 

virtual design space, which represents the outermost parameters of the 

component being developed (Fig. 27). To subdivide this design space 

into many small individual parts, the finite elements, a grid is applied. If 

now a virtually external load applied, the computer calculates the 
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resulting force exerted on every one of the finite elements. The FE model 

shows exactly where there is no load stress on a component and in turn 

shows where it is possible to make savings with regard to the materials 

used. On the other hand, for areas that bear heavy stress the simulation 

program indicates the need to reinforce the construction material. Like 

nature the computer repeats this ‘finite element cycle’ several times. As a 

result, they can refine a component repeatedly until the optimal form — 

one that evenly distributes the stresses within a component — is found. 

Conclusion 

The abstract geometrical properties of seashells can be described  

by there mathematical relationship. The translation of abstracted  

nature in mathematical terms and by applying prerequisite architectural 

considerations is the fundamental concept of form and structure analyses. 

The value of this research is to develop mathematically definable models 

of structure systems in nature. The goal is to define a set of structural 

principles, and to make those principles applicable for architects and 

engineers. 

Seashell structures are perfect study models for self- organization 

structures in nature because of there relatively simple physical and 

morphological principle and geometry based on four basic mathematical 

parameters. Self-organization it the defining principle of nature. It 

defines things as simple as a raindrop or as complex as living cell - 

simply a result of physical laws or directives that are implicit in the 

material itself. It is a process by which atoms, molecules, molecular 

structures and constructive elements create ordered and functional 

entities.  

Engineers are using this concept already successful for optimization 

processes in a white range of applications starting in mechanical-, 

medicine-, air and space engineering. Architects are only one step away 

adopting the same technique for designing in a macro scale buildings and 

structures. Material scientists  are already designing and producing  

new materials or smart materials in a Micro scale using the self 

organizing principles. In the future, the material engineers will develop 

constructions out of self-structuring materials that consciously use the 
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principles of self-organization, creating not only materials with brand 

new properties but also inspiring architects to define their constructions 

in a more intelligent way. 

At its best, intelligent structures and materials will influence the 

entire philosophy of construction. Engineers will no longer ensure safety 

through quantity of material and cost. Simple structural analysis will no 

longer suffice; instead, self-organizing structures will define the new 

construction principles.  
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CHAPTER 13 
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This paper presents a methodology for designing single-degree-of-

freedom expandable “freeform” structures composed of rigid blocks 

connected through simple cylindrical joints. The underlying idea is to 

interconnect two or more individually expandable plate structures. 

Using a two-dimensionally expanding sphere as a first example, the 

conditions that must be satisfied to preserve the internal mobility when 

connecting identical expandable plate structures are explained. These 

conditions are then extended to plate structures that are not identical 

and it is then shown that a wide range of expandable free-form or 

“blob” structures can be designed through this approach. 

1. Introduction 

This paper is concerned with the geometric design of expandable 

structures consisting of rigid elements connected through cylindrical 

hinges or scissor joints that only allow rotation about a single axis. The 

authors have been interested in developing stacked assemblies formed by 

rigidly interconnecting the expandable plate structures that they had 

previously developed.
4
 The connections between individual plates can 

themselves be volume filling, and so the stacked structure can also 

become an expandable three-dimensional object. As the plate structures 

from which one starts can have any plan shape, and only simple 

kinematic constraints have to be satisfied in order for them to maintain 



190 F. Jensen & S. Pellegrino 

 

their internal mobility in the stack configuration, nearly any shape can be 

generated, including so-called free-forms or blobs. 

The approach presented in this paper starts by developing a method 

for rigidly connecting two identical and individually expandable plate 

structures, such that the assembled structure only possesses a single-

degree-of-freedom. The kinematic constraints that must be satisfied by 

the connections and the connected plate structures are derived, and are 

shown to allow the stacking of non-identical plate structures as well, 

thereby allowing free-form profiles to be obtained for the assembled 

structure. 

This paper is presented as follows. The following section briefly 

reviews the kinematic properties of the expandable plate structures that 

are to be connected, and their underlying bar structures. Then, the section 

An Expandable Sphere describes a method for connecting the plate 

structures such that they can form an expandable sphere. The next 

section is then concerned with the kinematic constraints that have been 

satisfied by these connections and the formulation of a general set of 

rules for such connections. These are then used in the following section 

to design an expandable free-form or blob structure demonstrating the 

possibility of designing vivid and exciting expandable structures using 

this method. A brief discussion concludes the paper. 

