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Preface

Ready access to computers at an institutional and personal level has
defined a new era in teaching and learning. The opportunity to extend
the subject matter of traditional science and engineering disciplines into
the realm of scientific computing has become not only desirable, but also
necessary. Thanks to portability and low overhead and operating costs,
experimentation by numerical simulation has become a viable substitute,
and occasionally the only alternative, to physical experimentation.

The new environment has motivated the writing of texts and mono-
graphs with a modern perspective that incorporates numerical and com-
puter programming aspects as an integral part of the curriculum: meth-
ods, concepts, and ideas should be presented in a unified fashion that
motivates and underlines the urgency of the new elements, but does not
compromise the rigor of the classical approach and does not oversimplify.

Interfacing fundamental concepts and practical methods of scientific
computing can be done on different levels. In one approach, theory and
implementation are kept complementary and presented in a sequential
fashion. In a second approach, the coupling involves deriving compu-
tational methods and simulation algorithms, and translating equations
into computer code instructions immediately following problem formu-
lations. The author of this book is a proponent of the second approach
and advocates its adoption as a means of enhancing learning: interject-
ing methods of scientific computing into the traditional discourse offers
a powerful venue for developing analytical skills and obtaining physical
insight.

The goal of this book is to offer an introductory course in fluid me-
chanics, covering traditional topics in a way that unifies theory, computa-
tion, computer programming, and numerical simulation. The approach
is truly introductory, in the sense that a minimum of prerequisites are
required. The intended audience includes not only advanced undergrad-
uate and entry-level graduate students, but also a broad class of scientists
and engineers with a general interest in scientific computing.

The discourse is distinguished by two features. First, solution pro-
cedures and algorithms are developed immediately after problem formu-
lations. Second, numerical methods are introduced on a need-to-know
basis and in increasing order of difficulty: function interpolation, func-
tion differentiation, function integration, solution of algebraic equations,
finite-difference methods, etc.



A supplement to this book is the FORTRAN software library FDLIB
whose programs explicitly illustrate how computational algorithms trans-
late into computer code instructions. The codes of FDLIB range from in-
troductory to advanced, and the problems considered span a broad range
of applications; from laminar channel flows, to vortex flows, to flows in
aerodynamics. The input is either entered from the keyboard or read
from data files. The output is recorded in output files in numerical form
so that it can be read and displayed using independent graphics, visu-
alization, and animation applications on any computer platform. Com-
puter problems at the end of each section ask the student to run the
programs for various flow conditions, and thus study the effect of the
various parameters characterizing a flow. Instructions for downloading
the source code and a description of the library contents are given on
page 651.

In concert with the intended usage of this book as a stand-alone text
and as a tutorial on numerical fluid dynamics and scientific computing,
references are not provided in the text. Instead, a selected compilation
of introductory, advanced, and specialized references on fluid dynamics,
calculus, numerical methods, and computational fluid dynamics are list-
ed in the bibliography on page 666. The reader who wishes to focus on
a particular topic is directed to these resources for further details.

I would like to extend special thanks to Vasilis Bontozoglou for his
friendship and encouragement, and to Yuan Chih-Chung, Rhodalynn De-
gracia, Audrey Hill, and Kurt Keller for helping me with the preparation
of the manuscript.

C. Pozrikidis

San Diego

January, 2001

Email: cpozrikidis@ucsd.edu
Book internet site: http://stokes.ucsd.edu/C-pozrikidis/FD-TCNS
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FDLIB Software Library

The software library FDLIB contains a collection of FORTRAN 77 pro-
grams and subroutines that solve a broad range of problems in fluid
dynamics using a variety of numerical methods. At the time of this
printing, FDLIB consist of thirteen main directories, each containing a
multitude of nested subdirectories. The contents of the subdirectories
are listed on pages 655-667.

Downloading

The source codes of FDLIB and accompanying User Guide, available
in the pdf format, can be downloaded from the internet site:
h t t p : / / s t o k e s . u c s d . e d u / C - p o z r i k i d i s / F D L IB

Installation and compilation on UNIX or LINUX

• The library has been archived using the tar UNIX facility into the
file FDLIB. tar. To unravel the directories on a UNIX or LINUX
system, please execute the UNIX command:
tar xvf FDLIB.tar

• The downloaded package does not contain object files or executa-
bles. An application can be built using the makefile provided in
each subdirectory. A makefile is a UNIX script that instructs the
operating system how to compile the main program and subrou-
tines, and then link the object files into an executable using an f77
compiler.

• To compile the programs using a FORTRAN 90 compiler, simply
make appropriate compiler call substitutions in the makefiles.

• To compile the application named pindos, go to the subdirectory
where it resides, and type:
make pindos

• To remove the object files and output files of the application named
pindos, go to the subdirectory where it resides, and type:
make purge

http://stokes.ucsd.edu/pozrikidis/FDLIB/fdlib.shtml


• To remove the object files, output files, and executable of the ap-
plication named pindos, go to the subdirectory where it resides,
and type:
make clean

Installation and compilation on Windows and Macintosh

• To unravel the directories on a Windows or Macintosh platform,
double-click on the archived tar file and follow the on-screen in-
structions of the invoked application.

• To compile the link the programs, follow the instructions of your
FORTRAN 77 or FORTRAN 90 compiler.

CFDLAB

A subset of FDLIB has been combined with the XIl graphics library
vogle into an integrated application that visualizes the results of the
simulations. The source code of CFDLAB can be downloaded from the
internet site:
http://stokes.ucsd.edu/C-pozrikidis/CFDLAB

http://stokes.ucsd.edu/pozrikidis/CFDLAB/cfdlab.shtml


FDLIB Directories

Subject Directory Units

1 Numerical methods Ol-num.meth 89
2 Grids O2.grids 22
3 Hydrostatics OSJiydrostat 5
4 Various O4-various 27
5 Lubrication 05-lub 4
6 Stokes flow 06-stokes 33
7 Potential flow #7_p/;/ 25
8 Hydrodynamic stability 08-stab 15
9 Vortex motion 09-vortex 16
10 Boundary layers ^0.6/ 3
11 Finite difference methods ll.fdm 2
12 Boundary element methods 12-bem 6
13 Turbulence IS.turbo I

Directory Contents

The thirteen main directories consist of subdirectories that include main
programs, assisting subroutines, and utility subroutines. Linked with
drivers, the utility subroutines become stand-alone modules; all drivers
are provided. A list of the subdirectories with a brief statement of their
contents follows. The indicated number of units is the sum of the num-
ber of main programs and utility subroutines; assisting subroutines and
drivers of utility subroutines are not counted. An extensive description of
the problem statement, mathematical formulation, and numerical meth-
ods can be found in the FDLIB User Guide available from the FDLIB
internet site.



01-numjtneth

General purpose numerical methods in scientific computing. l

Subdirectory

01_num_comp
02_lin_calc
03_lin_eq
04_nl_eq
05_eigen
06_interp_diff
07_integration
OS-approximation
09-odeJvp

lO.odeJbvp

ll.pde
12_spec_fnc

Topic

General aspects of numerical computation.
Linear algebra and linear calculus.
Systems of linear algebraic equations.
Nonlinear algebraic equations.
Eigenvalues and eigenvectors of matrices.
Function interpolation and differentiation.
Function integration.
Function approximation.
Ordinary differential equations;
initial- value problems.
Ordinary differential equations;
boundary value problems.
Partial differential equations.
Computation of special functions.

Units

14
11
10
8
9
8

10
8

1

2
5

10

1ThIs directory accompanies the book: C. Pozrikidis 1998 Numerical Computation
in Science and Engineering, Oxford University Press.



Subdirectory

grid_2d

prd_2d
prd_3d

prd_ax

rec_2d
rec_2djstrml

sm_3d_cl_df

sm_3d_cl_tr

trgLocta
trgl_octa_hs
trgl_sqr

Topic

Discretization of a planar line into a
graded mesh of straight or circular elements.
Adaptive parametrization of planar lines.
Adaptive parametrization
of three-dimensional lines.
Adaptive parametrization of planar lines
representing the trace of axisymmetric
surfaces in a meridional plane.
Interpolation through a rectangular grid.
Streamline pattern by interpolation
through a rectangular grid.
Smoothing of a function on a closed surface
by surface diffusion.
Smoothing of a function on a closed surface
by Legendre spectrum truncation.
Triangulation of a closed surface.
Triangulation of an open surface.
Triangulation of a square patch.

Units

3
5

5

3
1

1

1

1
1
1
1

02-grids

Adaptive discretization, parametrization, representation, and
meshing of planar lines, three-dimensional lines, and three-
dimensional surfaces.



03-hydrostat

Shapes of interfaces in hydrostatics.

Subdirectory

drop_2d

drop_ax

men_2d

men_2d_plate

men_ax

Topic

Shape of a two-dimensional pendant
or sessile drop on a plane.
Shape of an axisymmetric pendant
or sessile drop on a plane.
Shape of a two-dimensional meniscus
between two parallel plates.
Shape of a two-dimensional meniscus
attached to an inclined plate.
Shape of an axisymmetric meniscus
in a circular tube.

Units

1

1

1

1

1



04-various

Structure and kinematics of various flows.

Subdirectory

flow.ld

flow_ld_osc

flow_ld_shear

spf
strml
strmll
uniJlow

uni_flow_u

Topic

Steady unidirectional flow in a tube
with arbitrary cross section.
Oscillatory unidirectional flow in a
tube with arbitrary cross section.
Unidirectional shear flow over an
array of cylinders.
Similarity solutions for stagnation-point flows.
Streamline patterns of a broad range of flows.
Light version of strml.
Steady unidirectional flows with
rectilinear or circular streamlines.
Unsteady unidirectional flows with
rectilinear or circular streamlines.

Units

I

1

1
1
1
1

15

8



OSJub

Nearly unidirectional lubrication flows
at low Reynolds numbers.

Subdirectory

bear_2d

chan_21_exp

chan_21Jmp

films

Topic

Dynamical simulation of the motion
of a slider bearing pressing against a wall.
Dynamical simulation of the evolution
of two superposed viscous layers
in a horizontal or inclined channel,
computed by an explicit finite-diffrence method.
Dynamical simulation of the evolution
of two superposed viscous layers
in a horizontal or inclined channel,
computed by an implicit finite-difference method.
Evolution of an arbitrary number of superposed
films on a horizontal or plane wall.

Units

1

1

1

1



06-stokes

Viscous flows at vanishing Reynolds numbers.

Subdirectory

caps_2d

caps_3d

caps_ax

cop_ax

drop_3d

drop_3dw

em.2d

films

flow_2d

layers

prtcl_2d

Topic

Dynamical simulation of the motion of
a two-dimensional drop or elastic capsule,
for a variety of flow configurations.
Dynamical simulation of the motion of a
three-dimensional elastic capsule.
Dynamical simulation of the motion of an
axisymmetric drop or elastic capsule,
for a variety of flow configurations.
Shear flow over an axisymmetric cavity,
orifice, or protrusion.
Dynamical simulation of the motion of a
three-dimensional drop with constant
or varying surface tension.
Dynamical simulation of the deformation
of a three-dimensional drop adhering to
a plane wall.
Dynamical simulation of the motion of a
suspension of two-dimensional drops or
elastic capsules, for a variety of flow
configurations.
Dynamical simulation of the motion of
superimposed layers in a channel, or
two films flowing down a plane wall.
Two-dimensional flow in a domain with
arbitrary geometry.
Dynamical simulation of the motion of
an arbitrary number of layers in a channel,
or films flowing down a plane wall.
Flow past a fixed bed of two-dimensional
particles with arbitrary shapes,
for a variety of flow configurations,
computed by a boundary-element method.

Units

I

1

I

I

I

I

1

I

I

1

1



06-stokes (Continued)

Viscous flows at vanishing Reynolds numbers.

Subdirectory

prtcl_2d_se

prtcLSd

prtcLax

prtcl_sw

sgf_2d
sgf_3d
sgf_3dax

sgLax
susp_2d

susp_2d_se

thread_ax

Topic

Flow past a fixed bed of two-dimensional
particles with arbitrary shapes for a variety
of flow configurations,
computed by a spectral-element method.
Flow past, or due to the motion of,
a three-dimensional particle,
for a variety of configurations,
computed by a boundary-element method.
Flow past, or due to the motion of,
a collection of axisymmetric particles,
computed by a boundary-element method.
Swirling flow produced by the rotation
of an axisymmetric particle,
computed by a boundary-element method.
Green's functions of two-dimensional Stokes flow.
Green's functions of three-dimensional Stokes flow
Green's functions of Stokes flow
in an axisymmetric domain.
Green's functions of axisymmetric Stokes flow.
Dynamical simulation of the motion
of a suspension of two-dimensional
rigid particles with arbitrary shapes,
for a variety of flow configurations,
computed by a boundary-element method.
Dynamical simulation of the motion
of a suspension of two-dimensional
rigid particles with arbitrary shapes,
for a variety of flow configurations,
computed by a spectral-element method.
Dynamical simulation of the evolution
of a fluid thread or annular layer.

Units

1

1

1

1
6
5

1
4

1

1

1



07-ptf

Potential flows.

Subdirectory

airf_2d
airf_2d_cdp

airf_2d_csdp

airf_2d_lvp

body_2d

body_ax

bubble_3d

cvt_2d

drop_3d

flow_2d

lgf.2d

lgf_3d

IgLax

tank_2d

Topic

Shapes of airfoils.
Flow past an airfoil computed by the
constant-dipole-panel method.
Flow past an airfoil computed by the
constant-source-dipole-panel method.
Flow past an airfoil computed by the
linear-vortex-panel method.
Flow past, or due to the motion of,
a two-dimensional body,
computed by a boundary element method.
Flow past, or due to the motion of,
an axisymmetric body,
computed by a boundary element method.
Dynamical simulation of the deformation,
collapse, or oscillations of a
three-dimensional bubble.
Flow in a rectangular cavity,
computed by a finite difference method.
Dynamical simulation of the surface-tension
induced oscillations of a three-dimensional
inviscid drop suspended in vacuum.
Two-dimensional flow in an arbitrary domain,
computed by a boundary element method.
Green and Neumann functions of Laplace's
equation in two dimensions.
Green and Neumann functions of Laplace's
equation in three dimensions.
Green and Neumann functions of Laplace's
equation in axisymmetric domains.
Dynamical simulation of liquid sloshing in a
rectangular tank, computed by a
boundary integral method.

Units

1

I

1

I

I

1

1

1

8

5

3

1



Potential flows.

Subdirectory Topic Units

wave_3d

08-stab

Simulation of gravity and capillary waves 1

Hydrodynamic stability.

Subdirectory

ann_21

chan_21_stk

filmjstk
prony

ray_tay_stk

ray.tay_stk_w

sLinv

thread_inv

threadjstk

vl
VS

wave-fitting

Topic

Linear stability of two coaxial annular layers
placed between two concentric cylinders.
Linear stability of two superposed layers
in a channel, in Stokes flow.
Linear stability of a viscous film in Stokes flow.
Prony fitting of a times series
with a sum of exponentials.
Rayleigh-Taylor instability of an interface
separating two semi-infinite fluids in Stokes flow.

r Rayleigh-Taylor instability of an interface
separating a layer from a semi-infinite fluid
in Stokes flow.
Linear instability of an inviscid shear flow
with an arbitrary velocity profile.
Linear instability of an inviscid thread
suspended in an inert ambient fluid.
Linear instability of a viscous thread
suspended in another viscous fluid, in Stokes flow.
Linear instability of a uniform vortex layer.
Linear instability of a vortex sheet.
Decomposition of linear waves into exponentially
growing or decaying normal modes.

Units

4

1
1

1

1

1

1

1

1
1
1

1



09-vortex

Vortex motion.

Subdirectory

IvJia

Ivr
Ivrm

pv
pvm

pvm.pr

ring

vl_2d

vp_2d

vs.3d

vp_ax

vs_3d_2p

Topic

Dynamical simulation of the motion of a
three-dimensional line vortex, computed
by the local-induction approximation (LIA).
Velocity induced by line vortex rings.
Dynamical simulation of the motion
of a collection of coaxial line vortex rings.
Velocity induced by point vortices.
Dynamical simulation of the motion
of a collection of point vortices.
Dynamical simulation of the motion
of a periodic collection of point vortices.
Self-induced velocity of a vortex ring
with core of finite size.
Dynamical simulation of the evolution of
compound periodic vortex layers.
Dynamical simulation of the evolution of a
collection of two-dimensional vortex patches.
Self-induced motion of a closed
three-dimensional vortex sheet.
Dynamical simulation of the evolution of a
collection of axisymmetric vortex rings and
vortex patches.
Self-induced motion of a doubly-periodic
three-dimensional vortex sheet.

Units

1
2

1
5

1

1

1

1

1

1

1

1



lO.bl

Boundary layers.

Subdirectory

falskan
kp_cc

pohLpol

Topic

Computation of Falkner-Skan boundary layers.
Boundary layer around a circular cylinder
computed by the Karman-Pohlhausen method.
Profiles of the Pohlhausen polynomials.

Units

1

1
1

114dm

Finite difference methods.

Subdirectory

cvt_pm

cvt_sv

Topic

Transient flow in a rectangular cavity
computed by a projection method.
Steady flow in a rectangular
cavity computed by the stream function/vorticity
formulation.

Units

1

1



12-bem

Boundary element methods.

Subdirectory

ldr.3d

ldr_3d.2p

ldr-3d.ext

ldr_3dJnt

lnm_3d

Topic

Solution of Laplace's equation with Dirichlet
boundary conditions in the interior or exteri<
of a 3D region (boundary-integral formulatic
Solution of Laplace's equation with Dirichlet
boundary conditions in a semi-infinite
region bounded by a doubly-periodic
surface (double-layer formulation).
Solution of Laplace's equation with Dirichlet
boundary conditions in the exterior
of a 3D region (double-layer formulation).
Solution of Laplace's equation with Dirichlet
boundary conditions in the interior
of a 3D region (double-layer formulation).
Solution of Laplace's equation with Neuman
boundary conditions in the
interior or exterior of a 3D region
(boundary-integral formulation).

13. turbo

Turbulent flows.

Subdirectory

stats

Topic

Statistical analysis of a turbulent time series

Units

or
in). 1

1

1

1
n

1

Units

I
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1.1 Fluids and solids
1.2 Fluid parcels and flow kinematics
1.3 Coordinates, velocity, and acceleration
1.4 Fluid velocity and streamlines
1.5 Point particles and their trajectories
1.6 Material surfaces and elementary motions
1.7 Interpolation

We begin the study of fluid mechanics by pointing out the differences
between fluids and solids, and by describing a flow in terms of the motion
of elementary fluid parcels. As the volume of a fluid parcel becomes
infinitesimal, the parcel reduces to a point particle, and the average
velocity of the parcel reduces to the local fluid velocity computed well
before the molecular nature of the fluid becomes apparent. The study
of the motion and deformation of material lines and surfaces consisting
of collections of point particles reveals the nature, and illustrates the
diversity of motion in the world of fluid mechanics. Numerical methods
allow us to study the kinematical structure of a flow with a specified
velocity distribution obtained by analytical, numerical, or experimental
methods.

1.1 Fluids and solids

Casual observation of the world around us reveals objects that are
classified as solids and fluids; the second category includes gases and
liquids. What are the distinguishing features of these two groups? The
answer may be given on a wide variety of levels; from the molecular level
of the physicist, to the macroscopic level of the engineer and oceanogra-
pher, to the cosmic level of the astronomer.

Chapter 1

Fluid Motion: Introduction to Kinematics



Prom the perspective of mainstream fluid mechanics underlying this
book, the single most important difference between fluids and solids is
that fluids must assume the shape of the container within which they are
placed, whereas solids is able to stand alone sustaining their own shape.
As a consequence, a mass of fluid is not able to resist a shearing force
exerted on its surface, that is, a force that is parallel to its boundaries,
and must keep deforming forever when subjected to it. In constrast, a
solid is able to deform and assume a new stationary shape. A certain class
of materials, including polymeric melts and solutions, exhibits properties
that are intermediate between those of fluids and solids. This advanced
class, however, will not concern us in this book.

The physicist attributes the differences between fluids and solids to
the intensity of the forces holding the molecules together to form a co-
herent piece of material. Indeed, the inability of a fluid to assume its
own shape is due to the weakness of the potential energy associated with
the intermolecular forces relative to the kinetic energy associated with
the vibrations of the individual molecules; the molecules are too busy
vibrating to hang onto one another and thus form a long-lived crystal.

Fluids may be transformed into solids, and vice versa, by manipulat-
ing the relative magnitude of the potential energy due to intermolecular
forces and the kinetic energy due to thermal motion. In practice, this is
done by heating or by changing the pressure of the ambient environment.

Problem

Problem 1.1.1 Nature of a liquid/solid suspension.
Fluids containing suspended solid particles abound in nature, phys-

iology, and technology. One example, is blood; another example is a
slurry used in the petroleum industry for the fluidic transport of partic-
ulates. Discuss whether a suspension should be classified as a fluid or
solid with reference to the volume fraction of the suspended solid phase.

1.2 Fluid parcels and flow kinematics

The motion of a non-deformable solid body, called a rigid body, may
be described in terms of two vectors: the velocity of translation vector,
and the angular velocity of rotation vector, where the rotation occurs
around a specified center. A rigid body moves as a whole in the direction



of the velocity vector, while rotating as a whole around the angular
velocity vector that is pinned at the designated center of rotation. In
contrast, the motion of a fluid may not generally be described in terms
of two vectors alone. A more advanced framework that allows for an
extended family of motions is required.

1.2.1 Decomposition of a fluid into parcels

To establish this extended framework, we consider a body of fluid,
and subdivide it into parcels. For simplicity, we assume that all molecules
comprising the parcels are identical, that is, the fluid is homogeneous.
Each molecule of a certain parcel moves with its own highly fluctuating
velocity, but if the parcel exhibits a net motion, then the velocities of the
individual molecules must be coordinated to reflect, or more accurately,
give rise, to the net motion. A molecule of a gas frequently collides with
other molecules after having travelled a distance comparable to the mean
free path.

On a macroscopic level, the motion of a small fluid parcel may be
described in terms of its velocity of translation, which can be quantified
in terms of the average velocity of the individual molecules, as will be
discussed in Section 1.3. If the parcel is sufficiently small, rotation may
be neglected to a first approximation.

1.2.2 Relative parcel motion

A key observation is that the motion of a fluid may be described in
terms of the relative motion of the individual fluid parcels. For example,
if all parcels move with the same velocity, in which case the relative
velocity vanishes, then the fluid translates as a rigid body. Moreover,
it is possible that the velocity of the parcels is coordinated so that the
fluid rotates as a whole like a rigid body around a designated center or
rotation.

Consider now a fluid-filled flexible rubber tube that is closed at both
ends, and assume that the tube is stretched, thereby extending the fluid
enclosed by it along its length. The fluid has undergone neither trans-
lation nor rotation, but rather a new type of motion called pure defor-
mation. Combinations of translation, rotation, and pure deformation
whose relative strength varies with position in the fluid gives rise to a
wide variety of fluid motions.



1.2.3 Kinematics as a field of fluid dynamics

Establishing in quantitative terms the relationship between the rel-
ative motion of fluid parcels and the structure of a flow, is the main
objective of an introductory discipline of fluid mechanics called "flow
kinematics". "Kinematics" derives from the Greek work Kivr\ai^ which
means "motion". The complementary discipline of "flow dynamics" ad-
dresses the forces exerted on a fluid by an ambient force field, such as
the gravitational field, as well as the forces developing in a fluid as the
result of the motion.

1.3 Coordinates, velocity, and acceleration

To describe the motion of a molecule, we work under the auspices of
classical mechanics. We begin by introducing three mutually orthogonal
axes forming the Cartesian coordinate system (o;,3/,z), as illustrated in
figure 1.3.1. A point in the fluid may be identified by its Cartesian
coordinates, that is, by the values of x, y and z, collected into the ordered
triplet

x= (z ,3 / , z ) . (1.3.1)

Each point in the fluid has an associated position vector which starts at
the origin of the Cartesian axes and ends at the point. The Cartesian
coordinates of the point are equal to the components of the position vec-
tor, defined as the positive or negative projections of the position vector
onto the corresponding axes. Accordingly, the Cartesian coordinates of
a point have a dual interpretation: they form an ordered triplet of real
numbers, and they represent a geometrical entity associated with the
position vector.

1.3.1 Unit vectors

The three position vectors:

ez = (l,0,0), e,, = (0,1,0), ez = (0,0,1), (1-3.2)

point in the positive directions of the #, y, or z axis, and the end-points
represented by them lie on the x, y, or z axis at distances equal to one
unit of length away from the origin. We say that the vectors ex, ey and
ez are mutually orthogonal Cartesian unit vectors.



Figure 1.3.1 Three mutually orthogonal axes defining a Cartesian co-
ordinate system (x,y,z), and the position vector corresponding to
the point x.

Combining the preceding definitions, we write

x = xex + yey + zez. (1.3.3)

In physical terms, this equation states that, to reach the point x depart-
ing from the origin, we may move along each one of the unit vectors ex,
C27, e2, by respective distances equal to #, y, or z units of length; the
order of motion along the three directions is immaterial.

1.3.2 Velocity

Because a molecule moves with a highly fluctuating velocity, its po-
sition is a rapidly changing function of time. Formally, we say that the
coordinates of the molecule are functions of time t, denoted by

x = X(t), y = Y(t), z = Z(t). (1.3.4)

To economize our notation, we introduce the vector function

X(<) = (X(t),r(t),Z(<)). (1.3.5)



and consolidate expressions (1.3.4) into the form

x = X(t). (1.3.6)

Now, by definition, the velocity of a molecule is equal to the rate
of change of its position, displacement per time elapsed. If, during an
infinitesimal period of time dt, the x coordinate of the molecule has
changed by the infinitesimal displacement dX, then Vx = dX/dt. Writing
the counterparts of this equation for the y and z components, we obtain

(1.3.7)

which may be collected into the ordered triplet

(1.3.8)

In vector notation,

(1.3.9)

The velocity of a molecule is a vector described by its three Cartesian
components vx, vy, and vz\ these are the positive or negative distances
subtended between the projection of the last and first point of the ve-
locity vector onto the x, y, or z axis. The distances are then multiplied
by a scaling factor to acquire dimensions of velocity, that is, length di-
vided by time. A negative value for Vx indicates that the x coordinate
of the last point of the velocity vector is lower than the x value of the
first point, and the motion occurs toward the negative direction of the x
axis; similarly for the y and z components. In terms of the unit vectors
defined in equations (1.3.2), the velocity vector is given by

v = vx ex + Vy ey + vz ez. (1.3.10)

It is evident from the preceding definitions that the velocity is a free
Cartesian vector, which means that it may be translated in space to any
desired location. In contrast, the first point of the position vector is
always pinned at the origin.

1.3.3 Cylindrical polar coordinates

A point in space may be identified by the values of the ordered triplet
(x,<7, </?), where x is the projection of the position vector onto to the



Figure 1.3.2 A system of cylindrical polar coordinces (x,a, (p) defined
with reference to the Cartesian coordinates (x,y,z}.

straight (rectilinear) x axis passing through a designated origin; a is
the distance of the point from the x axis; and (p is the meridional angle
measured around the x axis. The value (p — O corresponds to the xy
plane, as illustrated in figure 1.3.2. The axial coordinate x takes values
in the range (-00, +00), a takes values in the range [O, oo), and (p takes
values in the range [0,2Tr).

Using elementary trigonometry, we derive the following relations be-
tween the Cartesian and associated polar cylindrical coordinates,

y = acos(p, z = asm(p, (1.3.11)

and the inverse relations

<7 = \fy2 + z2, <^ = arccos(^).

Unit vectors

Considering a point in space, we define three vectors of unit length,
denoted by ex, C0-, and e^, pointing, respectively, in the direction of the
x axis, normal to the x axis, and in the meridional direction of varying
angle (^, as depicted in figure 1.3.2. Note that the orientation of the



unit vectors ea and e^ changes with position in space; in contrast, the
orientation of ex is fixed and independent of position in space. In terms
of the local unit vectors ex, ea, the position vector is given by

x = xex + CTe0-. (1.3.13)

where the dependence on the meridional angle (p is mediated through
the unit vector ea on the right-hand side. The absence of e^ from the
right-hand side of (1.3.13) is explained by noting that the distance from
the origin, expressed by the position vector x, is perpendicular to the
unit vector e^.

Correspondingly, the velocity vector v is given by

v = vxex + v a e f f + Vp e^. (1.3.14)

The coefficients vx, va, and v^ are the cylindrical polar components of
the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations be-
tween the Cartesian and cylindrical polar unit vectors,

S0. = cospey +sin^ez , e^ = - sirup ey + cos ̂ e2, (1.3.15)

and the inverse relations

ey = cos(pea - sin (^ e^, ez = sin ̂ e0- + cos (p e^>. (1.3.16)

The corresponding relations for the components of the velocity are

V(7 = cos(p Vy + sm(pvz, V^ = -smpvy + cosy? vz, (1.3.17)

and

Vy = cos(p V0- - siny?^, vz = sm<f>va + cosy? v^. (1.3.18)

Rates of change

The counterparts of expressions (1.3.4) for the cylindrical polar co-
ordinates are

x = X(t), a = E(t), V = *(t). (L3J9)



The rate of change of the unit vectors following the motion of a molecule
is given by the relations

(1.3.20)

Substituting expressions (1.3.19) into the right-hand side of (1.3.13), tak-
ing the time derivative of both sides of the resulting expression, identify-
ing the left-hand side with the velocity, expanding out the derivatives of
the products on the right-hand side, using relations (1.3.20) to eliminate
the time derivatives of the unit vectors, and then comparing the result
with expression (1.3.14), we find the counterparts of equations (1.3.7),

(1.3.21)

1.3.4 Spherical polar coordinates

Alternatively, a point in space may be identified by the values of the
ordered triplet (r, #, <p), where r is the distance from a designated origin;
6 is the azimuthal angle subtended between the x axis, the origin, and
the chosen point; and (p is the meridional angle measured around the
x axis. The value (p — O corresponding to the xy plane, as depicted in
figure 1.3.3. The radial distance r takes values in the range [O, oo), the
azimuthal angle 9 takes values in the range [O, TT], and the meridional
angle (p takes values in the range [O, 2?r).

Using elementary trigonometry, we derive the following relations be-
tween the Cartesian, cylindrical, and spherical polar coordinates,

x — r cos 9, a — r sin ̂ ,

y — a cosip = r sin 9 cos ̂ ,

z = a s'mip = rsin# sin</?, Q 3 22)

and the inverse relations

(1.3.23)



Figure 1.3.3 A system of spherical polar coordinces (r, #, (p) defined
with reference to the Cartesian coordinates (x,y,z).

Unit vectors

Considering a point in space, we define three vectors of unit length er,
e#, and e<p, pointing, respectively, in the radial, azimuthal, and merid-
ional direction, as illustrated in figure 1.3.3. Note that the orientation of
all of these unit vectors changes with position in space; in contrast the
orientation of the Cartesian unit vectors ex, e^, and ez is fixed.

In terms of the local unit vectors er, e#, and e^, the position vector
is given by

x = re r. (1.3.24)

where the dependence on 9 and (p is mediated through the unit vector
er on the right-hand side. The absence of e# and e^ from the right-hand
side of (1.3.24) is explained by noting that the distance from the origin,
expressed by the position vector x, is perpendicular to the unit vectors
60 and e<p. Correspondingly, the velocity vector v is given by

v = vr er + VO e^ + Vy C^, (1.3.25)

where the coefficients vr, VQ, and v^ are the spherical polar components
of the velocity.



Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations be-
tween the spherical polar, cylindrical polar, and Cartesian unit vectors,

er = cos 9 ex + sin 9 cos (p ey + sin O sin (p ez

= cosOex + Sm^e0-,

60 = - sin 9 ex + cos 0 cos (p ey + cos 0 sin (p ez

= -SmOex + cos#e<j,

e^ = -sin<pej, + cos<pez. (1.3.26)

The corresponding relations for the components of the velocity are

vr — cos 9 vx + sin 6 cos <pvy + sin 9 sin </? ̂

= cos 9 vx + sin# ^0-,

?;0 = — sin 9 Vx + cos # cos <fvy + cos ̂  8^11 ̂  ^^
— — sin9 vx + cos9va,

Vp = -sin y?vy + cos (p vz. (1.3.27)

Rates of change

The counterparts of expressions (1.3.4) for the spherical polar coor-
dinates are

r = R(t), 6 = Q(t), <p = *(t). (132g)

The rate of change of the unit vectors following the motion of a molecule
is given by the relations

(1.3.29)



Figure 1.3.4 A system of plane polar coordinces (r,0) in the xy plane.

Substituting the first of (1.3.28) into the right-hand side of (1.3.24), tak-
ing the time derivative of both sides of the resulting equation, identifying
the left-hand side with the velocity, expanding out the derivatives of the
products on the right-hand side, using the first relations (1.3.29) to elim-
inate the time derivative of the radial unit vector, and then comparing
the result with expression (1.3.25), we find the counterparts of equations
(1.3.7),

dR _de . d$
vr = -77i VQ = R~JT' Vy = RSmO-.

dt dt * dt (1.3.30)

1.3.5 Plane polar coordinates

A point in the xy plane may be identified by the values of the doublet
(r, 0), where r is the distance from the designated origin, and 9 is the
angle subtended between the x axis, the origin, and the chosen point
measured in the counterclockwise sense, as depicted in figure 1.3.4. The
radial distance r takes values in the range [O, oo), and O takes values in
the range [O, 2 TT).

Using elementary trigonometry, we derive the following relations be-
tween the Cartesian and plane polar coordinates,

x = r cos O, y = r s'mO,y (1.3.31)

dR _dQ . d*
vr = -77i VQ = R~JT' Vy = RSmO--.at at at



and the inverse relations

/ y
r = \ x2 H- y2, O = arccos -.V r (1.3.32)

[7m'£ vectors

Considering a point in the xy plane, we define two vectors of unit
length er and e# pointing in the radial or polar direction, as depicted in
figure 1.3.4. Note that the orientation of these unit vectors changes with
position in the xy plane, whereas the orientation of the Cartesian unit
vectors ex and ey is fixed.

In terms of the local unit vectors er and e#, the position vector is
given by

x — r er, (1.3.33)

and the velocity vector v is given by

v = vrer +veee. (1.3.34)

The coefficients vr and vQ are the plane polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations be-
tween the Cartesian and plane polar unit vectors,

er — cos#ex + smOey, 651 = -sin Oex + cosOey, (1.3.35)

and the inverse relations

ex = cosO er - sin#e0, ey = sin#er + cos O e#. (1.3.36)

The corresponding relations for the components of the velocity are

vr = cos O Vx + sin# vy, VQ = — smO Vx + cos$ vy, /., o oy\

and
vx = cos O vr — sin O VQ^ vy = smO vr + cos O VQ. (1.3.38)

Rates of change

The counterparts of expressions (1.3.4) for the plane polar coordi-
nates are



r = R(t), 9 = <d(t). (1 3 39)

The rate of change of the unit vectors following the motion of a molecule
is given by the relations

(1.3.40)

Substituting the first of (1.3.39) into the right-hand side of (1.3.33), tak-
ing the time derivative of both sides of the resulting equation, identifying
the left-hand side with the velocity, expanding out the derivatives of the
products on the right-hand side, using the first of relations (1.3.40) to
eliminate the time derivatives of the radial unit vector, and then com-
paring the result with expressions (1.3.34), we derive the counterparts of
equations (1.3.7),

(1.3.41)

Problems

Problem 1.3.1 Spherical polar coordinates.
Derive the inverse of the transformation rules shown in equation-

s (1.3.27); that is, express the Cartesian components in terms of the
spherical polar components of the velocity.

Problem 1.3.2 Acceleration.
The acceleration vector, denoted by a, is defined as the rate of change

of the velocity vector,

(1.3.42)

By definition then, the Cartesian components of the acceleration are
given by

(1.3.43)

(a) Show that the cylindrical polar components of the acceleration
are given by



(1.3.44)

(b) Show that the spherical polar components of the acceleration are
given by

(1.3.45)

(c) Show that the plane polar components of the acceleration are
given by

(1.3.46)

1.4 Fluid velocity and streamlines

Having prepared the ground for describing the motion of the molecules
in quantitative terms, we turn to considering the motion of fluid parcels
consisting of large collections of molecules.

Consider a homogeneous fluid consisting of identical molecules, and
label the TV molecules comprising a fluid parcel using the index i, where
i = 1,2, . . . , 7 V . Let VX, Vy , and VZ be the Cartesian components



of the velocity of the ith molecule at a particular time instant. The
corresponding components of the mean velocity are defined as

(1.4.1)

where the pointed brackets on the left-hand sides denote averages over
all molecules. In compact notation, equations (1.4.1) combine into the
vector form

(1.4.2)

Assume now that, at a particular time t, the fluid parcel under con-
sideration is centered at the point x. As the size of the parcel becomes
smaller, the parcel tends to occupy an infinitesimal volume in space con-
taining the point x. In this limit, the components of the parcel velocity
defined in equations (1.4.1) reduce to the corresponding components of
the fluid velocity, denoted by Ux, uy, and uz, forming the ordered triplet

U = (UX,Uy,UZ).

(1.4.3)

Since different choices for the designated parcel center x at difference
times t produce different fluid velocities, the components of the velocity
vector u are functions of the components of the position vector x =
( x , y , z ) and time t. To signify this dependence, we append to Ux, uy,
and UZ a set of parentheses enclosing the four independent variables,
writing

ux(x, y, z, t), uy(x,y,z,t), uz(x,y,z,t). (1-4.4)

In compact notation,

ux(x, t), %(x,t), uz(x.,i), (1.4.5)

and in full vector notation,
u(x, t). (1.4.6)

As an example, the Cartesian components of one particular velocity
field are given by



ux(x, y, z, *) = o, (y2 + z2} + (b + c t) z3y z + c edxt,

%(#, y, 2, *) = a (^2 + ^2) + (& + c *)x y3 z +c edyi->
u z ( x , y , z , t ] = a (x2 + y2} + (6 + ct) x y z3 + cedzt,

(1.4.7)

where a, 6, c and d are four constants. Velocity has dimensions of length
per time -L/T, and the position vector has dimensions of length L. In
order for both sides of equations (1.4.7) to have the same units, the
constant a must has dimensions of inverse length-time, 1/(LT).

If a flow is steady or time-independent, the components of the velocity
do not depend on time, and we omit t from the list of arguments in
(1.4.4)-(1.4.6), writing u(x).

If the fluid translates as a rigid body in a certain direction possi-
bly with a time-dependent velocity, we omit x in the list of arguments,
writing u(£).

1.4.1 Two-dimensional flow

When the z component of the fluid velocity vanishes while the x and
y components depend on the x and y but not on the z coordinate, we
obtain a two-dimensional flow in the xy plane. The velocity vector at
any point in this two-dimensional flow also lies in the xy plane.

1.4.2 Swirling flow

Consider the system of cylindrical polar coordinates depicted in figure
1.3.2. The cylindrical polar components of the velocity, U0- and u^,
are related to the Cartesian components by equations (1.3.17), with v
replaced throughout by the fluid velocity u. If the velocity vector points
in the direction of the meridional angle (p at every point in the flow, that
is, ux and U0- vanish whereas u^ is non-zero and independent of (p, then
we obtain a swirling flow.

1.4.3 Axisymmetric flow

In contrast, if the meridional component of the velocity u^ vanishes at
every point in the flow, whereas Ux and U0- are non-zero but independent
of (p, then we obtain an axially symmetric or axisymmetric flow. The



velocity vector of an axisymmetric flow lies in a meridional plane; that
is, in a plane that passes through the x axis.

Superposing a swirling flow and an axisymmetric flow, we obtain
a three-dimensional flow described as axisymmetric flow with swirling
motion. All three velocity components Ux, ua, and u^ in such a flow are
generally non-zero but independent of the meridional angle (p.

1.4.4 Streamlines and stagnation points

Consider a flow at a certain time instant, and draw velocity vectors at
a large number of points distributed in the domain of flow. The collection
of these vectors defines a vector field called the velocity field. Starting at
a certain point in the flow, we may draw a line that is tangential to the
velocity vector at each point, as illustrated in figure 1.4.1. This generally
curved three-dimensional line is called a streamline, and a collection of
streamlines composes a streamline pattern.

Two or more streamlines may meet at a point called a stagnation
point, as illustrated in figure 1.4.1. Since the velocity is unique value
at each point in a flow, all velocity components must necessarily vanish
at a stagnation point. A streamline is a closed line, extends to infinity,
crosses a moving boundary, or terminates at a stagnation point.

Problems

Problem 1.4.1 Dimensions of coefficients.
Deduce the dimensions of the coefficients 6, c; d on the right-hand

sides of equations (1.4.7).

Problem 1.4.2 Streamline patterns.
Sketch streamline patterns of (a) a two-dimensional flow, (b) a swirling

flow, (c) an axisymmetic flow, and (d) an axisymmetric flow with swirling
motion.

1.5 Point particles and their trajectories

As the size of a fluid parcel tends to zero, the parcel reduces to an
abstract entity called a point particle. By definition, the rate of change



Figure 1.4.1 Illustration of a velocity vector field and associated
streamline pattern in a two-dimensional flow, involving stagnation
points denoted as "SP". Stagnation points may occur in the inte-
rior of a flow or at the boundaries.

of the position of a point particle is equal to the velocity of the fluid
evaluated at- the instantaneous position of the point particle.

If, during an infinitesimal period of time dt, the x coordinate of a
point particle located at the position x = X has changed by the infinites-
imal distance dX, then Ux — dX/dt, where the velocity Ux is evaluated
at x=X at the current time t. Writing the counterparts of this equation
for the y and z components, we obtain

^j- = ux(X(t),Y(t),Z(t),t),

^ = %(*(t),y(t),z(t),t),

^ - *,(x(t),y(*),z(<),t),
dt (1.5.1)

where the first set of parentheses on the right-hand sides enclose the four
scalar arguments of the velocity.

A conceptual difficulty casts a shadow of ambiguity on the definition
of the fluid velocity based on relations (1.5.1). In the limit as the size
of a fluid parcel tends to zero, the number of molecules residing inside



the parcel also tends to zero, and the pointed-bracket averages defined in
equations (1.4.1) become ill-defined. Consider, for example, a spherical
particle of radius c. As e tends to zero, a graph of the average molecular
velocity < Vx > plotted against e shows strong fluctuations that are
manifestations of random molecular motions.

To circumvent this difficulty, we adopt the continuum mechanics ap-
proximation: as the size of a fluid parcel tends to zero, the limit of the
average molecular velocity is computed before the discrete nature of the
fluid becomes apparent. In the context of continuum mechanics, a point
particle is large enough to contain a large number of molecules whose
average velocity is well-defined, but small enough so that its volume is
infinitesimal; that is, the ratio of the volume of a point particle to the
volume of the fluid to which the point particle belongs is equal to zero.
Two consequences of this idealization are:

• A finite fluid parcel is comprised of an infinite number of point
particles.

• The product of the infinite number of point particles and the in-
finitesimal volume of each point particle is finite and non-zero, and
equal to the parcel volume.

1.5.1 Point particle motion and path lines

Since a point particle moves with the local fluid velocity, its coor-
dinates generally change in time according to equations (1.5.1) even if
the flow is steady: point particles remain stationary only if the velocity
vanishes and the fluid is in a macroscopic state of rest.

Mathematically, equations (1.5.1) comprise a system of three first-
order ordinary differential equations, concisely called ODEs. The so-
lution of this system subject to an initial condition that specifies the
position of a point particle at a certain time - for example, at a desig-
nated origin of time - provides us with the trajectory of a point particle
called a path line.

If the flow is steady, the system of ODEs is autonomous, meaning that
there is no explicit time dependence on the right-hand side, whereas if
the flow is unsteady, the system is non-autonomous. The right-hand
side of a non-autonomous system depends on time implicitly through
the arguments of the dependent variables, in this case X(i), Y(i), and
Z(t), as well as explicitly through the unsteadiness of the flow.



Assume, for example, that the Cartesian velocity components of a
certain steady unidirectional flow are given by

Ux = ay2+ by+ c, uy = 0, uz = O, / I R O A
^1.0.ZJ

where a, 6, and c are three constants with appropriate dimensions. In
this case, the fluid moves along the x axis with velocity that depends
on the y coordinate alone. The trajectories of the point particles are
straight lines described by the autonomous system of ODEs

(1.5.3)

The solution of these equations is readily found to be

X(t) = X(t = 0) + (aY2 + bY + c) t,

y(t) = y(t = o), z(t) = z(t = o), (L5>4)

where -X" (O), V(O), and Z(O) are the coordinates of a point particle at
the initial instant, t = O.

In general, however, the solution of the system (1.5.1) may not be
found by analytical methods, and the use of numerical methods will be
imperative.

1.5.2 Explicit Euler method

A simple algorithm for generating the trajectory of a point particle
emerges by considering the change in the position of the point particle
over a small time interval At, and replacing the differential equations
(1.5.1) with the algebraic equations

(1.5.5)



To obtain these equations, we have replaced the time derivatives on the
left-hand sides of equations (1.5.1) with forward finite differences, which
is a consistent approximation: since, by definition, the first derivative
dX/dt is equal to the limit of the ratio [X(t + At) - X ( t ) ] / A t as At
tends to zero, we expect that, as long as At is sufficiently small, the error
introduced by replacing a derivative with a forward finite difference will
also be reasonably small.

In fact, analysis shows that the magnitude of the error associated
with the approximate forms (1.5.5) is comparable to the magnitude of
At. For example if At is equal to 0.1 in some units, then the error
associated with the preceding approximation will be on the order of 0.1
multiplied by a constant whose value is on the order of unity; that is, a
constant whose absolute value ranges between 0.5 and 5 in corresponding
units.

In vector notation, the so-called discrete form of the differential sys-
tem (1.5.1) expressed by the algebraic system (1.5.5) takes the form

(1.5.6)

where the term O(At) on the right-hand side signifies the order of the
error due to the finite-difference approximation.

Solving the first of equations (1.5.5) for X(t + At), the second equa-
tion for Y(t + At), and the third equation for Z(t + At), we obtain

(1.5.7)

In physical terms, equations (1.5.7) state that the position of a point
particle at time t + At is equal to the position at the previous time t
plus a small displacement that is equal to the distance travelled over the
small time interval At. The velocity of travel has been assumed to be
constant and equal to the point particle or fluid velocity at the beginning
of the time step corresponding to time t.



Algorithm

Equations (1.5.7) provide us with a basis for computing the trajectory
of a point particle according to the following algorithm:

1. Specify the initial time; for example, set t = O.

2. Select the size of the time step At.

3. Specify the initial coordinates X(O), Y(O), and Z(O).

4. Evaluate the velocities Ux(X(t),Y(t), Z(t),t), uy(X(t),y(t), Z(t),*),
and uz(X(i), Y(t), Z ( t ) , t ) on the right-hand side of equations (1.5.7).

5. Evaluate the right-hand sides of (1.5.7) to obtain the coordinates
of the point particle X(t + At), Y(t + At), and Z(t + At).

6. Reset the time to t + At.

7. Stop if desired, or return to execute steps 4-6.

The procedure just described is the explicit Euler method for solving
a system of ordinary differential equations. The qualifier explicit empha-
sizes that the new position of the point particle is computed in terms of
the old position at a single stage by means of multiplications.

Numerical error

It was mentioned earlier that the finite-difference approximation of
the derivative dX/rft introduces an error that is comparable to the mag-
nitude of At, as shown in equations (1.5.6). Accordingly, the error in the
position of the point particle after it has travelled for the time interval
At, will be on the order of At2. Based on the value of this exponent
of At, we say that the explicit Euler method carries a stepwise error of
second order with respect to the size of the time step.

If Nsteps steps are executed from time t = O to time t = t/^na/, the
stepwise error will accumulate to an amount that is comparable to the
product Nsteps x At2. But since, by definition, Nsteps x At = t/ina/, the
cummulative error will be on the order of tjinai x At. This expression
shows that the cummulative error is of first order with respect to the
size of the time step. Unless At is sufficiently small, this level of error is
not tolerated in scientific computing.



1.5.3 Explicit modified Euler method

To reduce the magnitude of the error, we implement a simple mod-
ification of the explicit Euler method. The new algorithm involves the
following steps:

1. Set the initial time; for example, set t — O.

2. Select the size of the time step At.

3. Specify the initial coordinates X(Q), Y(O), and Z(O).

4. Evaluate the velocities Ux (X (t), Y (t), Z (t), t), uy (X (t), Y (t), Z (t), t),
a u d u z ( X ( t ) , Y ( t ) , Z ( t ) , t ) on the right-hand side of equations (1.5.7),
and save them for future use.

5. Evaluate the right-hand sides of (1.5.7) to obtain the predicted
coordinates of the point particle at time t + At, denoted by Xpred,
YPred, and ZPred.

6. Evaluate the following velocities at the predicted position, at time
t + At,

(1.5.8)

7. Compute the mean of the initial and predicted velocities

(1.5.9)

8. Compute the coordinates of the point particle at time t + At, by
returning to the position at time t and traveling with the mean
velocity computed at step 7, using the formulae

(1.5.10)



9. Reset the time tot + At.

10. Stop if desired, or returm to execute steps 4-9.

The procedure just described is the explicit modified Euler method.
The algorithm is a special member of the inclusive family of second-
order Runge-Kutta algorithms for solving systems of ordinary differential
equations.

An error analysis shows that each time step introduces a numerical
error in the position of the point particle that is comparable to the
cubic power of time step At3. The cummulative error is on the order of
tfinal x At2, which is much smaller than that incurred by the explicit
Euler method.

1.5.4 Streaklines

A streakline emerges by connecting the instantaneous positions of
point particles that have been released into the flow from a stationary or
moving point at previous times. Alternatively, the point particles may
have been residing in the flow at all times, but they were colored or
tagged as they passed through the tip of a stationary or moving probe.
If the flow is steady and the probe is stationary, a streakline is also a
streamline.

To compute a streakline, we solve the differential equations describing
the motion of the point particles after they have entered the flow or
passed through the coloring probe, using the methods described earlier
for particle paths. Since the motion of the point particles is independent
of their relative position, the trajectory of each point particle may be
computed individually and independently, as though each point particle
moved in isolation.

1.5.5 Streamlines

By definition, a streamline is tangential to the instantaneous velocity
vector field at every point. If the flow is steady, a streamline is also a
path line.

If the flow is unsteady, an instantaneous streamline is the path de-
scribed by a point particle that moves as though the instantaneous ve-
locity field were kept frozen at subsequent times.



Problems

Problem 1.5.1 Streamlines by analytical integration.
Consider a steady two-dimensional flow with velocity components

Ux = ax+ by, uy = bx-ay. (1.5.11)

Deduce the dimensions of the constants a and 6, and derive analytical
expressions for the position of a point particle, similar to those shown in
(1.5.4).

Problem 1.5.2 Point particle motion in polar coordinates.
(a) In the cylindrical polar coordinates depicted in figure 1.3.2, the

position of a point particle is described by the functions x = X(t), a =
£(£), and (p = <&(t). Using the transformation rules given in Section 1.3,
derive the differential equations

(1.5.12)

(b) In the spherical polar coordinates depicted in figure 1.3.3, the
position of a point particle is described by the functions r = R(t), O =
@(t), and (p = &(t). Using the transformation rules given in Section 1.3,
derive the differential equations

(1.5.13)

(c) In the plane polar coordinates depicted in figure 1.3.4, the position
of a point particle is described by the functions r = R(t) and 9 = @(t)
Using the transformation rules given in Section 1.3, derive the differential
equations

(1.5.14)



Computer problem

Problem c.1.5.1 Streamlines by numerical integration.
Directory 04-various/strmll of FDLIB includes the main program

strmll that generates streamlines emanating from a specified collection
of points in the domain of a two-dimensional flow, computed by the
explicit modified Euler method.

(a) Run the program for three velocity fields of your choice imple-
mented in the program, generate and discuss the structure of the stream-
lines patterns.

(b) Enhance the program with a new flow of your choice, generate
and discuss the corresponding streamline pattern.

1.6 Material surfaces and elementary motions

An infinite collection of point particles distributed over a surface that
resides within a fluid or over the boundaries defines a material surface.
A cylindrical material surface in a two-dimensional flow can be identified
by its trace in the xy plane, and an axisymmetric material surface in an
axisymmetric flow can be identified by its trace in a meridional plane
corresponding to a certain meridional angle (p.

Any patch on the surface of the ocean is a material surface with a
distinct identity. Under most conditions, if a material patch lies at the
boundary of a fluid at a certain time, it will remain at the boundary of
the fluid at all times; that is, the point particles comprising the patch
will not be able to penetrate the fluid.

1.6.1 Material parcels

A closed material surface is the boundary of a material parcel con-
sisting of a fixed mass of fluid with a permanent identity. Under most
conditions, if a material surface is located at the boundary of a material
parcel at a certain time, it will remain at the boundary of the parcel at
all times. To analyze the evolution of a material parcel and visualize its
motion, we compute the trajectories of the point particles that lie on its
boundary using analytical or numerical methods.



1.6.2 Fluid parcel rotation

Consider a two-dimensional flow in the xy plane with velocity com-
ponents

ux — —r iy , Uy- f ix , (1.6.1)

where Q is a constant with units of inverse time. In vector-matrix nota-
tion, equations (1.6.1) are collected into the form

(1.6.2)

According to our discussion in Section 1.5, the trajectory of a point
particle with Cartesian coordinates (X(t),y(t)), is governed by the dif-
ferential equations

(1.6.3)

subject to a specified initial condition Xt=Q = X(t = O) and Yt-Q =
Y(t — O). The solution is readily found to be

(1.6.4)

In vector-matrix notation,

(1.6.5)

To deduce the nature of the motion, we refer to plane polar coor-
dinates and find that the distance of a point particle from the origin,
denoted by R(t) = ^X(t)2 + Y(t)^ remains constant in time and equal
to the initial distance R(t = O), whereas the polar angle 9 defined by
the equation tan 9 = Y(t)/X(t) increases linearly in time at the rate
d9/dt = Q. That is, 0 — 9$ + nt, where #o is the polar angle at t — O.

These results suggest that a circular material line centered at the
origin rotates around the origin as a rigid body with angular velocity fi,
maintaining its circular shape. Accordingly, the velocity field associated
with (1.6.1) expresses rigid-body rotation around the origin in the xy
plane.



1.6.3 Fluid parcel deformation

Consider now a different type of two-dimensional flow in the xy plane
with velocity components

Ux = Gx, Uy =-Gy, (1.6.6)

where G is a constant with dimensions of inverse time. In vector-matrix
notation,

(1.6.7)

In this case, the trajectory of a point particle is governed by the differ-
ential equations

(1.6.8)

subject to a specified initial condition. Note that equations (1.6.8) are
decoupled, in the sense that the first equation contains only X and the
second equation contains only Y. The solution is readily found to be

X ( t ) = eGt Xt=Q, Y(t) = e~Gt Yt=Q. (L6i9)

In vector-matrix notation,

(1.6.10)

The evolution of a circular material line centered at the origin is
illustrated in figure 1.6.1 for a positive value of G. As soon as the motion
begins, the circular contour deforms into an ellipse with the major and
minor axis oriented in the x or y direction. Accordingly, the velocity field
associated with the flow (1.6.7) describes pure deformation occurring at
an exponential rate; and the constant G is the rate of deformation. More
detailed consideration reveals that the area enclosed by the deforming
circle remains constant in time: the deformation conserves the area of
the parcel enclosed by the deforming circle during the motion.

1.6.4 Fluid parcel expansion

As a third case study, we consider a two-dimensional flow in the xy
plane with velocity components



Figure 1.6.1 Deformation of a circular material line under the influence
of a two-dimensional elongational flow.

(1.6.11)

where a is a constant with dimensions of inverse time. In vector-matrix
notation,

(1.6.12)

The trajectory of a point particle in this flow is governed by the decoupled
differential equations

(1.6.13)

subject to a specified initial condition. The solution is found by elemen-
tary methods to be

(1.6.14)

In vector-matrix notation,

(1.6.15)

Based on these expressions, we deduce that a circular material line
centered at the origin expands at an exponential rate, while maintaining
its circular shape. Accordingly, the velocity field associated with equa-
tions (1.6.11) expresses isotropic expansion. If a(t) is the radius of the
circular material line at time £, and a(t = O) is the radius at the origin
of time, then



(1.6.16)

Raising both sides of equation (1.6.16) to the second power, and multi-
plying the result by TT, we find that the ratio of the areas enclosed by the
circular material lines is given by

(1.6.17)

Accordingly, the constant a. is the rate of areal expansion.

1.6.5 Superposition of rotation, deformation, and expansion

For future convenience, we relabel the Cartesian coordinates from
( x , y ) to (x',yf). Superposing the three types of flow discussed in the
preceding sections, we obtain a compound velocity field with components

(1.6.18)

The three matrices on the right-hand side of (1.6.18) express, respec-
tively, fluid parcel rotation, pure deformation, and isotropic expansion.
Summing corresponding elements, we obtain the synthesized vector form

u' = x ' .A, (1.6.19)

where u' = (ux',uyt), x' — (x',yf), and the matrix A is defined as

(1.6.20)

Because the velocity field (1.6.19) depends linearly on the position vector,
the associated flow is linear. Varying the relative magnitudes of the three
parameters fi, G, and a allows us to alter the character of the flow by
forming hybrid forms of its three constituents.



Figure 1.6.2 A system of Cartesian axes (xf,yf) arising by rotating the
(rr,y) axes by the angle /3.

1.6.6 Rotated coordinates

To this end, we observe that, although fluid parcel rotation, deforma-
tion, and expansion have been deduced with reference to the x'y' system
of Cartesian coordinates, as discussed previously in this section, express-
ing the position and velocity vectors in a different system of coordinates
should leave the physical nature of the motion unchanged. Motivated by
this observation, we set out to generalize the velocity field described by
equation (1.6.19) in a way that extends its physical interpretation.

Consider a two-dimensional Cartesian system x'y' that has been ro-
tated with respect to the xy system by the angle /3, as shown in figure
1.6.2. Note that the angle /3 is positive when the system x'y' arises from
the counter-clockwise rotation of rry, and negative otherwise. A point in
the x'y' or xy plane may be identified by its primed coordinates (o/,y'),
or un-primed coordinates (x,y). Using elementary trigonometry, we find
that the two sets of coordinates are related by

x — xl cos/3 — y' sin/3, y = x1 sin/3 + y1 cos/3.
(1.6.21)

In vector-matrix notation,

(1.6.22)



To simplify the notation, we introduce the rotation matrix

(1.6.23)

and express (1.6.22) in the form

x = x ' -R, (1.6.24)

where x' = (xf,yf) and x = (x,y).
The rotation matrix R has two important properties. First, its deter-

minant is equal to 1. To explain the second property, we introduce the
transpose of R, which arises by interchanging the off-diagonal elements
Ri2 and R^i to form the new matrix

(1.6.25)

Using the rules of matrix multiplication, we find

R-R T = I, R T - R = I, (1.6.26)

where I is the unit or identity matrix defined as

(1.6.27)

Now, the inverse of an arbitrary square matrix A is defined as another
matrix A"1 with the properties A • A"1 = I and A"1 - A = I. If A"1

is equal to AT, where the superscript T denotes the transpose, then
the matrix A is called orthogonal. In light of this definition, equations
(1.6.26) ensure that the rotation matrix R is orthogonal.

Working in a similar fashion, we find that the components of the
velocity vector in the xy and xryr system of coordinates are related by
an equation that is analogous to (1.6.24),

u = u ' -R , (1.6.28)

where u' = (ux^uyt) and u = (ux,uy).
Having completed the necessary preparations, we multiply both sides

of equation (1.6.19) by the matrix R, and exploit the first of the orthog-
onality properties (1.6.26) to obtain the equivalent form



u' R = x7 A R = x7 I A R = x7 R RTA R. ^ g 29)

Using equations (1.6.24) and (1.6.28), we rewrite equation (1.6.29) in the
form

u - x - B , (1-6.30)

where we have introduced the new matrix

B = RT A R. (i.e.si)
Substituting (1.6.20), (1.6.23), and (1.6.25) into the right-hand side of

(1.6.31), and using the trigonometric identities cos(2/3) = cos2 /3 — sin2 /3
and sin(2/3) = 2 sin /3 cos/3, we derive the explicit form

(1.6.32)

Note that, when /3 — O or TT, the matrix B reduces to the matrix A
given in equation (1.6.20). The four elements of the matrix B contain
the three flow parameters Q, G, and a, and the rotation angle /3.

1.6.7 Flow decomposition

In practice, we are interested in the inverse problem: given the four
elements of the matrix B, obtained by laboratory measurements or nu-
merical computation, we want to evaluate the four parameters f£, G, and
a, and /3, and thereby deduce, respectively, the rate of rotation, the rate
of deformation, the rate of expansion, and the direction of deformation.

To be more specific, we consider a linear flow with velocity compo-
nents

(1.6.33)

where a, b, c, and d are four constants with dimensions of inverse time.
Setting the components of the matrix on the right-hand side of (1.6.33)
equal to the corresponding components of the matrix B on the right-
hand side of (1.6.32), we obtain a nonlinear system of four trigonometric
equations for the four unknowns fi, G, a, and /3. The solution can be
found most readily according to the following steps.

First, we decompose the matrix shown on the right-hand side of
(1.6.33) into three constituents, as follows:



(1.6.34)

The first matrix on the right-hand side of (1.6.34) is antisymmetric or
skew-symmetric; that is, the 12 component is equal to the negative of the
21 component. The second matrix is symmetric and its trace, defined
as the sum of the diagonal elements, is equal to zero. The third matrix
is diagonal and isotropic, meaning that the two diagonal elements are
identical.

With reference to the first matrix, we set

(1.6.35)

With reference to the third matrix, we set

a = a + d. (1.6.36)

To compute the remaining unknowns G and /3, we consider the second
matrix on the right-hand side of (1.6.34), defined as

(1.6.37)

[ / 1
An eigenvalue A of E and the corresponding eigenvector f = \ * \

L Jy J
satisfy the equation

E - f = Af, (1.6.38)

or

( E - A I ) . f = 0. (1.6.39)

The eigenvalues of E are found by setting the determinant of the matrix
E -AI equal to zero, obtaining the quadratic equation

(1.6.40)



whose roots are found to be

(1.6.41)

The corresponding eigenvectors are found by solving the homogeneous
system (1.6.39). Having found the eigenvalues and eigenvectors of the
matrix E, we recover G and /3 by setting

G = A> (1.6.42)

with the plus or minus sign selected on the right-hand side of (1.6.41),
and then identify /3 with the angle subtended between the corresponding
eigenvector f and the x axis; that is, we compute the angle /3 from the
equation tan /3 — fy/fx-

As an example, consider a two-dimensional velocity field with com-
ponents

ux(x, y, i) = w(t) (2 x - y), uy(x, y, i) = w(t) (-3 x + 3 y),
(1.6.43)

where w(t) is a function of time. The four time-dependent constants
a, 6, c and d introduced in equation (1.6.33) are given by

a = 2 w(t), b = -3 w(t); c = -w(t), d = 3 w(t). ^ g ̂

Carrying out the decomposition shown in equation (1.6.34), we find

(1.6.45)

Using equations (1.6.35) and (1.6.36), we find that the rate of rotation
is given by Jl = —w(t), and the rate of expansion is given by a — 5 w(t).
The symmetric matrix E defined in equation (1.6.37) is given by the
second term on the right-hand side of (1.6.45),

(1.6.46)



The eigenvalues of E are found by setting the determinant of the matrix

(1.6.47)

equal to zero. The roots of the resulting quadratic equation are given by

(1.6.48)

Either one of these values may be identified with the rate of extension
G, as indicated by equation (1.6.42).

Substituting expressions (1.6.48) into the system (1.6.39), we find

(1.6.49)

The two scalar equations comprising system (1.6.49) are, in fact, identi-
cal. Using the first equation, we find

(1.6.50)

Executing the instructions given in the paragraph following equation
(1.6.41), we finally set tan /3 = fy/fx, and find

(1.6.51)

Problems

Problem 1.6.1 Material lines.
A collection of point particles distributed over a line in a three-

dimensional flow defines a material line. Explain why, if the flow is
steady, a material line that lies on a streamline at a certain time will
remain on the streamline at all times.

Problem 1.6.2 Rotation of coordinates.
Derive two equations that relate the old coordinates (x1 , y ' } to the

new coordinates (rr, y), and then express them in vector form similar to
that shown in equation (1.6.22).



Problem 1.6.3 Flow decomposition.
Carry out the decomposition of a two-dimensional flow with velocity

components ux(x,y,t) = w(t) (2x + 3y) and uy(x,y,i) — w(t) (—x — 2y),
where w (t) is a function of time.

1.7 Interpolation

In practice, the components of the fluid velocity are hardly ever given
in explicit form, as was done in equations (1.4.7) and (1.5.2). Instead,
they are either measured in the laboratory with velocity probes, or com-
puted by numerical methods at data points located in the domain of
flow. The velocity at an arbitrary point is then obtained by a numerical
procedure called function interpolation.

Typically, but not always, the data points are located at the nodes of
a grid defined by the intersections of planar or curved surfaces in three
dimensions, and straight or curved lines in two dimensions. A Cartesian
grid is defined by the intersections of planes that are normal to the x,
j/, and z axis in three dimensions, or by the intersections of lines that
are normal to the x and y axes in two dimensions. A one-dimensional,
a two-dimensional, and a three-dimensional Cartesian grid with evenly
spaced grid-lines are illustrated in figure 1.7.1.

1.7.1 Interpolation in one dimension

As a prelude to computing the components of the velocity at an arbi-
trary point in a flow from specified grid values, we consider interpolating
a function f ( x ) of one independent variable x.

Let us assume that we are given the values of the function f ( x ) at
the TV + 1 nodes of a one-dimensional grid located at x^ where i =
1, 2 , . . . , N + 1, and x\ < #2 < • • • < ^N+I, as shown in figure 1.7.1(a).
Effectively, we are provided with a three-column table of TV H- 1 entries
listing i,#i, and f ( x i ) \ for simplicity, we denote f ( x i ) by /^. Our goal
is to compute the value of the function f ( x ) at a point x that does not
necessarily coincide with a node.

A set of TV + 1 nodes define TV intervals, where the ith interval starts
at the ith node and ends at the i + I node. Suppose that the point x
lies witinin the kth interval subtended between the nodes Xk and Xk+i.
A simple way of finding the value of k is by computing the products



Figure 1.7.1 Illustration of (a) a one-dimensional, (b) a two-
dimensional, and (c) a three-dimensional Cartesian grid with even-
ly spaced grid-lines.



Figure 1.7.2 Local approximation of a function with a linear interpo-
lating function represented by the straight line.

pi — (x — Xi)(x — £j+i) for all values of i. The appropriate value of k is
the unique value of i for which pi is negative.

There are better and faster methods of finding the label of the host
interval k. For example, in the method of logarithmic search, we first
examine whether the point x lies on the left or on the right of the mid-
point of the interpolation domain (xi,£jv+i). Having found the host
half-interval, we repeat the process until the host sub-interval has been
reduced to the fcth interval.

Linear interpolation

One way to compute the value f(x] is by approximating the graph
of the function f ( x ) over the interval (xk,Xk+i) with a straight line,
and requiring that the straight line pass through the two data points
corresponding to the doublets (xk,fk) and (xk+\>> fk+i), as illustrated in
figure 1.7.2.

In mathematical terms, we approximate the function f ( x ) over the
interval (xi^Xk+\) with a linear function expressed by the first-degree
polynomial

P<f\x} = a(k\x-xk) + b(k\ (1.7.1)

where the coefficient a^ is the slope. Note that we have expressed
this polynomial in terms of the shifted monomial x — x^ rather than



the unshifted monomial x in order to facilitate forthcoming algebraic
manipulations.

To compute the constants a^ and b^k\ we require the interpolation
conditions

Pik\xk)=bW = fk,

Pj* Wi) ^ a(*Wi - Xk) + bW = A+i, (1.7.2)

ensuring that the graph of the polynomial passes through the data points
labelled k and k+l. Solving the system of the two linear equations (1.7.2)
for the two monomial coefficients, we find

(1.7.3)

(k}To evaluate the linear polynomial P± '(a;), we first compute the co-
efficients a,№ and &W using equations (1.7.3), and then evaluate the
right-hand side of (1.7.1) for a desired value of x that lies between xk

and xjb+i. The result will be a reasonable approximation to the unknown
value f ( x ) .

Quadratic interpolation

Interpolation based on the straight-line approximation overlooks the
curvature of the graph of the function f ( x ) . For better accuracy, we
approximate the graph of the interpolated function f ( x ) over the interval
(xk,xk+i) with a parabola, as depicted in figure 1.7.3.

In mathematical terms, we approximate the function f ( x ) over this
interval with a quadratic function expressed by the second-degree poly-
nomial

pW(x) - a№(x - xk)
2 + bW(x - xk) + c«. (1.7.4)

As previously, we have expressed the polynomial in terms of the shifted
monomial x - xk instead of the unshifted monomial x in order to simplify
the forthcoming algebraic manipulations.

To compute the three constants a^k\ b^k\ and c^k\ we require three
equations. First, we demand that the parabola pass through the two data
points (xk,fk) and (#&+!? A+I)? and obtain the interpolation conditions



Figure 1.7.3 Local approximation of a function with a parabolic inter-
polating function represented by the thick dashed line.

(1.7.5)

One more data point is required, and we may choose either the backward
point (#fc_i , / fc_i ) , or the forward point (x/c+25/fc+2)- The backward
choice provides us with the condition

"(1.7.6)
With the choice expressed by equations (1.7.5) and (1.7.6), the coef-

ficients of the binomial are found to be

(1.7.7)

where
(1.7.8)



are the lengths of the backward and forward intervals.
When the data points are spaced evenly, /i/c-i = hk — /i, we obtain

the simplified expressions

c(k) _ f

-fk' (1.7.9)

To evaluate P2 (^)? we ^TS^ compute the coefficients c№\ b^ and
c^ using the preceding equations, and then evaluate the right-hand side
of (1.7.4). The result will be an improved approximation to f ( x ) .

1.7.2 Interpolation in two dimensions

Consider now a function / of two independent variables x and y. For
the present puposes, a function of two variables is an engine that receives
the pair of numbers x and y and produces the new number /(#,y).

Assume that we are given the values of the function f ( x , y ) at the
nodes of a two-dimensional grid defined by the intersections of the re-
level lines Xi, where i = 1,2, . . . , Nx + 1, and the y-level lines y^, where
j — 1,2, . . . , Ny + 1, as shown in figure 1.7.1(b). A grid-node is defined
by the values of the indices i and j forming the ordered integer doublet
(i,j), as illustrated in figure 1.7.1(b). The value of the function f ( x , y )
at the ( i , j ) node is equal to f(x^yj}. Our goal is to compute the value
of / at a point ( x , y ) that is not necessarily a node.

Suppose that the value of x lies inside the kxth ^-interval confined
between the Xkx and Xkx+i x-level lines, and the value of y lies inside
the kyth y-interval confined between the y^y and yky+i y-level lines, as
shown in figure 1.7.4. The values of kx and ky may be found by the
methods discussed in Section 1.7.1 for one-dimensional interpolation.

Bilinear interpolation

An approximation to /(#, y) may be obtained by replacing the un-
k k

known function /(x,y) with the function PB£ y(x,y) defined over the
rectangular domain that is confined between the a>level lines x = X k x ,
x = Xkx+I, and the y-level lines y = yky, and y = y^+i- The bilinear

function P^ y(x,y) is endowed with the following properties:

k k
1. For a fixed value of x, call it XQ, the function PB

X£ y(x$,y} varies
linearly with respect to y.



Figure 1.7.4 Bilinear interpolation of a scalar function through a rect-
angular grid.

k k2. For a fixed value of y, call it yo? the function PQ^ y(x,yo) varies
linearly with respect to x.

3. The following four interpolation conditions ensuring that the bilin-
ear function reproduces the neighboring grid values are met:

(1.7.10)

The first and second of the above properties require that the bilinear
function have the functional form

(1.7.11)

To evaluate the four constants ax
x' y', bx

x' y', Oyx' y', and by
xi y , we use

the four interpolation conditions (1.7.10), finding



(1.7.12)
where we have introduced the position-dependent interpolation weights

(1.7.13)

The numerators AQQ, AIQ, An? and AU are the areas of the four sub-
rectangles depicted in figure 1.7.4, given by

A)O = (zkx+i - x)(yky+i - y), Aw = (x- xkx)(yky+i - y),

An = (fffcx+i ~ x ) ( y - yky), AH = (x- x k x ) ( y - yky), 7

The denominator A is the area of the interpolation rectangle, given by

A = (xkx+i ~ %kx)(yky+i ~ yky)' (1.7.15)

It is reassuring to observe that the sum of the four interpolation
weights given in (1.7.13) is equal to unity independent of the values of x
and y,

WOQ(X, y) + WIQ(X,y) + WQI(X,y) + wn(x,y) = 1. (1.7.16)

This property guarantees that, if the four grid values

f ( x k x , y k y ] , f ( x k x , V k y + i ) , / (a?fa+i>y*»)> /(***+!> Mby+i)

are the same, equal to a, then bilinear interpolation based on (1.7.12)
produces

A* kPBL y (xi y) = a (^QO + WIO + WQI + Wn) = a, (1.7.17)

as required.



1.7.3 Interpolation of the velocity in a two-dimensional flow

Returning to fluid mechanics, we consider a two-dimensional flow in
the xy plane, and specify the values of the x and y velocity components
Ux and Uy at the nodes of a two-dimensional Cartesian grid. To obtain
the corresponding values at an arbitary point (x, y), we employ bilinear
interpolation, finding

(1.7.18)
and

(1.7.19)
Our ability to interpolate the velocity components at any point in a

flow from specified grid values allows us to generate particle paths and
streamlines without having available explicit expressions for the velocity
in analytical form. In practice, the grid values are computed by solv-
ing the equations governing the motion of the fluid using a variety of
numerical methods, as will be discussed later in this text.

Problems

Problem 1.7.1 Quadratic interpolation.
Solve the linear system of three equations (1.7.5) and (1.7.6) to derive

formulas (1.7.7). Hint: Compute first the coefficient c^ using the first
of equations (1.7.5).

Problem 1.7.2 Forward-point parabolic interpolation.
Consider the parabolic interpolation of a function of one variable

/(x), as discussed in the text. Forward interpolation uses the interpola-
tion condition

(1.7.20)



in place of (1.7.6). Derive expressions for the coefficients c№\ b^k\ and
c^ in terms of the grid values /^, /fc+i, and /^+2, and the interval sizes
hk and /ifc+i- Then derive simplified expressions when h^ and /ifc+i are
equal to h.

Problem 1.7.3 Trilinear interpolation.
Consider a function of three variables /(#, y, 2). Extend the method

of bilinear interpolation of a function of two variables discussed in the
text, to the method of trilinear interpolation that generates the value of
/ at an arbitrary point (x^y^z) using the values of / at the nodes of a
three-dimensional Cartesian grid. The interpolation formula should be
the counterpart of (1.7.12) with properly defined interpolation weights.

Computer problems

Problem c. 1.7.1 Bilinear interpolation.
Directory 02-grids/rec-2d of FDLIB contains a program that inter-

polates the x and y components of the velocity and draws the velocity
vector field over a rectangular domain confined between ax < x < bx

and ay < y < by. The interpolation is based on specified values of the
velocity at the nodes of a uniform Nx x Ny Cartesian grid, as shown in
figure 1.7.5.

(a) Run the program for a velocity field of your choice offered in the
main, confirm that the interpolated values are identical to the specified
grid values, and prepare a plot of the velcocity vector field similar to
that displayed in figure 1.7.5.

(b) Enhance the menu with a new flow of your choice; plot and discuss
the structure of the velocity field.

Problem c.1.7.2 Streamlines by interpolation.
Directory 02-grids/rec-2d-strmll of FDLIB contains a program that

generates streamlines originating from specified points in a rectangular
domain of a two-dimensional flow. The velocity components are com-
puted by bilinear interpolation based on specified grid values.

(a) Run the program for a velocity field of your choice offered in the
main menu, generate, plot, and discuss the streamline pattern.

(b) Enhance the main menu with a new flow of your choice, plot and
discuss the streamline pattern.



Figure 1.7.5 Bilinear interpolation of a velocity vector field through a
Cartesian grid in a two-dimensional flow.



2.1 Fundamental modes of fluid parcel motion
2.2 Fluid parcel expansion
2.3 Fluid parcel rotation and vorticity
2.4 Fluid parcel deformation
2.5 Numerical differentiation
2.6 Areal and volumetric flow rate
2.7 Mass flow rate, mass conservation,

and the continuity equation
2.8 Properties of point particles
2.9 Incompressible fluids and stream functions

2.10 Kinematic conditions at boundaries

We continue the study of kinematics by considering, in more detail,
the behavior of fluid parcels, by deriving expressions for the volumetric
and mass flow rate across surfaces drawn in a fluid, and by developing
numerical methods for evaluating kinematical variables defined in terms
of derivatives or integrals of the velocity. Conservation of mass required
by thermodynamics, and physical conditions imposed at boundaries in-
troduce mathematical constraints that motivate the description of a flow
in terms of ancillary functions that expedite analysis and numerical com-
putation.

2,1 Fundamental modes of fluid parcel motion

In Chapter 1, we pointed out that the nature of the motion of a
small fluid parcel is determined by the relative motion of point particles
residing within the parcel and over its boundary. If, for example, the
velocity of all point particles is nearly the same, that is, variations in the
point particle velocity are small compared to the average velocity, then

Chapter 2

Fluid Motion: More on Kinematics



the parcel exhibits rigid-body translation. Significant variations in the
point particle velocity generate more general types of motion including
local rotation, deformation, and isotropic expansion.

To study the relative motion of point particles in the vicinity of a
certain point XQ = (XQ ,yo ?£( ) )? we consider differences in corresponding
components of the velocity evaluated at a point x = (#, y, z) that lies
close to XQ, and at the chosen point XQ. If the differences are small
compared to the distance between the points x and XQ, both measured
in proper units, the relative motion is negligible. If the differences are
substantial, the relative motion is significant and needs to be properly
analyzed.

2.1.1 Function linearization

To prepare the ground for this analysis, we consider a scalar function
of three independent variables that receives a triplet of numbers (x, y, z)
and produces the number f(x,y,z). If the function / is locally well
behaved, and the point x lies near the point XQ, then the value /(#, y, z)
is expected to be close to the value / ( X Q ^ Q , ZQ). Stated differently, in
the limit as all three scalar differences X - X Q , y — UQ, and z — ZQ tend to
vanish, meaning that x tends to XQ, the difference in the function values
f(x,y,z) — /(XQ^Q^ZQ) will also tend to vanish.

Now, the variable point x may approach the fixed point XQ from
many different directions. Selecting the direction that is parallel to the
x axis, we set x = (x ,yo?^o)? and consider the limit of the difference
/(#, yo>2o) — /(XQ^Q^ZQ) as x — XQ tends to zero. Because the function
/ has been assumed to be well behaved, the ratio of the differences

(2.1.1)

tends to a finite number defined as the first partial derivative of the func-
tion / with respect to the variable x evaluated at the point XQ, denoted
by (df /OX)(XQ). Elementary calculus ensures that the partial derivative
may be computed using the usual rules of differentiation of a function
of one variable with respect to x, regarding the other independent vari-
ables as constant. For example, if / = xyz, then d f / d x = yz, and
(df/dx)(xQ) = yQZQ,

Setting the fraction shown in (2.1.1) equal to (df/dx)(XQ), and solv-
ing the resulting equation for /(#,3/0? ^Q), we find



(2.1.2)

It is important to bear in mind that this equation is exact only in the
limit as Ax = X-XQ tends to zero. For small but non-infinitesimal values
of Ax, the difference between the left- and right-hand side is on the order
of Ax2, which, however, is small compared to Ax. For example, if Ax is
equal to 0.01 is some units, then Ax2 is equal to 0.0001 in corresponding
units.

The point x may also approach the point XQ along the y or z axis,
yielding the counterparts of (2.1.2),

(2.1.3)

and

(2.1.4)

Combining the arguments that led us to equations (2.1.2)-(2.1.4), we let
the point x approach the point XQ from an arbitrary direction, and derive
the approximation

(2.1.5)

We pause to emphasize that relation (2.1.5) is exact only in the limit
as all three differences Ax = x — XQ, Ay = y — yo, and Az = z — ZQ tend
to zero. For small but non-infinitesimal values of any of these differences,
the left-hand side of (2.1.5) differs from the right-hand side by an amount
that is generally on the order of the maximum of Ax2, Ay2 or Az2.

Equation (2.1.5) can be made exact for any value of Ax, Ay, or Az,
by adding to the right-hand side a term called the remainder. Clearly,
as all three differences Ax, Ay, and Az tend to zero, the remainder
must vanish. Elementary calculus shows that when Ax, Ay, and Az are
sufficiently small, the remainder may be expressed as an infinite series
involving products of powers of Ax, Ay, and Az, called the Taylor series
of the function / about the point XQ.

The process of deriving (2.1.5) is called linearization of the function
/ about the point XQ. The linearized form (2.1.5) states that, in the



immediate vicinity of a point XQ, any regular function resembles a linear
function of the shifted monomials Ax, Ay, and Az. If all three first
partial derivatives vanish at the point XQ, then / behaves like a quadratic
function; this, however, is an exception.

Gradient of a scalar function

To economize our notation, we introduce the gradient of the function
/, denoted by V/ defined as the vector of the three partial derivatives,

(2.1.6)

where ex, ey, and ez are the unit vectors along the x,y, and z axes.
The symbol V is a vector operator called the del or gradient operator,
defined as

(2.1.7)

Unlike a regular vector, V may not stand alone but must operate on a
scalar function of position from the left to acquire a meaningful inter-
pretation.

Inner vector product

As a second preliminary, we introduce the inner product of two three-
dimensional vectors f = (fxifyifz) and g = (gx>9y>9z) defined as the
scalar

f ' g = fx 9x + fy 9y + fz 9z- (2.1.8)

In index notation,

f ' S = fi9i, (2.1.9)

where summation of the repeated index i is implied over x, y, and z, as
required by Einstein's repeated-index summation convention: if an index
appears twice in a product, then summation of that index is implied over
its range.

It can be shown using elementary trigonometry that the inner prod-
uct defined in (2.1.8) is equal to the product of (a) the length of the first
vector f, (b) the length of the second vector g, and (c) the cosine of the
angle subtended between the two vectors. If the angle is equal to Tr/2,
that is, the two vectors are orthogonal, the cosine of the angle is equal to



zero, and the inner product vanishes. If the angle is equal to zero, that
is, the two vectors are parallel, the inner product is equal to the product
of the lengths of the two vectors. If both f and g are unit vectors, that
is, their lengths are equal to one unit of length, then the inner product
is equal to the cosine of the subtended angle.

Linearized expansion in compact form

Subject to the preceding definitions, equation (2.1.5) may be written
in the compact vector form

/(x) ~ /(X0) + (x- X0) - (V/)XO, (2.1.10)

where the subscript XQ denotes that the gradient V/ is evaluated at the
point XQ. The second term on the right-hand side of (2.1.10) is the inner
product of (a) the relative position vector X - X Q , and (b) the gradient
vector V/.

2.1.2 Velocity gradient tensor

To derive the linearized form of the velocity field in the vicinity of
the point XQ, we identify the function / with the #, y, or z component of
the velocity, Ux, uy, or uz, and obtain

(2.1.11)
Collecting these equations into the unified vector form, we obtain

u(x) ~ u(x0) + (x - X0) • A(X0), (2.1.12)

where A is a 3 x 3 matrix called the velocity gradient tensor, defined as

(2.1.13)



The notation A(XQ) in (2.1.12) emphasizes that the nine components of
the velocity gradient tensor are evaluated at the chosen point XQ around
which linearization has taken place.

As an example, the velocity gradient corresponding to the velocity
field expressed by equations (1.4.7) is given by the matrix A defined as

(2.1.14)

Placing the point XQ at the location ( X O , T / O ? ^ O ) — ( I 5 O 5 O ) , we obtain

(2.1.15)

Thus, in the vicinity of the point (1,0,0), the flow expressed by equations
(1.4.7) may be approximated with a linear flow expressed by

(2.1.16)

The right-hand sides of equations (2.1.16) are linear functions of the
spatial coordinates x, y, and z.

Tensorial nature of a matrix

The velocity gradient tensor is a matrix containing the three first
partial derivatives of the three components of the velocity with respect
to x, y, and z, a total of nine scalar elements. Why have we called this
matrix a tensor?

A tensor is a matrix whose elements are physical entities evaluated
with reference to a chosen system of Cartesian or polar coordinates. If
the coordinate system is changed, for example, by translation or rota-
tion, then the elements of the matrix will also change to reflect the new
directions. This change is analogous to that undergone by the compo-
nents of the position or velocity vector, occurring by referring to a new
system of coordinates, as discussed in Section 1.5.

Now, if the elements of the matrix corresponding to the new system
are related to the elements corresponding to the old system by certain



rules discussed in texts of matrix calculus, then the matrix is called a
tensor. Establishing whether or not a matrix is a tensor is important in
deriving physical laws relating matrices with different physical interpre-
tations.

2.1.3 Relative motion of point particles

According to equation (2.1.12), the motion of a point particle that is
close to the point XQ is governed by the equation

(2.1.17)

where X is the position of the point particle, and u is the point-particle
velocity, equal to the local and instantaneous fluid velocity. The first
term on the right-hand side of (2.1.17) states that a point particle located
at X translates with the velocity of the point particle located at XQ.
The second term expresses the relative motion with respect to the point
particle located at XQ. Different velocity gradient tensors A(XQ) represent
different types of relative motion; our goal is to establish the nature of
this motion in terms of the components of A(XQ).

2.1.4 Rotation, deformation, and expansion
in two-dimensional flow

To begin, we consider a two-dimensional flow in the xy plane, and
introduce the 2 x 2 velocity gradient tensor

(2.1.18)

In Section 1.6, we studied the velocity field associated with the linear
flow expressed by equation (1.6.33). Comparing equations (2.1.12) and
(2.1.18) with equation (1.6.33), we set

(2.1.19)

where all partial derivatives are evaluated at XQ.
To study the properties of the linearized flow, we carry out the de-

composition shown in equation (1.6.34), setting



(2.1.20)

where

(2.1.21)

is a skew-symmetric matrix with zero trace called the vorticity tensor,

(2.1.22)

is a symmetric matrix with zero trace called the rate of deformation
tensor, and the scalar

(2.1.23)

is the areal rate of expansion.

Expansion

The results of Section 1.6 suggest that a fluid parcel centered at the
point XQ expands isotropically with an areal rate of expansion that is
equal to the right-hand side of (2.1.23) evaluated at XQ, as illustrated in
figure 2.1.1.

Rotation

Referring to equation (1.6.35), we find that a fluid parcel centered at
the point XQ rotates in the xy plane around the point XQ, with angular
velocity

(2.1.24)

where the right-hand side is evaluated at XQ, as shown in figure 2.1.1.
When f2 is positive, the parcel rotates in the counter-clockwise direction,
whereas when fi is negative, the parcel rotates in the clockwise direction.



Expansion Rotation Deformation

Figure 2.1,1 Expansion, rotation, and deformation of a small discoidal
fluid parcel in a two-dimensional flow, occurring during an infinites-
imal period of time.

Deformation

The discussion in Section 1.6 suggests that the flow associated with
the rate of deformation tensor E expresses pure deformation, as illustrat-
ed in figure 2.1.1. To compute the rate of deformation G, we search for
the eigenvalues of E. Denoting Exx = E\\, and similarly for the other
components, and taking into account that, by definition, Exx + Eyy = O,
and Exy — Eyx, we find

(2.1.25)

The corresponding eigenvectors define the principal directions of the rate
of strain. It can be shown that, because E is symmetric, the two eigevec-
tors are mutually orthogonal.

Each one of the two eigenvalues of the rate of strain tensor expresses
the rate of deformation of a circular fluid parcel centered at the point
XQ, in the direction of the respective eigenvector. A theorem of matrix
calculus requires that the sum of the eigenvalues be equal to the sum
of the diagonal elements of E, which is equal to zero. Because of this
property, the deformation conserves the area of the parcel during the
motion.

2.1.5 Three-dimensional flow

Extending the preceding analysis to three-dimensional flow, we de-
compose the velocity gradient tensor into three parts, as



Expansion Rotation Deformation

Figure 2.1.2 Expansion, rotation, and deformation of a small spher-
ical fluid parcel in a three-dimensional flow, occurring during an
infinitesimal period of time.

(2.1.26)

where

(2.1.27)

is the skew-symmetric vorticity tensor,

(2.1.28)

is the symmetric and traceless rate of deformation tensor, and the scalar
coefficient

(2.1.29)

is the volumetric rate of expansion.



The three terms on the right-hand side of (2.1.26) express, respec-
tively, isotropic expansion, rotation, and pure deformation, as illustrated
in figure 2.1.2. Because of the fundamental significance of these motions
in fluid mechanics, these terms will be given individual attention in the
next three sections.

Problems

Problem 2.1.1 Inner vector product.
Prove the intepretation of the inner vector product described after

equation (2.1.9).

Problem 2.1.2 Decomposition of a linearized flow.
Linearize the velocity described by equations (1.5.2) around the origin

of the y axis, and decompose the velocity gradient tensor of the linearized
flow into the three modes shown on the right-hand side of (2.1.26).

Problem 2.1.3 Decomposition of a linearized flow.
Decompose the velocity gradient tensor of the linearized flow ex-

pressed by equations (2.1.16) into the three modes shown on the right-
hand side of (2.1.26).

Problem 2.1.4 Gradient in cylindrical polar coordinates.
In the cylindrical polar coordinates depicted in figure 1.3.2, the gra-

dient of a scalar function / is defined by its cylindrical polar components
Fx, Ft,, and F^, as

V/ = Fx ex + FV eff + Fp e^. (2.1.30)

Using the transformation rules shown in equations (1.3.17), we find

(2.1.31)

To express the derivatives with respect to y and z in terms of derivatives
with respect to polar cylindrical coordinates, we use the chain rule of
differentiation along with the coordinate transformation rules (1.3.11)
and (1.3.12), and find

(2.1.32)



(2.1.33)

Substitute relations (2.1.32) and (2.1.33) into the right-hand sides of
relations (2.1.31), and thus derive the relations

(2.1.34)

Equations (2.1.34) illustrate that the polar components of the gradi-
ent are equal to the partial derivatives with respect to the corresponding
variable, multiplied by an appropriate scaling factor.

Problem 2.1.5 Gradient in spherical polar coordinates.
In the spherical polar coordinates depicted in figure 1.3.3, the gra-

dient of a scalar function / is defined by its spherical polar components
Fr, FQ, and F^, as

V/ - FT er + F6 ee + F^ ev. (2.1.35)

Working as in problem 2.1.4, show that

(2.1.36)

Note that the expression for F^ is consistent with that given in the third
of relations (2.1.34), subject to the substitution a = r sin#.

Problem 2.1.6 Gradient in plane polar coordinates.
In the plane polar coordinates depicted in figure 1.3.4, the gradient

of a scalar function / is defined by its plane polar components Fr and
Fe, as

V/ = F re r+F0e0. (2.1.37)

Working as in problem 2.1.4, show that

(2.1.38)



2.2 Fluid parcel expansion

Consider the velocity field associated with the third term on the
right-hand side of (2.1.26), given by

(2.2.1)

Under the influence of this field, a spherical fluid parcel centered at the
point XQ expands when the coefficient a(xo) is positive, or contracts
when the coefficient a(XQ) is negative, always maintaining the spherical
shape.

To see this more clearly, we consider the motion of a point particle
that lies at the surface of the spherical parcel. Using (2.2.1), we find
that the radius of the parcel a(t), is given by

(2.2.2)

Raising both sides of equation (2.2.2) to the third power, and multiplying
the result by the factor 47T/3, we find that the ratio of the instantaneous
to the initial parcel volume is given by

(2.2.3) .

This result explains why the constant a is called the rate of volumetric
expansion.

2.2.1 Divergence of the velocity field

The rate of expansion defined in equation (2.1.29) may be expressed
in compact form that simplifies the notation. Taking the inner product
of the del operator defined in (2.1.7) and the velocity, we find

(2.2.4)

In index notation,

(2.2.5)



where summation of the repeated index i is implied over x, y, and z.
In the case of two-dimensional flow in the xy plane, the derivative with
respect to z does not appear.

Accordingly, we write
a - V - u . (2.2.6)

The right-hand side of (2.2.6) is defined as the divergence of the velocity.

2.2.2 Solenoidal velocity fields

We have found that the rate of volumetric expansion at a point in
a three-dimensional flow, or the areal rate of expansion at a point in a
two-dimensional flow, is equal to the divergence of the velocity evaluated
at that point. If the divergence of the velocity vanishes at every point
in the flow, with the physical consequence that no fluid parcel under-
goes expansion but only translation, rotation, and deformation, then the
velocity field is called solenoidal.

Problem

Problem 2.2.1 Rate of expansion.
Derive the rate of expansion of the flow described by equations (1.4.7),

and then evaluate it at the point XQ = (1,0,1).

2.3 Fluid parcel rotation and vorticity

Consider the velocity field associated with the first term on the right-
hand side of (2.1.26), given by

uRatatim(x,ytz) = (x - X0) • 2(X0), (2 3 1}

where S is the vorticity tensor defined in equation (2.1.27).
An areal fluid parcel in a two-dimensional flow occurring in the xy

plane may only rotate around the z axis. In contrast, a three-dimensional
fluid parcel in a three-dimensional flow may rotate around any arbitrary
axis that passes through the designated center of rotation XQ and points
in an arbitrary direction. The direction, magnitude, and sense of the
rotation define the angular velocity vector fi whose components may be



deduced from the three upper triangular or three lower triangular entries
of the vorticity tensor shown on the left-hand side of (2.1.27), and are
given by

(2.3.2)

where the right-hand sides are evaluated at the designated parcel center
XQ. As we look down into the vector fi from the tip of its arrow, the
fluid rotates in the clockwise direction.

Equation (2.3.1) may be recast into a compact form in terms of the
angular velocity vector, as

(2.3.3)

where $1 derives from the velocity by means of (2.3.2).
The three components of the angular velocity vector arise by com-

bining selected partial derivatives of the components of the velocity in
a particular fashion. Stated differently, the angular velocity vector field
arises from the velocity field by operating on it with a differential op-
erator, just as the rate of expansion arises from the velocity field by
operating on it with the divergence operator (V-), as discussed in Sec-
tion 2.2.

2.3.1 Outer vector product

To identify the differential operator that generates the angular ve-
locity field from the velocity field according to equations (2.3.2), we
introduce the outer vector product.

Consider a vector f = (/^, /^, /^), and another vector g = (gx, gy,gz}\
the outer product of the first vector with the second vector, stated in
this particular order, is a new vector denoted by f x g, defined as

(2.3.4)

where ex, ey, and ez are the unit vectors along the #,y, and z axis.



Figure 2.3.1 The outer product of two vectors f and g is a new vector
perpendicular to their plane.

It can be shown that the vector f x g is normal to the plane defined
by f and g, as illustrated in figure 2.3.1, and its magnitude is equal to the
product of (a) the length of the vector f, (b) the length of the vector g,
and (c) the absolute value of the sine of the angle 6 subtended between
the two vectors. The orientation of f x g is chosen such that, as we look
down at the plane defined by f and g towards the negative direction of
f x g, the angle O measured in the counterclockwise direction from f is
less than 180°. If 6 is equal to O or TT, that is, if the two vectors are
parallel or anti-parallel, then the sine of the angle is equal to zero, and
the outer product vanishes. The directions indicated by the three vectors
f, g, and f x g, arranged in this particular order, form a right-handed
system of axes. This is another way of saying that f x g arises from f
and g according to the right-hand rule.

Using the definition of the cross product, we recast equation (2.3.3)
into the form

u*otaiio"(z,M = ^ X ( X - X 0 ) , (2.3.5)

which is the classical definition of rigid-body rotation around the point
XQ with angular velocity fi, in agreement with the previously stated
physical interpretation.

2.3.2 Curl and vorticity

Taking the outer product of the del operator and the velocity field,
we obtain the curl of the velocity defined as the vorticity,



(2.3.6)

Comparing equation (2.3.6) with equations (2.3.2), we find

n = 2"' (2.3.7)

which shows that the angular velocity vector is equal to half the vorticity
vector, or half the curl of the velocity.

2.3.3 Irrotational flow

If the curl of a velocity field vanishes at every point in a flow, with
the consequence that no spherical fluid parcel undergoes rotation, then
the velocity field is called irrotational. The properties and computation
of irrotational flow will be discussed in Chapter 3, and then again in
Chapter 12 in the context of aerodynamics.

2.3.4 The alternating tensor

The long expression on the right-hand side of equation (2.3.4) defin-
ing the outer vector product is cumbersome. To simplify the notation,
we introduce the three-index alternating tensor e^, defined as follows:

1. K i = j, or j = /c, or k — i, then e^ = O. For example, exxy =
tzyz — tzyy = O.

2. If i,j, and k are all different, then e^ = ±1. The plus sign applies
when the triplet ijk is a cyclic permutation of xyz, and the minus
sign applies otherwise. For example, exyz = ezxy = eyzx = 1, but
^xzy — ~1-

Two important properties of the alternating tensor stemming from its
definition are

tijk eljk — 2 Su, (2.3.8)

where summation of the repeated indices j and k is implied on the left-
hand side, and



(2.3.9)

where summation of the repeated index k is implied on the left-hand
side. Kronecker's delta 6ij represents «the identity matrix: Sij = 1 if
i = j? or O if i ^ j. Additional properties of the alternating tensor are
listed in problem 2.3.2.

In terms of the alternating tensor, the ith component of the outer
product f x g defined in equation (2.3.4) is given by

(f x g); = €ijk Jj Qk, (2.3.10)

where summation of the two repeated indices j and k is implied on the
right-hand side.

