
Fuzzy Sets and Systems 186 (2012) 26–46
www.elsevier.com/locate/fss

Modeling fuzzy information in UML class diagrams and
object-oriented database models

Z.M. Maa,∗, Li Yanb, Fu Zhanga

a College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
b School of Software, Northeastern University, Shenyang, Liaoning 110819, China

Received 26 July 2009; received in revised form 26 June 2011; accepted 27 June 2011
Available online 5 July 2011

Abstract

Conceptual data modeling has become essential for non-traditional application areas. Some conceptual data models have been
proposed as tools for database design and object-oriented database modeling. Information in real-world applications is often vague
or ambiguous. Currently, a little research is underway on modeling the imprecision and uncertainty in conceptual data modeling
and the conceptual design of fuzzy databases. The unified modeling language (UML) is a set of object-oriented modeling notations
and a standard of the object management group (OMG) with applications to many areas of software engineering and knowledge
engineering, increasingly including data modeling. This paper introduces different levels of fuzziness into the class of UML and
presents the corresponding graphical representations, with the result that UML class diagrams may model fuzzy information. The
fuzzy UML data model is also formally mapped into the fuzzy object-oriented database model.
© 2011 Elsevier B.V. All rights reserved.

Keywords: Database modeling; Fuzzy information; UML class diagrams; Object-oriented database model

1. Introduction

One of the major areas of database research has been the continuous effort to enrich existing database models with a
more extensive collection of semantic concepts. Database models have been developed from hierarchical and network
database models to the relational database model. As computer technology moves into non-traditional applications
such as CAD/CAM, knowledge-based systems, and multimedia and Internet systems, many software engineers feel the
limitations of relational databases in these data- and knowledge-intensive applications. Therefore, some non-traditional
data models have been proposed for databases, such as the entity-relationship (ER) model [1], the enhanced (or
extended) entity-relationship (EER) model (e.g., [2]), the object-oriented (OO) database model, the object-relational
database model and the logic database model. Among these database models, the object-relational database model
combines the robustness of the relational database model with the powerful modeling capabilities of the object-oriented
paradigm [3].

∗ Corresponding author.
E-mail address: mazongmin@ise.neu.edu.cn (Z.M. Ma).

0165-0114/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2011.06.015

http://dx.doi.org/10.1016/j.fss.2011.06.015
http://www.elsevier.com/locate/fss
mailto:mazongmin@ise.neu.edu.cn

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 27

The unified modeling language (UML) [4,5] is a general-purpose modeling language used in the field of object-
oriented software engineering and has been standardized by the Object Management Group (OMG). UML includes
elements such as activities, actors, business processes, database schemas, (logical) components, programming language
statements and reusable software components, combining techniques from data modeling (entity-relationship diagrams),
business modeling (work flows), object modeling and component modeling. UML can be used with all processes
throughout the software development life cycle and across different implementation technologies. The power of UML
can be applied to many areas of software engineering and knowledge engineering [6]. For example, UML can describe
the complete development of relational and object-relational databases for business requirements [7]. UML is being
applied to database modeling [8–10], and UML has been used to conceptual model XML [11] and OWL in the Semantic
Web [12]. Note that the use of UML for database modeling does not imply that UML is perfectly suited for use as
a database modeling framework or that it is the only choice to accomplish this task. In practice, data modeling is
conducted with a variety of design methods within different organizations, depending on the skills of the involved
human resources.

While UML and object-oriented database models provide powerful object-oriented modeling capabilities, they suffer
from some inadequacy of necessary semantics. One of these inadequacies can be generalized as the inability to handle
imprecise and uncertain information [13]. In real-world applications, information is often imperfect. One of the semantic
needs not adequately addressed by the traditional data models is that of uncertainty. Traditional data models assume
that the models are a correct reflection of the world and further assume that the stored data is known, accurate and
complete. It is rarely the case in real life that all or most of these assumptions are met. Fuzzy sets [14] and possibility
theory [15] are embedded in many of the existing approaches to dealing with imperfect information.

Fuzzy information has been extensively investigated in the context of the relational database model [16–22]. However,
the classical relational database model and its fuzzy extension do not satisfy the need to model complex objects with
inherent imprecision and uncertainty. The requirements of modeling complex objects and information imprecision and
uncertainty can be found in many application domains and have challenged the current database technology [23,24].
Because the object-oriented database model can represent complex object structures without fragmenting the aggregate
data and can also depict complex relationships among attributes, current efforts have concentrated on the fuzzy object-
oriented databases and some related notions such as class, superclass/subclass, and inheritance [25–34]. More recently,
fuzzy object-relational databases have been proposed [35] that combine the characteristics of fuzzy relational databases
and fuzzy object-oriented databases. Note that almost no research is currently underway on modeling fuzzy information
in the conceptual data models, with most research instead focusing on modeling uncertainty at the data level; less
knowledge exists about uncertainty at the conceptual model level. This is particularly true in design methodologies
used to design fuzzy database schemas.

Zvieli and Chen [36] applied fuzzy set theory to some of the basic ER concepts and introduced fuzzy entity sets,
fuzzy-relationship sets and fuzzy attribute sets (the first level of fuzziness) as well as fuzziness in entity and relationship
occurrences (the second level of fuzziness) and in attribute values (the third level of fuzziness). Based on the fuzzy
ER model, a methodology for the design and development of fuzzy-relational databases is proposed in Chaudhry
et al. [37] through the rules developed for mapping the fuzzy ER schema to the fuzzy-relational database schemas.
Other efforts to extend the ER model can be found in Ruspini [38], Vandenberghe [39], Vert et al. [40]. Without
including graphical representations, the fuzzy extensions of several major EER concepts (including superclass/subclass,
generalization/specialization, category and the subclass with multiple superclasses) are introduced in Chen and Kerre
[41]. A full-fledged fuzzy extension to the EER model and the corresponding graphical representations are presented
in Ma et al. [42], along with the formal approach to mapping a fuzzy EER model to a fuzzy object-oriented database
schema. In Galindo et al. [43], the fuzzy EER models are extended by relaxing some constraints with fuzzy quantifiers.
In addition to the ER/EER model, the IFO data model, a graph-based conceptual data model proposed in Abiteboul
and Hull [44], is also extended to deal with fuzzy information. In Vila et al. [45], several types of imprecision and
uncertainty are incorporated into the attribute domain of the object-based data model, such as the values without
semantic representation, the values with semantic representation and disjunctive meaning, the values with semantic
representation and conjunctive meaning, and the representation of uncertain information. However, some major concepts
in object-based modeling (e.g., superclass/subclass and class inheritance) are not discussed. In addition to the attribute-
level uncertainty, Vila et al. [45] consider the uncertainty to be at the level of object and class. In Yazici et al. [46],
two levels of uncertainty are considered based on similarity relations, namely the level of attribute values and the level
of entity instances, giving rise to the ExIFO model. Also, the mapping from the ExIFO model into the fuzzy nested

28 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

relational database schemas is described. The mapping from the IF2O model, an extended fuzzy IFO model based on
fuzzy set and possibility theory, into the fuzzy-relational database schemas is described in Ma [47]. A fuzzy semantic
model (FSM) that draws on some constructs found in several fuzzy conceptual data models (e.g., fuzzy ER/EER
and IFO data models), is proposed in Bouaziz et al. [48], and a query language adapted to FSM-based databases is
introduced. Although some studies perform fuzzy conceptual modeling, only a few incorporate fuzziness with the UML
model. Sicilia and Mastorakis [13] define several new fuzzy constructs for the extended UML model. In addition, UML
is extended with some fuzzy constructs for multimedia database applications [49,50] and spatiotemporal database
applications [51]. The proposed model supports the representation of uncertainty at the attribute, object/class and
class/subclass levels.

Conceptual data models can capture and represent rich and complex semantics at a highly abstract level. The design
of large and complex databases in applications generally starts with designing the conceptual data models, which are
then mapped into the logical database models. Various conceptual data models have been used for the conceptual
design of database schemas. For example, relational databases are designed by first developing a high-level conceptual
data model, such as an ER model, and then an ER-diagram is mapped to a database schema [52]. In information
management of a multimedia database, for example, the attributes of an image such as color, the description of an
object and the spatial relations between objects may be imprecise [23,24], such as “bright” in color and “near”
in spatial relation, which are highly useful in intelligent semantics-based image retrieval systems. To represent and
handle complex objects with imprecise and uncertain information, a challenge in many data- and knowledge-intensive
application areas, and in particular to provide a conceptual design methodology for the fuzzy object-oriented databases,
this paper models fuzzy information via the UML data model and the object-oriented database model. Fuzzy sets and
possibility distributions introduce different levels of fuzziness into the class of the UML model, enabling the UML class
diagrams to model fuzzy information. Based on the corresponding graphical representations of the fuzzy UML data
model, this paper describes the formal mapping of the fuzzy UML data model into the fuzzy object-oriented database
model.

This paper represents a departure from the existing fuzzy extensions to the EER and IFO models, which only consider
the second level of fuzziness. First, we introduce several major concepts into the UML class model such as association
and dependency. Second, these concepts allow for the full consideration of the first and second levels of fuzziness in
classes. Finally, the fuzzy UML data model is mapped into the fuzzy object-oriented database model. The contribution
of this paper is the full development of an OO conceptual modeling methodology for the modeling of fuzzy information.

The remainder of this paper is organized as follows. Section 2 provides basic knowledge concerning fuzzy sets and
fuzziness in conceptual data models. The fuzzy extension to the UML class model is developed in Section 3. Section 4
presents the formal mapping from the fuzzy UML class model to the fuzzy object-oriented database model, and Section
5 concludes this paper.

