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Preface

This book surveys the current research frontiers in Bayesian statistics. Over the
last decades we have seen an unprecedented explosion of exciting Bayesian work.
The explosion is in sheer number of researchers and publications, as well as in the
diversity of application areas and research directions. Over the past few years sev-
eral excellent new introductory texts on Bayesian inference have appeared, as well
as specialized monographs that focus on specific aspects of Bayesian inference, in-
cluding dynamic models, multilevel data, non-parametric Bayes, bioinformatics and
many others. Thus this is a natural time for a book that can pull all these diverse areas
together and present a snapshot of current research frontiers in Bayesian inference
and decision making. The intention of this volume is to provide such a snapshot.

Many of the research frontiers that are discussed in this volume have a close
connection to the life and career of Jim Berger, thus the subtitle of this book. Not
coincidentally, many authors are former students, collaborators, and friends of Jim
Berger. Like few others Jim has been instrumental in shaping the recent expansion
of Bayesian research. Jim’s early work in admissibility, shrinkage estimation, and
on conditioning established some of the foundations that current work builds on.
Working on admissibility naturally leads to later work on robustness, an issue that
is again becoming a paramount concern as we move to increasingly more complex
models. Work on robustness and admissibility also reflects Jim’s lifelong interest
in the Bayesian-frequentist interface. This interest led him to study Bayesian p-
values and objective Bayes methodology, two other important research directions
in Jim’s work. Reflecting a general trend in Bayesian statistics research, Jim also
became increasingly involved with substantial applications and practical aspects of
Bayesian inference, starting with work on fuel efficiency in the 90’s, and continuing
with work on astronomy, computer experiments, and more.

Besides his own research, Jim’s close association with Bayesian research and
statistics research in general arises from his long record of service in the profes-
sion, including serving as president of IMS, ISBA and ASA/SBSS, as co-editor of
the Annals of Statistics and as organizer of countless conferences and as a member
of the US National Academy of Science as well as the Spanish Real Academia de
Ciencias. Over the last eight years Jim has shaped statistics research also by his
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leadership as the founding director for the new Statistical and Applied Mathemati-
cal Sciences Institute (SAMSI). Many researchers who participated in the exciting
programs at SAMSI over the last 10 years greatly appreciate Jim’s hard work to
create and maintain the unique research environment at SAMSI. Most importantly
to us and many authors of the chapters in this volume, Jim has substantially con-
tributed to the development of statistics research as an outstanding advisor, mentor
and colleague. Jim has been advisor to over 30 Ph.D. students. We truly appreciate
the privilege of Jim’s guidance and help, which often went way beyond our years
as graduate students. Here we need to also acknowledge Ann Berger as the super
lurking variable behind Jim’s extraordinary career and the success of many of his
students. Thanks!

The chapters in this book were chosen to provide a broad survey of current re-
search frontiers in Bayesian analysis, ranging from foundations, to methodology
issues, to computational themes and applications. It is an amazing feature of Jim’s
life and research that the chapters in this book happen to simultaneously also almost
be an inventory of his many research interests.

Ming-Hui Chen, Dipak K. Dey, Peter Müller,
March 2010 Dongchu Sun, and Keying Ye
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Università Roma Tre
via Silvio D’Amico, 77
00145 Roma, ITALY
e-mail: barbieri@uniroma3.it

Susie M.J. Bayarri
Department of Statistics and O.R.
University of Valencia
Dr. Moliner 50
46100 Burjassot, Valencia, Spain
e-mail: Susie.Bayarri@uv.es
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Université Paris Dauphine
75775 Paris, and
CREST, INSEE, Paris, France
e-mail: xian@ceremade.dauphine.fr

James G. Scott
Department of Information, Risk,
and Operations Management
University of Texas at Austin
1 University Station, B6500
Austin, TX 78712, USA
e-mail:
james.scott@mccombs.utexas.edu

Haige Shen
Novartis Oncology, Biometrics
180 Park Ave, 104-2K11, Florham Park,
NJ 07932, USA
e-mail: haigeshen@yahoo.com

Jean-Michel.Marin@univ-montp2.fr
robert.mcculloch1@gmail.com
meng@stat.harvard.edu
stm2013@med.cornell.edu
bhramar@umich.edu
pmueller@mdanderson.org
lrpericchi@uprrp.edu
luarpr@gmail.com
ngp@ChicagoBooth.edu
raftery@u.washington.edu
jrao@math.carleton.ca
shubhankar_ray@merck.com
xian@ceremade.dauphine.fr
james.scott@mccombs.utexas.edu
haigeshen@yahoo.com


xxii List of Contributors

Siva Sivaganesan
Department of Mathematical Sciences
University of Cincinnati
811-C Old Chemistry
PO Box 210025
Cincinnati, OH 45221-0025, USA
e-mail: siva.sivaganesan@uc.edu

Eric P. Smith
Department of Statistics
Virginia Tech
Blacksburg, VA 24061, USA
e-mail: epsmith@vt.edu

Russell J. Steele
Department of Mathematics and
Statistics
McGill University
805 Sherbrooke Ouest
Montreal, QC, Canada H3A 2K6
e-mail: steele@math.mcgill.ca

William E. Strawderman
Department of Statistics
561 Hill Center, Busch Campus
Rutgers University
Piscataway, NJ 08854-8019, USA
e-mail: straw@stat.rutgers.edu

Marc A. Suchard
Departments of Biomathematics,
Biostatistics and Human Genetics
David Geffen School of Medicine
at UCLA, 6558 Gonda Building
695 Charles E. Young Drive, South
Los Angeles, CA 90095-1766, USA
e-mail: msuchard@ucla.edu

Dongchu Sun
Department of Statistics
University of Missouri-Columbia
146 Middlebush Hall
Columbia, MO 65211, USA
e-mail: sund@missouri.edu

Andrea Tancredi
Dipartimento di studi geoeconomici
Sapienza Università di Roma
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Chapter 1
Introduction

In the years since the 1985 publication of Statistical Decision Theory and Bayesian
Analysis by James Berger, there has been an enormous increase in the use of
Bayesian analysis and decision theory in statistics and science. The rapid expansion
in the use of Bayesian methods is due in part to substantial advances in compu-
tational and modeling techniques, and Bayesian methods are now central in many
branches of science. The aim of this book is to review current research frontiers
in Bayesian analysis and decision theory. It is impossible to provide an exhaustive
discussion of all current research in Bayesian statistics, so the book instead sum-
marizes current research frontiers by providing representative examples of research
challenges chosen from a wide variety of areas.

In this first chapter, Section 1.1 is a short biography of James Berger. One of
the many important aspects of James Berger’s contributions to statistics and applied
mathematics is his leadership of the Statistical and Applied Mathematical Science
Institute (SAMSI). The exciting research themes that defined SAMSI programs over
the last eight years are reviewed in Section 1.2. The last section of this chapter
contains an overview of the book.

