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Preface

This monograph is devoted to the topic of univariate continuous
distributions on a bounded domain other than the beta distribution. As early as
1919, E. Pairman and K. Pearson recognized the topic of continuous
distribution on a limited range to be an important aspect of statistical theory
and investigated estimation of their moments. However, even in the late
nineties of the 20-th century only a relative few number of probabilistic
models of this kind were available. Amongst them, the uniform, triangular
and beta distributions are the most widely explored and used, interspersed
by some "curious" distributions posed occasionally as problems or
exercises. Other bounded continuous distributions were based on
mathematical transformations of the normal distribution (with an
unbounded domain) - the most wide-spread amongst them is still the
Johnson SB family of transformations introduced in 1949 (briefly discussed
in Appendix B).

Aside from the latter system of distributions, a comparison with the
multitude of existing unbounded continuous distributions developed in the
20-th century is striking and even somewhat puzzling. There are of course
historical reasons for this discrepancy — the main one being that the basic
origin of continuous distributions stems from the famous Pearson family
(containing mostly unbounded distributions) which in turn is related to the
most prominent continuous distribution — the so called Gaussian or
normal (symmetric) distribution (likewise unbounded). This distribution has
a multitude of names. Interested readers should consult The History of
Statistics by S.M. Stigler (1986) or/and Hald (1990). Perhaps it is no
coincidence that the latter distribution was used as basis for the Johnson SB
system of bounded distributions. It should be noted that the unbounded
continuous distributions usually computationally have the
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Preface Beyond Beta

property that estimation of their parameters does not pose serious problems
since originally estimation procedures were developed with an eye on the
unbounded families.

Even when dealing with a problem of a bounded nature, such as, e.g.,
the propensity of particular physical characteristics of the human body,
unbounded distributions such as the Gaussian distribution have been used
to describe the uncertainty about these characteristics. Situations are not
limited to the "physical" problems. For example, in the world of finance
logarithmic transforms of interest rates (typically a quantity between 0% and
100%) are combined wim their one-step differences to arrive at an
unbounded domain, allowing once again the use of the Gaussian
distribution for describing uncertainty in these one-step differences. In
cases similar to the one described above, authors usually emphasize that
they are using the unbounded continuous distribution as an approximation to
the actual bounded state of affairs. In our opinion such an approach is not
quite necessary in the 21-st century when computational difficulties
associated with estimation of parameters of a distribution do not pose
problems any more and are easily overcome. At the very least, a more
natural continuous distribution with a bounded domain should be available
that describes the uncertainty of such bounded phenomena.

The only continuous bounded distribution discussed extensively in
numerous textbooks on probability and statistics is the well known beta
distribution or the Pearson type IV distribution, which is highly flexible and
has been used — occasionally indiscriminately — for fitting of data
stemming from various fields. This approach is usually empirical since the
parameters of the beta distribution (in its original form) do not have a
proper physical meaning and having fitted beta distributions, the fitted beta
parameters themselves do not always provide a picture of the phenomenon
generated by the data under scrutiny.

Moreover, like the normal distribution, the beta distribution is smooth.
Whereas a "peaked" alternative for the normal distribution has been
available for quite some time such as the Laplace distribution, a flexible
"peaked" alternative for the beta distribution has been lacking until very
recently. Smoothness of density curves may be an attractive mathematical
property, but it does not always have to be dictated by the uncertainty of the
phenomenon one is attempting to describe. In particular, financial data has
been shown to exhibit "peaked" histograms and even displayed jump
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Preface Beyond Beta

discontinuities. This fact prompted us to search for "alternative curves" on
a bounded domain which:
(1) possess properties of the uncertain phenomenon one is attempting to

describe,
(2) mimics the flexibility of the beta distribution and
(3) possess meaningful interpretation of parameters which permit to

classify the data and draw practical conclusions.
Our initial efforts originated as early as 2000 and resulted in the
construction of the two-sided power (TSPJ distributions which cover almost all
varieties of the beta distribution, enhances flexibility in die unimodal
domain, possess the cumulative distribution function and quantiles in a
closed form, and whose parameters provide information on the structure
and properties of the distribution at hand. The distribution was
independendy introduced in a technical report in 1985 by B.W. Schmeiser
and R. Lai.

The material available by now (2004) on bounded continuous
distributions allowed us to compile a monograph consisting of 8 chapters
containing predominantly novel contributions together with some neglected
models. Indeed, while searching the literature, we have encountered a
number of relatively obscure continuous bounded distributions, having
attractive statistical properties which extend the realm of models that can be
represented by bounded continuous data. A common diread amongst most
of these distributions is mat they can be viewed to be extensions of the
triangular distribution. It would seem that these distributions were not
sufficiently covered in die relevant periodical and monographic literature
prior to die 21-st century. As an example, aside from the authors recent
publications, no maximum likelihood procedure seems to have been
available for the widely encountered diree-parameter triangular distribution.
It appears diat only some ad-hoc estimation methods have been provided in
distribution fitting software that do not contain detailed descriptions of
their fitting procedures.

The initial Chapters 1 to 2 cover the triangular distribution and some of
its pre 21-st century extensions, which we consider to be of substantial
historical and of practical value. The text of Chapters 3 to 8 records — to a
large extent — our own contributions to the post-20-th century alternatives
to the beta distribution which are related to the TSP family possessing
attractive properties not always shared by the beta distribution. The
distributions presented in Chapters 3 to 7 are motivated by utilizing real
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Preface Beyond Beta

world engineering and economic data. Some of the illustrative examples are
elaborate and in Chapters 3 and 6 involve modeling of financial time series
and in Chapter 7 deal with modeling of income distributions for African
American, Hispanic and Caucasian (non-Hispanic) subpopulations in the
U.S. revealing stochastic ordering amongst them. Examples in the
remaining chapters are based on civil engineering and physics data.

We are not aiming to dethrone or demolish the time-honored beta
distribution which will no doubt continue to have a secure place and plenty
of meaningful applications in statistical, engineering, medical, econometrics
and other applied literature, as indicated by the recently published
handbook on the beta distribution by Gupta and Nadarajah (2004). Our
intention is to enlarge the arsenal of univariate continuous bounded
distributions and thus improve the description of those statistical models to
which the newly proposed distributions may well be applicable. While in
this edition we predominantly focus on the triangular distributions and its
extensions, we hope to provide a more comprehensive treatment of
univariate continuous distributions on a bounded domain in a future edition
and emphasize the computer-oriented aspects.

We are grateful to a number of people for helping us to bring this year
long project to fruition. In preparing this monograph we have benefited
from the advise of Prof. T.A. Mazzuchi (The George Washington
University), Prof. S. Nadarajah and as well as suggestions from the editors
and referees of our own published papers on this topic. We are indebted to
Dr. Simaan AbouRizk (University of Alberta) for alerting us to his
dissertation as a source of the civil engineering data utilized in Chapters 1
and 4, and Dr. David Findley (U.S. Bureau of Census) for assisting us to
obtain recent income distribution data for Chapter 7. Our thanks go to our
student Caner Sener for careful proofreading of the manuscript and drawing
our attention to a number of misprints. Needless to say, the responsibility
for remaining misprints and errors is ours alone. The positive attitude and
encouragement from the editors of the World Scientific Publications was
very valuable. We are especially indebted to our editor Ji Zhang who
generously devoted her time and have shown enthusiasm for the project. Ji
Zhang is a marvelous editor with an uncanny sense on how to reshape a
narrative; working with her was a delight. Finally, we want to express
gratitude to our wives Greer and Rosalie for encouragement and displaying
patience while we were toiling away obsessively with the manuscript and for
providing a balance to our lives.
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Preface Beyond Beta

We trust that this monograph will fill a gap in the literature on statistical
distributions and readers will find our efforts useful in their work. We
welcome comments, suggestions and criticism from the readers.

Johan Rene van Dorp and Samuel Kot%

September, 2004

Washington, DC, U.S^4.
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Chapter 1

The Triangular Distribution

One of our goals in this book is to "dig out" suitable substitutes of the beta
distribution. Only recently (less than 10 years ago) has the triangular
distribution specifically been investigated by D. Johnson (1997) as a proxy for
the beta distribution, even though its origins can be traced back to Thomas
Simpson (1755) (about one century after the discovery of the beta
distribution in a letter from Sir Isaac Newton to Henry Oldenberg). Very
recently a "Handbook of Beta Distributions" edited by Gupta and
Nadarajah (2004) has appeared (providing and emphasizing in a single
monograph the attention that the beta distribution has attracted by both
statistical theoreticians and practitioners over the last century, or so). On the
other hand it appears that, in our opinion, the triangular distribution has
been somewhat neglected in the statistical literature (perhaps even due to its
simplicity which may discourage research efforts). In this chapter, we shall
attempt to provide some chronology regarding the history of this
distribution, state some of its properties and describe methods for
estimating its parameters. Although the exposition is certainly not complete,
we hope that it becomes apparent that the triangular distributions'
"simplicity" is to a certain extent wrongly perceived and these distributions
and their extensions are certainly worthy of further investigations.

1.1 An Historical Overview

Written records on the triangular distribution seem to originate in the
middle of the 18-th century when problems of combinatorial probability
were at their peak. A historically inclined reader may wish to consult the
classical book by F.N. David (1962). One of the earliest mentions of the

1



The Triangular Distribution Beyond Beta

triangular distributions seems to be in Simpson1 (1755, 1757). Thomas
Simpson was a colorful personality in Georgian England. His life and
adventures are described — in somewhat unflattering terms — in Pearson
(1978) and Hald (1990). (Stigler (1986) gives a more sympathetic assessment
of Simpson's work and character.) Stigler (1984) and more recently
Farebrother (1990) provide some additional details on Thomas Simpson in
particular on the correspondence with Roger Boscovich (1711-1787) a
famous Italian astronomer and statistician of Serbian origin. The
correspondence deals with the method of least absolute deviations
regression problem which indirectly relates to triangular distributions (see,
Farebrother (1990) and Stigler (1984)).

According to Seal (1949), Simpsons' object was to consider
mathematically the method 'practised by Astronomers' of taking the mean
of several observational readings "in order to diminish the errors arising
from the imperfection of instruments and of the organs of sense". He
supposes that any one reading errors in excess or defects are symmetrically
disposed and have assignable upper and lower limits. He gives the
probability that the mean of n observations falls between the boundaries
± z for the following discrete asymmetric triangular probability law:

P ( z ) = ( l 8 # x=-h,-h + i,...-lto,i,...,h. ( u )
[ 0 x ~ any other value.

The solution for the case of a uniform discrete distribution, expressed as a
gaming problem via a generalized die with k faces, was known by 1710, and
Simpson's treatment by means of generating functions is the same as
Abraham de Moivre2 (1667-1754) (Todhunter (1865), p.85, Hald (1990))
which caused accusations of plagiarism. What is novel in Simpson's work
appears in the four pages of additional material published in 1757. Here he
extends the solution for the triangular case (1.1) to the limiting case h —> oo
in such a way that the range of variation of an individual error remains

Thomas Simpson (1710-1761) a prolific writer of mathematical textbooks and able teacher
at the Royal Military Acadamy in Wolwich England has made original and important
contributions to actuarial sciences.
2Abraham De Moivre (from a Huguenot family) left France in 1685 to seek asylum in
England. He was a promininent probabilist who was the first to provide the normal
approximation to the binomial distribution.

2



The Triangular Distribution Beyond Beta

within ± 1. Seal (1949) points out that this is the first time a continuous
(symmetric triangular) probability law is introduced. Hence, the continuous
triangular distribution is certainly amongst the first continuous distributions to
have been noticed by investigators during the 18-th century (when these
types of problems were popular). For example, one of the first records that
mentions the continuous uniform distribution is the famous paper by the
reverend Thomas Bayes (1763) (only a few years after Simpons' written
records in 1757).

The symmetric triangular distribution with probability density function
(pdr)

( Ax, forO <x < \,

4(1 -x), f o r ± < z < 0 , (1.2)
0, elsewhere

and support [0,1] is depicted in Fig. 1.1A. R. Schmidt (1934) possibly was
the first to notice that the pdf (1.2) follows as the distribution of the
arithmetic average of two uniform random variables U\ and U2 on [0,1], i.e.

~3~i ~ — H I 3 I ^T~

0 yL 1 _s| o-K—\—, —̂ 1
. 0.00 0.50 1.00 D 0.00 0.50 1.00

A • X D • X

Fig. 1.1 A: Standard symmetric triangular distribution
B: Standard asymmetric triangular distribution with 6 = 1/4.

He referred to it as a tine distribution ("tine" is a slender projecting point). We
were not able to find other Western sources dealing with triangular
distributions between Simpson (1757) and Schmidt (1934) in the
mainstream statistical literature. Asymmetric standard triangular

3
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distributions support [0,1] were studied by Ayyangar (1941). The pdf is
given by

{ 2 | , f o r O < a ; < 0 ,

2£f, Ioz9<x<\, (1.4)

0, elsewhere.
Substituting 9 = 1/2 yields the pdf (1.2). A standard asymmetric triangular
distribution with 6 = 1/4 is depicted in Fig. 1.1B. The left (9 = 0) and
right (6 = 1) triangular distribution (discussed in Rider (1963)) are depicted
in Figs. 1.2A and 1.2B, respectively.

3 | |~|| 3 | |

2 -v- 2 - ^

°- 1 - ^ " v . °- 1 .X**^

0 -I , — ^ J 0 \^— 1 1
A 0.00 0.50 1.00 D 0.00 0.50 1.00
" • X O »X

Fig. 1.2 A: Left triangular distribution (6 = 0 in (1.4));

B: Right triangular distribution (9 = 1 in (1.4)).

The left and right triangular distributions with support [0,1] are the only
two members that the beta and triangular families have in common. Recall
that the two parameter beta density is given by

f r(a+/3) tt-lQ sfl-l f o r 0 < x < l

[̂  0, elsewhere,

where a > 0, /? > 0 and F( •) is the gamma function. Substituting a = 1
and (3 = 2 in the beta pdf (1.5) yields the left triangular pdf (6 = 0 in (1.4)).
Substituting a = 2 and /3 = 1 yields the right triangular one (9 = 1 in
(1.4)). Since 1941 up to the mid-sixties very few publications were devoted
to the triangular distribution (Fullman (1953), Ostle et al. (1961) and Rider
(1963)). The product of two identically independent distributed (i.i.d.)
triangular random variables has been investigated by Donahue (1964). The

4
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sum of two independent triangular random variables (i.e., their convolution)
sharing the same support (but not necessarily with the same mode) has
— to the best of our knowledge — only been investigated very recently by

Van Dorp and Kotz (2003b).
Since 1962 up to 1999, the distribution emerges in numerous papers

dealing with the Project Evaluation and Review Technique — PERT (see,
e.g., Clark (1962), Grubbs (1962), MacCrimmon and Ryaveck (1964),
Moder and Rodgers (1968), Vaduva (1971), Williams (1992), Keefer and
Verdini (1993), and D. Johnson (1997) amongst others). These papers deal
with the asymmetric three-parameter triangular density

{ T T - ^ 1 , foia<z<m,b—a m—a> — — '

jrs£^, iorm<z<b, (1-6)
0, elsewhere

(with support [a, b] and the mode m) which by means of the
transformation z — (x — a)/{b — a) reduces to its standard form (1.4) with
the support [0,1], where 9 = (m — a)/(b — a). The parameters of the
triangular distribution (1.6) are in one-to-one correspondence with a lower
estimate a, a most likely estimate fh, and an upper estimate b of a
characteristic under consideration. This leads to an intuitive appeal of the
triangular distribution (see, e.g., Williams (1992)). In PERT these
characteristics are the completion times of activities in a project network
(see, Winston (1993)) whose uncertainties may be modeled by the
distribution (1.6). N.L. Johnson and Kotz (1999) discuss die asymmetric
triangular distribution in the context of YAWL distributions which have
inter alia applications in modeling prices associated with orders placed by
investors for single securities traded on the New York and American Stock
Exchanges.

Recent popularity of the triangular distribution can be attributed to its
use in Monte Carlo simulation modeling (see, e.g., Vose (1996) and Garvey
(2002)), discrete system simulation (see, e.g., Banks et al. (2000), Altiok and
Melamed (2001), Kelton et al. (2002)) and its use in standard uncertainty
analysis software — such as @Risk (developed by the Palisade Corporation)
or Crystal Ball (developed by Decision Engineering). These books and
packages recommend the use of the triangular distribution when the
underlying distribution is unknown, but a minimal value a, some maximal
value b and a most likely value fh are available. In Chapter 4, we shall

5
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discuss in some detail the appropriateness of this modeling approach given
only these estimates.

1.2 Deriving the CDF utilizing a Geometric Argument

Instead of deriving die three-parameter cumulative distribution function
(cdf) of the triangular distribution in the usual fashion from its pdf (1.6), we
shall derive it using a geometric argument involving triangles (from which
the triangular distribution derives its name). Figure 1.3A depicts the density
function of a triangular distribution with parameters a, m and b, splitting
die area underneath it into two triangles with area Ai and A2, respectively.

A a m b

b - a y Al \ A2^\^^

a z m b
B

b - a y / ^ K ^ A2 l ^ ,
C a m z b

Fig. 1.3 Deriving of a triangular cdf utilizing areas of conforming triangles.

6
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Since, from basic properties of a pdf it follows that A\ + A2 — 1 we have
(see Fig. 1.3A)

TT TT C\

(m-a)- + (b-m)- = l^H = - . (1.7)
Z Z o — a

Hence, the density value at the mode m is not a function of the location of
m, relative to the boundaries a and b (which is not obvious). Note that in
Figs. 1.1 and 1.2 the density value at the mode equals 2 in all cases (since
a = 0 and b = 1). In addition, from (1.7) we have

. m — a A b — m
M = T and A2 = . (1.8)

b — a b — a
In other words, the probability mass to the left (the right) of the mode m,
equals the relative distance of the mode m to the lower bound a (the upper
bound b) compared to the whole range from a to b.

From Fig. 1.3B, Eq. (1.8) and utilizing conformity of the triangles, it
immediately follows that for a < z < m :

Pr(Z<z)=( Mi = T ( (1.9)
\m — a/ b — a \m — aJ

and for m < z < b using Fig. 1.3C and the complement rule
Pr(Z <z) = l- Pr(Z > z) :

Pr(Z<z) = l-(^YA2 = l~b
1^(^)2 (1.10)

\b — m/ b — a\b — m/

Hence, the cdf is given by:

{ / \ 2

TT^ [ — ) , for a < z < m,
b - a U 7 ' - - (i-ii)
l-^(^) (orm<z<b.

Taking the derivative with respect to Z in (1.11) we arrive at the pdf (1.6).
The reader may wish to graph the cdf (1.11) for reasonable choices of a, m
and b (a < m < b).

The inverse cdf of Z follows from (1.11) as

7
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F-1(j/|a,m,6,n)= (1.12)

( a+ y/y(m-a)(b-a), for 0 < y < f^

\ b - ^(l-y){b-m){b-a), for fff < y < 1 .

Equation (1.12) allows for straightforward sampling from a triangular
distribution with support [a, b] utilizing the inverse cdf transformation
technique and a pseudo-random number generator of a uniform random
variable on [0,1] (see, e.g., Vose (1996)). Pseudo random number
generators have become standard in spreadsheet software and are also
utilized in uncertainty analysis packages such as @Risk (developed by the
Palisade Corporation) and Crystal Ball (developed by Decision
Engineering), and discrete event simulation software such as Arena
(developed by Rockwell Software). The quality of the sample from a
triangular distribution utilizing the inverse cdf transformation technique is
identical to that obtained using the pseudo-random number generator.
Banks et al. (2000) provide an excellent overview of desirable properties of
and statistical tests for uniformity and independence of pseudo random
number generators.

1.3 Moments of Triangular Distributions

The k-th moment about zero (which we shall denote by ji'k) of a standard
triangular distribution with support [0,1] follows from the pdf (1.4) as

Here calculations are a bit lengthy but straightforward. The corresponding
moments of a triangular variable Z with support [o, b] and pdf (1.6) follow
from (1.13) and the linear transformation Z = (b — a)X + a. Specifically,

E[Zk] = E[{(b - a)X + a}k] - J^l^ (6 ~ ^ak-1 E\X1]. (1.14)

Substituting k — 1 and k = 2 in (1.13) we arrive at the first and the
second moments about zero of X:

8
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,l = E[X] = 9-±l-J2 = E[X^] = ̂ - ) (1.15)

and from the relation /z2 = Var(X) = E[X2] — E2[X\ we have

Var(X) = ,» = 1 ~ ^ - g ) . (1.16)

Hence, the variance attains its minimum 3/72 at 0 = 1/2 and its maximum
1/18 at 6 = 0 or 6=1. Recall that the variance of a standard uniform
distribution is much larger and equal to 1/12.

In a similar manner, utilizing (1.15), substituting k = 3 and k — 4 in
(1.13) and applying the definitions of the central moments

U3 = E[(X - E{X])f = //3 - 3/Vi + 2/43
 (1 1?)

\ M4 = £ [ (* - E[X})}4 = &- 4/x^i + G^^ 2 - 3M;4

one obtains (see, Johnson and Kotz (1999)):

fw = 5?o(l-29)(2-«)(!-»)

\" . = 155<1-''<1-»»1

From the definitions of skewness y A and kurtosis /?2 (see, e.g., Stuart and
Ord (1994)) :

/ 2

7A = Signing J% 02 = ̂ , (1-18)
V M2 Â2

(the skewness y/fii retains the sign of the third central moment ^3) we
have

and

02 = 2.4. (1.20)

9
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The Triangular Distribution Beyond Beta

(Compare with the kurtosis of a normal or Gaussian distribution, which
equals 3.) The kurtosis fa (which is a combined measure of peakedness and
heaviness of the tails of a distribution) here does not depend on 9.

Figure 1.4 plots skewness y f5\ as a function of #. Observe that
minimum skewness — f \ / 2 ~ —0.566 (which is a negative value) is
attained for the right triangular distribution in Fig. 1.2B. It is important to
note here that the left skewed distribution (with a heavier tail towards the
left) has negative skewness and thus the designation right triangular
distribution in Fig. 1.2B arises from the location of the mode 6 being at the
right boundary of the support. Similarly, the right skewed, left triangular
distribution in Fig. 1.2A has the maximum positive skewness
| y 2 ~ 0.566. The skewness of a symmetric triangular distributions
y/Pi = 0 is obtained from (1.19) by substituting 6 = \ (see Fig. 1.4).

0.8 i , 1 1 1 1

0.6 1 i— - - J |

o.4 T^Sr - -! ! !

oj 0.2 • 1 ^ t 1 i

I o , ^ A ^ ,
W -0.2 -\ r--- - V - ---'r

-0 .4 1 I 1 - ^ S y - I

.0.6 1 !- 1 r ^ ~ ~ ~

-0.8 J ' ' ' ' 1
0 0.2 0.4 0.6 0.8 1

• 9

Fig. 1.4 Skewness yj% (Eq. (1.19)) as a function of 6.

Since the measures skewness and kurtosis are invariant under linear
scale transformation it follows that (1.19) and (1.20), respectively, may be
used for a triangular random variable Z with support [a, b], pdf (1.6) and

10
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parameters a, m and b, utilizing 9 — (m — a)/(b — a). From the linear
transformation Z = (b — a)X + a, (1.15) and (1.16) we derive

m = ̂ f^ (1.2.)
and

rr .,_, (b~a)2 ( m — ab — m i

Note that from (1.21) it follows that the mean value of Z is the arithmetic
average of the lower bound a, the mode m and the upper bound b. In our
opinion, the popularity of die triangular distribution arises from the
straightforward relationship (1.21) between the parameters and the mean of
Z, a meaningful interpretation of the parameters a, m and 6 as well as
from the property that the probability mass to the left of the mode m
equals the relative distance of the mode m to the lower bound a over the
whole support [a, b] (i.e. (m — a)/(b — a) , see Eq. (1.8)).

1.4 Maximum Likelihood Method for the Threshold Parameter 9.

The structure of the standard triangular distribution (1.4) with support [0,1]
leads to an illuminating procedure for estimating the threshold parameter 9.
This parameter can be viewed as "dividing" (in the sense that it is related to
two different analytical expressions appearing in the definition of the pdf
(1.4)). The derivation of the ML estimator for 0 in (1.4) seems to be quite
instructive (and is similar, but simplified compared to the one presented in
Johnson and Kotz (1999)).

Let for a random i.i.d. sample of size s, X_ — (-X"i, • • • > Xs), the order
statistics be X(j) < X^) ••• < -^M- ^ definition, the likelihood for X
with distribution (1.4) is

L(X;0)= 2s{H{X-8)} (1.23)

where

11
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ux{i) ft (i-x{i))
H(X; 9) = — p^L- (1.24)

and r is implicitly defined by X^ < 9 < X( r + 1 j , X(0) = 0 and
X(s+i) = 1.

Theorem 1.1: Let 2L— (X\,. • • ,XS) be an i.i.d. sample from a triangular
distribution with thepdf (1.4) and support [0,1]. The ML estimator of 6 maximizing
the likelihood (1.23) over the parameter domain 0 < 6 < 1 is

? = *(?), (1.25)

where

'r = argmax M{r) (1.26)
r € { 1 , . . . , s}

and

Proof: We shall provide a detailed proof of this basic theorem. (Another
version of this theorem will be encountered in Chapter 5). To maximize the
likelihood (1.23), we represent it as

max L(X;9)=2SM, (1.28)
0 < 6» < 1

where

M = max H(X;9), (1.29)
0 < 6» < 1

H(X;0) is defined by (1.24) and X ( r ) < 9 < X{r+1), with X{0} = 0,
X( s +i) = 1. Utilizing (1.29) one can therefore write

M = max H(r), (1.30)
r E { 0 , . . . , s }

12
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where

H(r)= rnax H(X;9), (1.31)

r = 0 , . . . , s, X(0) = 0 andX(s+1) = 1. The three non-overlapping cases:
r E {1,... ,s — 1 }, r = 0 and r = s will be discussed separately.

Case r e {l,...,s — 1 } : Here, X ( r ) < 6 < X{r+1). The function

g{Q) = er(i - ey~r (1.32)

in the denominator of the definition of H(X ; 6) (1.24) is proportional to
an unimodal beta density since r € { 1 , . . . , s — 1}. Thus,

min g{6) — min g(6) (1.33)
X(T) < o < A ( r + 1 ) e e {X(r),x(r+1)}

and, from (1.24), (1.31) and (1.33),

H{r)=max J[^L f[ ±^L. (1.34)

C a s e r ^ O : HereO < 6> < X{1). From (1.24) and (1.31) it follows
that now

H(0)= max T T ^ 1 ^ .
— — v-1 i=i

Hence H (0) becomes the product

Caser = s : HereX(5) < 9 < 1. From (1.24) and (1.31) it follows that
in this case

s -y-

ff(a) = max TT^T-

Xw < 9 < 1 i i ^

Hence H(s) becomes the product

13
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s y- s—1 v

* w = n ^ - nf^- a-36)
(Compare with (1.35).) From (1.30), (1.34), (1.35) and (1.36) we obtain that

M = max M(r), (1.37)
re{l,...,s} W '

where M(r) is defined by (1.27). Hence, the ML estimator of the threshold
parameter 9 equals the order statistic X(f), where r is given by (1.26). •

The ML estimator 9 = X^ given in (1.25) is quite intuitive (if one

recalls the ML estimator 9 = X(s) of the parameter of a uniform
distribution on [0, 9] for a sample of si2e s).

1.4.1 An illustrative example

We shall illustrate the ML estimation procedure for the parameter 9 of a
standard triangular distribution (1.4) by means of the following hypothetical
order statistics

(X(1),...,X{s)) = (0.10,0.25,0.30,0.40,0.45,0.60,0.75,0.80). (1.38)

This data was also used in Johnson and Kotz (1999)3. Consider the matrix

A = [cLif] with the entries :

X .^ (1-39)

Table 1.1 summarizes calculations of the matrix A for the order statistics
given in (1.38). The last row in the table contains the products of the matrix
entries in the r-th column which are equal to the values of M(r) given by

3Note: The values in Johnson and Kotz (1999) corresponding to the last three entries in the
last row of Table 1.1 contain the following typos; 0.00547 should read 0.00543, 0.00137
should replace 0.00364 and0.00029 should be 0.00290.

14
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(1.27), r = 1 , . . . ,s. Here s = 8. From the last row of Table 1.1 and
utilizing (1.37), (1.26) and (1.25) we calculate

M = 0.011;? = 3;
(1.40)

e = x{7) = o.3o.

Table 1.1 ML estimation fora triangular distribution
with pdf (1.4) using the data given by (1.38).

r 1 2 3 4 5 6 7 8

X(p X ( 2 I X ( 3 I X (41 X I 5 I X ( 6 I X I 7 I X I 8 I

_ J 0.10 0.25 0.30 0.40 0.45 0.60 0.75 0.80
1 X(1) 0.10 1 0.400 0.333 0.250 0.222 0.167 0.133 0.125
2 X|2) 0.25 0.833 1 0.833 0.625 0.556 0.417 0.333 0.313
3 X(3, 0.30 0.778 0.933 1 0.750 0.667 0.500 0.400 0.375
4 X(4, 0.40 0.667 0.800 0.857 1 0.889 0.667 0.533 0.500
5 X,5) 0.45 0.611 0.733 0.786 0.917 1 0.750 0.600 0.563
6 X(6) 0.60 0.444 0.533 0.571 0.667 0.727 1 0.800 0.750
7 X|7) 0.75 0.278 0.333 0.357 0.417 0.455 0.625 1 0.938
8 X(8) 0.80 0.222 0.267 0.286 0.333 0.364 0.500 0.800 1

M(r) 0.007 0.010 0.011 0.010 0.009 0.005 0.004 0.003

Figure 1.5 displays the function H(X_ ; 0) defined by Eq. (1.24) and shows
that for the data in (1.38) the maximum value M = 0.011 of H{X_; 9) over
9 G [0,1] is attained at X{3) = 0.30. From (1.28), M = 0.011 and s = 8

we have L(X_; 9) sa 2.79. Also observe that the maximum value H(r) (see,
Eq. (1.31)) of H(X ; 0) over 9 € [X(r), X(r+i)] is attained at either X(r) or
X{r+\) for all r — 0 , . . . , s.

The ML estimation of the mode 9 of the triangular pdf (1.4) with
support [0,1] can easily be modified to the ML estimation of the mode m
of the triangular pdf (1.6) with support [a, 6], using the linear scale
transformation Z = (b — a)X + a; recall that the parameters a and b are
fixed and the parameter m = (b — a)9 + a. The ML estimator of the
parameter m of the distribution (1.6) utilizing the order statistics
(Z(i),... ,-Z(a))are

15
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X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(B)

1.20E-02 T i 1—| j — | ! 1—: 1
1.10E-02 \ f--jj. | j ! | I

1.00E-02 • J[ | \ _ l j i j |

H( X; 9) j J\ I i \ I II

I 8.00E-03 \ J \ \ I \ i j i

6.00E-03 J\ \ \ | ; \ , l • I

4.00E-03 / | | j j I | i i

2 . 0 0 E - 0 3 • i | j i i i i i\.
O.OOE+00 -I ! 1—'"•—i i—•—i i .—'•—i 1 —I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 1.5 Graph of H(X ;6) (1.24) for the data in (1.38). (Observe that maxima over
the sets [X(rj, X(r+ij] are attained here solely at the order statistics, r = 1,. . . , s).

fh(a,b) = Z{?{aM) (1.41)

where, as above,

?(a,b) = arg max M(a,b,r) (1-42)
r € { l , . . . , s }

and

Compare with equations (1.25), (1.26) and (1.27).

1.5 Three Parameter Maximum Likelihood Estimation

This lengthy section involves some non-standard interesting derivations of
the ML procedure of the three-parameter triangular distributions which are

16
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closely related to a non-regular case of ML estimation for continuous
distributions (see, e.g., Cheng and Amin (1983)).

Let Z be a random variable with pdf (1.6). For a random sample
Z_ = (Z\,..., Zs) with size s from a triangular distribution with support
[a,b] and mode m, let the order statistics be Z(i) < ZQ) < ... < Z(s).
Utilizing (1.6), the likelihood for Z is by definition

L(Z;a,m,b)^(-^-)Slfl^^ f[ ̂ M (1.44)
\b — aj •LX m — a -L-L b — m
X / \ j=l i=r+l J

where r is implicitly defined by Z(r) < m < ^( r+i), -̂ (o) = o a n d
Z(5+j) = 6. Thus, analogously to (1.28) it follows that for fixed values of a
and b, satisfying

a < Z{^ and b > Zis\,

we have

max L(Z;a,m,b) = ( —— ] { M(a,6,f(a,6)) 1 (1.45)
a <m <b \ b - aj { )

where ?(a, 6) and M(a,b,r) are given by (1.42) and (1.43), respectively.
The ML estimator for the mode m (as a function of a and b) is given by Eq.
(1.41). Note diat, the function 1r(a,b) is an index function indicating at
which order statistic the ML estimate of the parameter m is attained as a
function of the lower bound a and upper bound b (we shall elaborate on
the index function T"(a, 6) below).

From (1-45) we have that

max \Log{L(Z;a,m,b)}\ = (1.46)
S(a,m,b) L J

max \sLog2 + G{a, b) ,
a < X(i),b > X(s)i -1

where the set

17
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S(a,m,b)= (1.47)

{(a,m,b)\ a < Z^),b > Z^,a < m < b}

and the function

G(a,b) = Log{M(a,b,r(a,b)} - sLog{b - a}. (1.48)

This is an interesting function to be discussed below. Again recall the
definitions of M(a,b,r) and that of ?(a , b) in Eqs. (1.42) and (1.43).
Note that G(a, b) is only defined for values of a < Z^ and b > Z(s) (see
Eq. (1.47)). To summarize, the three-dimensional optimization problem of
maximizing the likelihood (1.44) reduces to a two-dimensional case of
maximizing G(a,b) over the region a < Z{\) and b > Z(s).From the
structure of (1.44), however, we can immediately conclude that for all values
of m such that

Z(1) <m< Z{s) (1.49)

the likelihood L(Z_;a,m,b)—>0 (and hence Log{L(Z_;a,m,b)}^^
— oo) when a | Z(\) or b J. Z(sy Thus, when a modal value can be

observed in the data (via, for example, a histogram) indicating the validity of
Eq. (1-49), it would seem that the ML estimators for a and b are not the
order statistics Z^ and Z(s), respectively. This is in contrast with the well-
known fact that the ML estimators of a uniform distribution with support
[a, 6] are given by smallest order statistic X{\} and the largest one X(s) (see,
e.g., Devore (2004)).

We shall demonstrate the above fitting characteristic of a triangular
distribution for civil engineering data consisting of a sample of 85 hauling
times (Source, AbouRizk (1990)) rather than the hypothetical 8 point
example given by (1.38) since we are now fitting a three parametric
distribution instead of a distribution with one parameter 9 given by (1.4).
Figure 1.6 depicts the empirical pdf for the data in Table 1.2 which seems to
have a mode in the vicinity of the center of the range
[Z{l),Z{85)] = [3.20,8.60]. Hence, Eq. (1.49) is satisfied. In addition, Fig.
1.6 depicts the ML fitted triangular distribution with ML estimates of
parameters

18
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Table 1.2 Civil engineering data consisting of 85 hailing times

(Source: AbouRizk (1990)).

479 475 5^40 470 6~50
5.30 6.00 5.90 4.80 6.70
6.00 4.95 7.90 5.40 3.50
4.54 6.90 5.80 5.40 5.70
8.00 5.40 5.60 7.50 7.00
4.60 3.20 3.90 5.90 3.40
5.20 5.90 4.40 5.20 7.40
5.70 6.00 3.60 6.20 5.70
5.80 5.90 6.00 5.15 6.00
4.82 5.90 6.00 7.30 7.10
4.73 5.90 3.60 6.30 7.00
5.10 6.00 6.60 4.40 6.80
5.60 5.90 5.90 8.60 6.00
5.80 5.40 6.50 4.80 6.40
4.15 4.90 6.50 8.20 7.00
8.50 5.90 4.40 5.80 4.30
5.10 5.90 4.70 3.50 6.80

0.45-1 1

0.40 • : •

0.35 • • I

0.30 • _ / i \
U. 0.25 • i / i \
Q / ! : \
Q_ 0.20- / ! • • - \

* 0.15- y-' j ; \
| 0.10 • ; • • / ; • \

0.05. '/ i """' \i
0.00 J 4 - . ^ , r-k 1

2 3 | 4 5 | 6 7 8 T 9 10
4=3.20 Z(41J)=5.80^z Z{'5)=8.60

Fig. 1.6 Empirical pdf for the data in Table 1.2 together with a ML fitted three-parameter

triangular distribution a = 2.87, fh = £(41-44) = 5.80, 6 = 8.80.
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a = 2.87 < 2 (1 ) = 3.20, m = Z(41_44) = 5.80, (1.50)

b = 8.80 > Z{s) = 8.60.

Observe that the example data in Table 1.2 actually contains ties, resulting
in the ML estimator rh to be attained at either one of the order statistics
2(4i) through 2(44). Also note that the triangular distribution in Fig. 1.6
does not quite capture the 'peak' of the empirical pdf in Fig. 1.6. In Chapter
4 we shall fit a four parameter generalization of the triangular distribution
that does capture this 'peak' and present a more formal fit analysis using the
chi-square test (see, e.g., Devore (2004)).

Figure 1.7 provides the form of the function G(a,b) given by (1.48)
that was maximized to arrive at the ML estimators for the lower and upper
bounds a and b in (1.50) for the data in Table 1.2. Figure 1.8A (Figure 1.8B)
depicts a likelihood profile of the function G(a, b) displayed in Fig. 1.7 for
the data in Table 1.2 as function of the parameter a (parameter b) for
different fixed values of the parameter b (parameter a). Note the behavior
of G(a, b) for b = 8.6 (for a = 3.2 ) in Fig. 1.8A (Fig. 1.8B). The ML

estimates a = 2.87 and 6 = 8.80 are indicated by means of a vertical solid
line in Figs. 1.8A and 1.8B, respectively. Observe the apparent mirror
symmetry of the graphs in Figs. 1.8A and 1.8B for the data in Table 1.2. A
further investigation of the function would be appropriate (see Sec. 1.5.1).
Moreover, note that the profile log-likelihood of the function G(a,b) in
Fig. 1.8A (Fig. 1.8B) for the value of the largest order statistic 2(s) = 8.6
(smallest order statistic Z(j) = 3.2) is located below the other two, which
indicates that Z(s) (that 2(i)) is not the ML estimator for the upper bound b
(lower bound a).

Readers interested in more statistical aspects of the three-parameter
triangular distribution may omit Sees. 1.5.1 and 1.5.2 (with its subsections)
during an initial reading.

1.5.1 Some details about the functions G(a, b) and ^(a, b)

While the function G(a, b) given by (1-48) is continuous over its domain
a < 2(i) and b > 2(s), the partial derivatives with respect to a or 6 may not
be unique at a finite (s — 1) number of points. The source of non-
differentiability at these points is due to the behavior of the index function
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8601.20 1 6 0 2-°°
Lower Bound a

Fig. 1.7 The function G(a, b) given by (1.48) for the data in Table 1.2.

•r(a, b) given by (1-42) as a function of the parameters a and b. In fact, the
following properties can be derived for 'T (a, b) as a function of b, keeping
a < X(i) fixed (recall that ?(a , 6) is an index function indicating at which
order statistic the ML estimate of the parameter m is attained);

(1) The order statistic index ?(a , b) is decreasing in b ;

(2) lim f (a, b) = 1 ;
b —> oo

(3) Jim r (a ,6 ) = s ;
O J- -*(s)

(4) f (a, 6) as a function of b has (s — 1) discontinuities

at the points
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3 -160 f T "I 1 1

U - i i i i i

- 1 7 0 i- + -I ! 1
5 1 = 1 . 6 3 I I I I

-180 J ! - ^ 1 • ! ' 1
0.50 1.00 1.50 2.00 2.50 3.00 3.50

Lower Bound a
b = 9.57 b = 10.6 b = 8.6

T^°T ; IT i i i j~

(5" [ ' \ ! ! ' I
c -140 - \./ - j- + -] ;

•43 • / " " r • . . i i i
o / i • • . i , i i
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-150 - - -| r T 1 1 -•-•-i-..

i I I ! ! \

\ \ : /=?-v i ;
-160 J ' L * c ' 1 '

8.50 9.00 9.50 10.00 10.50 11.00 11.50

Upper Bound b

a = 1.63 a = 0.6 a =3.2

Fig. 1.8 Profiles of the function G(a, b) given by (1.48) for the data in Table 1.2:
Graph A: as a function of the lower bound a; Graph B: as a function of the upper bound b.

The ML estimates a = 2.87; b = 8.80 in (1.50) are indicated by means
of a vertical dotted line in Figs. 1.8A and 1.8B, respectively.
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fb(a,r)= (1.51)

*(r+D-*(r) T/f^SS )
, / , re{l,...,s-l}.

y ^(r+i)-a y

(Note that the parameter a is fixed.) Similar properties can be derived for
r(a, b) as a function of a, while keeping b > X^ fixed. Figure 1.9 gives
the form of the function r(a,b) (Eq. (1.42)) for the data in (1.38). The
function r(a,b) may be viewed as a bivariate step-function or a winding
staircase function, which could serve as a useful tool for studying non-
differentiable bivariate distributions. We are purposely using only a the
small set of 8 data points in (1.38) in Fig. 1.9 to emphasize the stepwise
behavior of the function ^r(a,b), which would have been less apparent
visually when using, for example, the whole data set in Table 1.2. The
central axis of the "winding staircase" in Fig. 1.9 is located at a — Z^
= 0.10and b = Z{s) = 0.80. For a fixed a, the value of fb(a,r) (1.51)

identifies the location of the r-th step (in terms of b) of the winding stare
case. Note that at the central axis (a = -^(I)J b = X^), the (s — 1)
discontinuities fb(a, r) of the index function r:(a, b) converge.

Discarding the points of discontinuity of the function ~r(a, b), the
function G(a, b) becomes differentiable with respect to a and b. From
(1.48) we obtain:

«G(B,t)-^'W»+-i- (1.52)

da M(a,b,r(a,b)) b-a

and

dC(ab)-^M{aMaM) S fl53)
dbG{a'b)~ M(a,b,?(a,b)) ' b - a ' ( L 5 3 )

where the partial derivatives of M(a, b, r) (1.43) are
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'1 '8 1 - 0 . 8 6 nin

Lower Bound a °-10

Fig. 1.9 The index function r(a, b) given by Eq. (1.42) for the data in (1.38).

^M(a,b,r(a,b)) = M(a,b,r(a,b)) x (1.54)

IY z® - %) l < 0

and

—M(a,b,r{a,b)) = M(a,b,r(a,b)) x (1.55)

/ y z^-z^ \> 0

A routine BSearchhas been developed utilizing (1.51), (1.53) and
(1.55) to determine b (a) for fixed a, where

b (a) — arg max \G(a,b) . (1.56)
b>Z{s) L J
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This routine follows a bisection approach (see, e.g., Press et al. (1989)) and is

described in the next subsection. Having the routine BSearch to

determine b (a) for fixed a, we next compile a routine ABSearch which

determines a and b (a) such that

G(a,b (a))\ •

The latter routine utilizes (1-52), (1.54) and is also based on a bisection
approach. (It is described in the next subsection.) The routine ABSearch
evaluates the maximum of the likelihood, namely the RHS of (1.46), by
successively utilizing BSearch and yields the following ML estimators :

a, b = 'b ( a ) , fh{a, b) = Z(?(~ ?)) and

n(a, b) = ^ ^ ~
Log{M(a,b,r(a,b)}

where 6 ( • ) and 7"(a, 6) are defined in (1.56) and (1.42), respectively. For
ease of implementation, the ML procedure above is summarized in Pseudo
Pascal in the next subsection. We emphasize that the procedure — although
straightforward — requires utilization of a number of variables and careful
analysis of the consecutive steps and their interconnection.

1.5.2 ML estimation procedure in pseudo Pascal

The numerical routines below in Pseudo Pascal require separate algorithms
to evaluate:

M(ak,bk, rk) : Eq. (1.43), G(ak,bk,rk) : Eq. (1.48),

^-G(ak, bk,rk) : Eq. (1.52), ^G(a f c , bk,rk) : Eq. (1.53),
oa ao
— M(ak,bk,rk) : Eq. (1.54) and ^rM(ak, bk,rk) : Eq. (1.55).
oa ob

Output parameters of routines below are indicated in bold.
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1.5.2.1 The search routine Bsearch

Let G(a,b) be the function defined by (1.48). For a given value of the
parameter a the set of discontinuities in the parameter b of the function
G(a, b) is a (finite) null-set and one could thus utilize the partial derivatives
with respect to b (1.53) and (1.55) to determine an ascending search
direction with respect to G(a, b) for b. Define

B(a) = Max \ fb(a,r)] , (1.57)
r e { l , . . . , s - l } L -I

where fb(a,r) are the discontinuity points given by (1.51). From the
properties of 9(a, 6) (1.42) mentioned at the beginning of Sec. 1.5.1, it
follows that for b > B(a) {outside the discontinuity locations) :

G(a, b) = Logi T T ^ — ^ j - sLog{b - a}

and

laG(a,b) = ^-a>0. (1.58)

Compare with the derivative (1.52). Hence, it follows from (1.58) that
necessary conditions for a local maximum of G(a,b) (i.e. -§-G(a,b) = 0
and g^G(a,b) = 0) cannot be satisfied for b > B(a). Thus, BSearch
maximizing G(a, b) as a function of b with a fixed, can be confined to the
interval (Z(s),i?(a)) only.The routine BSearchbelow evaluates b (a)
(1.56), follows a bisection approach (see, e.g., Press et a/. (1989)) and
requires a separate algorithm to evaluate B(a) (1.57).

BSearch{ak,Z, bk, Mk, rk)
Stepl: lb

k = Z{s)

Step 2: ub
k = B(ak),bk = 1^,

Mk = M(ak, bk,rk), Gk = §-bG(ak, bk, Mk, rk)
Step 3 : If Abs(Gk) > 6 then

IfGk<0 then ub
k : = bk Else l\: =bk

Else Stop
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Step 4 : If {u\ - l\) > 6 Goto Step 2 Else Stop

1.5.2.2 The search routine ABSearch

Let as above G(a, b) be the function defined by (1.48). For a given value of
the parameter 6 the set of discontinuities in the parameter a of the function
G(a, b) is a null-set and one could thus utilize the partial derivatives with
respect to a (Eqs. (1.52) and (1-54)) to determine an ascending search
direction with respect to G(a,b) for a.The routine ABSearch starts by
establishing an interval [A, X^] such that

^G(A,b(A)) > 0, (1.59)

where b(A) maximizes G(A, b) as a function of b (and is calculated using
the BSearch routine in Sec. 1.5.1.1). To determine A in (1.59) one may
utilize (1.52) and (1.54). From

r ]
Urn \r(a,b)\ = s,

a —> - ooL v ']

it follows that for any given b, there is a sufficiently small a such that

G(a, b) = Log\f[^^ } - sLog{b - a}

and

I-CM) = g Z%1^ + ^ . (1.60)
da *-** (Z(j) - a)(Z(s) - a) o - a

It thus follows from (1.60) that for any given b there exists an a sufficiently
small such that j^G(a,b) > 0. So far we can only conjecture that an A
satisfying (1.59) does exist. Numerical analyses support this conjecture.
Having established the search interval [A, -X(i)], the routine ABSearch
follows (analogously to the routine BSearch) a bisection approach (see,
e.g., Press et al. (1989)) and evaluates the R.HS of (1.46) by successively
utilizing the routine BSearch.
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ABSearch(Z_, ak, bk,mk)
Stepl : ua

k = Z{l)Jl = Z(l)-{Z{s)-Z{l))
Step2 : BSearch{la

k,Z, bk,Mk,rk),
Gk= £G(la

k,h,Mk,rk)
Step 3 : IfGk<Othen

^ u% = lUt = 11- {Z{s) - Z{1)),GotoStep2.
Step A : ak =

 J^Yk,
BSearch(ak,Z, bk,Mh,rk),
Gk = £aG(ak,bk,Mk,rk)

Stepb : If Abs{Gk) > 6 then
I f Gk < Othenub

k : = akElselb
k : = ak

Else Goto Stepl
Step 6 : If(ul~la

k)>6 then Goto Step 4
Else Goto Stepl.

Stepl : mk — Z^

1.6 Solving for a and b using a Lower and Upper Quantile Estimate

We shall conclude our discussion of the triangular distribution by providing
an appealing and smooth method of using quantile estimates to solve for a
and b. Let Z be a triangular pdf with support [a, b] and mode m with the
pdf (1.6) and the cdf (1.11). As mentioned above, the recent popularity of
the triangular distribution could perhaps be attributed to its use in
uncertainty analysis packages such as @Risk (developed by the Palisade
corporation). The package @Risk allows definition of a triangular
distribution (via the function TRIGEN) by specifying a lower quantile ap, a
most likely value m and an upper quantile br such that

a < ap < m < br < b. (1.61)

The latter avoids having to specify the lower and upper extremes a and b
that by definition have a zero likelihood of occurrence (since, the triangular
density equals zero at the bounds a and b). The software @Risk does not
provide details, however, regarding how the bounds a and b are calculated
given values for ap, m and bT. Keefer and Bodily (1983) formulated this
problem in terms of two quadratic equations from which the unknowns a
and b had to be solved numerically for the values p = 0.05 and r = 0.95.
Although the numerical solution of their equations and their generalizations
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to other values of p and r do not pose any difficulties, we shall present here
a slightly simplified version that only requires to solve numerically a single
equation in the unknown quantity

m — a
q = — . (1.62)

It follows from the cdf (1.11) that the quantity q equals the probability mass
to the left of the mode m (and also equals the relative distance of the mode
m to the lower bound a over the whole support [a, 6], which is unknown
here).

From the definition of ap, (F(ap\a,m,b) = p),we have from (1.11)
and (1.62) that

ap = a + (m — a)J-. (1.63)

There is no direct relation between p and q here (contrary to the common
notation when dealing with proportions and/or the binomial distribution),
except that from (1.61) and (1.62) it follows that 0 < p < q < 1. Solving
for the parameter a from (1.63), yields using (1.62)

ap ~ m4\ ap ~ ap\fi
a = a(q) = ~- < j=- = ap. (1.64)

(We use the notation a(q) instead of a to emphasize that the lower bound a
is a function of q, provided the p-th percentile ap and the most likely value
m are given.) Analogously to (1.64), we have for m < br (using b(q) in
place of b):

br-mJ^ br-brJ^
b = b(q) = f=J- > }=J- = br. (1.65)

1 — /1^£ 1 —

(Here we have from (1.61) and (1.62) that 1 - q > 1 - r > 0).
Substituting a(q) and b(q) as given by (1.64) and (1.65) into (1.62), we

arrive at the following basic equation

q = g(q) (1.66)
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where

, . m — a(q)

M = WT^) = (1'67)

("i-ap)(i-y^i§)

(6r-m)(l-^)+(m-ap)(l-v^)'

Observe the rather "structured" relation between g(q) and q. Indeed, from
its structure it immediately follows that 0 < g(q) < 1 (as it should be since
g(q) represents the probability mass to the left of the mode m). In fact,
setting q = p (q = r) in the RHS of (1.67) yields g(p) = 1 (g(r) = 0). In
addition, the denominator of the RHS (1.67) is "almost" a linear
combination of the distances of the quantiles ap and br from the mode m,
with the weights that are determined by the quantile probability masses p
and r and the probability mass q to the left of the mode m. In Chapter 4
(Sec. 4.3.3.3) we shall show that a generalisedVersion of die Eq. (1-67) has a
unique solution q* € [p,r\. One can solve numerically for q* utilizing
(1.66), the definition of g{q) (1.67) and our favorite bisection method (see,
e.g., Press et al. (1989)) with the starting interval [p, r]. After solving for the
unique solution q* of Eq. (1.66) one could calculate the associated lower and
upper bounds a(q* ) and b(q*) from Eqs. (1-64) and (1.65), respectively.