2. Fuzzy sets and fuzziness in conceptual data models

Different models have been proposed to handle different categories of data quality (or the lack thereof). Five basic
kinds of imperfection have been identified [53], which are inconsistency, imprecision, vagueness, uncertainty, and
ambiguity. Rather than providing the formal definitions of these types of imperfect information, we explain their
meanings here.

Inconsistency is a type of semantic conflict, meaning that the same aspect of the real world is irreconcilably represented
more than once in a database or in several different databases. For example, the year of birth of George is simultaneously
stored as 1966 and 1967. Information inconsistency usually arises from information integration.

Intuitively, imprecision and vagueness are relevant to the content of an attribute value, which means that a choice
must be made from a given range (interval or set) of values without knowing which one should be chosen. In general,
vague information is represented by linguistic values. For example, assume that we do not know the exact year of birth
of two persons named Michael and John, but we do know that the year of birth of Michael may be 1958, 1959, 1960,
or 1961, and John is a baby. The information about Michael’s year of birth is imprecise, denoted by a set of values
{1958, 1959, 1960, 1961}. The information about John’s year of birth is vague one, and can be denoted by the linguistic
value, “infant”.

Uncertainty indicates that we can apportion some, but not all, of our belief to a given value or group of values. For
example, the possibility that the year of birth of Chris is 1955 right now should be 98%. This paper does not consider

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 29

random uncertainty, which can be described using probability theory. The ambiguity means that some elements of the
model lack complete semantics, leading to several possible interpretations.

Generally, several different kinds of imperfection can co-exist with respect to the same piece of information. For
example, the year of birth of Michael is a set of values {1958, 1959, 1960, 1961} with possibilities of 70%, 95%, 98%,
and 85%, respectively. Imprecision, uncertainty, and vagueness are the three major types of imperfect information
and can be modeled with fuzzy sets [14] and possibility theory [15]. Many current approaches to imprecision and
uncertainty are based on the theory of fuzzy sets [54,55].

Let U be a universe of discourse and F be a fuzzy set in U. A membership function:

�F : U → [0, 1]

is defined for F, where �F (u) for each u ∈ U denotes the membership degree of u in the fuzzy set F. Thus, the fuzzy
set F is described as follows:

F = {(u1,�F (u1)), (u2,�F (u2)), . . . , (un, �F (un))}.
When the membership degree �F (u) above is explained as a measure of the possibility that a variable X has the value

u, where X takes on values in U, a fuzzy value is described by the possibility distribution �X [15].

�X = {(u1,�X (u1)), (u2,�X (u2)), . . . , (un, �X (un))}.
Here, �X (ui), ui ∈ U denotes the possibility that ui is true. Let �X be the representation of the possibility distribution

for the fuzzy value of a variable X. This means that the value of X is fuzzy, and X may take on one of the possible values
u1, u2, . . . , and un, with each possible value (say ui) associated with a possibility degree (say �X (ui)).

Fuzzy set theory was first applied to some of the basic ER concepts in Zvieli and Chen [36]. This work introduced
the fuzzy entity type set, fuzzy-relationship type set and fuzzy attribute set of entity types (or relationship types) in
addition to fuzziness in entity occurrences, relationship occurrences and attribute values, constituting the following
three levels of fuzziness in the ER model.

• At the first level, the entity type set, relationship type set and attribute set of entity (or relationship) types may be
fuzzy.

• The second level is related to the fuzzy occurrences of entities and relationships.
• The third level concerns the fuzzy values of attributes in entities and relationships.

An ER model generally includes some entity types, which constitute a set of entity types and some relationship
types, which constitute a set of relationship types. In addition, an entity type or a relationship type generally includes
some attributes, which constitute a set of attributes. In the fuzzy ER model, the first level of fuzziness means that these
three kinds of sets may be fuzzy sets. Let the entity type set be fuzzy. Then, an entity type belongs to the entity type
set with a membership degree in [0, 1] that indicates the possibility that this entity type belongs to the entity type
set. Similarly, if the relationship type set is a fuzzy set, a relationship type belongs to the relationship type set with a
membership degree in [0, 1] that indicates the possibility that this relationship type belongs to the relationship type set;
if the attribute set of an entity type or a relationship type is a fuzzy set, then an attribute belongs to the attribute set with
a membership degree in [0, 1] that indicates the possibility that this attribute belongs to the attribute set. For example,
consider the membership values for entity types, relationship types and attributes. Suppose that we have an ER model
about a library that includes the two entity types Book and Book Store, and that there is a relationship PurchasedFrom
between these two entity types. The model assumes that Book Store is a fuzzy entity type with a membership grade of
0.6. Then, PurchasedFrom is a fuzzy-relationship type with a membership grade of 0.6. Also, Book may contain an
attribute Dimensions in addition to the attributes ID, Title, Authors, ISBN, Publisher, etc., and Dimensions is a fuzzy
attribute with a membership grade of 0.4.

3. UML modeling of fuzzy data

This section extends the UML class diagram to represent fuzzy information. Because the constructs of UML contain
class and relationships, the extension to these constructs should be conducted based on fuzzy sets. For this purpose,
we first give a formal description of the UML class diagram.

30 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

A UML class diagram is a tuple D = (C, A, R, O, M, S), in which C is a finite set of classes, A is a finite set of
attributes, R is a finite set of relationships, O is a finite set of objects, M is a finite set of methods, and S is a finite set
of constraints. This paper focuses solely on the classes, attributes, relationships, and objects, yielding a simple UML
class diagram model: D = (C, A, R, O), where C = {c1, c2, . . . , ck}, A = {a1, a2, . . . , al}, R = {r1, r2, . . . , rm}, and
O = {o1, o2, . . . , on}. Then, we have:

• R ⊆ C × C is a binary relation that represents the generalization, aggregation, association or dependency.
• For ci ∈ C(1 ≤ i ≤ k), A(ci) represents a set of attributes of ci . Clearly A(ci) ⊆ {a1, a2, . . . , al}, i.e., A(ci) ⊆ A.

For a j ∈ A(1 ≤ j ≤ l), a j (ci) denotes the attribute a j of ci . In the context of the given ci , a j is used instead of a j

(ci).
• For ci ∈ C(1 ≤ i ≤ k), O(ci) means a set of objects that ci contains. Here, O(ci) ⊆ {o1, o2, . . . , on}, i.e., O(ci) ⊆ O .

For op ∈ O(1 ≤ p ≤ n) and a j ∈ A(1 ≤ j ≤ l), op (ci) denotes the object op of ci , and op (a j (ci)) denotes the
value of object op on attribute a j . In the context of the given ci , op is used instead of op (ci) and op (a j) is used
instead of op(a j (ci)).

To accommodate fuzzy information in the UML class diagram, the UML class diagram model must be extended by
using the fuzzy set and fuzzy logic. Formally, a fuzzy UML class diagram is a tuple D̃ = (C̃, Ã, R̃, Õ), where C̃ is
a fuzzy set of classes, Ã is a fuzzy set of attributes, R̃ is a fuzzy set of relationships, and Õ is a fuzzy set of objects.
In the following we investigate the details of the fuzzy UML class diagram.

3.1. Fuzzy class

Theoretically, a class can be considered from two different viewpoints:

(a) an extensional class, where the class is defined by the list of its object instances, and
(b) an intensional class, where the class is defined by a set of attributes and their admissible values.

A subclass defined from its superclass by means of the inheritance mechanism, and this can be regarded as the special
case of (b) above.

Objects with the same properties are grouped into classes. Suppose that some fuzzy objects have similar properties
and that a class is defined by these objects. These objects belong to the class with membership degrees of [0, 1], making
it a fuzzy class. Also, for an intensional class, the domain of a class attribute may be fuzzy. As a result, some objects
may have fuzzy values on this attribute, making the corresponding class a fuzzy class. Finally, a class is produced by
a fuzzy class by means of specialization, or a class is produced by some classes (in which at least one class is fuzzy)
by means of generalization. At this point, the produced class (subclass for the former and superclass for the later) is
fuzzy.

Following Zvieli and Chen [36], the context of the class contains three levels of fuzziness in D̃ = (C̃, Ã, R̃, Õ).

(a) The first level of fuzziness evaluates the extent to which the class belongs to the data model as well as the fuzziness
of the content (in terms of attributes) of the class. At this point, we have a fuzzy set of classes C̃ and then a class
(e.g., ci) is the class of C̃ with a membership degree (e.g., �C̃ (ci)); or for a class (e.g., ci), we have a fuzzy set
of its attributes (e.g., A(ci)) and then an attribute (e.g., a j (ci)) is the attribute of A(ci) with a membership degree
(e.g., � Ã(a j (ci))).

(b) The second level of fuzziness evaluates the extent to which some objects belong to a class. An object is a fuzzy
one if it contains at least one fuzzy attribute value. Then such an object (e.g., op(ci)) is the object of class (e.g.,
O(ci)) with a membership degree (e.g., �Õ (op(ci))).

(c) The third level of fuzziness is that of the attribute values of the objects of the class. An attribute in a class
defines a value domain. When this domain is a fuzzy subset or a set of a fuzzy subset, the value of an ob-
ject on the attribute, say op(a j (ci))(1 ≤ p ≤ n), is a fuzzy one represented by a possibility distribution, say
{(v1, �(v1)), (v2, �(v2)), . . . , (vq , �(vq))}. Here, �(vs)(1 ≤ s ≤ q) denotes the possibility that op(a j (ci)) has
value vs .