2. Background 

Simple expandable structures based on the concept of pantographic 

elements, i.e. straight bars connected through scissor hinges have been 

known for a long time. One of the simplest forms of such pantographic 

structures is the well-known lazy-tong in which a series of pantographic 

elements are connected through scissor hinges at their ends to form two-

dimensional linearly extendible structures. 

More sophisticated expandable or deployable structures have been 

developed over the last half century.
1,2,12

 Many of these solutions are 

based on the so-called angulated pantographic element.
3
 In its simplest 

form, shown in Figure 1, it consists of two identical angulated elements 

each composed of two bars rigidly connected with a kink angle α. Unlike 



 

 

pantographic elements composed from collin

such angulated elements can be used to form expandable closed 

loop structures if the conditions

are met.
6,10

 These conditions guarantee that the following

geometric compatibility is satisfied for all deployment angles, 
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Fig. 1. Pantographic element consisting of two angulated elements, each formed by two 

bars. 

 

As the kink angle 

the pantographic element

closed loop structure can be formed from these
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pantographic elements with multiple ki

Consider the circular structure shown in

separate layers, shown with solid and dashed lines, each containing 12

identical multi-angulated elements, which here have three kinks. As the 

structure expands, from

both layers of elements expand radially. However,

each multi-angulated element in the solid
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Pantographic element consisting of two angulated elements, each formed by two 

As the kink angle α is constant, i.e. independent of γ, the end joints of 

the pantographic element move along radial lines, and so an expandable 

closed loop structure can be formed from these elements. 

You and Pellegrino
10

 found that certain multi-angulated elements

elements with multiple kinks, have the same property. 

Consider the circular structure shown in Figure 2. It consists of two 

separate layers, shown with solid and dashed lines, each containing 12

angulated elements, which here have three kinks. As the 

nds, from left to right in the figure, the hinges and hence 

both layers of elements expand radially. However, while moving radially 

angulated element in the solid-line layer also rotates 
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ear bars, which have α = 0, 

elements can be used to form expandable closed  
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equation of 

(1) 

Pantographic element consisting of two angulated elements, each formed by two 

the end joints of 

move along radial lines, and so an expandable 

angulated elements, i.e. 

nks, have the same property. 

Figure 2. It consists of two 

separate layers, shown with solid and dashed lines, each containing 12 

angulated elements, which here have three kinks. As the 

left to right in the figure, the hinges and hence 

while moving radially 

line layer also rotates 
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clockwise as can be seen in the figure. The dashed-line layer, on the other 

hand rotates counter-clockwise. Note how the multi-angulated elements 

form three concentric rings of rhombus-shaped four-bar linkages all of 

which are sheared as the structure expands. 

 

 

Fig. 2. Retractable structure formed from multi-angulated elements. 

 

Expandable structures composed from rigid plates and scissor or 

spherical joints have been proposed.
8,9

 Kassabian et al.
5
 proposed 

covering the above basic circular bar structure with rigid panels to form a 

continuous, gap free covering. As an extension of his earlier work on bar 

structures You proposed to replace parts of the bar structure with rigid 

elements
11

; this idea was further developed by Rodriguez and Chilton in 

their Swivel Diaphragm.
7
 

The present authors have proposed a method for covering any  

multi-angulated bar structure with plates.
4
 By considering the shearing 

deformation of any four-bar linkage formed by the elements common to 

two pairs of consecutive angulated elements, the authors determined a 

general condition on the shape of the boundary between two covering 

elements, such that the plates would not restrict the motion of the 

structure while resulting in a gap and overlap free surface in either 

extreme position of the structure. The covering of a single rhombus is 

shown in Figure 3. The boundary angle θ for the plate elements is 

determined by: 

 2

openclosed β−β−π

=θ . (2) 



 

 

Fig. 3. Movement of four

 

In fact, instead of covering the bar structure with plates, it is possible 

to remove the angulated

means of scissor hinges at exactly the same locations

bar structure. Thus, the kinematic behaviour of the expandable structure

remains unchanged. It was shown that, as lo

a certain periodic 

example of such an expandable

is formed by 26 plates of different shape.

 

Fig. 4. Model of non

layers are shown. 
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Movement of four-bar linkage with two plates attached. 