We shall illustrate the above procedure via the example:

ap = 6.5, m = 7, and br = 10.5, p = 0.10 and r = 0.90. (1.68)

Figure 1.10 depicts the function g(q) (1.67) for the example above. Note
that as stated above g(p) = 1, g(r) — Oin this case and that the unique
solution q* = 0.2198 is the intersection of the function g(q) with the
positive diagonal of the unit square (indicated by a dotted line in Fig. 1.10).
We calculated the value of q* using the standard root finding algorithm
GOALSEEK available in Microsoft Excel. Next, from (1.64) and (1.65)
and utilizing q* = 0.2198, we obtain for the lower and upper bounds

a(q*) = 5.464 and %*) = 12.452,

respectively.
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Fig. 1.10 The function g{q) given by (1.67) with

ap = 6.5, m = 7, and br = 10.5, p = 0.10 and r = 0.90.

1.7 Concluding Remarks

We have presented some details and properties of the triangular distribution
which possibly have not been sufficiently addressed in the statistical
literature. For example, to the best of our knowledge, the three-parameter
ML method for the triangular distribution was first presented in Van Dorp
and Kotz (2002b). The software BESTFIT developed by the Palisade
corporation (which has been already available for a number of years now),
however, does yield exactly the same estimates for the parameters a, m and
b for the data in Table 1.2. Unfortunately, the authors do not provide
specific details on their method for obtaining mese estimates. On the other
hand, another fitting software package called INPUT ANALYZER
(developed by Rockwell Software) does not yield the same parameter
estimates for the data in Table 1.2. (Again, no details are provided about the
estimation procedure.)

A careful reader would have noticed that the method of moments for
the standard triangular distribution (1.4) with support [0,1] has not been
explicitly discussed in this chapter due to its obvious simplicity. One may in
fact directly solve for its the threshold parameter 9 from the expression for
the mean in (1.15). A three parameter method of moments procedure for a

31



Tbe Triangular Distribution Beyond Beta

triangular distribution with support [a, b], would require to solve for the
bounds a and b and the mode m, numerically. For example, for a fixed a

and b one could standardize the data on [0,1] and next solve for 6 using the
simple expression for the mean (1.15). Next, one could evaluate die least
squares error of the second and third central moment of the standardized
data utilizing the straightforward expressions for die variance and diird
moment about die mean as given by (1-16) and (1.17), respectively, and
minimize diis least squares error over the domain a < Z(i), b > Z^
(similar to die maximization of the likelihood function G(a, b) (1.48)
introduced in Sec. 1.5). We suggest here a minimization procedure since
mere is no guarantee diat a solution will be obtained when equating the
first three sample moments to the theoretical ones. Steps used in die
outlined methods of moments procedure may be somewhat tedious, but do
not pose any intrinsic difficulties.

There are of course many topics and applications of triangular
distributions which we were not able to cover in this chapter mainly due to
space limitations. For completeness we are including in die bibliography
citations of a number of papers not mentioned in die text that could be of
interest to our diligent readers. These are appended by a star.
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Chapter 2

Some Early Extensions of
the Triangular Distribution

In this chapter we shall discuss in some detail three extensions of the
triangular distribution that appeared prior to the 21-st century. The first one
appeared in 1955 and is called the Topp and Leone distribution. It utilizes
the left triangular distribution as its generating density in the same manner
the Weibull distribution is generated from the exponential distribution. The
second one is the trapezoidal distribution which perhaps can be considered
the most natural extension of the three. To the best of our knowledge an
early written record of the trapezoidal distribution in the modern statistical
literature is from 1970. The third extension is a generalization of the
symmetric triangular distribution. In Chapter 1 it was observed that the
symmetric triangular distribution with support [0,1] arises from the average
of two uniform random variables on [0,1]. Hence, the third generalization
we shall be considering herein involves the weighted average of n uniform
random where the weights sum up to one, but are not necessarily the same.
The corresponding cumulative distribution was derived as early as 1971.
While for the Topp and Leone and trapezoidal distributions we shall
provide some properties, only the cdf and pdf are obtained for the third
one.

2.1 The Topp and Leone Distribution

In an early issue of the Journal of the American Statistical Association
(JASA), in 1955, before the beginning of computer assisted statistical
methodology, an interesting paper on a bounded continuous distribution by
Topp and Leone (1955) has appeared which originally received little
attention. The paper was resurrected by Nadarajah and Kotz (2003) and
amplified by investigations of van Dorp and Kotz (2002a and b) dealing
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with the Two-Sided Power (TSP) distributions (to be discussed in Chapters
5, 6 and 8) and other alternatives to the beta distribution which, as we have
already mentioned in Chapter 1, has been used in numerous applications
since the beginnings of the 20-tii century.

The construction of the Topp and Leone distribution is rather simple
and is based on the observation that by raising an arbitrary cdf
F(x) G [0,1] to an arbitrary power /3 > 0, a new cdf

G[x) = F0(x) (2.1)

emerges with one additional parameter. (This devise was used earlier by the
Swedish engineer W. Weibull (1939) in the course of proposing his well-
known Weibull distribution, that has achieved substantial popularity in the
second part of the 20-th century, especially in reliability and biometrical
applications.) Note that, from (2.1) we have for the pdf

g{x) = ^G{x)=(3F0-\x)f(x), (2.2)

where f(x)is the pdf corresponding to the cdf F(x). In the above
construction the cdf F(x) may be referred to as the generating cdf. Figure 2.1
plots die behavior of the multiplicative constant /3F^~1(x) as a function of
F(x). The curves in Fig. 2.1 are evidently diose of a power distribution pdf
Px13^1, which have the uniform cdf F(x) = x, x € [0,1], as its generating
cdf. Also note mat it follows from (2.2) (and visually from Fig. 2.1) that for
(3 > 1 (/? < 1) and for larger values of x (i.e. those values of x having the
value of F(x) close to 1) the multiplicative factor (iF^'l{x) > 1
(/3F^~ (x) < 1). The reverse assertion is also true for smaller values of x.
The latter immediately implies diat the central moments around 0
associated with the pdf g(x) ate. stricdy larger (smaller) than those
associated widi the pdf f(x) when (5 > 1 (/? < 1), i.e.

fxkg{x)dx = fxkpF0-1(x)f(x)dx > (2.3)

xkf(x)dx &P>1, As = 1,2,...

Property (2.3) relates to the useful stochastic dominance property
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G(x) = F0(x) < F(x) <*/3>l

(see, e.g. Clemen and Reilly (2001)).

3.5 T 1

% 2 \ / ^ '

.y 1.5 - •'•

.e- \ .,<*•'
s 1 ^ ^^-+

.-̂ V-'-......
0.5 ^- - ' ' . / ' - • - - - . .

o l-<-r" , , I
0 0.2 0.4 0.6 0.8 1

cdf F(x)

(3 = 0.5 P= l P = 2 0 = 3

Fig. 2.1 The multiplicative factor PF^~l(x) in (9.0) as a function of
the generating cdf F(x).

Figure 2.2 presents a construction of the Topp and Leone distribution.
The generating cdf of the Topp and Leone family is the cdf (2x — x2) with as
its pdf being the left triangular density 2 — 2x,x € [0,1]. They are
displayed in Fig. 2.2B and Fig. 2.2A (as well as Fig. 1.2A in Chapter 1),
respectively. Figures 2.2C and 2.2D plot the pdf and cdf of a one parameter
Topp and Leone distribution constructed from the right triangular density
(2 — 2x), x € [0,1], for (3 = 3. For the standard form of the Topp and
Leone cdf one obtains from (2.2) and the cdf (2a; — a;2) of a left triangular
distribution

F(x\0) = (2x - x2)0 (2.4)
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with the pdf

f(x\P) = P(2-2x)(2x-x2)>3-\ (2.5)

where X 6 [0,1] and (3 > 0. The appearance of a mode in the pdf
presented in Fig. 2.2C is due to S-shapedness of the corresponding cdf in
Fig. 2.2D obtained by using a cdf transformation with /3 > 1.

_ _ A

2 • v I 0.8 • /^

t.1-5- ^ V . 2 -2X | h. 0.6. /

8 ,. ^ \ 8°4 ' /
0.5 • ^ \ ^ ^ 0.2 • / 2X - X2

o-l 1 1 1——*i oih- 1 1 1 1
A 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

A X B X

r\ A

1.6- S* S. 0.8- j /

., 12' / \ b. 06" I / I
§ 1 • / \ p : /
*> 0.8 • / \ U 0.4' /

0.6- / \ / ._ , . ,

°<; /3(2x-x2)2(2-2x) \ °2 ' > / Vx-xJ
O i - - 1 T- 1 A 0J <^T- ¥ 1 1

n 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

_C x [_D x
Fig. 2.2 Construction of Topp and Leone distribution from

a left triangular distribution. A: left triangular pdf; B: left triangular cdf;
C: Topp and Leone pdf with /? = 3; D: Topp and Leone cdf with 0 = 3.

Figure 2.3 displays some examples of standard Topp and Leone
distributions for different values of (3. For 0 < (3 < 1 (/? > 1) the pdf (2.5)
has a J-shaped (unimodal) form. For f3 = 1 (Fig. 2.3B), the Topp and Leone
pdf (2.5) reduces to a left triangular pdf with support [0,1]. The limiting
distribution of (2.5) by letting (3 | 0 (j3 —> oo) is a single point mass at 0 (at
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Fig. 2.3 Examples of Topp and Leone pdf s A: /3 = 0.5; B: 0 = 1; C: (3 = 1.5 D: 0 = 6.

Topp and Leone (1955) considered a non-standard version of (2.5) with
support [0, b] and the pdf

and cdf

FW M) = {i}'{2-£}'1 (2.7)

where as above (3 > 0. Note that the expression for the pdf is more
complicated than that of the cdf. Compare with the Weibull type
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distributions which have a similar genesis. Topp and Leone's original
interest was directed towards the construction of J-shaped distributions
utilizing similar cdf transformations with 0 < j3 < 1. They have fitted their
distribution to transmitter tubes failure data. Nadarajah and Kotz (2003)
showed that the J-shaped Topp and Leone distributions exhibit bathtub
failure rate functions with widespread applications in reliability.

2.1.1 Location estimates of Topp and Leone distributions

Here we shall investigate the median, the mode and the mean of the
standard Topp and Leone (STL) distribution (2.5) with support [0,1].
Location estimates of the pdf (2.6) with support [0, b] are obtained via a
simple scale transformation.

To obtain the median we shall first derive the inverse cdf of the pdf
(2.5). We arrive at the following quadratic equation in x from the cdf (2.4)
that needs to be solved

x2 - 2x + tyy = 0. (2.8)

Since the symmetry axis of the quadratic equation above is located at 1 and
the solution of this equation has to be a value in the support [0,1] of the
pdf (2.5), we have for the inverse cdf

F-1(l/|/5) = l - ^ / l - ^ y ,

and hence the median is

zo.50 = 1 - y 1 - \J\ (2.9)

For (3 = 1 the pdf (2.5) reduces to a left triangular pdf with a mode at
0. The mode of the pdf (2.5) for (3 ̂  1 follows by setting the derivative of
(2.5) with respect to x, which is

2l3{2x - x2f~2{2{fi - 1)(1 - x)2 - j3{2x - x2)}, (2.10)

to 0, yielding the following quadratic equation
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(2/3 - 1) x2 - 2(2)9 - l)x + 2(/3 - 1) = 0 (2.11)

that needs to be solved. Note that from (2.10) it immediately follows the
pdf (2.5) being strictly decreasing for 0 < (3 < 1. Hence when solving the
quadratic equation (2.11), we only need to consider the case (3 > 1 . Similar
to the quadratic equation (2.8) the symmetry axis here is also located at 1
and the only possible solution in the support [0,1] of (2.11) yields the mode

m = 1 , P > 1. (2.12)
y/2J3 - 1

To derive an expression for the mean of a Topp and Leone pdf (2.5)
we shall utilize here (for convenience of the derivation) the general form of
the cumulative moments

Mk = [ xk{l - F(x)}dx. (2.13)
Jo

For k = 0, one obtains E[X] = Mo. We then have utilizing the cdf (2.4):

Mk = — - 220+k+1 /V + f c ( l - uYdu.
k + 1 Jo I J

These cumulative moments M\. can be expressed in terms of the
incomplete Beta function

*(*' a'b) = Trwnz A9""1*1 -prldp>
T{a)T{b) Jo

yielding

Mk = - L j - 22/3+fc+1 x (2.14)

Substituting k = 0 into (2.14) yields the expression for the mean
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In particular for P = o we have for a STL distribution

^ ( 2 } ~ 4"

Figure 2.4 plots the mean (2.15), the median (2.9) and the mode (2.12) of
the Topp and Leone distribution as a function of the parameter /3.

Note that in Figure 2.4 die mean and median almost coincide for all
values of 0 < (3 < 10 and are both 0 for P = 0. The mode, however,
remains 0 up to /? = 1, but is larger than the median and mean in the
vicinity of (3 = 10. Around the value of /? ~ 2.70 die three location
measures achieve practically die same value ~ 0.52. Figure 2.4B provides a
close-up of Fig. 2.4A for the range of (3 € [2.55,2.80]. From Figs. 2.4A
and 2.4B we observe that for values of /? < (3\ ~ 2.624 we have the
ordering

Mean > Median > Mode. (2.16)

Similarly, for values of (3 > /33 « 2.729 we have the reverse ordering

Mean < Median < Mode. (2.17)

Even though it follows from Fig. 2.4 that the orderings (2.16) and (2.17)
prevail over the domain (3 > 0, it is wordiwhile to note from Fig. 2.4B that
for Pi < P < P2 « 2.706 ( for /32 < P < Pz) we have a different ranking

Mode < Mean < Median (Mean < Mode < Median) (2.18).

In fact, the rankings (2.16) and (2.17) are most common (see, e.g.
Runnerburg (1978)) where the first one typically holds for right skewed
distributions (a tail towards the right) and the second one for left skewed
ones. It is perhaps less well known that die rankings (2.16) and (2.17) are
only valid under certain regularity conditions (see, e.g., Basu and Dasgupta
(1993)) and tliat other rankings (like the ones in (2.18)) are also possible.
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Fig. 2.4 A. Mean, median and mode of a standardized Topp and Leone distribution as

a function of the parameter (3. B. A close-up of Graph A for the range

/3 e [2.55,2.80], A « 2.624, 02 « 2.706 and fa « 2.729.
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2.1.2 Variance ofTopp and Leone distributions

Substituting k = 1 in (2.14) yields the expression for the cumulative
moment

Mi = - - 4/3+1 x (2.19)

M(0 + 2,(3 + 1)B(^\(3 + 2, (3 + 1),

where the beta function B(a,b) = T{a)T(b)/T(a + b). Utilizing the
relationship

Var{X) = 2Mi - M0
2

(which is easy to verify directly or see, e.g., Stuart and Ord (1994)) we have
from (2.15) and (2.19) that

Var(X) = 220+1B{(3 + 1,(3 + 1){1 - 22/3"1B(/3 + 1,(3 + 1)} -

22/3+3B(/? + 2,(3 + l)B(l |(3 + 2, (3 + 1).

In particular we have for (3 — | for the variance of a STL distribution

77T2 57T 1 1 1

l6~YB{2 | 2 2 ' 1 2 ) -

Figure 2.5 below plots the variance of a Topp and Leone distribution
(2.5) as a function of (3. From Fig. 2.5 we can observe that the maximum
variance 1/18 « 0.056 is attained for (3 = 1, which coincides with the
variance of the left triangular distribution in Figs. 2.3B and 2.2A. Note a
rapid increase in the value of the variance as (3 increases from 0 to 1 (from
the value 0 to the maximum 1/18) and a rather slow decrease as (3 changes
from 7 to 10 (from 0.024 up to 0.018). Nadarajah and Kotz (2003)
investigate other moments of Topp and Leone distribution in a similar
manner.
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Fig. 2.5 Variance of a Topp and Leone distribution as a function of the parameter /3.

2.1.3 Maximum likelihood estimation

We have seen at the beginning of this section that the structure of the pdf
(2.5) and cdf (2.4) of the standard Topp and Leone distributions are
appealingly direct. Moment expressions for Topp and Leone distributions,
unfortunately, are rather cumbersome requiring numerical search routines
when one would like to estimate its parameter /3 via die method of
moments technique. Fortunately, the ML method does not present any
intrinsic difficulties.

Let X_ = (X\,..., Xn) be an i.i.d. sample from a standard Topp and
Leone distribution widi the pdf (2.5) and support [0,1]. By definition, the
likelihood for X_ is

£ ( £ ; # = £"11(2 - 2*i){2*i - {Xif}^ (2.20)

As is often die case, instead of maximizing die likelihood we shall
equivalently maximize the log-likelihood. Taking the logarithm of (2.20) and
calculating the derivative with respect to (3 we obtain
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- + Y^Log[2Xl-{Xi)
2] (2.21)

^ 2 = 1

Setting the derivative (2.21) to zero we obtain the unique ML estimator

For the data X = (-^(l)j ••• >-^(8)) given by Eq. (1-41) in Chapter 1 we

obtain (3 ~ 1.88 and L(2£', /?) ~ 2.98 which is a slight improvement over

L{X_\9) w 2.79 obtained in Sec. 1.4.1 for the same data by fitting a
triangular distribution with support [0,1].

2.2 The Trapezoidal Distribution

Trapezoidal distributions have been advocated in risk analysis problems by
Pouliquen as early as 1970 and more recently by Powell and Wilson (1997)
and Garvey (2000). They have also found application as membership
functions in the fuzzy set theory (see, e.g., Chen and Hwang (1992)). In that
context they prominently occur in numerical geology and geostatistics
(Bardosy and Fodor (2004)).

In a seminal paper in 1965, L.A. Zadeh observed that "more often than
not, the classes of objects encountered in the real world do not have
precisely defined criteria or membership". To specify a fuzzy set is to
capture partial membership described by a membership function. A
member ship functions corresponding to a fuzzy set is therefore a relaxation
of the characteristic definition of a set (which has a rigid boundary). It is a
gradual notion which is related to vagueness rather than uncertainty (see,
Zadeh (1965)). The membership function of a fuzzy number is expressed
by a continuous distribution on a bounded domain which is very often
given by a triangular or trapezoidal distribution. A membership function of
a fuzzy number is therefore similar in concept as the pdf of a random
number. There exist rather simple rules for adding, subtracting and
multiplying fuzzy numbers involving their membership functions which are
quite different from convolutions or products, respectively of random
variables (see, e.g., Bardosy and Fodor (2004) for details). It would seem
that the fuzzy arithmetic is primarily developed for its mathematical
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convenience and simplicity, rather than adhering to the traditional views for
propagating uncertainty. For example, the sum of two fuzzy numbers with
triangular membership functions with parameters o,, m^, 6,, i = 1, 2, is
again a fuzzy number with triangular membership function
a\ + a^t 7711 + TTT-2, b\ + 62. Hence, fuzzy arithmetic avoids having to deal
with the somewhat cumbersome calculation involved with the sum of two
independent asymmetric triangular random variables (known as
convolution), which does not follow a triangular density function. (See van
Dorp and Kotz (2003b) for details.)

Our interest in trapezoidal distributions and their modifications stems
mainly from the observations that many physical processes in nature,
human body and mind (over time) reflect the form of the trapezoidal
distribution. In mis context, trapezoidal distributions have been used in
medical applications, specifically the screening and detection of cancer (see,
e.g., Kimmel and Gorlova (2003), Brown (1999) and Flehinger and Kimrnel
(1987)). Another domain for applications of the trapezoidal distribution is
the applied physics arena (see, e.g. Davis and Sorenson (1969), Nakao and
Iwaki (2000), Sentenac et al. (2000) and Straaijer and De Jager (2000)).
Specifically, in the context of nuclear engineering, uniform and trapezoidal
distribution have been assumed as models for observed axial distributions
for burnup credit calculations (see Wagner and DeHart (2000) and Neuber
(2000) for a comprehensive description).

The pdf of a trapezoidal distribution consists of three stages. (The first
stage can be viewed as a growth-stage, the second corresponds to a relative
stability and the third reflects a decline or decay). It seems appropriate to
define the four-parameter trapezoidal pdf by

ffEf, fora < a; < 6
fx(x\a,b,c,d) =C{a,b,c,d) x -j 1, for b < x < c (2.22)

[̂ Ef, £otc<x<d

where a < b < C < d and the normalization constant is given by

C{a, b, c, d) = 2{c + d-(a + 6 ) } " 1 . (2.23)

The corresponding cdf that follows from (2.22) is calculated to be:
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^HW)(^)\ (ora<x<b

F x ( x \ a , b , c , d ) = l ^ - \ a + b ) ' for 6 < x < c , (2.24)

l~7THw){l^)2' iotc<x<d.

(see, also Garvey (2000), p. 103). The name "trapezoidal" reflects the shape
of a graph of the pdf (See Fig. 2.6). Triangular and uniform distributions are
special cases in the trapezoidal family.

/*(*) f

2
c + d-{a + b) A JN.

Z 1 i _S p.
a b c d x

Fig. 2.6 Pdf of a Trapezoidal Distribution.

2.2.1 Moments of the trapezoidal distribution

Derivations of moments of the trapezoidal distribution (and some other
properties as well) are straightforward and follow most naturally from the
realization that the pdf (2.22) can be viewed as a mixture

3 3

fx(x\&) - E^/*,(z|©)> I>i = 1, Ti > 0, (2.25)
i=l i=l

of the three component densities:

46



Some Earlj Extensions of the Triangular Distribution Beyond Beta

(/x1(x|6) = /x1(x|a,6) = ^ f 5 f , fo ra<x<6
I fx2{x\&) = fxt{x\b, c) = ^-b, for b < x < c (2.26)
{fx3(x\Q) = fx3(x\c,d) = ^-c^c iorc<x<d

with the mixture probabilities

- (fr-g)
^ ~ (b-a)+2(c-b)+(d-c) '

\ ^ = (6-a)+2(c-bj+(rf-C) » (Z27)
_ (d-c)

_ n3 ~~ (b-a)+2(c-b)+(d-c)-

The densities fx^(x\a, b) and fx3(x\c, d) are a right (Fig. 1.2B) and a left
triangular density (Fig. 1.2A), respectively. The density fx2(x\b,c) is a
uniform density with support [b,c]. Note that the mixing probabilities in
(2.27) are proportional to the durations (b — a) , (c — 6) and (c? — c) of the
three stages of the trapezoidal density (2.22), where the duration of the
middle stage is multiplied by a factor of 2 compared to the other two stages.

Utilizing the component representation (2.25) of the pdf (2.22) and the
mixture probabilities 7Tj, % = 1,2,3 (Eq. (2.27)), we arrive at

E[Xk\Q} = iriE[X^\a,b] + Tr2E[X%\b,c] + ir3E[Xl\c,d]. (2.28)

From the pdfs in (2.26) we obtain the moments around zero of the
component variables:

E[Xk
1\a,b} = J2(kXk-\b-ay-^- , (2.29)

1 r
k+1 — hk+1

E[X£\c,d,n3] = ^ ^ V c - d j y * - - ^ .

Note, the symmetric analogy of £?[Xf|o, b] and E[Xk\c,d]. Numerical
calculations of k-th moment ^[X'1!©] given by (2.28) are quite innocuous
employing the current advances in computer technology and utilizing the
closed form expressions for the k-th moment of the component random
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variables X\,X2,X<i (Eq. 2.29) as well as the mixture probabilities
7Tj,i = 1,2,3 (2.27). Deriving a closed form for the expression of the
moments £[X fc |0] for X ~ fx(x\Q) (Eq. (2.28)) in its general form,
although somewhat tedious, is quite straightforward and does not present
intrinsic difficulties.

We shall derive the close form expressions for the first and second
moment about zero. Substituting k = 1 in (2.29) we have for the
component variables:

E[Xx\a,b] = ^ ,E[X2\b,c] = ^ , E[X3\c,d] = ^ . (2.30)

Next, the substitution of (2.30) and the mixture probabilities (2.27) into the
general expression for the A;-th moment (2.28) yields the following elegant
formula for the mean of X

p m , ,, 1 (c + d)2-cd-(a + b)2 + ab
E[X\a,b,c,d} = — — . (2.31)

6 c + a — {a + b)
Similarly, substituting k = 2 in (2.29) yields the second moments around
zero of the component variables

E[Xl\a, b} = a2 + ^a(b - a) + ±(b - a)2 ,

E[Xl\c,d] = d*- -3d(d -c) + \(d - c)\

and the expression for second moment around zero of a trapezoidal
distribution

ElX^b,cA = l(c2 + d2XC + dJ-(a2+/)(a + b). (2-32)6 c + a — (a + b)

(see also Garvey 2000, p. 104). For c = b (a = b and c = d) in (2.31) and
(2.32) we arrive at the first and second moments of a triangular distribution
with support [a, d] and a mode at b (a uniform distribution with support
[b,c]).
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2.2.2 Inverse cumulative distribution function

We shall derive the inverse of the cdf (2.24) to allow for direct sampling
from the trapezoidal distribution using the inverse cumulative distribution
technique. From (2.24) and again utilizing the component representation
(2.25) of the pdf (2.22) we have

Fx1(y\a,b,c,d)= (2.33)

{ a + \/y(b — a)(c + d — a — b), for 0 < y < -K\

(l-y)sf+y^, for7r1<y<l-7r3

d - y/(l - y){d -c){c + d-a-b), for 1 - TT3 < y < 1,
where the mixture probabilities TTj, i = 1, . . . , 3 are given by Eq. (2.27).
Note that, the second branch of the inverse cdf is a convex combination of
the midpoints of the first and third stage of the trapezoidal distribution. As
before, for c = b (a = b and c = d) in (2.33) and (2.27) we arrive at the
inverse cdf of a triangular distribution wim support [a, d] and a mode at b (a
uniform distribution with support [b, c]).

In Chapter 6, we shall generalize the trapezoidal distribution utilizing
extensively the component representation (2.25).
2.3 A Linear Combination of Uniform Variables
Schmidt (1934) was possibly the first to notice explicidy that the symmetric
triangular pdf (1.2) with support [0,1] follows as the distribution of the
arithmetic average of two uniform random variables Ui and U2 on [0,1]
given by (1.3) in Chapter 1. Hence, it seems quite natural to view a weighted
average of uniform random variables, where the weights w = (w\, ... , Wn)
are positive but not necessarily equal, to be an extension of the symmetric
triangular distribution with support [0,1]. First, let the random variable X
be defined as:

n n
X = J ^ C / i , Wi > 0, J^Wi = 1, (2.34)

i=l i=l

where Ui, i = 1 , . . . , n are mutually independent uniform random variables
widi support [0,1]. From the definition of X and die expressions
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E[Ui] = - and Var[Ui] = 1/12, i = 1 , . . . , n.

it follows immediately that

E[X] = \ and Var[X] = ^ X > ? - (2-35)
i=l

The cdf of the variable X given by (2.34) was derived by Mitra (1971)
and a couple of years later by Barrow and Smith (1979). It is given by a
rather formidable sum:

i i n

F(x\n, w) = UflwiY1^...^-!)^ x (2.36)
t=l m=0 vn=0

i=l i=l

with the pdf

f(x\n, w) = Un - l ) ! ^ } " 1 ^ . . . ^ ( - 1)S"' x (2.37)
2 = 1 Ul=0 Vn=0

(x-'Y^WiVi) llQ^ix-^WiVi)
i=l i=l

where l[o,oo)(z) is ̂ ^ indicator function :

i / N _ / 1 z G [°. °°)
l [ 0 , o o ) W - | 0 e l s e w h e r e .

Note that the variables Vi, i = 1,... ,n in (2.36) and (2.37) are binary.
Unfortunately, the proofs of Mitra (1971) and Barrow and Smith (1979) are
— although quite ingenuous — geared towards mathematically oriented
readers and are not easy to follow. Recently, Van Dorp (2004) utilized the
cdf (2.36) for modeling statistical dependence caused by 'common risk
factors' in uncertainty analysis applications. In these applications, the
uniform random variables £/j are considered to be latent variables where the
weights Wi indicates the amount contributed by a common risk factor i to
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the aggregate risk X. Latent variable models have found wide applications in
scientific investigation particular in the behavioral sciences in the second
part of the 20-th century (see, e.g., Bartholomew (1987)). Van Dorp (2004)
devised an elementary proof of the cdf (2.36) that will described in a
subsection below.

For n = 2 and W\ < 1 — wi (ot wi < ~) the pdf (2.37) reduces to

'M^T) 0<x<Wl

f{x\2, w) = < jz^i wl<x<l-wl (2.38)

. ! # = $ l - " i < s < l .

Figure 2.7 depicts the pdf of X = WiUi + W2U2, where w\ = | and
u>2 = §• From Fig. 2.7 and the structure of (2.38) it follows that the pdf in
Fig. 2.7 is a symmetric trapezoidal distribution with a = 0, 6 = | , c = |
and d = 1 (see, Eq. (2.22)). Hence, similarly to the genesis of Schmidt
(1934), determining that the average of two independent uniform random
variables yields a symmetric triangular distribution on [0,1], we conclude
that a weighted average of two independent uniform random variables
(where the weights do not have to be equal) results in a symmetric
trapezoidal distribution on [0,1] (this case to the best of our knowledge had
not been well known).

By restricting the weights u>i to be equal to 1/n one evidently obtains a
special case of the pdf (2.37). Introducing the notation

n

i=l

and noting that the number of different ways in which a sequence of n
binary variables can sum up to j equals the binomial coefficient

. = -T77 -r., 0<J<n,

the pdf (2.37) simplifies in this case to
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Fig. 2.7 Examples of the pdf s of (2.34) forn = 2 and u>\ = | ,u> = | .

where \nx\ is the largest integer less than or equal to nx (also known as the
entier function). The pdf (2.39) is often referred to as the Bates distribution
(Bates (1955)) or the rectangular mean distribution. Bates (1955) derived her
distribution for testing the hypothesis that a distribution is uniform [0,1]
against the alternative that it represents a truncated exponential distribution
on [0,1]. Problems closely related to linear combinations of rectangular
distributions (in connection with tabular differences) were investigated by
Lowan and Laderman as early as (1939), whereas even earlier Irwin (1932)
and Hall (1932) derived the distribution of the sum of n independent
uniform random variables on [0,1]. For n = 2, the pdf (2.39) reduces to
the pdf (1.2) of a symmetric triangular pdf on [0,1] and hence for n = 2m
the pdf (2.39) represents the pdf of the sum of m independent symmetric
triangular distributions with the support [0,1].

Figure 2.8 plots the pdf (2.37) of a random variable X given by (2.34)
for n = 4 for different choices of the weights u>j = 1 , . . . , 4. Included in
Fig. 2.8 is also the Bates distribution (with equal weights) which follows as
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Fig. 2.8 Examples of the pdfs of (2.34) for n = 4. A: Wi = 1, i = 1 , . . . , 4 (Bates);

B:u;i =0.6,w 2 =0 .3 ,w 3 = 0.075, w2 = 0.025 (MB Case 1);C: wx =0.8 ,w 2 = 0.1,
w3 = 0.075, w2 =0.025 (MB Case 2); D: w2 = 1, wt = 0, i = 2,3,4 (Uniform).

the average of 4 independent uniform random variables or equivalently 2
independent symmetric triangular random variables with support [0,1].
Note that the Bates distribution in Fig. 2.8 for n = 4 already takes on a
bell-shaped form. A standardised Bates distribution with n = 12 and zero
mean and variance 1 is commonly used for generation of standard normal
variables in numerous packages. Note that the distributions indicated by
'Mitra Case 1' and 'Mitra Case 2' have a flat 'top' similar to the trapezoidal
distribution in Fig. 2.6 and are also symmetric (in accordance with
E[X] = \ in Eq. (2.35)). The pdf 'Mitra Case 2' in Fig. 2.8 assigns a higher
weight to U\ than the pdf 'Mitra Case 1' resulting in a larger variance. The
maximum variance of X is attained for the limiting case where one of the
weights Wi gets the maximal weight 1 and the other ones are all zero. In
that case the pdf of X (2.34) reduces to a uniform pdf also depicted in Fig.
2.8. The minimum variance case of X is the Bates pdf with equal weights.
We thus have a 'continuum' of continuous distributions in a finite domain
with monotonically decreasing variances starting from the uniform
distribution to the Bates distribution (2.39) via distributions of the form
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(2.37) with decreasing weight for the, say, first component from 1 to 1/n
(or equivalently any other specific one component). This phenomenon is in
a certain sense similar to the "continuum" of distributions from Cauchy to
normal via the Student-^ distributions not necessarily with integer values
degrees of freedom.

2.3.1 Elementary derivation of the cdfofX given by (2.34)

In this section we shall provide an elementary derivation of the cdf (2.34)
based on the one presented in Van Dorp (2004). The proof is geometric in
nature (along the lines provided by Mitra (1971)) and is based on the well-
known inclusion-exclusion principle (see, e.g., Feller (1990))

Pr{ (J A,) = J > r ( A ) - £ £ PriAt n A,-} + (2.40)
i — \ t=i i < j

n

E E E Pr{AinAjnAk}-...+(-l)»-1Pr{ f) A),
i < j < k i = 1

for arbitrary not necessarily disjoint events A\,... ,An, in the standard
notation involving the union operator U and the intersection operator
fl of events. Mitra (1971) did not link his proof to the inclusion-exclusion

principle above. Barrow and Smith's (1979) proof involved concepts related
to the theory of splines which may be less well known to a probabilist. (This
subsection could be skipped in the first reading of the book without losing
continuity of exposition).

Let Cn = {u | 0 < Ui < 1} be the unit hyper-cube in W1. Let v =
(vi,..., vn), Vi 6 {0,1}, be a vertex (or corner point) of the unit hyper-
cube Cn and define the simplex Sy(x) at the vertex v as:

m

Su(x) = {u | ^2wiui <x,Ui>Vi,i = l,...,m}, (2.41)
»=i

m
where x > 0, lOj > 0, J2wi = 1- Let 0 = (0 , . . . , 0) be the origin vertex of

i=l
the unit hyper-cube Cn and let e* = ( e i , . . . , e n ) , i = 1 , . . . , n , be its
orthogonal unit vectors, i.e.
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ei = l,ej = O,j=l,...,n,j^i. (2.42)

For n = 2, C reduces to the unit square and a simplex becomes a
right angular triangle. For example, Fig. 2.9A displays the unit square C 2

and the simplex SQ{X\) (Eq. (2.41)) with the corner points

{(0,0),(i,0),(0,i)}

for a particular value x\,0 < X\ < 1. Figure 2.9B, displays Soix^) ^or a

value Xi > X\ and also depicts the simplex (or triangle) Sei(x2) with corner
points

{outside the unit square) and the triangle Sei ix-^)

(also outside the unit square), respectively. To evaluate the cdf of X given by
(2.34) for the value X\ in Fig. 2.9A one simply needs to evaluate the area of
the triangle SQ(X\). Similarly, to evaluate the cdf of X for the value X2 in
Fig. 2.9B one calculates the area of the triangle SQ(X^), but subtracts the areas
of the triangles with their right angles at the unit vertices e1 and e , i.e. Se\ (#2)
and Se2{x2)-

Figure 2.10 presents similar situations for the case n — 3. Figure 2.10A
displays the unit cube C3 and the simplex SQ(X\) (Eq. (2.41)). Note thatin
Fig. 2.10A, for this particular value 0 < X\ < 1 only the simplex S^Xi) at
the origin 0 = (0, 0, 0) is a non-empty set since it is the only corner point
of a total of 8 points of the cube C 3 that is an element of the half space

m

{U I Y^WiUi <Xl}- (2-43)
i=l

When the value of x increases in (2.41), additional corner points v of the
unit cube will join the half-space (2.43) resulting in additional non-empty
simplecies at those points.
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f h
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X
Fig. 2.9 A: Evaluating F(xx) = Pr(X < xx) (Eq. (2.36)) forn = 2 ;

B: Evaluating F(x2) = Pr(X < x2) (Eq. (2.36)) for n = 2.
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u w1u1 + w2u2 + w3u3 = x1

3 gHQ,o,i) / v=(o.i.n

X =(1,0,1)/ v=(l,UK

^ /F=(o,i,o)

1 ^e'^1,0,0) Y =(1,1,0)
A

u / N ^ ^ J + w2u2 + w3u3 = x2

v =(i,o,i)/ g3^0'0'1) u^x^y

uj / JeRyM^^^*^-

Fig. 2.10 A: EvaluatingF^) = Pr(X < si) (Eq. (2.36)) forn = 3 ;
B: Evaluating F(x2) = Pr(X < i2) (Eq. (2.36)) forn = 3.
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For example, consider Fig. 2.1 OB for a particular value 0 < a;2 < 1,
X2 > X\. In this figure we may recognize the simplex So(2:2) at the origin0
as the largest one. In addition, we also observe the three smaller simplecies
Ss\{x2), Sgixy) and5e3(x2) at the corner points e1 = (1 ,0 ,0) ,
e2 — (0,1,0) and e3 = (0,0,1) , respectively, of an approximately equal
size. Finally, the three smallest simplecies in Fig. 2.10B (indicated with
dotted lines) are :

£(1,1,0) (^2), £(1,0,1) (^2) and £(0,1,1) (^2)

at the corner points (1 ,1 ,0) , (1,0, 1) and (0 ,1 ,1) , respectively. Notice
that no simplex is observed at the eighth corner-point (1,1,1) in Fig. 2.10B
since (1,1,1) is not an element of the half space (2.43). Analogously to Fig.
2.9B, one evaluates the cdf of X for the value Xi in Fig. 2.10B by
calculating the volume of the simplex £0(^2) and subtracting the union of
the volumes at the unit vertices, i.e. Sei(x2), i = 1 , . . . , 3. Taking the union
of the volumes of the simplecies Sei(x2), i = 1, • • •, 3 avoids double counting
of volumes of the pairwise intersections of the simplecies Sei(x2), which
are £(1,1,0) (^2), £(1,0,1)(^2) and £(0,1,1)(^2), respectively, in Fig. 2.10B.

We shall now proceed with a more formal proof. Our proof of the cdf
(2.36) utilizes the hyper-volume of the simplecies defined by (2.41).

Theorem 2.1: The hyper-volume V{Su(x)} of the simplex Su{x) given by (2.41)
equals

. n \ -1 / n \ n n

(nljjwij (x-^2wivi) •Mo,oo)(x-'*rwiVi). (2.44)
i=l i=l i=l

Proof: From the definition of (2.41) it immediately follows that for x > 0

1 w
 n~i

 m.
n -2— ft _£ \ —L 11 . rt _5 \ L 11 •

^ { £ o ( ^ ) } = / / '-1 . . . / ' " dun...dUl. (2.45)

Changing the variables of integration to yi = ^Ui,i — 1 , . . . , n, the

integral in (2.45) is simplified to

58



Some Early Extensions of the Triangular Distribution Beyond Beta

1 n - l

V{SQ(x)} = — / " . . . / " dyn...dyi. (2.46)

i=l

For n = 2, we evidently have for the value of the integral in (2.46)

/•I rl-vi ri 1

/ / dy2dyl = I (1 - yi)dyi = -.

For n = 3, one obtains

/•I />l-!/i rl-yi-yt

/ / / dy3dy2dyi = (2.47)
Jy1=0Jy2=0 Jj/3=0

/•I /-1-yi

/ / (1 - 2/i - y2)dy2dyi =
•/J/i =0Jy2=0

1 Z 1 / , N2j HI
- / ( l - i / i ) 2di / i = - - = - .
27yi=o 2 3 6

Generalizing Eq. (2.47) to an arbitrary integer n > 1 it immediately follows
from (2.46) and the fact that So{x) = 0 for x < 0 that

W)}=-^-lM(4 (2-48)

i=l

Once more changing variables Zi = m — u,-, i = l , . . . , m , w e arrive,

utilizing (2.41), at

V{Su(x)} = ^{50^ - £ > ^ ) } - (2-49)
i=i

The theorem now follows from (2.48) and (2.49) via simple algebraic
manipulations. IZZF

T h e o r e m 2.2: The cdf of the weighted linear combination X given by (2.34), where

Ui,i = 1 , . . . ,n,are independent uniform random variables with support [0,1] and
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n

^ W i = l,ifi> 0 ,

t=i

is given by jP(a;|n, w) in Eq. (2.36).

Proof: The support of X follows from (2.34) to be [0,1]. From (2.34), the
independence of the random vaxiables Ui, i — 1,... ,n and by generalizing
the earlier observations in connection with Figs. 2.9B and 2.10B to M.n, we
obtain directly

n

Pr(X <x) = V{S0_(x)} -V[\J S&i(x)}. (2.50)
2 = 1

Invoking the inclusion-exclusion principle (Eq. (2.40)) we arrive at:

V{\J Sei(x))=fy{Sei(x)}- (2.51)

Y32 v{S&,(x)nseJ(x)} +
i < j

E E E y{sAx) n seJ{x) n SAx)} - . . .
i < j < k

n

+(-ir-iv{ n s^x)}.
i = 1

Utilizing the definition of the simplex Su(x) as given by (2.41) it follows
that the intersections of the simplecies Sei(x) in (2.51) are all of the
following form

{) S*(x) = Sv(x), (2.52)
iel

where I C {1,... ,m}zndv = J2 e l. (For example, 5(iiiio)(a^2) in Fig.
iei

2.10B is the intersection of 5(1,0,0) (^2) and 5(0,1,0) (^2)0 Finally, from
(2.52), (2.51) and (2.50) we easily conclude that
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1 1 n

Pr(X <*) = £ . . . ; £ ( - l)SV{5,(x)}.

The proof of Theorem 2.2 now follows from Theorem 2.1. •

From the proof of Theorem 2.2 it follows that an efficient method to
evaluate the distribution in (2.36) for a particular value of X and a given set
of weights w=(wi,...,wm)is to develop a recursive algorithm
enumerating all vertices y_ of the hyper-cube Cn and then to evaluate the
hyper-volume (Eq. (2.44)) of the simplex at each vertex v when a vertex is
visited by the algorithm. Such an efficient algorithm for evaluation of the
cdf (2.36) facilitates its application in Monte Carlo based uncertainty
analyses. The algorithm is presented below in Pseudo Pascal.

2.3.2 Algorithm for evaluating the cdf given by (2.36)

The procedure CalcCDF(F, x, m, w) below evaluates the value F of the
cdf (2.36) of the random variable X given by (2.34) by making a call to the
recursive procedure

VisitVertices(F,x,i,v,n,w, TV).

As above the algorithm uses functions

ProductWeights (w, n)

n
to calculate IT = YliVi

j=i

SumElements(v_, n)

n

to calculate S = Y^vi> anc*
i=l

SumProducts(v, w, n)

n
to calculate ijj = J2wivi (Eq- (2.36)).
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The algorithm consists of two procedures each containing three and
four steps, respectively:

VisitVertices(F,x,i,v,m,w, II);
Step 1 : if (i < m) then

Vi : = 0; VisitVertices(F,x,i,v,n,w, II);
Vi : = 1; VisitVertices(F,x,i,v,n,w, II);

Step2 : £ : = SumElements(v,n);
ip : = SumProducts(v,w,n);

Step3: If(x-ip)>0thenF: =^ + (-l)E{^#}

CalcCDF(G,x,m,w);
Step 1 : Ifx < 0 then F : = 0; 5top;
Step 2 : / / x > 1 then F : = 1; Stop;
Step?> : II : = ProductWeights(w,n);
Step4 : VisitVertices(F,x,l,v,n,w, II);

2.4 Concluding Remarks

This chapter covers selected topics constituting a transition from the
classical contributions related to the triangular distributions which have
originated in the 18-th century (strongly influenced by combinatorial
problems) to the modern late 20-th century investigations in the area of
bounded univariate continuous distributions motivated mainly by
engineering and statistical considerations. Some statistical tools used in mis
chapter will be useful when studying more complex distributions described
in Chapters 3-8. Careful attention given to this chapter thus may facilitate
understanding of the material in the later chapters.

62



Chapter 3

The Standard Two-Sided Power Distribution

Similarly to the well known Gaussian or normal distribution, the beta
distribution is represented by a smooth function. Whereas a "peaked"
alternative for the normal distribution has been available for quite some
time in the form of the Laplace distribution, a flexible "peaked" alternative
for the beta distribution was lacking in the 20-th century. Smoothness of
density curves may be an attractive mathematical property, but it does not
necessary have to be dictated by the uncertainty of the phenomenon one is
attempting to describe. In particular, financial data has been shown to
exhibit "peaked" histograms. Ironically, mathematical idealization calls for
smoothness while the real world often exhibits peakedness. The standard
two-sided power (STSP) family of distributions introduced in this chapter
can be considered a "peaked" alternative to the beta family. Properties of
the distribution are investigated and a maximum likelihood estimation
procedure for its two parameters is derived. The flexibility of the family in
comparison with that of the beta family, is analyzed.

3.1 Introduction: The Leading Example

We shall introduce the STSP distribution using data for monthly interest
rates for 30-year conventional mortgage interest rates over the period 1971-
2003. The interest rate after month k is denoted by i^; one of the simplest
financial engineering models for the random behavior of the interest rates is
the multiplicative model:

ik+q = ik^k,q, (3.1)

where q — 1,2, . . . and 6fc? are i.i.d. random variables (see, e.g., Leunberger
(1998)).
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Fig. 3.1 Monthly 30-Year conventional mortgage interest rate data for the years 1971 - 2003;
A: Time series of interest rates; B: Time series of one-step log differences;

C: Time series of two-step log differences.
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The time series of the monthly interest rates ik consisting of 392 data points
is displayed in Fig. 3.1A. From (3.1) we have

Ln{ek,\) = Ln(ik+i) - Ln(ik). (3.2)

Figure 3.IB depicts the time series of the one-step (or monthly) log
differences Ln{ekt\) consisting of 391 data points. Table 3.1 contains the
values of the auto-correlation function (ACF)

ACF{\, 1) = Corr[Ln(ek+XA), Ln(eM)] (3.3)

with lags A = 1 , . . . , 6 together with the LBQ(X) statistic (see Ljung and
Box (1978)) and their p-values for testing the null hypothesis that the auto-
correlations for all lags up to lag A are zero. The LBQ(X) statistic is chi-
squared distributed with A degrees of freedom (see, e.g., Tsay (2002)). Tsay
(2002) suggests that the lag A = 6 « Ln(392) = 5.969 performs better as
far as statistical power is concerned than other values of A. Hence, Table
3.1 contains the values of the LBQ(X) statistic up to and including A = 6.

Table 3.1 Auto-correlation function, Ljung-Box Q statistic and p-values
for one-step log differences £n(efc,i) (Eq. (3.2)) and

two-step log differences Ln(ek,2) (Eq. (3.3)) with Lags A = 1,... ,6.

One-Step Log Differences Two-Step Log Differences

Lag ACF LBQ p-value ACF LBQ p-value

1 0.414 67.646 2.0E-16 -0.020 0.083 0.773
2 -0.073 69.740 7.2E-16 0.038 0.371 0.831
3 -0.084 72.502 1.2E-15 -0.029 0.537 0.911
4 0.047 73.382 4.4E-15 0.028 0.697 0.952

5 0.028 73.687 1.7E-14 0.097 2.626 0.757
6 -0.037 74.221 5.6E-14 -0.005 2.632 0.853

From the p-values associated with the one-step log differences one
immediately concludes that these null hypotheses (all lags up to lag A being
zero) are all rejected for lags A = 1 , . . . , 6.

Figure 3.1C depicts the time series of the two-step (or bi-monthly) log-
differences (q — 2 in Eq. (3.1))

Ln{eki2) = Ln(ik+2) - Ln{ik), (3.4)
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totaling 196 data points and the last 3 columns of Table 3.1 contain the
values of the auto correlation function

ACF(\,2) = Corr[Ln(ek+Xi2),Ln(ekt2)}

with the same lags A = 1 , . . . , 6 together with the LBQ(A) statistics and
their p-values. Note that from these p-values it follows that in this case the
null hypotheses (i.e. that auto-correlations for all the lags up to lag A being
zero) would be accepted for lags A = 1 , . . . , 6. Hence, we may assume here
that the random variables t^fi a r e indeed i.i.d.. This allows us the use of
standard maximum likelihood (ML) procedures. (If a reader is not
comfortable with this assumption additional modeling using the Auto-
Regressive Conditional Heteroscedastic (ARCH) time series model devised
by R.F. Engle (a 2003 Nobel Laureate in Economics) in 1982 may be used
to construct an i.i.d. sequence from e ^ — see Sec. 6.5 in Chapter 6 for
further details).

Figure 3.2 depicts the two-parameter Gaussian distribution together
with an empirical pdf of the two-step log differences depicted in Fig. 3.1C.
Similar to the analysis in Klein (1993) (who studied interest rate data on 30-
year treasury bond data from 1977 to 1990), Fig. 3.2 shows that the
empirical pdf of the financial data is by far too peaked to be modeled by a
normal pdf. Figure 1A also displays the three-parameter asymmetric Laplace
(AL) pdf

f(x\fi,K,a)=l r- . J (3.5)
I ^J^exV{ -y/2*(x- fi)}, for x > /x,

where [i € M and a, K, > 0, suggested by Kozubowski and Podgorski
(1999) to capture such a peak (which appears to be a characteristic of
financial data). Both the Gaussian and asymmetric Laplace distributions in
Fig. 3.2 were fitted utilizing a ML procedure. For ML estimates of Gaussian
parameters see, e.g., Mood et al. (1974). Kotz et al. (2002) provide a ML
procedure for the asymmetric Laplace distribution.

Both the Gaussian and asymmetric Laplace distribution in Fig. 3.2 have
unbounded support whereas the range of the two-step log difference in Fig.
3.1C is finite (and so is the range of the empirical pdf in Fig. 3.2) and equals
[ — 0.224,0.250], not even covering a unit distance. We suggest to use
continuous distributions with bounded support to model the uncertainty of
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the data in Fig. 3.1C. Figure 3.3 depicts the ML fitted pdf of a shifted
standard beta distribution with unit support [ — 0.5, 0.5] (and a sufficient
safety margin for die range [ — 0.224,0.250] of the two-step log
differences) and pdf

a, b > 0, and that of a shifted STSP distribution with die same unit support
[ - 0.5,0.5] and the pdf

( i \ n - 1

S ) » for - | < x < m
JW,»)=\ , ' - ! (3-6)

n[p^j ' tot m<x<\,

where — 0.5 < m < 0.5, n > 0. The parameters of the beta distribution
in Fig. 3.3 were fitted via a ML procedure (see, e.g., Mielke (1975)). The
parameters of die shifted STSP distribution were fitted via a ML procedure
developed in Van Dorp and Kotz (2002a) to be discussed in Sec. 3.3.

