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a b s t r a c t

Polymeric materials, being capable of high mouldability, usability of long lifetime up to 50 years and
availability at low cost properties compared to metallic materials, are in demand but finite element-
based design engineers have limited means in terms of the limited material data and mathematical
models. In particular, in the analysis of products with complex geometry, the stresses and strains of
various amounts formed in the product should be known and evaluated in terms of a precise design of
the product to fulfil life expectancy. Due to time and cost constraints, experimental data cannot be
available for all cases required in analysis, therefore, finite element method-based simulations are
commonly used by design engineers. This is also computationally expensive and requires a simpler and
more precise way to complete the design more realistically. In this study, the whole creep behaviour of
polypropylene for all stresses were obtained with 10% accuracy errors by artificial neural networks
trained using existing experimental test results of the materials for a particular working range. The
artificial neural network model was trained with traditional as well as heuristic based methods. It is
demonstrated that heuristically trained ANN models have provided much accurate and precise results,
which are in line with 10% accuracy of experimental data.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The creep behaviour of materials for making analysis of post
and corrective design activities is of importance in terms of
appropriate product design, since a product design must guaran-
tee the expected lifetime of the product will be put in service.
Furthermore, the creep behaviour of a plastic material varies in
different stress levels. In this respect, a realistic design requires
lots of real data to realistically analyse creep behaviour of a
material, where a variety of stress levels require to be considered
and each different stress level in the material necessities produ-
cing corresponding data. A part of this data can be produced
experimentally, while conducting experimental work for all stress
levels is impractical since it costs so much of labour time and
incurs design cost. In this respect, new, speedy and reliable
methods are always of interest of the researchers to mitigate
these circumstances.

Most of themethods available in the literature are material specific,
i.e. they are developed for one material, and most of the times, they
rely on very complex mathematical formulations with several para-
meters, which create serious difficulties for many industrial cases. One
way to overcome such industrial difficulties, the Finite Element (FE)
method is commonly used nowadays as it allows assigning constitu-
tive models to any geometrical form, which can be very complicated.
On the other hand, the most commonly used FE codes for structural
analysis are limited with their implemented material models. What is,
in fact, needed by the practitioner engineers is a tool which is
sufficiently simple in use with in the design phase, so that it could
easily be interfaced with the most commonly used FE codes for
structural analysis; moreover, that tool should be sufficiently general
in order to be applied to a vast class of cases, in terms of materials,
load types and loading histories; thus providing a reliable and quick
prediction within the accuracy of the state of the art of the FE analysis
(Nutini and Vitali, 2008).

Artificial neural networks (ANN) are computational models having
good records of success and reputation in accurate and precise
prediction as well as classification. Once well-configured and trained,
an ANN model can be simply integrated into engineering solutions
which are commonly used implementing FE-like powerful simulation
models. This is because of the fact that an ANN model is able to learn
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the complex relationships (mostly non-linear) between input and
output date collected from a particular problem domain. This makes
ANN models increasingly and more commonly used in the mathema-
tical constitutive modelling, but, these are not adequately attempted
for creep modelling of materials. Furukawa and Yagawa (1998) and
Sen et al. (2002) are two studies reporting earlier attempts to model
the behaviours of materials with ANNs. Also, the study reported by
Dropik et al. (2002) described a procedure particularly for modelling
the primary creep behaviour of polypropylene (PP) materials, where
the proposed procedure involves using ANSYS Version 16 to verify an
assumed mathematical creep model and calculated creep behaviour
material properties. Bano (2013) defines a comprehensive ANN
approach to describe and predict the behaviour, damage, and life of
metals used in turbine components. Bal et al (2014) and El-Shafie et al.
(2010) are two relatively recent studies conducted for creep behaviour
of construction materials while Sarkar et al. (2013) have introduced an
ANN model for predicting creep behaviour of a particular material in
nuclear plant systems. All of these approaches developed their
proposals on use of traditional feed-forward ANN models trained with
conventional methods, which are proven to provide limited accuracy
and success.

A more comprehensive approach has been introduced, in this
paper, to overcome the reported limitations of well-known conven-
tional techniques. The design of a realistic water infiltration system
has been considered with respect to creep behaviour of its particular
material, which is, in fact, a polypropylene material engineered for
long-term use of infiltration systems. The creep analyses have been
made with ANSYS FE software alongside experimental data. Then, a
swarm intelligence-based training algorithm is proposed for feed-
forward ANN models to achieve higher accuracy and precision in
predictions through more comprehensive training using hybrid Bees
algorithm, which is recently developed and proven of success for
numerical optimization problems (Dugenci, 2015).

In the rest of this paper, the problem is introduced in the following
section, while the ANN model proposed, and the training algorithms
including hybrid Bee algorithm (Hybrid-BA) is presented in Section 3.
The details of experimental study and relevant discussions are provided
in Section 4, which is followed by the conclusions in Section 5.