In fact, instead of covering the bar structure with plates, it is possible 

remove the angulated elements and connect the plates directly, by 

means of scissor hinges at exactly the same locations as in the original 

bar structure. Thus, the kinematic behaviour of the expandable structure

remains unchanged. It was shown that, as long the plate boundaries have 

 shape, they need not be straight.
4
 Figure 4 shows an 

example of such an expandable plate structure; this non-circular structure 

is formed by 26 plates of different shape. 

Model of non-circular structure where all plate boundaries are different; both 
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In fact, instead of covering the bar structure with plates, it is possible 

elements and connect the plates directly, by 

as in the original 

bar structure. Thus, the kinematic behaviour of the expandable structure 

ng the plate boundaries have 

Figure 4 shows an 

circular structure 

 

structure where all plate boundaries are different; both 
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3. An Expandable Sphere

To investigate the possibility of creating three

structures by stacking

plate structures was chosen. The design, shown

16 identical plate elements of which 8 form the bottom layer and 8 the

top layer. As for the bar structure shown in Figure 2, the 8 plates forming 

the top layer move

plates forming the bottom layer (of which

the figure) rotate counter

that all plates in the same layer rotate by identical amounts; the rotations 

of plates in different layers are equal and opposite.

 

Consider two such identical plate structures positioned above one 

another, which are to be

internal mobility of 

be made from a single plate in one structure to a single plate in the

structure. However, noting the opposite rotations of the two layers in 

each structure, it is

the bottom structure to the plates in the

while maintaining the internal mobility of these structures.

connections must be either between the top or the bottom layers, as these 

have identical motions. This can be achieved by swapping the top and 

bottom layers in one of the

made between the facing and now identical layers

rearranging the order of the layers in one of the two

F. Jensen & S. Pellegrino 

An Expandable Sphere 

To investigate the possibility of creating three-dimensional expandable 

structures by stacking identical plate structures, a simple design for the 

structures was chosen. The design, shown in Figure 5, consists of 

16 identical plate elements of which 8 form the bottom layer and 8 the

top layer. As for the bar structure shown in Figure 2, the 8 plates forming 

the top layer move radially outwards while rotating clockwise, while the 

plates forming the bottom layer (of which only small parts can be seen in 

counter-clockwise. From symmetry it can be concluded 

that all plates in the same layer rotate by identical amounts; the rotations 

in different layers are equal and opposite. 

Fig. 5. Expandable circular plate structure. 

Consider two such identical plate structures positioned above one 

another, which are to be rigidly connected. In order to preserve the 

internal mobility of the two plate structures, the rigid connections must 

be made from a single plate in one structure to a single plate in the

structure. However, noting the opposite rotations of the two layers in 

each structure, it is not possible to connect the plates in the top layer of 

the bottom structure to the plates in the bottom layer of the top structure 

while maintaining the internal mobility of these structures. Instead, the 

connections must be either between the top or the bottom layers, as these 

cal motions. This can be achieved by swapping the top and 

bottom layers in one of the two structures so that connections can then be 

made between the facing and now identical layers of plates. Hence, by 

rearranging the order of the layers in one of the two structures it becomes

dimensional expandable 

identical plate structures, a simple design for the 

in Figure 5, consists of 

16 identical plate elements of which 8 form the bottom layer and 8 the 

top layer. As for the bar structure shown in Figure 2, the 8 plates forming 

, while the 

only small parts can be seen in 

concluded 

that all plates in the same layer rotate by identical amounts; the rotations 

 

Consider two such identical plate structures positioned above one 

rigidly connected. In order to preserve the 

rigid connections must 

be made from a single plate in one structure to a single plate in the other 

structure. However, noting the opposite rotations of the two layers in 

in the top layer of 

bottom layer of the top structure 

Instead, the 

connections must be either between the top or the bottom layers, as these 

cal motions. This can be achieved by swapping the top and 

two structures so that connections can then be 

of plates. Hence, by 

structures it becomes 
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possible to rigidly interconnect them, so they form a stacked and still 

expandable assembly. 

A stacked assembly composed of identical plate structures would 

form a cylinder, but other profiles can be formed by varying the plan 

shape of the outer edge of the plate structure. 

An expandable assembly that approximates to a spherical profile has 

been designed and built from 5 interconnected plate structures. From the 

model shown in Figure 6 it can be seen that the 5 structures conform to a 

spherical profile in the closed position. Note that the periodic boundaries 

of the plate elements on the upper face of each plate structure are convex 

in alternate directions, which confirms that the layers have been swapped 

in alternate structures. All five plate structures have been produced using 

the same plate template, only the outer boundaries of the plates have 

been made with different radii. Clearly, the allowable rotation between 

the extreme positions of neighbouring plates is identical throughout the 

structure, giving identical motions for the 5 plate structures. 