From Figs. 3.2 and 3.3 we observe that bodi the asymmetric Laplace
and STSP pdf s provide a "superior" fit to the empirical cdf than the normal
or beta density functions. A more formal fit analysis is conducted in Table
3.2. In Table 3.2 the chi-square statistic is calculated utilizing 15 bins. (Note
that, 15 e [\/l96,196/5] as suggested by Banks et al. (2001)). The
boundaries of the bins are selected such that the number of observations
Oi, i = 1, . . . , 15, in each Bin 2 equals 13 or 14, totaling 196 data points.
Such a boundary selection procedure partitions the support of die observed
data range in a similar manner as die "equal-probability mediod of
constructing classes" (see, e.g., Stuart and Ord (1994)) while keeping die bin
boundaries of the chi-square statistic

the same across die five different distributions depicted in Table 3.2. The
corresponding values Ei, i = 1,. . . , 15, in (3.7) for the expected number of
observations in Bin i are obtained using die formula
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Fig. 3.2 Empirical pdf of two-step log differences of 30-year conventional mortgage interest
rates together with the fitted Gaussian and asymmetric Laplace (Eq. (3.5)) distributions

(using the ML method) ; Gaussian pdf (ji = 1.067e — 3, <? = 5.042e — 2); Asymmetric
Laplace pdf (p = (2.800e - 3, a = 5.104e - 2, K = 1.024).
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Fig. 3.3 Empirical pdf of two-step log differences of 30-year conventional mortgage interest
rates together with fitted beta and TSP (Eq. (3.5)) distributions (using the ML method); Beta

pdf (a = 47.424, b = 47.229); TSP pdf (m = 2.800e - 3, n = 12.754).
(Note that fh is almost zero)
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Ei = 196{F(UBi\Q) - F(LBi\e)},

where F( • |G) is the theoretical cdf, 0 are the corresponding ML
estimators for each distribution and the bin boundaries (X-Bj, UBj\ are
provided in Table 3.2. In addition, Table 3.2 presents the values of the
Kolmogorov-Smirnov (KS) statistic D (see, e.g., Stuart and Ord (1994))

D = Max{Di\i = l,...,l96} (3.8)

where

Table 3.2 Goodness of fit analysis of ML fitted distributions for the 1966-2002

data on two-step (or bi-monthly) log-differences of monthly US CD interest rates.

Normal AS Laplace Beta TSP

Bin LBi UB| O, (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei

1 <-0.5 -0.0699 13 0.44 0.06 0.64 0.02

2 -0.070 -0.048 13 0.71 0.35 0.78 0.17

3 -0.048 -0.031 13 2.07 0.27 2.04 0.39

4 -0.031 -0.021 13 0.01 0.02 0.00 0.02

5 -0.021 -0.014 13 0.39 0.10 0.47 0.15

6 -0.014 -0.008 13 3.05 0.87 3.29 1.16

7 -0.008 -0.004 13 5.58 1.24 5.92 1.73

8 -0.004 0.006 14 0.16 5.15 0.11 3.90

9 0.006 0.012 13 2.38 0.01 2.59 0.09

10 0.012 0.020 12 0.01 0.82 0.00 0.65

11 0.020 0.028 13 0.61 0.29 0.69 0.27

12 0.028 0.037 13 0.02 0.19 0.03 0.10

13 0.037 0.046 13 1.07 3.37 1.09 2.57

14 0.046 0.065 13 0.63 0.20 0.68 0.01

15 0.065 >0.5 14 1.86 O33 Z23 0.80

Chi-Squared Statistic 18.99 13.27 20.56 12.01

Degrees of Freedom 12 11 12 12

P-value 0.089 0.276 0.057 0.445

K-S Statistic 8.90% 6.44% 9.21% 4.66%

_SS 0.276 0.091 0.320 0.062

Log-Likelihood 307.42 319.16 304.71 318.36
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A = Max{\^ - F(X(l)\e)\, | ^ - F(X{i)\Q)\},

and X(i), i = 1 , . . . , 196, are the order statistics associated with the data in
Fig. 3.1C. Finally, values for an intuitive ad hoc measure of fit

1 9 6 - i 2

S{l^-^WI0)}' (3-9)
denoted by Sum of Squares (SS) (reminiscent of the popular sum of squares
in linear regression analysis), and the log-likelihood

196

5>n{/(Xw |G)} (3.10)
i=l

are all provided in Table 3.2.
We observe from Table 3.2 that the beta and the normal distributions

evidently produce a worst fit in terms of the chi-square statistic (3.7) as
compared with the asymmetric Laplace and STSP distributions. In
particular bins 6, 7, 8 and 9 (containing the peak of the empirical pdf) for
the Gaussian and beta cases reconfirm the observation from Figs. 3.2 and
3.3 that the Gaussian and beta distributions do not adequately represent the
"peak" in the data given in Fig. 3.1C. More importantly, the STSP
distribution yields a substantial larger p-value (0.445) of the chi-squared
hypothesis test than any one of the other three distributions in Table 3.2
when taking into account the number of parameters of each distribution to
determine the degrees of freedom. While the asymmetric Laplace
distribution (3.5) has one additional parameter as compared to the shifted
STSP distribution (3.6), it has only a slight advantage over the shifted STSP
distribution in terms of the log-likelihood statistic (3.10), but not in terms of
the chi-squared statistic (3.7) (and its p-value), the KS-statistic (3.8) and the
SS-statistic (3.9). In the authors' opinion the analysis in Figs 3.2 and 3.3, and
Table 3.2 justify the use of the STSP distribution for the data of the type
displayed in Fig. 3.1C. To the best of our knowledge the two-parameter
STSP family was mentioned for the first time in passing in Nadarajah (1999)
and appeared in Schmeiser and Lai (1985) as a special case of a five-
parameter family (in a reparameterized form).
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3.2 The Standard Two-Sided Power Distributions

After an informal but hopefully convincing motivation of the STSP
distribution we shall now proceed with an organized description of it. Let
X be a random variable with standard support [0,1] and the density
function given by

nffj , forO<z<6>
f(x\6,n)= I ^ ' x (3.11)

nfiffj , for0<x<l.

Xis said to follow a Standard Two-Sided Power distribution, STSP (9,n),
0 < 9 < 1, and n > 0, not necessarily an integer. Note that the pdf (3.6) is
a shifted STSP distribution with support [ — 0.5,0.5] and with m = 9 — \.

For 0 < 9 < 1 and n > 0, the density in (3.11) is unimodal with the
mode at 9. For 0 < 9 < 1 and 0 < n < 1, the form of the density function
in (3.11) take U-shaped forms with mode at 0 or 1. Figure 3.4 provides
some examples of STSP(9, n) distributions. For n = 1, the density given
by (3.11) simplifies to the uniform|0,1| density (Fig. 3.4A), corresponds to
a triangular density on [0,1] for n = 2 (Fig. 3.4B), and to a power
distribution (Fig. 3.4C) for 9 — 1. Fig 3.4D displays the reflected power
distribution corresponding to 9 = 0 with n = 3 and is the reflected version
of Fig. 3.4C which corresponds to 9 = 1. The pdfs plotted in Figs. 3.4A,
3.4C and 3.4D are the common members to both the STSP and the beta
families of distributions. Figures 3.4E to 3.4H, with a mode or an anti-
mode strictly within [0, 1], display members neither covered by the beta nor
by the triangular family of distributions. Figure 3.4E displays the symmetric
density by concatenating the power densities in Figs. 3.4C and 3.4D (and
rescaled to [0,1]) and motivates the designation "Two-Sided Power" family
of distributions. A peaked generalization (n = 6) of the triangular
distribution (n = 2) in Fig. 3.4B is presented in Fig. 3.4F. A "stumped"
generalization (n = 1.5) is displayed in Fig. 3.4G. Finally, a U-shaped form
(n = 0.5) similar to those occurring in the beta family is plotted in Fig.
3.4H. Note that, in Figs. 3.4A to 3.4G the modal value of the pdf equals the
parameter n, whereas in Fig. 3.4H this parameter yields the value of the
anti-mode.
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Fig 3.4 Examples of STSP(0, n) distributions.
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From (3.11) we obtain the cdf of a STSP(9, n) distribution

{ 0(fY, forO<z<6>

W / , xn (3.12)
1 — (1 — ^)(yEfj , for0<z< 1.

The reader is encouraged to examine cdfs on his/her own for particular
values of n and 9 to achieve familiarity with STSP distributions. In Sec.
3.2.2 we shall further discuss some properties of the cdf (3.12).

3.2.1 Moments

The fc-th moment of a STSP(9, n) derived from (3.11) is given by

Here calculations are a bit lengthy but straightforward. Substituting k = 1
we arrive at the first moment about zero

(n-DO-M 1 n - l 1
1 J n + l n + l n + l n + l v

and substituting k — 2 yields the second moment about zero

2 - 2 - ( n - l ) 0 3 + 4 (n - l )g 2 + (2-3n)g + n
^ [ X ] = (n + 2 ) (n+ l )» ( l -0 ) • ( 3 '1 5 )

Utilizing (3.14), (3.15) and the relation Far(X) = E[X2] - E2[X] we
have

For a fixed value of n the variance attains its minimum at 6 = ^ and its
maximum at 0 = 0 or 9 = 1. These values are
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1 n
2(n + 2)(n + l ) ' ( n + 2)(n + l ) 2 '

respectively.
The manner in which the right hand side (rhs) of Eq. (3.14) is written

allows us to recognize the formula for the mean of the triangular
distribution (n = 2) on [0,1] as a simple average of the lower bound 0, the
mode 9, and the upper bound 1, from which the triangular distribution
derives its intuitive appeal (see, e.g., Williams (1992)). For the STSP
distribution the mean is a weighted average of the lower bound 0, the
location parameter 9, and the upper bound 1, where the weights are
determined solely by the shape parameter n. Forn = 1 (3.14) simplifies to
2, the mean of a uniform[0,1] variable. Forn > 1 more weight is assigned
to the mode 6 and less to the lower and upper bounds 0 and 1, respectively.
This becomes more pronounced as the values of n increases. In the extreme
case, n —-> oo, no weight is assigned to the bounds and the mean reduces to
9. Forn < 1, the mean is discounted by 9 at an increasing rate as n
decreases while shifting the weight to the bounds. In the extreme case,
n I 0, the mean simplifies to 1 — 9. In Sec. 3.2.4 a discussion of the limiting
distributions is presented.

A simple relationships between the mean of a STSP(9, n) distribution
and its parameters renders this family to exhibit intuitive transparency
similar to of the triangular distribution (see, e.g., D. Johnson (1997) and
Williams (1992)).

3.2.2 Properties of the cdf

Alongside with the beta distribution, the STSP distribution satisfies
stochastically increasing and decreasing properties which means that
"distributional parameters are working in a transparent manner". More
precisely:

Theorem 3.1: A. The cdf given by (3.12) is stochastically increasing forn > 1, i.e.

9X <92,xe (0,1) =» F{x\91,n) > F(x\92,n).

B. The cdf given by (3.12) is stochastically decreasing for Q < n < 1, i.e.
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0i <62,x£ (0,1) =• F{x\6un) < F(x\02,n).

Proof: We shall prove statement A only. (For B the proof is analogous.)
LetO < 0i < 92 < 1, n > 1, X G (0,1). Three cases should be con-
sidered

(a) 0 < x < 0u (b)02<x<l and (c) 0\ < x < 02.

Cases (a) and (b) are straightforward since we are dealing here with a single
branch of the distribution function (3.12). Consider Case (c). From (3.12) it
follows that

For 0 < 0i < 02 < 1 one has the implications

e1<x<02^|^<
1^<1 (3.17)

From (3.17), the condition that 0\ < X < 02, n > 1 and x 6 (0,1) we easily
arrive at

Hence

(1 - x)n xn (1 - x)n xn

(1 - Ox)"-1 < W1 ° C1 - î)""1 > eTl'

which proves statement A in this case. •

3.2 J Quantile properties

Denote by xp the p-th percentile (also referred to as quantile) of (3.11) or
(3.12), i.e. F(xP\0, n) = p. The quantiles xp enjoy the following properties:

Property 1 : xp < p &> p < 0.
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Property 2 : Analogously, xv — 9 •£>• p — 9, independently of the
value of n.

Property 3 : Consider values of p such thatp < Min(6,1 — 0)). From
(3.12) and Property 1, dealing separately with the two-part
definition of F( • \9, n) (3.12), we have

Qn-X - ( 1 _ 6)nA ** V-W)

*v __( 0 \ *
i-x^p \i-ej

Hence the ratio Xp/(1 — X\-p) does not depend on p for
p< Min(8,l -6).

Property 4 : Analogously, for p > Max(9,1 — 9),

is independent of p.

From Property 2 it follows that for all STSP distributions the probability
mass is split at 6 into 9 and (1 — #)and hence will be referred to as the hinge
property. In other words, the probability mass to the left (right) of 9 equals
the relative distance of the mode 9 to its lower bound (upper bound) over
the support [0,1] regardless of the value of n. Properties 2, 3 and 4 may be
utilized for an initial estimation of the parameter 9. Properties 3 and 4
involve non-trivial relations satisfied by the complementing quantiles xp and
X\-p. The properties above are of course valid for triangular distributions
on [0,1] as well.

3.2.4 Some limiting distributions

L e t X ~ STSP(9, n). Setting 9=0 and letting n —> oo it follows from
(3.14) and (3.16) that the distribution of X converges to a degenerate
distribution with a point mass of 1 at 0. Analogously, setting 9=1 and
n —> oo, we observe that die distribution of X converges to a degenerate
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distribution of mass 1 at 1. Setting 0 < 9 < 1, and letting n —> oo it
follows that the distribution of X converges to a degenerate distribution
with a point mass of 1 at 9. As n j 0 and 0 < 9 < 1, we obtain from (3.13)
that E\Xk) -> (1 - 9), for all fc. Hence, when n j 0, E[X%
k — 1,2,... , converge to the moments of a Bernoulli variable with a
point mass of 1 — 0at 1. Since both Xand a Bernoulli variable have
bounded support, we conclude from the uniqueness theorem for
distributions with a bounded support that the Bernoulli distribution widi a
point mass of 1 — 8 at 1 is the limiting distribution of X for 0 < 8 < 1 as
n i 0 (see, e.g., Harris (1966) p. 103 for a discussion of the uniqueness
theorem). These limiting distributions coincide with related limiting distri-
butions of the beta distribution (see, e.g., van Dorp and Mazzuchi (2000)).
In other words, the flexibility of the STSP(9,n) class is on par with that
of the beta family.

Another interesting limiting distribution (associated with the leading
example in Sec. 5.1) can be derived using the linear transformation

y = (n_lM ( x_^ (32o)

A > 0 being an arbitrary positive constant. From (3.11), (3.20) and n > 1 it
follows that

f(y\6,n,A) =

((^(l + ̂ i)"'1* for(l-n)A<y<0

] _O_(1 1 By V""1
 f o , - 0 < 7 J < (l-0){n-l)A

{ (n-l)A\l {n-l){l-e)Aj ' tOr U - V - 6

Letting n —* oo, we have

{ j[exp(%), foiy<0

fl f * v\ ( 3-2 1 )

Hence, f(y\9,n,A) converges to the density f(y\0, A) of an "asymmetric
Laplace" variable (see, e.g., Johnson et al. (1994)) where its probability mass
is split at 0 into 8 and (1 — 8), regardless of the value of the parameter A.
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The asymmetric Laplace distribution (3.5) considered by Kozubowski and
Podgorski (1999) simplifies to (3.21) by reparameterizing

and setting // = 0.

3.2.5 Relative entropy

The relative entropy (also known as cross entropy or discrimination
function) of an absolute continuous pdf / ( x | 0 ) with respect to a
probability mass function g(x) is defined as

E(f : g\G) = ILog^^-dF(y\Q), (3.22)

and is used as a measure for comparing the information contents of
distributions. The term discrimination reflects that E(f;g\Q) > 0 and the
equality holds if and only if f(x\Q) — g(x) almost everywhere (see, e.g.,
Soofi and Retzer (2000)). We compare the information content of STSP
distributions on [0,l | with the information content of an uniform10,1|
distribution. The relative entropy of beta distributions with respect to a
uniform|0,1| distribution has been found to be (see, e.g., Soofi and Retzer
(2000))

E(f:g\ a, b) = Log(E(a, b) - (3.23)

(a - l)ty(a) - V(a + b)) - (b - 1)(#>) - ^(o + b))

where

f(x\a,b) = -?—xa-\l-x)b-\ (3.24)
l»(a, b)

a > 0, b > 0, B(a, b) = ^ $ $ , g is the uniform[0,1] pdf and tp( • ) =

F'( • ) is the psi-function.
The relative entropy of STSP distributions with respect to a

uniform|0, l | distribution, using the definition (3.22), results in
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E{f :g\9,n) = Logn-?—-, (3.25)

where / is the STSP density given by (3.11) and g is as above. Note that it
follows formally from (3.25) that E(f : g\6,n) attains its minimal value 0
when the STSP variable coincides with a uniform|0,1| variable, i.e. n = 1.
This, of course, is evident from the verbal definition of relative entropy.
Note also that the forms of (3.25) and (3.23) are similar, except that E(f : g
19, n) is constant for fixed n regardless of the value 0. Hence, no
information is added to or subtracted from die information content of a
STSP distribution by varying the parameter 9, while keeping n fixed (this
property is perhaps somewhat counter-intuitive). Consequendy, the relative
entropy of all triangular distributions / on [0,1] equals — | + Log(2) ft*
1.193, regardless of the location of the mode 9, where g is a uniform
distribution on [0,1]. It is worth noting tiiat the variance (which is
intuitively related to entropy) of an STSP(9, n) variable does depend on 9.
(See die discussion following Eq. (3.16).)

3.3 Maximum Likelihood Method of Estimating Parameters

The structure of die STSP distribution (3.11) leads to an rather ingenious
procedure for estimating its parameters, especially the threshold parameter
9. This parameter can be viewed as "dividing" (in the sense mat it is related
to two different analytical expressions appearing in the definition of the
STSP density). Roughly speaking, the smaller sample observations obey a
different probability law than the larger ones. The same phenomenon could
be traced to the triangular distribution in Chapter 1.

The derivation of the ML estimation procedure of a STSP distribution
(3.11) to be described below is quite instructive (and is similar to the ML
procedure for the triangular distribution discussed in Sec. 1.4 in Chapter 1).
The reader is advised to review the proof of Theorem 1.1 in Chapter 1. Let
for a random i.i.d. sample of size s, X. = C^l > • • • > Xs), the order statistics
be -X'(i) < -̂ (2) < • • • < X(s)- By definition, the likelihood for X with
distribution (3.11) is

L{X;0,ri)= n'{H(X;6)}n-1 (3.26)

where
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nx(i> n (i-jf«))

and X(rj < 9 < X( r+j) with X(o) = 0, X ( S + J J = 1. We shall first consider
a ML procedure for the parameter domain n > 1 and 0 < 9 < 1 involving
the unimodal and uniform members of the pdf (3.11). This means that one
should be able a priori to rule out the U-shaped case (i.e. when 0 < n < 1)
for the data under consideration (via, for example, a histogram of the data).
We shall discuss further details for the U-shaped case of the pdf after
proving the theorem below1.

Theorem 3.2: Let X = (Xi,...,Xs) be an i.i.d sample from a STSP(9, n)
distribution. The ML estimators of 9 and n maximizing the likelihood (3.26) over the
parameter domain 0 < 9 < 1 and n > 1 are:

I 6 = Xp)
{ - f 1 (3-28)

where

r = argmax M{r) (3.29)
r e { l , . . . , a }

and

l\X(r) til,1 - X(r)

Proof: To maximize the likelihood (3.26), we represent it as

The proof of Theorem 3.2 is based on the exposition provided in our 2002 paper "The
standard two sided power distribution and its properties: with applications in financial
engineering" (The American Statistician, 56 (2), pp. 90-99). Unfortunately, the discussion in the
paper is incomplete. The proof in the paper claims that both cases (the unimodal and the U-
shaped) yield the same ML estimator. A corrected proof is presented herein.
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n > i T k 9 < 1 L{K'e'n) = Til " " " ' (3-31)

where M is given by

M =max H(X;9), (3.32)
0 < 0 < 1

H(X;9) is defined by (3.27) and, as above, X{r) < 9 < X ( r + 1 ) , with
X(0) = 0, X(s+X) = 1. Now

Log(nsMn ) = (n - l)LogM + sLogn, (3.33)

and

—-LogftfM"'1) = LogM + - . (3.34)
on \ / n

Equating the partial derivative (3.34) to zero yields

n* = -{s / LogM). (3.35)

From (3.34) it follows that

~Log(nsMn~l\ > 0 «• n* < ^ .
3n V ; LogM

Hence n* corresponds to a global maximum of (3.33) and the likelihood
(3.31). Note that, for i < r, we have 0 < X^/9 < 1 and for i > r,

0 < (1 - X{i))/(1 - 0) < 1. Hence 0 < M < 1 and thus n* > 0. From
the restriction n > 1 and the fact mat n* > 0 is a global maximum it
follows from (3.35) that

n = Maxl - (s/LogM),l\ (3.36)

is the ML estimator for n. The ML estimator 9 = X^ in (3.28) follows
immediately from the fact that the function H{Xj, 9) in (3.27) is identical to
Eq. (1.25) in Chapter 1 and the proof of Theorem 1.1 in Chapter 1 can be

applied. In addition, in Theorem 1.1 it has been shown that the value M in
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(3.32) equals M ( ? ) , where r is given by (3.29) and M(r) is defined by
(3.30). •

We shall now consider some modifications required for the case of U-
shaped STSP distributions (3.11) associated with the parameter domain
0 < n < 1, 0 < 0 < 1. We have (similar to Eq. (3.31)):

max L(X;9,n) = max nsmn~\ (3.37)

O < n < l , O < 0 < l O < r a < l

where

m =min H(X;6) (3.38)
0 < 0 < 1

(compare with (3.32)) and H(X_; 9) as defined by Eq. (3.27). Analogously
to Eq. (1.32) and utilizing (3.38) one obtains the global minimum m of
H(X_; 9) via s + 1 minimizations over the sets [-X"(r)> -^(r+i)]- Specifically,

m —min h(r), (3.39)
re{0,...,s} Kh

where

h(r)= rnin H[X;0), (3.40)
•̂ -(r) S " S A(r+1)

r = 0 , . . . , s, X(o) = 0 andX(s+i) = 1 (compare with (1.32)). For the
cases r = 0 and r = s, we obtain from (3.40) and the definition of
H(X;9) (3.27):

H{K ; 0) = f[ 1 - X(i), for r = 0,

h(r) = \ lf (3.41)
H(X;l) = Y[X{i), fotr = s,

i=i

since now we are required to minimize H{X_\ 0) (compare with Eqs. (1-37)
and (1.39), respectively). For the cases r = 1 , . . . , s — 1 of (3.40), it follows
that here one needs to include the unique stationary point 0* = r/s of the
function g(9) (Eq. (1.33) in Chapter 1) when minimizing H(X_;9) over
these sets pQr), X(r+j)]. Hence we obtain, utilizing (3.41):
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(M{r), ifj<*(r)l

h(r) =lH(X; *), if X[r) < I < X ( r + 1 ) , (3.42)

(M(r+\), i f ^ > X ( r + 1 ) ,

for r — 0, . . . , s, where the product M(r) is given by (3.30). Thus, from
(3.37), (3.38), (3.39) and (3.42) the ML estimator of the parameter 9 for the
U-shaped case of the STSP distribution (3.11) (i.e. 0 < n < 1) becomes

( XP)> ii7<X(?)>

?, if*(JO < f < % + i ) , (3.43)

X(r+1), ^ 7 > X(r+l),
where

"r = arg min h(r). (3.44)
r € {0 , . . . , s}

(Compare with (3.29)) and h(r) is defined by (3.42).) Analogously to (3.35),
we have the ML of the parameter n over the domain 0 < n < 1 to be

n =Mini - (s/Logm),l\, (3.45)

where m i s defined by (3.39). Hence in the U-shaped case of the STSP

distribution (3.11) it is possible that the ML estimator 0 is not being

attained at one of the order statistics X^ry (Compare with 0 in (3.28).)

To maximize the likelihood L(X_; 9, n) (3.26) over the whole parameter

domain 0 < # < l , n > 0 , one compares the value of L(X; 9,n) to that

of L(X;? , n ) . If

L{X;6, n ) > L{X;1) , n )

the ML estimators for 9 and n (over the entire parameter domain) are 9 and

n as given by (3.28). Otherwise, the ML estimators for 9 and n are 9 ,
n as given by (3.43) and (3.45), respectively. •
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3.3.1 An illustrative example

We shall illustrate the ML estimation procedure for an STSP{9,n)
distribution by means of the following hypothetical order statistics

(X{ i) , . . . , X(S)) = (0.10,0.25,0.30,0.40,0.45,0.60,0.75,0.80), (3.46)

which were also used in Chapter 1 (Eq. (1-41)) in connection with the ML
method for triangular distributions. Figure 3.5 depicts the likelihood
function L(X ;9,ri) (3.26) for the data in (3.46).

4.3

Fig. 3.5 Graph of the likelihood L(X ;0,n) (Eq. (3.26)) for the data in (3.46).

From Fig. 3.5 we may visually observe that L(X ;9,ri) attains a global
maximum over the domain n > 1, hence we shall utilize the ML estimators
6 and n in (3.28) of Theorem 3.2. Consider the matrix A = [aiiT] with the
entries defined by Eq. (1.43) in Chapter 1 and Table 1.1 which summarizes
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calculations of the matrix A for the order statistics given in (3.46). Recall
that the last row in the Table 1.1 contains the products of the matrix entries
in the r-th column which are equal to the values of M(r) given by (3.30)
(and Eq. (1.28) in Chapter 1), r = 1 , . . . , s. Here, s = 8. From the last row
of Table 1.1 and utilizing Eqs. (1.40), (3.29) and (3.28) we have here

M = 0.011;? = 3;

? = X{?) = 0.30; (3.47)

Figure 1.5 in Chapter 1 displays the function H(X_; 9) defined by Eq. (3.27)
and shows that for the data in (3.46) the maximum value M = 0.011 of
H{X;9) over 9 € [0,1] is attained at X(3) =0.30. Note also that the
maximum value H(r) (see, Eq. (1.15)) of H(X ; 6) over 9 € [X(r), X(r+1)]
is attained at either X^ or X(r+1) for all r = 0 , . . . , s.

Considering now the U-shaped domain (0 < n < 1) for the example
data (3.46), we conclude immediately from Fig. 1.5 in Chapter 1 utilizing
(3.39) and the definition of H(X;9) (3.27) that m = H(X; 1) ss
4.86 — 4 (attained at 9 = 1). Hence, from Eq. (3.45) we have

n =Min{ 1.04,1} = 1. (3.48)

Next, from (3.26) it follows that L{X_\ 9 , n ) — 1, whereas applying (3.47)

it follows that L{X_; 9, n) ss 2.97 (Compare with Fig. 3.5). Hence, the ML

estimators 9, n given in (3.47) maximize the likelihood over the whole
parameter domain O < 0 < l , n > O .

ML estimation of the parameters of X ~ STSP(9, n) can be
modified to the two-parameter maximum likelihood estimation for
Z ~ TSP(a, m, b, n), where Z = (6 — a)X + a. Here the parameters a
and b are fixed and the parameter m = (b ~ a)9 + a. The pdf of Z is

{ ntz^y-1
 a < z < m

v£ss(lEJk) rn<z<b.

The maximum likelihood estimators of the parameters m and n in the uni-
modal domain (i.e. when n > 1) of the distribution (3.49) utilizing order
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statistics (Zfi),..., Z(s)) are

{ fh(a, b) - Z(?(o,t))

n(o,6) = Max{l, - LogM{a\HaM) }, (150)

where, as above,

r(a, b) = arg max M(a, b, r) (3.51)
r e { l , . . . , s}

and

M(a,6,r)=n|i^n^|a. (3.52,

(Compare with (3.30) which corresponds to the case b = 1, a = 0.) The
ML estimators in (3.50) were used in the leading example in Sec. 3.1, with
fixed a = — 0.5 and b = 0.5, yielding

m( - 0.5,0.5) = 2.800e - 3, n( - 0.5,0.5) = 12.754- (3.53)

(The authors have also studied the four-parameter ML estimation for the
TSP(a,m,b,n) distribution (3.49), which will be discussed in the next
chapter.)

3.4 Method of Moments

It was shown in Sec. 3.1 that the TSP(a, m, b, n) distribution (3.49) with
support [a, b] = [ — 0.5,0.5] and ML parameters (3.53) provides an
adequate fit to the empirical density function displayed in Fig. 3.3 dealing
with mortgage rates (one of the most common financial responsibilities in
the majority of North-American households). Recall that the empirical pdf
in Fig. 3.1C was constructed from bi-monthly log-differences of 30-year
conventional mortgage rates. We shall illustrate the method of moments
estimation of the parameters for a STSP(9, n) distribution by again
utilizing the bi-monthly log-differences of 30-year conventional mortgage
rates. First, however, we shall shift the data with (the assumed) original
support [-0.5,0.5] to the standard support [0,1] of a STSP(9,n)
distribution. For the shifted data we have
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1 1 l%

x = - + —^2Ln^€k^ = 5mie-1' (3-54)
and

-• 196

o2 = T^J2(Ln(ek^ + °'5 - *}2 = 2-555e - 3> (3-55)

where Ln{tkfi) is defined by (3.4). Equating the sample quantities x, a
with their population counterparts (3.14) and (3.16), respectively, we arrive
at the following cubic equation in the parameter n

en3 + dn2 + en + f = 0. (3.56)

The coefficients are given by

c = ^d\d= d\ (3.57)

e=~{(x~-2)
2 + -2*

2
 + i } ,

/ = 4 - ( s - a ) ~a-

After solving the cubic equation (3.56) for n (see below), the estimate of 0
follows from

since the expression (3.14) was utilized to derive (3.56). The cubic equation
(3.56) may be solved using a classical method known as Cardano's method.
This method was discovered by Tartaglia in 1539 and later was published by
Cardano in 1545 (see, Cardano (1993) — an English translation — for full
details).

We shall briefly present a version of Cardano's method and
demonstrate its application utilizing the values for T and a in (3.54) and
(3.55), respectively. Dividing the LHS of (3.56) by c and introducing
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y = n+—, (3.59)
6c

we obtain the simplified cubic equation

y3 + 3Py + 2q = 0, (3.60)

where

3ce-d2 2d3 de f

Table 3.3 summarizes a solution method for solving the cubic equation
(3.60).

Table 3.3 A version of Cardano's method for solving the simplified cubic equation (3.60).

r = sign(q)y/\p\
p < 0 p> 0

q2 + p3 < 0 q2 + p3 > 0
cos <p = ^ cosh tp = ^ szn/i y> = ^

j/i = - 2rcos | j/i = -2rcosh^ y\ = — 2 r s i n / i |
2/2 = 2rcos(60° — | ) T/2 = rcosh | + y2 = r sinh | +

i \ / 3 r s m ^ ^ iyZrcosh^
2/2 = 2rcos(60° + f) 2/3 = fcosh j — 2/3 = T sinh ^ —

iy/3r sinh^ iy3rcos / i^

Substituting the values of x and <r given in (3.54) and (3.55) into
(3.57) yields

c = 1.277e - 3, (3.62)

d = 2 .555e-3 ,

e = - 2 . 5 1 3 e - l ,

/ = 2.474e - 1.

Using the values for c,d,e, and / in (3.62) and solving for p and gwe
obtain
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p = - 6 6 . 0 1 2 ,

q= 162.715.

Since q2 + p3 = —261180.087 (a negative number), the following three
real-valued solutions of the cubic equation (3.60) are calculated utilizing the
left most column of Table 3.3:

yl = - 14.832, y2 = 13.165, y3 = 1.667.

Using the original values for c, d and (3.59) yields the following three
solutions for the cubic equation (3.56):

ni = - 15.498, n2 = 12.498, n 3 = 1.000.

The first solution n, is inadmissible since we must have n > 0. Hence, we

solve for &2 a n d #3 using 7J2, n^ and (3.58), yielding

?2 = 0.501, ?3 = - 226.524. (3.63)

The third solution 713 is now disqualified since we must have 0 < 6 < 1.

Using the relation m = (6 — a)0 + a with 0 = — 0.5 and b = 0.5 and 6*2
as given in (3.63) the unique moment estimators for the data in Fig. 3.1C are

fh2 = 1.253e - 3, n2 = 12.532. (3.64)

Table 3.4 compares the ML fitted TSP distribution with parameters (3.53)
to the method of moments fitted distribution with parameters (3.64),
utilizing die same goodness-of-fit statistics as in Table 3.2.

Table 3.4 Fit analysis comparing ML fitted TSP distribution
with parameters (3.53) and the method of moments (MM) fitted
TSP distribution with parameters (3.64) for the data in Fig. 3.1C.

TSP ML TSP MM

Chi-Squared Statistic 12.01 12.25
Degrees of Freedom 12 12
P-value 0.445 0.426

K-S Statistic 4.66% 5.51%

J5S 0.062 0.080
Log-Likelihood 318.36 318.17

89



The Standard Two-Sided Power Distribution Beyond Beta

Note that the methods of moments fitted TSP distribution performs slightly
worse than the ML fitted one in terms of all the statistics in Table 3.2. Also
note that of the criteria in Table 3.2 associated with the asymmetric Laplace
distribution (with an additional parameter), only the log-likelihood criterion
marginally outweighs the method of moments fitted TSP distribution with
parameters (3.64).

3.5 Moment Ratio Diagram Comparison with the Beta Family

Moment ratio plots, popularized for Pearson-type distributions by Elderton
and Johnson (1969), seem to provide a useful visual (graphical) assessment
of the skewness (asymmetry) and the elusive kurtosis (peakedness) inherent
in a particular family of asymmetric distributions. The classical form of the
diagram shows the values of the ratios

E\jX-E\X\f\ 4 _ E[(X - E[X]Y\ _ M4
P l E3[(X - E[X})2} &P1 E2[(X - E[X])2} ix\

where fi\ is plotted on the abscissa and /?2 on the ordinate. This diagram
possesses a disadvantage that the sign of/43 (indicating left skewness or
right skewness) disappears. A moment ratio diagram that retains this
information is a plot with \f (5\ on the abscissa and /?2 on the ordinate, with
the convention that y /? i retains the sign of/i3 (See, e.g., Kotz and Johnson
(1985)).

Values for y (3\ and /^ for STSP distributions can be calculated using
the general expression for the moments around the origin fi'k = i?[Xfc],
k = 1,... ,4, (3.13) and their relationship with central moments /ifc,
k = 2, 3,4 given by

{ M2 = / 4 - Mi2

Ma = fj-z - 3/4/4 + V i 3

tn = n'4- 4/4/4 + 6/4/42 - 3/44

(see, e.g., Stuart and Ord (1994)). Explicit forms of i/fa and (32 for STSP
distributions result in cumbersome and not very informative expressions
which are omitted. Figure 3.6 displays the moment ratio diagram coverage
for the STSP family given by (3.11) restricted to a parameter range of
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O<0<l,n = 2 0<6><l, w = 10
(Triangular) (Unimodal TSP)

Q<0<l,n = 5 O<0<l,n = 25
(Unimodal TSP)i > (Unimodal TSP)

1 Q A LEGEND

a \ \ - / / (Unimodal TSP)

6 \ \ V < . y / - J N , (U-Shaped TSP)

l<n<25 5 ^C V^^*i^X^Z~f tt/ 1 <n<25
(Power) 4 \ \ \ s £ ^ " ; [1^11^7 /]/ (Reflected

0.1<«<l 2 jnfeasible \ N ^ W s f f l infeasble 0.1 <»< 1
(Reflected >^P -rQr (Power)
Power) 1 **~ — * ^

0 I 1 , 1 1 1

-3 -2 -1 i) 1VA 2 3

O<0<1, M = 0.5 n = \ 0<6»<l, « = 0.1
(U-shaped TSP) (uniform) (U-shaped TSP)

Fig. 3.6 (\//3i, 0i) Moment ratio diagram for STSP distributions
with parameters in the range 0 < d < 1, 0.1 < n < 25.

0.1 < n < 2 5 , O < ( 9 < l . (3.65)

The range indicated by (3.65) is a plausible range for many practical
purposes and includes unimodal forms ( O < 0 < l , n > l ) , U-shaped
forms (0 < 9 < 1, n < 1), the uniform distribution (n = 1), triangular
distributions (n = 2), J-shaped power function distributions (6 = 1,
n > 0 ) a n d their J-shaped reflections (9 = 0, n > 0). Figure 3.6 also
shows the effect of the parameters (9, n) on ( y f t , ^ ) for specific
examples of these cases indicated by solid lines in the moment ratio
diagram. The shaded region in the moment ratio diagram is called the
injeasibk region since for all distributions we must have the relationship:
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fa > (VWi)2 + 1
(see, e.g., Kotz and Johnson (1985)). The horizontally (vertically) hatched
areas indicates the coverage of (y/Pi, fa) for unimodal (U-shaped) STSP
distributions. The only J-shaped members in the STSP family are the power
function distribution (0 = 1) and its reflection (9 — 0) indicated in Fig. 3.6.
by only their solid lines.

For comparison, we have generated a moment ratio diagram for beta
densities (Eq. (3.24)) using expressions for the moments of die beta
distribution (see, e.g., Johnson et al. (1994)). From (3.11) and (3.24) it
follows that for 9 = 1 (0 = 0) and b = 1 (a = 1) the STSP and beta
densities coincide with the density of a (reflected) power function
distribution. Hence, the corresponding parameter range for the parameters
a and b in (3.24) follows from (3.65) to be

0.1 < a < 25, 0.1 < b < 25. (3.66)

Figure 3.7 displays the moment ratio diagram for beta densities restricted to
(3.66). The range given by (3.66) includes all forms of the beta density, i.e.
unimodal, J-shaped and U-shaped. The coverage area for ( A / A , /%) ior
unimodal, U-shaped and J-shaped beta densities are indicated in Fig. 3.7 by
horizontal, vertical and cross-hatched areas, respectively. The effect of the
parameters a and b in (3.24)on (y/?i,/?2) is described by solid lines for
those cases of beta densities that identify the boundaries of the cross-
hatched areas. The top boundary (not solid) was generated by interpolation
using moment ratio curves for the cases of the form a = c, 1 < b < 25
and b = c, 1 < a < 25 with c € {0.5, 2, 5,10}. These curves are not
included in Fig 3.7 to amplify identification of the hatched areas.

A comparison of Figs. 3.6 and 3.7 is quite illuminating. Firsdy, Fig. 3.7
indicates that, in terms of moment ratio coverage, die beta family is richer
than the STSP family when restricted to the J-shaped forms. The only J-
shaped STSP distributions, i.e. the power function distribution and its
reflection, are represented within the beta family as indicated by the only
common solid lines in Figs. 3.6 and 3.7. The intersection of these lines
determines the only odier common member of the STSP and beta families^
i.e. the uniform|0, l | distribution. Next, the coverage areas associated with
U-shaped forms in Figs. 3.6 and 3.7 are comparable in si2e, indicating
essentially the same flexibility of the STSP and beta families when restricted
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a = 25,\<b<25 6 = 25, l < a < 2 5
(Unimodal Beta) (Unimodal Beta)

1 0 ^ _ A ^ ^ I LEGEND

3 W'Vy - I''•'"'1 I (Unimodal Beta)

g W ' ' ^ Y i fl/!k'/ (U-Shaped Beta)

4 Yv(.'\X\ • /////// (J-Shaped Beta)

(Power) 2 infeasible ^ S O ^ s i ^ t f ^ ' infeasible 1<6<25
^ ^ ^ TSr (Reflected

a = \, 1 !3*ta=y] Power)
01<6<l „ ' -—-———- 6 = 1,
(Reflected ° ' ' ' ' nT"1 ' 0.1<a<l
Power) -3 -2 -1 | ') | 1 V A 2 3 (Power)

6 = 0.1, 0 . 1 < a < l a = l , 6 = 1 a = 0 .1, 0.1 < 6 < 1
(U-Shaped Beta) (uniform) (U-Shaped Beta)

Fig. 3.7 ( y A , ft) Moment ratio diagram for beta distributions
with parameters in the range 0.1 < a < 25, 0.1 < b < 25.

to these forms. Finally, possibly most importantly, the coverage area of the
beta family restricted to unimodal forms in Fig. 3.7 is completely contained
within the coverage area of the STSP family restricted to these forms. This
indicates by far a greater flexibility of the STSP family than that of the beta
family when modeling unimodal phenomena for which the mode occurs
not at a support boundary and smooth behavior of the density function at
its mode is not required.

The STSP distribution may thus be considered as an alternative to the
beta distribution especially when sample estimates for skewness y/Pi and
kurtosis $% fall outside the coverage area indicated in Fig. 3.7. For example,
from the data in Fig. 3.1C we estimate
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\f(3i = - 0.2434, J32 = 4.855

which are outside the coverage area in Fig. 3.7. Even for the beta
distribution with parameters a = 47.424, b = 47.229 (which fall outside
the range given by (3.66)) depicted in Fig. 3.3 we obtain

>//3i = 8.337e - 4, /% = 2.939.

For the shifted STSP distribution with ML parameters (3.53) associated
with Fig. 3.3 we have

y/fa = 1.836e-2, ft = 4.613.

Although the estimated shifted STSP distribution does not totally capture

kurtosis p2 = 4.855 observed in the data in Fig. 3.1C (p. 66, Sec. 3.1), the

STSP family provides a better fit in terms of 02 than the estimated beta
distribution. It is worth noting that values for kurtosis /?2 for symmetric
unimodal beta distributions with parameters restricted to
1 < a < 25,6 = a are strictly less than 2.88679 while the values for
kurtosis /?2 for symmetric unimodal STSP distributions with parameters
restricted to 6 = 0.5, 3.0745 < n < 25 are strictly larger than 2.88679.
For comparison note that the kurtosis of the normal distribution is 3.

Finally, from Fig. 3.6 it may be observed that the parameter 6 of an
STSP density primarily affects skewness y (i\ reemphasiaing the role of 6 as
a location parameter. Parameters a and b of the beta distribution affect both
skewness y/j3i and kurtosis /?2 in a similar manner and henceforth do not
allow for such an interpretation. The reader is encouraged to construct
additional comparative diagrams.

3.6 Musings on STSP and Beta Families and Concluding Remarks

In this chapter we have proposed a new family of distributions mat
possesses certain attractive properties, especially those related to the
meaning of its parameters, the structure of its expected value as a function
of parameters, a closed form for its cdf, a ML procedure involving only
elementary functions and a transparent form of its entropy function. These
properties are not fully shared by the beta family of distributions. Similar to
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the beta family, the new family allows for U-shaped, J-shaped and unimodal
forms. The density of the new family is non-smooth (non-differentiable) at
0 (see, Eq. (3.11)). It is worth noting that to the best of our knowledge for
over 60 years after Karl Pearson's death in 1936 or during even his lifetime
no serious attempts have been made to provide an alternative to the beta
density of equivalent flexibility. This shows the prominence of Karl
Pearson's discovery and a detailed investigation of the beta distribution early
in the 20-th century.

For parameter values in the range 1 < n < 3 (Eq. (3.11)) the new
family displays unimodal forms with a modest peak at 0 and provides an
attractive alternative to the beta family when smooth behavior at the mode
is not a crucial factor while any of the other above mentioned properties are
desirable. For parameter values of n > 3 the family adds to the existing
modeling capabilities of unimodal phenomena on a bounded domain, in
particular when peaked data is observed (see, e.g., Fig. 3.3). For parameters
values in the range of 0 < n < 1, the family primarily exhibits U-shaped
forms similarly to the beta distribution. The only J-shaped distribution
within the new family is die power function distribution (6 = 1) (see, Eq.
(3.11)) and its reflection (9 = 0) which are also shared by the beta family.
The beta distribution thus enjoys greater flexibility among the J-shaped
distributions. Consequently, the differences between the proposed family
and the beta family of distributions are quite similar to the differences
between the Laplace family (which presently is becoming more popular in
applications) and the normal family, but both are restricted to a bounded
support. (See, e.g., Kotz et al. (2001) for a detailed comparison of the
Laplace and normal distributions.)

As it was mentioned above in Sec. 3.3 the analysis of the two parameter
two-sided power distribution can be extended to the four parameter case
including the boundary parameters. Although the ML procedure is
somewhat more delicate in this case, it is algorithmically straightforward and
painless utilizing modern computational facilities. This will be discussed in
Chapter 4. It is our hope that the introduction of the TSP distribution into statistical

theory and practice will contribute to one of the basic goals of applied statistical work:

reaching the point when accumulation of data on a specific issue can directly be followed by

a sound understanding of the meaning of its parameters.
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Chapter 4

The Two-Sided Power Distribution

In this chapter we present the four-parameter Two Sided Power (TSP)
distribution as an alternative to or a substitute for the four-parameter beta
distribution in problems involving risk and uncertainty, such as the popular
engineering tool "Project Evaluation and Review Technique" (PERT).
Properties of the four-parameter TSP distribution follow with minor
modifications from the analogous ones of the two-parameter STSP
distribution (introduced in Chapter 3) via a linear scale transformation. A
maximum likelihood (ML) procedure for the four parameters of die TSP
distribution is also derived. It should be mentioned that the ML procedure
in this case provides some interesting and unexpected features which were
initially observed in a more general setting by Cheng and Amin (1983) and
are subject of numerous theoretically oriented publications in statistical and
economic journals. Their observations lead to a class of modified ML
methods prompted by the behavior of the likelihood function at the
endpoints of the domain of variation. Moreover, in problems involving risk
and uncertainty, certain parameters of a distribution at hand may be
required to be elicited via expert judgment due to lack of appropriate data.
Elicitation methods for the parameters of the TSP distribution will be
discussed here in the context of a PERT example. The chapter is somewhat
long (over 45 pages) and special effort was made to develop its presentation
in the most intelligible manner (without sacrificing rigor) by alternating
between application (specifically, the PERT example) and theory. Those
readers who are more interested in applications may want to just browse
through theoretically developments during a first read.

4.1 Introduction: The Four-Parameter TSP Distribution

In recent years two papers dealing with triangular distributions and its
extensions have appeared in The Statistician (published nowadays by the
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Royal Statistical Society, London). The papers by D. Johnson (1997) and
N.L. Johnson and Kotz (1999) deal with not very prominent applications of
this distribution as an alternative to the four-parameter beta distribution
with pdf

Mt\a b-a 3) ~ T{a+f}) ft-0)""'^)'-'

a < t < b, a > 0, 0 > 0.

(which involves difficulties related to maximum likelihood estimation of its
parameters and has the drawback that the parameters a and /?do not
possess a clear-cut meaning). D. Johnson's (1997) paper seems to be
especially relevant to this chapter. This author specifically suggests the
triangular distributions as a proxy to the beta distribution in problems of
assessment of risk and uncertainty, such as the Project Evaluation and
Review Technique (PERT). Parameters of a triangular distribution have a
one-to-one correspondence with an optimistic estimate a, most likely
estimate m and pessimistic estimate b of a characteristic under
consideration, which provides an intuitive appeal of the triangular
distribution (see, e.g., Williams (1992)). Similarly to the beta distribution, the
triangular distribution can be positively or negatively skewed (or
symmetrical) but always remains unimodal. D. Johnson (1997) points out
that there is no triangular distribution which would "reasonably"
approximate uniform, J-shaped or U-shaped distributions.

We shall commence with an extension of the three-parameter triangular
distribution (to be called the Two-Sided Power (TSP) distribution and
denoted TPS(a, m, b, n)) with the pdf

ft(s)""'. fota<x<m
/x(»l«,mAn)= ft(fe)"-, ioim<x<b («)

0, elsewhere
a < m < b, n > 0,

which would seem to be a meaningful alternative to the four-parameter beta
distribution (4.1). The meaning of the parameters is as follows: a and b are
the endpoints of the support, n is the shape parameter and mis the
threshold parameter for a change in the form of the pdf. As in the case of a
triangular distribution, parameters a and b may be related to a pessimistic
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and optimistic estimates of the associated TSP(a, m, b, n) variable. For
n> 1 ( 0 < n < l ) , m coincides with the mode (anti-mode) of a TSP
variable. Since the TSP distribution extends the triangular distribution it
inherits its intuitive appeal and naturally interpretable parameters. The pdf
(4.2) of X may be derived from that of a random variable Y which is
standard two-sided power (STSP) distributed (see Eq. (3.11) in Chapter 3)
via the linear scale transformation

X - (b - a)Y + a, b > a.

Hence, structural forms of the pdf of a TSP distribution are identical to
those of the STSP distribution displayed in Chapter 3 in Fig. 3.4 and do
allow for J-shaped and U-shaped forms.

The cdf of a TSP(a, m,b,n) distribution follows from (4.2) to be

{ T ^ ( — ) " > fora<x<m

! - ^ ( F ^ ) - form<x<6.
The inverse of the cdf (4.3) can be derived in closed form, yielding

Fx1i.y\a,m,b,n)= (4.4)

{ a + -^/y(m- a)""1 (6 - a ) , for 0 < y < q

b - y(l-y)(b-m)n-l(b-a), for q < y < 1 .

where

q = Pr(X <m) = j ^ - , (4.5)

regardless of the value of the shape parameter n. Note that the quantity q
above may be interpreted as the relative distance of the mode m to the lower bound
a over the support [a, b] and is reminiscent of the hinge property of STSP
distributions (Property 2 in Sec. 3.2.3). Irrespectively of the value of n, the
parameter m identifies the q-th percentile of a TSP distribution, where q is
given by (4.5). The inverse cdf (4.4) allows straightforward and efficient
sampling from the four-parameter TSP distribution in Monte Carlo type
uncertainty/risk analyses utilizing a uniform[0,1] pseudo-random number
generator.
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The expressions for the mean and the variance can directly be obtained
from (4.2) and simplify to

EM = a + ( " n - +
1 ] " 1 + '' (4.6)

and

When n — 1 we are having a uniform distribution with support [a, 6].

4.2 Four-Parameter Maximum Likelihood Estimation

Similar to Sec. 1.5 dealing with ML estimation of the three-parameter
triangular distribution, this section involves some non-standard derivations
of the ML procedure of the four-parameter TSP distributions which are
— as it was already mentioned — closely related to a non-regular case of

ML estimation for continuous distributions (see, e.g., Cheng and Amin
(1983)).

Let X be a random variable with pdf (4.2). For a random sample
X_ = (X\,..., Xs) with size s from a TSP(a, m, b, n) distribution let the
order statistics be Xn-j < Xm- • • < •^•(s)- Utilizing (4.2), the likelihood for
X_ is by definition

L(X] a, m, b, n) = (4.8)

w r f[iX{i)-a) f[ (6-X(Ohn_i
j n 1 J !^l i=r+l I
\b-aj [ (m-a)r(b-my-r J '

where r is implicitly defined by X(r) < m < -X"(r+i), X(Q) = a and
X( s + i j = b. Hence, analogously to the derivation involving the likelihood
(1.44) associated with the three-parameter triangular distribution, it follows
that for fixed values of a and b, satisfying

a < X(1) and6 > X{s), (4.9)

we have
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max L(2£;a,m,b,n) = (4.10)

a <m <b,n > 1

— j |M(a,6,?(a,6))| ,
where the functions ?(a, b) and M(a, b, r) are defined by Eqs. (1.42) and
(1.43), respectively, in Chapter 1. (We have elaborated on the behavior of
the function r:(a,b) in Chapter 1, Sec. 1.5.1.) Analogous to the results in
Theorem 3.2 in Chapter 3, the global maximum of (4.8) as a function of 771
and n only, given fixed values of a and b satisfying (4.9), is attained at

( rh(a,b) = X?{atb);

( ) (4 11)

n(a,b) = Max j - Log{M(a^(a>b)}, lj
Hence, as in Sec. 1.5.1 the function r (a, b) is an index function indicating at
which order statistic the ML estimate of the parameter m is attained as a
function of the lower bound a and upper bound b.

As in the preceding chapter we shall now separately consider the two
cases of the four-parameter ML estimation procedure, involving the lower
bound o and the upper bound b: 0 < n < 1 and n > 1. The reason is that
these two cases yield very different forms of distributions (4.2) and hence
different behaviors of the likelihood L{X_;a,m,b,n) (4.8). Let us first
consider the scenario 0 < n < 1. For n = 1, the pdf (4.2) simplifies to a
uniform density with support [a, b] and it is well known that in that case the
ML estimates for the lower and upper bounds a and b are:

a = X(i) and b = X(s) (4.12)

(see, e.g., Devore (2004) or an undergraduate textbook on mathematical
statistics). Moreover, setting a = X^ and 6 = X(s) into (4.8) with
0 < n < 1 results in the likelihood L(X_; a, m, b,ri) —> oo when a f X^
(or b I X(s}) for all values of the parameter m such that

X(1) < m < X(s).