2. The problem

The problem under consideration for this study is the design
and production of rain and sewer water infiltration units, which

are made of a particular material so called Polypropylene (PP). The
purpose of use these products is to help bring rain and sewer
water under control and retain in temporary storage for later use.
The lifetime of the units are designed to be up to 50 years. These
requirements impose that the products should be produced of
plastic materials rather than metals so as to achieve long lasting
timeline of use. Water infiltration units are produced in the form
of cubic cages in various shape and geometries, where the plastic
rods made of PP are assembled; therefore, the mechanical beha-
viour of an infiltration unit is estimated over the behaviour of the
rods, which form up the entire cage. The units are assembled into
multiple layers and deployed/placed underground so that the
product can function for collecting and retaining the rain and/or
sewer water within the underground temporary storages. The
units can be subject to various constant and/or sudden/shock
waives of load and, hence, pressure/stress/strain, which can last in
different time periods. This compels a rigorous engineering
process for identifying long term creep behaviour of the units.
Fig. 1 presents a typical infiltration unit, which has been subject to
a particular stress, where part of the grid is brought under focus to
reveal the level of stress occurs once the unit remains under
pressure.

Fig. 1 also provides the stress distribution of the particularly
engineered products with specific geometries, where the stress
distribution in the structure varies and can be at countless values
due to the loading and dimensions of the geometry. In this
particular case, the product was loaded in between two rigid
plates. The non-uniformity of the stress contour is noticeable
although the deformation contour is uniform. Thus, the incurred
stress values of particular cases require rigorous attention on
experimental data, where it is almost impossible to obtain all
the data via experimental tests due to cost and time constraints.
Thus, the creep behaviour of this products made of PP enforces to
study using FE method-based simulation; here ANSYS software is
used for this purpose in this study.

Polypropylene (PP) is selected for this study because of its
versatility with respect to physical and especially mechanical
properties (Galli and Vecellio, 2004). PP material is available in
three forms: homopolymer, copolymer, and random copolymer
grades. The polypropylene grade used for this study is the random
copolymer one, which is detailed in Table 1 with respect to various
properties. Injection moulding is one of the most widely employed
mass production methods for manufacturing PP products.
The material properties of injection moulded products of semi-

Fig. 1. Deformation and stress contours in a particularly engineered infiltration unit.
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crystalline polymers strongly depend on the final morphology, which
itself depends on the complete (processing) history of the material
(Van Erp, 2012). This means the actual mechanical properties of plastic
products can be quite different than the datasheet figures, which are
mostly defined by the material suppliers. Because of this fact, in this
study, the creep test samples are taken from the injection-moulded
product, not from a typical injection moulded plaque. Consequently,
the experimental data used in this study is very specific to the selected
design and production.

Polymer engineers have proposed some theoretical models of
viscoelastic behaviours of the polymer materials. Spring and
damper elements can be combined in a variety of arrangements
to produce a simulated viscoelastic response. Early models due to
Maxwell and Kelvin combine a linear spring in series or in parallel
with a Newtonian damper. Other basic arrangements include the
three-parameter solid and the four-parameter fluid. These models
are very useful in understanding the physical relation between
stress and strain that occurs in polymers and other viscoelastic
materials. Moreover there are the others that combine these
models as has been found by Brinson and Catherine (2008).
However, using any of the theoretical models cannot satisfy the
whole needs of a design engineer to guarantee realistic viscoelas-
tic behaviour of any polymer material. Further details have been
found by Brinson and Catherine (2008).

As it is mentioned above, there is not one viscoelastic model
available yet to solve any kind of engineering problem dealing
with creep. Therefore, most of the commercially available general
purpose FE programs come with some implemented (ready-to-
use) creep models and an added feature of a user defined creep
equation. The designers have still the daunting task of either
matching the materials performance with one of these empirical
formulas or creating their own equation and subroutine.

In this study, the infiltration unit design is tested (or simulated)
according to some local and global (international) norms where
few short-term and long-term tests are defined. Since the design is
approved, prior to the mould order, based on the simulation
results with creep, accuracy in the calculated values is crucial.
The accuracy needed for the product release required very
intensive material testing and FE modelling.

In order to define the strain vs time behaviour of the PP
material, a variety of experimental tests were conducted. A
number of accordingly dimensioned rods as test samples have
been prepared and examined under certain levels of pressure in
which the samples were hanged and each loaded with stress levels
in between 2 and 26 MPa. Fig. 2 shows the experimental data
recorded during the creep tests. The experiments were performed
at room temperature(23 1C) since the rigour of varying tempera-
tures is not within the intent of this study. As can be seen from
Fig. 2, the creep behaviour of the material changes according to the
stress. From designer point of view, there should be too many data

of the creep behaviour to evaluate the design expectation of the
structure in order to satisfy customer specifications such as life
expectancy and reliability of the product.