1.1 Biography of James O. Berger

James Berger was born on April 6, 1950 in Minneapolis, Minnesota, to Orvis and
Thelma Berger. He received his PhD in Mathematics from Cornell University in
1974, five years after he graduated from high school. He then joined the depart-
ment of statistics at Purdue University, receiving tenure two years later, and was
promoted to full professor in 1980. In 1985, he became Richard M. Brumfield Dis-
tinguish Professor of Statistics at Purdue University. Since 1997, he has been Arts
and Science Distinguished Professor of Statistics at Duke University. Currently he
is also the director of the Statistical and Applied Mathematical Science Institute
(SAMSI), located in Research Triangle Park, North Carolina, USA.

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 1
and Bayesian Analysis, DOI 10.1007/978-1-4419-6944-6 1,
c© Springer Science+Business Media, LLC 2010
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Berger was president of the Institute of Mathematical Statistics from 1995 to
1996, chair of the Section on Bayesian Statistical Science of the American Statis-
tical Association in 1995, and president of the International Society for Bayesian
Analysis during 2004. He has been involved with numerous editorial activities, in-
cluding co-editorship of the Annals of Statistics (the landmark journal in the statis-
tical society) during the period 1998–2000, and has organized or participated in the
organization of over 39 conferences, including the Purdue Symposiums on Statisti-
cal Decision Theory and Related Topics and the Valencia International Meetings on
Bayesian Statistics. He has also served on numerous statistical administrative and
program committees, including the Committee on Applied and Theoretical Statis-
tics of the National Research Council. Berger has also been on various university
and NSF site visit teams and panels, and NSF advisory committees.

Among the awards and honors Berger has received are Guggenheim and Sloan
Fellowships, the 1985 COPSS President’s Award (an award given to a researcher
no more than 40, in recognition of outstanding contributions to the statistics pro-
fession), the Sigma Xi Research Award at Purdue University for contribution of the
year to science in 1993, the Fisher Lectureship in 2001, election as foreign member
of the Spanish Real Academia de Ciencias in 2002, election to the U.S. National
Academy of Sciences in 2003, award of an honorary Doctor of Science degree from
Purdue University in 2004, and the Wald Lectureship in 2007.

Berger’s research has primarily been in Bayesian statistics, foundations of statis-
tics, statistical decision theory, simulation, model selection, and various interdis-
ciplinary areas of science and industry, especially astronomy and the interface be-
tween computer modeling and statistics. He has supervised over 30 PhD disserta-
tions, published over 170 articles, and has written or edited 14 books or special
volumes.

Berger married Ann Louise Duer (whom he first met when they were in the sev-
enth grade together) in 1970, and they have two children, Jill Berger who is married
to Sascha Hallstein and works as optical scientist in Silicon Valley, and Julie Gish
who is married to Ryan Gish and works as a consultant in Chicago. The Berger’s
have three grandchildren, Charles and Alexander Gish and Sophia Hallstein.

1.2 The Frontiers of Research at SAMSI

James Berger was the founding Director of the Statistical and Applied Mathemat-
ical Sciences Institute (SAMSI, http://www.samsi.info) in 2002. Created as part of
the Mathematical Sciences Institutes program at the National Science Foundation,
SAMSI’s vision is to forge a new synthesis of the statistical sciences and the ap-
plied mathematical sciences with disciplinary science to confront the very hardest
and most important data- and model-driven scientific challenges. Each year, more
than 100 researchers have participated in SAMSI research working groups through
extended visits, and SAMSI workshops have drawn over 1000 national and interna-
tional participants annually.
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In over eight years of stewardship of SAMSI, Berger has overseen the develop-
ment and implementation of 24 major scientific programs (see http://www.samsi.info
/programs/index.shtml), with others still under development. These programs pro-
vide a snapshot of the views of Berger and other leaders in the statistical community
concerning which topics are of central importance to statistics and its interaction
with other disciplines. We can thus summarize this view of the frontiers of statistics
by briefly reviewing the past, current, and future programs of SAMSI. Details of
each of the programs and references can be found at the SAMSI website.

1.2.1 Research Topics from Past SAMSI Programs

1.2.1.1 Stochastic Computation, 2002–2003

Stochastic computation explored the use of methods of stochastic computation in
the following key areas of statistical modeling:

Stochastic computation in problems of model and variable selection: (i) com-
puting hard likelihoods and Bayes’ factors for model comparison and selection; and
(ii) synthesis of existing stochastic computational approaches to model uncertainty
and selection.

Stochastic computation in inference and imputation in contingency tables anal-
ysis: (i) perfect simulation approaches to “missing data” problems; (ii) synthesis
of existing Markov chain simulation methods — “local” and “global” move ap-
proaches; (iii) experiments with approaches in large, sparse tables; and (iv) applica-
tions in genetics and other areas.

Stochastic computation in analysis of large-scale graphical models: (i) Monte
Carlo and related stochastic search methods for sparse, large-scale graphical models;
(ii) model definition and specification for sparse models; and (iii) applications in
genomics (large-scale gene expression studies).

Stochastic computation in financial mathematics, especially in options pricing
models: (i) Monte Carlo methods in specific options pricing models; and (ii) se-
quential Monte Carlo methods and particle filtering in stochastic volatility models.

The core research focuses included studies of the performance characteristics of
current stochastic computational methods, refinements and extensions of existing
approaches, and development of innovative new approaches. In two of the areas, in
particular, there was an explicit focus on the development of interactions between
statisticians (coming from methodological and applied perspectives) and theoreti-
cal probabilists and mathematicians working on related problems. One key example
was the component on imputation in contingency tables, with an interest in con-
necting Markov chain methods from statistics with perfect sampling from probabil-
ity and algebraic approaches from mathematics. Another example was in modeling
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in financial pricing studies where statistical and mathematical “schools” have had
limited interactions.

1.2.1.2 Inverse Problem Methodology in Complex Stochastic Models,
2002–2003

In a diverse range of fields, including engineering, biology, physical sciences, ma-
terial sciences, and medicine, there is heightening interest in the use of complex
dynamical systems to characterize underlying features of physical and biological
processes. For example, a critical problem in the study of HIV disease is elucida-
tion of mechanisms governing the evolution of patient resistance to antiretroviral
therapy, and there is growing consensus that progress may be made by representing
the interaction between virus and host immune system by nonlinear dynamical sys-
tems whose parameters describe these mechanisms. Similarly, recovery of molec-
ular information for polymers via light beam interrogation may be characterized
by a dynamical system approach. Risk assessment is increasingly focused on deriv-
ing insights from physiologically based pharmacokinetic dynamical systems models
describing underlying processes following exposure to potential carcinogens.

In all of these applications, a main objective is to use complex systems to uncover
such mechanisms based on experimental findings; that is, in applied mathematical
parlance, to solve the relevant inverse problem based on observations of the system
(data), or, in statistical terminology, to make inference on underlying parameters
and model components that characterize the mechanisms from the data. In many
settings, there is a realization that dynamical systems should incorporate stochas-
tic components to take account of heterogeneity in underlying mechanisms, e.g.,
inter-cell variation in viral production delays in within-host HIV dynamics. In addi-
tion, heterogeneity may arise from data structure in which observations are collected
from several individuals or samples with the broader focus on understanding not just
individual-level dynamics but variation in mechanistic behavior across the popula-
tion. In both cases, it is natural to treat unknown, unobservable system parameters
as random quantities whose distribution is to be estimated. There is a large inverse
problem literature for systems without such stochastic components; even here, for-
ward solutions (i.e., solutions of the dynamics when parameters are specified) for
complex systems often necessitate sophisticated techniques, so that inverse prob-
lem methodologies pose considerable challenges. Similarly, there is a vast statistical
literature devoted to estimation and accounting for uncertainty in highly nonlinear
models with random components, involving hierarchical specifications and complex
computational issues.