Consider a class diagram model of the preliminary design of the product Car. Suppose that there is a class named GPS
and it is unknown whether the model includes this class at the preliminary design stage. Class GPS possibly belongs to
the model with a membership degree of 0.90. Then, GPS is a class with the first level of fuzziness. Also, at this point

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 31

it is possible that a variety of GPS products may be selected, say CS3K(SONY), HDR-TG5V(SONY), NV-U3C(SONY),
nüvi 465T(GARMIN) and GORILLA(SANYO), and these objects belong to class GPS with membership degrees of 0.7,
0.9, 1.0, 1.0, and 0.8, respectively. Then, GPS is a class with the second level of fuzziness. Let class GPS contains an
attribute named quality and let it be possible that the values of some objects are fuzzy on this attribute, with the value
of nüvi 465T(GARMIN) on this attribute as very good. Then, GPS is a class with the third level of fuzziness.

The three levels of fuzziness in the class constitute the foundation of the fuzzy UML class diagram, so their soundness
is crucial. First, consider the first level of fuzziness. For the fuzzy set C̃ of classes and any class ci (1 ≤ i ≤ k), the
degree to which ci belongs to C̃ is �C̃ (ci)(0 ≤ �C̃ (ci) ≤ 1). This implies that for the traditional UML class diagram
with no imprecise or uncertain information, either �C̃ (ci) = 0, which means that ci definitely does not belong to
C̃ , or �C̃ (ci) = 1, which means that ci must belong to C̃ . At this point, C̃ becomes a crisp set of classes. Also,
for the class ci (1 ≤ i ≤ k) and the attribute a j (ci)(1 ≤ j ≤ l) of ci , the degree to which a j belongs to A(ci) is
� Ã(a j (ci))(0 ≤ � Ã(a j (ci)) ≤ 1). Then, either � Ã(a j (ci)) = 0 or � Ã(a j (ci)) = 1 under the traditional information
environment (no imprecision or uncertainty at all). The former situation indicates that a j is not an attribute of ci ,
while the latter situation indicates that a j must be an attribute of ci . Second, let us focus on the second level of
fuzziness. For the class ci (1 ≤ i ≤ k) and an object instance op(ci)(1 ≤ p ≤ n) of ci , the degree to which op

belongs to O(ci) is �Õ (op(ci)) (0 ≤ �Õ (op(ci)) ≤ 1). Then, under the traditional information environment, either
�Õ (op(ci)) = 0 or �Õ (op(ci)) = 1, which means that op is not the object of ci or that op must be the object of ci ,
respectively. Finally, consider the third level of fuzziness. The attribute value of object op (a j (ci)) is represented by a
possibility distribution {�(v1)/v1, �(v2)/v2, . . . , �(vq)/vq}. The possibility that op(a j (ci)) has the value vs(1 ≤ s ≤ q)
is �(vs)(0 ≤ �(vs) ≤ 1). Also, when there is no imprecise or uncertain information, either �(vs) = 0 or �(vs) = 1.
As a result, {(v1, �(v1)), (v2, �(v2)), . . . , (vq , �(vq))} is reduced to a crisp set and op(a j (ci)) takes on a crisp attribute
value. In summary, the traditional UML class diagram is simply a special case of the fuzzy UML class diagram. As it
is an extension of the traditional UML class diagram, the fuzzy UML class diagram with three levels of fuzziness can
be reduced to the traditional diagram in the absence of imprecise and uncertain information. Therefore, the extension
of the three levels of fuzziness to classes is sound.

To model the first level of fuzziness, i.e., an attribute or a class with a membership degree, the attribute or class
name should be followed by a pair of words WITH mem DEGREE, where 0 ≤ mem ≤ 1, which is used to indicate the
degree to which the attribute belongs to the class or to which the class belongs to the data model [29,32]. For example,
“Employee WITH 0.6 DEGREE” and “Office Number WITH 0.8 DEGREE” are a class and an attribute, respectively,
with the first level of fuzziness. Generally, an attribute or class will not be declared when its membership degree is
0. In addition, “WITH 1.0 DEGREE” can be omitted when the membership degree of an attribute or class is 1. Note
that attribute values may be fuzzy. To model the third level of fuzziness, the keyword FUZZY is introduced and placed
in front of the attribute name. For the second level of fuzziness, we must indicate the membership degree to which
an instance of the class belongs to the class. For this purpose, an additional attribute is introduced into the class to
represent the membership degree of the instance to the class, with the domain [0, 1]. We denote such a special attribute
with �. A class with the second level of fuzziness is denoted by a rectangle with a dashed outline.

Fig. 1 shows the fuzzy class Young Employee. Here, the attribute Year of Birth may take on fuzzy values; namely, its
domain is fuzzy. It is unclear whether the class Young Employee has the attribute Spouse, but we do know that young
employees have spouses with intermediate possibility, say 0.5. Therefore, the attribute Spouse uncertainly belongs to
the class Young Employee. This class has fuzziness at the first level, and we use “with 0.5 membership degree” to
describe the fuzziness in the class definition. In addition, we cannot determine whether an object is an instance of the
class because the class is fuzzy. Therefore, an additional attribute � is introduced into the class for this purpose.

3.2. Fuzzy generalization

Inheritance is a mechanism in object-oriented data modeling that allows a class referred to as a subclass to inherit
attributes and methods from another class called its superclass. As a result, inheritance allows the definition of super-
classes and subclasses, and classes are organized in inheritance hierarchies in which the definitions of attributes and
methods are inherited among classes. Because a subclass is a specialization of its superclass, any one object belonging
to the subclass must belong to the superclass. This characteristic can be used to determine whether two classes have a
subclass/superclass relationship.

32 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

Young Employee

ID
Name
FUZZY Year of Birth
Spouse WITH 0.5 DEGREE
μ

Fig. 1. A fuzzy class.

In the fuzzy UML data model, classes may be fuzzy. A class produced from a fuzzy class by means of inheritance
may be fuzzy. If the former is still called a subclass and the latter is a superclass, the subclass/superclass relationship
is fuzzy. In other words, a class is a subclass of another class with the membership degree [0, 1] at this moment. Also,
the fact that a class may be a fuzzy class results in a (fuzzy) object belonging to this class with a membership degree. A
threshold is needed to determine the subclass/superclass relationship using objects. We have developed the following
method for determining the subclass/superclass relationship.

(a) For any (fuzzy) object, the membership degree to which it belongs to the subclass is greater than or equal to a given
threshold, and

(b) the membership degree to which it belongs to the subclass is less than or equal to the membership degree to which
it belongs to the superclass.

The subclass is then a subclass of the superclass with a membership degree, which is the minimum of the membership
degrees to which these objects belong to the subclass. Here, the given threshold is used to set the confidence with which
two classes have a subclass/superclass relationship with membership degree. Generally, two kinds of objects of the
subclass can be identified: the objects that have membership degrees less than the given threshold and objects that
have membership degrees greater than or equal to the given threshold. With the given threshold, two classes have a
subclass/superclass relationship as long as the latter objects have membership degrees that are less than or equal to the
membership degrees to which they belong to the superclass. The former objects are not applied to determine whether
they have membership degrees less than or equal to the membership degrees to which they belong to the superclass.
If the threshold is not set, then the two classes do not have a subclass/superclass relationship when an object of the
subclass exists that has a membership degree greater than the membership degree to which it belongs to the superclass,
even if this membership degree is very small. To avoid propagating infinitesimal degrees, the given threshold is used
as a computational threshold (the same convention is adopted in the rest of the paper).

Formally, let c′ and c′′ be (fuzzy) classes and � be a given threshold. We say that c′′ is a subclass of c′ if

(∀o)(� ≤ �c′′ (o) ≤ �c′ (o)).

The membership degree to which c′′ is a subclass of c′ should be min�c′′(o)≥�(�c′′ (o)). Here, o is an object instance of
c′ and c′′ in the universe of discourse, and �c′(o) and �c′′(o) are membership degrees of o to c′ and c′′, respectively.

However, note that in the above-mentioned fuzzy generalization relationship we assume that classes c′ and c′′ only
have the second level of fuzziness. Classes c′ or c′′ may be classes with membership degrees, namely, with the first
level of fuzziness. Assume that we have two classes c′ and c′′, as follows:

c′ WITH degree_c′ DEGREE,

c′′ WITH degree_c′′ DEGREE.

Then, c′′ is a subclass of c′ if

(∀o)(� ≤ �c′′ (o) ≤ �c′ (o)) ∧ ((� ≤ degree_c′′ ≤ degree_c′).

That means that c′′ is only a subclass of c′ if the membership degrees of all objects to c′ and c′′ are greater than or
equal to the given threshold and the membership degree of any object to c′ is greater than or equal to the membership
degree of this object to c′′, the membership degrees of c′ and c′′ are greater than or equal to the given threshold, and
the membership degree of c′ is greater than or equal to the membership degree of c′′.

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 33

Consider a fuzzy superclass c′ and its fuzzy subclasses c′′
1, c′′

2, . . ., c′′
n with instance membership degrees �c′ , �c′′1,

�c′′2, . . ., and �c′′n , respectively, which also have membership degrees of degree_c′, degree_c′′
1, degree_c′′

2, . . ., and
degree_c′n , respectively. Then, the following relationship is true:

(∀o)(max(�c′′1(o), �c′′2(o), . . ., �c′′n(o)) ≤ �c′(o)) ∧ (max(degree_c′′
1, degree_c′′

2, . . ., degree_c′′
n) ≤ degree_c′).

For a crisp superclass/subclass relationship with multiple subclasses, an object must belong to the superclass if it
belongs to one subclass, but an object belonging to the superclass may or may not belong to the subclasses. Consider the
classes Patient, Outpatient and Inpatient, where Outpatient and Inpatient are two subclasses of Patient. Suppose that
the object instance Michael is an object instance of the subclass Inpatient. Clearly, Michael must be an object instance
of the superclass Patient. Now, suppose that Michael is an object instance of the superclass Patient but not of subclass
Outpatient, which implies that in the superclass/subclass relationship, the instance membership degree to which an
object belongs to the subclasses is not greater than the instance membership degree to which this object belongs to
the superclasses. Consequently, in the fuzzy superclass/subclass relationship with multiple subclasses, the instance
membership degree to which an object belongs to any of the subclasses is not greater than the instance membership
degree to which this object belongs to the superclasses. Accordingly, the max operator is used above.