3. Artificial and training with heuristic algorithms

Artificial neural networks (ANNs) are computational modelling
tools devised to develop data models for various purposes. They
are well-known approaches inspired of human information pro-
cessing system, where the models are created imitating the
working principles of the human brain. An ANN model is com-
posed of a number of processing units, so-called artificial neurons,
organised in particular patterns in which different types of models
can be varied in their distinctive patters. A feed-forward ANN
model consists of a layered set of neurons interconnected, where
the processing information is done forwardly and backwardly. The
model admits data inputs via input layer nodes/neurons and
passes them to hidden layer nodes and finally the information is
passed to output nodes afterwards. The neurons are connected to
ever neurons in the next layer by communication links that are
associated with connection weights. Signals, which are the form of
information units, are passed through neurons over the connec-
tion weights. Each neuron receives multiple inputs from the
neurons in the previous layer proportional to their connection
weights and generates a single output (Kurt et al., 2008; Yigit and
Ertunc, 2006; Yang et al., 2003). A typical feed-forward ANN model
is presented in Fig. 3, where the model consists of 2-input nodes,
3-hidden nodes and 1-output node associated with 2-bias nodes;
all nodes of two adjacent layers are fully connected.

The ANN models are configured and trained to adapt the data/
problem domain, where the training process can be viewed as
minimization of the error that substantiates between the desired
(expected) output and the actual output of the model. Training
process, in each case, is performed by introducing randomly
selected samples of the input data and desired outputs to the
configured model of ANN. Once samples are introduced to the
ANN model, the sum of squares of the differences between
expected and obtained output values is determined. This is applied
to the whole network to obtain the total error of the model.
Minimisation of the error produced is the process of training the
model in which the connection weights linking the neurons are
revised/optimised to produce minimum error between the output
of ANN and the expected values. Back-propagation (BP) is one of
the most well known training algorithms used for this purpose
(Haykin, 2009). There are various training approaches used with
different strength and weaknesses. Among them are the
metaheuristic-based approaches such as genetic algorithms
(Chan et al., 2009), particle swarm optimisation (Pham et al.,

Table 1
Technical properties of the polypropylene random copolymer.

Specifications Value Standard

Vcat softening point (1 Kg) 132 1C (ISO 1183)
Melting point 146 1C (ISO 527/1)
Melt flow rate (Mn 230/2.16 Kg) 0.3 (ISO 527/1)
Linear extension coefficient 0.15 mm/m(1C) (ISO 527/1)
Density (23 1C) 0.91 g/cm3 (ISO 527/1)
Yield strength (at 23 1C) (50 mm/mm) 25 N/mm2 (DIN 53505)
Elongation at yield (23 1C) (50 mm/mm) 12% (ISO 1 79/1 eA)
Breaking strength (at 23 1C) (50 mm/mm) 34 N/mm2 (ASTM D 746)
Elongation at break point (23 1C) (50 mm/mm) 4500% (ISO 306)
Shore D hardness (3 s value) 65 (ISO 306)
Charpy impact resistance (notched) (at þ23 1C) 52 KJ/m2 (ISO 1133)
Brittleness temperature �13 1C (ASTM D 696)
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2006) or Bee algorithms (Sarangi et al., 2014). A trained ANN
model is tested to verify its readiness for use and to validate that
the model produces meaningful results. The model is made ready
for use when the predicted results remain within the affordable
tolerance limits (Kurt et al., 2008; Yigit and Ertunc, 2006; Yang et
al., 2003).

3.1. Training ANN models

The back propagation (BP) algorithm is the most popular and
extensively used algorithm, which has been developed based on
gradients. The procedure consists of two phases: the forward and
backward phases. The model takes inputs and puts forward and

Fig. 3. A typical feed-forward Artificial neural network model.
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calculates the output of the model during the forward phase, while
the error substantiates between the output and desired results are
propagated back to the connection weights for better approxima-
tion. The details of this algorithm have been found by Haykin
(2009).

Metaheuristic-based training algorithms are developed based
on search algorithms in which the set of connection weights is
adopted to be the problem state and the best state is search
through a population-based heuristic algorithm such as genetic
algorithm (GA), particle swarm optimisation (PSO) and Bees
algorithm (BA). GA and PSO have been quite widely used algo-
rithms for these purposes with certain level of success records
(Chan et al., 2009).

In this study, we have used GA and Bees Algorithm as training
procedures alongside back propagation. GA is one of very well
known population based search frameworks developed and exten-
sively used for solving optimisation problems. As mentioned
before, training ANN models is also an optimisation process in
which the error yielded of ANN models is minimised. GA is a
nature inspired metaheuristic approach offers a search mechanism
using genetic operators, so-called crossover, mutation and selec-
tion, where crossover and mutation operators are used to generate
new solution from existing ones while selection helps promote
solutions based on their fitness strengths. An implemented GA
algorithm is applied to the problems and run generation-by-
generation. Finally, the algorithm offers a set of useful solutions,
which are usually very close to the optimum (Şenyiğit et al., 2013).
An implementation of GA is run to find the optimum connection
weights of inter-neurons, which help yield/predict outputs with
minimum deviations.