With the potential overlap and emerging challenges, there has been interaction
between applied mathematicians and statisticians to develop relevant inverse prob-
lem/statistical inferential methodologies. When combined, the computational and
theoretical hurdles posed by both mathematical and statistical issues are substantial,
and their resolution requires an integrated effort. The research from Inverse Prob-



1.2 The Frontiers of Research at SAMSI 5

lem Methodology in Complex Stochastic Models entailed facilitating the essential
cooperative effort required to catalyze collaborative research in this direction.

1.2.1.3 Large-scale Computer Models for Environmental Systems, 2002–2003

Modeling of complex environmental systems is a major area of involvement of
statisticians and applied mathematicians with disciplinary scientists. Yet it is also
a prime example of the differing emphases of the two groups, applied mathemati-
cians focusing on deterministic modeling of the systems and statisticians on utilizing
the (often extensive) data for development and analysis of more generic stochastic
models. There are two major areas of particular interest and scientific importance.

Large-scale atmospheric models. Much contemporary work in atmospheric sci-
ence revolves around large-scale models such as NCAR’s Community Climate Sys-
tem Model (which includes atmosphere, ocean, land, and ice), mesoscale models
such as the Penn-State/NCAR MM5 model, and the multi-scale air quality model
(Models-3) developed by the EPA. Such models are generally deterministic, but
their formulation and use involve a variety of sources of uncertainty, such as un-
known initial and boundary conditions; “model parameterizations” (the treatment
of relevant physical phenomena varying at scales smaller than the grid size of the
model, e.g., clouds); and numerical stability issues. Some climatologists have begun
work on “stochastic parameterizations.” Other basic issues central to these models
include the need for an improved scientific understanding of unresolvable, subgrid-
scale phenomena, and large-scale (chaotic) non-determinism.

Flows in porous media. Porous medium dynamics is an active and increasingly in-
terdisciplinary research area with applications from a diverse set of fields including
applied sciences (such as environmental studies, geology, hydrology, petroleum en-
gineering, civil engineering, and soil physics), and basic sciences (such as physics,
chemistry, and mathematics). However, there were few collaborative efforts that
have equal footing in mathematics, disciplinary science, and statistics. The SAMSI
program was built around four major themes: model formulation, parameter estima-
tion, numerical methods, and design and optimization.

1.2.1.4 Data Mining and Machine Learning (DMML), 2003–2004

Data mining and machine learning — the discovery of patterns, information, and
knowledge in what are almost always large, complex (and, often, unstructured) data
sets — have seen a proliferation of techniques over the past decade. Yet, there re-
mains incomplete understanding of fundamental statistical and computational issues
in data mining, machine learning and large (sample size or dimension) data sets.

The goals of the DMML program were to advance significantly the understand-
ing of fundamental statistical and computational issues in data mining, machine
learning, and large data sets, to articulate future research needs for DMML, espe-
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cially from the perspective of the statistical sciences, and to catalyze the formation
of collaborations among statistical, mathematical, and computer scientists to pursue
the research agenda.

By almost every measure, the program was a strong success. The high points
are (i) a deeper understanding of the points of connection between data mining and
statistical theory and methodology; (ii) effective analyses of a large, extremely com-
plex testbed database provided by General Motors (GM), an affiliate of NISS and
SAMSI, thus also strengthening SAMSI’s industrial connections; (iii) a strong and
continuing collaboration in the area of metabolomics, involving chemists, computer
scientists, and statistical scientists; and (iv) a range of specific progress on issues
ranging from false discovery rates to overcompleteness to support vector machines.

1.2.1.5 Network Modeling for the Internet, 2003–2004

Because of the size and complexity of the internet, and the nature of the protocols,
internet traffic has proved to be very challenging to model effectively. Yet modeling
is critical to improving quality of service and efficiency. The main research goal
of this program was to address these issues by bringing together researchers from
three communities: (a) applied probabilists studying heavy traffic queueing theory
and fluid flow models; (b) mainstream internet traffic measurers/modelers and hard-
ware/software architects; and (c) statisticians.

The timing was right for simultaneous interaction among all three communities,
because of the trend away from dealing with quality of service issues through over-
provisioning of equipment. This trend suggested that heavy traffic models would
be ideally situated to play a leading role in future modeling of internet traffic, and
in attaining deeper understanding of the complex drivers behind quality of service.
The following topics were of particular interest.

Changepoints and extremes: To explore approaches in which the transitions be-
tween bursty and non-bursty internet traffic are considered changepoints, with mod-
els and methods from extreme value theory used to characterize the bursty periods.

Formulation of suite of models: To develop useful statistical models for internet
traffic flow that are simple to analyze and simulate, and can capture the character-
istics of actual traffic data that are important to electronics engineers and computer
scientists.

Multifractional Brownian and stable motion: To capture two major characteristic
features of the network traffic: time scale invariance (statistical self-similarity) and
long-range dependence.

Structural breaks: To explore structural breaks in the context of internet traffic
modeling where evidence of long-range dependence is also ubiquitous.
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1.2.1.6 Multiscale Model Development and Control Design, 2003–2004

Multiscale analysis is ubiquitous in the modeling, design, and control of high per-
formance systems utilizing novel material architectures. In applications including
quantum computing, nanopositioning, granular flows, artificial muscle design, flow
control, liquid crystal polymers, and actuator implants to stimulate tissue and bone
growth, it is necessary to develop multiscale modeling hierarchies ranging from
quantum to system levels for time scales ranging from nanoseconds to hours. Con-
trol techniques must be designed in concert with the models to guarantee the sym-
biosis required to achieve the novel design specifications. A crucial component of
multiscale analysis is the development of homogenization techniques to bridge dis-
parate temporal and spatial scales. This is necessitated by the fact that even with
projected computing capabilities, monoscale models are prohibitively large to per-
mit feasible system design or control implementation.

A number of these issues can be illustrated in the context of two prototypical
materials, piezoceramics and ionic polymers, which are being considered for appli-
cations ranging from quantum storage to artificial muscle design. In both cases, the
unique transducer properties provided by the compounds are inherently coupled to
highly nonlinear dynamics which must be accommodated in material characteriza-
tion, numerical approximation, device design, and control implementation.

The real-time approximation of comprehensive material models for device de-
sign and model-based control implementation is a significant challenge which must
be addressed before novel material constructs and device architectures can achieve
their full potential. The realization of these goals requires the development of
reduced-order models which retain fundamental physics but are sufficiently low-
order to permit real-time implementation.

Other components include control design, a crucial aspect of which is robustness
with regard to disturbance and unmodeled dynamics. Deterministic robust control
designs often provide uncertainty bounds which are overly conservative and hence
provide limited control authority. Alternatively, one can provide statistical bounds
on uncertainties.