Using the definition (2.3.6), we find that the ith component of the
vorticity is given by

_ duk

^~^k Qx.' (2.3.11)

A straightforward manipulation of (2.3.11) provides us with an ex-
pression for the vorticity vector in terms of the vorticity tensor

(2.3.12)

The converse relationship is (problem 2.3.3)

(2.3.13)

2.3.5 Two-dimensional flow

Consider a two-dimensional flow in the xy plane. Inspection of the
right-hand side of (2.3.6) shows that the x and y components of the
vorticity vanish, and the vorticity vector is parallel to the z axis and
thus perpendicular to the plane of the flow,



u = uzez, (2.3.14)

where ez is the unit vector along the z axis. The scalar ujz is the strength
of the vorticity, defined as

(2.3.15)

Using the transformation rules discussed in Section 1.1, we find that,
in the plane polar coordinates depicted in figure 1.1.4, the strength of
the vorticity is given by

(2.3.16)

2.3.6 Axisymmetric flow

Consider next an axisymmetric flow without swirling motion, and
refer to the polar cylindrical coordinates (x, a, (p) depicted in figure 1.1.2,
and to the spherical polar coordinates (r, #,</?) depicted in figure 1.1.3.
A fluid patch that lies in a meridional plane over which (p is constant,
is able to rotate only around an axis that is perpendicular to this plane
and thus points in the direction of increasing or decreasing angle (p. This
observation suggests that the vorticity vector takes the form

w = a;y,ep, (2.3.17)

where e^ is the unit vector pointing in the meridional direction, and UJ^
is the strength of the vorticity given by

(2.3.18)

Note that the expression in spherical polar coordinates given on the
right-hand side of (2.3.18) is identical to that in plane polar coordinates
given in (2.3.16).



Problems

Problem 2.3.1 Properties of the outer vector product.
(a) With the outer vector product defined in equation (2.3.4), show

that

f xg = - g x f . (2.3.19)

(b) The outer vector product of two vectors f and g may be identified
with the determinant of a matrix,

(2.3.20)

Show that this rule is consistent with the definition of the curl in (2.3.6).

Problem 2.3.2 Properties of Kronecker's delta and alternating tensor.
Prove the properties:

Su = 3, eijk Sjk = O, CLJ Sjk = a*, AIJ 6jk = AM, , .

where Sij is Kronecker's delta representing the 3 x 3 identity matrix,
summation is implied over a repeated index, a is an arbitrary vector and
A is an arbitrary matrix.

Problem 2.3.3 Relation between the vorticity tensor and vector.
Prove relation (2.3.13). Hint: Express the vorticity in terms of the

velocity as shown in (2.3.11), and then use property (2.3.9).

Problem 2.3.4 Solenoidal nature of the vorticity field.
Show that V • u = O; that is, the vorticity field is solenoidal.

2.4 Fluid parcel deformation

Consider the velocity field associated with the second term on the
right-hand side of (2.1.26), given by

Reformation^ z) = (x _ XQ) . ̂ ),



where E is the symmetric rate of deformation tensor defined in equation
(2.1.28).

To develop insights into the nature of the motion described by (2.4.1),
we consider a special case where E(XQ) is diagonal, given by

(2.4.2)

with the understanding that the right-hand side is evaluated at the point
XQ. The matrix (2.4.2) has three real eigenvalues that are equal to the
diagonal elements; the corresponding eigenvectors point along the x,y,
or z axes.

Cursory inspection reveals that, under the action of the flow de-
scribed by (2.4.1) and (2.4.2), a spherical fluid parcel centered at the
point XQ deforms to obtain an ellipsoidal shape while preserving its vol-
ume, as illustrated in figure 2.1.2. The three eigenvalues of the rate of
deformation tensor express the rate of deformation in the three principal
directions corresponding to the eigenvectors. If an eigenvalue is negative,
then the parcel is compressed in the corresponding direction to obtain
an oblate shape.

More generally, the rate of deformation tensor has three real eigen-
values, AI, A2, and AS, that are found by setting the determinant of the
matrix

(2.4.3)

equal to zero, and then computing the roots of the emerging cubic
equation for A, as will be discussed later in this section. It can be shown
that, because E is symmetric, all three eigenvalues are real, and each
eigenvalue has a distinct corresponding eigenvector. Moreover, the three
eigevectors are mutually orthogonal, pointing in the principal directions
of the rate of strain.

Under the action of the flow (2.4.1), a spherical fluid parcel centered
at the point XQ deforms to obtain an ellipsoidal shape whose axes are
generally inclined with respect to the #, y, and z axes. The three axes of
the ellipsoid are parallel to the eigenvectors of E, and the respective rates
of deformation are equal to the corresponding eigenvalues. A theorem
of matrix calculus states that the sum of the eigenvalues is equal to the



sum of the diagonal elements of E, which is equal to zero. Because of
this property, the deformation conserves the parcel volume.

2.4.1 Computation of the rate of strain

Setting the determinant of the matrix (2.4.3) equal to zero, we obtain
the cubic equation

A3 + a\2 + bX + c = O, /2 4 ̂

where

a = -Trace(E) = -(Exx + Eyy + Ezz),

b — (EyyEZZ - EyZEZy) + (EXXEZZ — EXZEZX) + (EXXEyy ~ EXyEyX),

c = -Det(E),
(2.4.5)

and Det stands for the determinant. Using Cardano's formulae, we find
that the three roots of (2.4.4), are given by

(2.4.6)

where

(2.4.7)

In the present case, because a = O, we obtain the simplified expres-
sions

(2.4.8)

where

(2.4.9)



Once the eigenvalues have been found, the eigenvectors are computed
by solving a homogeneous system of three equations for three unknowns.
For example, the eigenvector e^1) = (ex , ey , e^ ' ) corresponding to the
eigenvalue AI is found by solving the homogeneous system

(E - AiI) • eW = O, (2.4.10)

which can be restated as

(2.4.11)

To solve the system (2.4.11), we assign an arbitrary value to GZ on the
right-hand sides, and solve the first two equations for ex , and ey ' using,
for example, Cramer's rule. The solution is guaranteed to also satisfy
the third equation. A solution will not exist when the eigenvector is
perpendicular to the z axis, in which case ei ' is equal to zero. If this
occurs, we simply transfer to the right-hand side the term involving ex
or ey , and solve for the other two components.

Problem

Problem 2.4.1 Properties of eigenvalues.
(a) Confirm that the sum of the three eigenvalues given in (2.4.6) is

equal to the trace of E.
(b) Confirm that the product of the three eigenvalues given in (2.4.6)

is equal to the determinant of E.
(c) Confirm that, when E is diagonal, formulae (2.4.6) identify the

eigenvalues with the diagonal elements.

Computer problem

Problem c.2.4.1 Eigenvalues and eigenvectors.
Directory Ol-num-meth/05-eigen of FDLIB contains program eigenSS

that computes the eigenvalues of a 3 x 3 matrix. Use the program to com-
pute the eigenvalues and eigenvectors of the rate of deformation tensor
corresponding to the linearized flow (2.1.16) for a — ls~l and cdt — 2s"1.



2.5 Numerical differentiation

We have mentioned on an earlier occasion that, in practice, the com-
ponents of the velocity field are hardly ever given in analytical form by
means of analytical expressions. Instead, their values are either mea-
sured in the laboratory with probes, or computed by numerical methods
at data points or grid nodes located in the domain of flow. The partial
derivatives of the velocity are then recovered by a numerical procedure
called numerical differentiation.

2.5.1 Numerical differentiation in one dimension

As a prelude to computing the partial derivatives of the components
of the velocity from specified grid values, we consider computing the first
derivative of a function / of one independent variable x from specified
grid values. Assume that we are given the values of the function f ( x )
at N + I nodes of a one-dimensional grid with nodes located at XI,
i — 1 ,2 , . . . , N + 1, where x\ < x% < ... < #w+i, as shown in figure
1.7.1 (a). Our goal is to compute the derivative df /dx at a point x that
lies within the kth interval subtended between the nodes XK and #fc+i.

First-order differentiation

A reasonable way of computing df /dx involves approximating the
graph of the function f ( x ) over the interval (xfaXk+i) with a straight
line, as shown in figure 1.7.2, and then approximating df /dx with the
slope. Using equations (1.7.1) and (1.7.3), we derive the finite-difference
approximation

(2.5.1)

Identifying now the evaluation point x with the grid point x^, we obtain
the forward-difference approximation

(2.5.2)

Using, instead, the straight-line approximation for the k — 1 interval,
we obtain the backward-difference approximation

(2.5.3)



Formulae (2.5.2) and (2.5.3) carry a comparable amount of error due to
the straight-line approximation.

To evaluate ^(#1), we use the forward difference; to evaluate ̂  (^ AM-I)
we use the backward difference; to evaluate ^(xi) at an interior grid
point, i = 2 , 3 , . . . , TV we use either the forward or the backward differ-
ence approximation, whichever is more convenient or appropriate.

Second-order differentiation

Numerical differentiation based on linear interpolation discussed in
the preceding subsection neglects the curvature of the graph of the func-
tion f ( x ) . To improve the accuracy, we approximate the graph of f ( x )
over the interval (xk,Xk+i) with a parabola, as depicted in figure 1.7.3,
and then approximate the slope of the function, df/dx, with the slope
of the parabola. Differentiating once the right-hand side of (1.7.4), we
derive the second-order finite-difference approximation

(2.5.4)

where the coefficients a^ and b^ are given in (1.7.7).
Identifying the evaluation point x with the grid point #&, we obtain

the centered-difference approximation

(2.5.5)

When the grid points are spaced evenly, x^ — x^-i — %k+i — xk = ^>
where h is the grid spacing, we obtain the simple form

(2.5.6)

The parabolic approximation allows us to also obtain an estimate
for the second derivative d 2 f / d x 2 . Differentiating the right-hand side of
(1.7.4) twice with respect to rrr, we derive the finite-difference approxi-
mation

(2.5.7)

where the coefficient a^ is given in (1.7.7). When the grid points are
distributed evenly with spacing /i, we obtain the simpler form



(2.5.8)

2.5.2 Numerical differentiation in two dimensions

Consider now the computation of the first partial derivatives of a
function /(#, y) of two independent variables x and y, d f / d x and d f / d y ,
given the values of the function at the nodes of a two-dimensional grid
defined by the intersections of the re-level lines Xi, i = 1 ,2 , . . . , Nx + 1,
and y-level lines y^, j — 1 ,2 , . . . , Ny + 1, as illustrated in figure 1.7.2.

Suppose that x lies within the kxth re-interval confined between the
Xkx and Xkx+I x-level lines, and y lies within the kyth y-interval confined
between the yky and y/^+i y-level lines.

First-order differentiation

Using the method of bilinear interpolation discussed in Section 1.7,
we approximate the first partial derivatives of the function /(x,y) with
the partial derivatives of the bilinear function defined in equation (1.7.12).
Considering the derivative with respect to x, we obtain the forward-
difference approximation

(2.5.9)

Using expressions (1.7.13) and (1.7.14), we find

(2.5.10)

Recalling that A = (xkx+i-xkx)(yky+i-yky), as given in (1.7.15), we de-
rive the first-order forward difference approximation for the southwestern
grid point,



(2.5.11)

A similar approximation of the y derivative yields

(2.5.12)

Second-order differentiation

Second-order centered-difference formulae for evaluating the first par-
tial derivative of a function at a grid point may be derived on the basis
of the one-dimensional formula (2.5.5). Using the expression for the
coeffient b^ given in equations (1.7.7), we obtain

(2.5.13)

The corresponding expression for the derivative with respect to y is

(2.5.14)

When the grid lines are spaced evenly, xkx -xkx_i = xkx+\-xkx = hx,
and yky - yky-i = yky+i - yky = hy, we obtain the simpler forms

(2.5.15)

and

(2.5.16)



2.5.3 Numerical computation of the velocity gradient
and related functions

The formulae derived previously in this section may be used to obtain
approximations to the elements of the velocity gradient tensor, rate of
deformation tensor, vorticity tensor, vorticity vector, and rate of expan-
sion, from specified values of the velocity at grid points. For illustration,
we consider a two-dimensional flow and refer to a uniform grid with
constant x and y grid spacings equal to hx and hy.

Using the second-order centered-difference approximations (2.5.15)
and (2.5.16), we find that the rate of expansion can be approximated
with the finite difference formula

(2.5.17)

The corresponding finite-difference approximation for the strength of
the vorticity is

(2.5.18)

Similar finite-difference approximations may be derived for the ele-
ments of the rate of deformation tensor, and subsequently used to obtain
approximations to its eigenvalues and eigenevectors.

Problem

Problem 2.5.1 Numerical differentiation.
Use formula (2.5.8) to evaluate the second derivative of the expo-

nential function f ( x ) = ex at x = O in terms of the values of f ( x ) at
x = -h, O, h, for h = 0.16, 0.08, 0.04, 0.02, and 0.01. Then compute
the error defined as the difference between the numerical and the exact
value, plot it against h on a linear-log scale, and discuss the slope of the
graph.



Computer problem

Problem c.2.5.1 Numerical differentiation of a two-dimensional flow.
Directory 02-.grids/rec-2d of FDLIB contains a program that com-

putes by interpolation: (a) the strength of the vorticity, (b) the rate
of deformation tensor, and (c) the eigenvalues and eigenvectors of the
rate of deformation tensor, over a rectangular domain of flow confined
between ax < x < bx and ay < y < by. The input data specify the
components of the velocity at the nodes of a uniform TVx x Ny Cartesian
grid, as shown in figure 1.7.1(b).

(a) Run the program for two velocity fields offered in the main, pre-
pare and discuss plots of the strength of the vorticity, eigenvalues, and
eigenvectors of the rate of strain tensor.

(b) Enhance the menu with a new flow of your choice, and repeat
part (a).

2.6 Areal and volumetric flow rate

Consider a two-dimensional flow in the xy plane, and draw a line
that resides completely in the fluid. At any instant, point particles cross
the line, thereby generating a net, positive or negative, areal flow rate
towards a designated direction. Our goal is to quantify this flow rate in
terms of the shape of the line and the fluid velocity.

2.6.1 Unit tangent and unit normal vectors

Consider first an open line beginning at the point A and ending at
the point B, as shown in figure 2.6.1 (a). As a preliminary, we introduce
the unit tangent vector, denoted by t = (tx,ty), defined as the vector
that is tangential to the line at a point, and whose magnitude is equal
to one unit of length; by definition, t^ + ty = 1. The direction of t is
chosen such that, if we start traveling along the line from point A in the
direction of t, we will finally end up at point B.

Next, we introduce the unit normal vector, denoted by n = (nx,ny},
defined as the vector that is perpendicular to the line at every point, and
whose magnitude is equal to one unit of length; by definition, n^.+ny = 1.
The orientation of n is such that the tangent vector t arises by rotating
n around the z axis in the counterclockwise direction by an angle equal
tO 7T/2.

Next Page
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Figure 2.6.1 (a) An open line with end-points A and B, used to define
the local areal flow rate and flux in a two-dimensional flow. When
the end-points A and B coincide, we obtain the closed line shown
in (b).

Consider now an infinitesimal section of the line beginning at the
point x and ending at the point x + cbc, where the differential displace-
ment dx = (dx^dy) is parallel to, and points in the direction of t. The
components of the unit tangent and unit normal vector are given by

(2.6.1)

and

(2.6.2)

where

(2.6.3)

is the differential arc length of the infinitesimal section of the line.

2.6.2 Normal and tangential velocity

Consider next a group of adjacent point particles which, at a certain
time, are deployed over the infinitesimal arc length dl. During an in-
finitesimal period of time dt, the point particles move to a new position,



thus allowing other point particles located behind or in front of them to
cross the line into the other side. To compute the net area of fluid that
has crossed the infinitesimal arc length dl, we resolve the velocity of the
point particles into a normal and a tangential component, writing

u = unn + utt. (2_e_4)

The normal and tangential velocities Un and Ut may be computed readily
in terms of the inner vector product defined in equation (2.1.8).

First, we note that, because t and n are mutually orthogonal, their
inner product vanishes,

t - n = n - t = 0. ( 265 )

To confirm this, simply substitute (2.6.1) and (2.6.2) into the right-hand
side of (2.1.8).

Second, we recall that the magnitudes of n and t are equal to unity,

n • n = 1, t • t — 1.
(2.6.6)

To confirm this, we substitute (2.6.1) or (2.6.2) into the right-hand side
of (2.1.8), and use (2.6.3).

Third, we take the inner product of the unit normal vector with both
sides of (2.6.4), and use (2.6.5) and (2.6.6) to find

un = u • n = ux nx + Uy ny. /2 g y\

Finally, we take the inner product of the unit tangent vector with
both sides of (2.6.4), and use (2.6.5) and (2.6.6) to find

Ut = U-t=UXtX+Uy ty. /2 g g\

2.6.3 Local areal flow rate and flux

The local areal flow rate across the infinitesimal section rf/, defined as
the area of fluid that crosses this section during an infinitesimal period
of time, denoted by da/dt, is given by

da
— = un a/,
dt n ' (2.6.9)



Why have we selected the normal component of the velocity on the right-
hand side of (2.6.9)? The answer becomes evident by observing that, if
the normal component vanishes, then the particles move tangentially to
the line, in which case fluid does not cross the line.

The corresponding local areal flux, denoted by q, is defined as the
ratio of the local areal flow rate da/dt to the infinitesimal length of the
line across which tansport takes place. Equation (2.6.9) shows that

(2.6.10)

that is, the local areal flux is equal to the normal component of the fluid
velocity.

Substituting (2.6.7) into (2.6.9), and using (2.6.2), we find

(2.6.11)

which allows us to evaluate the local areal flow rate in terms of the
components of the velocity.

2.6.4 Areal flow rate across a line

To compute the areal flow rate across the open line depicted in figure
2.6.1 (a), denoted by Q, we subdivide the line into an infinite collection
of infinitesimal sections with differential length d/, and add all contribu-
tions. In mathematical terms, we integrate the lo£al areal flux along the
line with respect to arc length, finding

(2.6.12)

The expression on the right-hand side of (2.6.12) allows us to evaluate
Q in terms of the geometry of the line and the two components of the
velocity. This integral representation is also applicable for the closed line
depicted in figure 2.6.1(b); in this case, the last point B simply coincides
with the first point A, yielding a closed integral.



2.6.5 Analytical integration

If the line has a simple shape, and the components of the velocity
are known functions of position with simple forms, we may be able to
compute the integrals in (2.6.12) by analytical methods.

Consider, for example, a line that has the shape of a section of a circle
of radius .R centered at the point xc, with end-points corresponding to the
polar angles OA and OB- In this case, x = xc+R cos 9 and y — yc+R sin#.
Differentiating these equations with respect to 9, we find dx = -R sin Od6
arid dy = R cos OdO. Substituting these expressions into the last integral
in (2.6.12), we obtain

(2.6.13)

If the velocity components are available explicitly in terms of the angle
0, then they may be substituted into (2.6.13) to yield an integral rep-
resentation with respect to O. For example, if Ux — acos#/(27r r) and
Uy = asin#/(27rr), where a is a constant and r is the distance from the
origin,

(2.6.14)

If the circular segment forms a complete circle, and the integration is
done in the counterclockwise direction from OA — OQ to OB — 2TT — OQ,
where OQ is an arbitrary angle, then Q = a independent of the radius R.

2.6.6 Numerical integration

Under most conditions, we will not be able to compute the line in-
tegrals in (2.6.12) exactly by analytical methods, and we must resort
to numerical approximations. To perform a numerical computation, we
mark the location of the line with N + 1 sequential nodes denoted by
X^, where i = 1 ,2 , . . . , N + 1, as depicted in figure 2.6.2. The first node
coincides with the first point, A, and the last node coincides with the
last point, B. If the line is closed, the nodes numbered 1 and N + 1
coincide.

Next, we approximate the shape of the line between two successive
nodes numbered i and i + I with a straight segment passing through
these nodes, denoted by EI, where E stands for "element". There are a



Figure 2.6.2 An array of points deployed along a section of a line in
the xy plane, used to compute the areal flow rate by numerical
methods.

total of N elements whose union forms a polygonal line, called a polyline,
beginning at the first point A and ending at the last point B.

The key step in developing a numerical approximation is the replace-
ment of the line integrals in (2.6.12) with the sum of integrals over the
elements, and the approximation of the velocity components over each
element with the average of the values at the element end-points. With
these simplifications, the last integral in (2.6.12) takes the form

(2.6.15)

Writting out the sum, and rearranging, we find the equivalent expression

(2.6.16)



If the line is closed, in which case nodes 1 and TV + 1 coincide, the
first and last contributions on the right-hand side of (2.6.16) combine to
yield the simpler form

(2.6.17)

where the wrapped point numbered O coincides with the penultimate
point numbered N.

The computation of the right-hand sides of (2.6.16) and (2.6.17) re-
quires knowledge of the velocity components at the nodes; these are
either given explicitly or computed by interpolation from grid values, as
discussed in Section 1.7.

2.6.7 The Gauss divergence theorem in two dimensions

Consider a closed loop in the xy plane, denoted by C, and a vector
function of position h = (hx,hy], where hx(x,y) and hy(x,y] are two
scalar functions. The normal component of h along C is given by the
inner product

""n — "• ' U ~ MX ^x i hy fly /o a i o\

The divergence of h is a scalar function of position given by

(2.6.19)

The Gauss divergence theorem states that the line integral of hn

along C is equal to the integral of the divergence of h over the area D
enclosed by (7,

(2.6.20)

where n is the unit vector normal to C pointing outward.
Consider now the areal flow rate across a closed loop. Applying

(2.6.20) with h = u, we find that the flow rate across this loop is equal
to the areal integral of the divergence of the velocity over D,

(2.6.21)



where the unit normal vector points outward, as shown in figure 2.6.1(b).
The right-hand side of (2.6.21) allows us to compute the instantaneous
flow rate across a closed loop in terms of the integral of the rate of
expansion over the enclosed area.

Incompressible fluids

It is clear from expression (2.6.21) that, if the velocity field is solenoidal,
that is, the divergence of the velocity V • u vanishes at every point, then
the areal flow rate across any closed loop is equal to zero. In physical
terms, the fluid parcels deform and rotate but do not expand, and the
amount of fluid entering the area enclosed by a stationary closed loop is
equal to the amount of fluid exiting the loop during any period of time.

2.6.8 Three-dimensional flow

The preceding discussion for two-dimensional flow may be extended
in a straightforward fashion to three-dimensional flow. To carry out this
extension, we replace the line integrals along open or closed loops with
surface integrals over open or closed surfaces.

Working in this manner, we find, for example, that the flow rate Q
across an open or closed surface H is given by the surface integral

(2.6.22)

The unit normal vector n and the differential area of a surface element
dS are depicted in figure 2.6.3.

The Gauss divergence theorem in three dimensions

Consider a closed surface denoted by H, and a vector function of
position h = (hx,hy,hz). The normal component of h over H is given
by the inner product

hn = h • n = hxnx + hyny + hznz, /2 g 23)

and the divergence of h is given by

(2.6.24)



Figure 2.6.3 Illustration of (a) an open surface in a three-dimensional
flow bounded by the closed line C, and (b) a closed surface enclos-
ing the volume R, used to define the areal flow rate and establish
the Gauss divergence theorem.

The Gauss divergence theorem states that the surface integral of hn

over H is equal to the integral of V • h over the volume R enclosed by
H,

(2.6.25)

where n is the unit vector normal to H pointing outward, and dV —
dx dy dz is the differential volume expressed in Cartesian coordinates.

Consider now the flow rate across the closed surface H, given in
(2.6.22). Applying (2.6.25) with h = u, we find

(2.6.26)

This exression shows that, if the velocity field is solenoidal, the volumet-
ric flow rate across any closed surface enclosing fluid alone is required to
vanish.

2.6.9 Axisymmetric flow

Next, we consider a meridional plane of an axisymmetric flow, and
draw a line beginning at the point A and ending at the point B, as
illustrated in figure 2.6.4. The flow rate across the axisymmetric surface
that arises by rotating the line around the x axis is given by



Figure 2.6.4 An axisymmetric surface whose trace in a meridional
plane is an open line beginning at the point A and ending at the
point B.

(2.6.27)

where dl is the differential arc length along the generating line. Expres-
sion (2.6.27) arises by adding the fluxes across all elementary axisymmet-
ric surfaces confined between two parallel planes that are perpendicular
to the x axis and are separated by the infinitesimal distance dx corre-
sponding to the arc length dl, taking into consideration that the surface
area of an elementary surface centered at a ring of radius a is equal to
27T<7d/.

Computer problem

Problem c.2.6.1 Flow rate across an ellipse.
Consider a closed loop in the xy plane having the shape of a horizontal

ellipse centered at the point xc, with major and minor semi-axes equal
to a and b. The elliptical shape is described in parametric form by
the equations x — xc + a cos x and y = yc + bs'm x, where x is the
native parameter of the ellipse ranging between O and 2?r. The velocity
components are given by Ux = a cos 6/ (2 TV r) and uy = a sin 9/ (2 TT r),
where a is a constant, and (r, O) are plane polar coordinates in the xy
plane with origin at the center of the ellipse.



Write a program that computes the flow rate across the ellipse using
a numerical method based on equation (2.6.17). Perform computations
for two ellipses with aspect ratios of your choice, in each case for N =8,
16, 32, and 64, and discuss your results.

2.7 Mass flow rate, mass conservation,
and the continuity equation

In Section 1.5, we defined a point particle as an idealized entity arising
in the limit as the size of a small fluid parcel becomes decreasingly small
and eventually infinitesimal. In this limit, the ratio between the mass
of the parcel and the volume of the parcel tends to a non-zero and non-
infinite value defined as the fluid density p.

To signify that the density is a function of position and time, we
write p(x,y,z,t) or p(x,i), with the understanding that the density at
a particular point in a flow is equal to the density of the point particle
that happens to be at that point at the current time.

2.7.1 Mass flux and mass flow rate

Consider a two-dimensional flow in the xy plane, and draw a line
beginning at the point A and ending at the point B, as illustrated in
figure 2.6.1(a). At any instant, point particles cross this line, thereby
generating a net mass flow rate toward a specified direction. Our goal
is to quantify this flow rate in terms of the shape of the line and the
distribution of the velocity and density in the flow.

Repeating the analysis of Section 2.6, we find that the mass flux
across an infinitesimal section of a line is given by the following counter-
part of equation (2.6.10),

Qm — P unt (271)

where Un is the component of the velocity normal to the line. The mass
flow rate across a line beginning at the point A and ending at the point
B is given by the following counterpart of equation (2.6.12),

(2.7.2)



The integrals in (2.7.2) may be computed by analytical or numerical
methods, as discussed in Section 2.6.

2.7.2 Mass flow rate across a closed line

Correspondingly, the mass flow rate outward from a closed line may
be expressed in terms of a closed line integral, as

(2.7.3)

where the unit normal vector n points into the exterior of the area en-
closed by the line, as depicted in figure 2.6.1(b).

The Gauss divergence theorem expressed by equation (2.6.20) states
that the line integral in (2.7.3) is equal to the following integral of the
divergence of the velocity multiplied by the fluid density over the area
D enclosed by the line,

(2.7.4)

where

(2.7.5)

For future reference, we expand the derivatives of the products on
the left-hand side of (2.7.5) using the rules of product differentiation,
finding

(2.7.6)

We have introduced the vector of the first partial derivatives of the den-
sity,

(2.7.7)

defined as the gradient of the density.

2.7.3 Mass conservation

The first thermodynamic principle requires that the rate of change
of the mass residing within an area D that is enclosed by a stationary



closed line be equal to the mass flow rate inward across the line, or
equivalently, to the negative of the mass flow rate outward across the
line. If the outward mass flow rate is positive, then the rate of the
change of mass enclosed by the line is negative reflecting a reduction in
time. In terms of the areal mass flow rate defined in equation (2.7.3)
and expressed in the form of an areal integral in equation (2.7.4),

(2.7.8)

Since the area D is fixed in space, we can interchange the order of time
differentiation and space integration on the left-hand side of (2.7.8), and
then combine the two integrals to find

(2.7.9)

Moreover, since the shape of the area D is arbitrary, the integrand on
the right-hand side of (2.7.9) must vanish, yielding a partial differential
equation expressing mass conservation,

(2.7.10)

called the continuity equation. This nomenclature is meant to empha-
size that, in the absence of sources or sinks, mass neither appears nor
disappears in the flow, and the fluid must move in a continuous fashion.

Combining equations (2.7.6) and (2.7.10), we derive an alternative
form of the continuity equation,

(2.7.11)

involving the density gradient and the rate of expansion.

2.7.4 Three-dimensional flow

The preceding discussion for two-dimensional flow may be generalized
in a straightforward fashion to three-dimensional flow. To carry out this
extension, we replace the line integrals with surface integrals over a closed
or open surface. The mass flow rate Q7n across an open or closed surface
R depicted in figure 2.6.3 is given by the surface integral



(2.7.12)

If the surface is closed and the unit normal vector points outward, as
shown in figure 2.6.3(b), we may use the divergence theorem to recast
the surface integral on the right-hand side of (2.7.12) into an integral of
the rate of expansion over the volume R enclosed by the surface,

(2.7.13)

The continuity equation expressed by (2.7.10) or (2.7.11) stands true,
with the understanding that Vp is the three-dimensional density gradient
with components

(2.7.14)

2.7.5 Evolution equation for the density

The continuity equation may be regarded as an evolution equation for
the density, determined by the velocity. To see this, we recast equation
(2.7.10) into the form

(2.7.15)

Evaluating the right-hand side of (2.7.15) at a certain point in terms of
the instantaneous velocity and density, we obtain an expression for the
current and local temporal rate of change of the density.

Consider, for example, the change in density occurring during a small
time interval At following the present time t. Evaluating both sides of
equation (2.7.15) at the point x, and approximating the right-hand side
with a first-order forward finite difference, we find

(2.7.16)

where the right-hand side is evaluated at (x, t). Solving for p(x, t + At),
we obtain

(2.7.17)

which provides us with an explicit expression for p(x, t + At) in terms of
values at the previous time t.



Finite-difference method

In practice, equation (2.7.15) is typically solved using a numerical
method. Consider an idealized one-dimensional flow along the x axis
representing, for example, flow along a conduit with a known axial ve-
locity u(x, t). The one-dimensional version of the continuity equation
(2.7.15) reads

(2.7.18)

The solution is to be found over an interval that is confined within
a < x < 6, subject to: (a) an initial condition that specifies the den-
sity distribution at the designated origin of time, p(x,t = O), and (b)
a boundary condition that specifies the density at the left end of the
domain of flow, x = a.

To compute a numerical solution, we divide the domain a < x < b
into N intervals demarkated by the N + I nodes x^ i = 1 ,2, . . . , N + 1,
as depicted in figure 1.7.1 (a). The first node coincides with the left end-
point a, and the last node coincides with the right end-point b. Our goal
is to generate the values of p at the nodes, at a sequence of time intervals
separated by the time interval At.

To simplify the notation, we denote the density at the ith node at the
kth time level corresponding to time tk = k At, by p\. Evaluating both
sides of (2.7.18) at the ith node at the kth time level, and approximating
the time derivative on the left-hand side with a first-order forward differ-
ence and the spatial derivative on the right-hand side with a first-order
backward difference, we derive the finite-difference approximation

(2.7.19)

Solving for pf+1, we obtain

(2.7.20)

The numerical method involves the following steps:

1. Specify the initial values p® for i = 1, 2 , . . . , N + I.

2. Use equation (2.7.20) to compute p\ for i = 2 , 3 , . . . , TV + 1.

3. Use the left-end boundary condition to set the value of p\.



4. Stop, or return to step 2 and repeat.

Problems

Problem 2.7.1 Convection under constant velocity.
(a) Show that when a fluid translates as a rigid body, that is, the fluid

velocity u has the constant but possibly time-dependent value U(t), the
continuity equation (2.7.10) simplifies to the linear convection equation

(2.7.21)

(b) Consider a steady flow where U is independent of time. In this
case, if PQ(X.) is the density field at t — O, then

p(x, t ) = Po(X-U*) (2J_22)

will be the density field at any subsequent time t. To confirm this,
we define the auxiliary variables Wx = x — Ux t, wy = y — Uy t, and
wz = z — Uz t, and use the chain rule to write

(2.7.23)

Continuing in this manner, complete the proof.
(c) The results of part (b) suggest that the density at the point

x — XQ — U t at time t is equal to the density at the point XQ at t = O.
In physical terms, the density is "convected" by the uniform flow.

Consider the one-dimensional flow discussed in the text with u being
a constant, and sketch a profile for the density distribution along the x
axis at the initial time t = O and at a subsequent time.

Problem 2.7.2 Steady state.
Consider a steady one-dimensional flow with a specified velocity u(x),

and derive an expression for the density distribution at steady state.
Discuss the behavior of the density when the velocity vanishes at a point.



Computer problem

Problem c.2.7.1 Finite-difference method.
Consider a steady, one-dimensional, periodic flow along the x axis

with velocity u(x) = C/(l + ecos(27rx/L)), where U is a constant velocity,
e is a specified dimensionless constant, and L is the period. Write a
computer program that uses the numerical method discussed in the text
to compute the evolution of the density over one spatial period I/, subject
to a uniform initial distribution. Run the program for e = 0.0, 0.2, 0.4,
and 0.8, prepare graphs of the density distribution at different times,
and discuss the behavior of the solution at long times.

2.8 Properties of point particles

The physical properties of a homogeneous fluid parcel consisting of a
single chemical species are determined by, and can be quantified in terms
of, the number of molecules, the kinetic energy, the potential energy, and
the thermal energy of the molecules that comprise the parcel. Each one
of these physical properties is extensive, in the sense that the larger the
parcel volume, the larger the magnitude of the physical property. As the
size of a parcel tends to zero, the ratio between the value of an extensive
property and the parcel volume tends to a limit that may be regarded
as an intensive physical property of the point particle emerging from
the parcel immediately before the molecular nature of the fluid becomes
apparent.

For example, we have already seen that, as the volume of a parcel
tends to zero, the ratio of the mass of the parcel to the volume of the
parcel tends to a finite limit defined as the fluid density, p. Similarly, the
ratio of the number of molecules residing within the parcel to the volume
of the parcel tends to the molecular number density, and the ratio of the
potential energy of the molecules to the volume of the parcel tends to
the specific potential energy.

2.8.1 The material derivative

To prepare the ground for establishing evolution laws governing the
motion and physical state of a fluid, we seek corresponding laws de-
termining the rate of change of physical and kinematical properties of



point particles moving with the local fluid velocity. Kinematical proper-
ties include the velocity and its first time derivative defined as the point
particle acceleration, the vorticity, and the rate of strain.

A key concept is the material derivative, defined as the rate of change
of a physical or kinematical property following a point particle. Our first
objective is to derive an expression for the material derivative in terms
of Eulerian derivatives; that is, partial derivatives with respect to time
and spatial coordinates.

Consider the material derivative of the density of a point parti-
cle which, at a certain time to, is located at the point XQ. In three-
dimensional flow, the density is a function of four independent variables:
the three Cartesian coordinates (rr, y, z) determining position in space,
and time t. We begin by linearizing the density field p(x,y,£, t ) around
the hyperpoint ( x o , j / 0 j ^ 0 ) ^ o ) ? as discussed in Section 2.1. Adding time-
dependence to equation (2.1.5), and identifying the generic function /
with the density, we obtain

(2.8.1)

Next, we bring the first term on the right-hand side, /0(0:0,3/0? ^o j * o ) > to
the left-hand side, and divide both sides of the resulting equation by the
time lapse t - to, to find

(2.8.2)

The second key step involves the judicious choice of the point x. This
point is selected so that, if a point particle is located at the position XQ
at time to, then the same point particle will be located at the position
x at the later time t. By definition then, the left-hand side of (2.8.2)
reduces to the material derivative. Moreover, since the point particle
moves with the fluid velocity, the three fractions on the right-hand side



of (2.8.2) reduce to the three components of the fluid velocity ux, uy, and
uz. Denoting the material derivative by -^, we write

(2.8.3)

Equation (2.8.3) allows us to compute the material derivative of the
density in terms of Eulerian derivatives; that is, in terms of partial deriva-
tives of the density with respect to time and spatial coordinates. In
numerical practice, the partial derivatives are computed using finite-
difference approximations, as discussed in Section 2.5.

In terms of the density gradient defined in (2.7.14), equation (2.8.3)
takes the simpler form

(2.8.4)

where both sides are evaluated at the arbitrarily chosen point XQ at the
arbitrary time £Q.

The continuity equation

Comparing equation (2.8.4) with equation (2.7.11), we find that, in
terms of the material derivative of the density, the continuity equation
takes the form

(2.8.5)

which illustrates that the rate of change of the density of a point particle
is determined by the local rate of expansion. The inverse interpretation,
however, is physically more appropriate: the structure of the velocity
field is determined, in part, by the rate of change of the density of all
point particles, as will be discussed in the next section.

2.8,2 Point particle acceleration

The acceleration of a point particle, denoted by a, is defined as the
rate of change of the point particle velocity. Invoking the definition of
the material derivative, we find that the x component of a is equal to
material derivative of the x component of the point particle velocity,
which is equal to the local fluid velocity; thus, ax = Dux/Dt\ similar
arguments reveal that ay = Duy/Dt and az — Duz/Dt.



Replacing p in equation (2.8.4) with Ux,uy, or uz, we find that the
three Cartesian components of the point particle acceleration are given
by

(2.8.6)

The three scalar equations (2.8.6) may be conveniently collected into
the compact vector form

(2.8.7)

where A = Vu is the velocity gradient tensor defined in equation (2.1.13),
with components AIJ — duj/dxi. In index notation, the jth component
of (2.8.7) takes the form Duj/Dt — duj/dt + U{ duj/dxi, where summa-
tion is implied over the repeated index i.

Cylindrical polar coordinates

In the system of cylindrical polar coordinates defined in figure 1.3.2,
the point particle acceleration is expressed in terms of its cylindrical
polar components ax, aa, and a^, as

a = ax ex + aa ea + a^ e^.
(Z.o.o)

Using the transformation rules shown in equations (1.3.17), we find

aa = costp ay + sin (p az, a^ — — sirup ay + cos (p az.
(2.8.9)

Substituting the right-hand sides of the second and third of relations
(2.8.6) into the right-hand sides of equations (2.8.9), and using the chain
rule of differentiation to convert derivatives with respect to x,y, and z



to derivatives with respect to #, a, and (p in the resulting equations and
in the first of (2.8.6), we obtain

(2.8.10)

Using the expression for the gradient of a function in cylindrical polar co-
ordinates defined in equations (2.1.30) and (2.1.34), we recast equations
(2.8.10) into the more compact form

(2.8.11)

These expressions illustrate that the polar cylindrical components of the
acceleration are not simply equal to the material derivative of the corre-
sponding polar components of the velocity.

Spherical polar coordinates

In the system of spherical polar coordinates depicted in figure 1.3.3,
the point particle acceleration is expressed in terms of its spherical polar
components ar, a#, and a^, as

a = ar er + a# e# + a^ e^. (2.8.12)

Working as previously for the cylindrical polar coordinates, we find the
somewhat more involved expressions



(2.8.13)

Plane polar coordinates

In the system of plane polar coordinates depicted in figure 1.3.4,
the point particle acceleration is expressed in terms of its plane polar
components ar and a#, as

a = ar er + CLQ 60. (2.8.14)

Working in the familiar way, we find

(2.8.15)

2.8.3 Point particle acceleration at a point with zero vorticity

If the components of the vorticity vector vanish at a point in the
flow, then the velocity gradient tensor at that point is symmetric. Con-
sequently, selected partial derivatives of the velocity must be such that
the three terms enclosed by the parentheses on the right-hand side of
(2.3.6) are equal to zero, yielding



(2.8.16)

The sum of the last three terms on the right-hand side of the first of
equations (2.8.6) may then be written as

(2.8.17)

Working in a similar manner with the y and z components, and collecting
the derived expressions into a vector form, we obtain

(2.8.18)

where u2 = v%. + Uy + u2
z is the square of the magnitude of the velocity,

and Vu2 — (du2/dx^dii2/dy^du2/dz) is its gradient. The point particle
acceleration may then be expressed in the alternative form

(2.8.19)

If the flow is steady, the first term on the right-hand side of (2.8.19)
vanishes, and the point particle acceleration is equal to the gradient of
half the square of the magnitude of the local velocity, which is a measure
of the local kinetic energy of the fluid: the acceleration points in the
direction of maximum change of kinetic energy indicated by the gradient.

In Chapter 6, we shall see that the simplified expression (2.8.19)
serves as a point of departure for the theoretical analysis and numerical
computation of irrotational flows.

Problems

Problem 2.8.1 Properties of the material derivative.
Consider two scalar physical or kinematical fluid properties such as

the density or a component of the velocity, denoted, respectively, by /
and g. Prove that the following usual rule of product differentiation
applies,



(2.8.20)

Problem 2.8.2 Mass and momentum of a small fluid parcel.
(a) Consider a small fluid parcel with volume SVp and density p. By

requiring mass conservation and using the continuity equation (2.8.5),
show that

(2.8.21)

which reinforces our interpretation of the divergence of the velocity as
the rate of volumetric expansion.

(b) The linear momentum of a fluid parcel is defined as the product
of the mass of the percel 6mp = p SVP and velocity u. By requiring mass
conservation, show that the rate of change of the linear momentum can
be expressed in terms of the point particle acceleration in the form

(2.8.22)

Problem 2.8.3 Point particle acceleration in rotational flow.
Show that the counterpart of equation (2.8.18) at a point where the

vorticity does not necessarity vanish, is

(2.8.23)

How does this expression simplify at a point where the velocity and
vorticity point in the same direction?

Problem 2.8.4 Point particle motion in one-dimensional flow.
Consider an idealized one-dimensional flow along the x axis with

velocity u(x,t) satisfying the inviscid Burgers equation

(2.8.24)

Explain why point particles in this flow travel with a time-independent
velocity that is equal to the velocity assigned at the initial instant; dif-
ferent point particles may travel with different velocities.



2.9 Incompressible fluids and stream functions

If the volume of a fluid parcel is preserved as the parcel is convected
in a flow, then the fluid residing within the parcel is incompressible.
In contrast, if the volume of the parcel changes in time, then the fluid
residing within the parcel is compressible. Conservation of mass requires
that the mass of the fluid be conserved irrespective of whether the fluid
is compressible or incompressible.

Since both the mass and volume of an incompressible fluid parcel
are conserved during the motion, the density of the point particles com-
prising the parcel must remain constant in time. Using the definition of
the material derivative, we derive the mathematical statement of incom-
pressibility

Dp
-Ql==0, (2.9.1)

It is important to bear in mind that the density of an incompressible fluid
is not necessarily uniform throughout the domain of flow. Different point
particles may have different densities, but the density of each individual
point particle must be conserved during the motion.

Using equation (2.9.1), we find that the continuity equation (2.8.5)
for an incompressible fluid simplifies to

V ' u = °> (2.9.2)

stating that the velocity field is solenoidal, and the rate of expansion
OL defined in equation (2.2.6) is equal to zero: an incompressible fluid
parcel undergoes translation, rotation, and isochoric deformation, but
not expansion. "Isochoric" is composed from the Greek words KJO^ which
means equal, and the word X^P0S which means volume or space.

It is furthermore important to bear in mind that the stipulation
(2.9.1) is the defining property of an incompressible fluid, and the sim-
plified form of the continuity equation (2.9.2) is a mere consequence of
mass conservation.

2.9.1 Mathematical consequences of incompressibility

Equation (2.9.2) states that the x, y, and z components of the velocity
of an incompressible fluid may not be prescribed arbitrarily, but must be
such that the differential constraint imposed on them by the requirement
that the velocity field be solenoidal is satisfied thoughout the domain of



flow at all times. In contrast, the three components of the velocity of
a compressible fluid may be arbitrary; the density of the point particles
will then be adjusted to ensure mass conservation, as dictated by the
continuity equation.

A second consequence of incompressibility is that, because the evo-
lution of the density is governed by the kinematic constraint (2.9.1), an
equation of state relating pressure to density and temperature is not re-
quired. The significance of this conseqeunce will be discussed in Chapters
4 and 8 in the context of dynamics.

2.9.2 Stream function for two-dimensional flow

The continuity equation for two-dimensional flow in the xy plane,
equation (2.9.2), takes the form

(2.9.3)

In computing the velocity field of an incompressible fluid using analytical
or numerical methods, it is convenient to have this constraint fulfilled at
the outset, so that we can concentrate on satisfying boundary conditions
and other restrictions that arise by balancing forces and torques, as will
be discussed in later chapters.

To achieve this, we express the two components of the velocity in
terms of a scalar function if) called the stream function, as

(2.9.4)

If the two velocity components derive from T/J by means of equations
(2.9.4), then the satisfaction of the icompressibility constraint (2.9.3) is
guaranteed. To see this, we substitute (2.9.4) into (2.9.3) and find

(2.9.5)

Since the order of partial differentiation with respect to the two inde-
pendent spatial variables x and y is immaterial, the equality is satisfied.

Consider, for example, a two-dimensional flow with velocity compo-
nents ux = G x and uy = —G y, where G is a constant. Substituting
these expressions into (2.9.3) we confirm that the fluid is incompressible.
The stream function corresponding to this flow is given by ̂  = Gxy + c,
where c is an unspecified constant.



Uniqueness of the stream function

The example discussed in the last paragraph illustrates that the
stream function of a specified two-dimensional flow is not unique. Curso-
ry inspection of equation (2.9.4) shows that an arbitrary constant may be
added to a particular stream function to yield another perfectly accept-
able stream function expressing the same flow. This ambiguity, however,
is neither essential nor alarming. In performing analytical or numerical
computation, the arbitrary constant simply provides us with one degree
of freedom that we may use to simplify numerical and algebraic manip-
ulations.

Physical interpretation

Consider the areal flow rate Q across a line that begins at the point
A and ends at the point B, as illustrated in figure 2.6.1 (a). Substituting
expressions (2.9.4) into the right-hand side of equation (2.6.12), we find

(2.9.6)

where ^A and ^B are the values of the stream function at points A and
B. Equation (2.9.6) shows that the difference in the values of the stream
function between two points is equal to the areal flow rate across a line
that begins at the first point and ends at the second point. Because the
fluid is incompressible, the flow rate is independent of the actual shape
of the line, provided that the line begins and ends at the specified points.

Vorticity

The strength of the vorticity in two-dimensional flow was given in
equation (2.3.15) in terms of derivatives of the velocity. Substituting
expressions (2.9.4) into the right-hand side, we find

(2.9.7)

where V2 = d2/dx2 + 82/dy2 is the Laplacian operator, to be discussed
further in Section 3.2. Thus, the strength of the vorticity is equal to the
negative of the Laplacian of the stream function. If the stream function
satisfies Laplace's equation d2i/j/dx2 + d2fi^/dy2 = O, in which case the
stream function is called harmonic, then the velocity field is solenoidal
and the flow is irrotational.



Plane polar coordinates

Departing from equations (2.9.4) and (2.3.15), and using the rules
of coordinate transformation, we find that, in plane polar coordinates
(r, #), the velocity components and strength of the vorticity are given by

(2.9.8)

The expression enclosed by the square brackets in the expression for the
vorticity is the Laplacian of the stream function expressed in plane polar
coordinates.

2.9.3 Stream function for axisymmetric flow

Consider now an axisymmetric flow without swirling motion. Ex-
pressing all dependent and independent variables in (2.9.2) in cylindrical
polar coordinates, and carrying out a fair amount of algebra using the
chain rule, we find that the continuity equation takes the form of the
following constraint on the axial and radial components of the velocity,

(2.9.9)

To ensure the satisfaction of this equation, we express the axial and radial
components of the velocity in terms of the axisymmetric stream function
^, also called the Stokes stream function, defined by the equations

(2.9.10)

Straightforward algebra shows that the velocity components given in
(2.9.10) satisfy the continuity equation (2.9.9) for any choice of i/j.

Consider, for example, an axisymmetric flow with velocity compo-
nents Ux — G x and ua = — ̂  G a, where G is a constant. Substituting
these expressions into (2.9.9), we readily confirm that the left-hand side
vanishes and the fluid is incompressible. The corresponding stream func-
tion is given by" -0 = ^G x cr2 + c, where c is an unspecified constant.



Physical interpretation

Working as previously for two-dimensional flow, we find that the
volumetric flow rate Q across an axisymmetric surface whose trace in
a meridional plane starts at the point A and ends at the point B, as
illustrated in figure 2.6.4, is equal to ^B-^A (problem 2.9.2). This result
is consistent with the dimensions of the axisymmetric stream function,
evident from equations (2.9.10), velocity multiplied by length squared;
in contrast, the two-dimensional stream function has units of velocity
multiplied by length.

Vorticity

The strength of the vorticity in an axisymmetric flow was given in
equation (2.3.18) in terms of derivatives of the cylindrical polar compo-
nents of the velocity. Using expressions (2.9.10), we find

(2.9.11)

where E2 is a second-order differential operator defined as

(2.9.12)

If the stream function is such that the right-hand side of (2.9.11) vanishes
throughout the domain of flow, then the flow is irrotational.

Spherical polar coordinates

Departing from equations (2.9.10) and (2.3.18), and using the rules
of coordinate transformation, we find that, in spherical polar coordinates
(r, 0, <p), the velocity components are given by

(2.9.13)

and the strength of the vorticity is given by

(2.9.14)



where E2 is the second-order differential operator defined in (2.9.12); in
spherical polar coordinates,

(2.9.15)

Problems

Problem 2.9.1 Stream function of two-dimensional flow.
Derive the Cartesian components of the velocity and the strength of

the vorticity, and discuss the nature of the flow corresponding to the
stream functions (a) ̂ - \ & 2/2

5 and (b) ̂  = ^ a (x2 — y2), where a is a
constant.

Problem 2.9.2 Stream function of axisymmetric flow.
Substitute expressions (2.9.10) into the right-hand side of (2.6.27)

and perform the integration to show that Q = I/JB — V7A5 as stated in the
text.

2.10 Kinematic conditions at boundaries

In practice, a flow always occurs in a domain that is bounded by sta-
tionary or moving surfaces with a variety of constitutions and physical
properties. Examples include the flow in an internal combustion engine
generated by the motion of an engine piston, the flow induced by the
motion of an aircraft or ground vehicle, the flow induced by the sedi-
mentation of an aerosol particle in the atmosphere, the flow induced by
a small bubble rising in a carbonated beverage, and the flow induced
by the motion of an elephant running through the savannah to escape a
mouse.

In the context of flow kinematics, flow boundaries are classified into
four main categories as follows:

1. Impermeable solid boundaries. Examples include the surface of a
rigid or flexible solid body, such as a vibrating radio antenna or a
swimming microorganism.



2. Permeable solid boundaries. Examples include the surface of a
porous medium, such as a rock bed or a biological tissue composed
of cells with gaps in the intervening spaces.

3. Sharp interfaces between immiscible fluids. Examples include the
free surface of the ocean, and the interface between oil and vinegar
in salad dressing.

4. Diffuse interfaces between miscible fluids. Examples include the
fuzzy edge of a river discharging into the ocean, and the ambiguous
edge of a smoke ring rising in still air.

2.10.1 The no-penetration boundary condition

By definition, a point particle moving with the fluid velocity may
not cross an impermeable solid boundary or a sharp interface between
two immiscible fluids, but is required to lie on one side at all times. As
a consequence, the velocity of a point particle that lies on a stationary
or moving impermeable boundary or a sharp interface must be compat-
ible with, but not necessarily equal to, the velocity of the boundary or
interface. To ensure this compatibility, we require the no-penetration
boundary condition.

The no-penetration condition at an impermeable boundary

Consider a flow that is bounded by an impermeable solid bound-
ary. The no-penetration condition requires that the component of the
fluid velocity normal to the boundary be equal to the component of the
boundary velocity normal to its instantaneous shape; the tangential com-
ponent of the velocity can be arbitrary. If, in particular, the boundary
is stationary, the normal component of the fluid velocity must vanish.

To derive the mathematical statement of the no-penetration condi-
tion, we introduce the unit vector normal to the boundary at a point,
denoted by n, and the velocity of the boundary v^, where the orienta-
tion of n is left unspecified. If the boundary is stationary, the boundary
velocity VB vanishes, and if the boundary translates as a rigid body, VB

is constant. If the boundary rotates or exhibit some type of deformation,
then v5 is a function of position, as will be discussed later in this section.
In all cases, the no-penetration boundary condition requires

u - n = v B - n , (2.10.1)



where both sides are evaluated at a point on the boundary.

Rigid-body motion

Consider an impermeable rigid boundary translating with velocity
U^, and rotating around a specified center of rotation x# with angular
velocity fiB. The angular velocity vector $1B passes through the center
of rotation x#, and its magnitude and orientation express the speed and
direction of rotation. As we look down at the angular velocity vector
from above, the body rotates in the counterclockwise direction.

In terms of the velocity of translation and angular velocity of rota-
tion, the velocity at a point x that lies on the boundary is given by the
expression

VB = UB + QB x (x - x*), (2.10.2)

where x denotes the outer vector product defined in equation (2.3.4). In
component form,

(2.10.3)

where ex, ey, and ez are the unit vectors parallel to the #,y, or z axis.
In the case of two-dimensional flow in the xy plane, the z component

of the velocity vanishes, Uf = O, and the angular velocity vector is
parallel to the z axis, fif = O, £1B = O, yielding the simplified form

(2.10.4)

The no-penetration boundary condition arises by substituting expres-
sion (2.10.3) or (2.10.4) into the right-hand side of (2.10.1), respectively,
for three-dimensional or two-dimensional flow. If the boundary is sta-
tionary, v^ = O we obtain the simple form

u - n = O. (2.10.5)

The no-penetration condition in terms of the stream function

Consider an incompressible fluid in two-dimensional flow, and express
the velocity in terms of the stream function i/j defined in equations (2.9.4).
The no-penetration condition (2.10.1) requires



(2.10.6)

To this end, we use expressions (2.6.2) for the components of the normal
vector in terms of differential displacements along the boundary, and
obtain

(2.10.7)

where dl is the differential of the arc length measured along the boundary
from an arbitrary origin.

If the boundary is stationary, the right-hand side of (2.10.7) vanishes,
leaving the condition d^/dl = O: the stream function over a stationary
impermeable boundary is constant, and the no-penetration condition
takes the form

V> = 1>o, (2-10.8)

where I/JQ is a constant that is either assigned arbitrarily or computed as
part of the solution.

Similar arguments reveal that the stream function is also constant
over a stationary boundary in axisymmetric flow (problem 2.10.2(b)).

2.10.2 The no-penetration condition at a sharp interface

Consider now the no-penetration condition over a stationary or mov-
ing sharp interface separating two immiscible fluids. Physical arguments
require that the normal component of the fluid velocity on one side of the
interface be equal to the normal component of the velocity on the other
side. To derive the mathematical statement of this condition, we intro-
duce the velocity on one side of the interface, denoted by uW, and the
velocity on the other side of the interface, denoted by u^2), and require

•w ••=-«•». (,10,,
where both sides of (2.10.9) are evaluated at a point on the interface,
and the direction of the unit normal vector n is left unspecified.



Problems

Problem 2.10.1 Shifting the center of rotation.
The center of rotation of a rigid body may be placed at any arbitrary

point. Suppose that we choose the point x7^ instead of the point x#
discussed in the text. The counterpart of equation (2.10.2) is

v* = u" + n«x (x-xy. (2W10)

By setting the right-hand side of (2.10.10) equal to the right-hand side
of (2.10.2), derive expressions for UfB and $l'B in terms of UB and S1B,
and vice versa.

Problem 2.10.2 Stream functions.
(a) Use the no-penetration boundary condition to derive an expres-

sion for the stream function over a translating but non-rotating two-
dimensional impermeable boundary.

(b) Show that the no-penetration condition over a stationary bound-
ary in axisymmetric flow takes the form expressed by (2.10.8).



Chapter 3

Flow Computation based on Kinematics

3.1 Flow classification based on kinematics
3.2 Irrotational flows and the velocity potential
3.3 Finite-difference methods
3.4 Linear solvers
3.5 Two-dimensional point sources

and point-source dipoles
3.6 Three-dimensional point sources

and point-source dipoles
3.7 Point vortices and line vortices

Flows are classified according to the vorticity distribution as irro-
tational flows wherein the vorticity vanishes throughout the domain of
flow, vortex flows characterized by the presence of compact regions of
concentrated vorticity in an otherwise irrotational fluid, and rotational
flows wherein the vorticity is significant throughout the domain of flow.
In this chapter, we discuss the kinematical structure and mathematical
description of the simplest class of irrotational flows. Specifically, we
develop finite-difference methods for computing the velocity field from
knowledge of the velocity distribution over the boundaries, and derive
a class of elementary irrotational flows that serve as building blocks for
generating desired solutions. Complementary building blocks associated
with elementary vortex flows will provide us with additional degrees of
freedom and will allow us to address more general configurations perti-
nent to a broader class of flow conditions.

3.1 Flow classification based on kinematics

In Chapters 1 and 2, we have discussed general kinematical features
of a flow with special reference to the motion of fluid parcels and in-



finitesimal point particles. Further progress can be made in two ways:
we may either study flows on a case-by-case basis and then attempt gen-
eralization by critical comparison; or we may establish a taxonomy, that
is, classify flows into general categories according to some sensible crite-
ria. The second approach is desirable from the fundamental standpoint
of the physical scientist as well as from the practical standpoint of the
computational scientist or engineer.

On the basis of kinematics alone, flows are classified into three main
categories including: (a) irrotational flows, (b) flows containing compact
regions of intense vorticity, called vortices, embedded in an otherwise
perfectly or nearly irrotational fluid, and (c) rotational flows with dis-
tributed vorticity.

3.1.1 Irrotational flows

The first category includes flows wherein the vorticity vector vanish-
es, and thus the magnitude of the vorticity is equal to zero, throughout
the domain of flow. According to our discussion in Chapter 2, a small
spherical fluid parcel in a three-dimensional irrotational flow, or a dis-
coidal fluid parcel in a two-dimensional irrotational flow, translates and
deforms but does not rotate.

A perfectly irrotational flow is a mathematical idealization; in prac-
tice, a small amount of vorticity is almost always present, and a real-life
nominally irrotational flow is nearly but not perfectly irrotational. An
example of a nearly irrotational flow is high-speed flow past a slender
airfoil under conditions of no-stall, as will be discussed in Chapter 12 in
the context of aerodynamics.

3.1.2 Vortex flows

The second category includes flows that contain well-defined compact
regions wherein the magnitude of the vorticity is significant, embedded
in an otherwise irrotational fluid. These vortical regions may not be
neglected without introducing serious discrepancies and error, or without
compromising the physics of the flow under consideration. In practice,
regions where the vorticity is significant appear in the form of narrow
layers, thin filaments, and compact structures including wakes behind
bluff bodies, tornados and swirls. An example of a vortex flow familiar to
the aircraft traveler is the flow associated with a high-speed jet emerging
from a turbine engine.



3.1.3 Rotational flows

The third category includes flows wherein the vorticity is significant
throughout the domain of flow. The distinction between vortex flows
and rotational flows is somewhat vague, and there are flows that may
be classified in either category. We shall see in subsequent chapters,
however, that vortex flows may be analyzed and computed using a special
class of numerical methods, called vortex methods for flow simulation,
and the availability of these methods provides us with a distinguishing,
albeit somewhat artificial criterion.

3.1.4 Flows in nature and technology

Flows in nature and technology are typically rotational; examples
include the flow due to a small particle settling in the atmosphere, the
flow through a turbine engine, and blood flow in the heart and through
blood vessels and capillaries. High-speed flows tend to develop regions of
concentrated vorticity and are typically classified as vortex flows. High-
speed turbulent flows, in particular, contain random collections of rapidly
evolving vortices called eddies or coherent structures, embedded in a low-
or moderate-vorticity background fluid.

Irrotational flows are simplified models of vortex flows that emerge
by neglecting the regions of concentrated vorticity, or else by shifting the
actual boundaries of the flow to the edges of the vortex regions, thereby
placing them outside the domain of flow.

A considerable amount of physical insight and experience is neces-
sary in order to predict whether a flow will develop to become a nearly
irrotational flow, a rotational flow, or a vortex flow. Insights may be
gained by studying model problems that are amenable to analytical and
simple numerical methods, and also by analyzing the laws governing the
generation and evolution of the vorticity field, to be discussed in future
chapters.

3.1.5 Flow computation

The difficulty of computing flows increases in the following ascending
order: irrotational flows, vortex flows, and rotational flows; exceptions
to this general rule arise in special cases.

Our discussion of analytical and computational methods for flow com-
putation begins in this chapter by considering the most amenable class



of irrotational flows. In the context of kinematics, the problem to be
solved can be stated as follows: given the boundary geometry and the
velocity distribution over the boundaries, compute the structure of a
steady irrotational flow or the evolution of an unsteady irrotational flow
from a specified initial state.

3.2 Irrotational flows and the velocity potential

The vorticity of a three-dimensional flow was defined in equation
(2.3.6) as the curl of the velocity. The scalar strength of the vorticity of
a two-dimensional flow was defined in equation (2.3.15), and the scalar
strength of the vorticity of an axisymmetric flow was defined in equation
(2.3.18). If the flow is irrotational, the structure of the velocity field
must be such that the right-hand sides of these equations vanish.

3.2.1 Two-dimensional flow

Consider a two-dimensional irrotational flow in the xy plane. Set-
ting the left-hand side of equation (2.3.15) equal to zero, we obtain a
constraint on selected partial derivatives of the velocity,

(3.2.1)

To compute a two-dimensional irrotational flow, we may either choose to
compute the two velocity components individually subject to constraints
imposed by the continuity equation and by the boundary conditions,
while ensuring that (3.2.1) is fulfilled at every point in the flow, or we may
choose to satisfy (3.2.1) at the outset and then concentrate on fulfilling
the rest of the requirements. It should not be surprising that the second
approach is much more expedient and has become the standard choice.

The velocity potential

The key idea is to introduce a new scalar function 0 called the velocity
potential, such that the two velocity components derive from (/> by the
relations

(3.2.2)

In vector notation, equations (3.2.2) are expressed by the compact form



u = V0, (3.2.3)

where V</> = (dcfr/dx, d(f)/dy) is the two-dimensional gradient of the po-
tential. The velocity, and thus the potential </>, is a function of position
(x,y,z) and, in the case of unsteady flow, time t. Inspection of (3.2.2)
reveals that the velocity potential has dimensions of velocity multiplied
by length, which amounts to length squared divided by time.

It is straightforward to verify that, if the velocity components derive
from (/) in terms of equations (3.2.2), then the irrotationality constraint
(3.2.1) is automatically satisfied: substituting expressions (3.2.2) into
(3.2.1), we find

(3.2.4)

Since the order of partial differentiation with respect to two independent
spatial variables x and y may be interchanged, relation (3.2.1) is satisfied.
Accordingly, an irrotational flow is also called a potential flow and vice-
versa.

It is important to observe that the velocity potential of a certain
irrotational flow is not defined uniquely. Given a particular potential,
an arbitrary constant may be added to it to produce another perfectly
acceptable potential. This ambiguity, however, is neither essential nor
alarming. In performing analytical or numerical computation, the arbi-
trary constant is determined by requiring a proper constraint, as will be
discussed in subsequent sections.

Given the velocity field of an irrotational flow, we may derive the cor-
responding potential by integrating the system of differential equations
(3.2.2), where the left-hand sides are treated as knowns. Consider, for
example, unidirectional streaming flow with velocity components given
by

UX = Vx, Uy = Vy, (3.2.5)

where Vx and Vy are two constant velocities. Integrating the first of
equations (3.2.2), we find that the potential must take the form (f> =
% Vx + f(y}-> where f(y) is an unknown function of y. Differentiating
both sides of this equation with respect to y, and using the second of
equations (3.2.2), we find df/dy = Vy, which may be integrated to give
f(y} — y Vy + c, where c is an arbitrary constant. Combining these
expresions, we find that the velocity potential corresponding to (3.2.5)
is given by



</> = x Vx + y Vy + c. (3.2.6)

In agreement with our previous observation, the velocity potential is
defined uniquely only up to the arbitrary constant c.

Computation of the potential based on kinematics

The automatic satisfaction of (3.2.1) by use of the velocity potential
is helpful, but we still require one equation, or a system of equations, that
will allow us to compute the potential. Normally, these equations would
have to be derived by considering the forces and torques exerted on the
surface and over the volume of small fluid parcels, as will be discussed in
subsequent chapters with reference to the more general class of rotational
flows. Fortunately, in the case of irrotational flow, this is not necessary:
Given the boundary distribution of the velocity, an irrotational flow may
be computed exclusively on the basis of kinematics.

3.2.2 Incompressible fluids and the harmonic potential

If the fluid is incompressible, conservation of mass requires that the
velocity field be solenoidal, which means that the velocity components
must satisfy the constraint expressed by the continuity equation (2.9.2)
presented explicitly in (2.9.3) for two-dimensional flow. Substituting
expressions (3.2.2) into (2.9.3), we find

(3.2.7)

which is Laplace's equation in two dimensions. It is convenient to define
the two-dimensional Laplacian operator, V2 = d^/dx2 + 92/<9y2, and
recast (3.2.7) into the more compact form

v2<£ = °- (3.2.8)

A function that satisfies Laplace's equation (3.2.7) or (3.2.8) is called
harmonic.

It is instructive to derive Laplace's equation working in vector nota-
tion. Substituting (3.2.3) into (2.9.2), we find

V - u - V - (V0) = V2(/> = O, (3.2.9)



which identifies the Laplacian operator with the divergence of the gra-
dient, V2 = V • V.

Laplace's equation (3.2.8) is a statement of mass conservation for
an incompressible fluid. Although time does not appear explicitly in
this equation, the velocity field, and thus the velocity potential, will
be time-dependent when the flow is unsteady. The absence of explicit
time dependence classifies the irrotational flow of an incompressible fluid
as a quasi-steady flow, meaning that the instantaneous structure of the
flow depends on the instantaneous boundary geometry and boundary
conditions, and is independent of the motion at previous times. Thus, if
all boundaries are stationary at a particular time, the fluid will also be
stationary at that time, independent of the history of fluid and boundary
motion.

Laplace's equation arises in a broad range of contexts within and
beyond fluid mechanics. For example, it governs the steady-state distri-
bution of temperature in a conductive material such as a fin or a cooling
plate.

3.2.3 Three-dimensional flow

The foregoing analysis may be extended in a straightforward man-
ner to three-dimensional flow. The velocity components of a three-
dimensional flow derive from the velocity potential by the equations

(3.2.10)

The velocity components, and thus the potential </>, are functions of
position ( x , y , z ) and, if the flow is unsteady, time t.

If the fluid is incompressible, the velocity potential is a harmonic
function; that is, it satisfies the counterpart of Laplace's equation (3.2.9)
for three-dimensional flow,

(3.2.11)

where V2 = d2/dx2 + 82/dy2 + d2/dz2 is the Laplacian operator in
three dimensions. A function that satisfies Laplace's equation is called
harmonic.



3.2.4 Boundary conditions

Viewed from a mathematical standpoint, Laplace's equation in two
or three dimensions is a second-order partial differential equation that is
classified as elliptic. One implication of this classification is that, in order
to compute the solution, we must have available one scalar boundary
condition for ^, one of its first partial derivatives, or a combination
thereof, along each boundary.

Impermeable boundaries

Over an impermeable solid boundary, we require the no-penetration
condition discussed in Section 2.10. If the boundary is stationary, we
require the condition u • n = O, where n is the unit vector normal to the
boundary pointing either into or outward from the domain of flow. Using
equations (3.2.2), we find that, in the case of two-dimensional flow,

(3.2.12)

This is a boundary condition for the normal component of the gradient
of the potential, which is equal to the derivative with respect to distance
normal to the boundary, called a Neumann boundary condition. Because
the right-hand side of (3.2.12) is equal to zero, this boundary condition
is homogeneous.

Permeable boundaries

Over a permeable boundary, we may specify the tangential compo-
nent of the velocity and leave the normal component unspecified. To
implement this condition in the case of two-dimensional flow, we intro-
duce the unit vector tangential to the boundary, denoted by t, whose
components are given in equations (2.6.1). The tangential component of
the velocity in the direction of t is given by the inner product

(3.2.13)

where / is the arc length measured in the direction of t.
If the distribution of (/) over the boundary is known, the right-hand

side of (3.2.13) may be computed by differentiating the potential with
respect to arc length using analytical or numerical methods. This obser-
vation suggests that, instead of specifying the tangential component of



the velocity, we may alternatively specify the boundary distribution of
the potential. A boundary condition for the distribution of the potential
is a Dirichlet boundary condition.

A word of caution is in order here: if the flow is bounded by a number
of disconnected boundaries, replacing the boundary condition for the
tangential velocity with a boundary condition for the distribution of the
potential is permissible only over one boundary, otherwise inconsistencies
may arise.

3.2.5 Cylindrical polar coordinates

Consider a three-dimensional irrotational flow, and introduce the
cylindrical polar coordinates (x,a, (p) depicted in figure 1.3.2. Using
expressions (2.1.34), we find that the cylindrical polar components of
the velocity are given by

(3.2.14)

Laplace's equation for the harmonic potential reads

(3.2.15)

If the flow is axisymmetric, the velocity potential is a function of x and
a but not of ^, as required for u^ to vanish.

3.2.6 Spherical polar coordinates

Consider now a three-dimensional irrotational flow, and introduce
the spherical coordinates (r, 0, (p) depicted in figure 1.3.3. Using relations
(2.1.36), we find that the spherical polar components of the velocity are
given by

(3.2.16)

Laplace's equation for the harmonic potential takes the form

(3.2.17)



If the flow is axisymmetric, the velocity potential is a function of r and
O but not of <p, as required for u^ to vanish.

3.2.7 Plane polar coordinates

Consider finally a two-dimensional irrotational flow, and introduce
the plane polar coordinates (r, O) depicted in figure 1.3.4. Using relations
(2.1.38), we find that the plane polar components of the velocity are given
by

(3.2.18)

Laplace's equation for the harmonic potential takes the form

(3.2.19)

Problems

Problem 3.2.1 Deriving the velocity potential.
(a) Consider a two-dimensional flow with velocity components given

by

Ux = V cos(kx) e~ky, Uy = -V s'm(kx) e~ky, (3.2.20)

where V and k are two constants. Confirm that this flow is irrotational,
derive the corresponding velocity potential, and investigate whether or
not the potential is harmonic and explain why. Sketch the streamline
pattern, and discuss the structure of this flow and the physical interpre-
tation of the constant k.

(b) Consider a three-dimensional flow with velocity components

(3.2.21)



where V,fcx, and ky, are three constants. This is the three-dimensional
version of the two-dimensional flow discussed in (a). Confirm that this
flow is irrotational, derive the corresponding velocity potential, and in-
vestigate whether or not the potential is harmonic and explain why.
Discuss the structure of this flow and the physical interpretation of the
constants kx and ky.

(c) Explain why it is not possible to find a velocity potential for simple
shear flow along the x axis varying along the y axis, whose velocity
components are given by Ux = ky, uy — O, and uz — O, where k is a
constant with dimensions of inverse time called the shear rate.

Problem 3.2.2 Irrotational flow in cylindrical polar coordinates.
Verify by direct substitution that the potential

(3.2.22)

where U and a are constants, satisfies Laplace's equation (3.2.15), and
discuss the structure of the axisymmetric flow represented by this po-
tential.

Problem 3.2.3 Irrotational flow in spherical polar coordinates.
Verify by direct substitution that the potential

(3.2.23)

where U and a are constants, satisfies Laplace's euqation (3.2.17), and
discuss the structure of the axisymmetric flow represented by this po-
tential.

Problem 3.2.4 Irrotational flow in plane polar coordinates.
Verify by direct substitution that the potential

(3.2.24)

where K, U and a are constants, satisfies Laplace's equation (3.2.19),
and discuss the structure of the two-dimensional flow represented by
this potential.



3.3 Finite-difference methods

In practice, Laplace's equation for the harmonic potential is typically
solved using numerical methods, with the finite-difference method being
a common choice. To illustrate the implementation of the method, we
consider two-dimensional potential flow in the xy plane within a rectan-
gular domain confined between

ax < x < bx, ay <y < by, (3.3.1)

as illustrated in figure 3.3.1. The left, bottom, and right walls are im-
permeable, whereas the top wall is exposed to an external flow.

3.3.1 Boundary conditions

Before attempting to compute the solution, we must decide on the
required boundary conditions. Over the left wall, the unit vector normal
to the wall pointing into the flow is given by n == (1,0). According-
ly, the no-penetration condition (3.2.12) provides us with the Neumann
boundary condition

(3.3.2)

Over the bottom wall, the unit vector normal to the wall pointing
into the flow is given by n = (0,1). Accordingly, the no-penetration
condition (3.2.12) provides us with the Neumann boundary condition

(3.3.3)

Over the right wall, the unit vector normal to the wall pointing in-
to the flow is given by n — (-1,0). Accordingly, the no-penetration
condition (3.2.12) provides us with the Neumann boundary condition

(3.3.4)

Over the top wall, we stipulate that the tangential component of
the velocity is constant and equal to V] this is just one choice that we
adopt for the purpose of illustration; other choices reflect different flow
conditions. Since the top wall is parallel to the x axis, the unit tangent
vector over it is given by t = (1,0). Accordingly, expression (3.2.13)
provides us with the Neumann boundary condition



Figure 3.3.1 A Cartesian grid used to compute the harmonic poten-
tial of an irrotational flow in a rectangular domain. The solu-
tion is found by solving Laplace's equation using a finite-difference
method.



r\ I

Ut = U'i=fa=V at y = by' (3.3.5)

Straightforward integration of (3.3.5) with respect to x shows that this
condition is equivalent to the Dirichlet boundary condition

c/) = Vx + c at y = by, (33.6)

where c is an arbitrary constant that may be set equal to zero without
any consequences on the structure of the flow.

The problem formulation is now complete, and we proceed to com-
pute the solution. Our task is to solve Laplace's equation (3.2.7) subject
to the four boundary conditions expressed by equations (3.3.2)-(3.3.4),
and (3.3.6).

3.3.2 Finite-difference grid

We begin implementing the finite-difference method by dividing the
x interval (ax,bx) into Nx evenly spaced sub-intervals separated by the
spacing Ao; = (bx - ax)/Nx, and draw vertical grid lines at x = x^ where

Xi = ax + (i- 1) Az, (3.3.7)

for i = 1 ,2 , . . . , Nx + 1, as shown in figure 3.3.1.
Similarly, we divide the y interval (ay,by) into Ny evenly spaced

sub-intervals separated by the spacing AT/ = (by — ay)/Ny, and draw
horizontal grid lines at y = y^, where

Vj = ay + (J ~ 1J A2/> (3.3.8)

for j = 1 ,2 , . . . , Ny + 1, as shown in figure 3.3.1.
The intersections of the vertical and horizontal grid lines define grid-

points or nodes. For convenience, we denote the value of the harmonic
potential (/> at the (i, j) node as

0t,j = 0(^2, j/j). (3.3.9)

The Dirichlet boundary condition (3.3.6) provides us with the values

4i,Ny+l = VXi. (3>3<1())



where we have set c = O. Our objective is to compute the remaining
unknown values faj at the grid-points i — 1,2, ...,Nx + 1 and j =
1,2 , . . . , Ny] a total of JV14 = (TVx + I)JV2, unknowns.

3.3.3 Finite-difference discretization

To build a system of equations for the unknowns, we require the
satisfaction of Laplace's equation (3.2.7) at the ( i , j ) grid-point, and
approximate the second partial derivatives with finite differences. Using
formula (2.5.8), we introduce the approximations

(3.3.11)

and

(3.3.12)

and transform the differential equation (3.2.7) to the algebraic equation

(3.3.13)

Rearranging the left-hand side, we obtain

&+ij -2(1+13) fa + fa-u + /3 (t>ij+l + /3 &j_i - O, (3.3.14)

where we have defined the square of the grid-spacing ratio,

(3.3.15)

We can apply equation (3.3.13), or its equivalent (3.3.14), at the
interior grid-points i = 2 ,3 , . . . , Nx and j — 2, 3 , . . . Ny, and thus obtain
Nfde = (Nx - I)(Ny - 1) finite-difference equations. But if we apply
this equation at a boundary grid-point, we will find that one grid point
involved in the finite-difference approximation lies in the exterior of the
flow domain, and is thus not defined. We must somehow generate a
number of

Nu - Nfde = (Nx + l)Ny - (Nx - I)(Ny -l)=Nx + 2Ny-l

(3.3.16)

additional equations.



The missing equations must originate from the Neumann boundary
conditions on the left, bottom, and right walls where the no-penetration
condition is required. One way to implement these boundary conditions
with an error that is comparable to that of the finite-difference approxi-
mations (3.3.11) and (3.3.12), is to extend the domain of solution beyond
the physical boundaries of the flow, and introduce the fictitious or phan-
tom grid lines located at

x = XQ = ax - Ax, y = yQ = ay - Ay,

x = xNx+2 = bx + Ax. (3.3.17)

Having introduced these extensions, we may use the second-order finite
difference approximation (2.5.6) to recast the Neumann boundary con-
ditions into the discrete form

(3.3.18)

for j — 1,. . . , Ny, corresponding to the left wall,

(3.3.19)

for i = 1 , . . . , Nx + 1, corresponding to the bottom wall, and

(3.3.20)

for j = 1 , . . . , Ny corresponding to the right wall.

Algebraic balance

To this end, we pause to count the number of unknowns and ensure
that it match the number of available equations. First, we note that
the difference equation (3.3.13) or (3.3.14) may now be applied at the
interior and boundary nodes for i = 1 ,2 , . . . , Nx +1 and j = 1 ,2 , . . . , TV27,
to yield (Nx + l)Ny equations. Adding to these equations the Nx+2Ny + l
boundary conditions (3.3.18) - (3.3.20), we obtain (TVx + l)(Ny + 1) +
2Ny equations. The total number of equations matches the number
of unknowns including the values of (f) at. the (Nx + I)TV27 interior and
boundary nodes, and the values of 0 at the 2Ny + Nx +1 phantom nodes.



3.3.4 Compilation into a linear system of equations

To formalize the method, we collect the interior and boundary un-
knowns into a long vector w consisting of row-blocks, beginning from
the bottom,

(3.3.21)

Next, we apply the finite-difference equation (3.3.14) successively at
the boundary and interior nodes. Without loss of generality, we choose
to scan the grid points row-by-row starting from the bottom; a column-
by-column compilation would also be acceptable.

Considering first the southwestern corner node (1, 1), we obtain the
finite-difference equation

(3.3.22)

Boundary condition (3.3.18) for j = 1 requires ^2,1 = 0o,i> and boundary
condition (3.3.17) for j = I requires 0i52 = </>i,o- Using these equations
to eliminate 0o,i and 0i?o in favor of $2,1 and (j)\^ on the right-hand side
of (3.3.22), we find

(3.3.23)

For future reference, we express this equation in the form of the inner
product of a vector a^1'1) and the vector of unknowns w defined in equa-
tion (3.3.21), as

a^1'1) - w - 0 , (3.3.24)

where we have introduced the vector

(3.3.25)



Each one of the Ny blocks on the right-hand side of (3.3.25) has TVx + 1
entries.

Considering next the boundary node (2, 1), we obtain

03,1 -2(1+13) 02,1 + 01,1 + P 02,2 + P 02,0 = O.
(3.3.26)

Boundary condition (3.3.19) applied for i = 2 requires 02,2 = 02,o- Using
this equation to eliminate 02,o in favor of 02,2 on the right-hand side of
(3.3.26), we find

03,1 ~ 2 (1 + /3) 02,1 + 01,1 + 2 /3 02,2 - O.
( O.O.^ i )

For future reference, we express this equation in the form of the inner
product

a^2'1) - w - 0 , (3.3.28)

where we have introduced the vector

(3.3.29)

Each one of the Ny blocks on the right-hand side of (3.3.29) has Nx + 1
entries.

Continuing in this fashion, we build the rest of the vectors SL^^ for
i = 1,2, . . . Nx + 1 and j — 1,2, . . . Ny - 1, until we reach the row cor-
responding to j — Ny. In simplifying the finite-difference equations for
this row, we take into consideration not only the Neumann boundary
conditions (3.3.18) and (3.3.20) for the side walls, but also the Dirichlet
condition (3.3.10) for the top wall. For example, considering the north-
western node (1,JV27), we obtain the difference equation

(3.3.30)

which may be expressed in the form of the inner product

a< W. w = -0^X1,
(3.3.31)



where we have introduced the vector

a^v) = [ o, 0,0, . . . O,

' * ' 5

0 , 0 , 0 , . . . O ,

/3 ,0 ,0 , . . .O ,

- 2 (1+ /3 ) , 2 ,0 , . . . , 0 ] . (3.3.32)

Finally, we collect equations (3.3.24), (3.3.28), (3.3.31) and their
counterparts for the rest of the interior and boundary nodes into a large
system of equations,

A - w = b. (3.3.33)

The first row of the matrix A is the vector a^1'1) defined in (3.3.25); the
second row is the vector a(2)1) defined in (3.3.29); subsequent rows have
similar identities. The vector b on the right-hand side of (3.3.33) is given
by

b = [ 0,0,0, . . . O ,

. . . ,

0,0,0, . . . O,

-ft V X1, -ft V X2,... - 13 V XArx+I ]. (3.3.34)

Upon inspection, we find that the matrix A has the block tridiagonal
form

" T D o o
D T D O o
O D T D O ... O

A= ,
O O ... D T D O
O O ... O D T D

- ° ° O ... O D T J (3335)

composed of Ny vertical and Ny horizontal partitions, subject to the
following definitions:

• T is a tridiagonal matrix with dimensions (Nx + 1) x (Nx + 1),
defined as



" -2(1 + /?) 2 O O ... O O
1 -2(1 + /?) 1 O ... O O
O 1 -2(1 +/3) 1 ... O O

O O 1-2(1 + 0) 1
O O O 2 -2(1 + 0) _

(3.3.36)

Note that the super- and sub-diagonal elements of T are equal to
unity, except for the elements in the first the last row that are equal
to 2.

• D is a diagonal matrix with dimensions (Nx +1) x (Nx +1), defined
as

' /3 O O O ... O O -
O /? O O ... O O
O O /3 O ... O O

O O 0 / 3 0
. 0 O O O /3 J (3.3.37)

Cursory inspection reveals that all elements of the matrix A are
equal to zero, except for the elements along five diagonals. Because of
the dominant presence of zeros, the matrix A is classified as sparse.

We have formulated the problem in terms of the linear system of e-
quations (3.3.33) for the vector w defined in (3.3.21). Our next task is to
solve this system using a numerical method. Figure 3.3.2 displays the ve-
locity vector field generated by solving system (3.3.33) using the method
of Gauss elimination discussed in Section 3.4, and then computing the
components of the velocity at the nodes by taking partial derivatives of
the potential using finite-difference methods.

Problems

Problem 3.3.1 Explicit form of the linear system.
Write out the explicit form of the linear system (3.3.33) for the dis-

cretization level Nx = 2 and Ny = 2.



Figure 3.3.2 Velocity vector field of two-dimensional potential flow in
a rectangular cavity computed by the finite-difference method dis-
cussed in the text.

Problem 3.3.2 Neumann boundary conditions all around.
Derive the counterpart of the linear system (3.3.33) when the no-

penetration condition is required over all four walls. Specifically, write
out the components of the unknown vector w, constant vector b, and
coefficient matrix A in a form that is analogous to that displayed in
(3.3.35). Then confirm that the sum of the elements in each row of the
matrix A is equal to zero and, based on this result, explain why the
matrix A is singular, that is, its determinant is equal to zero.

3.4 Linear solvers

In Section 3.3, we reduced the problem of solving Laplace's equation
for the harmonic potential in a rectangular domain, representing the
domain of a two-dimensional flow, to the problem of solving a linear
system of equations (3.3.33) for the value of the potential at the nodes
of a finite-difference grid. The reduction was done by replacing Laplace's
differential equation with an algebraic equation obtained using a finite-
difference method. In this section, we discuss numerical methods for



solving the derived system of linear equations. Since numerical solutions
of linear systems are required in broad range of applications, we discuss
the algorithms within a somewhat more generalized framework.

Consider a system of N linear algebraic equations for the ./V unknown
scalars w i , w < 2 , . . . , WN,

AM WI + Ai)2 7i72 + . . . + Ai5AT-I WN-I + Ai5Ar wN = &i,

A2,l Wi + A2,2 W2 + . . . + A2,AT-1 ^TV-I + A2,AT WAT = 62,

. . . ,

AAT,I WI + AN^ W2 + . . . + AAT^-IWAT-I + AAT,AT WAT = &TV,
(3.4.1)

where AJJ, for i = 1,2, . . . JV and j = 1 ,2 , . . . , N are given coefficients,
and bi are given constants. In matrix notation, the system (3.4.1) takes
the compact form

A ' w = b' (3.4.2)

where A is the NxN coefficient matrix

AI,i Ai j2 ... AI}TV-I Ai5Tv
A2,l A2,2 . . . A2,TV-1 A2,TV

A =
AAT-I,I AN-1,2 ••• AAT-I,AT-I AN-I,N

ATV,I ATv,2 ... ATV,TV-I ATV,TV J (3.4.3)

and b is the TV-dimensional vector

" 61 "
b2

b =
bN-i

bN \ (3.4.4)

The most general method of solving system (3.4.2) is by the method
of Gauss elimination.

3.4.1 Gauss elimination

The basic idea is to solve the first equation of (3.4.1) for the first
unknown #1, and use the expression for x\ thus obtained to eliminate x\
from all subsequent equations. We then retain the first equation as is,



and replace all subsequent equations with their descendants that do not
contain x\.

At the second stage, we solve the second equation for the second
unknown #2, and use the expression for #2 ths obtained to eliminate
X2 from all subsequent equations. We then retain the first and second
equations, and replace all subsequent equations with their descendants
that do not contain x\ or x^. Continuing in this manner, we arrive at
the last equation, which contains only the last unknown XN.

Having completed the elimination, we compute the unknowns by the
method of backward substitution. First, we solve the last equation for
XTV, which thus becomes a known. Second, we solve the penultimate
equation for XN-I which also becomes a known. Continuing in the back-
ward direction, we scan the reduced system until we have evaluated all
unknowns.

Pivoting

Immediately before the mth equation has been solved for the mth
uknown, where m = l,2, . . . , J V - 1 , the linear system has the form

(3.4.5)

where A^ ^ are intermediate coefficients and b^ are intermediate right-
hand sides. The first equation of (3.4.5) is identical to the first equation
of (3.4.1) for any value of ra; subsequent equations are different, except
at the first step corresponding to m — 1.

A difficulty arises when the diagonal element Am,m is nearly or pre-
cisely equal to zero, for then, we may no longer solve the mth equation
for xm, as required. The failure of the method, however, does not imply
that the system does not have a solution. To circumvent this difficulty,
we simply rearrange the equations or relabel the unknowns so as to bring
the rath unknown to the rath equation, using the method of pivoting. If
there is no way we can make this happen, then the matrix A is singular,
and the linear system has either no solution or an infinite number of
solutions.



In the method of row pivoting, potential difficulties are bypassed by
switching the rath equation in the system (3.4.5) with the subsequent
fcth equation, where k > ra; the value k is chosen so that |AJ^| is the
maximum value of the elements in the rath column below the diagonal,
A^, for i > ra. If it happens that A^ = O for all i > ra, then the
system under consideration does not have a unique solution: the matrix
A is singular.

3.4.2 A menagerie of other methods

In practice, the size of the system (3.3.33) can be on the order of
104 x 104 or higher, corresponding to discretization levels TVx and Ny on
the order of 102. For such large systems, the method of Gauss elimination
requires a prohibitively long computational time. The practical need to
solve systems of large size has motivated the development of a host of
powerful methods for general or specific applications.

For sparse systems of large size, an iterative solution is appropriate.
The main idea is to split the coefficient matrix A into two matrices,
writing

A - A' - A", (3.4.6)

and then recast the system (3.4.2) into the form

A / - x = A / / - x + b. (3A7)

The procedure involves guessing the solution x, computing the right-
hand side of (3.4.7), and solving for x on the left-hand side. The ad-
vantage of this approach is that, if the splitting (3.4.6) is done craftily,
solving (3.4.7) is much easier to do than solving (3.4.2) for x on the
left-hand side. The computation is then repeated until the value of x
used to compute the right-hand side of (3.4.7) is virtually identical to
that arising by solving the linear system (3.4.7). The iterative methods
of Jacobi and Gauss-Siedel fall into this category of methods.

A different class of iterative methods search for the solution vector x
by making steps in the AT-dimensional space toward craftily designed or
even optimal directions. For example, directory Ol-num-meth/OSJin.eq
of FDLIB contains programs that solve a linear system of equations
using the method of conjugate or biconjugate gradients which fall into
the category of directional-search methods.



Computer problems

Problem c.3.4.1 Gauss elimination.
Directory 01.num.meth/03Jin.eq of FDLIB includes the program

gel.f that solves a system of linear equations using the method of Gauss
elimination with row pivoting. Use the program to solve a system of
your choice, and verify the accuracy of the solution.

Problem c.3.4.2 Irrotational flow in a cavity.
Directory O7.ptf/cvt.2d of FDLIB includes a code that computes

potential flow in a rectangular cavity using the finite-difference method
discussed in Section 3.3.

(a) Run the code for a cavity with length to depth ratio equal to unity,
and discretization level as high as you can afford. Prepare a velocity-
vector plot, and discuss the structure of the flow.

(b) Repeat (a) for a cavity with length to depth ratio equal to 2.0,
and discuss the dependence of the structure of the flow on the cavity
aspect ratio.

3.5 Two-dimensional point sources
and point-source dipoles

Laplace's equation for the harmonic velocity potential, equation (3.2.8)
for two-dimensional flow or equation (3.2.11) for three-dimensional flow,
has the distinctive property of being linear. This means that if <j>\ and 02
are two harmonic potentials representing two elementary flows, a linear
combination of them,

(f) = a(/)i + b(/)2, (3.5.1)

where a and b are two constants, will also be a harmonic potential rep-
resenting a hybrid flow.

3.5.1 Function superposition and fundamental solutions

The linearity of Laplace's equation allows us to generate a desired
solution in exact or approximate fashion by the method of superposition.
The key idea is to introduce a family of harmonic potentials playing the
role of basis functions, also called fundamental solutions, and then use



them as building blocks to generate further solutions. For example, if
01 and 02 are two such fundamental solutions, then a desired solution
may be assumed in the form of the right-hand side of equation (3.5.1),
and the two constants a and b may be adjusted to satisfy the boundary
conditions.

There are various families of fundamental solutions appropriate, for
example, for flows in infinite or semi-infinite domains, and for singly-,
doubly-, or triply-periodic flows. The most general class of fundamental
solutions consists of the fundamental singularities of potential flow.

3.5.2 Two-dimensional point source

Imagine that an incompressible fluid is being discharged into an in-
finite pool through an infinite perforated cylinder, thereby generating a
radial flow in the xy plane outward from the point of inlet. In plane
polar coordinates centered at the point of discharge XQ = (#o,yo)? ^6

radial and polar components of the velocity at the point x = (x,y) are
given by

(3.5.2)

where r — ̂ /(x — XQ)^ + (y — J/Q) ls the distance of the field point x from
the point of discharge XQ, and m is a constant expressing the rate of
areal discharge; the units of m are velocity multipled by length. The
flow described by equations (3.5.2) is attributed to a two-dimensional
point source, and the rate of areal discharge m is the strength of the
point source. If m is negative, we obtain a point source with negative
strength described as a point sink.

The radial velocity of the flow due to a point source was chosen to
decay as the inverse of the distance from the point of discharge, r, for
the following reason. Since the fluid is incompressible, the flow rate Q
across any circular loop or radius R centered at the point of discharge
must be independent of the loop radius. To verify that the velocity field
(3.5.2) satisfies this restriction, we use expression (2.6.13) and find

(3.5.3)

as required. If we had set for example, ur = ra/(27rr^), where the expo-
nent k is not equal to unity, then the restriction of constant areal flow
rate associated with an incompressible fluid would not be satisfied.



Singular behavior of the point source

As the distance from the point source r tends to zero, the right-hand
side of the radial velocity in (3.5.2) tends to infinity. This singular be-
havior is a manifestation of the idealized nature of the flow due to a point
source, and explains why the point source is classified as a singularity.

In practice, the flow expressed by (3.5.2) is valid only for r > 6,
where b is the radius of the cylinder discharging the fluid. Extending the
domain of flow all the way up to the center of the cylinder located at XQ,
we allow for the occurrence of a mathematical singularity.

Velocity potential

The velocity potential of a two-dimensional point source, denoted by
^2D-PS^ -IS reiated to the velocity components according to equations
(3.2.18),

(3.5.4)

Integrating the first of these equations, and using the second equation
to evaluate the constant of integration, we find

(3.5.5)

Straightforwad differentiation confirms that (/)2D~PS satisfies Laplace's
equation in two dimensions at every point except at the singular point
XQ where the potential and its derivatives are not defined.

Cartesian components of the velocity

To derive the Cartesian components of the velocity, we take the par-
tial derivatives of (f)2D~ps with respect to x or y, and find

(3.5.6)



The streamlines of the flow due to a point source are radial straight lines
emanating from the singular point XQ.

Point source embedded in uniform flow

As an application, consider the superposition of (a) a uniform flow
along the x axis with velocity Vx, and (b) the flow due to a point source
with strength m situated at the origin, at XQ = O and yo = O. Using the
potential (3.2.6) for uniform flow with the constant c set equal to zero,
and the potential (3.5.5) for the point source, we find that the potential
of the composite flow is given by

(3.5.7)

The associated Cartesian components of the velocity are given by

(3.5.8)

where a is an arbitrary length.
To study the structure of the flow, we recast equations (3.5.8) into

the dimensionless forms

(3.5.9)

where we have defined the dimensionless variables

(3.5.10)

and we have introduced the dimensionless parameter

(3.5.11)

expressing the strength of the point source relative to the magnitude of
the incident flow. Equations (3.5.9) reveal that the structure of the flow
is determined by the value of the parameter /3.

Figure 3.5.1 illustrates the streamline pattern for ft = 0.25, revealing
that the potential (3.5.7) desribes uniform flow along the x axis past a



Figure 3.5.1 Streamline pattern of the flow due to the superposition
of (a) the flow due to a two-dimensional point source, and (b)
streaming (uniform) flow along the x axis.

semi-infinite body whose surface may be identified with the two stream-
lines emanating from the stagnation point on the x axis. Using the first
of equations (3.5.9), we find that the x component of the velocity on
the x axis vanishes when x = 6, where 0 = 1 + /3/6, or b = —/3. Thus,
the larger the value of /3 expressing the strength of the point source, the
farther the stagnation point is located from the origin.

3.5.3 Two-dimensional point-source dipole

Consider next the flow due to the superposition of a point source
with strength ra located at the point (XQ + a ,yo)> and & point sink with
strength — ra located at the point (XQ — a,yo)5

 as illustrated in figure
3.5.2(a), where a is a specified distance. Using expression (3.5.5), we
find that the harmonic potential induced by these two singularities is
given by

(3.5.12)



Figure 3.5.2 (a) A point source and a point sink merge to yield a point-
source dipole. (b) Streamline pattern due to a two-dimensional
dipole pointing along the x axis.



The Cartesian components of the velocity are given by

(3.5.13)

Let us now hold the position of the field point (x, y] fixed, and reduce
the distance between the two singularities; that is, let a tend to zero. In
this limit, the flow due to the point sink tends to cancel the flow due to
the point source. But if the strength ra increases as the inverse of the
distance between the two singularities, 2a, then a nontrivial flow, called
the flow due to a point-source dipole, will arise in the limit.

To derive the flow due to a point-source dipole, we recast the expres-
sion on the right-hand side of (3.5.12) into the form

(3.5.14)

where we have introduced the dimensionless numbers

(3.5.15)

As the distance a becomes smaller than the distance between the points
x and XQ, both e\ and 62 tend to zero.

Now, a Taylor series expansion of the logarithmic function Iu w about
the point W = I provides us with the approximations

In(I - ei) = -ei + . . . , In(I + C2) = e2 + . . . , (3.5.16)

Introducing these expressions into the right-hand side of (3.5.14), and
neglecting the terms represented by the dots, we obtain the velocity
potential due to a point-source dipole located at the point (^o?yo) and
oriented in the x direction,



(3.5.17)

where we have introduced the strength of the dipole

dx = 2ma. (3.5.18)

It is instructive to note that the potential due to a point-source dipole
oriented along the x axis arises by differentiating the potential due to
a point source with respect to its x coordinate XQ: comparing (3.5.5),
(3.5.17) and (3.5.18), we find

(3.5.19)

This property classifies the dipole as a derivative singularity descending
from the point source.

The components of the velocity associated with a dipole oriented
along the x axis are given by

(3.5.20)

and

(3.5.21)

The associated streamline pattern is shown in figure 3.5.2(b).
Working in a similar fashion, we derive the flow due to a point-

source dipole with strength dy oriented along the y axis. The associated
harmonic potential is given by



(3.5.22)

where dy = 2ma. The corresponding velocity components are given by

(3.5.23)

and

(3.5.24)

The associated streamline pattern is found by rotating the pattern shown
in figure 3.5.2(b) by 90° around the location of the dipole.

3.5.4 Flow past a circular cylinder

As an application, we consider the superposition of (a) uniform flow
along the x axis with velocity Vx, and (b) the flow due to a point-source
dipole located at the origin and oriented along the x axis. Using the
potential (3.2.6) with c = O for the uniform flow, and the potential
(3.5.17) with XQ = O and yo — O for dipole, we find that the potential of
the composite flow is given by

(3.5.25)

where r = ^x2 + y2 is the distance of the field point (#, y) from the
center of the cylinder, and O is the polar angle measured around the
center of the cylinder, defined such that x = r cos 9.



Now, using the expression for the radial component of the velocity
ur in terms of the potential, given in the first of equations (3.2.18), we
find

(3.5.26)

The sum inside the parentheses on the right-hand side of (3.5.26) vanishes
at the radial distance r = ^/—dx/(2^Vx). Conversely, if the strength of
the dipole has the value

(3.5.27)

then the radial velocity will vanish at the radial distance r = a.
It is evident then that the potential (3.5.25) with dx evaluated from

expression (3.5.27) describes uniform flow with velocity Vx past a circu-
lar cylinder of radius a centered at the origin, with the no-penetration
condition satisfied over the cylinder. Substituting (3.5.27) into (3.5.25),
we derive the explicit solution

(3.5.28)

The corresponding Cartesian components of the velocity are given by

(3.5.29)

and the associated streamline pattern is shown in figure 3.5.3(a).

3.5.5 Point sources and point-source dipoles
in the presence of boundaries

When the domain of flow is bounded by impermeable surfaces, the
flow due to a point source or point-source dipole must be enhanced with
a complementary flow whose purpose is to satisfy the no-penetration
boundary condition. For simple boundary geometries, the complemen-
tary flow may be identified with the flow generated by singularities lo-
cated at image positions; two examples will be given at the remainder of
this section.

Directory 07-ptf/lgf.2d of FDLIB contains a collection of subroutines
that evaluate the harmonic potential and associated velocity field for
several boundary geometries.