Bees Algorithm (BA) is one of mainstream swarm intelligence
algorithms devised inspiring of collective behaviour of honeybees.
There are a number of BA implementations (Pham et al., 2006;
Yuce et al., 2013) devised for solving various optimisation pro-
blems. Another mainstream honeybees-inspired algorithms is
Artificial Bee Colony (ABC) algorithm (Karaboga et al., 2014;
Karaboga and Akay, 2009), which is successfully implemented
and used. A hybrid BA algorithm has recently been developed and
used for function optimisation problems (Dugenci, 2015); hence-
forth, the same algorithm is decided for use in this study due to
the similarity of the problems undertaken and the level of
accomplishment.

3.2. Hybrid Bees algorithm

This hybrid algorithm has been developed based on the frame-
work of original Bees algorithm devised by Pham et al. (2006) and
extended with the operators revised and developed borrowing
ideas from ABC algorithm (Karaboga et al., 2014) and its variants
(Karaboga and Akay, 2009). The main idea of original Bees
algorithm is initially to create a swarm of bees, and configure a
search mechanism imitating honeybees' collective behaviours in
which the bees keep investigating for food sources, once found
inform all other fellow bees to join collective investigation. The
original BA algorithm works as follows.

An initial swarm comprised of N individual solutions, where
each is considered as an independent source of nectar discovered
by individual bees, is generated using the rule in Eq. (1):

x!i ¼ x!minþ ρ! nð x!max� x!minÞ for 8 iAN ð1Þ
where x!i is the solution vector of ith bee generated between
x!max and x!min with the random vector of ρ! . Then, the solutions
are evaluated and ranked based on the richness of the nectars,
which is measured by the usefulness of the each individual
solution, Fð x!iÞ. In another word, the quality of solution of each
individual is defined as its closeness to the optimum. While

moving to the next generation/swarm, Nm number of top ranked
bees, so called fit-bees, are selected as the set of bees holding
promising nectar sources, and among them, Ne of them are
identified as elite bees. These promising bees are granted with
extra support with sending more bees to the neighbourhood of
each. The support team of bees is generated with Eq. (2) as
follows:

x!i ¼ x!iþ ρ!nδ for 8 iAN and δAℝ ð2Þ
where δ is a random number generated within the range of (�1,1)
and ρ is another predetermined fixed value to be the step-size of
change in any input of a solution/ a bee. The elite bees are granted
with more support, say with ε bees, while the other non-elite fit-
bees are supported with μ number of bees. As a result, Ne(1þε)and
Nm(1þμ) bees are deployed within the new swarm at this stage.
For the remaining places in the swarm, N�(Ne(1þε)þNm(1þμ))
number of randomly generated bees using Eq. (1). This process is
repeated until the stopping criterion is satisfied.

The hybrid BA algorithm takes the same framework as
explained above, but implies generating supporting bees and
sending them to the neighbourhood of each of those identified
as elite and fit ranked bees with more operators as given below
with Eqs. (3)–(5).

x!i ¼ x!iþ ϕ
!

ið x!i� x!kÞ kAN and for 8 iAN ð3Þ

x!i ¼ x!iþ ρ!nδn x!i for 8 iAN and δA ½0;1� ð4Þ

x!i ¼ x!iþ ϕ
!

ið x!i� x!kÞ kAfQ 1 of Ng and for 8 iAN ð5Þ
Eq. (3) is borrowed from ABC algorithm (Karaboga and Akay,

2009), in which a supporting bee is generated based on the
differences between the ith solution/bee and a randomly selected
kth solution normalised with the randomly generated number
denoted with Φi. Eq. (4) is a revised version of Eq. (2), which
implies to generate the new candidate solution with more finely
granulated level so that the approximation step can be further
atomised to fit in any precision level. Finally, Eq. (5) is the revised
version of Eq. (3), where the kth solution is decided to be selected
among the first quartile of the ranked solutions/bees. This hybrid
algorithm systematically harmonises/reuses the Eqs. (1)–(5) for
generating new solutions/bees as well as neighbours for the
existing elite and fit bees, where Eq. (1) is used for generating
the initial swarm and independently exploring for better nectar
sources while Eqs. (2)–(5) are used to send supporting bees
around each elite bee.

Eqs. (2), (3), (4) and (5) are the neighbourhood rules used,
respectively, by the ordinary BA algorithm, the revised BA algo-
rithm, ABC and revised ABC algorithms (Karaboga and Akay, 2009)
to explore around a local nectar source, which means a local
region of the search space in optimisation context. The hybrid
algorithm randomly selects one of these rules to generate a
neighbouring solution of a particular elite solution, each time, to
complete up ε supporting bees for each elite so that Ne� ε bees can
be placed in the new generation. The fit-ranked search bees use
only Eqs. (2) and (3) for generating their neighbouring solutions to
complete μ number of supporting bees so as to place Nm� μ
solutions in the next swarm while the independent bees explore
with Eq. (1) for further generations of randomly searched nectars.
The rest of algorithmic mechanics of ordinary BA algorithm applies
to the hybrid BA until a certain satisfactory level is achieved.