1.2.1.7 Computational Biology of Infectious Diseases, 2004–2005

Infectious disease remains a major cause of suffering and mortality among people
in the developing world, and a constant threat worldwide. The advent of genome
science and the continuing rapid growth of computational resources together her-
alded an opportunity for the mathematical and statistical sciences to play a key
role in the elucidation of pathogenesis and immunity and in the development of the
next generation of therapies and global strategies. The program encompassed both
genomic and population-level studies, including microbial and immunological ge-
nomics, vaccine design and proteomics, drug target identification, gene expression
modeling and analysis, molecular evolution of host-microbe systems, drug resis-
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tance, epidemiology and public health, systems immunology, and microbial ecol-
ogy.

1.2.1.8 Latent Variable Models in the Social Sciences, 2004–2005

Latent variables are widespread in the social sciences. Whether it is intelligence or
socioeconomic status, many variables cannot be directly measured. Factor analy-
sis, latent class analysis, structural equation models, error-in-variable models, and
item response theory illustrate models that incorporate latent variables. Issues of
causality, multilevel models, longitudinal data, measurement error and categorical
variables in latent variable models were examined.

Categorical variables. Many categorical observed variables in the social sciences
are imperfect measures of underlying latent variables. Statistical issues emerge
when categorical observed variables are part of a model with latent variables or with
measurement error. There were mainly two approaches to models with categorical
outcomes: James Hardin’s recent advances in models that correct for measurement
error in nonlinear models within the GLM framework, and Ken Bollen’s two-stage
least squares approach to latent variable models.

Complex surveys. A range of issues arise from survey data. Among these, two
issues were of particular interest: (i) latent class analysis (LCA) of measurement
error in surveys; and (ii) weighting and estimation for complex sample designs.

1.2.1.9 Data Assimilation for Geophysical Systems, 2004–2005

Data assimilation aims at accurate re-analysis, estimation and prediction of an un-
known, true state by merging observed information into a model. This issue arises
in all scientific areas that enjoy a profusion of data.

The problem of assimilating data into a geophysical system, such as the one
related to the atmosphere or oceans, is both fundamental in that it aims at the esti-
mation and prediction of an unknown true state, and challenging as it does not nat-
urally afford a clean solution. It has two equally important elements: observations
and computational models. Observations measured by instruments provide direct
information of the true state. Such observations are heterogeneous, inhomogeneous
in space, irregular in time, and subject to differing accuracies. In contrast, computa-
tional models use knowledge of the underlying physics and dynamics to provide a
description of state evolution in time. Models are also far from perfect: due to model
error, uncertainty in the initial conditions and computational limitations, model evo-
lution cannot accurately generate the true state.

In its broadest sense, data assimilation (henceforth referred to as DA) arises in
all scientific areas that enjoy a profusion of data. By its very nature, DA is a com-
plex interdisciplinary subject that involves statistics, applied mathematics, and the
relevant domain science. Driven by operational demands for numerical weather pre-
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diction, however, the development of DA so far has been predominantly led by the
geophysical community. In order to further DA beyond the current state-of-art, the
development of effective methods must now be viewed as one of the fundamental
challenges in scientific prediction.

1.2.1.10 Financial Mathematics, Statistics and Econometrics, 2005–2006

The goal of the study on Financial Mathematics, Statistics and Econometrics (FMSE)
was to identify short and long term research directions deemed necessary to achieve
both fundamental and practical advances in this rapidly growing field and to ini-
tiate collaborative research programs — among mathematicians, statisticians, and
economists — focused on the multi-disciplinary and overlapping set of fields which
involves disciplines such as: Applied Mathematics, Economics and Finance, Econo-
metrics, and Statistics. A prominent theme throughout both the workshop and pro-
gram was the necessity of exploiting the natural synergy between areas of financial
mathematics, statistics, and econometrics. The goal of the SAMSI program in Fi-
nancial Mathematics and Econometrics was to bring together these disciplines and
initiate a discussion regarding what is really important and what is missing in three
essential tasks.

Modeling. Model development was considered in domains ranging from financial
and energy derivatives to real options.

Data. The size of financial data can be considerable when looking at high frequency
data for large numbers of stocks for example.

Computation. Once a model has been written and calibrated to data, it remains nec-
essary to compute quantities of interest. These three key themes transpired through
the entire program and all its activities, including workshops, courses, and the di-
versity of visitors and participants.

1.2.1.11 National Defense and Homeland Security, 2005–2006

For several years, groups of researchers have been seeking to define appropriate
roles for the statistical sciences, applied mathematical sciences, and decision sci-
ences in problems of National Defense and Homeland Security (NDHS). Many ef-
forts have focused on short-term applicability of existing methods and tools, rather
than articulating or initiating a longer-term research agenda. Moreover, none of them
has really spanned the statistical sciences, the applied mathematical sciences, and
the decision sciences. Perhaps most important point is that, despite progress, these
efforts have not “jelled” to produce a self-sustaining research momentum in the sta-
tistical sciences, applied mathematical sciences, and decision sciences on problems
of NDHS. The NDHS program was meant fill this gap, in part by providing proof
of concept that the necessary collaborations are feasible.
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Research in the NDHS program was cross-disciplinary, and many of the efforts
it catalyzed were addressable only by multi-institution teams of researchers. Some
of the research needed to address problems in NDHS is technology-oriented; for
example, development of sensors or biometric identification devices, but it is clear
that data (statistical sciences), models (applied mathematics), and decisions (deci-
sion sciences) are essential components of the effort. Theory and methodology foci
of the program included:

Biointelligence. It intersects planned development of a CDC Biointelligence Center.
Such a center would need to analyze data from a variety of sources, which have
differing characteristics in terms of temporal and spatial resolution, seasonal and
regional variation, accuracy, completeness, and complexity.

Real-time inference, also known as data streams. Clearly many of these prob-
lems present deep questions of estimation and control, and so naturally require col-
laboration of statistical and applied mathematical scientists. These are also decision
problems, leading naturally to engagement of the decision sciences and operations
research.

Anomaly detection. The particular attention is paid to multivariate (possibly very
high-dimensional) data, extremely rare events and false positives.

Data integration. It focuses on attendant problems of privacy, confidentiality and
“new forms” of data such as images or biometric identifications.

Dynamics of massive databases. It focuses in part on a fundamental issue of data
quality. How long is it before an accumulating database (e.g., one containing facial
images) becomes hopelessly contaminated? Is the contamination global or local?
What strategies can retard or reverse the process?

1.2.1.12 Astrostatistics, 2006

Historically, astronomy has served as fertile ground for stimulating the growth of
new statistical and mathematical methodologies. Conversely, coping with the cur-
rent and future needs of astronomy missions requires concerted efforts by cross-
disciplinary collaborations involving astronomers, computer scientists, mathemati-
cians, and statisticians. The following areas were of particular interest in the pro-
gram.

Exoplanets: Including work on individual systems, populations studies, and opti-
mal scheduling of observations; and in particular, statistical inference with small
samples and nonlinear models, MCMC algorithms for nonlinear/multimodel prob-
lems, hierarchical/empirical Bayesian methods, and experimental design.