From here we can conclude that in the case under consideration
(0 < n < 1) the ML estimates for a and b are also provided by (4.12).
However, the singularity in the likelihood L(X; a, m, b, n) (4.8) at
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a — X(i) and b — X^ prevents us to carry out further (stable) ML
estimation of the parameters m and n. It should be noted that usually a
unimodal visual histogram of the data X_ would rule out this situation.

Thus the procedure below for four-parameter ML estimation is
intended only for those situations where a value of n > 1 could be assessed
a priori. The unimodal case (n > 1) may be of more practical interest than
the case where m is an anti-mode (0 < n < 1). (See, for example, the
histograms depicting construction data in AbouRizk (1990) and AbouRizk
and Halpin (1992).) From (4.10) and (4.11) we have that

max \Log{L{X_\a,m,b,n)}\ = (4-13)
S(a,m,b,n) >- J

/ Y a \ s Y [G(°.6)l,a < A ( i ) ,6 > A(s)L J

where the set

S(a,m,b,n) =
{(a,m,b,n)\ a < X^,b > X^,a <m<b,n>0}

and

G(a,b) = s![Ln(^^y(n(a,b)y1-iy (4.14)

(Compare with Eq. (1.48) in Chapter 1). Note that the function G(a, b) is
only defined for values of a < X^ and b > X(s) (Eq. (4.9).) Summarizing,
die four-dimensional optimization problem of maximizing the likelihood
(4.8) reduces to a two-dimensional case of maximizing the function G(a, b)
given by (4.14) over (4.9).

As in the case of the function G(a,b) associated with the triangular
distribution (Eq. (1.48) in Chapter 1), the function G(a,b) (4.14) involving
the TSP distribution is also continuous over its domain (4.9), but the partial
derivatives with respect to a or b may not be unique at a finite (s — 1)
number of points. The source of non-differentiability at these points
originates from the behavior of die index function ?(a, b) given by (1.42) as
a function of the parameters a and 6 (See Sec. 1.5.1 for further details).
Discarding the points of discontinuity of the function 7"(a, b), the function
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G(a, b) becomes differentiable with respect to a and b. From (4.14) we
obtain (recalling the definition of n(a, b)):

da M{a,b,r(a,b)} '

\ s I l i I S

[Log[M{a,b,r(a,b)}]^ \ (b - a)'

and

db M{a,b,r(a,b)}

\ * nl *
[Log[M{a,b,r(a,b)}] \ ( b - a ) '

(Compare with Eqs. (1.52) and (1.53) in Chapter 1) where the partial
derivatives of M(a, b, r) (Eq. (1.43)) are the same as the ones in case of the
three-parameter triangular distribution given by Eqs. (1-54) and (1.55).

The routines BSearch and ABSearch described in Sees. 1.5.2.1 and
1.5.2.2 could be utilized to obtain the ML estimators :

a, b = b( a ) , fh(a, b) = X(?(S> ? ) ) and (4.17)

-~. ^ ^ s
n(a,b) = :=T—

Log{M(a,b,r{a,b)}
by replacing procedures associated with the three-parameter triangular
distribution for evaluation of

G(a, b) (1.48) , TrG(a, b) (1.52) and —G(a, 6)(1.53)
oa ob

with procedures to evaluate the function

G(a,b) (4.14), faG(a,b) (4.15) and — G{a, 6) (4.16)

associated with the four-parameter TSP distribution and adding the
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following step to the routine ABSearch described in Sec. 1.5.2.2 after
Step 7 :

c

Step8 : nk = -———-.
Log(Mk)

4.2.1 An illustrative example

Figure 4.1 provides the form of the function G(a, b) for a civil engineering
data set in Table 1.2 in Chapter 1 (source: AbouRi2k (1990)).

Upper Bound \. Ks*^** "\ 40

b o 20 ° 8° Lower Bound a

Fig. 4.1 The function G(a, b) given by (4.14) for the data in Table 1.2 in Chapter 1.

For our construction engineering data presented in Table 1.2 the modified
routine AB Search results in the following ML estimates :
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a = 1.632; b = 9.573;

fh(a,b) = 5.9; n(a, b) = 3.463.

Figure 4.2A (Figure 4.2B) depicts a likelihood profile of the function
G{a, b) displayed in Fig. 4.1 for the data in Table 1.2 as function of the
parameter a (parameter 6) for different (fixed) values of the parameter b
(parameter a). (Compare with Fig. 1.8 in Chapter 1.) Note the behavior of
G(a, b) for 6 = 8.6 (for a = 3.2 )in Fig. 4.2A (Fig. 4.2B). The ML

estimates a — 1.632 and b = 9.573 are indicated by means of a vertical
dotted line in Figs. 4.2A and 4.2B, respectively.

From the ML estimates in (4.18) and the data in Table 1.2 it follows
that

a = 1.632 < X{1) = 3.2 and b = 9.573 > X{s) = 8.6.

Compare these values with those in Eq. (1.50) in Chapter 1 and observe
that the lower bound (upper bound) ML estimate involved with the
triangular distribution is larger (smaller) than the corresponding TSP one in
(4.18). Figure 4.3A depicts the empirical pdf of the data in Table 1.2
together with the four-parameter ML fitted TSP distribution with ML
parameter values specified in (4.18) (Compare with Fig. 1.6 in Chapter 1).
Figure 4.3B also displays a four-parameter beta distribution (4.1) fitted to
the data in Table 1.2 via a least squares method proposed in AbouRiak
(1990) by minimizing

J2{F(X{i)\a,b;a,P) - - J - } 2 , (4.19)

where F(X^ \a,b; a, (3) is the cdf associated with the pdf (4.1) (also known
as the incomplete beta function). Its fitted parameters are

a = - 9.097; b = 16.588; 5 = 75.076; /? = 55.530. (4.20)

Note the much wider support [a, b] for the fitted beta distribution in (4.20)
than that of the ML fitted TSP distribution in (4.18) (although visually it is
not easy to observe by comparing Figs. 4.3A and B). We utilize the least
squares method above to fit the beta distribution since it allows
straightforward implementation in the software tool Microsoft EXCEL
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Fig. 4.2 Profiles of the function G(a, b) given by (4.14) for the data in Table 1.2:
Graph A: as a function of the lower bound a; Graph B: as a function of the upper bound b.

The ML estimates a = 1.632; b = 9.573 in (4.18) are indicated by means
of a vertical dotted line in Figs. 4.2A and 4.2B, respectively.
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Fig. 4.3 Empirical pdf for the data in Table 1.2 together with
A: an ML fitted four-parameter TSP distribution with parameters a = 1.632,

m = X(45_54) = 5.9, 6 = 9.573 and B: a least squares fitted beta distribution with

parameters o = - 9.097; b = 16.588; a = 75.076; /? = 55.530.
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using the SOLVER add-in, while the four-parameter ML procedure may
encounter numerical difficulties (see, e.g., Gupta and Nadarajah (2004)).
Carnahan (1989) investigated in detail ML estimation for four-parameter
beta distributions and noticed the possibility of local maxima which plague
various numerical schemes for maximizing likelihoods. (Compare with the
function H(X ;6) in Fig. 1.5 in Chapter 1 that also exhibits various local
maxima.) The wider support of the fitted beta distribution in (4.20) can
perhaps be explained by the phenomenon that the fitting procedure
attempts to capture the 'peak' observed in the empirical pdf in Fig. 4.3
(which requires to widen the support of the beta pdf). On the other hand,
note that similar to the ML fitted triangular pdf in Fig. 1.2, the fitted beta
pdf in Fig. 4.3B does not quite capture the peak of the empirical pdf. We
conduct a more formal fit analysis in Table 4.1 using the chi- squared
goodness of fit test (see, e.g., Stuart and Ord (1994)).

Table 4.1 Chi-Squared fit analysis of fitted distributions for civil engineering data

consisting of 85 hauling times in Table 1.2. (O; : observed number of observations

in Bin i, Ei : expected number of observations in Bin i, i — 1 , . . . 9.

TSP Triangular Beta

Bin LBj UB, O, (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei

1 <4.20 4.20 8 2.4E-03 0.05 1.8E-06

2 4.20 4.65 6 2.0E-03 0.10 0.22

3 4.65 5.05 10 0.90 0.65 0.08

4 5.05 5.45 11 0.13 0.31 3.9E-03

5 5.45 5.85 9 1.13 0.32 0.80

6 5.85 6.25 19 2.39 6.86 4.83

7 6.25 6.65 6 1.58 0.99 1.39

8 6.65 7.05 7 2.0E-03 0.03 1.03E-03

9 7.05 >7.05 9 0.27 2.17 1.31E-04

Chi-Squared Statistic §A\ 11.48 7.32

Degrees of Freedom 4 5 4

P-value 0.171 0.043 0.120

In Table 4.1 the chi-squared statistic
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9 (n rr\2

is calculated utilizing the 9 bins. (Note that, 9 6 [y 85, 85/5] as suggested
by Banks et al. (2001).) With exception of the first and last bin, each bin has
width 0.45. The number of observations Oi for the data in Table 1.2 is
provided in Table 4.1, at least 6 in each bin. The corresponding values
E{, i = 1 , . . . , 9, for the expected number of observations in Bin i are
obtained using the formula

Ei = 85{F{UBi\e) - F{LBi\e)},

where F( • |O) is the theoretical cdf, 0 are the corresponding parameter
estimates for each fitted distribution given by (4.18), (1.50) and (4.20) for
the TSP, triangular and beta distributions respectively, and the bin
boundaries (LBi,UBi\ are provided in Table 4.1. Similarly to the fit
analysis conducted in Table 3.2 in Chapter 3 (involving financial data) we
observe here that Bin 6 containing the peak of the empirical pdf in Figs. 1.6
and 4.2 contributes the most to the chi-squared statistic values in Table 4.1.
From the p-values in Table 4.1 we conclude that while the beta distribution
with parameters (4.20) performs better than the triangular distribution with
parameters (1.50) for the data in Table 1.2, it follows diat the TSP
distribution with parameters (4.18) is, in turn, a superior fit than the beta
distribution.

In civil engineering applications it is perhaps not uncommon to use
estimation procedures to determine a distribution's parameters (see, e.g.
AbouRizk and Halpin (1992)). Moreover expert judgment elicitation is also
used to estimate a distribution's parameter in, for example, a PERT context.
(The PERT technique is used, amongst others, to determine the uncertainty
in the completion time of large engineering projects.)

4.3 Elicitation Methods for TSP Distributions

The phenomenal advances in quantitative methodology and their rapid
penetration into applied sciences and engineering during the last few
decades have resulted in a re-assessment of the scope and the nature of an
expert's activities. As a rule experts are classified into two, usually unrelated,
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groups: Substantive experts (also referred to as technical experts or domain
experts) who are knowledgeable of the various aspects of the subject matter
under consideration and normative experts possessing adequate knowledge
about the appropriate quantitative analysis techniques (see, e.g., Pulkkinen
and Simola (2000) for more details). In the absence of data, expert judgment
concerning the quantities of interest are elicited from substantive experts
and equated by normative experts to their theoretical expressions (see, e.g.,
Cooke(1991)). In the context of die PERT analysis, for example,
substantive experts are used, often by necessity, to elicit die so-called

optimistic estimate a, most likely estimate rh and pessimistic estimate b of
an unknown activity duration T in a PERT network (see, e.g., the basic
paper by Moder and Rodgers (1968) that appeared some 35 years ago and
still provides useful interpretations).

The decision concerning the type of the distribution chosen to model
die uncertainty of an activity duration at hand (for which traditionally the
beta and triangular distributions have been used) and on the manner to
estimate their parameters utilizing a, rh and b, is usually carried out by a
normative expert (who may not necessarily be experienced in qualitative and
technical details related to the completion of die activity under
consideration). Modeling assumptions of this kind may often be inevitable
due to lack of data. It is, however, highly desirable that their impact on the
analyses to be carried out will be minimal.

Malcolm et al. (1959) utilized the estimates a, fh and b to fit a four-
parameter Beta(a, b; a, (3) distribution given by the pdf (4.1). Next, by
equating a = a and b = b and using die mediod of moments technique
by setting

r £ r T i = 5+4m+b
< f ~ (4.21)

\Var[T\ = ±(b -a)2,

and equating them to dieir population expressions

(E[T} = ^(b-a) + a
I Var\T] = (b- a)2 ^ , ('4'22')

Malcolm provides estimates of die parameters a and (3 in (4.1). The
elicitation procedure above is classified as an indirect elicitation procedure for
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the parameters a and (3 and as a direct elicitation procedure for the
parameters a and b (see, e.g., Cooke (1991)). This attractive approach allows
practitioners dealing with risk and uncertainty to overcome difficulties
associated with the interpretation of parameters (in this case a and f3).
Malcolm et a/.'s (1959) recommendation to utilize (4.21) and (4.22) for an
indirect elicitation of a and (3, however, resulted in a heated discussion
regarding their applicability and appropriateness that has been ongoing for
some 40 years by now (see, e.g., Clark (1962), Grubbs (1962), Moder and
Rodgers (1968), Keefer and Verdini (1993), Kamburowski (1997), Lau et aL
(1998), among others). Kamburowski (1997) emphasizes that:

"Since PERT development, there has been controversy associated with the validity of

(4.21)... "Both PERT estimates have been roundly criticised, large estimation error have

been attributed to them, and many refinements have been proposed to replace them.

Despite the criticisms and the abundance of new estimates, the PERT mean and variance

can be found in almost every textbook on OR/MS and P/OM, and are employed in

much project management software. Unfortunately, these formulas are mostly presented

without any additional assumptions which leads to so many misunderstandings" ...

"Undoubtedly, all the above have diminished the practical interest in the original

PERT".

Kamburowski (1997) continues by presenting new theoretical validations
for the use of (4.21) based on a kurtosis argument. (See, the same paper for
a comprehensive bibliography dealing with this PERT "controversy".)

Perhaps to resolve this "controversy", D. Johnson (1997) specifically
suggested that the three parameter triangular distribution with the pdf (1.6)
given in Chapter 1 be used in PERT analyses as an alternative to the beta
distribution (and perhaps others before him as well), since the parameters
a, m and b in (1.6) are a one-to-one correspondence with the estimates a, in
and b (that have been provided by the substantive expert). Hence, all the
parameters of a triangular distribution (due to their physical interpretation)
may be elicited directly from a substantive expert. This gives to the triangular
distribution substantial intuitive appeal as far practical applications are
concerned (Williams (1992)).

Extending Johnson's approach, Van Dorp and Kotz (2004, 2002b)
suggested the use of the four-parameter TSP(a,m,b,n) distribution
(which generalizes the triangular distribution (1-6)) with the pdf (4.2) as a
proxy for the beta distribution, in particular in problems involving an
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assessment of risk and uncertainty (such as PERT). The TSP density (4.2)
coincides for n = 2 with the triangular density (1.6). Expressions for the
population mean and the variance for the TSP pdf (4.2) are given by Eqs.
(4.6) and (4.7), respectively. (Note that in (4.2), (4.6) and (4.7) we use the
notation X to indicate a random variable with a TSP distribution — or, for
n = 2 the triangular distribution — whereas the random variable T in (4.1),
(4.21) and (4.22) indicates a random variable obeying a beta distribution.
Both the letters X and T have the same physical meaning designating
models for uncertainty in an activity duration.)

4.3.1 Indirect elicitation of the shape parameter n

The use of the TSP(a, m, b, n) pdf instead of the triangular one in the
above context, requires the elicitation of an estimate n of the shape
parameter n from the substantive expert (in addition to the already directly
elicited estimates a, in and b ). From the expression for the mean (4.6) it
follows that (n + 1) may be interpreted as the sample size of a virtual
sample with (n — 1) observations m, with two additional observations a
and b. Hence, one may indirectly elicit n by asking an expert for the relative
importance of the elicited most likely value in as compared to the bounds a

or b, where a value of 1 indicates the same importance and values greater
(less) than 1 indicate larger (lesser) importance. Suppose an expert assigns
the relative importance of the most likely value mto be y = (n — 1), it
then follows from the interpretation above that

n = y + l. (4.23)

Hence, if an expert responds that the most likely estimate in is equally
important compared to the bound estimates a or b (i.e. y = 1), this implies
from (4.23) that a triangular distribution (n = 2) appropriately models the
expert's uncertainty. If an expert responds that the most likely estimate m is
more (correspondingly, less) important than the bounds a or b, the
elicitation will yield a TSP distribution with variance smaller
(correspondingly, larger) than mat of the triangular distribution. An expert
would have to assign relative importance y — 4 for the mean of the
resulting TSP variable E[X] to agree with E[T] in (4.21) proposed by
Malcolm et al. (1959). Finally, a relative importance of %ero of in (compared
to the bound estimates a or b) indicating no confidence whatsoever in the
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most likely estimate fh, results via (4.23) in n = 1 and the TSP pdf (4.2)

reduces to a uniform pdf on the interval [a, b].
While the elicitation approach above utilizes a comparison approach

(similar to the popular paired comparison elicitation techniques in
psychological scaling models, see, e.g., Cooke (1991)), the concept of
relative importance to elicit the shape parameter n may be considered
somewhat difficult to interpret by a substantive expert. In Sec. 4.3.3 an
elicitation procedure will be developed for the shape parameter n (and the
lower bounds a and b) that utilizes quantile estimates from the substantive
expert. An advantage of eliciting quantile estimates, instead of relative
importance, is that they allows for the use of betting strategies in an indirect
elicitation procedure (see, e.g., Cooke (1991)).

4.3.2 The PERT "controversy" via an illustrative example

Before continuing with the development of an indirect elicitation procedure
involving the bound parameters a, b in addition to the shape parameter n, it
may be useful to illustrate via an example the reasons that the simultaneous
use of (4.21) and (4.22) have been "controversial" and non-rigorous from a
statistical point of view.

It follows from (4.2) that for a triangular distribution (n = 2) the
population mean E[X] may over- or under estimate the estimator for E[T]
as given in (4.21) depending on whether or not the threshold parameter m
is less or greater than the midpoint (a + b)/2. Note, however, that for a
TSP distribution with n = 5, the estimated mean value E[T] given in (4.21)
and the population mean value E[X] given in (4.6) actually coincide. On the
other hand, it follows from (4.21) and (4.7) that in the case of a triangular
distribution (n = 2)

Var[T] = 1 ( 6 - a)2 < ^ (6 _ af < Var[X\ < 1 ( 6 - a)2 (4.24)

and for a TSP distribution with n = 5 we have correspondingly

1 ( 6 - a)2 < Var(X) < A ( 6 - a)2 < Var[T] = 1 ( 6 - a)2. (4.25)

Hence, fromEq. (4.24) (Eq. (4.25)) it follows that F a r [ X ] of a triangular
distribution (a TSP distribution with n = 5) is always larger (less) than the
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estimator for ^ctrlr] = (6 — o)2 /36 in (4.21), regardless of the values of
the parameters a, m and b (see also Van Dorp and Kotz (2002b), (2004a)).

We shall demonstrate the effect of the previous conclusions on a small
18-activity project network V depicted in Fig. 4.4 in the ship building
domain described in Taggart (1980). The parameters a,m,b of triangular
distributions (1.6) for the activities in the project network "P are provided in
Table 4.2, which also contains a column for the parameter values n = 5 in
case TSP(a,m, b, 5) distributions are used to model the activity duration
uncertainty. In addition, Table 4.2 depicts columns for the estimated mean
E[T] and variance Var[T] that follow from (4.21) and the values for a, m
and b. Finally, Table 4.2 contains columns for the values of the parameters
a and /3 of beta distributions with support [a, b] that were solved from the
values of E[T] and Fcr[T] in Table 4.2 using the method of moments.

I B PIPING t^kL

<\» I - vy— >Qy

^ ASSEMBLE ^ EKECT ^ ERECT L X > . n N I S H i | " V E S T ^

yDwi iumoncLL ^"^ BOTTOM SHELL ^"^ l.B ^ ~ ^ FOUNDATION ^^^MAIN ENGINE ^ E N G I N E ^ ^ ^ " ^

Fig. 4.4 Example project network V for production process.

Next, we successively sample (25000 times) from the uncertainty
distributions of the activity durations (triangular, beta or TSP(5)) and each
time subsequendy evaluate the completion time of project the project
network V using the Critical Path Method (CPM) (see, e.g. Winston (1993)).
This technique is known as the Monte Carlo approach (see, e.g. Vose
(1996)) and allows us to calculate the mean, standard deviation, minimum
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and maximum of the completion time distribution up to a desired accuracy
level. Table 4.3 contains the resulting values for these statistics utilizing the
three different approaches described above for modeling activity
uncertainty.

Table 4.2 Parameters for modeling the uncertainty in activity durations for the project
network in Figure 1 A: via (4.2) with n = 5 (Triangular), B: via (4.1) — utilizing (4.21) and
(4.22) using the method of moments technique — (Beta), C: via (4.2) with n = 5, (TSP(5)).

Recall that for n — 5, the estimated mean value E[T] given in (4.21) and the population
mean value E[X] given in (4.6) actually coincide.

ID Activity Name a m b n E[T] Var(T) a p
1 Shell: Loft 22 25 31 5 25.5 2.3 2.94 4.62
2 Shell: Assemble 35 38 43 5 38.3 1.8 3.23 4.52
3 I.B.Piping: Layout 19 22 47 5 25.7 21.8 1.32 4.21
4 I.B.Piping: Fab. 6 7 15 5 8.2 2.3 1.34 4.24
5 I.B.Structure: Layout 23 24 30 5 24.8 1.4 1.56 4.40
6 I.B.Structure: Fab. 14 18 24 5 18.3 2.8 3.40 4.44
7 I.B.Structure: Assemb. 9 14 20 5 14.2 3.4 3.74 4.22
8 I.B.Structure: Install 5 7 13 5 7.7 1.8 2.33 4.67
9 MachFdn. Loft 26 28 33 5 28.5 1.4 2.59 4.67
10 Mach Fdn. Fabricate 20 35 51 5 35.2 26.7 3.91 4.08
11 Erect I.B. 27 30 37 5 30.7 2.8 2.70 4.66
12 Erect Foundation 5 7 14 5 7.8 2.3 2.13 4.64
13 Complete #rd DK 4 5 9 5 5.5 0.7 1.97 4.59
14 Boilerlnstall 6 7 11 5 7.5 0.7 1.97 4.59
15 Boiler:Test 9 10 15 5 10.7 1.0 1.73 4.49
16 Engine: Install 6 7 15 5 8.2 2.3 1.34 4.24
17 Engine: Finish 19 20 26 5 20.8 1.4 1.56 4.40
18 FINAL Test 13 15 24 5 16.2 3.4 1.84 4.54

Note that the results in Table 4.3 regarding the standard deviation are
consistent with the conclusions (4.24) and (4.25) related to V ^ r p j and
l/ar[X]. In addition, from the values for a, m and b in Table 4.2 it follows
that for all 18 activities the mode m is less than the midpoint (a + 6)/2.
Hence, E[T] in (4.21) for all 18 activities underestimates the mean value
E\X] of the triangular case (1.6) in Chapter 1 resulting in a noticeably
smaller value of the mean project completion time for the beta case (150.5)
in the second row of Table 4.3 than for the triangular case (157.3). The
mean values E[T] for the activities in Table 4.2 and that for £/[X] of a
TSP(a, m, b, 5) variable coincide, resulting in a close value for the mean
project completion time in the second and third rows of Table 4.3 (150.5
and 150).
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Table 4.3 Mean and standard deviation of the project completion time
distribution using triangular (suggested by Johnson (1997)), beta distributions

(suggested by Malcolm (1959)) and TSP (5), (suggested by Van Dorp and Kotz (2002b)).

Standard
Mean Deviation Min Max

Triangular 157.3 6.0 136.9 181.1

Beta 150.5 4.7 134.4 169.4

TSP(5) 150.0 3.5 139.4 164.4

From the analysis in Table 4.3 we may conclude that the choice of a
normative expert to estimate the parameters of a beta distribution via (4.21)
and (4.22), or utilize a triangular or TSP distributions using solely the "raw"

estimates a, fh and b affects the PERT analysis to a level that he/she may
not be quite comfortable with. Consequently, the suggestions of D. Johnson
(1997) and that of Van Dorp and Kotz (2002b) seem only to augment the
existing inconsistencies related to the setup given by (4.21), as proposed by
Malcolm et al. (1959). Hence, it would be natural to inquire what additional
information is required from a substantive expert regarding the activity
durations, so that the modeling choices by a normative expert of uncertainty
distribution of activity durations will have a lesser or preferably minuscule
effect on the PERT analysis. We shall attempt to provide an answer to this
question in Sec. 4.3.3.

4.3.2.1 Sources for the PERT "controversy" in Sec. 4.3.2

While the example in the previous section demonstrates the reason for a
PERT "controversy" to exist surrounding the use of (4.21) and (4.22), it
does not fully identify its sources. It may be useful for clearer understanding
to dwell briefly on the objections to using estimators (4.21) which endured
vitality for over 40 years, since it is a rather important caveat in applying the
standard PERT analyses. We shall concentrate on the illustrative example
where a substantive expert has assessed the values of the unknown

parameters a, m and b to be a = 6, m = 7 and b = 15.
A principle source for the "controversy" surrounding (4.21) stems most

probably from the fact that there are indeed infinitely many unimodal pdf s
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with support [a, b] having a mode at m. Evidently, these pdf s possess
various different uncertainty characteristics. Figure 4.5 (Figure 4.6) depicts
several members within the beta (TSP) family all satisfying the a = 6,

m = 7 and b = 15 assessments. An attentive reader would notice that the
solid curve in Fig. 4.5 (Example A) has the mode m slighdy less than
•in —7. In fact, Example A in Fig. 4.5 presents the beta distribution which
is obtained when (4.21) and (4.22) are used to solve for the parameters a
and P, setting a = 6 and b = 15. The set-up (4.21) when used to solve for
the beta parameters results in the value m = 6.86 and does not precisely
represent the originally assessed value for the mode m = 7. (Note that both
Figs. 4.5 and 4.6 include me uniform distribution with support [6,15] — a
distribution which appears in both TSP and Beta families — and may thus
be viewed a "degenerate" case satisfying m = 7.)

Table 4.4 provides the values for skewness /?i = /U3//U2 and kurtosis
#2 = /-M/A4!* - ^ W = A*l> where \xk = E[X — /ii]fc (for k > 1) for the
density functions in Figs. 4.4 and 4.5. The values for the kurtosis (skew-
ness) in the examples in Figs. 4.4 and 4.5 range from 1.80 to 4.14 (from
0.08 to 1.30). (The kurtoses of the curves depicted in examples B in Figs.
4.4 and 4.5 are identical, while skewnesses are very close to each other.)
From Figs. 4.5 and 4.6 and Table 4.4 it follows that it may not be possible
(for a normative expert) to devise a methodology (along the lines of (4.21))
for describing the uncertainty of an activity solely based on the estimates

a, fh and b (which are provided by a substantive expert) that will also be
fully consistent. Indeed, whatever is the motivation of a normative expert to
"pick" a particular member of a family of distributions, the choice would
certainly affect to a large extent the PERT analysis to be carried out
(corresponding to the very substantial differences similar to those amongst
the distributions presented in Figs. 4.5 and 4.6 — all of them with the same
a, m and b values).

Another possible source for inconsistency stemming from the use of
(4.21) is that it is very unlikely that a substantive expert be able to accurately
assess the actual lower bound a (i.e. the 0-th percentile) and the upper-
bound b (the 100-th percentile). Indeed, these extreme values (rarely
occurring in practice) are very likely to fall outside the realm of his/her
experience in spite of his/her knowledge of the activity at hand. Therefore
early PERT practitioners have taken the liberty (with ample justification) to
replace the lower bound estimate a (upper bound estimate b) by the p-th
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Fig. 4.5 Examples of members of the beta family with support [6,15] :
A: a = 1.343, 0 = 4.237 {mode = 6.863), B: a = 1.063, 0 = 1.500 {mode = 7),

C: a = 2.125,/? =10 (mode =7),D: a = 1,0 = 1 (mode =7).
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Fig. 4.6 Examples of members of the TSP family with support [6,15]
and mode m = 7 : A: n = 2, B: n = 1.442, C: n = 4, D: n = 1.
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Table 4.4 Skewness j5\ and Kurtosis /?2 for the distributions in Figs. 4.5 and 4.4.

Beta TSP

Skewness Kurtosis Skewness Kurtosis

A 0.674 3.194 0.291 2.400

B 0.082 2.022 0.084 2.022

C 0.768 3.679 1.309 4.145

D 0.000 1.800 0.000 1.800

((1 — p)-th) percentile, setting ap = a (6i~p = b). Motivated by statistical
hypotheses testing tradition, popular values for p were chosen to be 0.01,
0.05 and 0.10 and sensitivity analyses were conducted on these values (see,
e.g., Moder and Rodgers (1968)). However, a normative expert, although
possessing substantial knowledge of the related quantitative techniques, may
very well consider this assessment of p to be outside his/her competence.

Instead, it would seem that eliciting ap and b\^p from a substantive
expert (rather dian inquiring for the extreme lower and upper bounds) is a
more appropriate approach. It has been verified, however, that assessment
of percentiles in the vicinity of extremes, such as the 0.01 and 0.99
percentiles (Alpert and Raiffa (1982)) is also (as is the case with the lower
and upper bounds) very often beyond our accumulated experience, since
the extreme fractiles are associated with very rare events (Keefer and
Verdini (1993)). The latter authors observed that the "moderate" 0.10 and
0.90 quantiles have been found to be more reliable than the extreme 0.01
and 0.99 percentiles (Selvidge (1980)) or even die "intermediate" ones 0.05
and 0.95 fractiles (Davidson and Cooper (1980)). Modifications of method
of moment type estimates (4.21) have been provided to accommodate the
use of the appropriate ap and b\-p (see, e.g., Moder and Rodgers (1968) and
Keefer and Verdini (1993)).

Incorporation of diese modifications is, however, still not sufficient to
totally quell the existing "controversy". Indeed, Fig. 4.7 below depicts a
member of the four-parameter beta family with support [6,15], that of a
three parameter triangular distribution with support [5.464, 12.452], a
two-parameter uniform distribution with support [6,11] and a four-
parameter TSP distribution with n = 7and support [2.687,20.891]. All
these four distributions in Fig. 4.7 satisfy the constraints set by the lower
percentile ao.io = 6 . 5 , the most likely value m = 7 and the upper percentile
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Fig. 4.7 Beta, triangular, uniform and TSP distributions satisfying the constraints set by
a0.l0 = 6.5, m = 7, and &0.90 = 10.5. Beta with parameters: o = 6, b = 15,

Q = 1.384,/? = 4.071; Triangular: a = 5.464, m = 7, 6 = 12.452; Uniform: a = 6,
6 = 11; TSP: a = 2.687, m = 7, 6 = 20.891, n = 7. Graph A: probability density

functions (pdf), Graph B: cumulative distribution functions (cdf).
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fro.90 = 10.5, while clearly noticeable differences in their support are
evident. Note that the support of the peaked TSP distribution with n — 7 is
by far the widest, while for the flat uniform distribution it is the narrowest.
(In fact it will be shown, in the next section, that the support of a
TSP(a, m, fr, n) distribution satisfying ao.io = 6.5, m = 7 and
0̂.90 — 10-5 can be made arbitrarily large by letting n —• oo.)

Table 4.5 provides the values for the mean, variance, skewness and
kurtosis for these four distributions with the same ao.io = 6.5,
fro.90 = 10.5 and most likely value m = 7. Note that the very large values
of the variance, skewness and kurtosis correspond to the TSP distribution
while the smallest values are obtained for the uniform one. On the other
hand, the mean values in Table 4.5 behave in a opposite manner. The
differences amongst the distributions in Figure 4.7 (and analogously Table
4.5) would certainly affect a PERT analysis. From the above analysis one
concludes that eliciting a lower percentdle ap, a most likely estimate m and
an upper estimate b\-p is, unfortunately, also not quite sufficient to fully
describe an uncertainty distribution of an activity duration in a PERT
context.

Table 4.5 Lower Bound, Upper Bound, Mean, Variance,
Skewness and Kurtosis for the distributions in Fig. 4.7.

Beta Uniform Triangular TSP( 7 )

Lower Bound 6.00 6.00 5.46 2.69

Upper Bound 15.00 11.00 12.45 20.89

Mean 8.28 8.50 8.31 8.20

Variance 2.38 2.08 2.25 2.78

Skewness 0.60 0.00 0.21 1.25

Kurtosis 3.08 1.80 2.40 4.60

4.3.2.2 Attempts to improve the mean and variance estimation using expert judgment

A number of investigators arrived at a similar conclusion as the one above
and suggested the elicitation of diree (Pearson and Tukey (1965)), five
(Alpert and Raiffa (1982)), seven (Selvidge (1980)) or even nine cjuantiles
(Lau et al. (1998)). Numerous studies have been carried out with the aim to
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investigate relationships amongst these quantiles to accurately assess the
mean and the variance of an activity duration across a wide variety of
families of distributions. A most popular approach is the time-honored
extended Pearson-Tukey method (developed in the 60's) for estimating the
mean \i and the variance a2 of a general distribution via the following
relationships:

(1 = 0.185x0.05 + 0.630^0.50 + 0.185^0.95 (4.26)

a = O.63O(xo.5o - V)2 + 0.185{(z0.05 - £ ) 2 + (zo.95 - V)2}

(in an obvious notation).
The motivation to assess the mean and the variance of the activities in a

PERT network as accurately as possible stems from the fact that with an
assumption of independence amongst the activity durations, these two values
allow us to approximate the mean completion time of a project network and
its variance by means of a closed form expression (see, e.g., Keefer and
Verdini (1993)). However, the independence assumption of activities within
a PERT network is usually stipulated primarily for the sake of mathematical
convenience and is specious at best (as pointed out by Duffey and Van
Dorp (1997) and Van Dorp (2004), among odiers). To the best of our
knowledge for statistically dependent activity durations, no approximating
closed form expressions for the mean and the variance of the minimal
completion time of a PERT network are available, that utilize solely the
mean and the variance of the activity durations. One is thus compelled here
to resort here to the eclectic Monte Carlo simulations of the project
network by repeated sampling from the distributions of the activities and
then successively applying the CPM to each sample (see, e.g., Vose (1996)).
The latter requires a complete description of the whole distribution function
of activity durations (and not just their mean and variance). Modern
computational facilities present no obstacle for conducting simulations of
large scale PERT networks without imposing the independence assumption
amongst the activities (Van Dorp (2004)). Hence, once again a normative
expert is required to decide on a family of distributions to model the
uncertainty of an activity duration, be it beta, triangular, TSP or any other
appropriate distribution.

We feel that it is useful to remind the reader that an important reason
that the triangular distribution enjoys intuitive appeal amongst practitioners
and engineers is that its parameters a, m and b have an one-to-one
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correspondence to optimistic ( a ), most likely estimate ( m ) and pessi-
mistic ( b ) estimates (D. Johnson (1997) and Williams (1992)). In addition,
these parameters are of the same dimension as the quantity of interest and
the probability mass to the left of the most likely value m turns out to be
the relative distance from the mode m to the lower bound a relative to the
whole support [a, b], i.e. (m — a)/{b — a). These properties are inherited
by the TSP(a, m, b, n) distributions as well, for all values of the shape
parameter n. Hence, it seems to be a reasonable approach to build on the
intuitive appeal of the triangular distribution and specify what additional
information needs to be assessed by the substantive expert (besides the
values of ap, m and &i-p) to describe fully a TSP(a, m, b, n) distribution
of an activity duration in order that the utilization of the TSP family by a
normative expert has a lesser or preferably no substantial impact at all on
the upcoming PERT analysis. In the next section we present an indirect
elicitation procedure for the parameters a, b and n, utilizing direcdy elicited
estimates (from the substantive expert) for a lower and upper quantile ap

and bi-p, the mode m and one additional quantile (to be denoted xs), such
that

ap < xs < fei_p.

As a side remark we note that an additional advantage of the TSP
family of distributions over that of the beta family is mat the TSP
distributions have a greater moment ratio coverage (fiufyi) — at least for
unimodal distributions — as compared to the beta distribution (see Figs. 3.6
and 3.7 in Chapter 3). Here, we use the notation: skewness (5\ — $/n\, the
kurtosis /?2 = M4/M2 > ^PCI = Mi and Hk = E(X — /ii)fc (for k > 1). Lau
et al. (1998) note a restricted coverage of the beta family as far as $2 is
concerned. This is primarily due to the fact that the beta pdf is a smooth
density function (similar to the normal or ^-distributions, but with a
bounded support) whereas the TSP family is "sharp" at the mode m (as is
the Laplace family with unbounded support) and hence allow us to achieve
sharper peakedness (i.e. higher /?2 values) than the one corresponding to the
beta distribution.

4.3.3 Indirect elicitation of the parameters a, b and n

Let X ~TSP(a,m, b, n) with the pdf (4.2) and the cdf (4.3). We shall
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consider a more general set-up then the one suggested in Sec. 4.3.2 by
allowing a separate unrestricted quantile level r in place of pre-assigned
1 — p for the upper quantile b\_p. Thus, let ap, br be the p-th and r-th
percentiles of X, such that

a < ap < m < br < b. (4.27)

To uniquely solve for the lower bound a, upper bound b and the remaining
parameter n of a TSP cdf (4.3) satisfying (4.27), we suggest elidtation of
one additional quantile xs > m when m < (ap + br)/2 or xs < m when
m > (ap + br)/2. Let us consider without loss of generality the case where
the assessed most likely value m is less than the midpoint of ap and br

(obvious modifications can be made when the converse is true).
Recalling the standardized quantity q — (m — a)/(b — a) (see, Eq.

(4.5)) and the definition of ap (F(ap\a, m, b, n) = p),it follows from (4.3)
and (4.5) that

fp
ap = a + (m-a)?/-• (4.28)

There is no direct relation between p and q here (contrary to acceptable
notation when dealing with proportions and/or the binomial distribution),
except that from (4.27) and (4.5) it follows that 0 < p < ^ < l ) . Solving
for a from (4.28), yields with (4.5)

ap ~ m\fi ap ~ ap\fi
a = a(n, q) = f=- < j=~ = ap. (4.29)

(We use the notation a(n, q) instead of a to indicate that the lower bound a
is a function of n and q, provided the p-th percentile ap and the most likely
value m are given.) Analogously to (4.29), we have for m < br (using
b(n, q) in place of b):

br-mJ^ br-brsf^
b = b(n, q) = ¥ _ > j=J- = br. (4.30)

(Note that here we have from (4.27) and (4.5) 1 — q > 1 - r > 0.)
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Substituting a(n, q) and b(n, q) as given by (4.29) and (4.30) into (4.5),
we arrive at the following basic equation

9(n, q) = q (4.31)

where

9 n> 9) = 77 x \ = (4-32)
b{n,q)-a(n,q)

(6,-m)(l-^)+(m-ap)(l-^)

(Compare with Eq. (1.67) in Chapter 1.) Observe the rather "structured"
relation between g(n, q) and q. Indeed, from its structure it immediately
follows that 0 < g(n, q) < 1 (as it should since g(n, q) also represents the
probability mass to the left of the mode m). In addition, the denominator
of the RHS (4.32) is "almost" a linear combination of the distances of the
quantiles ap and br to the mode m, where the weights are determined by
the quantile probability masses p and r and the probability mass q to the
left of the mode m.

In Sec. 4.3.3.3 we shall prove that — for a given value of n > 0 — one
can numerically solve for the unique value of q G [p, r] using (4.31) and the
definition of gin, q) (Eq. (4.32)) by means of for example a bisection
method (see, e.g., Press et al. (1989)) with the starting interval [p, r]. Hence,
relation (4.31) defines a continuous implicit function q(n) with the domain
n > 0. Next, we are able to calculate the lower bound a{n,q(n)} (4.29)
and upper bound b{n, q(n)} (4.30) of the

TSP[a{n, q(n)},m, b{n, q(n)}, n]

distribution given by the cdf

Fx(x\a{n, q(n)}, m, b{n, q(n)}, n) = (4.33)

f S{n,q(n)}(^^y, for a{n,q(n)} < x < m

| 1 - (1 - g{n,g(n)})(ff;ff}
}-)", form < x < b{n,q(n)}
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where g(n, q) is given by Eq. (4.32) and with pre-spedfied percentiles ap

and br satisfying

a{n,q(n)} < ap < m < br < b{n,q(n)}.

Utilizing the continuity of q(n),a{n,q(n)} and b{n,q(n)} as a
function of n one can show that the cdf (4.33) converges as n | 0 to a
Bernoulli distribution with the probability mass

9(0) = -r1 l (4-34)
or — ap

at ap and [1 — q(0)] at br. Similarly, it follows that as n —> oo, the cdf
(4.33) converges to what seems to be a novel reparameterization of an
asymmetric Laplace cdf with parameters ap, m and b\-T:

Fx(x\ap,m,br) = (4.35)

{ - m-x

?(°°){iM/ > £otx<m
x—m

l-{l-q(oo)}{T^)Y-\ iotx>m,
where 9(00) is the unique solution in \p,r] (see Sec. 4.3.3.3 for details) that
may be obtained from the equation

h(q) = q, (4.36)
where

W (br-m)Log(2) + (mq-ap)Log(^y ( ' )}

The reader is advised to compare g(n, q) (Eq. (4.32)) with (4.37). One may
solve equation (4.36) utilizing for example a bisection method with starting
interval [p, r] for q. (An alternative standard parameterization of the
asymmetric Laplace distribution is given in, e.g., Kotz eta/. (2001).) Finally,
for n = l , the cdf (4.33) reduces to a uniform distribution with parameters

r — p (r — p)
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Compare (4.38) with (4.29) and (4.30) to appreciate the relation between a
and ap (or 6 and b\-T) for various distributions.

Hence, we can render the support of the cdf (4.33) to be arbitrary large
by letting n —> oo, reduce it to its minimal value [ap, br] by letting n J. 0 (in
the case that m may also be an anti-mode), or its minimal value [a, 6],
where a and b are given by (4.38). While the values of n € (0,1) are not
consistent with the mode m, the extent of the TSP family spanning from a
Bernoulli distribution to an asymmetric Laplace one emphasizes the breath
and flexibility of the family (4.2).

4,3.3.1 Description of the numerical algorithm

We are now in a position to formulate an algorithm to solve for the three
remaining parameters a, b and n of a TSP distribution given a set of
percentiles {ap, xs, b\-p} and the mode m satisfying

a < ap < m < xs < b\-v < b. (4-39)

We recommend the value 0.10 for the quantile level p and suggest the 75%
or 80% quantile for s. An appeal of the 80% quantile over the 75% one is
that it is reminiscent of Pareto's Law popularized in economics — also
known as the 80/20 rule (see, e.g., Barabasi (2002)). The algorithm consists
of the following 8 Steps :

Step 1: Setn = 1
Step 2: Set r — 1 — p, br = 6i_p and solve for q(n) from (4.31) and

(4.32) using a bisection method with the starting interval [p, r] for
q. Calculate a' — a{n, q{n)} from (4.29) and analogously calculate
V = b{n,q(n)} from (4.30).

Step 3: Set r = s and br = xs. Calculate 6° = b{n, q(n)} from (4.30)
using q(n) calculated in Step 2. If \b° — b'\ < e then STOP.

Step 4: If b° < b' then set n = 2n, n\ow = n, nhigh = 2n goto Step 2.
Step 5: Set n = (niow + nhigh)/2.
Step 6: Set r — 1 — p, br = &i_p and solve for q(n') from (4.31) and

(4.32) using a bisection method with the starting interval [p, r] for
q. Calculate a' = a{n', q{n')} from (4.29) and analogously
calculate b' = b{n, q{n)} from (4.30).

Step 7: Set r = s,br = xs. Calculate b° = b{n', q{n')} from (4.30)
utilizing q(n) calculated in Step 4. If \b° - b'\ < e then STOP.
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Step 8: If b° > b' then n^gh = n , else n/OUJ = ri. Goto Step 5.

The first steps 1 — 4 in the algorithm above solve for a starting interval
\n\ow-, nhigh] containing the solution for the parameter n of a TSP
distribution with percentiles ap, xs and br and the most likely value m
satisfying (4.39). The following Steps 5 — 8 solve for n up to a desirable
accuracy level e using a bisection argument. The algorithm could be
modified in an obvious manner for the case that

a < ap < xs < m < 6i_p < b (4.40)

where the mode m is to the right of the additional quantile xs.
The proposed algorithm converges provided a set of consistent

quantiles ap,xs,b\-p satisfying (4.39) are specified together with the most
likely value m. Note that it is possible to specify an inconsistent set
satisfying (4.39), by setting, for example, s = 1 — p. On the other hand, the
specification of ap, m and b\-p and the TSP family of distributions selected
by a normative expert to model an activity uncertainty (or for that matter
the beta family of distributions ), imposes (perhaps not surprisingly)
restrictions on the permissible values of the additional quantile (xs, s). This
is demonstrated in Fig. 4.8 which plots the cdf of the limiting Asymmetric
Laplace distribution (4.35) with most likely value m = 7, q{oo) « 0.244
and that of a uniform [6,11] distribution with support boundaries (4.38),
both distributions having the common percentiles ap = 6.5, br = 10.5,
p = 0.10, r = 1 — p = 0.90. The boundaries for the additional quantile
(xs,s) which would be consistent with the percentiles ao.i = 6 . 5 ,
60.9 = 10.5 and the most likely value m = 7, are in fact determined by the
uniform and asymmetric Laplace cdf s in Fig. 4.8. Figure 4.8 also includes
(for future reference) the cdf of the beta distribution depicted in Fig. 4.7
with support [6,15].

Figure 4.8 yields an alternative strategy for selecting the quantile level s
of the additional quantile Xs satisfying (4.39). One could set the quantile
level s, say, to a multiple of 10% that maximizes the allowable quantile
range of xs as specified by the inverse of the uniform distribution with
support [a, b] where a and b are given by (4.38) and the inverse of the
limiting AL distribution (4.35) given by
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Fig. 4.8 CDF's of asymmetric Laplace distribution (4.35) satisfying m = 7, a uniform
distribution with the bounds a = 6, b = 11 given by (4.38) and that of a beta distribution
with parameters a = 6, b = 15, a = 1.384, (3 = 4.071 (4.1). All three distributions have

the common percentiles ap = 6.5, br = 10.5, p = 0.10 andr = 1 — p = 0.90.

F;^(y|ap,mA) =

{ m-(m- ap) ̂  jg}, for y < 9(00)

i*v l - g ( o o ) '

Table 4.6 provides some allowable quantile ranges for xs for different
values of the quantile level s derived from the distributions presented in
Fig. 4.8. From Table 4.6 it follows that in this particular example, the 70%
quantile yields the largest allowable quantile range 0.901 for the additional
quantile xs and almost the same range is attained for the 60% quantile.
Note that, the percentiles X0.70 = 8.952, X0.75 = 9.250 and Xo.so = 9.588
of the beta distribution (with the mode m — 7, ao.10 = 6.5 and
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"%90 = 10.5) depicted in Figs. 4.8 and 4.7B fall within their allowable
ranges in Table 4.6.

Table 4.6 Allowable quantiles range for xs > m with
ap = 6.5,m = 7 br = 10.5,? = 0.10, r = 1 - p = 0.90.

Inverse CDF for AL Inverse CDF for Uniform Range
s xs xs

30.00% 7.132 7.500 0.368

40.00% 7.399 8.000 0.601

50.00% 7.715 8.500 0.785

60.00% 8.101 9.000 0.899

70.00% 8.599 9.500 0.901

75.00% 8.914 9.750 0.836

80.00% 9,300 10.000 0.700

Table 4.7 below provides values for the parameter n, the lower bound
a{n, q(n)} and the upper bound b{n, Q(TI)} of the TSP distributions that
follow from the algorithm described above, by using the percentiles
ag.i = 6.5, fro.9 = 10.5, the mode m = 7 and the values xs for an
additional quantile of die beta distribution in Figs. 4.8 and 4.7, for
s = 0.70, 0.75 and 0.80. Moreover, Table 4.7, compares this beta
distribution and the TSP distributions in terms of tiieir mean values,
variances, skewnesses and kurtoses. For the case presented in Table 4.7, a
slight advantage can perhaps be assigned to the TSP distribution in fourth
column (TSP C), since its values align closer to diose of its beta counterpart
(presented in the first column).

Figure 4.9 plots the cdf and the pdf of the beta distribution in Table 6
(and Figs. 4.8 and 4.7) and that of the TSP C distribution mentioned above.
In Fig. 4.9B, the common percentiles of die beta and TSP cdfs are
indicated by dotted lines. The pdfs and cdfs associated with the second
(TSP A) and the third (TSP B) columns in Table 4.7 are not presented in
Fig. 4.9, but visually are almost indistinguishable from those for the TSP C
case represented in Fig. 4.9. (Please keep in mind the values of skewness
and kurtosis for the standard normal distribution are 0 and 3, respectively.)
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Table 4.7 Lower and upper bounds, mean, variance, skewness and kurtosis of a beta
[6,15] distribution with parameters a = 1.384, P = 4.071 and TSP distributions (A,B,C),

all with common percentiles ao.io = 6.5, 6o.9O = 10.5 and mode m = 7. A:a;o.7O = 8.952,
n = 2.682; B : xa,n = 9.250, n = 2.729; C: xom = 9.588, n = 2.782.

Xo.70 = Xo.75 = X0.80 =
8.952 9.250 9.586

Beta TSP A TSPB TSP C
n = 2.682 n = 2.729 n = 2.782

Lower Bound 6.00 5.09 5.06 5.03

Upper Bound 15.00 13.56 13.63 13.72

Mean 8.28 8.26 8.26 8.26

Variance 2.38 2.37 2.37 2.38

Skewness 0.60 0.40 0.42 0.43

Kurtosis 3.08 2.82 2.85 2.88

4.3.3.2 Assessment of the effect of the elititation procedure in a PERT example

Consider once more the project network in Fig. 4.4, its activities and their
values for a, m, and b presented in Table 4.2 in Sec. 4.3.2. Table 4.2 also
provides the values for the parameters a and /3of the beta distributions
which follow from (4.1), (4.21) and (4.22) by applying the methods of
moments (by suggestion of Malcolm et al. (1959)). In Table 4.8, we present
again these parameters values for a and /3 and in addition provide the
percentiles ao.io, £o.8O and 60.90 and the mode m of these beta pdfs to test
the effect of the elicitation procedure developed in the beginning of Sec.
4.3.3. Our main claim is that the new elicitation procedure is advantageous
in several respects.

Next, we execute the algorithm described in Sec. 4.3.3.1 for the 18
activities in Table 4.2. The algorithm in Sec. 4.3.3.1 solves for the
parameter n, the probability mass to the left of the mode q{n) (the unique
solution of Eq. (4.31)), the lower and upper bounds a{n,q(n)} and
b{n, q{n)} of TSP distributions with identical percentiles and modal values
as those presented in Table 4.8. The resulting values for n, q(n),
a{n, q(n)} and b{n, q{n)} are displayed in Table 4.9.

We now generate the cdf of the completion time distribution of the
project presented in Fig. 4.4 (using the Monte Carlo technique involving
25000 samples) via the beta distributions in Table 4.8, the TSP distributions
in Table 4.9, triangular distributions with parameters a, m and b in Table
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Table 4.8 Parameters a and j3 of beta distribution for activity durations

of the project network in Fig. 4.4 together with their

percentiles ao.io, £o.8O and bo.90 arid modes m.