Figure 3.5.3 Streamline pattern of (a) uniform flow past a circular
cylinder with vanishing circulation around the cylinder, (b) uni-
form flow past a sphere.



Point source above a plane

In the case of a point source placed above a plane wall located at
y = w, the complementary flow is generated by the reflection of the
point source with respect to the wall. If a primary point source with
strength m is located at the point (XQ,yo)> then an image point source
with equal strength is located at the point (XQ, 2w — yo). The streamline
pattern is depicted in figure 3.5.4(a).

Point source outside a circular cylinder

In the case of a point source placed outside a circular cylinder of ra-
dius a centered at the point (#c, yc), the complementary flow is generated
by two image point sources. The first image point source is located at the
inverse point of the primary point source with respect to the cylinder;
if a primary point source with strength m is located at (XQ, yQ), then an
image point source with the same strength is located at the point

2 2

XQ = XC + (XQ - X0) j2, VQ=VC + (yo - Vc) -^> (3.5.30)

where d = \/(XQ — xc)
2 + (yo — VcY is the distance of the primary point

source from the center of the cylinder. The second image point source
is located at the center of the cylinder, and its strength is equal to —m.
Note that the sum of the strengths of the image singularities vanishes,
thereby ensuring that fluid does not cross the surface of the cylinder.
The streamline pattern of the induced flow is shown in figure 3.5.4(b).

Problems

Problem 3.5.1 Oblique streaming flow past a circular cylinder.
Derive an expression for the harmonic potential and Cartesian com-

ponents of the velocity of oblique streaming flow with uniform velocity
ux — Vx, Uy = Vy past a circular cylinder of radius a centered at the
origin.

Problem 3.5.2 Flow due to a point-source dipole.
Combining equations (3.5.17) and (3.5.22), we find that the harmonic

potential due to a potential dipole with vectorial strength d = (dx,dy)
is given by

0 = d - &D~PSD, (3.5.31)

where the vector function 3>2D-pSD is defined as



Figure 3.5.4 Streamline pattern of the flow due to a two-dimensional
point source (a) above a plane wall, (b) in front of a circular cylin-
der, and (c) between two parallel walls.



Figure 3.5.4 Continued.

(3.5.32)

The velocity field may be expressed in the corresponding form

(3.5.33)

where \J2D-PSD is a 2 x 2 matrix function of position.
Using expressions (3.5.20), (3.5.21), (3.5.23), and (3.5.24), derive the

explicit form of the matrix U2D~F5jD.

Problem 3.5.3 Stream functions.
Derive an expression for the stream function associated with (a) a

two-dimensional point source, and (b) a two-dimensional point-source
dipole pointing in the x or y direction.



Computer problem

Problem c.3.5,1 Point source in a semi-infinite rectangular strip.
Directory 04-various/strmll of FDLIB contains a program that gen-

erates streamline patterns of the flow induced by a point source for sev-
eral boundary geometries. Three examples are illustrated in figure 3.5.4.
Run the program to generate the streamline pattern of the flow due to
a point source in a semi-infinite rectangular strip.

3.6 Three-dimensional point sources
and point-source dipoles

The fundamental solutions described in Section 3.5 for two-dimensional
potential flow may be extended in a straightforward fashion to three-
dimensional flow.

3.6.1 Three-dimensional point source

The harmonic potential due to a three-dimensional point source of
strength m located at the point XQ = (^o > 2/O5^o) is given by

(3.6.1)

where r = ^/(x - #o)2 + (y — yo)2 + (z - ^o)2 is the distance of the field
point x from the location of the point source XQ. The corresponding
Cartesian components of the velocity are given by

(3.6.2)

The streamlines are radial straight lines emanating from the singular
point XQ.



3.6.2 Three-dimensional point-source dipole

The harmonic potential due to a three-dimensional point-source dipole
oriented along the x, y, or z axis is given, respectively, by

(3.6.3)

where dx, dy, and dz are the directional strengths of the dipole.
The corresponding velocity components are found by straightforward

differentation. For a dipole oriented along the x axis,

(3.6.4)

The streamline pattern in the xy plane is qualitatively similar, but not
identical, to that shown in figure 3.5.2(b) for two-dimensional flow.

For a dipole oriented along the y axis,

(3.6.5)



For a dipole oriented along the z axis,

(3.6.6)

Expressions (3.6.4)-(3.6.6) may be placed into a compact vector-
matrix form, as discussed in problem 3.6.1.

3.6.3 Flow past a sphere

As an application, we consider the superposition of (a) uniform flow
along the x axis with velocity Vx, and (b) the flow due to a three-
dimensional point-source dipole located at the origin, XQ = O, yo — O,
and ZQ — O, pointing along the x axis. Using expression (3.2.6) with
c — O for the uniform flow, and expression (3.6.1) for the point-source
dipole, we find that the potential of the composite flow is given by

(3.6.7)

where r = \7x2 H- y2 + z1 is the distance from the origin, and 9 is the
azimuthal angle defined such that x — rcos#.

Using the first of equations (3.2.16), we find that the radial compo-
nent of the velocity is given by

(3.6.8)

The sum within the parentheses on the right-hand side of (3.6.8) vanishes
at the radial distance r — [—dx/(2TrVx)]

1/3. Conversely, if the strength
of the dipole has the value

dx = -^Vxa\ (3^9)



then the radial velocity will vanish at the radial distance r = a. These
observations suggest that the potential (3.6.7) with dx evaluated from
expression (3.6.9) describes uniform flow along the x axis with velocity Vx

past a stationary sphere of radius a centered at the origin. Substituting
(3.6.9) into (3.6.7), we obtain an explicit expression for the potential,

(3.6.10)

The corresponding Cartesian components of the velocity are given by

(3.6.11)

The streamline pattern in a meridional plane is shown in figure 3.5.3(b).

3.6.4 Point sources and point-source dipoles
in the presence of boundaries

To account for the presence of boundaries, we introduce a comple-
mentary flow in order to satisfy the no-penetration boundary condition,
as discussed in Section 3.5.5 for two-dimensional flow. For simple bound-
ary geometries, the complementary flow may be identified with the flow
produced by singularities located at image positions.

Directory 07-ptf/lgf.Sd of FDLIB contains a collection of subroutines
that evaluate the velocity field for several boundary geometries. Figure
3.6.1 (a) illustrates the streamline pattern of the flow due to a point source
located above a plane wall, and figure 3.6.1(b) illustrates the streamline
pattern of the flow due to a point source located in front of a sphere. In
the first case, the complementary flow is due to a reflected point source.

Problems

Problem 3.6.1 Flow due to a three-dimensional point-source dipole.
Repeat problem 3.5.2 for the three-dimensional point-source dipole.

The result should be expressed in terms of a three-component vector
function &D-pSD and a 3 x 3 matrix function U3D~P5L>.



Figure 3.6.1 Streamline pattern in a meridional plane of the flow due
to a three-dimensional point source (a) above a plane wall, and (b)
in front of a sphere.



Problem 3.6.2 Stream functions.
Consider a system of cylindrical polar coordinates with origin at the

location of a three-dimensional point source or point-source dipole, and
derive expressions for the axisymmetric stream function.

3.7 Point vortices and line vortices

Consider a long circular cylinder parallel to the z axis immersed in
an infinite fluid, rotating around its axis at constant angular velocity,
thereby generating a two-dimensional swirling flow. In plane polar coor-
dinates with origin at the center of the cylinder located at XQ = (XQ,y'Q],
the radial and polar components of the velocity are given by

U r ( ^ y ) = O , «,(*, „) = £!, (3? i )

where r = ^/(x — #o)2 + (y ~ ?/o)2 is the distance of the point where the
velocity is evaluated, x = (x,y), from the center of the cylinder, and K
is a constant with units of velocity multipled by length. The magnitude
and sign of tt express, respectively, the strength of the flow and the
direction of rotation. If K is positive, point particles in the flow rotate
in the counter-clockwise direction around the cylinder; if K is negative,
point particle rotate in the clockwise direction.

Note that the magnitude of the polar component of the velocity UQ
decays like 1/r. In contrast, if the fluid rotated as a rigid body around
the point XQ with angular velocity fi, then UQ would be increasing linearly
with respect to radial distance r, as UQ — Or. Clearly, the velocity field
(3.7.1) represents a flow that is different than rigid-body rotation.

3.7.1 Point vortex singularity

The flow described by equations (3.7.1) is physically meaningful only
in the exterior of the cylinder. Neglecting the surface of the cylinder
and extending the domain of flow all the way up to the center of the
cylinder, we obtain a singular flow described as the flow due to a point
vortex with strength ^, as illustrated in figure 3.7.1 (a). The singularity
occurs because, as the distance from the point vortex, r, tends to zero,
the magnitude of the velocity tends to become infinite.



Figure 3.7.1 (a) Two-dimensional, and (b) three-dimensional perspec-
tive of a point vortex with positive strength representing a recti-
linear line vortex parallel to the z axis.

3.7.2 Vorticity and circulatory motion

To confirm that the flow due to a point vortex is irrotational, we
substitute expressions (3.7.1) into equation (2.3.16), and find that the
strength of the vorticity vanishes at every point in the flow, except at
the location of the point vortex XQ where a singularity appears. This
behavior is responsible for classifying the point vortex as a singularity of
two-dimensional irrotational flow.

A seemingly paradoxical behavior has arisen: because the flow is ir-
rotational at every point except at the location of the point vortex, small
circular fluid parcels not containing the point vortex translate and defor-
m but do not rotate around their center, and yet the fluid exhibits a net
circulatory motion. These two features, however, are not inconsistent,
and their apparent but not essential contradiction serves to underscore
that global circulatory motion does not necessarily imply a rotational
flow.

3.7.3 The potential of irrotational circulatory flow

The occurrence of circulation has an important implication on the
description of the flow in terms of the velocity potential. To see this, we



use equations (3.2.18) to find that the potential due to a point vortex,
denoted by </>py, satisfies the equations

(3.7.2)

which may be integrated to yield

(3.7.3)

where 9 is the polar angle measured around the point vortex from an
arbitrary orientation. An arbitrary but irrelevant constant may be added
to the right-hand side of (3.7.3).

As we move around the point vortex on a circular path in the coun-
terclockwise direction, the potential increases in proportion to the angle
9 according to equation (3.7.3). But then, as we approach the point of
departure, because 9 has increased by 2?r, the potential undergoes a jump
with respect to the initial value, equal to K. We can continue traveling
around the point vortex for one more turn, only to find that each time
we perform a complete rotation, the potential undergoes a jump equal
to K. This observation illustrates that the potential associated with a
point vortex is multi-valued. Moreover, since our point of departure is
arbitrary, the potential is multi-valued at every point in the flow.

We have discovered, by example, that circulatory motion is associated
with a multi-valued potential, and vice versa. In practice, a multi-valued
potential is too ambiguous to handle by analytical or numerical methods.
To circumvent this difficulty, we may proceed in two ways. In the first
approach, we decompose the potential into an "easy to handle" multi-
valued part and a "harder to get" complementary single-valued part;
we specify the former, and obtain the latter by analytical or numerical
computation. The implementation of this method will be discussed in
Chapter 12 in the context of aerodynamics. In the second approach,
we introduce an artificial boundary residing in the fluid, called a branch
cut, and work under the assumption that the potential on either side of
this boundary has two different values. If the flow does not exhibit a net
circulatory motion, the two values are identical.

3.7.4 Flow past a circular cylinder with non-zero circulation

To illustrate the usefuleness of the point vortex singularity, we recon-
sider the problem of uniform flow past a cylinder discussed in Section



3.5. Equation (3.5.28) provides us with the single-value harmonic poten-
tial in the absence of circulatory motion around the cylinder. To allow
for circulatory motion, we add to the right-hand side of (3.5.28) the po-
tential due to a point vortex situated at the center of cylinder given in
equation (3.7.3), obtaining

(3.7.4)

The corresponding Cartesian components of the velocity are given by

(3.7.5)

The radial component ot the velocity ur — d(/)/c)r vanishes at the surface
of the cylinder located at r — a, and the no-penetration condition is
fulfilled, as required.

A simple rearrangement of (3.7.4) provides us with the dimensionless
form

(3.7.6)

where r = r/a is the dimensionless radial distance, with the value of
unity f — I corresponding to the surface of the cylinder, and

(3.7.7)

is the dimensionless circulation number. When /3 = 0, the circulation
vanishes. Expression (3.7.6) reveals that the structure of the flow is
determined by the value of the dimensionless parameter /3.

The tangential component of the velocity on the surface of the cylin-
der is given by

(3.7.8)

The magnitude of UQ(T = a) vanishes when 6 = arcsin(—/3), and this
suggests that stagnation points occur on the surface on the cylinder
when — 1 < /3 < 1. As /3 is raised from zero to unity, the stagnation
points at 9 — O and TT move towards, and then merge at the lowest point
on the surface of the cylinder located at O = — TT/2. When /3 exceeds the



Figure 3.7.2 Streamline pattern of uniform flow past a circular cylinder
with different degrees of circulation around the cylinder determined
by the dimensionless parameter /5 defined in equation (3.7.7); (a)
p = 0.5, (b) 1.0, and (c) 1.2. The streamline pattern for /3=0 is
shown in figure 3.5.3(a).



Figure 3.7.2 Continued.

value of unity, the merged stagnation point moves off the surface of the
cylinder and into the flow. Streamline patterns for /3 = 0.5, 1.0, and 1.2
illustrating this transition are shown in figure 3.7.2.

3.7.5 Circulation

Having discussed the occurrence of circulation around a cylinder
placed in a uniform flow, we proceed to extend the concept of circu-
lation to more general flow configurations.

Consider a two-dimensional flow in the xy plane, and draw a simple
closed loop within it. If the loop encloses fluid alone and no boundaries,
then it is called reducible, whereas if the loop encloses fluid and one or
more boundaries, then it is called irreducible. The distinguishing feature
of a reducible loop is that it can be shrunk to a point without crossing
flow boundaries. A reducible and two irreducible loops are depicted in
figure 3.7.3.

Select now a point on a reducible or irreducible loop, and introduce
the unit tangent vector t = (ix, t y ) pointing in the counterclokwise direc-
tion, as shown in figure 3.7.3. The inner product of the velocity and the
unit tangent vector is given by the right-hand side of (2.6.8). The cir-



Figure 3.7.3 Examples of a reducible loop and two irreducible loops in
a two-dimensional flow. The shaded areas represent flow bound-
aries.

culation around the loop is defined as the line integral of the tangential
component of the velocity with respect to arc length around the closed
loop, /,

(3.7.9)

where L denotes the loop, and dl = ^/dx2 + dy2 is the differential arc
length around the loop.

Reducible loops

Stokes's circulation theorem, to be discussed in Section 11.1, states
that if a loop is reducible, and if no point vortices reside within the area
enclosed by the loop, then the circulation around the loop is equal to the
strength of the vorticity integrated over the area of fluid D enclosed by
the loop,

(3.7.10)

In this case, the right-hand sides of (3.7.9) and (3.7.10) are equal.
One consequece of the Stokes circulation theorem is that, because the

strength of the vorticity in an irrotational flow vanishes at every point,

Reducible

Irreducible
Irreducible



the circulation around any reducible loop drawn in an irrotational flow
is equal to zero. The important implications of this statement will be
discussed in Chapter 11 in the context of vortex dynamics.

Reducible loops enclosing point vortices

If a reducible loop encloses a collection of N point vortices with
strengths KI, /^2, • • • , KN, then the circulation around the loop is equal to
the sum of the strengths of the point vortices,

(3.7.11)

If some of the point vortices have positive strength and others have
negative strength, so that the net sum of the strengths is equal to zero,
then the circulation around the loop vanishes.

As an example, we consider uniform flow past a circular cylinder de-
scribed by the potential shown in equation (3.7.4). According to the
preceding discussion, the circulation around any loop that encloses the
cylinder should be equal to K. To confirm this, we compute the circula-
tion around a loop of radius R centered at the cylinder, and find

(3.7.12)

as expected.

Irreducible loops

If a loop encloses one or more flow boundaries, then the circulation
around the loop may have any value. In practice, this value is set inter-
nally during the start up period when the flow develops from the state
of rest. The amount circulation established around a moving body is of
great significance in aerodynamics, as will be discussed in Chapter 12.

3.7.6 Line vortices in three-dimensional flow

Viewed from a three-dimensional perspective, a point vortex in the
xy plane appears like a straight line vortex, also called a rectilinear line



Figure 3.7.4 Illustration of (a) an infinite, and (b) a closed line vortex
in three-dimensional flow.

vortex parallel to the z axis, as shown in figure 3.7.1(b). Deforming this
rectilinear line vortex, or merging its two ends to form a closed loop,
we obtain a curved three-dimensional line vortex in a three-dimensional
flow. An example familiar to smokers is a closed line vortex with a
circular or wobbly shape, called a line vortex ring.

A line vortex may be infinite, as illustrated in figure 3.7.4(a), or
closed, as illustrated in figure 3.7.4(b), but may not end suddenly in the
interior of the fluid. In real life, of course, a fluid is always bounded,
and an infinite line vortex must inevitably end at the boundaries of
the flow. The analysis and computation of the flow associated with,
and induced by three-dimensional line vortices defines an important field
of fluid dynamics with important applications in turbulent motion and
aerodynamics, as will be discussed in Chapters 11 and 12.

Problems

Problem 3.7.1 Stream function of a point vortex.
Derive the stream function associated with a point vortex.

Problem 3.7.2 Circulation around a loop.
Consider a closed loop that performs two turns around a point vortex

with strength K. Explain why the circulation around this loop is equal
to 2«.



Problem 3.7.3 Point-vortex doublet.
Just as the point-source dipole arises from a point source/sink dou-

blet, as discussed in Section 3.5, a point-vortex doublet arises from a
point vortex with positive strength and a point vortex with negative
strength of equal magnitude, in the limit as the distance between the
two point vortices vanishes while their strength increases by the inverse
proportion.

The harmonic potential associated with a point-vortex doublet ori-
ented along the x or y axis is given, respectively, by

(3.7.13)

where Ax and A^ are the components of the vectorial strength of the
point-vortex dipole in the x and y direction.

Carry out the differentiations on the right-hand sides of (3.7.13), and
compare the resulting expressions with those shown in equations (3.5.17)
and (3.5.22) for the two-dimensional point-source dipole. On the basis
of this comparison, establish a relationship between the flow due to a
point-vortex doublet and the flow due to a point-source dipole.

Problem 3.7.4 Loops in three-dimensional flow.
(a) Consider a three-dimensional flow extending to infinity and bound-

ed internally by a toroidal boundary having the shape of a doughnut.
Show that this flow contains irreducible loops that may not be shrunk
to a point without crossing the boundaries.

(b) Invent another three-dimensional flow containing irreducible loops.



Chapter 4

Forces and stresses

4.1 Body forces and surface forces
4.2 Traction and the stress tensor
4.3 Traction jump across a fluid interface
4.4 Stresses in a fluid at rest
4.5 Viscous and Newtonian fluids
4.6 Simple non-Newtonian fluids
4.7 Stresses in polar coordinates
4.8 Boundary condition on the tangential velocity
4.9 Wall stresses in Newtonian fluids

In previous chapters, we have discussed the kinematic structure of a
flow, but made no reference to the external action that is necessary for
establishing the flow or to the physical mechanism that is responsible for
sustaining the motion. Consideration of these issues requires an under-
standing of the hydrodynamic forces developing in a fluid as a result of
the motion. In this chapter, we discuss the physical origin of these forces
and introduce constitutive equations relating the stresses developing at
the surface of infinitesimal fluid parcels to the parcel deformation. In
subsequent chapters, we shall use these constitutive equations to build
an integrated theoretical framework that will allow us to compute the
structure of a steady flow and the evolution of an unsteady flow from a
specified initial state.

4.1 Body forces and surface forces

Two types of forces are exerted on any piece of material: homoge-
neous forces acting on its volume, and surface forces acting on its bound-
aries. Establishing the origin of these forces is the subject of molecular
physics. A brief overview for fluids suffices for the purposes of our dis-
cussion.



4.1.1 Body forces

A parcel of fluid, like any material, is subject to forces mediated
by an ambient gravitational, electrical, or electromagnetic field; the last
two types of forces arise only when the fluid is electrically charged, or
else contains molecules or particles of a polarized material. Under the
influence of these fields, the molecules residing within the parcel are acted
upon individually and independently by a force that may be constant or
vary with position in the fluid. The sum of the forces exerted on the
individual molecules amounts to a net body force that is proportional
to the number of molecules residing within the parcel, and thus to the
parcel volume.

Consider, for example, the force dFp exerted on a small fluid parcel
with volume dVp, density p, and mass dmp — pdVp, due to the gravita-
tional field. By definition, the gravitational force is given by

dFp = gpdVp, ( 4 i i )

where g is the acceleration of gravity. The right-hand side of (4.1.1)
has units of acceleration multiplied by mass which amounts to force.
One distinguishing feature of the body force due to gravity is that it is
independent of the molecular motion: a certain mass of fluid weighs the
same independent of whether the fluid is stationary or flows.

4.1.2 Surface forces

A different kind of force arises at the surfaces of fluid parcels and at
the boundaries of a fluid. This surface force is responsible, for example,
for the force exerted on the surface of a bubble rising through an ambient
liquid due to buoyancy. More generally, a surface force is defined on any
surface drawn within the bulk of a fluid or over its boundary.

Understanding the physical origin of the surface forces requires con-
sideration of molecular motions and necessitates a distinction between
gases and liquids. One key idea is the equivalence between local hydro-
dynamic force and rate of exchange of momentum between adjacent fluid
layers due to molecular excursions.

To understand the origin of surface forces developing in a gas, we
draw a surface in its interior, and consider the momentum of the molecules
crossing the surface from either side. The momentum normal to the sur-
face is responsible for a normal force. If the molecules move with different



average velocities on either side of the surface, where the average velocity
can be identified with the velocity of the fluid at the location where a
molecule last underwent a collision with one of its peers, then the net
transport of tangential momentum due to this difference is responsible
for a tangential surface force necessary to accelerate or decelerate the
molecules. The effective force field due to the tangential surface force
slows down fast-moving molecules as they move towards regions of slower
moving fluid.

The physical origin of surface forces developing in a liquid is some-
what different. The molecules of a liquid perform oscillatory motions
around a mean position with an amplitude that is determined by their
distance from the closely packed neighbors. Occasional excursions into
vacant spots are responsible for momentum transport which may be at-
tributed to the action of a surface force.

4.2 Traction and the stress tensor

Consider a small surface with area dS centered at the point x =
(#,y,z), drawn within a stationary or moving fluid, as illustrated in
figure 4.2.1 (a). The designated outer side of the surface is indicated
by the direction of the unit vector normal to the surface at the point
x, denoted as n. According to our discussion in Section 4.1, a body
of fluid whose instantaneous boundary includes the small surface under
consideration experiences a surface force denoted as dFs. This surface
force may point in any direction, that is, it may have a component normal
to the surface, and a component tangential to the surface.

The ratio between the surface force dFs and the area of the surface
dS is the average stress exerted on the surface. As the surface area dS
becomes infinitesimal, the average stress tends to a limit defined as the
traction exerted on the infinitesimal surface, denoted as f. Thus, by
definition, the traction is given by the relation

dF^
~ dS ' (4.2.1)

The three scalar components of the traction have units of force per area
which amounts to stress. Rearranging equation (4.2.1), we obtain an
expression for the surface force exerted on an infinitesimal surface in
terms of the traction,



Figure 4.2.1 Illustration of (a) a small section of the surface of a fluid
parcel used to define the hydrodynamic traction exerted on the
parcel; (b) a thin layer of a fluid with a designated outer side; and
(c) a thin layer of a fluid adjacent to a boundary used to define the
hydrodynamic force exerted on the boundary.

dFs = f d S . (4.2.2)

It is clear from the definition (4.2.1) that the traction is physically
significant only when (a) the location, and (b) the side of the infinitesimal
surface upon which the traction is exerted are specified, respectively, in
terms of the coordinates of the center-point x and the orientation of the
unit normal vector n. This requirement is signified by writing

f(*,n), (4.2.3)

where the parentheses enclose the arguments of the three scalar compo-
nents of the traction. If the flow is unsteady, or the position or orienta-
tion of the surface change in time, time should be added to the list of
arguments on the right-hand side of (4.2.3).

inward

outward



Figure 4.2.2 (a) A triangular fluid parcel in a two-dimensional flow,
and (b) a polyhedral fluid parcel in a three-dimensional fluid, used
as devices for computing the traction exerted on an arbitrary sur-
face in terms of the unit vector normal to the surface and the stress
tensor.

4.2.1 The stress tensor

Consider the traction exerted on a small surface that is perpendicular
to the x, y or z axis, where the normal vector points in the positive
directions of these axes, denoted, respectively, by

(4.2.4)

as depicted in figure 4.2.2. Stacking these vectors on top of one another



in a particular order, we obtain the stress tensor

(4.2.5)

Introducing the standard two-index notation for the components of
the stress tensor, we write

^• = jf. (4-2.6)

The first index of O{j indicates the component of the normal vector of the
infinitesimal surface upon which the traction is exerted; the second index
indicates indicates the component of the corresponding traction. With
the convention expressed by (4.2.6), the stress tensor takes the form

(4.2.7)

In the case of two-dimensional flow in the xy plane, the stresses are
placed in the 2 x 2 stress tensor

(4.2.8)

We shall see later in this chapter that, with the exception of azz, the
omitted components involving the subscript z are equal to zero.

4.2.2 Traction in terms of the stress tensor

We shall demonstrate now that the dependence of the traction on
the position vector and on the normal vector, displayed symbolically in
(4.2.3), may be decoupled in a simple fashion yielding

f(x,n) = n-a(x) . (4.2.9)

In index notation,

/j(x, nj = HI <Jij = nx oxj + Uy (jyj + nz GZJI (42 10)

where the index j is free to vary over x, y, and z, and summation of the
repeated index i is implied in the middle expression of (4.2.10).



An important consequence of (4.2.9) is that, if the nine components
of the stress tensor are known at a point, then the traction exerted on
any infinitesimal surface centered at that point may be evaluated in
terms of the unit normal vector, merely by carrying out a vector-matrix
multiplication.

To confirm that expression (4.2.9) is consistent with the foregoing
definitions, we choose n = (1,0,0) and carry out the vector-matrix mul-
tiplication on the right-hand side of (4.2.10) to find f = f(x ', as required.
Working in a similar fashion with n = (0,1,0) and n = (0,0,1), we find
f = f(y) and f = f(z\ as required. It remains to show that (4.2.9) holds
true for more general orientations of the unit normal vector n. For sim-
plicity, we work out the proof for two-dimensional flow in the xy plane,
with reference to the 2 x 2 stress tensor defined in (4.2.8).

We begin by considering a small area of fluid enclosed by an infinitesi-
mal triangle with two sides perpendicular to the x and y axis, as depicted
in figure 4.2.2(a). Newton's second law of motion requires that the rate
of change of momentum of the fluid enclosed by the triangle be balanced
by the forces exerted on it, including the body force and the surface force
associated with the traction exerted on the three sides.

Now, the momentum of the parcel and the body force exerted on the
parcel are both proportional to the area of the triangle, ^AxAy. The sur-
face force exerted on the vertical side is equal to f^ Ay, the surface force
exerted on the horizontal side is equal to f^Ax, and the surface force
exerted on the slanted side is equal to f(s)A/, where A/ = >/Ax2 + Ay2.
In the limit as Ax and Ay tend to zero, the fluid momentum and body
force become negligible compared to the surface forces exerted on the
sides, and the sum of the three surface forces should vanish. Setting the
x and y components of the sum equal to zero, we find

/W A/ + axx Ay + ayx Ax - O,

/W A/ + axy Ay + ayy Ax = O. (4^n)

Considering now the unit vector normal to the slanted side of the tri-
angle pointing outward, denoted by n^, we use elementry trigonometry
to write

(4.2.12)

Combining equations (4.2.11) and (4.2.12), we find



(4.2.13)

which are the x and y components of (4.2.9).
An analogous proof can be worked out for three-dimensional flow, by

considering the forces exerted on the polyhedral fluid parcel illustrated
in figure 4.2.2(b) (problem 4.2.1).

4.2.3 Traction on either side of a fluid surface

Consider now a thin layer of fluid with a designated outer side in-
dicated by the direction of the unit normal vector n, and an opposing
inner side indicated by the direction of the normal vector nmner = -n, as
illustrated in figure 4.2.1(b). Balancing the rate of change of momentum
of the fluid that resides within the layer with the forces exerted on it,
and repeating the preceding arguments on the insignificance of the fluid
momentum and body forces compared to the surface forces, we derive
the force balance equation

f outer i finner n
+ f =°> (4.2.14)

which is a statement of Newton's law of action and reaction: the force
exerted on one body by another is equal in magnitude and opposite in
direction to that exerted on the second body by the first.

It is reassuring to confirm that expression (4.2.9) is consistent with
the physical law expressed by (4.2.14). Substituting the former into the
latter, we obtain

n*a + ninner.a = 0, (4.2.15)

which holds true in view of the definition uinner = -n. More generally,
a prerequisite for the satisfaction of (4.2.14) is the property

f(x,-n) = -f(x,n), (4.2.16)

which is clearly shared by the right-hand side of (4.2.9)



4.2.4 Traction exerted on a boundary

Consider next a small fluid surface at the boundary of a flow. The
outer side of the surface is indicated by the unit normal vector nouiward

pointing into the boundary, as illustrated in figure 4.2.l(c). Newton's
law of action and reaction requires that the traction exerted on the fluid
surface should balance the traction exerted by the fluid on the boundary,
denoted by fB. Thus,

?B i „ outward _ n
f +n ^ = 0' (4.2.17)

In terms of the inward unit normal vector pointing into the fluid, denoted
by ninward = _noutward^ we obtain

cB ..inward
* = n '^ (4.2.18)

Expression (4.2.18) allows us to compute the traction exerted on a bound-
ary in terms of the stress tensor evaluated at the boundary.

4.2.5 Symmetry of the stress tensor

A fundamental law of mechanics originating from Newton's second
law of motion requires that the rate of change of angular momentum of a
fluid parcel be balanced by the torque exerted on it, including the torque
due to body forces and the torque due to surface forces. The torque with
respect to the point XQ due to a force F applied at the point x is defined
by the outer vector product

T = (x - X0) x F. (4.2.19)

Applying this law for a rectangular fluid parcel whose sides are par-
allel to the X, y, and 2, axes, we find, that, in the absence of a body
force that induces a torque, the tangential component of the traction in
the jthe direction exerted on the side that is perpendicular to the ithe
axis must be equal to the tangential component of the traction in the
ithe direction exerted on the side that is perpendicular to the jth axis,
otherwise an imbalanced asymmetry will arise (problem 4.2.2). Thus,

/J0=/?0. (4.2.20)

which states that the stress tensor is symmetric,



(Tij = aji. (4.2.21)

It is important to emphasize that the stress tensor is symmetric only
in the absence of an externally induced torque; that is, in the absence of
an external force field causing point particles to spin around an axis. In
the remainder of this book, we shall tacitly assume that this restriction
is satisfied.

Problems

Problem 4.2.1 Traction in three-dimensional flow.
Prove expression (4.2.9) for three-dimensional flow. Hint: Perform a

force balance over the polyhedral volume depicted in figure 4.2.2(b).

Problem 4.2.2 Symmetry of the stress tensor.
Prove the symmetry of the tensor for two-dimensional flow in the

absence of an externally induced torque.

4.3 Traction jump across a fluid interface

Equation (4.2.14) states that the traction exerted on one side of a
surface drawn in a fluid is equal in magnitude and opposite in direction
to that exerted on the other side. To derive this relation, we performed a
force balance over a thin fluid layer centered at the surface, considering
the force exerted along the edges infinitesimal. If the fluid residing with-
in the layer is homogeneous, then the edge force scales with the layer
thickness and is negligible indeed compared to the surface force exerted
on the sides.

If, however, the thin layer is centered at an interface between two
different fluids instead of a regular surface residing in a homogeneous
fluid, differences in the magnitude of molecular forces on either side
of the layer generate an edge force that does not scale with the layer
thickness. This edge force may be expressed in terms of the interfacial
tension 7, defined as the force per unit length exerted around the edge
of a section of an interface.



Figure 4.3.1 Forces exerted on a thin fluid layer centered at (a) a two-
dimensional, or (b) a three-dimensional interface, including the
hydrodynamic force due to the fluid stresses, and the force due to
the surface tension, (c) The mean curvature of a three-dimensional
surface is equal to the average of the directional curvatures in two
perpendicular planes containing the normal vector.

The interfacial tension pulls the interfacial layer in a direction that
is tangential to the interface and normal to the edges. The magnitude of
the tension depends on the local temperature and molecular constitution
of the interface as determined, for example, by the concentration of a
surface-active substance residing over interface, called a surfactant. The
higher the temperature or the concentration of a surfactant, the lower
the surface tension. Surfactants are often added to liquids to lower the
surface tension and achieve a desired effect: a dish or laundry detergent
is a common household surfactant used to lower the strength of the forces
anchoring particles to a soiled surface.

Fluid 1

Fluid 2

Fluid 1

Fluid 2



4.3.1 Two-dimensional interfaces

Consider a small section of a two-dimensional interface with length
A/, as illustrated in figure 4.3.1 (a). Surface tension pulls the layer from
the two edges in directions that are tangential to the interface at the two
end-points A and B. Balancing the surface force due to the stress tensor
and the edge forces, we obtain

(4.3.1)

where the unit normal vector n^ points into the fluid labelled 1, and the
unit normal vector n^2) = — n^ points into the fluid labelled 2. Express-
ing the second normal vector in terms of the first one, and rearranging
the resulting expression, we find

(4.3.2)

If the surface tension is uniform, 7^ = 7^, and if the interface is flat, in
which case tB — tA and the vectorial difference tB — tA is equal to zero,
the right-hand side of (4.3.2) vanishes. Equation (4.3.2) then requires
that the traction be continuous across the interface.

More generally, in the limit as the length of the segment A/ tends to
zero, the right-hand side of (4.3.2) tends to the derivative of the product
71 with respect to arc length / measured in the direction of the tangent
vector t from an arbitrary origin,

(4.3.3)

Expanding out the derivative of the product on the right-hand side of
(4.3.3), we find

(4.3.4)

The second term on the right-hand side of (4.3.4) contributes a traction
discontinuity that is tangential to the interface, known as the Marangoni
traction. If the surface tension is constant, the Marangoni traction does
not appear.

To interprete the first term on the right-hand side of (4.3.4), we
consider the difference between the two nearly equal tangent vectors tB



and tA. In the limit as A/ tends to zero, the difference between these
vectors tends to a new vector directed normal to the interface. More
precisely, in this limit,

(4.3.5)

where K is the positive or negative curvature of the interface. By defini-
tion, K = 1/J?, where .R is the positive or negative radius of curvature of
the interface. Substituting (4.3.5) into (4.3.4), and rearranging, we find

(4.3.6)

The first term on the right-hand side of (4.3.6) contributes a traction
discontinuity normal to the interface. If either the curvature of the in-
terface or the surface tension vanishes, the normal stress is continuous
across the interface.

As an example, we consider the jump in traction across the interface
depicted in figure 4.3.2. The origin of the Cartesian axes has been set at
a point on the interface, the x axis has been positioned tangentially to
the interface, and the y axis has been positioned normal to the interface
pointing into fluid labelled 1. At the origin of the Cartesian axes, the
components of the unit normal vector n^ are given by njb = 0 and
Uy = 1, and the jump in traction is given by

(4.3.7)

where ex and e^ are, respectively, the unit vectors parallel to the x and y
axes. Observing that, at the origin, t = ex and n^1) = e^, and comparing
the right-hand sides of (4.3.7) and (4.3.6), we derive an expression for
the jump in the shear stress,

(4.3.8)

and another expression for the jump in the normal stress,

(4.3.9)



Figure 4.3.2 A local coordinate system with the x axis tangential to a
two-dimensional interface at a point, used to evaluate the jump in
traction across the interface.

4.3.2 Three-dimensional interfaces

To derive the counterpart of the interfacial condition (4.3.6) for a
three-dimensional interface, we consider a thin fluid layer straddling a
three-dimensional interface, as illustrated in figure 4.3.l(b). Let n^1) be
the unit vector normal to the interface pointing into fluid 1, and e be the
unit vector tangential to the layer edge. The surface tension pulls the
layer in the direction of the unit vector t that is tangential to the interface
and normal to both n^ and e. Recalling the geometrical interpretation
of the outer vector product discussed in Section 2.3, we write

* = e X n' (4.3.10)

Next, we balance the surface force due to the fluid stress and the edge
force due to the surface tension, and find

(4.3.11)

where A5 is the surface area of the layer, and / is the arc length around
the layer edge C. Equation (4.3.11) is the three-dimensional counterpart
of (4.3.1). Putting n(2) = — n^1) and rearranging, we find

(4.3.12)

It can be shown that, in the limit as A5 tends to zero and the loop
C shrinks to a point, equation (4.3.12) reduces to

Fluid 1

Fluid 2



(4.3.13)
where:

• ftm is the mean curvature of the interface.

• t' is the unit vector tangent to the interface pointing in the direc-
tion along which the surface tension changes most rapidly.

• /' is the arc length measured in the direction of t'.

• dj/dlf is the corresponding maximum rate of change of the surface
tension with respect to arc length.

The first term on the right-hand side of (4.3.13) expresses a disconti-
nuity in the normal direction; the second term expresses a discontinuity
in the tangential direction identified as the Marangoni traction.

Mean curvature

To compute the mean curvature of a three-dimensional interface, we
consider the traces of the interface in two orthogonal planes that are
normal to the interface at a point and thus contain the normal vector,
as depicted in figure 4.3.1(c). If KI and ^2 are the curvatures of the two
traces at that point, computed using formula (4.3.5) with the x and y
axes residing in the two planes, then the mean curvature of the interface
is given by

(4.3.14)

A theorem due to Euler states that the mean value is independent of
the orientation of the two planes, provided that the planes are mutually
orthogonal. There is a particular orientation corresponding to maximum
directional curvature KI, and a conjugate orthogonal orientation corre-
sponding to minimum directional curvature /^; these are the principal
curvatures of the interface at the chosen point. The computation of the
mean curvature will be discussed further in chapter 5 in the context of
hydrostatics.



Problems

Problem 4.3.1 Curvature of an ellipse.
A circle of radius a centered at the origin is described in parametric

form by the equations x — a cos 6 and y = a sin 0, where 6 is the polar
angle varying between O and 2 TT. The components of the unit tangent
vector pointing in the counter-clockwise direction are given by

(4.3.15)

where dl = ^dx2 + dy2 is the differential arc length measured in the
counter-clockwise direction. Using the parametric representation, we
find

dx = —a sin 9 d9, dy = a cos 6 dO, dl = a dO^
(4.3.16)

yielding
tx = -sin#, ty = cos 9. (4.3.17)

Based on these formulas, we compute

(4.3.18)

Collecting the component equations (4.3.18), we derive the vector form

(4.3.19)

where n^ = (cos 0, sin#) is the unit vector normal to the circle pointing
into the exterior. Comparing (4.3.20) with (4.3.5), we deduce that n =
I/a, thereby confirming that the curvature of the circle is equal to the
inverse of its radius.

Consider a horizontal ellipse centered at the origin, described in para-
metric form by the equations x — acosx and y = 6sin%, where x 'ls ̂ e
natural parameter of the ellipse varying between O and 2 TT, and a, b are
the ellipse semi-axes. Repeat the preceding analysis to derive an expres-
sion for the curvature in terms of a, 6, and x- Confirm that, as b tends
to a, the curvature of the ellipse reduces to that of a circle.



Problem 4.3.2 Mean curvature.
(a) Based on formula (4.3.14) and its accompanying interpretation

discussed in the text, show that the mean curvature of a sphere of radius
a is equal to Km = I/a, whereas the mean curvature of a circular cylinder
of radius a is equal to Km — l/(2a).

(b) The sphere and the circular cylinder are two examples of shapes
with constant mean curvature. Discuss one additional example.

Problem 4.3.3 Jump in traction in local coordinates.
Derive the counterparts of equations (4.3.8) and (4.3.9) for a three-

dimensional interface.

Computer problems

Problem c.4.3.1 Computation of the curvature.
Consider a line in the xy plane described by a set of TV + 1 marker

points with coordinates (xi,yi), i = 1,2, . . . ,JV + 1. An approximation
to the components of the tangent vector at the ith point is provided by
the central-difference formulas

(4.3.20)

where

(4.3.21)

The derivatives of the components of the tangent vector with respect to
arc length may be approximated with the corresponding formulas

(4.3.22)

The components of the outward normal vector at the marker points are
given by

(4.3.23)

Write a computer program that reads or generates the coordinates
of a set of marker points, computes the right-hand sides of (4.3.2O)-
(4.3.23), and then evaluates the curvature at the marker points from the
expression

(4.3.24)



which arises by taking the inner product of the unit normal vector and
the middle and right-hand side of (4.3.5).

Perform a series of computations with marker points distributed
evenly along a circle, and compare the numerically computed curvatures
with the exact curvature derived in problem 4.3.1.

Problem c.4.3.2 Motion induced by curvature.
Interfaces move under the influence of surface tension in a variety of

modes. In a simplified model, point particles distributed along a two-
dimensional interface move normal to the interface with velocity that
is proportional to the local curvature. If X^ is the position of the ith
marker point, then the motion of the marker point is described by the
vectorial differential equation

(4.3.25)

where t stands for time, n^1) is the outward normal vector, and K is the
curvature.

Write a program that computes the motion of marker points dis-
tributed over an interface using the finite-difference approximations dis-
cussed in problem c.4.3.1, and the modified Euler method for integrating
in time the differential equations (4.3.25). Run the program to compute
the evolution of marker points distributed along a circle or an ellipse
with axes ratio equal to 2.0, and discuss the nature of the motion.

4.4 Stresses in a fluid at rest
If a fluid does not appear to execute macroscopic motion as seen

by a stationary observer, that is, the observable velocity vanishes, then
the molecules are in a state of dynamic equilibrium determined by the
physical conditions prevailing in their immediate environment.

Consider a cubic fluid parcel with its six faces perpendicular to the
x, y, or z axis, as illustrated in figure 4.4.1. In the absence of net fluid
motion, the traction exerted on the sides that are perpendicular to the
x axis must be directed normal to this side, otherwise, an unresolved
tangential component pointing in a physically indeterminate direction
will arise. In the notation of Section 4.2,

(4.4.1)



Figure 4.4.1 The traction exerted on the three sides of a cubic parcel
of a stationary fluid has only a normal component that is defined
in terms of the thermodynamic pressure.

Similar arguments suggest that the tractions exerted on the sides that
are perpendicular to the y or z axes must be directed normal to these
sides, requiring that

/lw)=0, / M ^ O , /M = O, (4.4.2)

and
42) = 0, /^ = O, / W ^ O . (4.4.3)

If the size of the cubic parcel is infinitesimal, the fluid residing inside
the parcel is perfectly or nearly homogeneous, and the nonvanishing
components of the tractions fx , fy , and fz must be identical. By
definition, the common value of these normal components is equal to the
negative of the pressure p,

f(x) __ f(y) _ f ( z ) —
Jx -Jy -Jz — P' (4.4.4)

Thus, in hydrostatics, the stress tensor introduced in equation (4.2.7) is
defined exclusively in terms of the pressure, and is given by

" - p O O l F l O O "
cr= O -p O = -p O 1 O .

O O -p J L 0 0 1 J (4A5)



In compact form
tf = -pi, (4.4.6)

where I is the unit or identity matrix shown on the right-hand side of
(4.4.5).

4.4.1 Traction on a surface

As an application, we use expression (4.4.6) to evaluate the traction
exerted on a surface drawn in a stationary fluid. Using formula (4.2.9),
we find

f (x, n) = n • (-p I) = -p n • I = -p n. (4.4.7)

The last equality arises from the identity n • I = n. Equation (4.4.7)
shows that the traction exerted on a surface in hydrostatics is directed
normal to the surface; the tangential component vanishes.

4.4.2 Traction on a flow boundary

As a second application, we use (4.4.6) to evaluate the traction ex-
erted on a boundary confining the fluid. Using formula (4.2.18), we find

{B = ninward . (_p j) = _p ^inward . j = _p ^inward ^

The last equality arises from the identity u
inward-I = n

inward. Thus, the
traction exerted on a fluid boundary in hydrostatics is directed normal
to the boundary; the tangential component vanishes.

4.4.3 Thermodynamics

The hydrostatic pressure distribution established in a fluid at rest
cannot be computed working exclusively in the context of fluid me-
chanics. Additional information concerning the relationship between the
density and the pressure for the particular fluid under consideration is
required, and must be provided by thermodynamics.

For example, molecular thermodynamics states that the pressure of
a small parcel of gas is determined by (a) the number of molecules re-
siding within the parcel expressed by the local density p, (b) the kinetic
energy of the molecules expressed by the absolute temperature T, and
(c) the nature and intensity of the intermolecular forces expressed by
an intermolecular potential. In the case of an ideal gas, intermolecular



forces are negligible, and the pressure derives from the density and the
temperature in terms of the ideal gas law

(4.4.9)

where:

• M is the gramo-molecular mass, defined as the mass of one mole
which is comprised of a collection of NA molecules, where NA —
6.022 x 1026 is Avogadro's number. The gramo-molecular weight
of an element is equal to the atomic weight of the element listed in
the periodic table, expressed in grams.

• R is the ideal gas constant, equal to R — 8.314 x 103 kg m2/(sec2

kmole K).

• T is Kelvin's absolute temperature, equal to the Celsius centigrade
temperature reduced by 273 units.

Liquids, on the other hand, are nearly incompressible, and thermo-
dynamics allows us to compute their pressure under the assumption that
the density is a function of temperature alone, independent of pressure.

The computation of the hydrostatic pressure distribution in gases
and liquids will be discussed in more detail in Chapter 5.

4.4.4 Jump in the hydrostatic pressure across an interface

Equations (4.3.6) and (4.3.13) provide us with expressions for the
jump in the traction across a two- or three-dimensional interface. If
the two fluids on either side of the interface are stationary, then the
corresponding stress tensors are given by (4.4.6) with the superscript 1
or 2 included to signify the choice of fluid, and the jump in the traction
is given by

(4.4.10)

Assuming that the surface tension is uniform, we compare the right-hand
side of (4.4.10) to the right-hand side of the force equilibrium equation
(4.3.6) for a two-dimensional interface, finding

p(2) _p(i) =7 /^ (4.4.11)



Working in a similar fashion for a three-dimensional interface using
(4.3.13), we find

p (2 ) -p ( i ) = 7 2K m , (4^2)

where Km is the mean curvature.
We have found that the jump in pressure across a two- or three-

dimensional interface is equal to the product of the surface tension and,
respectively, the curvature or twice the mean curvature of the interface.

As an application, we compute the jump in pressure across a spherical
interface of radius a, representing the surface of a liquid drop or bubble.
Designating the outer fluid as fluid 1 and the inner fluid as fluid 2, we
find that the mean curvature of the interface is equal to Km = I/a.
Consequently, the pressure jump is given by p^ — p^ = 2 7/a.

Problems

Problem 4.4.1 Jump in pressure across a two-dimensional interface.
Derive an expression for the jump in pressure across a circular inter-

face of radius a representing the trace of a cylindrical thread in the xy
plane.

Problem 4.4.2 Curvature of a soap film.
Explain why the mean curvature of a thin soap film confined between

two adjacent interfaces attached to a wire frame, must vanish.

4.5 Viscous and Newtonian fluids

In the absence of macroscopically observable fluid motion, the trac-
tion exerted on a specified side of a small fluid surface is given by equation
(4.4.7) in terms of the pressure. If the fluid exhibits macroscopic motion,
this equation is modified in two ways: first, the normal component of
the traction is enhanced with a new contribution that depends on the
physical properties of the fluid and the character of the local motion;
second, a tangential component is established.

To understand how these new contributions arise, we consider the
tractions developing in two complementary types of flow: an extensional
flow where the fluid is stretched and elongates, and a channel flow where
the fluid is sheared due to boundary motion.



Figure 4.5.1 (a) Extension of a liquid bridge subtended between two
coaxial cylinders that are pulled apart along their axes; (b) shear
flow in a two-dimensional channel confined between two parallel
plates; the motion is due to the in-plane translation of the upper
plate.

4.5.1 Extension of a thread

In one experiment, a thread of a liquid is suspended between two
rods forming an axisymmetric bridge, and the rods are pulled apart with
velocity V thereby extending the thread, as ilustrated in figure 4.5.1 (a).
A force is required to pull the rods apart and thus overcome the normal
component of the hydrodynamic traction, /x , imparted by the fluid to
the tips of the rods. The faster the rods are pulled apart, the higher the
magnitude of the traction; the greater the distance between the rods,
the lower the magnitude of the traction.

For most common fluids, a linear relationship exists between the
traction, the velocity of the rods, and the inverse of their distance, in
the form

f 0*0 — -<n + 9 LLeXt —
tx ~ P * L> (4.5.1)

where p is the pressure discussed in Section 4.4 in the context of hydro-
statics, V is the velocity of the rods, L is half the distance between the
rods, and \jfxi is a physical constant called the extensional viscosity of
the liquid comprising the thread.



4.5.2 Shearing of a layer

In a second experiment, a fluid is placed in a channel that is confined
between two parallel plates. The upper plate translates in the x direction
parallel to itself with constant velocity V, while the lower plate is held
stationary, as depicted in figure 4.5.l(b). A force in the x direction must
be exerted on the upper plate to balance the tangential component of the
traction fx developing due to the fluid motion. The higher the velocity
of the translating plate, the larger the magnitude of the traction; the
greater the distance between the two plates, the lower the magnitude of
the traction.

For most common fluids, a linear relationship exists between the
traction, the velocity of the moving plate, and the inverse of the distance
between the plates, /i,

f(y) - u** Y-Jx -V h* (4.5.2)

where p,sh is a physical constant associated with the fluid, called the
shear viscosity.

4.5.3 Simple fluids

We have established that stresses develop in a fluid as a result of
the motion. To proceed further, we consider the tractions developing
on the surface of a small fluid parcel, and argue the following properties
characterizing a simple fluid:

• If the parcel translates or rotates as a rigid body, tractions do not
develop over its surface.

• Tractions develop only when the parcel deforms.

• The distribution of traction over the parcel surface at a particular
instant in time depends only on the type and rate of deformation
that the parcel is undergoing at that particular time.

To this end, we recall the results of our analysis of kinematics
in Chapter 2: a small spherical fluid parcel in a flow deforms to
obtain an ellipsoidal shape whose axes are parallel to the three
eigenvectors of the rate of deformation tensor defined in equation
(2.1.28); the rates of deformation are equal to the corresponding
eigenvalues.



With the above properties as a point of departure, we proceed to
relate the stress tensor to the physical properties of the fluid and to the
structure of the velocity field by means of a constitutive equation.

4.5.4 Incompressible Newtonian fluids

The constitutive equation for an incompressible Newtonian fluid takes
the form

a = -pI + / /2 E, (4.5.3)

where p is the pressure, the coefficient /j, is the fluid viscosity, sometimes
called the dynamic viscosity, and E is the rate of deformation tensor
defined in equation (2.1.28). Note that the Newtonian constitutive rela-
tion respects the symmetry of the stress tensor discussed at the end of
Section 4.2.

Explicitly, the components of the stress tensor are given by the matrix
equation

(4.5.4)

In the absence of flow, we recover the hydrostatic stress tensor defined
in equation (4.4.6), involving the pressure.

Unidirectional shear flow

As an example, we consider the flow of a Newtonian fluid in a two-
dimensional channel confined between two parallel plane walls, where
the motion is generated by the translation of the upper plate, as de-
picted in figure 4.5.1(b). Physical intuition suggests that, at low and
moderate velocities, the fluid will translate only in the x direction with a
position-dependent velocity Ux varying in the y direction; to signify this
dependence, we write ux(y).

Using equation (2.1.22), we find that the rate of deformation tensor
for this two-dimensional flow is given by



(4.5.5)

Substituting (4.5.5) into the right-hand side of (4.5.3), we obtain the
stress tensor

(4.5.6)

The x component of the traction exerted on a fluid surface that is
perpendicular to the y axis, identified as the shear stress, is given by

(4.5.7)

Physically, this traction is attributed to the friction experienced by ad-
jacent fluid layers as they slide over one another with slightly different
velocities.

4.5.5 Viscosity

Strictly speaking, the viscosity of a fluid is a proportionality coef-
ficient relating the stress tensor to the rate of deformation tensor, as
depicted in equation (4.5.3). It is reassuring, however, to know that this
mathematical definition, established by phenomenological observation,
has a firm physical foundation. Thus, the viscosity is a genuine physical
constant dependent on the local physical conditions including tempera-
ture. The following table summarizes the viscosities of water and air at
three temperatures; cp stands for centipoise which is one hundredth of
the viscosity unit poise defined as 1 g/(cm sec).

Viscosity, //

Temperature Water Air
0C cp = 10~2g/(cm sec) cp

20 1.002 0.0181
40 0.653 0.0191
80 0.355 0.0209



As the temperature is raised, the viscosity of liquids is reduced,
whereas the viscosity of gases increases. This dichotomy is a reflection
of the different physical mechanisms that are responsible for the devel-
opment of stresses in these two fundamental classes of fluids. In the case
of liquids, the viscosity is due to occasional molecular excursions from a
mean position into neighboring empty sites. In the cases of gases, the
viscosity is due to relentless molecular excursions from regions of high
velocity to regions of low velocity in the course of random motions due
to thermal fluctuations.

Viscosity of gases

To demonstrate the relation between molecular and macroscopic flu-
id motion, we consider a gas undergoing unidirectional shear flow, and
derive an expression for the viscosity in terms of molecular properties.
In the simplest kinetic theory, the molecules are modeled as rigid spheres
moving with the local fluid velocity defined in Section 1.4, and with a
randomly fluctuating component. The average magnitude of the fluctu-
ating component is

(4.5.8)

where ks is Boltzmann's constant, T is the absolute temperature, and
M is the molecular weight. In the course of the random motion, two
molecules occasionally collide after having travelled an average distance
equal to the mean free path, A.

Consider a macroscopically stationary gas with vanishing fluid veloc-
ity. Using principles of statistical mechanics, we find that the number
of molecules crossing a unit surface area per unit time as a result of the
fluctuating motion, denoted by Z, is proportional to (a) the number of
molecules per unit volume defined as the number density n, and (b) the
average magnitude of the fluctuating velocity v. It can be shown, in
particular, that

(4.5.9)

A molecule crossing the unit surface at a particular instant has collid-
ed with another molecule at an average distance a above or below the
surface. Using principles of statistical mechanics, we find

(4.5.10)



where A is the mean free path. Relations (4.5.9) and (4.5.10) have been
derived taking into consideration that, since the molecules move ran-
domly in all directions, only one component of the velocity brings them
toward the unit surface under consideration.

Relations (4.5.8)-(4.5.10) also hold true when the fluid exhibits a
macroscopic motion, provided that the molecular velocity is computed
relative to the average velocity at the position where a molecule last
underwent a collision.

Figure 4.5.2 shows a schematic illustration of the instantaneous distri-
bution of molecules in a gas undergoing unidirectional shear flow. With-
out loss of generality, we have assumed that the fluid velocity increases
in the positive direction of the y axis. In the course of the motion,
molecules cross a horizontal plane corresponding to a certain value of
y, drawn with the heavy horizontal line, from either side. Because the
x velocity of molecules crossing from above is higher than the x veloci-
ty of molecules crossing from below, x momentum is transfered toward
the negative direction of the y axis. The rate of transer of x momen-
tum across a surface that is perpendicular to the y axis amounts to the
hydrodynamic traction fx .

Now, the rate of momentum transport defined in the preceding para-
graph can be quantified by setting

(4.5.11)

where Ux is the fluid velocity, and the superscripts + and — indicate
that the underlying variable is evaluated at a distance equal to a above
or below the transport surface. Effectively, the collection of molecules
crossing the y plane during a unit length of time are represented by
model molecules with the following properties: (a) the model molecules
last underwent a collision a distance a above or below the y plane, and
(b) the model molecules move with an average velocity that is equal to
the local fluid velocity evaluated at the position of last collision.

Because the flow is undirectional, the average fluid velocity normal
to a horizontal plane vanishes, and the number of molecules crossings the
y plane from either side per unit length of time are equal. Combining
equations (4.5.9)-(4.5.11), we find

(4.5.12)



Figure 4.5,2 A molecular model of the shear flow of a gas used to derive
the expression for the viscosity in terms of molecular properties,
shown in equation (4.5.14).

Since a is small compared to the macroscopic length scale of the shear
flow, we may approximate the fraction enclosed by the parentheses on
the right-hand side of (4.5.12) with a derivative, obtaining

(4.5.13)

Comparing equations (4.5.13) and (4.5.7), we now obtain an expres-
sion for the fluid viscosity,

(4.5.14)

We have derived the Newtonian constitutive equation from molecular
considerations and, in addition, we have obtained a prediction for the
viscosity of a gas in terms of molecular properties.

4.5.6 Ideal fluids

If the viscosity of a fluid vanishes, the fluid is considered frictionless
and is called ideal. The stress tensor in an ideal fluid is given by the
simplified version of (4.5.3)



° =-Pi- (4.5.15)

It is important to bear in mind that absence of viscosity is a math-
ematical idealization adopted only to facilitate the analysis. In the real
world, absence of viscosity should be interpreted as insignificance of hy-
drodynamic stresses associated with the fluid viscosity. The formal re-
quirement for viscous stresses to be negligible will be discussed in Chap-
ter 6.

Problems

Problem 4.5.1 Flow in a channel.
Consider steady unidirectional flow in a channel due to the transla-

tion of the upper wall, as depicted in figure 4.5.1(b).
(a) Perform a force balance over a rectangular fluid layer confined

between two y levels to show that, when the pressure is uniform, the
shear stress fx must be independent of y.

(b) Having established that fx is constant, solve the first-order d-
ifferential equation (4.5.7) for Ux in terms of y subject to the boundary
conditions Ux (y = O) =0 and Ux (y — h) = V, and evaluate fx in terms
of /^, V, and the channel width h.

Problem 4.5.2 Extensional flows.
(a) Consider a two-dimensional extensional flow in the xy plane with

velocity components Ux = k x and uy — -k y, where A: is a constant
with dimensions of inverse time called the rate of extension. The corre-
sponding pressure is constant. Confirm that the fluid is incompressible,
sketch the streamline pattern, and evaluate the stress tensor.

(b) Repeat (a) for axisymmetric extensional flow whose Cartesian
velocity components are given by Ux — k x, uy — -^k y, and uz — — ̂ k z.

(c) The axisymmetric extensional flow describes the motion inside
the thread illustrated in figure 4.5.1 (a). Assuming that the fluid is New-
tonian, compute the force necessary to pull the rods away with velocity
V in terms of the half-length of the thread Z/, the fluid viscosity //, and
the cross-sectional area of the rods A.



4.6 Simple non-Newtonian fluids

The Newtonian constitutive equation for an incompressible fluid,
shown in equation (4.5.3), describes the stresses developing in a fluid
consisting of small molecules. Fluids containing or consisting of macro-
molecules, such as polymeric solutions and melts, and fluids containing
suspended rigid or deformable particles, such as pastes, bubbly liquids,
and blood, exhibit more complicated behavior that is described by more
involved constitutive equations.

To derive constitutive equations for non-Newtonian fluids, we consid-
er the motion of a fluid parcel and seek to establish a relation between
the instantaneous tractions exerted on the parcel surface and the his-
tory of the parcel deformation. In the simplest class of materials, the
tractions depend only on the instantaneous rate by which the parcel is
deforming, expressed by the rate of deformation tensor E. The distin-
guishing feature of a non-Newtonian fluid is that the relation between
the stress tensor a and the rate of deformation tensor E is nonlinear.

4.6.1 Unidirectional shear flow

In the case of unidirectional shear flow, the Newtonian shear stress
(4.5.7) can be generalized by allowing the viscosity to be a function of
the shear rate dux/dy. If the viscosity is reduced as the shear rate is
raised, the fluid is called shear-thinning or pseudo-plastic] whereas if
the viscosity is increased as the shear rate is raised, the fluid is called
shear-thickening or dilatant.

Physically, the dependence of the viscosity on the shear rate is at-
tributed to changes in the configuration of molecules, changes in the
shape and relative position of particles suspended in the fluid, or to the
spontaneous formation of internal microstructure due to intermolecular
force fields and particle interactions.

4.6.2 Power-law fluids

The shear stress developing in a certain class of fluids in unidirec-
tional shear flow is described by the Ostwald-de Waele model. In this
model, the viscosity is proportional to the magnitude of the shear rate
raised to a power,



(4.6.1)

where /^o is a constant, and n is the power-law exponent. When n — 1,
we obtain a Newtonian fluid with viscosity /J.Q; n < 1 corresponds to
shear-thinning fluids, and n > 1 corresponds to shear-thickening fluids.

Substituting (4.6.1) into (4.5.7), we derive an expression for the shear
stress

(4.6.2)

Consider now flow in a channel generated by the translation of the
upper wall with velocity F, as illustrated in figure 4.5.1(b). Performing a
force balance over a rectangular fluid layer, as discussed in problem 4.5.1,
we find that, if the pressure is uniform, the shear stress is independent
of y, and the right-hand side of (4.6.2) is constant.

Now, the fluid velocity at the upper wall located at y = h is equal to
the wall velocity F, and the velocity at the lower wall located at y = O
is required to vanish. Integrating equation dux/dy = c, where c is the
constant shear rate, and using the aforementioned boundary conditions,
we find a linear velocity profile with shear rate dux/dy = V/h irrespective
of the value of n.

Although the velocity profile is linear for any value of n, the magni-
tude of the shear stress is a function of n, as shown in equation (4.6.2).
This distinction emphasizes that the kinematic appearance of a flow does
not necessarily reflect the magnitude of the stresses developing in the
fluid. Two flows that are kinematically identical may support different
stresses.

4.6.3 Yield-stress fluids

A certain class of heterogeneous fluids, including pastes and concen-
trated suspensions of fine particles, called Bingham plastics, flow only
when the shear stress established due to the motion lies above a certain
threshold. An idealized constitutive equation between stress and shear
rate for this class of materials is



Figure 4.6.1 Rheological response of a Bingham plastic showing a
yield-stress behavior in unidirectional flow.

(4.6.3)

where the constant TO is called the yield stress, and p, is the viscosity.
The relation between the shear stress and the shear rate is represented
by the solid line in figure 4.6.1.

Consider the familiar flow in a channel confined between two parallel-
sided walls generated by imparting to the upper wall a force Fx parallel to
the x axis. If the fluid is a Bingham plastic whose rheological behavior
is described by equations (4.6.3), a shear flow across the whole of the
channel will be established only when the externally imposed force F per
unit length of the channel I/, counteracting the shear stress, ayx — F/L,
is greater than the yield stress TQ.

Assuming that this occurs, we treat ayx as a constant, solve the
second of equations (4.6.3) for dux/dy, and then integrate with respect
to y subject to the boundary condition ux(y = O) = 0 to obtain the
linear velocity

(4.6.4)



The velocity of the upper wall is given by

(4.6.5)

Equation (4.6.5) allows to estimate the values of the physical constants
IJL and TQ from laboratory observation.

Problem

Problem 4.6.1 Yield-stress fluids.
The relation between the shear stress and the shear rate for a class

of yield-stress fluids is described by the long-dashed line in figure 4.6.1,
where the constant 7C is the critical shear rate. State the equations
describing this rheological behavior, and compute the shear stress es-
tablished in a channel with parallel-sided walls, where the upper wall
translates with velocity F, while the lower wall is held stationary.

4.7 Stresses in polar coordinates

We have discussed tractions and stresses in Cartesian coordinates.
In practice, it may be more convenient to work in cylindrical, spherical,
or plane polar coordinates with the benefit of reduced algebraic manip-
ulations. In this section, we define the components of the stress tensor
in these polar coordinates, and relate them to the pressure and to the
corresponding components of the rate of deformation tensor using the
constitutive equation for incompressible Newtonian fluids.

4.7.1 Cylindrical polar coordinates

Consider the system of cylindrical polar coordines (re, a, <p) depicted
in figure 4.7.1. The traction f^ exerted on a small surface that is per-
pendicular to the x axis, acting on the side facing the positive direction
of the x axis, may be resolved into its cylindrical polar components as

(4.7.1)



Figure 4.7.1 Components of the stress tensor in cylindrical polar coor-
dinates.

where ex, e<j, and e^ are unit vectors pointing, respectively, in the axial,
radial, and meridional directions. Recall that the orientation of ex is
constant, whereas the orientation of ea and e^ changes with position in
the flow.

The traction f ̂  exerted on a small surface that is perpendicular to
the vectorial distance from the x axis, and is thus parallel to the axial
and meridional directions at the designated center of the surface, may
be resolved into corresponding components as

£<'>=/M <* + #>«,+ /M V (4?_2)

Thirdly, the traction f &) exerted on a small surface that is normal
to the meridional direction, may be resolved as

f (*0 = fM ex + f(v) e<r + /M v (4.7.3)

Stacking the coefficients of the unit vectors on the right-hand sides
of (4.7.1)-(4.7.3) on top of one another in a particular order, we obtain
the stress tensor in cylindrical polar coordinates,



f(x) Ax) Ax)
Jx Ja J(p

°= /^ № 4ff) -
. /£° № 4V) J (4.7.4)

To simplify the nomenclature, we introduce the standard two-index
notation, writing

CW? = 4a), (4.7.5)

where Greek indices stand for #, a, or <p. With the convention expressed
by (4.7.5), the stress tensor is given by

&XX &XV ®X(p

® — &ax &aa &cr(p

_ &<px VVO- °vv J (4.7.6)

The stress components for an incompressible Newtonian fluid derive
from the constitutive equation (4.5.3) as

(4.7.7)

Note that the stress tensor remains symmetric in the cylindrical polar
coordinates.



Figure 4.7.2 Components of the stress tensor in spherical polar coor-
dinates.

4.7.2 Spherical polar coordinates

Consider the system of spherical polar coordines (r, 6, (p) depicted in
figure 4.7.2. The traction f ̂  exerted on a small surface that is normal to
the vectorial distance from the origin, acting on the side of the surface
facing away from the origin, may be resolved into its spherical polar
components as

f(r) = /W 6r + /W e, + /W e^ (4.7.8)

where ex, e#, and e^ are the unit vectors pointing in the radial, az-
imuthal, and meridional directions.

The traction f ̂  exerted on a small surface that is perpendicular
to the azimuthal direction corresponding to the angle 0, and is thus
parallel to the radial and meridional directions, may be resolved in the
corresponding form

*•>-№ ++ &•, + #>•* (< ? g)



Thirdly, the traction f &) exerted on a small surface that is normal to
the meridional direction, and is thus parallel to the radial and azimuthal
directions, may be resolved as

fM = fM Gr + fM ee + fM «v (4-7.10)

Stacking the coefficients of the unit vectors on the right-hand sides
of (4.7.8)-(4.7.10) on top of one another in a particular order, we obtain
the stress tensor in spherical polar cordinates

f f(r) Ar) f(r) 1
Jr JQ Jv

„= fW fW f(0)a — Jr Je J 9
f(v) Av) Av) (4.7.11)
Jr JQ J(p J ^ '

To simplify the nomenclature, we introduce the standard two-index
notation, writing of the stress tensor, writing

cr^/f, (4-7.12)

where Greek indices stand for r, #, or (p. With the convention expressed
by (4.7.12), the stress tensor is given by

arr OTQ arip

O = (JQr GQQ VQ^

Oyr 0(pQ &W (4.7.13)

The stress components for an incompressible Newtonian fluid derive
from (4.5.3) as

(4.7.14)



Figure 4.7.3 Components of the stress tensor in plane polar coordi-
nates.

Note that the stress tensor remains symmetric in the spherical polar
coordinates.

4.7.3 Plane polar coordinates

Consider finally a two-dimensional flow in the xy plane and refer to
the plane polar coordines (r, 9) depicted in figure 4.7.3. The traction
f(r) exerted on a small segment that is normal to the distance from the
origin, acting on the side facing away from the origin, may be resolved
into its plane polar components as

f(r) = /r
(r)er + /fl

(r)ee, (4.7.15)

where er and e# are the unit vectors pointing in the radial and polar
directions.

The traction f^ exerted on a small surface that is normal to the
direction of the polar angle #, and is thus parallel to the distance from
the origin, may be resolved as

f<'> =/rw * + /,<"«,. (4.7.16)



Stacking the coefficients of the unit vectors on the right-hand sides
of (4.7.15)-(4.7.16) on top of one another in a particular order, we obtain
the stress tensor in plane polar cordinates

(4.7.17)

To simplify the nomenclature, we introduce the usual two-index no-
tation, writing

*a» = ff\ (4-7-18)

where Greek indices stand for r or 9. With the convention expressed by
(4.7.18), the stress tensor is given by

(4.7.19)

The stress components for an incompressible Newtonian fluid derive from
the constitutive equation (4.5.3) as

(4.7.20)

Note that the stress tensor remains symmetric in the plane polar
coordinates.

4.8 Boundary condition
on the tangential velocity

In Section 2.10, we discussed the no-penetration boundary condition
over impermeable solid boundaries and interfaces between immiscible flu-
ids, involving the normal component of the fluid velocity. Viscous fluids,
that is, all real fluids obey an additional boundary condition concerning
the tangential component of the velocity.



Under most conditions, the vast majority of fluids satisfy the no-slip
boundary condition which requires that (a) the tangential component
of the fluid velocity over a solid boundary be equal to the tangential
component of the boundary velocity, and (b) the tangential component
of the fluid velocity be continuous across an interface between two im-
miscible fluids. Combined with the no-slip condition, the no-penetration
condition requires that the fluid velocity be equal to the velocity of an
impermeable solid boundary, and continuous across an interface.

The physical origin of the no-slip boundary condition over a solid
surface has not been established with certainty. One theory argues that
the molecules of a fluid next to a solid surface are adsorbed onto the sur-
face for a short period of time, and are then desorbed and ejected into
the fluid. This process slows down the fluid and renders the tangential
component of the fluid velocity equal to the corresponding component
of the boundary velocity. Another theory argues that the true bound-
ary condition is the condition of vanishing shear stress, and the no-slip
boundary condition arises due to microscopic boundary roughness; thus,
a perfectly smooth boundary would allow the fluid to slip.

In practice, the no-slip boundary condition has been confirmed in
the overwhelming majority of applications, and is the standard choice in
mainstream fluid dynamics. Exceptions to the no-slip boundary condi-
tion are found in the flow of rarified gases, in the flow of polymeric melts
at high pressure, and in the flow near a three-phase contact line where a
solid meets two liquids or a gas and a liquid. Another exception occurs
for a certain class of interfaces consisting of dual or multiple molecular
layers that may exhibit relative motion yielding a discontinous velocity.
Finally, the no-slip boundary condition is sometimes relaxed in numeri-
cal simulations to prevent the occurrence of singularities stemming from
excessive idealization; one example is the development of infinite force
on a plate scraping fluid off a surface.

Problem

Problem 4.8.1 Flow in a channel with slip.
Consider steady unidirectional flow in a channel with parallel walls

driven by the translation of the upper wall along the x axis with velocity
V, as illustrated in figure 4.5.1(b); the lower wall is stationary. The fluid
is allowed to slip over the lower wall so that the slip velocity Ux (y = O)



is related to the wall shear stress by

(4.8.1)

where I is a constant called the slip coefficient. When / = O, the slip
velocity vanishes and the no-slip boundary condition prevails.

In previous sections, we saw that, when the pressure is uniform, the
shear stress ayx is constant and independent of y. Assuming that the
no-slip condition applies at the upper wall, derive an expression for ayx

and for the velocity profile in terms of V, /i, /^, and /.

4.9 Wall stresses in Newtonian fluids

Combining the no-slip boundary condition discussed in Section 4.8
with the no-penetration boundary condition discussed in Section 2.10,
we may derive remarkably simple expressions for the Newtonian traction
exerted on a solid surface, amenable to simple physical interpretation.

Consider flow above a stationary flat solid surface located at y — O, as
illustrated in figure 4.9.1. The no-slip boundary condition requires that
the tangential components of the velocity, and thus their derivatives with
respect to x and z, vanish over the surface,

(4.9.1)

where the partial derivatives are evaluated at y = O. The no-penetration
condition requires that the normal component of the velocity, and thus
its derivatives with respect to x and z, also vanish over the surface,

(4.9.2)

where the partial derivatives are evaluated at y = O.

4.9.1 Shear stress

The two components of the Newtonian shear stress exerted on the
surface are given by



Figure 4.9.1 Flow over a plane wall where the no-slip boundary condi-
tion is required. The wall shear stress is proportional to the slope
of the velocity with respect to distance normal to the wall; the
normal stress is equal to the negative of the pressure.

(4.9.3)

evaluated at y = O. Using (4.9.2) to simplify (4.9.3), we find

(4.9.4)

evaluated at y = O.
Equations (4.9.4) show that the wall shear stress is simply equal to

the slope of the tangential velocity with respect to distance in the normal
direction, multiplied by the fluid viscosity.

4.9.2 Normal stress

The Newtonian normal stress exerted on the solid surface is given by

(4.9.5)



evaluated at j/ = O, where p is the pressure. Since the fluid has been
assumed incompressible, we may use the continuity equation (2.9.2) to
write

(4.9.6)

evaluated at y = O, and then invoke the first and fourth of equations
(4.9.1) to find duy/dy — O. Expression (4.9.5) thus simplifies to

°yy = -P» (4.9.7)

which shows that the normal stress at a solid surface is equal to the
negative of the pressure.

4.9.3 Generalization

The results displayed in equations (4.9.4) and (4.9.7) remain valid
even when the surface translates with a constant or time-dependent ve-
locity. Moreover, these results also apply when the surface is curved,
provided only that the y axis is defined to be normal to the surface at
the position when the shear or normal stress is evaluated.

Problem

Problem 4.9.1 Vorticity at a no-slip surface.
Show that the component of the vorticity vector normal to an imper-

meable surface vanishes. Hint: Use the second and third of equations
(4.9.1).



Chapter 5

Hydrostatics

5.1 Equilibrium of pressure and body forces
5.2 Force exerted on immersed surfaces
5.3 Archimedes' principle
5.4 Shapes of two-dimensional interfaces
5.5 A semi-infinite interface attached to an inclined plate
5.6 Meniscus between two parallel plates
5.7 A two-dimensional drop on a horizontal plate
5.8 Axisymmetric shapes

The simplest state of a fluid is the state of rest: the macroscopically
observed velocity vanishes, and the forces developing in the fluid are de-
scribed in terms of the pressure field established in response to a body
force. The subject of hydrostatics encompasses two main topics: the
computation offerees exerted on immersed surfaces and submerged bod-
ies, and the study of the shapes of interfaces separating two stationary,
translating, or rotating fluids. The problem statement and mathematical
formulation in both cases is straightforward, but deriving solutions for
all but the simplest configurations requires the use of numerical methods
for solving algebraic, ordinary, and partial differential equations.

5.1 Equilibrium of pressure and body forces

Consider a parcel of a stationary fluid, as illustrated in figure 5.1.1 (a).
Newton's second law of motion requires that, in the absence of a macro-
scopically observable flow, the sum of the forces exerted on the parcel
should balance to zero. In Chapter 4, we saw that two kinds of forces
are exerted on the parcel: a body force due to the gravitational or some
other force field mediated by long-range molecular interactions, and a
surface force associated with the hydrodynamic traction.



Figure 5.1.1 (a) Schematic illustration of a parcel of a stationary flu-
id with the unit normal vector pointing outward, (b) A parcel
with the shape of a rectangular parallelepiped serving as a control
volume for deriving the differential equations of hydrostatics.

5.1.1 Body force

The body force due to gravity may be expressed as an integral over
the volume of the parcel involving the generally position-dependent den-
sity p, in the form

(5.1.1)

where g = (gx,gy,9z) is the vectorial acceleration of gravity. On the
surface of the earth, the magnitude of g has the approximate value |g| =
g = 9.80665 m/sec2.

5.1.2 Surface force

The surface force may be expresssed in terms of the traction f exerted
on the surface of the parcel in the corresponding form

(5.1.2)

In the absence of observable fluid motion, the traction is due to the
pressure alone pushing the surface of the parcel toward the interior. If n



is the unit vector normal to the surface of the parcel pointing outward,
as illustrated in figure 5.1.1 (a), then

f=-pn. (5.1.3)

The minus sign on the right-hand side accounts for the opposite orienta-
tions of the normal vector and of the normal traction due to the pressure.
Substituting (5.1.3) into (5.1.2), we derive an expression for the surface
force in terms of the pressure,

(5.1.4)

5.1.3 Force equilibrium

Setting the sum of the body force given in (5.1.1) and the surface
force given in (5.1.4) equal to zero, we obtain the vectorial equilibrium
condition

(5.1.5)

whose three scalar components are

(5.1.6)

5.1.4 Equilibrium of an infinitesimal parcel

Consider now a small fluid parcel with the shape of a rectangular
parallelepiped centered at the origin, as illustrated in figure 5.1.1(b).
The six flat sides of the parcel are perpendicular to the rr, y, or z axis,
the lengths of the three sides are, respectively, equal to Arc, Ay, and Az,
and the volume of the parcel is equal to AV^ = Ars Ay Az.

Because the size of the parcel is small, variations in the density over
the volume of the parcel can be neglected, and the volume integrals on
the left-hand side of equations (5.1.6) may be approximated with the
products



PQ gx AV, PQ gy AF, pQ 9z AF, ^ 1 _

where po is the density of the fluid evaluated at the center of the parcel,
located at the origin.

Consider the surface integral on the left-hand side of the first of
equations (5.1.6). The x component of the normal vector vanishes on
all sides, except on the two sides that are perpendicular to the x axis,
located at x — ̂ Ax, and x — -^Ax, designated as the first and second
side. On the first side nx = 1, and on the second side nx = — 1. Because
the size of the parcel is small, variations in pressure over each side may
be neglected, and the pressure over a side may be approximated with
the value at the side center. Subject to this approximation, the surface
integrals on the right-hand side of the first of equations (5.1.6) over the
first and second side are, respectively, equal to

(5.1.8)

where the parentheses enclose arguments. Adding these two contribu-
tions, we obtain

(5.1.9)

Next, we observe that, in the limit as Ax tends to zero, the ratio of
the differences

(5.1.10)

tends to the partial derivative dp/dx evaluated at the origin, and the
difference (5.1.9) reduces to



(5.1.11)

Substituting (5.1.11) along with the first of the approximate forms
(5.1.7) into the x component of the force balance (5.1.6), and simplifying
by eliminating AV on both sides, we obtain the differential equation

(5.1.12)

where the density and the partial derivative of the pressure are evaluated
at the origin. Since, however, the location of the origin is arbitrary,
equation (5.1.12) is valid at every point in the fluid.

Working in a similar fashion with the second and third of the hydro-
static equilibrium equations (5.1.6), we obtain the corresponding differ-
ential equations

(5.1.13)

The three scalar equations (5.1.12) and (5.1.13) may be collected into
the compact vector form

PS = Vp, (5.1.14)

where Vp = (dp/dx^dp/dy^dp/dz) is the gradient of the pressure. In
physical terms, the differential equation (5.1.14) expresses a balance be-
tween gravitational and pressure force in hydrostatics.

Equation (5.1.14) provides us with a basis for computing the distri-
bution of pressure and density in a fluid, subject to additional conditions
concerning the physical properties of the fluid, as required by thermo-
dynamics. Specifically, given the density field, or a relation between the
density and the pressure, equation (5.1.14) allows us to compute the cor-
reponding pressure and vice versa. To this end, we make a distinction
between compressible gases and incompressible liquids.

5.1.5 Gases in hydrostatics

The density of a gas is related to the pressure by means of an equation
of state provided by thermodynamics. For an ideal gas,



(5.1.15)

where M is the gramo-molecular weight, and R is the ideal-gas constant,
as discussed in Section 4.4. Substituting (5.1.15) into (5.1.14), and re-
arranging, we obtain a vectorial equation involving the pressure and
temperature,

(5.1.16)

For example, the x component of equation (5.1.16) reads

(5.1.17)

Assuming now that the temperature of the fluid is uniform, we inte-
grate (5.1.17) with respect to x and find

(5.1.18)

where /x(y, z) is an unknown function. Working in a similar fashion with
the y and z components of (5.1.16), always under the assumption that
the temperature is uniform, we find

(5.1.19)

Comparing the last three equations, we obtain the pressure distribution

(5.1.20)

where c is a positive, possibly time-dependent, constant with units of
pressure, determined by requiring an appropriate boundary condition.

Expressing the term in the parentheses on the right-hand side of
(5.1.20) in terms of the inner product of the gravity vector and the
position vector, and transferring the last term to the left-hand side, we
obtain the compact form

(5.1.21)

which describes the pressure distribution in an ideal gas with uniform
temperature.



Pressure distribution in the atmosphere

As an application, we consider the pressure distribution in the at-
mosphere, regarded as an ideal gas with molecular weight M = 28.97
kg/kmole, at temperature 25° C corresponding to the absolute temper-
ature T = 298 K. In Cartesian coordinates with origin at sea level, the y
axis pointing upward, and the x and z axes horizontal, the components
of the acceleration of gravity vector are given by gx = O, gy = -#, and
gz = O, where g = 9.80665 m/sec2. Equation (5.1.21) simplifies to

(5.1.22)

where c = PQ is the pressure at sea level. Solving for p, we find the
exponentially decaying field

(5.1.23)

Taking P0 = 1.0 atm = 1.0133 x 105 Pascal = 1.0133 x 105kg m"1 sec~2,
we find that the pressure at the elevation of y = 1000 m is equal to

(5.1.24)

The corresponding density distribution is found by substituting the pres-
sure distribution (5.1.23) into the right-hand side of the equation of state
(5.1.15).

5.1.6 Liquids in hydrostatics

Liquids at low and moderate pressures are nearly incompressible:
the density is a physical constant dependent primarily on temperature.
Working as in the case of gases, but treating the density as a constant, we
find that the pressure distribution is given by the counterpart of equation
(5.1.21)

(5.1.25)

where c is a constant with units of pressure determined by requiring an
appropriate boundary condition.



Figure 5.1.2 Illustration of a U-tube manometer. The pressure distri-
bution in the fluid is described by the equations of hydrostatics
even when the fluid has a convoluted shape, as long as it remains
continuous and it is not interrupted.

Pressure distribution in a pool

As an example, we consider the pressure distribution in a liquid pool
with a horizontal surface. In Cartesian coordinates with the y axis per-
pendicular to the surface of the pool pointing in the vertical direction
upward, and the x and z axes horizontal, the components of the acceler-
ation of gravity vector are given by gx — O, gy = —g, and gz = O, where
g is the magnitude of the acceleration of gravity. In this case, equation
(5.1.25) simplifies to

P= -pgy + c. (5.1.26)

Setting the origin of the y axis at the pool surface where the liquid
pressure is equal to the atmospheric pressure P^tm? we find that the
constant c is equal to PAITH-

Manometer

The pressure distribution given in (5.1.25) is also valid even when
the liquid occupies a convoluted domain, provided only that the liquid
remains continuous and it is not interrupted. In practice, this property
is exploited for computing the pressure difference across the two ends of
a tube in terms of the difference in the levels of a liquid column placed
within the tube. A simple device that serves this purpose is the U-tube
manometer illustrated in figure 5.1.2.



The pressure distribution in the liquid inside the U-tube manometer
is given by equation (5.1.26). Applying this equation at the two ends
of the liquid located at y = y\ and 2/2, and subtracting the resulting
expressions, we find

&p • = P(VI) -p(y2) = pg(yz -yi). (5.1.27)

If the tube is exposed to the atmosphere at the first end, p(yi) = PAtm,
then p(y<2) = PAITH + P 9 h where h = y\ - y<2 is the readily measurable
rise of the liquid column in the manometer.

Problems

Problem 5.1.1 Hydrostatic pressure distribution.
(a) Derive the pressure distribution in an incompressible liquid given

in equation (5.1.25).
(b) Derive the pressure distribution in an ideal gas occupying the

semi-infinite region y > O, when the temperature decreases exponentially
as T = T0 - AT (1 - e~a2/), where T0, AT, and a are three specified
constants. The gravity vector points in the negative direction of the y
axis.

Problem 5.1.2 Function of an aircraft altimeter.
The temperature in the lower part of the troposhpere, extending 10

km above the surface of the earth, decreases at a nearly linear rate as
T = TO — a y, where TQ is the temperature at the surface of the earth
corresponding to y = O, and a is the lapse rate; in North America, a =
6.5 K/km.

(a) Assuming that the atmosphere behaves like an ideal gas, derive
the pressure distribution

>-M-fr?' (5.L28,

where PQ is the pressure at sea level, and evaluate the dimensionless
exponent

B- Mg

P = Ji^- (5.1-29)

(b) Show that, as a tends to zero, in which case the temperature
distribution tends to become constant, the pressure distribution (5.1.28)
reduces to that shown in (5.1.23).



Figure 5,2.1 Illustration of a surface that (a) contains or (b) is im-
mersed in a stationary fluid.

Solving (5.1.28) for the elevation y, we find

(5.1.30)

This equation is used for calibrating aircraft altimeters, that is, for trans-
lating pressure measured with a barometer into altitude.

Problem 5,1.3 How many molecules within a volume of gas?
How many molecules are there within 1 cubic centimeter (1 milliliter)

of gas under atmospheric pressure and temperature 25° C?

5.2 Force exerted on immersed surfaces

To compute the hydrostatic surface force exerted on a surface that
either contains or is immersed in a stationary fluid, as illustrated in figure
5.2.1 (a, b), we repeat the arguments the led us to equation (5.1.4), and
find

(5.2.1)

where n is the unit vector normal to the surface pointing into the fluid,
and the integration is performed over the surface. To evaluate the right-
hand side of (5.2.1), we must first compute the pressure distribution
within the fluid as discussed in Section 5.1, and then compute the integral
by analytical or numerical methods.



Figure 5.2.2 A sphere floating on the surface of a liquid at floating
angle /3. The dashed line represents the contact line.

5.2.1 Force on a floating sphere

As an example, we consider the force exerted on a sphere of radius
a floating on the surface of a liquid, as depicted in figure 5.2.2. In
spherical polar coordinates with origin at the center of the sphere and
the x axis pointing upward, the circular contact line where the surface
of the liquid meets the sphere is located at O — ft. Symmetry requires
that the horizontal components of the surface force exerted on the sphere
vanish. The vertical component of the surface force is given by

(5.2.2)

where nx = cos 9 is the x component of the unit normal vector.
The pressure distribution is given in equation (5.1.25) with gx = —g,

gy = O, and gz = O, yielding p = —pgx+c. To compute the constant c, we
require that the pressure at the contact line be equal to the atmospheric
pressure, p(x = a cos /3) — PAtm, and find PAITH — —pgacos/3 + c, which
may be rearranged to give c = p g a cos /3 + PAITH- Writing x = acos#,
we find that the pressure distribution is given by

p = -p g a (cos 6 - cos /3) + PAITH- (5.2.3)

Substituting now (5.2.3) into the integral on the right-hand side of
(5.2.2), we find that the force exerted on the sphere by the liquid is given
by



(5.2.4)

To evaluate this integral, we note that the differential of the surface area
of the sphere may be expressed in the form dS — (ad(p)(adQ}, where
a — a sin 6 is the distance of a point on the surface of the sphere from
the x axis, and (p is the meridional angle. Substituting this expression
into the right-hand side of (5.2.4), and integrating with respect to </?, we
find

(5.2.5)

Next, we set sin 9 d6 = — dcos#, and carry out the integration on the
right-hand side to find

'(5.2.6)

Working in a similar fashion, we find that the x component of the
force due to the atmospheric pressure exerted on the non-immersed part
of the sphere, subtended between 9 = 0 and /3, is given by

(5.2.7)

Adding the two contributions (5.2.6) and (5.2.7), we obtain the buoyancy
force exerted on the sphere, given by

(5.2.8)

It can be shown by elementary trigonometry that the term enclosed
by the square brackets on the right-hand side of (5.2.8) is equal to the
immersed volume of the sphere, that is, the volume of the sphere lying
underneath the surface of the liquid, which is equal to the volume of the
fluid displaced by the sphere. When the sphere is completely immersed,
corresponding to ft = O, the term enclosed by the parantheses on the
right-hand side of (5.2.8) is equal to 4, and the term enclosed by the
square brackets is equal to the volume of the sphere, 47ra3/3.

Equation (5.2.8) states that the hydrostatic force exerted on a floating
sphere is equal in magnitude and opposite in direction to the weight of
the fluid displaced by the sphere. In Section 5.3, we shall see that this is a
more general result applicable to arbitrarily shaped floating or immersed
bodies.



Computation of the floating angle

The floating angle /3 is determined by the weight of the sphere: the
heavier the sphere, the smaller the angle. There is a critical weight
where /3 becomes equal to zero and the sphere is completely submerged.
To compute the floating angle corresponding to a certain weight W, we
set W equal to the buoyancy force given in (5.2.8), and rearrange to
obtain a cubic equation for cos/3,

(5.2.9)

where

(5.2.10)

is a dimensionless constant. We note that the fraction in the denominator
of (5.2.10) is equal to the volume of the sphere, and this suggests that,
if the sphere is made of a homogeneous material of density p#, then
s = PB/P is the density ratio. A neutrally buoyant sphere corresponds
to s = 1, in which case cos/? = 1 and /3 = 0 satisfies equation (5.2.9), as
expected.

Newton's method

A variety of numerical methods are available for solving the nonlinear
algebraic equation (5.2.9). In practice, Newton's method strikes the
optimal balance between conceptual simplicity and numerical efficiency,
and is a standard choice.

To formalize Newton's method in general terms, we define the vari-
able q = cos/3, and express (5.2.9) in the generic form

f(q) = O, (5-2.11)

where, in the case of the floating sphere,

f(q)=q3-3q + 2(2s-l). (5.2.12)

The graph of the function f ( q ) for s = 0.25 is shown in figure 5.2.3. The
requisite value of q is located at the crossing of the graph of f ( q ) and
the q axis, denoted by Q, satisfying f ( Q ) = O.

To implement Newton's method, we make an initial guess for the
desired root Q, denoted by g(°), and then generate a sequence of im-
provements working as follows. Near the point q(°\ the function f ( q )
may be approximated with a linear function that arises by expanding
f ( q ) in a Taylor series about q^\ and discarding all nonlinear terms to
obtain the approximate form



Figure 5.2.2 Graph of the function f(q) defined in equation (5.2.12)
whose root Q is required. To compute the root using Newton's
method, we make an initial guess for Q, called g(°), and then im-
prove it moving along the tangent to the graph toward the q axis.

(5.2.13)

The graph of this linear function is drawn with the straight line in figure
5.2.2. Setting f(q) = O, solving for the q that is located within the
parentheses on the right-hand side of (5.2.13), and denoting the solution
by q^l\ we obtain the improved value

(5.2.14)

In the case of the floating sphere, (df/dq)(q) = 3q2 - 3. The process is
then repeated yielding a sequence of successive approximations based on
the recursive formula

(5.2.15)



for k = O,1, Erroneously replacing the minus sign with a plus sign
on the right-hand side of (5.2.15) is a common source of frustration.

An error analysis shows that, as long as the initial quess q^ is suf-
ficiently close to the root Q, the sequence defined by (5.2.15) converges
to Q, and the rate of convergence behaves as follows:

• If the graph of the function f ( q ) is not horizontal at the root,
that is, (df/dq)q=Q / O, then the rate of convergence is quadratic,
meaning that

q(k+i)-.Q~S(qW-Q)2
J (5.2.16)

where S = ffl(Q)/[2ff(Q)} is an a priori unknown constant.

Equation (5.2.16) states that the magnitude of the error in the
current iteration, expressed by the left-hand side, is roughly equal
to the square of the magnitude of the error in the previous iter-
ation, multiplied by a constant. Consequently, if the initial error
g(°) - Q is sufficiently small, the magnitude of the error gW - Q
will keep decreasing during the iterations, no matter how large the
value of the coefficient 5, as long as the initial guess is close to the
root for (5.2.16) to be valid.

• If the graph of the function f ( q ) is horizontal at the root, in which
case (df/dq)q=Q = O and the root is multiple, the rate of conver-
gence is linear, meaning that

,<»'>-«* =£V>-«>, (5.,17)

where m is the multiplicity of the root; for a double root, m = 2.

Equation (5.2.17) states that the magnitude of the error in the
current iteration is roughly equal to that in the previous iteration
multiplied by the positive coefficient (m — l)/m which is less than
unity for any value of m > 1. Consequently, the error \q№ —Q\ will
keep decreasing during the iterations as long as the initial guess is
close to the root for (5,2.17) to be valid.



Figure 5.2.3 A pycnometer is used to measure the specific gravity of a
liquid, that is, the ratio between the density of the liquid and the
density of water.

Problem

Problem 5.2.1 Pycnometer.
A pycnometer is an antiquated device used for measuring the specific

gravity of a liquid, defined as the ratio of the density of the liquid and
the density of water. This is done by reading the level of the free-surface
on a scale printed on a vertical tube attached to a spherical flask floating
on the liquid, as illustrated in figure 5.2.4. Pycnometer derives from the
Greek word KVKVOTTITO. which means density. Derive an equation that
allows us to calibrate a pycnometer on the basis of the known density of
water.

Computer problem

Problem c.5.2.1 Floating sphere.
(a) Directory 00-num.men/04~nLeq of FDLIB includes the program

nonJinl.f that implements Newton's method for solving one nonlinear
equation. Use the program to solve equation (5.2.9), and plot the float-
ing angle /3 against the dimensionless parameter s defined in equation
(5.2.10). Discuss the rate of convergence of the iterations in light of
equations (5.2.16) and (5.2.17).



(b) Directory OO-num-men/04-nLeq of FDLIB includes the program
cubic.} that computes the three roots of a cubic equation using Cardano's
formulae. Use the program to solve equation (5.2.9), and plot the floating
angle /3 against the dimensionless parameter s.

5.3 Archimedes' principle

Consider the force exerted on a body with arbitrary shape immersed
in a stationary fluid. Using equation (5.2.1), we find that the surface
force exerted on the body is given by

(5.3.1)

where n is the unit vector normal to the body pointing into the fluid.
It would appear that the computation of the integral on the right-hand
side of (5.3.1) requires detailed knowledge of the geometry of the body;
this is true when the fluid is incompressible. When, however, the fluid
is incompressible, the integral may be evaluated in a generic fashion
yielding a remarkably simple expression for the force in terms of the
body volume and fluid density.

Substituting the pressure distribution for an incompressible fluid giv-
en in (5.1.25) into the right-hand side of (5.3.1), we find

(5.3.2)

A key observation in evaluating the integral is that the integrand is the
product of the unit normal vector and a scalar function that is linear
with respect to the components of the position vector.

To see how the evaluation of the integral can be simplified, we consid-
er a body having the shape of a rectangular parallelepiped, as illustrated
in figure 5.1.1(b). The six flat sides of the body are perpendicular to the
x, y, or z axis, the lengths of the edges are equal to Ax, Ay, and Az, and
the volume of the body is equal to VB — Ax Ay Az. The unit normal
vector is constant over each one of the six sides; for example, over the
side that is perpendicular to the x axis and faces the positive direction
of the x axis, n = (1,0,0). Taking into consideration this and similar
simplifications, we evaluate the integral on the right-hand side of (5.3.2)
without any approximation, and find



Fs = -pVBg, (5>3>3)

which expresses Archimedes's principle: the force exerted on an im-
mersed body by the ambient fluid is equal in magnitude and opposite in
direction to the weight of the fluid displaced by the body.

To compute the integral on the right-hand side of (5.3.2) over an
arbitrarily shaped body, we subdivide the volume of the body into small
rectangular parallelepipeds, and approximate the surface of the body
with the collection of the faces of the parallelepipeds that are wetted by
the fluid. Because of cancellations, the sum of the integrals over the faces
of all elementary parallelepipeds is equal to the sum of the integrals of
the faces that are wetted by the fluid. Summing the contributions, we
find that the force exerted on the body is given by (5.3.3) independent of
the shape of the body: Archimedes's principles stands true for arbitrarily
shaped bodies.

5.3.1 The Gauss divergence theorem

Formula (5.3.3) may be derived in a more rigorous fashion using
the Gauss divergence theorem in three dimensions stated in equation
(2.6.25). Selecting hx = /, hy = O, and hz = O to form the vector
function h — (/, O, O), where / is a scalar function of position, we obtain

(5.3.4)

The complementary selections h = (O, /, O) and h = (O, O, /) yield the
corresponding identities

(5.3.5)

Relations (5.3.4) and (5.3.5) may be collected into the vector identity

(5.3.6)

where V/ = ( d f / d x , d f / d y , df/dz) is the gradient of /.



Comparing now (5.3.6) with (5.3.2), we set

/ = P (3x x + gy y + gz z] + P0, /5 3 ?x

compute
V/ = P (gx, Qy, Qz) = Pg, (5.3.8)

and find that the surface force is given by

(5.3.9)

which reproduces and confirms equation (5.3.3).

5.3.2 Net force on a submerged body

If a body of volume VB consists of a homogeneous material with
density PB, then the mass of the body is equal to ms = PB VB, and its
weight is equal to

W = PB^Bg, (5.3.10)

where g is the acceleration of gravity. Adding the weight of the body to
the buoyancy force given in (5.3.3), we find that the net force exerted on
an immersed body is given by

F = F5 + W - (PB - p) VB g. ($3.11)

The density of a neutrally buoyant body is equal to the density of the
ambient fluid, and the right-hand side of (5.3.11) vanishes yielding a zero
net force.

Consideration of the moments of the traction exerted on the body
reveals that the buoyancy force passes through the center of mass of
the fluid displaced by the body, whereas the weight of the body passes
through the center of mass of the body. If the former lies above the
latter, then the body is in a state of stable equilibrium and will remain
stationary; otherwise, it will spontaneously rotate to reach a stable con-
figuration.



Problem

Problem 5.3.1 Applications of the Gauss divergence theorem.
(a) Apply (5.3.6) for a constant function / and discuss your result.
(b) The center of gravity of a homogeneous body with uniform density

is defined in terms of a volume integral as

(5.3.12)

Show that an equivalent expression in terms of a surface integral is

(5.3.13)

5.4 Shapes of two-dimensional interfaces

Consider two superposed stationary incompressible fluids separated
by an infinite horizontal interface located at y = y/, as illustrated in
figure 5.4.1. The upper fluid is designated as fluid 1, and the lower fluid
is designated as fluid 2. Using the general expression for the pressure
distribution in an incompressible liquid given in equation (5.1.25), we
find that the pressure distributions in the two fluids are given by

P(l\y] = -Pi 9V+ ci, P(2)(y) = -P29V + C2. (5A.1)

The two constants c\ and C2 are related by the condition for the jump in
the traction across an interface with constant surface tension stated in
equation (4.4.11). Since in this case the curvature of the interface van-
ishes, K = O, condition (4.4.11) requires that the pressure be continuous
across the interface,

P(l](y = vi) = p(2)(y = y/). (5.4.2)

Substituting the pressure distributions (5.4.1) into (5.4.2), we find

-pi gyi + ci = -p2 gyi + C2, (5.4.3)

which may be rearranged to give

C2 = ci + (p2 - pi) g yi. (5.4.4)



Figure 5.4.1 An infinite horizontal interface separating two stationary
fluids.

