
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 1

 Software & Software Engineering

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

What is Software?

Software is:

(1) instructions (computer programs) that

when executed provide desired features,

function, and performance;

(2) data structures that enable the programs to

adequately manipulate information and

(3) documentation that describes the

operation and use of the programs.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

What is Software?

 Software is developed or engineered, it is

not manufactured in the classical sense.

 Software doesn't "wear out."

 Although the industry is moving toward

component-based construction, most

software continues to be custom-built.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

Wear vs. Deterioration @
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

Software Applications

 system software

 application software

 engineering/scientific software

 embedded software

 product-line software

 Web/Mobile Apps

 AI software

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

Software—New Categories

 Open world computing—pervasive, distributed

computing

 Ubiquitous computing—wireless networks

 Netsourcing—the Web as a computing engine

 Open source—”free” source code open to the

computing community (a blessing, but also a potential

curse!)

 Also … (see Chapter 31)

 Data mining

 Grid computing

 Cognitive machines

 Software for nanotechnologies

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Legacy Software

 software must be adapted to meet the needs
of new computing environments or
technology.

 software must be enhanced to implement new
business requirements.

 software must be extended to make it
interoperable with other more modern
systems or databases.

 software must be re-architected to make it
viable within a network environment.

Why must it change?

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Characteristics of WebApps - I

 Network intensiveness. A WebApp resides on a network and
must serve the needs of a diverse community of clients.

 Concurrency. A large number of users may access the
WebApp at one time.

 Unpredictable load. The number of users of the WebApp may
vary by orders of magnitude from day to day.

 Performance. If a WebApp user must wait too long (for
access, for server-side processing, for client-side formatting
and display), he or she may decide to go elsewhere.

 Availability. Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand
access on a “24/7/365” basis.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Characteristics of WebApps - II

 Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.

 Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

 Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously.

 Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks.

 Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application.

 Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Software Engineering

 Some realities:

 a concerted effort should be made to understand the

problem before a software solution is developed

 design becomes a pivotal activity

 software should exhibit high quality

 software should be maintainable

 The seminal definition:

 [Software engineering is] the establishment and use

of sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines.

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

Software Engineering

 The IEEE definition:
 Software Engineering: (1) The application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of

software; that is, the application of engineering to

software. (2) The study of approaches as in (1).

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

@
T
e
h
ra

n
S

h
o
m

a
lE

n
g

in
e

e
rs