ID a p ao.i m Xo.a bo.9

1 Z94 4~62 23~58 25^4 26~83 27.56
2 3.23 4.52 36.61 38.10 39.52 40.15
3 1.32 4.21 20.35 21.51 29.57 32.39
4 1.34 4.24 6.45 6.86 9.42 10.32
5 1.56 4.40 23.46 23.99 25.82 26.50
6 3.40 4.44 16.16 18.11 19.82 20.59
7 3.74 4.22 11.75 14.05 15.81 16.62
8 2.33 4.67 6.01 7.13 8.83 9.52
9 2.59 4.67 27.03 28.12 29.52 30.11
10 3.91 4.08 28.32 35.06 39.81 42.05
11 2.70 4.66 28.55 30.17 32.13 32.96
12 2.13 4.64 5.99 7.13 9.14 9.94
13 1.97 4.59 4.49 5.06 6.22 6.67
14 1.73 4.49 6.47 7.04 8.52 9.09
15 1.56 4.40 9.46 9.99 11.82 12.50
16 1.34 4.24 6.45 6.86 9.42 10.32
17 1.56 4.40 19.46 19.99 21.82 22.50
18 1.84 4.54 13.96 15.10 17.74 18.76

Table 4.9 The value of the parameter n, probability mass to the left of the

mode q(n) and lower and upper bounds a{n, q(n)} and b{n, q(n)} of TSP

distributions that follow from the algorithm in Sec 4.3.3.1 utilizing the

percentiles of the beta distributions presented in Table 4.8 and their modes.

~ ID n q(n) a{n,q(n)} b{n,q(n)}
1 2.14 42.4% 21.97 29.46
2 2.04 44.5% 35.22 41.70
3 2.95 20.2% 16.06 43.01
4 2.92 21.1% 5.04 13.68
5 2.73 26.6% 22.23 28.84
6 1.98 45.6% 14.48 22.43
7 1.86 48.0% 10.01 18.43
8 2.35 37.3% 4.51 11.55
9 2.25 39.7% 25.73 31.75
10 1.80 49.3% 23.61 46.82
11 2.22 40.5% 26.72 35.23
12 2.43 35.2% 4.29 12.36
13 2.51 33.3% 3.55 8.10
14 2.63 29.7% 5.38 10.95
15 2.73 26.6% 8.23 14.84
16 2.92 21.1% 5.04 13.68
17 2.73 26.6% 18.23 24.84
18 2.57 31.4% 11.92 22.04
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4.2 and TSP(a,m, b, 5) distribution with parameters values n = 5 which
ensures the equality of E[T] in (4.21) and (4.6) (here n — l = 4and
n + 1 = 6). The resulting cdfs are depicted in Fig. 4.10, where
"TSP(varying n)" indicates the case of the completion time distribution of
the Project in Fig. 4.4, associated with Table 4.9.

I 100.00% -I 1—I 1 «--jg»— ' J ^ - * I

i • i /p ' f ' —*—Triangular

80.00% • t -• 1 -iS- \-*- i

S i | iff f i i —"—Beta

g 60.00% + -\ jf / -> *-

o i ' /l / ! I - ^ - T S P { 6 )
•a 40.00% • -j -| / - ; / 1 j-

E \ \ A \ / \ i —*—TSP(varylng n)

° 20.00% • 't ~i~ ~ 7/ ~! / 1 i"

i \Jj jf\ \ \ CPMCase

0.00% I . iijrTVV-1^ i i i 1
130 140 150 160 170 180

Minimal Completion Time (in Days )

Fig. 4.10 Comparison of cumulative distribution functions of
the completion time for the project in Fig. 4.4 in Sec. 4.3.2..

Figure 4.10 seems to be worthy of a scrupulous examination being a
culmination of various theoretical and numerical derivations in this chapter.
We shall present a number of indicative features. First note that Fig. 4.10
reconfirms the analysis in Table 4.3. Namely, the triangular case (suggested
by D. Johnson (1997)) has quite a substantial mean shift as compared to the
beta case (suggested by Malcolm et al. (1959)) as well as a shallow slope
indicating a larger variance. The TSP(5) case suggested in Van Dorp and
Kotz (2002b) when compared with this beta case is similar in their mean
values (see also, Table 4.3), but has a steeper slope and hence a smaller
variance. The project completion time 142 days that follow from the CPM
case (using only the most likely values m) is represented by a semi-dotted
vertical line in Fig. 4.10. Considering that the values of the modes m being
less than the midpoint (a + b)/2 for all 18 activities in Table 4.2, we
observe from Fig. 4.10 that the probability of meeting the completion time
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of 142 days is less than 1%. Although the skewness of the activity
distributions in Table 4.2 may be somewhat overstated (for illustrative
purposes), a case could be made that skewness towards the lower bound
does tends to appear in assessed activity time distributions due to a
motivational bias of the substantive expert. The latter points to the necessity
of conducting a project risk analysis (such as PERT) instead of the basic
CPM analysis in the first place.

Finally, and perhaps most importantly, the cdf involving the
"TSP(varying n)" case associated with Table 4.9 differs only slightly from
the completion time cdf associated with beta distributions. The values for
the mean, standard deviation, minimum and maximum observed values of
the minimal completion time of the Project Network are compared in Table
4.10 for these two cases. Note that these values are in agreement with the
earlier observations concerning their cdfs in Fig. 4.10. Hence, — and here
comes our main conclusion — by eliciting an additional quantile xs satisfying

(4.39) or (4.40) from a substantive expert, a much lesser effect (compared to the ones

resulting in the earlier mentioned PERT "controversy") is observed in the completion time

of a project for the choice of a normative expert to model the uncertainty in an activity

duration by a TSP or beta distribution.

In the next section we shall elaborate on some mathematical details
regarding the development of the numerical routine in Sec. 4.3.3.1 which
solves for the lower and upper bounds a and b, and the shape parameter n
of a TSP(a, m, b, n) pdf (4.2) given a lower quantile estimate ap, and

upper quantile estimate &i_p, a most likely estimate m and an estimate of

the additional quantile (to be denoted xs), such that ap < xs < £>i-p,
when these estimates are elicited from a substantive expert.

Table 4.10 Mean and Standard Deviation of the Project Completion Time
Distribution using Beta distribution (suggested by Malcolm et at. (1959))

and the TSP (varying n) distribution associated with Table 4.9.

Standard
Mean Deviation Min Max

Beta 150.5 4.7 134.4 169.4

TSP(Varying n) 150.3 4.4 134.9 167.8
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4.3.3.3 Some mathematical details regarding the algorithm in Sec. 4.3.3.1

In this section we shall dwell on the implicit function q(n), which is an
important new concept introduced in this chapter. It plays a pivotal role in
the algorithm described in Sec. 4.3.3.1. Let X ~ TSP(a, m, b, n) with pdf
(4.2) and cdf (4.3). From inequality (4.27) and an expression for die
probability mass q (4.5) to the left of the mode m, we have diat the
relations

0 < p < < 7 < r < l = > 0 < - < l and 0 < < 1 (4.41)
q 1-q

ate valid.
Taking partial derivatives with respect to n and q of the function

a(n, q) given by (4.29) (corresponding to the lower boundary) we obtain

d , . 1 T (p\ [p m — ap

on n2 \q/ y q u _ nh\2

and

da^q) = i- «/£ m-a* > 0. (4.42)
dq nq \ q n _ JE)2

Hence, a(n, q) is a strictly decreasing (increasing) function of n (of q). In
addition, from (4.41), (4.27) and (4.29) it follows that

a(n, q) —> - oo as n —» oo (q | p) (4-43)

for the values of q € (p,r) (of n > 0). Analogously, taking partial
derivatives with respect to n and q of the upper bound function b(n, q)
(4.30) results in

db(n,q) 1 / I -r\nll -r br - m
— = 5:-Log W- . > 0,

on nz \ 1 — q/ y 1 — q n __ n / i - r p

and
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db(n,q) 1 Jl — r br — m
V ' = -ji r 47 , > 0. (4.44)
dq nil - q) \i 1 - q n n/i-rp

V 1—9 -*
Hence, the upper bound b(n, q) is a strictly increasing function of both n
and q. In addition, from (4.41), (4.27) and (4.30) it follows that

b(n, q) —> oo as n —• oo ( q | r ) (4.45)

for values of q G (p, r) (of n > 0).
The basic equation g(n, q) = q (4.31) whereg(n, q) is defined in (4.32)

plays a pivotal role in the arguments leading to determination of the
parameters of a TSP(a,m, b, n) pdf via the algorithm developed in Sec.
4.3.3.1. Hence, this equation is the key for the newly proposed indirect
elicitation procedure for the parameters a, b and n given elicited values for
a lower and upper quantile ap and b\-p, the mode m and additional quantile
xs all satisfying (4.39) or (4.40). The theorem below provides details
concerning the existence of a unique solution to this equation.

Theorem 4 .1 : The equation fj{n,q) = q (4.31) has a unique solution
q{n) € (p, r) for every fixed value n > 0, where g(n, q) is defined in (4.32), and
moreover the resulting implicit function q(jl) is continuous.
Proof: Let n > 0 be a fixed value. Substituting q = p into (4.32) we have

g(n,p) = l. (4.46)

Substituting q = r into (4.32) we have

g(n, r) = 0. (4.47)

From the continuity of (4.32) (as a function of q for fixed n > 0) on
q € (p, r) C [0,1] we conclude that a solution q' € (p, r) of (4.31) exists
for any value of n > 0. Uniqueness of q' would follow if the function
g(n, q) is a non-increasing as a function of q € (p, r) (as will be shown
below). Note that the condition of g(n, q) being non-increasing —as
opposed to strictly decreasing — in q is sufficient since we are solving here
for a root of the equation g(n, q) = q. Moreover, this is equivalent to
showing that the reciprocal of g(n, q):
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{9(n, q)}-1 = 6 ( 9 ' n ) ~ a ( 9 ; n ) = 1 + b ( 9 ' n ) ~ m

m — a(q,n) mq — a(q,n)

is a non-decreasing function of q 6 (p,r). The latter follows immediately
from the fact that a(q, n) and b(q, n) are stricdy increasing functions of
q G (p, r) (see, (4.42) and (4.44), respectively). Hence, one can write
q' = q(n), where q{n) is the unique solution to (4.31) for a fixed value of
n > 0. Continuity of the implicit function q(n) then follows from the
classical implicit function theorem (see, e.g., Krantz 2002) and the
continuity of the g(n, q) in both parameters n and q for n > 0 and
qe(p,r). D

Note that from (4.46) (from (4.47)) it follows that the function g(n, q)
is right-continuous (left-continuous) as a function of q for a fixed value
n > 0 at q = p (at q = r) since g(n, q) —> 1 (fl>(n, q) —> 0) as g J, p (as
(7 T r) for any value n > 0. Hence, the unique solution q(n) of the Eq.
(4.31) may be obtained either by using standard bisection methods with a
(closed) starting interval [p, r] for q(n) or by employing a root finding
algorithm such as GOALSEEK available in Microsoft EXCEL. Observe,
however that the right-continuity at q = p (at q = r) does not hold for the
function a(n, q) (the function b(n, q)) defined in (4.29) (in (4.30)).

Returning to the implicit function q(n) we shall now investigate its
behavior and consider the three cases: n J, 0, n = 1 (the uniform case) and
n —> oo.

A) Case n [ 0 : From (4.41), (4.29) and (4.30) it follows that

pp
lira ,"/ - = 0 =>• Km a(n, q) — av, (4.48)

/ l - r
Zim {7 = 0 ^> Hm 6(n, g) = br. (4.49)
n J. 0y 1 - g n | 0

Hence, from the basic equation (4.31) one obtains

g(0) = lim q{n) = ^L^E. ( 4 . 5 0 )

n i 0 br — ap
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B) Case n = 1 : In this case the TSP cdf (4.3) reduces to a uniform
distribution and we may solve directly for its lower bound a and the upper
bound b from the specified percentiles ap and br utilizing properties of
similar triangles and the fact the cdf Fx(x\a,mq, 6, 1) of a uniform
variable X ~ TSP(a, mq, b, 1) is a linear function between the extreme
coordinates (a, 0) and (6,1) crossing through (ap,p) and (br,r) (see Fig.
4.11).

y" j

y--y_ I
a a

P br b

Fig. 4.11 Similar triangles used to solve for the lower bound a and upper bound b of a
uniform distribution on [o, 6] with specified percentiles ap and br.

From Fig. 4.11 and similarity of the triangles we have

v z £ = J L z ^ = » a =
r f l p - ^ (451)

p r r — p

and using (4.51)

bJ-^ = b-a=>b={l-p)br{1-r)ap. (4.52)
r (r — p)

Substituting (4.51) and (4.52) into (4.31) one arrives at

= PbrHr-p)mq-rap

br — ap

C) Case n - * o o : From the basic interrelation between g(n, q) and q
(4.32), the ordering of a, ap, m, br and b as given by (4.27), and the relation
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between p, q and r (4.41), recalling the definition of h(q) (4.37) (a
logarithmic counter part of g(n, q)), it is easy to verify that

n^oo9(n,q) = h(q). (4.54)

By the continuity of g(n, q) and the fact that g(n, q) is non-increasing as a
function of q it follows that the function h(q) is also non-increasing. From
the properties of g(n, q) evaluated at p and r (Eqs. (4.46) and (4.47),
respectively) and noting the right continuity of g(n, q) at q = p, it follows
immediately that

lim h(q) = 1
Q IP

and

lim h(q) = 0.
q]r

Hence, analogously to the basic lemma 4.1 one deduces that the equation
(4.36) has a unique solution to be denoted q(oo) and from the basic
equation (4.31) and the relation between h(q) and g(n,q) (4.54) it follows
that

lim q(n) = o(oo).

The value of <?(oo) may be determined from the equation h(q) = q (4.36)
and the definition of h(q) (4.37) by using a standard bisection method with
the starting interval [p, r] for <?(oo).

Figure 4.12 provides an example of the function q(n) for the case
p = 0.10, r = 1 - p = 0.90, ap = 6.5, m = 7 and br = 10.5. Observe
that these values coincide with the values used in Fig. 4.7 in Sec. 4.3.2.1. In
Fig. 4.12 the values of g(0) (see, Eq. (4.50)), q{\) (see, Eq. (4.53)) and
q(oo) ~ 0.244 (calculated from (4.36) and (4.37) using a bisection method)
are presented. In addition, Fig. 4.12 depicts the value of q(2) (of q(7))
associated with the Triangular (the TSP(7)) distribution in Fig. 4.7 calculated
from (4.31) and (4.32) also employing a bisection method. Note a painfully
slow increase in q(n) in Fig. 4.12 as a function of n (n > 3). Figure 4.13
plots the lower bound function a{n,q(n)} (Eq. (4.29)) and upper bound
function b{n, q(n)} (Eq. (4.30)) associated with q(n) in Fig. 4.12. Observe
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an almost linear behavior of both the functions a{n, q(n)} and b{n, q(n)}
as a function of n.

O.3 -, . . . 1

0 25 - : : i ^ ? ( ° ° ) = 0.244
: : ; : : : • : : : : : : • : : : : : ^ : : : : : : : : : : : : : : : • -

1
 . ^ - »-m

'•.-•^trrr^r. > '-.g(2) = 0.220

0.2 ••/-•:\ \ -—9(1) =-j

"er / : : :
0.15 I \ j

• | I | — ' W = i
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n
Fig. 4.12 Graph of the implicit function q(n) satisfying (4.31) for the case p = 0.10,

r = 1 - p = 0.90, op = 6.5, m ? ( n ) = 7 and 6r = 10.5.

Utilizing continuity of q(n),a{n,q(n)} and b{n,q(n)} as a function
of n, limiting relations (4.48) and (4.49)) one can show that the TSP cdf
(4.33) converges as n J. 0 to a Bernoulli distribution with a probability mass
q(0) (4.50) at ap and {1 - q(0)} at 6r. Similarly, utilizing (4.43) and (4.45)
it could be verified that the TSP cdf (4.33) converges to the Laplace cdf
(4.35) with the pdf
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Fig. 4.13. Graphs of A: the lower bound function a{n, q(n)} (Eq. (4.29)) and
B: the upper bound function b{n, q{n)} (Eq. (4.30)), where q(n) is

the implicit function depicted in Fig. 4.12.
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fx(x\ap,m,br) = (4.55)

( q(oo)AExpl — A(m — x) >, for x < m

{1 - q(oo)}BExp< - B(x - m) }, fora:>m
where the coefficients are

m — ap br — m

The structural form of the cdf (4.33) and the pdf (4.55) is recognized to be a
somewhat unexpected new "unorthodox" reparameterization of the
asymmetric Laplace (AL) distribution (see, e.g., Kotz et al. (2001)) with a
pre-specified mode m, lower quantile ap and upper quantile br.

4.4 Concluding Remarks

A new four-parameter family of TSP(a, m, b, n) distributions has been
proposed which possesses some attractive properties, especially those
related to the meaning of its parameters and the structure of its expected
value as a function of parameters, as well as an instructive and
algorithmically quite straightforward new maximum likelihood estimation
procedure. The family of TSP distributions naturally extends the three-
parameter triangular distributions. The new four-parameter TSP(a,m>

b, n) distribution seems to be a useful and a more flexible alternative to the
four-parameter beta distribution than the triangular distribution, specifically
in, but not limited to, PERT applications described in this chapter. It is our
hope that the introduction of the proposed distribution into statistical
practice will assist in the basic goals of applied statistical work.

In addition, we propose a novel method to solve for the parameters
a, 6 and n of a TSP distribution from a lower quantile estimate ap, most

likely estimate in, an upper-quantile estimate b\-p and one additional
quantile Xs (to be determined by a substantive expert) such that ap <

xs < b\^p. The method utilizes an algorithm developed in Sec. 4.3.3.1, by
first setting m = rh and next successively solving a single non-linear
equation in the unknown probability mass q = (m — a)/(b — a) (Eq. (4.5))
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to the left of the mode m. Section 4.3.3.3 discusses some mathematical
features exhibited in the development of this algorithm. In addition, we
have shown a much lesser effect on the completion time distribution of the
PERT example (in Fig. 4.4) when a normative expert models activity
duration via a beta or TSP distributions given the estimates ap, xs, b\-p, fh
than it was previously encountered in applications (which resulted in a
PERT "controversy" for several decades.)

While the decision to model random variables via beta, triangular or
TSP distributions based on a lower bound estimate a, most likely estimate
fh, and upper bound estimate b has received quite some attention in the
academic oriented literature in the context of PERT, it does not seem to
attract similar attention in the context of Monte Carlo methods in general or
discrete event simulation in particular. In fact, a recent college text book on
discrete event simulation (Altiok and Melamed (2001)) containing the
popular simulation package ARENA (by Rockwell Software Inc.) explicitly
recommends the triangular distribution when the underlying distribution is
unknown, but a minimal value a, some maximal value b and a most likely
value 771 are available. Some discrete event simulation text books (Kelton et
al. (2002), Banks et al. (2000)) define a triangular uncertainty model when
only the minimum, most likely and maximum values of the distribution are
known, but do not mention that other families of bounded distributions
(such as the beta or TSP family) may reflect the same information albeit in a
different manner (that may substantially affect the results of the simulation
analysis). (In fairness it should be mentioned that the TSP distribution was
introduced only in 2001, however, the beta distribution has been popular
and widespread for some 100 years.)

From the analyses in this chapter it follows that at least the beta and
TSP models should also be considered in such instances. Furthermore, it is
our opinion that the choice of a triangular distribution by a normative
expert to model the random input variable in a simulation based solely on

the estimates a, b and fh may affect the simulation analysis to the extent
comparable to that in the PERT example discussed above. We also believe
that the material in this chapter indicates that the latter (simplified) decision
by a normative expert could perhaps be somewhat rushed and that an
expert should definitely consider the elicitation of specific additional
information prior to implementing such a modeling choice.
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Finally, we would like to comment on a phenomenon that has shown to
have a similar effect on the project completion time distribution in the
PERT context as the uncertainty model for activity durations. We have in
mind the existence of almost inevitable statistical dependence amongst the
input distributions — even in the case when this dependence is mild (see,
e.g., van Dorp (2004)). Hence, it would seem that the topic of modeling
statistical dependence in simulation analysis (in PERT and in more general
simulation contexts) deserves comparable attention in simulation text books
as the topic of selecting an uncertainty model. To the best of our knowledge
this is not yet the case. While the topic is touched on in Law and Kelton
(1991) and Altiok and Melamed (2001), it does not appear to be mentioned
in the simulation text books Kelton et al. (2002) and Banks et al. (2000),
which may give the misleading impression that uncertainty modeling
requires solely specification o{ marginal distributions. While it is perhaps
possible to specify dependence in standard uncertainty analysis
software — such as @Risk (developed by the Palisade Corporation) and
Crystal Ball (developed by Decision Engineering) and even simulation
packages such as ARENA mentioned above — one should not rely on
packages of this kind to educate students about statistical dependence.
Modeling of statistical dependence should in fact be an integral part of the
simulation and uncertainty analysis curriculum.
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Chapter 5

The Generalized Trapezoidal Distribution

Geometric concepts and arguments as a rule do not provide important tools
in classical probabilistic models and distributions. The father of die modern
systematic classification of distributions K. Pearson (1857-1936) did not
utilize diem when developing his famous probability curves. His brilliant
successor R.A. Fisher (1890-1962) was more inclined to use geometry in
particular when developing properties of normal distributions. Only quite
recently, die popularity of fractals have increased interest and application of
geometry in the area of univariate statistical models. Our investigations of
triangular distributions in Chapter 1 seems to naturally lead us to the
trapezoidal ones (discussed briefly in Chapter 2) — which can be viewed as
a direct geometric extension, albeit (seemingly) devoid of a probabilistic
motivation. Moreover, it is with some hesitation diat we approach a
generalization of the four-parameter trapezoidal distribution (which will
contain seven parameters), bearing in mind that any generalization of a
distribution inevitably involves introduction of additional parameters. In such
a case, the inconsistent and wasteful situation of over-parameterization may
arise. Fortunately, the parameters of our generalized trapezoidal distribution
(GTD) are sharply and distinctly defined without an overlap or
interdependence. We present the construction and basic properties of GTD
distributions of an arbitrary form defined on a compact (bounded) set by
concatenating in a continuous manner three pdf s with bounded support
using a modified mixture technique. These three distributional components
could represent the growth, stability and decline stages of the likelihood of a
certain physical or mental phenomenon.

5.1 Illustrative Example

As it was mentioned earlier in Chapter 2, Sec. 2.2 trapezoidal distributions
have been advocated in risk analysis problems by Pouliquen already in 1970
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and more recently by Powell and Wilson (1997) and Garvey (2000). They
have also found application as membership functions in the fuzzy set theory
(see, e.g., Chen and Hwang (1992)). Another domain for applications of
trapezoidal distributions is the applied physics arena (see, e.g. Davis and
Sorenson (1969), Nakao and Iwaki (2000), Sentenac et al. (2000), Straaijer
and De Jager (2000)). Specifically, in the context of nuclear engineering,
uniform and trapezoidal distribution have been assumed as models for the
observed axial distributions for burnup credit calculations (see Wagner and
DeHart (2000) and Neuber (2000) for a comprehensive description). These
distributions are of relevance to burnup credit criticality safety analyses for
pressurized-water-reactor (PWR) fuels. Table 5.1 and Fig. 5.1 (adapted
from Wagner and DeHart (2000)) depict the actual data and two profiles of
axial normalized burnup likelihood versus percent axial height (using an
interpolation between the observed data points). Apparently, the uniform
distribution has been shown to be suitably conservative only for low
burnups, but not when burnup increases (see, Wagner and DeHart (2000))
and the use of trapezoidal distributions tend to result in more conservative
criticality safety analyses (see, Neuber (2000)). The explicit modeling of axial
burnup distributions is becoming an important and timely research topic in
nuclear engineering (see Parks et al. (2000)).

Motivated by the structural form of the profiles in Fig. 5.1, we shall
strive for a continuous generalization of the trapezoidal distribution where
the growth and decay stages may exhibit a nonlinear convex or concave
behavior and the density values fx(') between b and c are not necessarily
the same, but follow a linear form. In the proposed generalization, a
boundary ratio parameter a > 0 is introduced such that fx{b) = ctfx(c).
These generalized trapezoidal distributions inherit the four basic trapezoidal
parameters a, b, c and d (see Eq. (2.22) in Chapter 2 and Fig. 2.6) and
require, for complete specification, two additional parameters n\ and 713
specifying the growth rate and decay rates in the first and third stages of the
distribution and also the above mentioned boundary ratio parameter ex. An
attractive feature of this generalized trapezoidal distribution is its flexibility
which allows us, inter alia, to appropriately mimic a great variety of growth
and decay behaviors.

Figure 5.2 depicts two members in the generalized trapezoidal family
that closely follow the axial distribution profiles presented in Fig 5.1. From
Fig. 5.2 it follows that the density function of a generalized trapezoidal
distribution (to be discussed below) may well be applicable for modeling
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Table 5.1 Typical profiles of observed normalized bumup likelihoods

as a function of % axial height in PWR. (Source: Wagner and DeHart (2000).)

Normalized Burnup
Axial Height % Profile 1 Profile 2

2.78% 0.652 0.649
8.33% 0.967 1.044
13.89% 1.074 1.208
19.44% 1.103 1.215
25.00% 1.108 1.214
30.56% 1.106 1.208
36.11% 1.102 1.197
41.69% 1.097 1.189
47.22% 1.094 1.188
57.80% 1.094 1.192
58.33% 1.095 1.195
63.89% 1.096 1.190
69.44% 1.095 1.156
75.00% 1.086 1.022
80.56% 1.059 0.756
86.11% 0.971 0.614
91.67% 0.738 0.481
97.22% 0.462 0.284
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Fig. 5.1 Axial distributions in PWR for the data in Table 5.1.

(Source: Wagner and DeHart (2000).)
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axial burnup distribution profiles. Note especially the graph B, where the
decline in the central part is closely tracked. Applications to reliability and
risk analysis also become more realistic by replacing the linear parts of the
trapezoidal pdf defined by Eq. (2.22) in Chapter 2 with a more general
power function.

5.2 The Functional Form of the Generalized Trapezoidal Density

We begin by providing the functional form of the generalized trapezoidal
distribution followed by a discussion detailing its construction. The pdf of a
generalized trapezoidal distribution is given by

( ( \»i-i

a(fzf) , for a < Z < 6

/x(x|e)=C(G)x | { ( a - l ) ^ + l}, iorb<x<c (5.1)

\T%) ' forc<x<d

where © = {a, b, c, d, ri\, 713, a}, the multiplier

C(Q) = *W* ,5 j,
v ' 2a(b-a)n3 + (a + l)(c-b)nin3 + 2(d-c)n1'

 l '

(compare with Eq. (2.23) in Chapter 2), n\ > 0,713 > 0, a > 0 and the
parameter restriction a < b < c < d is inherited from the trapezoidal pdf
(2.22). By substituting ri\ = n^ = 2 and a = 1 the constant C(0) reduces
to C(a, b, c, d) in (2.23) and the pdf (5.1) becomes to the trapezoidal pdf
defined by (2.22) and depicted in Fig. 2.6.

Figure 5.3 displays different shapes of generalized trapezoidal
distributions. The conditions on the parameters of the pdf (5.1) stipulate
that 7ii > 0 andn3 > 0. To adhere to a truly "trapezoidal" shape (Figs.
5.3A, B, C, D and E) one should restrict ni > 1 and n^ > 1 in the first and
third stages. In case 0 < n\ < 1 andO < 713 < 1 (Fig 5.3F) the first stage
reflects decay and the third expresses growth of the density fx(x\Q) given
by (5.1) resulting in a "bathtub" shape rather than a trapezoidal shape for
the combined density. The graphs in Fig. 5.3 alternate between the three
cases 0 < a < 1 (Fig. 5.3A, D, G and J), a = 1 (Figs. 5.3 B, E and H) and
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Fig. 5.2 Generalized trapezoidal approximation of axial distributions depicted in Fig. 5.1.
Graph A: a = 0, b = 0.15, c = 0.8, d = 1, nx = 1.25, n3 = 1.45, a = 1;

Graph B: a = 0, b = 0.14, c = 0.69, d = 1, m = 1.35, n3 = 1.75, a = 1.04.
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Fig. 5.3 Examples of generalized trapezoidal pdfs (Eq. (5.1)).
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a > 1 (Figs. 5.3 C, F and I). To appreciate the flexibility due to the
parameters n\ and 713 only compare Fig. 5.3A with Fig 5.3J.

5.2.1 Construction of the probability density function

Our approach towards constructing the pdf (5.1) requires to specify: (1) the
beginnings and ends of the three stages (a,b,c,d), (2) the growth
behavior of the first stage (parameter 7li), (3) the decay behavior of the
third stage (parameter 713) and (4) the relative likelihood of capabilities at
the end of the growth stage [a, b] and the beginning of the decay stage
[c, d], namely the boundary ratio parameter

a = fx(b)/fx(c). (5.3)

To generalize the trapezoidal distribution we shall take full advantage of
the fact that the original trapezoidal pdf (2.22) can be represented as a
mixture of three component densities (see, Eqs. (2.25) and (2.26) in Chapter
2). The pdf (5.1) is then naturally constructed using the same mixture
technique involving three densities fxt, fx2 j fx3 with bounded support,
such that

3 3
fx{x\e) = J2irifXi(x\e), I> i = 1. *-i > 0, (5.4)

i=l i=l

where

/x,(x|e) = /.,(x|a,MI)=(^)(^)"'"1, (5.5)

a < x < b, rii > 0,

, , , 2{(1 - a)x + ac - b]
fx,(x\e) = /*(*!&, c, a) = U , ' b2

 J , (5-6)

and
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fx3(x\e) = fX3(x\c,d,n3)= ( ^ i - ^ ^ ) " 3 " 1 , (5.7)

c < x < d, 713 > 0.

The values of 7Tj, i = 1, 2 ,3, are presented below. The pdf s fxl (x\a, b, n\)
and fx3(x\c, d,n^) are chosen for X\ and X%m the aggregated density
(5.4) to allow for a nonlinear growth and decay in stages 1 and 3,
respectively. The density function fx2(x\b, c, a) in the second stage is,
however, restricted to a linear form such that

fX2(b\b,c,a)= afx2(c\b,c,a). (5.8)

For 0 < a < 1 (a > 1) the density of X2 in (5.6) exhibits an inclining
(declining) behavior. For a = 1, it reduces to a uniform density on [b, c].
Also note that fx2(x\b, c, a) and fXi(x\a, b, n{) (and fx3(x\c, d, n3))
share only the boundary parameter b (parameter c). Note that by
substituting, n\ = 713 — 2 and a = 1, in the component densities (5.5),
(5.6) and (5.7) we obtain successively a linear, a uniform and again a linear
form observed in the three consecutive stages of the trapezoidal density
provided by Eq (2.26).

The main challenge in the construction of our generalization of the
trapezoidal distribution is to select appropriately the remaining mixing
probabilities TT\, 7T2, n^ in (5.4) so that the overall density function fx(x) be
continuous. This turns out to be a nontrivial problem.

Theorem 5.1: The pdf given by (5.1) follows from expressions (5.4), (5.5), (5.6),
(5.7) and (5.8) utilising the mixture probabilities

2a(b—q)ri3
1X1 ~ 2a{b-a)n3+{a+l){c-b)n1n3+2{d-c)n1>

< -.„ _ (a+l)(c-6)Tnn3 ,r 9s
"| " 2 ~ 2a(b-a)n3+(a+l)(c-b)n1ni+2(d-c)nl' ^ - ^

_ 2(d-c)ni
^ ns ~ 2a(b-a)n3+(a+l)(c-b)n1ni+2{d-c)ni'

where a < b < c < d, n\ > 0, n.3 > 0, a > 0 and, moreover, the pdf given by

(5.1) is continuous on the whole interval [a, dj.

Proof: Utilizing (5.4), (5.5), (5.6) and (5.7) the density function of the pro-
posed generalized trapezoidal distribution given by (5.1) can be rewritten as
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ftifx1(x\O', b, ni), for a < x < b

fy(x\e) - J ^/x2(x|6, c, a), for b < x < c

0 elsewhere,

where © = (a , b, c, d, 711,713, a ) , for some7Tj > 0, i = 1, 2 , 3 such that
3

i=i

a < b < c < d, m > 0,713 > 0 and a > 0. (5.11)

It will be convenient to write the three mixture weights 1T{,
i = 1,2,3, (which are evidently connected) in the form of a product of two
parameters:

7n = 0p, 7T2 = (1 - P), 7T3 = 0(1 - p), (5.12)

where 0 < (3 < 1 and 0 < p < 1. Hence, (1 — /3) equals the total
probability mass in the central stage of the density (5.10) and p equals the
conditional probability of being in the first stage given that one is not in the
central stage of the density (5.10). Equation (5.12) assures that

3

J2^i = PP+{1-P) + P{1 - p) = 1. (5.13)
t=i

From the definition of the boundary ratio parameter a (see Eqs. (5.3) and
(5.8)), utilizing (5.5), (5.7), (5.10) and (5.12), we have

(3(l-p)fX3(c\c,d,n3) ~~ (I - p)(b - a)n3'

where fx(b\Q) = Urn fx(x\Q) and ft(c\B) = Urn fx(x\Q), yielding
x ] b x I c
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„ = L* ~ a ) n 3 Q (515)
(d- c)ni + (b - a)n3a

 v '

Evidently, p does not depend on /3. Also the stipulations (5.11) imply
0 <p<l.

Continuity of (5.10) at b will follow from the stipulation that

Mb\Q) = ti(b\e), (5.16)

implying by (5.12) and (5.10) that

0pfxM^b,nx) = (l~P)fX2(b\b, c,a). (5.17)

Utilizing (5.5), (5.6), (5.17) (namely expressing (5 as a function of p, fxt ( • )
and fx2( ' ) ) a n d (5.15), we arrive at

0 = Mb ~ a)nz + 2(d - c)m
2a(6-a)n3 + (a + l)(c-6)nin3 + 2(d-c)nr

From the stipulations in (5.11) it follows thatO < (3 < 1. The form of (3 as
given in (5.18) assures continuityof fx( • \@) (Eq. (5.10)) at b. Analogously
to (5.17) it follows that

(3(1 - p)fXi(c\c, d, n3) = (1 - P)fx2(c\b, c, a). (5.19)

(The reader is advised to check this last derivation.) The continuity of
fx{ • |Q) (Eq. (5.10)) at c is implied by (5.12) and (5.19). Substituting (5.15)
and (5.18) into (5.12) we arrive, after some straightforward algebraic
manipulations, at the mixing probabilities 7Ti, i = 1,2, 3 as given in (5.9).
Finally, substitution of (5.5), (5.6), (5.7) and (5.9) into (5.10), yields (5.1). O

Setting ni = n3 = 2 and a = 1 in (5.9), we obtain the mixing
probabilities given in Eq. (2.27) that accompany the trapezoidal distribution
(2.22). Whereas the mixing probabilities in Eq. (2.27) are solely functions of
the durations of the three stages of the original trapezoidal density (2.22), in
the more general case (5.9), the mixing probabilities are functions of the
growth and decay parameters n\ and n 3 and the boundary ratio parameter
a as well. It is illuminating to note that the distance of the first stage
(b — a) (third stage (d — c ) ) in (5.9) is weighted by the decay rate n 3

(decay rate n i ) in the third (first) stage.
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We note, in passing, that fx2 (•) can be taken to be a conditional TSP
(see, Eq. (4.2) in Chapter 4) on [a, d] truncated to [b, c] (rather than the
linear form in (5.6)), which would result in a further extension of the
trapezoidal distribution presented in Eq. (2.22) permitting oscillation in the
central stage. We encourage our readers to pursue die properties of this
modification.

5.2,2 Mixing behavior of the component density functions

Some additional insight about the mixing behavior of the component
density functions fxt, i = 1,2,3, in the generalized trapezoidal pdf (5.10)
(or (5.1)) can be gained by studying the limiting behavior of the mixing
probabilities presented in (5.9). From (5.18) one easily obtains
0= (l + G)-\ where

(q + l)(c-&)
G = 2(d-c) 2a(b-a) • (5-2°)

n3 rti

From the conditions on the parameters given in (5.11) we have G > 0 and
from the relationship between /3 and G, the largest (least) )3 corresponds to
least (greatest) G.

As n\ —» 00 and 713 —> 00, G —» 00 and hence (3 J, 0 (the limiting
"least" case). Thus, from 7r2 = 1 - /3 (Eq. (5.12)) it follows that no
probability mass is attributed to the first and last stages in the limit when
n\ —> 00 and 713 —» 00 and the density (5.1) converges to the middle part
fX2(x\b,c,a) (Eq.(5.6)).

As ni i 0 and 123 j 0, G | 0 and /3 f 1 (the limiting "greatest" case).
Hence, from 1x2 = 1 — /? (Eq. (5.12)) it follows that all the probability mass
is attributed to the first and last stages in the limit as n\ J. 0 and 713 J, 0
(Eqs. (5.5) and (5.7)). It is straightforward to verify that as n\ j 0 (n3 | 0)
the density /*-, (ajjo, b,n{) (the density/^(a;|c, d, 713)) converges to a
single point mass of 1 at a (at d). Consequendy, the density (5.1) converges
to a shifted Bernoulli distribution where the probability mass 7Ti at a and 7T3
at d depend on the relationship between m and 123 as n\ j 0 and 713 J. 0.
From the mixture probabilities (5.9) it follows that by letting n\ j . 0 and
713 I 0 while keeping 711/713 = ft (constant) we arrive at
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{ 2a(b-a)
^ -*• 2a(b-a)+2(d-c)K ' ,r 9 1 .

2(d-c)it ^ - ^
71-3 ~* 2a(6-a)+2(d-e)« •

Letting n\ { 0 and keeping 713 fixed, it follows from (5.9) that in this
case 7Ti I 1, 7T2 J, 0 and7T3 J, 0. Hence, all the probability mass is attributed
to the first stage and the density (5.1) converges to a single points mass of 1
at a. Vice versa, letting n\ —* 00 and keeping TI3 fixed, we have TTI | 0. In
this case no probability mass is attributed to the first stage and

{ TT -> (a+l)(c-6)n3

^ (a+l)(c-6)ns+2(d-c) •
Consequently, the density (5.1) reduces to a mixture of the two component
densities fx2(x\a,b,c) and fx3(x\c, d, n.3) assigning the limiting
probability 1x2 (probability ^3) in (5.22) to die first density (the second
density). Figure 5.4 provides some examples of the pdf (5.1) obtained by
letting m —> OO.

2 , , 1.4 -, — .
A 1.2 B I V

1-5- ^ ^ ^ A 1 ! \
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Fig. 5.4 Examples of generalized trapezoidal pdf s (Eq. (5.1))by letting n\ —* oo.
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With the exception of Fig. 5.3D, the subfigures A, B and C in Figure
5.4 accompany the examples A, B and Cin Fig. 5.3. Figure 5.4D is the
resulting pdf obtained from Fig. 5.3H when n\ —> oo. Similar conclusions
and plots of the pdfs can be drawn by letting n% j 0 and keeping n\ fixed.

5.3 Basic Properties of the Generalized Trapezoidal Distribution

In the sections below we shall briefly describe the cdf and the moments of
the generalized trapezoidal type distributions.

5.3.1 Cumulative distribution function

The derivation of the cdf associated the pdf (5.1) follows most naturally by
integration from the structure (5.10), the mixture probabilities (5.9) and the
functional form of the component densities (5.5), (5.6) and (5.7), yielding
after straightforward algebraic manipulation

•^m^y\ ?ota<x<b

{aMHMWe) x t {otb<x<c,

Fx(x\Q)=\ r (Q%(2c-^n <5-23)
\ I + 2 (c-6) /

1 - M ^ r forC<*<dri3 y a-c J ' —

where the normalizing constant C(O) is given by Eq. (5.2). The reader is
strongly encouraged to verify this result in detail. Evidently, the cdf
Fx{x\Q) vanishes for values of x < a and remains a constant 1 for all
X > d. Setting n\ = n^ = 2 and a = 1 in (5.23 ) and (5.2) we obtain the
familiar cdf (2.24) presented in Chapter 2 of the trapezoidal distribution.

5.3.2 Moments

Utilizing the component representation (5.4) of the pdf (5.1) and the
mixture probabilities 7Tj, i = 1,2,3 (Eq. (5.9)) we arrive at
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E\Xk\Q\ = 7nE[X1
fc|a,6,ni] + (5.24)

ir2E{Xl\b, c, a] + TT3E[X$\C, d, n3].

The pdf s of the component random variables X\, X2 and X$ are defined
in (5.5), (5.6) and (5.7), respectively. From these pdfs we obtain the
moments around zero of the component variables:

25[X*|a,Mi] = £ ( * y - ' ( 6 - a ) ' - ^ , (5.25)

^.vk.u , 2(1-a) ck+2-bk+2

2(ac - b) ck+1 - bk+1

(a + l)(c - bf k + 1 '

(Compare with Eq. (2.29) in Chapter 2). Note, the symmetric analogy
between E[Xk\a, b, ni] and E[Xk\c, d, 123]. Numerical calculations of the
A;-th moment E[X |O] given by (5.24) are quite innocuous employing the
modern computer technology and utilising the closed form expressions for
the A;-th moment of the component random variables Xi,X2,X% (5.25)
and the mixture probabilities 7TJ, i = 1, 2, 3 given in (5.9). Deriving closed
form expressions for the moments E^X^QJof the random variable
X ~ fx(x\@) (Eq. (5.1)) in its general form, although somewhat tedious, is
actually straightforward and does not present intrinsic difficulties.

Setting k = 1 in (5.25) we obtain for the component variables:

E[X1\a,b,n1] = ̂ f , (5.26)

F\Y\h 1 2(1-a) c3-fr3 (ac-b)(c + b)
E[X216,c,a]=(a + i ) ( c _ 6 ) 2 3 + ( a + 1 ) ( c _ 6 )

E[X3\c,d,n3] = ^-TT.

(Compare with Eq. (2.30) in Chapter 2.) Next, the substitution of (5.26) and
the mixture probabilities (5.9) into the general expression for the fc-th
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moment (5. 24) (using k = 1) yields the following expression for the mean
of a generalized trapezoidal distribution

^r-,,,^1 s,,^\ ( a(b — a)(a + nib)
S[X|e i = C ( 9 ) x | l

n i ( 7 ; ; + 1 )
i ; + (5.27)

(2 + a)c2 + (a - \)bc - (2a + 1)62 ( d - c ) ( n 3 c + d) |

6 + n3(n3 + l) / '

where the constant C(0) is given by Eq. (5.2) and

6 = {a,b,c,d,nhn3,a}.

(Compare with (5.26).) Analogously, we obtain from (5.25) (by substituting
k = 2 in (5.25)) the second moments around zero of the component
variables:

E\X\\a, b, ni] = a2 + 2a(b - a ) - ^ - + ( 6 - a ) 2 ^ - , (5.28)
ni + 1 n\ + I

n [ v 2 l l . 2 (1-a) c4-fe4 2(ac-b) c3 - fc3

£[X3
2|c, d, n3] = d2 - 2d{d - c)~^~ + (d - c ) 2 - ^ - .

ri3 + 1 ri3 + 2.

From here on the expression for second moment around zero of a
generalized trapezoidal distribution follows as:

E[X2\e]=C(Q) x (5.29)

I" ,, ,fa 2 2o(6-o) ( 6 - a ) 2 \ ,
\a(b - a)< — -\ -+- — > +
I \ ni 7i! +1 m + 2 J

(1 — a) , o 9, ,9 ,Q^ (ac — 6) , 7 , ,?.
±——L {c3 + c26 + c b2 + b3} + ̂ —-—- {c2 + cb + b2} -

K 2^-d) (c-^y

Finally, setting n\ = n3 = 2 and a = 1 in (5.27), (5.29) and (5.2) we arrive
at the elegant formulas (2.31) and (2.32) in Chapter 2 for the mean and the
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second moment around zero, respectively, of a trapezoidal distribution with
pdf (2.22).

5.4 Concluding Remarks

In the course of the construction of a continuously connected generalized
trapezoidal distribution some interesting features have merged, worthy of
specific mention. Firstly the structure of these distributions — formally a
mixture of three components — differs from the commonly encountered
mixtures (see, e.g., Everitt and Hand (1981)) in at least two aspects: (1)- the
mixing parameters are of a special form (being a product of two quantities
(Eq. (5.12)), each performing a function needed to properly link the three
components in Eq. (5.10) in a continuous manner (2)- the components
represent different distributions each capable of taking a variety of forms.
Next, while classical continuous distributions are usually characterized by
the property that continuity is generated by means of a mathematical
function that results in a special form of the distribution, in our case
continuity is generated by appropriately linking the three relevant parts of
the distribution, thus providing an additional flexibility. We have attempted
to demonstrate a natural, but so far not well-known, geometrically oriented
method of constructing versatile and flexible family of continuous
distributions on a compact set. The procedure depends on the values of the
parameters of the constituent distributions and illustrates a new form of a
mixtures consisting of nonlinear components. The family enjoys transparent
physical interpretation and is likely to have potential applications in
engineering, communication, behavioral and medical sciences. Estimation
of parameter has not been discussed in this chapter. We trust that readers
acquainted with Chapters 1-3 will find this an interesting exercise.
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Chapter 6

Uneven Two-Sided Power Distributions

Most of the distributions in the previous chapters enjoy certain symmetry
characteristics and do not exhibit discontinuities in their densities. The
concepts of symmetry and asymmetry permeates a multitude of phenomena
in the physical world and play an important role in numerous human
activities, in particular in Arts and Sciences. The symmetry of a wheel
generates radial symmetry, which is present in many statistical distributions
including the basic multivariate Gaussian (or normal) distribution. On the
other hand, asymmetric generalizations of the Gaussian family (with a
single jump discontinuity) have been available for a long time, perhaps most
notably with applications in psychology, communication theory and signal
detection (see, e.g., Fechner (1897); Kanefsky and Thomas (1965); Barnard
(1989)). It turns out that for die four-parameter TSP distribution introduced
in Chapter 4 possessing pdf (4.2) a structure corresponding to an
asymmetric Gaussian distribution can be obtained — to be designated as
Uneven Two-Sided Power (UTSP) — by appropriately manipulating the
central part of generalized trapezoidal distributions with the pdf (5.1)
discussed in Chapter 5. The UTSP distribution seems to be suitable for
modeling diverse phenomena occurring in financial engineering such as
production analysis, standard auction models and equilibrium job search
problem. In this chapter its properties are presented and a maximum
likelihood (ML) estimation procedures for the threshold location and jump
size are developed. A rather elaborated example of an ML procedure is
provided utilizing a sample of standardized log differences of bi-monthly
US Certificate Deposit interest rates for the period 1966 - 2002. The
corresponding time series was constructed using a widely used Auto-
Regressive Conditional Heteroscedastic (ARCH) model (see, e.g., Tsay
(2002) for a description). The example also seems to demonstrate the
practical usefulness and applicability of the concepts and topics developed
in the first 5 chapters of this text.
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6.1 Motivation

The well-known book by H. Weyl (1952) delineates numerous situations
which involve symmetry. In architecture the ancient Greeks were the
promoters of symmetry in their classical structures and monuments. In
modern arts, the Dutch artist M.C. Escher (1889 - 1972) achieved striking
effects in exploring mathematical symmetry (see, e.g., Escher (1989)). The
basic symmetry operations: reflection, rotation, double reflection and
translation constitute the symmetry group for an object or a figure. It has
direct applications in crystallography, amongst other fields. The distinction
of symmetries with respect to a given point (center of symmetry), a line
(axis of symmetry) or a plane (plane of symmetry) are also important for
applications. Human beings and many animals have symmetric proportions.
A line from a human's nose to the ground would divide him/her into equal
symmetric parts - manifesting bilateral symmetry. The symmetry of a wheel
generates radial symmetry, which (as mentioned in the preamble) appears in
many statistical distributions including the basic multivariate Gaussian (or
normal) distribution. For a more recent, authoritative discussion of the
topic of symmetry see Zabell (1988).

Besides the applications of asymmetric generalizations of the Gaussian
family of distributions (depicted in Fig. 6.1) mentioned above, these types
of distributions have also been proposed with an increasing frequency in
econometric applications as error terms in linear regression models. Aigner
et al. (1976) were apparently the first to propose a model with a conditional
density jump in the context of production analysis; more recent applications
can be found, for example, in standard auction models and the equilibrium
job search problems. In standard auction models (see, e.g., Donald and
Paarsch (1996)) the density jumps from zero to a positive value and in the
equilibrium job search applications it jumps from one level to another,
inducing kinks in the cdf (see, e.g., Bowlus et al. (2001)). Chernozhukov and
Hong (2001) discuss more recently the regression inference problem for the
model originally suggested by Aigner et al. (1976).

By shrinking the central part of the generalized trapezoidal distribution
(pdf (5.1) in Chapter 5 and Fig. 5.4 provide some examples) to a single
point Kotz and Van Dorp (2004) arrive at the Uneven Two-Sided Power
(UTSP) distribution involving four parameters (in the case when the
boundaries, which determine the range, are assumed to be known) with a
jump discontinuity at a single point similar to that of the asymmetric
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generalization of the Gaussian distribution (see, Fig. 6.1). The axis at which
the jump discontinuity occurs will be referred to from hereon as the threshold
axis. The transition from the continuous generalized trapezoidal case to the
discontinuous UTSP case can easily be achieved by just one single operation
to be demonstrated in the next section.

5 _

4 >

3 / •

0 1 1 ^ i 1 1 - ^ 1
-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60

Fig. 6.1 Example of an asymmetric Gaussian distribution.

6.2 Derivation of UTSP Family by a Single Limiting Operation

Recall (Chapter 2) that trapezoidal distributions with pdf (2.22) consisting
of three stages are somewhat restrictive, since the growth and decay (in the
first and third stages) are limited here to linear functions while the middle
stage represents complete (flat) stability rather than a possible (mild) incline
or decline. A specific example of a trapezoidal distribution is depicted in
Fig. 6.2A.

Generalized trapezoidal distributions inherit the four basic trapezoidal
parameters a, b, c and d, and require, for its complete description, two
additional parameters n\ and ns specifying the (not necessarily linear)
growth and decay rates at the first and third stages of the distribution
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1.6-. A
1.4
12 A \
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0.6 / i i \
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0.8 - / ; ;\
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Fig. 6.2 A: A trapezoidal distribution with parameters a = 0, b = 0.3, c = 0.8 and d = 1;
B: A generalized trapezoidal distribution with parameters a = 0, b = 0.3, c = 0.8, d = 1,

ni = 1.5, 713 = 3, and a = 1.5.

respectively, and also the boundary ratio parameter a > 0 satisfying Eq.
(5.3) in Chapter 5. As shown in Chapter 5, Sec. 5.2 the density function of a
generalized trapezoidal distribution is given by (5.1), where a < b < c < d,
rt\ > 0, ns > 0 and a > 0. (Here the growth and decay may exhibit a
nonlinear convex or concave behavior and fx(b) and fx(c) do not
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necessarily take the same value — recall the boundary ratio parameter
a = fx(b)/fx(c) given in Eq. (5.3).) Figure 6.2B provides a graph of the
pdf of a standard generalized trapezoidal distribution with support [0,1].
The three stages of both trapezoidal distributions and their generalization
described by the pdf (5.1) are indicated in Fig. 6.2 by vertical dotted lines.