Surveys and population studies: Including work on small or moderate scale sur-
veys (exoplanets, Kuiper belt objects, GRBs), large-scale surveys (galaxy surveys,
AGN surveys), modeling “Number-Size” or “Size-Frequency” distributions (power-
law models, nonparametric models, comparison with large-scale numerical sim-
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ulations), selection effects and source uncertainties (Malmquist-Eddington/Lutz-
Kelker biases, handling upper limits, etc.), and coincidences between surveys.
Statistics areas include survey sampling, regression and measurement error mod-
els/EVM, nonparametric modeling, survival analysis, and multiple testing.

Gravitational lensing: Including work on the determination of basic statistics for
random number of micro-images due to stars across a smooth dark matter back-
ground with external shear, computation of magnification probability distributions
due to dark matter substructures, development of a statistical model of substructure
population on galaxy-cluster scales, and exploration of the solution space for mass
reconstruction.

Source detection and feature detection: Including work on detecting point sources
and extended sources in images, classification of detections, and anomaly detection.

1.2.1.13 High Dimensional Inference and Random Matrices, 2006–2007

Random matrix theory lies at the confluence of several areas of mathematics, espe-
cially number theory, combinatorics, dynamical systems, diffusion processes, prob-
ability, and statistics. At the same time random matrix theory may hold the key to
solving critical problems for a broad range of complex systems from biophysics to
quantum chaos to signals and communication theory to machine learning to finance
to geoscience modeling.

The following areas were of particular interest in the program.

Direct problems: Understanding the spectral properties of random matrices under
various models and assumptions. The follows topics are included.

Extreme eigenvalues of random covariance matrices: Asymptotic and non-asymptotic
distributions, in the Gaussian setting; Robustness of results to Gaussian assumption;
Non-diagonal covariance matrices.

Dynamic behavior of eigenvalues of matrix processes: Matrices whose elements un-
dergo diffusion (Dyson Processes); Stochastic differential equations for their eigen-
values; Scaling limits (Airy processes) and descriptions via partial differential equa-
tions.

Limiting theory for eigenvectors: Using free probability techniques.

Spectral properties of other random matrices arising in multivariate statistics:
Techniques such as canonical correlation analysis and related random matrix prob-
lems; and Covariance matrices with covariance in space and time.

Inverse problems: Recovering from an observed random matrix information about
the process from which it was generated. The following were of interest.

Estimation of large covariance matrices: Regularization techniques by banding, fil-
tering, and using L1 penalties; and their theoretical and practical properties.
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Consistency and estimability problems: Consistency of sample eigenvectors in co-
variance estimation problems; and Estimability issues for eigenvectors and eigen-
values.

Applications: Use of newly gained understanding of random matrices to advance
research in a wide array of scientific disciplines. It includes the following applica-
tions.

Climatology: Empirical orthogonal functions and related techniques; and Summa-
rization of evolving geophysical fields via spectral techniques.

Dynamical systems: Design of snapshots, i.e., finding a minimal number of func-
tions, tailored to a specific problem, that accurately represent the problem’s dynam-
ics.

Data assimilation: Combination of numerical models and observations; Ensemble
Kalman filtering: impact of sample information on propagation of covariance, effect
of ensemble size, and tapering and inflation methods.

Graphical Gaussian models: Consistent estimation of the model structure; and
Study of the rates of convergence.

Computation and connection: Computation of moments of large random Wishart
matrices; Connection to graph theory; and Connection to methods in free probabil-
ity.

General statistical inference: Consistency of regression functions dependent upon
the behavior of certain large random matrices; and Problems arising in estimation,
testing and model selection.

1.2.1.14 Development, Assessment and Utilization of Complex Computer
Models, 2006–2007

Mathematical models intended for computational simulation of complex real-world
processes are a crucial ingredient in virtually every field of science, engineering,
medicine, and business, and in everyday life as well. Cellular telephones attempt
to meet a caller’s needs by optimizing a network model that adapts to local data,
and people threatened by hurricanes decide whether to stay or flee depending on the
predictions of a continuously updated computational model.

Two related but independent phenomena have led to the near-ubiquity of models:
the remarkable growth in computing power and the matching gains in algorithmic
speed and accuracy. Together, these factors have vastly increased the applicability
and reliability of simulation—not only by drastically reducing simulation time, thus
permitting solution of larger and larger problems, but also by allowing simulation
of previously intractable problems.

The intellectual content of computational modeling comes from a variety of dis-
ciplines, including statistics and probability, applied mathematics, operations re-
search, and computer science, and the application areas are remarkably diverse. De-
spite this diversity of methodology and application, there are a variety of common
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challenges, detailed below, in developing, evaluating, and using complex computer
models of processes.

Engineering subprogram. The engineering subprogram studied three frequently
occurring problem areas in finite-element and other engineering models. These
problems are those of validation, calibration, and combining data from physical
experiments and computer experiments. The emphasis was on applications where
the computer models require substantial running times and the physical models are
difficult or expensive, so that, in some cases, physical experiments can be conducted
for only subcomponents of the desired system or a physical simulator may only be
possible for the desired system. Issues of combining codes from system components
to produce valid codes for the entire system can then arise.

Two types of biological modeling. (a) To explore the impact of drug therapy and
resistance on acute viral infections, these models are based on a multi-scale ap-
proach, integrating within-host models (i.e., ones that describe infection within
a given individual) with between-host (epidemiological) models that describe the
spread of infection at the population level. (b) The system biological models range
from small biochemical networks corresponding to sets of coupled ODEs to large
spatio-temporal models requiring advanced numerical methods.

Methodology subprogram. The subprogram engaged in an in-depth treatment of
methodological issues that arise in the design, analysis, and utilization of computer
models across many fields of application. The subprogram also evolved in close
collaboration with the four disciplinary subprograms, engaging them in an overall
research umbrella.

1.2.1.15 Multiplicity and Reproducibility in Scientific Studies, 2006

Concerns over multiplicities in statistical analysis and reproducibility of scientific
experiments are becoming increasingly prominent in almost every scientific disci-
pline, as experimental and computational capabilities have vastly increased in recent
years. The following key issues were of interest.

Reproducibility. Scientists use statistical methods to help them judge if something
has happened beyond chance. They expect that if others replicate their work, that
a similar finding will happen. To clear a drug the FDA requires two studies, each
significant at 0.05. Ioannidis (2005) showed startling and disconcerting lack of re-
producibility of influential statistical studies published in major medical journals. It
found that about 30% of randomized, double-blinded medical trials failed to repli-
cate and that 5 out of 6 non-randomized studies failed to replicate — about an 80%
failure rate. It is necessary to explore and clarify the causes of failures to reproduce
and, more broadly, to identify commonalities that lead to these problems, and at-
tempting to estimate its prevalence. Multiplicities (both obvious and hidden) need
be considered, along with selection biases and regression to the mean.
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Subgroup analysis. Large, complex data sets are becoming more commonplace
and people want to know which subgroups are responding differently to one another
and why. The overall sample is often quite large, but subgroups may be very small
and there are often many questions. Genetic data are being collected on clinical
trials. Which patients will respond better to a drug and which will have more severe
side effects? Disease, drug, or side effects can result from different mechanisms.
Identification of subgroups of people where there is a common mechanism is useful
for diagnosis and prescribing of treatment. Large educational surveys involve groups
with different demographics, different educational resources and subject to different
educational practices. What groups are different and how are differences related to
resources and practices? What really works and why? Is the finding the result of
chance? There is a need for effective statistical methods for finding subgroups that
are responding differently. There is a need to be able to identify complex patterns of
response and not be fooled by false positive results that come about from multiple
testing.