We assess the above fuzzy subclass/superclass relationships by utilizing the degree of inclusion of objects to the
class. Clearly, such an assessment is based on the extensional viewpoint of the class. When classes are defined with the
intensional viewpoint, there is no object available. Therefore, the method given above cannot be used. At this point,
we have to use the degree of inclusion of a class with respect to another class to determine the relationships between
the fuzzy subclass and superclass. The notion of inclusion degree was originally developed in Ma et al. [31] to assess
data redundancy in fuzzy-relational databases. Ma et al. [31] extended the inclusion degree to evaluate the membership
degree of an object to a class and to further develop the relationship between fuzzy subclass and superclass.

Formally, let c′ and c′′ be (fuzzy) classes and the degree to which c′′ is the subclass of c′ be denoted by �(c′, c′′). For
a given threshold �, we say that c′′ is a subclass of c′ if

�(c′, c′′) ≥ �.

Here �(c′, c′′) is used to evaluate the inclusion degree of c′′ with respect to c′ according to the inclusion degree of
the attribute domains of c′′ with respect to the attribute domains of c′ as well as the weights of the attributes. The
membership degree to which c′′ is a subclass of c′ is � (c′, c′′).

Now, consider the situation in which classes c′ or c′′ are classes with membership degrees, namely, with the first
level of fuzziness. Assume that we have two classes c′ and c′′, as follows:

c′ WITH degree_c′ DEGREE,

c′′ WITH degree_c′′ DEGREE.

Then, c′′ is a subclass of c′ if

(�(c′, c′′) ≥ �) ∧ (� ≤ degree_c′′ ≤ degree_c′).

This means that c′′ is only a subclass of c′ if the inclusion degree of c′ with respect to c′′ is greater than or equal to
the given threshold, the membership degrees of c′ and c′′ are all greater than or equal to the given threshold, and the
membership degree of c′ is greater than or equal to the membership degree of c′′.

The inclusion degree of a (fuzzy) subclass with respect to the (fuzzy) superclass can be calculated according to the
inclusion degree of the attribute domains of the subclass with respect to the attribute domains of the superclass as well
as the weights of attributes. The methods used to evaluate the inclusion degree of fuzzy attribute domains and to further
evaluate the inclusion degree of a subclass with respect to the superclass were developed in Ma et al. [31]. Note that
this study did not discuss the relationship between a subclass and a superclass with the first level of fuzziness.

A critical issue in subclass/superclass hierarchies is the multiple inheritances of a class. The fuzzy generalization
relationship with multiple inheritances of class can be interpreted according to a conjunctive or disjunctive interpretation.
Let c′, c1 and c2 be fuzzy classes with the second level of fuzziness and � be a given threshold. We say that c′ is a

34 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

subclass of c1 and c2 with a conjunctive interpretation if

(∀o)(∀c)(c ∈ {c1, c2} ∧ � ≤ �c′(o) ≤ �c(o)).

If instead of using the inclusion degree of objects to the class we use the inclusion degree of a class with respect to
another class to determine the relationships between fuzzy subclass and superclass, the above formula is redefined as
follows:

(�(c1, c′) ≥ �) ∧ (�(c2, c′) ≥ �).

Now, suppose that c′, c1 and c2 above may also have the first level of fuzziness, with membership degrees degree_c′,
degree_c1 and degree_c2, respectively. Then, we have

(∀o)(∀c)(c ∈ {c1, c2} ∧ � ≤ �c′(o) ≤ �c(o) ∧ � ≤ degree_c′ ≤ min(degree_c1, degree_c2)).

If we use the inclusion degree of a class with respect to another class to determine the relationships between fuzzy
subclasses and the superclass, the above formula is redefined as follows:

(�(c1, c′) ≥ �) ∧ (�(c2, c′) ≥ �) ∧ (� ≤ degree_c′ ≤ degree_c1) ∧ � ≤ degree_c′ ≤ degree_c2).

In instances in which a class has multiple inheritances, ambiguity arises when more than one of the superclasses
have common attributes and the subclass does not declare explicitly the class from which the attribute is inherited.
Assume that the attribute ai in c1, denoted by ai (c1), is the same as the attribute ai in c2, denoted by ai (c2). If ai (c1) and
ai (c2) have an identical domain, then there is no conflict in the multiple inheritance hierarchy and c inherits attribute ai

directly. However, a conflict occurs if ai (c1) and ai (c2) have different domains. At this point, whether c inherits ai (c1)
or ai (c2) depends on which is dominant [31], with class c inheriting ai from the dominant superclass. Note that in a
fuzzy multiple inheritance hierarchy, the subclass has different degrees with respect to different superclasses, which is
different from the situation in the classical object-oriented databases.

Now, consider the fuzzy generalization relationship with a disjunctive interpretation. Let c′, c1 and c2 be fuzzy
classes with the second level of fuzziness and � be a given threshold. We say that c′ is a subclass of c1 and c2 with a
disjunctive interpretation if

(∀o)(∃c)(c ∈ {c1, c2} ∧ � ≤ �c′ (o) ≤ �c(o)).

If, instead of using the inclusion degree of objects to the class, we use the inclusion degree of a class with respect
to another class to determine the relationships between a fuzzy subclass and its superclasses, the above formula is
redefined as follows:

(�(c1, c′) ≥ �) ∨ (�(c2, c′) ≥ �).

Now suppose that c′, c1 and c2 above may also have the first level of fuzziness with membership degrees degree_c′,
degree_c1 and degree_c2, respectively. Then, we have

(∀o)(∃c)(c ∈ {c1, c2} ∧ � ≤ �c′ (o) ≤ �c(o) ∧ � ≤ degree_c′ ≤ degree_c).

If we use the inclusion degree of a class with respect to another class to determine the relationships between a fuzzy
subclass and superclass, the above formula is redefined as follows:

(�(c1, c′) ≥ � ∧ � ≤ degree_c′ ≤ degree_c1) ∨ (�(c2, c′) ≥ � ∧ � ≤ degree_c′ ≤ degree_c2).

A dashed triangular arrowhead is used to represent a fuzzy generalization as shown in Fig. 2. Here, the classes Young
Employee, Middle-Aged Employee and Old Employee all exhibit the second level of fuzziness, meaning that the classes
may have some instances (objects) that belong to the classes with membership degrees. These three classes can be
generalized into the class Employee.

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 35

Old Employee

Employee

Young Employee Middle-Aged Employee

Fig. 2. A fuzzy generalization relationship.

3.3. Fuzzy aggregation

An aggregation captures a whole-part relationship between an aggregate (the whole) and several constituent parts
(the part), where the constituent parts can exist independently. Each instance of an aggregate can be projected into
a set of instances of constituent parts. Formally, let c′ be an aggregation of constituent parts c′′

1, c′′
2, . . ., and c′′

n .
For o ∈ c′, the projection of o to c′′

i is denoted by o ↓c′′i , which represents an instance of c′′
i . Then, we have

(o ↓c′′1) ∈ c′′
1, (o ↓c′′2) ∈ c′′

2, . . ., (o ↓c′′n) ∈ c′′
n . For example, aggregate class Car is aggregated by the constituent part

classes Engine, Interior and Chassis. For a car instance (such as “Honda CR-V EX”), its projection on Engine is an
engine instance (say “In-Line 4-Cylinder”), and we have Honda CR-V EX ↓Engine= In-Line 4-Cylinder.

A class aggregated from fuzzy constituent parts may be fuzzy. If the former is still called an aggregate, then the
aggregation is a fuzzy aggregation. At this point, a class is an aggregation of constituent parts with membership degrees
of [0, 1]. Correspondingly, the following method can be used to determine the fuzzy aggregation relationship.

(a) For any (fuzzy) object, the membership degree to which it belongs to the aggregate is greater than or equal to the
given threshold, and

(b) The membership degree to which it belongs to the aggregate is less than or equal to the membership degree to
which its projection to each constituent part belongs to the corresponding constituent part.

The aggregate is then an aggregation of the constituent parts with membership degrees, which is the minimum of
the membership degrees to which the projections of these objects to the constituent parts belong to the corresponding
constituent parts. As for the fuzzy generalization, the given threshold is a computational threshold that is used to set the
confidence to which the aggregate and constituent parts have an aggregation relationship with a membership degree
and to avoid propagating infinitesimal degrees. The objects of the aggregate that have membership degrees greater than
or equal to the threshold are tested for whether their membership degrees are less than or equal to the membership
degrees to which their projections to each constituent part belong to the corresponding constituent part. The objects of
the aggregate that have membership degrees less than the threshold are not considered.

Formally, let c′ be a fuzzy aggregation of fuzzy class sets c′′
1, c′′

2, . . ., and c′′
n , with corresponding instance membership

degrees of �c′ , �c′′1,�c′′2, . . . , and �c′′n , respectively. Let � be a given threshold. Then,

(∀o)(o ∈ c′ ∧ � ≤ �c′(o) ≤ min(�c′′1(o ↓c′′1), �c′′2(o ↓c′′2), . . . , �c′′n(o ↓c′′n))).

Therefore, a fuzzy class c′ is the aggregate of any group of fuzzy classes c′′
1, c′′

2, . . ., and c′′
n if, for any (fuzzy) object

instance, the membership degree to which it belongs to class c′ is less than or equal to the member degree to which its
projection to any one of c′′

1, c′′
2, . . ., and c′′

n , e.g., c′′
i (1 ≤ i ≤ n), belongs to class c′′

i . For any (fuzzy) instance object, the
membership degree to which it belongs to class c′ must be greater than or equal to the given threshold. The membership
degree to which c′ is an aggregation of class sets c′′

1, c′′
2, . . ., and c′′

n should be min�c′′i(e↓c′′i)≥�(�c′′i (o ↓c′′i))(1 ≤ i ≤ n).
Here, o is an object instance of c′.