One of the two constants c\ or 02 is determined by requiring an appro-
priate boundary condition far from the interface, and the second follows
from (5.4.4). For example, if the pressure on the upper side of the inter-
face is equal to the atmospheric pressure PAtnn then c\ = PAtm + PiQVi
and C2 = PAtm + P2 9 Vi-

5.4.1 Static contact angle

In practice, the flat interface depicted in figure 5.4.1 terminates at a
side wall, as illustrated in figure 5.4.2. Further examples of terminated
interfaces are depicted in figure 5.5.1 illustrating a semi-infinite interface
ending at an inclined plate, in figure 5.6.1 illustrating a finite interface
confined between two parallel flat plates, and in figure 5.7.1 illustrating
the finite interface enclosing a drop attached to a horizontal plane.

The line where the two fluids meet at a solid surface is called the
contact line. In the case of two-dimensional or axisymmetric interfaces,
the contact line is represented by the contact point, which is the trace
of the contact line in the xy or a meridional plane, identified by a filled
circle in figures 5.5.1, 5.6.1, and 5.7.1.

The angle subtended between (a) the line that is normal to the con-
tact line and tangential to the solid surface, and (b) the line that is
normal to the contact line and tangential to the interface, measured on

Fluid 1

Fluid 2



Figure 5.4.2 An interface ending at a contact line; a is the contact
angle measured on the side of fluid numbered 2.

the side of fluid labelled 2, as illustrated in figure 5.4.2, is called the static
contact angle. The static contact angle is a physical constant determined
by the prevailing physical conditions and physical properties of the solid
and fluids. If fluid 1 wets the solid better than fluid 2 does, then the
contact angle is smaller than Tr/2; whereas if fluid 2 wets the solid better
than fluid 1 does, the contact angle is larger than Tr/2 but less than the
maximum possible value of TT.

If the side-wall illustrated in figure 5.4.2 is vertical, and the static
contact angle is equal to Tr/2, the interface will remain flat all the way
up to the contact line. Under more general conditions, the interface will
assume a curved shape with nonzero curvature established to satisfy the
physical requirement on the contact angle.

5.4.2 The Laplace-Young equation

To derive the equation governing the shape of a curved interface, we
substitute the pressure distributions (5.4.1) into the interfacial condition
(4.4.11), and find

-P2 g yi + C2 + PI g yi - ci = 7 *. ^A ̂

Rearranging, we obtain the Laplace-Young equation governing the shape
of a two-dimensional interface in hydrostatics,
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(5.4.6)

where Ap = p% — pi, and B = (c<2 — ci)/7 is a constant with dimensions
of inverse length determined by requiring an appropriate boundary con-
dition or global constraint. Implicit in (5.4.6) is the assumption that the
acceleration of gravity points toward the negative direction of the y axis;
for different orientations, straightforward modifications are necessary.

Assuming that the fluids are stably stratified, that is, p2 > pi or
Ap > O, we introduce the capillary length defined as

(5.4.7)

and recast equation (5.4.6) into the simpler form

(5.4.8)

For an air-water interface at 20° Celsius, 7 = 73 dynes/cm = 73 x 10~3

kg/sec2, pi—0.0 kg/m3, p2=1000.0 kg/m3, yielding a capillary length of
2.72 mm.

The Laplace-Young equation (5.4.8) requires that the curvature of an
interface be a linear function of the elevation from a reference state. An
obvious solution arises by assuming that y/ is constant, and then setting
B = yj/l2 to find ft = O. The flat shape of the interface computed in
this manner, however, will not necessarily conform with the boundary
condition on the static contact angle, and the obvious solution will not
generally be admissible: the shape of the interface must be found so
that both (5.4.8) and the boundary condition on the contact angle are
satisfied.

Problem

Problem 5.4.1 Laplace-Young equation in three dimensions.
Show that the counterpart of equation (5.4.8) for a three-dimensional

interface is
(5.4.9)

where Km is the mean curvature.



Figure 5.5.1 A semi-infinite interface attached to an inclined plate. Far
from the plate, the interface becomes horizontal.

5.5 A semi-infinite interface
attached to an inclined plate

We begin the study of two-dimensional interfacial shapes by consid-
ering a semi-infinite interface attached to a flat plate that is inclined at
an angle /3 with respect to the horizontal, as illustrated in figure 5.5.1.
Far from the plate, as x tends to infinity, the interface tends to become
horizontal. The contact angle subtended between the inclined plate and
the tangent to the interface at the contact point is required to have the
prescribed value a.

It will be convenient to set the origin of the y axis at the position
of the flat interface far from the plate, and describe the interface by the
equation

yi = /(*)• (5.5.i)
As x tends to infinity, the function f ( x ) tends to zero yielding a flat
interface. Since the curvature of the interface vanishes far from the plate,
the constant B on the right-hand side of the Laplace-Young equation
(5.4.8) must be equal to zero, yielding the simpler form

12 (5.5.2)
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Our first task is to derive an expression for the curvature in terms of the
function f ( x ) .

5.5.1 Curvature

Taking the inner product of equation (4.3.5) and the unit normal
vector n^1), we find

(5.5.3)

When the interface does not turn upon itself but has the monotonic
shape depicted in figure 5.5.1, we may write

(5.5.4)

where a prime denotes a derivative with respect to x. Substituting ex-
pressions (5.5.4) into the right-hand side of (5.5.3), and simplifying, we
obtain the desired expression for the curvature,

(5.5.5)

It will be useful to introduce the slope angle 9 shown in figure 5.5.1,
defined by the equation

tan0 = /' (5.5.6)

and note that the fraction on the right-hand side of (5.5.5) is equal to
I cos#|. The curvature of the interface is then given by the alternative
expression

(5.5.7)

5.5.2 Governing equation

Combining (5.5.5), (5.5.7), and the Laplace-Young equation (5.5.2),
we derive a differential equation governing the shape of the interface,



(5.5.8)

Integrating once with respect to x, we obtain

(5.5.9)

where C is an integration constant. Demanding that, as x tends to
infinity, 6 tends to TT and / tends to vanish, we find C = I .

5.5.3 Capillary rise

At the contact line located at x = O, the slope angle 9 defined in
equation (5.5.6) takes the value

0CL = a + P- (5.5.10)

Evaluating (5.5.9) at x = O, setting C = I, and rearranging, we obtain
an expression for the positive or negative capillary rise h = /(O),

A_ = l-|cos(a+ /?)|, (55n)

which shows that the maximum possible value of \h\ occurs when a. + /3
is a multiple of ?r/2, and the maximum value is equal to \/2/.

5.5.4 Numerical formulation

To compute the shape of the interface, we set the left-hand side of
(5.5.9) equal to the right-hand side with C = I , and rearrange to obtain
the first-order ordinary differential equation

(5.5.12)

where we have introduced the dimensionless function / = ///. The plus
or minus sign on the right-hand side must be selected according to the
expected interface shape.

The preceding analysis assumes that the interface has a monotonic
shape, and this requires that OCL lie in the range (?r/2, 3?r/2). Outside



this range, the capillary rise is given by equation (5.5.11), but with the
minus sign replaced by a plus sign on the right-hand side.

When the shape of the interface is non-monotonic, which means that
the interface becomes vertical at a point, the function f ( x ) is multi-
valued, and the integration of (5.5.12) requires special attention. To
bypass this subtlety, we regard x along the interface as a function of the
independent variable /, and recast (5.5.12) into the form

(5.5.13)

The solution of (5.5.13) is to be found for |/| < |/i|, where \h\ is the
capillary rise computed from equation (5.5.11).

5.5.5 Numerical method

A numerical solution of (5.5.13) may be computed according to the
following steps:

1. Compute the angle QCL from equation (5.5.10).

2. Compute the capillary rise h using the formulae:

(5.5.14)

3. Integrate the differential equation (5.5.13) from / — h to O with
initial condition x(f = h) = O using, for example, the explicit Euler
method or the explicit modified Euler method discussed in Section
1.5. If h is negative, use a negative spatial step.

To implement the explicit Euler method, we select a small positive
or negative integration step A/ = h/N, where N defines the level
of numerical discretization, evaluate equation (5.5.13) at the point
/, and approximate the derivative on the left-hand side with the
finite difference [x(f + A/) — x(/)]/A/. Rearranging, we obtain

(5.5.15)



The repetitive application of this formula, starting from / = h
where x — O, generates a sequence of points distributed over the
interface.

To implement the explicit modified Euler method, we replace for-
mula (5.5.15) with the slightly more involved formula

(5.5.16)

where ftmp = / + A/.

Computer problem

Problem c.5.5.1 Semi-infinite interface.
Directory 05-hydrostat/men.2d-plate of FDLIB includes the main

program men-2d.plate that computes the shape of the semi-infinite in-
terface discussed in the text. Run the program to generate a family of
shapes corresponding to a fixed value of the plate inclination angle /3 and
various contact angles a, and another family of shapes corresponding to
a fixed value of the contact angle and various plate inclination angles.
Discuss the behavior of the capillary rise in each case.

5.6 A meniscus between two parallel plates

Consider an interface subtended between two parallel vertical plates
that are separated by the distance 26, as illustrated in figure 5.6.1. The
two contact points are at the same elevation, and the interface is sym-
metric with respect to the mid-plane located at x = O.

It will be convenient to set the origin of the Cartesian axes on the
interface midway between the plates, and describe the position of the
interface by the equation y/ = f ( x ) . Outside and far from the plates,
the interface assumes a horizontal shape located at y/ = —/i, where h is
the positive or negative capillary rise of the meniscus midway between
the plates. Our objective is to compute h along with the unknown shape
of the meniscus by solving the Laplace-Young equation (5.4.8). We begin
by making several preliminary observations:



Figure 5.6.1 Illustration of a two-dimensional meniscus subtended be-
tween two parallel vertical plates, for contact angle a less than
7T/2. When a is greater than Tr/2, the meniscus submerges and the
capillary rise h is negative.

1. The choice of Cartesian axes requires that y/ = O at x = O; equation
(5.4.8) then gives

«(°) = B- (5.6.1)

Because the interface is symmetric with respect to x = O, df/dx = O
at x = O, equation (5.5.5) gives

(5.6.2)

Combining equations (5.6.1) and (5.6.2), we find

(5.6.3)

2. Evaluating (5.4.8) at a point outside and far from the plates where
the curvature of the interface tends to vanish and y/ —> — /i, we
obtain
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(5.6.4)

Combining equations (5.6.2) - (5.6.4), we find

(5.6.5)

which shows that the capillary rise may be computed from knowl-
edge of the curvature of the interface at the mid-point.

Proceeding now with the mathematical formulation, we substitute
the first expression for the curvature shown in (5.5.5) and the value of
B shown in (5.6.4) into the Laplace-Young equation (5.4.8), and rear-
range to derive a second-order ordinary differential equation involving
the capillary rise h as an unknown parameter,

(5.6.6)

The solution is to be found over the interval O < x < 6, subject to the
boundary conditions

(5.6.7)

The third condition specifies the prescribed value of the contact angle. If
a — 7T/2, all three boundary (5.6.7) are homogeneous, and the obvious so-
lution h = O and / = O describes a flat non-elevated and non-submerged
interface.

5.6.1 Canonical form

To compute the solution under more general conditions, we recast
the second-order differential equation (5.6.6) involving the unspecified
parameter h into the canonical form of a system of three first-order
differential equations. The word canonical derives from the Greek work
KOLVOVIKO<; which means normal; in real life, normal is not necessarily
desirable. This is done by introducing the three new variables

9i = /> 92 = /', 9s = h, (5.6.8)



where q^ = f". Subject to these definitions, equation (5.6.6) is resolved
into the three first-order component equations,

(5.6.9)

The third equation simply states that q% = h is a constant. In terms of
the new variables, the boundary conditions (5.6.7) become

9i(O) = O, ^2(O) = O, q2(b) = cot a. (5.6.10)

If the value of #3 (O) = h were known, we would be able to integrate the
system (5.6.9) from x = O to b using, for example, the explicit Euler or
the modified Euler method discussed in Sections 1.5 and 5.5.

Explicit Euler method

To implement the explicit Euler method, we recast the system (5.6.9)
into the general symbolic form

(5.6.11)

where, in the present case,

(5.6.12)



Next, we evaluate equations (5.6.11) at a point x, select a small spatial
step Ax, and approximate the derivatives on the left-hand sides with
finite differences writing, for example, dq\/dx — (gi(x+Ax) —gi(x))/Ax.
Solving for q\ (x + Ax), and repeating for the second and third equation,
we find

qi (x + Ax) = qi (x) + Ax f i (qi (x), q2 (X] , q3 (x), x),

92 (x + Ax) = 92 (x) + Ax /2 (qi (x), 92 (x), 93 (x), x),

93(x + Ax) = 93(x) + Ax / 3 (qi (x) ,92(#) ,93 (x) ,x} . (5.6.13)

In vector notation,

q(x + Ax) - q(x) + Ax f (q(x), x), (5.6.14)

where we have defined the solution vector q = (91,92? 9s) and the cor-
responding phase-space velocity vector f = (/i,/2,/3)- The repetitive
application of formula (5.6.14), starting from x = O, allows us to gener-
ate a sequence of points distributed over the meniscus.

Explicit modified Euler method

To implement the explicit modified Euler method, we replace formula
(5.6.14) with the union of a predictor and a corrector formula,

qtmP = q(x)+Axf(q(x) ,x) ,

q(x + Ax) - q(x)+Ax^[f (q(x) ,x)+f(q^ ,x + Ax)],
(5.6.15)

where the superscript imp denotes a preliminary value computed by the
explicit Euler method. The first equation generates a provisional value,
and the second equation advances the solution using the initial and the
provisional value.

5.6.2 The shooting method

Because, however, the value of h is unknown, the starting vector q(0)
is not available, and the solution of (5.6.9) must be computed using an
iterative method. The shooting method prescribes the obvious: guess
the value of 93(0) — /i, compute the solution of (5.6.9), and then check
whether the third condition in (5.6.10) is fulfilled; if not, repeat the
computation with an improved guess.



To improve the guess in a systematic fashion that guarantees rapid
convergence, we note that the value of q^(b) computed by solving equa-
tions (5.6.9) is a function of the guessed value ^a(O) = /i; to signify this
dependence, we extend the list of arguments of q^ writing q<i(b\ h). The
third of the boundary conditions (5.6.10) requires Q2(b]h) — cot a. — O,
which means that h is a root of the objective function

Q(K) = #>(&; h) - cot a. (5.6.16)

The problem has been reduced to computing the solution of the algebraic
equation

Q(K) = O, (5.6.17)

where the left-hand side is evaluated by integrating equations (5.6.9)
with a specified value of h.

5.6.3 The secant method

The secant method provides us with a simple algorithm for solving
the nonlinear algebraic equation (5.6.16) according to the following steps:

1. Select a value for h that approximates the root, called /i^, and
compute Q(Ii^) by solving (5.6.9).

A reasonable approximation may be obtained by assuming that
the meniscus has a circular shape of radius R, which is positive
when the interface is concave upward and negative when the inter-
face is concave downward. Using elementary trigonometry, we find
that the prescribed boundary condition on the contact angle will
be satisfied when cos a = b/R, which may be rearranged to yield
the approximation K ~ —1/R = —cosa/b. Combining equations
(5.6.2) and (5.6.5), we obtain the desired educated guess

h ~ cos a. —.
b (5.6.18)

Equation (5.6.18) reveals that the maximum possible value of \h\
is equal to l2/b.

2. Select another value for h called M2), and compute Q(h№) by
solving (5.6.9).



3. Approximate the graph of the function Q(h) with a straight line
passing through the points computed in steps 1 and 2. The slope
of the approximating straight line is

(5.6.19)

4. Identify the improved value h^ with the root of the linear function
describing the approximating straight line. Elementary algebra
shows that the root is given by

(5.6.20)

5. Repeat the computation with the pairs M2) and h^.

Computer problem

Problem c.5.6.1 Meniscus between plates.
Directory O5.hydrostat/men.2d of FDLIB includes the main program

men,2d that computes the shape of a meniscus subtended between two
parallel plates. Run the program to generate a family of shapes cor-
responding to a fixed value of the plate separation and various contact
angles, and another family of shapes corresponding to a fixed value of
the contact angle and various plate separations. Discuss the behavior of
the capillary rise in each case.

5.7 A two-dimensional drop on a horizontal plane

Consider now a two-dimensional drop of a fluid labelled 2 resting
above, or hanging below, a horizontal plate while surrounded by a sta-
tionary ambient fluid labelled 1, as illustrated in figure 5.7.1. The resting
drop shown in frame (a) is called a sessile drop, and the hanging drop
shown in frame (b) is called a pendant drop. Our objective is to compute
the shape of the interface for a specified value of the contact angle a and
drop area AD-



Figure 5.7.1 Illustration of a two-dimensional or axisymmetric drop
resting on, or hanging below a horizontal plate called, respectively,
a sessile or a pendant drop.

It will be convenient to introduce Cartesian axes with origin at the
extreme point of the interface, and the x axis pointing normal to the
interface and into the ambient fluid, as depicted in figure 5.7.1 (a, b),
respectively, for the sessile or pendant drop.

5.7.1 Parametric representation

One difference between the problem presently considered and the
ones discussed in preceding sections, is that, in the present case, neither
the range of x nor the range of y is known over the span of the interface.
To circumvent this difficulty, we describe the shape of the interface in
parametric form in terms of the slope angle ^ defined in figure 5.7.1,
increasing from O at the origin to a at the contact point.

Our objective is to compute the two scalar functions of 1/1 such that
the x and y coordinates of a point at the interface are described by the
functions

X = X(^), y = Y(*l>), (5.7.1)

for O < V < GL. To compute X(ijj) and Y(^), we require two ordinary
differential equations and a suitable number of boundary conditions or
global constraints.



5.7.2 Parametric equations

The first differential equation is the definition of the chosen parameter
V> in terms of the interface slope,

(5.7.2)

One important benefit of the adopted parametrization is that the bound-
ary condition for the contact angle at the contact point is satisfied au-
tomatically and may be removed from further discussion.

The second differential equation must arise from the Laplace-Young
equation determing the jump in pressure across the interface. Working
as in Section 5.4, we find

(5.7.3)

where Ap = p% — p\\ the coefficient s\ is equal to 1 for a sessile drop
or -1 for a pendant drop, reflecting the orientation of the gravity with
respect to the positive direction of the x axis. To simplify the notation,
we introduce the capillary length

(5.7.4)

and recast (5.7.3) into the simpler form

(5.7.5)

where the coefficient 82 is equal to 1 when p2 > pi, or -1 when p^ < p\.
Evaluating equation (5.7.5) at the origin, we find that the constant B is
equal to the unknown curvature of the interface at the plane of symmetry
located at y = O.

Considering now equation (5.5.5), we set /' = dY/dX, and use (5.7.2)
to find

(5.7.6)



Substituting the right-hand side of (5.7.6) into the left-hand side of
(5.7.5), we obtain

(5.7.7)

which may be rearranged to give the desired parametric dependence

(5.7.8)

where

(5.7.9)

To derive a corresponding parametric dependence for Y", we recast (5.7.2)
into the form

(5.7.10)

Substituting (5.7.8) into (5.7.10), we find

(5.7.11)

Equations (5.7.8) and (5.7.11) provide us with the requisite system of
two first-order differential equations involving the unspecified parameter
J5, to be solved subject to (a) the boundary conditions

X(Q) = O, y (O) = O, (5 7 12)

and (b) the constraint on the drop area AD,

2f°Jd* = A°' (5.7.13)

where x = —d describes the position of the plane.

5.7.3 The shooting method

Because the value of the constant B is a priori unknown, the solution
must be found using an iterative method. The shooting method, com-
bined with the secant method for improving the guess, provides us with
an efficient algorithm. The numerical procedure involves the following
steps:



1. Guess a value for B.

Since B is equal to the unkown curvature of the interface at the
mid-plane located at y = O, a reasonable guess can be obtained
by assuming that the interface has the shape of a section of a
circle, and then computing the radius of the circle a according to
the specified values of the contact angle and drop area. Using
elementary trigonometry, we find

(5.7.14)

2. Integrate the system of equations (5.7.8) and (5.7.11) using, for
example, the explicit Euler method or the explicit modified Euler
method discussed in Section 5.6.

3. Compute the integral on the right-hand side of (5.7.13) using the
trapezoidal rule, and then evaluate the objective function

(5.7.15)

4. Improve the value of B with the goal of driving the objective func-
tion Q to zero using, for example, the secant method discussed in
Section 5.6.

Problems

Problem 5.7.1 Two-dimensional drop on a horizontal plane.
Derive formula (5.7.14).

Problem 5.7.2 Two-dimensional drop on an inclined plane.
Formulate the problem of a pendant or sessile two-dimensional drop

attached to an inclined plane.

Computer problem

Problem c.5.7.1 Two-dimensional drop by numerical computation.
Subdirectory 05-hydrostat/drop-2d of FDLIB includes the main pro-

gram drop.2d that computes the shape of a sessile or pendant two-
dimensional drop using the shooting method discussed in the text. Run



the program to generate a family of shapes corresponding to a fixed val-
ue of the drop area and various contact angles, and another family of
shapes corresponding to a fixed value of the contact angle and various
drop areas. Discuss the computed interfacial shapes.

5.8 Axisyrnmetric shapes

To compute the shape of axisymmetric interfaces, we work as in the
case of two-dimensional interfaces discussed in the preceding sections.
Additional considerations include certain subtleties in the computation
of the mean curvature, and a more pronounced sensitivity of the numer-
ical methods to the parameters of the computation. In this section, we
illustrate the new features by discussing the axisymmetric versions of the
two-dimensional problems considered in Sections 5.6 and 5.7.

5.8.1 A meniscus in a vertical capillary

Consider an axisymmetric meniscus inside a vertical cylindrical tube
of radius a, as illustrated in figure 5.8.1, which is the counterpart of
the two-dimensional meniscus depicted in figure 5.6.1. In the cylindrical
polar coordinates depicted in figure 5.8.1, the interface is located at

x' = /(a)- (5.8.1)

Outside the tube, the interface assumes a horizontal shape with vanishing
curvature located at x = — h.

Laplace-Young equation

Working as in Section 5.4 but with the interfacial condition (4.4.12) in
place of (4.4.11), we derive the three-dimensional version of the Laplace-
Young equation (5.4.6), given by

(5.8.2)

where Km is the interface mean curvature. The constant B is defined
immediately after equation (5.4.6), and is given in terms of the capillary
rise in equation (5.6.4).



Figure 5.8.1 Schematic illustration of an axisymmetric meniscus inside
a vertical circular tube, for contact angle a greater than Tr/2.

Mean curvature

The mean curvature is the average of the two principal curvatures:
one is the curvature of the trace of the interface in the ax plane, denoted
by KI, and the second is the curvature of the trace of the interface in
the orthogonal plane, denoted by «2- Working as in Section 5.5, we find
that the first principal curvature is given by the following counterpart of
equation (5.5.5),

(5.8.3)

where a prime denotes a derivative with respect to a.
It can be shown that the radius of curvature of the second principal

curvature, denoted by R<2, is equal to the signed distance between (a)
the point where the curvature is evaluated, and (b) the intersection of
the normal to the interface and the x axis, as illustrated in figure 5.8.1,

(5.8.4)
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where 6 is the interface slope angle defined in figure 5.8.1, /' = tan#.
For the submerged meniscus depicted in figure 5.8.1, O is negative and
R<2 is positive.

Combining expressions (5.8.3) and (5.8.4), we find

(5.8.5)

Parametric representation

It is expedient to describe the shape of the interface in parametric
form in terms of the slope angle 9 varying from O at the center of the tube
to 7T/2 - a at the inner wall of the tube, where a is the contact angle.
The axial and radial position of a point at the interface is described,
respectively, by the functions

x = X ( 6 ) , <r = S(0). (5-8-6)

Substituting the right-hand side of (5.8.5) into the left-hand side of the
Laplace-Young equation (5.8.2), and rearranging, we find

(5.8.7)

where we have defined

(5.8.8)

Equation (5.8.7) governs the parametric representation of the radial po-
sition a in terms of the slope angle 6. To derive a corresponding equation
for the axial position X, we combine the definition /' = tan# = dX/dE
with (5.8.7), and obtain



(5.8.9)

The boundary conditions require

S = O and X = O at 9 = O,
(5.8.10)

and

E = a at 0 = 7T/2 - a.
(5.8.11)

An apparent difficulty arises when we attempt to evaluate the func-
tion $ defined in equation (5.8.8) at 9 = O corresponding to S = O:
the second fraction on the right-hand side is undefined. Using, however,
the PHopital rule, we find that, as 9 tends to zero, this ratio reduces
to d#/dS. Substituting this asymptotic limit into (5.8.8) and the result
into (5.8.7) and (5.8.9), we find the regularized initial conditions

(5.8.12)

which are used to start up the integration.

Solution by iteration

Since the value of the capillary rise h is a priori unknown, the solution
must be found by iteration. The shooting method involves the following
steps: guess the value of /i, compute the solution of (5.8.7) and (5.8.9)
subject to the initial conditions (5.8.10), and check whether (5.8.11)
is satisfied. If not, improve the guess using, for example, the secant
method discussed in Section 5.6. A reasonable initial guess emerges by
assuming that the meniscus has a spherical shape that is consistent with
the prescribed contact angle; using elementary trigonometry, we find

(5.8.13)



5.8.2 Drop on a plane

Consider next an axisymmetric drop of a fluid labelled 2, resting
above or hanging below a horizontal plane while surrounded by an am-
bient fluid labelled 1, as illustrated in figure 5.7.1. We wish to compute
the shape of the interface for a specified value of the contact angle a. and
drop volume VD.

Working as in the case of the two-dimensional drop discussed in Sec-
tion 5.7, we describe the interface in parametric form in terms of the
slope angle ifi defined in figure 5.7.1, as

(5.8.14)

where

(5.8.15)

The counterparts of equations (5.7.8) and (5.7.11) are

(5.8.16)

where

(5.8.17)

The boundary conditions are

X(O) = O, S(O) = O,
(5.8.18)

and the constraint on the drop volume VD takes the form

(5.8.19)

where x = — d describes the position of the plane. At the axis of symme-
try located at a — O, equations (5.8.16) are replaced by the regularized
forms

(5.8.20)



The solution of the parametric equations (5.8.16) can be found us-
ing the shooting method discussed in Section 5.7 for the corresponding
problem in two dimensions. In the present case, the constant B is equal
to twice the mean curvature of the interface at the x axis. A reason-
able guess for B arises by assuming that the interface has the shape of a
section of a sphere, and computing the radius of the sphere a to satisfy
the constraints on the contact angle and drop volume. Using elementary
trigonometry, we find

(5.8.21)

and then set B = 2/a.

Problem

Problem 5.8.1 Drop on a plane.
(a) Derive the regularized expressions (5.8.20) departing from equa-

tions (5.8.16) and (5.8.17).
(b) Derive formula (5.8.21).

Computer problems

Problem c.5.8.1 Axisymmetric meniscus.
Directory 05-hydrostat/men.ax of FDLIB includes the main program

men.ax that computes the shape of a meniscus. Run the program to gen-
erate a family of shapes corresponding to a fixed value of the tube radius
and various contact angles, and another family of shapes corresponding
to a fixed value of the contact angle and various tube radii. Discuss the
behavior of the capillary rise in each case.

Problem c.5.8.2 Axisymmetric drop.
Directory 05-hydrostat/drop.ax of FDLIB includes the main program

drop-ax that computes the shape of a sessile or pendant axisymmetric
drop using the shooting method. Run the program to generate a family
of shapes corresponding to a fixed value of the drop volume and various
contact angles, and another family of shapes corresponding to a fixed val-
ue of the contact angle and various drop volumes. Discuss the computed
interfacial shapes.



Chapter 6

Equation of motion and vorticity transport

6.1 Newton's second law for the motion of a parcel
6.2 Integral momentum balance
6.3 Cauchy's equation of motion
6.4 Euler's and Bernoulli's equations
6.5 The Navier-Stokes equation
6.6 Vorticity transport
6.7 Dynamic similitude, the Reynolds number

and dimensionless numbers in fluid dynamics

Fluid flow is established in response to an external action mediated
by boundary motion, by the application of a surface force, or by the pres-
ence of a body force. The evolution of a transient flow and the structure
of a steady flow established after an initial start-up period are governed
by two fundamental principles of thermodynamics and classical mechan-
ics: mass conservation, and Newton's second law for the motion of fluid
parcels. The implementation of Newton's law in fluid mechanics leads
to Cauchy's equation of motion, which provides us with an expression
for the point particle acceleration in terms of the stresses, and to the
vorticity transport equation governing the point particle rate of rota-
tion. The derivation and intepretation of these equations in general and
specific forms, and their solution for simple flow configurations will be
the theme of our discussion.

6.1 Newton's second law
for the motion of a parcel

Consider a fluid parcel in motion, as illustrated in figure 5.1.1 (a).
Newton's second law of motion requires that the rate of change of the
linear momentum of the parcel, denoted by Mp, be equal to the sum of



the forces exerted on the parcel, including the body force due to gravity
given in equation (5.1.1), and the surface force given in equation (5.1.2).
Expressing these forces in terms of surface and volume integrals, we
obtain

(6.1.1)

where f is the hydrodynamic traction exerted on the parcel surface. Ex-
pressing further the traction in terms of the stress tensor, as shown in
equation (4.2.9), we find

(6.1.2)

where the unit normal vector n points into the parcel exterior. Our next
task is to relate the rate of change of the parcel momentum to the fluid
density and velocity.

6.1.1 Rate of change of linear momentum

An expression for the linear momentum arises by subdividing the
parcel into elementary subparcels of volume dVp and mass dmp = pdV,
and then summing the contributions by integration, obtaining

(6.1.3)

where u is the fluid velocity. The rate of change of linear momentum is
given by

(6.1.4)

Now, because the integration is over the volume of the parcel which is
not stationary but changes in time, interchanging the time differentiation
and the volume integration on the right-hand side of (6.1.4) is permissible
only if the time derivative is replaced by the material derivative D/Dt
under the integral sign. Thus,

(6.1.5)

Conservation of mass requires that the material derivative of the elemen-
tary mass drrip vanish, yielding the simplified expression



(6.1.6)

6.1.2 Equation of parcel motion

Substituting the right-hand side of (6.1.6) into the left-hand side of
(6.1.2), we obtain the desired equation of fluid parcel motion,

(6.1.7)

involving the point particle acceleration, the stress tensor, and the body
force. Explicitly, the x, y, and z components of (6.1.7) are given by

(6.1.8)

Equations (6.1.8) are valid irrespective of whether the fluid is compress-
ible or incompressible.

6.1.3 Two-dimensional flow

The counterpart of equation (6.1.7) for two-dimensional flow in the
xy plane is

(6.1.9)



Figure 6.1.1 Illustration of a fluid parcel with an instantaneous rect-
angular shape, drawn with the solid line, in two-dimensional flow.
The fact that the parcel generally deforms to obtain a warped
shape, drawn with the dashed line, does not prevent us from ap-
plying Newton's law of motion in its integral form over the instan-
taneous parcel shape.

where dA is the differential of the surface area, and dl is the differential
of the arc length along the contour of a parcel in the xy plane. Explicitly,
the x and y components of (6.1.9) are given by

(6.1.10)

We note again that these equations are valid irrespective of whether the
fluid is compressible or incompressible.

Motion of a rectangular pared

As an application, we consider the motion of a fluid parcel with an
instantaneous rectangular shape whose sides are parallel to the x or y
axes, as depicted in figure 6.1.1. It is important to note that the parcel



will remain rectangular only if the fluid exhibits rigid-body motion; under
more general conditions, the parcel will deform to obtain a warped shape
drawn with the dashed line in figure 6.1.1. The fact that the parcel
will generally deform, however, does not prevent us from evaluating the
integrals in (6.1.10) over the instantaneous rectangular shape.

For simplicity, we assume that the density of the fluid is uniform, and
the acceleration of gravity is constant. Taking into consideration that
the unit normal vector is parallel to the x or y axis over each side, we
find that equations (6.1.10) assume the simpler forms

(6.1.11)

and

(6.1.12)

The first integral on the right-hand side of (6.1.11) involves normal
stresses exerted on the vertical sides, and the second integral involves
shear stresses exerted on the horizontal sides; the converse is true for
(6.1.12).

Steady unidirectional flow

In the case of steady unidirectional flow along the x axis, the point
particles move along the x axis with constant velocity and vanishing
acceleration, Du/Dt = O. The left-hand side of the equation of motion
(6.1.9) vanishes, yielding a balance between the hydrodynamic and body
force,

(6.1.13)

Restricting our attention to Newtonian fluids and using the consti-
tutive equation (4.5.4), we find the following:

• In the absence of axial and transverse stretching, dux/dx = O and
duy/dy = O, the normal stresses axx and ayy are equal to the
negative of the pressure p, axx = <jyy = —p.



• The shear stresses axy — cryx are independent of streamwise posi-
tion x, but may depend on the lateral position y.

Subject to these simplifications, the balance equations (6.1.11) and
(6.1.12) reduce to

(6.1.14)

where Ax = x% - x\ and Ay = j/2 — J/i- The second of equations (6.1.14)
is clearly satisfied when

(6.1.15)

reflecting the hydrostatic pressure variation. The first of equations (6.1.14)
is satisfied when

(6.1.16)

where G is a free parameter called the modified pressure gradient. Phys-
ically, G is determined by the physical mechanism driving the flow:

1. When G = O, the first of equations (6.1.16) shows that the pres-
sure variation in the x direction is hydrostatic, and the second
of equations (6.1.16) shows that the shear stress ayx is constant,
independent of y. This is the case of shear-driven flow.

2. When the streamwise pressure drop vanishes, px=x2,y = PX=XI,y? the
first of equations (6.1.16) requires that G = pgx, and the second
of equations (6.1.16) shows that the difference in the shear stress
(&yx)x,y=y2 ~ (cryx)x,y=y1 is equal to -p gx Ay. This is the case of
gravity-driven flow.

3. When the flow is horizontal, gx = O, the first of equations (6.1.16)
shows that G is the negative of the streamwise pressure gradient,
and the second of equation (6.1.16) shows that the difference in
the shear stress (&yx)x,y=y2 ~ (&yx)x,y=yi is equal to -G Ay. This
is the case of pressure-driven flow.



Problem

Problem 6.1.1 Body force in terms of a surface integral.
Show that the body force expressed by the second integral on the

right-hand side of (6.1.7) may be expressed as a surface integral in the
form

(6.1.17)

Hint: Use the Gauss divergence theorem (2.6.25).

6.2 Integral momentum balance
Consider the integrand of the rate of the change of momentum on

the left-hand side of equation (6.1.7). Using the rules of product differ-
entiation and the continuity equation (2.8.5), we write

(6.2.1)

where V-u = dux/dx+duy/dy+duz/dz is the divergence of the velocity.
If the fluid is incompressible, the second term on the right-hand side of
(6.2.1) is absent.

The x component of the vectorial expression (6.2.1) may be manip-
ulated to give

(6.2.2)

where the time derivative d/dt is taken keeping the spatial position fixed.
Combining the last four terms on the right-hand side of (6.2.2), we find



(6.2.3)

Working in a similar fashion with the y and z components of (6.2.1),
we derive the corresponding expressions

(6.2.4)

and

(6.2.5)

6.2.1 Momentum tensor

To collect equations (6.2.3) - (6.2.5) into a unified form, we introduce
the momentum tensor M^, defined as

MiJ = PUiUj, (6.2.6)

where the indices i and j range over x, y, and z or, correspondingly, 1,
2, and 3. It is evident from the definition (6.2.6) that the tensor M is
symmetric, Mij = M^.

Moreover, we introduce the divergence of the momentum tensor de-
fined as a vector whose ith component is given by

(6.2.7)

where summation of the repeated index j is implied. For example, the
x component of the divergence of M is given by

(6.2.8)

Subject to these definitions, equations (6.2.3) - (6.2.5) are expressed
by the collective form

(6.2.9)



where i = £,y, or z. The corresponding vector form is

(6.2.10)

The right-hand sides of equations (6.2.9) and (6.2.10) involve Eulerian
derivatives, that is, derivatives with respect to time and spatial coordi-
nates.

6.2.2 Integral momentum balance

Substituting now (6.2.10) into the left-hand side of the equation of
parcel motion (6.1.7), we derive the alternative form

(6.2.11)

To this end, we use the Gauss diverence theorem stated in equation
(2.6.25) to convert the volume integral of the divergence of the momen-
tum tensor into a surface integral over the parcel volume, obtaining

(6.2.12)

where the unit normal vector n points outward from the parcel. In index
notation,

(6.2.13)

where summation is implied over the repeated index j.

6.2.3 Control volumes

It is important to remember that equation (6.2.13) has originated
from Newton's second law for the motion of a fluid parcel. In the process
of expressing the material derivative in terms of Eulerian derivatives
taken with respect to time and position in space, however, the parcel



has lost its significance as a material body of fluid, and has become
relevant only insofar as to define the volume that it occupies in space.

To signify the new interpretation, we rewrite (6.2.13) in identical for-
m, except that the domain of integration is now called a control volume,
denoted by CV. Using the definition of the momentum tensor shown in
(6.2.6), we express the integral momentum balance in the form

(6.2.14)

The four integrals on the left- and right-hand side of (6.2.14) have the
following interpretation:

1. The first integral is the rate of change of the iih component of mo-
mentum of the fluid residing inside the control volume. At steady
state, this term vanishes.

2. The scalar UjUj of the second integrand on the left-hand side of
(6.2.14) is the component of the fluid velocity normal to the bound-
ary of the control volume; accordingly, the corresponding integral
expresses the rate of convective transport of the ith component of
the fluid momentum across the boundary of the control volume.

3. The first integral on the right-hand side of (6.2.14) is the ith com-
ponent of the surface force exerted on the boundary of the control
volume.

4. The second integral on the right-hand side of (6.2.14) is the ith
component of the body force exerted on the control volume.

We proceed now to discuss a particular application illustrating the
usefulness of the integral momentum balance in engineering analysis.

6.2.4 Flow through a sudden enlargement 1

Consider steady flow in a duct through the sudden enlargement, as
illustrated in figure 6.2.1, and identify the control volume with the sec-
tion of the duct confined between the vertical planes labelled 1 and 2.

1ThIs example, and the one discussed in problem 6.2.1 was borrowed from the
pioneering text by Bird, Stewart, and Lightfoot cited in the bibliography, where a
collection of engineering problems are solved by use of integral mass, momentum, and
energy balances.



PIane l Plane 2

Figure 6.2.1 Simplified model of flow in a duct through a sudden en-
largement. An integral momentum balance allows us to compute
the pressure rise P^ — PI as a function of the inlet and outlet cross-
sectional areas 5i and 52.

Assuming that the density of the fluid is uniform and the velocity profile
is flat at the inlet and outlet, neglecting the shear stress at the walls,
approximating the normal stress at the inlet and outlet with the negative
of the pressure, assuming that the pressure at the washer-shaped area is
equal to the inlet pressure, and neglecting the effects of gravity, we find
that the integral momentum balance (6.2.14) at steady state simplifies
to

(6.2.15)

where Si and $2 are the cross-sectional areas of the inlet and outlet.
The three terms on the right-hand side of (6.2.15) are approximations to
the first integral on the right-hand side of (6.2.14) for the outlet, washer-
shaped area, and inlet. Mass conservation requires U\S\ = U^S^ solving
this equation for C/i, and substituting the result into (6.2.15), we find an
expression for the pressure drop

(6.2.16)

which predicts a rise in pressure in agreement with laboratory observa-
tion.



Figure 6.2.2 Schematic illustration of an ejector pump. The pressure
rise P<2~Pi may be estimated by performing an integral momentum
balance.

Problem

Problem 6.2.1 Operation of an ejector pump.
Figure 6.2.2 shows a schematic illustration of an ejector pump. At

plane 1, two fluid streams merge; one with uniform velocity Ui over a
cross-sectional area Si, and the second with uniform velocity UQ over a
cross sectional area SQ. At plane 2, the velocity profile is uniform over
the cross-sectional area S? = SQ + Si. The pressure is assumed to be
uniform over the cross-section of the inlet and outlet, respectively, equal
to PI and P2, and the fluid density is assumed to be uniform throughout
the flow.

Derive an expression for the rise in pressure P^ — PI in terms of
p, UQ, Ui, SQ, and Si, similar to that shown in equation (6.2.16).

6.3 Cauchy's equation of motion
Equation (6.1.7) contains two volume integrals and one surface inte-

gral over the boundary of a fluid parcel. If we managed to convert the
surface integral into a volume integral, we would be able to collect all
integrands into one common expression. Since the volume of the parcel
is arbitrary, the unified integrand would have to vanish, providing us
with a differential equation.

Plane 1 Plane 2



6.3.1 Hydro dynamic volume force

Transforming the surface integral of the traction into a volume inte-
gral can be done using, once again, the Gauss divergence theorem stated
in equation (2.6.25). Identifying the vector h with each one of the three
columns of the stress tensor, we obtain

(6.3.1)

In index notation,

(6.3.2)

where summation of the repeated index j is implied; the index i is free
to vary over x,y, or z.

The divergence of the stress tensor V • a under the integral sign on
the right-hand side of (6.3.1) or (6.3.2) is a vector denoted by

S - V ' a' (6.3.3)

with Cartesian components

(6.3.4)

Physically, S is the hydrodynamic force per unit volume of fluid; in
contrast, the traction f is the hydrodynamic force per unit surface area.

6.3.2 Force on an infinitesimal parcel

To confirm identity (6.3.2), we consider a small fluid parcel with the
shape of a rectangular parallelepiped centered at the origin, as illustrated
in figure 5.1.1(b). The six flat sides of the parcel are perpendicular
to the x, y, or z axis, the lengths of the three edges are, respectively,



equal to Ax, Ay, and Az, and the volume of the parcel is equal to
AF = Ax Ay Az.

Consider the surface integral on the left-hand side of equation (6.3.2).
Over the sides that are perpendicular to the x axis, located at x = ^r,
and x = -^f, designated as the first and second side, the unit normal
vector is parallel to the x axis; over the first side nx — 1, and over the
second side nx = — 1. Because the size of the parcel is small, the stresses
over each side may be approximated with the corresponding values at
the side center. Subject to this approximation, the surface integral on
the left-hand side over the first and second side take the forms

(6.3.5)

where the parentheses enclose the coordinates of the evaluation point.
Adding the two contributions, and factoring out the common product
AyAz, we obtain

(6.3.6)

Next, we observe that, in the limit as Ax tends to zero, the ratio of
the differences

(6.3.7)

tends to the partial derivative daxi/dx evaluated at the origin. Corre-
spondingly, the difference (6.3.6) reduces to

(6.3.8)

where the derivatives are evaluated at the origin.
Working in a similar fashion with pairs of sides that are perpendicular

to the y or z axis, and summing the contributions, we find that the left-
hand side of (6.3.2) takes the approximate form

(6.3.9)



where the quantity enclosed by the parentheses is evaluated at the origin.
Expression (6.3.9) is an approximation to the volume integral on the
right-hand side of (6.3.2), confirming the identity.

6.3.3 The equation of motion

Substituting now (6.3.1) into (6.1.7), consolidating the integrals, and
arguing that, because the volume of integration is arbitrary, the com-
posite integrand must vanish, we obtain Cauchy's differential equation

(6.3.10)

governing the motion of a compressible or incompressible fluid. In index
notation,

(6.3.11)

where summation of the repeated index j is implied, and the index i is
free to vary over x, y, or z.

Using equations (2.8.7) and (6.2.10), we derive two equivalent forms
of (6.3.10) involving Eulerian derivatives,

(6.3.12)

and

(6.3.13)

Explicitly, the three scalar components of (6.3.12) are given by

(6.3.14)



The terms enclosed by the parentheses on the left-hand sides are the
Cartesian components of the point particle acceleration; the right-hand
sides include the Cartesian components of the volume force due to the
hydrodynamic stresses and the components of the body force.

We emphasize again that equations (6.3.10) - (6.3.13) are valid for
both compressible and incompressible fluids.

6.3.4 Evolution equations

Given the instantaneous velocity and stress fields, we may evaluate
the the right-hand sides of (6.3.10) and (6.3.12), as well as the second
term on the left-hand side of (6.3.12), and thereby compute the rates of
change Du/Dt and du/dt. This observation suggests that the equation
of motion (6.3.10) is, in fact, an evolution equation for the point particle
velocity, and equation (6.3.12) is an evolution equation for the velocity
at a fixed point in the flow.

A similar evolution equation for the density was derived in Chapter
2 on the basis of the continuity equation, as shown in (2.7.15). The evo-
lution equations for the density and velocity originate from fundamental
physical laws: mass conservation is required by thermodynamics, and
Newton's second law of motion expresses a fundamental law of classical
mechanics.

6.3.5 Cylindrical polar coordinates

In the cylindrical polar coordinates illustrated in figure 1.3.2, the
hydrodynamic volume force defined in equation (6.3.3) is expressed by

S - Ex ex + S^ eff + S^ e^. (6.3.15)

Using the rules of coordinate transformation and the chain rule of dif-
ferentiation, we find

(6.3.16)

The cylindrical polar components of the equation of motion are



pax = Y>x +pgx, pap = Za +pga, p Q1^ = S^ + p #<p, (53^7)

where ax,aa, and a^ are the cylindrical polar components of the point
particle acceleration given in equations (2.8.10).

Using the alternative expressions (2.8.11), we find

(6.3.18)

Centrifugal force

The first term on the right-hand side of the second of equations
(6.3.18), PU^/a, is the centrifugal force familiar from classical mechanics.
This term expresses an effective volume force in the a direction due to
fluid motion in the meridional (p direction. The centrifugal force arises,
for example, in the flow generated by the rotation of a circular cylinder
about its axis in a viscous liquid, as will be discussed in Section 7.5.

Coriolis force

The negative of the first term on the right-hand side of the third of
equations (6.3.18), pua u^/'a, is the Coriolis force. This term expresses
an effective force in the (p direction when flow occurs in both the a and
(p directions. The Coriolis force arises, for example, in the flow due to a
spinning circular disk immersed in a tank of fluid.

6.3.6 Spherical polar coordinates

In the spherical polar coordinates depicted in figure 1.3.3, the hydro-
dynamic volume force defined in equation (6.3.3) is expressed by

E = Er er + £0 e# + S^ e<p. ,g g ig.



Using the rules of coordinate transformation and the chain rule of dif-
ferentiation, we find

(6.3.20)

The spherical polar components of the equation of motion are

(6.3.21)

where a r ,a#, and a^ are the spherical polar components of the point
particle acceleration given in equations (2.8.13).

6.3.7 Plane polar coordinates

In the plane polar coordinates depicted in figure 1.3.4, the hydrody-
namic volume force defined in equation (6.3.3) is expressed by

S = S7. er + £0 e0. (6.3.22)

Using the coordinate transformation rules and the chain rule of differen-
tiation, we find

(6.3.23)

The plane polar components of the equation of motion are

(6.3.24)



where ar and CIQ are the plane polar components of the point particle
acceleration given in equations (2.8.15).

Alternative expressions are

(6.3.25)

involving, respectively, the centrifugal force and the negative of the Cori-
olis force on the right-hand side.

6.3.8 Vortex force

Returning to equation (6.3.12), we replace the second term in the
parentheses on the left-hand side with the right-hand side of (2.8.23),
and find

(6.3.26)

where
U2 = U 2 + U 2 + U 2 (6-3-27)

is the square of the magnitude of the velocity. The third term on the
left-hand side of (6.3.26) is called the vortex force. This force appears
when the vorticity vector is non-parallel to the velocity vector, otherwise
their cross product will vanish. A flow wherein the vorticity vector is
parallel to the velocity vector at every point, is called a Beltrami flow.

Problem

Problem 6.3.1 Beltrami flow.
Explain why a two-dimensional or an axisymmetric flow cannot be a

Beltrami flow.

6.4 Euler's and Bernoulli's equations

Euler's equation derives from the equation of motion (6.3.10) by sub-
stituting in it the simplest possible constitutive equation for the stress



tensor corresponding to an ideal fluid, expressed by (4.5.15). Considera-
tion of the individual components of the volume force S, given in (6.3.4),
shows that

(6.4.1)

The equation of motion (6.3.10) then reduces to the Euler equation

(6.4.2)

The associated Eulerian form is

(6.4.3)

Explicitly, the three Cartesian components of (6.4.3) are given by

(6.4.4)

The cylindrical, spherical, and plane polar components of Euler's
equation follow readily from equations (6.3.17), (6.3.21), and (6.3.24),
by using the constitutive equations (4.7.7), (4.7.14), and (4.7.20) with
vanishing fluid viscosity.

Using the expression for the point particle acceleration shown on the
left-hand side of equation (6.3.26), we find an alternative form of Euler's
equation in terms of the vortex force,

(6.4.5)

where u2 = u^ + Uy + u^ is the square of the magnitude of the velocity.

6.4.1 Boundary conditions

Euler's equation is a first-order differential equation for the velocity
and the pressure in the spatial variables. To compute a solution, we
require one scalar boundary condition or two scalar jump conditions
involving the velocity or pressure along each boundary:



• Over an impermeable surface, we require the no-penetration con-
dition.

• Over a free surface, we require that the pressure be equal to the
ambient pressure increased or decreased by an amount that is equal
to the product of the surface tension and twice the local mean
curvature.

• Over a fluid interface, we require a kinematic and a dynamic conti-
nuity or jump condition. The kinematic condition requires that the
normal component of the fluid velocity remain continuous across
the interface. The dynamic condition requires that the pressure
undergo a discontinuity by an amount that is equal to the product
of the surface tension and twice the local mean curvature.

6.4.2 Bernoulli's equation for irrotational flow

If the flow is irrotational, the third term on the left-hand side of
(6.4.5) vanishes. Expressing the velocity in terms of the gradient of the
velocity potential 0, as shown in equation (3.2.3) and more explicitly
in equations (3.2.10), we find that Euler's equation (6.4.5) assumes the
simplified form

(6.4.6)

The order of time and space differentiation in the gradient of the poten-
tial may be freely switched in the first term on the left-hand side.

Assuming now that the density of the fluid is uniform, we express
the acceleration of gravity as the gradient of the scalar s = g • x, writing

g = Vs = V(g • x) = V(gx x + gyy + gz z). (g.4.7)

Substituting this form into (6.4.6), and collecting all terms under the
gradient, we find

(6.4.8)

Since the spatial derivatives of the scalar quanitity enclosed by the
parentheses on the left-hand side vanish, this quantity must be spatially
uniform but possibly time-dependent. On the basis of this argument,
Euler's equation for irrotational flow reduces to Bernoulli's equation for
the irrotational flow of a uniform-density fluid,



(6.4.9)

where c(t) is an unspecified function of time.

Evolution of the potential

Bernoulli's equation (6.4.9) may be regarded as an evolution equa-
tion for the harmonic potential: given the instantaneous velocity and
pressure, we may evaluate the second, third, and fourth terms on the
left-hand side, compute the time derivative d(/)/dt, and advance the po-
tential over a small period of elapsed time. The last term c(i) causes the
potential to increase or decrease uniformly at the same rate throughout
the fluid. But since the velocity is computed by taking derivatives of the
potential with respect to the spatial coordinates, this uniform change
does not affect the distribution of the velocity in the fluid.

In problems involving a free surface with a prescribed pressure on one
side, it is appropriate to convert the Eulerian time derivative d(f)/dt on
the left-hand side of (6.4.9) to the material derivative D(J)/Dt. Invoking
the definition of the material derivative, and expressing the velocity as
the gradient of the potential, as shown in equations (3.2.10), we find

(6.4.10)

Combining equations (6.4.9) and (6.4.10), we find

(6.4.11)

which provides us with the rate of change of the potential following a
point particle.

Fluid sloshing in a tank

Consider, for example, the sloshing of a fluid in a container, as
illustrated in figure 6.4.1. The pressure at the free surface on the side of
the liquid, denoted by PFS, is related to the ambient pressure PAITH by
the dynamic boundary condition

PFS = PAim + 7 2 Km, /g 4 12)



Figure 6.4.1 Irrotational motion due to the sloshing of a fluid in a con-
tainer. Bernoulli's equation provides us with an evolution equation
for the potential following the motion of point particles distributed
over the free surface.

where 7 is the surface tension, and Km is the mean curvature of the free
surface. Applying equation (6.4.11) at a point on the free surface, and
using (6.4.12), we find that the rate of change of the potential following
a point particle is given by

(6.4.13)

Integrating this equation in time, we obtain a boundary condition for
the potential over the free surface.

6.4.3 Bernoulli's equation for steady irrotational flow

At steady state, the time derivative of the potential on the left-hand
side of (6.4.9) vanishes, yielding the best-known version of Bernoulli's
equation

(6.4.14)

The time-dependence of the constant c(t) on the right-hand side accounts
for a possible uniform change in the level of the pressure throughout the
fluid.

The three terms on the right-hand side of the (6.4.14) express, re-
spectively, the kinetic energy, the potential energy due to the pressure,



Figure 6.4.2 Illustration of gravity-driven drainage of a fluid from a
tank. The exit velocity may be computed using Bernoulli's equa-
tion for irrotational flow, and is given by Toricceli's law.

and the potential energy due to the body force, all three per unit mass
of fluid. Bernoulli's equation requires that the sum of the three energies
be uniform thoughout the domain of flow.

Toricelli's law

Bernoulli's equation allows us to carry out approximate engineering
analyses of several classes of internal and external high-speed flows. Con-
sider, for example, the gravity-driven drainage of a fluid from a tank, as
illustrated in figure 6.4.2. If the rate of drainage is sufficiently slow, the
flow may be assumed to be in a quasi-steady state; that is, the magni-
tude of the time derivative is small compared to the rest of the terms
in the unsteady Bernoulli equation (6.4.9), and the steady version of
Bernoulli's equation (6.4.14) can be employed.

To compute the velocity at the point of drainage, denoted by C/, we
evaluate the left-hand side of (6.4.14) first at the free surface and second
at the point of drainage, and set the two expressions equal. Consider-
ing the velocity at the free surface negligible, and setting the pressure
at the free surface and at the point of drainage equal to the ambient



Plane 1

Figure 6.4.3 Flow in a wind or water tunnel with a contraction that
dampens small perturbations.

atmospheric pressure, we derive Toricelli's law

U = ^Flgh, (6.4.15)

also describing the velocity of a rigid body in free gravitational fall.

Decay of perturbations in a wind or water tunnel

Wind and water tunnels are used widely in studies of high-speed
flows. To obtain a desirable uniform velocity profile, the tunnel is de-
signed with a smooth contraction upstream from a test section where
measurement or observation takes places, as illustrated in figure 6.4.3.

Consider a small perturbation of the otherwise flat upstream velocity
profile at plane 1, as illustrated in figure 6.4.3. The pressure is assumed
to be uniform over any cross-section along the contraction. Applying
Bernoulli's equation (6.4.14) for the fluid outside or inside the perturbed
region, and neglecting the effects of gravity, we find

Test section
Plane 2

(6.4.16)

Combining these equations to eliminate the pressure, and rearranging,
we find

(6.4.17)



Figure 6.4.4 Irrotational free-surface flow of a horizontal stream over
a hump.

Now, because the perturbation has been assumed small, the actual
velocities u\ and u^ may be replaced with the unperturbed velocities
Ui and C/2 in the numerator and denominator of the fraction on the
right-hand side of (6.4.17), yielding

(6.4.18)

Combining the approximate mass balance Ui Si — C/2 82 with equation
(6.4.18), and rearranging, we obtain

(6.4.19)

which shows that the relative amplitude of the perturbation decays like
the square of the contraction ratio 3%/Si, confirming that the contraction
aids in the establishment of a uniform velocity profile.

Flow of a horizontal stream over a hump

As a third example, we consider steady two-dimensional irrotational
flow of a horizontal stream over a gently sloped hump, called the Venturi
flume, as illustrated in figure 6.4.4. The free surface is located at y =
h(x] + d(x), where h(x) is the height of the hump and d(x) is the depth
of the stream. As x tends to plus or minus infinity, h(x) tends to zero.
The profile of the streamwise velocity is assumed to be uniform across
the stream; thus, Ux = u(x).



Applying Bernoulli's equation (6.4.14) first at a point at the free
surface located far upstream, and second at an arbitrary point at the
free surface, neglecting the y component of the free-surface velocity and
the pressure drop across the free surface due to surface tension, and
noting that the gravitational acceleration vector is given by g = (O, -#),
we find

(6.4.20)

where UQ is the upstream velocity, and do = d(x = -oo) is the upstream
depth. Combining now the mass conservation equation UQC[Q = u(x)d(x)
with equation (6.4.20) to eliminate u(x), and rearranging the resulting
expression, we derive a cubic equation for the reduced layer depth d(x) =
d(z)/d0,

(6-4.21)

where h(x) = /i(x)/do is the reduced height of the hump. We have
introduced the dimensionless ratio

(6.4.22)

expressing the relative magnitude of inertial and graviational forces,
called the Proude number.

In practice, the Venturi flume is used to deduce the flow rate from
measurements of the deflection of the free surface from the horizontal
position. As the Froude number tends to zero, gravitational forces dom-
inate, and equation (6.4.21) has the obvious solution d(x) = 1 — h(x),
which shows that the free surface tends to become flat. On the other
hand, as the Proude number tends to infinity, inertial forces dominate,
and equation (6.4.21) has the obvious solution d(x) = 1, which shows
that the depth of the stream remains constant, and the free surface fol-
lows the topography of the hump. Intermediate values of the Froude
number yield free-surface profiles with a downward deflection (problem
c.6.4.1).

6.4.4 Bernoulli's equation for steady rotational flow

Let us return to Euler's equation (6.4.5), and consider a rotational
flow at steady state. The time derivative on the left-hand side vanishes,
yielding



Figure 6.4.5 A system of Cartesian coordinates with the x axis tangen-
tial to a streamline, used to derive Bernoulli's equation for steady
rotational flow, equation (6.4.26).

(6.4.23)

where u2 = u% + Uy + u2
z is the square of the magnitude of the velocity.

The x component of equation (6.4.23) reads

(6.4.24)

Next, we place the origin of the Cartesian axes at a point in the
fluid, identify the streamline that passes through that point, and orient
the x axis tangentially to the streamline and thus parallel to the local
velocity, as illustrated in figure 6.4.5. By construction then, the y and
z components of the velocity vanish at the origin, and the second and
third terms on the left-hand side of equation (6.4.24) are equal to zero.
Taking advantage of these simplifications, we derive the reduced form

(6.4.25)

where the left-hand side is evaluated at the origin. Equation (6.4.25)
states that the rate of change of the quantity enclosed by the parentheses
on the left-hand side with respect to distance along the streamline should



vanish; thus, the quantity enclosed by the parentheses must remain con-
stant along the streamline. An equivalent mathematical statement is

(6.4.26)

where the function /(x,y, z) remains constant along a streamline. In
two-dimensional or axisymmetric flow, the function /(:r,y,z) may be
considered as a function of the stream function if) which, by definition,
is constant along a streamline.

Problems

Problem 6.4.1 Flow through a sudden enlargement.
Consider the flow through a sudden enlargement depicted in figure

6.2.1. Use Bernoulli's equation to compute the rise in pressure P^ — PI,
and compare your result to that shown in equation (6.2.16) obtained by
an approximate integral momentum balance.

Problem 6.4.2 Bernoulli's equation for two-dimensional flow with
uniform vorticity.

The velocity field u of a two-dimensional flow in the xy plane with
uniform vorticity LJZ = Jl may be decomposed into the velocity field
of a simpler two-dimensional flow with uniform vorcitity Q, denoted by
v, and a potential flow expressed by the harmonic potential </>, so that
u — v + V</>. Two examples of simpler flows are the simple shear flow
with velocity v — (—fi j/, O), and a flow expressing rigid-body rotation
with velocity v = § (—y, x). Using this decomposition, derive Bernoulli's
equation

(6.4.27)

where ^ is the stream function and u = |u| is the magnitude of the
velocity of the decomposed flow.

Problem 6.4.3 Flow due to an unsteady point source or point vortex.
(a) Discuss whether the flow due to a two- or three-dimensional point

source with time-dependent strength satisfies the Euler equation for in-
viscid flow.

(b) Repeat (a) for a two-dimensional point vortex.



Problem 6.4.4 Force on a sphere in accelerating potential flow .
Consider unsteady irrotational flow past a sphere that is held station-

ary in an accelerating stream with velocity Vx(t). The velocity potential
and Cartesian components of the velocity are given by equations (3.6.10)
and (3.6.11). Use Bernouli's equation (6.4.9) to evaluate the pressure,
and then compute the force exerted on the sphere by evaluating the
surface integral

(6.4.28)

where n is the unit vector normal to the sphere pointing into the fluid.
Based on this result, evaluate the force exerted on a sphere held station-
ary in a non-accelerating steady flow, and discuss the physical relevance
of the assumption of irrotational motion.

Computer problems

Problem c.6.4.1 Flow over a hump.
Consider the flow of a horizontal stream over a hump illustrated in

figure 6.4.4. The height of the hump is described by the parabolic shape
function h(x) — h$ [I - (x/a)2], for -a < x < a, where a is the half-
length of the hump and /IQ is the maximum height. Substituting this
profile into (6.4.21), we find

(6.4.29)

for -1 < x < 1, where x = x/a is the reduced distance from the mid-
point. Compute and plot the reduced layer depth d against x for /IQ/do —
0.01, 0.05, 0.10 and Fr = 0.01, 0.1, 10, 100, and discuss the free-surface
shapes.

6.5 The Navier-Stokes equation

The Navier-Stokes equation derives from the equation of motion
(6.3.10) using the constitutive equation for the stress tensor for an in-
compressible Newtonian fluid, equation (4.5.3). If the viscosity of the
fluid is uniform, the hydrodynamic volume force is given by

S = V - a = V - ( - p I + / i2E) = -Vp + /^ 2 V • E, (6.5.1)



where I is the identity matrix.
Working in index notation, we find that the ith component of twice

the divergence of the rate of deformation tensor E on the right-hand side
of (6.5.1) is given by

(6.5.2)

where summation of the repeated index j is implied. The term enclosed
by the parentheses on the right-hand side of (6.5.2) is equal to the diver-
gence of the velocity; because the fluid has been assumed incompressible,
this term is equal to zero. The first term on the right-hand side of (6.5.2)
is the Laplacian of the ith component of the velocity,

(6.5.3)

Using these results to simplify expression (6.5.1), we find that the
hydro dynamic volume force is given by

S EE V • a = -Vp + n V2U.
(6.5.4)

Correspondingly, the equation of motion (6.3.10) reduces to the Navier-
Stokes equation

(6.5.5)

which is distinguished from Euler's equation (6.4.2) by the presence of
the viscous force represented by the product of the viscosity and the
Laplacian of the velocity on the right-hand side.

The associated Eulerian form is

(6.5.6)



6.5.1 Pressure and viscous forces

The first term on the right-hand side of (6.5.6), equal to the negative
of the pressure gradient, represents the pressure force. The second term,
equal to the Laplacian of the velocity multiplied by the viscosity, is the
viscous force.

Working in index notation under the assumption that the fluid is
incompressible and thus the velocity field is solenoidal, V • u = O, we
find that the Laplacian of the velocity is equal to the negative of the curl
of the vorticity,

V2U = -V x a; (6-5.8)

(problem 6.5.1). An important consequence of this identity is that, if
the flow is irrotational, or if the vorticity is constant, or if the vorticity
field is irrotational, then the viscous force vanishes even though the fluid
may not be inviscid. In this case, the Navier-Stokes equation reduces to
Euler's equation which may be integrated to yield Bernoulli's equation
(6.4.9) for irrotational flow, or equation (6.4.26) for steady rotational
flow.

A radially expanding or contracting bubble

An example of a viscous flow with non-zero viscous stresses but van-
ishing viscous forces is provided by the irrotational flow generated by

whose three Cartesian components are:

(6.5.7)



the radial expansion or contraction of a spherical bubble with time-
dependent radius a(t). The velocity may be represented in terms of a
three-dimensional point source with time dependent strength m(i) placed
at the bubble center. In spherical polar coordinates with the origin at
the bubble center, the velocity potential and radial component of the
velocity are given, respectively, by

(6.5.9)

where m(t) is the strength of the point source. The no-penetration con-
dition at the surface of the bubble requires da/dt = ur(r — a), which
may be rearranged to give an expression for the strength of the point
source in terms of the bubble radius,

(6.5.10)

Substituting (6.5.10) into equations (6.5.9), we find

(6.5.11)

Referring now to Bernoulli's equation (6.4.9) for unsteady irrotational
flow, we compute the first and second terms on the left-hand side,

(6.5.12)

Substituting these expressions into Bernoulli's equation (6.4.9), and solv-
ing for the pressure, we find

(6.5.13)

Far from the bubble, the first and second terms on the right-hand side
of (6.5.13) vanish, and the pressure is given by the linear and possibly
time-dependent distribution Poo(x

5 *) — P [c(t) + g • x],
The normal stress arr undergoes a jump across the surface of the

bubble, as determined by the bubble radius and surface tension 7. Using
the simplified version of the interfacial condition (4.3.13) for constant
surface tension, we find



(6.5.14)

where ps(t) is the pressure in the interior of the bubble, and Acm = I/a is
the mean curvature of the interface. Substituting the second of (6.5.11)
into the Newtonian constitutive equation orr — -p + 2 p, dur/dr, and
the result into (6.5.14), we find

(6.5.15)

Finally, we apply (6.5.13) at the surface of the bubble, evaluate the pres-
sure from (6.5.15), neglect hydrostatic variations over the diameter of the
bubble, and rearrange the resulting expression to obtain the generalized
Rayleigh equation

(6.5.16)

where x# is the location of the bubble center.
Equation (6.5.16) is a second-order nonlinear ordinary differential

equation governing the evolution of the bubble radius. To compute the
solution, we require the initial bubble radius, the initial rate of expansion
da/dt, and also the bubble pressure and pressure at infinity. The bubble
pressure may be further related to the bubble volume by means of an
appropriate equation of state provided by thermodynamics.

6.5.2 Boundary conditions

The Navier-Stokes equation is a second-order differential equation
for the velocity with respect to the spatial coordinates. To compute a
solution, we require one scalar boundary condition for each component
of the velocity or traction over each boundary:

• Over an impermeable solid surface, we require the no-penetration
and no-slip boundary conditions.

• Over a free surface, we require that the normal component of the
traction be equal to the ambient pressure increased or decreased
by an amount that is equal to the product of the surface tension
and twice the local mean curvature, and the tangential component
vanish.



• Over a fluid interface, we require kinematic and dynamic conti-
nuity or jump conditions. The kinematic condition requires that
all components of the velocity be continuous across an interface.
The dynamic condition requires that the normal component of the
traction undergo a discontinuity by an amount that is equal to the
product of the surface tension and twice the local mean curvature,
and the tangential component of the traction undergo a discontinu-
ity that is determined by the Marangoni tractions due to variations
in surface tension.

6.5.3 Cylindrical polar coordinates

The cylindrical polar components of the hydrodynamic volume force
for a Newtonian fluid arise by substituting the constitutive relations
(4.7.7) into expressions (6.3.16). After a fair amount of algebra, we find

(6.5.17)

The cylindrical polar components of the Navier-Stokes equation arise
by substituting these expressions into the right-hand sides of (6.3.17) or
(6.3.18).

6.5.4 Spherical polar coordinates

The spherical polar components of the hydrodynamic volume force
arise by substituting the constitutive relations (4.7.14) into expressions
(6.3.20). After a fair amount of algebra, we find



(6.5.18)

The Laplacian operator V2 in spherical polar coordinates was defined in
equation (3.2.17). The spherical polar components of the Navier-Stokes
equation arise by substituting these expressions into the right-hand sides
of (6.3.21).

6.5.5 Plane polar coordinates

The plane polar components of the hydrodynamic volume force arise
by substituting the constitutive relations (4.7.20) into expressions (6.3.23).
The result is

(6.5.19)

The plane polar components of the Navier-Stokes equation arise by sub-
stituting these expressions into the right-hand sides of (6.3.25).

Problems

Problem 6.5.1 Viscous force.
Prove identity (6.5.8). Hint: Set the vorticity equal to the curl of

the velocity; express the curl of the vorticity in index notation; and then
use identity (2.3.9).



Problem 6.5.2 Steady flow.
Consider a flow at steady state. Explain why it is not generally

permissible to specify an arbitrary solenoidal velocity field that satisfies
the boundary conditions, and then compute the pressure by solving the
Navier-Stokes equation (6.5.6). Hint: Consider the conditions subject to
which the equation Vp = F, where F is a vector function, has a solution,
and note that the curl of the gradient of a function vanishes, as shown
in equation (6.6.10).

Problem 6.5.3 Expansion of a bubble.
Show that, when the right-hand side of (6.5.16) vanishes and vis-

cous stresses and surface tension are insignificant, an exact solution to
equation (6.5.16) is given by

(6.5.20)

6.6 Vorticity transport

In Section 6.3, we interpreted the equation of motion as an evolution
equation determining the rate of change of the velocity of a point par-
ticle, or the rate of change of the fluid velocity at a fixed point in the
flow. Descendant evolution equations governing the rate of change of the
spatial derivatives of the velocity comprising the velocity gradient tensor
and its symmetric and skew-symmetric components may be derived by
straightforward differentiation.

Of particular interest is the evolution of the skew-symmetric part of
the velocity gradient tensor related to the vorticity as shown in equation
(2.3.13). The availability of an evolution equation for the vorticity allows
us to study the rate of change of the angular velocity of a small fluid
parcel as it translates and deforms while it is convected in a flow.

6.6.1 Two-dimensional flow

To begin, we consider the evolution of the strength of the vorticity
uz in a two-dimensional flow, defined in terms of the velocity in equation
(2.3.15). To derive an evolution equation for u;2, we divide both sides
of the equation of motion (6.3.12) by the density to remove it from



the left-hand side, and then take the y derivative of the x component
of the resulting equation and subtract it from the x derivative of the
corresponding y component. The result is

(6.6.1)

Expanding out the derivatives on the left-hand side, and using the conti-
nuity equation dux/dx + duy/dy = O, we obtain the remarkably simpler
form

(6.6.2)

The left-hand side of (6.6.2) expresses the material derivative of the
vorticity which, according to equation (2.3.7), is equal to twice the rate
of change of the angular velocity of a small fluid parcel.

Next, we expand out the derivatives on the right-hand side of (6.6.2),
and expess the hydrodynamic volume force in terms of the stresses using
the two-dimensional counterparts of equations (6.3.4), and thus obtain
the general form of the vorticity transport equation for an incompressible
fluid,

(6.6.3)

Baroclinic production of vorticity

The term enclosed by the first set of parentheses on the right-hand
side of (6.6.3) expresses generation of vorticity due to density inhomo-
geneities, known as baroclinic production of vorticity. To illustrate the
physical mechanism that is responsible for this term, we consider a verti-
cal column of fluid whose density increases upward in the direction of the
y axis, as depicted in figure 6.6.1; thus, dp/dy > O. The x component
of the hydrodynamic volume force E^ causes the column to accelerate in
the positive direction of the x axis; because the density and hence the
inertia of the fluid increases with height, the top will accelerate less than
the bottom. As a result, the column will buckle backwards exhibiting
counterclockwise rotation expressed by the second terms within the first
set of parentheses on the right-hand side of (6.6.3).



Figure 6.6.1 Vorticity is generated when a column of fluid that is heav-
ier at the top buckles in acceleration under the influence of a volume
force.

Inviscid fluids

If viscous forces are insignificant, the shear stresses vanish, the normal
stresses are equal to the negative of the pressure, and the hydrodynamic
volume force is equal to the negative of the pressure gradient. Conse-
quently, the term enclosed by the square brackets on the right-hand side
of (6.6.3) makes no contribution, and the term expressing baroclinic pro-
duction obtains a simple form, yielding the vorticity transport equation

(6.6.4)

where ez is the unit vector along the z axis which is perpendicular to
the xy plane of the flow.

For a fluid with uniform density, equation (6.6.4) predicts

(6.6.5)

showing that a small fluid parcel rotates at a constant angular velocity
as it is convected by the flow. The physical origin of this remarkably
simple result can be traced back to conservation of angular momentum
in the absence of shear stresses imparting a torque.



Incompressible Newtonian fluids

Considering next the evolution of the vorticity in an incompressible
Newtonian fluid with uniform density and viscosity, we substitute the
constitutive equation for the stress tensor shown in equations (4.5.4) into
the right-hand side of (6.6.3), and simplify the resulting expression by
use of the continuity equation to derive the vorticity transport equation

(6.6.6)

where v = IJL/p is a physical constant called the kinematic viscosity.
The following table displays the kinematic viscosities of water and air

at three temperatures. Note that the kinematic viscosity of air is higher
than that of water by two or three orders of magnitude. In contrast,
the viscosity of water is higher than that of air by one or two orders of
magnitude.

The right-hand side of (6.6.6) expresses diffusion of vorticity in the xy
plane. Like temperature or concentration of a species, vorticity spreads
out from regions of highly rotational flow, that is, regions where small
spherical parcels exhibit intense rotation, to regions of weakly rotational
or irrotational flow. The actual mechanism by which this occurs will
be exemplified in subsequent chapters with reference to unsteady and
boundary-layer flows.

Kinematic viscosity, v

Temperature Water Air
0C IQ-2Cm2 sec l(T2cra2 sec

20 1.004 15.05
40 0.658 18.86
80 0.365 20.88

6.6.2 Axisymmetric flow

Next, we consider an axisymmetric flow without swirling motion, and
refer to the cylindrical polar coordinates (#, a, (p] depicted in figure 6.6.2.



Figure 6.6.2 The vorticity of a point particle in axisymmetric flow in-
creases as the particle moves farther away from the axis of symme-
try, due to vortex stretching.

Working as previously for two-dimensional flow, we derive the counter-
part of the vorticity transport equation (6.6.6) for an incompressible
Newtonian fluid with uniform density and viscosity,

(6.6.7)

The second-order linear differential operator E2 on the right-hand side
of (6.6.7), defined in equations (2.9.12) and (2.9.15), is the counterpart
of the Laplacian operator for two-dimensional flow shown in (6.6.6).

Vortex stretching

If viscous forces are negligible, the right-hand side of (6.6.7) vanishes,
and the resulting vorticity transport equation for inviscid flow takes the
form

(6.6.8)

This equation requires that the strength of the vorticity of a point par-
ticle, Up, be proportional to the distance of the point particle from the
axis of symmetry, a, so that the ratio between them remains constant
in time and equal to the initial value, as illustrated schematically in fig-
ure 6.6.2. This fundamental evolution law expresses a physical process
known as vortex stretching. The significance of vortex stretching will be
discussed in Chapter 11 in the framework of vortex flows.



6.6.3 Three-dimensional flow

Generalizing the preceding discussion, we set out to derive an evo-
lution equation for the vorticity vector of a three-dimensional flow. For
simplicity, we restict our attention to incompresible Newtonian fluids
and assume that the density and viscosity are uniform throughout the
domain of flow. Our point of departure is the Navier-Stokes equation
(6.4.2).

Using the expression for the point particle acceleration shown on the
left-hand side of equation (6.3.26), we find the following alternative form
of the Navier-Stokes equation in terms of the vortex force,

(6.6.9)

where u2 = u*. + vfc + ILJ, is the square of the magnitude of the velocity.
To derive an evolution equation for the vorticity, we take the curl of

both sides of equation (6.6.9). A vector identity states that the curl of
the gradient of a smooth scalar function of position / vanishes,

V x V/ = O. (6.6.10)

The proof follows readily working in index notation: the ith component
of the left-hand side of (6.6.10) is given by

(6.6.11)

The symmetry of the second derivative on the right-hand side of (6.6.11),
combined with the inherent antisymmetry of the alternating tensor, re-
quires that the right-hand side vanish.

Using identity (6.6.10), we find that the curl of the second term on
the left-hand side of (6.6.9) and the curl of the first term on the right-
hand side of (6.6.9) both vanish. Invoking the definition u = V x u, we
obtain the vorticity transport equation for three-dimensional flow,

(6.6.12)

where v ~ IJL/p is the kinematic viscosity.
The second term on the left-hand side of (6.6.12) can be manipu-

lated to acquire a physical interpretation. In index notation, the ith
component of the vector expressed by this term is given by



(6.6.13)

Using property (2.3.9), we recast the right-hand side of (6.6.13) into the
form

(6.6.14)

An identity states that the divergence of the curl of a vector field vanish-
es; a consequence of this identity is that the vorticity field is solenoidal
(problem 2.3.4). Because the fluid has been assumed incompressible, the
velocity field is also solenoidal. Consequently, the second and third terms
on the right-hand side of (6.6.14) vanish. Substituting the result back
into equation (6.6.12), we find the desired vorticity transport equation

(6.6.15)

or in vector notation,

(6.6.16)

The left-hand side of (6.6.15) or (6.6.16) is the material derivative of the
vorticity, that is, the rate of change of the vorticity following the motion
of point particles.

Vorticity rotation and stretching

To understand the nature of the first term on the right-hand side
of (6.6.16), we consider a small material vector rfl, and label the first
point as A, and the last point as B. Using a Taylor series expansion, we
find that the difference in the velocity across the end-points is given by
u5 — UA = d\ - Vu. Comparing this expression with the first term on
the right-hand side of (6.6.16), we find that the vorticity vector behaves
like a material vector convected by the fluid: it rotates and stretches or
compresses under the influence of the local flow.



In the case of two-dimensional flow, because the vorticity vector is
normal to the plane of the flow, neither rotation nor stretching or com-
pression can take place. In the case of axisymmetric flow, because the
vorticity vector points in the meridional direction, rotation is prohibit-
ed, but stretching or compression can take place, as discusssed in Section
6.6.2.

Persistence of irrotational motion in inviscid flow

One important consequence of (6.6.16) for inviscid fluids is that, if the
vorticity of a point particle vanishes at the initial instant, it will vanish
at all times. Thus, volumes of rotational fluid remain rotational, volumes
of irrotational fluid remain irrotational, and the interface between them
remains sharp and well-defined at all times.

Source of vorticity in viscous flow

In practice, a fluid flow is established from the state of rest; conse-
quently, the initial vorticity distribution is equal to zero. Since the right-
hand side of the vorticity transport equation (6.6.16) vanishes through-
out the fluid, the initial rate of production of vorticity is equal to zero,
and this seemingly suggests that the flow will remain irrotational at all
times, which is known not to be true. The paradox is resolved by ob-
serving that vorticity, like heat, enters the fluid by diffusion across the
boundaries. The precise mechanism by which this occurs will be dis-
cussed in Chapter 7.

Problems

Problem 6.6.1 Reduction to two-dimensional flow.
Show that the vorticity transport equation (6.6.16) reproduces the

transport equation (6.6.6) for the strength of the vorticity uz of a two-
dimensional flow.

Problem 6.6.2 Convection of vorticity.
Prove the identity

dui duju* Wi = "j a£> ^6-6-17)
which allows us to express the first term on the left-hand side of (6.6.16)
in the alternative form (Vu) • u. Hint: Begin with the identity u x uj =
U x V x u = O, and then work in index notation using identity (2.3.9).



6.7 Dynamic similitude, the Reynolds number,
and dimensionless numbers
in fluid dynamics

Consider streaming flow along the x axis with velocity U\ past a
stationary body with desingated size L\ as illustrated in figure 6.7.1(a),
and another streaming flow along the x axis with velocity 172 past a
second body that arises by shrinking or expanding the first body by a
certain factor, as illustrated in figure 6.7.1(b). If the surface of the first
body is described by the equation

f(x,y,z) = 0, (W.I)

then, the surface of the second body is described by the equation

(6.7.2)

where

(6.7.3)

is a scaling factor.
For example, if the first body is a sphere with diameter L\ centered

at the the point (xx^yc^zc)^ then

(6.7.4)

and

(6.7.5)

Setting the right-hand side of (6.7.5) equal to zero, we obtain the equa-
tion of a sphere with diameter L^ centered at the point (a xc, a yc, a ZQ).

Both fluids are assumed to be incompressible and Newtonian. Let pi
and //i be the density and viscosity of the first fluid, and p% and /^2 be
the density and viscosity of the second fluid.



Figure 6.7.1 Flows in two similar domains. If the Reynolds numbers
are equal, as shown in equation (6.7.6), the velocity and pressure
field of the second flow may be deduced from those of the first flow
by rescaling, and vice versa.

6.7.1 Similitude and the Reynolds number

We will show that, when the values of the four control and physical
parameters characterizing the first flow, Li,C/i,pi, and p\, and the cor-
responding values of the control and physical parameters characterizing
the second flow, Z/2, ^2>P2> &nd /^5 are related by the equations

(6.7.6)

then the structure of the second flow may be inferred from the structure
of the first flow, and vice versa, by carrying out a simple computation
described as rescaling, as will be explained in the following subsection.



The ratio on the left-hand side of (6.7.6) is defined as the Reynolds
number of the first flow, and the the ratio on the right-hand side of
(6.7.6) is defined as the Reynolds number of the second flow.

6.7.2 Rescaling

To deduce the structure of the second flow from the structure of the
first flow, and vice versa, we introduce the dynamic pressure established
due to the flow, defined as the pressure deviation from the hydrostatic
distribution,

P?= Pi-Pi S'^ P2 =P2~ P 2 g - x , (6.7.7)

where the superscript D stands for "Dynamic" or, more accurately, "Hy-
drodynamic". In the absence of an imposed flow, the pressure assumes
its hydrostatic distribution, and the dynamic pressure vanishes though-
out the fluid.

Consider an arbitrary point in the first flow, denoted by XI, and a
corresponding point in the second flow whose coordinates are given by

X2 = Q f X i . (6.7.8)

Equations (6.7.1) and (6.7.2) ensure that, if XI lies at the surface of the
body in the first flow, then X2 will lie at the surface of the body in the
second flow. In Section 6.7.3, we will show that, when relation (6.7.6)
is fulfilled, the velocity and dynamic pressure at the second point in the
second flow are related to those at the first point in the first flow by the
equations

U2(X2) = (J ui(X2), P?(X2) -/352^f(X2), (6.7.9)

where we have defined the ratio of the velocities of the incident flow, £,
the viscosity ratio A, and the density ratio /3,

A - U<2 \ - ^2 R- p2
o = —, A = —, p = —. /fi 7 IQ\

Ui IJLI pi ^D . / . l u j

The equality of the Reynolds numbers expressed by (6.7.6) requires
/3 6 a = A.

Relations (6.7.9) are also valid for unsteady flow, provided that the
velocity field of the first flow at the designated origin of time is related
to the velocity of the second flow by the first of equations (6.7.9), and
the comparison is made at times ti and £2 related by



(6.7.11)

6.7.3 Dimensional analysis

To prove relations (6.7.9), we consider the Navier-Stokes equation
(6.5.6) and the continuity equation V - U = O governing the structure
and dynamics of the two flows with appropriate physical constants corre-
sponding to the two fluids, subject to appropriate far-field and boundary
conditions, and work as follows.

First flow

Considering the first flow, we introduce the dimensionless indepen-
dent variables

(6.7.12)

and the dimensionless dependent variables

(6.7.13)

Solving for the dimensional variables in terms of their dimensionless
counterparts denoted by the hats, and substituting the result into the
Navier-Stokes equation and into the continuity equation, we find

(6.7.14)

and
V i - u i - 0 , (6.7.15)

where Re\ = pi Ui LI/HI is the Reynolds number of the first flow shown
on the left-hand side of (6.7.6); we have introduced the dimensionless
gradient Vi = (d/dxi,d/dyi,d/dzi) and associated Laplacian operator

The far-field condition requires that, far from the body, the dimen-
sionless velocity uxi tends to unity, whereas uyi and uzi tend to van-
ish. The no-slip and no-penetration boundary conditions require that
the velocity vanishes at points (o;,j/,z) that satisfy equation (6.7.1) or,
equivalently, points (#1,3/1,21) that satisfy



/(Li £i, LI yi, LI 21) = O. (6.7.16)

Second flow

Considering next the second flow, we introduce the dimensionless
independent variables

(6.7.17)

and the dimensionless dependent variables

(6.7.18)

Solving for the dimensional variables in terms of their dimensionless
counterparts, and substituting the result into the Navier-Stokes equa-
tion and into the continuity equation, we find

(6.7.19)

and
V2 • U2 = O, (6.7.20)

where Re2 = p2 U2 L2/'p>2 is the Reynolds number shown on the right-
hand side of (6.7.6); we have introdued the dimensionless gradient V2 =
(d/dx2,d/dy2,d/dz2) and associated Laplacian operator

V2
2 = (d2/dxld*/dyid2/dzl).

The far-field condition requires that, far from the body, the dimen-
sionless velocity uX2 tends, to unity, whereas uy2 and uZ2 tend to van-
ish. The no-slip and no-penetration boundary conditions require that
the velocity vanishes at points ( x , y , z ) that satisfy equation (6.7.2) or,
equivalently, points (£2, $2,^2) that satisfy

/(Li X2, LI 3/2, LI Z2) = O. (6.7.21)



Comparison

To this end, we compare one by one the equations and boundary con-
ditions governing the two flows in the dimensionless variables indicated
by a hat, and deduce the following:

1. The Navier-Stokes equation (6.7.14) is identical to the Navier-
Stokes equation (6.7.19) provided that the two Reynolds numbers
are equal, as stated in (6.7.6).

2. The continuity equation (6.7.15) is identical to the continuity
equation (6.7.20).

3. The far-field conditions are identical; both dimensionless velocities
tend to (1,0,0).

4. The boundary conditions on the first body described by (6.7.16) are
identical to the boundary conditions on the second body described
by (6.7.21).

These results suggest that, when the Reynolds numbers are equal,
the values of the dimensionless dependent variables in the two flows at
corresponding dimensionless times and corresponding dimensionless po-
sitions are equal. Setting, for example, P^(XI) — p® (£2), and using the
definitions (6.7.13) and (6.7.18), we find the second of relations (6.7.9)
subject to (6.7.10).

6.7.4 Structure of a flow as a function of the Reynolds number

Generalizing the preceding discussion, we consider a flow in a domain
with characteristic length scale L, identify an appropriate characteristic
velocity C/, and compute the Reynolds number

= pLU - LE.
M v ' (6.7.22)

where v = fji/p is the kimematic viscosity. We then introduce the dimen-
sionless independent variables

- _ x - -. y - _ z -_ tu
X = L> y=L> Z=L> t = ^T> (6.7.23)



and the dimensionless dependent variables

(6.7.24)

Solving for the dimensional variables in terms of their dimensionless
counterparts, and substituting the result into the Navier-Stokes equa-
tion and into the continuity equation, we find

(6.7.25)

and

V - u - 0 . (6.7.26)

Our earlier analysis suggests that the structure of the flow depends on
L, C/, p and IJL collectively through the dimensionless Reynolds number,
in the sense of dynamic similitude expressed by equations (6.7.9) and
(6.7.10).

Characteristic scales

The choice of characteristic velocity and length scale may be obvi-
ous in some cases but subtle in others. If all terms in the dimensionless
Navier-Stokes equation (6.7.25) are of order unity, then the Reynolds
number clearly expresses the relative importance of inertial forces, as-
sumed to scale with p U2/L, and viscous forces, assumed to scale with
IJL U/L2, so that their ratio is the Reynolds number defined in (6.7.22).
If an alternative scaling for these forces is available on physical ground,
then they should be used in place of a generic scaling that lacks physical
insight.

Stokes flow

Inspecting the dimensionless Navier-Stokes equation (6.7.25), we note
that, when the Reynolds number is small, viscous forces dominate and
the left-hand side makes a negligible contribution. The dimensionless
pressure gradient also appears to make a negligible contribution in this
limit, but this is only a mathematical illusion: the dimensionless pressure
arose from the arbitrary scaling shown in the last of equations (6.7.24),
which may be contrasted with the physical scaling of the position vector
and velocity in terms of the unambiguous length and velocity scales



L and U. As a consequence, the dimensionless pressure gradient may
become singular as the Reynolds number tends to vanish, suggesting
that an alternatice scaling is required. To prevent this occurrence, we
retain the dimensionless pressure gradient in the dimensionless form of
the Navier-Stokes equation.

Reverting to dimensional variables, we find that the Navier-Stokes
equation reduces to the Stokes equation

O - -Vp + IJL V2U + p g, (6.7.27)

describing steady or unsteady creeping flows with negligible inertial forces.
The analysis and computation of these flows will be the exclusive topic
of our discussion in Chapter 9.

Flows at high Reynolds numbers

Inspecting (6.7.25), we find that when the Reynolds number is large,
viscous forces are negligible and may be neglected throughout the do-
main of flow. This, however, is permissible only when the velocity does
not change rapidly over small distances across fluid layers that are thin
compared to the global size of the boundaries, otherwise the preceding
scaling with respect to U and L may not be valid. Such thin layers
typically occur along flow boundaries or interfaces between two adjacent
streams of the same or different fluids. In Chapter 10, we shall demon-
strate that viscous forces may be substantial or even dominant within
these layers, even though the bulk of the flow may occur at high Reynolds
numbers.

Laminar and turbulent flows

When the Reynolds number exceeds a certain threshold, an unsteady
small-scale motion characterized by rapid fluctuations in the velocity
and vorticity field is spontaneously established. This turbulent motion
is superposed on a steady or unsteady slower-evolving macroscopic or
large-scale flow. Flows below the critical Reynolds number are called
laminar to indicate that the streamlines are smooth, and flows above
thie critical Reynolds number are called turbulent to indicate that the
instantaneous streamlines are highly convoluted.

The transition from laminar to turbulent motion may occur by several
mechanisms including the amplificiation of internal waves. The critical
Reynolds number where transition occurs may be estimated theoretically



by carrrying out a stability analysis, as will be discussed in Chapter 10.
The dynamics of turbulent motion may be studied by several methods
including statistical analysis, nonlinear dynamical systems theory, and
vortex dynamics, as will be discussed in Chapter 10.

6.7.5 Dimensionless numbers in fluid mechanics

We have demonstrated that two geometrically related flows occurring
at the same Reynolds numbers are similar, in the sense that one may
be deduced from the other by rescaling. Arguments leading us to this
conclusion have been made with reference to a flow that is bounded by a
solid surface over which the no-slip and no-penetration boundary condi-
tions are required. Moreover, a time-independent velocity was imposed
in the far-field boundary condition in lieu of a driving mechanism.

If the driving mechanism is time-dependent, or if the flow is bounded
by fluid interfaces and free surfaces, additional conditions for dynamic
similitude requiring the equality of further dimensionless numbers are
required. These dimensionless numbers enter the problem formulation
either through the governing equations or through boundary and inter-
facial conditions.

Frequency parameter for a time-dependent flow

An externally imposed time-dependent flow with a time scale T is
characterized by the dimensionless frequency parameter

R_ L*
^=TV (6.7.28)

where v is the kinematic viscosity. In the case of periodic flow with
angular frequency u due, for example, to an oscillating pressure gradient,
T may be identified with the period T = 2?r/a;.

Froude number

The relative importance of inertial and gravitational forces in a flow
bounded by a free surface, such as the flow due to the propagation of
water waves in the ocean, is determined by the Froude number

Fr = -?-,
V^' (6.7.29)



where g is the acceleration of gravity. In the case of flow over a hump
discussed in Section 6.4, the Froude number takes the specific form shown
in equation (6.4.22).

Bond number

The relative importance of gravitational forces and surface tension in
a fluid bounded by a free surface or interface is determined by the Bond
number

Bo- P9L"Bo=~^~i (6.7.30)

where 7 is the surface tension (problem 6.7.3).

Weber number

The relative importance of inertial forces and surface tension in a
fluid bounded by a free surface or interface is determined by the Weber
number

H7 ?U2L
We = —7-- (6.7.31)

For example, the Weber number determines the deformation and nature
of the flow around a bubble rising or convected at high speed through
an ambient liquid.

Problems

Problem 6.7.1 Characteristic scales.
Identify the characteristic velocity scale /7, length scale L, and the

Reynolds number of (a) simple shear flow past a stationary particle, (b)
flow due to the settling of a particle in the atmosphere, and (c) flow due
to a breaking wave in the ocean.

Problem 6.7.2 Reynolds number.
Compute the Reynolds number of (a) an ant crawling, (b) a person

running, (c) a car moving at 100 km per hour, and (d) an elephant
running across a plain at maximum speed.

Problem 6.7.3 Bond number in hydrostatics.
Explain how the Bond number emerges from the scaling of the Laplace-

Young equation (5.4.6) in hydrostatics.



Chapter 7

Channel, tube, and film flows

7.1 Steady flow in a two-dimensional channel
7.2 Steady film flow down an inclined plane
7.3 Steady flow through a circular or annular tube
7.4 Steady flow through channels and tubes

with various cross-sections
7.5 Steady swirling flow
7.6 Transient flow in a channel
7.7 Oscillatory flow in a channel
7.8 Transient and oscillatory flow in a circular tube

Having derived the equations governing the motion of an incompress-
ible Newtonian fluid - by requiring mass conservation and Newton's sec-
ond law for the motion of fluid parcels - and having established appropri-
ate boundary and interfacial conditions, we proceed to derive analytical
and semi-analytical solutions for a common class of steady and unsteady
flows characterized by rectilinear or circular streamlines. The engineer-
ing significance of these flows, combined with their ability to demonstrate
the salient mechanisms by which momentum and vorticity are distribut-
ed in a steady flow and transported in an unsteady flow, justify why
these flows receive special attention.

7.1 Steady flow in a two-dimensional channel

Consider flow in a two-dimensional channel confined between two
parallel walls that are inclined at an angle OQ with respect to the hor-
izontal, and are separated by the distance 2/i, as illustrated in figure
7.1.1. In the inclined system of Cartesian coordinates depicted in this
figure, where the x axis is parallel to the walls, the components of the
gravity vector are given by gx — g sin OQ and gy = -g cos OQ, where g is



Figure 7.1.1 Steady flow a channel confined between two parallel walls.

the acceleration of gravity. The lower wall translates parallel to itself
with constant velocity Ui, and the upper wall translates parallel to itself
with constant velocity £/2- The motion of the fluid is governed by the
Navier-Stokes equation (6.5.5) whose Cartesian components are shown
in equations (6.5.7).

7.1.1 Assumption of unidirectional flow

Our analysis will be based on the fundamental assumption of steady
unidirectional flow: the y and z velocity components vanish, uy = O
and uz = O, and the x component is independent of time, dux/dt =
O. This asssumption precludes the occurrence of turbulent flow where
an unsteady small-scale three-dimensional motion is established. The
continuity equation for two-dimensional flow, dux/dx + duy/dy — O,
requires Oux/dx = O, which states that the flow is fully developed. Thus,
the axial velocity Ux is only a function of position across the channel, y.

7.1.2 Velocity profile

Simplifying the x and y components of the equation of motion shown



in (6.5.7) by discarding terms that are identically equal to zero, we find

(7.1.1)

The no-slip boundary condition at the two walls requires

Ux = Ui at y = -/i, Ux — C/2 at y = h. /7 -^ 2)

The second of equations (7.1.1) governs the pressure distribution in
hydrostatics. It will be convenient to screen out the hydrostatic varia-
tion, by expressing the pressure in the form

P = PQ-XX + P 9yV, (7.1.3)

where PQ is a constant and x 'ls the negative of the pressure gradient
along the x axis. The first of equations (7.1.1) then takes the form

(7.1.4)

Integrating twice this second-order linear ordinary differential equation
with respect to y, we find the parabolic profile

(7.1.5)

where A and B are two constants to be determined by requiring the
no-slip boundary conditions (7.1.2). Solving for these constants, and
substituting the results into (7.1.5), we derive the parabolic velocity
profile

(7.1.6)

It is instructive to identify three special cases of the most general
flow expressed by (7.1.6):

1. When x + P 9x — O, the last term on the right-hand side of (7.1.6)
disappears, and the flow is driven by boundary motion in the shear-
driven mode] this is the plane Couette flow.

2. When Ui = O and [/2 = O, and the channel is horizontal, gx = O,
the flow is driven by an imposed pressure gradient along the x axis
equal to the negative of x, in the pressure-driven mode] this is the
Hagen flow.



3. When Ui = O and U<2 = O, and also x — O, which means that there
is no pressure variation along the x axis, we obtain gravity-driven
flow,

Subroutine chan^2d in directory 04-various/unLflow of FDLIB eval-
uates the velocity profile given in (7.1.6).

7.1.3 Shear stress

The shear stress axy arises by differentiating the velocity profile
(7.1.6) with respect to y, and is given by

(7.1.7)

In gravity- and pressure-driven flow, the shear stress varies linearly across
the channel; in plane Couette flow, the shear stress is constant deter-
mined by the velocities of, and distance between the two walls.

7.1.4 Flow rate

The flow rate along the x axis is found by integrating the velocity
across the channel, obtaining

(7.1.8)

As an example, consider a channel that is closed at two ends, so
that the flow rate vanishes, Q = O. Physically, the flow is driven by the
translation of two moving belts identified with the lower and upper wall.
Equation (7.1.8) shows that a pressure gradient will be established for
the right-hand side to vanish.

7.1.5 Two-layer flow

Next, we consider the flow of two superimposed layers with generally
different viscosities and densities, as illustrated in figure 7.1.2; the inter-
face is located at y = y/. The lower layer is labelled as fluid 1, and the
upper layer is labelled as fluid 2.

Working as in the case of single-fluid flow, we derive the pressure
distribution within each layer corresponding to (7.1.3),



Figure 7.1.2 Steady two-layer flow in a channel confined between two
parallel walls.

p(1) = P0 - X x + pi gy (y - y/),

p(2) = P0 - x x + p2 gy (y - yi). (7.1.9)

Note that the negative of the pressure gradient x must be the same in
the two fluids, otherwise the interfacial condition requiring continuity of
normal stress, amounting to continuity of pressure, cannot be satisfied.