Massive multiple testing. The routine use of massively multiple comparisons in
inference for large-scale genomic data has generated a controversy and discussion
about appropriate ways to adjust for multiplicities. There are different approaches
to formally describe and address the multiplicity problem, including the control of
various error rates, decision theoretic approaches, hierarchical modeling, probabil-
ity models on the space of multiplicities, and model selection techniques. Besides
applications in inference for genomic data, similar problems occured in clinical trial
design and analysis, record matching problems, classification in spatial inference,
anomaly discovery, and syndrome surveillance. It is interesting to identify the rel-
ative merits and limitations of the competing approaches for diverse applications,
and to understand which features of reproducibility are addressed.

1.2.1.16 Risk Analysis, Extreme Events, and Decision Theory, 2007–2008

Over the past several years, there has been a wealth of scientific progress on risk
analysis. As the set of underlying problems has become increasingly diverse, draw-
ing from areas ranging from national defense and homeland security to genetically
modified organisms to animal disease epidemics and public health to critical infras-
tructure, much research has become narrowly focused on a single area. It has also
become clear, however, that the need is urgent and compelling for research on risk
analysis, extreme events (such as major hurricanes), and decision theory in a broader
context. Availability of past information, expert opinion, complex system models,
and financial or other cost implications as well as the space of possible decisions
may be used to characterize the risks in different settings.

Risk analysis and extreme events also carry a significant public policy compo-
nent, which is driven in part by the increasing stakes and the multiplicity of stake-
holders. In particular, policy concerns direct attention not only to the dramatic risks
for huge numbers of people associated, for example, with events of the magnitude
of Hurricane Katrina or bioterrorism, but also to “small-scale” risks such as drug in-
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teractions driven by rare combinations of genetic factors. The following key issues
were of interest in the program.

Extreme values: Theory for multidimensional extremes. Probability theory and
statistical methodology for one-dimensional distributions of extreme values have
been developed over the past half-century, but these do not extend easily to higher
dimensions.

Financial risk: Risk assessment and risk management for critical resources,
infrastructure, and energy markets. Prediction of financial consequences of ex-
treme events is formulated differently in actuarial science, in operations research, in
financial mathematics, and in risk management and decision sciences.

Experts and decisions: Prior elicitation and modeling with expert opinion. Elic-
itation is the process of formulating a person’s knowledge and beliefs about one
or more unknowns (parameters) into a (joint) probability distribution for those un-
knowns in a decision-making setting.

Adversarial risk: Formalizing analysis of risk from intelligent opponents. Tra-
ditional methodology is based on the canonical risk equation: (Likelihood of Attack)
× (Consequence) × (1-System Effectiveness) = Risk. However, new business and
government scenarios require considering risk analysis that takes into account oppo-
nents’ intelligence, possible willingness to cooperate, and transfer of risk following
decisions and actions.

Environmental risk analysis: Ecological risk assessment and risks associated
with extreme climatic events. The occurrence of extreme environmental disrup-
tions depends jointly on the highly unstable occurrence of these events and the lo-
cally, at least, highly variable consequences.

Industrial risk: Pharmaceutical and health risk. Statistical issues include infer-
ence from non-randomized clinical trials, multiplicity and asymmetries between null
and alternative hypotheses, analysis of rare events, and competing risks.

1.2.1.17 Random Media, 2007–2008

The field of random media is a classical one which is presently receiving widespread
attention as new theory, approximation techniques, and computational capabilities
are applied to emerging applications. Due to the breadth of the field, the inherent
deterministic, stochastic, and applied components have typically been investigated
in isolation. However, it is increasingly recognized that these components are inex-
orably coupled and that synergistic investigations are necessary to provide signifi-
cant fundamental and technological advances in the field. The following key issues
were of interest.

Time reversal. The component on time reversal built on recent analysis and exper-
imental observations that time reversal of waves propagating in disordered media
permit refocusing. This somewhat unexpected property has profound ramifications
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in domains such as wireless communications, medical imaging, nondestructive eval-
uation, and underwater acoustics. Whereas the behavior of one-dimensional acoustic
waves is mathematically and statistically understood, questions regarding multidi-
mensional media remain wide open with the exception of the baraxial wave equa-
tion.

Interface problems. Interface problems arise in a diverse range of applications,
including multiphase flows and phase transitions in fluid mechanics, thin film and
crystal growth simulations in material science, and mathematical biology problems
modeled by partial differential equations involving moving fronts.

Imaging problems. Imaging problems in random media arise in a number of appli-
cations, including biomedical imaging and seismic analysis. In the latter category,
a detailed knowledge of earth medium heterogeneities is necessary for oil and gas
recovery, earthquake and volcanic predictions, and environmental analysis.

Scattering theory. Whereas mathematical scattering theory for one-dimensional
regimes is fairly mature, it was of interest to extend to multidimensional media with
the exception of the baraxial wave equation.

Porous media. It includes topics pertaining to stochastic transport processes and
physics associated with porous media.

1.2.1.18 Environmental Sensor Networks, 2007–2008

Environmental sensor networks have the capability of capturing local and broadly
dispersed information simultaneously; they also have the capacity to respond to sud-
den change in one location by triggering observations selectively across the network
while simultaneously updating the underlying complex system model and/or recon-
figuring the network. Data gathered by wireless sensor networks, either fixed or
mobile, pose unique challenges for environmental modeling: a complex system is
being observed by a dynamical network. Technical challenges in statistics (sampling
design to prediction and prediction uncertainty), in mathematics (computational ge-
ometry to data fusion to robotics), and in computers science (self-organizing net-
works to algorithm analysis) combine with the technical challenges of the models
themselves and the sciences that underlie them. The following key issues were of
interest.

Sampling from wireless networks. Cost of spatio-temporal data in terms of both
energy and delay: Each sample has a footprint in power in space and time, some
value to one or more process models (e.g., importance of parameters in space and
time, sensitivity of estimates to the observation), and some cost (e.g., data transmis-
sion). One wants to know if it is possible to derive frameworks such that the utility
of each sample exceeds its cost.

Environmental modeling from sensor networks. Model complexity and ade-
quacy: In the trade-off of dimensionality and predictive accuracy, what are the diag-
nostics for excessive vs. insufficient parametrization? Can models be developed so
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that reduced forms (e.g., deleting submodels, subsets of parameters, or reducing res-
olution of observations and/or parameter specification) still function simultaneously
with near-optimality at several scales?

Networks, forests, and global change. Process level understanding of how forested
ecosystems respond to global change is critical for anticipating consequences of
human impacts on landscapes. To be successful an approach will entail integrated
models of a complex system and will involve heterogeneous data and analyses that
directly address uncertainty and model selection issues.