Figure 6.3 displays the resulting UTSP distribution generated from the
generalized trapezoidal distribution in Fig 6.2B by collapsing the central part
in the pdf (5.1) to a single point. The functional form of a UTSP pdf,
obtained by letting c J. 6 in the pdf (5.1) is

fx(x\a,b,d,ni,nz,a)= (6.1)

(' \ n\ — \

b-aJ , t o r a s z < o
) /j \H3-1

a(b-a)n3+(d~b)ni \d-b J ' I O r ° - X ^ °
^ 0, elsewhere,

4 5 f I
16 "A

30 / !

a = 0 b = c = 0.3 d = 1

Fig. 6.3 Example of an Uneven Two-Sided Power (UTSP) distribution with parameters
a = 0,6 = 0.3, d= 1,TH = 1.5, n3 = 3anda = 1.5.
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with support [a, d] and the corresponding cdf is given by

Fx(x\a,b,d,ni,n3,a) -
' 0, for x < a

a(b-a)n3 /s-q^"1 r < ,

a(b-a)n3+(d-b)ni \b-a) ' tot a S X < 0

1 (rf-fc)"i (i^Y3 {oth<X<d
1 a(6-a)n3+(d-6)m \d-b) ' I O r ° - X ^ °
1, for x > d.

Substituting a = 1 and nj = 713 = n into (6.1) we arrive at a four-
parameter TSP distribution with the pdf (4.2) discussed in Chapter 4. Recall
that a four-parameter TSP distribution was in turn obtained by generalizing
the triangular family of distributions (1.1) presented in Chapter 1.

6.3 Some Properties of the Uneven STSP Distribution

In deriving the properties we shall confine ourselves to an Uneven Standard

Two-Sided Power (USTSP) distribution with the support [0,1] by setting

a = 0, d = 1 and b = 6 (0 < 6 < 1) in (6.1). This yields the density

w ; ^ - 1 • (6-2)

where the single mixing probability 7Ti, 0 < 7i"i < 1 (see also the expression
for 7Ti in Eq. (7.11) in Chapter 7) is given by

_ aOnz _ dans

a6n3 + (l-9)ni Q(anz - n{) + n\

Properties for the general case (6.1) follow directly from those obtained in
the standardized case (6.2) by utilizing a simple scale transformation.

Denote by

e = {0 ,n i ,n 3 , a} , (6.4)

a vector of the four parameters, where 0 < 6 < 1, ni,ri3 > 0 and a > 0.
The possible geometrical shapes of the USTSP pdf given by (6.2) are similar
to diose of the STSP distribution (3.11) (see Fig. 3.4 in Chapter 3) including
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the J-shaped and U-shaped forms while, in addition, allowing here for a
jump discontinuity at the threshold 9. Note that it follows from (6.2) and
(6.3) that, for example, as TI3 —> 00 the mixing probability 7i"i —• 1. This is
because for all X such that 9 < x < 1, (1 — x)/(l — 9) < 1 in the second
branch of (6.2). The limiting behavior of fx(x\Q) and the mixture
probability TT\ as a function of its parameters will be discussed in more
detail at the end of this section.

Setting a = 1 in (6.2) yields a continuous generalization of the STSP
pdf (3.15) (with two parameters) in Chapter 3 with the pdf:

{
/ \ni-l

en3+(i-6)ni{e ' tor(JSz<tf
/ N n 3 - 1 (6-5)

allowing for different powers n\ and n^ in the two respective branches of
the STSP density (3.11). We shall refer to the three-parameter densities
given by (6.5) as Generalized STSP (GSTSP) distributions. In the limiting
cases 9 = 1 and 9 = 0, the pdf (3.11) or the pdf (6.5) simplify to a power
distribution or its reflection, respectively. The reader is advised to study Fig.
A.I and Table A.I in Appendix A to further clarify and analyze the
relationships between the Triangular, Trapezoidal, TSP, GTSP, UTSP and
Generalized Trapezoidal distributions. The five-parameter GTSP
distribution may be obtained from (6.5) using a linear scale transformation
(b — a)X + a and appears in a reparameterized form in Schmeiser and Lai
(1985).

The cdf associated with density (6.2) is continuous but non-
differentiable at the threshold axis at 9 and is given by

' 0 , for x < 0

TTiff)"1, f o r O < : r < #
Fx(x\e)={ W , ,n3 (6.6)

l - ( l - 7 r 1 ) ^ | 5 f ) , f o r 0 < z < l

. 1 , fo rx>l .

From (6.6) (the cdf of the USTSP distribution) we obtain that

Fx(0\e) = TTi. (6.7)

Hence, the total probability mass is split into two parts ir\ and (1 — ir\) at
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the threshold 9 (Eq (6.3)). Recall that for the STSP distribution (Eq. (3.11)
in Chapter 3) expression (6.7) simplifies to Fx{9\@) — 0 regardless of the
value of n. The latter property is referred to as the "hinge" property of the
STSP family (see Property 2 in Sec. 3.2.3).

From (6.2) and (6.3) we have

#(019) UmJx{x\B) (l-;ri)a

While in case of a generalized trapezoidal distribution a. was referred to as a
boundary ratio parameter, for the USTSP distribution a could be
interpreted as a jump parameter. In case a. = 1, there is no jump at the
threshold 9, in case a > 1 (a < 1) the density jumps down (up) at 9, with
larger (smaller) values indicating a larger (smaller) jump down (up) of the
density. The size of the jump discontinuity at the threshold 6 may be
directly derived utilizing (6.2) and the definition of the mixing probability 7i"i
(6.3) to be

l/i(»ie)-tf(»ie)l = X + " ( ' ^ -

(Observe that for USTSP distributions a = 0, d = 1 and b = 9.) The
reader is advised to develop graphs of USTSP distributions for a)
0 < a < 1, b) a = 1 and c) a > 1.

The k-th moment of USTSP distributions (6.2) follow directly using the
(inherited) mixture structure (5.4) in Chapter 5 of the generalized
trapezoidal distribution {without the central component X%), the mixing weight
7Ti (6.3), and the A;-th moment of a (one-sided) power distribution on [0, 9]

—±-— (6.8)
ni + k K '

as well as the k-th moment of the reflected power distribution on [9,1]

n 3 V . P ' , (6.9)

yielding
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E[Xk\Q\^-nl-^~+ (6.10)

^hS©^]—
Consequently, (substituting k = 1)

\_n\ + 1J [ n3 + 1 J

The mean value of a power distribution on [0,9] (of a reflected power
distribution on [1,0]) in (6.11) also follows directly from the mean value
formula (4.6) of a TSP distribution in Chapter 4 by substituting a = 0,
m = 9,b = 9 (substituting a = 9, m = 9, b = 1) in (6.7). Observe the
substantial difference in the structure of Eq. (6.8) as compared to Eq. (6.9).
This emphasizes the intrinsic differences between a power distribution on
[0, 6] and a reflected power distribution on [9,1].

The second moment is obtained from (6.10) by setting k = 2, yielding

1 ' J iL(ni + 2)(m + l)J v '

^-^l (n3 + 2)(n3 + l) J-
Substituting for TTI as given by (6.3) into (6.11) and (6.12) we arrive at the
expressions for the first two moments in terms of the four parameters
ni , r i3 , 0and a, respectively. A derivation of a closed form expression for
the variance (o ) is somewhat tedious, but straightforwardly follows
utilizing (6.3), (6.11) and (6.12) and the definition

a2 =E[X2\G}- E2[X\0]. (6.13)

Using modern computational facilities one may easily calculate higher
moments of USTSP distribution from (6.10) including skewness and
kurtosis, which are of practical importance.

The behavior of the mixing probability 7Ti given by (6.3) as a function
of the jump parameter a and of the threshold parameter 9 — at which the
jump occurs — is of special interest. Figure 6.4 displays the mixture
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probability 7i"i as function of 9 for five different values of a from 0.1 up to
10 for the case when n\ = 713 = 2. Compare the case a — 10 in Fig. 6.4
corresponding to a small value of 1T\ for a bulk of the values of 9 with the
case a = 0.1 in which case TTX > 0.8 for all 6 G [0.29,1].

I 0.00 0.20 0.40 0.60 0.80 1.00

L e

Fig. 6.4 Behavior of mixture probability ~K\ given by (6.3) as a function of the threshold
parameter 9 for different values of the jump parameter a, with m = n.3 = 2.

Setting a = 1, n i = n3 = 2in (6.2) and (6.3) results in the triangular
distribution — in this case 7Ti = 9 — with the property that the probability
mass to the left of the mode equals the distance of the mode to the lower
bound relative to the total range of the support. This property is preserved
by the TSP generalization (4.2) (in Chapter 4) of the triangular distribution
and follows from (6.7) by substituting a — 1, n\ = 7x3 = n into (6.3).
Hence from Fig. 6.4 we conclude that in the case of the USTSP distribution
with n\ = 123 = n (or equivalently, n\/n^ = 1) the probability mass to the
left of the threshold parameter 9 is less (larger) than its relative distance
from the lower bound when the density jumps up, i.e. a < 1, (down, i.e.
a: > 1). Finally, when (ni/713) < 1 ( > 1) in an USTSP distribution (Eqs.
(6.2) and (6.3)) smaller (larger) probability mass is assigned to the left of the
threshold parameter #than it is in the case 711/713 = 1. The limiting
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behavior of the mixing probability 7fi as a function of one of the parameters
n\, n3, a and 9, while keeping the others fixed, follows directly from (6.3).
In fact, 7Ti I 0 (TTI | 1) when n\ —> oo, or ns j 0, or a | 0, or 9 j . 0
(when ni J, 0, or 713 —> 00, or a —> 00, or 9 | 1). Note the case a = 1 in
Fig. 6.4.

The behavior of the mean J5[.X|©] (6.11) as a function of the jump
parameter a (while keeping the other parameters fixed) follows directly
from (6.11) and behavior of the mixing weight 7Ti(6.3). In fact, when a
increases, the mixing weight 7Ti increases, assigning a larger weight to the
mean value of the power distribution on [0,9] in (6.11) (and a smaller
weight to the mean value of the reflected power distribution on [9,1]) and
hence results in a decrease of -E[X|0]. In a similar manner one can derive
the behavior of -E[X|@] as a function of the other parameters.

Table 6.1 summarizes the limiting behavior of the mixture probability
n\ (6.3), the limiting pdf of (6.2) with the mean E\X Q] (6.11) for various
limiting scenarios. All the parameter components in the parameter vector 9
(6.4) that do not appear in the first column of Table 6.1 are assumed to be
fixed. Some brief comments on the informative results presented in Table
6.1 are in order. The scenarios 1) 9 J, 0; 2) n\ —> 00; 3) 9 | 1 and 4)
113 —> OO all result in a single point limiting density at the values of 9
(specifically, limiting values 0 or 1 of 9 in the cases 1 and 3, respectively).
Also the last two limiting scenarios in Table 6.1 (the 9-th and 10-th row)
keeping n\/n% = /? constant result in the same value of the mixture
probability TV\ (since Trias given in (6.3) depends on the ratio 711/713) but
yield very different limiting distributions: a single point mass at 9 when
Jil,n.3 —• 00 and a two-point Bernoulli distribution (with parameter TTI) at
0 and 1 when n\, n.3 j 0. This is because when n\, n^ J. 0 the structure of
the original pdf (6.2) becomes U-shaped with an antimode at 9. The two
situations a —> 00 and n.3 [ 0 result in the same limiting density (x/9)n*on
[0, 9] and equivalently the situations a J. 0 and ni J, 0 both yield the density
{(1 —x)/{\ -9)}m~l on [0,1]. The reader is encouraged to devise a
graphical representation of Table 6.1.

6.4 ML Estimation Procedure for USTSP Distributions

In this section we shall derive a maximum likelihood procedure for USTSP
distributions that is algorithmically straightforward in terms of elementary
function's evaluations. The reader is advised to compare the discussion
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below with similar discussions of ML procedures dealing with other classes
of TSP distributions in Chapters 3 and 4.

Table 6.1. Limiting behavior of the mixture probability 7rj (6.3),
the pdf (6.2) and the mean U[X|0] (6.11) under a variety of scenarios.
Parameters not mentioned in the first column are assumed to be fixed.

Scenario TTI fx(x\e,ni,n3) E[X\Q]

« ^ o o Tl ->(f)T""1on|P>g] jffi
9 I 0 | 1 single point mass at 0 J. 0

n\ —> oo | 1 single point mass at 9 j 9

"3J0 Tl ->(f)W'"1onlP>gl jfffr

6 f 1 J, 0 single point mass at 1 | 1

" i i o io ->(|Ef)n'"1°°[g,i] T ^ 1

ri3 —»• oo J. 0 single point mass at 9 ] 9

"1)^3 ~^ oo, — a6+%i_g\ single point mass at 9 —*• 9

%=P
ni, n3 | 0 = ae+f{1_e) Bernoulli (iru 1 - 7rx) -»• 1 - 7rx

^ = /? at 0 and 1

Let for a random sample of size m with the values X_ — (X\,..., Xm)
the order statistics be X^ < X@) < . . . < X^my Utilizing the formulas
for the density of USTSP distributions (6.2) and (6.3), the likelihood
C(X_\Q) for X_ is,by definition,
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T - T cmin3 / Xti) \

m /1 V X"3"1

•ft nlTl3 11 ~ x^ )
i i { 1 a 9 n 3 + ( \ - 9 ) n 1 \ 1 - 9 J '

where the integer r is defined so that X^ < 9 < X(r+1), with X/Q\ = 0,
X(m+i^ = 1. Collecting the terms in (6.14) we obtain

£{X 16) = (nin3)
m [— °f 1 x (6.15)

n A(i) TT x ~ A W

, B - ^ l - «
. 1=1 J L »=r+l

The main difficulty in maximizing (6.15) as a function of parameters
ni, «3, a and 9 is due to an irregular behavior of C(X_ | 0) as a function of
the threshold parameter 9. Figure 1.5 in Chapter 1 depicts an example of
£{K I ©) a s function of the 9 for the case n\ = 713 = 2 and a = 1 and
eight (m = 8) order statistics given in Eq. (1.38) in Chapter 1 (containing
multiple local maxima). When n\ = n^ = n and a = 1 in (6.15), C(2L | ©)
reduces to the likelihood associated with the STSP distribution given by Eq.
(3.11). In Chapter 3 (Theorem 5.2, Sec. 5.3) we have shown for the STSP
distribution that under the condition n > l,the maximum of C(2L |©) as a
function of 9 is attained at one of die order statistics X^, i = 1 , . . . , m, (as
indicated in Fig. 5.5). In fact, maximization of C(X_ \ 0) for the case that
one can a priori assess n\ > 1 and 77,3 > 1 can be achieved by devising an
appropriate numerical algorithm which results in the ML estimators a, ni,
713 and 6. A unimodal histogram of the data under consideration could
confirm the precondition n\ > 1 and 713 > 1 of the numerical algorithm.
The procedure presented below seems to be quite intuitive and direct:

I t e r a t i o n k : ( k = 1,2,...)

(Don't confuse this ordinal k with the order of the moments in (6.10)!)
Step 1: Given (ns)^, a/j, and 9^, maximize C(X_ \ ©) for (n\)k+i
Step 2: Given {n\)k+\, Q-k-, and Ok, maximize C(X. \ Q) for (7̂ 3)̂ +1
Step 3: Given {n\)k+\ and (72.3)̂ +1 and 9k, maximize C{X_ j 0) for Q.k+1
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Step 4: Given (nj)fc+iand {nz)k+\ and a/t+i, maximize C{X_ | ©) for 9k+\
Step 5: Go back to Step 1, unless the pre-assigned convergence criterion

has already been met.

Here (ni)fc, (713)̂  denote the values n\ and 713 at the A;-th iteration,
respectively. The convergence criterion in Step 5 corresponds to a failure of
an increase in C{X_ | 0 ) at a pre-assigned tolerance level. A natural starting
point for the algorithm to maximizing C{X_ | 0 ) are the ML estimators for
the STSP distribution (3.11) (for the case n > 1) given in Chapter 3, i.e.

{ #o = ^(?)

(ni)o - Mo - - i ^ y (6.16)

a o = l
where r and M{r) are given by Eqs. (3.29) and (3.30) in Chapter 3,
respectively. Among the first four steps in the fc-th iteration described
above, Step 4 is the most cumbersome (although straightforward) since it
requires maximization of the likelihood (6.15) over m + 1 disjoint intervals
X(r) <9< X ( r + 1 ) , r = 0 , . . . , m, with X ( o ) = 0, ^ ( m + i ) = 1. Details
about these four steps are presented in the next subsection. It is important
to note here that when the algorithm above converges to a solution where
either n\ or 713 is less than 1 (i.e. inconsistent with the precondition n\ > 1
and ri.3 > 1) one cannot interpret the converged estimates a, rt\, 713 and 6
as the ML estimators for the data under consideration.

At a first read the reader may wish to skip the next subsection and
proceed to Sec. 6.5 which presents an illustrative example of the use of the
ML procedure above utilizing the monthly USA certificate deposit rates for
the period 1966-2002. Finally note that the numerical algorithm described
above can easily be modified (by omitting Step 3) to provide a maximum
likelihood estimation procedure for a GSTSP distribution given by die
density (6.5) which does not involve a.

6.4.1 Mathematical details of the ML estimation procedure

Some details related to the first four steps in the /c-th iteration presented in
Sec. 6.4 and the ML procedure maximizing the likelihood given by (6.15)
are provided below. (Compare this description with the procedure
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described by Theorem 3.2 in Sec. 3.3 for a simpler case and note the
modifications that have been incorporated.)

6.4.1.1 Step 1: maximizing over the LHS power parameter n\

Two cases l.A : Xx < ... < X{r) < 9 < X{r+l) and l.B : 9 < X{1)

ought to be considered since these cases represent two different forms of
the corresponding likelihood function.

Case 1.A : Assuming X\ < ... < X^r) < 9 < X(r+1) and intro-
ducing the notation

r v
0 < A - TT-Tr < !» B = (l-6) >0and C = a9n3 > 0, (6.17)

we may rewrite the likelihood function (6.15) in the more compact form

f T7 " 1 m

^ " • ' • ^ " ' i c r k } • (6-18>
From the conditions (6.17) and the expression (6.18) it follows that

f c,{x | m) = o, for m = o
<C(X\ni)>0, fo rn i>0 (6.19)
[ C(X_ I ni) —> 0, as ni —> oo-

Hence £ ( X |ni) (6.18) attains its maximum at some stationary point
n* > 0. Instead of maximizing C(X_ \n{) we equivalently maximize its
logarithm

(ni - l)Log(A) + mLog(ni) - mLog(C + Bn{). (6.20)

Setting dLog{C{X \ n{))/dni = 0 leads to the equation:

BLog(A)(ni)2 + CLog(A)rn + mC = 0. (6.21)

Since the quadratic equation (6.21) in n\ possesses at most two real-valued
solutions, we conclude, utilizing (6.19), that C{X_ \n\) has a unique
stationary point n\ > 0, which may explicitly be obtained from (6.21)
substituting the designations (6.17).
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Case l.B : Assuming # < -X"(i) and rewriting (6.15) using the
designations (6.17) we have

£ U C I " ' ) < x { c r k r (622)

Note that, the term .A™1"1 in (6.18) is not included in (6.22). From (6.22) it
follows, taking (6.17) into account, that

C £(X | m) = 0, for m=0
I C{X j ni) > 0, for ni > 0 (6.23)
( £ ( Z | ni) -> tf"7" > 0, as m -> oo.

Moreover,

Acm m)) f m I™"1 c
-J^r1=m\cTW1} P T B ^ ? > 0 (624)

for n\ > 0, since C and B are both positive quantities. Hence, Case l.B
does not yield a maximum solution for the likelihood C(X | ni). As above,
one could actually rule this situation out by using the starting solution as
given by (6.16) (corresponding to the STSP case) or a histogram of the data
of an unimodal form which contains observations on both sides of the
mode. If however this case does occur, no solution can be obtained and the
algorithm terminates.

6.4.1.2 Step 2: maximizing over the RHS power parameter n}

As before, we shall separately consider the two cases yielding two distinct
forms of the likelihood 2.A : X^ < 9 < X(r+X) < ... < X(m) and 2.B :

8 > X(m)-
Case 2.A: Assuming X(r) <8< -X(r+1) < . . . < X( m ) and intro-

ducing the notation

m 1 — X
0 < V = TT — ^ < 1, E = ad > 0 and T ~ (1 - 6)nx > 0

i = r + l l ~ d

(compare with (6.17)) we rewrite the likelihood in (6.15) as
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Analogously to (6.18) dealing with the LHS power parameter m , by taking
the derivative of Log{C(X \ 713)}, we obtain a unique solution n*z > 0,
maximizing C{X_ | ^3), by solving the quadratic equation

ELn(V)(n3)
2 + FLn(V)n3 + mT = 0.

As in Step 1 (Sec. 6.4.1.1) no solution can be obtained here for Case 2.B
and the algorithm terminates.

6.4.1.3 Step 3: maximizing over the jump parameter a

Introducing the notation

Q = 9n3 > 0 and H = (l - 9)nx > 0 (6.25)

we now rewrite the likelihood (6.15) as

£(z |a )K{feTwF' (626)

As above, instead of maximizing £(2L | of), we can equivalently maximize its
logarithm

rLog(a) — mLog{Qa + 7i}.

Setting dLog{ C(X_ \ a)}/da = 0, we arrive at

(r - m)Qa + rK = 0. (6.27)

From (r — m) < 0 (since the maximum over 6 is a priori assessed to be
attained between X(i) and -X"(m) due to a unimodal histogram of the data),
and

Sign[dLog{£(X \ a)}/da) = Sign{{r - m)Qa + rH},

it follows from (6.27) and taking notation (6.25) into account that
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» = rU r8n3

(m-r)G (m-r)(l-0)m

maximizes C(X_ \a) i*1 (6.26). (Note that an increase in 9 increases the
value of the jump parameter a as indicated in Sec. 6.3.)

6.4.1.4 Step 4: maximising over the threshold parameter 9

Here we shall minimize with respect to 9 the reciprocal of £(X \ 9) given
by (6.15)

* 9) oc {(an3 - ni)B + nx}
m 9^~l>{\ - 9)^~^m^ (6.28)

over the set

X{r) < 9 < X(r+1), 0 < r < m, (6.29)

with -X'(o) = 0, X(m + i ) = 1. The difficulty in minimizing (6.28) over the set
of values (6.29) is that (m + 1) separate disjoint bounded intervals ought to
be considered, each of which could potentially contain the solution
minimizing (6.28). To minimize the reciprocal of the likelihood (6.28), we
shall separately consider the three cases: The intermediate case

Case 4.A: X ( r ) < 9 < X ( r + 1 ) , 1 < r < m - 1, (6.30)

and the extreme positions:

Case4.B:0 < 9 < X{1), r = 0; (6.31)

Case 4.C: X ( m ) < 9 < 1, r = m. (6.32)

Each of these cases yield a potential solution for 0 for minimizing (6.28) to
be denoted 9A, 9B and 9C, respectively. Next, we evaluate (6.28) for these
three values 9 , 9 and 9 and select the one that yields the lowest value of
C^(X | B) given in (6.28).

The intermediate Case 4.A (Eq. (6.30): When minimizing (6.28) over
X(r) < 9 < X( r+1) for a specific value of r, r — 1 , . . . , m — 1, the
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minimum will be attained at either X^ or X(r+i) or at a stationary point 9*
such that X(rj < 0* < X(r+iy Introducing the notation

AC=(n i - l ) r ; M = (n3 - l ) ( m - r ) , (6.33)

denoting the function

gA{9) = 9K{l-9)M (6.34)

and setting dC~l(X \ 9)/dO = 0, we arrive at

((cm3 - m)0 + nj)™"1 L<^(0) + ((on3 - m)0 + ni)^(0) 1 = 0

^ e l t h e r ^ = ^ L _ o r ((ona-nQg + m) = - <^(0)
ni - an3 m 0^(0)

Since for all values of m , ri3, a > 0, the first solution for 0 in (6.35) is less
than 0 or larger than 1 it follows that only the second one can provide a
proper solution X^ < 9* < X( r+i). Hence, using the definition of g^(9)
in (6.34) we obtain

( (cm 3 -n i ) f l + ni) = 0(1 - 0)

{(an3 - nx)(K + M) + m}92 - (6.36)
{m — n\{K + M) + (ari3 - n\)K}9 — n\K = 0.

Expression (6.36) is an ordinary quadratic equation possessing at most two
solutions. Hence, to minimize (6.28) over X^ < 9 < X(T+i), for a specific
value of r, we evaluate the reciprocal of the likelihood (6.28) at 9\ = X^,
9\ = X(r+i) and at the solutions B\ and B\ of the quadratic equation (6.36)
(provided these solutions $3 and 9\ exist and satisfy X(r) < 9* < X(r+iy)
and set #(r) to that value of 8*, i = 1, . . . 4, which yields the minimum of
£ - 1 (X_ I 0*) (6.28) amongst these two, three or four possibilities. Next, we
evaluate the reciprocal of the likelihood £~l(X_\9^) (6.28) for
r = 1 , . . . , J7i — 1 and set 9A to be the value of 0(r) that yields the
minimum of C (X 19^) over the set of values r = 1,... ,m — 1.
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The extreme Case 4.B (see. Eg. (6.31): When minimizing (6.28) over
0 < 9 < -^(i)j T = 0, the minimum is attained at either 0 or X^ or at a
stationary point 9* such that 0 < 6* < -^(i)- Analogously to Case 4.A
additional solutions for 0 < 9* < X^ may be found by solving

((an3 - m)fl + ni) _ - ffB(6>)

m ~ <^(0)

where

(compare with (6.35)) and Ai = (713 — l)m is given by (6.33) (recall that
r = 0 in Case 4.B). Hence, we have

*• = l + n i ( n 3 - l )
l + ( n i - a n 3 ) ( n 3 - l )

Thus, to minimize (6.28) over 0 < 9 < X(i), r = 0, we evaluate (6.28) at
^1 = 0, #2 = ^(1) and #3 = 9* given by equation (6.37) (provided that
0 < #3 < X{1)) and next set BB to be the value of 9*, i = 1, 2, 3 which
yields the minimum of C-1(X \9*), i = 1,2,3, amongst these three
possibilities.

The extreme Case 4.C (see. Eg. (6.32): When minimizing (6.28) over
X(m) ^ ^ ^ 1) r = rni m e minimum is attained at either X(TOj or 1 or at a
stationary point 9* such that X^ < ^ < 1. Analogously to Case 4.A an
additional solution X(m) < 9* < 1 may be found by solving

( ( cm 3 -n i )0 + ni) _ - ffc(fl)
m 5^(0)

where

9c(0) = ^

and /C = (ni — l ) m is given by (6.33) (recall that here r = m). Hence, we
have
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6 = 1 ^Ti Ti 7- (6-38)
( n x - a n 3 ) ( n i - 1) - 1

(Compare with (6.37).) Thus, to minimize the reciprocal of the likelihood
(6.28) over X{m) < 6 < 1, r = m, we evaluate (6.28) at 0 | = X{m),
&2 — 1 and (?| = #* given by equation (6.38) (provided that this solution Q\
satisfies X{m) < 6»3 < 1) and set 9C to be the value of 0*, i = 1,2,3
which yields the minimum of C"1 (X | 0*), z = 1, 2, 3, amongst these two
or three possibilities.

The precondition (n\ > 1, n 3 > 1) for die ML procedure above can
be relaxed to allow for the remaining parameter scenarios (n\ > 1,
0 < n 3 < 1), (0 < n 3 < 1, "3 > 1) and (0 < nx < 1, 0 < n 3 < 1) by
appropriate modifications of Step 4 (Similar to the modification of the ML
estimators for unimodal STSP distribution following the proof Theorem 3.2
in Sec. 3.3 to ML estimators for U-shaped STSP distributions). The readers
are encouraged to investigate these details on their own.

6.5 Illustrative Example

We shall demonstrate the ML procedure for the USTSP distribution
utilizing the mondily USA Certificate Deposit rates for the period from
1966-2002. In Chapter 3 a similar example to the one discussed below used
30-year conventional mortgage interest rates over the period 1971-2003.
This instructive and lengthy example is based on real-world data and
involves some delicate calculations as well as several concepts of modern
time series analysis which may not be familiar to some of our readers. On
the other hand, it contains a few assumptions and conclusions testing their
validity which may not be fully acceptable to a specialist in time series.
Nevertheless we consider tiiis carefully chosen and analyzed example to be
a worthwhile contribution to a real-world statistical handling of data,
providing an analysis of a situation often encountered in economic and
financial applications. Our aim is to construct a realization of a time series
Vk, k = 0,1,2,..., from this data, where the i/^'s are i.i.d. random
variables. This would provide us with an i.i.d. sample for our ML estimation
procedure. To construct such a realization we shall use the (by now quite
common) Auto-Regressive Conditional Heteroscedastic (ARCH) time series
model devised by R.F. Engle (a 2003 Nobel Laureate in Economics) in
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1982 (which was not used in the example in Chapter 3 involving 30-year
conventional mortgage interest rates).

The time series of the monthly CD rates is displayed in Fig. 6.5A
consisting of 446 data points. Denoting the CD rate after month k by ik,
our starting point will be a simple financial engineering model for die
random behavior of the CD rate, i.e. the multiplicative model

i{k+i)i = iu • tk,u (6.39)

where / = 1, 2 , . . . , 446, k = 0 , . . . , [446 • I'1 - l j and ek,i are i.i.d.
random variables (see, e.g., Leunberger (1998)). Figure 6.5B depicts the time
series of the one-step (i.e. monthly) log differences (I = 1 in (6.39)):

Ln(ek,i) = Ln(ik+i) - Ln{ik) (6.40)

totaling 445 data points and Zo being the mondily CD rate in December of
1965. Table 6.2 contains the values of the auto-correlation function

ACF(X, 1) - Corr[Ln(ek+Xil),Ln(tktl)}

widi lags A — 1 , . . . , 6 together widi die Ljung-Box Q statistics
— LBQ(X) — (see Ljung and Box (1978)) and their p-values for testing the

null hypothesis that the auto-correlations for all lags up to lag A are zero.
Tsay (2002) asserts that A « Ln(446) = 6.100 performs better (as far as
statistical power is concerned) dian any other values. Table 6.2 contains the
values of the LBQ(X) statistic up to A = 6. From the corresponding p-
values it follows immediately that this null hypothesis is rejected for all lags
A = l , . . . , 6 .

Figure 6.5C depicts the time series of the two-step (i.e. bi-monthly) log
differences (I = 2 in (6.39)):

Ln(ekt2) = Ln(i2k+2) - Ln(i2k) (6.41)

consisting of [446/2 — l j = 222 data points where as before io is the
monthly CD-rate in December 1965. Table 6.2 also presents the values of
the auto-correlation function

ACF{\,2) = Corr[Ln(ek+x,2),Ln(ekt2)]

with lags A = 1 , . . . , 6 together with the corresponding LBQ(X) statistics
and their p-values. Note that from the p-values associated with the two step
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Fig. 6.5. Monthly US Certificate Deposit Rates from 1966 - 2002
A: Time Series of CD Rates B: Time Series of One-Step Log Differences;

C: Time Series of Two-Step Log Differences.
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differences Ln(tk,2) (6-41) it follows that the null hypothesis (i.e. that auto-
correlations for all lags up to lag A equal zero) is accepted for all lags
A = 1 , . . . , 6 (at the significance level of 4%). In the case of the 222 data
points of the time series (6.41), the lag A « Ln(222) = 5.403 performs
the best in terms of statistical power resulting in the p-value of 0.14 in the
fifth row of Table 6.2. Hence, one may reasonably conclude that the time
series Ln(ek,2) given by (6.41) is serially uncorrelated. (The reader is
encouraged to analyze the situation Ln(ekfl) for die given data.)

Table 6.2. Auto-correlation function, Ljung-Box Q statistic and p-values
for one step log differences Ln{e\tk) (Eq. (6-40)) and two-step log

differences Ln(e2,k) (Eq- (6.41)) with Lags 1,... ,6.

One-Step Log Differences Two-Step Log Differences

Lag ACF LBQ p-value ACF LBQ p-value

1 0.349 54.541 1.52E-13 0.134 4.037 0.04

2 0.092 58.321 2.17E-13 0.040 4.404 0.11

3 0.066 60.291 5.09E-13 -0.034 4.670 0.20
4 0.014 60.378 2.42E-12 0.111 7.478 0.11

5 0.007 60.401 1.00E-11 0.060 8.305 0.14

6 -0.029 60.772 3.14E-11 0.108 10.980 0.09

To test for homoscedasticity (i.e. a constant variance in the time series
(6.41) which is a necessary condition for Ln{ekfi) given by (6.41) to be
i.i.d.) we shall utilize the systematic framework for volatility modeling
provided by the above mentioned ARCH model of Engle (1982).
Specifically, an ARCH(m) model assumes that

ak = okvk, a\ = a0 + aia2
k_x + ... + ama\_m (6.42)

where ak is serially uncorrelated and vk is a sequence of i.i.d. random
variables with mean zero and variance 1. For the data in Fig. 6.5C, involving
Ln(ek,2), we have

I 221
Ln{tK2) = — Y ^ n ^ ) = 0.00561; (6.43)

111 fc=o
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-• 221

*2 = W T Z ^ M 6 * . : ! ) - Ln(ekfl))
2 = 1.419e - 2.

(s2 is the sample variance estimator of Ln(ekt2), k = 1,..., 222.) Hence,
the time series

Lnfakfl) ., ...
a-k — (6.44)

s

may be viewed a realisation of (6.42) (to avoid cumbersome notation we shall
use the same symbol (ifc).It would seem that using (6.43) and rescaling
Ln{ek,2) as in (6.44), one achieves the conditions of a zero mean and
variance 1 of f̂c in (6.42).

To further test these conditions, we present in Table 6.3 the values of
the Auto-Correlation Function (ACF) and Partial Auto-correlation Function
(PACF) of the time series of a\ up to the lag of 5 (since
Ln(222) = 5.403). As the first check we note that the values of the LBQ
statistic (and the associated p-values) and the PACF values (in particular
those in the third row) in Table 6.3 suggest that the time series ak given by
(6.44) is heteroscedastic (as opposed to homoscedastic). From the
observation that a^ being serially uncorrelated (in view of (6.44) and the
fact that Ln{tkfl) are serially uncorrelated) and the PACF values of a\ in
Table 6.3, it follows that ak may be well represented by an ARCH(3)
model (see the third row of Table 6.2 and Tsay (2002) where a detailed
explanation of the theory is provided). We thus obtain the following
equation for of:

a\ = 0.6535 + 0.066570^ + 0.070194ajr_2 + 0.23382a£_3, (6.45)

where the parameters a. = (ao, . . . , 0:3) (Eq. (6.42)) are estimated by means
of the least squares method. An alternative test for conditional
heteroscedasticity is the so-called Lagrange Multiplier test also due to Engle
(1982). This test is equivalent to the usual F statistic for testing c^ = 0,
i = 1 , . . . , m, in the linear regression (6.42) (consult a basic text on time
series or Tsay (2002) for a justification of this procedure). For our data we
have F = 4.9164 and the p-value of 2.5e — 3 strongly confirming the
earlier conclusion of heteroscedasticity of ak as well as the ARCH(3)
setup as given by (6.42) and (6.45). Hence the time series ak is not i.i.d..
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Table 6.3. Auto-correlation function (ACF), Ljung-Box Q statistic, p-values
and partial auto-correlation function (PACF) foraj? (Eq. (6.44)) with Lags 1,... ,5-

Lag ACF LBQ p-value PACF t-Statistic
1 0.096 2.067 0.15 0.096 1.428
2 0.098 4.239 0.12 0.090 1.336
3 0.231 16.395 9.41 E-04 0.218 3.248

4 0.098 18.581 9.50E-04 0.058 0.866
5 0.001 18.581 2.30E-03 -0.050 -0.740

However, the set-up for Gtfc in (6.42) and the values of a^ given in (6.45)
suggest that the standardized time series

i/fc = — , fc = 3 , . . . , 2 2 1 , (6.46)

where a^ are given by (6.44), should be a realization from an i.i.d. time
series (by design), which would allows us to use the standard maximum
likelihood procedures. Indeed the analysis in Table 6.4 suggests that the
time series Vk is serially uncorrelated and homoscedastic — possibly with
the exception of the i-statistic value of 1.423 in the fourth row of Table
6.4. This could indicate the suitability of an ARCH{A) model for v^.
However, using the linear regression to estimate the time series of u\ in
(6.42) for the sequence v\, k = 3 , . . . , 221, results in the value of 0.8048
for the F statistic (for testing that a; = 0, i = 1 , . . . , 4) with the p-value of
0.52 which supports the homoscedasticity hypothesis of the time series
(6.46). From (6.41), (6.44) and (6.46) it follows that the time series u^ may
be interpreted as that of standardized bi-monthly log-differences of US CD
rates from 1966-2002; as above IQ is the monthly CD-rate in December
1965. The empirical pdf of the standardized bi-monthly log-differences Vk
is depicted in Figs. 6.6 and 6.7 together with ML fitted Gaussian (Fig. 6.6A),
asymmetric Laplace (Eq. (3.5) in Chapter 3 and Fig. 6.6B), TSP (Eq. (4.2) in
Chapter 4 and Fig. 6.7A) and UTSP (Eq. (6.1) and Fig. 6.7B) distributions.

For ML estimators of the Gaussian parameters see practically any basic
text in mathematical statistics, e.g., Mood et al. (1974). Kotz et al. (2002)
discuss a ML estimation procedure for the asymmetric Laplace distribution
in some detail. Noting the support [ — 2.90,6.97] of the empirical pdf v^
depicted in Fig. 6.6, the support of the TSP and UTSP distribution in Fig.
6.7 was set (with an ample safety margin) to be [ — 25, 25]. ML estimators
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for the TSP distribution with a given support are provided by Eq. (4.11) in
Chapter 4. Before applying the ML procedures described in Sec. 6.4 for the
USTSP and GSTSP distributions, the data in Fig. 6.5C was standardized on
[0,1] via a linear scale transformation applied to the original support
[ — 25, 25]. Table 6.5 contains the ML estimates of the parameters of the
pdf s in Figs. 6.6 and 6.7 together with those of a GTSP distribution (6.5).
The parameters r £ [ — 25, 25] in Table 6.5 are obtained by applying the

inverse linear scale transformation on the threshold parameter 6 € [0,1],
The graph of the fitted GTSP distribution (6.5) is similar to that of the TSP
one depicted in Fig. 6.1 A.

Table 6.4. Auto-correlation function (ACF), Ljung-Box Q statistic, p-values for Vk, and
partial auto-correlation function (PACF) for v\ (Eq. (6.46)) with Lags 1,... ,5.

v* V
Lag ACF LBQ p-value PACF t-Statistic

1 0.122 3.322 0.07 -0.027 -0.406
2 0.099 5.490 0.06 -0.033 -0.484
3 0.060 6.307 0.10 -0.059 -0.874
4 -0.004 6.310 0.18 0.096 1.423
5 0.031 6.521 0.26 -0.017 -0.252

Analogously to the analysis in Klein (1993) (who studied interest rate
data on 30-year Treasury bonds from 1977 to 1990), Fig. 6.6A shows that
the empirical pdf of the financial data is by far too peaked to be captured by
a normal pdf. The three-parameter asymmetric Laplace (suggested by
Kozubowski and Podgorski 1999) in Fig. 6.6B is much more successful in
capturing such a peak (which is a characteristic of numerous types of
financial data)). From Figs. 6.6 and 6.7 we also observe (at least by a careful
visual comparison) that the UTSP distribution (Fig. 6.7B) provides a
"better" fit to the empirical cdf amongst these five distributions (Gaussian,
Asymmetric Laplace, TSP, GTSP and UTSP). A more formal fit analysis is
conducted in Table 6.6.

In Table 6.6 the Chi-square statistic

16 ( n p \2

E 1 - 2 ^ <647'
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Fig. 6.6. Empirical pdf for two-step log-differences and ML fitted distributions.
A: Gaussian; B: Asymmetric Laplace.

Table 6.5. Maximum likelihood estimators for Gaussian, asymmetric Laplace, TSP,
GTSP and UTSP distributions depicted in Figs. 6.6 and 6.7.

The support for TSP, GTSP and UTSP distributions is [ - 25, 25],
Gaussian (Fig. 6.6A) £ = 7.24e - 3 a = 1.095
AS Laplace (Fig. 6.6B) £ = - 2.19e - 2 a = 1.033 K = 9.38e - 1
TSP (Fig. 6.7A) r = - 2.07e - 2 n = 32.83
GTSP r= - 1 . 2 5 e - l ni = 38.24 n3 = 29.15
UTSP (Fig. 6.7B) ? = 4.65e - 2 n t = 40.29 n3 = 25.58 S = 2.25
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Fig. 6.7. Empirical pdf for two-step log-differences and ML fitted distributions.
A: Two-Sided Power (TSP) ; B: Uneven Two-Sided Power (UTSP).

is calculated utilizing 16 bins (16 € [\/219, 219/5]) as suggested by Banks
et al. 2001. The boundaries of the bins are selected such that the number of
observations Oi, i = 1, . . . , 16, in each Binz equals 13 or 14, totaling 219
data points. Such a boundary selection procedure partitions the support of
the range of observed data in a similar manner as die "equal-probability
method of constructing classes" (see, e.g., Stuart et al. 1994) while keeping
the bin boundaries of the chi-square statistic the same across the five
distributions depicted in Table 6.6. The corresponding values
Ei,i = 1,..., 16, in (6.47) for the expected number of observations in Bin
i are obtained using
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Table 6.6. Goodness of fit analysis of ML fitted distributions for the 1966-2002 data on

standardized bi-monthly log differences of monthly US CD interest rates.

UTSP GTSP TSP AS Laplace Normal

Bin LB, UBj 0, (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei

1 <-25 -1.482 13 0.77 0.36 0.30 0.06 3.27

2 -1.482 -0.913 14 0.39 0.37 0.90 0.19 3.96

3 -0.913 -0.665 14 0.01 0.05 0.04 0.27 6.3E-05

4 -0.665 -0.521 13 0.44 0.73 0.98 1.43 1.82

5 -0.521 -0.373 14 1.3E-03 0.04 0.21 0.35 1.76

6 -0.373 -0.205 14 2.05 1.30 0.56 0.52 0.49

7 -0.205 -0.125 13 0.09 0.37 1.19 1.07 9.17

8 -0.125 -0.021 14 0.84 2.8E-03 1.9E-05 0.02 5.62

9 -0.021 0.025 14 2.84 11.54 8.78 7.91 33.63

10 0.025 0.108 13 0.97 1.11 0.49 0.32 7.95

11 0.108 0.315 14 0.30 2.06 2.99 3.49 0.06

12 0.315 0.443 14 3.54 1.16 0.79 0.56 2.73

13 0.443 0.713 13 0.20 1.23 1.41 1.79 1.37

14 0.713 1.103 14 0.10 0.68 0.52 0.83 3.03

15 1.103 1.845 14 0.37 0.67 0.17 0.50 6.60

16 1.845 >25 14 0.04 0.52 3.37 1.07 0.11

Chi-Squared Statistic 12.96 22.19 22.70 20.38 81.57

Degrees of Freedom 11 12 13 12 13

P-value 0.296 0.035 0.045 0.060 < 1.00E-6

Degrees of Freedom (Disc.) 9 10 11

P-value (Discounted) 0.164 0.014 0.019

K-S Statistic 3.76% 5.58% 4.71% 7.65% 12.75%

_SS 0.051 0.105 0.068 0.194 1.126

Log-Likelihood -297.04 -302.83 -304.45 -302.55 -332.39

Ei = 2\V{F{UBi\G) - F(LBi\e)},

where F( • |O) is the theoretical cdf, 0 are the ML estimators for the
parameters given in Table 6.5 for each distribution and the bin boundaries
(L-Bj, UBi) are presented in Table 6.6. Evidently the Gaussian distribution
produces the worst fit with 12 out of the 16 bins contributing a value 1.00
or more to the chi-squared statistic (6.47). In particular the very high value
33.63 for Bin 9, containing the peak in the empirical pdf, reconfirms the
conclusion obtained from Fig. 6.6A that the Gaussian distribution in no
way represents such a "peak". While the other fitted distributions (UTSP,
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GTSP, TSP and asymmetric Laplace) perform much better from bin to bin,
Bin 9 by far contributes the most to the chi-squared statistics regardless of
the type of distribution, except for the UTSP case (where it provides the
second largest value).

The UTSP distribution yields a better value in terms of the chi-squared
statistic not only due to a substantial smaller value in Bin 9, but also because
the remaining bins in the UTSP case contribute in total the least to the
overall value of the chi-squared statistic compared with the other four
distributions, thus overall more correctly tracing the empirical distribution.
In addition, the UTSP distribution results in the largest p-value of the chi-
squared hypothesis test taking into account the number of parameters of
each distribution to determine the degrees of freedom. This observation
also applies to the second pair of p-values and degrees of freedom
calculated by discounting two additional degrees of freedom for the
boundary parameters [ — 25,25]. (It is not quite clear that these two
degrees of freedom should be discounted since the boundaries — 25 and
25 were not formally estimated from the data but rather obtained by
observation.)

Table 6.6 also includes the popular Kolmogorov-Smirnov Statistic D
(see, e.g., Stuart eta/. 1994)

D = Max {Di\i = l,...,219} (6.48)

where

A = Max{\1-^ - F(X(i)|e)|, | ^ g - F(X{i)\G)\), (6.49)

as well as "an intuitive measure of fit"

2 1 9 / ? ~ \ 2

i=l

denoted by Sum of Squares (SS) (reminiscent of the sum of squares in linear
regression analysis) and the log-likelihood

219

£Ln{ / (* ( 0 | e ) } (6.51)
i=l
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where in (6.49), (6.50) and (6.51), X{i), i = 1 , . . . ,219, are the order
statistics associated with the standardized bi-monthly log-differences i/fc

(see, (6.46)) and as mentioned above the vector © consists of the ML
estimators of the parameters given in Table 6.5. Note that the UTSP
distribution performs best for all the statistics (6.47), (6.48), (6.50) and (6.51)
amongst the five distributions presented in Table 6.6. Somewhat
unexpectedly, the GTSP and TSP distributions outperform the asymmetric
Laplace distribution in terms of the Kolmogorov-Smirnov statistic (6.48)
and the SS (6.50), but not in terms of the chi-squared statistic (6.47) (and its
p-value) and the log-likelihood (6.51) of the data involving Vk. The K-S
statistic and the log-likelihood seem to be much less sensitive to the evident
inappropriateness of the Gaussian distribution in the situation at hand. The
results obtained require of course further elaboration by analyzing the
structure of data representation and taking into account assumptions under
which the selected test statistics are appropriate. In the authors' opinion the
behavior of the chi-squared statistic in the pivotal Bin 9 in Table 6.6
(corresponding to the values in the vicinity of the "peak") strongly justifies
the conclusion about the suitability of the UTSP distribution for the data
under consideration.
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Chaptet 7

The Reflected Generalized
Topp and Leone Distribution

Before reading this chapter the reader is advised to review the material of
the first two chapters. Here we shall present a new two parameter family of
continuous distribution on a bounded domain which has an elevated but
finite density value at its lower bound. Such a situation is encountered, for
example, when representing income distributions at lower income ranges.
The new family generalizes the one parameter Topp and Leone distribution
originated in the 1950's which was discussed in Chapter 2, Sec. 2.1. It is
connected to the rather involved generalized trapezoidal distributions
discussed in Chapter 5 via the slope distribution (5.6) and the reflected
power distribution (5.5) (see also Fig. A.I in Appendix A). Both the slope
and the reflected power distributions served as important building blocks
for the generalization of the trapezoidal distribution. While the family of
beta distributions has been used extensively for modeling bounded income
distribution situations, it allows only for an infinite or zero density values at
its lower bound with a strictly positive mode or anti-mode at the same time
(and a constant density of 1 in case of its uniform member). The proposed
new family alleviates this apparent jump discontinuity at the lower bound.
The U.S. income distribution data for the year 2001 is used to fit
distributions for Caucasian (Non-Hispanic), Hispanic and African-American
populations via a maximum likelihood procedure. The results reveal a
proper stochastic ordering when comparing the Caucasian (Non-Hispanic)
income distribution to that of the Hispanic or African-American
population. The existence of this ordering indicates that although
substantial advances have reportedly been made in reducing the income
distribution gap amongst the different ethnic groups in the U.S. population
during the last 20 years since die eighties of the past century, these
differences still existed in the early years of the 21-st century.
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7.1 Introduction

As it was alluded to in Chapter 3, in an early issue of the Journal of the
American Statistical Association, in 1955, before the appearance of computer
assisted statistical methodology, an isolated paper on a bounded continuous
distribution with the pdf (2.6) has appeared co-authored by C. Topp and F.
Leone which originally received little attention. While the Topp and Leone
distribution utilized the left triangular distribution with the pdf 2 — 2x,
x G (0,1) (depicted in Fig. 2.2A in Chapter 2) as its generating density, Van
Dorp and Kotz's (2004b) generalization of the Topp and Leone distribution
(GTL) utilizes a slightly more general generating pdf

a-2(a- l)x, 0 < a < 2, x e (0,1) (7.1)

(see Fig. 7.1A with a = 1.5). From the restriction that a — 2(a — l)x > 0
for all x £ (0,1), it follows that 0 < a < 2. For the extreme value a = 2,
the generating pdf (7.1) reduces to the left triangular pdf in Fig. 2.2A. We
shall refer to distributions with the pdf of the form (7.1) as slope distributions.
A slope distribution possesses a linear pdf and also plays a central role in
deriving a generalization of the trapezoidal distribution (see Eq. (5.6) in
Chapter 5, which is in a reparameterized form of the pdf (7.1)). For
a € (1, 2] (a £ [0,1)), the slope of the pdf (7.1) is decreasing (increasing).
For a — 1, the slope distribution reduces to a uniform distribution on
(0,1).

Figure 7.IB plots the generating cdf ax — (a — l)x2 for a = 1.5
associated with the linear pdf presented in Fig. 7.1A. Now the generalised
Topp and Leone (GTL) distribution that follows from Fig. 7.1B utilizing
the construction described by Eq. (2.1) in Chapter 2 is depicted in Fig. 7.ID
for the value (5 = 3. The density associated with the cdf given by

{ax - (a - l)x2}3

(compare with Eq. (2.4)) with a = 1.5 is displayed in Fig. 7.1C. Note that,
while a mode in (0,1) is still present in Fig. 7.1C, it has been shifted to the
right. More importantly, the density at the upper bound is strictly positive in
Fig. 7.1C instead of being zero in Fig. 7.2C (which represents the original
Topp and Leone density).

Our illustrative example in this chapter (Sec. 7.5) involves income data
for the US households in the year of 2001. For this purpose we shall
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Fig. 7.1 Constxuction of generalized Topp and Leone distribution from a slope distribution.
A: Slope pdf with a = 1.5; B: The corresponding cdf of the pdf in Fig. 7.1 A;

C: Generalized Topp and Leone pdf with a = 1.5, (3 = 3;
D:The corresponding cdf of the pdf in Fig. 7.1C.

consider the reflected version of the Generalized Topp and Leone (GTL)
distribution utilizing the cdf transformation H(x) = 1 — G{\ — x),
whereG is a GTL cdf on [0,1]. The transformation typically assigns the
mode towards the left-hand-side of its support and allows for stricdy
positive density values at the lower bound. This form seems to be
appropriate when representing income distributions at lower income ranges.
(Compare, e.g., with Fig. 2 of Barsky et al. (2002), p. 668.) The U.S. Income
distribution data for the year 2001 is used to fit reflected GTL (RGTL)
distributions for the household incomes of Caucasian (Non-Hispanic),
Hispanic and African-American populations using a maximum likelihood
procedure. The results reveal stochastic ordering when comparing the
Caucasian (Non-Hispanic) income distribution to that of the Hispanic or
African-American populations. Compared to Americans of Caucasian
origin, African-Americans appear to be approximately 1.9 times as likely
and the Hispanics 1.5 times as likely to have inadequate or no income at all.
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Not withstanding the advances towards equalization of ethnic incomes in
the late 20-th century in the US (see, e.g., Couch and Daly (2000)), the
ethnic income differential has not been eliminated.