The velocity profile across each layer is governed by the counterparts
of equation (7.1.4) for each fluid,

(7.1.10)

To facilitate forthcoming algebraic manipulations, we integrate equations
(7.1.10) twice with respect to y, and express the solutions in the form

(7.1.11)



where uj is the common velocity of the two fluids at the location of the
interface, and £1,^2 are the shear rates or slopes of the velocity on either
side of the interface, defined as

(7.1.12)

To compute the three unknowns £1, £2? and ^/, we require: (a) the no-
slip boundary condition at the lower and upper wall UX (y = —h) = Ui

/2\
and Ux (y — h) = [/2, and (b) a condition expressing continuity of shear
stress across the interface,

Mi £1=^26. (7.1.13)

After a fair amount of algebra, we find

(7.1.14)

and

(7.1.15)

where hi = h + y/ and h<2 = h — yi are the lower and upper layer
thicknesses satisfying hi + h<2 = 2h. We have introduced the viscosity,
density, and thickness ratio,

(7.1.16)

Subroutine chan.2d.2l in directory 04-various/unLflow of FDLIB
evaluates the interfacial velocity, shear rates, velocity profile across the
two layers, and the corresponding flow rates.

7.1.6 Multi-layer flow

Generalizing the flow configuration, we consider the flow of an ar-
bitrary number of N superimposed layers, as illustrated in figure 7.1.3.
The bottom layer is labelled as fluid 1, and the top layer is labelled
as fluid N. The N-I interfaces separating the layers are located at
y = yj\ where i = 1,2,. . . ,AT - 1.

The velocity profile across the ith layer is governed by the generalized
version of equation (7.1.4)



Figure 7.1.3 Steady multi-layer flow in a channel confined between two
parallel walls. The numbers on the right are the interface labels.

(7.1.17)

where i = 1,2, . . . , N. Integrating equation (7.1.17) twice with respect
to y, we derive the parabolic profile

(7.1.18)

where A^ and B^ are unknown constants to be determined by requir-
ing: (a) the no-slip boundary condition at the lower and upper wall, (b)
continuity of velocity across the interfaces expressed by

(7.1.19)

for i = 1,2,. . . ,7V — 1, and (c) continuity of shear stress across the
interfaces expressed by

(7.1.20)

for i = 1 , 2 , . . . ,AT- 1.



Substituting the profile (7.1.18) into (7.1.20), and solving for B^\
we derive a recursion relation for JE?W,

(7.1.21)

where i = 1,2, . . . ,7V - 1.
To this end, we introduce the shear rate at the upper wall,

(7.1.22)

Differentiating the profile (7.1.18) for i — N with respect to y, and
evaluating the derivative at y = /i, we find

(7.1.23)

If we knew the value of a, we would be able to compute the coefficient
JjW from (7.1.23), and then evaluate the rest of the coefficients B^
for i — N - 1, . . . , 2,1, using the recursion relation (7.1.21). Once this
has been accomplished, we could compute A^ to satisfy the no-slip
boundary condition at the bottom wall using the equation

(7.1.24)

and then evaluate the rest of the coefficients A^ by requiring continuity
of velocity across each interface expressed by (7.1.19). In the end, the
no-slip boundary condition at the upper wall would also be satisfied.
Unfortunately, the value of a is not known a priori.

An expedient method of producing the value of a and simultaneously
computing the unknown coefficients of the velocity profiles may be de-
vised on the basis of the no-slip boundary condition at the upper wall.
We begin by expressing this condition in the form

(7.1.25)

Clearly, a is a root of the function /(a).
A key observation is that f ( a ) is a linear function of a, and may

thus be expressed in the form



f ( a ) = Ca + D, (7.1.26)

where
C = /(!)- /(O), D = /(O). (7-L27)

The linear dependence shown in equation (7.1.26) becomes evident by
observing that, if we assign a certain value to a, we can use the procedure
described in the paragraph following equation (7.1.23) to evaluate the
coefficients of the velocity profiles across each layer, and then compute
the left-hand side of (7.1.25) by linear algebraic manipulations.

Combining (7.1.26) and (7.1.27), we find that the required value of
OL satisfying /(a) = 0 is given by

(7.1.28)

The solution procedure involves evaluating /(O) and /(1), and then us-
ing (7.1.28) to obtain a. The algorithm is implemented in subroutine
chan-2d.ml in directory 04-various/unLflow of FDLIB.

Problems

Problem 7.1.1 Reduction to single-layer flow.
(a) Verify that, when A — 1 and /3 = 1, expressions (7.1.14) and

(7.1.15) are consistent with the velocity profile (7.1.6) for single-fluid
flow.

(b) Confirm that, when the densities and viscosities of all layers are
identical, the coefficients A^ and BW are all equal to those correspond-
ing to single-fluid flow.

Problem 7.1.2 Integral momentum balance.
Verify that the shear stress shown in (7.1.7) satisfies the integral

momentum balance over the rectangular fluid parcel drawn with the
solid line in figure 6.1.1.

Problem 7.1.3 Power-law fluids.
Derive the counterpart of the velocity profile (7.1.7) for a power-law

fluid whose viscosity is a function of the shear rate, as shown in equation
(4.6.1).



Figure 7.2.1 Gravity-driven flow of a film down an inclined plane.

Computer problem

Problem c.7.1.1 Multi-layer flow.

Use subroutine chan-2d.ml in directory 04-various/unLflow of FDLIB
to compute and plot the velocity profile of a three-layer pressure-driven
flow of your choice. Then investigate and discuss the effect of the vis-
cosity of each layer on the velocity profile.

7.2 Steady film flow down an inclined plane

Gravity-driven flow of a liquid film down an inclined plane is en-
countered in a broad range of technologial applications, including pho-
tographic and magnetic recording media coating.

Consider the flow of a film of thickness h down a plane wall that is
inclined by the angle OQ with respect to the horizontal, as illustrated in
figure 7.2.1. The no-slip boundary condition requires that the velocity
vanish at the plane located at y — O; the free-surface condition requires
that the shear stress vanish at the free-surface located at y = h.

Under the assumption of unidirectional flow, the motion of the fluid
is governed by the simplified equations of motion (7.1.1) subject to the



aforementioned boundary and free-surface conditions expressed by

Oux
ux = O at y = O, — = O at y = h. (7.2.1)

The pressure distribution is given by equation (7.1.3) with the pressure
gradient x set equal to zero, yielding p(y) = PQ + p gy y, where gy =
-g cos OQ. Setting the pressure at the free surface equal to the ambient
atmospheric pressure, we obtain PAIW, — Po+P9yh or PQ = PAtm — p9yh,
and then derive

p(y) = PAtm + P 9 cos 0Q (h - y ) . (7.2.2)

Working as previously for channel flow, we obtain the Nusselt velocity
profile

(7.2.3)

where gx = g sin OQ. This semi-parabolic profile is half the complete
parabolic profile of pressure- or gravity-driven flow in a channel of width
2/i, where the free surface is located at the centerline. The shear stress
varies linearly from a certain value at the wall to the required value of
zero at the free surface.

The flow rate arises by integrating the velocity across the film, ob-
taining

(7.2.4)

where Ux (h) is the maximum velocity occurring at the free surface.
Subroutine film.2d in directory 04-various/unLflow of FDLIB eval-

uates the velocity profile and flow rate given in (7.2.3) and (7.2.4).

7.2.1 Multi-film flow

Consider next the gravity-driven flow of an arbitrary number of N
superimposed films down an inclined plane, as illustrated in figure 7.2.2.
In photographic film manufacturing, as many as thirteen films may flow
down an inclined plane to be deposited onto a moving support.

In our notation, the bottom film is labelled as fluid 1, and the top
layer is labelled as fluid N. The N-I interfaces separating the films
are located at y = y}1', where i = 1 ,2 , . . . , JV- 1; the free surface is
located at y — y\ . The velocity profile across the ith film is governed
by equation (7.1.17) with x set equal to zero. Integrating (7.1.17) twice
with respect to y, we derive the parabolic profile



Figure 7.2.2 Gravity-driven multi-film flow down an inclined plane.

(7.2.5)

where A^ and B^ are unknown constants to be determined by requir-
ing (a) the no-slip boundary condition at the plane, (b) continuity of
velocity at the interfaces expressed by equation (7.1.18), (c) continuity
of shear stress at the interfaces expressed by equation (7.1.19), and (d)
the condition of zero shear stress at the free surface; with reference to
equation (7.1.22), a = O.

Knowledge of the value of the shear stress at the free surface allows
us to evaluate the coefficients B^ and A^l\ working as described in the
paragraph following equation (7.1.22). The numerical method is imple-
mented in subroutine films-2d located in directory 04-various/unLflow
of FDLIB.

Wall shear stress

One interesting feature of the multi-film flow is that the wall shear
stress and velocity profile across the first film that is adjacent to the
wall, are independent of the viscosities of the rest of the films. To see
this, we write the velocity profile (7.2.5) for i = 1, and require the no-
slip boundary condition to find A^1) = O. To compute B^l\ we perform
a force balance over a section of the composite film confined between



the planes x = x\ and x^. The balance requires that the force exerted
by the shear stress at the wall and at the free surface counterbalance
the horizontal component of the weight of the fluid residing within the
control volume. We note that the shear stress at the free surface is equal
to zero, and obtain

(7.2.6)

with the understanding that yy = O and y\ ' = h. Using the profile
(7.2.5) for i = 1, we find

(7.2.7)

Setting the right-hand side of (7.2.6) equal to the right-hand side of
(7.2.7), solving for J^W, and substituting the result into the profile (7.2.5)
for i — 1, proves the stated independence of the first velocity profile and
wall shear stress on the viscosity of the overlying fluids.

Problems

Problem 7.2.1 Multi-film flow.
Confirm the independence of the wall shear stress on the viscosity

of the films that are not adjacent to the wall on the basis of (a) the
recursion relation (7.1.21) for gravity-driven flow, and (b) the free-surface
condition expressed by (7.1.23) with a = O.

Problem 7.2.2 Power-law fluids.
Derive the counterpart of the velocity profile (7.2.3) for a power-law

fluid whose viscosity is a function of the shear rate, as shown in equation
(4.6.1).

Computer problem

Problem c.7.2.1 Multi-film flow.
Use subroutine films.2d in directory 04-various/unLflow of FDLIB

to compute and plot the velocity profile of a three-film flow of your choice.
Investigate and discuss the effect of the density of each film.



Figure 7.3.1 Illustration of steady unidirectional flow through a circu-
lar tube.

7.3 Steady flow through a circular
or annular tube

The simplest conduit along which a fluid can be delivered is a cylin-
drical tube of radius a, as illustrated in figure 7.3.1. To derive the velocity
profile, we introduce cylindrical polar coordinates with the x along the
tube centerline. The assumption of unidirectional flow requires that the
x component of the velocity is a function of distance a from the cen-
terline of the tube, signified by writing ux(a], whereas the radial and
meridional velocity components ua and u^ vanish.

It will be convenient to screen out the hydrostatic pressure variation
normal to the x axis, by expressing the pressure in the form

P = P*-Xx + p(9yy + 9zz)> ,731,

where PQ is a constant, and % is the negative of the pressure gradient
along the x axis. Consideration of the individual terms on the left-hand
side of the x component of the equation of motion displayed in the first
of equations (6.3.17), shows that the left-hand side vanishes. Using the



first of expressions (6.5.17), and rearranging, we derive the simplified
equation of motion

(7.3.2)

which is the counterpart of equation (7.1.4) for two-dimensional channel
flow. The solution is subject to the no-slip boundary condition Ux = O
at a — a, and a regularity condition requiring that Ux be finite at the
center line, a = O.

Two straightforward integrations of (7.3.2) with respect to a provide
us with the velocity profile

(7-3.3)

where A and B are two constants. For the velocity to be finite at the
centerline, the constant B must be equal to zero. To evaluate the re-
maining constant A, we require the no-slip condition at the tube, and
thus obtain the Poiseuille parabolic profile

(7.3.4)

Maximum velocity occurs at the tube centerline, a = O. Subroutine
tube.crc in directory 04-various/unLflow of FDLIB evaluates the veloc-
ity profile described by (7.3.4).

7.3.1 Shear stress and integral momentum balance

The shear stress oax arises by differentiating the velocity profile
(7.3.3) with respect to a, and is found to be a linear function of dis-
tance from the centerline,

(7.3.5)

It is instructive to verify that this expression satisfies, and can be
derived from, an integral momentum balance for a control volume that
is confined between two parallel planes located at x = x\ and x = #2>
and two cylindrical surfaces located at a = a\ and a = a^- Because the
flow is steady, the rate of change of linear momentum of the fluid within
the control volume should vanish. Balancing the normal force exerted
on the planar sides, the shear force exerted at the cylindrical sides, and



the body force, and noting that the normal viscous stress vanishes and
the normal stress over the planar sides is equal to the negative of the
pressure, we find

(7.3.6)

Using (7.3.1) to express the pressure difference in terms of the pressure
gradient X5 we find

(7.3.7)

Setting ai = O and solving for aaX(<y ^ we derive expression (7.3.5)
evaluated at a — a^-

7.3.2 Flow rate

The flow rate along the tube arises by integrating the velocity over
the cross-section, finding

(7.3.8)

where ^x(O) is the maximum velocity occurring at the centerline. The
mean velocity, defined as the ratio of the flow rate to the tube cross-
sectional area, UMean = Q/(Ka?}, is equal to half the maximum velocity,
UMean = ^x(O).

Equation (7.3.8) expresses Poiseuille's law, first established by lab-
oratory observation. The data suggested that the flow rate through a
circular tube subject to a constant pressure drop depends on the fourth
power of the tube diameter.

7.3.3 Flow through an annular tube

The velocity profile of the flow through an annular tube confined
between two coaxial cylinders with radii RI and R<2, illustrated in figure



Figure 7.3.2 Steady flow through an annular tube with translating
walls.

7.3.2, may be derived by a straightforward generalization of the preceding
analysis. A new feautre is that the two cylinders are allowed to translate
parallel to themselves along the x axis with respective velocities equal
to Ui and U^.

Integrating (7.3.2) with respect to a, we find that the axial com-
ponent of the velocity is given by (7.3.3). To evaluate the constants
A and B, we require the no-slip conditions Ux(a = R I ) = U\ and
ux(a = RZ] = t/2, and derive the velocity profile

(7.3.9)

The flow rate along the tube arises by integrating the velocity over
the annular cross-section confined between the two concentric cylinders,
obtaining



(7.3.10)

Subroutine tube.ann in directory 04-various/unLflow of FDLIB evalu-
ates the velocity profile and the flow rate given in (7.3.9) and (7.3.10).

When the width of the annulus R2-Ri is small compared to the inner
tube radius J?i, the curvature of the cylinders becomes insignificant, and
equations (7.3.9) and (7.3.10) reduce to equations (7.1.6) and (7.1.8)
with R2 - RI = Ih and y = a - \(Ri + R2) (problem 7.3.1).

7.3.4 Flow in a circular tube due to the translation of a sector

Earlier in this section, we considered pressure- and gravity-driven
flow through a circular tube. Suppose now that the axial pressure gradi-
ent vanishes, the tube is horizontal, and the flow is driven by boundary
motion. If the whole of the surface of the tube translates parallel to
itself with constant velocity, then the fluid will also translate with the
same uniform velocity in a plug-flow mode. If, however, only a sector of
the tube confined between — a < (p < a translates with velocity C/, and
the rest of the tube is stationary, as illustrated in figure 7.3.3(a), then a
distributed velocity field will be established.

Assuming that the flow is unidirectional, we set the radial and merid-
ional components of the velocity equal to zero, U0- = O and u^ = O, and
regard the axial component Ux as a function of distance from the tube
centerline, cr, and meridional angle, (p. The no-slip boundary condition
requires ux(a = a, (p) = U for —a < (p < a, and ux(a = a, <p) = 0
otherwise.

Consideration of the individual terms on the left-hand side of the x
component of the equation of motion, shown in the first of equations
(6.3.17), reveals that the left-hand side vanishes. Using the first of ex-
pression (6.5.17), treating the pressure as a constant, and rearranging,
we derive the simplified form



Figure 7.3.3 (a) Unidirectional flow through a circular tube due to the
translation of a sector with semi-angle a. (b) Discretization of the
tube cross-section for the purpose of computing the flow rate using
the mid-point rule.

(7.3.11)

where V2 is the Laplacian operator in the yz plane expressed in cylindri-
cal polar coordinates. Laplace's equation (7.3.11) is to be solved subject
to the boundary conditions stated at the end of the last paragraph.

The solution may be found using a particular method for solving
Laplace's equation in two dimensions in the interior or exterior of a cir-
cle subject to specified boundary conditions for the unknown function,
expressed by the Poisson integral formula. For the problem under con-
sideration, we find

(7.3.12)



Inspection of the right-hand side confirms that, as the semi-angle of the
translating sector a tends to TT, the fluid tends to translate with uniform
velocity in a plug-flow mode (problem 7.3.2). Subroutine tube.crc-sec
in directory 04-various/uni-flow of FDLIB evaluates the velocity profile
given in (7.3.12).

Flow rate

The flow rate through the tube arises by integrating the velocity over
the cross-section,

(7.3.13)

The integral on the right-hand side is not known in analytical form.
To obtain a numerical approximation, we divide the integration domain
with respect to (p and a into N9 and N0- evenly-spaced intervals of equal
size A<£> = 2-K/Ny and Aa = a/Na, defining elemental cross-sectional
areas, as shown in figure 7.3.3(b), and approximate the velocity over
each elemental area with the value at the center. Replacing the double
integral in (7.3.13) with a double sum, we obtain

(7.3.14)

where

(7.3.15)

Equation (7.3.14) is an implementation of the mid-point rule for two-
dimensional integration over a plane.

Problems

Problem 7.3.1 Reduction to channel flow.
Show that, when the width of the annulus R2 — RI is small compared

to the inner radius RI, equations (7.3.9) and (7.3.10) reduce to equations
(7.1.6) and (7.1.8) for flow in a channel of width 2h = R2 - RI, where
y = v-±(Ri +R2).



Problem 7.3.2 Flow in a tube due to a translating sector.
Show that, as the translating sector semi-angle a tends to TT, the

right-hand side of (7.3.12) tends to the wall velocity U everywhere inside
the tube.

Problem 7.2.3 Axisymmetric film flow.
A liquid film drains due to gravity downward along the surface of a

vertical circular rod of radius a. Show that, in cylindrical polar coordi-
nates with the x axis coaxial with the rod pointing upward, the velocity
profile across the film is given by

ux = ̂ [a2-a2-2(a + h)2 InJ, (7^16)

where h is the film thickness.

Computer problems

Problem c.7.3.1 Flow in a circular tube due to the translation of a
sector.

Prepare and discuss a graph of the dimensionless mean velocity UMean -
Q/(7ra2U) against the reduced semi-angle a/?r, using the numerical ap-
proximation implemented in (7.3.14). Your results should be accurate
to the third significant figure.

Problem c.7.3.2 Multi-layer tube flow.
Subroutine tube-crc-ml in directory 04-various/unLflow of FDLIB

computes the velocity profile of muti-layer pressure-driven tube flow.
The algorithm is similar to that discussed in Section 7.2 for film flow.
Note that the interfaces will remain concentric and cylindrical only in the
absence of gravity, or when the fluid densities are identical; otherwise, hy-
drostatic pressure variations will cause non-axisymmetric displacements.

(a) Outline and explain the numerical procedure implemented in the
code.

(b) Plot the velocity profile of a three-layer configuration of your
choice.

(c) With reference to (b), investigate and discuss the effect of the
layer viscosities on the velocity profile.

Problem c.7.3.3 Multi-layer annular flow.
Subroutine tube-ann.ml in directory 04-various/uni.flow of FDLIB

computes the velocity profile of a multi-layer annular flow. The algorithm



is similar to that discussed in Section 7.1 for multi-layer channel flow.
Repeat the three parts of problem c.7.3.2.

7.4 Steady flow through channels and tubes
with various cross-sections

Thus far, we have considered channel and tube flow where the stream-
wise velocity Ux is a function of lateral position, y, or distance from the
tube centerline, a. In this section, we consider flow in a channel or tube
with arbitrary cross-section where the streamwise velocity is a function of
the two spatial coordinates determining position over the cross-section,
ux(y,z).

The assumption of unidirectional motion allows us to simplify the
x, y, and z components of the equation of motion displayed in (6.5.7),
obtaining

(7.4.1)

Without loss of generality, we have assumed that the acceleration of
gravity lies in the xy plane, that is, the z component vanishes.

The y and z components of system (7.4.1) are satisfied by the pressure
distribution (7.1.3). To also satisfy the x component, we require that the
streamwise velocity is a solution of the second-order partial differential
equation

(7.4.2)

which is a Poisson equation with a constant right-hand side; V2 =
d2/dy2 + d2/dz2 is the Laplacian operator in the yz plane. The partial
differential equation (7.4.2) is a generalization of the ordinary differential
equations (7.1.4) and (7.3.2) for two-dimensional or axisymmetric flow.
In the remainder of this section, we shall derive solutions to (7.4.2) for
several boundary geometries.



7.4.1 Flow through an elliptical tube

First, we consider flow through a straight tube with an elliptical
cross-section whose contour in the yz plane is described by the equation

(7.4.3)

where a and b are the ellipse semi-axes, as illustrated in figure 7.4.1 (a).
The coordinates of a point on the elliptical contour may be identified by
the value of a parameter r? taking values in the range [0,2?r), as

y = a cosr], z = b sin 77. (7.4.4)

The no-slip boundary condition requires that Ux(y, z) = O for pairs (y, z)
generated by (7.4.4), and thus satisfying /(y, z) = O according to (7.4.3).

Because f ( y , z ) is a quadratic function of y and 2, its Laplacian,
defined after equation (7.4.2), is constant. Inspired by this observation,
we express the velocity in the form Ux(y, z) = c/(y, z) which guarantees
the satisfaction of the aforementioned no-slip boundary condition, and
adjust the value of the constant c to also satisfy the Poisson equation
(7.4.2). The result is the velocity distribution

(7.4.5)

Maximum velocity occurs at the tube centerline located at y = O and
z = Q.

Flow rate

Taking advantage of the symmetry of the velocity profile with respect
to the xy and xz planes, we express the axial flow rate as an integral of
the velocity over the first quadrant, in the form

(7.4.6)

where ZMax is computed by solving equation (7.4.3) for z, yielding ZMax =
b^/1 - y2/a2. Substituting the velocity profile (7.4.5) into the integrand,
and carrying our the integration with respect to z, we find



Figure 7.4.1 Steady flow through a tube with (a) elliptical, (b) rectan-
gular, and (c) equilateral triangle cross-section, (d) Flow between
two parallel plates moving over a plane wall regarded as a painted
surface.

(7.4.7)

where we have set y = y/a = sin ̂ . Reference to standard tables of
integrals reveals that the last integral in (7.4.7) is equal to 3?r/16. The



final expression for the flow rate is

(7.4.8)

As the second semi-axis b tends to become equal to the first semi-
axis a, the cross-section of the tube tends to become circular, and the
expressions for the velocity distribution and flow rate reduce to those
shown in equations (7.3.4) and (7.3.8) for Poiseuille flow.

Subroutine tube-ell in directory 04-various/unLflow of FDLIB eval-
uates the velocity profile and the flow rate given in (7.4.5) and (7.4.8).

7.4.2 Flow through a rectangular tube

As a second case study, we consider flow through a tube whose cross-
section is a rectangle with side-lengths equal to 2a and 2fr, as illustrated
in figure 7.4. l(b). A standard method of solving the Poisson equation
(7.4.2) involves expressing the velocity as the sum of a particular solution
Ux(y,z) that satisfies the Poisson equation (7.4.2) but not all boundary
conditions, and a homogeneous solution u^(y^z) that satisfies Laplace's
equation V2U^ = O and boundary conditions that arise by requiring that
the total velocity Ux = u% + u^ satisfies the no-slip boundary condition
over the four walls.

A convenient choice of a particular solution is

(7.4.9)

Requiring u% + u*f = O along the four walls, we derive boundary condi-
tions for the homogeneous solution,

(7.4.10)

and
(7.4.11)

To compute the homogeneous solution, we express it in the form of
a Fourier series with respect to 2, setting

(7.4.12)

where
(7.4.13)



so that the expansion (7.4.12) satisfies the boundary conditions (7.4.11).
The functions fn(y) will be computed so that the right-hand side of
(7.4.12) satisfies Laplace's equation V2U^ — O, and respects the bound-
ary conditions (7.4.10).

Taking the Laplacian of (7.4.12), we find

(7.4.14)

For the infinite sum on the right-hand side to vanish for any value of y
and z, each term enclosed by the square brackets must be equal to zero,
yielding

(7.4.15)

The general solution of this equation is

(7.4.16)

where An and Bn are constant coefficients. Discarding the hyperbolic
sines to ensure that the functions fn(y) are even and the velocity profile
is symmetric with respect to y = O, and substituting the result into
(7.4.12), we find

(7.4.17)

To satisfy the remaining boundary conditions (7.4.10), we require

(7.4.18)

The left-hand side of (7.4.18) may be regarded as the Fourier series of
the quadratic function with respect to z on the right-hand side.

The solution follows readily using the trigonometric identity

(7.4.19)



Multiplying both sides of (7.4.18) by cos(o:m z/b), integrating with re-
spect to z from — b to &, using (7.4.19) to compute the integrals on the
left-hand side, and then switching m to n, we find

-\/ J_ r\ n rb -y

(7.4.20)

where we have introduced the intermediate variable 77 = am z/b. Substi-
tuting expression (7.4.20) into (7.4.17), and adding to the homogeneous
solution the particular solution expressed by (7.4.9), we obtain the ve-
locity distribution in the form of an infinite series,

(7.4.21)

Flow rate

The flow rate arises by integrating the velocity over the tube cross-
section,

Q = ja_J_b
u*(y^dydz- (7.4.22)

Substituting the profile (7.4.21) into the integrand, and carrying out the
integration, we find

(7.4.23)

Subroutine chan.rec in subdirectory 04-various/uni.flow of FDLIB
evaluates the velocity profile, the flow rate, and the maximum velocity
occurring at the tube centerline.



7.4.3 Flow through a semi-infinite rectangular channel

As a third case study, we consider flow between two semi-infinite
parallel plates sliding with velocity U over a stationary flat surface, as
illustrated in figure 7.4. l(d). The motion of the plates generates a unidi-
rectional flow along the x axis, which may be regarded as a model of the
flow occurring between two hairs of an idealized two-dimensional brush
moving over a painted surface.

In the absence of a pressure gradient and significant gravitation-
al forces, the x component of the velocity satisfies Laplace's equation
V2Ux = O, which arises from (7.4.2) by setting the right-hand side equal
to zero. The no-slip boundary condition requires that the velocity van-
ishes over the flat surface located at z = O, and has the constant value U
over the sliding plates located at y = ±a. Far from the painted surface,
the fluid moves in a plug-flow mode with the plate velocity U.

To compute the solution, we use the method of Fourier expansions
discussed earlier for flow through a tube with rectangular cross-section.
Requiring that, as z tends to infinity, Ux tends to C/, we obtain the
counterpart of (7.4.17),

(7.4.24)

where the coefficient an is defined in equation (7.4.13).
Expansion (7.4.24) satisfies the no-slip condition at the side walls.

To also satisfy the no-slip condition at the painted surface, we require

(7.4.25)

Using the counterpart of the trigonometric identity (7.4.19),

(7.4.26)

and working as previously for flow in a rectangular channel, we find

(7.4.27)

Substituting this expression back into (7.4.24), we obtain the desired
velocity distribution



(7.4.28)

As the two plates travel over the stationary surface, they leave behind
an amount of fluid at the flow rate

(7.4.29)

Subroutine chan.brush in directory 04-various/unLflow of FDLIB
evaluates the velocity field and flow rate given by (7.4.28) and (7.4.29).

Problems

Problem 7.4.1 Area of an ellipse.
Show that the area of an ellipse with semi-axes a and b is equal to

Trafr.

Problem 7.4.2 Flow through a triangular tube.
Consider pressure- or gravity-driven flow through a tube whose cross-

section is an equilateral triangle with side-length a, as illustrated in figure
7.4. l(c). The origin is located at the centroid of the triangle, and the y
axis is parallel to the lower side.

(a) Confirm that the velocity distribution

(7.4.30)

satisfies the Poisson equation (7.4.2), and is consistent with the no-slip
boundary condition along the three sides.

(b) Show that the flow rate is given by

(7.4.31)



(c) Compute the ratio of the flow rates through a circular tube and
a triangular tube with the same cross-sectional areas, and discuss your
results.

Computer problems

Problem c.7.4.1 Flow through an ellipse.
Using the parametrization (7.4.4), we find that the differential arc

length along the contour of an ellipse is given by

(7.4.32)

where k2 = 1 — 62/a2; for convenience, and without loss of generality, we
have assumed b < a. The arc length of the ellipse is given by

(7.4.33)

When a = 6, whereupon k2 = O, we obtain the well-known result for the
circle, L = 2?ra.

The integral on the right-hand side of (7.4.33) is the complete elliptic
integal of the second kind. In Section 11.5, we shall see that this integral
may be evaluated using an efficient iterative method. As an alternative,
we use the mid-point rule to approximate the integral with a sum,

(7.4.34)

where TV is a specified level of discretization, and T]I = (i - ^) ̂ -
(a) Prepare a graph of the reduced arc length L/a against the axes

ratio 6/a, where O < b/a < 1. The value of TV in (7.4.34) should be
chosen large enough so that the arc length is computed accurate to the
third decimal place.

(b) A gardener delivers water through a circular hose made of a flexi-
ble but inextensible material. By pinching the end of the hose, she is able
to produce elliptical shapes of variable cross-section, while maintaining



Figure 7.5.1 Swirling flow between two rotating concentric cylinders:
(a) single-fluid flow, and (b) multi-layer flow.

the perimeter of the hose constant. Prepare a plot of the delivered flow
rate versus the aspect ratio of the cross-section for a certain pressure
gradient, and discuss your results.

7.5 Steady swirling flow

In previous sections, we have considered steady unidirectional flows
with rectilinear streamlines. Because point particles travel on straight
paths with constant velocity, inertial forces vanish and the flow is gov-
erned by the linear equation of motion expressing a balance between the
pressure gradient, the viscous force, and the body force. In this section,
we turn our attention to swirling flow with circular streamlines where
centrifugal forces arise.

7.5.1 Flow between two concentric cylinders

Consider steady swirling flow between two infinite concentric cylin-
ders with radii R\ and R^ rotating around their common axis with angu-
lar velocities QI and J^5 as illustrated in figure 7.5.1 (a). The established
circular Couette flow is the counterpart of the plane Couette flow with
rectilinear streamlines discussed in Section 7.1.



To compute the solution, we introduce cylindrical polar coordinates
with the x axis coaxial with the cylinders, and assume that the axial
and radial components of the velocity vanish, ux = O and uff = O, and
the meridional component Uy is independent of the meridional angle y?,
duy/d(p = O. Thus, Uy is only a function of distance from the x axis, a,
and Duy/Dt = O, where DjDt is the material derivative. The no-slip
boundary condition at the surface of the cylinders requires

Uy = RI fti at a — RI,

Uy = R<2 &2 at CT = #2- (j 5 ]\

In the case of steady swirling flow with circular streamlines, the cylin-
drical polar components of the equation of motion displayed in equations
(6.3.18) obtain the simplified form

(7.5.2)

To remove the hydrostatic pressure variation, we introduce the dynami
pressure defined by pD = p - p (gx x + gy y + gz 2), and reduce the three
differential equations (7.5.2) to the two ordinary differential equations

(7.5.3)

Straightfoward integration of the second of equations (7.5.3) with respect
to a subject to the boundary conditions (7.5.1) provides us with the
velocity profile

(7.5.4)

where

(7.5.5)



The first term on the right-hand side of (7.5.4) expresses rigid-body
rotation; the second term expresses swirling motion due to a point vor-
tex situated at the cylinder axis. Subroutine tube-ann.sw in directory
04-various/uni-flow of FDLIB evaluates the velocity profile given by
(7.5.4). The pressure distribution follows by substituting (7.5.4) into the
first of equations (7.5.3), and carrying out the integration with respect
to a.

Equation (7.5.4) confirms that when !̂ 1 = fi2 = ^5 °
r when the

radius of the inner cylinder vanishes, R\ = O, the fluid rotates as a rigid
body with angular velocity f2. In this case, the pressure distribution is
readily found to be

PD = P*+ \ptfa12, (7>5.6)

where PQ is a constant. Thus, rigid body rotation is associated with
a quadratic pressure distribution with respect to radial position, estab-
lished to counteract the centrifugal force due to inertia.

As the clearance of the channel R<2 - RI tends to become small com-
pared to the inner radius R\, we obtain plane Couette in a channel with
parallel-sided walls studied in Section 7.1 (problem 7.5.1).

Problems

Problem 7.5.1 Reduction to channel flow.
Show that, when the width of the annulus R^ — RI is small compared

to the inner radius .Ri, equation (7.5.4) reduces to equation (7.1.6) for
plane Couette flow in a channel with width 2h = R2 — RI, where y —
(T-I(R1+R2).

Problem 7.5.2 Torque.
Show that the torque exerted on either cylinder of a circular Couette

flow device is given by

TS2,,^ = -4,^;5ff§i, (757)

where the constant a is defined in (7.5.5).

Problem 7.5.3 Free surface of a rotating liquid.
A certain amount of liquid is placed in a horizontal cylindrical con-

tainer that rotates as a rigid body with angular velocity fi about the x



axis pointing against the direction of gravity. Using equation (7.5.6), we
find that the pressure distribution in the liquid is given by

P = PG + g P ̂ 2 + P 9* x- (7.5.8)

(a) Show that, when the surface tension is insignificant, the shape of
the free surface is described by the equation

ft2 a2

X = ̂ ~+C> (7-5.9)

where c is a constant, and g is the acceleration of gravity.
(b) Derive a differential equation governing the shape of the free

surface in the presence of surface tension.

Computer problem

Problem c.7.5.1 Multi-layer annular flow.
Subroutine tube.ann.sw.ml in directory 04-various/unLflow of FDLIB

computes the velocity profile of multi-layer swirling annular flow, as il-
lustrated in figure 7.5.1(b). The algorithm is similar to that discussed in
Section 7.1 for multi-layer channel flow.

(a) Outline and explain the numerical procedure implemented in the
code.

(b) Plot the velocity profile of a three-layer flow of your choice.

7.6 Transient flow in a channel

In the preceding sections, we have studied steady unidirectional flows
with rectilinear or circular streamlines. In the remainder of this chapter,
we turn our attention to the corresponding unsteady flows produced by
sudden or oscillatory boundary motion, tilting, or application of a pres-
sure gradient. Our analysis will continue to be based on the assumption
of unidirectional motion with rectilinear or circular streamlines, but the
velocity will be allowed to change in time.



Figure 7.6.1 Transient Couette flow in a channel with parallel-sided
walls due to the impulsive translation of the lower wall, at dimen-
sionless times i = t v/d2 = 0.001, 0.005, 0.010, 0.020, 0.030,
0.14, 0.15; the straight line is the linear profile established at long
times.

7.6.1 Transient Couette flow

To begin, we consider flow in a two-dimensional channel with parallel
walls separated by the distance d, where the lower wall is suddenly set in
motion parallel to itself along the x axis with constant velocity t/, while
the upper wall is held stationary, as illustrated in figure 7.6.1

Working as in Section 7.1, we find that, in the absence of a pressure
gradient along the x axis, the pressure assumes its hydrostatic distribu-
tion. The x component of the equation of motion provides us with a
partial differential equation for the x component of the velocity,

(7.6.1)

which is to be solved subject to the initial condition

Ux = O for O < y < d at t = O, (7.6.2)

and to the no-slip boundary conditions

ux(y = O) = Cf, ux(y = d) = O, for t > O. (7-6.3)



At long times, we anticipate that the flow will reach a steady state
with a linear velocity profile given by

(7.6.4)

as discussed in Section 7.1.
To compute the solution of (7.6.1), we consider the deviation of the

transient velocity from the linear profile established at steady state, and
expand it in a Fourier series with respect to y, obtaining

(7.6.5)

The arguments of the trigonometric functions on the right-hand side
were designed to satisfy the boundary conditions (7.6.3) at all times. To
compute the functions An(L), we substitute expansion (7.6.5) into the
governing equation (7.6.1), and carry out the time and space differenti-
ation to find

(7.6.6)

To ensure the satisfaction of this equality for any value of y, we set the
expression enclosed by the square brackets equal to zero, and thereby
obtain a first-order linear differential equation for An(I] whose solution
is

(7.6.7)

where v = IJL/p is the kinematic viscosity, and bn is a constant. Substi-
tuting expression (7.6.7) into (7.6.5), we find

(7.6.8)

To compute the constants 6n, we require that (7.6.8) satisfies the
initial condition (7.6.2),

(7.6.9)

The solution follows readily by use of the trigonometric identity



(7.6.10)

Multiplying the middle and right-hand side of (7.6.9) with sin(ra7ry/d),
integrating with respect to y from O to d, using identities (7.6.10), and
then switching m to n, we find

(7.6.11)

The velocity profile (7.6.8) takes the final form

(7.6.12)

Subroutine chan-2d.imp in directory 04-various/uni-flow.u of FDLIB
evaluates the velocity given in (7.6.12). A sequence of developing profiles
of the reduced velocity u = ux/Uis shown in figure 7.6.1.

At long times, the summed terms on the right-hand side of (7.6.12)
decay at an exponential rate, and the linear profile of the steady Couette
flow expressed by the first two terms within the angular brackets on
the right-hand side dominates. The elapsed time where steady flow has
virtually been established, denoted by t5, may be estimated by setting
the magnitude of the argument of the exponential term on the right-hand
side of (7.6.12) equal to unity for the lowest value of n, n = 1, obtaining

(7.6.13)

Apart from the factor ?r2 in the denominator, this estimate could have
been deduced at the outset on the basis of dimensional analysis.

Diffusion of vorticity

The strength of the vorticity in unidirectional flow is given by uz =
—dux/dy. Differentiating both sides of (7.6.1) with respect to y, we find
that the evolution of the vorticity is governed by equation (7.6.1), with
Ux replaced by uz on both sides.



Figure 7.6.1 illustrates that, as soon as the lower wall begins trans-
lating, a thin layer of highly rotational fluid is established near the wall.
The vorticity then diffuses away from the wall to occupy the whole of
the channel. When steady state has been established, the vorticity has
the uniform value U/d. This process exemplifies how vorticity enters a
flow across a boundary during a period of transient motion.

7.6.2 Flow due to the impulsive motion of a plate

A more detailed analysis of the transient Couette flow at short times
may be carried out by neglecting the presence of the upper wall, and
concentrating on the behavior of the flow near the moving wall. This
is done by setting d = oo in the initial condition (7.6.2) and boundary
conditions (7.6.3). Cursory inspection reveals that the Fourier-series
solution (7.6.12) is no longer useful in this limit.

The absence of a length scale associated with a channel of infinite
width suggests that the time and space dependencies must combine into
a unified variable which can be nondimensionalized by the kinematic vis-
cosity. Recalling that the kinematic viscosity has units of length squared
divided by time, we introduce the dimensionless variable

= y

^ ~ v^T (7.6.14)

ranging from zero to infinity, and express the velocity in the form

My,*) = U f ( n ) , (7.6.15)

where /(77) is a function of a single variable. This functional form implies
that the velocity, as seen by an observer who finds herself at the position
y = v/^, and is thus traveling upward with velocity dy/dt = y^/(4i),
remains constant. The initial and boundary conditions are satisfied pro-
vided that the function /(77) satisfies the boundary condition /(77 — O) =
1, and the far-field condition /(77 = oo) = O.

Substituting (7.6.15) into (7.6.1), we find

(7.6.16)

Carrrying out the differentiations, we obtain the second-order nonlinear
ordinary differential equation



(7.6.17)

To compute the solution, we recast (7.6.17) into the form

(7.6.18)

which may be integrated to yield

(7.6.19)

where A is a constant. Carrying out a second integration, we find

(7.6.20)

where B is a new integration constant, q is a dummy variable of integra-
tion, and v = q/2.

The integral on the right-hand side of (7.6.20) is not available in
analytical form. As an alternative, we express it in terms of the error
function defined as

(7.6.21)

or in terms of the complementary error function defined as

erfc(*) = l-erf(z). (7.6.22)

Graphs of these functions are shown in figure 7.6.2. As z tends to infinity,
the error function tends to the asymptotic value of unity; correspond-
ingly, the complementary error function tends to vanish.

The frequent occurrence of the error function in various branches
of mathematical physics has motivated its tabulation and representa-
tion in terms of various approximations. Subroutine error.f in directory
01.num.meth/12-spec.fnc of FDLIB evaluates the error function and
the complementary error function using an accurate algebraic approxi-
mation.

Returning to (7.6.20), we express the right-hand side in terms of the
error function, and require /(77 = O) = 1, and f(r] = oo) = O to obtain
A = -1/0F and B = 1, yielding the velocity profile



Figure 7.6.2 Graphs of the error function (solid line) and complemen-
tary error function (dashed line) defined in equations (7.6.20) and
(7.6.21), computed using algebraic approximations.

ux(y, t) = U /(T?) = U erfc(^). (7.6.23)

The accompanying vorticity profile is given by

(7.6.24)

This expression illustrates explicitly the singular nature of the vorticity
at the initial instant, and the spreading of the vorticity away from the
moving wall due to viscous diffusion at later times.

The wall shear stress is given by

(7.6.25)

This expression illustrates that an unphysical singularity occurs at the
initial instant, as soon as the plate starts moving. In reality, a plate can-
not start moving with constant velocity in an impulsive fashion; instead,
its velocty must increase gradually from zero to the final value over a
non-infinitesimal period of time, however small.

e r f (z )

erfc(z)



Figure 7.6.3 Transient pressure- or gravity-driven flow in a channel
with parallel-sided walls separated by the distance d, due to the
sudden application of a constant pressure gradient or sudden tilt-
ing, at dimensionless times i = tv/d2 = 0.001, 0.005, 0.010, 0.020,
0.030, . . . . The parabolic line corresponds to the Hagen flow es-
tablished at long times.

7.6.3 Transient pressure- or gravity-driven flow

As a second case study, we consider flow in a channel with stationary
walls, where the motion is due to the sudden application of a constant
pressure gradient or sudden tilting of the channel walls by a certain angle.

The x component of the equation of motion provides us with a partial
differential equation for the x component of the velocity,

(7.6.26)

The pressure field is given by equation (7.1.3), where the pressure gra-
dient % is a constant.

Working as in the case of transient Couette flow discussed previously
in this section, and requiring that the velocity at the lower and upper
wall vanishes at all times, we derive the transient velocity profile



(7.6.27)

Subroutine chan.2d-trans in subdirectory 04-various/uni-flow.u of
FDLIB evaluates the profile at a specified time. A sequence of developing
profiles of the dimensionless velocity u = Ux/U is shown in figure 7.6.3,
where U is the maximum velocity of the steady Hagen flow established
at long times.

Problems

Problem 7.6.1 Transient pressure-driven flow.
Derive the transient velocity profile (7.6.27).

Problem 7.6.2 Flow due to a constant shear stress.
Show that the velocity field due to the application of a constant

shear stress of magnitude T on the planar boundary of a semi-infinite
fluid occupying the upper half-space y > O, is given by

(7.6.28)

where r? = y/^/^A. Discuss the asymptotic behavior at long times.

7.7 Oscillatory flow in a channel

In Section 7.6, we discussed transient Couette flow and transient
pressure- or gravity-driven flow. In all cases, vorticity enters the flow
through the boundaries, and then diffuses to occupy the whole of the
domain of flow. In this section, we consider the corresponding problems
for oscillatory flow. The important new feature is that vorticity of al-
ternating sign enters the flow across the boundaries, and cancellation by
diffusion prevents the establishment of motion far from the boundaries.



Figure 7.7.1 Velocity profiles of oscillatory Couette flow in a two-
dimensional channel, at phase angles SIt — O, 0.25, 0.50, 0.75, 1.0,
1.25, 1.50, 1.75, and 2.0, for Womersley number (a) NW = \/2, and
(b) x/30.

7.7.1 Oscillatory Couette flow

Suppose that the lower wall of a two-dimensional channel oscillates
parallel to itself with velocity C7cos(fi£), while the upper wall is station-
ary, thereby generating a time-periodic unidirectional flow, as illustrated
in figure 7.7.1. The flow is governed by the unsteady diffusion equation
(7.6.1), subject to the boundary conditions

ux(y = O) = U cos(fi*), ux(y = d) = O, /7 7 ̂

for t > O.



Anticipating that the flow will be periodic in time, we express the
velocity in the form

«a(y, t) = U [fc(y) cos(nt) + fs(y] sin(ta)]. ?

To compute the functions fc(y) and /5(y), we substitute (7.7.2) into
(7.6.1), carry out the time differentiation, collect the coefficients of the
sines and cosines, and then set the compiled expressions equal to zero to
obtain two linear coupled ordinary differential equations,

(7.7.3)

where v = IJL/p is the kinematic viscosity.
To expedite the solution, we introduce the imaginary unit i, defined

such that i2 = — 1, and the complex function

f(y) = fc(y) + ifs(y)' (7.7.4)

Subject to this definition, the two equations in (7.7.3) combine into the
single complex form

(7.7.5)

The real and imaginary parts of the complex equation (7.7.5) are equal,
respectively, to the second and first of equations (7.7.3). Moreover, using
the Euler decomposition exp(—i ft i) = cos(ft t) - i sin(fi £), we find that
Ux is given by the real part of the complex function

w(y, t) = U f(y) exp(-i ft i). (7.7.Q)

The imaginary part ofw(y, t) also satisfies the governing equation (7.6.1).
The solution of (7.7.5) is readily found to be

(7.7.7)

where A and B are two complex constants, with the understanding that,
if /3 is a positive or negative real number, then



(7.7.8)

The no-slip boundary conditions (7.7.1) require /(O) = 1 and f(d] = O.
Using these equations to evaluate A and B, we find

B = I-A.
(7.7.9)

Substituting these expressions into (7.7.6), and rearranging, we derive
the complex function

(7.7.10)

whose real and imaginary parts provide us with the velocity accord-
ing to equations (7.7.4) and (7.7.2). Subroutine chan,2d.osc in directory
04-various/unLflow-u of FDLIB evaluates the velocity profile for a spec-
ified angular frequency and reduced temporal phase angle fl t.

The argument of the exponentials on the right-hand side of (7.7.10)
suggests that the structure of the flow is determined by the reduced
angular frequency expressed by the Womersley number

(7.7.11)

Figure 7.7.1 illustrates profiles of the dimensionless velocity u = ux/U
at fit = O, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, and 2.0, for Nw = V%
and \/30. When the Womersley number is small, the flow evolves in
quasi-steady fashion, and the velocity profile is nearly linear at all times.
As the Womersley number is raised, the motion is confined within a
boundary layer close to the moving wall, and the rest of the fluid is
virtually stationary.



7.7.2 Rayleigh's oscillating plate

To investigate the behavior at high frequencies or large channel width-
s, we consider the structure of the flow at large values of the Womersley
number. In this limit, the second term in the numerator and the sec-
ond term in the denominator on the right-hand side of (7.7.10) become
exponentially small, leaving the simplified form

(7.7.12)

The associated velocity profile is given by

(7.7.13)

Subroutine plate^osc in directory 04-various/unLflow.u of FDLIB eval-
uates thisvelocity profile at a specified time.

Expression (7.7.13) shows that the magnitude of the velocity decays
at an exponential rate with respect to distance from the oscillating wall.
The region where substantial fluid motion is established is identified as
the Stokes boundary layer. A rough measure of the thickness of this
boundary layer, denoted by 5, is the distance where the magnitude of
the argument of the exponential on the right-hand side of (7.7.13) is
equal to unity, yielding

x ft"J = V7r (7-7-14)
Aside from the factor 2 in the numerator, this estimate could have been
deduced at the outset on the basis of dimensional analysis.



Figure 7.7.2 Velocity profiles of pulsating pressure-driven flow in a two-
dimensional channel, at phase angles fH = O, 0.25, 0.50, 0.75, 1.0,
1.25, 1.50, 1.75, 2.0, for Womersley number (a) Nw = A/2, and (b)
>/30.

7.7.3 Pulsating pressure-driven flow

As a last case study, we consider pulsating flow in a channel due to
an oscillatory pressure gradient. The pressure field is given by equa-
tion (7.1.3), where X-X sin(fit). Thus, the pressure gradient varies
harmonically in time with angular frequency fi and amplitude X-

Working as previously for oscillatory Couette flow, we express the
velocity in the form

(7.7.15)



and introduce the complex function

f(y) = fc(y) + i /5(y), (7.7.16)
which is required to satisfy the boundary conditions /(O) = 0 and f(d) =
O. The solution is found to be

(7.7.17)

where the hyperbolic cosine of the complex argument on the right-hand
side is computed by decomposing it into real exponentials, and using
the definition coshz = [exp(z) + exp(—z )} /2 in conjunction with (7.7.8).
Subroutine chan.2d-wom in directory 04-various/uni.flow.u of FDLIB
evaluates the velocity profile using the preceding expressions.

Figure 7.7.2 presents two time sequences of profiles of the dimension-
less velocity u = Ux /U at a low and a moderate value of the Womersley
number; U is the maximum velocity of the steady Hagen flow. At low
frequencies, the motion is quasi-steady, and the velocity profile is nearly
parabolic at all times. At high frequencies, the flow consists of a core
oscillating in a plug-flow mode, and two Stokes boundary layers, one
attached to each wall (problem 7.7.2). One interesting feature of the
motion is that, under certain conditions, the amplitude of the velocity
at the edges of the boundary layers may exceed that in the central core.

Problems

Problem 7.7.1 Wall shear stress on an oscillating plate.
(a) Derive the following expression for the shear stress exerted on an

oscillating plate corresponding to the velocity profile (7.7.13),

(7.7.18)

(b) Expression (7.7.18) reveals that the wall shear stress lags behind
the wall velocity by the phase 3?r/4, independent of the angular fre-
quency. Does a similar independence arise in the case of channel flow
where the velocity profile is given by (7.7.2), (7.7.4), and (7.7.10)?

Problem 7.7.2 Womersley flow.
Show that, at high values of the Womersley number, equation (7.7.17)

assumes the approximate form



(7.7.19)

thereby confirming the development of a plug-flow core and two Stokes
boundary layers, one attached to each wall.

7.8 Transient and oscillatory flow
in a circular tube

The study of transient and oscillatory channel flow undertaken in
Sections 7.6 and 7.7 has revealed the physical mechanisms by which mo-
mentum is transmitted, and vorticity diffuses away from planar bound-
aries in an unsteady flow. In this section, we illustrate corresponding
mechanisms for curved boundaries by studying unsteady unidirectional
tube flow.

7.8.1 Transient Poiseuille flow

First, we consider transient flow in a cylindrical tube of radius a
due to the sudden application of a pressure gradient or due to suddent
tilting, and describe the motion in cylindrical polar coordinates with the
x axis along the tube centerline. The axial component of the velocity is
a function of distance from the x axis and time, ux(a,i)\ the radial and
meridional components vanish. The pressure field is given by equation
(7.3.1), where the axial pressure gradient x 'IS a constant. The no-slip
boundary condition requires that the velocity vanish at the surface of
the tube at all times, ux(a = a,t) = O.

Simplifying the x component of the equation of motion written in
cylindrical polar coordinates, we obtain a partial differential equation
for the axial velocity,

(7.8.1)

At the initial instant, the fluid is quiescent. At long times, we anticipate
that the flow will reach a steady state, and the velocity profile will assume



the parabolic form described by the Poiseuille solution (7.3.4), repeated
here for ready reference,

(7.8.2)

To compute the solution of (7.8.1), we decompose the velocity into
the Poiseuille profile and a transient profile that decays at long times,

(7.8.3)

Substituting (7.8.3) into (7.8.1), we find that the transient component
u^ (a^ t) satisfies the homogeneous equation

(7.8.4)

where v = IJL/p is the kinematic viscosity.

Separation of variables

The solution of (7.8.4) may be found by the method of separation of
variables based on the expansion

(7.8.5)

where Cn are constant coefficients, and ^n (0"), ^n(t) are unknown func-
tions of their respective arguments. Substituting this expansion into
(7.8.4), carrying out the differentiation, and rearranging, we obtain

(7.8.6)

For this equality to hold true for any value of a and t, the expression
enclosed by the square brackets on the right-hand side must vanish,
yielding

(7.8.7)

where b^ is a positive constant; the right-hand side of (7.8.7) was de-
signed to facilitate forthcoming algebraic manipulations. Rearranging
the two equalities inherent in (7.8.7), we derive two ordinary differential
equations,



(7.8.8)

The solution of the first equation is readily found to be

il>n(t) = exp(-i/&*<),

which reveals that the transient flow decays in an exponential fashion
with respect to time.

Bessel functions

To find the solution of the second of equations (7.8.8), we introduce
the Bessel function of the first kind JQ(Z) which, by definition, satisfies
the zeroth-order Bessel equation

(7.8.10)

and is also required to be finite for every value of the real variable z
between, and including, zero and infinity.

The frequent occurrence of JQ in various branches of mathemati-
cal physics has motivated its tabulation and representation in terms
of infinite series and approximations. Subroutine bess.JO in directory
01-num.meth/12.spec.fnc of FDLIB evaluates JQ using an accurate al-
gebraic approximation. The graph of JQ(^) is shown with the solid line
in figure 7.8.1.

Replacing z in Bessel's equation (7.8.10) with 6na, and simplifying,
we find that the function

<t>M = Mbn°] / 7 Q n\(r.o.lJJ

satisfies the second of equations (7.8.8), and is thus the desired solution.
To satisfy the no-slip boundary condition, we require

<t>n(o>) = Jo(M) = 0,
(f.ti.LZ)



Figure 7.8.1 Graphs of the Bessel functions JQ(^) and J\(z) drawn,
respectively, with the solid and dashed line, arising in the compu-
tation of transient tube flow.

which shows that bna is a root of JQ(Z), denoted by an. The first seven
roots are known to be:

ai = 2.4048, a2 = 5.5201, a3 = 8.6537, a4 = 11.7915,

0:5 = 14.9309, a6 = 18.0711, a7 = 21.2116. (7.3.13)

Accordingly, we set
, ®>n
bn = —. (7.8.14)

Substituting (7.8.14) into (7.8.11) and (7.8.9), and the result into (7.8.5),
we derive the expansion

(7.8.15)

The representation (7.8.15) clearly satisfies the requirement that the
transient flow decays at long times. To also satisfy the initial condition
ux(0, t — O) = O, we evaluate the decomposition (7.8.3) at t = O, and use
(7.8.2) and (7.8.15) to obtain



(7.8.16)

The coefficients Cn must be such that this representation holds true for
any value of a.

Orthogonality of the zeroth order Bessel functions

To extract the coefficients Cn from (7.8.16), we use the following or-
thogonality property of the Bessel functions

' (7.8.17)

where J\ (z) is the Bessel function of the first kind. By definition, J\ (z)
satisfies the differential equation

(7.8.18)

and is required to be finite for every value of z between, and including, ze-
ro and infinity. Subroutine bess.Jl in directory 01-num-meth/12-spec-fnc
of FDLIB evaluates J\ using an accurate algebraic approximation. The
graph of J\(z) is shown with the dashed line in figure 7.8.2.

Replacing z in identity (7.8.17) with a/a, and rearranging, we find

'(7.8.19)

Inspired by this identity, we multiply both sides of (7.8.16) by aJo(ama/a),
integrate with respect to a from O to a, use the orthogonality property
(7.8.19), and then switch ra to n to find

(7.8.20)

where we have set v = a/a. To compute the last integral, we replace z
in Bessel's equation (7.8.10) with anv, and simplify to obtain



(7.8.21)

Note that the left- and thus the right-hand side of (7.8.21) vanishes when
v = O or 1. Integrating both sides of (7.8.21) with respect to v from O to
1, we find

(7.8.22)

where the last expression was derived using the identity dJQ(Z)/dz —
— .7i(z)- A similar computation yields

(7.8.23)

Substituting (7.8.22) and (7.8.23) into (7.8.20), we obtain the desired
result

(7.8.24)

Finally, we substitute (7.8.24) into (7.8.15), and then into (7.8.3), and
derive the velocity profile

(7.8.25)



Subroutine tube.crc.trans in directory 04-various/uni-flow-U of FDLIB
evaluates the velocity described by (7.8.25). A time sequence of profiles
is similar to that illustrated in figure 7.6.3 for channel flow.

7.8.2 Pulsating pressure-driven flow

Consider next pulsating flow in a circular tube due to an oscillatory
pressure gradient. The no-slip boundary condition requires that the
velocity vanish at all times over the tube wall. The pressure field is
given by equation (7.3.1), where X = X sin(fit): the pressure gradient
varies harmonically in time with angular frequency £1 and amplitude X-

Working as in Section 7.7 for pulsating channel flow, we express the
velocity in the form

(7.8.26)

and introduce the complex function

/M-AM+</•<•>. (7.8.27)

which is required to satisfy the boundary condition /(a) = O. The solu-
tion is found to be

(7.8.28)

(problem 7.8.1), with the understanding that, if /3 is a positive real num-
ber, then

(7.8.29)

where hero and beii are the zeroth order Kelvin functions. Subroutine
ber.bei-0 in directory Ol.num^meth/12-spec-fnc of FDLIB evaluates the
Kelvin functions using functional approximations. Graphs of these func-
tions are displayed in figure 7.8.2.

The functional form of the arguments of the Bessel functions on the
right-hand side of (7.8.28) suggests that the structure of the flow is de-
termined by the reduced angular frequency expressed by the Womersley
number

(7.8.30)



Figure 7.8.2 Graphs of the Kelvin functions bero(z) and bei$(z} plot-
ted, respectively, with the solid and dashed line, arising in the
computation of oscillatory tube flow.

which is the counterpart of the Womersley number for channel flow de-
fined in equation (7.7.11).

Subroutine tube-.crc.wom in directory 04-various/uni.flow.u of FDLIB
evaluates the velocity profile using the expressions presented in this sec-
tion. A time sequence of profiles is similar to that displayed in figure
7.7.3 for channel flow. At low frequencies, the flow is nearly quasi-steady
and the velocity profile is nearly parabolic. At high frequencies, the flow
consists of a central core oscillating in a plug-flow mode, and a Stokes
boundary layer attached to the cylindrical wall. As in the case of channel
flow, the amplitude of the velocity at the edge of the boundary layers
may exceed that in the central core.

7.8.3 Bessel functions

We have seen that Bessel functions arise in the computation of flow
in an axisymmetric domain. In concluding this section, we state an
orthogonality property that is useful in evaluating the coefficients of
Bessel expansions; an example is shown in (7.8.14).



First, we note that, by definition, the pih order Bessel function of
the first kind Jp(^), satisfies the pth order Bessel equation

(7.8.31)

and is required to be finite for every value of z between, and including,
zero and infinity. The particular cases p = O and 1 are shown in equations
(7.8.10) and (7.8.18).

The orthogonality property of the Bessel functions is stated as fol-
lows: if Oin and am are two zeros of Jp(z), then

' (7.8.32)

It is illuminating to observe that the Bessel orthogonality property is
analogous to the Fourier orthogonality property exhibited by trigono-
metric functions, as shown, for example, in equations (7.4.19).

Problems

Problem 7.8.1 Pulsating pressure-driven flow.
Derive the velocity profile given by (7.8.26) - (7.8.28).

Problem 7.8.2 Transient swirling flow.
(a) Show that the meridional velocity of an unsteady swirling flow

with circular streamlines satisfies the linear partial differental equation

(7.8.33)

where v = IJL/p is the kinematic viscosity.
(b) Consider transient flow in the interior of a hollow circular cylin-

der of radius a filled with a fluid. At the origin of time, the cylinder
starts rotating suddenly around its axis with constant angular velocity
fi. Derive the following expression for the transient profile



(7.8.34)

where an are the positive zeros of the Bessel function J\. At long times,
the summed terms on the right-hand side of (7.8.34) vanish, leaving a
velocity field that expresses rigid-body rotation.

Computer problem

Problem c.7.8.1 Transient swirling flow.
Subroutine tube-crc.sw in directory 04-various/uni-flow.u of FDLIB

evaluates the velocity profile of transient swirling flow described by e-
quation (7.8.34). Compute and plot profiles at a sequence of times, and
discuss the consequences of truncating the infinite sum on the right-hand
side.



Chapter 8

Finite-Difference Methods

8.1 Choice of governing equations
8.2 Unidirectional flow;

velocity/pressure formulation
8.3 Unidirectional flow;

velocity/vorticity formulation
8.4 Unidirectional flow;

stream function/vorticity formulation
8.5 Two-dimensional flow;

stream function/vorticity formulation
8.6 Velocity/pressure formulation
8.7 Operator splitting and solenoidal projection

In previous chapters, we have discussed the equations governing the
structure of a steady flow and the evolution of an unsteady flow, and de-
rived selected solutions for simple flow configurations by analytical and
numerical methods. To generate solutions for arbitrary boundary ge-
ometries and flow conditions, it is necessary to develop general-purpose
numerical methods. In this chapter, we discuss the choice of govern-
ing equations and the implementation of finite-difference methods for
incompressible Newtonian flow.

8.1 Choice of governing equations

General-purpose methods for computing the flow of an incompressible
fluid may be classified into two categories distinguished by the choice of
governing equations, as follows:

• In the first class of methods, the flow is described in terms of prima-
ry variables including the velocity and the pressure. The structure
of the velocity and pressure field in a steady flow, and the evolution



of the velocity and pressure field in an unsteady flow, are computed
by solving the Navier-Stokes equation and the continuity equation,
subject to appropriate boundary conditions, initial conditions, and
possibly supplementary constraints.

• In the second class of methods, the flow is computed on the basis of
the vorticity transport equation. The numerical procedure involves
two stages: compute the structure or evolution of the vorticity field
using the vorticity transport equation discussed in Section 6.6, and
obtain the simultaneous structure or evolution of the velocity field
by inverting the equation definining the vorticity

W = V x u , ( g l l )

subject to constraints imposed by the continuity equation and
boundary conditions; by inverting (8.1.1), we mean solving for u
in terms of LU. Descendant methods are distinguished by the par-
ticular procedure used to recover the velocity field from the known
vorticity distribution.

The strengths and weaknesses of the aforementioned two general
classes of methods will become apparent as we describe their imple-
mentation. One appealing feature of the second class of methods based
on the vorticity transport equation is the lack of need to solve for the
pressure, which is desirable when boundary conditions for the pressure
are not specified and must be derived. Disadvantages include the need
to derive boundary conditions for the vorticity.

Problem

Problem 8.1.1 Inversion of the vorticity.
Show that, if u is a velocity field corresponding to a certain vorticity

field u;, then u + V/, where / is a smooth scalar function, corresponds
to the same vorticity field. Explain why, for the velocity field to be
solenoidal, V - U = O, the function / must be harmonic; that is, it must
satisfy Laplace's equation V2/ = O.



Figure 8.2.1 A one-dimensional finite-difference used to compute the
velocity profile of unidirectional channel flow.

8.2 Unidirectional flow;
velocity/pressure formulation

We begin developing finite-difference methods by considering the
velocity-pressure formulation for unidirectional flow in a channel confined
between two parallel walls located at y = O and y = /i, as illustrated in
figure 8.2.1. The lower and upper wall move parallel to themselves along
the x axis with generally time-dependent velocities U\(t] and U^(I).

Channel flow may occur under two complementary sets of conditions
reflecting the physical mechanism that drives the motion. In the first
case, the flow rate along the channel Q(t) is specified, and the stream-
wise pressure gradient dp(t)/dx is computed as part of the solution. In
the second case, the pressure gradient is specified, and the flow rate is
computed as part of the solution. In this section, we shall consider the
case of flow due to a specified, possibly time-dependent, pressure gra-
dient. In Section 8.4, we shall consider the complementary case of flow
subject to a specified flow rate.



8.2.1 Governing equations

To set up the mathematical formulation, we consider the x compo-
nent of the equation of motion which, in the case of unidirectional flow,
simplifies to

(8.2.1)

where p is the fluid density, v is the kinematic viscosity, and gx is the x
component of the acceleration of gravity. Equation (8.2.1) is to be solved
subject to a specified initial condition and to the possibly time-dependent
velocity boundary conditions

Ux(y = O) = C7i(t), ux(y = h) = CT2OO, (8.2.2)

requiring no-slip at the walls.

8.2.2 Explicit finite-difference method

To implement the finite-difference method, we divide the cross-section
of the channel extending over O < y < h into N intervals defined by N+l
grid points, as shown in figure 8.2.1. For convenience, we denote the x
component of the velocity at the i grid point as Ui(t) = ux(yi,t).

Next, we evaluate both sides of (8.2.1) at the ith interior grid point
at time i, where i — 2,3, . . . ,A/", and approximate the time derivative
on the left-hand side with a first-order forward finite difference and the
second derivative on the right-hand side with a second-order centered
finite difference, to obtain the finite-difference equation, FDE,

(8.2.3)

Solving for Ui (t + At) on the left-hand side, we find

Ui(t + At) = a Ut_i(<) + (1 - 2 a) U1(L] + a t*t+i(<) -/-(t) + At gx,p ox
(8.2.4)

for i = 2 ,3 , . . . N, where we have introduced the dimensionless ratio

(8.2.5)



called the numerical diffusivity. Equation (8.2.4) allows us to update the
velocity at the interior grid points explicitly starting from the specified
initial condition, and subject to the boundary conditions u\ (t + At) =
Ui(t + At) and uN+i(t + At) = CT2(t + At).

Numerical stability

Numerical experimentation reveals that the explicit method of up-
dating the velocity based on equation (8.2.4) is free of oscillations only
when the time step At is small enough so that the dimensionless numer-
ical diffusivity a defined in (8.2.5) is less than 0.5. For larger time steps,
the velocity profile develops unphysical oscillations of numerical nature
that are unrelated to the physics of the problem under consideration.
Accordingly, the explicit finite-difference method is only conditionally
stable.

8.2.3 Implicit finite-difference method

To avoid the restriction on the time step required for numerical sta-
bility, we implement an implicit finite-difference method. This is done
by evaluating both sides of (8.2.1) at the ith interior grid point at time
t H- At, where i = 2 ,3 , . . . , TV, and then approximating the time deriva-
tive on the left-hand side with a first-order backward finite difference
and the second derivative on the right-hand side with a second-order
centered finite difference, obtaining

(8.2.6)

Rearranging (8.2.6), we find

(8.2.7)

where a is the numerical diffusivity defined in equation (8.2.5). Equation
(8.2.7) allows us to compute the velocity at the interior grid points at the



time level t + At in an implicit fashion which involves solving simulta-
neously for all unknown grid values, subject to the boundary conditions
ui(t + At) = Ui(t + At) and uN+i(t + At) = C72(* + At).

To formalize the implicit algorithm, we write equation (8.2.7) for
i = 2, 3 , . . . , JV, and use the boundary conditions stated at the end of
the last paragraph to obtain a system of TV - 1 linear equations for the
velocity at the N-I interior grid points at time t + At,

(8.2.8)

We have introduced the tridiagonal coefficient matrix

(8.2.9)

the vector of unknown velocities

(8.2.10)

and the known vectors

(8.2.11)



The numerical method involves solving the linear system (8.2.8) at
the time instant t to produce the velocity profile at the next time instant
t + At, beginning from the specified initial state.

Numerical stability

Numerical experimentation reveals that the implicit method of up-
dating the velocity based on equation (8.2.8) is free of numerical os-
cillations irrespective of the size of the time step At. Accordingly, the
implicit finite-difference method is unconditionally stable and thus highly
desirable.

8.2.4 Steady state

To obtain the velocity profile at steady state, we return to equation
(8.2.8) and set u(t + At) = u(t) = u to find

( A - I ) . u = b, (g^12)

where I is the unit matrix. Dividing the individual equations contained
in (8.2.12) by a, we obtain the simpler form

C ' u = d> (8.2.13)

involving the tridiagonal coefficient matrix

(8.2.14)

the vector of unknown velocities at steady state

(8.2.15)



and the known vector

(8.2.16)

To compute the velocity profile at steady state, we merely solve the
system of linear alegbraic equations (8.2.13) using a numerical method.

8.2.5 Thomas algorithm

The tridiagonal form of the matrix A displayed in (8.2.9), as well as
of the matrix C displayed in (8.2.14), allows us to compute the solution
with great efficiency using the legendary Thomas algorithm. To formalize
the numerical method in general terms, we consider the KxK linear
system

D - X = S (8.2.17)

for the unknown vector x, where the vector s is assumed to be known
and the given matrix D has the tridiagonal form

" ai &i O O O ... O O O "
C2 a2 62 O O ... O O O

D = = O C3 a3 63 O ... O O O

O O O O O ... CK-I CLK-I &#-i
O O O O O ... O CK aK

(8.2.18)

Thomas's algorithm proceeds in two stages. At the first stage, the
tridiagonal system (8.2.17) is transformed into the bidiagonal system

D'-x = y (8.2.19)

involving the bidiagonal coefficient matrix



" 1 di O O O . . . O O O"
O 1 d2 O O ... O O O

,_ O O 1 d3 O ... O O O

O O O O O ... O 1 dK.i
O O O O O ... O O 1

(8.2.20)

At the second stage, the bidiagonal system (8.2.19) is solved by back-
ward substitution, which involves solving the last equation for the last
unknown XK, and then moving upward to computing the rest of the
unknowns in a sequential fashion. The combined algorithm is as follows:

Reduction to bidiagonal:

Backward substitution :

XK = VK
Doi = K - 1,1 (step= -1)

Xi = Vi- di Xi+i

End Do
(8.2.21)

Thomas's algorithm is a special implementation of the inclusive method
of Gauss elimination discussed earlier in Section 3.4 for general linear
systems, designed to bypass unecessary multiplications by zeros.



Figure 8.2.2 A composite finite-difference grid with extended or phan-
tom nodes used to compute the velocity profile in unidirectional
two-fluid channel flow.

8.2.6 Two-layer flow

A straightforward extension of the numerical methods described pre-
visously in this section allows us to compute the evolution of a two-layer
channel flow, as illustrated in figure 8.2.2. Now, the channel is occupied
by a lower layer labelled 1 and an upper layer labelled 2, and the two
layers are separated by a flat interface located at y = y/, where y/ < h.
The thickness of the lower layer is denoted by h\ = y/, and the thickness
of the upper layer is denoted by h^ = h — y j .

Interfacial conditions

At the interface, we require three conditions: continuity of velocity,
continuity of shear stress, and continuity of normal stress. To satisfy
the third condition, we require that the pressure gradient dp/dx has the
same value within both layers. Continuity of velocity and shear stress



Using the equation of motion (8.2.1), we find that if (8.2.22) is true at
the initial instant, it will also be true at all times provided that

(8.2.24)

Finite-difference implementation

We begin developing the finite-difference method by dividing the low-
er layer into NI evenly spaced intervals defined by the NI +I grid points
y\*, i = 1 ,2 , . . . , NI +1, and the upper layer into N% evenly spaced inter-

fcy\

vals defined by the N% + I grid points y\ , i — 1 ,2 , . . . , N% + 1, as shown
in figure 8.2.2. Moreover, for reasons that will soon become apparent,
we extend the domain of definition of each layer into the adjacent layer
by one artificial grid point labelled NI+ 2 for the lower layer or O for the
upper layer.

Approximating now the derivatives in (8.2.23) and (8.2.24) with cen-
tered finite differences, we derive two equations relating the values of the

velocity at the extended nodes, ?%i+2 an(^ uo >

(8.2.25)

and

(8.2.26)

where we have denoted

(8.2.27)

require

and

(8.2.22)

(8.2.23)



and we have defined AT/I = hi/Ni and Ay2 = hz/N^. Setting Uw1+1 =
(2}u\ , and introducing the ratios

(8.2.28)

we recast equations (8.2.25) and (8.2.26) into the form of a system of
two linear equations for the velocity at the extended nodes,

/3 UJJJ+2 + A 42) = /3 «<J| + A 42), (8.2.29)

and

(8.2.30)

Solving for the velocity at the lower extended node, we find

(8.2.31)

where

(8.2.32)

When the physical properties of the layers are matched, A — 7 = S — 1,
and the lower and upper grid sizes are equal, /3 = 1, then ^1+2 = *4

by equation (8.2.31), and UQ = U^1 by equation (8.2.29), as required.

Explicit method

Working as in the case of single-fluid flow discussed earlier, we derive
the explicit finite-difference equation

(8.2.33)



are the numerical diffusitivites for the lower and upper layer. The nu-
merical procedure involves the following steps:

1. Compute the velocity at the extended node UN +% fr°m equation
(8.2.31).

2. Use equation (8.2.33) to update the velocity at the grid points of
the lower layer, i = 2 , . . . , TVi + 1.

3. Set t42) =!*$+!•

4. Use equation (8.2.34) to update the velocity at the internal grid
points of the upper layer, for i = 2 , . . . , N^.

5. Use the boundary conditions to update the velocity at the lower
and upper wall.

6. Return to step 1 and repeat the computation for another step.

Problems

Problem 8.2.1 Steady state.
Derive the system (8.2.12) departing from the explicit finite-difference

formula (8.2.3).

Problem 8.2.2 Two-layer channel flow.
(a) Derive a system of finite-difference equations governing the ve-

locity profile of the two-layer channel flow at steady state.
(b) Develop an implicit finite-difference method for computing the

evolution of the two-layer flow discussed in the text.

for the lower layer, and the corresponding equation

(8.2.34)

for the upper layer, where

(8.2.35)



Problem 8.2.3 Flow in a circular tube.
Develop an explicit finite-difference method based on the velocity /

pressure formulation for computing the velocity profile developing in a
circular tube due to a suddenly imposed constant pressure gradient.

Computer problems

Problem c.8.2.1 Thomas's algorithm
Subdirectory Ol-num-meth/OSJin.eq of FDLIB includes the program

thomas that solves a tridiagonal system of linear equations using the
Thomas algorithm discussed in the text. Use the program to solve a
system of equations of your choice, and verify the accuracy of the solution
by confirming that it satisfies the chosen system of equations.

Problem c.8.2.2 Single-fluid channel flow.
(a) Write a program that computes the evolution of the velocity pro-

file in a channel with stationary walls due to the sudden application
of a constant pressure gradient, based on the explicit finite-difference
method discussed in the text. Run the program for fluid properties and
flow conditions of your choice, and for several sizes of the time step
corresponding to numerical diffusivity a larger and lower than 0.5, and
discuss the performance of the numerical method.

(b) Repeat (a) for the implicit finite-difference method discussed in
the text.

Problem c.8.2.3 Two-layer channel flow.
Write a program that computes the evolution of the velocity profile

of two-layer flow in a channel with stationary walls due to the sudden
application of a constant pressure gradient, based on the explicit finite-
difference method discussed in the text. Run the program for fluid prop-
erties and flow conditions of your choice and for several sizes of the time
step, and discuss the performance of the numerical method.

8.3 Unidirectional flow;
velocity/vorticity formulation

In the case of unsteady unidirectional flow, the vorticity transport
equation reduces to the unsteady diffusion equation for the strength of



the vorticity uz,

(8.3.1)

where v is the kinematic viscosity. Using the definition of the vorticity
shown in equation (8.1.1), we find that the strength of the vorticity is
related to the x component of the velocity Ux by the differential relation

(8.3.2)

Integrating (8.3.2) with respect to y from the lower wall up to an arbi-
trary point, we obtain an integral representation for the velocity in terms
of the vorticity,

(8.3.3)

Without loss of generality, we have chosen to satisfy the boundary condi-
tion at the lower wall; it remains to ensure that the boundary condition
at the upper wall will also be satisfied.

The numerical method involves computing the evolution of the vor-
ticity from a specified initial state using (8.3.1), and simultaneously re-
covering the evolution of the velocity field based on equation (8.3.2) or its
integrated version (8.3.3). Since the velocity does not appear in equation
(8.3.1), the two steps are decoupled.

8.3.1 Boundary conditions for the vorticity

Now, because the unsteady diffusion equation (8.3.1) is a second-
order differential equation with respect to y, two boundary conditions
for the vorticity are required, one at each end of the solution domain
located at y — O and h. These boundary conditions must be such that:
(a) the integral condition

(8.3.4)

is observed so that the right-hand side of (8.3.3) satisfies the no-slip
boundary condition Ux (y = h) = [/2, and (b) either the flow rate through
the channel has a specified value Q(t), or the streamwise pressure gradi-
ent has a specified value dp(t)/dx.



Considering flow subject to a specified pressure gradient, we recast
the x component of the equation of motion for unidirectional flow into
the form

(8.3.5)

Evaluating (8.3.5) at the lower and upper wall, and rearranging, we
obtain boundary conditions for the slope of the vorticity,

(8.3.6)

Special attention must be payed to the case of impulsive motion. If a
wall moves suddenly in an impulsive fashion, with the velocity changing
from one value to another over an infinitesimal period of time, the corre-
sponding time derivative on the right-hand side of one or both of (8.3.6)
will develop an infinite spike described by the Dirac delta function, to
be discussed in Chapter 11. This singular behavior is too demanding to
be handled by the numerical method.

To this end, we must investigate whether the vorticity boundary con-
ditions (8.3.6) ensure the satisfaction of the integral constraint (8.3.4)
which is necessary for the satisfaction of the no-slip boundary condition
at the upper wall. For this purpose, we integrate both sides of (8.3.1)
with respect to y from O to /i, interchange the order of the integration
and time differentiation on the left-hand side, and use (8.3.6) to simplify
the right-hand side finding

(8.3.7)

Time-integration of (8.3.7) reproduces (8.3.4) up to a time-independent
constant that is determined by the initial state. Thus, if (8.3.4) is satis-
fied at the initial instant, it will also be satisfied at all subsequent times.

8.3.2 Alternative set of equations

In a simpler approach, we take the derivative of (8.3.2) with respect
to y, and derive the second-order equation



(8.3.8)

where q = dujz/dy is the slope of the vorticity. To compute the velocity,
we integrate the second-order equation (8.3.8) with respect to y using the
velocity boundary conditions Ux (y = O) = U\ and Ux (y = h) = [/2- The
important benefit stemming from the use of (8.3.8) instead of (8.3.2), is
that, to compute the velocity, the slope of the vorticity q instead of the
vorticity itself is required.

An evolution equation for q arises by differentiating both sides of
(8.3.1) with respect to y, finding

(8.3.9)

Boundary conditions are provided by equations (8.3.6).
In summary, the numerical procedure involves integrating in time

equation (8.3.9) from an initial state subject to the derived boundary
conditions (8.3.6), while simultaneously computing the velocity by solv-
ing the second-order equation (8.3.8) subject to the velocity boundary
conditions Ux(y = O) — U\ and Ux(y — h) = U^-

Explicit finite-difference method

To implement a finite-difference method, we divide the flow domain
O < y < h into -/V intervals separated by N + 1 grid points, as shown
in figure 8.2.1, and evalute both sides of (8.3.9) at time t at the interior
nodes corresponding to i = 2 , 3 , . . . , N. Approximating the time deriva-
tive on the left-hand side with a first-order finite difference, and the y
derivative on the left-hand side with a second-order finite difference, we
obtain

(8.3.10)

where we have defined qi = q(yi). Solving for q^(t + At) on the left-hand
side, we find

qi(t + At) = agi-i(t) + (1 - 2 a) qi(t) + a qi+l(t),
(o.o.llj



where a = v At/Ay2 is the numerical diffusivity. Equation (8.3.11)
allows us to explicitly update the values of q at the grid points, subject
to boundary conditions for q\ and QN+I given by the right-hand sides of
equations (8.3.6).

The centered-difference discretization of equation (8.3.8) leads to the
linear system (8.2.13), where the coefficient matrix C is given in (8.2.14),
and the constant vector on the right-hand side is given by

(8.3.12)

The linear system may be solved efficiently using Thomas's algorithm
(8.2.21).

8.3.3 Comparison with the velocity-pressure formulation

Comparing the vorticity-velocity formulation discussed in this sec-
tion with the velocity-pressure formulation discussed in Section 8.2, we
find that the latter is significantly simpler in development and imple-
mentation. While this is undoubtedly true in the case of unidirectional
flow, we shall see later in this chapter that the vorticity-velocity is more
competitive in the more general case of two- and three-dimensional flow.

Problems

Problem 8.3.1 Steady flow.
Discuss the implementation of the velocity-vorticity formulation for

steady channel flow subject to a specified pressure gradient.

Problem 8.3.2 Two-layer flow.
Develop the velocity-vorticity formulation for two-layer channel flow

discussed in Section 8.2.

Problem 8.3.3 Flow in a circular tube.
Develop an explicit method based on the velocity-vorticity formula-

tion for computing the velocity profile developing in a circular tube due
to a suddenly imposed constant pressure gradient.



Computer problem

Problem c.8.3.1 Explicit finite-difference method.
Write a program that computes the evolution of the velocity pro-

file in a channel with stationary walls due to the sudden application of a
constant pressure gradient, based on the explicit finite-difference method
discussed in the text. Run the program for fluid properties and flow con-
ditions of your choice and for several sizes of the time step corresponding
to numerical diffusivity a larger and lower than 0.5, and discuss the per-
formance of the numerical method.

8.4 Unidirectional flow
stream function/vorticity formulation

In Sections 8.2 and 8.3, we discussed methods for computing the
evolution of the velocity profile in channel flow subject to a specified
pressure gradient. In this section, we consider the complementary case
of flow subject to a specified flow rate, and develop a numerical method
descending from the vorticity-velocity formulation.

For reasons that will soon become apparent, we introduce the stream
function ip satisfying Ux = dip/dy. In the case of unidirectional flow,
Ux and thus ^ is a function of y and t. The flow rate across a line
beginning and ending at two planes located at y = y\ and y% is equal
to the difference in the corresponding values of the stream function,
Q12 — ^ (2/2) — VKj/i); the flow rate through the channel is equal to
Q = ijj(y = h) - ip(y = O). Using equation (8.3.2), we find that the
strength of the vorticity is related to the stream function by the equation

<92V
Uz — "TT^T-9V (8.4.1)

The numerical method involves computing the evolution of the vor-
ticity from a specified initial state using (8.3.1), and simultaneously re-
covering the evolution of the stream function using (8.4.1). Since equa-
tions (8.3.1) and (8.4.1) are both of second order with respect to ?/, two
boundary conditions for the vorticity and two boundary conditions for
the stream function are required, one at each end of the solution domain
located at y = O and h.



To this end, we note that adding to the stream function an arbitrary
constant does not affect the velocity, which means that the base level of
the stream function may be arbitrary; accordingly, we stipulate 1/1 (y =
O) = O, in which case if)(y — h) = Q(t). It is evident now that, by
introducing the stream function, we have considerably facilitated the
implementation of the condition on the flow rate.

8.4.1 Boundary conditions for the vorticity

The boundary conditions for the vorticity must involve the specified
wall velocities Ui and [/2 by means of the no-slip boundary condition.
To illustrate the implementation of this condition, we divide the flow
domain O < y < h into N intervals defined by N + 1 grid points, as
shown in figure 8.2.1, and evalute both sides of (8.4.1) at time t at the
boundary nodes corresponding to i — 1 and N +1. Approximating the y
derivative on the left-hand side with a combination of finite differences,
we obtain

(8.4.2)

and

(8.4.3)

where we have denoted UJi = wz(yi) and V^ = ^(Vi)-
It is somewhat alarming to realize that the no-slip condition has been

implemented in an indirect fashion in terms of the vorticity. Specifically,
it is not clear that solving (8.4.1) for the stream function and subse-
quently differentiating it to compute the velocity will generate a velocity
field that is consistent with the prescribed velocity boundary conditions.
Fortunately, a thorough analysis of the numerical method reveals that
this will be the case except under unusual circumstances associated with
singular boundary conditions involving discontinuous behavior.



8.4.2 A semi-implicit method

Proceeding with the finite-difference method, we evaluate both sides
of (8.3.1) at the interior nodes corresponding to i = 2 , 3 , . . . , Af at time
£, and approximate the time derivative on the left-hand side with a first-
order finite difference, and the y derivative on the left-hand side with a
second-order second finite difference, obtaining

(8.4.4)

(8.4.5)

Solving for Wi(t + At), we find

where a = Atz^/Ay2 is the numerical diffusivity. Equation (8.4.5) allows
us to explicitly update the values of u at the interior grid points, subject
to boundary conditions for u\ and UN+I given by the right-hand sides
of (8.4.2) and (8.4.3); the stream function at time t is assumed to be
known.

Now, the implicit discretization of equation (8.4.1) leads to the linear
system

C-^(* + At) =d, (8.4.6)

where the coefficient matrix C is given in (8.2.14), the vector ty is defined
as

(8.4.7)

and the vector on the right-hand side of (8.4.6) is given by

(8.4.8)

The system (8.4.6) may be solved efficiently using Thomas's algorithm
(8.2.21).



The numerical method involves the following steps:

1. Assign initial values to the stream function and vorticity at all
nodes.

2. Compute the vorticity at the boundary nodes using (8.4.2) and
(8.4.3).

3. Update the vorticity at the internal nodes using (8.4.5).

4. Update the stream function at the internal nodes by solving the
linear system (8.4.6).

5. Return to step 2 and repeat.

The velocity profile arises by numerically differentiating the stream func-
tion with respect to y.

Problems

Problem 8.4.1 Steady flow.
Develop a finite-difference method based on the stream function /

vorticity formulation for computing the velocity profile of steady channel
flow subject to a specified flow rate.

Problem 8.4.2 Two-layer flow.
Develop a finite-difference method based on the stream function /

vorticity formulation for unsteady two-layer channel flow discussed in
Section 8.2.

Problem 8.4.3 Flow in a circular tube.
Develop a finite-difference method based on the stream function/vorticit;

formulation for computing the developing velocity profile in a circular
tube, subject to a specified flow rate.

Computer problem

Problem c.8.4.1 Explicit finite-difference method.
Write a program that computes the evolution of the velocity pro-

file in a channel with stationary walls using the explicit finite-difference



method, subject to a flow rate that increases gradually toward a steady
value according to the equation

QM = Q0[I-exp(-^)], (849)

where Qo is the constant flow rate prevailing of long times, and /3 is a
dimensionless constant. Run the program for fluid properties and flow
conditions of your choice, and for several sizes of the time step corre-
sponding to a larger and lower than 0.5, and discuss the performance of
the numerical method.

8.5 Two-dimensional flow;
stream function/vorticity formulation

Having discussed finite-difference methods for unidirectional flow, we
proceed to address the more general case of two-dimensional flow where
further considerations concerning the satisfaction of the continuity equa-
tion and choice of boundary conditions arise. We begin in this section by
considering the vorticity / stream function formulation, to be developed
as an extension of the corresponding formulation for unidirectional flow
discussed in Section 8.4.

Texts on computer language programming introduce elementary pro-
gramming procedures by explaining the structure of a program entitled
"world" which prints out the important message "Hello World". Cor-
respondingly, texts on computational fluid dynamics explain elementary
numerical methods by discussing the prototypical example of flow in a
two-dimensional cavity driven by a moving lid, known as the "driven-
cavity flow". We shall follow this time-honored tradition.

8.5.1 Flow in a cavity

Consider flow in a cavity driven by the motion of a lid translating
parallel to itself with a generally time-dependent velocity 17(t), as illus-
trated in figure 8.5.1, and introduce the stream function defined by the
relations Ux — dt/J/dy and uy = —d^/dx. The no-penetration condition
requires that the component of the velocity normal to each one of the
four walls vanish. In terms of the stream function,



Figure 8.5.1 A finite-difference grid used to compute flow in a cavity
driven by a moving lid.

i/j = 0 over all walls, (8.5.1)

so that the tangential derivative of the stream function, being propor-
tional the normal component of the velocity, vanishes. The zero on the
right-hand side of (8.5.1) may be replaced by an arbitrary constant with
no consequence on the structure of the flow.

The no-slip boundary condition requires that the tangential compo-
nent of the velocity vanish over the bottom, left, and right walls, and be
equal to U(i) on the upper wall. In terms of the stream function,

(8.5.2)

Based on the boundary conditions for the velocity, we may derive
simplified expressions for the boundary values of the strength of the
vorticity, ujz = —dux/dy + duy/dx, in terms of the stream function. For
example, taking into account that uy = O and thus duy/dx = O over



the bottom wall, we find cuz — —dux/dy = —d^ifj/dy1. Working in this
fashion, we find

at the top and bottom,

at the sides,
(8.5.3)

which are simplified versions of the more general expression for the vor-
ticity in terms of the stream function, ujz = —(d^^/dx2 + d2/i^/dy2}.

8.5.2 Finite-difference grid

To prepare the ground for the implementation of the finite-difference
method, we discretize the rectangular solution domain into a uniform
two-dimensional Cartesian grid consisting of Nx intervals in the x direc-
tion and Ny intervals in the y direction, as shown in figure 8.5.1. The grid
lines are separated by the uniform intervals Ax and Ay, called the grid
sizes. The intersections of the grid lines define grid points labelled by
the integer pair (i, j), where i = 1 ,2 , . . . , Nx +1 and j — 1 ,2 , . . . , Ny +1.
The side walls correspond to i = 1 and Nx + 1, and the bottom and top
walls correspond to j = 1 and Ny + 1.

The goal of the finite-difference method is to produce the values of
the flow variables at the grid points. For simplicity, we denote

uitj = uz(xi,yj), *l>ij = tl>(xi,yj), /g 5 ̂

and similarly for others variables.

8.5.3 Unsteady flow

Following the general procedure of methods based on the vorticity
transport equation, we compute the evolution of the flow by advanc-
ing the vorticity field using the vorticity transport equation for two-
dimensional flow written in the form of an evolution equation for the
vorticity,

(8.5.5)



subject to appropriate derived boundary conditions for the vorticity,
while obtaining the simultaneous evolution of the stream function by
solving the Poisson equation

(8.5.6)

subject to specified boundary conditions for the stream function.
A simple method of computing the evolution of the flow when the lid

starts translating suddenly from rest involves the following steps:

1. At the initial instant, set the stream function and velocity at all
interior and boundary grid points equal to zero. Then set the x
component of the velocity at the grid points over the lid equal to
U(t = 0).

2. Differentiate the velocity to produce the vorticity using the defi-
nition ujz = —dux/dy + duy/dx. For the interior grid points, use
centered differences, as shown in equation (2.5.18), to obtain

(8.5.7)

For the top wall, use backward differences to obtain

(8.5.8)

involving values at interior grid points. Over the bottom and side
walls, use forward or backward differences to obtain

(8.5.9)

and

(8.5.10)



3. Integrate in time equation (8.5.5) to compute the vorticity at the
interior grid points at time t+At. Choosing a fully explicit method,
we set

u)ij(t + At) = uitj(t) + %j)(t), (8.5.11)

where G^j)(t) is the right-hand side of (8.5.5) evaluated at the
(i,j) grid point, at time t. To evaluate G^j)(t), we approximate
the first spatial derivatives and the Laplacian of the vorticity using
centered differences. For example, the Laplacian of the vorticity
may be approximated with the finite-difference formula shown in
equation (3.3.13), written for uz.

4. Solve the Poisson equation (8.5.6) for the stream function subject
to the boundary condition (8.5.1) using a slightly generalized ver-
sion of the finite-difference method for Laplace's equation discussed
in Section 3.3. Approximating the second derivatives with centered
differences, we obtain the counterpart of equation (3.3.14)

V>i+i,j - 2 (1 + /3) if)itj + i/Ji-ij + /3 faj+i + 13 if>ij-i = -Az2 ujij,

(8.5.12)

where

(8.5.13)

5. Differentiate the stream function to compute the components of
the velocity at time t + At at the interior grid points.

6. Return to step 2 and repeat the computation for another time step.

8.5.4 Steady flow

To compute the structure of a steady flow, we follow a modified
approach. In this case, the left-hand side of (8.5.5) vanishes, yielding a
differential relation between the velocity and the vorticity. Solving for
the Laplacian of the vorticity, we find

(8.5.14)



which may be regarded as a Poisson equation for the vorticity, forced by
the a priori unknown source function on the right-hand side. Computing
the flow in terms of the stream function and vorticity involves simulta-
neously solving equations (8.5.6) and (8.5.14) according to the following
steps:

1. Guess the distribution of the stream function and associated dis-
tribution of the vorticity.

2. Solve the Poisson equation (8.5.6) for the stream function subject
to boundary condition (8.5.1).

3. Compute the right-hand side of (8.5.14).

4. Derive boundary conditions for the vorticity using the stream func-
tion obtained at step 2.

5. Solve the Poisson equation (8.5.14) for the vorticity.

6. Check to see whether the vorticity computed at step 5 agrees with
that assigned in step 1 within a specified tolerance. If it does not,
replace the latter with the former and return to step 2, otherwise
stop.

The method is implemented according to the following steps:

1. Assign values to the stream function at all (TVx +1) x (Ny +1) inte-
rior and boundary grid points, and to the vorticity at all Nx x Ny

interior grid points. A simple choice is to set them all equal to
zero.

2. Solve the Poisson equation (8.5.6) subject to the boundary condi-
tion (8.5.1) using an iterative method. To perform the iterations,
we approximate the second derivatives with centered differences
and obtain equation (8.5.12), which we then express in the form

Rij EE ^i+ij-2(l+/3)^ij+^i-ij+l3iJij+i+/3^ij-i + = O,

(8.5.15)

where Rij is defined as the residual. The iterative method involves
computing a time-like sequence of grid values parametrized by the
index /, computed using the formula



(8.5.16)

for / = 1,2, . . . , where p\ is a specified relaxation factor used to
control the iterations.

3. Compute the vorticity at the boundary grid points taking into
consideration the velocity boundary conditions. Considering the
grid points on the lid, we expand the stream function in a Taylor
series with respect to y about a top grid point, and evaluate the
expansion at the grid point immediately below, to obtain

(8.5.17)

Setting (dt{)/dy)i,Ny+i = C/, and Ui,Ny+i = -(d2^/0j/2)t,Wj,+i, as
discussed in the paragraph following equation (8.5.2), and solving
for o;i,jvy+i, we find

(8.5.18)

Working in a similar fashion, we derive analogous expressions for
the bottom, left, and right walls,

(8.5.19)

4. Differentiate the stream function to produce the velocity at the in-
terior grid points subject to the no-penetration condition expressed
by (8.5.1).

5. Differentiate the vorticity to produce its x and y derivatives at the
interior grid points subject to the boundary values computed at
step 3.

6. Compute the right-hand side of (8.5.14) at the interior grid points.



7. Solve equation (8.5.14) by iteration, as discussed in step 2. The
counterparts of equations (8.5.15) and (8.5.16) are:

Rf
i:j EE ^+ij-2(l+/3)^j+^_ij+/3^j+i+^j_i-Ax2^j = O,

(8.5.20)

and
(m) (O , r/(o

"ij -^j+PaJV/, (8.5.21)

where NIJ is the right-hand side of (8.5.14) evaluated at the ( i , j )
grid point, and p2 is a new relaxation factor.

Velocity vector fields computed using this method for Reynolds num-
ber Re — I and 100 are shown in figure 8.5.2. As the Reynolds number
is raised, the center of the eddy developing inside the cavity is shifted
toward the right wall due to the effects of fluid inertia.

8.5.5 Features of the stream function/vorticity formulation

The vorticity/stream function formulation is distinguished by the
following characteristics:

1. Since expressing the velocity in terms of the stream function en-
sures the satisfaction of the continuity equation, the latter does not
need to be considered.

2. The pressure does not appear during the solution, which is highly
desirable: if we had to solve for the pressure, we would have to
derive appropriate boundary conditions, as will be discussed in
later sections.

3. Enforcing the no-penetration and no-slip boundary conditions is
done in a sequential instead of a simultaneous fashion; the no-
penetration condition is enforced in the process of solving for the
stream function, and the no-slip condition is enforced in the process
of deriving boundary conditions for the vorticity. In spite of this
dichotomy, the overall method is consistent.



Figure 8.5.2 Velocity vector field of steady flow in a square cavity driv-
en by a moving lid at Reynolds number (a) Re = UL/v = 1, and
(b) Re = 100, where U is the lid velocity and L is the cavity side-
length. The flow was computed using program ll.fdm/cvt-sv of
FDLIB.



Problems

Problem 8.5.1 Computation of the pressure.
Show that the pressure distribution in an incompressible fluid satisfies

Poisson's equation

(8.5.22)

Hint: Take the divergence of the Navier-Stokes equation and use the
continuity equation.

Problem 8.5.2 Axisymmetric flow.
Develop a finite-difference method based on the stream function /

vorticity formulation for flow in an axisymmetric cavity depressed on a
circular cylinder, where the flow is driven by a sleeve sliding along the
cylinder.

Computer problem

Problem c.8.5.1 Steady flow in a cavity.
Subdirectory 11-fdm/cvt.sv of FDLIB contains a program that com-

putes steady flow in a rectangular cavity using the stream function /
vorticity formulation discussed in the text. Run the program for two
flow conditions of your choice, prepare velocity vector fields, and discuss
the performance of the numerical method and the changes in the struc-
ture of the flow with increasing Reynolds number Re = UL/v, where U
is the lid velocity, L is the length of the top or bottom wall, and v is the
kinematic viscosity.

8.6 Velocity/pressure formulation

The stream function/vorticity formulation discussed in Section 8.5 is
simple and efficient, but its extension to three-dimensions and its gen-
eralization to flows in the presence of interfaces are cumbersome. To
be able to handle more general flow configurations, we develop a direct
formulation in primary variables including the velocity and the pressure.



To compute the evolution of an unsteady flow, we require an evolution
equation for the velocity and another evolution equation for the pressure.
The former is provided by the Navier-Stokes equation written in the form

(8.6.1)

where we have introduced the nonlinear convective operator N and the
linear diffusive operator L, defined as

N(U) = - u - V u , L(u) = V2U. ( 8 6 2 )

If the fluid were compressible, the continuity equation would provide
us with an evolution equation for the density, as shown in equations
(2.7.10) and (2.7.11). An evolution equation for the pressure could then
be obtained by introducing an equation of state relating the density to
the local pressure and temperature.

In the case of incompressible flow, an explicit evolution equation for
the pressure is not available. Instead, the continuity equation requires
the kinematic constraint

V - u - 0 , (8.6.3)

which demands that the pressure field evolve so that the rate of expansion
V • u vanishes throughout the domain of flow at all times. To translate
this requirement into a mathematical restriction, we take the divergence
of the Navier-Stokes equation (8.6.1), interchange the divergence with
the time derivative on the left-hand side, and thereby derive an evolution
equation for the rate of expansion,

(8.6.4)

Note that the divergence operator and the nonlinear operator N do not
commute on the right-hand side, V-N(U) ^= N(V • u). For simplicity, we
have assumed that the density and the viscosity are uniform throughout
the domain of flow.