3.3. ANN-BA configuration

Heuristic-based training for ANN is not a very new concept, but
is under consideration for further improvements with more
powerful algorithms. Bees algorithm is, as mentioned above, one
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relatively new swarm intelligence algorithms attracts further
research efforts as it proves success in various areas of applica-
tions, especially in numerical optimisation problems. Dugenci
(2015) has recently demonstrated that the algorithm is capable
of solving high-dimensioned complex numerical functions. On this
basis, BA-based training is devised for optimising the set of
connection weights of feed-forward ANN models, so that they
can predict and classify more precisely and successfully (Keskin
et al., 2014; Sarangi et al., 2014; Şenyiğit et al., 2013). In order to
achieve this, first an ANN model should be configured and then
the set of weights can be retrieved. A typical feed-forward ANN
model with 2 inputs, few hidden nodes and 1 output is displayed
in Fig. 4, where the connection weights labelled with honeybees
and the nodes are signified with honeycombs. The total number of
connection is the size of a solution state, which is subjected to the
optimisation process.

Given the circumstances, a feed-forward ANN model with one
hidden layer has I number of input nodes, H number of hidden
nodes and O number of output nodes. The number of connections
constituted between input and hidden layer is (Iþ1)H, while the
number of connections required between hidden layer and output
layer is (Hþ1)O, where in each level 1 bias node is also considered
as part of feed-forward ANN to facilitate learning more smoo-
thly. The set of weights between I and H is wI�H

i ¼
wI�H

i;j j j¼ 1;…; Iþ1ð ÞH
n o

while the weight set for connections

between H and O is wH�O
i ¼ wH�O

i;j j j¼ 1;…; Hþ1ð ÞO
n o

. The ulti-

mate set of weights is wi ¼ wI�H
i [ wH�O

i

� �
with the size of

wij j ¼ Iþ1ð ÞHþ Hþ1ð ÞO. For example, given the model in Fig. 4,
there are 2 input neurons, 3 hidden layer neurons and 1 output
neuron with bias nodes in each layer of hidden and output level;
hence the total number of connection weights is (2þ1)n3þ(3þ1)
n1¼12. Therefore, a typical bee will represent the whole ANN
with a vector of 12 weights including 9 wI�H

i and 4 wH�O
i values.

The total number of weights will change accordingly if any of I, or
H or O changes.

4. Experimental results and discussions

In this experimental study, two types of data models are
developed; FE method-based simulation model using ANSYS soft-
ware and artificial neural network based models. In order to

realistically touch the ground of the problem and have designed
models that can be used in real world, realistic experimental data
is used for development, verification and validation purposes.

4.1. Data collection

Experimental data required for this study has been collected
from a realistic experimental test set up, where standard travel (in
millimetres) data was collected from the test set of two rods with
length of 65.00 mm examined/stressed under 8, 10, 12, 14, 16, 18,
20 and 22 MPa pressure over 15 min time frame recording the
level of standard travel, accordingly. Each rod was examined
applying pressure of each of abovementioned levels for 15 min
and 900 data points were recorded within different time ranges in
seconds, where each data point corresponds to each second.

The ANN model developed with this data, has been trained and
tested with 400 out of 900 data points which are obtained from
evenly distributed 50 data points per abovementioned pressure
level. The data has been normalized within the range of [0, 1] over
the test period of 0–900 s, up to 2 mm standard travel values. This
normalized data has been represented as in Table 2. Here, 50 data
points per pressure level were collected from the complete data
set with an even resolution so that the representation of data
remains very high and consistent.

4.2. Feed-forward ANN models

Feed-forward ANN models are the most straightforwardly used
models in various areas of data modelling in which the collection
of data are used to develop a model so that details of unknown
aspects/states of the particular problem under consideration to be
predicted. Obviously, these models may not be adequate for highly

Fig. 4. The Feed-forward ANN model configured and trained with Hybrid BA.

Table 2
Normalised standard travel values over test time period given the circumstances of
65 mm of length and 10 MPa of pressure.

L¼65.00 mm 10 MPa

Test time (min) Standard travel (mm)

0.001 0.000
0.011 0.008
– –

15.000 0.497
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complex problem, but they are found very useful for the majority
of real world problems. Withholding this knowledge in mind, a
number of feed-forward ANN models are developed and trained
with different learning algorithms. Tables 3 and 4 include perfor-
mance data for 5 ANN models trained with 3 different learning
algorithms. First columns of both tables present these 5 ANN
models, where all have 2 input nodes, various hidden nodes and
1 output node. This is due to the fact that Creep design requires
estimation of one value, which is standard travel results under
stressing the rods, while 2 parameters are needed to map the
resulted travel with, which are the level of strain and the duration
on which strain is applied to the rod. Fig. 4 indicates these inputs
and output clearly. On the other hand, the number of hidden
nodes varies so as to find out with which level the model remains
under-trained and when it turns to be over-trained.