Another reason to consider RGTL distributions rather than the
ordinary GTL distributions, is that a drift of the mode towards the left-hand
side mimics the behavior of the classical unbounded continuous distributions
such as the Gamma, Weibull and Lognormal. (We note, in passing, that
these three distributions are in a strong competition amongst themselves for
many years as to which is the best one for fitting various phenomena in
economics, engineering and medical applications.) One can therefore
conjecture that application of RGTL distributions is definitely not limited
to the area of income distributions.

7.2 Cumulative Distribution Function and Density Function

The four parameter RGTL distribution with support [a, b] has the cdf

f(*kM,« = l-(^)V( t t-l)(^)}9 W
where

a < x < b, 0 < a< 2and/3> 0. (7.3)

Recall that a is the parameter of the generating slope distribution.
Evidently, the cdf value at the lower bound o (upper bound b) equals zero
(one). The pdf follows from (7.2) to be

f(x\a,b,a,(3) = JL^ft^Y"1 x (7.4)

{"-("-^rv^Off)}'
with the same constraints (7.3) on x, a and (5 (compare with Eq. (2.6) in
Chapter 2). From Eq. (7.4) it follows that, in particular, at the endpoints the
density becomes

/ ( a l a , 6 , a , / ? ) ^ ^ ( 2 ~ a ) (7.5)
0 Qi

and
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(0 0>1
f{b\a,b,a,0)=l £ 0 = 1 (7.6)

[ —• o o a s z j & 0 < 1 .

Equation (7.5) shows that the RGTL family allows for arbitrary density
values at the lower endpoint a. The standardized versions of the TL pdf
and cdf follow by substituting b = 1 in Eqs. (2.6) and (2.7) and are given by
Eqs. (2.5) and (2.4) in Chapter 2, respectively. Figure 2.3C in Chapter 2
depicts a graph of a standard TL distribution with parameters 6 = 1 and
0 = 3 in Eq. (2.6). Figure 7.2A displays its reflected version.

Note die transition of die form of graphical representations of die pdfs
from Fig. 7.2B to Fig. 7.2D via Fig. 7.2C which all have die same value of a
but decreasing values of 0. Observe that in case of Fig. 7.2B die pdf
assumes a similar form to that of the reliability function 1 — i*"( • ) whereas
Fig. 7.2C displays a mode at a value greater than 0. Similarly in Figs. 7.2E to
7.2H the pdfs with the same value of a ( = 0.5) with progressively
decreasing 0 (torn 2 to 0.25 change its form from a monotonically
decreasing concave, via a linear function with decreasing slope, followed by
a mild U-shaped function, up to a monotonically increasing convex curve.
The J-shaped form of the pdf in Fig. 7.2E (o = 0, 6 = 1, a = 0.5, 0 = 2)
resembles mat of a Weibull distribution with the shape parameter less than
one (but on a bounded domain). Note that the structure of the cdf (7.2) is
reminiscent to that of a Weibull cdf. Figs. 7.2G and 7.2H depict a U-shaped
form (a = 0, b = 1, a = 0.5, 0 = 0.75) and a J-shaped form
(a = 0, b = 1, a — 0.5,0 = 0.25), respectively, and are similar to mose
appearing in the beta family of distributions, but consistendy widi a bounded-
density value at its lower bound (Eq. (7.5)).

Evidendy, setting a = 1, 0 = linto die pdf (7.4) yields a uniform
distribution on [a, b]. Hence, analogously to the four parameter beta
distribution with die pdf (4.1) in Chapter 4 and the TSP distribution with
the pdf (4.2), the RGTL family has die uniform distribution on [a, b] as one
of its members. Another common member amongst these three families
(Beta, TSP and RGTL) is the reflected power (RP) distribution on [a, b]
with the pdf

/(xlaALffl-j!^)'-1 C7.T)
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Fig. 7.2 Examples of standard (o = 0, b = 1) RGTL distributions:

A: a = 2, /3 = 3;B:a = 1.5,/9 = 6; C:a = 1.5,/? = 2; D: a = 1.5,0 = 1;

E: a = 0.5,/? = 2;F: a = 0.5,0 = 1; G: a = 0.5,0 = 0.75; H: a = 0.5,0 = 0.25.
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obtained by substituting a — 1 in the pdf (7.4) (namely utilizing the
uniform distribution as its generating density). Substituting a = 0 in (7.4)
also yields the reflected power distribution (applying the left triangular
distribution with pdf 2x on [0,1] as its generating density) but with
parameter 2/3. The reader is encouraged to study Fig. A.I in Appendix A
which connects the above cited distributions.

In addition to the distinguishing feature of the RGTL family — the
existence of pdf s with positive density value at the lower limit with a strict
positive mode — another feature of RGTL distribution (indicating possibly
a lesser flexibility within the same family) is that the pdfs of a GTL
distributions and its reflections possess different functional forms, while the
reflections of TSP and beta pdfs belong to the same functional family.

7.3 Properties of Standard RGTL Distributions

We shall list some properties of the Standard RGTL (SRGTL) distributions
(setting a = 0 and b = 1 in (7.2) and (7.4)) with the cdf

F(x\a,(3) = l-(l-xfla-(a- l ) ( l -s)} (7.8)

and the pdf

f(x\a,/3) = p(l-x)^lx (7.9)

{a - (a - 1)(1 - x)Y'1{a - 2(a - 1)(1 - x)},

where 0 < a < 2and/3 > 0. Results may be directly extended to the
general forms of (7.2) and (7.4) by means of a simple linear transformation.

7.3.1 Limiting distributions

It immediately follows from (7.8) that as (3 -> oo (/? | 0) the pdf (7.9)
converges to a degenerate distribution with a probability mass of 1 at 0 (at
1) since F ( z | a , / ? ) - > l for x € (0,1] (since F(x | a , /3 ) -*0 for
x € [0,1)) regardless of the value of a.
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7.3.2 Some stochastic dominance properties

Note that for (3 — 1 the cdf of a SRGTL distribution (7.8) reduces to a
slope distribution with the cdf

F{x\a, p = 1) = 1 - {a(l - x) - (a - 1)(1 - a;)2} (7.10)

which is stochastically decreasing in a, i.e.,

<*i < a2, x e (0,1) =• F(x\au(3 = 1) > F{x\a2, P = 1). (7.11)

Let now /?i > (32 > 0. From (7.11) it follows that for all X G (0,1) and for
any A

1 - {1 - F(x\au/3= I)}01 > 1 - {1 - F(x\a2,p = 1)}*. (7.12)

Since the function za is a decreasing function in a for z € (0,1) it follows
from /?i > 02 > 0 that

1 - {1 - F(x\a2,(3= 1)}A > 1 - {1 - F(z|a2 , /? = l ) } f t . (7.13)

However, simple algebra shows that

F(x\a,(3) = 1 - {1 - F(x\a,/3= I)}0

where F(x\a,0), F(x\a, (3=1) are given by (7.8) and (7.10), respectively,
which together with (7.12) and (7.13) implies

<*i < a2,/3i > P2, x G (0,1) => F ( x | a i , A ) > F(a;|a2,A)-C7-14)

Hence, RGTL distributions are stochastically increasing in a and
stochastically decreasing in /3. This seems to be an interesting property
shedding an additional light on the meaning of the parameters a and P in
(7.8) and (7.9), especially in applications. Note that relation (7.14) could
verbally be expressed as connecting the generating cdf F[x\a,P = 1) with
the generated one, i.e. F(x\a, P). The reader is invited to check other
stochastic dominance properties of other continuous distributions (not
necessarily on a bounded domain).
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7.3.3 Mode analysis of standard RGTL distributions

As it was already mentioned for /3 = 1 and a = 1 the pdf (7.9) reduces to a
uniform [0,1] density. For a = 1, fi ̂  1 the pdf (7.9) reduces to a
reflected power distribution with a finite mode at 0 provided (5 > 1 and an
infinite mode at 1 for /3 < 1. Taking the derivative of (7.9) with respect to X
we have

^l^lfl = C(x\a^)f(x\a,P), (7.15)

where the multiplier

C(x\a,(3) = (a-1) 2—, r - - (7.16)

a-2(a-l)fl-a;J

|a-2(a-l)(l-a;)J

(l-z){a-(a-l)(l-z)}
is a linear function in (5. From the relations

f(x\a,b,a,(3)>0, (7.17)

{a - 2(a - 1)(1 - x)} > 0 and

{a-(a-l)(l-z)} > 0

for a£ [0,2], and 0 > 1 it follows from (7.15) and (7.16) that the
following four additional cases should be considered:

Casel : 0 < a < l , / 3 > 1;
Case 2:Ka<2,P<l;
Case 3 : l < c c < 2 , / 3 > 1 and
Case 4 : 0 < a < 1, /? < 1.

Case 1:0 < a < l,/3 > 1 : See Figs. 7.2E and 7.2F : From (7.15),
(7.16) and (7.17) it follows that the SRGTL pdf (7.9) is strictly decreasing
on [0,1] and hence possesses a mode at 0 with the value /3(2 — a) (Eq.
7.5)). For example, setting a = 0.5 and /? = 2 (as in Fig. 7.2E) yields a
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mode at 0 with value 3. Setting a = 0.5 and /? = 1 (as in Fig. 7.2F) yields a
mode at 0 with value 1.5.

Case 2: 1 < a < 2,0 < 1: See Fig. 7.2D : From (7.15), (7.16) and
(7.17) it follows that the SRGTL pdf (7.9) is in this case strictly increasing on
[0,1], From (7.6) it follows that the pdf (7.9) has an infinite mode at 1 for
/3 < 1 and a finite mode at 1 for 0=1. Setting a = 1.5 and 0 = 1 (as in
Fig.7.4D) yields a finite mode at 1 with value 1.5.

Case 3: 1 < a < 2,0 > 1: See Figs. 7.2A, 7.2B and 7.2C : This seems
to be the most interesting case with the pdf vanishing at x = 1. From
(7.15), (7.16) and (7.17) it follows that the SRGTL pdf (7.9) may possess a
mode in (0,1). Defining

y = l - x

and setting the derivative (7.15) to zero yields the following quadratic
equation in y.

2(a - 1)V - 2a(a - l)y + ^ ~^ = 0. (7.18)

(The left-hand-side (LHS) of (7-18) is a parabolic function in y.) Noting that
the symmetry axis of the parabola associated with the LHS of (7.18) has the
value

which is stricdy greater than 1 for a > 1, and that y — 1 — x G [0,1] if and
only if x € [0,1], it follows that out of the two possible solutions of the
quadratic equation (7.18) only the solution

can yield a mode x* 6 (0,1). Moreover, from 1 < a < 2 and /3 > 1 it
follows that y* > 0. Also, from (7.20) we have that y* —> 2(a-i) > * for

l < a < 2 a s / 3 — > o o . Hence, from (7.20) we deduce that the mode x*
= 1-2/* is
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1< = M°X[°'2(^T)W1 + / S l ) - 2 } ] - f721'
Setting a = 1.5,(3 = 2 (as in Fig. 7.2C) yields x* = Max[O, - \ + \y/l]
~ 0.366. As (3 increases the mode moves to the left eventually

approaching zero. Indeed, setting a = 1.5, (3 = 6 (as in Fig. 7.2B) yields
X* = Max[0, — \ + ^ \ / l T ] = 0 and hence a mode is located at the
lower bound 0 with the value (3(a — 2) = 3 (Eq. (7.5) with a = 0, b — 1).
Utilizing (7.21) it follows that a Standard Reflected Topp and Leone (SRTL)
distribution (with a. = 2) has a mode at

y£ ^
for P > 1. Setting /? = 3 (as in Fig. 7.1A) yields a mode at \ y/b « 0.447.

Case 4: 0 < a < 1, J3 < 1: See Figs. 7.2G and 7.2H : Similarly to Case
2 it follows that the pdf (7.9) has an infinite mode at 1 for 0 < a < 1,
(3 < 1. However, from (7.15), (7.16) and (7.17) it follows that the pdf (7.9)
may also have an anti-mode x* £ (0,1) (resulting in a U-shaped
distribution). In fact, the formula for the anti-mode is also given by (7.21)
provided (3 > ^. For example, setting a = 0.5, /? = 0.75 (as in Fig. 7.2G)
yields x* = Max[0, | — 1^/2] and hence the anti-mode is at

approximately 0.793. For j3 < | (as in Fig. 7.2H) the anti-mode of an
RGTL distribution occurs at x* = 0, with density value (Eq. (7.5) with
a = 0, b = 1)

0(2 - a) < 1 - | < 1. (7.23)

In Fig. 7.2H the density value at its antimode equals 3/8.
The authors consider Sec. 7.3.3 to be one of their favorite ones. The

remarkable journey walk of the mode as a function of its parameters a and
(3 shows the flexibility and power of analytical closed representation of
density functions (even most elementary ones).
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7.3.4 Failure rate function

From (7.8) and (7.9) it follows that the failure rate function

(also known as the hazard rate function) for an SRGTL density is :

V{a,x)-^— (7.24)

where

„,, s a-2(a-l)(l-x)
V(a, x) = f -$• 1 (7.25)

a — (a — 1)(1 — x)

and it is straightforward to verify that /3/(l — x) is the failure rate of a
standard reflected power (SRP) distribution (Eq. (7.9) with a = 1). From
(7.24) one observes that T)(a, x) can be interpreted as the relative increase
(or decrease) in the failure rate of a SRGTL distribution as compared to a
SRP distribution. Taking the derivative of (7.25) with respect to x we obtain

dV(a,x) _ a(l-a)

Ox ~ {a - (a - 1)(1 - z ) } 2 ' ( 7 ' 2 6 )

Hence, D(l,x) = 1 for all x € [0,1} and it follows from (7.26) that
D(a, x) < 1 ( > 1) for all x € [0,1] as long as 1 < a < 2 (0 < a < 1).
Thus, a may be interpreted as a failure deceleration parameter (relative to the
SRP distribution) when 1 < a < 2 and a failure acceleration parameter
when 0 < a < 1. Namely, a larger value of a causes a smaller failure rate
than that of the reflected power distribution and vice versa. On the other
hand, (7.24) shows that /3 is a failure acceleration parameter for all (3 > 0.
Namely, a larger value of ft results (continuously) in a larger failure rate.

7.3.5 Cumulative moments

Due to the functional form of the cdf (7.8) calculations of the cumulative
moments defined by
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Mfc = / xk{l-F{x)dx (7.27)
Jo

for SRGTL distributions seems to be more direct than evaluation of the
central moments about the mean. The mean /J,X and the central moments
about the mean: i.e. \x<i (variance), /i3 (non-standardized skewness) and \x\
(non-standardi2ed kurtosis) are connected with the cumulative moments
Mk, k = 1 , . . . , 4, via the relations

A*'i = Mo (7.28)

H2 = 2Mi - Mo
2

^3 = 3M2 - 6MiM 0 + 2M0
3

HA - 4M3 - 12M2M0 + \2MxMl - 3M0
4

(see, e.g., Stuart and Ord (1994)). Consequently, the coefficient of skewness
Pi and the coefficient of kurtosis fa defined as

A = ^U = ^ (7.29)
M2 n

can be straightforwardly obtained via the results (7.28).
The k-th cumulative moment Mk for SRGTL distributions is (utilizing

Eqs. (7.8) and (7.27)):

I xk(l - xfla - {a - 1)(1 -x)\ dx= (7.30)

For a = 1, Eq. (7.30) reduces to that of the fc-th cumulative moment of a
SRP distribution (Eq. (7.9) with a = 1). For a € (1, 2], the k-th cumulative
moment can be expressed in terms of the incomplete Beta function

B^X I a>V = W ^ S fpa-l{l-p)b-ldP (7.31)
r(a)r(6) j0

as
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Numerical routines for evaluating the incomplete Beta function (7.31) are
by now well known and are provided in standard PC software such as
Microsoft EXCEL. However, for a € (0,1) expression (7.30) cannot be
further simplified and one has to resort to numerical integration.

For a € (1, 2], we have for the cumulative moments Mo, M\, Mi and
M3 of SRGTL distribution to be:

Ml = M0 = </{_} |-L^i£___2j (7.33)

where the beta function B(a,6) = r(a)F(6)/r(o + b). For the original
Topp and Leone (1955) distribution (Eq. (2.6) in Chapter 2) the cumulative
moments were derived by Nadarajah and Kotz (2003). Substituting a = 2,
in (7.33) yields the mean

/U '1=M0 = 4%(/3 + l,/3+l)

of a Standard Reflected Topp and Leone (SRTL) distribution and hence

Ai'1 = M o = 1 - ApM(J3 + lJ3+l)

is the mean of a Standard Topp and Leone (STL) distribution on (0,1) (see
Nadarajah and Kotz (2003) and Eq. (2.15) in Chapter 2).

Figure 7.3 plots the behavior of the mean, variance, skewness and
kurtosis (as a function of the parameter f3) for a SRP (a = 1 in (7.9))
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distribution, a SRGTL distribution with a = 1.5 in (7.9) and a Standard
Reflected Topp and Leone (SRTL) distribution (a = 2 in (7.9)).

i ir ill oirr ~T
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0.7 j \ \ 0.07 'j\
| 0.6- V - , gO.06 | \
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S 0.4 • \ V " " ' " " " - - . . > °-M " E ^ ^ S v
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SRP(a=l) SRGTL (a= 1.5) SRTL(a=2)

Fig. 7.3 Behavior of the mean (A), variance (B), skewness (C) and kurtosis (D) of a standard
reflected power (a = 1 in (7.9)), a standard generalized reflected Topp and Leone (a = 1.5

in (7.9)) and a standard reflected Topp and Leone (a = 2 in (7.9)) distributions.

Below we shall briefly comment on the behavior of the characteristics
in Fig. 7.3. Figure 7.3A shows that for (3 j 0 the mean values all have limiting
value of 1 due to a degenerate limiting distribution with a probability mass
of 1 at 1 (see Sec. 7.3.1). Also note the strict ordering in the mean values in
Fig. 7.3A for fixed values of (5. This ordering also follows immediately from
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the stochastic dominance property (7.14) resulting in larger values for SRTL
(a = 2) and the smallest for SRP (a = 1). The variance (Fig. 7.3B) has a
limiting value of 0 when either (3 j 0 or /3 —> oo. Also note that, with a
possible exception of the SRTL distribution, the maximal variance is
attained for values of /3 < 1. For the values of 0 > 1, the variance is strictly
decreasing. Figure 7.3C indicates diat skewness of 0 are attained for
different values of /3 for the SRP, SRGTL and SRTL distributions. Recall
that a value of 0 for skewness is only a necessary condition for symmetry in
a pdf, not a sufficient one. For a SRTL distribution with a = 2 the
skewness is close to 0 for all values of (3 > l | while for a SRP (a = 1)
distribution it increases in the interval (3 € [1,10] from 0 to « 2.30. From
Fig. 7.3D we observe similarly that the minimum kurtosis value of a
SRGTL distribution (with a € (1,2]) is strictly larger than that of the
minimum obtained in the SRP family (i.e. that of the uniform member with
a = 1 and j3 = 1 in (7.9)).

7.3.6 Inverse cumulative distribution function

Random samples from RGTL distributions may straightforwardly be
generated utilizing the inverse cdf technique. From (7.8) we derive that
{1 — F~l(z\a,/3)}, z € [0,1] is one of the roots of the quadratic equation
my

{a - l)y2 -ay+ \J\-z = 0. (7.34)

Noting that (similarly to equation (7.18)) the symmetry axis associated with
the LHS of the quadratic (7.34) has the value \a/{a-l) (Eq. (7.19))
which is strictly larger than 1 for 1 < a < 2, it follows that out of the two
solutions of (7.34) only the solution

a — y a2 — 4(a — l ) y l - 2

2(a-l)

can yield {1 - F~1(z\a,/3)} E [0,1]. Analogously, it follows that for
0 < a < 1 only the second solution
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2(a-l)

can result in {1 — F~1(z\a, /?)} € [0,1]. Hence, the inverse cdf is given by

1 V 2(«-i) ' ^ K Q ; < 2

F-1(z|a,/?)= | 1-^T^z, fora = l (7-35)

1 V
 2(a-l) ' for 0 < a < 1,

where the case a = 1 follows from the cdf of a standard reflected power
(SRP) distribution (a = 1 in (7.8)). The inverse cdf is thus expressed
explicidy in terms of elementary functions (which is not the case for the
beta distribution (Eq. (4.1)) in Chapter 4). Hence, random sample
realizations from a RGTL distribution are straightforward.

7.4 Maximum Likelihood Estimation of SRGTL Parameters

We have seen in Sec. 7.3 that the structure of the pdf and cdf and
probabilistic properties of SRGTL distributions are appealingly direct.
Moment expressions for SRGTL, unfortunately, are rather cumbersome
requiring numerical search routines when one would like to estimate the
SRGTL parameters a and (3 via the method of moments technique.
Fortunately, the ML method does not present any intrinsic difficulties.

We shall discuss an approximate ML estimation procedure for a total of
N observations grouped in m intervals [xi_i,Xj] with rij observations
each and interval mean values xl, where Xo = 0, xm = 1 and

m

N = J^ni.

The data described above may be summarized in an m-vector x whose
elements are the interval mean values and an m-vector n containing the
number of observations in each interval. The approximate ML estimation
procedure below may easily be modified to an exact ML estimation
procedure utilizing order statistics (as it was done for various TSP
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distributions in Chapters 3 — 6), but here our approach is tailored to the
format of the rather extensive US income distribution data to be presented
in the detailed Table 7.1. The approximate ML procedure will assume that
the probability mass is concentrated at the interval mean x] of the
subdividing intervals [:Ej_-i, Xj]. Utilizing (7.9), we have the likelihood
C(a, (3\x, n) to be proportional to

where

Vi = l - X i . (7.37)

As it is often the case, instead of maximi2ing £.(a,j3\x_, n) we shall
equivalendy maximize the log-likelihood. Taking the logarithm of (7.36) and
calculating the derivative with respect to (3 we obtain

— + J^riiLog^ayi - (a - \)y\^. (7.38)

It thus follows from (7.38) that the estimator

[ m j -i - 1

y^riiLogl -. r-y \ (7.39)
is the unique ML estimator of j3 for a given particular value of a. Taking
the logarithm of (7.36) and calculating the derivative with respect to a, one
obtains

Substituting (7.39) into (7.40) (namely utilizing j3 instead of (3 and

expressing (3 in terms of a) the following function £/(o:) emerges :
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$(a)= IR ; r-1 E^7 TT" + (7-41)

^ m{l-2yi}
£<a-2{a-l)yi'

where j/j is given by (7.37) and the function is defined on a bounded range
0 < a < 2. As always the reader is encourages to verify the validity of
(7.41). The ML estimator a now turns out to be either one of the roots of
the equation Q(ct) = 0 or one of the boundary values: a = 0 or a = 2.
The bounded domain of Q(ot) allows for straightforward plotting of the
function in standard spreadsheet software such as Microsoft EXCEL and
subsequent determination of an approximate solution of the ML estimator
a. An illustrative example in the form of a graph will presented in the next
section. Using the root finding algorithm GOALSEEK, available in
Microsoft EXCEL (or a similar algorithm), and an approximate solution to
the equation Q{ot) = 0 allows us to calculate a up to a desired level of

accuracy. Finally, substitution of a into (7.39) yields the ML estimator 0
corresponding to the ML estimator a. The ML procedure above will be
demonstrated in the next section using the U.S. 2001 household income
data.

7.5 Fitting 2001 US Household Income Distribution Data

In the lead article in a recent issue of the Journal of the American Statistical
Association (2002, Vol. 97, pp. 663-673) co-authored by Barsky et al., an
illuminating and comprehensive analysis of the African-American and
Caucasian (Non-Hispanic) wealth gap was presented based on a longitudinal
survey of some 6000 households over the period of 1968-1992. The authors
argue, interalia, that a parametric estimation of the wealth-earning
relationship by race is not an appropriate approach. Their main contention
is that the wealth-earning relationship is non-linear of a unknown functional
form which is difficult to parameterize and parametric estimation may thus
likely yield unreliable estimates. The authors also provide an extensive and
up-to-date bibliography of relevant books and articles up to and including
2001. They note that the racial wealth gap far exceeds the racial income gap
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especially at the higher wealth ranges, suggesting that the racial wealth gap is
too large to be satisfactorily explained by income gap alone. On the other
hand, they conclude that the role of earnings differences in explaining this
gap is the most prominent at the lower tails of the wealth distribution and
decreases dramatically at higher wealth levels. In fact, their results indicate
that differences in the household earnings account for all of the racial
wealth difference in the first lower quartile of the wealth distribution.
Interested readers are also referred to Couch and Daly (2000) and O'Neill et
al. (2002) who study the related topic of the racial wage gap in the U.S.A.

Our approach to this problem is somewhat different. We attempt to use
the distribution developed in the previous sections and to fit — for the
more recent household income data in the US for the year 20011 classified
according to Caucasian (Non-Hispanic), African-American and Hispanic
populations — a RGTL distribution using the above described ML
procedure and draw some tentative conclusions about the racial income gap
based on this data. Parametric estimation of income data has been quite
common for almost 100 years and a wide variety of distributions have been
proposed (see Kleiber and Kotz (2003) for an extensive bibliography).
RGTL distributions (which are not discussed in Kleiber and Kotz (2003))
allow for a stricdy positive density value at its lower bound, which is observed
in a non-parametric kernel density estimate of the 1989 income data (see
Fig. 2 in Barsky et al. (2002) p. 668). Fortunately, die new distribution that
we are proposing seems to be appropriate for the US 2001 household
income data, especially for that of the African-American sub population.
We emphasize that the main purpose of the numerical analysis below is to
illustrate fitting techniques for a RGTL distribution and properties of its
parameters. The numerical analysis herein sheds light on the current state of
affairs only and a further study is recommended. The analysis below in no
way yields a conclusive answer to die problem of racial income gaps in the
USA (nor that of racial wealth and racial wage gaps). Table 7.1 contains
income distribution data for households in the year 2001 for the three
different ethnic groups: Caucasian (Non-Hispanic), African-American and
Hispanic in the U.S.A. Actually, the mean incomes in each bracket already
tell part of the story (at least qualitatively).

'Source: U.S. Census Bureau, Current Population Survey, March 2002
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Table 7.1 Income distribution for households in the U.S.A. for the year 2001
(Source: U.S. Census Bureau, Current Population Survey, March 2002.)

Numbers are in thousands households as of March of the following year.

Caucasion
(non-Hispanic) African American Hispanic

Number Mean Number Mean Number Mean
Income of Household Income Income Income
Under $2,500 1,443 $168 520 $439 273 $426
$2,500 to $4,999 773 $3,808 388 $3,842 137 $3,767
$5,000 to $7,499 2,141 $6,450 698 $6,359 304 $6,387
$7,500 to $9,999 2,561 $8,749 756 $8,658 404 $8,663
$10,000 to $12,499 3,142 $11,220 621 $11,173 458 $11,214
$12,500 to $14,999 2,946 $13,615 543 $13,672 411 $13,659
$15,000 to $17,499 3,167 $16,091 660 $16,089 553 $15,993
$17,500 to $19,999 2,803 $18,660 479 $18,655 418 $18,579
$20,000 to $22,499 3,099 $21,082 610 $21,094 490 $21,005
$22,500 to $24,999 2,697 $23,706 447 $23,682 373 $23,691
$25,000 to $27,499 3,055 $26,064 570 $26,061 477 $26,011
$27,500 to $29,999 2,446 $28,673 464 $28,544 330 $28,617
$30,000 to $32,499 3,277 $31,059 492 $31,040 479 $30,998
$32,500 to $34,999 2,330 $33,679 375 $33,655 335 $33,601
$35,000 to $37,499 2,950 $36,045 437 $35,944 412 $36,082
$37,500 to $39,999 2,114 $38,713 310 $38,626 249 $38,641
$40,000 to $42,499 2,846 $41,052 434 $41,004 424 $40,938
$42,500 to $44,999 1,924 $43,679 260 $43,693 231 $43,668
$45,000 to $47,499 2,236 $46,058 289 $45,908 291 $46,044
$47,500 to $49,999 1,966 $48,709 256 $48,655 205 $48,607
$50,000 to $52,499 2,403 $51,042 350 $50,924 247 $51,021
$52,500 to $54,999 1,736 $53,679 210 $53,553 153 $53,725
$55,000 to $57,499 2,014 $56,127 249 $55,972 224 $55,992
$57,500 to $59,999 1,528 $58,650 177 $58,680 177 $58,764
$60,000 to $62,499 2,047 $61,053 248 $60,979 219 $61,106
$62,500 to $64,999 1,417 $63,719 162 $63,761 141 $63,801
$65,000 to $67,499 1,710 $66,048 175 $65,990 157 $66,018
$67,500 to $69,999 1,325 $68,677 150 $68,705 124 $68,734
$70,000 to $72,499 1,622 $71,067 190 $71,090 159 $71,112
$72,500 to $74,999 1,248 $73,707 142 $73,589 128 $73,711
$75,000 to $77,499 1,608 $75,981 133 $75,974 132 $75,860
$77,500 to $79,999 1,073 $78,662 100 $78,693 72 $78,726
$80,000 to $82,499 1,380 $81,051 100 $80,950 125 $80,976
$82,500 to $84,999 993 $83,688 90 $83,584 90 $83,708
$85,000 to $87,499 1,144 $86,057 103 $85,984 76 $85,830
$87,500 to $89,999 803 $88,696 86 $88,754 55 $88,636
$90,000 to $92,499 985 $91,051 78 $91,103 83 $90,997
$92,500 to $94,999 701 $93,658 83 $93,666 41 $93,579
$95,000 to $97,499 915 $96,071 71 $95,901 65 $95,999
$97,500 to $99,999 712 $98,682 65 $98,639 48 $98,811
$100,000 to $149,999 8,374 $119,083 554 $117,549 515 $119,016
$150,000 to $199,999 2,689 $169,312 115 $172,222 113 $164,692
$200,000 to $249,999 993 $219,285 29 $218,672 43 $221,737
$250,000 and above 1,345 $462,675 46 $433,097 59 $474,843
Total 90,682 $60,512 13,315 $39,248 10,499 $44,383
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The ML procedure discussed in Sec. 7.4 will be used to fit RGTL
distributions for incomes of these three groups. Only die data up to
$250,000 can be used from Table 7.1 since die U.S. Census Bureau does not
provide die maximum observed income in their statistics. Of the total
number of U.S. households surveyed 98.58%, 99.44% and 99.65% have
had in 2001 household incomes of value less than $250,000 for the
Caucasian (Non-Hispanic), Hispanic and African-American groups,
respectively. Figure 7.4 displays a graph of the function 0(a) (Eq. (7.41))
for the income data of Caucasian (Non-Hispanic) Americans presented in
Table 7.1. From Fig. 7.4 we observe an approximate root of the equation
g(a) = 0 to be the value a* « 1.70. Since, Q{a) > 0 ( < 0) for
0 < a. < a* (a* < a < 2) it follows that a — a* is the unique ML
estimator for abased on the likelihood (7.36). Using GOALSEEK (a
standard root-finding algorithm in the Microsoft EXCEL software) with an
accuracy of 1 • 10~6and utilising the approximate solution a* ~ 1.70 we
arrive at the more precise estimator a = a* = 1.679. The unique ML

estimator (3 — 6.767 follows from substituting a = 1.679 into (7.39).
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Fig. 7.4 A graph of the function Q(a) (Eq. (7.41)) for the income data
of Caucasian (Non-Hispanic) Americans presented in Table 7.1.
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Figure 7.5 below plots both the empirical cdf and its fitted RGTL
counterpart (Eqs. (7.2) and (7.4)) with a = $0, b - $250,000, a = 1.679
and (5 = 6.767. Differences between the empirical and fitted cdfs can be
observed in Fig. 7.5A. The well-known and widely used Kolmogorov-
Smirnov statistic D, whose value is the maximum of the observed
difference between the empirical and fitted cdfs (see, e.g., DeGroot (1991))
in Fig. 7.5A equals 8.60%. Hence, with 43 degrees of freedom (Table 7.1
has 43 rows up to $250, 000) the Kolmogorov-Smirnov test accepts the
fitted RGTL distribution at the 10% ( A u o ~ 0.182), 5%
(A).O5 « 0.203) and even at 1% (D0.0l « 0.243) levels. Please note
however a quite substantial deviation of empirical pdf values from die fitted
ones in the income range from $10,000-$30,000 and in the vicinity of
$100,000. In the first (second) case the fitted pdf underestimates (over
estimates) die empirical pdf.

Table 7.2 provides the unique ML estimators for 5 and /3 (obtained
using the procedure described in Sec. 7.4) for the Caucasian (Non-
Hispanic), African-American and Hispanic income data presented in Table
7.1. Note that values of f3 are very similar for the Hispanic and African
American incomes and the Caucasian (Non-Hispanic) value is much lower.
Clearly we are dealing with Case 3 in the Sec. 7.3.3. devoted to mode
analysis.

Table 7.2 Maximum likelihood estimators for the parameters S and (3
of RGTL distributions for the income data in Table 7.1 (up to $250,000)

5 3
Caucasian (Non-Hispanic) 1.679 6.767
Hispanic 1.685 10.306
African American 1.613 10.629

Similarly, Fig. 7.6A (Fig. 7.6B) plots die empirical and fitted RGTL pdf

with ML estimators a = 1.613, 3 = 10.629 ( a = 1.685 and 3 =
10.306) for the African-American (Hispanic) income data presented in
Table 7.1. The Kolmogorov-Smirnov Statistic D for the African-American
(Hispanic) income data equals 6.01% (8.09%) which is slighdy smaller than
that of the Caucasian (Non-Hispanic) income data (indicating a better fit).
Hence die Kolmogorov-Smirnov test accepts the ML fitted RGTL
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Fig. 7.5 Empirical and a ML fitted RGTL cdf (A) and pdf (B) (S = 1.643 and 3 = 6.179)

of the Caucasian (Non-Hispanic) income data presented in Table 7.1.
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Fig. 7.6 Empirical and ML fitted RGTL pdf s for the income data in Table 7.1;

A: African-American (S = 1.613, 3 = 10.629) ; B: Hispanic (S = 1.685, 3 = 10.306).
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distributions in Figs. 7.6A and 7.6B at the 10%, 5% and 1% levels. Table
7.3 (Table 7.4) contains the standardized cumulative moments
Ma — IJL\ , Mi, M.2, M3 (the central moments /i2,M3 a n ^ A*4) calculated
utilizing (7.33) and (7.28). Note that there is a strict ordering column-wise
for all the values in Tables 7.3 and 7.4 in the order: Caucasian American
(non-Hispanic), Hispanic, African-American. From Tables 7.3 and 7.4 we
can calculate values for the mean and standard deviation utilizing the
transformation Y = $250,000X. In a similar manner, the median and
mode of the ML fitted RGTL distributions can be evaluated utilizing the
parameter values in Table 7.2, (7.35) and (7.21). In addition, we may utilize
Table 7.4 to calculate the coefficient of skewness f3\ and coefficient of
kurtosis /% (Eq. (7.29)). These estimated statistics are provided in Table 7.5
for the three sub-populations under consideration.

Table 7.3. Cumulative moments Mk, k = 0,1, 2, 3, of the ML fitted RGTL distributions
for the income data in Table 1 (up to $250,000) calculated utilizing (7.33).

Mo = fi[ Mi M2 M3

Caucasian (Non-Hispanic) 2.34e-l 3.97e-2 l.lle-2 3.80e-3
Hispanic 1.77e-l 2.38e-2 5.26e-3 1.51e-3
African American 1.59e-l 1.98e-2 4.17e-3 1.14e-3

Table 7.4 Central moments /Ltfc, k = 1, 2, 3, 4, of the ML fitted RGTL distributions
for the income data in Table 7.1 up to $250,000 calculated utilizing

cumulative moments M^ in Table 7.3 and (7.28).

Mo = n\ H2 P3 M4
Caucasian (Non-Hispanic) 2.34e-l 2.47e-2 2.54e-3 1.75e-3
Hispanic 1.77e-l 1.60e-2 1.66e-3 8.40e-4
African American 1.59e-l 1.44e-2 1.60e-3 7.31e-4

Table 7.5 Statistics associated with the ML fitted RGTL distributions
for the income data in Table 1 up to $250,000.

Mean Median Mode St. Dev f3\ P2
Caucasian (Non-Hisp. $58393 $52534 $28306 $39326 0.424 2.858
Hispanic $44316 $38606 $11851 $31710 0.660 3.248
African American $39786 $33599 $0 $30002 0.858 3.522
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A similar ordering to the one observed in Tables 7.3 and 7.4 is
presented throughout Table 7.5. Note that the difference in the point
estimates in Table 7.5 between the Caucasian (Non-Hispanic) population
and the African-American Population is approximately $18607 or more and
those associated with the Hispanic population differ by the amount $13928
or more. The latter observation is amplified somewhat in Table 7.5 by the
fact that the fitted mean income for the Caucasian (Non-Hispanic)
population overestimates the empirical mean (for incomes up to $250, 000)
by $3936 whereas the fitted mean income for the African-American
(Hispanic) population is overestimated by only $1898 ($2357). Perhaps the
most notable feature is the modal income value of $0 for the ML fitted
RGTL distribution for the African-American population while the modal
income value for the Caucasian (Non-Hispanic) and Hispanic population
have a value substantially larger than zero (and moreover the mode for the
Caucasian (Non-Hispanic) population is more than twice that of Hispanics).
A similar observation can be made by comparing the RGTL distributions in
Figs. 7.5B, 7.6A and 7.6B. Finally, from Table 7.2 and (7.5) we may evaluate

the density values at the lower bound, i.e. / (0 |0 , $250,000, S, /?),
presented in Table 7.6. Hence, in comparison with Americans of Caucasian
origin, African-Americans appear to be approximately 1.9 times as likely
and Hispanics 1.5 times as likely to have negligible income in the year 2001.
It is the fact that our ML fitted RGTL pdf s may take a positive value at its
lower bound while allowing a strictly positive mode, that allows us to reach
such an indicative conclusion.

Table 7.6. Density values at the lower bound of the ML fitted RGTL distributions
for the income data in Table 1 (up to $250,000).

/(0|0,$250,000,5,3)
Caucasian {Non-Hispanic) 8.68e-6
Hispanic 1.30e-5
African American 1.65e-5

A further analysis of the obtained results sheds an additional light on
the differences in the income distributions for the 3 ethnic groups under
examination. In Fig. 7.7A, we utilize the ML fitted RGTL income
distributions by plotting the percentiles of the African-American and
Hispanic income distributions against the Caucasian (Non-Hispanic) data

using (7.8), (7.35) and the corresponding ML values for a and /3 in Table
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Fig. 7.7 Stochastic dominance analysis by ethnicity for
the income data presented in Table 7.1 utilizing the ML fitted RGTL cdf s.
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7.2. For example, from Fig. 7.7A, we observe that approximately 70%
(65%) of the African-American (Hispanic) population have less income
than the median (50%)of the Caucasian (Non-Hispanic) income
distribution. Similar comparisons can be made for other percentiles of the
Caucasian (Non-Hispanic) income distribution utilizing the same figure. For
example, 34% (29%) of the African-American (Hispanic) population earn
less than what the lowest 20% of the Caucasian (Non-Hispanic) population
earn (i.e. the 20% percentile of the Caucasian (Non-Hispanic) income
distribution). Note that the solid curves in Fig. 7.7A involving the African-
American and Hispanic income distributions are located completely above
the unit diagonal implying the stochastic dominance of Caucasian (Non-
Hispanic) income over that of the African-American or Hispanic ones. The

latter can be direcdy concluded from the ML values for a and j3 in Table
7.2 and Eq. (7.14) for the African-American and Caucasian (Non-Hispanic)
comparison but not for the Hispanic and Caucasian (Non-Hispanic)
comparison. This shows that the implication arrow in Eq. (7.14) cannot in
general be reversed.

In a similar manner, Fig. 7.7B utilizes the ML fitted RGTL income
distributions by plotting the percentiles of the African-American and
Caucasian (Non-Hispanic) income distributions against those of the
Hispanic one. For example, from Fig. 7.7B, we observe that approximately
56% (37%) of the African-American (Caucasian Non-Hispanic) population
have less income than the median (50%) of the Hispanic income
distribution. Additional illuminating comparisons can be deduced from Figs.
7.7A and 7.7B. We now conclude from Fig. 7.7B that Hispanic income in
2001 stochastically dominates the African-American one. The latter
conclusion also follows immediately from the corresponding ML estimator
values for a and /3 in Table 7.2 and Eq. (7.14). However, we can conclude,
once again, only by observation in Fig. 7.7B that Hispanic income is
stochastically dominated by Caucasian (Non-Hispanic) income (since the
line associated with the Caucasian (Non-Hispanic) is now completely below
the unit diagonal). As above, this conclusion cannot be direcdy obtained

from the corresponding ML values for a and (3 in Table 7.2 and Eq. (7.14).
Summarizing, Table 7.2 and Eq. (7.14) alone imply mat the chances of a

Caucasian (Non-Hispanic) or a Hispanic American earning more than a
specified amount (within the range from $0 to $250,000) are higher than
those for an African-American. In addition, the analysis in Fig. 7.7 allows us
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to conclude that the chances of a Caucasian (Non-Hispanic) earning more
than a specified amount (within the same range from $0 to $250,000) are
higher than those of a Hispanic. Moreover, Fig. 7.7 and Table 7.5
demonstrate that although substantial advances have reportedly been made
in reducing the income distribution gap amongst these three subpopulations
in the U.S. during the last 20 years or so (see, e.g., Couch and Daly (2000)),
these differences still exist and are quite noticeable. The readers are
encourages to repeat this analysis for the U.S. income data of 2003 (or the
latest year for which now data is available). It is also of interest to
investigate the income gaps in other countries with the population
belonging to several income groups.

A perceptive reader will undoubtedly notice that the ML fitted RGTL
distributions consistently underestimate the empirical pdf in Figs 7.5B,
7.6A and 7.6B in the lower income ranges (perhaps due to the nature of
record keeping and data collection in these ranges). However, the
conclusions above related to the income gaps amongst the three
subpopulations (which utili2ed ML fitted RGTL distributions) would seem
not to be affected or only augmented due to this fitting phenomenon.
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Chapter 8

A Generalized Framework for
Two-Sided Distributions

In this chapter we shall present a generalized structure of the Two-Sided
Power distribution discussed in Chapters 3 and 4. These distributions will
be referred to belong to the Two-Sided (T-S) family of distributions. Each
sub-family in the Standard TS (ST-S) framework is characterized by a
generating density with a bounded support [0,1]. Standard T-S members can
be transformed to T-S ones (with an arbitrary finite support [a, b\) by
means of a linear transformation. Some examples of ST-S distributions will
be presented using various generating densities and the properties of the
Two Sided Slope (T-SS) family (using the linear slope distribution as its
generating density) will be further examined. Our readers are encouraged to
derive properties of other TS families described in this chapter. Our reasons
for a further investigation of the T-SS family are two-fold. Firstly, the T-SS
density is a natural linear extension of the triangular distribution discussed
in Chapter 1 and secondly, the slope distribution serves as a link between
the Generalized trapezoidal (Chapter 5), the Generalized TSP and the
Uneven TSP (both discussed in Chapter 6) and finally, the Reflected
Generalized Topp and Leone distributions (described in Chapter 7). It may
be appropriate at this time to review the connections amongst these
distributions as presented in Appendix A. We also remind our reader again
that the present chapter can be studied direcdy after Chapter 3 (dealing with
STSP distributions) without loss of continuity.

8.1 Standard Two-Sided Families of Distributions

The Standard Two-Sided Power (STSP) distributions introduced in Chapter
3 (Eq. (3.11)) can be motivated from at least two different aspects. The
initial motivation is to extend the triangular distribution (see, Chapter 3). A
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more encompassing approach to STSP distributions is the realization that
the STSP density (3.11) can be viewed as a particular case of the general
Standard Two-Sided (STS) continuous family with support [0,1] given by
the density

where p( • |\&) is an appropriately selected continuous pdf defined on [0,1]
with parameter(s) \I/, which may in principle be vector-valued. The density
p( • \ty) will be referred to as the generating density of the resulting STS family
of distributions and the parameter 9 is termed the reflection parameter (an
alternative designation could be the hinge or threshold parameter). We note
that the concepts of generating density and hinge were introduced in the
book on several occasions.

The simplest linear choice for the generating density

p(y) = 2y, 0<y<l, (8.2)

results in the triangular distribution (see Fig. 8.1 A). A more general form of
p(y\ •) is

p(y\n) = nyn-\ 0 < y < l , n > 0, (8.3)

which generates via (8.1) the STSP distribution (3.11) (see Fig. 8.1B)
extending the triangular distribution. The density of a normalized truncated
exponential distribution, i.e.,

p(y\\) = exp{ - Xy)/{1 - e~x}, 0 < y < 1, A > 0,

generates the two sided truncated exponential distribution (see Fig. 8.1C).
The density

p ( y \ a ) = a + 2 ( 1 - a ) y , 0 < y < l , 0 < a < 2 , (8.4)

which was encountered earlier in Chapter 7 and was called the slope
distribution, results in the Standard Two-Sided Slope (ST-SS) distribution
(see, Fig. 8.ID). The pdf (8.4) which was used in connection with the
generalization of the Topp and Leone distribution (GTL) in Chapter 7 (see,
Eq. (7.1)) and — to the best of our knowledge — has not been as yet
discussed in the relevant periodical literature.
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Fig. 8.1 Examples of two-sided distributions and their generating densities.
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For the readers convenience we shall briefly repeat certain facts related
to the slope distribution already presented in Chapter 7, Sec. 7.1. The ratio
of the pdf (8.4) values at the upper and lower bound equals

p(l\a) _ 2 - a

p(0\a) a

and thus from (8.4) it follows that for 0 < a < 1 (1 < a < 2) the density is
an upward (downward) sloping linear function with strictly positive density
values at the lower and upper bounds Oand 1. For a = 1, the slope
distribution reduces to the uniform distribution on [0,1], while a = 0
(a = 2) leads us to the left (right) triangular distribution (see also Sec. 7.1
of Chapter 7). It is worth observing that the pdf (5.6) with support [b, c] in
Chapter 5 is a mildly reparameterized version of the slope distribution pdf
(8.4) with support [0,1]. For the values of 0 < a < 1, the slope distribution
(8.4) is a proper mixture of the uniform pdf on [0,1] (with weight a) and
the right triangular pdf 2y (with weight (1 — a)).

A non-linear extension of the slope distribution is given by

p(y\a, n)= a + n ( l - a)yn~l (8.5)

where 0 < y < 1,

f 0 < a < n / ( n - l ) , f o r n > l
\ 0 < a < l , for0<n<l . ( }

Figure 8.IE depicts (on the left side) a generalized slope distribution where
n = 3. For n — 2, the pdf (8.5) reduces to the slope pdf (8.4). The
restrictions (8.6) follow from the condition that p(y\a,n) > 0, for all
values of y G [0,1]. For a — 0, the pdf (8.5) reduces to the power pdf (8.3)
and hence it may be appropriate to designate (8.5) as the Generalised Power
distribution. Similarly to the slope distribution (8.4) the generalized power
distribution (8.5) has strictly positive density values at the lower and upper
bounds.

From Figs. 8.1A-E one observes that the two-sided densities
— presented in these figures on the right-hand-side — are non-smooth

curves at the reflection parameter 6 (as indicated by one of our readers in an
early stage of our derivation of the TSP distribution). The structure of the
STS family, however, also allows us to construct densities that are "smooth"
at the threshold parameter 9. Indeed, by setting
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Yn = X, n > 0,

where X ~ p( • \a) given by Eq. (8.4) we obtain the two-parameter density
ioiY:

p(y\a, n) = nyn-l{a - 2(a - l)y"}, n > 0, 0 < a < 2, (8.7)

with support [0,1]. Next, setting

dp(y\a,n)/dy\y=i = Q

and solving for a we have

An-2
a = Sn^i (8-8)

for n > 0. Utili2ing the parameter restrictions 0 < a < 2 , n > 0 w e obtain
from (8.8) that n > 1/2. Hence, substituting (8.8) into the pdf (8.7), we
arrive at the one-parameter pdf:

p(y\a,n) = ^ " " H ^ l - f ^ y " } ' 0 < y < l,n > 1/2, (8.9)

to be referred to as the ogive distribution. The pdf (8.9) should not be
confused with the original designation "ogive curve" due to Galton in 1875
which is occasionally used in older books on statistical methodology for S-
shaped curves (see, e.g., Stigler (1986)). The symmetric (8 = | ) Standard
Two-Sided Ogive (STSO) distribution (constructed utilizing (8.9) and the
basic structure (8.1)) is depicted in Fig. 8.2.

Two-Sided Ogive Distribution
LL i -0 T i U_ o "1 ~~ I
Q , Q I
Q. 2 ^ ^ ~ — OL „ '

1 1" ^"^ ! « 1 X ! \
2 0.5 - ^ ^ 6 / j e N.

I " °0.00 0.50 1.oo|r 0Q0 050 1 0 °

Fig. 8.2 A symmetric two-sided ogive distribution and its generating density (8.9).
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Note that STSO distributions are smooth at the reflection parameter 6
(unlike most of the other members in the STS family) and may thus provide
a smooth alternative to the beta distribution. For n — | and 71=1, the pdf
(8.9) reduces to a uniform distribution on [0,1]. For | < n < 1, 9 € (0,1)
(9 = Oor 9 = 1) the STSO distribution becomes U-shaped (J-Shaped) and
for n > 1 the distribution is uni-modal with the mode at 6.

Summarizing, the examples presented in Figs. 8.1 and 8.2 portray two
strictly increasing convex generating densities (Fig. 8. IB and E), a strictly
decreasing convex one (Fig. 8.1C), two increasing linear generating densities
(Fig. 8.1 A and D, with the second one taking a positive density value at die
origin) and a generating density possessing an inflection point (Fig. 8.2).
Evidently, a large variety of bounded continuous distributions can be
constructed using the outlined procedure. Two-Sided distributions with a
support [a, b] can be obtained from their STS counterparts by means of a
simple linear transformation. Note that our model is different in its
structure (although similar in the spirit) from the double Weibull
distribution originally introduced in Balakrishnan and Kocherlakota (1985)
some 20 years ago.

Continuing our investigation of die general structure of STS families of
distributions we obtain for the cdf associated with the pdf (8.1) die
expression:

G{x\9,P(-V)} = (8.10)
r#P(f|#), forO<a;<0

\l-(l-0)P(£iin for0<x<l,

where P( • \fy) is the cdf of the generating density p( • |\f). An important
and revealing property of the STS family given by (8.1) (alternatively by
(8.10)) is that

G(0|0,tf) = 0P(l|tt) = 0

regardless of the functional form of the generating density p( • \*£f) (or the
generating cdf P( • |\I/)). In odier words, the cdf s of all die members of the
two-sided family hinge at 6, which can be interpreted as the pivotal point of
die distribution. Note the conceptual difference between the reflection
(hinge) parameter 9 which determines the "turning point" of the
distribution under consideration and the parameters included in $ which
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control the form of the two sides of the distribution (to the left and the
right of 9).

If X ~ g{ • \9,p( • |*)} (Eq. (8.1)) and Y ~ p( • | * ) , the following
relationship between the moments around zero of X and Y can
straightforwardly be derived by induction:

E[Xk\6,y] = 6k+1E[Yk\y} +

Hk)(-n(i-e)l+1E[Y*\*}.

(Recall Y is distributed in accordance with the generating density and X is
the corresponding STS random variable.) From (8.14), utilizing modern
computational facilities (especially for large value of k), moments of two-
sided distributions can be calculated at least in the case when closed form
expressions for the moments of the generating density p( • |\&) are
available. In particular, we have for the first two moments

E[X\6, *] = (20 - l)E[Y|*] + (1 - 9) (8.11)

and

Var(X\9, *) = {1 - 39 + 2,92}V ar(Y\^) + (8.12)

9(1 - 6){E\Y\V] - I}2.