For a classical aggregation, for any instance of aggregate c′, its projection to any one of c′′
1, c′′

2, . . ., and c′′
n , e.g.,

c′′
i (1 ≤ i ≤ n), must be the object instance of the constituent part c′′

i . However, an instance of constituent part c′′
i

may or may not be used to constitute the object instance of aggregate c′ as one part because the constituent part exists
independently. This implies that in the fuzzy aggregation, the instance membership degree to which an object belongs
to the aggregate is not greater than the instance membership degree to which the projection of this object on any one of
the constituent parts belongs to the corresponding constituent part. Consequently, in the fuzzy aggregation, the instance
membership degree to which an object belongs to the aggregate is not greater than the instance membership degree

36 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

projected by this object on any one of the constituent parts belonging to the corresponding constituent part. Therefore,
a min operator is adopted in the fuzzy aggregation above.

Now consider the first level of fuzziness in the above-mentioned classes c′, c′′
1, c′′

2, . . ., and c′′
n , namely, that they are

fuzzy classes with membership degrees. Let

c′ WITH degree_c′ DEGREE,

c′′
1 WITH degree_c′′

1 DEGREE,

c′′
2 WITH degree_c′′

2 DEGREE,

.

c′′
n WITH degree_c′′

n DEGREE.

Then, c′ is an aggregate of c′′
1, c′′

2, . . ., and c′′
n if

(∀o)(o ∈ c′ ∧ � ≤ �c′(o) ≤ min(�c′′1(o ↓c′′1), �c′′2(o ↓c′′2), . . . , �c′′n(o ↓c′′n)) ∧ degree_c′

≤ min(degree_c′′
1, degree_c′′

2, . . ., degree_c′′
n)).

Here, � is a given threshold.
Note that the assessment of the fuzzy aggregation relationships given above is based on the extensional viewpoint of

class. Clearly, these methods cannot be used if the classes are defined with the intensional viewpoint, because in that
case no object would be available. Below we discuss how to determine the fuzzy aggregation relationship using the
inclusion degree.

Formally, let c′ be a fuzzy aggregation of fuzzy classes c′′
1, c′′

2, . . ., and c′′
n, and � be a given threshold. Also, let the

projection of c′ to c′′
i be denoted by c′ ↓c′′i . Then,

min(�(c′′
1, c′ ↓c′′1), �(c′′

2, c′ ↓c′′2), . . . , �(c′′
n, c′ ↓c′′n)) ≥ �.

Here, �(c′′
i , c′ ↓c′′i)(1 ≤ i ≤ n) indicates the degree to which c′′

i semantically includes c′ ↓c′′i . The membership degree
to which c′ is an aggregation of c′′

1, c′′
2, . . ., and c′′

n is min(�(c′′
1, c′ ↓c′′1), �(c′′

2, c′ ↓c′′2), . . . , �(c′′
n, c′ ↓c′′n)).

Furthermore, the expression above can be extended for the situation that c′, c′′
1, c′′

2, . . ., and c′′
n may exhibit the first

level of fuzziness, namely, that they may be fuzzy classes with membership degrees. Let � be a given threshold and

c′ WITH degree_c′ DEGREE,

c′′
1 WITH degree_c′′

1 DEGREE,

c′′
2 WITH degree_c′′

2 DEGREE,

.

c′′
n WITH degree_c′′

n DEGREE.

Then, c′ is an aggregate of c′′
1, c′′

2, . . ., and c′′
n if

min(�(c′′
1, c′ ↓c′′1), �(c′′

2, c′ ↓c′′2), . . . , �(c′′
n, c′ ↓c′′n))≥� ∧ degree_c′≤ min(degree_c′′

1, degree_c′′
2, . . ., degree_c′′

n)).

A dashed open diamond is used to denote a fuzzy aggregate relationship as shown in Fig. 3 in which a car is aggregated
from the engine, interior, and chassis. In Fig. 3, the engine is old, so the fuzzy class Old Engine exhibits the second
level of fuzziness. The class Old Car is aggregated from the classes interior and chassis and the fuzzy class old engine,
making Car a fuzzy class with the second level of fuzziness.

3.4. Fuzzy association

An association relationship with an association name is defined as a binary structural relationship between two
classes that associates them, which specifies that the objects of one class are connected to the objects of another class.

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 37

Old Car

Old Engine Interior Chassis

Fig. 3. A fuzzy aggregation relationship.

An association relationship is bidirectional or unidirectional. The association relationship is defined on the basis of
classes, not on the basis of the objects of classes. Of course, for a given scope, each pair of objects in the corresponding
classes has the same association relationship. In an airport, for example, the classes Flight and Plane have an association
relationship with the association name assignedPlane.

Fuzzy classes are associated and then constitute the fuzzy association relationship. For fuzzy classes with the second
level of fuzziness, the class instances belong to the given classes with membership degrees. As a result, it is possible for
it to be unknown for certain whether two class instances belonging to the associated classes exhibit the given association
relationship, although the association relationship definitely exists between these two classes. For example, the classes
Young Driver and New Car have such a fuzzy association relationship with the association name driving. Here, an
instance of Young Driver and an instance of New Car belong to the corresponding classes with membership degrees,
and thus these two instances have an association relationship with a membership degree.

Formally, let c′ and c′′ be two classes with the second level of fuzziness. The instance o′ of c′ is an object with the
membership degree �c′ (o′), and the instance o′′ of c′′ is an object with the membership degree �c′′ (o′′). Assume that
the association relationship between c′ and c′′ is denoted by assc (c′, c′′). It is clear that the association relationship
between o′ and o′′, denoted assc (o′, o′′), has a membership degree, which can be calculated by

�(assc(o′,o′′)) = min(�c′ (o′), �c′′(o′′)).

Note that the membership degree �(assc(o′,o′′)) is defined only for o′ and o′′, not for c′ and c′′. In other words, the
membership degree to which o′ and o′′ have the association relationship is �(assc(o′,o′′)). For a pair of instances that
belong to the two classes and are not o′ and o′′, the membership degree to which the pair of instances has the associ-
ation relationship may be different from �(assc(o′,o′′)). This pair of instances is not regarded as having the association
relationship if the membership degree is small enough.

Note also that the association relationship may be fuzzily defined (e.g., People like Sports) and that the association
relationship exists in two associated classes with a membership degree. Different from the fuzzy association relationship
at the class instance level above, the fuzzy association relationship here is at the class level. This level of fuzziness in
the association relationship can be indicated explicitly by the designers even if the corresponding classes are crisp. In
the preliminary design of a product car, for example, suppose that a DVD player may or may not be installed in the
car at this stage, and the possibility that the DVD player will be installed in the car is 0.6. Let c′ and c′′ be two crisp
classes and assc (c′, c′′) is the association relationship with the membership degree degree_assc, denoted assc (c′, c′′)
WITH degree_assc DEGREE. At this moment, for any instance o′ of c′ and any instance o′′ of c′′, �c′(o′) = 1.0 and
�c′′ (o′′) = 1.0. Then, we have

�(assc(c′,c′′)) = degree_assc and �(assc(o′,o′′)) = degree_assc.

Here, �(assc(c′,c′′)) is used to represent the membership degree to which c′ and c′′ have the association relationship, and
�(assc(o′,o′′)) is used to represent the membership degree to which o′ and o′′ have the association relationship.

The classes with the first level of fuzziness generally result in a fuzzy association relationship with a membership
degree if this association is not indicated explicitly. Formally, let c′ and c′′ be two classes with only the first level of
fuzziness, denoted c′ WITH degree_c′ DEGREE and c′′ WITH degree_c′′ DEGREE, respectively. Then, the association
relationship between c′ and c′′, denoted assc (c′, c′′), has the membership degree degree_assc, denoted assc (c′, c′′)
WITH degree_assc DEGREE. Here, degree_assc is calculated by

degree_assc = min(degree_c′, degree_c′′).

38 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

installing WITH 0.6 DEGREE
CarAdvanced DVD Player Advanced DVD Player Car

installing

installing WITH 0.8 DEGREE
CarAdvanced DVD Player

Fig. 4. Fuzzy association relationships.

For any instance o′ of c′ and any instance o′′ of c′′, (�c′ (o′) = 1.0 and �c′′(o′′) = 1.0. We have

�(assc(c′,c′′)) = degree_assc = min(degree_c′, degree_c′′) and

�(assc(o′,o′′)) = degree_assc = min(degree_c′, degree_c′′).

Finally, consider the situation in which the classes exhibit the first and second levels of fuzziness. On one hand, the
two classes have a fuzzy association relationship at the class level. On the other hand, the class instances of these
two classes may have fuzzy association relationships at the class instance level. Let c′ and c′′ be two classes with
the first level of fuzziness, denoted c′ WITH degree_c′ DEGREE and c′′ WITH degree_c′′ DEGREE, respectively.
Also, let the instance o′ of c′ have the membership degree �c′ (o′), and the instance o′′ of c′′ have the membership
degree �c′′ (o′′).

Let assc (c′, c′′) be the association relationship with membership degree between c′ and c′′, and let assc (o′, o′′) be
the association relationship with membership degree between o′ and o′′. Then, we have

�(assc(c′,c′′)) = min(degree_c′, degree_c′′) and

�(assc(o′,o′′)) = min(�c′(o′), �c′′(o′′), degree_c′, degree_c′′).

The pair of words WITH mem DEGREE (0 ≤ mem ≤ 1) after the association name of an association relationship
represents the association relationship with membership degree. We use a double line with an arrowhead to denote the
association relationship by which the class instances are associated.