All 3 learning algorithms (Back Propagation (BP), Genetic
Algorithm (GA) and Hybrid Bees algorithm (Hybrid-BA)) have
used the same data sets, which described below, and the perfor-
mance results are presented in Table 3. The training, for all cases, is
stopped once no improvement is persistently observed. BP runs for
5000 iterations using the classical gradient-based propagation

algorithm with learning rate of 0.8 and momentum value of 0.2,
while GA runs 3000 generations as a generational GA using
ranked-based selection, 2 point crossover operator with definite
use and mutation operator with rate of 0.005. It is crucial to
indicate that GA does not make any improvement after 1000
generations. On the other hand, Hybrid-BA uses swarm size of 100
solutions, exactly the same as population size of GA, appointing 10
top-ranked bees as elite bees, next 20 top-ranked as fit bees. It is
devised to support each elite bee with 5 more supporting bees and
each fit bees with no support while 20 randomly searching bees
are also appointed. Hybrid BA is run over 2500 generations using
neighbourhood factor, δ, of 1. The performance measure adopted is
Mean Absolute Percentage Error (MAPE), which is calculated with
MAPE¼ 1�errorð%Þ. Tables 3 and 4 present the mean, minimum,
maximum and standard deviation values in MAPE per ANN model
trained with each of the learning algorithm. The statistics of each
model is calculated over 30 runs.

The training and test data sets for ANN models indicated in
both tables (Tables 3 and 4) are designed from 400 experimental
data points, where randomly selected 300 out of 400 selected data
points are used for training and the remaining 100 of them are
used for testing purposes. It is apparent from Table 3 that the
highest score by BP with both training and test data is achieved
with the model of 2-8-1 in the level of 95.2% and 91.9% from
training and test sets respectively. On the other hand, the model of
2-12-1 achieves better performance with both GA and Hybrid-BA.
This may be due to that BP can stick in local optima and may not
let to improve the performances. It is also observed that the
models trained with Hybrid-BA outperform the others, which are
trained with both BP and GA with respect to both mean and max
measures, while the variations of all results seem slightly but not
significantly different as the standard deviations do not suggest
very high differences.

The results in Table 4 represent the performance of all existing
models trained with a different data set, which deliberately
exclude date for the case of 16 MPa pressure. Once trained, the
tests have been conducted as usual. The performances for both of
training and test cases look slightly different with all three
algorithms, while the results by Hybrid-BA look outperforming
the other 2 algorithms. It is observed that the variations of the
results also remain alike.

An attempt is made to investigate how robust and precisely the
ANN-models can estimate unseen samples; a training set exclud-
ing data from the case 16 MPa is developed and all ANN models
are trained with all 3 algorithms and then all seen and unseen
cases have been tested accordingly. The performance results are
indicated in Table 4. It is clearly observed that the gap between
test performances and the training performances increases by
roughly 10%. Fig. 5(a) plots the achievement of all 3 algorithms for
the models, where apparently the lowest differences clearly and
significantly achieved by Hybrid-BA, where the gap significantly
rises by BP as expected, while the other 2 seems stable. On the
other hand, Fig. 5(b) reflects a scattered pattern for all while GA
looks more stable than other 2, but the ultimate lower differences
archived with Hybrid-BA. The rough difference level around 10% is
observable within the experimental data, which is considered as
the tolerable range. Table 5 includes the differences between
2 rods while subjected to the same strain level, while first column
presents the strain levels, the second column shows the mean
difference calculated over many experimental results, and the
third column indicates the last difference while subjected to a
particular strain just before the end of 15 min test duration. The
bottom row of Table 5 presents the mean of all differences, which
are both just above 10%. This clarifies that even the experimental
data have a rough tolerance of 10–12%; hence, the prediction
results of ANN models for unseen samples remain within this

Table 3
The performance of ANN models trained with three algorithms.

ANN-model Training (%) Test (%)

Mean Max Mean Max Mean Max

BP 2-3-1 87.64 95.09 0.92 75.38 92.67 3.35
2-4-1 93.38 95.27 1.61 88.13 92.96 4.36
2-5-1 93.37 95.32 1.94 87.25 92.90 5.43
2-8-1 95.21 95.58 0.12 91.90 93.21 0.87
2-12-1 95.09 95.48 0.04 90.79 91.73 0.23

GA 2-3-1 93.33 95.63 1.67 91.81 94.12 2.36
2-4-1 90.47 95.45 1.36 89.97 93.74 1.72
2-5-1 94.07 95.49 0.35 93.47 93.74 0.33
2-8-1 91.46 95.51 0.52 91.08 93.80 0.60
2-12-1 93.05 95.67 0.26 92.39 94.28 0.24

Hybrid-BA 2-3-1 95.54 96.16 0.09 93.90 95.63 0.22
2-4-1 95.33 96.23 0.12 93.55 96.27 0.18
2-5-1 95.48 96.82 0.01 93.73 96.56 0.01
2-8-1 95.50 96.40 0.01 93.78 96.14 0.02
2-12-1 95.67 97.25 0.01 94.27 96.84 0.01

Table 4
The performance of ANN models trained with three algorithms, which did not
include case 16 MPa in the training.