 

Fig. 6. Perspective views of expandable spherical structure. 

 

In Figure 6 the connections between the 5 structures have been shown 

as solid rods rigidly attached to the plate elements. However, as the 

motion of two connected plates is identical, the connectors themselves 

could be formed in a number of different ways. For example, to form an 

object with a smooth, continuous surface in the closed configuration, one 

can connect the plates using either solid or hollow blocks. By curving the 

outer wall of each block, and also the top/bottom surface of the blocks 

attached to the uppermost/lowermost plate structure, one can obtain a 

continuous spherical profile. The internal faces of the blocks could be 
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made perpendicular to the original plate, and follow the periodic edge 

shape of the plates. 

Figure 7 shows such a spherical model. It was constructed using 

identical plastic plate structures of which four were trimmed so that their 

outer boundaries form circles of different radii. The connections were 

made from identical blocks of light foam board, cut using abrasive water-

jet cutting. The blocks were then glued to the back of the individual 

plastic plates that form the plate structures and the spherical profile 

obtained by removing the excess foam board material. 

 

Fig. 7. Expandable sphere. 

4. Stack Structures 

To rigidly connect two expandable plate structures the motion of the 

individual plates being connected must be identical. Earlier, the motion 

of each plate was described as the combination of a radial motion, i.e. a 

translation and a rotation. Kassabian et al.
5
 found that, as the rotation in 

the two layers is equal and opposite, imposing an additional rigid body 

rotation to the whole structure, equal to the rotation undergone by one of 

the layers, the motions of the two layers become a pure rotation and a 

pure translation, respectively. If, for example, the imposed rotation is 

such that the plates in the top layer of the bottom structure undergo a 

pure rotation, then each plate in this layer rotates about its own fixed 

centre.
5
 

Hence, consider two plate structures that are to be connected. 

Following the above approach impose the same rigid body rotations on 

both structures; clearly the plates in the two connected layers must rotate 

about the same axes of rotation and by the same amounts. Since the 
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rotations of two rigidly connected plates are automatically synchronised, 

the only kinematic constraint that must be satisfied is that the two plates 

have the same axes of rotation. This is the only condition that must be 

satisfied for any two plates belonging to different expandable plate 

structures to be connected without suppressing the internal mobility of 

the plate structures. 

It was mentioned in Section 2 that an expandable plate structure is 

kinematically equivalent to a bar structure with identically positioned 

hinges. It is therefore possible to identify the centres of rotation for the 

equivalent bar structure, instead of the plate structures themselves. It is 

therefore proposed to start the design of an expandable stack assembly 

by considering its underlying bar structures; a particular embodiment as a 

plate structure will be determined later on. 

Following Hoberman,
3
 an expandable bar structure of general shape 

is generated in its open configuration by considering an n-sided polygon. 

Each angulated element is then defined so that its central scissor hinge 

coincides with a vertex of the polygon and its end points coincide with 

the midpoint of the adjacent polygon sides. Thus, in Figure 8(a) we have 

defined two noncircular structures; structure I is drawn with a thinner 

line, structure II is drawn with a thicker line. Structures consisting of 

multi-angulated elements can be generated by adding any number of 

rhombuses to this base structure.
10

 

Kassabian et al.
5
 showed that the axis of rotation for any particular 

angulated element is at the half-way point between the origin of the 

polygon, O, and the vertex defining the central hinge of the element. 

Hence, all the axes of rotation are at the vertices of a polygon that is  

half the size of that defining the elements themselves, as shown in  

Figure 8(a). Therefore, together with the location of the chosen origin, 

the initial polygon determines the location of the axes of rotation. Or, 

alternatively, a polygon defining the axes of rotation together with a 

chosen origin point define a bar structure, and hence also a plate 

structure that will rotate about those specific axes when it is expanded. 

In Figure 8 note that the bar structures I and II have been defined 

such that three centres of rotation — Acen, Bcen, and Ccen — are common 

to the two structures. Hence, the elements A, B and C of the two 

structures, drawn as solid lines, can be rigidly connected to each other as 
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shown. It can also be seen in the figure that the allowable rotation of the 

stacked structure is limited by contact at DII in the extreme closed 

position. 

For an assembly where all the plates in each layer are to be 

connected, the axes of rotation for all elements of the two layers must 

coincide. Hence, the polygons defining the axes must also be identical. 