Fig. 4 shows two kinds of fuzziness in the fuzzy association relationships. In (a), classes Advanced DVD Player
and Car have an association relationship installing with a 0.6 membership degree. Also, it is possible that the DVD
player will certainly be installed in the car. In this case, the possibility that the DVD player will be installed in the car is
1.0, and the classes Advanced DVD Player and Car have an association relationship installing with a 1.0 membership
degree. As shown in (b), at the level of instances, the instances of classes Advanced DVD Player and Car may or may
not have the association relationship installing. In (c), two kinds of fuzzy association relationship in (a) and (b) arise
simultaneously.

3.5. Fuzzy dependency

A dependency signifies a supplier/client relationship between model elements, where the modification of the supplier
may impact the client model elements. That means the client is not complete without the supplier. A dependency
relationship is different from an association relationship in that it is only unidirectional. A dependency relationship
between the supplier class and the client class is established on the basis of classes, not on the basis of the objects of
classes. The dependency relationship is only related to the classes themselves and does not require a set of instances
to give it meaning. Each pair of objects where each one belongs to the corresponding class exhibits the dependency
relationship. For example, the supplier class Employee and the client class Employee Dependents have a dependency
relationship.

For fuzzy classes with the second level of fuzziness, the dependency relationship is not affected by such fuzzy classes
because the dependency relationship is defined at the level of classes over classes. However, the class instances belong
to the given classes with membership degrees. Therefore, two class instances that belong to the related classes may

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 39

Employee WITH 0.85 DEGREEEmployee Dependent WITH 0.85 DEGREE

Fig. 5. Fuzzy dependency relationship.

Workshop

Name
Location

Middle-Aged Worker

…
μ

Old Worker

…
μ

Young Worker

…
μ

Equipment

Id
Name
Site
FUZZY Condition
μ

New Equipment

…
μ

Old Equipment

…
μ

operation WITH 0.4 DEGREE

Worker

Id
Name
FUZZY Year of Birth
Major
μ

Fig. 6. A fuzzy UML data model.

have a dependency relationship with a membership degree. Note that the membership degree here is only for the given
class instances, not for the corresponding classes.

Like the fuzzy association relationship above, the dependency relationship between classes may be a fuzzy one with
a membership degree at the level of classes, which can be indicated explicitly by the designers or implied implicitly
by the source class based on the fact that the client class is decided by the supplier class. Assume that the supplier
class is fuzzy with the first level of fuzziness. Then, the client class must be fuzzy with the first level of fuzziness. The
membership degree of the client class is determined by the supplier class as the possibility degree of the supplier class.

For the supplier class Employee WITH 0.85 DEGREE, for example, the client class Employee Dependent should be
Employee Dependent WITH 0.85 DEGREE. The dependency relationship between Employee and Employee Dependent
should be fuzzy with a 0.85 membership degree. Note that the fuzziness of the dependency relationship among the
classes, if not given explicitly, is implied by first level of fuzziness of the supplier class. Because the fuzziness of the
dependency relationship is denoted implicitly by the first level of fuzziness of the supplier class, a dashed line with an
arrowhead can still be used to denote the fuzziness in the dependency relationship. Fig. 5 shows a fuzzy association
relationship at the level of classes.

3.6. An example

Employing some notations introduced above, we now present a fuzzy UML data model of a workshop in Fig. 6. In this
example, a Workshop is simply aggregated by two classes, Equipment and Worker. The class Equipment is a superclass
with New Equipment and Old Equipment as its two fuzzy subclasses in that they may have fuzzy instances. Similarly,
the class Worker has three fuzzy subclasses: Young Worker, Middle-Aged Worker and Old Worker. The classes Worker
and Old Equipment have the fuzzy association relationship operation, which exhibits fuzziness at both the first and
second levels. The class Worker has four attributes, with Id, Name and Major taking on crisp values, and the attribute
Year of Birth taking on a fuzzy value. Also, the class Equipment has four attributes, with Id, Name and Site taking on
crisp values and the attribute Condition taking on a fuzzy value.

40 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

4. Mapping of the fuzzy UML data model into the fuzzy object-oriented database model

4.1. Fuzzy object-oriented database (FOODB) model

Ma et al. [31] developed a fuzzy object-oriented database (FOODB) model in which the classes may be fuzzy.
Accordingly, in the FOODB, an object belongs to a class with a membership degree of [0, 1] and a class is the subtype
of another class with a degree of [0, 1]. In the FOODB, the specification of a class includes the definition of ISA
relationships, attributes and method implementations. Some additional definitions are needed to specify a fuzzy class.
First, weights must be assigned to the attributes of the class. In addition to these common attributes, a new attribute
should be added to the class to indicate the membership degree to which an object belongs to the class. If a class is a
fuzzy subclass, its superclasses and the degree to which the class is the subclass of the superclasses should be illustrated
in the specification of the class. Finally, in the definition of a fuzzy class, fuzzy attributes are explicitly indicated.

Formally, a fuzzy class is defined as follows:

CLASS class name WITH DEGREE OF degree
INHERITS supertype_1 name WITH DEGREE OF degree_1
. . .
INHERITS supertype_k name WITH DEGREE OF degree_k
ATTRIBUTES

Attribute_1 name: [FUZZY] DOMAIN dom_1: TYPE OF type_1 WITH DEGREE OF degree_1
. . .
Attribute_m name: [FUZZY] DOMAIN dom_m: TYPE OF type_m WITH DEGREE OF degree_m
Membership_Attribute name: membership_degree

WEIGHT
w (Attribute_1 name) = w_1
. . .
w (Attribute_m name) = w_m

METHODS
. . .

END.

4.2. Transformation of fuzzy UML class diagrams

Fuzzy information can be modeled in the UML data model and the object-oriented data model using the fuzzy UML
data model and the FOODB, respectively. This section investigates the mapping of the fuzzy UML data model into the
FOODB schema.

Generally speaking, the classes in the UML data model correspond to classes in the object-oriented database schema.
The attributes in a class of the UML data model correspond to the attributes of the class of the OODB schema. The
generalization in UML closely conforms to subclass/superclass structures, and the transformations are easily conducted.
In the fuzzy UML data model, the class and generalization may be fuzzy. Following similar transformation rules as
above, we develop a formal approach to transform a fuzzy UML data model into a FOODB model.

4.2.1. Transformation of classes
The classes in the UML data model generally correspond to the classes in the object-oriented database schema, and

the attributes of the classes in the UML data model correspond to the attributes of the classes in the object-oriented
database schema. If the classes in the UML data model are subclasses or superclasses in the object-oriented database
schema, the inheritance hierarchies of the classes produced by these UML classes must be explicitly indicated.

To transform from the fuzzy UML data model into the fuzzy object-oriented database schema, we first suppose that
the classes in the UML data model are neither subclasses nor superclasses. Then, we can distinguish four basic kinds
of classes in the fuzzy UML model as follows.

(a) classes without any fuzziness;
(b) classes with fuzziness only at the third level;
(c) classes with fuzziness only at the second level;
(d) classes with fuzziness only at the first level.

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 41

⇒

⇒

CLASS Good Partner
ATTRIBUTES
 Id: TYPE OF String
 Site: TYPE OF String
 State: FUZZY TYPE OF String
 pD: DOMAIN [0, 1] TYPE OF number
END

Good Partner

Id
Site
FUZZY State
μ

CLASS Office Chair WITH DEGREE 0.6
ATTRIBUTES

Code: TYPE OF String
Weight: TYPE OF Number WITH

DEGREE OF 0.5
Color: FUZZY TYPE OF String

END

Office Chair WITH 0.6 DEGREE

Code
Weight WITH 0.5 DEGREE
FUZZY Color

Fig. 7. Transformation of the classes in the fuzzy UML to the fuzzy object-oriented database scheme.

When transforming the classes of the fuzzy UML data model into the classes of the fuzzy object-oriented database
schema and transforming the attributes of the former classes into the attributes of the later classes, the transformation of
the classes with three levels of fuzziness is of particular concern. For the classes in case (b), the attributes taking fuzzy
values have fuzzy value types denoted by FUZZY TYPE OF in the transformed classes in the fuzzy object-oriented
database schema. For the classes in case (c), an additional attribute denoted by pD should be added into each class
transformed from the corresponding class in the fuzzy UML data model, which is used to denote the possibility that the
class instances belong to the class. For the classes in case (d), the classes and/or their attributes may be associated with
membership degrees. Correspondingly, the transformed classes and attributes in the fuzzy object-oriented database
schema are associated with membership degrees, if any. The membership degree is used to indicate the possibility that
the created class belongs to the corresponding database schema or that the attributes of the created class belong to the
class.

Based on the three basic types of fuzzy classes above (i.e., cases (b)–(d)), several combined types of fuzzy classes
can be constructed. For classes with fuzziness both at the third and second levels (denoted (e)), their transformation
is a simple combination of the above transformations in cases (b) and (c). For the classes with fuzziness both at the
third and first levels (denoted (f)), their transformation is a simple combination of the above transformations in cases
(b) and (d). For the classes with fuzziness both at the second and first levels (denoted (g)), their transformation is a
simple combination of the above transformations in cases (c) and (d). For the classes with fuzziness at all three levels
(denoted (h)), their transformation is a simple combination of the above transformations in cases (b)–(d).

Fig. 7 shows the transformation of the classes in the fuzzy UML data models to the fuzzy object-oriented database
schema. For the sake of simplification, some components in the class definition of the fuzzy object-oriented schema
such as DOMAIN, WEIGHT, METHODS, and CONSTRAINTS are not listed.