Equation (8.6.3) requires that the left-hand side of (8.6.4) should
vanish at all times, and this will be true if the pressure satisfies the
pressure Poisson equation, PPE,

V2p - p V - N(u) + /i V • L(U). (8>6<5)



It can be argued that, since the divergence and the linear operator L
commute, V • L(u) = L(V • u), the last term on the right-hand side of
(8.6.5) should be set equal to zero yielding the simplified pressure Poisson
equation, SPPE,

V2P = P V - N ( U ) . (866)

In practice, however, the magnitude of the last term on the right-hand
side of (8.6.5) is non-zero due to numerical error associated with the ap-
proximation of the partial derivatives with finite differences. It turns out
that the complete absence of this term, however small, may be detrimen-
tal to the performance of the numerical method by fostering the growth
of small oscillations. To avoid the onset of these oscillations, the PPE is
preferred over its simplified counterpart.

8.6.1 Alternative system of governing equations

The preceding discussion suggests a numerical procedure for com-
puting the evolution of an unsteady flow based on equations (8.6.1) and
(8.6.5) or (8.6.6): compute the evolution of the velocity using (8.6.1),
while obtaining the simultaneous evolution of the pressure by solving
the Poisson equation (8.6.5) or (8.6.6). The process is analogous to that
employed in the stream function / vorticity formulation discussed in
Section 8.5. One important difference is that, by employing the stream
function, the satisfaction of the continuity equation (8.6.3) is guaranteed,
independent of the magnitude of the numerical error.

To examine whether the velocity-pressure formulation ensures the
satisfaction of (8.6.3), we substitute (8.6.5) into the right-hand side of
the PPE (8.6.4) and obtain the expected result

(8.6.7)

which ensures that, if the rate of expansion vanishes at the initial instant
by a sensible choice of the initial condition, it will also vanish at all times.

Substituting (8.6.6) into the right-hand side of the SPPE (8.6.4), we
obtain an unsteady diffusion equation for the rate of expansion,

(8.6.8)



which ensures that, if the rate of expansion vanishes at the initial instant
by an appropriate choice of an initial condition, it will vanish at all times
provided that the boundary values of the rate of expansion also vanish
at all times. The additional condition underlines the importance of ac-
curately satisfying mass conservation at the boundaries, and provides
additional justification as to why (8.6.5) is preferred over its simplified
counterpart (8.6.6).

8.6.2 Pressure boundary conditions

To solve the pressure Poisson equation, we require a boundary con-
dition to be derived from specified boundary conditions for the veloci-
ty. The pressure boundary condition emerges by evaluating the Navier-
Stokes equation (8.6.1) at the boundaries, and then taking the inner
product of both sides with the unit vector normal to the boundaries
pointing outward, n. The result is the Neumann boundary condition

(8.6.9)

where the left-hand side expresses the derivative of the pressure normal to
the boundaries, that is, the rate of change of the pressure with respect to
distance normal to the boundaries. The right-hand side is then simplified
by use of the no-slip and no-penetration boundary conditions.

For example, in the case of flow over a horizontal stationary wall
located at y = O, we require Ux — O and uy = O at y = O, and obtain

(8.6.10)

The left-hand side is the normal derivative of the pressure, and the right-
hand side is the negative of the normal derivative of the vorticity multi-
plied by the fluid viscosity.

8.6.3 Compatibility condition

The Poisson equation governing the pressure distribution in an in-
compressible fluid is analogous to the Poisson equation governing the
steady-state distribution of temperature in a conductive medium identi-
fied with the domain of flow, subject to a homogeneous heat production
term expressed by the right-hand side. The boundary condition (8.6.9)



specifies the boundary distribution of heat flux in terms of the instan-
taneous velocity. Now, physical reasoning suggests that a steady distri-
bution of temperature will exist only if the total rate of heat production
is balanced by the total rate of heat removal across the boundaries, so
that heat does not accumulate to elevate the temperature.

In the case of two-dimensional flow, the mathematical expression of
this requirement is the following compatibility condition: the areal in-
tegral of the right-hand side of (8.6.5) or (8.6.6) over the domain of
flow must be equal to the line integral of the right-hand side of (8.6.9) or
(8.6.10) over the boundaries, otherwise a solution for the pressure cannot
be found. In the case of three-dimensional flow, the compatibility con-
dition requires that the volume integral of the right-hand side of (8.6.5)
or (8.6.6) over the domain of flow be equal to the surface integral of
the right-hand side of (8.6.9) or (8.6.10) over the boundaries, otherwise
a solution for the pressure cannot be found. In numerical practice, this
compatibility condition is enforced either implicitly or explicitly depend-
ing on the particular implementation of the numerical method.

Problem

Problem 8.6.1 Pressure boundary condition.
Derive the pressure boundary condition (8.6.10).

8,7 Operator splitting and solenoidal projection

In practice, the velocity/pressure formulation is implemented in a
manner that simplifies and, more important, expedites the numerical
solution. For illustration, we discuss the computation of an evolving two-
dimensional flow; extensions to three dimensions are straightforward in
principle and implementation.

In the most popular implementation of the velocity/pressure formu-
lation, the Navier-Stokes equation (8.6.1) is decomposed into the two
constituent equations

and

(8.7.1)

(8.7.2)



where the operators N and L are defined in equations (8.6.2). The right-
hand sides of (8.7.1) and (8.7.2) arise by splitting the full Navier-Stokes
operator on the right-hand side of (8.6.1) into two parts, subject to the
following interpretation.

Consider the change in the velocity field over a small time interval
At following the current time t. The decomposition (8.7.1) and (8.7.2)
is inspired by the idea of updating the velocity in two sequential steps,
where the first update is due to inertia and viscosity, and the second
update is due to the pressure gradient; the time is reset to t + At upon
completion of the second step. We shall see that this decomposition
significantly simplifies the implementation of the numerical method by
allowing the convection-diffusion and pressure-gradient steps to be han-
dled independently using appropriate numerical methods.

Certain ambiguities, however, arise. First, the boundary conditions
for the velocity to be used for integrating (8.7.1) cannot be the same as
the specified boundary conditions, otherwise the second step mediated
by (8.7.2) will cause a departure. Second, the boundary conditions for
the pressure may no longer be computed from (8.6.9), and should be
derived instead on the basis of equation (8.7.2).

The second observation suggests that p in equation (8.7.2) may no
longer be considered to be the hydrodynamic pressure, and should be
regarded as a modified pressure whose role is to ensure that the velocity
field becomes solenoidal at the end of the second step. To make this
distinction clear, we replace (8.7.2) with the equation

— - -Iy
~di~~~P *' (8.7.3)

where x ig a projection function. Equation (8.7.3) receives the veloci-
ty field delivered by the convection-diffusion equation (8.7.1), which is
not necessarily solenoidal, and removes the non-solenoidal component
by a process that is descibed as projection into the space of solenoidal
functions.

The choice of boundary conditions for the projection function x has
been the subject of extensive discussion. It can be shown that the ho-
mogeneous Neumann boundary condition, requiring that the derivative
of the projection function x with respect to distance normal to a bound-
ary vanishes, is appropriate. The associated boundary conditions for the
velocity will be discussed later in this section.



Next, we discuss the implementation of numerical methods for car-
rying out the convection-diffusion and projection steps expressed by e-
quations (8.7.1) and (8.7.3).

8.7.1 Convection-diffusion step

To prevent numerical instabilities, we perform the convection-diffusion
step expressed by (8.7.1) using an implicit finite difference method, up-
dating the velocity by solving linear systems of algebraic equations.

Evaluating the x and y components of equation (8.7.1) at the ( i , j )
grid point at time t + At, and approximating the time derivatives with
backward differences and the spatial derivatives with differences of our
choice, we derive a system of equations for the unknown velocity vector
containing the x and y velocity components at the grid points at time
t + At. The size of the velocity vector is equal to twice the number of
grid points. For a 32 x 32 grid, we obtain a velocity vector with nearly
2000 unkowns and an equal number of equations whose solution requires
a prohibitive amount of computational effort.

As an alternative, we split the operator on the right-hand side of
(8.7.1) into its two spatial components expressing covection-diffusion in
the x or y direction, given by

(8.7.4)

and

(8.7.5)

and advance the velocity over the time interval At in a sequential fashion.
To achieve second-order accuracy, we discretize equation (8.7.4) using

the Crank-Nicolson method by (a) evaluating (8.7.4) at the (i,j) grid
point at time t+ ^At, (b) approximating the time and space derivatives
with central differences, and (c) averaging the space derivatives over the
time levels t and t + At, to find

(8.7.6)



The asterisk designates the first intermediate velocity field. To simplify
the notation, we define

U^ = Uy(O, (8.7.7)

where the superscript n denotes the time level corresponding to time t.
Rearranging equation (8.7.6), we derive the finite-difference equation

-(cx + Zax) UjI1J + 4(1 + ax) ujj + (cx - Zax) u*+lj-

- (cx + 2ax) UjL1J + 4(1 - ax) u?j - (cx - Zax) u?+1 j, (8.7.8)

involving the local x convection number

(8.7.9)

and the x diffusion number

(8.7.10)

The right-hand side of (8.7.8) may be computed from knowledge of the
velocity at the grid points at the nth time level, which is assumed to be
available.

Evaluating (8.7.8) at grid points that lie along y grid lines correspond-
ing to fixed values of j, we obtain tridiagonal systems of equations for the
x and y components of the first intermediate velocity. The paramount
advantage of the method of directional splitting is that these tridiagonal
systems may be solved efficiently using the Thomas algorithm discussed
in Section 8.2.5, subject to boundary conditions to be discussed shortly.

An analogous discretization of equation (8.7.5) yields

where

is the local y convection number, and

is the y diffusion number.

(8.7.11)

(8.7.12)

(8.7.13)



The double asterisk in (8.7.11) designates the second intermediate veloc-
ity field.

The right-hand side of (8.7.11) may be computed from knowledge
of the first intermediate velocity delivered by equation (8.7.8). Evalu-
ating (8.7.11) at grid points that lie along x grid lines corresponding to
fixed values of i, we obtain tridiagonal systems of equations for the x
and y components of the second intermediate velocity, which may be
solved using the Thomas algorithm subject to boundary conditions to
be discussed shortly.

8.7.2 Projection step

Next, we advance the velocity field using the projection step (8.7.3),
where the projection function is computed so as to satisfy the continuity
equation at the end of this step. Evaluating (8.7.4) at the (i,j) grid
point, and approximating the time derivative with a finite difference, we
find

(8.7.14)

which may be rearranged to give

(8.7.15)

The gradient on the right-hand side of (8.7.15) may be approximated
using centered, forward, of backward differences.

To this end, we consider the continuity equation V • u — O, and use
centered differences to approximate the rate of expansion at the ( i , j )
grid point with the discrete form

(8.7.16)

Evaluating (8.7.16) at the n + 1 time level corresponding to time t + At,
requiring that the left-hand side vanishes, and using (8.7.15) to express
u(t + At) on the right-hand side in terms of (a) the second intermediate
velocity denoted by the double asterisk, and (b) the projection function,
we find



(8.7.17)

The right-hand side of (8.7.17) is recognized as the discrete divergence
of the gradient of the projection function x-

Next, we consider grid points that are not adjacent to a wall, ap-
proximate the partial derivatives of the right-hand side of (8.7.17) with
centered differences, and simplify to obtain

(8.7.18)

The right-hand side of (8.7.18) is recognized as the finite-difference ap-
proximation of the Laplacian of x, computed with spatial intervals equal
to 2 Ax and 2 Ay.

For points that are adjacent to a wall, we derive corresponding formu-
las incorporating the homogeneous Neumann boundary condition. For
example, applying (8.7.17) for i = 2 and j = 2, and setting (<9x/<9y)2,i =
O and (dx/dx)i£ = O, we obtain

(8.7.19)

Returning to (8.7.17), we reduce the intervals of the centered spatial
differences to Ax and Ay, and derive the alternative expression

5

(8.7.20)

which may be applied at all interior grid points. This finite-difference
equation could have been derived directly from (8.7.14) by taking the
divergence of both sides, and then approximating the emerging Laplacian
of x on ^e right-hand side with the five-point formula, as shown in
(8.7.20).

Evaluating (8.7.18) or (8.7.20) at the interior grid points, and the
counterparts of the former for the wall-adjacent points, and introduc-
ing boundary conditions for x> we obtain a system of linear equations
for the grid values of x> which is the counterpart of the linear system
descending from the pressure Poisson equation discussed in Section 8.6.
Having computed the grid values of the projection function, we return



to equation (8.7.15) and perform the final step, advancing the velocity
to the n + 1 time level corresponding to time t + At.

It is important to note that the coefficient matrix of the linear system
associated with (8.7.18) or (8.7.20) is independent of time, and this allows
us to either compute its inverse at the outset and then solve the system
at each step by simple matrix-vector multiplication, or else design and
use efficient custom-made iterative solution algorithms.

8.7.3 Boundary conditions for the intermediate velocity

To this end, we address the issue of boundary conditions for the in-
termediate velocities denoted by a single or double asterisk. The choice
of these conditions stems from a key observation: because of the ho-
mogeneous Neumann condition chosen for the projection function, the
projection step introduces a tangential but not a normal component of
boundary velocity. Accordingly, the boundary conditions for the inter-
mediate velocity should be designed such that the tangential velocity
introduced by the projection step brings the total velocity to the speci-
fied value. In practice, this can be done by estimating the magnitude of
the intermediate slip velocity and then improving the guess by iteration,
as will be explained later in this section.

8.7.4 Flow in a cavity

The implementation of the numerical method involves further consid-
erations that are best illustrated with reference to the familiar problem
of flow in a cavity driven by a translating lid.

Implementation of the homogeneous Neumann boundary condition
for the projection function

Consider the implementation of the condition of zero normal deriva-
tive of the projection function along the boundaries of the cavity il-
lustrated in figure 8.5.1. Requiring dx/dy = O at the bottom and top
walls, and approximating the first derivative with a second-order forward
or backward finite differences, we find

(8.7.21)



and

(8.7.22)

Requiring dx/dx = O at the left and right walls, and approximating the
first derivative with a second-order forward or backward finite-difference
formula, we find

(8.7.23)

and

(8.7.24)

Compatibility condition for system (8.7.18)

The linear system descending from (8.7.18) accompanied by the ho-
mogeneous Neumann boundary conditions is singular, which means that
it has either no solution or an infinite number of solutions depending
on the right-hand side. If a multiplicity of solutions exists, then any
particular solution may be altered by adding to it an arbitrary constant
vector with equal elements, which means that the value of the projec-
tion function at the grid points may be shifted by a physically irrelevant
constant. Reference to (8.7.15) ensures that this constant has no effect
on the structure of the flow.

It can be shown that, when the discrete divergence of the second
intermediate velocity is computed using (8.7.16), the linear system has
a multiplicity of solutions; that is, the discrete form of the compatibility
condition discussed at the end of Section 8.6 is fulfilled. A solution may
then be found by assigning an arbitrary value to one of the uknowns,
discarding one equation, and solving the rest of the equations for the
remaining unknowns. Unfortunately, the numerical solution computed
in this manner is contaminated by artificial oscillations described as odd-
even coupling.

Compatibility condition for system (8.7.20)

The linear system descending from (8.7.20) accompanied by the ho-
mogeneous Neumann boundary conditions is also singular, reflecting the
arbitrary level of the projection function. Unfortunately, when the dis-
crete divergence of the second intermediate velocity is computed using



(8.7.16), the discrete form of the compatibility condition is not satis-
fied, which means that one of the equations of the linear system may
not be fullfiled. Resisting the temptation to discard one equation, we
implement a more elegant approach which involves adding a small term
to the right-hand side of (8.7.20), and then adjusting its magnitude to
satisfy the compatibility condition of the modified system of equations
obtained in this fashion. If A • x = b is the linear system corresponding
to (8.7.20), then the modified system is

A - x - b + ec, (8.7.25)

where e is an a priori unknown constant, and c is a constant vector that
emerges by replacing the left-hand side of (8.7.17) with an arbitrary val-
ue, while retaining the linear equations implementing the homogeneous
Neumann boundary conditions. Our objective is to adjust the value of
the constant c so that the system (8.7.25) has an infinite number of
solutions, and this can be done working as follows:

1. Set the value of the last component of x equal to zero, discard the
last equation of A • x = b, solve the remaining equations, and call
the solution x^1). Then evaluate the difference r^ between the
left-hand side and the right-hand of the last equation.

2. Set the value of the last component of x equal to zero, discard the
last equation of A • x = c, solve the remaining equations, and call
the solution xRef. Then evaluate the difference rRef between the
left-hand side and the right-hand of the last equation.

3. The desired solution is

x = x« + cx^, (8-7.26)

where e = -rW /r
Ref.

Boundary conditions for the intermediate velocity

The boundary conditions for the intermediate velocity must be such
that the right-hand side of (8.7.15) is consistent with the specified bound-
ary conditions at time t+At. Requiring that the left-hand side of (8.7.15)
vanishes over a stationary boundary, we obtain the boundary condition

(8.7.27)



Now, because the projection function was required to satisfy the homo-
geneous Neumann boundary condition, the right-hand side of (8.7.27)
has only a tangential component expressing a numerical wall slip. An
apparent difficulty in computing the tangential component of the bound-
ary condition for the intermediate velocity is that the right-hand side of
(8.7.27) is not available during the convection-diffusion step. One way to
circumvent this difficulty is to approximate the projection function with
that at the previous step, proceed to the projection step, and then im-
prove the approximation by repeating the convection-diffusion step until
the slip velocity has become sufficiently small.

Velocity vector fields of the developing flow at Reynolds number Re =
I computed by the numerical discussed in this section are shown in figure
8.7.1. During the early stages of the motion, the flow is similar to that
generated by the impulsive translation of a plate. At later times, a fully
developed recirculating flow is established.

8.7.5 Computation of the pressure

Two methods are available for recovering the pressure field, if desired.
The first method involves combining, for example, equations (8.7.8),
(8.7.11), and (8.7.15) to produce a relationship between un and u^n+1).
Requiring that, in the limit as At tends to zero, this relationship reduces
to a spatially discretized version of the Navier-Stokes equation, we derive
an expression for an effective pressure. If the boundary conditions satis-
fied by the effective pressure are consistent with the Neumann boundary
condition satisfied by the actual pressure, then the former can be ac-
cepted as an approximation of the latter. The second method involves
substituting the velocity into the Navier-Stokes equation, and solving the
resulting equation for the pressure subject to the Neummann boundary
condition, as discussed in Section 8.6.2.

Problems

Problem 8.7.1 Singular system for the projection function.
Show that equation (8.7.26) provides us with the solution of (8.7.25)

subject to the homogeneous Neumann boundary condition.



Figure 8.7.1 Velocity vector fields of the flow developing in a rectan-
gular cavity due to the translation of the lid at Reynolds number
Re = U'Lj1V — 1, where U is the lid velocity, and L is the cavity
side length, computed using program 11-fdm/cvt-pm of FDLIB.
(a) Early, and (b) well-developed stages of the flow.

Computer problem

Problem c.8.7.1 Developing flow in a cavity.
Subdirectory ll-fdm/cvt.pm of FDLIB contains a program that com-

putes the flow developing in a rectangular cavity using the projection
method discussed in the text. Run the program for two sets of con-
ditions of your choice, prepare velocity vector fields, and discuss the
structure of the flow and the performance of the numerical method.



Chapter 9

Flow at Low Reynolds Numbers

9.1 Flow in narrow channels
9.2 Film flow on a horizontal or down a plane wall
9.3 Two-layer channel flow
9.4 Flow due to the motion of a sphere
9.5 Point forces and point sources in Stokes flow
9.6 Two-dimensional flow
9.7 Flow near corners

Newton's second law of motion requires that the rate of change of
momentum of a fluid parcel be balanced by the body force exerted on
its volume and the surface force exerted on its boundary. Under certain
conditions, the rate of change of momentum is small compared to the
body and surface force, and may be neglected without introducing serious
error. This occurs, in particular, when the viscosity of the fluid is high,
when the density is small, when the velocity changes rapidly over a
small distance yielding a sharp spatial gradient, or when the velocity
by which a fluid parcel is convected by the flow is sufficiently small. The
formal requirement for fluid inertia to be negligible is that a properly
defined Reynolds number be sufficiently small. How small it should be,
depends on the particular problem under consideration. In this chapter,
we consider a family of flows occurring at small Reynolds numbers, and
discuss the solution of the simplified system of governing equations that
arises by dropping the inertial terms from the equation of motion. This
simplification will allow us to address a multitude of physical problems
and obtain solutions by a host of analytical and numerical methods.



Figure 9.1.1 Schematic illustration of flow in a narrow channel: lubri-
cation flow in a slider bearing with a curved upper surface.

9.1 Flow in narrow channels

We begin by considering steady, nearly unidirectional flow in a two-
dimensional channel confined between a gently sloped upper surface and
a perfectly flat lower surface, as illustrated in Figure 9.1.1. The flow is
driven by the translation of the upper wall parallel to itself with velocity
V, and possibly by a pressure drop imposed across the length of the
channel subtended between x = O and L.

In the Cartesian system of coordinates depicted in figure 9.1.1, the
lower wall is located at y = O, and the upper wall is located at y =
h(x}\ if the channel width is constant, we obtain steady unidirectional
flow in a channel with parallel-sided walls considered earlier in Section
7.1. Our present objective is to compute the velocity and pressure field,
and also evaluate the force exerted on the walls, for more general flow
configurations.

9.1.1 Governing equations

The motion of the fluid is governed by (a) the steady version of the
Navier-Stokes equation for an incompressible fluid whose x and y scalar
components read



Our first task is to show that, under certain conditions, a number of
terms in equations (9.1.1) and (9.1.2) are negligible compared to others,
and may thus be discarded yielding a simplified system of governing
equations known as the equations of lubrication flow.

9.1.2 Scaling arguments

Consider the term dux/dx on the left-hand side of equation (9.1.1). If
the upper wall were perfectly flat and parallel to the lower wall, the flow
would be unidirectional and this term would be identically equal to zero.
More generally, suppose that Ux(xi) is the maximum of the magnitude
of the x component of the velocity at a particular location x = x\, and
Ux(x<2) is the corresponding maximum at the location x = X2, where the
maximum is defined with respect to y. Scaling arguments suggest that
the magnitude of the term dux/dx is comparable to the magnitude of
the ratio [Ux(X2) - Ux(xi)]/(x2 - X I ) .

To this end, we identify the distance X2-Xi with the length necessary
for the difference Ux(X2] -Ux(x\) to become comparable to Ux (XI), and
scale the partial derivative dux/dx with the ratio Ux(xi)/(x2 — XI). If
the upper wall were perfectly flat and parallel to the lower wall, then the
distance X2 — x\ would be infinite, and this ratio would vanish.

Similar arguments can be made to show that the term dux/dy evalu-
ated at x = XI, scales with Ux(x\)/h(xi), the term d2ux/dx2 evaluated
at x = XI scales with Ux(x\)/(x2 — Xi)2, and the term d2ux/dy2 evalu-
ated at x — XI, scales with Ux(xi)/h2(xi).

Next, we consider the continuity equation (9.1.3), and scale the par-
tial derivative duy/dy evaluated at x = XI with U y ( x i ) / h ( x i ) , where

and

and (b) by the continuity equation

(9.1.1)

(9.1.2)

(9.1.3)



Uy (XI) is the maximum of the magnitude of the y component of the ve-
locity at x = XI. The continuity equation requires that the magnitude
of duy/dy be comparable to the magnitude of dux/dx, which was found
to be of order Ux(xi)/(x2 - XI). This will be true only if Uy(xi) scales
with Ux(xi) h(xi)/(x2 - XI).

9.1.3 Relative magnitudes

Using the preceding scalings, we find that the ratio of the magnitude
of the first term on the left-hand side of (9.1.1) to the magnitude of the
penultimate term on the right-hand side is

(9.1.4)

The ratio of the magnitude of the second term on the left-hand side of
(9.1.1) to the magnitude of the penultimate term on the right-hand side
is

(9.1.5)

And the ratio of the magnitude of the second term on the right-hand side
of (9.1.1) to the magnitude of the penultimate term on the right-hand
side is

(9.1.6)

9.1.4 Equations of lubrication flow

The first fraction on the right-hand sides of (9.1.4) and (9.1.5) is
the local Reynolds number of the flow defined with respect to the local
channel width. If the magnitude of the local Reynolds number and the
magnitude of the ratio H(XI)J(X^-XI) are such that the right-hand sides
of equations (9.1.4)-(9.1.6) are much smaller than unity, then the first
and penultimate terms on the right-hand side of (9.1.1) will dominate
the x component of the equation of motion, leading to the simplified
form



(9.1.7)

which describes locally unidirectional flow.
Consider next the distribution of the pressure. Equation (9.1.7) re-

quires that the magnitude of the term —dp/dx + p gx be comparable to
the magnitude of IJL d2ux/dy2, which scales with p, Ux(xi)/h2(xi). Con-
sideration of the individual terms on both sides of the y component of
the equation of motion (9.1.2) shows that the term -dp/dy + pgy scales
with IJL Ux(xi)/[(x2 — x\)h(xi)\. It is evident then that, when the ratio
h(xi)/(x2 — XI) is small, non-hydrostatic pressure variations in the y di-
rection may be neglected. Accordingly, the y component of the equation
of motion (9.1.2) reduces to

(9.1.8)

Differentiating (9.1.8) once with respect to x, we find that the axial
pressure gradient dp/dx is independent of the lateral position y, and is
only a function of the axial position x.

Physically, the flow may be assumed to be locally unidirectional and
parallel to the x axis. At every station rr, the upper and lower walls
appear to be parallel, separated by a distance that is equal to the local
channel width, h(x).

9.1.5 Lubrication in a slider bearing

As an application, we consider flow in the lubrication zone of a slider
bearing illustrated in figure 9.1.2. The lower wall is horizontal and the
upper wall is gently sloped by the angle a. The pressure is held constant
at either end of the lubrication zone extending from x = O to L. For
example, if the fluid at one end of the lubrication zone is exposed to the
atmosphere, then the pressure at that end is equal to the pressure of
the atmosphere. Hydrostatic pressure variations in the y direction are
assumed to be negligibly small.

Reviewing the scaling arguments discussed in Sections 9.1.2 and 9.1.3,
we identify the distance #2 — #1 with the length of the lubrication zone
L. A special case arises when the two walls are parallel: the distance
#2 — #1 becomes infinite, and no error is introduced by dropping the
inertial terms in the equation of motion.



Figure 9,1.2 Lubrication flow in a slider bearing with a planar upper
surface.

Velocity and flow rate

Proceeding with the solution, we approximate tan a ~ a, and express
the local channel width in the simplified form h(x) = /IQ — OL x, where
/IQ = h(x = O) is the channel width at the beginning of the lubrication
zone. Next, we use the velocity profile derived in Section 7.1 for flow
in a two-dimensional channel with parallel-sided walls, and find that the
solution of (9.1.7) is given by

(9.1.9)

The local axial pressure gradient (dp/dx)(x) is an unknown that must be
computed as part of the solution. The local flow rate along the channel
corresponding to (9.1.9) is given by

(9.1.10)

A key observation is that, because in a stationary frame of reference
the flow is steady, the flow rate Q(x) is not only constant in time, but also
independent of the streamwise position x. To verify this statement, we



perform a mass balance over a control area confined between two cross-
sections of the channel that are separated by an infinitesimal distance,
and note that fluid neither enters nor escapes from the control volume
through the bottom or top.

Computation of the pressure

Solving equation (9.1.10) for the axial pressure gradient, and substi-
tuting h(x) — ho — ax for the channel width, we find

(9.1.11)

To compute the flow rate Q, we exercise our knowledge of the pres-
sure at the two ends of the lubrication zone: equation (9.1.11) provides
us with the local pressure gradient whose integral with respect to x across
the lubrication zone must produce a specified pressure drop. This math-
ematical condition is a reflection of the physical environment in which
the lubrication flow takes place. Performing the integration, we find

(9.1.12)

where Ap is the pressure drop.
For simplicity, we assume that the end-pressures are equal, so that

Ap = O. Carrying out the integration on the right-hand side of (9.1.12),
solving for Q, and then simplifying, we derive the expression

(9.1.13)

where hi = h$ — aL is the channel width at the end of the lubrication
zone. Note that, if either /IQ or HL vanishes, in which case the channel
is closed at one end, the flow rate is equal to zero, as expected.

Substituting the right-hand side of (9.1.13) for the flow rate into the
right-hand side of (9.1.12), and carrying out the integration, we find the
pressure distribution



It is reassuring to confirm that the second term on the right-hand side of
(9.1.14) vanishes when x — L, yielding the specified zero pressure drop.

Lift force

The y component of the hydrodynamic force exerted on the upper
sloped surface may be approximated with the integral

(9.1.15)

Substituting the pressure distribution (9.1.14) into the integrand, and
carrying out the integration, we find

(9.1.16)

We have introduced the geometrical factor

(9.1.17)

taking values in the range (—00,0) or (1, CXD); a negative value correspond-
s to an upper wall sloping upward, and a positive value corresponds to
an upper wall sloping downward. Values of K in the range [0,1] are pro-
hibited by the requirement that the upper wall does not slope downward
so much as to touch the lower wall before the end of the lubrication zone.
When, in particular, « = 1, the two walls meet at x = L, and the channel
is closed at the right end.

In summary, we have derived expressions for the flow rate, pressure
distribution, and normal force given, respectively, by equations (9.1.13),
(9.1.14), and (9.1.16), and this concludes the goal of our analysis. To
interprete the results in physical terms, we restate expression (9.1.16) in
the form

(9.1.18)

(9.1.14)



Figure 9.1.3 Graph of the function G(K) expressing the hydrodynamic
lift force exerted on the inclined plane shown in figure 9.1.1.

where the function G(ft), expressing the hydrodynamic lift or load force,
is given by

(9.1.19)

Figure 9.1.3 displays the graph of G(K) in its domain of definition. The
results show that the lubrication force is positive when the plane wall
moves towards the minimum gap, and negative when the plane wall
moves towards the maximum gap. In the former case, the lift force is
able to balance the weight of an overlying object whose lower surface is
represented by the inclined plane, provided that K is sufficiently close to
unity. In the latter case, the lubrication force pulls the object toward
the plane wall closing the gap and choking the flow.

9.1.6 Flow in a wavy channel

The preceding analysis may be extended in a straightforward fashion
to arbitrary channel geometries. A fundamental assumption is that the



Figure 9.1.4 Lubrication flow in a furrowed channel confined between
a plane and a wavy wall.

conditions for the right-hand sides of (9.1.4)-(9.1.6) to be small must be
satisfied; that is, the local Reynolds number and the ratio h(xi)/(x<2—x\)
must both be small.

Consider, for example, flow in a periodic channel confined between a
plane and a wavy wall, as illustrated in figure 9.1.4. The local channel
width is given by

(9.1.20)

where ho is the average channel width, L is the period, and a is the
amplitude of the corrugations. The streamwise velocity and flow rate
are given by equations (9.1.9) and (9.1.10), with h(x) given in (9.1.20).
The counterpart of equation (9.1.11) is

(9.1.21)

and the negative of the pressure drop over one period is given by

(9.1.22)



Solving for Q, we find

(9.1.23)

which provides us with an expression for the flow rate in terms of the
specified wall velocity and pressure drop.

The definite integrals on the right-hand side of (9.1.23) are best com-
puted by numerical methods. Interestingly, because the integrands are
periodic, best results are obtained by using the simplest algorithm of
numerical integration expressed by the trapezoidal rule: divide the inte-
gration domain (O, L) into N intervals of equal length Arr = L/AT, and
introduce the approximation

(9.1.24)

where X{ — (i — 1) Ax are the end-points of the intervals; similarly for
the integral in the denominator of (9.1.23). It can be shown that, as the
number of divisions N becomes larger, the difference between the left-
and right-hand side of (9.1.24), defined as the numerical error, decreases
faster than any power of 1/JV, allowing for rapid convergence.

Once the flow rate has been found, the result may be substituted into
the right-hand side of (9.1.22), and the expression thus obtained may
be integrated by analytical or numerical methods to yield the pressure
distribution along the channel; the velocity follows from (9.1.9).

9.1.7 Dynamic lifting

An extension of the preceding analysis allows us to develop a method
of simulating the motion of a two-dimensional body pressing against
a horizontal wall that translates along the x axis with velocity F, as
illustrated in figure 9.1.5. The clearance between the body and the
translating wall is occupied by a lubricating fluid, with the lubrication
zone extending from x — — b and a. This configuration serves as a two-
dimensional model of the flow between a piston ring pressing against the
cylinder of a combustion chamber in an internal combustion engine.

The lubrication flow generates a pressure field, and the associated
lifting force causes the body to move along the y axis with velocity
VB = dc/dt, where c is the minimum film thickness; that is, the minimum



Figure 9.1.5 A two-dimensional body pressing against a sliding wall
under the influence of its weight. The lubrication force developing
between the body and the wall repels the body away from the wall.

clearance between the body and the translating wall. Our objective is
to compute the evolution of the function c(i) from a specified initial
state. Hydrostatic pressure variations in the y direction are assumed to
be negligibly small.

We begin by writing a mass balance for the lubricating fluid requiring,

(9.1.25)

Evaluating the flow rate from the right-hand side of (9.1.10), we derive
a partial-differential equation for the pressure,

(9.1.26)

which is to be solved subject to the specified, and possibly time-dependent,
boundary conditions p(x = —b) — Pi(t) and p(x = a) — Pz(I)* The
vertical velocity of the body VB = dc/dt is determined by the balance
between the weight of the body, denoted by W', and the lifting force due
to the pressure, expressed by



(9.1.27)

The solution may be computed using the following algorithm:

1. Solve the following simplified version of equation (9.1.26),

(9.1.28)

subject to the required boundary conditions p(x — -b) = Pi(t)
and p(x — a) = P*i(f), and call the solution p\(x).

2. Solve the following simplified version of equation (9.1.26),

(9.1.29)

subject to the homogeneous boundary conditions p(x = — b) = O
and p(x — a) = O, and call the solution P^(X].

3. Set

(9.1.30)

4. Substitute the pressure distribution (9.1.30) into the force balance
(9.1.27), and carry out the integration to compute dc/dt.

5. Having evaluated dc/dt, update the minimum clearance c.

6. Return to step 1 and repeat.

Straightforward substitution shows that the pressure distribution
(9.1.30) satisfies the governing equation (9.1.26) and the pressure bound-
ary conditions specified at either end.



Problems

Problem 9.1.1 Lubrication in a slider bearing.
Confirm that the function G(K) defined in equation (9.1.19) satisfies

the symmetry property .ff(ft—0.5) = — H(0.5 — ft), and explain in physical
terms why.

Problem 9.1.2 Flow in a symmetric channel.
Consider pressure-drive flow in a symmetric channel with stationary

wavy walls located at y — h(x) = ±(/IQ + a COS(ZKX/L)). Derive an
expression for the flow rate in terms of the pressure drop over one period.

Computer problems

Problem c.9.1.1 Flow in a wavy channel.
(a) Consider flow in a channel confined between a plane and a wavy

wall, as discusssed in the text, driven by an imposed pressure drop;
in this case, F = O. Prepare a graph of the dimensionless flow rate
Q = 12//LQ/(/iQ AP) against the reduced amplitude a//io» and discuss
its functional form. The integral on the right-hand side of (9.1.23) should
be computed using the trapezoidal rule, as shown in equaton (9.1.24).

(b) Repeat (a) for flow driven by boundary motion, corresponding to
Ap = O. Prepare a graph of the dimensionless flow rate Q = 2,Qf(V /IQ)
against the reduced amplitude a//io, and discuss its functional form.

Problem c.9.1.2 Dynamical simulation of the lifting of a body due to
lubrication.

Directory 05Jub/bear.2d of FDLIB contains a program that simu-
lates the lateral motion a body pressing against a translating wall, using
the numerical method discussed in the text. The geometry of the body
is specified by the lengths a, 6, and S defined in figure 9.1.5. In the finite-
difference implementation, the left part of the lubrication zone, extending
over -b < x < O, is divided into M intervals, and the right part of the
lubrication zone, extending over O < x < a, is divided into N intervals,
as depicted at the bottom of figure 9.1.5. The derivatives with respect to
x in equations (9.1.28) and (9.1.29) are approximated with second-order
finite differences, yielding a tridiagonal systems of algebraic equations
for the pressure at the nodes.



Run the program for two sets of conditions of your choice, prepare
a plot of the minimum film thickness as a function of time, and discuss
the results of your simulations.

9.2 Film flow on a horizontal
or down a plane wall

One distinguishing feature of the flow in narrow channels discussed in
Section 9.1, is that the velocity profile may be approximated locally with
the parabolic profile corresponding to unidirectional flow in a channel
confined between two parallel plane walls. An analogous simplification
is possible in the case of a liquid film bounded by a free surface over which
the shear stress is required to vanish, discussed in this section, and in
the case of a liquid layer bounded by a fluid interface, to be discussed in
Section 9.3.

Consider the unsteady flow of a liquid film over a horizontal wall or
down an inclined plane wall, as illustrated in figure 9.2.1. In the inclined
system of coordinates depicted in this figure, the wall is located at y = O,
and the free surface is located at y = h(x,t). The components of the
gravity vector are given by

gx = g sin<90, gy = -g cos<90, (9.2.1)

where g is the acceleration of gravity, and OQ is the inclination angle of
the wall; if the wall is horizontal, #o — O5 and if the wall is vertical,
#o = 7T/2. The pressure above the film is assumed to be uniform and
equal to the atmospheric pressure PAtm- Our objective is to derive a
differential equation governing the evolution of the film thickness h(x,i)
from a specified initial configuration.

9.2.1 Governing equations

Repeating the scaling arguments of Section 9.1, we find that, when
the free surface is gently sloped, that is, the magnitude of \dh/dx\ is uni-
formly small, the x and y components of the equation of motion reduce
to the lubrication equations (9.1.7) and (9.1.8). Integrating equation
(9.1.8) with respect to y from an arbitrary location y up to the location
of the free surface, we find



Figure 9.2.1 Illustration of a viscous film flowing down an inclined
plane wall. The motion of the fluid is governed by the simplified
equations of lubrication flow.

p(x,y, i) = PFS - pgy (h - y), (9.2.2)

where pps — P(X, V — h ( t ) , t ) is the pressure on the side of the liquid at
the free surface.

The simple form of the lubrication equation (9.1.7) allows us to pre-
tend that the flow is locally unidirectional and parallel to the x axis.
Approximating the velocity profile across the uneven film with the Nus-
selt parabolic profile across a flat film with a planar free surface, given
in equation (7.2.3), we find

(9.2.3)

Note that the x dependence enters in a parametric fashion through the
pressure gradient. The term enclosed by the first set of parentheses on
the right-hand side of (9.2.3) incorporates the effective body force due
to gravity and the streamwise pressure gradient due to surface tension,
as will be discussed shortly. The flow rate is given by



(9.2.4)

Further analysis involves two key steps.

9.2.2 Evaluation of the pressure gradient

First, we observe that the normal stress undergoes a jump across the
interface due to the surface tension 7, as required by the interfacial con-
dition (4.2.22). In the context of locally unidirectional flow, the normal
stress can be approximated with the negative of the pressure, yielding
the pressure jump condition

PFS = PAtm + 7 «• (9.2.5)

Moreover, the curvature of the mildly sloped free surface may be approx-
imated with the simple form

(9.2.6)

Substituting (9.2.6) into (9.2.5), and the result into (9.2.2), we obtain
the pressure distribution inside the film in terms of the film thickness,

(9.2.7)

Substituting further (9.2.7) into the right-hand side of (9.2.4), we derive
an expression for the flow rate in terms of the film thickness,

(9.2.8)

9.2.3 Mass balance

Second, we perform a mass balance over a control area that is con-
fined between (a) two parallel planes that are normal to the plane wall
and are separated by an infinitesimal distance, (b) the corresponding
section of the evolving free surface, and (c) the wall. The mass balances
requires that the rate of accumulation of mass within the contol volume
be equal to the difference between the flow rates into and out from the
control volume. In differential form,



(9.2.9)

9.2.4 Evolution equation for the film thickness

To complete the mathematical formulation, we substitute the right-
hand side of (9.2.8) into the right-hand side of (9.2.9), and thus obtain a
partial differential equation governing the evolution of the film thickness,

(9.2.10)

Several features of this equation are worth noting:

• Carrying out the differentiation with respect to x on the left-hand
side, we find that the fourth derivative d^h/dx4 springs off from
the term involving the surface tension. Since (9.2.10) is a fourth-
order equation, two boundary conditions at each end of the solution
domain, involving /i, dh/dx, or d2h/dx2, are required. If the film
is periodic, the boundary conditions are replaced by periodicity
conditions for the film thickness and its spatial derivatives.

In the absence of surface tension, 7 = 0, (9.2.10) becomes a second-
order differential equation, in which case only one boundary con-
dition at each end of the solution domain, involving h or dh/dx,
is required. If the film is periodic, the boundary conditions are
replaced by periodicity conditions.

• Equation (9.2.10) is a first-order differential equation in time t. To
compute the solution, an initial condition for h(x,t — O) at the
origin of computational time is required.

• Because of the presence of products of the film thickness h and its
spatial derivatives, equation (9.2.10) is highly nonlinear.

• At steady state, dh/dt = O, the shape of the free surface is de-
scribed by the ordinary differential equation

(9.2.11)



Figure 9.2.2 A finite-volume grid used to compute the evolution of a
periodic film.

which admits the flat-film Nusselt solution derived in Section 7.2
for constant film thickness.

9.2.5 Solution by the finite-volume method

Several numerical methods are available for solving the differential e-
quation (9.2.10), including finite-difference, finite-volume, finite-element,
and spectral methods. Finite-difference methods have been discussed on
several previous occasions. To illustrate an alternative, we discuss the
implementation of an entry-level finite-volume method.

Consider the evolution of a film that is, and remains, spatially peri-
odic with period L. To implement the finite-volume method, we divide
the computational domain extending from x — O to L into N intervals of
equal length Ax = L/N, also called finite volumes, as depicted in figure
9.2.2. The end-points of the ith interval are denoted by xf — (i — I)Ax,
and the mid-point is denoted by x^1 = (i — 0.5) Ax, where i = 1 ,2 , . . . , N.
The values of the film-thickness corresponding to xf and xf4 are denot-
ed, respectively, by hf and hf*.

The distinguishing feature of the finite-volume method is that the
governing equation (9.2.10) is integrated over the length of each element
to eliminate the highest derivative. Considering the ith element, we write



(9.2.12)

Using the mid-point rule to approximate the integral on the left-hand
side of (9.2.12), we obtain

(9.2.13)

Approximating further the time-derivative on the right-hand side of
(9.2.13) with a first-order forward-difference, we obtain

(9.2.14)

Next, we substitute (9.2.14) into (9.2.13) and the result into (9.2.12),
and solve the emerging expression for h(xf4\t + A£), to find

(9.2.15)

where the right-hand side is evaluated at t.
Finally, we express the values of the function h and its spatial deriva-

tives at the element end-points in terms of values at the mid-points using
a combination of averaging and finite-difference approximations, writing,
for example,

(9.2.16)



The periodicity condition requires

Ma^i) = MzJv-i), h(x™} = h(x%),

h(x%+l) = h(x?), h(x%+2) = h(x?), (g 2 1?)

which allow the evaluation of the right-hand sides of (9.2.16) at the ends
of the computational domain extending over one period.

The numerical procedure involves the following steps:

1. Specify the values of hf4 at the origin of computational time.

2. Choose a time step At.

3. Evaluate (9.2.16) and (9.2.17) at the element end-points.

4. Compute the right-hand side of (9.2.15), and thereby obtain the
updated value of the film thickness at the mid-points.

5. Return to step 3 and repeat for another step.

9.2.6 Multi-film flow

Consider now the more general case of several superimposed layers
flowing down an inclined plane, as illustrated in figure 9.2.3. For this flow
configuration to be stable, the density of the layers must be constant or
decrease with distance from the wall, otherwise a gravitational instabil-
ity due to unstable density stratification, known as the Rayleigh-Taylor
instability, will arise. Multi-layer flows occur in the manufacturing of
photographic films during the process of slide coating, as discussed in
Section 7.2.1.

For the sake of generality, we allow the inclined plane to exhibit
periodic corrugations around a mean value. In the inclined system of
coordinates defined in figure 9.2.3, the wall is described by the equation
V = 2/0(^)5 and the interfaces are described by the equations y = yi(x, £),
where i = 1,2, . . . T V ; the TVth interface is the free surface. The ith
film is confined between the interfaces labelled i and the i — 1, with the
understanding that the zeroth interface represents the wall.

When the wall and the interfaces are nearly flat, \dyi/dx\ < 1, for
i = O ,1 , . . . TV, the flow inside each layer may be assumed to be locally



Figure 9.2.3 Multi-film flow down an inclined wall with periodic cor-
rugations.

unidirectional along the x axis. The x and y components of the equation
of motion then simplify to

(9.2.18)

where /^ and pi is the viscosity and density of the ith layer.
Continuity of velocity across the interfaces requires

(9.2.19)

for i = 1 ,2 , . . . , JV — 1. The no-slip boundary condition at the wall
requires

41^y = Vo) = Q. (9>220)

Continuity of shear stress across the interfaces requires

(9.2.21)



with the understanding that /J.N+I — 0> which ensures that the shear
stress vanishes at the free surface. Finally, a balance of the normal
stresses on either side of the ith interface involving the interfacial tension
7i, requires

(9.2.22)

where Ki is the curvature of the ith interface or free surface, with the
understanding that p(N+l) = PAtm- The statement of the problem is
now complete, and we proceed to formulate the solution.

Pressure gradient

Our first task is to compute the pressure gradient on either side of
each interface. We begin by integrating the second of equations (9.2.18)
with respect to y from the ith interface up to an arbitrary point, and
use the interfacial condition (9.2.22) to find

p ( l ) ( x , y ) = p(l+l\x,y = yi) + 7. «» + pi gy [y - Vi(x}},

(9.2.23)

for i — 1, 2 , . . . , TV, with the understanding that p(N+l^ = PAtm-
Next, we differentiate equation (9.2.23) with respect to x, and use

the chain rule to write

(9.2.24)

Evaluating dp^+^/dy from the second of equations (9.2.18), we obtain

(9.2.25)

Writing equation (9.2.25) for the interfaces numbered i, i + 1 , . . . , TV, and
adding corresponding sides, we obtain

(9.2.26)

Finally, we introduce the familiar approximation KJ ~ -82yj/dx2, and
obtain

(9.2.27)



The right-hand side of (9.2.27) may be evaluated from knowledge of the
instantaneous interfacial profiles.

Velocity profiles

The velocity profile inside the ith layer arises by integrating the first
of equations (9.2.18) with respect to y, obtaining

4° = MX) + Bi(x} y ~ Gi(x)y2, (9.2.28)

where we have defined

(9.2.29)

To compute the unknown functions AI(X) and BI(X), we use the inter-
facial and wall conditions expressed by (9.2.19) - (9.2.21), and find the
following four relations:

Ai(x) + Bi(x) yi - Gi(x) y\ = Ai+l(x) + Bi+l(x) yi - Gw(x) yl

(9.2.30)

for t = 1 , 2 , . . . T V - I 5

AI (x) + BI (x) yo - Gi (x) yl = O, (9.2.31)

Hi (Bi(x) - 2 d(x) yi] = Hi+i [Bi+i(x) - 2 Gi+i(x) ^], (9.2.32)

and
BN(x) = 2 GN(X) VN^ (9-2.33)

A straightforward substitution allows us to replace the recursion re-
lation (9.2.33) with the explicit formula

(9.2.34)

for i = 1 ,2 , . . . , N - 1. Equations (9.2.33) and (9.2.34) provide us with
expressions for evaluating the coefficients BI(X). Once these are avail-
able, AI(X) follows from (9.2.31), and the rest of the coefficients Ai(x)
follow from (9.2.30).



Evolution equations

The counterpart of the mass balance equation (9.2.9) for the ith film
is

(9.2.35)

where hi is the film thickness, and

(9.2.36)

is the local flow rate. Writing equation (9.2.35) for i = 1,2,... N, and
combining the expressions thus obtained, we derive the evolution equa-
tions

(9.2.37)

for i = 1 ,2 , . . . , TV. Substituting equation (9.2.27) into (9.2.29), the result
into (9.2.36), and the outcome into (9.2.37), we derive a system of fourth-
order nonlinear partial differential equations governing the evolution of
the interfaces and free surface.

One-layer flow on a plane

In the case of one film, N = 1, and a plane wall correponding to
yo = O, equations (9.2.33) and (9.2.31) yield BI(X) = 2 GI(X) yi and
AI(X] = O. The evolution equation (9.2.37) then reduces to (9.2.10) for
single-film flow.

Two-layer flow on a plane

In the case of two films, N — 2, and a plane wall correponding to
yo = O, we find

(9.2.38)



where AI = /J2//Ji- Using (9.2.27) and (9.2.29), we obtain

and

(9.2.39)

(9.2.40)

where $\ = pz/pi- The evolution of the interfaces is governed by the
equations

(9.2.41)

subject to a specified initial condition.

Numerical solution

The solution of equation (9.2.37) for i = 1,2, . . . J V , may be found
using a standard finite difference method. An explicit finite difference
method involves introducing a one-dimensional grid along the x axis,
applying equations (9.2.37) at a grid point, evaluating the right-hand
sides by numerical differentiation, approximating the time derivatives
on the left-hand side with forward differences using a sufficiently small
time step At, and then advancing the position of the interfaces to a new
position (problem c.9.2.2).

Problem

Problem 9.2.1 Two-layer flow.
Consider a two-layer flow with fluids of equal viscosity and density,

AI = 1 and fii = 1, in the absence of interfacial tension, 71 = O. Show
that the second of the evolution equations (9.2.41) reduces to (9.2.10) for
single-film flow, and discuss the significance of the first of the evolution
equations (9.2.41).



Computer problems

Problem c.9.2.1 Finite-volume method for single-film flow.
Write a computer code that uses the finite-volume method described

in the text to simulate the evolution of a periodic film resting on a
horizontal wall or flowing down an inclined wall. Compute the evolution
of a film with an initially sinusoidal free surface resting on a horizontal
wall, investigate and discuss the effect of surface tension by numerical
experimentation.

Problem c.9.2.2 Multi-film flow.
Directory O5.lub/films of FDLIB contains a computer code that

uses an explicit finite-difference method to simulate the evolution of a
number of superimposed films resting on a horizontal periodic wall or
flowing down an inclined periodic wall, as discussed in the text. Run
the code for two multi-layer configuration of your choice involving a
horizontal and an inclined wall. Investigate and discuss the significance
of the interfacial tensions.

9.3 Two-layer channel flow

Multi-layer channel flows are encountered in the industrial processes
of polymer co-extrusion and in the manufacturing of composites and lam-
inated materials. Consider the unsteady flow of two superposed layers in
a channel confined between two parallel plane walls that are separated by
the distance 2/i, as illustrated in figure 9.3.1; the lower layer is labelled
1, and the upper layer is labelled 2. The flow is driven partly by the par-
allel translation of the lower and upper walls with respective velocities
equal to U\ and [/2, partly by a pressure gradient imposed along the x
axis, and partly by the gravitational body force. Our goal is to derive an
evolution equation for the layer thicknesses, under the assumption that
the interface is only gently sloped.

9.3.1 Equations of lubrication flow

We begin by describing the interface by the equation y = y/(#,£),
and assume that the flow within each layer is governed by the following



Figure 9.3.1 Flow of two layers in a channel confined between two
parallel plane walls, driven by gravity, boundary motion, or an
imposed pressure gradient.

simplified x and y components of the equation of motion,

and

(9.3.1)

(9.3.2)

where the components of the acceleration of gravity are given in (9.2.1).
The y component of the equation of motion states that the pressure
within each layer changes in the y direction only because of gravity.



9.3.2 Velocity profiles

Integrating the first of equations (9.3.1) and (9.3.2) twice with respect
to y, while treating the streamwise pressure gradient as a constant, we
obtain the parabolic profile

(9.3.3)

for the lower fluid extending over — h < y < yi(x), and

(9.3.4)

for the upper fluid extending over yi(x) < y < /i, where uj is the a
priori unknown streamwise velocity at the position of the interface, and
£1 = (dux /dy)y=yi and £2 = (dux /dy}y=yi are the a priori unknown
shear rates evaluated on either side of the interface. If the interface is
flat, u/, £1 and £2 are given by expressions (7.1.14) and (7.1.15).

9.3.3 Shear rate and interface velocity

To compute the interfacial shear rates, we use the no-slip boundary
condition at the upper and lower wall, requiring UX (y = —h) = Ui and
u(x\y = h) = Ui. Evaluating the velocity from (9.3.3) and (9.3.4), and
solving for the shear rates, we find

(9.3.5)

where /ii(x, t) = h + y/(x, t) and h^ (re, t) = h — yi(x, t) are the local and
instantaneous layer thicknesses. If the interface is flat, the streamwise
pressure gradients are equal, and expressions (9.3.5) reduce to those given
in (7.1.15) with dp^/dx = dpW/dx = -*.

Substituting the right-hand sides of equations (9.3.5) into the equa-
tion /^i£i = /^2^2 expressing continuity of shear stress across the interface,
we find



(9.3.6)

where A = //2/Mi5 P = P2/Pi> and <5 = h^/hi is the ratio of the local layer
thicknesses. If the interface is flat, the streamwise pressure gradients
are equal, and expression (9.3.6) reduces to that given in (7.1.14) with
dpM/dx = dpW/dx = -x.

9.3.4 Streamwise pressure field

Next, we note that the pressure undergoes a jump across the interface
due to the surface tension 7, and write

p^ (x, y = y/) = pW (x, y = yf) + 7 «, ,g 3 ̂

where K is the interfacial curvature. Adopting the familiar approximation
K(X) ~ —d^h/dx2, and differentiating both sides of (9.3.7) with respect
to x using the chain rule, we find

(9.3.8)

where both sides are evaluated at the interface. Using the second of
equations (9.3.1) and (9.3.2) to evaluate the derivatives of the pressure
with respect to y, and rearranging, we obtain

(9.3.9)

Substituting this expression into (9.3.6) to eliminate p&\ we derive an
alternative expression for the interfacial velocity

(9.3.10)



involving the pressure gradient in the lower layer and the instantaneous
shape of the interface.

9.3.5 Flow rates and mass conservation

We proceed by integrating the velocity profiles (9.3.3) and (9.3.4)
with respect to y over their respective domain of definition to derive the
following expressions for the streamwise flow rates

(9.3.11)

Using expressions (9.3.5) to eliminate the shear rates £1 and £2 from the
right-hand sides, we find

(9.3.12)

A mass balance over a control area that is confined between (a) two
parallel planes that are normal to the channel walls and are separated
by an infinitesimal distance, (b) the enclosed sections of the walls, and
(c) the enclosed section of the evolving interface, requires that the rate
of accumulation of mass of each layer within this control area should be
equal to the difference between the mass flow rates into and out from
the control volume. In differential form,

(9.3.13)

(9.3.14)

Since h\ + h<2 — 2h is constant, dhi/dt + dh^/dt = O, and



where /(t) is an unspecified function of time. To compute this function,
we use the expressions for the flow rates and interfacial velocity given in
equations (9.3.12) and (9.3.10). Eliminating the pressure gradient in the
second layer using expression (9.3.9), we find

(9.3.15)

where

and

(9.3.16)

(9.3.17)

Integrating both sides of (9.3.15) with respect to x over the length
L, and solving for /(£), we find

(9.3.18)

where Ap = p(x = L) — p(x = O) is the negative of the pressure drop
over the length L. The integrals on the right-hand side of (9.3.18) may
be computed from knowledge of the instantaneous shape of the interface
using numerical methods.

9.3.6 Evolution equation

Having obtained the function /(£), we evaluate the streamwise pres-
sure gradient from (9.3.15), compute the interfacial velocity from (9.3.10),
evaluate the flow rate Qi from the first of equations (9.3.12), and use the
first of equations (9.3.13) to derive an expression for the rate of change
of the lower film thickness or interface position. Symbolically, we write

(9.3.19)



where F is a nonlinear function of its arguments defined implicitly in
terms of the aforementioned substitutions.

9.3.7 Numerical methods

Equation (9.3.19) may be solved using a standard finite difference
method based on a one-dimensional grid with nodes deployed along the
x axis. An explicit method involves applying (9.3.19) at a grid point at a
certain time t, and approximating the time derivatives on the left-hand
side with a forward finite difference using a small time step At, obtaining

(9.3.20)

Evaluating the right-hand side by numerical differentiation, and solving
for y/(x, t + At), we obtain the position of the interface at the new time
t +At.

The explicit method requires a small time step to prevent the onset
of numerical instabilities manifested by growing oscillations in the po-
sition of interfacial marker points. This restriction can be overcome by
applying equations (9.3.19) at a grid point at a certain time t + At, and
approximating the time derivatives on the left-hand side with a backward
finite difference using a small time step At, to obtain

(9.3.21)

Evaluating the right-hand side by numerical differentiation, and solving
for y/(t + At), we obtain a nonlinear system of algebraic equations for
the interface position at the nodes, at time t + At. A drawback of the
implicit method is that computing the solution of the nonlinear algebraic
system at each time step requires a substantial amount of computational
effirt.

Computer problem

Problem c.9.3.1 Two-layer flow in a channel.
Directory 05-lub/chan.2d-2Lexp of FDLIB contains a program that

simulates the evolution of a periodic interface between two layers in a
channel using an explicit finite difference method.



(a) Outline the numerical method implemented in the program.
(b) Run the program for two sets of conditions of your choice, display

sequences of evolving profiles, and discuss the nature of the motion.

9.4 Flow due to the motion of a sphere

A variety of natural and engineering applications involve particle mo-
tions in a viscous fluid. An elementary configuration involves a spherical
particle settling with constant velocity under the influence of its weight
in a virtually infinite quiescent ambient fluid, thereby generating an ax-
isymmetric flow, as illustrated in figure 9.4.1.

When the radius of the particle a is small, or the fluid viscosity
IJL is large, or the fluid density p is low, or the particle velocity U is
small, inertial forces near the particle are negligible, and the left-hand
side of the Navier-Stokes equation may be set equal to zero without
introducing serious error. The result is a simplified equation of motion
which, together with the continuity equation, comprise the equations of
Stokes or creeping flow, given by

(9.4.1)

and

(9.4.2)

The formal requirement for fluid inertia to be negligible is that the
Reynolds number, defined with respect to the particle radius, Re =
apU/IJL, be small. We shall see, however, that this assumption does
not guarantee that inertia will be uniformly negligible throughout the
domain of the flow and, in particular, far from the sphere. Having noted
this exception, we proceed to compute the solution on the assumption
that inertia is negligible throughout the domain of flow, and then return
to assess the validity of our conclusions.

Next Page



(a) Outline the numerical method implemented in the program.
(b) Run the program for two sets of conditions of your choice, display

sequences of evolving profiles, and discuss the nature of the motion.

9.4 Flow due to the motion of a sphere

A variety of natural and engineering applications involve particle mo-
tions in a viscous fluid. An elementary configuration involves a spherical
particle settling with constant velocity under the influence of its weight
in a virtually infinite quiescent ambient fluid, thereby generating an ax-
isymmetric flow, as illustrated in figure 9.4.1.

When the radius of the particle a is small, or the fluid viscosity
IJL is large, or the fluid density p is low, or the particle velocity U is
small, inertial forces near the particle are negligible, and the left-hand
side of the Navier-Stokes equation may be set equal to zero without
introducing serious error. The result is a simplified equation of motion
which, together with the continuity equation, comprise the equations of
Stokes or creeping flow, given by

(9.4.1)

and

(9.4.2)

The formal requirement for fluid inertia to be negligible is that the
Reynolds number, defined with respect to the particle radius, Re =
apU/IJL, be small. We shall see, however, that this assumption does
not guarantee that inertia will be uniformly negligible throughout the
domain of the flow and, in particular, far from the sphere. Having noted
this exception, we proceed to compute the solution on the assumption
that inertia is negligible throughout the domain of flow, and then return
to assess the validity of our conclusions.

Previous Page



Figure 9.4.1 Streamline pattern in a meridional plane of the axisym-
metric Stokes flow due to the translation of a sphere in an infinite
fluid.

9.4.1 Formulation in terms of the stream function

To simplify the process, we take advantage of the assumed axial sym-
metry of the flow with respect to the direction of translation, and refer
to spherical polar coordinates with the x axis pointing in the direction
of translation. Moreover, to bypass the computation of the pressure, we
work with the vorticity transport equation (6.6.7) for the non-vanishing
component of the vorticity pointing in the azimuthal direction, u^. In
the absence of fluid inertia, we obtain the simplified form

*V"V)=°. (9.4.3)

where a = r sin (p is the distance from the x axis; the second-order linear
differential operator E2 was defined in equation (2.9.12) and (2.9.15).
Expressing the strength of the vorticity in terms of the stream function
using equation (2.9.11), we find

l*SMtftfV = 0. (944)



Our task is to solve the fourth-order differential equation (9.4.4) for the
stream function in the flow regime confined between r = a and infinity,
subject to appropriate boundary and far-field conditions.

On the surface of the sphere, located at r = a, the no-slip and no-
penetration boundary conditions require that the fluid velocity be equal
to the velocity of the sphere,

u(r = a) = Uex, (9A5)

where ex is the unit vector along the x axis. The far-field condition must
ensure that, as r tends to infinity, the velocity tends to vanish so that
the fluid becomes quiescent.

Using the relations between the velocity and the stream function
shown in equations (2.9.13), we find that, in terms of the stream function,
the boundary and far-field conditions assume the forms

(9.4.6)

and

(9.4.7)

for m > 2. Condition (9.4.7) allows the stream function to diverge at
infinity, but requires that the rate of divergence be less than quadratic,
otherwise the velocity will not decay.

Motivated by the functional form of the boundary conditions (9.4.6),
we search for a solution by separation of variables, writing

(9.4.8)

The unknown function q(r] is required to satisfy the boundary conditions

(9.4.9)

and the far-field condition

(9.4.10)

for ra > 2. Substituting (9.4.8) into (9.4.4), and carrying out the differen-
tiations, we derive the fourth-order linear ordinary differential equation



which may be decomposed into two second-order component equations,

(9.4.12)

The second equation merely defines the intermediate function w. The
general solution of the first of equations (9.4.12) is readily found to be
w = Ar2 + -B/r, where A and B are two constants. Substituting this
expression into the second of equations (9.4.12), we obtain

(9.4.13)

The solution of (9.4.13) is the sum of (a) the general solution of the
homogeneous equation computed by setting the right-hand side equal to
zero, given by q = CV2 + D/r, where C and D are two new constants,
and (b) a particular solution found by inspection. The result is

(9.4.14)

To ensure the satisfaction of condition (9.4.10), we set A and C equal to
zero. Substituting the remaining expression into the boundary conditions
(9.4.9), and solving for the coefficients B and D, we find

(9.4.15)

Substituting these values into (9.4.14) and the result into (9.4.8), we
obtain the desired stream function

(9.4.16)

The radial and azimuthal components of the velocity arise by substi-
tuting (9.4.16) into equations (2.9.13), yielding

(9.4.11)

(9.4.17)



Substituting these expressions into the r and 9 spherical polar com-
ponents of the Stokes equations, we derive expressions for the partial
derivatives of the pressure dp/dr and dp/86. Integrating these expres-
sions, we obtain the pressure distribution

(9.4.18)

where g = (gx,9y,9z) is the acceleration of gravity vector, and c is a
constant determined by the level of the pressure far from the sphere
(problem 9.4.1).

9.4.2 Validity of the equations of creeping flow

To this end, we return to evaluate the assumptions under which the
preceding analysis is valid. Equations (9.4.17) reveal that, in the absence
of fluid inertia, the velocity decays like Ua/r far from the sphere; the
cubic term f/(a/r)3 decays much faster and may be neglected. Differen-
tiating this asymptotic form with respect to r, we find that the deriva-
tive dur/dr involved in the nonlinear convective term on the left-hand
side of the Navier-Stokes equation decays like Ua/r2, and the deriva-
tive d2ur/dr2 involved in the viscous term on the right-hand side of the
Navier-Stokes equation decays like Ua/r3.

Furthermore, we note that the time derivative dur/dt scales with
ur/T, where T the characteristic time scale of the flow. In the absence
of time-dependence due to external action, T is comparable to the ratio
between the distance from the center of the sphere and the velocity of
the sphere, T — r/U.

Using the preceding scaling, we find that the ratio of the magnitude
of the nonlinear inertial term to the magnitude of the viscous term in
the equation of motion is on the order of

(9.4.19)

and the ratio of the magnitude of the time-dependent inertial term to
the magnitude of the viscous term is on the order of

(9.4.20)



We have introduced the global Reynolds number Re defined with respect
to the radius of the sphere, and the local Reynolds number Rer defined
with respect to distance from the center of the sphere.

Equations (9.4.19) and (9.4.20) reveal that, for inertial forces to be
negligible, both Re and Rer must be far less than unity. The former
can be made small by adjusting one of the flow constants involved in its
definition, including p, a, f/, and IJL. There is no way, however, that the
latter can be uniformly small throughout the domain of flow. Even if Re
is exceedingly small, the ratio r/a will become arbitrary large far from
the sphere, and the local Reynolds number Rer will increase linearly
with respect to distance rendering the effects of fluid inertia significant.

We conclude that the approximation of creeping flow ceases to be
accurate far from the sphere, with a disturbing consequence. If the gov-
erning equations are not valid all the way up to infinity, requiring the
far-field boundary condition expressed by (9.4.7) may not be valid. For-
tunately, a more detailed analysis using the method of matched asymp-
totic expansions shows that retaining this far-field condition introduces
an error that is comparable to that introduced by dropping the inertial
terms in the equation of motion, which is of order Re.

9.4.3 Traction, force, and the Archimedes-Stokes law

Having derived expressions for the velocity and pressure fields, given,
respectively, by equations (9.4.17) and (9.4.18), we proceed to evaluate
the traction on the surface of the sphere and then integrate it to compute
the force. For simplicity, we assume that gravity is directed along the x
axis; that is, gx = g, gy — O, and gz = O, where g is the acceleration of
gravity.

Using the definition of the Newtonian stress tensor shown in equa-
tions (4.6.7), we derive an expression for the normal component of the
traction

(9.4.21)

where the constant c is associated with the pressure, and an expression
for the tangential component of the traction,

(9.4.22)



Note that, because of the no-slip boundary condition, viscous stresses do
not contribute to the normal component of the traction, in agreement
with our discussion in Section 4.7.

Combining (9.4.21) and (9.4.22), we find that the traction exerted on
the surface of the sphere is given by

f = arr(r = a) er + are(r = a) ee, (9.4.23)

where er and e# are the unit vectors in the radial and azimuthal di-
rections. Expressing er and e# in terms of Cartesian unit vectors using
relations (1.3.26), substituting the results along with expressions (9.4.21)
and (9.4.22) into equation (9.4.23), and simplifying the resulting expres-
sion, we derive the remarkably simple result

(9.4.24)

which shows that, hydrostatic contributions aside, the traction over the
surface of the sphere points opposite to the direction of translation, and
has a uniform magnitude.

To compute the force exerted on the sphere, F, we integrate the
traction over the surface of the sphere. Noting that x = r cos #, we find

(9.4.25)

The first term on the right-hand side of (9.4.25) expresses Stokes's
law. The second term is Archimedes's buoyancy force familiar from our
discussion in Chapter 5 of hydrostatics: the force exerted on an immersed
body is equal in magnitude and opposite in direction to the weight of
the fluid displaced by the body.

9.4.4 Terminal velocity of a settling sphere

As an application of the Archimedes-Stokes law (9.4.25), we compute
the terminal velocity of a sphere of density ps settling in an infinite
ambient fluid along the x axis. Balancing the weight of the sphere and
the force given in (9.4.25), we find

(9.4.26)



Solving for C/, we find

(9.4.27)

In practice, this equation is used to estimate the viscosity of a fluid from
observation of the terminal velocity of a sphere in a device called the
falling-ball viscometer.

Problems

Problem 9.4.1 Pressure distribution around a sphere.
Derive the pressure distributon (9.4.18).

Problem 9.4.2 Flow past a stationary sphere.
Consider steady uniform flow with velocity y along the x axis past

a stationary sphere, and derive expressions for the stream function, ve-
locity components, pressure field, traction and force on the surface of
the sphere. Show that, for the fluid inertia to be negligible, throughout
the domain of flow, both Re and Rer defined in equations (9.4.19) and
(9.4.20) must both be considerably less than unity.

9.5 Point forces and point sources in Stokes flow

Consider the stream function of the flow due to a translating sphere,
given in equation (9.4.16). The right-hand side involves two terms that
decay like the inverse or inverse cubic power of r/a. To make this dis-
tinction clear, we recast equation (9.4.16) into the form

(9.5.1)

where

(9.5.2)

are two constant coefficients,

(9.5.3)



is the stream function associated with a fundamental solution of the
equations of Stokes flow called the three-dimensional Stokeslet, as will
be discussed later in this section, and

(9.5.4)

is the stream function of irrotational flow representing the flow due to a
three-dimensional point-source dipole pointing in the direction of the x
axis, as discussed in Section 3.6.

The expressions for the velocity, pressure, and stress, may be resolved
into analogous component forms corresponding to the Stokeslet and po-
tential dipole. For example, the Cartesian components of the velocity
are given by

(9.5.5)

The first and second set of parentheses on the right-hand side of (9.5.5)
represent, respectively, the velocity field due to a Stokeslet or a potential
dipole parallel to the x axis, both situated at the origin.

9.5.1 The Oseen tensor and the point force

Generalizing the expressions enclosed by the first set of parentheses
on the right-hand side of (9.5.5), we derive the velocity field at the point
x = (x, y, z) due to a three-dimensional Stokeslet with vectorial strength
s — (sx, Sy, sz) situated at the point XQ = (XQ,yo, ^c)5 given by

(9.5.6)

where S is the 3 x 3 Oseen tensor for three-dimensional flow, defined as



(9.5.7)

and r = ^/(x - Xo)2 + (y - yo)2 + (z - ^o)2 is the distance of the field
point x from the location of the Stokeslet XQ. The three columns of
the Oseen tensor represent, respectively, the x, y, and z components of
the velocity associated with a Stokeslet of unit strength pointing in the
direction of the x, y, or z axis. The corresponding pressure field is given
by

(9.5.8)

where the dot denotes the inner vector product.
It can be shown by direct substitution that the velocity (9.5.6) and

accompanying pressure field (9.5.8) satisfy the equations of Stokes flow
(9.4.1) and (9.4.2) with the gravity term absent, for any Stokeslet strength
represented by the vector s, everywhere except at the point XQ where the
velocity and pressure become infinite. The streamline pattern in the xy
plane induced by a Stokeslet pointing in the x direction is shown in figure
9.5.1.

9.5.2 Force on a surface enclosing the Stokeslet

Consider a surface D enclosing the singular point XQ of a Stokeslet.
It can be shown that the force exerted on this closed surface is given by

(9.5.9)

independent of the geometry of the surface; a is the stress tensor, and
n is the unit vector normal to D pointing outward. The corresponding
torque with respect to the point XQ is equal to zero,

(9.5.10)



Figure 9.5.1 Streamline pattern in a meridional plane of the axisym-
metric flow induced by a three-dimensional point force pointing
along the x axis.

The force and torque exerted on a closed surface that does not enclose
the singular point XQ, vanish.

Equation (9.5.9) illustrates that the Stokeslet expresses the flow due
to a three-dimensional point force applied at the singular point XQ. In
physical terms, this flow may be identified with the flow induced by the
motion of a small particle located at the point XQ; the strength of the
point force counterbalances the force exerted on the particle due, for
example, to gravity.

9.5.3 Point source and point-source dipoles

It can be shown by straightforward susbstitution that the irrotational
velocity field due to a point source or point-source dipole discussed in
Section 3.6 also satisfies the equations of Stokes flow (9.4.1) and (9.4.2)
with the gravity term absent, with a corresponding constant pressure.
Further analysis reveals that the induced force and torque on a closed
surface vanish independent of whether the singular point XQ lies inside
or outside the surface.



9.5.4 Flow representation in terms of singularities

We have discussed three singular fundamental solutions of the equa-
tions of Stokes flow, including the point force, and point source, and
the point-source dipole. To this end, we employ these singularities to
generate desired solutions by linear superposition. The key idea is to ex-
press a flow of interest in terms of a linear combination of singularities,
and then compute the strengths in the singularities with the objective
of satisfying the required boundary conditions. Linear superposition is
permissible by the linearity of the equations of Stokes flow, resulting by
dropping the nonlinear convective terms in the equation of motion.

For example, we have already seen that the flow due to the translation
of a sphere may be represented exactly by a point force and a point-source
dipole placed at the center of the sphere, where the coefficients of the
singularities are given in equations (9.5.2). Using equation (9.5.9), we
find that the hydrodynamic force exerted on the sphere is given by

F = -87T// s = -6717/ U a ex, (9.5.11)

which is in agreement with expression (9.4.25) derived by a more detailed
computation.

Exact representations, however, are rare, and we confine ourselves to
deriving approximate solutions. Illustrative examples are discussed in
the remainder of this section.

9.5.5 Motion of a sphere along
the axis of a tube in Poiseuille flow

Consider a spherical particle of radius a moving with velocity U along
the axis of cylindrical tube of radius b under the action of pressure-
driven flow, as illustrated in figure 9.5.2. In the absence of the sphere,
the velocity profile is given by equation (7.3.4), repeated here for ready
reference,

(9.5.12)

where the superscript "P" denotes the unpertubed parabolic flow, U^ax

is the maximum velocity at the centerline, and a = ^y2 + z2 = r sin 9
is the distance from the x axis. The corresponding stream function is
defined by the equation

(9.5.13)



Figure 9.5.2 A sphere moving along the axis of a circular tube in
Poiseuille flow.

Integrating with respect to cr, we find

(9.5.14)

where c is an unspecified constant.
An approximate representation of the flow in the presence of the

sphere emerges by superposing the unperturbed parabolic flow, the flow
due to a point force, and the flow due to a point-source dipole, where
the two singularities are located at the center of the sphere and point
along the x axis. The composite stream function is given by

(9.5.15)

where Sx and dx are the unknown strengths of the singularities. Express-
ing (9.5.3) and (9.5.4) in cylindrical polar coordinates, we find

(9.5.16)

and

(9.5.17)

where r = Vo;2 + a2.
The boundary conditions require that the velocity at the surface of

the sphere be equal to u = Uex, where U is the velocity of the sphere, and
ex is the unit vector along the x axis. In terms of the stream function,



-o,
(9.5.18)

where the derivative with respect to a is taken holding x constant, and
vice versa.

Substituting (9.5.14), (9.5.16), and (9.5.17) into the right-hand side
of (9.5.15), and the resulting expression into the boundary conditions
(9.5.18), and simplifying, we find

(9.5.19)

and

(9.5.20)

Using (9.5.20) to eliminate dx in favor of Sx from (9.5.19), we find

(9.5.21)

We note that, over the surface of the sphere, o = a sin 0, and find that it is
impossible to satisfy the boundary condition (9.5.21) all over the surface
of the sphere, except in the absence of the parabolic flow, This difficulty
underlines the limitations of the approximate representation (9.5.15). As
a compromise, we require the satisfaction of (9.5.21) integrated over the
surface of the sphere.

Substituting a — a sin ̂ , and recalling that the integral of an ax-
isymmetric function /(0) over the surface of the sphere is given by
// /(0) dS = 2?ra2 /J1-/(0) sin0 d6, and the surface area of the sphere
is equal to 4?ra2, we find

U 4 TT a2.
(9.5.22)

Computing ̂  sin3 0 dO = |, and simplifying, we obtain

(9.5.23)



Now, according to (9.5.11), the x component of the hydrodynamic
force exerted on the sphere is given by

Fx = -SiTUsx. (9.5.24)

Using this expression to eliminate Sx in favor of Fx in (9.5.23), we obtain

(9.5.25)

which provides us with a relationship between the velocity profile of the
Poiseuille flow determined by U^ax and 6, the force exerted on the sphere
Fx, and the velocity of the sphere U. If the tube is vertical with the x
axis pointing downward, a force balance over the sphere requires that Fx

be equal and opposite to the weight of the sphere minus the buoyancy
force, Fx = — ^j-a?(ps — p)g, where ps is the density of the sphere and g
is the acceleration of gravity.

The second term on the left-hand side of (9.5.25) is a consequence
of Stokes's law given in (9.4.25). The first term on the left-hand side
expresses the velocity of the sphere in terms of the maximum velocity
of the unperturbed parabolic flow and the tube radius. This expression
shows that the velocity of a neutrally buoyant sphere lags behind the
local fluid velocity U^ax by a factor that is determined by the ratio of
the sphere to tube radius a/6.

An implicit approximation underlines the preceding derivations: the
no-slip and no-penetration conditions on the surface of the tube were
not required. As a consequence, expression (9.5.25) is strictly valid for
a sphere that is immersed in infinite parabolic flow; the presence of the
tube in the preceding discussion is relevant only insofar as to establish
the curvature of the velocity profile.

Remarkably, in spite of the approximate satisfaction of the boundary
condition on the surface of the sphere expressed by (9.5.22), expression
(9.5.25) turns out to be exact for infinite parabolic flow, but not for
wall-bounded parabolic flow.

9.5.6 Integral representations

Consider an incident flow with velocity u°° past a stationary, trans-
lating, or rotating particle, and discretize the surface of the particle into
a collection of N surface elements such as curved quadrilaterals or tri-
angles, as illustrated in figure 9.5.3. An approximate representation of



Figure 9.5.3 Stokes flow past a particle may be represented by a super-
position of point forces located at designated centers of boundary
elements.

the flow may be obtained by adding to the incident flow the flow due to
a collection of point forces located at designated centers of the surface
elements.

Expressing the Stokeslet in terms of the Oseen tensor, as shown in
equation (9.5.6), we find that the velocity at a point x that lies in the
fluid is given by

(9.5.26)

where x.^ is the designated center of the feth element, and F^) is the
corresponding vectorial strength of the point force.

Straightforward rearrangement of (9.5.26) yields

(9.5.27)

where AS^ is the surface area of the kth element, and we have defined
the average traction f^ = * ( fe )F( fe). In the limit as the number of
elements TV tends to infinity, and correspondingly the surface areas AS^)
tend to zero, the sum on the right-hand side of (9.5.27) reduces to a
surface integral yielding the integral representation



(9.5.28)

which expresses the flow in terms of a distribution of point forces over
the particle surface. It can be shown that the density of the distribution
f is, in fact, the hydrodynamic traction exerted on the particle surface,
f = <7-n, where n is the unit vector normal to the particle surface pointing
into the fluid.

The integral representation (9.5.28) suggests a practical method of
computing the flow: apply this equation at a point x on the particle
surface, use the required boundary conditions for the velocity to evalu-
ate the left-hand side, and then solve the resulting integral equation for
the traction f. In practice, the solution is found numerically by approx-
imating (9.5.28) with a discrete form in terms of boundary elements, as
shown in equation (9.5.27). Identifying the point x in (9.5.27) with the
designated center of each element, we obtain a system of linear equa-
tions for the strengths of the point forces pW. The overall procedure is
described as a boundary-element/collocation method.

Problems

Problem 9.5.1 Force on a surface enclosing a Stokeslet.
Verify relation (9.5.9) for a spherical surface centered at the singular

point XQ.

Problem 9.5.2 Point source.
Verify that the force exerted on a spherical surface centered at a point

source vanishes. Recall that the pressure field associated with a point is
uniform throughout the domain of a Stokes flow.

9.6 Two-dimensional Stokes flow

It would appear that the discussion of three-dimensional flow in Sec-
tions 9.4 and 9.5 carries over to two-dimensional flow without any further
difficulties or added considerations. While this is ture, in general, there is
one important exception: the flow due to the motion of a two-dimensional



body in an infinite and otherwise quiescent fluid is not defined, in the
sense that a solution that satisfies the condition of vanishing velocity
at infinity cannot be obtained. We shall consider this problematic case
first, and then discuss flows that are well-defined.

9.6.1 Flow due to the motion of a cylinder

Consider the flow due to a circular cylinder of radius a translating
along the x axis with velocity U'. If the Reynolds number Re = paU/^ is
small, then sufficiently close to the cylinder inertial forces are negligible
compared to pressure and viscous forces, and the motion of the fluid is
governed by the linear equations of Stokes flow. In Section 9.4, we em-
phasized that the smallness of the Reynolds number does not guarantee
that inertial forces will be insignificant far from the cylinder, and the
consistency of a solution derived working exclusively on the equations of
Stokes flow should be verified.

To bypass the computation of the pressure, we seek a solution based
on the vorticity transport equation for the strength of the vorticity uz,

(9.6.1)

where V2 = d2/dx2 + d2/dy2 is the two-dimensional Laplacian operator.
In terms of the stream function, the strength of the vorticity is given by
equation (2.9.7). Setting the right-hand side of (9.6.1) equal to zero, and
substituting (2.9.7) into the right-hand side, we derive a fourth-order
linear differential equation for the stream function,

O - -V2V2V^ = -VV, (9.6.2)

where

(9.6.3)

is the biharmonic operator in two dimensions. Our task is to solve the
fourth-order differential equation (9.6.3) in the flow regime confined be-
tween r = a and infinity, subject to appropriate boundary and far-field
conditions.

Repeating the analysis of Section 9.4 for the analogous problem of
flow due to a translating sphere, we find that, in terms of the stream



function, the boundary and far-field conditions in plane polar coordinates
(r, 6) take the form

(9.6.4)

and

(9.6.5)

for m > 1. Condition (9.6.5) allows the stream function to diverge at
infinity, but requires that the rate of growth be less than linear for the
velocity to decay.

Motivated by the functional form of the boundary conditions (9.6.4),
we seek a solution for the stream function by separation of variables in
plane polar coordinates, writing

tl> = q(r) sine. (9.6.6)

The unknown function q(r) is required to satisfy the boundary conditions

q(r = a) = Ua, (9.6.7)

and the far-field condition

(9.6.8)

for m > 1.
Equation (3.2.25) provides us with the Laplacian operator in planar

polar coordinates. The corresponding biharmonic operator is

(9.6.9)

Substituting (9.6.6) into (9.6.2), expressing the biharmonic operator in
the form provided by (9.6.9), and carrying out the differentiations, we
derive the fourth-order linear ordinary differential equation

(9.6.10)

Working as in Section 9.4 for flow due to the motion of a sphere, we
derive the general solution



(9.6.11)

where A, B, C and jD, are four constants. For the far-field condition
(9.6.8) to be satisfied, A, 5, and C must all be equal to zero, and this
leaves us with only one coefficient to satisfy the two remaining boundary
conditions (9.6.7), which is impossible. Thus, the problem of flow due
to the motion of a cylinder in Stokes flow does not admit a solution.

To probe the origin of this catastrophe, we examine the magnitude
of the inertial and viscous terms in the equation of motion, as discussed
in Section 9.4, and find that the approximations underlying the notion
of creeping flow cease to be accurate far from the cylinder. As a con-
sequence, requiring the far field condition (9.6.8) leads to irreconcilable
behavior. In the case of three-dimensional flow due to the motion of a
sphere, this difficulty is shielded by the decay of the flow due to a three-
dimensional Stokeslet expressing a point force. In contrast, in the case
of two-dimensional flow, the velocity field due to a point force exhibits a
logarithmic divergence contributed by the second term on the right-hand
side of (9.6.11), and a decaying solution cannot be found.

To remedy the situation, we use the method of matched asymptotic
expansions, dividing the flow into an inner regime where the motion of
the fluid is governed by the equations of creeping flow with the boundary
conditions on the surface of the cylinder required, and an outer regime
where the motion of the fluid is governed by another simplified system of
equations, called the equations of Oseen flow, with the far-field condition
(9.6.8) required. Matching conditions arise by inspecting the functional
forms of the two solutions. The analysis involves sophisticated arguments
that are outside the scope of an introductory exposition.

9.6.2 Flow due to the rotation of a circular cylinder

Not all problems of two-dimensional infinite flow are ill-posed, in the
sense that a solution that satisfies the boundary and far-field conditions
cannot be found. If the force exerted on the internal boundaries vanishes,
then a perfectly acceptable solution can be found.

Consider, for example, the flow generated by a circular cylinder of
radius a rotating with angular velocity O about its center. The induced
flow is identical to that due to a point vortex with strength AC — 2?r Jl a2



placed at the center of cylinder, as discussed in Section 3.7. Using ex-
pressions (3.6.1), we find that the velocity field is given by

(9.6.12)

The corresponding pressure field is uniform throughout the domain of
flow.

To sustain the rotation of the cylinder, an external torque must be
applied counterbalancing the hydrodynamic torque due to the fluid mo-
tion. The torque with respect to the center of the cylinder is given by

(9.6.13)

Substituting (9.6.12) into (4.6.19), we find that the stress component
are is given by —2/xfia3/r2. Substituting this expression into (9.6.13),
setting dl = adO, and integrating with respect to 9 from O to 2?r, we find

T, =-47T/^ a2. (9614)

9.6.3 The Oseen tensor and the point force

The second term on the right-hand side of (9.6.11), involving the log-
arithm, represents the flow due to a two-dimensional point force oriented
along the x axis. Differentiating with respect to x or y to obtain the cor-
responding velocity field, and repeating for the y direction, we obtain the
velocity field at the point x = (#, y) due to a two-dimensional Stokeslet
with vectorial strength s = ( s x ^ s y ) situated at the point XQ = (#o?yo)?
expressed by

(9.6.15)

where S is the 2 x 2 Oseen tensor for two-dimensional flow defined as

(9.6.16)



Figure 9.6.1 Streamline pattern of the flow induced by a two-
dimensional point force pointing along the x axis.

and T — \J(x — xo)2 + (y — yo)2 is the distance of the field point x from
the location of the Stokeslet, XQ.

The two columns of the Oseen tensor represent, respectively, the x
and y velocity components associated with a Stokeslet of unit strength
pointing in the direction of the x or y axis. The corresponding pressure
field is given by

(9.6.17)

where a dot denotes the inner vector product. The streamline pattern
of the flow uinduced by a two-dimensional Stokeslet oriented along the
x axis is shown in figure 9.6.1.

Consider a closed contour C enclosing the singular point XQ. In can
be shown that the force exerted on the contour is given by

(9.6.18)

independent of the shape of the contour; a is the stress tensor, and n is
the unit vector normal to C pointing outward. The torque with respect



to the point XQ is equal to zero. The force and torque exerted on a closed
contour that does not enclose the singular point XQ, vanish. These results
confirm our earlier assertion that the two-dimensional Stokeslet expresses
the flow due to a two-dimensional point force.

Problem

Problem 9.6.1 Simple shear flow past a freely-suspended cylinder.
Consider simple shear flow along the x axis past a circular cylinder

of radius a centered at the origin. The incident velocity field is given
by u°° = (fcy,0), where k is the shear rate. The cylinder rotates about
its center with angular velocity fi = — jfc; if k is positive, the cylinder
rotates in the clockwise direction. The components of the velocity field
corresponding to this flow are known to be

(9.6.19)

(a) Compute the associated pressure field to satisfy the Stokes equa-
tions.

(b) Show that the torque exerted on the cylinder is equal to zero.

These results suggest that a freely-suspended cylinder rotates at an
angular velocity that is equal to the negative of half the shear rate of the
simple shear flow.

9.7 Flow near corners

The boundaries of a flow often involve walls, interfaces, and dividing
streamlines that meet at sharp corners or cusps. Deep into the corners
and cusps, the magnitude of the velocity diminishes rapidly, fluid inertia
becomes negligible, and the Reynolds number of the local flow is small.
The structure of the flow may then be studied in the context of Stokes
flow, with the far flow playing the role of an external mechanism that
determines the intensity and selects the geometrical mode of the local
flow.



Figure 9.7.1 The local Reynolds number of the flow near a corner is
small, and the motion of the fluid is governed by the equations of
Stokes flow. Similarity solutions may be derived working in local
plane polar coordinates.

9.7.1 Local solutions

Consider two-dimensional flow between two planes intersecting at
an angle 2a, as illustrated in figure 9.7.1. To facilitate the impending
implementation of the boundary conditions, we introduced plane polar
coordinates (r, O) with origin at the apex. Moreover, to bypass the com-
putation of the pressure, we introduce the stream function ^ and express
it in the separated form

^ = q ( r ) f ( 0 ) . (9-7.1)

Note that (9.7.1) is a generalization of (9.6.6) describing flow due to the
motion of a cylinder.

We begin by stipulating that the component functions q(r) and f ( 9 )
exhibit, respectively, a power-law and an exponential dependence on
their respective arguments,

Q(r) = rx, f ( 0 ) = Aexp(«0), (9.7.2)

where X and AV are two constants, and A is a constant coefficient.
The exponent AC is allowed to be complex, expressed in the form

K — Kr+iKi, where i is the imaginary unit defined by the equation i2 = 1,
and Acr and AC^ are two real constants. Using the Euler decomposition of
the complex exponential, we write



/((9) = A exp(«r0) [cos(«i0) H- i sin(/^<9)], ,g 7 ̂

with the understanding that either the real or the imaginary part may
be selected on the right-hand side of (9.7.1).

Substituting (9.7.2) into (9.7.1), and the result into the biharmonic
equation V4^ = O expressed in plane polar coordinates, as shown in
(9.6.9), we derive a bi-quadratic algebraic equation for K parametrized
by the exponent A,

(9.7.4)

whose roots are found readily by use of the quadratic formula. Solving
for K, substituting the result into (9.7.3), and rearranging the emerging
expression, we obtain the general solution

{ B sin(A0 - p) + C sin[(A - 2)9 -7] if A ̂  0,1,2
J3sin(20-j8) + C0 + £> if A = 0,2
B sin(0 -p)+ CO sin(<9 - 7) if X = I (975)

where B, C are complex constants, and /3, 7 are real constants.
A variety of flows may be generated by selecting, or solving for, the

exponent A. Examples will be illustrated in the remainder of this section.

9.7.2 Stagnation-point flow on a plane wall

First, we consider flow near a stagnation point on a plane wall, illus-
trated in figure 9.7.2. The no-slip and no-penetration boundary condi-
tions demand that / = O and df/dO = O at O = O and TT. The structure
of the flow is determined by requiring that / = O along the dividing
streamline located at O = a, where the angle a is a free parameter.

Making the judicious selection A = 3, and using the general solution
given by the first of equations (9.7.5), we find

1(O) = B sin(3# - P) + C sin(0 - 7).
(9.7.6)

Requiring the no-slip and no-penetration boundary conditions, and spec-
ifying the orientation of the dividing streamline, we obtain a system of



Figure 9.7.2 Streamline pattern of flow in the neighborhood of a stag-
nation point on a plane wall. The angle subtended between the
dividing streamline and the wall is (a) a = yr/4, and (b) ?r/2.



three scalar homogenous equations for B and C involving the uknown
parameters /3 and 7.

(9.7.7)

The first two equations in (9.7.7) require

tan£ = -3 tan7, (9.7.8)

and the second and third equations require

(9.7.9)

The system of equations (9.7.8) and (9.7.9) may be used to express
/3 and 7 in terms of a. Using any one of equations (9.7.7) to express
B in terms of C, or vice versa, substituting the result into (9.7.6), and
making use of the trigonometric identity sin3a = 3 sin a — 4 sin3 a, where
a is arbitrary, we derive the final form

/(0) = Gsin20sin(0-a), (Qj-10)

where G is an arbitrary constant. Substituting (9.7.10) into (9.7.1), we
obtain the desired solution for the stream function,

i/j = Gr3 sin2 O sin(0 - a). (9.7.11)

The value of the constant G is determined by the strength of the flow far
from the stagnation point. Streamline patterns for a = ?r/4 and ?r/2 are
depicted in figure 9.7.2. A distinguishing feature of Stokes flow is that
the dividing streamlines are straight lines emanating from the stagnation
point on the wall.

9.7.3 Flow near a corner

As a second application, we consider flow inside a corner that is
confined between two intersecting stationary planes located at O = ±a,



as illustrated in figure 9.7.1. The no-slip and no-penetration boundary
conditions require / = O and df /dO = O at 9 = ±a. We confine our
attention to flow that is antisymmetric will respect to the mid-plane
located at 9 — O, and require the condition df/dd — O at O — O, which
states that the radial velocity vanishes at the mid-plane.

In this case, the value of the exponent A cannot be specified a priori,
as in the case of stagnation-point flow discussed earlier, but must be
found as part of the solution. Assuming that A ̂  O,1,2, we use the first
of equations (9.7.5), set /3 — ?r/2 and 7 = ?r/2 to satisfy the condition
df/d0 = O at <9 = O, and find

/(0) - Qcos(A0) + Gcos[(A - 2)6], (9>7>12)

where Q and G are two constants. Requiring the boundary conditions
/ — O and dj JdQ = O at 0 — ±a, we obtain a homogeneous system of
two equations for the constants Q and G,

cos(Aa) cos[(A - 2)a] 1 [ Q 1 _ [ O 1
Asin(Aa) (A - 2) sin[(A - 2)a] J ' [ G \ ~ [ O J * (9.7.13)

For a nontrivial solution to exist, the determinant of the coefficient ma-
trix on the left-hand side must be equal to zero, yielding

cos(Aa)(A - 2) sin[(A - 2)a] - Asin(Aa) cos[(A - 2)a] = O, (9.7.14)

which may be restated in the form of the nonlinear algebraic equation

sin[2a(A - I)] = (1 - A) sin(2a). (9.7.15)

An obvious solution is A = 1. For this value, however, the third in-
stead of the first of equations (9.7.5) should have been selected, and this
disqualifies the obvious choice.

We anticipate that equation (9.7.15) will have a generally complex
solution for A, and write

X = Xr+i\i, (9.7.16)

where i is the imaginary unit. Substituting (9.7.16) into (9.7.15), and
using standard formulas of complex calculus, we derive a system of two
real equations for the real components Xr and A^,

sin[2a(Ar - I)] cosh(2aA;) = (1 - A r) sin(2a),

sin[2a(Ar — I)] sinh(2aA^) = —Aisin(2a). f9 7 17)



To simplify the notation, we introduce the auxiliary variables

(9.7.18)

and express the system (9.7.17) in the more convenient form

/i ( f»f?) ^ sin £ cosh r/ + K £ = 0,

MM = cos^sinhr? + Kr1 = O. (9 7 19)

Using the first two equations of (9.7.18), we find

(9.7.20)

Our task is to solve the system of equations (9.7.19) for £ and 77, subject
to a specified value for K; that is, subject to a specified angle a.

Newton's method

The solution of the nonlinear algebraic equations must be found by it-
eration: guess values for f and r? that allegedly satisfy equations (9.7.19),
and then improve the guess in a sensible fashion.

In Newton's method, the solution is found by guessing the values
£G and rjG, replacing the functions /i(£,??) and /2(£,??) with their lin-
earized Taylor series expansion, and then solving a linear system for
the unknowns using elementary analytical or numerical methods. The
linearized Taylor series expansion provides us with the approximations

(9.7.21)



Setting the right-hand sides equal to zero to satisfy (9.7.19), we find

(9.7.22)

The matrix on the left-hand side of (9.7.22) is the Jacobian of the alge-
braic system (9.7.19). Newton's algorithm involves the following steps:

1. Guess the values £G and r)G.

2. Evaluate the right-hand side of (9.7.22) and the coefficient matrix
on the left-hand side.

3. Solve the system of two linear equations (9.7.22) for the differences
A£ = £ - £G and Ary = TJ - r?G. Remember that £ and 77 are
unknown.

4. Improve the guesses by replacing the guessed values with the new
values

(9.7.23)

5. Return to step 2 and repeat the procedure with the new values of
£ and 77.

It can be shown that the iterations converge as long as the initial guess
is sufficiently close to the exact solution.

System (9.7.19) has a family of solution branches obtained by making
different selections for the initial guess. The most physically relevant
branch is the one associated with the smallest value of A r, corresponding
to the flow that decays at the lowest possible rate in the limit as the
distance from the apex r tends to zero.

Figure 9.7.3 shows graphs of the real and imaginary part of A plot-
ted against the semi-angle a, computed using Newton's method. When
OAIn < a < TT, A is real; the fluid moves uninterrupted along the walls,
and regions of recirculating flow do not develop, as depicted in figure
9.7.4(a). When O < a < 0.41?r, the exponent A is complex; the flow
develops an infinite sequence of regions of recirculating fluid, also called
eddies, as shown in figure 9.7.4(b).



Figure 9.7.3 The exponent A with the smallest real part for antisym-
metric flow between two walls intersecting at the angle 2a. When
0.417T < a. < TT, A is real; when O < a < 0.417T, A is complex.

Problem

Problem 9.7.1 Flow near a scraper.
Derive a local solution for the flow near two intersecting plates, where

one of the plates is held stationary and the second moves parallel to itself
with constant velocity. This idealized configuration is a model of the flow
due to a plate scrapping a fluid off a flat surface, viewed in a frame of
reference moving with the scraper.

Computer problem

Problem c.9.7.1 Computation of the exponent.
Write a computer program that uses Newton's method to solve the

nonlinear algebraic system (9.7.19), and reproduce the graph shown in
figure 9.7.3.



Figure 9.7.4 Streamline pattern of antisymmetric flow in a corner with
half-angle (a) a = 135°, and (b) 10°.



Chapter 10

Flow at high Reynolds numbers

10.1 Changes in the structure of a flow
with increasing Reynolds number

10.2 Prandtl boundary-layer analysis
10.3 Prandtl boundary layer on a flat surface
10.4 Von Karman's integral method
10.5 Instability of shear flows
10.6 Turbulent motion
10.7 Analysis of turbulent motion

Having discussed viscous flows at vanishing Reynolds numbers, we
turn our attention to the diametrically opposite limit of inertia-dominated
flows at high Reynolds numbers. Examining the changes in the struc-
ture of a flow with increasing Reynolds number, we encounter a broad
variety of protocols accompanied by a rich phenomenology. In all cases,
when the Reynolds number exceeds a critical threshold, flow instability
arises and a small-scale turbulent motion is established. The theoretical
study of the structure and dynamics of flows at high Reynolds numbers
encompasses several complementary topics including potential-flow the-
ory, boundary-layer theory, theory of hydrodynamic stability, theory of
turbulent motion, and dynamics of vortex motion. Potential flow was
considered in earlier sections; boundary-layer theory, hydrodynamic sta-
bility, and turbulent motion will be discussed in this chapter; and vortex
motion will be the exclusive topic of Chapter 11.