Note that for 9 = 1,0 and \ it follows from (8.11) that

( E[X\1,V] = E[Y\V], for 0 = 1,
) E[X\0, tt] = 1 - E[Y\% for 9 = 0, (8.13)
(E[X\l*} = i for0=i,

while from (8.12) we obtain

Var(X\l, tf) = Var(X\0, *) = Var(Y\V). (8.14)

The structure of the density (8.1) implies for 9 — 1 that

g{x\9,p( - | * ) } = p(x\V).

Hence, the relations for 9 = 1 in (8.13) and (8.14) are trivially verified. The
second result (8 = 0) in (8.13) and (8.14) follows from the observation that
g{x\0,p( • |^)} represents a mirror image of the generating density, i.e.
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p(l — x\ty). The third result in (8.13) holds regardless of the form of
p(x\ty) due to the symmetry of g{x\^,p( • |\I/)} around 0 = | .

In the remainder of this chapter, we shall further investigate the
properties of the Two-Sided Slope (T-SS) distribution (see, Fig. 8.ID)
within the framework above. In our opinion, a T-SS distribution it is a
natural linear extension of the triangular distribution (discussed in Chapter
1). Moreover, die slope distribution has been shown to serve as a linking
distribution amongst various bounded distributions discussed in Chapter 5
(me generalized trapezoidal distribution), Chapter 6 (the GTSP and UTSP
distributions) and in Chapter 7 (the RGTL distribution). The reader is
encouraged to conduct similar investigations for the ogive distribution (8.9),
the generalized power distribution (8.5) and the truncated exponential
distribution (8.4) togedier with their two-sided counterparts (which all are
some of the members of the family given by the density (8.1)).

8.2 The Two-Sided (Linear) Slope Distribution

From the general form of the pdf of an STS distribution (8.1) and die pdf

p(y\a) = a + 2(1 - a)y, 0 < y < l , 0 < a < 2

of a slope distribution (8.4) we have for the Standard Two-Sided Slope (ST-
SS) distribution the pdf

, , x f a + 2(l-a)f, forO<:c<0
9 < * "> = { < , + 2 ( 1 - o i ^ f , f b r » < » < l , (8'I5)

where 0 < x < l , 0 < a < 2 , 0 < 0 < 1. Figure 8.3 plots ST-SS pdfs for
increasing values of a. This includes a Triangular (a = 0),unimodal ST-SS
(a = 0.5), Uniform (a = 1), U-shaped TSS (o ;=1 .5 )and a reverse
triangular pdf (a = 2). We are using the designation reverse triangular since
the pdf in 8.3E is a reflection through a horizontal line of the distribution in
Fig. 8.3A. The designation reflected'has been utilized elsewhere in the book to
indicate reflection through a vertical line (see, e.g. die RGTL distribution in
Chapter 7). Note diat for unimodal (U-Shaped) ST-SS distributions —
0 < a < 1 (1 < a < 2) — the mode (the anti-mode) is attained at 0
corresponding to a density value (2 — a) and die anti-mode

232



A Generalised Framework for Two-Sided Distributions Beyond Beta

2 ' | |

u_ 1.5 jf- -i ^ " ^ ^ ^ i - r

A 0.00 0.25 0.50 0.75 1.00

2 \ ; ;

„. 1.5 - i^L^ i^---!- T

0 -I 1 1 1 1

g 0.00 0.25 0.50 0.75 1.00

^ . j - . ' •—]• | • | >™™™-™™

O I I I

i i i
o_ 1.5 • 1 1 r
O t i l
Q. 1 , , ,

1 I I
0.5 , , T

I I I
0 -I 1 j 1 1

C 0.00 0.25 0.50 0.75 1.00
z

2.5 i 1 1 1 1

2 ^ ! ;
i i i

u_ 1.5 - s,r 1 1 r

i i i
0 i 1 1 , 1

r-j 0.00 0.25 0.50 0.75 1.00

2.5 • i i • , 1

i i i

c 0.00 0.25 0.50 0.75 1.00
t 2

Fig. 8.3 Standard two-sided slope (ST-SS) pdfs (8.15)
A: a = 0 (triangular), B: a = 0.5 (unimodal ST-SS), C: a = 1 (uniform),

D: a = 1.5 (U-shaped ST-SS), E: a = 2 (reverse triangular).
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(the mode) is attained at either Q — 0 or 6 = 1 resulting in a density value
a. For the slope distribution with pdf (8.4) the cdf is

P(y\a) = ay + (l- a)y2, 0 < 7/ < 1, 0 < a < 2,

and hence from (8.10) we obtain for the cdf of a ST-SS distribution

G(x\e,a)= (8.16)

Jaz + (1-a)y, forO<a;<0

\l -a(l-x) -(l-a){j^-, £OT6<X<1.

From (8.4) we have for the /c-th moment of a slope random variable Y
to be:

and the first and second moments of Y are

E[Y\a] = 1Z2 and B|y.(o, _ PZ£^±2 . i z 5 . (8.17)

Hence, from (8.17) the variance of a slope random variable Y is given by

Var[Y] = E[Y2\a] - B2[Y\a] = ^ ^ g " ^ 2 - (8-18)

Note also that a = 1 leads to the familiar mean and variance values 1/2
and 1/12 for a uniform [0,1] distribution.

Next, utilizing the mean of a slope variable Y (8.17) and the general
expression for the mean of a TS variable (8.11), we derive the mean of a ST-
SS variable X to be:

EWM = 2 ( 1 - a ) 7 ( a + 2). <B.«)
and using the variance of a slope variable (8.18) and the general expression
for the variance of a ST-SS variable (8.12), the variance of X becomes

Var(X\6,a)= (8.20)

3 - ( l - a ) 2 (2a + l ) ( l - q )

36 18 6{l " ^
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Figures 8.4 and 8.5 plot the mean value E[X\9, a] (8.19) and the variance
Var(X\9, a) (8.20) as a function of the threshold parameter 6 for different
values of a (the values of a in Figs. 8.4 and 8.5 coincide with those of the
pdfs plotted in Fig. 8.1). From Fig. 8.4 it follows that the mean values of
unimodal ST-SS distributions (Fig. 8.1B) are located consistently between
the mean values of a triangular distribution (Fig. 8.1 A) and a uniform one
(Fig. 8.1C) with the triangular mean being the smaller (the larger) one for
0 < 0 < | ( | < 9 < 1). Conversely, the mean values of U-shaped ST-SS
distributions (Fig. 8.1D) also consistendy fall between the mean values of a
reverse triangular distribution (Fig 8.1E) and a uniform one (Fig. 8.1C) with
the reverse triangular mean being the smaller (the larger) one for 0 < 0 < |
( | < 9 < 1).

0.70 -i 1

o.65 s « , y

0.60 - * • N yS

* * • - « . ' • / • • ' '

0.55 - -->. V S ' . - '
g ""ĵ S ĵl'l"
I 05° ~- .J?*^..^

0.45- . . • ' ' / 's ^ - ^

0.40 - / S . „

0.35 - / " ' N

0.30 -I . 1 1 1
0.00 0.25 0.50 0 0.75 1.00

Triangular . . . . Unimodal STSS

Uniform — - -U-Shaped STSS

— - - Reverse Triangular

Fig. 8.4 Mean value (8.19) of ST-SS pdfs for different values of the slope parameter a.
A: a = 0 (triangular), B: a = 0.5 (unimodal ST-SS), C: a = 1 (uniform),

D: a = 1.5 (U-shaped ST-SS), E: a = 2 (reverse triangular).

To summarize, for 0 < 9 < ^ the ordering of the mean values in
descending manner is:
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1) Reverse Triangular (the largest)
2) U-shaped ST-SS
3) Uniform
4) Unimodal ST-SS
5) Triangular (the smallest),

while for ^ < 9 < 1 we have conversely:

1) Triangular (the largest)
2) Unimodal ST-SS
3) Uniform
4) U-shaped ST-SS
5) Reverse Triangular (the smallest).

O A A ™ ™ _ _ ™ ™ _ . . ,

0.12 - , . - ' " " • » .

0.10- ' ' . ^ " " - - ^ \

§ o.o8 7/f : vr̂ .
•g . • • - - - . . . . - - - • " •

TO 0.06 -/ \

0.04

0.02

0.00 -I 1 1 1 1

0.00 0.25 0.50 0 0-75 1.00
Triangular - - - - U n i m o d a l STSS

Uniform -U-Shaped STSS

— - - Reverse Triangular

Fig. 8.5 Variance value of ST-SS distributions (8.20) for different values of the slope
parameter a. A: a — 0 (triangular), B: a = 0.5 (unimodal ST-SS), C: a = 1 (uniform),

D: a = 1.5 (U-shaped ST-SS), E: a = 2 (reverse triangular).
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Similar conclusions can be drawn for the variance from Fig. 8.5.
Specifically, it follows from Fig. 8.5 that, for unimodal ST-SS distributions
(0 < oc < l),the variance falls between that of the uniform one and the
triangular one (with the uniform distribution having the higher variance).
Also note, that the minimal variance of unimodal ST-SS distributions is
attained for 8 = | (with the value of 1/24 « 0.042 in the case of a
symmetric triangular distribution). This cannot be said about the U-shaped
ST-SS distributions (1 < a < 2). In this case the maximum variance is
attained at 9 = ^ (with a value of 1/8 = 0.125 for a symmetric reverse
triangular distribution while dipping to the value 1/18 « 0.056 at 9 — Oor
9 = 1). In the vicinity of 9 = ^ the ordering of variances is the same as the
ordering of the mean values for 0 < 9 < ̂  (Compare with p. 238). Thus
the ordering of variances as a function of a is not preserved for the entire
domain 9 € [0, 1], Also note, that a U-shaped ST-SS distribution may have
a larger or smaller variance than that of the uniform distribution depending
on the value of the reflection parameter 9 (Compare with Fig. 8.5).

By means of a linear transformation Z — (b — a)X + a we obtain
from (8.15) the T-SS pdf:

9iz\m,a,a,b}-< y ^
I b-a + b-a b-m> tot m <. Z <. 0,

and from (8.16) the T-SS cdf:

G(z)m, a,a,b) —

ja§Ef + (l-a)^(^)2 , fora<,<m

[l-a^-(l-a)ff£(^)2, form<z<6.

where 0 < a < 2 , a < m < b and m = (b — a)9 + a. Similarly we derive
from (8.19) the mean value

E[Z\m,a,a,b} = ̂ ^a+{^^m+^^b (8.21)
D O D

and from (8.20) the variance of T-SS variable Z
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Var(Z\m, a, a, b) = 3 ~ ( 1 ~ ^ (b - a)2 - (8.22)

(2a + l ) ( l -a) , w , ,
i ^ L{m - a)(b - m).

Note that similar to the mean value formula of a four-parameter TSP
distribution (Eq. (6.7), Sec. 6.1, Chapter 6) the weight of the most likely
value m in (8.21) becomes negative when the pdf takes on a U-shaped form
(1 < a < 2 for T-SS distributions and 0 < n < 1 for TSP distributions).
From (8.21) and (8.22) we obtain the mean and the variance of a uniform
distribution (triangular distribution) with support [a, b] by setting a = 1
(a = 0). For a = 2, the mean and the variance of Z ate reduced to

E[Z\m,2,a,b} = ^a--m+-b

Var(Z\m, 2, a, b) = 1(6 - a)2+-^(m - a)(b - m),

respectively. Observe that the "weight" for the mixing term
(m — a)(b — m) in the expression for Var(Z\m, 2, a, b) is substantially
higher than for the quadratic term (b — a)2.

8.2.1 Moment estimation for ST-SS distributions

We now turn to a discussion of estimation procedures for the parameters of
an ST-SS distribution. The next Sec. 8.2.2 describes the corresponding ML
estimation which, as usual in this book, contains subtle and non-trivial
arguments. Let for a sample X = (X\, ...,Xn) of si2e n (not to be
confused with the parameter n of the ogive pdf (8.11) or the same
parameter of the power pdf (8.3) and generalized power pdf (8.5)) from a
ST-SS pdf (8.15) the sample mean and the sample variance be given by the
standard expressions

x = -ihXt and d2 = —t—'yiXi - x)2. (8.23)
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Equating the population mean and variance (8.19) and (8.20), to their
sample equivalents (8.23) we arrive at the following set of two equations
needed to be solved in terms of 9 (0 < 9 < 1) and a (0 < a < 2):

( 2(l-oQg+(q+2) _ -

\ 2 L ^ 2 l ! _ (2cH-lKl-a)g ( 1 _ e ) = d2 (8-2 4)

From (8.24) and setting

p = 1 - a (8.25)

we obtain the following quadratic equation which ought to be solved in
terms of (3:

(32 - {2 - 6(2x - I ) 2 - 24£2}/? - 9(2x - I ) 2 = 0 (8.26)

(where — 1 < /3 < 1). Now 9 follows from the first equation of (8.24) to
be:

6x - a - 2

*=-j(T^r (8-27)

(after substituting the estimated value of a =1-/3). Alternatively, a
moment estimator of 9 can be deduced by solving the quadratic equation in
9 using the second part of (8.24). Note that from Figs. 8.4 and 8.5 it follows
that necessary conditions for the existence of a solution to the moment
equations (8.24) are:

1 o 1
0 < x < 1 and — < a < - . (8.28)

We shall illustrate the method of moments procedure for ST-SS
distributions by providing four examples. Specifically, the uniform case
(x = | , a = 1/12, Fig. 8.1C), a symmetric triangular case (x = \ and
a = 1/24), a symmetric reverse triangular case (x = ^ a n d <? = 1/8)
and as the fourth example the illustrative sample

(X ( 1 ) , . . . , X (8)) = (0.10,0.25,0.30,0.40,0.45,0.60,0.75,0.80) (8.29)

(which was already used as example (1.38) in Chapter 1 and Chapter 3, Sec.
3.3.1).
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Example 1: Setting x = | and s2 = 1/12 (the mean and the variance of a
uniform distribution), the quadratic equation (8.26) reduces to

/?2 = o,

and from (8.25) it immediately follows that a = 1 coinciding with the
uniform member of the two-sided slope family (Eq. (8.15) and Fig. 8.2C).

Example 2: Setting x = \ and s2 = 1/24 (the mean and the variance of a
symmetric triangular distribution), the quadratic equation (8.26) reduces
now to

/32 - /3 = 0 <=> (3 = 0 and 0 = 1,

and from (8.25) it immediately follows mat a — 1 or a — 0. The solution
a = 1 should be ruled out in view of the value s = 1/24; substituting
x = | , a ~ 0 into (8.27) we arrive at 9 — ^.

Example 3: Setting x = | and s2 = 1/8 (the mean and the variance of a
symmetric reverse triangular distribution), the quadratic equation (8.26)
reduces here to

j5
2+/3 = 0<S>/3 = 0and/?= - 1 ,

and from (8.25) a — 1 or a = 2. The solution a = 1 should be ruled out
in view of die value s2 = 1/8 and substituting x = | , a — 2 into (8.47) we
arrive at 6 = ^ •

Example 4: From the sample values given in (8.29) and (8.23) it immediately
follows that in this case

x = 4.563e - 1 and s2 = 6.031e - 2. (8.30)

Utilizing (8.26) and (8.30) we have the following quadratic equation in 0:
f32 - 0.507/3 - 0.069 = 0,

with the solutions

A = -0 .111 and/% = 0.519.
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Hence from (8.25) and (8.27) we obtain

a ! = 1.111, 6>! = 1.677 and a 2 = 0.481, 92 = 0.247. (8.31)

The first solution in (8.31) should be ruled out in view of the restriction
O < 0 < 1.

8.2.2 Maximum likelihood estimation of ST-SS parameters

While the method of moments for ST-SS distribution is quite elegant and
straightforward, the ML estimation procedure may pose some technical
difficulties. Let for a random i.i.d. sample of size n, {X\,... ,Xn), the
corresponding order statistics be X(i) < X@)•••< X(n). The likelihood
for X with distribution (8.15) is by definition

L(X;0,a)= (8.32)

n(a + a(l-a)^) x f[(a + 2(1-Q)if^)
i—l i=r+\

where X(r) < 9 < X( r+1)with X^ = 0, -X"(s+1) = 1. The likelihood
(8.32) for the data (8.29) as a function of a and 9 is depicted in Fig. 8.6A
and its log-likelihood is displayed in Fig. 8.6B. Note that a global maximum
of the likelihood can be clearly observed visually in Fig. 8.6A (the same
maximum may be observed in Fig. 8.6B although it is somewhat less
obvious). We shall compare (8.32) with the form of the likelihood of the
STSP distribution given by Eq. (3.26) and (3.27) in Chapter 3.

Recall that in the case of a STSP distribution (3.11) in Chapter 3
maximization of the likelihood turns out to be a separable procedure,
allowing first maximization with respect to 9 (via (n + 1) maximizations
over the disjoint intervals PQ r), ^ ( r - l ) ] ) a n d next maximizing with respect
to the power parameter of the STSP variable (denoted in Chapter 3 by n).
The form of the likelihood (8.32) does not allow, unfortunately, to apply a
similar procedure and we are required to maximize L(2£ \ot.,9) with respect
to both parameters a and 9 over the n + 1 sets

6» € [X{r),X{r+1)], 0 < a < 2, where r = 0, . . . , n. (8.33)

It can however be shown that for every fixed 9 € [0,1] the log-likelihood
Log{L(2L'i 9, o>)} is in fact a concave function over a £ [0,2] (see Eq.
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(8.37)). Figure 8.7 depicts profiles of the log-likelihood obtained using
(8.32) for the data (8.29) as a function of a for fixed 8. (Please note, that the
scales of the y-axes in Figs. 8.7A-D are not the same.)

00 °2 e A

00 °2 0 B

Fig. 8.6 A: The likelihood (8.32) as a function of a and 9 for the data (8.29)
B: The log-likelihood of the likelihood (8.32) as a function of a and 6 for the same data.

Hence, for a fixed 8 the log-likelihood L{X_ ; 8, a) is maximized over a at
either a = 0 (Fig. 8.7B) or ex = 2 or at the unique stationary point (Figs.
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8.7A, C and D) for which

dLog{L(X;a,6)\
*x ; ' ' n = 0. (8.34)

da

In addition, since the sets (8.33) are bounded for r = 0 , . . . , n it follows
that the unique global maxima (6^,a^T)) over these sets do exist with the

corresponding likelihood value L(X_; 0(rj, a:(r)). Next, the ML estimators 9
and a can be determined utilizing (as it has been done for the triangular and
TSP distribution in Chapters 1, 3 and 4):

( ? , a ) = argmax L(X;9(r),a(r)). (8.35)
r € {0 , . . . ,n}

(See also Eqs. (1.30) and (1.31), Sec. 1.4 in Chapter 1.)
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Fig. 8.7 Profiles of the log-likelihood based on (8.32) as a function of a for fixed 9
for the data (8.29). A: 9 = 0; B: 6 = X{3) = 0.30; C: 9 = 0.50; D: 9 - 1.00.
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Figure 8.8 depicts profiles of the log-likelihood of (8.32) for the data
(8.29) as a function of 9 for a fixed a. Note (as before) that the scales of the
y-axes in Figs. 8.8A-F differ. The order statistics X^, . . . , X(nj are
indicated in Fig. 8.8 by vertical dotted lines (as is die case of Fig. 1.5 in
Chapter 1). For the values a = 0 (Fig. 8.8A), a = | (Fig. 8.8B) and a = §
(Fig. 8.8C) the slope density (8.15) takes a unimodal form and the profile
log-likelihoods are now reminiscent of the form of the function H(X\9)
given by Eq. (1.24) displayed in Fig. 1.5 for the same data (8.29). (The
function H(X\9) is also used to determine the ML estimator of 9 in the
ML procedure of the STSP distribution discussed in Chapter 3.) Observe
diat over die sets 9 G [-^(r)>-^(r+i)]> r = 0, ... ,n, die log-likelihood of
(8.32) (analogously to the function H(X.\9)) is stricdy convex in Figs. 8.8A,
B and C and hence the ML estimator 9^ over diese sets (for these diree
specific values of a) is attained eidier at X(rj or X(r+iy For a = 1 (the
uniform case) die log-likelihood vanishes for all values of 6 € [0,1] (Fig.
8.8D). On the other hand, for the values a = 1.5 (Fig. 8.8E) and a = 1.95
(Fig. 8.8B) the slope density (8.15) takes a U-shaped form and the profile
log-likelihoods (as a function of 9) are also stricdy concave over the sets
9e [X{r),X(r+l)],r = 0, . . . , n .

We have depicted a profile log-likelihood for a — 1.95 in Fig. 8.8F
rather than the extreme value a = 2 since it can be easily verified utilizing
die likelihood (8.32) that for a = 2

Log{L(X;9,2)} -> - oo a s 0 - > X w , i = l,...,n.

Indeed, for r = 1, ... ,n - 1, (r ^ 4), in Figs 8.8F(Fig. 8.8E), the ML
estimator #(r) is attained at an interior point of the set [X(r), X( r + i )] . For
r = 0 (r = 1) in Figs. 8.8E and F, the ML estimator 0(r) is attained at die
boundary 0 (the boundary 1). Hence, it would seem that for a U-shaped ST-
SS pdf (8.15) it is possible that 0(r) (die ML for 6 over the set
[X(rj, X( r+j)])is not being attained at one of die order statistics X^,
i = l,...,n. Note diat for die data (8.29), the log-likelihood
Log{L(2L\ 9, a ) } attains its global maximum in Figs. 8.8E and F over die
entire range of 9 ([0,1]) at the value 9 = 1 (corresponding to a = 1.5 or
a = 1.95). From die discussion above and Figs. 8.6, 8.7 and 8.8 it can now
be concluded that the ML estimators for 9 € [0,1] and a € [0, 2] for die
data (8.29) are
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Fig. 8.8 Profiles of the log-likelihood based on (8.32) as a function of 9 for fixed a
for the data (8.29). A: a = 0 ;B: a = \\ C: a = §;D: a = 1; E: a = 1.5; F: a = 1.95.
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? = ^ ( 3 ) = 0.30 (Compare with Eq. (3.47) in Chapter 3.)

and

a = 0.00 (see Fig. 8.7B),

which evidently coincides with a triangular distribution with support [0,1]
and a mode at 0.30.

We leave the details of designing a numerical algorithm to maximize
Log{L(X; 0, a)} (see Eq. (8.32)) to our readers (which hopefully should
not present difficulties following the discussion in Chapters 1 and 3, Sees.
1.4 and 3.3, respectively) and we shall provide (to facilitate calculations) only
the first order and second order derivatives of L(J£ ', 9, ot) :

dLog{L(X;9,a)} _
39

^ g(X{i)\9,a)-a ^g(X{i)\e,a) - a

dLog{L(X;a,6)} =

da
f> e~2X{i) " (1 - 0) - 2(1 - X{i))
^ eg(X(i)\e,a) . ^ (l-9)g(X(i)\9,a) '

d2Log{L(X;a,e)} _

^g\X{i)\e,a)-a2 J . 92(X(i)\e,a) - a2

^ Pg*(X[{i\e,a) + ^ ( l - W C X w I f l . a ) '

d2Log{L(X;a,e)}
&T* = ( 8 '3 7 )

^ {d-2X{i)}
2 A {(i - g) - 2(1-Y(0)}»

^f {^(X(i)|fl,a)}a ^ {(l-%(Jr(0|fl,a)}2 < ;
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dLog{L(X;a,9)} =

dBda

V 2X(i) I V 2(X - X(i)) n

^ {9g(X{i)\9,a)}2 "*" . ^ {(1 - %(X(l)|^,a)}2 > U"

The readers are of course encouraged to verify the first and the second
order partial derivatives of the log-likelihood above. Note that for
0 < a < 1 (corresponding to a uni-modal ST-SS pdf (8.15)) it follows from
(8.36) and the fact that in this case the pdf (̂a;Jc9, a) > a (namely a is the
pdf value at the antimode 9) that

d2Log{L(X;a,9)}

over the sets 9 £ [X^,X^T+i\], r = 0, ... ,n. Hence, the log-likelihood
Log{L(X ; a, 9)} is indeed stricdy convex as a function of 9 over these
sets and the maximum is attained at one of the boundary points X^ or
X(r+i), r = 0, . . . , n (for a fixed value of a). Conversely, for 1 < a < 2
(corresponding to a U-shaped ST-SS pdf (8.15)) it follows from (8.36) and
the fact that in this case the pdf g(x\9, a) < a (namely now a is the pdf
value at the mode 9)

d2Log{L(X;a,9)}
829

Hence now the log-likelihood Log{L(X \a, 9)} is stricdy concave as a
function of 9 over these sets and the maximum is attained at one of the
boundary points X(r) or X(r+i), r = 0, . . . , n (for a fixed value of a) or at
a unique interior stationairy point of Log{L(X ;a>, 9)} (in the interval
[ X ( r ) , X ( r + 1 ) ] , r = 0, . . . , n ) .

It remains so far an open research question whether the features of the
ML procedure for ST-SS distributions described above (which are similar to
those of the ML procedure for STSP distributions discussed in Chapter 3)
can be extended to the general form of Standard Two-Sided families (Eq.
(8.1)) with a monotonic generating density p( • |\&). A resolution of this
problem may shed additional light on the ML procedures in non-standard
cases.
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To our readers: If you have studied this book carefully — and we are sure you
did — you could not help but to learn a lot about an important class of
statistical distributions, their structure, properties and methods of estimating
parameters (some of them quite ingenuous) and applications. We sincerely
hope that by now you are not "afraid" of statistical distributions and are
comfortable with basic estimation methods. In addition, if you would
encounter a new distribution (preferably a continuous one) we trust you will
be happy to deal with it in confidence utilizing whenever possible modern
computer and graphical methodology. We also hope that you will be able on
your own to discover and investigate novel distributions that would be
superior from statistical or engineering and scientific aspects (for the
problem at hand) then the ones known so far.

You have also learned a bit about the history of some important
"modeling" statistical distributions and by now appreciate the efforts of
numerous scientists and statisticians who built this imposing edifice. Finally
we trust that you may have improved your skills in mathematics and
perhaps learned about applications of statistical methodology to some areas
with which you are not quite familiar.

Our experience shows that many of our readers after diligently studying
a book on specific distributions are left with a lingering question: "What is
the purpose of trying so hard to find a distribution which will fit accurately the data

available to us?" Suppose we are dealing with financial data (as we have done
in this book on several occasions) regarding inherently uncertain
phenomena. Conclusions about the behavior of these phenomena have
therefore to be made having this uncertainty and variability in mind. Rather
man drawing conclusions based on the variability in the empirical data
alone, a close fit of a theoretical distribution would allow us further insight
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in the statistical properties of the phenomenon at hand. For example, could
there be a practical justification for the discontinuity that was observed in
the fit of the UTSP distribution to USA Certificate Deposit data from 1966-
2002 discussed in Chapter 6, Sec. 6.5? It thus becomes clear that
determining and fitting an appropriate distribution is not just a pleasant
exercise in computational mathematics but (when properly designed and
executed) can often shed a strong light on the phenomenon at hand and
more importantly facilitate the discovery of the law governing this
phenomenon.

You have no doubt observed that the text you have been studying does
not contain exercises (partially substituted by comments and suggestions in
the course of the exposition to carry out additional calculations and/or
verify statements presented in the text). This is due to the novelty of the
material which is scattered in numerous journals (financial, engineering and
as well statistical) in the last 4-5 years starting from 1999 (a substantial part
of it is from publications co-authored by the co-authors of this
monograph). By compiling this book we intend to inaugurate a new
— albeit modest — area in distribution theory containing continuous

distribution on a bounded domain which possess meaningful parameters
and attractive inferential properties (easily implemented using modern
computational tools) that may have useful applications. We welcome your
feedback and suggestions. This will assist us with the composition of a
second edition which will hopefully contain a selection of appropriate
exercises and some additional topics. We look forward to hearing from you
and will be pleased to find out how useful this text is to you.
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Appendix A

Graphical Overview of Continuous
Univariate Families of Distributions

possessing a Bounded Domain

Figure A.I depicts graphically the various families of bounded distributions
that are discussed in this book and is reminiscent of a similar graph
developed by Leemis (1986) which also includes families of distributions
with unbounded support. Amongst the distributions in Fig A.I only the
beta and uniform distributions are presented in Leemis (1986). The families
indicated by shapes with rounded corners using dotted lines are discussed in
Chapters 1-2 and of which its origins are dated pre-21 st century. Those
indicated by sharp rectangles and solid lines are describes in Chapters 3-8
(appearing mostly in post 20-th century archival literature). The numbers in
the corners of each rectangular (rounded or sharp) shape represent the
number of parameters associated with family of distributions specified in it.
Two of these parameters are used to identify the support of these families.
Hence, if one were to consider the standardized versions with support
[0,1] of these families of distributions one should subtract two (the lower
and upper bound parameters) from the number of parameters indicated in
each rectangle.

By starting at the rectangle of a particular family and following the
arrows one can identify common members of parent families of
distributions. Hence, both the beta and TSP families may be considered to
be parent families of the power and reflected power distribution. The power
and reflected-power families of distributions are in turn the parent families
of the uniform distribution (in addition to the one-sided slope, distribution
and the trape2oidal distribution). The dotted arrows indicate relationships
that were earlier established (pre-21 st century) and the solid arrows indicate
relationships that have been identified more recently. One vividly observes
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from Fig. A.I that the newly constructed univariate distributions with a
bounded domain are more connected to the triangular (and uniform)
distribution than the beta distribution and hence the tide of this
monograph. Table A.I provides a roadmap for this book to most of the
distributions presented in Fig. A.I.

Generalized 7
Trapezoidal

/'...J ', ,
UTSP6| j Trapezoidal4! j J o h " S O n I

. z _ ,- *-> >- ,
GTSP^ | Triangular • | Uniform !

/

' f- f-*-' } —f *-'

, . ;< x ,
TSP4 '—; y\ v 1 P o w e r i

1—t 1 I y \ Two-Sided T\ / ~*~"V'
\ \y Slope 4 \ / i J

.U; \T^M / \ L
• Reflected ; i I 1 / • L_ f t o • \

•....?™;-3-! 7 - - . - - " - T V L™s?*rJ
i i ' T Beta T y" f .

i.-i- L •• A \ . / l \
! i Right 2^ , Slope, / i
| ! Triangular • J ° I / [

4 RGTL 4 H RTL 3 | ! T O P P & S V J G T L 4
| ! Leone ;

Fig. A.I Overview of families of continuous univariate distributions
on a bounded domain and their connections.
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Table A.I A roadmap for most of the families of distributions depicted in Fig. A.I.

Acronym Family of Distributions # Parameters Chapters PDF Formula Page

1 GT Generalized Trapezoidal 7 5 (5.1) 150

2 LCUV Linear Combination of Uniform Variables ai 2 (2.37) 50

3 STS Standard Two-Sided £ 1 8 (8.1) 226

4 UTSP Uneven Two-Sided Power 6 6 (6.1) 167

5 USTSP Uneven Standard Two-Sided Power 4 6 (6.2) 168

6 GSTSP Generalized Standard Two-Sided Power 5 6 (6.5) 169

7 T Trapezoidal 4 2 (2.22) 45

8 STSP Standard Two-Sided Power 2 3 (3.11) 71

9 TSP Two-Sided Power 4 4 (4.2) 98

10 Standard Beta 2 1,3 (1.5), (3.24) 4 ,78

11 Beta 4 4 (4.1) 98

12 SRGTL Standard Reflected Generalized Topp S Leone 2 7 (7.9) 201

13 RGTL Reflected Generalized Topp & Leone 4 7 (7.4) 198

14 STL Standard Topp & Leone 1 2 (2.5) 36

15 TL Topp & Leone 2 2 (2.6) 37

16 ST-SS Standard Two-Sided Slope 2 8 (8.15) 232

17 SS Standard Slope 7,8 1 (7.1), (8.4) 196,226

18 S Slope 3 5 (5.6) 153

19 SP Standard Power 1 8 (8.3) 226

20 P Power 3 5 (5.5) 153

21 RP Reflected Power 3 5 .7 (5.7), (7.7) 154, 199

22 Standard Triangular 1 1 (1.4) 4

23 Triang Triangular 3 1 (1.6) 5

24 SRT Standard Right Triangular 8 0 (8.2) 226

25 SB Johnson System SB 4 Appendix B (B.5), (B.6) 257

The Johnson SB transformation yields a continuous unimodal
distribution (or bimodal with an antimode between them) on [0,1]. It is
based on a logarithmic transformation of a Gaussian distribution and as
such is not formally connected with the various families of distributions
depicted in Fig. A.I (although some graphs show a very close similarity). It
may be of interest to compare analytically (or numerically) the interrelation
— if any — between the Johnson's SB distribution (see, e.g. Elderton and

Johnson (1969)) and those depicted in Fig. A.I. Such a comparison to the
best of our knowledge has not been carried out (partially due to historical
reasons). Since the Johnson SB is not connected to the other distributions in
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Fig. A.I a brief overview of this family is presented in Appendix B rather
than the main part of the book. Given the popularity of the Johnson SB
distribution and its prominence we strongly feel it has a place in this book
on other univariate continuous distributions with bounded support other
than Pearson's beta distribution.

We conclude by noting that, in the last decade, integration of
graphically interactive and statistical procedures for input distribution
modeling has become a topic of intensive research (see, e.g., DeBrota et al.
(1989), AbouRizk et al. (1991), Flanigan (1993) and Wagner and Wilson
(1996)). This involves, amongst others, the software system PRIME and
univariate Bezier curves (or distributions) which are a variant of spline
functions (see Wagner and Wilson (1996)). Bezier curves utilize a number of
control points as its parameters (the default number in PRIME is 6) where
each control point is defined by an x and y coordinate. Two of these
control points define its lower and upper bound. The remaining control
points determine domains of attraction for the Bezier curve, but do not have to
be points on the Bezier curve itself and may not shed additional light on the
uncertainty phenomenon one is trying to model. A user may edit the
location of a control point and, add or delete them which requires visual
user interaction with the software PRIME. Alternatively, for a given
number of control points, the software PRIME can numerically determine
their location by minimizing its "distance" to available empirical data. An
overview of a variety of distance measures is presented in Wagner and
Wilson (1996). The system of Bezier distributions allows for great flexibility
in input distribution modeling for stochastic simulations. However, as
Wagner and Wilson (1996) mention, variate generation from a Bezier
distribution is not computationally efficient (thus far) since its inverse
cumulative distribution function is not available in a closed form (similar to
the case of the beta, but unlike the TSP distributions).
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The Johnson SB Distribution

The reader is by now well familiar with the triangular distribution and some
of its generalizations as possible alternatives for the beta distribution. N.L.
Johnson (1917 - ) who is one of the leaders of the 20-th century Statistics
(specializing in Statistical Distribution Theory and Applications) and who
studied in the Imperial College in London at the tail end of Karl Pearson's
(the father of the beta distribution among other important distributions) life
in the middle thirties of the 20-th century has developed in 1949 a system of
transformations of the normal distribution which received substantial
popularity in the second half of the 20-th century. The Johnson system
contains the SB class of distributions, which have a bounded support. Even
though, the Johnson Sg distribution does not directly link to the other
distributions presented in this book (see, Appendix A), it deserves
consideration as a possible alternative to the beta distribution being a
versatile continuous distribution on a bounded domain. It has been
extensively investigated in the statistical literature for some 40 years. We
shall provide here a brief overview.

B.I Motivation and Representation

Suppose that berries of fruit have radii r (measured in some decidable
fashion) normally distributed with parameters fi and a2. Then the surface
area S = nr will no longer be normal and indeed will be skewed
distributionally. This idea was developed a little later than the introduction
of the K. Pearson system of continuous distribution byJ.C. Kapteyn (1903)
in his treatment of skew frequency curves in biology. The development of
the subject was perhaps retarded because of over anxiety and unsuccessful
efforts to trace the transformation's relation to natural phenomena and
mathematical difficulties. Moreover, Kapteyn's memoir proved to be
intractable mathematically in most cases.
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Actually, the idea of transforming from one random variate to another
with a more convenient density has been developed in the first half of the
20-th century. If the distribution of the random variable Y is such that a
simple transformation of Y has a well known distribution, it becomes
possible to use the research on the latter — including published tables — in
studying the former distribution. A pioneering step in this direction was
carried out by N.L. Johnson in the above mentioned 1949 publication in
Biometrika. Let X be a standard normal distribution widi pdf

and consider the transformation

Y = g'1 ( ^ p ) or X = 7 + 6g(Y) (B.2)

for a suitable function g( • ) and parameters 7 € R and 6 > 0. The
transformation of Y given by 7 + Sg(Y) has the classical standard
Gaussian distribution (B.I). We have for the density function of Y

h(yh,6) = 6f(1 + 69(y))\d-^ = * -H^)>2 m .
I dy y/2-n ay

Johnson proposes three types of systems:
1) The Si or lognormal system:

g(y) = Log(y);

2) The SB (bounded support system):

g(y)= Log{y/(l-y)} (B.3)

3) The Su (unbounded support):

g(y) = sinh~l(y) = Log(y + vV + 1)-

Other systems, of course, are possible. However, the variety of shapes
given by these three is quite as large as that of the whole Pearson system
(see, e.g., Stuart and Ord (1994)): The SB and Su systems occupy non-
overlapping regions covering the whole (/?i, /32) plane; the SL system
defines the curve that separates them — the quantities /3\, fa are the
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familiar skewness and kurtosis respectively defined in Eq. (1.18) in Chapter
1). The system SB which is of interest in our case results in the pdf:

where 0 < y < 1, <5 > 0. Similarly to the Gaussian distribution, the cdf of
the Johnson SB variable Y given by (B.O) is not available in a closed form.
Using a simple linear scale transformation Z — (b — a)Y + b we obtain
the Johnson SB pdf with support [a, b] given by

h{z\a,b,-y,6) = (B.5)

6 (b — a) r 1 f CT tz — a \ l 2 l

^{z-a){b-Z)eXP[-2V + 6LogK-b^-z))\>

where a < z < b, 7 € M and 6 > 0. The Johnson SB system has found
application in fields like meteorology (see, Johnson, 1949), medicine (see,
e.g., Johnson (1949), Bukac (1972)), biology (see, e.g., Draper (1952), Slifker
and Shapiro (1980)), forestry (see Kudus et al. (1999)) and other sciences
(see Mage (1980)) and due to its flexibility serves as an important alternative
to the beta distribution in modeling input distributions for stochastic
simulations (see, e.g., DeBrota etal. (1989)).

B.2 Some Properties of the Johnson SB Family

Figure B.I depicts some examples of the Johnson SB pdfs and
demonstrates the variety of forms that it may have. For 7 = 0 the density
function is symmetric on [0,1] (Figs. B.1A and B). This follows
immediately from rewriting the pdf (B.4) in a form that is reminiscent of the
beta pdf (1.18) in Chapter 1, yielding

h(y\7,6) = —L=y-«y\sri-l(l-y)Msri-\ (B.6)
V27reT

where 6 > 0 and

C(2/|7,<5) = y2(y)+7<5, (B.7)
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Fig. B.I Some examples of Johnson Sg pdfs.
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where g(y) is the original Johnson SB transformation function given by
(B.3). In fact, denoting the pdf of Z = 1 - Y (i.e. the reflection of Y) by
f(z\j, 6) we obtain from (B.6) and (B.7) that

f(z\1,6) = h(z\-1,6). (B.8)

Hence from (B.8) it follows that Fig. B.1D is the reflection of Fig. B.l.C. and
similarly to the beta (Eq. (1.5) in Chapter 1) and STSP (Eq. (3.11) in
Chapter 3) distributions, die reflected Johnson S# distribution is also a
member of the Johnson SB family.

The density function (B.4) may be bimodal (see, Fig. B.1F). Note that,
while die Johnson SB pdf takes on somewhat of a U-Shaped form, the
modes are not attained at the support boundaries (unlike the case of beta
distribution and STSP distributions) since the density value of a Johnson
SB distribution at the boundaries 0 and 1 remains 0, regardless of the
values of the parameters 6 and 7 in (B.6). This assertion follows from (B.6)
and (B.7) and die fact that C(y|7) 6) —> 00 (C(J/|T? <5) —> — 00) when y f 1
(y I 0). We shall conduct a detailed mode analysis in a subsection below.

B.2.1 Median value

Since the median of a standard normal random variable is at zero we
immediately obtain from (B.2) the median j/o.5 of Y" for me Johnson system
to be

yo.5 = g-1(~[), (B.9)

where g - 1 ( • ) is the inverse function of g( • ). In case of the Johnson SB
system we have from (B.3) that

and using (B.10) die median becomes

2/0.5 = — ^ - j (B.11)
1 + e«

for the Johnson SB family. The RHS of (B.10) is die well-known sigmoid or
standard logistic function (see, e.g., Von Seggern (1993)) and should not be

259

(B.10)



The Johnson i"B Distribution Beyond Beta

confused here with the cdf of a standard logistic distribution (see, e.g.,
Johnson et al. (1995)) which has the same functional form (and an
unbounded support).

In Figs. B.1C and B.1D we have the medians to be respectively:

2/0.5 = — — and yo.5 = r - r = 1 - 7—,
1 + e 1 + e"1 1 + e

which also follows from the fact (as mentioned above) that the pdf in Fig.
B.1D is the reflection of the pdf in Fig. B.1C. Note that from (B.ll) it
follows that the ratio

« = I (B.12)

may be interpreted as a location ratio.

B.2.2 Mode analysis

It is of interest to describe the possible location(s) of the mode(s) of the
Johnson SB family. Differentiating (B.6) and equating to zero we have

2y-l = 6[>y + 6Log(-^-^)} (B.13)

or using the transformation

z = 2y-l (B.14)

and the definition of K given by (B.12), we arrive at

±-K = Log(\±?), (B.15)

where z € [ — 1,1]. The LHS of Eq. (B.15) is a strictly increasing straight
line with the slope solely determined by the parameter 6 (see, Fig. B.2). The
derivative of the RHS of (B.15) equals

which attains its minimal value of 2 at z = 0. Setting (B.16) to be 1/62 we
obtain the following two equations
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Fig. B.2 Graphical depiction of Eq. (B.15).
A: 6 = 0.55, 7 = 0.33 (see Fig. B.1E); B: A: 6 = 0.55, 7 = 0.1925. (see Fig. B.1F)
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1 , f y/l - 2S2
 r (l + yJl-282\\

-;z±{^— Log[ v. \ (B.17)
82 \ 62 V1 — y/l-262')

for the possible two tangent lines at ± y l — 2<52 of the RHS of function
(B.I5) with slope l/<52 provided

\ / l - 2<S2 < 1 <£> 5 < -^= sa 0.70. (B.18).
V 2

For <5 = 1/v 2 the two tangent lines coincide and Eq. (B.17) simplifies to
z/2.

Hence, from (B.15) and (B.17) it follows that for 8 > I / A / 2 Eq. (B.15)
has a single solution and the Johnson SB pdf (B.6) is unimodal (see Figs.
B.1A-D). The boundary case 8 = 1/v 2 and K = 0 (7 = 0) results in a
symmetric unimodal Johnson SB pdf with a mode at y = \ (or z — 0 using
the transformation y = 2z — 1) and is depicted in Fig. B.1B. For
6 > l / \ /2and 7 ^ 0 (for 7 = 0 and 6 > l / \ / 2 the mode is also at
y — | ) , one can numerically solve for the mode from Eq. (B.15) using, e.g.,
the root-finding algorithm GOALSEEK in Microsoft EXCEL. We have for
Fig. B.1C (Fig. B.1D) a mode at w 0.156 ( w 0.854).

For 8 < l / \ / 2 it follows from (B.17), (B.12) and 6 > 0 that Eq. (B.15)
has two or three solutions provided

When (B.19) attains equality, the LHS of Eq. (B.15) coincides with the
tangent line (B.17) of its RHS resulting in two solutions of Eq. (B.15) and
the Johnson SB pdf is still unimodal with a single modeless than ^ (greater
than | ) when 7 > 0 (7 < 0). Figures B.2A and B.1E depict this case for
the specific values 6 = 0.55 and 7 « 0.33 with a mode at y w 0.023 in Fig.
B.1E (or from (B.14) 2 « - 0.954 in Fig. B.2A). For 6 < l / y ^ and a
strict inequality of (B.19) it follows from (B.17) that Eq. (B.15) has three
solutions and the Johnson SB pdf is bimodal. Figures B.2B and B.1F depict
this case for £ = 0.55 and 7 ^ 0 . 1 9 2 with modes at y fa 0.031 and
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y^0.198in Fig. B.1F (or from (B.14) z ta -0 .939 and 2^0 .835 ,
respectively in Fig. B.2B).

B.2.3 Moments and parameter estimation

The k-th non-central moment associated with the pdf (B.4) or (B.6) is given
by

1 f00 2 r -\ k

H'k = E[Yk] = — - / e - T J i + e ^ ) } du, k = 1,2, ...(B.20)

(see, Johnson, 1949) which is a transcendental quantity that is somewhat
difficult to evaluate. Johnson (1949) produced a formula for the mean
jji'l — E[Y] as the ratio of an infinite series involving the Jacobi dieta
function (not involving integrals). Johnson and Kitchen (1971a,b) also
derived the following recursive relations for die non-central moments

fi'kfTf+S-^S) = e-$+V x K - i ( 7 , « ) - M'fc(7,5)},

which were utilized to construct tables to facilitate fitting of die Johnson SB
distribution via the method of moments. Similarly to the Reflected
Generalized Topp Leone distribution (discussed in Chapter 7) method of
moments estimation is slighdy cumbersome due to the structural form of
(B.20), but has successfully been investigated Hill eta/. (1976) and by Bacon-
Shone (1985) for a five-parameter generalization of the Johnson SB pdf
(B.5).

Maximum likelihood estimation have been investigated rather recendy
by Kottegoda (1987) who noticed feasibility of the ML procedure for
Johnson S# distribution when kurtosis is low and difficulties in other cases.
Difficulties associated with the ML and method of moment procedures
have resulted in considerable efforts to propose alternative methods and to
investigate their properties. Amongst them are least squares estimation by
Swain et al. (1988), estimation of parameters based on percentile points (see,
e.g., Johnson (1949), Bukac (1972), Mage (1980), Slifker and Shapiro (1980),
Wheeler (1980), Bowman and Shenton (1988), Siekierski (1992), Zhou and
McTague (1996)). Even more recendy Kudus et al. (1999) discuss a non-
linear regression approach similar to the one in Swain et al. (1988) (although
Kudus et al. (1999) do not refer to Swain et al. (1988) — at least not direcdy)
and concluded diat the non-linear regression mediod compares favorably
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compared to other ones discussed in their paper (which included the ML
method). Since the least squares estimation procedure of Swain et al. (1988)
can be straightforwardly implemented utilizing the SOLVER add-in in
Microsoft EXCEL we shall provide a brief overview.

For a random sample Y = (Y\,..., Yn) of size n from a Johnson SB
distribution let the order statistics be Y^ < Y(2)- • • < Y{s)- F r o m (B.I) and
(B.2) it follows that

Pr(Y < r(i)) = F(Y{i}\7,6) = *{7 + ^(K ( 0)}, (B.21)

where $ { • } is the standard normal cdf (for which, for example, a standard
function NORMDIST is available in Microsoft EXCEL) and g( • ) for the
Johnson SB system is defined by (B.3). Swain et al. (1988) shows that

F(YW 17, S) = - J - r + £i> 1 < i < n, (B.22)

where for the residual terms ti

E[ci] = 0, i = 1,... ,n

and

Cov{e^k) = -±-{J—(l - -±-)\ > 0,
n + 2 U + 1V n + l / J

for i < k, fc = l , . . . , n . Next, using weighted non-linear regression to
solve for the parameters 7 and 5, one minimizes

X>{F(ywM)-^}2 (B.23)

for some weights Wi > 0 using standard optimization tools, such as, e.g.,
the SOLVER add-in in Microsoft EXCEL under the restriction that 6 > 0.
Setting u>i = 1, i = 1, . . . ,n is referred to as the ordinary least squares (OLS)
method, while setting

_ 1 _ n+2

VarUi) -i—(-\ l—\

n+l \ / n+l^
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is referred to as the Diagonal Weighted Least Squares (DWLS) method (see,
e.g. AbouRizk (1990). The latter method assigns a lower weight to the lower
and upper order statistics since these have a larger variance than those
observed in the middle ranges.

It is important to note that the above estimation procedure may be
straightforwardly extended to include estimation of the lower and upper
bounds parameters a and b of the Johnson SB distribution (B.5), by adding
the constraints

a < X(i) and b > X^

to the optimization procedure minimizing (B.23). Moreover, the above
estimation procedure may be extended to any arbitrary cdf by appropriate
modification of (B.21). In fact, the OLS estimation procedure above (see
also Eq. (4.20) in Chapter 4) was utilized to fit a four parameter beta
distribution (see Eq. (4.1) in Chapter 4) to the data in Table 1.2 in Chapter
1 to avoid possible numerical difficulties with the four-parameter ML
procedure for the beta distribution (see Carnahan (1989)).

B.2.4 Some thoughts on limiting distributions

To the best of our knowledge limiting distribution of the Johnson SB
distribution have not been formally investigated, perhaps due to the
difficulties involved with calculating the moments. We would like to offer
some thoughts here that are primarily based on visual observations. We
have depicted in Fig. B.3 some additional examples of the Johnson SB to
help us collect these thoughts.

From Fig. B.3A, (B.8) and the expression for the median (B.ll) it
seems that when 7 —> 00 (7 —> — 00), keeping 6 fixed that the pdf (B.6)
converges to a single point mass at 0 (at 1). Similarly, letting 7 —> 00,
keeping K = j/S defined by (B.12) constant it seems from (B.ll) that the
pdf (B.6) converges to a single point mass at

{1 + eT1

or {1 + y/e}~1 « 0.378 in case of Fig. B.3B.
Since the RHS of (B.19) becomes arbitrarily large when 6 j 0 it follows

immediately that the Johnson SB distribution becomes bimodal regardless
of the value of 7 (Recall that the density value of the pdf (B.6) always
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equals zero at the boundaries 0 and 1 for all parameter values 7 and 6 > 0).
From (B.2), X being standard normal distributed and the fact that the
function g( • ) given by (B.3) is strictly increasing, it follows immediately
that

Pr(Y<y) = ${>y + 6g(y)}, (B.24)

where $>(•) is the standard normal cdf. Hence, utilizing (B.24) it would
seem that as 8 j 0 (keeping 7 fixed) the pdf (B.6) converges to a Bernoulli
distribution with a probability mass $ (7 ) at 0 and {1 — $ ( 7 ) } at 1.

1 11
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Fig. B.3 Some additional examples of Johnson Sg pdf s.

If the above assertions prove to be true, die Johnson SB family enjoys
the same limiting distributions as the beta and STSP families, which would
add to its flexibility.
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B.3 Concluding Remarks

It is an interesting that the pioneering Johnson's contributions to the
development of an elegant and powerful system of transformations of the
normal distribution (consisting of three families, which actually cover all of
the twelve Pearson's curves — see, e.g., Patil et al. (1984)) were developed in
the late forties of the 20-th century, before the introduction of (even the
most primitive) computers into statistical practice. Computations related to
the Johnson's system are quite ingenuous and involved and were originally
carried out with the old-fashioned calculators which required long hours
and even days of patient calculating of something that nowadays may take
less than 1 second.

The family has no simple expression for the moments (which some 50
years ago may have been considered a serious drawback). However, the
family has paved the way for introduction of computation intensive
methodology and the use of non-standard functions (such as the hyperbolic
and Jacobi functions) in statistical practice. In this sense it was certainly a
substantial accomplishment which should in our opinion be definitely noted
when dealing with continuous univariate distributions on a bounded
domain. This system is still widely used for fitting curves in various fields of
sciences, medicine and technology.
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