ANN-model Training (%) Test (%)

Mean Max St dev Mean Max St dev

BP 2-3-1 94.48 96.47 1.87 80.43 81.86 1.26
2-4-1 96.23 96.48 1.20 81.44 82.05 1.80
2-5-1 96.40 96.46 0.03 81.79 82.29 0.24
2-8-1 96.35 96.72 0.00 81.93 83.93 0.13
2-12-1 96.23 96.41 0.05 81.83 82.72 0.23

GA 2-3-1 91.28 96.63 0.73 80.27 83.97 0.12
2-4-1 92.23 96.72 0.48 80.70 84.67 0.41
2-5-1 92.19 96.79 1.83 81.56 84.59 0.11
2-8-1 94.89 96.98 0.10 82.00 85.48 0.22
2-12-1 93.27 97.01 0.44 80.93 85.42 0.17

Hybrid-BA 2-3-1 96.60 96.89 0.03 83.66 85.01 1.29
2-4-1 96.67 97.15 0.06 84.11 89.30 0.69
2-5-1 96.75 97.58 0.04 84.38 86.62 0.41
2-8-1 96.94 97.89 0.03 84.87 88.20 0.16
2-12-1 97.00 97.54 0.01 85.28 88.96 0.54
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range, which is the safe region, and no harms causes to the
robustness of the prediction.

As a result, the trained and tested Hybrid-BA model is made
ready and fit to estimate/predict the standard travel values
subjected to 16 MPa pressure level for 900 s. Fig. 6 presents the
achievement of Hybrid-BA in comparison to the real-measured
data and the values estimated by ANSYS software; the graph for

Hybrid-BA is presented in the legend with “Neural Network
Guess”. Evidently, the parallelism in all data types is apparent,
where the blue red and green graphs present the measured data,
results by Hybrid-BA and estimations by ANSYS, respectively. The
overlaps of Hybrid-BA results and the measured data indicate the
precision level achieved by Hybrid-BA, while ANSYS estimations
remain a little bit distant as expected.

5. Conclusions

This study was conducted to investigate the viability of artificial
neural networks trained by one of very recently developed meta-
heuristic algorithms, namely hybrid Bee algorithm, to achieve high
precision in the estimation of expected results. The problem domain
is based on a realistic design and engineering problem, which is
known to be one of time-consuming data processing procedures. The
creep behaviour of polypropylene materials in use of long term use
purposes. The behavioural estimation of such cases is conveyed with
FE method-based engineering software, ANSYS, which requires
relatively long time to work out estimations. In this study, feed-
forward ANN techniques are used to model the creep behaviours of
polypropylene materials, where ANN model is trained with one of
very recent metaheuristic approach for achieving high precision for
the estimation as, in fact, it is well-known that FE-based estimations
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Fig. 5. Differences substantiated between performances of ANN models with training data and test data. (a) Differences while all cases are included in the training set and
(b) differences while 16 MPa case is excluded of training data.

Table 5
The differences measured between two experimental data w.r.t. the standard travel
level resulted subject to various stress levels.

Strain (MPa) Mean difference (%) Last difference (%)

2 18.99 22.16
4 12.43 11.98
5 6.51 5.00
6 5.15 6.09
8 3.44 3.04
10 16.75 17.57
12 6.48 7.73
14 13.47 14.89
16 7.54 7.95
18 12.18 13.38
20 14.35 17.21
22 6.27 2.43
Mean 10.30 10.79
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are not fine-grained. The experimental results suggest that ANN-BA
estimations are better matching the real measured data.

References

ANSYS Version 16 Element Reference, 3.5.5.1. Implicit Creep Equations.
Bal, L., Buyle-Bodin, F., 2014. Artificial neural network for predicting creep of

concrete. Neural Comput. Appl. 25 (6), 1359–1367.
Bano, N., 2013. Neural Network Approach for Predicting the Failure of Turbine

Components (Ph.D. thesis). Department of Mechanical Engineering, Faculty of
Engineering, University of Ottawa, Canada.

Brinson, H.F., Catherine, Brinson L., 2008. Polymer Engineering Science and
Viscoelasticity: an Introduction. Springer, New York, NY p. 2008.

Chan, K.Y., Chan, K.W., Pong, G.T., Aydin, M.E., Fogarty, T.C., Ling, S.H., 2009. A
statistics-based genetic algorithm for quality improvements of power supplies.
Eur. J. Ind. Eng. 3 (4), 468–492.

Dropik, M. J., Johnson, D. H., Roth, D. E., 2002), Developing an ANSYS creep model
for polypropylene from experimental data. In: Proceedings of International
ANSYS Conference, 161.

Dugenci, M., 2015. Honeybees-inspired heuristic algorithms for numerical optimi-
sation. arXiv:1504.05766 [cs.NE].