10.1 Changes in the structure of a flow
with increasing Reynolds number

As the Reynolds number of a flow is raised by increasing, for example,
the magnitude of the velocity, the structure of the flow changes in a way
that depends strongly on the particular flow configuration. Even though
a general statement regarding the protocol of change cannot be made,
several generic features may be identified:

• As the Reynolds number is raised, diffusion of vorticity from the
boundaries into the bulk of the flow is hindered by strong convec-
tion along and toward the boundaries. As a result, the vorticity
tends to be confined inside boundary layers and free shear layers
developing along fluid interfaces and free surfaces. Viscous forces
are significant inside the boundary and free shear layers, but may
be neglected outside their edges.

• Vorticity that has entered the flow by diffusion across the bound-
aries may accumulate to form compact regions of rotational motion
identified as vortices. Vortices are typically generated behind bluff
bodies and at the trailing edges of streamlined objects.

• Vortex interaction causes the flow to become unsteady in a regular
or chaotic fashion. Spatial, temporal, and spatio-temporal chaos,
may be established even at moderate Reynolds numbers.

• When the Reynolds number exceeds a critical threshold, small dis-
turbances amplify, altering the local or even the global structure
of the base flow.

• Instability is followed by transition leading to turbulent flow, where-
upon a small-scale unsteady motion is superimposed on a large-
scale steady or unsteady flow. The small-scale motion affects, and
is affected significantly by the large-scale structure and global prop-
erties of the flow.

Figure 10.1.1 illustrates the changes in the structure of streaming flow
past a circular cylinder with increasing Reynolds number Re = pDU/ p,,
where D is the cylinder diameter, and U is the velocity of the incoming
stream far from the cylinder. When the Reynolds number is less than
unity, inertial forces are negligible near the cylinder, the motion of the
fluid is governed by the equations of Stokes flow, and the streamline



Figure 10.1.1 Illustration of the changes in the structure of streaming
flow past a circular cylinder with increasing Reynolds numbers,
showing boundary-layer separation and the development of a wake,
after F. Homann (1936, Einfluss grosser Zahigkeit bei Stromung um
Zylinder, Forschg. Ing.-Wes. 7, 1-10).

pattern is symmetric with respect to the vertical plane that is normal to
the incident stream and passes through the center of the cylinder.

As the Reynolds number is raised, inertial forces become significant,
and a boundary layer, identified as a region of increased vorticity, is es-
tablished around the surface of the cylinder. The rotational fluid inside
the boundary layer is convected along the cylinder and accumulates be-
hind it to form two regions of recirculating flow followed by a slender
wake.

Further increase in the Reynolds number causes the flow to become
unstable. The pair of vortices developed behind the cylinder are shed
downstream in an alternating fashion at a frequency that depends weak-
ly on the Reynolds number, only to be replaced by newly formed vor-



Figure 10.1.2 Drag coefficient of a circular cylinder held stationary in
streaming flow, plotted against the Reynolds number defined with
respect to the cylinder diameter.

tices. The frequency of shedding, denoted by /, is expressed by the
dimensionless Strouhal number St = fD/U\ in the case of a circular
cylinder, St ~ 0.2. Far from the cylinder, the wake consists of two rows
of counter-rotating vortices arranged in a staggered formation known as
the von Karman vortex street. At even higher Reynolds numbers, tur-
bulent motion is established, and the edges of the wake becomes blurred
and less well-defined.

The changes in the structure of the flow described in the preceding
paragraphs have a strong influence on the drag force exerted on the
cylinder. Figure 10.1.2 shows a graph of the drag coefficient

(10.1.1)

where F is the drag force per unit length exerted on the cylinder, plotted
against the Reynolds number on a log-log scale. In the limit of vanishing
Reynolds numbers, theoretical analysis shows that the drag force is given
by the modified Stokes law



(10.1.2)

Correspondingly, the drag coefficient is given by

(10.1.3)

The change in the functional form of the drag coefficient at a critical
Reynolds number on the order of 103, shown in figure 10.1.2, is due to
the detachment of the boundary layer from the surface of the cylinder at
a certain point on the rear surface of the cylinder, as will be discussed
in Section 10.4, in a process that is described as flow separation. When
the Reynolds number becomes on the order of 105, the flow becomes
turbulent and the boundary layer reattaches causing a sudden decline in
the drag coefficient.

The non-monotonic dependence of the drag coefficient on the Reynold-
s number, illustrated in figure 10.1.2, is a manifestation of the complexity
of fluid motion in the world of high-Reynolds-numbers flow.

Problem

Problem 10.1.1 Flow in a channel through an expansion.
Consider flow through a channel with a sudden expansion, as illus-

trated in figure 6.2.1. Discuss the expected changes in the structure of
the flow with increasing a properly defined Reynolds number.

10.2 Prandtl boundary-layer analysis

In Section 10.1, we identified a boundary layer as a region of increased
vorticity developing over a solid boundary in a high-Reynolds-number
flow. To make the concept of a boundary layer more specific, we consider
a model flow consisting of (a) an outer regime wherein the curl of the
vorticity or the vorticity itself vanishes and the motion of the fluid is
described by the equations of inviscid flow, including Euler's equation
and the continuity equation, and (b) a boundary layer wherein the curl of
the vorticity is substantial and viscous forces are significant, as illustrated



Figure 10.2.1 Schematic illustration of a Prandtl boundary layer de-
veloping around the surface of a two-dimensional curved body.

in figure 10.2.1. Wakes and regions of recirculating flow are allowed, but
are significant only insofar as to determine the structure of the outer
flow.

The slenderness of the boundary layer, compared to the typical size
of the boundaries, allows us to simplify the equation of motion for the
flow inside the boundary layer, and thereby derive approximate solutions
valid in the asymptotic limit of high Reynolds numbers. To illustrate the
physical arguments involved in the formulation of boundary-layer theory,
and simultaneously demonstrate the important mathematical simplifica-
tions, we consider the boundary layer developing along a mildly-curved
two-dimensional rigid body that is held stationary in an incident irrota-
tional flow, as depicted in figure 10.2.1. Extensions to axisymmetric and
three-dimensional configurations are straightforward.

10.2.1 Continuity equation

We begin the analysis by introducing Cartesian coordinates with the
x axis tangential to the body at a point, and the y axis perpendicular
to the body at that point, as shown in figure 10.2.1, and apply the
continuity equation

dux duy =

dx dy (10.2.1)

at a point in the vicinity of the origin.



If L is the typical dimension of the body, and U represents the mag-
nitude of the velocity of the incident irrotational flow, then we expect
that the magnitude of the derivative dux/dx inside the boundary layer
will be comparable to the ratio U/L. Moreover, if 8 is the designated
thickness of the boundary layer, defined as the region around the body
across which the vorticity undergoes a rapid variation and the magni-
tude of viscous forces is significant, and V is typical of the magnitude of
component of the velocity normal to the body at the edge of the bound-
ary layer, we expect that the magnitude of the derivative duy/dy will be
comparable to the ratio V/6. The continuity equation (10.2.1) requires

(10.2.2)

Next, we examine the two components of the equation in the vicinity
of the origin, written for the dynamic pressure which incorporates the
hydrostatic variation, defined as P = p — p g • x.

10.2.2 x-component of the equation of motion

Considering the x component of the Navier-Stokes equation,

(10.2.3)

we scale Ux with C/, dux/dx with J7/L, uy with F, dux/dy with J7/<J,
the second derivative O2Ux/dx2 with U/L2, and O2Ux/dy2 with U/52.
Moreover, we use the scaling shown in (10.2.2) to eliminate V in favor
of C/, and find that the magnitude of the various terms is as shown by
the arrows underneath equation (10.2.3). The scaling of the first term
involving the time derivative on the left-hand side is determined by the
temporal variation of the outer flow, which is left unspecified.

At this point, there is no obvious way of scaling the x derivative of
the dynamic pressure gradient on the right-hand side of (10.2.3) on the
basis of kinematics.

The scalings shown underneath equation (10.2.3), combined with the
assumption S < L, have two important consequences. First, the penulti-
mate viscous term on the right-hand side is small compared to the last



viscous term and may be neglected, yielding the boundary-layer equation

(10.2.4)

Second, the magnitude of the last viscous term must be comparable to
the magnitude of the inertial terms on the left-hand side, requiring

(10.2.5)

where Re — ULfv is the Reynolds number defined with respect to the
size of the boundaries.

10.2.3 y-component of the equation of motion

Next, we consider the individual terms in the y component of the
equation of motion

(10.2.6)

and scale uy with F, duy/dx with V/L, ux with C/, duy/dy with V/5,
the second derivative d2uy/dx2 with V/L2, and d2uy/dy2 with V/82.
Moreover, we express the kinematic viscosity v in terms of 8 using the
first of equations (10.2.5), replacing it with US2/L, and find that the
magnitude of the various terms is as shown by the arrows underneath
equation (10.2.6).

The magnitude of all nonlinear convective and viscous terms is of
order S. Unless the magnitude of the temporal derivative on the left-
hand side is of order unity, the dynamic pressure gradient across the
boundary layer must also be of order 5, dP/dy ~ 5, and this suggests
the leading-order approximation

(10.2.7)



Thus, non-hydrostatic pressure variations across the boundary layer are
negligible, and the dynamic pressure inside the boundary layer is pri-
marily a function of arc length along the boundary.

10.2.4 Boundary-layer equations

To compute the streamwise pressure gradient, we evaluate the x com-
ponent of the Euler equation (6.4.2) at the edge of the boundary layer,
obtaining

(10.2.8)

where Ux is the tangential component of the velocity of the outer flow.
The boundary-layer equation (10.2.4) then becomes

(10.2.9)

Equations (10.2.1) and (10.2.9) provide us with a system of two
second-order, nonlinear partial-differential equations for Ux and uy, to
be solved subject to: (a) the no-slip and no-penetration boundary con-
ditions requiring that Ux and uy vanish along the body, and (b) the far-
field condition requiring that, as y/S tends to infinity, Ux tends to the
tangential component of the outer velocity Ux. Because the boundary-
layer equations do not involve the second partial derivative of uy with
respect to y, a far-field condition for uy is not required. The pressure
follows from knowledge of the structure of the outer flow and plays the
role of a forcing function, computed by solving the equations governing
the structure of the outer irrotational flow.

10.2.5 Favorable and adverse pressure gradient

Considering a steady flow, we evaluate (10.2.9) at the origin, and
enforce the no-slip and no-penetration conditions to obtain

(10.2.10)

which shows that the sign of the curvature of the velocity profile at
the boundary is opposite to the sign of the streamwise acceleration of
the outer flow, dUx/dx. Thus, the flow inside the boundary layer in a
decelerating outer flow, corresponding to dU/dx < O, reverses direction



causing convection of vorticity away from the boundary and consequent
formation of vortices within the bulk of the fluid.

When dUx/dx > O, the pressure gradient is negative, dP/dx < O, and
the boundary layer is subjected to a favorable pressure gradient. In the
opposite case dUx/dx < O, the pressure gradient is positive, dP/dx > O,
and the boundary layer is subjected to an adverse pressure gradient.
Equation (10.2.10) shows that an adverse pressure gradient promotes
flow separation.

10.2.6 Boundary-layer equations in curvilinear coordinates

The Prandtl boundary-layer equation (10.2.9) was developed with
reference to the local Cartesian system of axes shown in figure 10.2.1,
and is valid at a point in the vicinity of the origin. To avoid redefining
the Cartesian axes at every point along the boundary, we introduce a
curvilinear coordinate system with the £ axis tangential to the boundary
and the 77 axis perpendicular to the boundary, as shown in figure 10.2.1,
and denote the corresponding velocity components by u^ and uv.

Repeating the preceding arguments, we find that the boundary layer
equations (10.2.1), (10.2.7), and (10.2.9) remain valid to leading-order
approximation, provided that the Cartesian x and y coordinates are
replaced by corresponding arc lengths in the £ and 77 direction denoted,
respectively, by I^ and /^. Equation (10.2.7), in particular, becomes

(10.2.11)

where R is the radius of curvature of the boundary. Thus, the dynamic
pressure drop across the boundary layer is of order J, provided that R
is not too small; that is, povided that the boundary is not too sharply
curved. For simplicity, in the remainder of this chapter we shall denote
I^ and /77, respectively, by x and y.

10.2.7 Parabolization

The absence of a second partial derivative with respect to x renders
the boundary-layer equation (10.2.9) a parabolic partial differential equa-
tion with respect to x. This classification has important consequences on
the nature and method of computing the solution. Most important, the
system of equations (10.2.1) and (10.2.9) may be solved using a marching



method with respect to x, beginning from a particular x station where
the structure of the boundary layer is somehow known; examples will be
discussed in subsequent sections. In contrast, the Navier-Stokes equation
is an elliptic partial differential equation with respect to x and y, and
the solution must by found simultaneously and at once at every point in
the flow, even when the velocity and pressure at the points of entrance
are specified.

The parabolic nature of (10.2.9) with respect to x implies that, if
a perturbation is introduced at some point along the boundary layer,
it will modify the structure of the flow downstream, but will leave the
upstream flow unaffected. The absence of the second partial derivative
with respect to x due to the boundary-layer approximation precludes a
mechanism for upstream propagation.

10.2.8 Flow separation

Boundary-layer analysis for laminar flow is based on two key assump-
tions: the Reynolds number is sufficiently large, but not so large that
the flow becomes turbulent; and the vorticity remains confined inside
boundary layers tha wrap around the boundaries.

The physical relevance of the second assumption depends on the
structure of the incident flow and the geometry of the boundaries. Stream-
lined bodies allow laminar boundary layers to develop over a large por-
tion, or even the whole, of their surface area, whereas bluff bodies cause
the vorticity to concentrate within compact regions forming steady or
unsteady wakes. For example, the alternating ejection of vortices of op-
posite sign into the wake is responsible for the von Karman vortex street
illustrated in figure 10.1.1. These limitations should be born in mind
when carrying out a boundary layer analysis.

10.3 Prandtl boundary layer on a flat surface

Having established simplified equations of motion for the flow inside a
boundary layer over a solid surface, we proceed to derive solutions by an-
alytical and numerical methods. First, we consider the simplest possible
boundary layer developing on a flat surface in a constant, accelerating,
or decelerating flow.



10.3.1 Boundary layer on a semi-infinite plate

Consider the boundary layer established over a semi-infinite flat plate
that is held stationary and parallel to an incident streaming flow with
velocity C/, as illustrated in figure 10.3.1 (a). Since the tangential velocity
of the outer flow is constant, dUx(x)/dx = O, the boundary layer equation
(10.2.9) for steady flow simplifies to the convection-diffusion equation

(10.3.1)

The problem has been reduced to solving the simplified equation of mo-
tion (10.3.1) along with the continuity equation (10.2.1) for the velocity
components Ux and uy, subject to the no-slip, no-penetration, and far-
field conditions.

Because the length of the plate is infinite, our only choice for the
length L introduced in Section 10.2 is the streamwise distance x. The
second of relations (10.2.5) then provides us with an expression for the
boundary layer thickness in terms of the local Reynolds number Rex =
VxIv,

(10.3.2)

Recall that this scaling arose by balancing the magnitudes of the inertial
and viscous forces inside the boundary layer.

S elf-similarity

Blasius noted that computing the solution of the system of partial
differential equations (10.2.1) and (10.3.1) may be reduced to solving
a single ordinary differential equation. To carry out this reduction, we
assume that the flow develops in a self-similar manner, such that the
streamwise velocity profile across the boundary layer is a function of the
scaled transverse position expressed by the similarity variable

(10.3.3)

according to the functional form

(10.3.4)



Figure 10.3.1 (a) Schematic illustration of a boundary layer developing
along a semi-infinite flat plate placed parallel to a uniform incident
stream, (b) Graphs of the self-similar streamwise velocity profile
u/U = /' (solid line), and of its integral and derivative functions
/ and /" (dashed and dotted line).

Streamline

Boundary layer



where F(TJ) is an unknown function. A key observation is that this self-
similar streamwise profile derives from the stream function

(10.3.5)

where / is the indefinite integral or antiderivative of F, satisfying df/dr) =
F. The principal advantage of using the stream function is that the con-
tinuity equation is satisfied automatically and does not need to be further
considered.

Differentiating (10.3.5) with respect to y or a:, we find

(10.3.6)

Substituting these expressions into the boundary layer equation (10.3.1),
we obtain a third-order, nonlinear ordinary differential equation for the
function /(77),

(10.3.7)

first derived by Blasius in 1908. Using the no-slip and no-penetration
conditions, and requiring that, far from the plate, the flow in the bound-
ary layer reduces to the outer uniform flow, we obtain

(10.3.8)

and

(10.3.9)

These equations provide us with boundary and far-field conditions to be
used in solving the Blasius equation (10.3.7).

Before proceeding to compute the solution, it is instructive to apply
the Blasius equation (10.3.7) at the plate, and use the first of the bound-
ary conditions (10.3.8) to find d3f/dr)3(r) = O) = O, which shows that
the curvature of the streamwise velocity profile vanishes at the wall, in
agreement with equation (10.2.10).



Solution of the Blasius equation

To solve the Blasius equation (10.3.6), we denote the first and second
derivative of the function / by g = df /drj and q = dg/drj — d^f/dr]2,
and decompose the third-order equation into a system of three first-order
nonlinear equations,

(10.3.10)

This system is accompanied by the boundary conditions f(r) = Q) = 0,
0(77 = O) = O, and g(rj = oo) = 1, stemming from (10.3.8) and (10.3.9).

Since boundary conditions are provided at both ends of the solution
domain with respect to 77, extending from O to oo, we are faced with
a two-point boundary value problem involving a third-order differential
equation. The solution may be computed using a shooting method ac-
cording to the following steps:

1. Guess the value of q(rj = O) = 0(r/ = O).

2. Integrate the Blasius equation (10.3.7) from 77 = O to T] = oo subject
to the initial conditions (10.3.8) using the guessed value of g(r? = O).
In practice, integrating up to 77 = 10 yields satisfactory accuracy.

3. Check whether the far-field condition g(rj = oo) = 1 is fulfilled; if
not, improve the guess for q(r/ = O), and return to step 2.

The profile of the streamwise velocity u/U = /' = df /drj computed
in this manner is shown with the solid line in figure 10.3.l(b), along
with the profiles of / and /" = d2f/dr)2 drawn with the dashed and
dotted lines. The numerical solution reveals that /"(O) = 0.332 and
u/U = 0.99 when TJ = 4.9. Based on this result, we may define the 99%
boundary-layer thickness

(10.3.11)

where Rex = Ux/v. The 99.5% boundary-layer thickness is defined in
a similar fashion; the numerical solution shows that the corresponding
coefficient on the right-hand side of equations (10.3.11) is equal to 5.3.



Wall shear stress and drag force on the plate

The wall shear stress and drag force exerted on the wall are of partic-
ular interest in the engineering design of equipment handling high-speed
flows. According to the similarity solution, the wall shear stress is given
by

(10.3.12)

Thus, the wall shear stress takes an infinite value at the leading edge,
and decreases like the inverse square root of streamwise distance or local
Reynolds number Rex along the plate. The physical significance of the
singular behavior at the origin, however, is diminished by the observation
that the assumptions that led us to the boundary-layer equations cease
to be valid at the leading edge.

Even though the shear stress is infinite at the leading edge, the
inverse-square-root singularity is integrable, and the drag force exert-
ed on any finite section of the plate extending from the leading edge up
to an arbitrary point is finite. Using the similarity solution, we find that
the drag force exerted on both sides of the plate over a lengh extending
from the leading edge up to a certain distance x, is given by

(10.3.13)

Based on this expression, we define the dimensionless drag coefficient

(10.3.14)

The predictions provided by (10.3.13) and (10.3.14) agree well with
laboratory measurements up to about Rex = 1.2 x 105, whereupon the
flow in the boundary layer develops a wavy pattern and ultimately be-
comes turbulent. Above the critical value of Rex, the function Ci)(Rex)
jumps to a different branch with a significantly higher value of CD-



Vorticity transport

Neglecting the velocity component along the y axis, we find that the
strength of the vorticity inside the boundary layer is given by

(10.3.15)

which shows that, at a particular location 77, the strength of the vorticity
decreases like the inverse of the local boundary-layer thickness due to the
broadening of the velocity profile. The streamwise rate of convection of
vorticity across a plane that is perpendicular to the plate is given by

(10.3.16)

which is independent of the downstream position x.
One consequence of this result is that the flux of vorticity across the

plate is equal to zero, which is consistent with our earlier observation that
the gradient of the vorticity vanishes, and viscous diffusion of vorticity
does not occur at the wall, U df'"/dy = d2ux/dy2 = -dw/dy — O.
Another consequence is that all convected vorticity is generated at the
leading edge where the boundary-layer approximation ceases to be valid.
Viscous stresses at the leading edge somehow generate the proper amount
of vorticity needed for the self-similar flow to be established.

Displacement thickness

Because of the widening of the streamwise velocity profile in the
streamwise direction, the streamlines are deflected upward, away from
the plate, as shown in figure 10.3.1 (a). Let us consider a streamline
outside the boundary layer, described it by the equation y = g(x), and
write a mass balance over a control area that is enclosed by (a) the
streamline, (b) a vertical plane at x = O, (c) a vertical plane located at
a certain distance #, and (d) the plate. Taking into consideration that
the streamwise velocity profile at the leading edge located at x = O is
flat, we obtain

(10.3.17)

Straightforward rearrangement yields



(10.3.18)

Taking the limit as the streamline under consideration moves far from
the plate, we find

\im[g(x) - 0(O)] = 8*(x), (10.3.19)

where we have introduced the displacement thickness

(10.3.20)

Using the numerical solution of the Blasius equation to evaluate the
integral on the right-hand side of (10.3.20), we derive the precise relation

(10.3.21)

which shows that the displacement thickness, like the 99% boundary-
layer thickness, increases like the square root of the streamwise position.

Physically, the displacement thickness represents the vertical dis-
placement of the streamlines far from from the plate with respect to
their elevation at the leading edge. Laboratory observation has shown
that the laminar boundary layer undergoes a transition to the turbulent
state when the displacement thickness reaches the value 6* ~ 600z//[7, at
which point turbulent shear stresses become significant and the present
analysis based on the assumption of laminar flow ceases to be accurate.

The displacement thickness describes the surface of a fictitious im-
penetrable body held stationary in the incident irrotational flow. An
improved boundary-layer theory may be developed by replacing the tan-
gential velocity of the outer flow along the plate, C/, with the correspond-
ing tangential component of the velocity of the irrotational flow past this
fictitious body. The irrotational flow past the fictitious body must be
computed after the displacement thickness has been established, as dis-
cussed in this section. This iterative improvement provides us with a
basis for describing the flow in the context of asymptotic expansions.



Momentum thickness

It is both illuminating and useful to perform a momentum integral
balance over the control area used previously to define the displacement
thickness. Since the upper boundary of the control volume is a stream-
line, it does not contribute to the rate of momentum input. Assuming
that the normal stresses on the vertical sides are equal in magnitude and
opposite in sign, which is justified by the assumption that the pressure
drop across the boundary layer is negligibly small, and neglecting the
traction along the top streamline, we obtain

(10.3.22)

where D(X) is the drag force exerted on both sides of the plate, defined
in equation (10.3.13). Making the upper limits of integration equal, we
recast (10.3.22) into the form

(10.3.23)

Taking now the limit as the streamline defining the top of the control
area moves far from the plate, and using the definitions (10.3.19) and
(10.3.20), we obtain the relation

D(x) = 2 p U2@(x), (10.3.24)

where © is the momentum thickness defined as

(10.3.25)

Using the numerical solution of the Blasius equation, we find

(10.3.26)

where fr(rj) — df/drj.

Shape factor

The ratio between the displacement and the momentum thickness,

(10.3.27)



is called the shape factor. Inspecting the definitions of 5* and 0 shown in
equations (10.3.20) and (10.3.24), we find that the shape factor is greater
than unity, as long as the u is less than U over a substantial portion
of the boundary layer; the satisfaction of this restriction is expected
by physical intuition. The smaller the value of H, the more blunt the
velocity profile across the boundary layer. Substituting the right-hand
sides of expressions (10.3.21) and (10.3.25) into (10.3.27), we find that,
for the boundary layer over a flat plate, H = 2.591.

Relation between the wall shear stress and momentum thickness

The momentum thickness is related to the wall shear stress, and vice
versa, by the momentum integral balance expressed by (10.3.24): differ-
entiating (10.3.13) with respect to rr, we find dD(x)/dx = 2 axy(x^ y = O);
expressing the drag force in terms of the momentum thickness using
(10.3.24), we obtain

(10.3.28)

Thus, if the shear stress is known, the momentum thickness may be
computed by integration; and if the momentum thickness is known, the
shear stress may be computed by differentiation.

10.3.2 Von Karman's approximate method

Given the velocity profile across the boundary layer, we have two
ways of computing the wall shear stress: directly by differentiation, or
indirectly by evaluating the momentum thickness and then differentiat-
ing it with respect to streamwise position x to obtain the shear stress
according to equation (10.3.28). The indirect method is more forgiving,
in the sense that it is less sensitive to the structure of the velocity profile
near the wall. For the velocity profile that arises by solving the Blasius
equation, the two methods are equivalent (problem 10.3.1).

Consider now a self-similar velocity profile with some reasonable form
involving an unspecified function which is either obtained by exercising
physical intuition or suggested by laboratory observation. Is it possible
to adjust the unspecified function so that the two methods of computing
the wall shear stress discussed in the preceding paragraph are equivalent?
and, if the answer is affirmative, will the velocity profile obtained in this
manner be a good approximation to the exact solution?



To answer these questions, we consider the velocity profile

(10.3.29)

where
(10.3.30)

and A(X) is an unspecified function playing the role of a boundary-layer
thickness, similar to the 899 thickness introduced in equation (10.3.11).
Note that the velocity distribution (10.3.29) conforms with the required
boundary conditions /'(O) = O, //7/(0) = O, and /'(oo) = 1, where a
prime denotes a derivative with respect to 77, but does not satisfy the
Blasius equation.

Differentiating the profile (10.3.29) with respect to y, we obtain the
wall shear stress

(10.3.31)

The displacement thickness, momentum thicknesses, and shape factor
defined in (10.3.20), (10.3.24), and (10.3.27), are found to be

(10.3.32)

It is reassuring to observe that the shape factor is remarkably close to
that arising by solving the Blasius equation, H — 2.591.

Substituting the expressions for the momentum thickness and wall
shear stress into the integral momentum balance (10.3.28), we obtain an
ordinary differential equation for A(X),

(10.3.33)

Rearranging, and integrating with respect to x subject to the initial
condition A = O at x = O, we find

(10.3.34)



Substituting now this expression back into (10.3.31) and into the first
and second of relations (10.3.32), we find

(10.3.35)

These expressions are in excellent agreement with their exact counter-
parts shown in equations (10.3.12), (10.3.21), and (10.3.25). This kind
of agreement, however, is fortuitous and atypical of the accuracy of the
approximate method (problem 8.2.2).

10.3.3 Boundary layers in accelerating or decelerating flow

Having examined the Blasius boundary layer developing along a flat
plate that is aligned with a uniform incident flow, distinguished by the
uniformity of the tangential velocity of the outer flow along the plate, we
proceed to consider the more general case of Falkner-Skan boundary lay-
ers developing in an accelerating or decelerating incident flow. Examples
of physical situations where these boundary layers occur are illustrated
in figure 10.3.2.

We consider, in particular, an outer flow whose tangential velocity
Ux(x) exhibits a power-law dependence on streamwise distance x along
a flat plate,

Ux(x) = cxm, (10.3.36)

where c is a positive coefficient and m is a positive or negative exponent.
When m = O, we recover the Blasius boundary layer over a flat plate
at zero angle of attack; when m = 1, we obtain the boundary layer in
orthogonal stagnation-point flow; intermediate values of m correspond to
symmetric flow past a wedge of semi-angle a = TTTTI/(ra+1), as illustrated
in figure 10.3.2(a).

Differentiating (10.3.36) with respect to x, we obtain the streamwise
acceleration or deceleration of the outer flow,

(10.3.37)



Figure 10.3.2 Boundary layers developing in accelerating or decelerat-
ing flow: (a, b) flow past a wedge, and (c) uniform flow past a flat
plate at non-zero angle of attack.

Thus, the outer flow accelerates when m > O, and decelerates when
m < O. In the first case, conservation of mass expressed by the continuity
equation requires that the y derivative of the velocity component normal
to the wall, denoted by JT27, be negative, dUy/dy < O. Since Uy vanishes
on the wall, it must be negative at the edge of the boundary layer; the
associated motion of the outer fluid toward the wall confines the vorticity
and reduces the thickness of the boundary layer with respect to that in
a non-accelerating flow.

Substituting (10.3.37) into the boundary-layer equation (10.2.9) at
steady state, we obtain the specific form

(10.3.38)

Working as in the case of the Blasius boundary layer, we identify the
characteristic length L with the current streamwise position #, and use
(10.3.2) to define the boundary layer thickness

Accelerating flow Decelerating flow

Decelerating flow

Accelerating flow

(10.3.39)



S elf-similarity

To this end, we assume that the velocity profile across the boundary
is self-similar, that is, Ux is a function of the similarity variable

(10.3.40)

and write ux(x, y) = Ux(x) F(TJ). This self-similar velocity profile can be
derived from the stream function shown in (10.3.5), where F = df /drj and
U = Ux(x) is given in (10.3.36). Differentiating (10.3.39) with respect
to x, and using the relation

(10.3.41)

we obtain expressions for the two components of the velocity

(10.3.42)

Substituting these expressions into (10.3.38), we derive the Falkner-Skan
ordinary differential equation for the function /,

(10.3.43)

which is to be solved subject to the boundary conditions expressed by
(10.3.8) and (10.3.9). When ra = O, we obtain the Blasius equation
(10.3.7). Since boundary conditions are specified at both ends of the
solution domain (0,oo), we are faced with a two-point boundary-value
problem involing a third-order differential equation.

The solution of the boundary-value problem may be found using the
shooting method described earlier in this section for the Blasius equation.
Convergence is achieved when /"(O) = 1.493 for m = 1.5, /"(O) = 1.232
for m = 1, /"(O) - 0.675 for m = 0.25, /"(O) - 0.332 for m = 0.25, and
/"(O) = O for m = - 0.0904. Figure 10.3.3 illustrates streamwise velocity
profiles expressed by the derivative /'(77) for several values of m. Note
that the profiles for m < O, corresponding to decelerating flow, exhibit
an inflection point near the wall.



Figure 10.3.3 Velocity profiles across Falner-Skan boundary layers for
several values of the acceleration parameter; from top to bottom,
ra - 1.5, 1.0, 0.25. 0.0, and -0.0904.

Problems

Problem 10.3.1 Computation of the wall shear stress.
Show that the wall shear stress computed directly by differentiating

the velocity profile across the Blasius boundary layer is the same as that
arising by evaluating the momentum thickness and then differentiating
it with respect to streamwise position x according to equation (10.3.28).

Problem 10.3.2 Von Karmaris method.
Assume that the velocity profile across the Blasius boundary layer is

described by a hyperbolic tangent function Ux — [7tanh[y/A(o;)]. Show
that the effective boundary-layer thickness, wall shear stress, displace-
ment thickness, and momentum thicknesses are given by the right-hand
sides of equations (10.3.34) and (10.3.35), except that the numerical coef-
ficients are equal, respectively, to 2.553, 0.392, 1.770, and 0.783. Discuss
the accuracy of these results with reference to the exact solution.

Problem 10.3.3 Orthogonal stagnation-point flow.
The Falkner-Skan profile with m = 1 corresponds to irrotational

orthognal stagnation point flow against a flat plate.



Figure 10.3.4 The Sakiadis boundary layer developing on a semi-
infinite translating belt.

(a) Derive the complete velocity field of the outer irrotational flow.
(b) Show that the Falkner-Skan boundary-layer solution satisfies the

unsimplified Navier-Stokes equation, and it thus provides us with an
exact solution.

Computer problems

Problem c. 10.3.1 Blasius boundary layer.
Directory 10-bl/faLscan of FDLIB contains a program that solves

the Blasius and Falnker-Skan differential equations using the shooting
method described in the text. Run the program to compute, and then
plot the velocity profiles shown in figure 10.3.1(b) and 10.3.3.

Problem c.10.3.2 Sakiadis's boundary layer.
Consider flow due to the motion of a semi-infinite belt translating

along the x axis with velocity U normal to a vertical stationary wall, as
illustrated in figure 10.3.4. A boundary layer identified by Sakiadis is
established along the belt l.

1 Sakiadis, B. C. 1961, Boundary-layer behavior on continuous solid surfaces: I.
Boundary-layer equations for two-dimensional and axisymmetric flow, A.I.Ch.E. J. 7,
26-28; IL The boundary layer on a continuous flat surface, A.LCh.E. J. 7, 221-225



(a) Show that the flow in the boundary layer is governed by the
Blasius equation (10.3.7) subject to the modified boundary conditions
/ = O and /' = O at 77 = O, and f -> O as r? tends to infinity.

(b) Obtain the solution using a numerical method of your choice. Plot
and discuss the streamwise velocity profile, the displacement thickness,
the momentum thickness, and the shape factor. Hint: the shooting
method converges when /"(O) = 0.44375.

(c) Deduce the nature of the flow field far from the moving belt.

10.4 Von Karman's integral method

In Section 10.3, we discussed methods for solving the boundary layer
equations over a flat surface subject to a constant, accelerating, or decel-
erating outer flow with a power-law dependence on streamwise position.
To compute boundary layers developing over a curved surface and for
more general types of outer flow, we resort to numerical methods.

Von Karman developed an elegant method of computing the flow in-
side a two-dimensional boundary layer developing over a surface with
arbitrary shape, based on an integral momentum balance. The formula-
tion culminates in an ordinary differential equation for a properly defined
boundary-layer thickness with respect to arc length along the surface.

To illustrate the method, we consider the boundary layer developing
over a flat surface located at y = O, and introduce a control area that is
confined by (a) two vertical planes located at x\ and x%, (b) the planar
surface, and (c) a horizontal plane located at the elevation y = h. Con-
sistent with our previous notation, we denote the tangential component
of the outer flow along the surface by Ux(x). For simplicity, we shall
assume that the physical properties of the fluid are uniform throughout
the domain of flow.

We begin by applying the x component of the integral momentum
balance (6.2.14) combined with the Newtonian constitutive equation for
the stress tensor. Neglecting the normal viscous stresses over the vertical
and top planes, and considering the effects of gravity secondary, we find



(10.4.1)

Next, we take the limit as x\ tends to #2, recall that the pressure re-
mains constant across the boundary layer, set ux(x,y = h) = Ux(x), and
rearrange to obtain the integro-differential relation

(10.4.2)

To reduce the number of unknowns, we eliminate uy(x,y = h) in favor
of Ux using the continuity equation, setting

(10.4.3)

Moreover, we use the x component of Euler's equation (6.4.3) to evaluate
the streamwise pressure gradient, finding

(10.4.4)

Substituting expressions (10.4.3) and (10.4.4) into (10.4.2), and rear-
ranging, we find



(10.4.5)

which may be interpreted as an evolution law for the momentum deficit
P(Ux-Ux).

To this end, we let the reduced height h/S tend to infinity, and use
the definitions of the displacement and momentum thickness stated in
equations (10.3.20) and (10.3.25) to derive the von Karman integral mo-
mentum balance

(10.4.6)

Rearranging, we obtain an expression for the wall shear stress in terms
of the displacement and momentum thickness,

(10.4.7)

If the flow is steady, the first term on the right-hand side does not appear.
It is reassuring to confirm that, when CJx is constant and independent of
x, equation (10.4.7) reduces to (10.3.28) describing the boundary layer
developing over a flat plate that is held stationary in an incident stream
at zero angle of attack.

If fluid is injected into, or withdrawn from the flow through a porous
wall with normal velocity V, the right-hand side of (10.4.7) contains the
additional term —V/UX, where V is positive in the case of injection and
negative in the case of suction.

10,4.1 The von Karman - Pohlhausen method

Von Karman and Pohlhausen developed an approximate method for
computing the boundary layer thickness and associated structure of the



flow on the basis of the momentum integral balance (10.4.7). The main
idea was discussed in Section 10.3.2: assume a sensible velocity profile
across the boundary layer in the form Ux = F(TJ), where 77 = y/A(x) and
A(X) is a boundary-layer thickness similar to the £99 boundary-layer
thickness; then compute A(X) to satisfy the integral momentum balance
(10.4.7).

The implementation of the method for flow over a flat plate at ze-
ro angle of attack, where F(q) is a quarter of a period of a sinusoidal
function, as shown in (10.3.30), was discussed in Section 10.3.2. In the
remainder of this section, we illustrate the implementation of the method
for more general types of steady flow.

10.4.2 Pohlhausen polynomials

Pohlhausen identified the velocity profile F (77) across the boundary
layer with a fourth-order polynomial, setting

(10.4.8)

where a(x),6(x),c(x), and d(x) are four position-dependent coefficients
to be computed as part of the solution. Note that the functional form
(10.4.8) satisfies the no-slip boundary condition at the wall, correspond-
ing to T] — O. To compute the four coefficients a, 6, c and d, we require
four equations.

First, we demand that the overall velocity profile is continuous and
has smooth first and second derivatives at the edge of the boundary layer,
corresponding to 77 = 1, and thus obtain the three conditions

(10.4.9)

A fourth condition arises by applying the boundary-layer equation
(10.2.4) at the wall located at y = O, and then using the no-slip and no-
penetration boundary conditions to set the left-hand side equal to zero.
Evaluating the streamwise pressure gradient from (10.4.4) with the time
derivative on the right-hand side set equal to zero, we find

(10.4.10)



Expressing now the velocity in terms of the function F(TJ) introduced in
(10.4.8), we obtain

(10.4.11)

where

(10.4.12)

is a dimensionless function expressing the ratio of the magnitude of the
inertial acceleration forces of the outer irrotational flow, to the mag-
nitude of the viscous forces developing inside the boundary layer; if
dUx/dx = O, then A = O.

By definition, the effective boundary layer thicknesses A(X) is related
to A(X) by

(10.4.13)

where Wx = dUx/dx.
Requiring now that the Pohlhausen profile (10.4.8) satisfies equations

(10.4.9) and (10.4.11), we obtain

(10.4.14)

Substituting these expressions into (10.4.8), and rearranging, we obtain
the velocity profile in terms of the parameter A,

(10.4.15)

Program pohLpol in directory 10-bl/pohLpol of FDLIB computes
polynomial profiles by evaluating the right-hand side of (10.4.15). A
family of profiles corresponding to A = 20, 12 (heavy line), 6, O, -6, -
12, and -15, is shown in figure 10.4.1. When A > 12, corresponding to
a strongly accelerating external flow according to (10.4.12), the profile
overshoots, placing a limit on the physical relevance of the fourth-order
polynomial expansion. When A = —12, the slope of the velocity profile
at the wall is equal to zero, suggesting that the flow is on the verge of
reversal. At that point, the approximations that led us to the boundary-
layer equations cease to be valid, and the boundary layer is expected to
separate from the wall developing regions of recirculating flow.



Figure 10.4.1 Profiles of the Pohlhausen polynomials for A = 20, 12
(heavy line), 6, O, -6, -12, -15.

The displacement thickness, momentum thickness, and wall shear
stress may be computed in terms of A(O;) and A (re) using the profiles
(10.4.15), and are found to be

(10.4.16)

Expressing A(O;) in terms of A (re) using the definition (10.4.13), we obtain
corresponding expressions in terms of A alone.

The key idea is to substitute expressions (10.4.16) into the momen-
tum integral balance (10.4.7), and thus derive a first-order nonlinear
ordinary differential equation for A(X) with respect to x. Having solved
this equation, we recover the boundary-layer thickness A(X) from the
definition (10.4.13).



10.4.3 Numerical solution

To solve the von Karman boundary-layer equation, it is convenient
to introduce the Holstein-Bohlen parameter defined as

(10.4.17)

whose physical interpretation is similar to that of A discussed after the
definition (10.4.12). Using the expression for the momentum thickness
given in the second of equations (10.4.16), we obtain a relationship be-
tween A and A,

(10.4.18)

The value A — -12 corresponds to A = -0.15673, whereupon the bound-
ary layer is expected to separate according to figure 10.4.1.

To expedite the solution, we multiply both sides of the momentum
integral balance (10.4.7) at steady state with O, and rearrange to obtain

(10.4.19)

where H is the shape factor defined in (10.3.27), and S is the shear
function defined as

(10.4.20)

Physically, the shear function expresses the ratio between the wall shear
stress and the average value of the shear stress across the boundary layer;
thus, it is another measure of the sharpness of the velocity profile across
the boundary layer. Using expressions (10.4.16), we find

(10.4.21)

where A can be expressed in terms of A using equation (10.4.18).



The numerical procedure involves the following steps:

1. Given the value of A at a particular position rr, compute the cor-
responding value of A by solving the nonlinear algebraic equation
(10.4.18).

2. Evaluate the functions 5 and H using expressions (10.4.21).

3. Compute the right-hand side of (10.4.19), and thus obtain the rate
of change of the ratio on the left-hand side with respect to x.

4. Advance the value of A over a small increment Arc.

5. Return to step 1 and repeat.

Evaluation at a stagnation point

The numerical integration typically begins at a stagnation point
where the tangential velocity Ux vanishes and the right-hand side of
(10.4.19) is undefined. To avoid the occurrence of a singularity, we re-
quire that the numerator be equal to zero at that point, and thus obtain
a nonlinear algebraic equation for A. A physically acceptable solution is
A = 7.052 corresponding to A — 0.0770. This value is used to initialize
the computation.

To evaluate the right-hand side of (10.4.19) at a stagnation point
located at x = O, we denote the expression enclosed by the angular
brackets on the right-hand side by Q(X). Applying the !'Hospital rule to
evaluate the fraction, we find

(10.4.22)

Combining the left-hand side with the first term within the square brack-
ets on the right-hand side, we find

(10.4.23)

Evaluating the expression on the right-hand side using the definition of
Q(A), we obtain the required initial value



10.4.4 Boundary layer around a curved body

The Karman-Pohlhausen method was developed with reference to a
planar boundary where the x coordinate increases along the boundary
in the direction of the velocity of the outer flow. To tackle the more
general case of a curved boundary, we simply replace x with the arc
length / measured along the boundary in the direction of the tangential
velocity of the incident flow, and begin the integration from a stagnation
point. A difficulty arises at the critical point where the acceleration
dUi/dl vanishes or assumes an infinite value, but the ambiguity may be
removed by carrying out the integration at that point using the Falkner-
Skan similarity solution with a proper value for the exponent m.

10.4.5 Boundary layer around a circular cylinder

As an application, we consider uniform flow past a stationary circular
cylinder of radius a, with vanishing circulation around the cylinder, as
shown at the top of figure 10.4.2. Far from the cylinder, the flow occurs
toward the negative direction of the x axis, and the velocity tends to the
uniform value -Uex, where U > O is the magnitude of the streaming flow
and ex is the unit vector along the x axis. Using the velocity potential
for irrotational flow past a circular cylinder given by equation (3.5.28)
with Vx = — U, we find that the tangential component of velocity of the
outer flow is given by

(10.4.24)

(10.4.25)

where 9 is the polar angle measured around the cylinder in the counter-
clockwise direction, as shown in figure 10.4.2. The arc length around the
cylinder, measured from the front stagnation point, is given by / = a 9.
The required derivatives of the velocity with respect to arc length are
then



which is used to start up the computation.
Graphs of the solution computed using program 10-bl/kp.cc of FDLIB

are shown in figure 10.4.2. The velocity profiles across the boundary lay-
er at different stations around the cylinder may be inferred from the
scaled profiles shown in figure 10.4.1, using the local value of A. The nu-
merical solution reveals that A = -12 when 9 = 109.5°, at which point
the shear stress vanishes and the boundary layer is expected to separate.
Comparing this result with the experimentally observed value 9 = 80.5°,
we find a serious disagreement attributed to the fact that, in practice,
the outer flow deviates substantially from the potential flow distribution
described by (10.4.25) due to the presence of a wake. To improve the
solution, we may describe the tangential velocity Ue by interpolation
based on data gathered in the laboratory; when this is done, the results
of the boundary-layer analysis are found to be in excellent agreement
with observation.

Problem

Problem 10.4.1 Von Karman's method for the Blasius boundary layer.
Assume that the velocity profile across the Blasius boundary layer is

given by the Pohlhausen polynomial (10.4.15). Show that the effective
boundary-layer thickness, wall shear stress, displacement thickness, and
momentum thicknesses are given by the right-hand sides of equations
(10.3.34) and (10.3.35), except that the numerical coefficients are equal,
respectively, to 5.863, 0.343, 1.751, and 0.685. Discuss the accuracy of
these results with reference to the exact solution obtained by numerical
methods.

Equation (10.4.24) yields

(10.4.26)

(10.4.27)



Figure 10.4.2 Features of the Prandtl boundary layer around a cir-
cular cylinder of radius a held stationary in an incident stream-
ing flow with velocity C/, computed using the von Karman -
Pohlhausen method. Distributions of the dimensionless parame-
ters ^A (heavy solid line) and A (solid line); reduced boundary-
layer thickness A = A*</[//*/a (dashed line); reduced displace-
ment thickness 8* = 5*^U/v a (dotted line); reduced momentum
thickness © = ©^/UJ17~a (long dashed line); reduced shear stress
as = as^/oJJTU (dot-dashed line); shape factor 5 (heavy dashed
line); and shear function H (heavy dotted line).



Computer problem

Problem c. 10.4.1 Boundary layer around a circular cylinder.
Directory lO.bl/kp.cc of FDLIB contains a program that computes

the boundary layer around a circular cylinder using the numerical method
discussed in the text. Run the program and reproduce the graphs shown
in figure 10.4.2.

10.5 Instability of shear flows

In Chapter 7, we derived exact solutions of problems involving vari-
ous kinds of steady channel and tube flow, under one important assump-
tion: the flow is steady and unidirectional with rectilinear or circular
streamlines. The physical relevance of this assumption is corroborated
by laboratory observation at small and moderate Reynolds numbers. At
high Reynolds numbers, however, small perturbations inherent in any re-
al flow amplify, initiating unsteady motion and possibly leading to a new
steady state that is different than that computed under the assumption
of unidirectional flow.

The following questions then arise: what is the threshold value of the
Reynolds number above which a flow becomes unstable, and what are
the salient modes of amplification? One way to answer these questions
is by carrying out a linear stability analysis.

10.5.1 Linear stability analysis

The main idea is to consider a certain flow of interest at steady state,
introduce small perturbations, and describe the time evolution of the
perturbations by solving simplified versions of the governing equations
that arise by linearization.

To illustrate the procedure, we consider a steady unidirectional flow
along the x axis whose velocity, pressure, and vorticity are given by

(10.5.1)
Next Page
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The superscript B designates the base flow whose stability is to be ex-
amined, U(y) is the unperturbed velocity profile, and G is the negative
of the streamwise pressure gradient. Now, unless the velocity profile is
parabolic, the base flow will not satisfy the steady version of the equation
of motion. We will assume, however, that in such cases the base flow
evolves at a rate that is much slower than that of the perturbations, and
may thus be considered to be in a quasi-steady state.

Next, we introduce a two-dimensional perturbation whose velocity,
pressure, and vorticity are described by

(10.5.2)

where the superscript P designates the perturbation, the superscript D
designates the disturbance, and e is a dimensionless coefficient whose
magnitude is small compared to unity.

The complete flow arises by adding corresponding variables of the
base and perturbation flow shown in (10.5.1) and (10.5.2). For example,
the x velocity component of the perturbed flow is

ux(x, y, t) = u%(y) + e u£(x, y, t). (10.5.3)

Substituting this sum and its counterparts into the vorticity transport
equation for two-dimensional flow, equation (6.6.6), we obtain

(10.5.4)

where v is the kinematic viscosity. Since, at quasi-steady state, the
vorticity of the base flow satisfies the steady version of the vorticity



transport equation for unidirectional flow, the sum of the first two terms
on the right-hand side of (10.5.4) is equal to zero.

Because e has been assumed small, quadratic terms that are propor-
tional to e2 are small compared to linear terms that are proportional to
e, and may be discarded from both sides of (10.5.4). Collecting the lin-
ear terms, and setting their sum equal to zero, we obtain the linearized
vorticity transport equation

(10.5.5)

Subsituting into (10.5.5) the expressions for the base flow given in (10.5.1),
we derive the more specific form

(10.5.6)

The problem has been reduced to solving the linear equation (10.5.6)
for the disturbance flow, subject to a specified initial condition and ap-
propriate boundary conditions.

10.5.2 Disturbance stream function

It is convenient to express the disturbance flow in terms of the dis-
turbance stream function i / j D ( x , y , t ) defined by the equations

(10.5.7)

where V2 = d2/dx2+d2/dy2 is the Laplacian operator in two dimensions.
Substituting these expressions into (10.5.6), and rearranging, we find

(10.5.8)

where V4 = V2V2 is the biharmonic operator in two dimensions.



10.5.3 Normal-mode analysis

To study the evolution of each and every possible disturbance is prac-
tically impossible. As an alternative, we exploit the linearity of equation
(10.5.8) and deduce the nature of the general solution corresponding to
an arbitrary initial condition from the behavior of an infinite family of
solutions corresponding to disturbances that are sinusoidal functions of
the streamwise position x, called normal modes. The general solution
may be constructed by linear superposition.

Consider a normal mode with wave length L and corresponding wave
number k = 2ir/L. The disturbance stream function may be expressed
in the form

il)D(x,y,i) = Xr(y,t) cos(fcc) +Xi(y,t) sin(fcc), (10.5.9)

where Xr(y>t) and Xi(y, t) are two real functions. To simplify the nota-
tion, we introduce the complex function

x(y,t) = xr(y,t)-iXi(y,t), (10.5.10)
where % is the imaginary unit defined by the equation i2 = -1, and
use the Euler decomposition of the imaginary exponential, exp(ifcx) =
cos(fcx) + ism(kx) to recast (10.5.9) into the form

1>D(x,y,t) = Real{*D(*,y,*)}, (10.5.11)

where Real designates the real part of the complex quantity enclosed by
the angular brackets, and

VD(x, y, t) = X(y, t) exp(tfcc) (10.5.12)

is a complex stream function.
To simplify the analysis, we require that the imaginary part of ^lD

also satisfies equation (10.5.8). Substituting (10.5.12) into (10.5.8), car-
rying out the differentiation with respect to x, and noting that

we find

(10.5.13)

(10.5.14)



A solution of (10.5.14) may be found by expressing %(#,£) in the
separated form

X(V, *) = f(v) exp(-i o-t) = f(y) exp(-i kct), (10.5.15)

where f(y) is a complex function, a is a complex constant called the
complex growth rate, and c = a/k is another complex constant called the
complex phase velocity. Substituting (10.5.15) into (10.5.12), we derive
the corresponding complex disturbance stream function

V(x,y,t) = f(y) exp[i (kx - at)} = f(y) exp[ik(x - ct)].

(10.5.16)

Next, we decompose a and c into their real and imaginary parts, writing
& = <?R + i & I and c = CR + i c/, where the subscripts R and / stand for
Real and Imaginary, and obtain

*(z,y,*) = f(y) exp[i k(x- crt)]exp(cr/t). (10.5.17)

Expression (10.5.17) illustrates two important features:

• C7. is the real phase velocity of the disturbance. The crest or trough
of the sinusoidal perturbation, but not the fluid itself, travels along
the x axis with velocity cr.

• GI is the growth rate of the disturbance; if 07 is positive, the dis-
turbance grows at an exponential rate in time; if cr/ is negative,
the disturbance decays at an exponential rate in time; if cr/ = O,
the amplitude of the disturbance remains constant in time. In the
first case, the flow is unstable; in the second case, the flow is stable;
and in the third case, the flow is neutrally stable.

10.5.4 Orr-Sommerfeld equation

To compute the function /(y), and simultaneously obtain the com-
plex phase velocity c, we substitute (10.5.15) into (10.5.14), and rear-
range the resulting expression to derive the Orr-Sommerfeld equation

(10.5.18)



A trivial solution is / = O. Nontrivial solutions expressing normal
modes exist for certain values of c that are the eigenvalues of the Orr-
Sommerfeld equation. The main objective of linear stability analysis is
to compute these eigenvalues, and thereby assess whether a normal mode
will grow, decay, or remain constant in time.

10.5.5 Rayleigh's equation

When viscous forces are negligible, the left-hand side of the Orr-
Sommerfeld equation (10.5.18) may be set equal to zero, yielding Rayleigh's
equation

(10.5.19)

also available in the alternative form

(10.5.20)

Because of the absence of viscous forces, the Rayleigh equation is a
second-order differential equation, whereas the inclusive Orr-Sommerfeld
equation is a fourth-order differential equation. Both equations are lin-
ear, but the coefficients multiplying the derivatives of the complex func-
tion / are not necessarily constant.

10.5.6 Numerical solution of the Orr-Sommerfeld
and Rayleigh equation

Analytical solutions to the Orr-Sommerfeld and Rayleigh equation
are possible only for a limited class of purely viscous or inviscid flows.
To study the stability of more general flows, we resort to numerical
methods.

To illustrate the implementation of finite-difference methods, we con-
sider the stability of a shear flow in a channel confined between two par-
allel walls located at y = -A and B, as illustrated in figure 10.5.1. As-
suming that the effects of viscosity are negligible, we consider Rayleigh's
equation (10.5.19) and express it in the form

(10.5.21)



Figure 10.5.1 A finite-difference grid used to solve the Rayleigh equa-
tion determining the growth rate of two-dimensional perturbation
in unidirectional shear flow.

Note that the unknown eigenvalue c has been moved to the right-hand
side.

Next, we introduce a one-dimensional uniform grid of nodes separated
by the grid spacing Ay, located at ^, i — O ,1 , . . . , N +1, where yo = —A
and yN+i — B, as illustrated in figure 10.5.1. For simplicity, we denote
the value of / at the ith node by /;. To satisfy the no-penetration
condition, we require that the stream function is constant over the lower
and upper walls, setting

/o = 0 and /^+1=O. (1Q522)

Because the values of the stream function over the two walls are equal,
the disturbance flow will not generate a net flow rate in the stream-
wise direction. Applying equation (10.5.21) at the ith node, where
i = 1,2,. . . , Af, and approximating the second derivative d^f/dy2 with
centrered differences, we obtain the difference equation



(10.5.23)

Denoting Ui = U(yi) and Ui = (d2C7/dy2)(^), and rearranging, we
obtain

(10.5.24)

Applying equation (10.5.24) for i = 1,2, . . . ,7V, we obtain a system of
linear equations, which we then compile into the matrix form

A - f = C B ' f ' (10.5.25)

where

(10.5.26)

is the TV-dimensional solution vector, A is an TV x N tridiagonal matrix
defined as

(10.5.27)

and B is another NxN tridiagonal matrix defined as



(10.5.28)

Note that the elements of the matrix B are independent of the velocity
profile U(y).

Equation (10.5.25) presents us with a generalized algebraic eigenvalue
problem that can be stated as follows: compute the value of c so that
(10.5.25) has a nontrivial solution for the vector f; that is, a solution
other than the null vector.

One way to compute the eigenvalue c is to recast equation (10.5.25)
into the homogeneous equation

E * f = 0' (10.5.29)

where E is a tridiagonal matrix given by

(10.5.30)

For system (10.5.29) to have a nontrivial solution, the coefficient matrix
E must be singular: the eigenvalue c must be such that the determinant
of the complex matrix E is equal to zero. This observation provides us
with a basis for a numerical method involving the following steps:

1. Guess a complex value for c.

2. Compute the determinant of E using the algorithm discussed in
the following subsection.

3. Improve c to reduce the magnitude of the determinant.

The improvement in step 3 can be made using Newton's method,
setting

(10.5.31)



The derivative in the denominator on the right-hand side of (10.5.31)
may be approximated with a finite difference, setting

(10.5.32)

where e is a real or complex increment with small magnitude.

Determinant of a tridiagonal matrix

To compute the determinant of the tridiagonal matrix E, we use an
efficient algorithm applicable to general tridiagonal matrices of the form

5

(10.5.33)

where a^,^, and Ci are real or complex constants.
The algorithm involves computing the sequence of numbers Pi based

on the recursion relation

(10.5.34)

for i = 2 ,3 , . . . , AT; then Det(T) = PN.

Instability of a shear flow with hyperbolic tangent profile

As an example, we consider an inviscid shear flow with velocity profile

(10.5.35)



Figure 10.5.2 Instability of an inviscid shear flow whose velocity profile
is descibed by equation (10.5.35). Graphs of the reduced imaginary
part of the phase velocity c/ = c//C/b (dashed lines) and reduced
growth rate <j/ = 46a//C/o (solid lines) for A/b = B/b = 2.0, 2.5,
3.0, 4.0, and 6.0 (heavy lines), in the regime of unstable wave
numbers.

where UQ is the uniform velocity of the flow far above and below the
shear layer, and b is the shear layer half-thickness.

The dashed lines in figure 10.5.2 represent the dimensionless imagi-
nary part of the phase velocity of unstable perturbations, c/ = c//Z7o, for
a sequence of channel widths with A = B, computed using the numerical
method discussed in this section, implemented in program 08-stab/sf-inv
of FDLIB\ the heavy line corresponds to A/b = B/b = 6.0. The solid
lines represent the corresponding reduced growth rate 67 = 4 b CTJ/UQ.
When the reduced wave number kb is larger than a critical value kbcr

that depends on A/6, the growth rate vanishes and the perturbations
are neutrally stable. As A/b tends to infinity, we obtain infinite shear
flow in the absence of side walls; in this limit the critical wave number
for neutral stability is known to be kbcr = 1.0.

The results in figure 10.5.2 suggest that the walls reduce the growth
rate of the perturbations by restricting the lateral extent over which
normal motions are allowed to develop. Maximum growth rate occurs at
a certain wave number kbmax ~ 0.50; the corresponding perturbation is



expected to dominate the instability, and therefore spontaneously arise
in a randomly perturbed flow.

Finite difference methods for the Orr-Sommerfeld equation

Finite-difference methods for the Orr-Sommerfeld equation may be
developed working along similar lines. The no-penetration and no-slip
boundary conditions over a stationary solid surface require that the
boundary values of / and its first derivative with respect to transverse
distance y vanish. The discretization of the Orr-Sommerfeld equation
yields a system of linear equations similar to that shown in (10.5.25). In
the case of viscous flow, however, because of the presence of the fourth
derivative f^v\ the matrix A is complex pentadiagonal; penta derives
from the Greek word irei/re which means five. The algebraic system
descending from the finite-difference discretization may be placed in a
form that is analogous to that shown in (10.5.29), where the matrix E is
now pentadiagonal. Unfortunately, the determinant of this matrix may
no longer be computed using an efficient numerical method.

To illustrate the effect of viscosity, we consider an infinite shear flow
whose velocity profile is described by equation (10.5.35). Figure 10.5.3
shows a contour plot of the reduced growth rate 07 = &a//C/o in the
kb — Re (wave number - Reynolds number) plane, where Re = UQ b/v.
The contour 67 =0 corresponds to neutrally stable perturbations; a per-
turbation whose wave number lies in the shaded area below this contour
is unstable, and a perturbation whose wave number lies in the unshaded
area above this contour are stable. As the Reynolds number tends to
infinity, we recover the results presented in figure 10.5.2 for inviscid flow.
Figure 10.5.3 reveals that the flow is unstable, no matter how small the
Reynolds number. The stabilizing effect of viscosity becomes evident by
observing that, as the Reynolds number is raised, the range of unsta-
ble wave numbers (O, kbcr) expands, thereby allowing a wider range of
pertubations to grow at higher growth rates.

Problem

Problem 10.5.1 Instability of an inviscid shear flow.
Consider an infinite shear flow whose velocity profile is described by

(10.5.35). Show that an eigenvalue and the corresponding eigenfunction
of Rayleigh's equation describing a neutrally stable perturbation is given
by c — O and f(y) — dsech(y/6), where d is an arbitrary constant.



Figure 10.5.3 Contour plot of the reduced growth rate <j/ = bcrj/Uo for
viscous shear flow whose velocity profile is described by equation
(10.5.35); the Reynolds number is defined as Re = UQ b/v.

Computer problem

Problem c.10.5.1 Instability of inviscid shear flows.
Directory 08-stab/sf.inv of FDLIB includes the program sf-inv that

computes the complex phase velocity of perturbations using the finite-
difference method discussed in the text.

(a) Consider a family of inviscid shear flows with velocity profile

(10.5.36)

where the parameter 6 takes values in the range [O, I]. The limiting values
S=I and O correspond, respectively, to a shear layer with a hyperbolic
tangent velocity profile, and a symmetric wake with a Gaussian velocity
profile.

Assuming that the flow is confined between two parallel walls locat-
ed at y = ±A where the no-penetration condition is required, use the
program to generate a graph of a properly defined dimensionless growth
rate versus the reduced wave number fc&, for 5 = 0, 0.50, and 1.0, in
each case for A/b = 2.0, 3.0, and 4.0, and discuss the results of your
computations.

Stable

Unstable



(b) Repeat (a) for a shear flow with velocity profile

(10.5.37)

where the parameter 5 takes values in the range [O, I]. The limiting values
8 = 1 and O correspond, respectively, to a shear layer with a hyperbolic
tangent velocity profile and to the Bickley jet.

10.6 Turbulent motion

Turbulent flow is established when the Reynolds number Re = pVL/IJL,
defined in an appropriate fashion for the particular flow under consid-
eration, exceeds a certain threshold, usually on the order of 103; V is a
characteristic macroscopic velocity, and L is a characteristic macroscopic
length scale typically associated with the size of the boundaries. Both V
and L are classified as external scales. For example, in the case of tube
flow, V can be identified with the mean velocity or with the maximum
velocity occurring at the centerline, and L can be identified with the
tube radius or diamenter.

Turbulence is characterized by random motion in both time and s-
pace. Thus, a graph of a velocity component, denoted by v, plotted
against time at a particular location in a turbulent flow reveals random
fluctuations, as illustrated in figure 10.6.1 (a). An analogous graph of v
against the spatial coordinate a: at a particular instant in time reveals
similar random fluctuations, as illustrated in figure 10.6.1(b).

10.6.1 Transition

The transition from the laminar to the turbulent state with increas-
ing Reynolds number is not sudden, but occurs through a sequence of
events eventually leading to randomly fluctuating motion. For exam-
ple, pressure-driven flow in a circular tube is laminar when the Reynolds
number, defined with respect to the tube radius and the maximum ve-
locity at the centerline, is less than 1,100; transition occurs when the
Reynolds number lies in the range between 1,100 and 1,500; and fully
developed turbulent motion is established at higher Reynolds numbers.
Wall roughness and entrance conditions affect the precise thresholds for
transition.



Figure 10.6.1 (a) Temporal, and (b) spatial variation of a velocity com-
ponent in a turbulent flow; / is the scale of the energy-containing
turbulent motion.

Figure 10.6.2 shows a recording of the streamwise component of the
velocity in streaming flow past a flat plate of length L, at a sequence of
increasing Reynolds numbers defined with respect to the length of the
plate 2. The velocity probe was placed 0.02 in above the plate and 56 in
behind the leading edge. The graphs illustrate the onset of oscillations,
the development of turbulent spots, and the ultimate establishment of
turbulent motion.

Logistic mapping

A simple model illustrating the process of transition from simple to
complex behavior is provided by the logistic mapping. Given a number
x(°), the logistic mapping generates a sequence of numbers x^l\x^\ ...
computed by the recursion formula

X^1J = A x W ( I - X W ) , (10.6.i)

2Cebeci T., &; Smith, A. M. O. 1974, Analysis of Turbulent Boundary Layers,
Academic Press.



Figure 10.6.2 Recording of the streamwise component of the velocity
in flow past a flat plate at a sequence of increasing Reynolds num-
bers RL defined with respect to the length of the plate, L. The
signal shows the onset of oscillations, the development of turbulent
spots, and the ultimate establishment of turbulent motion.

for k = 0,1,.. . , where A is a specified positive constant. The special
choices x^ = O and (A - I)/A are the fixed points of the mapping; for
these choices, x^ — x^ for all fc, and the logistic sequence is stationary.

To illustrate the transition, we introduce the Xx plane, and perform
a series of computations according to the following steps:

1. Choose a value for A.

2. Select a value for x^ that lies between O and 1, but is not exactly
equal to O or 1.



Figure 10.6.3 Behavior of sequences generated by the logistic mapping
(10.6.1), illustrating the process of transition: cascade of bifurca-
tions in the Xx plane.

3. Compute a few hundred terms based on the logistic mapping (10.6.1).

4. Skip the first one hundred terms, and graph the rest of them in the
Xx plane with dots.

5. Return to step 1 and repeat.

The result of this computation is shown in figure 10.6.3. As A is
raised, a cascade of bifurcations and a random behavior reminiscent of
turbulent motion is established.

10.6.2 Eulerian and Lagrangian turbulence

Point particles in a certain class of unsteady two-dimensional laminar
flows, and steady or unsteady three-dimensional laminar flows, have been
observed to move in a random fashion described as Lagrangian turbulent
motion. Fluid motion in a turbulent flow should be distinguished from
the seemingly random motion of point particles in these laminar chaotic
flows: a distinguishing feature of a turbulent flow is significant kinematic
and molecular diffusion accompanied by high levels of viscous dissipation.



10.6.3 Nature of turbulent motion

Turbulence has defied a simple physical interpretation in terms of
elementary fluid motions. In the traditional approach, a turbulent flow
is regarded as a random or stochastic process amenable to statistical
analysis. Certain important features, however, distinguish the turbulent
motion from a generic random process, including the following:

• Turbulence is intermittent. A recording of the velocity at a certain
point in a turbulent flow may appear regular for a period of time,
only to be interrupted by periods of violent turbulent motion in an
intermittent fashion.

• A turbulent flow contains small-scale short-lived, and large-scale
long-lived coherent motions associated with eddies and vortices
with a well-defined structure. Examples include horse-shoe vortices
developing near boundary layers and in regions of high shear rates.

• An intimate connection exists between vortex dynamics, to be dis-
cussed in Chapter 11, and the dynamics of turbulent flow, but the
precise relationship remains unclear.

• Eddy motions in a turbulent flow carry turbulent kinetic energy
that is distributed over a broad range of scales; from the external
scale L, to the energy dissipating Kolmogorov scale 77 to be defined
later in this section. Energy is transferred across the scales in the
forward or backward direction, and a balance is achieved at dynam-
ic equilibrium. The dynamics of, and distribution of energy among
the length scales is not universal, but depends on the particular
flow under consideration. Thus, the properties of wall-bounded
turbulent shear flow are different than those of unbounded shear
flow, and different than those of grid-turbulent flow generated be-
hind a grid intercepting a high-speed flow. The diverse behavior
reflects differences in the physical mechanisms by which energy is
supplied into a turbulent flow, only to be dissipated by the small-
scale motion.

• The non-slip boundary condition sedates the turbulent motion near
a wall where a viscous sublayer of unsteady laminar flow is estab-
lished. A buffer zone separates the viscous sublayer from the regime
of fully-developed turbulent flow. Figure 10.6.4 shows the tempo-
ral velocity signal of a turbulent flow at different radial positions



in a circular pipe of radius 15 cm, illustrating the cessation of the
turbulent motion near the wall 3.

Figure 10.6.4 Temporal velocity fluctuations in turbulent pipe flow at
different distances from the wall, showing the presence of the lam-
inar sublayer and buffer zone near the wall.

(a) T = O (on axis)

(b) T = 4.5 cm

(c) r = 7.5 cm

(d) r = 9.5 cm

(c)r= 14.5cm

3Corrsin, S. 1943, Investigation of flow in an axially asymmetric heated jet-air,
NACA Rep. 3L23



10.6.4 Decomposition into mean and fluctuating components

One way to describe a turbulent flow is to decompose it into a
smoothly varying or mean component, and a rapidly fluctuating com-
ponent. The smoothly varying component may be identified with the
time average over a period of time to that is large compared to the time
scale of the fluctuations, but small compared to the external time s-
cale L/V. Thus, the mean velocity at the position x, designated by an
overbar, is defined as

(10.6.2)

The fluctuating velocity, designated by a prime, is defined by the decom-
position

u(x,*)=u(x,*) + u'(x,*). (10.6.3)

The definition (10.6.2) implies that the time-average value of the
fluctuating velocity vanishes by construction,

(10.6.4)

In contrast, the time average of the square of the x component of the
fluctuating velocity,

(10.6.5)

is not equal to zero; similarly for the y and z components of the fluctu-
ating velocity. In fact, the square root of these time averages, called the
root-mean-square values, RMS, normalized by an external velocity scale
F, expressed by the ratios

(10.6.6)

are measures of the intensity of the turbulent motion in the three spatial
directions.

Laboratory measurements have shown that the three intensities de-
fined in (10.6.6) have different magnitudes, except in the idealized case
of isotropic turbulence occurring in the absence of boundaries. Nearly



isotropic turbulence may be realized in the laboratory by placing eight
fans at the vertices of a cube, and turning them toward the cube cen-
ter. In the case of channel or tube flow, the turbulence intensity in
the direction of the flow is significantly greater than that in directions
perpendicular to the flow, especially near the walls.

A single measure of the magnitude of the turbulent velocity fluctua-
tions is provided by the velocity scale

(10.6.7)

In the case of isotropic turbulence, the three terms in the numerator on
the right-hand side are equal.

As an example, consider pressure-driven turbulent flow through a
circular tube of radius a. Figure 10.6.5 shows a schematic illustration
of the mean velocity profile (solid line), distribution of the streamwise
turbulence intensity (dashed line), and distribution of the lateral turbu-
lence intensity (dotted line); the intensities have been normalized by the
maximum velocity at the centerline. The mean velocity profile may be
approximated with the algebraic form

(10.6.8)

where V = (UX)MCLX is the maximum mean velocity occurring at the
centerline, which may be contrasted with its parabolic counterpart shown
in equation (7.3.4) for laminar flow.

10.6.5 Inviscid scales

A turbulent flow contains an infinite collection of interacting eddies,
defined and regarded as elementary fluid motions. Inspecting the turbu-
lence signal shown in figure 10.6.1(b), we identify spatial scales with a
broad range of magnitudes. One important scale, classified as inviscid, is
the scale of the energy containing turbulent motion, denoted by /. Using
/ and the magnitude of the velocity fluctuations u defined in (10.6.7), we
deduce that the time scale of the energy containing eddies is comparable
to l/u.

The actual size of / varies according to the particular flow under
consideration, as follows:



Figure 10.6.5 Turbulent flow in a circular tube: schematic illustra-
tion of the mean velocity profile (solid line), and distributions of
the streamwise (dashed line) and lateral (dotted line) turbulence
intensities, reduced by the maximum mean velocity at the center-
line.

• In the case of boundary-layer flow, / is comparable to the local
boundary-layer thickness.

• In the case of turbulent jet flow, / is comparable to the local jet
diameter.

• In the case of a wake, / is comparable to the local width of the
wake.

• In the case of tube flow, I is comparable to the tube diameter.

• In the case of infinite shear flow over a wall, / in the buffer zone is
proportional to the distance from the wall.

• In the case of free turbulence generated by placing a grid in a
uniform stream, / is comparable to the grid size behind the grid,
and then it increases with downstream position.

10.6.6 Viscous scales

Energy is dissipated in a turbulent flow even if the mean flow has a
uniform velocity profile, and this requires external action to sustain the



motion. The rate of viscous dissipation, with units of kinetic energy per
mass per time, is denoted by e. One distinguishing property of turbulent
flow is that dissipation occurs primarily due to the small-scale motion.

Kolmogorov argued that the rate of dissipation is determined by the
fluid properties alone, and combined e with the kinematic viscosity z/ to
form the Kolmogorov length scale

(10.6.9)

and accompanying Kolmogorov velocity scale

UK = (ve)l/4. (10.6.10)

The two scales are related by

(10.6.11)

The left-hand side of (10.6.11) defines the Reynolds number of the en-
ergy dissipating motion; by design, this is equal to unity underlying the
dominance of viscous forces responsible for converting kinetic to thermal
energy in a viscous flow.

10.6.7 Relation of inviscid and viscous scales

Conservation of energy requires that the rate of viscous dissipation e
scales as

(10.6.12)

Substituting this estimate into (10.6.9) and rearranging, we find

(10.6.13)

Now, the magnitude of the velocity fluctuations, w, is typically com-
parable to the external velocity scale F, and the inviscid length scale / is
comparable to the external length scale L. As a result, the inverse of the
ratio on the right-hand side of (10.6.13) is comparable to the Reynolds
number Re — V L/v, yielding the scaling

(10.6.14)

Working in a similar fashion with (10.6.10), we find the scaling law



(10.6.15)

These equations allow us to estimate the scales of the energy-dissipating
motion from measurable inviscid scales and the Reynolds number of the
flow.

10.6.8 Fourier analysis

To analyze the distribution of energy across the scales of a turbulent
flow, we decompose a recording of the velocity at a particular location
into a Fourier series with respect to time, and then examine the magni-
tude of the Fourier coefficients. In the laboratory, the velocity is typically
measured by two methods: hot-wire anemometry based on a calibration
that associates velocity to heat loss from a small wire probe placed in
a flow; o^td lo,ser-doppler velocimetry based on the scattering of a laser
beam caused by small particles that have been seeded into the flow.

To develop the Fourier decomposition, we consider a times series of
a function /(#), which is a sequence of values of the function recorded at
evenly-spaced time intervals separated by the sampling time At. Suppose
that the time series contains TV recordings corresponding to times O, At,
2 At, . . . , (N — I)At. Using the Fourier representation theory, we assume
that /(TVAt) = /(O), and express the function f ( t ) over the time interval
(0,T), where T = N At, in the form of a complete Fourier series

(10.6.16)

where M is a specified truncation level, p is an integer, and ap, bp are
the cosine and sine Fourier coefficients. The complex Fourier coefficients
are defined by

(10.6.17)

where i is the imaginary unit. In terms of the complex Fourier coeffi-
cients, the Fourier series (10.6.16) can be recast into the more compact
form

(10.6.18)



where the negative-indexed complex Fourier coefficients are given by

(10.6.19)

and an asterisk denotes the complex conjugate.
Fourier theory provides us with a remarkably simple method for eval-

uating the Fourier coefficients. Denoting the data by fi = /(£/), where
J1 = O, t2 = At , . . . , tN = (N - 1) At, we obtain 4

(10.6.20)

In practice, the number of data points TV can be on the order of
several thousand or even higher, and the direct evaluation of the sums
on the right-hand sides of expressions (10.6.20) and (10.6.21) requires a
prohibitive amount of computational time. Fortunately, the computa-
tions can be expedited considerably by use of an ingenious algorithm for
computing the Fourier coefficients, known as the Fast Fourier Transform,
FFT. Subroutine fft in directory 13-turbo/stats of FDLIB performs the
FFT of a time series whose size is a power of 2, that is TV = 2q where q
is an integer.

10.6.9 Power spectrum

Taking the square of both sides of (10.6.18), expanding out the square
of the product on the right-hand side, integrating the resulting expression
with respect to time from t = O to T = N At, and using trigonometric
identities to set the integral of a large number of terms equal to zero, we
find

(10.6.21)

which may be rearranged to give

4See, for example, C. Pozrikidis 1998, Numerical Computation in Science and En-
gineering, Oxford University Press.



(10.6.22)

where |cp|
2 — cp c* = 5 (a2 + 62) is the square of the magnitude of the

pth complex Fourier coefficient.

• A graph of the coefficients 2 \cp\
2 against the angular frequency

ujp = 2 TT p/ At for p = 1,2, . . . , is the discrete temporal power
spectrum of the function f ( i ) . Of particular interest if the behavior
at high values of p corresponding to high angular frequencies.

• A graph of the coefficients 2 |cp|
2 against the spatial wave number

kp = Up V = 2 TT p V/ At, where V is a specified velocity, is the
discrete power spectrum of the function /(t). Of particular interest
is the behavior at high values of p corresponding to high wave
numbers.

Identifying now the generic function /(t) with the rr, y, or z compo-
nent of the velocity, we obtain the discrete energy spectrum of a turbu-
lent flow, which provides us with information on how kinetic energy is
distributed among the different scales. In practice, the discrete power
spectrum is computed by taking the Fourier transform of a time series
comprised of sets of data points on the order of 212 = 4096. The pow-
er spectrum computed using one data set shows large fluctuations. To
obtain a smooth spectrum, we average the Fourier coefficients over sets
corresponding to different realizations or different time periods for the
same flow conditions.

As the sample size TV and total sampling time T = TVAt tend to
infinity, the sum on the right-hand side of (10.6.18) reduces to an infinite
Fourier integral. Correspondingly, the right-hand side of (10.6.22) takes
the form

(10.6.23)

where Et(ui) and E(k) are the temporal and spatial energy density func-
tions. Making a correspondence between (10.6.23) and (10.6.22), we
obtain the relations

(10.6.24)



Figure 10.6.6 Stratified turbulent shear flow behind a vertical grid. A
time series of the velocity and temperature recorded by Kurt Keller
is placed in file keller.dat of directory 13.turbo /stats of FDLIB.

which allow us to prepare graphs and study the shape of the energy
density function. Taylor's hypothesis prescribes setting V equal to the
local mean value of the streamwise velocity.

Problems

Problem 10.6.1 Turbulent mean velocity profile in tube flow.
Consider turbulent flow in a tube whose mean velocity profile is given

by (10.6.8). Derive a relationship between the mean flow rate and the
mean velocity at the centerline, and compare it with its counterpart for
laminar flow.

Problem 10.6.2 Kolmogorov length scale for pipe flow.
Laboratory data for turbulent flow in a circular tube with diameter

D has shown that (a) the length scale of the energy containing turbulent
motion / is comparable to D, and (b) the magnitude of the turbulent
velocity fluctuations in comparable to V, where V is the maximum mean
velocity occurring at the centerline. Based on this information, compute
the Kolmogorov length and velocity scale for a tube with diameter .D=IO
cm, at Reynolds number Re = U D/v = 106.



Computer problem

Problem c. 10.6.1 Stratified shear flow.
Consider stratified turbulent shear flow behind a vertical grid, as

illustrated in figure 10.6.6, with mean velocity profile ux(y) and mean
temperature field T(y). Kurt Keller recorded a time series of the x and y
velocity components and temperature at a point located 457.2 cm behind
the grid, at the sampling frequency 5 Khz corresponding to sampling time
0.0002 s"1, for the following conditions: grid spacing 2.54 cm; mean
shear rate dux/dy = —7.63 s"1; mean temperature gradient dT/dy =
35.8 K m"1; local microscale Reynolds number Re = \ujv — 91.2,

where u = y u'% is the RMS value of the fluctuations of the streamwise
component of the velocity, and A is the Taylor microscale defined by the
relation

(10.6.25)

The data are placed in the three columns of file keller.dat in directory
13-turbo/stats of FDLIB. Use program stats in this directory to compute
and plot (a) the mean and RMS values, and (b) the discrete power
spectrum of the x and y components of the velocity and temperature,
and discuss the results of your computation.

10.7 Analysis of turbulent motion

Deriving exact solutions of the Navier-Stokes equation for turbulent
flow is out of the question. Direct numerical simulation, DNS, on the
other hand, is prohibited by pragmatic constraints associated with finite
grid-size: to capture the dynamics of a turbulent flow, we must resolve
a prohibitively broad range of length scales. Progress can be made by
developing approximate models and phenomenological theories based on
empirical correlations inspired by laboratory observation.

10.7.1 Reynolds stresses

A point of departure for developing phenomenological theories is the
decomposition of the velocity into a mean and a fluctuating component,
as shown in equation (10.6.3). A similar decomposition of the pressure
yields



(10.7.1)

where

(10.7.2)

is the mean pressure. Substituting the decompositions (10.6.3) and
(10.7.2) into Cauchy's equation of motion (6.3.13), expanding out the
derivatives of the products, taking the time average of both sides, and
simplifying, we derive a modified equation of motion for the mean com-
ponent. The fluctuating component appears as an effective inertial hy-
drodynamic volume force.

Considering, for example, the term d(p Ux uy}/dy on the left-hand
side of the x component of the equation of motion (6.3.13), we write

(10.7.3)

Taking the time average of both sides, defined in equations (10.6.2) and
(10.7.2), and interchanging the order of time-averaging and space differ-
entiation, we find

(10.7.4)

Because of (10.6.4), the second and third terms in the second line of
(10.7.4) are equal to zero, leaving the simplified expression

(10.7.5)

Working in a similar fashion with the other terms on the left-hand
side of Cauchy's equation of motion, we derive an equation of motion for
the time-average variables



(10.7.6)

or

(10.7.7)

where OR is the Reynolds stress tensor with components

(10.7.8)

expressing the transfer of momentum from the i to the j direction, and
vice versa, by turbulence fluctuations.

Phenomenological theories seek to establish a relationship between
the Reynolds stresses and the structure of the time-averaged flow. Once
this is done, the averaged equation of motion (10.7.6) or (10.7.7) can be
solved subject to the continuity equation

V ' a = °' (10.7.9)

to produce the velocity distribution in a turbulent flow.

10.7.2 Prandtl's mixing length model

Prandtl developed a theoretical model that relates the Reynolds
stresses to the velocity profile of the mean flow. Motivation for this
model is provided by a tentative analogy between eddy motion in a tur-
bulent flow and molecular motion in a gas. The derivation is analogous
to that discussed in Section 4.4.5 concerning the fluid viscosity.

Consider unidirectional turbulent shear flow along the x axis with
mean velocity profile Ux = U(y), as illustrated in figure 10.7.1. Suppose
now that, because of the turbulent motion, a small fluid parcel with
volume 5VP initially located at y — y\ is displaced to the position y = y<2,
where it travels in the streamwise direction with the new local velocity.
The accompanying change in the x component of the momentum is

(10.7.10)



Figure 10.7.1 Profile of turbulent shear flow along the x axis, illustrat-
ing the random displacement of a fluid parcel by a distance that is
comparable to PrandtPs mixing length.

Because the turbulent fluctuations have been assumed small, the total
velocity has been approximated with the mean velocity to yield the ex-
pression shown in the second line of (10.7.10).

Consider next the transport of momentum across a horizontal line at
the y elevation shown in figure 10.7.1. During a small period of time At,
all parcels residing within a layer of thickess uy(y,t) At adjacent to this
line will cross the line to find themselves on the other side. The transport
of x momentum over a horizontal length Ao; due to this motion is

(10.7.11)

Setting ^ SVp — uy(y, t) At Ax, we obtain

(10.7.12)

Averaging now this expression over all time intervals At, we find

(10.7.13)



According to Newton's second law of motion, this averaged transfer of
momentum is tantamount to a force pointing in the x direction, expressed
by the Reynolds shear stress a^y. Setting

(10.7.14)

we obtain

(10.7.15)

where we have defined Ay = 3/2 — Vi •
The next key step is the scaling

(10.7.16)

where Ip is Prandt's mixing length. Substituting (10.7.16) into (10.7.15),
we obtain the constitutive equation

(10.7.17)

The product of the first three terms on the right-hand side of (10.7.17)
plays the role of an eddy viscosity first introduced by Boussinesq.

If the reader is overwhelmed by uneasiness regarding the physical
relevance of the various steps involved in the preceding derivation, she is
not alone. Constitutive relations similar to that shown in (10.7.17) have
been proposed by several authors on the basis of tentative analogies and
laboratory observation.

Logarithmic law in the outer layer of wall-bounded shear flow

As an application, we use Prandtl's mixing length model expressed
by equation (10.7.17) to deduce the functional form of the velocity profile
in a wall-bounded shear flow, away from the viscous sublayer and the
buffer zone. Assuming that the sign of dU/dy is positive, neglecting the
viscous shear stress ^dU/dy in comparison to the Reynolds shear stress,
and ignoring the variation of the shear stress in the y direction due to a
streamwise pressure drop, we find

(10.7.18)



Figure 10.7.2 Wall-bounded turbulent shear flow: schematic illustra-
tion of the distribution of the mean velocity in the dimensionless
variables defined in equations (10.7.23).

where TW is the wall shear stress. Rearranging (10.7.18), we obtain

(10.7.19)

where u* is the friction velocity.
Next, we set the Prandtl mixing length Ip proportional to the dis-

tance from the wall, setting Ip = Ky, where K is von Karman's dimen-
sionless constant. For flow in a cirular tube, measurements suggest that
K ~ 0.36. Substituting the relation Ip — Ky into (10.7.19), taking the
square root of the emerging equation, and rearranging, we find

(10.7.20)

Integrating both sides of (10.7.20) with respect to y, we find the loga-
rithmic relationship

(10.7.21)

where A is a dimensionless constant.
In dimensionless variables, expression (10.7.21) takes the form

(10.7.22)



where B is a dimensionless constant, and we have defined

(10.7.23)

Laboratory measurements have shown that equation (10.7.22) with B=3.6
describes well the velocity profile for y+ > 26, as illustrated in figure
10.7.2. In the viscous sublayer attached to the wall, laboratory data
suggest the linear relation U+ = y"*~, for O < y+ < 5. In the buffer zone,
extending over 5 < y+ < 26, a more involved relation is required.

10.7.3 Correlations

One way of extracting information on the small-scale structure of a
turbulent flow is by means of space-time correlations. Consider the ithe
component of the fluctuating velocity at the point XI at time £, and the
jth component of the fluctuating velocity at the point X2 at time t + T,
where r is the time delay. The corresponding second-order space-time
correlation is defined as

(10.7.24)

Two special correlations are of particular interest: the spatial correlation
corresponding to r = O, and the time-delayed correlation arising when
the points XI and X2 coincide.

Taylor's frozen-field hypothesis provides us with a relationship be-
tween the time-delayed and the spatial correlation: in a low-intensity
turbulent flow, the mean velocity sweeps the turbulence so fast that the
eddies do not evolve significantly during the time it takes them to cross
a fixed point in space; that is, the velocity vector field appears to be
frozen in time. If the mean velocity is in the direction of the x axis, we
may write

(10.7.25)



where ex is the unit vector along the x axis. This expression provides us
with a convenient method of obtaining the spatial correlation in terms
of the more easily measured time-delayed counterparts.

The usefuleness of the second-order correlations lie in their ability to
produce information on the geometrical structure and dynamics of eddy
motion in a turbulent flow. As the point X2 tends to the point XI, the
local fluid motions are coordinated and the correlations are significant.
As the points XI and X2 are moved far apart, the fluid motions become
independent or decorrelated, and the correlations decay to zero.

In the case of homogeneous turbulent flow, the correlations depend on
the vectorial distance between the points XI and X2, but not on the actual
location of the two points; to signify this, we write jR^(x2 — xi,i,T).
In the case of isotropic turbulent flow, the correlations depend on the
scalar distance between the two points XI and X2; to signify this, we
write -Ry(|x2 - XI | ,£ ,T) .

Evolution equations for the second-order correlations may be derived
departing from the Navier-Stokes equation. Just as the averaged Navier-
Stokes equation (10.7.6) involves the Reynolds stresses, the evolution
equations for the second-order correlations involve third-order correla-
tions defined as the time averages of products of three scalar fluctuating
variables. An important field of study of turbulent flow seeks to re-
late high-order correlations to the structure of the mean flow, thereby
achieving closure.

Problem

Problem 10.7.1 Deissler correlation.
Deissler replaced Prandtl's constitutive equation (10.7.17) with the

following more involved equation suggested by laboratory measurements,

(10.7.26)

where n = 0.124 is an experimentally determined dimensionless constant.
Substitute this relation into (10.7.18), integrate to compute the velocity
profile, and then compare the oprofile with that shown in (10.7.22).



Computer problem

Problem c.10.7.1 Stratified shear flow.
Compute, plot, and discuss the form of the time-delayed correlation

of the velocity components and temperature recorded in file keller.dat in
directory 13-turbo/stats of FDLIB.



Chapter 11

Vortex Motion

11.1 Vorticity and circulation in two-dimensional flow
11.2 Motion of point vortices
11.3 Two-dimensional flow with distributed vorticity
11.4 Vorticity, circulation,

and three-dimensional flow induced by vorticity
11.5 Axisymmetric flow induced by vorticity
11.6 Three-dimensional vortex motion

Flows at high Reynolds numbers tend to develop islands of concen-
trated vorticity, concisely called vortices, embedded in a low-vorticity or
virtually irrotational ambient fluid. The velocity field may be decom-
posed into two constituents: an irrotational component prevailing in the
absence of the vortices, and a rotational component associated with the
localized vorticity distribution. The latter may be expressed in the con-
venient form of an integral over the volume occupied by the vortices,
involving the vorticity distribution. At high Reynolds numbers, viscous
forces are insignificant away from flow boundaries, and the vortices e-
volve according to simplified rules dictated by the vorticity transport
equation for inviscid fluids. In this chapter, we derive the integral repre-
sentation of the velocity in terms of the vorticity, discuss the simplified
laws governing vortex motion in a flow with negligible viscous forces, and
develop numerical methods for describing the dynamics of a prototypical
class of vortex flows with specifically chosen vorticity distributions. The
study of these flows will allow us to develop insights into the dynamics of
more high-Reylonds-number flows characterized by vortex interactions.



Figure 11.1.1 A closed loop in the xy plane, denoted by L, enclosing
the area D. The circulation around the loop is equal to the areal
integral of the strength of the vorticity, LJ z, over D.

11.1 Vorticity and circulation
in two-dimensional flow

In Section 3.7, we defined the circulation around a closed loop in a
two-dimensional flow as the line integral of the tangential component
of the velocity with respect to arc length around the loop, as shown in
equation (3.7.9), repeated here for ready reference,

(n.i.i)
where L denotes the loop, dl = \/dx2 + dy2 is the differential of the
arc length around the loop, and the unit tangent vector t points in the
counterclockwise direction along L, as illustrated in figure 11.1.1.

If the loop is reducible, that is, if it can be shrunk to a point without
crossing flow boundaries or singular points, we may use Stokes's circu-
lation theorem to express the circulation around the loop as the areal
integral of the strength of the vorticity over the area D enclosed by the
loop, as shown in equation (3.7.10), repeated here for ready reference,

(11.1.2)



(problem 11.1.1). With this expression as a point of departure, and using
the vorticity transport equation discussed in Section 6.6, we shall now
derive an important theorem that considerably facilitates the study of
two-dimensional vortex flow.

Consider a reducible material loop consisting of a fixed collection of
point particles with a permanent identity, as illustrated in figure 11.1.1.
The fluid enclosed by the loop also has a permanent identity; that is, it is
composed of the same collection of point particles at all times. The vor-
ticity transport equation for a flow with uniform density and negligible
viscous forces requires that the point particles maintain their vorticity as
they move about the domain of flow, DUJZ/Dt — O, as shown in equation
(6.6.5), where D/Dt is the material derivative. Moreover, because the
fluid has been assumed incompressible, the area dx dy occupied by an
infinitesimal patch of fluid located inside the loop remains constant in
time, D(dx dy)/Dt = O.

Combining these arguments, we find that the integral on the right-
hand side of (11.1.2) remains constant in time. Formally, we write

(11.1.3)

We have found that, when viscous forces are negligible, the circulation
around a reducible material loop remains constant in time. In Section
11.4, we shall see that the circulation around an irreducible loop also
remains constant in time, and thus the vorticity of point particles residing
inside any loop is preserved during the motion.

Problem

Problem 11.1.1 Stokes's circulation theorem.
Prove that the circulation around a reducible loop can be expressed

in terms of the vorticity, as shown in equation (11.1.2). Hint: Apply
Gauss's divergence theorem stated in equation (2.6.20) for the vector
functions h = (uy,O) and h = (0,^x).



11.2 Motion of point vortices

We begin the study of vortex dynamics by considering the motion of
point vortices in a flow with negligible viscous forces. Expressions (3.7.1)
provide us with the plane polar component of the velocity induced at the
point x = (x, y) by a point vortex with strength K located at the point
X0 = (#o?yo)' The corresponding Cartesian components of the velocity
are given by

(11.2.1)

The denominator on the right-hand sides of equations (11.2.1) is the
square of the distance of the field point x from the location of the point
vortex XQ. Since the numerator is a linear function of the difference in
the x or y coordinates, the velocity due to a point vortex decays like the
inverse of the distance from the point vortex, in agreement with (3.7.1).

One may readily verify by straightforward differentiation that the
strength of the vorticity ujz = duy/dx — dux/dy vanishes everywhere in
the flow except at the location of the point vortex where the right-hand
sides of equations (11.2.1) and their derivatives are not defined. Dirac's
delta function in two dimensions provides us with a convenient means of
expressing this singular vorticity distribution in compact form using the
concept of generalized functions.

11.2.1 Dirac's delta function in a plane

To construct the Dirac delta function in two dimensions, we introduce
a family of test functions g\(x,y) parametrized by the variable A. The
test functions are radially symmetric with respect to a specified point
(#0, yo)> that is, they depend only on the distance between the field point
x and the chosen point XQ; they peak at the point (XQ, 2/0); they rapidly
decay to zero with distance from this point; and their areal integral over
the entire xy plane is equal to unity.

One such family of test functions is given by

(11.2.2)



Figure 11.2.1 A family of test functions described by equation (11.2.2),
for A =1, 5, 10, 20, 30, and 40. In the limit as A tends to infinity,
we obtain Dirac's delta function in two dimensions.

where r = ^(x - #o)2 + (y — 2/o)25 the graphs of these functions are dis-
played in figure 11.2.1. Taking the limit as A tends to infinity, whereupon
the support of these functions shrinks down to zero, we obtain Dirac's
delta function in the xy plane, denoted by S^(X-XQ, y-yo). By construc-
tion then, 8<2(x — XQ,y — yo) is endowed with the following properties:

1. 6<2(x — XQ,y — yo) vanishes everywhere except at the point x = XQ
and y = yo, where it takes an infinite value.

2. The integral of the delta function over an area D that contains the
point (XQ^yQ) is equal to unity

(11.2.3)

This property requires that the delta function in two dimensions
has units of inverse squared length.

3. The integral of the product of an arbitrary function f ( x , y ) and
the delta function over an area D that contains the point (XQ, yo)



is equal to value of the function at the singular point,

J^ 62(x - z0,y - yo) f ( x , y ) dx dy = /(ZQ, yo). (n 2 4,

Note that identity (11.2.3) arises from (11.2.4) by setting f ( x , y )
equal to unity. The integral of the product of an arbitrary function
/(#, y) and the delta function over an area D that does not contain
the point (XQ,yo) *s equal to zero.

11.2.2 Vorticity associated with a point vortex

The vorticity distribution associated with the velocity field (11.2.1)
may now be expressed in terms of the delta function in the compact form

uz(x,y) = ^S2(X- XQ, y -yo ) = «<$ 2(x-x 0) . /n 2 ̂

The strength of the point vortex, «, has units of circulation, velocity
multiplied by length, and the delta function has units of inverse length
squared; their product has units of velocity over length, which is consis-
tent with the definition of the vorticity in terms of spatial derivatives of
the velocity.

Reviewing the process by which the delta function arose from a family
of smooth functions with increasingly narrow supports and high peaks,
we interprete a point vortex as an idealized vortex structure arising in
the limit as the size of a compact vortex region in the xy plane tends to
zero, while the circulation around the vortex is held constant.

It is instructive to confirm equation (3.7.11), stating that the circu-
lation around a closed loop that encloses a point vortex is equal to the
strength of the point vortex. Substituting (11.2.5) into the integrand
on the right-hand side of (11.1.2), and using property (11.2.3), we find
C = K.

11.2.3 Evolution of the point vortex strength

When viscous forces are negligible, the circulation around any mate-
rial loop that encloses a point vortex, and therefore the strength of the
point vortex, must remain constant in time,



(11.2.6)

Thus, the point vortex maintains its strength as it moves with the fluid
velocity in the domain of flow.

11.2.4 Velocity of a point vortex

The computation of the fluid velocity at the position of a point vortex
is prohibited by the singular nature of the right-hand side of (11.2.1).
To circumvent this difficulty, we observe that, although the fluid in the
vicinity of a point vortex spins about the point vortex with a velocity
that increases like the inverse of the distance from the point vortex,
radial symmetry prevents it from exhibiting a net translational motion.
This observation suggests that the self-induced velocity of a point vortex
vanishes; that is, a point vortex is convected with a velocity other than
that associated with its own vorticity distribution. For example, a point
vortex embedded in uniform flow simply translates with the velocity of
the uniform flow.

11.2.5 Motion of a collection of point vortices

A collection of N point vortices move under the influnce of their
mutually-induced velocity. The rate of change of position of the ith
point vortex, (X^Yi), is governed by the differential equations

(11.2.7)

for i — 1,2 , . . . , N. Note that the sum over j excludes the term j = i
to bypass the vanishing self-induced contribution. Equation (11.2.6) re-
quires that the strength of each point vortex remain constant during the
motion.

Equations (11.2.7) comprise a system of 2Af first-order differential
equations for the point vortex coordinates, (X^Yi). Having specified



the initial position, we may compute the subsequent motion using a
standard method for solving ordinary equations, such as the explicit
modified Euler method discussed in earlier sections.

11.2.6 Presence of boundaries

When the domain of flow is bounded by impermeable surfaces, the
right-hand sides of equations (11.2.1) and (11.2.6) must be modified with
the addition of a complementary flow whose purpose is to ensure the sat-
isfaction of the no-penetration boundary condition. For simple boundary
geometries, the complementary flow may be identified with the flow in-
duced by point vortices located at image positions.

Point vortex above a plane wall

The complementary flow of a point vortex above a plane wall placed
at y — w is generated by reflecting the point vortex with respect to
the wall. If a primary point vortex with strength K, is located at the
point (£o,2/o)> then an image point vortex with strength —K is located
at (^Q5 2itf — yo)- The velocity field induced by the primary point vortex
and its image is given by

(11.2.8)

The streamline pattern induced by the vortex pair is illustrated in figure
11.2.2(a), and a subroutine that evaluates the velocity field is included
in subdirectory O9.vortex/pv of FDLIB.

The x component of the velocity induced by the image vortex at the
location of the primary vortex is Vx = u(#o,yo) — ̂ /[47r(yo ~~ w}}> and
the y component vanishes, vy = uy(xQ,yo) = O. Thus, the primary point
vortex translates parallel to the wall with constant velocity.

Point vortex inside or outside a circular cylinder

The complentary flow of a point vortex located inside or outside a
circular cylinder of radius a centered at the point (rcc, yc) is generated



Figure 11.2.2 Streamline pattern of the flow due to (a) a pair of point
vortices with opposite strength, (b) a point vortex inside a circular
cylinder; (c) a point vortex outside a circular cylinder.



Figure 11.2.2 Continued.

by an image point vortex located at the inverse point of the primary
point vortex with respect to the cylinder. If a primary point vortex
with strength K is located at (0:0,2/0)5 then an image point vortex with
strength -K is located at

(11.2.9)

where d = \/(XQ - xc)
2 + (yo - VcY is the distance of the primary point

vortex from the center of the cylinder. The velocity field induced by the
primary point vortex and its image is given by

(11.2.10)



The streamline pattern induced by the vortex pair is illustrated in figure
11.2.2 (b, c), and a subroutine that evaluates the velocity field is included
in subdirectory O9.vortex/pv of FDLIB.