Assume that the classes of the fuzzy UML data model are superclasses that may belong to any of the class types
listed in cases (a)–(h) above. The transformation of such classes into the classes of the fuzzy object-oriented database
schema is the same as the transformation of the classes of the fuzzy UML data model given above. The classes of the
fuzzy UML data model that are subclasses and may be of any type (a)–(h) can be transformed into the classes of the
fuzzy object-oriented database schema following the same principles of the class transformation given above. However,
in the fuzzy object-oriented database schema, the inheritance hierarchies of the produced classes (subclasses) must be
explicitly indicated.

Fig. 8 shows the transformation of the subclasses in the fuzzy UML data models to the fuzzy object-oriented database
schema.

4.2.2. Transformation of aggregations
An aggregation specifies a whole-part relationship between constituent parts and an aggregate that is a class repre-

senting the whole. In the fuzzy UML data model, the (fuzzy) aggregate can be transformed into a class in the fuzzy

42 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

Young
Faculty

Youth

Young
Student

⇒

CLASS Youth
ATTRIBUTES

…
 pD: DOMAIN [0, 1] TYPE OF number
END

CLASS Young Student
INHERIT Youth
ATTRIBUTES

…
 pD: DOMAIN [0, 1] TYPE OF number
END

CLASS Young Faculty
INHERIT Youth
ATTRIBUTES

…
 pD: DOMAIN [0, 1] TYPE OF number
END

Fig. 8. Transformation of the subclasses in the fuzzy UML to the fuzzy object-oriented database scheme.

⇒

0.4/CD Player

Old Car

Old Engine Chassis

CLASS Old Car
ATTRIBUTES

Old Engine
CD Player WITH 0.4 DEGREE
Chassis
…

 pD : DOMAIN [0, 1] TYPE OF number
END

CLASS Old Engine
ATTRIBUTES

…
 pD : DOMAIN [0, 1] TYPE OF number
END

CLASS CD Player WITH 0.4 DEGREE
ATTRIBUTES

…
END

CLASS Chassis
ATTRIBUTES

…
END

Fig. 9. Transformation of the aggregations in the fuzzy UML to the fuzzy object-oriented database scheme.

object-oriented database schema, called an aggregation class, according to the transformation of the classes given
above. Also, each constituent part, being a (fuzzy) class, can be transformed into a class in the fuzzy object-oriented
database schema, called a component class. Note that the attributes of the aggregation class consist of all attributes
from the aggregate as well as all component classes as complex class attributes.

Fig. 9 shows the transformation of the aggregations in the fuzzy UML data models to the fuzzy object-oriented
database schema.

4.2.3. Transformation of associations
An association in the UML data model should be transformed into an association in the OO schema, which describes

a pointer as the attribute(s) in a class that combine(s) an explicit reference to another class. Considering the constraint
of cardinality, such attribute(s) in two associated classes can be single-valued or multi-valued. In the fuzzy UML data

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 43

⇓

CLASS c’2

ATTRIBUTES
 k2:
 k1: DOMAIN single values
 …
 pD: DOMAIN [0, 1] TYPE OF number
END

CLASS c’1

ATTRIBUTES
 k1:
 k2: DOMAIN set values
 …
 pD: DOMAIN [0, 1] TYPE OF number
END

1..*1
c1

R
c2

CLASS c’2

ATTRIBUTES
 k2:
 k1 WITH μ DEGREE: DOMAIN set values
 …
 pD: DOMAIN [0, 1] TYPE OF number
END

CLASS c’1

ATTRIBUTES
 k1:
 k2 WITH μ DEGREE: DOMAIN set values
 …
 pD: DOMAIN [0, 1] TYPE OF number
END

1..*1
c1

μ (R)/R
c2

⇓

Fig. 10. Transformation of the associations in the fuzzy UML to the fuzzy object-oriented database schema.

model, three basic kinds of associations can be distinguished, as follows:

(a) associations without any fuzziness;
(b) associations with fuzziness only at the second level;
(c) associations with fuzziness only at the first level.

Let class c1 and class c2 be connected with the association relationship R, where R may be a one-to-one, one-to-many
or many-to-many relationship. Also, assume that c1 and c2 have attributes k1 and k2, respectively, with values serving
as the object identification. Then, following the transformation process of the classes given above, c1 and c2 can be
transformed into the classes in the fuzzy object-oriented database schema. However, the influence of R on the association
of c2 (or c1) to c1 (or c2) must be considered when c1 (or c2) is transformed to a class of the fuzzy object-oriented
database schema. Here, k2 (or k1) should be added into the class c′

1 (or c′
2) created by c1 (or c2) as a foreign key, just like

the relational databases. If the constraint of cardinality is a one-to-one relationship, then R is a one-to-one relationship
from c1 to c2, k2 is a single-valued attribute in c′

1 and k1 is a single-valued attribute in c′
2. However, if R is a one-to-many

relationship from c1 to c2, then k2 is a multi-valued attribute in c′
1 and k1 is a single-valued attribute in c′

2. Clearly, k2 is
a multi-valued attribute in c′

1 and k1 is a multi-valued attribute in c′
2 if R is a many-to-many relationship from c1 to c2.

For relationship R in case (b), the possibility that a relationship instance belongs to R should be mapped into the
possibility that an object instance belongs to c′

1 or c′
2. Therefore, additional attributes denoting the possibility that the

class instances belong to the corresponding class should be added to c′
1 and c′

2, respectively. For relationship R in case
(c), i.e., the relationships with the membership degree �, k2 in c′

1 and k1 in c′
2 should be the attributes with membership

degrees, indicating the possibility that the foreign key is included in the created class.
Following the above transformations in cases (b) and (c), it is not difficult to deal with relationship R in the case

of associations with fuzziness both at the first and second levels, with the transformation carried out as a simple
combination of the transformations in cases (b) and (c).

Fig. 10 shows the transformation of the associations.
Note that we only consider an isolated (fuzzy) association in the transformation of the association. That is, we

assume that neither of the two associated classes is associated with other classes in addition to the given association
relationship. In real applications, however, it is possible that one class may be associated with more than one class.

44 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

For example, the classes Young Person and New Car are connected by the association relationship like, while New Car
and Manufacturer are connected with the association relationship made. The class New Car is an association class that
is associated with the class Young Person and also has another association. Formally, let classes c1 and c2 be connected
with the association relationship R12 and classes c2 and c3 be connected with the association relationship R23. Assume
that in addition to class c2, classes c1 and c3 are not connected with any other classes. Also assume that c1, c2 and c3
have attributes k1, k2 and k3, respectively, the values of which serve as the object identification. Then, c1 and c3 are
transformed into class c′

1 with an additional attribute k2 and class c′
3 with an additional attribute k2, respectively, in the

fuzzy object-oriented database schema. However, c2 is transformed into class c′
2 with two additional attributes k1 and

k3 in the fuzzy object-oriented database schema.

4.2.4. Transformation of dependencies
In a fuzzy dependency relationship, the client class fuzzily depends on the supplier class. There are several general

strategies to transform the (fuzzy) dependency relationship. The first strategy is a view of the independent class in
which the client and supplier classes are transformed using the transformation approaches of the classes given above,
and the dependency relationship is stated in the transformed classes as a kind of constraint. The second strategy is an
aggregation view in which the client class is regarded as a constituent part of the supplier class and is transformed into
the complex class attribute of the aggregation class. Here, the aggregation class is transformed from the supplier class
according to the transformation approaches of the aggregations given above. The final strategy is a view of association in
which the client and supplier classes are similarly transformed using the transformation approaches of the associations
given above with a small difference noted below.

Let classes c1 and c2 be the supplier and client classes, respectively. Assume that the values of attribute k1 in c1
and attribute k2 in c2 serve as the object identifiers. Then, c1 and c2 can be transformed into classes in the fuzzy
object-oriented database schema. However, the dependency of c2 on c1 must be considered when c2 is transformed to
a class of the fuzzy object-oriented database schema. Here, k1 should be added into the class c′

2 created by c2. Note
that differently from the transformation of association, k2 is not added into the class c′

1 created by c1 in this case.

5. Conclusions

This paper presents a fuzzy extended UML data model to cope with fuzzy as well as complex objects in the real world
at a conceptual level. Different levels of fuzziness are introduced into the UML class diagram, and the corresponding
graphical representations are developed. The classical UML data model is shown to be essentially a subset of the
fuzzy UML data model. When no fuzziness exists in the universe of discourse, the fuzzy UML data model can be
reduced to the classical UML data model. Also, we formally mapped the fuzzy UML data model into the fuzzy object-
oriented database model, including the transformations of the classes, generalizations, aggregations, associations and
dependencies in the fuzzy UML data model.

Note that the focus of this paper is on fuzzy data modeling in UML. As we know, UML can be used for knowledge
modeling, and knowledge may generally be imprecise and uncertain. In the future work, we will concentrate on the
studies of class operations, constraints and rules in fuzzy UML modeling. In addition, we will apply the fuzzy UML
data model to Semantic Web ontology.

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments and suggestions, which improved the
technical content and the presentation of the paper. This work was supported by the National Natural Science Foundation
of China (60873010 and 61073139) and the Fundamental Research Funds for the Central Universities (N090504005
and N090604012) and in part by the Program for New Century Excellent Talents in University (NCET-05-0288).

References

[1] P.P. Chen, The entity-relationship model: toward a unified view of data, ACM Trans. Database Syst. 1 (1) (1976) 9–36.
[2] D.W. Embley, T.W. Ling, Synergistic database design with an extended entity-relationship model, in: Proceedings of the Eight International

Conference on Entity-Relationship Approach, 1989, pp. 111–128.

Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46 45

[3] M. Stonebraker, D. Moore, Object-relational DBMSs: the next great wave, Morgan Kaufmann, 1996.
[4] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison-Welsley Longman, Inc., 1998.
[5] Object Management Group (OMG), Unified Modeling Language (UML), version 1.5, Technical Report, OMG, 〈www.omg.org〉, 2003.
[6] D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on UML class diagrams, Artif. Intell. 168 (1–2) (2005) 70–118.
[7] E. Marcos, B. Vela, J.M. Cavero, Extending UML for object-relational database design, Lecture Notes in Computer Science, vol. 2185, 2001,

pp. 225–239.
[8] S.W. Ambler, The design of a robust persistence layer for relational databases 〈http://www.ambysoft.com/persistenceLayer.pdf〉, 2000.
[9] S.W. Ambler, Mapping objects to relational databases 〈http://www.AmbySoft.com/mappingObjects.pdf〉, 2000.

[10] M. Blaha, W. Premerlani, Using UML to design database applications 〈http://www.therationaledge.com/rosearchitect/mag/archives/9904/
f8.html〉, 1999.

[11] R. Conrad, D. Scheffiner, J.C. Freytag, XML conceptual modeling using UML, in: Proceeding of 19th International Conference on Conceptual
Modeling, 2000, pp. 558–571.

[12] K. Falkovych, M. Sabou, H. Stuckenschmidt, UML for the semantic web: transformation-based approaches, in: B. Omelayenko, M. Klein
(Eds.), Knowledge Transformation for the Semantic Web, IOS Press, 2003.

[13] M.A. Sicilia, N. Mastorakis, Extending UML 1.5 for fuzzy conceptual modeling: a strictly additive approach, WSEAS Trans. Syst. 5 (3) (2004)
2234–2240.

[14] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353.
[15] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1 (1) (1978) 3–28.
[16] B.P. Buckles, F.E. Petry, A fuzzy representation of data for relational database, Fuzzy Sets Syst. 7 (3) (1982) 213–226.
[17] H. Prade, C. Testemale, Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries,

Inf. Sci. 34 (1984) 115–143.
[18] K.V.S.V.N. Raju, K. Majumdar, Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems, ACM

Trans. Database Syst. 13 (2) (1988) 129–166.
[19] M. Umano, S. Fukami, Fuzzy relational algebra for possibility-distribution-fuzzy-relational model of fuzzy data, J. Intell. Inf. Syst. 3 (1994)

7–27.
[20] Z.M. Ma, L. Yan, Updating extended possibility-based fuzzy relational databases, Int. J. Intell. Syst. 22 (3) (2007) 237–258.
[21] G. de Tré, R. de Caluwe, H. Prade, Null values in fuzzy databases, J. Intell. Inf. Syst. 30 (2) (2008) 93–114.
[22] I.J. Blanco, M.A. Vila, C. Martinez-Cruz, The use of ontologies for representing database schemas of fuzzy information, Int. J. Intell. Syst. 23

(4) (2008) 419–445.
[23] R.S. Aygun, A. Yazici, Modeling and management of fuzzy information in multimedia database applications, Multimedia Tools Appl. 24 (1)

(2004) 29–56.
[24] J. Chamorro-Martínez, J.M. Medina, C.D. Barranco, E. Galán-Perales, J.M. Soto-Hidalgo, Retrieving images in fuzzy object-relational databases

using dominant color descriptors, Fuzzy Sets Syst. 158 (3) (2007) 312–324.
[25] G. Bordogna, G. Pasi, D. Lucarella, A fuzzy object-oriented data model for managing vague and uncertain information, Int. J. Intell. Syst. 14

(1999) 623–651.
[26] V. Cross, R. De Caluwe, N. Van Gyseghem, A perspective from the fuzzy object data management group (FODMG), in: Proceedings of the

1997 IEEE International Conference on Fuzzy Systems, vol. 2, 1997, pp. 721–728.
[27] D. Dubois, H. Prade, J.P. Rossazza, Vagueness, typicality, and uncertainty in class hierarchies, Int. J. Intell. Syst. 6 (1991) 167–183.
[28] R. George, R. Srikanth, F.E. Petry, B.P. Buckles, Uncertainty management issues in the object-oriented data model, IEEE Trans. Fuzzy Syst. 4

(2) (1996) 179–192.
[29] N. Van Gyseghem, R. De Caluwe, Imprecision and uncertainty in UFO database model, J. Am. Soc. Inf. Sci. 49 (3) (1998) 236–252.
[30] J. Lee, N.L. Xue, K.H. Hsu, S.J. Yang, Modeling imprecise requirements with fuzzy objects, Inf. Sci. 118 (1999) 101–119.
[31] Z.M. Ma, W.J. Zhang, W.Y. Ma, Assessment of data redundancy in fuzzy relational database based on semantic inclusion degree, Inform.

Process. Lett. 72 (1–2) (1999) 25–29.
[32] N. Marín, O. Pons, M.A. Vila, Fuzzy types: a new concept of type for managing vague structures, Int. J. Intell. Syst. 15 (2000) 1061–1085.
[33] N. Marín, J.M. Medina, O. Pons, D. Sánchez, M.A. Vila, Complex object comparison in a fuzzy context, Inf. Software Technol. 45 (7) (2003)

431–444.
[34] F. Berzal, N. Marín, O. Pons, M.A. Vila, Managing fuzziness on conventional object-oriented platforms, Int. J. Intell. Syst. 22 (7) (2007)

781–803.
[35] L. Cuevas, N. Marín, O. Pons, M.A. Vila, pg4DB: a fuzzy object-relational system, Fuzzy Sets Syst. 159 (12) (2008) 1500–1514.
[36] A. Zvieli, P.P. Chen, Entity-relationship modeling and fuzzy databases, in: Proceedings of the 1986 IEEE International Conference on Data

Engineering, 1986, pp. 320–327.
[37] N.A. Chaudhry, J.R. Moyne, E.A. Rundensteiner, An extended database design methodology for uncertain data management, Inf. Sci. 121

(1–2) (1999) 83–112.
[38] E. Ruspini, Imprecision and uncertainty in the entity-relationship model, in: Fuzzy Logic in Knowledge Engineering, Verlag TUV Rheinland,

1986, pp. 18–22.
[39] R.M. Vandenberghe, An extended entity-relationship model for fuzzy databases based on fuzzy truth values, in: Proceedings of the Fourth

International Fuzzy Systems Association World Congress, 1991, pp. 280–283.
[40] G. Vert, A. Morris, M. Stock, P. Jankowski, Extending entity-relationship modeling notation to manage fuzzy datasets, in: Proceedings

of the Eighth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2000,
pp. 1131–1138.

[41] G.Q. Chen, E.E. Kerre, Extending ER/EER concepts towards fuzzy conceptual data modeling, in: Proceedings of the 1998 IEEE International
Conference on Fuzzy Systems, vol. 2, 1998, pp. 1320–1325.

http://www.omg.org
http://www.ambysoft.com/persistenceLayer.pdf
http://www.AmbySoft.com/mappingObjects.pdf
http://www.therationaledge.com/rosearchitect/mag/archives/9904/f8.html
http://www.therationaledge.com/rosearchitect/mag/archives/9904/f8.html

46 Z.M. Ma et al. / Fuzzy Sets and Systems 186 (2012) 26 –46

[42] Z.M. Ma, W.J. Zhang, W.Y. Ma, G.Q. Chen, Conceptual design of fuzzy object-oriented databases using extended entity-relationship model,
Int. J. Intell. Syst. 16 (2001) 697–711.

[43] J. Galindo, A. Urrutia, R.A. Carrasco, M. Piattini, Relaxing constraints in enhanced entity-relationship models using fuzzy quantifiers, IEEE
Trans. Fuzzy Syst. 12 (6) (2004) 780–796.

[44] S. Abiteboul, R. Hull, IFO: a formal semantic database model, ACM Trans. Database Syst. 12 (4) (1987) 525–565.
[45] M.A. Vila, J.C. Cubero, J.M. Medina, O. Pons, A conceptual approach for deal with imprecision and uncertainty in object-based data models,

Int. J. Intell. Syst. 11 (1996) 791–806.
[46] A. Yazici, B.P. Buckles, F.E. Petry, Handling complex and uncertain information in the ExIFO and NF2 data models, IEEE Trans. Fuzzy Syst.

7 (6) (1999) 659–676.
[47] Z.M. Ma, A conceptual design methodology for fuzzy relational databases, J. Database Manage. 16 (2) (2005) 66–83.
[48] R. Bouaziz, S. Chakhar, V. Mousseau, S. Ram, A. Telmoudi, Database design and querying within the fuzzy semantic model, Inf. Sci. 177 (21)

(2007) 4598–4620.
[49] D. Kucuk, N. Burcuozgur, A. Yazici, M. Koyuncu, A fuzzy conceptual model for multimedia data with a text-based automatic annotation

scheme, Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 17 (Supplement) (2009) 135–152.
[50] N.B. Ozgur, M. Koyuncu, A. Yazici, An intelligent fuzzy object-oriented database framework for video database applications, Fuzzy Sets Syst.

160 (15) (2009) 2253–2274.
[51] A. Yazici, Q. Zhu, N. Sun, Semantic data modeling of spatiotemporal database applications, Int. J. Intell. Syst. 16 (7) (2001) 881–904.
[52] T.J. Teorey, D.Q. Yang, J.P. Fry, A logical design methodology for relational databases using the extended entity-relationship model, ACM

Comput. Surv. 18 (2) (1986) 197–222.
[53] P. Bosc, H. Prade, An introduction to fuzzy set and possibility theory based approaches to the treatment of uncertainty and imprecision in

database management systems, in: Proceedings of the Second Workshop on Uncertainty Management in Information Systems: From Needs to
Solutions, 1993.

[54] L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)—an outline, Inf. Sci. 172 (1–2) (2005) 1–40.
[55] L.A. Zadeh, Is there a need for fuzzy logic?, Inf. Sci. 178 (13) (2008) 2751–2779.