As these polygons also define the open plan shape of the structures, 

when scaled to double size, the two layers must therefore be formed from 

identical polygons. However, the location of the origin for the two 

structures need not coincide, as was the case for the spherical assembly 

where they were both located on the central axis of the expandable 

sphere. In Figure 8 note the different origins OI and OII. 

Note in Figure 8(a) that the axes of rotation could be chosen to be the 

same also for the elements in the dashed-line layers but this is only the 

case when the structures can be expanded fully, i.e. the dashed- and 

solid-line layers coincide when fully expanded. This is not normally the 

case as the physical size of hinges and plates will prevent this and thus 

different axes have to be identified if another structure has to be added to 

the stack, by connecting two facing dashed-line layers. 

 

Fig. 8. Stacked bar assembly in three different configurations; (a) fully open;  

(b) intermediate; (c) closed. 

5. An Expandable Blob 

Having determined the overall kinematic constraints that must be 

satisfied for two plate structures to be connected together, a more 
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complex structure will be presented in this section. Three different 

configurations of this expandable structure are shown in Figure 9. 

The first step in the design of this structure is to define its outer shape 

in the closed configuration. Next, one decides how many layers of blocks 

are to be used. Here, 6 layers have been used and hence there are 5 sets 

of connections to be designed. Then, one defines the underlying bar 

structures for any pair of plate structures that are to be connected. Here 

each bar structure consists of 6 identical angulated elements and hence 

has 6-fold symmetry. These structures are shown in Figure 10 for a 

particular pair of plates, where the two structures have been drawn with 

thicker and thinner lines; note that the two layers to be connected are 

those shown with solid lines. Also note that individual elements of these 

bar structures rotate about the same axes of rotation (although they do 

not share a common origin) and hence they can be rigidly connected to 

each other, as shown in the previous section. 

One of the complications of generating a structure with a complex 

three-dimensional shape is that the top and bottom faces of the blocks 

from which it is made may have different shapes. 

 

Fig. 9. Perspective views of an expanding “blob” structure. 

 

Fig. 10. Plate structures for generation solid blocks. 



200 F. Jensen & S. Pellegrino 

 

Hence, in addition to the underlying bar structures, the shapes  

of the top faces of the bottom layer of blocks and the bottom face of  

the top layer of blocks need to be defined. In this particular case, see 

Figure 10, these shapes were chosen to be identical, though they are 

offset with respect to one another. In general, they need not be identical 

but, as the motion of the two solid-line underlying bar structures is 

identical, the boundaries determined using Equation 2 will always be 

parallel. 

The shape chosen here is such that there would be no central opening 

in the closed position, unlike the spherical model of the previous section 

where there is a small opening. The periodic shape of the boundaries was 

determined such that in the expanded configuration the central opening 

would be perfectly circular, as before. But, unlike the previous model 

this does not result in a smooth cylindrical opening though the whole 

structure as the individual layers have been offset. Another effect of the 

layers being offset is that the internal faces of the blocks need to be 

inclined. For the current model these faces have been created by 

extruding the lower face of the block along an inclined circular arc. The 

periodic walls can hence be doubly curved, as shown in Figure 9, without 

impeding the motion of the structure.  

Note that, although the outer edges of the plates have been shown as 

circular arcs, their actual shape is determined by the three-dimensional 

profile of the structure. For the current “freeform” profile model the 

outer boundaries for the bottom and top faces of the blocks are not 

identical. This and the inclined, curved extrusion path result in each 

block being unique. 

The model in Figure 9 has not yet been realised physically, though 

this would be possible using rapid prototyping techniques, for example. 

Its manufacture is complicated by the offset of the individual layers, 

which results in non-collinear hinges. Models without offsets are easier 

to manufacture and assemble; such models can be made from identical 

blocks connected using long thin rods for the connections. The required 

symmetric or free-form profile can be generated by machining the outer 

face of the assembled structure. 
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6. Conclusion 

An investigation into three-dimensional expandable shapes made by 

rigidly interconnecting individually expandable plate structures has been 

presented. It has been shown that it is possible to create structures with 

highly irregular shapes; the internal mobility of the plate structures is 

preserved if simple kinematic constraints are satisfied. Several models 

have been designed and constructed to verify and demonstrate this 

finding, of which two have been shown in this paper. The two models 

presented show that it is possible to create such expandable assemblies 

with almost any plan and profile shape. They can hence be visually 

pleasing and attractive for applications in architecture and design. 
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