1.2.1.19 Challenges in Dynamic Treatment Regimes and Multistage Decision
Making, Summer 2007

The management of chronic disorders, such as mental illness, substance depen-
dence, cancer, and HIV infection, presents considerable challenges. In particular
the heterogeneity in response, the potential for relapse, burdensome treatments, and
problems with adherence demand that treatment of these disorders involve a series
of clinical decisions made over time. Decisions need to be made about when to
change treatment dose or type and regarding which treatment should be used next.
Indeed, clinicians routinely and freely tailor treatment to the characteristics of the
individual patient with a goal of maximizing favorable outcomes for that patient. To
a large extent the tailoring of sequences of treatments is based on clinical judgment
and instinct rather than a formal, evidence-based process.

These realities have led to great interest in the development of so-called “dy-
namic treatment regimes” or “adaptive treatment strategies.” A dynamic treatment
regime is an explicit, operationalized series of decision rules specifying how treat-
ment level and type should vary over time. The rule at each stage uses time-varying
measurements of response, adherence, and other patient characteristics up to that
point to determine the next treatment level and type to be administered, thereby
tailoring treatment decisions to the patient. The objective in developing such multi-
stage decision-making strategies is to improve patient outcomes over time.

Methodology for designing dynamic treatment regimes is an emerging area that
presents challenges in two areas. First, experimental designs for collecting suitable
data that can be used efficiently to develop dynamic regimes are required. Second,
techniques for using these and other data to deduce the decision-making rules in-
volved in a dynamic regime must be developed. In both areas, input from researchers
in a variety of disciplines and collaborations among them will be critical.

1.2.1.20 Geometry and Statistics of Shape Spaces, Summer 2007

Shapes are prevalent in the outside world and in science. They manifest themselves
in live animals, plants, landscapes, or in man-made materials, like cars, planes,
building, bridges, and they are designed from aesthetic as well as efficacy consider-
ations. Internal organs of humans or other animals also have a commonly accepted,
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well-defined shape, and their study is an old science called anatomy. For the human
mind, there is an intuitive notion of what shapes are, why they differ or look alike,
or when they present abnormalities with respect to ordinary observations. Sculp-
ture is the art of rendering existing shapes, or creating new ones, and the fact that
artists are still able to provide unambiguous instances of subjects through distorted
or schematic representations is a strong indication of the robustness of the human
shape recognition engine.

However, an analytical description of a shape is much less obvious, and humans
are much less efficient for this task, as if the understanding and recognition of forms
works without an accurate extraction of their constituting components, which is
probably the case. We can recognize a squash from an eggplant or a pepper using
a simple outline, and even provide a series of discriminative features we can dis-
tinguish, but it is much harder to instantiate a verbal description of any of them,
accurate enough, say for a painter to reproduce it. It is therefore not surprising that,
for mathematics, shape description remains mostly a challenge. The last fifty years
of research in computer vision has shown an amazingly large variety of points of
view and techniques designed for this purpose: 2D or 3D sets they delineate (via
either volume or boundary), moment-based features, medial axes or surfaces, null
sets of polynomials, and configurations of points of interest (landmarks), to name
but a few.

But beyond the shape characterization issue, the more ambitious program which
has interested a large group of researchers during the last two decades, starting with
the seminal work of David Kendall, is the study of shapes spaces and their statis-
tics. Here shapes are not only considered individually, but they are seen as variables,
belonging to some generally infinite dimensional space which possesses a specific
geometry. The theoretical study of such spaces, the definition of computationally
feasible algorithmic and statistical procedures has been the subject of a still-growing
line of work. For example, Kendall’s original contribution focused on collections of
landmarks modulo the action of rotation and scale. It has since been extended to
the actions of other groups and to plane curves instead of points. Other examples
build shape spaces using the medial axis representation. The last few years have
seen the emergence and the development of several new techniques, building in-
finite dimensional Riemannian metrics on curves and other shape representations,
involving several groups over the world. Within applied mathematics, the analysis
of shape spaces arises at a nodal point in which geometry, statistics, and numerical
analysis each have a fundamental contribution.

1.2.1.21 Meta-analysis: Synthesis and Appraisal of Multiple Sources of
Empirical Evidence, Summer 2008

Seldom is there only a single empirical research study relevant to a question of
scientific interest. However, both experimental and observational studies have tra-
ditionally been analyzed in isolation, without regard for previous similar or other
closely related studies. A new research area has arisen to address the location, ap-
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praisal, reconstruction, quantification, contrast, and possible combination of similar
sources of evidence. Variously called meta-analysis, systematic reviewing, research
synthesis or evidence synthesis, this new field is gaining popularity in diverse fields
including medicine, psychology, epidemiology, education, genetics, ecology, and
criminology.

The combination of results from similar studies is often known simply as meta-
analysis. Common examples are combining results of randomized controlled trials
of the same intervention in evidence-based medicine; similarly across studies in so-
cial science; or of odds ratios measuring association between an exposure and an
outcome in epidemiology. More complex syntheses of multiple sources of evidence
have developed recently, including combined analyses of clinical trials of different
interventions, and combined analysis of data from multiple microarray experiments
(sometimes called cross-study analysis). For straightforward meta-analyses, general
least-squares methods may be used, but for complex meta-analyses, the technical
statistical approach is not so obvious. Often likelihood and Bayesian approaches
provide very different perspectives; and in practice the possible benefits of more
complex approaches may be hard to discern as many meta-analyses are compro-
mised by limited or biased availability of data from studies as well as by varying
methodological limitations of the studies themselves.

The presence of multiple sources of evidence has long been a recognized chal-
lenge in the development and appraisal of statistical methods, from Laplace and
Gauss to Fisher and Lindley. In the 1980s Richard Peto argued that a combined
analysis would be more important than the individual analyses, a view taken still fur-
ther by Greenland, who has suggested that that individual study publications should
not attempt to draw conclusions at all, but should instead only describe and report
results, so that a later meta-analysis can more appropriately assess the study’s ev-
idence fully informed by other study designs and results. Will combined analyses
actually replace individual analyses (or at least decrease their impact)? If so, it is
time to re-examine the perennial problems of statistical inference in this context.

There are three challenges: (i) to substantiate and clarify how existing statistical
methodology can effectively combine multiple sources of evidence, given perfect
conduct and reporting of all studies; (ii) to identify statistical areas in need of de-
velopment or improvement, both in theory and application, for the practical situa-
tions of studies having methodological limitations and studies providing biased or
incomplete data; and (iii) To identify and develop material and pedagogy for un-
dergraduate and graduate programs in statistics, to allow future statisticians to deal
effectively with multiple sources of evidence, and to motivate further development
of new methodology.