Examining the velocity induced by the image point vortex at the
location of the primary vortex, we find that the latter rotates around
the center of the cylinder in the direction of the polar angle 9 measured
around the center of the cylinder in the counterclockwise direction, with
velocity

(11.2.11)

11.2.7 A periodic array of point vortices

Consider a periodic array of a point vortices with identical strengths
deployed along the x axis and separated by the distance a, as illustrated
in figure 11.2.3. The rath point vortex is located at the position xm =
XQ + raa, ym = yo> where (#o,yo) 'IS ^e position of a randomly chosen
point vortex labelled O, and ra is an integer. If we attempt to compute
the velocity induced by the array simply by summing the individual
contributions, we will encounter divergent infinite sums.

To overcome this difficulty, we consider the stream function corre-
sponding to the velocity field induced by the individual point vortices,
defined by the equations Ux = d^/dy and uy = —dif}/dx, and express it
in the form

(11.2.12)

for ra = ±1, ±2,. . . , where T^n = (x - xm)2 + (y - ym)2 is the square
of the distance of the field point (x, y) from the location of the rath
point vortex. The denominators of the fractions in the arguments of
the logarithms on the right-hand sides of (11.2.12) have been chosen
judiciously to facilitate the forthcoming algebraic manipulations.

It is important to observe that, as ra tends to ±00, the fraction on
the right-hand side of the second of equations (11.2.12) tends to unity
and its logarithm tends to vanish, thereby ensuring that remote point
vortices make small contributions. In contrast, if the denominators had
not been included, remote point vortices would make contributions that
are proportional to the logarithm of the distance between a point vortex
and the point (x, y) where the stream function is evaluated.



Figure 11.2.3 Streamline pattern of the flow due to an infinite array
of point vortices evenly-spaced along the x axis.

Next, we express the stream function due to the infinite array as the
sum of (a) a constant expressed by the term after the first equal sign
in equation (11.2.13), and (b) the individual stream functions stated in
expressions (11.2.12), obtaining

(11.2.13)

where II denotes the product. An identity allows us to compute the infi-
nite product on the right-hand side of (11.2.13) in closed form, obtaining

(11.2.14)



Substituting the right-hand side of (11.2.14) into (11.2.13), we derive the
desired stream function

(11.2.15)

where k = 2?r/a is the wave number. Differentiating the right-hand side
of (11.2.15) with respect to x or y, we obtain the corresponding velocity
components

(11.2.16)

The streamline pattern due to the periodic array illustrated in figure
11.2.3, and a subroutine that evaluates the velocity field is included in
subdirectory 09-vortex/pv of FDLIB.

Because of symmetry, the velocity at the location of one point vortex
induced by all other point vortices vanishes, and the array is stationary.
Far above or below the array, the x component of the velocity tends to
the value —K/a or Ac/a, while the y component vanishes at an exponen-
tial rate. This behavior renders the infinite array a reasonable model
of the flow generated by the instability of a shear layer separating two
streams that merge at different velocities. The Kelvin-Helmholtz insta-
bility causes the shear layer to roll up into compact vortices represented
by the point vortices of the periodic array.

Motion of a collection of point vortices in periodic arrangement

The motion of a periodic collection of N point vortices, each repeat-
ed in the x direction with period a, is governed by the counterpart of
equations (11.2.7) for periodic flow. Using the velocity field (11.2.16),
we find

(11.2.17)



for i = 1 ,2, . . . , TV. The sum over j excludes the term j = i corresponding
to the vanishing velocity induced by the host array. The strength of each
point vortex remains constant during the motion.

11.2.8 A point vortex between two parallel walls

The image system for a point vortex placed between two parallel walls
that are separated by the distance /i, as illustrated in figure 11.2.4(a),
consists of the reflections of the point vortex, and the reflections of the
reflections of the point vortex with respect to both walls. The result
is an image system consisting of two infinite periodic arrays of point
vortices separated by the distance 2h. One array contains the primary
point vortex, and the second array contains the reflection of the primary
array with respect to one of the walls. The strength of the point vortices
in the second array is equal in magnitude and opposite in sign to that of
the point vortices in the first array.

The stream function and velocity field may be deduced from expres-
sions (11.2.15) and (11.2.16). A subroutine that evaluates the velocity
is included in subdirectory 09-vortex/pv of FDLIB.

11.2.9 A point vortex in a semi-infinite strip

The image system of a point vortex placed between two parallel walls
that are separated by the distance h and intersect at a right angle a
third plane wall, thereby forming a semi-infinite rectangular strip, as
illustrated in figure 11.2.4(b), consists of the image system associated
with the two parallel walls discussed in Section 11.2.8, and the reflection
of the image system with respect to the intersecting wall. The strength
of the reflected point vortices is the negative of that of their images. A
subroutine that evaluates the velocity field is provided in subdirectory
09-vortex/pv of FDLIB.

Problems

Problem 11.2.1 Dirac delta function in one dimension.
The Dirac delta function in one dimension, denoted by Si (x — XQ), is

distinguished by the following properties:



Figure 11.2.4 Streamline pattern of the flow due to (a) a point vortex
placed between two parallel plane walls, and (b) a point vortex in
a semi-infinite rectangular strip.



1. SI(X-XQ) vanishes everywhere except at the point x = XQ where
it becomes infinite.

2. The integral of the delta function over an interval / that contains
the point XQ is equal to unity,

(11.2.18)

This property reveals that the delta function in one dimension has
units of inverse length.

3. The integral of the product of an arbitrary function /(#) and the
delta function over an interval / that contains the point XQ is equal
to value of the function at the singular point,

(11.2.19)

The integral of the product of an arbitrary function f ( x ) and the
delta function over an interval / that does not contain the point
XQ vanishes. Note that identity (11.2.18) arises from (11.2.19) by
setting f ( x ) equal to unity.

(a) Show that 8\ arises from the family of test functions

(11.2.20)

in the limit as the parameter A tends to infinity.
(b) Show that the test functions g\(r) defined in (11.2.2) derive from

the test functions q\ defined in (11.2.20) as

(11.2.21)

and explain why we may write

(11.2.22)

(c) Show that the integral of 61 (x — XQ) is the Heaviside function
that is equal to zero when x < XQ or unity when x > XQ. Is there a
corresponding Heaviside function in two dimensions?



Problem 11.2.2 Dirac delta function in three dimensions.
State the distinguishing properties of the Dirac delta function in three

dimensions, and devise an appropriate family of test functions corre-
sponding to those discussed in the text for the delta function in two
dimensions.

Problem 11.2.3 A point vortex near a corner.
Show that the image flow associated with a point vortex located

between two semi-infinite walls intersecting at right-angle is represented
by three point vortices located at the reflections, and the reflection of
the reflections of the primary vortex with respect to the two walls. Then
introduce plane polar coordinates (r, O) with origin at the apex and the
walls located at O = O and ?r/2, and show that the primary point vortex
moves along a path described by r = c/sin(2#), where the constant c is
determined by the initial position.

Problem 11.2.4 Point vortex between two parallel walls.
Consider a point vortex between two parallel walls separated by the

distance h. Show that the point vortex travels parallel to the walls with
velocity

(11.2.23)

where k — TT//I, and 6 is the distance of the point vortex from the upper
or lower wall. Confirm that, in the limit as b tends to zero, v tends to
the value K/(4?r6) corresponding to a point vortex above a plane wall.

Problem 11.2.5 Point vortex in a rectangular box.
Discuss how the image system for a point vortex located in a semi-

infinite rectangular strip discussed in Section 11.2.9 can be extended to
describe flow in a rectangular box.

Computer problems

Problem c.11.2.1 Motion of a polygonal collection of point vortices.
Subdirectory 09-vortex/pvm of FDLIB contains a program that sim-

ulates the motion of a collection of point vortices in an unbounded do-
main of flow.

Run the program to simulate the motion of a collection of TV point
vortices with identical strengths placed at the vertices of an TV-sided



Figure 11.2.5 Stages in the evolution of a perturbed periodic array of
point vortices, showing periodic roll up and eventual disorganized
motion; one period is shown.

regular polygon of radius a. Carry out simulations for TV = 2, 4, 8, and
16, and discuss the nature of the motion at long times.

Problem c.11.2.2 Motion of a solitary collection of point vortices in a
bounded domain.

Subdirectory 09-vortex/pv of FDLIB contains a collection of sub-
routines that generate the velocity field due to a point vortex in the
presence of boundaries with various geometries. With these subroutines
as a foundation class, modify the main program 09-vortex/pvm discussed
in problem c.11.2.1 to include the presence of a boundary of your choice.
Compute the motion of a collection of point vortices of your choice, and
discuss the nature of the motion.



Problem c.11.2.3 Motion of a periodic collection of point vortices.
Subdirectory 09-vortex/pvm-pr of FDLIB contains a program that

simulates the motion of a periodic row of point vortices perturbed from
the planar configuration. The motion is known to suffer from severe
numerical instabilities that cause the appearance of small-scale irreg-
ularities at an early stage of the motion. One way to suppress these
instabilities, is to smooth out the coordinates of the point vortices by
replacing them with weighted averages involving the neighbors. The
five-point formula of Longuett-Higgins and Cokelet replaces the old po-
sitions with the new positions, as

(11.2.24)

where / stands for x or y. Results of a simulation with smoothing applied
after each time step are shown in figure 11.2.5.

Run the program to compute the motion subject to an initial condi-
tion of your choice with and without smoothing, and discuss the nature
of the motion in each case.

11.3 Two-dimensional flow
with distributed vorticity

Broadening the scope of our discussion, we consider two-dimensional
flow in the xy plane containing a non-infinitesimal region of concentrated
vorticity embedded in a perfectly or nearly irrotational fluid, and sub-
divide the vortex region into a collection of N parcels with small areas
5Ai, where i = 1 ,2 , . . . , TV, as illustrated in figure 11.3.1. If Ui = uz(x.i)
is the strength of the vorticity at the designated center of the ith parcel
denoted by x^, then the strength of the parcel, defined as the integral
of the vorticity over the area of the parcel, is approximately equal to
KI = (jji 8Ai.

For the purpose of evaluating the velocity at a point in the flow, we
now replace the parcels with point vortices located at the designated par-
cel centers. Using equations (11.2.1), we find that the velocity induced
by the collection of the point vortices is given by



Figure 11.3.1 A vortex in a two-dimensional flow is discretized into
small parcels, and each parcel is replaced by a point vortex located
at the designated parcel center. As the number of parcels tends to
infinity, the velocity induced by the point vortices is expressed by
the integral representation (11.3.2).

(11.3.1)

In the limit as the number of parcels JV tends to infinity, the sums reduce
to areal integrals, yielding an integral representation for the velocity in
terms of the vorticity,

(11.3.2)

Equations (11.3.2) allow us to compute the velocity field associated with
a specified distribution of vorticity in the xy plane. The stream function
is given by the corresponding representation



(11.3.3)

It is instructive to observe that the velocity field due to a point
vortex arises by substituting the singular vorticity distribution (11.2.5)
into expressions (11.3.2), and then using property (11.2.4) to evaluate
the integrals. The delta function simply switches x1 to XQ and y' to
yo, and thereby produces the flow due to a point vortex expressed by
(11.2.1).

11.3.1 Vortex patches with uniform vorticity

Consider now a compact vortex with uniform vorticity fl enclosed by
the contour C, as illustrated in figure 11.3.2(a). Extracting the vorticity
from the integral on the right-hand side of (11.3.3), we obtain the stream
function

'(11.3.4)

By definition, the x and y components of the velocity derive from the
stream function as Ux = d^/dy and uy = -d^/dx. Differentiating both
sides of (11.3.4) with respect to x or y, transferring the derivatives on
the right-hand sides into the integrals, and then writing

we obtain

(11.3.5)

(11.3.6)



These manipulations have been motivated by our ability to convert
the areal integral of the x or y derivative of a function over a region
idenified with the vortex, to a line integral along the boundary of the
vortex. The conversion is done using the Gauss divergence theorem
stated in equation (2.6.20) for an arbitrary vector function h = (hx, hy).
Setting / I x -O and hy = \n[(x — xf)2 + (y — y7)2], we find

(11.3.7)

where ny is the y component of the unit vector normal to the vortex
contour C pointing outward from the vortex, and dl is the differential
arc length along C.

Working in a similar fashion for the y component of the velocity, we
find

T: / i ,/(_,

(11.3.8)

To recast the component equations (11.3.7) and (11.3.8) into a uni-
fied vector form, we note that nx = ty and ny = —tx, where t = (tx->ty)
is the unit vector tangent to the vortex contour oriented in the counter-
clockwise direction, as shown in figure 11.3.2(a). The velocity induced
by the patch may now be expressed in the vector form

(11.3.9)

A collection of patches

If the flow contains a collection of M vortex patches with uniform
vorticity fij, where / = 1,2,. . . M, then the velocity field arises by inte-
grating around the contour of each individual patch, and then summing
the contributions according to the generalized version of (11.3.9)

(11.3.10)

where C\ is the contour of the lih patch.



Figure 11.3.2 Patches of constant vorticity in the xy plane of a two-
dimensional flow: (a) solitary, (b) periodic, and (c) in the form of
periodic vortex layers.



Periodic patches

To develop a contour integral representation of the flow induced by a
vortex patch that is repeated periodically in the x direction with period a,
as illustrated in figure 11.3.2(b), we repeat the preceding analysis using
the stream function of the flow induced by a periodic array of point
vortices given in (11.2.15). Straightforward generalization provides us
with the counterpart of (11.3.10) for a flow containing a collection of M
periodic vortex patches,

(11.3.11)

where k = 2?r/a is the common wave number of the patches. For the
configuration depicted in figure 11.3.2(b), M = I.

Periodic layers

A judicious rearrangement of (11.3.11) allows us to obtain a con-
tour integral representation of the flow induced by a number of adjacent
periodic vortex layers with constant vorticity, as illustrated in figure
11.3.2(c). To develop this representation, we identify one period of a
vortex layer with a periodic patch, and note that the contour integrals
over periodic segments cancel. The result is the integral representation

(11.3.12)

with the understanding that QM+i — O? where P/ is one period of the
/th contour, as illustrated in figure 11.3.2(c). A group of adjacent layers
with gradually varying uniform vorticity is a model of a shear layer with
smoothly varying vorticity separating two streams.



11.3.2 Contour dynamics

The vorticity transport equation (6.6.5) requires that, when viscous
forces are insignificant, the vorticity inside a patch with uniform vorticity
remain constant in time. To compute the evolution of the flow, it suffices
then to pursue the motion of the vortex contour. This can be done by (a)
tracing the contour with a collection of point particles, (b) evaluating the
velocity at the position of the point particles using the contour integral
representation, and (c) advancing the position of the point particles using
a numerical method for integrating ordinary differential equations.

Consider a solitary vortex patch immersed in an infinite fluid, as
depicted in figure 11.3.2(a). The numerical method involves the following
steps:

1. Trace the vortex contour with N + I marker points located at
X^ = (Xi, Yi), where i = 1 ,2 , . . . , N + 1; points numbered 1 and
N + I coincide.

2. Describe the shape of the contour by interpolation. In the simplest
approach, the contour is approximated with the polygonal line con-
necting successive marker points, consisely called a polyline.

3. Compute the velocity of each marker point by evaluating the in-
tegral on the right-hand side of (11.3.9) for x = Xi and y = Yi,
where i = 1,2,... N.

In the numerical method, the contour integral is replaced with the
sum of integrals over the individual straight elements. Observing
that the unit tangent vector over the jth element is constant and
equal to № = ^j-(Xj+I - Xj), where A/j is the element length,
we write

(11.3.13)

where Ej denotes the jth element.

To facilitate the logistics, we introduce the dimensionless influ-
ence coefficients Aj and recast equation (11.3.13) into the compact
form

(11.3.14)



where we have defined

(11.3.15)

Because, as the integration point (xf^yr) approaches the evalu-
ation point (Xi, Yi) the integrand diverges at a logarithmic rate,
the integrals over the elements numbered i — 1 and i are singular.
Fortunately, these integrals may be computed analytically, and the
influence coefficients are found to be

(11.3.16)

for j = i — 1 or i, where

(11.3.17)

is the distance between the marker points (problem 11.3.1).

The rest of the integrals defining the influence coefficients are
non-singular and may be computed using standard numerical meth-
ods. Choosing, for example, the trapezoidal rule, we replace the
integrand in (11.3.15) with the average of the values corresponding
to the ends of the integration domain, finding

(11.3.18)

for j = l , . . . , t - 2 , i + ! , . . . ,AT.

4. Compute the motion of the marker points by integrating in time
the ordinary differential equations

(11.3.19)

If the flow contains a collection of vortex patches, the right-hand
side of (11.3.14) is summed over all contours to account for all induced
contributions. Figure 11.3.3 illustrates stages in the evolution of three
vortex patches computed using program 09-vortex/vp-2d of FDLIB.
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Figure 11.3.3 Evolution of three vortex patches computed using the
method of contour dynamics for two-dimensional flow, implement-
ed in program 09-vortex/vp-2d of FDLIB. The dots around the
contours mark the adaptively redistributed marker points. The
three vortices merge into a larger vortex with spiral filaments.



Periodic flow

To compute the evolution of a periodic flow, we replace equation
(11.3.9) with its counterpart originating from equation (11.3.11). In
the case of one vortex patch repeated in the x direction with period a,
corresponding to M = 1, we find

(11.3.20)

where k — 2?r/a is the wave number.
The periodic integrand in (11.3.20) exhibits a logarithmic singularity

over the two elements hosting a marker point. To remove this singularity,
we add and subtract the non-periodic kernel corresponding to a solitary
point vortex, writing

(11.3.21)

As x1 tends to Xi and y' tends to Y^, the fraction on the right-hand side
of (11.3.21) tends to a finite value, and the integral of the corresponding
logarithmic term may be computed using a standard numerical method.
The improper integral of the last term on the right-hand side of (11.3.21)
may be computed analytically, as discussed previously in this section for
non-periodic flow.

Figure 11.3.4 illustrates stages in the Kelvin-Helmholtz instability of
a periodic vortex layer, computed using program 09-vortex/vp.2d.pr of
FDLIB. The initially sinusoidal vortex contours roll up into a periodic
sequence of compact vortices connected by thinning braids.

11.3.3 Gaussian integration quadrature

Various modifications of the basic procedure described in Section
11.3.2 can be made to improve the accuracy of the numerical method.



Figure 11.3.4 The Kelvin-Helmholtz instability of an infinite vortex
layer with uniform vorticity computed by the method of contour
dynamics, implemented in program 09.vortex/vL2d of FDLIB.



Consider, for example, the evaluation of the influence coefficients Aj
defined in equation (11.3.14) over non-singular elements. The trapezoidal
rule expressed by (11.3.18) replaces the integral with a weighted average
of the values of integrand at the two end-points, where both weights are
equal to 1/2. Generalizing this approximation, we evaluate the integral
by a quadrature, which is weighted average of the integrand at craftily
selected quadrature points,

(11.3.22)

where TVg is a chosen number of quadrature points, and w^ are inte-
gration weights. The base points (x^^yk) lie on element Ej, and their
position is given by

(11.3.23)

where the scaled base-point positions t^ take values in the range [-1, I].
The left extreme value t^ — -1 corresponds to x^ — X j , y^ -Yj, and
the right extreme value tfc = 1 corresponds to x^ = -Xj+i, y^ = YJ+I.
The trapezoidal rule expressed by (11.3.18) corresponds to TVg = 2 with
ti = -1 and *2 = 1> and equal weights w\ = WZ = 1.0.

Handbooks of mathematical functions provide us with tables of the
optimal positioning of the base points, £&, and corresponding weights, i^,
for a specified number of quadrature points TVg, where k = 1,2, . . . , NQ.
The base points are the zeros of selected classes of orthogonal polyno-
mials, and the weights arise by integrating interpolating polynomials
defined in terms of the base points. For smooth integrands that do not
exhibit singularities, the tables come under the header of the Gauss-
Legendre quadrature. For integrands with integrable singularities, or
integrals over infinite domains, the tables come under different headers.

Directory Ql.numjmeth/07-integration of FDLIB includes subrou-
tines that tabulate base points and weights, and programs that perform
numerical integration.



Figure 11.3.5 A vortex contour may be approximated locally with a
circular arc passing through three marker points.

11.3.4 Representation with circular arcs

To account for the curvature of a vortex contour, we replace the
straight segment connecting two adjacent marker points with a circular
arc, as illustrated in figure 11.3.5. The backward arc passes through
the trio of points numbered j — 1, j, and j + 1, and the forward arc
passes through the trio of points numbered j,j + 1, and j + 2. Each arc
is specified by its center and radius, computed by solving a system of
linear equations using interpolation constraints. The blended arc arises
by averaging the geometrical properties of the forward and backward
arc.

The position of a point on the jth arc may be expressed in the para-
metric form

x = xcj + RJ cos 9, y = yCj + Rj sin#, (11.3.24)

where (xCj, yCj) are the coordinates of the arc center, Rj is the arc radius,
and the polar angle 6 varies between two limits corresponding to the arc
end-points. The components of the unit tangent vector are given by

tx(0) = -±sin0, ty(0) = ±cos0, (11.3.25)

and the differential arc length is given by dl = ±jRj dO, where the plus
sign is chosen when the arc is traced in the counterclockwise direction
from point j to point j' + 1, and the minus sign otherwise.



The x and y components of the integral on the right-hand side of
(11.3.9) over the j arc, evaluated at the point (JQ5Yi), are given by

(11.3.26)

The integrals with respect to 9 on the right-hand sides may be computed
using, for example, the Gauss-Legendre quadrature.

When the evaluation point (X2-, Yi) lies on the jth arc, the integrands
in (11.3.26) are singular. To handle this special case, we express the
coordinates (Xi, YJ) in local plane polar coordinates, writing

Xi = xcj + Rj cos Oi, Yi = ycj + Rj sin^, (11.3.27)

and then substitute these expressions into (11.3.26), simplify, and rear-
range to find

(11.3.28)

As the integration angle O tends to the evaluation angle Oi, the in-
tegrands in (11.3.28) exhbibit a logarithmic singularity. To remove this
singularity, we manipulate the x component as follows,

(11.3.29)



Using the Taylor series expansion of the cosine with respect to 9 about
the point O^ we find that, as O tends to 0^, the fraction in the first integral
on the right-hand side of (11.3.29) tends to the finite value of 0.5. Thus,
this integral is non-singular and may be computed using a standard
method. The second integral on the right-hand side is also non-singular.
The singularity has been shifted to the third integral which, however,
may be evaluated by analytical methods. The y component expressed
by the second of equations (11.3.28) may be treated in a similar fashion.

An alternative method of computing the singular integrals (11.3.28)
involves using a quadrature that is specifically designed for integrals with
a logarihtmic singularity, as discussed in texts on numerical methods
cited in the bibliography.

Problems

Problem 11.3.1 Influence coefficient over a singular element.
(a) Derive the influence coefficients shown in (11.3.16). Hint: Work

in local Cartesian coordinates with the x axis tangential to the singular
element.

(b) Derive the analytical form of the last integral on the right-hand
side of (11.3.29).

(c) Derive the counterpart of (11.3.29) for the y component of the
induced velocity.

Problem 11.3.2 Periodic kernel.
Evaluate the limit of the fraction after the logarithm on the right-

hand side of (11.3.21) as the integration point tends to the evaluation
point.

Computer problems

Problem c.11.3.1 Motion of vortex patches.
Subdirectory 09-vortex/vp-2d of FDLIB contains a program that

simulates the motion of vortex patches with uniform vorticity using the
method of contour dynamics discussed in the text. In the numerical
implementation, the contour of each patch is approximated with a col-
lection of blended circular arcs. The marker points are redistributed



adaptively during the motion to capture the development of regions of
large curvature and prevent point clustering and dilution.

Run the program to simulate the motion of an arrangement of your
choice, and discuss the nature of the motion.

Problem c.11.3.2 Motion of vortex layers.
Subdirectory 09.vortex/vL2d of FDLIB contains a program that sim-

ulates the motion of adjacent vortex layers with uniform vorticity using
the method of contour dynamics discussed in the text. The numeri-
cal method is similar to that described in problem c.11.3.2 for vortex
patches.

Run the program to simulate the motion of an arrangement of your
choice, and discuss the nature of the motion.

11.4 Vorticity, circulation,
and three-dimensional flow
induced by vorticity

The circulation around a loop L in three-dimensional flow is defined
as the line integral of the tangential component of the velocity around
the loop,

(11.4.1)

where t = (tx,tyjtz) is the unit vector tangent to L, and dl = (dx2 +
dy^ + dz2)1/*2 is the differential arc length around the loop measured from
an arbitrary point, as depicted in figure 11.4.1. Th definition (11.4.1) is
a generalization of that stated in equation (11.1.1) for two-dimensional
flow.

If the loop is reducible, that is, if it can be shrunk to a point without
crossing flow boundaries or singular lines, we may use Stokes's circulation
theorem to express the circulation around the loop as an integral of
the component of the vorticity vector normal to any three-dimensional
surface D bounded by the loop,

(11.4.2)



Figure 11.4.1 A closed loop in three-dimensional flow, L, enclosing an
open area, D. The circulation around the loop is equal to the
surface integral of the normal component of the vorticity, u • n,
over D.

where dS is the differential surface area of D. The orientation of the
unit normal vector n is such that, as we look down from the positive
direction of the normal vector, the unit tangent vector t points in a
direction corresponding to counterclockwise rotation.

In the case of two-dimensional flow in the xy plane, the loop L and
surface D enclosed by L may be chosen to lie in the xy plane. The unit
normal vector n is then parallel to the z axis, and expression (11.4.2)
reduces to (11.1.2) where the vorticity vector is given by u = ujz n.

11.4.1 Preservation of circulation
in a flow with negligible viscous forces

To compute the rate of change of circulation around a material loop
consisting of a fixed collection of point particles with a permanent iden-
tity, we take the time derivative of both sides of the definition (11.4.1),
and find

(11.4.3)

where D/Dt is the material derivative.
If viscous forces are negligible, we may use Euler's equation (6.4.2)

to express the first integral on the right-hand side of (11.4.3) in the form



(11.4.4)

Now, if X is the position of a point particle around the loop, then
t = ^dX. Using this expression, and assuming that the fluid density is
uniform throughout the domain of flow, we find

(11.4.5)

Because the loop is closed, the domain of integration may be regarded
as periodic. Since the two integrands on the right-hand side of (11.4.5)
are exact differentials, their integrals vanish.

Considering the second integral on the right-hand side of (11.4.3), we
express it in the form

(11.4.6)

The material derivative D(dX.)/Dt expresses the rate of change of the
components of an infinitesimal material vector beginning at a certain
point particle and ending at another point particle. If the two point par-
ticles move with the same velocity, the material vector will simply trans-
late, and D(dX.)/Dt = O. This observation suggests that D(dX.)/Dt is
proportional to the local rate of change of the velocity with respect to
arc length along the material vector. Using Taylor series expansions, we
find

(11.4.7)



Considering now the inner product on the right-hand side of (11.4.6), we
write

(11.4.8)

Because the right-hand side of (11.4.8) is an exact differential, its line
integral over the closed loop vanishes. Working in a similar manner
with the projections of the y and z components, we find that the second
integral on the right-hand side of (11.4.3) also vanishes, yielding the
conservation law

dC =

dt ' (11.4.9)

which expresses Kelvin's circulation theorem: when viscous forces are
negligible, the circulation around a closed material loop in a three-
dimensional flow remains constant in time.

11.4.2 Flow induced by vorticity

Given the velocity field, we may compute the associated vorticity
field using the definition of the vorticity

W S V X "' (11.4.10)

by analytical or numerical differentiation. Is there a way of doing the
inverse, that is, expressing the velocity in terms of the vorticity?

In the case of two-dimensional flow, the velocity field associated
with a specified vorticity distribution in the xy plane arises from the
integral representation (11.3.2). The corresponding formula for three-
dimensional flow is

(11.4.11)



Figure 11.4.2 The flow induced by the rotation of a small fluid parcel
is expressed by the Biot-Savart integral shown in (11.4.12).

In index notation,

(11.4.12)

The second set of parentheses in the numerators on the right-hand sides
of (11.4.11) and (11.4.12) enclose the arguments of the vorticity.

The numerator of the integrand in (11.4.11) consists of the cross
product of (a) the vectorial distance between the evaluation point x =
( x , y , z ) and the integration point x7 = ( x ' ^ y ' . z 1 ) , and (b) the vorticity.
The denominator is the cubic power of the scalar distance between the
evaluation point and the integration point, |x - x'|3. Thus, far from the
integration point x7, the integrand decays like 1/r2, where r = [(x —
z')2 + (y-y')2 + (*-O2]1/2.

The physical interpretation of (11.4.11) becomes evident by replac-
ing the integral with a sum of integrals over the volumes of elementary
fluid parcels. The velocity induced by each individual parcel due to its
rotation is illustrated in figure 11.4.2. The analogy with the magnetic
field induced by an electrical current explains why the integral on the
right-hand side of (11.4.11) is known as the Biot-Savart integral of vortex
dynamics.

The integral representation (11.4.11) is applicable only for unbound-
ed flow extending to infinity in all directions. In the presence of bound-
aries, an additional complementary flow must be included to ensure



Figure 11.5.1 Illustration of an axisymmetric flow without swirling
motion. The vorticity vector points in the meridional direction.

the solenoidality of the velocity field and the satisfaction of the no-
penetration and no-slip boundary conditions.

11.5 Axisymmetric flow induced by vorticity

The vorticity of an axisymmetric vortex flow without swirling motion
points in the direction of the meridional angle 92, as illustrated in figure
11.5.1. The known orientation of the vorticity field and accompanying
axial symmetry of the velocity allow us to simplify the volume integral
on the right-hand side of (11.4.11), thereby deriving representations that
are more amenable to analytical and numerical methods.

In the cylindrical polar coordinates depicted in figure 11.5.1, the vor-
ticity vector takes the form uj = M^(X,a] e^, where u^ is the scalar
strength of the vorticity, and e^ is the unit vector ponting in the di-
rection of the meridional angle (p. The Cartesian components of the
vorticity are given by

UJx = O, Uy = -U^ sin (p, cjz = U^ cos (p.
(11.o.IJ

Considering the integral representation (11.4.11), we express the y
and z coordinates of the evaluation point x and integration point x; in



terms of their cylindrical polar coordinates, writing

(11.5.2)

The square of the distance between these two points is given by

(11.5.3)

Expanding out the squares, and using elementary trigonometric identi-
ties, we find

(11.5.4)

where (p = (p — (p1.
Next, we consider the x component of (11.4.12), and express the

differential volume dxf dy1 dy1 in the alternative form dx' da' a1 d(p' to
obtain

(11.5.5)

Substituting relations (11.5.1) and (11.5.2) into the numerator of the
integrand, simplifying by use of trigonometric identities, and rearranging,
we find

(11.5.6)

where r is equal to the square root of the right-hand side of (11.5.4).
To compute the a component of the velocity, we work in a similar

fashion departing from the equation U0- = uy cos(p + uz sin (p. The result
is



(11.5.7)

To simplify the notation, we recast equations (11.5.6) and (11.5.7)
into the forms

(11.5.8)

We have introduced the integrals

(11.5.9)

(11.5.10)

(11.5.11)

and

where T] = <£/2, and



The integrals on the right-hand side of (11.5.9) and (11.5.10) are
not known in analytical form. To evaluate them, we express them in
terms of complete elliptic integrals of the first and second kind denoted,
respectively, by F and E", defined as

(11.5.12)

The complete elliptic integrals may be evaluated efficiently by iteration
or approximation, as will be discussed later in this section.

Referring to standard integration tables, we find that the integrals
on the right-hand side of (11.5.9) and (11.5.10) are given by

(11.5.13)

and

(11.5.14)

The derivation of these expressions concludes the analytical part of our
work.

Evaluation of the complete elliptic integrals
of the first and second kind

An efficient method of evaluating the complete integrals is based on
the following expressions involving rapidly converging infinite products,

where

The sequence Kv is computed using the recursive formula

(11.5.15)

(11.5.16)

(11.5.17)



Figure 11.5.2 Graphs of the complete elliptic integral of the first kind,
E(k), drawn with the dashed line, and complete elliptic integral
of the second kind, F(k), drawn with the solid line, defined in
equations (11.5.12).

beginning with KQ = k. Graphs of the complete elliptic integrals com-
puted using this method, implemented in subroutine elLint located in
directory 01-num.meth/12-spec.fnc of FDLIB, are shown in figure 11.5.2.

11.5.1 Line vortex ring

We are in a position now to evaluate the velocity field associated
with a specified axisymmetric vorticity distribution on the basis of the
integral representations (11.5.8).

The simplest of vorticity distribution is associated with a line vortex
ring, which is the axisymmetric counterpart of the point vortex in two-
dimensional flow. The strength of the vorticity in a meridional plane is
expressed by the generalized distribution

Uy(X, a) = ^S2(X - xr,a - oy), (11.5.18)

where 62 is the two-dimensional delta function in the xa plane; K is the
strength of the vortex ring, equal to the circulation around the ring;
ar is the radius of the ring; and xr is the axial position of the ring.
Substituting (11.5.18) into expressions (11.5.8), and using the distinctive



properties of the delta function discussed in Section 11.2 to evaluate the
integrals, we find

(11.5.19)

The streamline pattern of the flow induced by the ring is shown in figure
11.5.3(a).

Motion in the presence of boundaries

In the presence of boundaries, the velocity field expressed by (11.5.19)
must be enhanced with a complementary velocity that ensures the satis-
faction of the no-penetration boundary condition at impermeable walls.
For simple boundary geometries involving one or two parallel walls, the
complementary flow may be expressed in terms of image vortex rings.

Figure 11.5.3(b-c) illustrates the streamline pattern of the axisym-
metric flow induced by a vortex ring in front of a plane wall and in
the exterior of a sphere. Programs that evaluate the velocity field are
provided in directory 09-vortex/lvr of FDLIB. The streamline patterns
shown in figure 11.5.3 were generated using program 04-various/strmll
of FDLIB.

11.5.2 Vortex rings with finite core

Consider now the flow induced by a slender vortex ring of radius
ar located at the axial position xr. We will assume that the ring has
a circular core of radius a, as illustrated in figure 11.5.4. It will be
convenient to introduce plane polar coordinates in a meridional plane
with origin at the center of the core, denoted by (g, x), as depicted in
figure 11.5.4. The vorticity is assumed to vanish outside the core; that
is, Uy = O when q > a.

Using expression (11.4.2), we find that the circulation around the
core is given by

(11.5.20)



Figure 11.5.3 Streamline pattern of the flow induced by a line vortex
ring (a) in an unbounded domain of flow, (b) in a semi-infinite
domain bounded by a plane wall, and (c) in the exterior of a sphere.



Figure 11.5.3 Continued.

According to our earlier discussion, the circulation may be identified with
the conserved strength of the vortex ring, denoted by K.

Considering the integral representation for the velocity given in (11.5.8)
we perform the integration in the plane polar coordinates (#, x) defined
in figure 11.5.4, and find

(11.5.21)

Note that, because of the singular behavior of the complete elliptic in-
tegral F ( k ) , the integrands in (11.5.21) exhibit a logarithmic singularity
when the evaluation point (rr, a) lies inside the core.

The simplest way of evaluating the double integrals on the right-hand
sides of (11.5.21) is by the double-trapezoidal rule: divide the domain of
integration with respect to q and x m^>° evenly spaced intervals defining
circular sectors, approximate the integrand over each sector with the
value at the center, and add all contributions.



Figure 11.5.4 Illustration of a vortex ring of radius ay with a circular
core of radius a.

Figure 11.5.5 The reduced self-induced velocity of a vortex ring with
radius ar and circulation AC, plotted against the reduced core ra-
dius a = a/ar. The solid and dashed line correspond, respectively,
to a ring with uniform or gradual vorticity distribution described
by equation (11.5.22) or (11.5.23). The dotted line represents
Helmholtz's asymptotic prediction for small core radius, expressed
by equation (11.5.24).



S elf-induced velocity

The self-induced velocity of a vortex ring propagating along the x
axis with velocity CTx, may be identified with the x component of the
fluid velocity evaluated at the center of the vortex core, which may be
computed using the first of expressions (11.5.21) for x = xr and a — ar.

Figure 11.5.5 shows a graph of the dimensionless self-induced veloc-
ity U = Ux ar/K, plotted against the reduced core radius a = a/oy,
evaluated using the double-trapezoidal approximation described in the
last paragraph, neglecting the weak logarithmic singularity of the inte-
grand. The numerical method is implemented in program 09-vortex/ring
of FDLIB. The solid line corresponds to a core with uniform vorticity

(11.5.22)

and the dashed line corresponds to a core with distributed vorticity de-
scribed by

(11.5.23)

for O < q < a, and u^ = O for q > a.
The results show that, as the size of the core tends to zero while the

strength of the ring is held constant, the self-induced velocity obtains
increasingly larger values irrespective of the form of the vorticity distri-
bution over the core. Thus, the self-induced velocity of a line vortex ring
with infinitesimal core, which is the axisymmetric counterpart of a point
vortex, is not defined. We shall see later in this chapter that this is a
more general result applicable to vortex filaments with non-rectilinear
shapes.

An asymptotic analysis of the self-induced velocity in the limit of
small core size shows that, to leading order, the self-induced velocity of
a slender vortex ring is given by Helmholtz's formula

(11.5.24)

This formula explicitly illustrates that the self-induced velocity diverges
at a logarithmic rate with respect to the reduced core radius a/ar. The
predictions of (11.5.24), represented by the dotted line in figure 11.5.5,
are in fair agreement with the exact values represented by the solid and
dashed lines, even when the size of the core is not small compared to the
ring radius.



11.5.3 Motion of a collection of vortex rings

A vortex ring belonging to a collection of coaxial vortex rings trans-
lates under the influence of its self-induced velocity as well as of the
velocity induced by its peers. When the ring core size is small, the
self-induced velocity is given by Helmholtz's formula (11.5.24).

Now, the vorticity transport equation (6.6.7) requires that, as the ra-
dius of a ring, ar changes during the motion, the strength of the vorticity,
ofy, should increase or decrease by the same proportion. In response to
this change, the radius of the core, a, is adjusted to preserve the ring
strength and core volume,

-[(27TCJr)7ra2]= O. (11.5.25)

Expanding out the derivative on the left-hand side, and rearranging, we
obtain an evolution equation for the core radius

(11.5.26)

where U0- = dar/dt is the rate of expansion of the ring centerline.
Appending equation (11.5.26) to the equation of motion for the ring

centerline, we obtain a system of differential equations governing the ring
axial position, centerline, and core radius. A numerical method for in-
tegrating this system in time is implemented in program 09-vortex/lvrm
of FDLIB. Figure 11.5.6 shows stages in the motion of four vortex rings
computed using this program. The simulation reveals that two neigh-
boring vortex rings pass through one another in an alternating fashion,
exhibiting a type of motion that can be described as leap-frogging.

11.5.4 Vortex patches in axisymmetric flow

Consider an axisymmetric flow containing an annular vortex whose
vorticity is proportional to the distance from the x axis,

oV = fi<7, (11.5.27)

where £1 is a constant. The flow outside the vortex is assumed to be
irrotational. Substituting the vorticity distribution (11.5.27) into the
integral representation (11.5.8), and using the Gauss divergence theorem,
we derive a contour integral representation that is analogous to that for a
two-dimensional vortex patch with uniform vorticity discussed in Section
11.2,



Figure 11.5.6 Motion of a collection of coaxial vortex rings computed
using program 09-vortex/lvrm of FDLIB, showing leap-frogging.

(11.5.28)

where C is the trace of the vortex contour in a meridional plane. We
have introduced the integrals



(11.5.30)

where 77 = <p/2, k2 is defined in (11.5.11), and F(k) is the complete
elliptic integral of the first kind defined in the first of equations (11.5.12).
The integral on the right-hand side of (11.5.30) may be expressed in terms
of complete elliptic integral of the first and second kind, as

(11.5.29)

and

(11.5.31)

11.5.5 Contour dynamics

The vorticity transport equation for axisymmetric flow with negligi-
ble viscous forces, equation (6.6.8), requires that the vorticity inside an
axisymmetric patch whose vorticity distribution is linear with respect to
distance from the x axis, a, remain linear at all times. To compute the
evolution of the flow, it suffices then to simulate the motion of the vortex
contour using the counterpart of the contour dynamics formulation for
two-dimensional flow discussed in Section 11.3.



Figure 11.5.7 Streamline pattern associated with Hill's spherical vor-
tex, in a frame of reference translating with the vortex.

Problems

Problem 11.5.1 Velocity induced by vorticity.
Derive the representation (11.5.7).

Problem 11.5.2 HiWs spherical vortex.
Hill's spherical vortex is a paradigm of an axisymmetric vortex patch

with distributed vorticity. Inside the vortex, the strength of the vorticity
is proportional to the distance from the x axis, cr, as shown in equation
(11.5.27); outside the vortex, the flow is irrotational. The streamline
pattern in a frame of reference translating with the vortex is shown in
figure 11.5.7. Hill's vortex is the extreme member of a family of vortex
rings, arising in the limit as the core spreads out and the ring contour
touches and then extends over the x axis. The opposite extreme member
of this family is a line vortex ring with a core of infinitessimal radius
discussed in Section 11.5.1.

(a) Verify that, in a stationary frame of reference, the axisymmetric
stream function of the flow inside and outside Hill's vortex is given,
respectively, by



(b) Show that the velocity is continous across the spherical interface.
(c) Explain why the unperturbed vortex translates along the x axis

with velocity U= ^ ft a2.

Problem 11.5.3 Contour dynamics for three-dimensional flow.
Is it possible to derive a contour dynamics method for a three-dimensional

(non-axisymmetric) vortex flow?

Computer problems

Problem c.11.5.1 Motion of line vortex rings.
Subdirectory 09-vortex/lvrm of FDLIB contains a program that sim-

ulates the motion of a collection of line vortex rings in an unbounded
domain of flow. Run the program to simulate the motion of a collection
of rings of your choice, and discuss the nature of the motion.

Problem c.11.5.2 Motion of vortex patches.
Subdirectory 09-Vortex/vp.ax of FDLIB contains a program that

simulates the motion of a specified number of axisymmetric vortex patch-
es using the method of contour dynamics. In the numerical method, the
contour of each patch is approximated with blended circular arcs, as
discussed in Section 11.3. The marker points are redistributed adap-
tively during the motion to capture the development of regions of high
curvature and prevent point clustering and dilution.

Run the program to simulate the motion of a patch of your choice,
and discuss the nature of the motion.

11.6 Three-dimensional vortex motion

In previous sections, we have studied the dynamics of two-dimensional
and axisymmetric vortex flows using (a) the integral representation of

(11.5.32)



the velocity in terms of the vorticity expressed by the Biot-Savart in-
tegral, and (b) simplified versions of the vorticity transport equation
for inviscid flow. Extensions to three dimensions are straightforward in
principle, but subtle in numerical implementation.

11.6.1 Vortex particles

The vortex-particle method arises by replacing the Biot-Savart inte-
gral shown in (11.4.11) with a sum of integrals over parcels of rotational
fluid, and then condensing the vorticity of each parcel into a designated
center. This approximation replaces the rotational fluid with a collection
of three-dimensional singularities called rotlets or vortons. The strength
of the vortons evolves according to rules stemming from the vorticity
transport equation for three-dimensional flow, expressing stretching and
reorientation.

The vorton discretization is analogous to the point-vortex or circular-
line-vortex discretization of two-dimensional or axisymmetric flow. Be-
cause, however, the three-dimensional discretization breaks the continu-
ity of the vortex lines, some fundamental difficulties arise in three dimen-
sions. These difficulties, combined with high computational cost, explain
why the vorton method is less attractive compared to its counterparts
for two-dimensional and axisymmetric flow.

11.6.2 Line vortices and the local induction approximation

A simplified model of the self-induced motion of a three-dimensional
vortex filament with small core size, as illustrated in figure 11.6.1, can
be devised using our earlier results for vortex rings with small but non-
infinitesimall core radius.

To compute the motion of the filament centerline, we evaluate the
velocity at the position of point particles distributed over the centerline
using the Biot-Savart integral (11.4.11), and then advance the position
of the point particles using a standard numerical method. Our earlier
discussion for vortex rings suggests that the self-induced velocity of the
filament is determined, primarily, by the ratio between the local filament
core radius and the local radius of curvature of the centerline, as shown
in equation (11.5.24). This observation provides us with a basis for
computing the motion of the centerline according to the local induction
approximation.



Figure 11.6.1 The motion of a thin vortex filament may be computed
using the local induction approximation expressed by equations
(11.6.1) and (11.6.2).

In this approximation, the velocity at a point along the centerline is
assumed to be parallel to the local unit binormal vector b, defined as the
cross product of the unit tangent vector t and the unit normal vector n,

b = t x n . (11.6.1)

The unit tangent vector arises by differentiating the position vector x
with respect to arc length I along the centerline,

dx
t = ̂ , (11.6.2)

and the unit normal vector arises by further differentiating the unit tan-
gent vector with respect to arc length, obtaining

1 dt
n = -Rdi- (U-6-3)

The scalar coefficient R is the radius of curvature of the filament center-
line. The self-induced velocity of the filament is given by

u = ^>b> (11.6.4)

where K is the strength of the filament. The magnitude of the velocity
Ub derives from Helmholtz's formula (11.5.24) as

(11.6.5)



where a is the local filament core radius, allowed to vary with position
along the centerline.

The vorticity transport equation requires that the vorticity inside
the filament core increase or decrease depending on whether the filament
centerline undergoes stretching or compression. This constraint allows us
to derive an evolution equation for the filament core radius, by requiring
conservation of volume of rotational fluid composing the core. If Sl is an
infinitesimal arc length along the centerline corresponding to a material
segment that begins and ends at two point particles, then conservation
of volume requires

(11.6.6)

which is the counterpart of equation (11.5.25) for axisymmetric flow.
Expanding out the derivative of the product on the right-hand side of
(11.6.6), and rearranging, we obtain the evolution equation

(11.6.7)

which is the counterpart of equation (11.5.26) for axisymmetric flow.
A numerical method for computing the evolution of the centerline of

a closed filament involves the following steps:

1. Trace the centerline with N + I marker points, and assign initial
values to the core radius. Point 1 coincides with point N + 1.

2. Approximate the centerline over the interval subtended between
points numbered i — I and i +1 with a circular arc passing through
the three points labelled i — 1, i, and i + 1, and compute the arc
center and radius for i = 1,2,. . . N.

3. Compute the unit tangent, normal, and binormal vector at the ith
marker point using equations (11.6.1) - (11.6.3), for i = 1,2,.. . N.

4. Set the radius of curvature of the line vortex at each point equal
to the radius of the arc, R.

5. Advance the position of the marker points with the velocity com-
puted from (11.6.4).

6. Update the core radius by requiring conservation of volume ex-
pressed by (11.6.6).



The motion of marker points computed using this method suffers
from numerical instabilities that cause the onset of strong oscillations due
to the violent amplification of numerical or round-off error. Smoothing
the position of the marker points by the five-point formula (11.2.24)
applied for the Cartesian coordinates of the marker points filters out the
oscillations and allows the motion to be pursued for an extended period
of time.

Stages in the evolution of a closed line vortex computed using pro-
gram 09-vortex/lvJia of FDLIB are shown in figure 11.6.2. The numer-
ical method incorporates adaptive point redistribution to capture the
development of regions of high curvature. The simulation shows that
the ring travels while exhibiting wobbly oscillations familiar to the cigar
smoker.

Problem

Problem 11.6.1 LIA for a circular line vortex ring.
Confirm that the local induction approximation consistently describes

the motion of a circular line vortex ring discussed in Section 11.5.

Computer problem

Problem c.11.6.1 Motion of line vortex.
Subdirectory 09-vortex/lvJia of FDLIB contains a program that sim-

ulates the motion of a closed line vortex using the local induction ap-
proximation. Run the program to simulate the evolution of a line vortex
with initial shape and core radius of your choice, and discuss the nature
of the motion.



Figure 11.6.2 Stages in the evolution of a closed line vortex resembling
a smoke ring, computed by program 09-Vortex/lvJia of FDLIB.



Chapter 12

Aerodynamics

12.1 General features of flow past an aircraft
12.2 Airfoils and the Kutta-Joukowski condition
12.3 Vortex panels
12.4 Vortex panel method
12.5 Vortex sheet representation
12.6 Point-source-dipole panels
12.7 Point-source panels and Green's third identity

Flows past airplane wings and high-speed ground vehicles have cap-
tured the attention of fluid dynamicists, applied mathematicians, and
computational scientists and engineers, not only because of their obvi-
ous technological significance, but also because of the opportunity they
present to perform elegant mathematical analyses and develop realis-
tic and efficient numerical models. Although these flows occur at high
Reynolds numbers, and often at transonic or supersonic speeds that are
comparable to or even exceed the speed of sound, the effects of viscos-
ity are important in two ways. First, viscous stresses determine the
drag force exerted on the moving surfaces, and thus the energy required
to sustain the motion; second, viscous stresses are responsible for the
production of vorticity which generates circulation and thereby induces
lift. A comprehensive analysis of a high-speed flow in aerodynamics in-
corporates the effects of fluid compresibility and turbulent motion, and
accounts for the presence of boundary layers and regions of recirculat-
ing flow. In this chapter, we discuss the most basic configuration by
neglecting the presence of boundary layers and wakes, and by assuming
that the fluid is inviscid and incompressible. The simplified model, in-
volving irrotational flow in the presence of global circulatory motion, is
amenable to efficient numerical methods that illustrate the importance
of computational fluid dynamics in the practical field of aerodynamics.



Figure 12.1.1 Schematic illustration of flow past an aircraft in a frame
of reference moving with the aircraft.

12.1 General features of flow past an aircraft
Figure 12.1.1 shows a schematic illustration of flow past an aircraft

after it has taken off and travelled by a certain distance, in a frame of
reference moving with the aircraft. If the flow is subsonic, the following
features are most significance:

• A thin vortex loop resembling a line vortex is established behind
the aircraft. The loop extends from the left wing tip, back at a
length comparable to the distance that the aircraft has travelled,
and then forward up to the right wing tip. The trailing vortex
at the back of the loop was generated when the airplane started
moving, and is accordingly called the starting vortex. The vortex
loop may be extended artificially into the wings to form a closed
line vortex.

The circulation around any closed loop that encloses the line vortex
is constant, independent of the shape and location of the loop.
Thus, the circulation around a simple loop that encloses a wing
is equal to the circulation around a simple loop that encloses the
trailing vortex.

• Viscous stresses cause the vortex loop to diffuse and its vortex core
to be smeared out. The circulation around any loop that encloses

Starting
vortex



the smeared vortex loop, however, is equal to the circulation around
a loop that encloses a wing, no matter how far the vorticity has
spread out.

• The circulation around a loop that encloses a wing is determined
by the speed of the aircraft and the geometry and orientation of
the wings with respect to the incoming wind, as will be discussed
in Section 12.2.

• If the aircraft suddenly changes its speed or direction of flight, a
new vortex loop will be ejected, contributing an additional amount
of circulation around the wings.

• Each wing experiences a lift force normal to the direction of flight,
and a drag force parallel to the direction of flight. The later must
be compensated by the thrust produced by the engines.

The lift force may be computed with surprisingly good accuracy
by neglecting the effects of viscosity, and by assuming that the flow
around the airfoil is irrotational. To compute the drag force, we
may carry out a boundary-layer analysis of the basic irrotational
flow, as discussed in Chapter 10.

It is important to bear in mind that the main features of the flow
past an aircraft discussed in this section assume that the wings are only
slightly tilted with respect to the direction of the incoming wind. When
this condition is not met, regions of recirculating flow develop over the
upper surface of the airfoil, seriously affecting the structure of the flow
and the performance of the aircraft.

To study the flow past the wings and compute the lift force per
unit span exerted on them, we may assume that the flow is locally two-
dimensional occurring in the xy plane that is normal to the line con-
necting the wing tips. It turns out that neglecting the third dimension
provides us with a theoretical model whose predictions are in good or
even excellent agreement with laboratory measurements conducted in
wind tunnels. Accordingly, in the remainder of this chapter, we concen-
trate on the two-dimensional flow, regarding the three-dimensional flow
as an advanced topic suitable for a second course in aerodynamics.



Figure 12.2.1 An airfoil and its standard geometrical properties.

12.2 Airfoils and the Kutta-Joukowski condition

An airfoil is a section of a wing, as depicted in figure 12.2.1. The
shape of an airfoil is described by the following geometrical properties:

• The chord line, defined as the straight line connecting the leading
to the trailing edge.

• The chord, denoted by c, defined as the distance between the lead-
ing and the trailing edge.

• The camber line, defined as the locus of points located halfway
between the upper and lower surface of the airfoil.

• The camber, defined as the maximum distance between the camber
line and the chord line. When the camber vanishes, the airfoil is
symmetric.

• The airfoil thickness distribution along the camber line.

The angle a subtended between the incoming wind and the chord
line is called the angle of attack.

12.2.1 NACA airfoils

The National Advisory Committee for Aeronautics of the United
States, NACA, the ancestor of today's NASA, has standardized airfoil

Thickness

camber

Leading edge

Camber line
Chord line

Trailing edge



shapes to facilitate engineering design. NACA airfoils are produced by
specifying the geometry of the camber line, and then wrapping around
the camber line the airfoil contour to obtain a desired distribution of half-
thickness. The dated four-digit NACA efgh airfoils, where e,/,g,/i are
four integers, has a camber of 0.0/ xc occurring at a distance 0.0/ xc from
the leading edge, where c is the chord; the maximum airfoil thickness is
O.gh x c. Modern five- and six-digit airfoils are coded with additional
goemetrical and flow properties.

12.2.2 The Kutta-Joukowski theorem

It can be shown that the lift force per unit span exerted on an airfoil,
Z/, is determined by the incoming wind speed, C/, and the circulation
around the airfoil, C, by means of the Kutta-Joukowski theorem ex-
pressed by

L = -pUC, (12.2.1)

where p is the density of the fluid. Note that positive lift requires nega-
tive circulation associated with clockwise rotation around the airfoil, as
illustrated in figure 12.2.1. If the circulation vanishes, the lift force is
equal to zero.

The Kutta-Joukowski can be proved most readily making use of the
theory of analytical functions of a complex variable, as discussed in the
texts cited in the bibliography.

Flow past a cylinder

To confirm the validity of the Kutta-Joukowski theorem, we consider
uniform flow past a circular cylinder with radius a, as discussed in Section
3.7. Applying Bernoulli's equation (6.4.14) at infinity and at a point on
the surface of the cylinder, and evaluating the tangential velocity on the
surface of the cylinder using formula (3.7.8), we derive an expression for
the surface pressure,

p(r = a) = P00 - 2p V* (sin/9 + /?)2, (12.2.2)

where P00 is the pressure at infinity, and /3 is the dimensionless circulation
parameter defined in equation (3.7.7). In the absence of viscous stresses,
the force per unit span exerted on the cylinder is given by



(12.2.3)

where dl = adO is the differential arc length around the cylinder, and n =
(cos 0, sin O) is the unit vector normal to the cylinder pointing into the
fluid. Substituting (12.2.2) into (12.2.3), and carrying out the integration
with respect to 0, we find that the x component of the force vanishes,
and the y component is given by L = 4:7rapV^/3. Recalling the definition
of/3 given in (3.7.7), we derive

L = -?V*^ (12.2.4)

which is in agreement with the Kutta-Joukowski theorem expressed by
(12.2.1).

12.2.3 The Kutta-Joukowski condition

In the context of irrotational flow theory, the circulation around
an airfoil, or any two-dimensional body, may be arbitrary. Kutta and
Joukowski observed independently that, in practice, when the angle of
attack a is small, the flow on the upper side of an airfoil joins smoothly
with the flow on the lower side of the airfoil at the trailing edge. This
observation provides us with a physical basis for the Kutta-Joukowski
condition stipulating that the amount of circulation established around
an airfoil is such that a singular flow is not established at the trailing
edge. In the context of irrotational flow theory, the Kutta-Joukowski
condition requires that the fluid does not turn around a cornered or
cusped trailing edge.

Considering the Kutta-Joukowski theorem expressed by (12.2.1), we
see that a well-designed arfoil should be able to produce a high degree
of circulation while minimizing the drag force exerted on the airfoil.

Problem

Problem 12.2.1 Flow past a cylinder.
Carry out the integration in (12.2.3) with the pressure given in (12.2.2)

to derive expression (12.2.4).



Computer problem

Problem c. 12.2.1 Airfoil shapes by mapping.
Airfoil shapes may be produced by mapping a closed contour in the

(£, TI) plane to the airfoil contour in the xy plane, using an appropriate
mapping function. In theoretical aerodynamics, the mapping function
arises from a function of a complex variable /, by setting z = /(C), where
z = x + iy, £ = £ + i TJ are two complex variables, and i is the imaginary
unit. Joukowski's transformation employs the mapping function

A2

/(C) = CH--^ - , (12.2.5)

where A is a real constant. A circle in the £ plane passing through
the point (-A,0) and enclosing the reflected point (A, O) is mapped to
a cusped airfoil whose camberline and camber are determined by the
location of the center of the circle in the £ plane.

Program 07-ptf/airf.2d/joukowski of FDLIB produces airfoil shapes
using the Joukowski mapping function (12.2.5). Run the program to
generate and graph several airfoil shapes of your choice.

12.3 Vortex panels

We begin the study of two-dimensional flow past an airfoil by intro-
ducing a class of elementary flows associated with vortex panels. Our ul-
timate objective is to use these elementary flows as fundamental building
blocks for describing the flow past an airfoil with arbitary shape, where
the circulaton around the airfoild is determined by the Kutta-Joukowski
condition.

In Section 3.7, we introduced the two-dimensional irrotational flow
with circulatory motion induced by a point vortex. The x and y com-
ponents of the velocity at the point (#, y) due to a point vortex with
strength K located at the point (XQ, yo) were given in equations (11.2.1),
repeated here for ready reference,

(12.3.1)



Figure 12.3.1 A collection of N point vortices deployed along the x
axis over the interval (a, b). As N tends to infinity, we obtain a
vortex panel.

The corresponding stream function and velocity potential are given, re-
spectively, by

(12.3.2)

and

(12.3.3)

12.3.1 From point vortices to vortex panels

Consider a collection of N point vortices distributed evenly along the
x axis over the interval (a, b), separated by the distance Aa; = (b — a)/N,
as illustrated in figure 12.3.1. The ith point vortex is situated at the
position Xi — a + | Ax, yi = O, where i = 1,2,... TV, and its strength is
equal to /^; the first point vortex is located at XI = a + \ Ax, and the
last point vortex is located at XN = b — \ Ax.

Superposing the stream functions associated with the individual point
vortices, we find that the stream function of the flow induced by the point
vortex collection is given by

(12.3.4)



which can be recast into the form

(12.3.5)

with the understanding that yi = O.
In the limit as N tends to infinity, and correspondingly Ao; tends to

zero, while the strength of the point vortices is reduced so that the ratio
7^ = KI/Ax remains constant, the sum on the right-hand side of (12.3.5)
reduces to a line integral over the domain of distribution of the point
vortices, yielding the integral representation

(12.3.6)

with the understanding that yf = O. The right-hand side of (12.3.6)
expresses the flow due to a two-dimensional finite vortex sheet or vortex
panel with strength density 7(2?), subtended between the points x = a
and 6, as indicated by the superscript VP. The circulation around the
panel, defined as the strength of the panel, is equal to the line integral
of the strength density,

(12.3.7)

Following the discussion in Section 3.7, we find that the circulation
around a closed loop that does not enclose the panel vanishes, whereas
the circulation around a simple closed loop that wraps around the panel
once is equal to the strength of the panel, Fp. If the strength of the panel
is equal to zero, the circulation vanishes.

12.3.2 Vortex panels with constant strength density

Consider a vortex panel with constant strength density equal to 7^°);
according to (13.3.7), the circulation around the panel is equal to Tp =
(6 — a) 7^0). Using (12.3.6) with y' = O, we find that the stream function
of the induced flow is given by

(12.3.8)



The integral on the right-hand side of (12.3.8) may be computed in closed
form with the aid of standard mathematical tables, and the result is

(12.3.9)

The velocity components are found by straightforward differentiation,
and are given by

(12.3.10)

and

(12.3.11)

The streamline pattern induced by a vortex panel subtended between
the points x = — b and b is shown in figure 12.3.2. Far from the panel,
the flow reduces to that due to a point vortex with strength K = Tp =
7^°) (b - a) = 2 b 7^) situated at the origin.

Jump in velocity across the panel

Expression (12.3.11) shows that the y component of the velocity is
continuous throughout the domain of flow as well as across the vortex
panel. In contrast, because of the presence of the inverse tangent function
on the right-hand side of (12.3.10), the x component of the velocity
undergoes a discontinuity across the vortex panel. To demonstate this
jump, we evaluate the velocity at a point on the upper surface of the
panel, for a < x < b and y = +e, where e is a small positive number,
and find

(12.3.12)



Figure 12.3.2 Streamline pattern of the flow induced by a vortex panel
with constant strength situated on the x axis over the interval
-b < x < b.

independent of x, as long as a < x < b. The corresponding velocity at a
point on the lower surface of the panel, located at x < b and x > a, is
given by

u^(x, -> 0-) = ~^~ [- arctan(H-oo) + arctan(-oo)]

(12.3.13)

independent of #, as long as a < x < b. Thus, as the vortex panel
is crossed from the upper to the lower side, the velocity undergoes a
discontinuity whose magnitude is equal to the strength of the vortex
sheet,

ux(x, -e) - ux(x, +e) = 7(0). (12.3.14)

In contrast, no discontinuity occurs when the x axis is crossed beyond
the edges of the vortex panel.

These observations identify a vortex sheet with a surface across which
the tangential component of the velocity undergoes a discontinuity; the
magnitude of the discontinuity is the strength of the vortex sheet.



13.3.3 Vortex panel with linear strength density

Next, we consider a vortex panel with linear strength density distri-
bution given by

(12.3.15)

Using (13.2.7), we find that the circulation around the panel is given

(12.3.16)

Applying (12.3.6) with y' = O, and rearranging, we find that the
stream function of the flow induced by the panel is given by

(12.3.17)

The first integral on the right-hand side of (12.3.17) is equal to the
expression enclosed by the square brackets following the fraction on the
right-hand side of (12.3.9). The second integral is found with the help
of standard tables of integrals to be

(12.3.18)

Combining (12.3.8), (12.3.18), and (12.3.6), and consolidating various
terms, we find

(12.3.19)



where ^0) is given by (12.3.9), and

(12.3.20)

The velocity components may be resolved into the corresponding forms

401W) =40)(*,y) + 40O*, y)> (12.3.21)

and
401)(*,y) = 4°)(*,y)+41^y), (12>3>22)

where ^0) and 4°} are given in (12.3.10) and (12.3.11). Tedious differ-
entiation yields

(12.3.23)

and

(12.3.24)

Using these expressions, we find that, as the vortex panel is crossed
normal to the x axis, the x component of the velocity undergoes a dis-
continuity whose magnitude is equal to the local strength of the vortex
sheet.

The streamline pattern of the flow induced by a vortex panel sub-
tended between the points x = — b and 6, with linear strength density



Figure 12.3.3 Streamline pattern of flow due to a vortex panel with
linear strength distribution extending between x — — b and 6, for
vanishing circulation around the panel.

distribution given by 7^) = —2j^/(b — a) = —7(^/6, is shown in figure
12.3.3. Because the circulation around the panel vanishes, as required
by equation (12.3.16), far from the panel the flow reduces to that due
to a point-vortex dipole situated at the center of the panel and pointing
along the x axis, which is identical to the flow due to a point-source
dipole placed at the same location and pointing along the y axis.

Problem

Problem 12.3.1 Velocity potential due to vortex panels.
Show that the velocity potentials corresponding to the stream func-

tions (12.3.9) and (12.3.20) are given, respectively, by

(12.3.25)



(12.3.26)

12.4 Vortex panel method

In Section 12.3, we considered the flow induced by vortex panels
with constant or linear density distributions. Having available these
elementary panel flows, we proceed to develop the vortex-panel method
that allows us to compute irrotational flow past a two-dimensional airfoil
with the Kutta-Joukowski condition satisfied at the trailing edge.

The key idea is to represent the flow in terms of a superposition of
(a) the incident streaming flow, and (b) a collection of flows induced by
vortex panels with a priori unknown strength densities deployed around
the contour of an airfoil, and then compute the panel strength densities
to satisfy the no-penetration boundary condition around the airfoil.

12.4.1 Contour discretization

Consider uniform flow with velocity U = (Ux, Uy], past an airfoil at
angle of attack a, as illustated in figure 12.4.1. As a preliminary, we
trace the contour of the airfoil with N + I marker points distributed
around the airfoil in the clockwise sense, where points numbered 1 and
N + I coincide with the trailing edge. A pair of successive points xW
and x^+1) define a flat vortex panel labelled i. The collection of the N
vortex panels defines a polygonal contour which is an approximation to
the generally curved contour of the airfoil.

and



Figure 12.4.1 Discretization of the contour of an airfoil into flat panels
defined by a sequence of marker points.

12.4.2 Flow representation

In the vortex-panel method, the velocity at the point (#, y) is ex-
pressed by the superposition

(12.4.1)

where uW(sc,y) is the velocity induced by the ith vortex panel.
In the implementation discussed in this section, we use panels with

linear strength density. The strength density of the ith panel varies in a
linear fashion from the value 7$ assigned to the ith marker point, which
is the first point of the ith panel, to the value 7^+1 assigned to the i + 1
marker point, which is the last point of the ith panel. The N+l a priori
unknown values 7^, i = 1,2, . . . , N + 1 must be computed to satisfy the
no-penetration condition around the airfoil in some approximate fashion.

We proceed by observing that the velocity induced by the ith panel,
denoted by u^(x, y), is determined by the position and strength density
of the panel at the two end-points. To signify this dependence, we write

(12.4.2)



where the superscript LVP stands for "linear vortex panel".

12.4.3 Panel-induced velocity in global coordinates

Our first task is to develop a numerical method for computing ULVP

as a function of its arguments listed in (12.4.2), using the formulas devel-
oped in Section 12.3. For this purpose, we introduce a local coordinate
system (#', y'} with the x1 axis passing through the two end points of the
ith panel, xW and x^+1), and set the origin at the first end-point xW, as
depicted in figure 12.4.1. The coordinates of a point in the local system
(x',yf) are related to those in the global system (x,y) by the equations

(12.4.3)

where 0W is the inclination of the ith panel defined in figure 12.4.1.
Next, we express the strength density of the ith panel in the linear

form

(12.4.4)

with the understanding that x'W = O, and require

(12.4.5)

to find

(12.4.6)

The length of the panel is given by z'^+1) = ^(xi+i - Xi)2 + (yi+i - yi)2.
Reviewing the results of Section 12.3, we find that the xf and yf com-

ponents of the velocity induced by the ith panel are given by equations
(12.3.21) and (12.3.22), subject to the following substitutions:



(12.4.7)

Carrying out some algebra, we find that the velocity components of
the flow induced by the ith panel in the local frame are given by

(12.4.8)

where a*! , a^} , a^ , and a*!' are local influence coefficients given by

(12.4.9)

and we have defined

(12.4.10)

To obtain the velocity components in the global frame, we use the
inverse of the coordinate transformation shown in (12.4.3), finding



(12.4.11)

Substituting expressions (12.4.8) into the right-hand sides of equations
(12.4.11), and rearranging, we obtain explicit relations in terms of the
strength of the vortex sheet at the end points,

(12.4.12)

where ax 5 &z ,o,y , and ay are global influence coefficients given
by

(12.4.13)

Given the coordinates of the evaluation point (x,y), we evaluate these
coefficients by carrying out the following steps:

1. Compute the panel inclination angle 0W and the panel length
4 = x'(<+i) = y/(xw - XiY + (yi+l - y^.

2. Compute the local coordinates (x',y') using (12.4.3).

3. Compute the local influence coefficients using (12.4.9).

4. Compute the global influence coefficients using (12.4.13).



12.4.4 Velocity in terms of the strength
of the vortex panels at the nodes

Substituting expressions (12.4.12) into the right-hand side of (12.4.1),
we obtain explicit expressions for the global components of the velocity
in terms of the strength of the vortex panels at the nodes,

(12.4.14)

where we have introduced the new influence coefficients

(12.4.15)

The coefficients by are defined by corresponding expressions.

12.4.5 Point collocation

If we knew the strength of the vortex panels at the nodes, we could
use equations (12.4.14) to evaluate the velocity at any point in the flow.
The main idea underlying the vortex-panel method is that the N + 1



a priori unknown values 7^, i = 1,2, . . . , A T , should be computed to
satisfy the no-penetration condition

u(x) - n(x) = O, (12 416)

where the point x is located at the contour of the airfoil, and n is the
unit vector normal to the contour of the airfoil.

In the panel-collocation method, TV equations emerge by requiring
the satisfaction of (12.4.16) at the mid-point of each panel, located at

(12.4.17)

where j = 1, 2 , . . . , N. Using (12.4.14) to express the velocity in terms
of the strength of the vortex sheet, and rearranging, we find

(12.4.18)

where we have defined

(12.4.19)

It is important to bear in mind that, when i = j, the self-induced velocity
is evaluated at the mid-point of the panel on the side of the flow. With
reference to equations (12.4.9), this means that y1 = O, c = O, and
A0' = TT.

Applying equation (12.4.18) for j = 1,2,. . . JV, we obtain a system
of TV linear algebraic equations for the N + 1 unknowns 7^). One de-
gree of freedom is available and can be used to arbitrarily specify the
amount of circulation around the airfoil. In Section 12.2, we saw that,
in practice, the circulation established around the airfoil is such that
the Kutta-Joukowski condition is fulfilled at the trailing edge. In the
present formulation, this condition is implemented by requiring that the
strength of the vortex sheet on the upper side of the airfoil at the trailing
edge is equal in magnitude and opposite in sign to the strength of the
vortex sheet on the lower side of the airfoil at the trailing edge. The
mathematical statement of the Kutta-Joukowski condition is then

7d) = _7("+i). (12420)



Appending this equation to equation (12.4.18) written for j — 1, 2 , . . . , TV,
we obtain the desired system of JV +1 equations for the N +1 unknowns
7^). The solution may be computed using, for example, the method of
Gauss elimination discussed in Section 3.4.

12.4.6 Pressure coefficient and lift force

Once the strength of the vortex sheet has been computed, the tangen-
tial velocity, Ut = u-t, may be evaluated from the discrete representation
(12.4.14), where t is the unit vector tangent to the airfoil pointing along
the local x' axis. The circulation around the airfoil may be approximated
with either one of the expressions

(12.4.21)

where A/W is the length of the ith panel. The second expression im-
plements the trapezoidal rule for integrating the strength of the vortex
sheet with respect to arc length around the airfoil.

The dimensionless pressure coefficient at the panel mid-points is de-
fined by the expression

(12.4.22)

where P00 is the pressure at infinity, and U2 = U% + Uy.
The distribution of the pressure coefficient and the streamline pat-

tern around a NACA airfoil computed by the linear vortex panel method
described in this section, implemented in program 07-ptf/airf-2dJvp of
FDLIB, are illustrated in figure 12.4.2. High pressure coefficient corre-
sponds to the lower surface of the airfoil, and low pressure coefficient
corresponds to the upper surface of the airfoil; the difference produces a
lift force.

In the absence of viscous stresses, the force exerted on the airfoil is
given by the pressure integral

(12.4.23)



Figure 12.4.2 Distribution of the pressure coefficient around the upper
and lower surface of a NACA airfoil for angle of attack 5°, comput-
ed using the linear vortex panel method implemented in program
07-ptf/airf.2dJvp of FDLIB.

where n is the unit vector normal to the airfoil pointing into the fluid.
The last expression arises by noting that the integral of the unit normal
vector over a closed contour vanishes. Using the trapezoidal rule to
approximate the two scalar components of the last integral, we find the
following expressions for the reduced x and y components of the force,

(12.4.24)

The reduced lift force with respect to the wind axis, defined as the com-
ponent of the force that is normal to the direction of the incident flow,



is given by
Lw = Fy cos a - Fx sin a, (12.4.25)

where a is the angle of attack, as depicted in figure 12.4.1. According to
the Kutta-Joukowski theorem expressed by equation (12.2.1),

Lw = ~2 U' (12.4.26)

The difference in the values of the lift computed from (12.4.25) or (12.4.26)
serves as an index of the accuracy of the numerical method.

Computer problem

Problem c.12.4.1 Linear vortex panel method.
Program O7.ptf/airf.2d-lvp of FDLIB computes the flow past an air-

foil using the linear vortex panel method discussed in the text.
(a) Run the code for an airfoil of your choice offered in the menu,

prepare graphs and discuss the distribution of the pressure coefficient
and the streamline pattern.

(b) Evaluate the velocity at points inside, the airfoil and discuss your
results.

12.5 Vortex sheet representation

Consider the vortex panel method for flow past a two-dimensional
airfoil discussed in Section 12.4. In the limit as the number of panels TV
tends to infinity, the piecewise linear strengh distributions over the indi-
vidual panels join to yield a smooth distribution defined over the airfoil
contour. Correspondingly, the sum on the right-hand side of equation
(12.4.1) reduces to an integral with respect to arc length around the air-
foil contour, representing the velocity induced by a vortex sheet with a
generally curved shape.

Generalizing expression (12.3.6), we find that the stream function
associated with this vortex sheet is given by

(12.5.1)



where the integration is performed over the airfoil contour, and dlf =
^dx'2 + dy'2 is the differential arc length around the airfoil measured in
the clockwise direction starting at the trailing edge.

Conversely, the vortex panel representation may be viewed as the re-
sult of the discretization of the integral on the right-hand side of (12.5.1)
into geometrical elements represented by the vortex panels. In Section
12.4, we discussed straight elements with linear strength distribution.
In more advanced implementations, curved elements - such as sections
of a parabola and circular arcs - and quadratic or higher-order strength
density distributions are employed.

12.5.1 Internal flow

Although the vortex sheet representation is physically meaningful
only when it is used to evaluate the stream function or the velocity
at a point in the flow, nothing prevents us from using it to perform
corresponding evaluations at a point inside the airfoil. When this is
done, we find that the stream function is constant, and the velocity
vanishes inside the airfoil (problem c. 12.4.1).

To explain this result, we observe that the strength of the vortex sheet
is computed to satisfy the no-penetration boundary condition. Because
the normal component of the velocity is continuous across the vortex
sheet, the interior flow occurs under vanishing normal boundary velocity.
Since tangential velocity on the interior side of the airfoil is prohibited
by the condition of irrotational motion, the internal flow must vanish.

12.5.2 Thin airfoil theory

Consider flow past a thin cambered airfoil, as illustrated in figure
12.5.1, and introduce a system of coordinates such that the leading edge
lies at the origin of the x axis, and the trailing edge lies on the x at the
point x = c. The camberline of the airfoil is described by the equation

y = er]c(x), (12.5.2)

where e is a small dimensionless number, and T]C(X) is the camberline
shape function required to satisfy ryc(0) = O and ryc(c) =0. If rjc = O for
all x, then the camberline is flat.

Now, because both sides of the airfoil are close to the x axis, the cor-
responding line integrals in (12.5.1) may be approximated with integrals



Figure 12.5.1 Illustration of the camberline of a thin airfoil, and defi-
nition of variables used to develop the slender-airfoil theory.

with respect to x from x — O to c. Setting y1 = O, tracing the airfoil in
the clockwise direction beginning at the trailing edge, and noting that
on the upper side dl' = dx1 while on the lower side dl' = —dx1, we find

(12.5.3)

where the superscripts + and - denote, respectively, the upper and lower
side of the airfoil. Defining x = T+ ~~ 7~> we obtain a representation
in terms of an effective flat vortex sheet subtended between the leading
and trailing edge,

(12.5.4)

The corresponding velocity potential is given by

(12.5.5)

Our goal is to compute the strength of the effective vortex sheet, \->
to satisfy the no-penetration condition over the airfoil.



Velocity on either side of the vortex sheet

As a preliminary, we consider the velocity induced by the effective
vortex sheet on the upper and lower side of the airfoil. Consider first the
limit of the velocity potential as the point (rr, y) approaches the vortex
sheet from the upper side, that is, as y -> 0+ with O < x > c. In this
limit, the inverse tangent function on the right-hand side of (12.5.5) is
equal to zero when x1 < x, or TT when xf > x. Consequently, the potential
takes the value

(12.5.6)

Differentiating both sides of (12.5.6) with respect to x, we find that the
x component of the velocity is given by

(12.5.7)

Working in a similar fashion for the lower side, we find

(12.5.8)

The last two equations illustrate, once again, that the velocity undegoes
a discontinuity whose magnitude is equal to the strength of the vortex
sheet.

The y component of the velocity over the airfoil may be found by
differentiating either (12.5.4) with respect to x, or (12.5.5) with respect
to y. The result is

(12.5.9)

Unlike the x component of the velocity, the y component remains con-
tinuous across the vortex sheet.

Asymptotics

To compute the strength of the effective vortex sheet, x> we require
the no-penetration condition implemented through a series of approxi-
mations that may appear drastic but have a solid theoretical foundation.

First, we replace the disturbance flow due to the airfoil with the
flow due to the effective vortex sheet expressed by (12.5.4) or (12.5.5).
Applying the no-penetration boundary condition at the camberline, we
obtain



(12.5.10)

where n is the unit vector normal to the camberline on the upper side
pointing into the fluid. Using (12.5.2), we find

(12.5.11)

Because e has been assumed small, the denominators can be replaced by
unity, yielding the simplified expressions

(12.5.12)

A second approximation arises by replacing the velocity on the upper
side of the camberline with the velocity on the upper side of the effec-
tive vortex sheet, given by (12.5.7) and (12.5.9). Substituting (12.5.12),
(12.5.7), and (12.5.9) into (12.5.10), we find

(12.5.13)

Next, we confine our attention to flow that is nearly parallel to the x
axis, meaning that Uy is small compared to Ux. Writing Uy — tanaUx ~
OL Ux, where a is the angle of attack, we obtain

(12.5.14)

Inspecting the various terms on the left-hand side of (12.5.14), we
find that the magnitude of x IS of order e or a, both of which have been
assumed small. Since x is negligible compared to Ux^ it may be discarded
from the expression enclosed by the square brackets, leaving the equation

(12.5.15)

where O < x < c. The problem has been reduced to computing the func-
tion x(x) that satisfies the integral equation of the first kind (12.5.15).



Solution by Fourier expansion

One way to solve equation (12.5.15) is by expanding the unknown
function x m a Fourier series with respect to the angle 9 defined such
that

(12.5.16)

and varying between O and TT, as illustrated in figure 12.5.1. The Kutta-
Joukowski condition requires that the strength of the vortex sheet vanish
at the trailing edge, and wind tunnel evidence reveals a large peak at
the leading edge. Accordingly, we express x as the sum of the singular
function cot | and a sine fourier series, in the form

(12.5.17)

where ai are constant coefficients. Substituting (12.5.16) and (12.5.17)
into (12.5.15), we find

(12.5.18)

The integrals on the left-hand side of (12.5.18) may be evaluated with
the aid of standard tables. First, we write cot(0'/2) = (1 + cos 9'}/ sin#',
and find

(12.5.19)

Second, we find

(12.5.20)

Substituting these results into (12.5.18), we derive the remarkably simple
expression

(12.5.21)



The left-hand side of (12.5.21) is the cosine Fourier expansion of the
right-hand side with respect to 9. Multiplying both sides by cos(j#),
where j is an integer, integrating with respect to O from O to TT, and
using the identity

(12.5.22)

we obtain the desired results

(12.5.23)

for i = 1,2,....
Alternatively, we expand the camberline slope drjc/dx in a cosine

Fourier series with respect to 0,

(12.5.24)

substitute the right-hand side of (12.5.24) into (12.5.21), and set the sum
of like Fourier coefficients equal to zero to obtain

(12.5.25)

for i = 1,2, These relations illustrate that only the leading coefficient
ao is a function of the angle of attack, and the rest of the coefficients are
determined by the geometry of the camberline.

Lift, lift coefficient, and lift slope

To compute the lift force per unit span exerted on the airfoil, we use
the Kutta-Joukowski theorem expressed by equation (12.2.1), obtaining

(12.5.26)

Substituting expansion (12.5.17) into the right-hand side, and evaluating
the integrals, we find that only two terms make a non-zero contribution,
yielding

(12.5.27)



The lift coefficient is given by

(12.5.28)

In practical aerodynamics, the performance of an airfoil is characterized
by the lift slope defined as the slope dci/da\ the preceding results show
that the lift slope of a thin airfoil is constant and equal to 2?r, independent
of the camber.

Pressure difference and moment

The difference in pressure on either side of the vortex sheet repre-
senting the airfoil may be computed using Bernoulli's equation (6.4.14).
Expressions (12.5.7) and (12.5.8) show that the velocity on the upper
or lower side of the vortex sheet is, respectively, equal to Ux — ̂ x or

Ux + \X- Using Bernoulli's equation, we evaluate the pressure difference

(12.5.29)

The moment of the pressure forces with respect to the leading edge
is expressed by the integral

(12.5.30)

Substituting (12.5.29) and the expansion (12.5.17) into the right-hand
side, and evaluating the emerging definite integrals with the aid of stan-
dard mathematical tables, we find

(12.5.31)

which shows that only three coefficients make a contribution to the mo-
ment. The moment coefficient is defined by

(12.5.32)



The moment of the pressure forces with respect to an arbitrary point
located at x = d is given by

(12.5.33)

Substituting (12.5.27) and (12.5.31) into the right-hand side of (12.5.33),
we find that, when d — c/4, the coefficient ao disappears, and M^ be-
comes independent of the angle of attack a. Accordingly, the quarter
chord moment, Mc/4, and associated moment coefficient

(12.5.34)

are used to characterize the performance of the airfoil.

Symmetric airfoils

Since the camber of a symmetric airfoil vanishes, we may set either
e = O or r]c(x) = O in the preceding equations.. Either way, equations
(12.5.25) yield «o — ~& and Q.% — O for i = 1,2,..., and expansion
(12.5.17) reduces to

(12.5.35)

The lift force and lift coefficient computed from equations (12,5.27) and
(12.5.28) are given by

L = TT a. c p Ux, CL = 2 TT a. (125 36)

and the moment and moment coefficient computed from equations (12.5.31]
and (12.5.32) are given by

M = —vrac2 p U%, CM — — — ot.
^ x' 2 (12.5.37)

Problems

Problem 12.5.1 Thin airfoil with parabolic camber.
Consider a thin airfoil with parabolic camberline described by the

shape function r)c(x) = 4x (1 - |) . Note that the camber is equal to ec.
Show that the lift and moment coefficients are given by



CL = 2vr(a + 2e), CM = -|(« + 4e). (lg g 3g)

Note that the lift vanishes when a = — 2e.

Problem 12.5.2 NACA 23012 airfoil
The camber line of the NACA 23012 airfoil is described by

. _ f 2.6595(£3 - 0.6075£2 + 0.1147 x) for O < x < 0.2025
y ~ \ 0.02208(1 - x) for 0.2025 < x < 1 '

(12.5.39)

where x = x/c and y = y/c. Derive expressions for the lift and moment
coefficients in terms of the angle of attack, and compare your results
with experimental measurements for a = 4°, showing that CL = 0.55
and cMc/4 = -0.01.

Computer problem

Problem c.12.5.1 Comparison with the vortex panel method.
Consider the NACA 23012 discussed in problem 12.5.2. Run the code

airj.2dJ.vp in directory O7.ptf of FDLIB to compute the lift coefficient
in wind axes, and compare the numerical results with the asympotic
predictions for small airfoil thickness.

12.6 Point-source-dipole panels

Consider the stream function of the flow induced by a vortex panel
situated on the x axis and subtended between the point x = a and &,
as shown in equation (12.3.6). The distribution of circulation along the
panel, denoted by ju(x), is defined as the integral of the strength density
of the vortex sheet with respect to x from an arbitrary point x = d up
to the point x, where x > a and x < 6,

(12.6.1)

Using the rules of integral differentiation, we find



dfji _
^=7 ' (12.6.2)

Substituting the left-hand side of (12.6.2) into the integral in (12.3.6),
and integrating by parts, we find

(12.6.3)

with the understanding that yf = O. Carrying out the differentiation
under the integral sign, we derive the final form

(12.6.4)

The three terms on the right-hand side of (12.6.4) have the following
physical interpretation:

• The first term represents the flow due to a point vortex with
strength — IJL(X = a) placed at the first panel end-point, and the
second term represents the flow due to a point vortex with strength
fj,(x = b) placed at the second panel end-point.

• Recalling that, by definition, ux = d^/dy and uy = -difr/dx, and
comparing the third term on the right-hand side of (12.6.4) with
expressions (3.5.23) and (3.5.24), we find that this term represents
the flow due to a distribution of point-source dipoles with strength
density JJL(X) oriented normal to the panel.



If fJ>(xf) is positive, the dipole at x1 points toward the positive
direction of the y axis; ii IJL(X'] is negative, the dipole at x1 points
toward the negative direction of the y axis.

Denoting the stream function due to the point-source dipole distribu-
tion by I/JSDP, where SDP stands for source-dipole panel, and rearranging
equation (12.6.4), we obtain

(12.6.5)

which establishes a correspondence between the flow due to a source-
dipole panel and the flow due to a vortex panel, subject to relation
(12.6.2).

We note, in particular, that the first term on the right-hand side of
(12.6.5) represents the flow due to a point vortex with strength IJL(X = a)
placed at the first panel end-point, and the second term represents the
flow due to a point vortex with strength — IJL(X = b) placed at the second
panel end-point.

12.6.1 Panels with constant source-dipole strength density

When the strength density of the source-dipole distribution over a
panel is constant, the strength of the vortex sheet vanishes, and the last
term on the right-hand side of (12.6.5) disappears. In this case, the flow
due to the panel is identical to the flow induced by two point vortices
with strengths //(O) and —//(0) situated, respectively, at the first and
second panel end-point.

Source-dipole panel method

The flow due to a point-source dipole panel may be used as a funda-
mental building block for representing, and subsequently computing, the
flow past an airfoil. To develop the source-dipole panel method, we work



by analogy with the vortex panel method discussed in Section 12.4, with
some variations. First, we trace the contour of the airfoil with N + I
marker points distributed in the clockwise sense, as illustrated in figure
12.4.1. A pair of successive marker points xW and x^+1) define a flat
source-dipole panel labelled i.

In the source-dipole panel method, the velocity at the point ( x , y )
located in the flow is described by the superposition of the incident flow
and the flows induced by the N source-dipole panels. An additional de-
gree of freedom is required to be able to arbitrarily specify the circulation
around the airfoil, and is provided by enhancing the source-dipole repre-
sentation with an additional contribution associated with a point vortex
of strength n located at the trailing edge. The composite representation
is

(12.6.6)

where u^(x,y) is the velocity induced by the ith panel, and upv(x,y)
is the velocity induced by the point vortex.

According to our earlier discussion, if the source-dipole strength is
constant over each panel, then the flow induced by the ith panel is i-
dentical to the flow induced by two point vortices with strengths /^W
and —/^W located at the first and second panel end-points; /^W is the
constant value of the source dipole strength density over the ith panel.
Consequently, the ith marker point, i = 2 ,3 , . . . , N, hosts two point-
vortices: one with strength — /^-1) contributed by the i — I panel, and
the second with strength /zW contributed by the i panel, for a combined
strength of ^W - IJL^~I\ The first marker point hosts three point vor-
tices: one due to the first panel, a second due to the last panel, and
the circulation-producing point vortex at the trailing edge. The Kutta-
Joukowski condition requires that the net strength of the trailing edge
point vortex vanish,

M ( i ) _ M W + K = 0. (12.6.7)

The N -\- I unknowns, including i^l\i = 1,2, . . . ,N, and /s, may be
computed using the collocation method discussed in Section 12.3, incor-
porating the Kutta-Joukowski condition (12.6.7).

12.6.2 Source-dipole panel with linear strength density

When the strength density of a source dipole panel varies in a linear
fashion with respect to arc length, all three terms on the right-hand side



of (12.6.5) make a non-zero contribution. Expression (12.6.2) shows that
the strength density of the equivalent vortex sheet is constant and equal
to the slope of the dipole density over the panel.

In the linear source-dipole panel method, the flow is represented by a
superposition of the three components shown in equation (12.6.6), where
the dipole density over the ith panel varies in a linear manner with re-
spect to arc length from the initial value /^W to the final value //^+1).
Summing up the flows due to the individual panels expressed by the
right-hand side of (12.6.5), and consolidating the left- and right-panel
point vortices at the panel end-points, we derive an equivalent repre-
sentation in terms of point vortices and vortex panels with constant
strength. The uniform strength density of the ith vortex panel is equal
to

(12.6.8)

where A/W is the panel length.
Next, we observe that, because the dipole strength is continuous

around the approximate polygonal contour of the airfoil, as described by
the panels, the strength of the point vortices vanishes at all but the first
point where it takes the value /^1) - //(^+1) + AC. Thus, the linear source-
dipole panel representation is equivalent to the constant vortex panel
representation supplemented by a point vortex at the trailing edge. The
strength of the point vortex must vanish to satisfy the Kutta-Joukowski
condition at the trailing edge, as required by equation (12.6.7).

12.6.3 Source-dipole representation

As the number of panels N tends to infinity, the individual panel
strengh density distributions join to yield a smooth distribution defined
around the airfoil. Correspondingly, the sum on the right-hand side of
(12.6.6) reduces to an integral with respect to arc length around the
airfoil, yielding an integral representation in terms of a source-dipole
sheet.

Equation (12.6.5) provides us with an expression for the stream func-
tion associated with a source-dipole panel situated over the x axis, where
the source-dipoles pointing along the y axis. Generalizing this expression,
we find that the stream function associated with souce-dipole distribu-
tion around the airfoil is given by



(12.6.9)

where dl1 = \/dxa + dyf2 is the differential arc length around the air-
foil measured in the clockwise direction from a designated origin. The
associated velocity potential is given by

(12.6.10)

The counterpart of the panel representation (12.6.6) is

(12.6.11)

where uSD(x,y) is the velocity corresponding to (12.6.9) and (12.6.10).
The stream function and velocity potential are given by the correspond-
ing expressions

(12.6.12)

and
(12.6.13)

Conversely, the source-dipole panel representation may be regarded
as the result of the discretization of the integral on the right-hand side of
(12.6.9) or (12.6.10) into geometrical elements representing the source-
dipole panels. In this section, we have discussed straight elements with
constant and linear strength density distributions. In more advanced
implementations, curved elements such as sections of a parabola and
circular arcs, and quadratic or higher-order strength density distributions
are employed.

12.6.4 Solution of the interior problem

Assume that the strength of the source-dipole sheet satisfying the
no-penetration condition around the airfoil is available. For reasons dis-
cussed in Section 12.3, if we evaluate the right-hand sides of (12.6.9)-
(12.6.11) at a point located inside the airfoil, we will find that the velocity
vanishes, and the stream function and potential take constant values.



This observation suggests an alternative method of computing the
strength density of the source dipoles: instead of using the Neumann no-
penetration boundary condition, use the Dirichlet condition requiring
that the potential and stream function are constant along the interior
side of the airfoil.

Panels with constant strength density

To illustrate the implementation of the method, we discretize the
airfoil contour into JV flat panels with constant strength density, as il-
lustrated in figure 12.4.1. Identifying the flow induced by each panel
with the flow induced by two point vortices located at the end-points, as
discussed earlier in this section, we obtain the discrete representation

(12.6.14)

where the angles 0jf', ff£\ and QT are defined in figure 12.4.1.
To implement the collocation method, we evaluate (12.6.14) at the

mid-point of the j panel (XM ,y^), on the interior side of the airfoil.
Noting that O^ = O and 0% = -TT, and assigning to the potential the
reference value of zero, we derive the algebraic equation

(12.6.15)

where the primed sum signifies that the term i = j is excluded from the
summation. Rearranging (12.6.15), we derive a linear equation relating
the panel source-dipole densities to the strength of the trailing-edge point
vortex,

(12.6.16)

Applying equation (12.6.16) for j = 1,2, . . . JV, and appending to the
resulting system of equations the Kutta-Joukowski condition expressed
by (12.6.7), we obtain a linear system for the JV + 1 unknowns ̂ l\i —
1,2,. . . JV, and K.



Distribution of the potential over the airfoil

Inspecting the third term on the right-hand side of (12.6.14), we find
that the potential undergoes a discontinuity of magnitude -//W across
the ith panel. Since the potential inside the airfoil is constant and equal
to zero, the potential on the exterior side of the panel must be equal to
-AiW.

This result is valid in a more general context: the potential on the
outer side of the airfoil is equal to the negative of the strength density
of the source dipoles. The tangential velocity may then be computed by
numerically differentiating IJL with respect to arc length along the airfoil.

Computer problem

Problem c. 12.6.1 Constant strength dipole panels.
Program 07-ptf/airf-2d-cdp of FDLIB computes flow past an airfoil

using the constant-strength source-dipole-panel method.
(a) Run the code for an airfoil of your choice, prepare graphs, and

discuss the distribution of the pressure coefficient.
(b) Evaluate the velocity at points inside the airfoil, and discuss your

findings.

12.7 Point-source panels
and Green's third identity

In previous sections, we have discussed flow respresentations in terms
of vortex panels and point-source dipole panels expressed, respectively,
by equations (12.5.1) and (12.6.10) or (12.6.11). In this section, we
introduce a new representation in terms of a point source distribution.
Working by analogy with (12.6.11), we find that the harmonic potential
of the induced flow is given by

(12.7.1)

where a is the strength density of the distribution.
The point-source representation carries an important restriction: con-

servation of mass requires that the total strength of the point sources,



defined as the integral of the strength density a with respect to arc length
around the aifoil, vanishes, otherwise a net radial flow due to an effective
point source will arise. This restriction is satisfied automatically only in
the case of symmetric flow past a symmetric non-lifting airfoil at zero
angle of attack, and in the absence circulatory motion.

In spite of this limitation, the point-source representation is not with-
out merits. Its usefuleness stems predominantly from Green's third iden-
tity, to be discussed in Section 12.7.2, stating that a judicious combina-
tion of the point source and source-dipole representation ensures the sat-
isfaction of the condition of zero radial flow, and also allows the strength
densities of the distributions to obtain simple physical interpretations.

12.7.1 Source panels with constant density

Consider a flat source panel with uniform strength density equal to
cr(°) situated on the x axis, and subtended between x = a and b. Using
(12.7.1) with yf = O, we find that the corresponding potential is given by

(12.7.2)

Note that this expression is identical to that for the stream function
due to a vortex panel with constant strength density given in equation
(12.3.8), subject to the substitution 7^°) = -CT^. Modifying (12.3.9)
correspondingly, we find

(12.7.3)

The components of the velocity are found by straightforward differenti-
ation, and are given by

(12.7.4)



Figure 12.7.1 Streamline pattern of the flow due to a point-source pan-
el with constant strength density subtended between the points
x = -b and b.

and

(12.7.5)

The streamline pattern of the flow induced by a panel is shown in figure
12.7.1. Far from the panel, the flow reduces to that due to a point source
with strength a^ (b — a) situated at the origin.

Jump in velocity across the panel

Expression (12.7.4) shows that the y component of the velocity is
continuous throughout the domain of flow and across the source panel.
In contrast, because of the presence of the inverse tangent functions on
the right-hand side of (12.7.5), the y component of the velocity undergoes
a discontinuity of magnitude <j(°) across the panel. Spefically, the y
component of the velocity on the upper or lower side of the panel, for
a < x < 6, is given by

(12.7.6)



Inverse tangent functions also appear on the right-hand side of (12.7.3).
Because, however, these functions are multiplied by y which is equal to
zero over the panel, a discontinuity in the potential does not arise.

12.7.2 Green's third identity

The source panels may be used in the familiar way to develop a rep-
resentation of the flow past a symmetric airfoil at zero angle of attack.
The numerical implementation is analogous to that of the vortex panel
method discussed in Section 12.3. A more interesting and more gen-
eral representation stems from Green's third identity discussed in the
remainder of this section.

Consider a control area in the xy plane bounded by a collection of
boundaries C, as illustrated in figure 12.7.2. Green's third identity states
that the harmonic potential at a point x that lies inside the control area
may be represented in terms of a combined point-source / dipole-source
distribution, in the form

(12.7.7)

where N is the unit vector normal to the boundaries C pointing into the
control area, as shown in figure 12.7.2.

Comparing the two terms on the right-hand side of (12.7.7) with
(12.7.1) and (12.6.11), we identify the strength density of the point-
source distribution with the boundary values of the potential, and the
strength density of the source-dipole distribution with the boundary val-
ues of the normal derivative of the potential.

Let us identify the control area with the area occupied by an airfoil,
and apply Green's identity for the potential of the incident uniform flow.
Writing N = — n, where n is the unit vector normal to the airfoil pointing
into the exterior, we obtain

(12.7.8)



Figure 12.7.2 A control area in the xy plane confined by a collection
of curves denoted by C, used to establish Green's third identity; N
is the unit vector normal to the boundaries pointing into the fluid.

where the point ( x , y ) is located in the interior of the airfoil.
Now, equation (12.6.14) expresses a double-layer representation in

the form

(12.7.9)

where </>(+) is the potential on the exterior side of the airfoil. Since the
point (x, y) is located in the interior of the airfoil, the left-hand side is a
constant that may be set equal to zero.

Combining equations (12.7.8) and (12.7.9), we obtain

where we have defined

(12.7.10)

(12.7.11)



Equation (12.7.10) is an integral equation for the dipole density IJL. Once
this equation has been solved using, for example, a panel method, the po-
tential on the exterior side of the airfoil may be computed from equation
(12.7.11) as

*(+) = *<» -/i. (12,7.12)

Computer problems

Problem c.12.7.1 Source-dipole panel method.
Program 07-ptf/airf.2d,csdp of FDLIB contains a code that com-

putes flow past an airfoil using a panel method based on equation (12.7.10).
Run the code for an airfoil of your choice, prepare graphs, and discuss
the distribution of the pressure coefficient around the airfoil.

Problem c.12.7.2 Constant source panel method.
Write a code that computes flow past a symmetric airfoil at zero

angle of attack using the point-source panel method. Run the code for
an airfoil of your choice, prepare graphs, and discuss the distribution of
the pressure coefficient around the airfoil.
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