El-Shafie, A., Abdelazim, T., Noureldin, A., 2010. Neural network modeling of time-
dependent creep deformations in masonry structures. Neural Comput. Appl. 19
(4), 583–594.

Furukawa, T., Yagawa, G., 1998. Implicit constitutive modelling for viscoplasticity
using neural networks. Int. J. Numer. Methods Eng. 43, 195–219.

Galli, P., Vecellio, G., 2004. Polyolefins: the most promising large‐volume materials
for the 21st century. J. Polym. Sci. A: Polym. Chem. 42 (3), 396–415.

Haykin, S.S., 2009. Neural Networks and Learning Machines, Vol. 3. Pearson
Education, Upper Saddle River.

Karaboga, D., Akay, B., 2009. A comparative study of artificial bee colony algorithm.
Appl. Math. Comput. 214, 108–132.

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga., N, 2015. A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42 (1),
21–57.

Keskin, T.E., Düğenci, M., Kaçaroğlu, F., 2015. Prediction of water pollution sources
using artificial neural networks in the study areas of Sivas, Karabük and Bartın
(Turkey). Environ. Earth Sci. 73 (9), 5333–5347. http://dx.doi.org/10.1007/
s12665-014-3784-6.

Kurt, H, Atik, K., Özkaymak, M., Recebli, Z., 2008. Thermal performance parameters
estimation of hot box type solar cooker by using artificial neural network. Int. J.
Therm. Sci. 47 (2), 192–200.

Nutini, M., Vitali, M., 2008 Creep modelling of Polyolefins using artificial neural
networks. In: Proceedings of Abaqus Users' Conference. Newport, Rhode Island,
USA. 〈http://www.simulia.com/forms/world/pdf2008/NUTINI-AUC2008.pdf〉.

Pham, D.T., Ghanberzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., 2006. The bees
algorithm—a novel tool for complex optimisation. Intell. Prod. Mach. Syst..

Sarangi, P.P., Sahu, A., Panda, M., 2014. Training a feed-forward neural network
using artificial bee colony with back-propagation algorithm. Intell. Comput.
Netw. Inform.: Adv. Intell. Syst. Comput. 243, 511–519.

Sarkar, A., Sinha, S.K., Chakravartty, J.K., Sinha, R.K., 2013. Artificial neural network
modeling of in-reactor axial elongation of Zr2. 5% Nb pressure tubes at RAPS
4 PHWR. Nucl. Technol. 181 (3), 459–465.

Sen, S., Twomey, J.M., Ahmad, J.Y.S., 2002. Development of an Artificial Neural
Network Constitutive Model for Aluminum 7075 Alloy. In: Proceedings of IERC
Conference, 19 May 2002.

Şenyiğit, E., Düğenci, M, Aydın, M.E., Zeydan, M., 2013. Heuristic-based neural
networks for stochastic dynamic lot sizing problem. Appl. Soft Comput. 13 (3),
1332–1339.

Van Erp, T.B., 2012. Structure Development and Mechanical Performance of
Polypropylene Ph.D.. Technische Universiteit Eindhoven 2012. ISBN: 978-90-
386-3164-6.

Yang, I.H., Yeo, M.S., Kim, K.W., 2003. Application of artificial neural network to
predict the optimal start time for heating system in building. Energy Convers.
Manag. 44, 2791–2809.

Yigit, K.S., Ertunc, H.M., 2006. Prediction of the air temperature and humidity at the
outlet of a cooling coil using neural networks. Int. Commun. Heat Mass 33,
898–907.

Yuce, B., Packianather, M.S., Mastrocinque, E., Pham, D.T., Lambiase., A., 2013. Honey
bees inspired optimization method: the Bees algorithm. Insects 4 (4), 646–662.

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0.001 0.010 0.100 1.000 10.000 100.000

Measured ANN-BA ANSYS

Fig. 6. Experimental results for standard travel estimation by Hybrid-BA and ANSYS in comparison with measured data. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)

M. Düğenci et al. / Engineering Applications of Artificial Intelligence 45 (2015) 71–79 79

http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref1
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref1
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref2
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref3
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref3
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref4
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref4
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref4
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref5
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref5
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref5
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref6
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref6
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref7
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref7
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref8
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref8
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref9
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref9
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref10
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref10
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref10
http://dx.doi.org/10.1007/s12665-014-3784-6
http://dx.doi.org/10.1007/s12665-014-3784-6
http://dx.doi.org/10.1007/s12665-014-3784-6
http://dx.doi.org/10.1007/s12665-014-3784-6
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref12
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref13
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref13
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref14
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref15
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref15
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref15
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref16
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref16
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref16
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref17
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref17
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref17
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref18
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref18
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref18
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref19
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref19
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref19
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref20
http://refhub.elsevier.com/S0952-1976(15)00138-4/sbref20