1.2.1.22 Sequential Monte Carlo Methods, 2008–2009

Monte Carlo (MC) methods are central to modern numerical modeling and compu-
tation in complex systems. Markov chain Monte Carlo (MCMC) methods provide
enormous scope for realistic statistical modeling and have attracted much attention
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from disciplinary scientists as well as research statisticians. Many scientific prob-
lems are not, however, naturally posed in a form accessible to evaluation via MCMC,
and many are inaccessible to such methods in any practical sense. For example, for
real-time, fast data processing problems that inherently involve sequential analy-
sis, MCMC methods are often not obviously appropriate at all due to their inherent
“batch” nature. The recent emergence of sequential MC concepts and techniques
has led to a swift uptake of basic forms of sequential methods across several areas,
including communications engineering and signal processing, robotics, computer
vision, and financial time series. This adoption by practitioners reflects the need
for new methods and the early successes and attractiveness of SMC methods. In
such, probability distributions of interest are approximated by large clouds of ran-
dom samples that evolve as data are processed using a combination of sequential
importance sampling and resampling ideas. Variants of particle filtering, sequential
importance sampling, sequential and adaptive Metropolis MC and stochastic search,
and others have emerged and are becoming popular for solving variants of “filter-
ing” problems; i.e. sequentially revising sequences of probability distributions for
complex state-space models.

Many problems and existing simulation methods can be formulated for analysis
via SMC: sequential and batch Bayesian inference, computation of p-values, infer-
ence in contingency tables, rare event probabilities, optimization, counting the num-
ber of objects with a certain property for combinatorial structures, computation of
eigenvalues and eigenmeasures of positive operators, PDEs admitting a Feynman-
Kac representation, and so on. This research area is poised to explode, as witnessed
by this major growth in adoption of the methods. The following key issues were of
interest.

Continuous time modeling and parameter estimation. Modeling and parame-
ter estimation for continuous time stochastic processes includes exact simulation
methods for inference in partially observed diffusions, jump diffusions and Levy
processes. Both batch-based and on-line strategies were studied, as were both pa-
rameter estimation and state estimation.

Tracking and large-scale dynamical systems. There is much interest in tracking
and inference for large groups of objects, with applications in medical imaging,
dynamic object tracking in robotic control in industrial, commercial, and military
areas, and tracking in media applications. Particular focus areas were drawn from
representations of many interacting objects using random fields, graphical models,
and automated inference about group structures, types of interaction, intentionali-
ties, etc.

Decision making, econometrics, and finance. SMC methods are under-explored
and appear to have a great deal of potential in problems of numerical solution of
decision problems under uncertainty. Research areas included: (i) applications in
policy-oriented macro-economic modeling; and (ii) state and parameter estimation
leading into prediction financial time series models, together with numerical ap-
proaches to the coupled portfolio decision problem.
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Population Monte Carlo. MCMC can easily get stuck for high-dimensional multi-
modal distributions. This has led, in part, to the development of adaptive and popu-
lation Monte Carlo algorithms, which can provide promising alternatives for these
problems. Some of these methods are inherently SMC methods, and there was in-
terest in developing new adaptive methods to sample from high-dimensional distri-
butions.

1.2.1.23 Algebraic Methods in Systems Biology and Statistics, 2008–2009

In recent years, methods from algebra, algebraic geometry, and discrete mathemat-
ics have found new and unexpected applications in systems biology as well as in
statistics, leading to the emerging new fields of “algebraic biology” and “algebraic
statistics.” Furthermore, there are emerging applications of algebraic statistics to
problems in biology. There has been development and maturation of these two ar-
eas of research as well as their interconnections. The common mathematical tool
set as well as the increasingly close interaction between biology and statistics al-
lows researchers working in algebra, algebraic geometry, discrete mathematics, and
mathematical logic to interact with statisticians and biologists and make fundamen-
tal advances in the development and application of algebraic methods to systems
biology and statistics. The following key issues were of interest.

Systems biology. The development of revolutionary new technologies for high-
throughput data generation in molecular biology in the last decades has made it pos-
sible for the first time to obtain a system-level view of the molecular networks that
govern cellular and organismal function. Whole genome sequencing is now com-
monplace, gene transcription can be observed at the system level, and large-scale
protein and metabolite measurements are maturing into a quantitative methodology.
The field of systems biology has evolved to take advantage of this new type of data
for the construction of large-scale mathematical models. System-level approaches
to biochemical network analysis and modeling promise to have a major impact on
biomedicine, in particular drug discovery.

Statistics. It has long been recognized that the geometry of the parameter spaces of
statistical models determines in fundamental ways the behavior of procedures for
statistical inference. This connection has in particular been the object of study in the
field of information geometry, where differential geometric techniques are applied
to obtain an improved understanding of inference procedures in smooth models.
Many statistical models, however, have parameter spaces that are not smooth but
have singularities. Typical examples include hidden variables models such as the
phylogenetic tree models and the hidden Markov models that are ubiquitous in the
analysis of biological data. Algebraic geometry provides the necessary mathemati-
cal tools to study non-smooth models and is likely to be an influential ingredient in
a general statistical theory for non-smooth models.

Algebraic methods. Algebraic biology is emerging as a new approach to model-
ing and analysis of biological systems using tools from algebra, algebraic geometry,
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discrete mathematics, and mathematical logic. Application areas cover a wide range
of molecular biology, from the analysis of DNA and protein sequence data to the
study of secondary RNA structures, assembly of viruses, modeling of cellular bio-
chemical networks, and algebraic model checking for metabolic networks, to name
a few.

1.2.1.24 Psychometrics, Summer 2009

Much of current psychometric research involves the development of novel statistical
methodology to model educational and psychological processes, and a wide variety
of new psychometric models have appeared over the last quarter century. Such mod-
els include (but are not limited to) extensions of item response theory (IRT) models,
cognitive diagnosis models, and generalized linear latent and mixed models. The
development of several of these models has been spearheaded by quantitative psy-
chologists, a group of researchers who find their academic homes primarily in psy-
chology and education departments. During the same period, very similar models
and methodologies were developed, often independently, by academic statisticians
residing in mathematics and statistics departments. The interaction between these
two groups has made a substantial effort to develop methodology crucial to both
fields.

The following statistical models are of interest: IRT models, cognitive diagnos-
tic models, and variations of generalized linear latent and mixed models. Practical
applications of methodology include (i) the analysis of patient reported outcomes
(PROs), (ii) journal and grant peer review, and (iii) cognitive diagnostic models.

1.2.2 Research Topics from Current SAMSI Programs

1.2.2.1 Stochastic Dynamics, 2009–2010

The broad topic of stochastic dynamics includes analysis, computational methods,
and applications of systems governed by stochastic differential equations. Two ap-
plication areas are being emphasized: problems in biological sciences and dynamics
of networks.

Stochastic analysis and numerical methods. In recent years it has become increas-
ingly clear that to effectively understand complex stochastic systems, a combination
of modern numerical analysis, estimation and sampling techniques, and rigorous
analysis of stochastic dynamics is required. Whether one speaks of path sampling
techniques, estimation in complex non-linear dynamics, or simulation of rare events
it is important to bring both sophisticated analytic tools and an understanding of
what one can compute efficiently.
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Multi-scale and multi-physics computing. The classical continuum equations aris-
ing in fluid flow, elasticity, or electromagnetic propagation in materials require con-
stitutive laws to derive a closed-form system. In such cases, Gaussian statistics are
well verified at the microscopic level and the moments of Gaussian distributions
can be computed analytically. However, many physical processes exhibit significant
localized departure from Gaussian statistics. For example, when a solid breaks, the
motion of the atoms in the crystalline lattice along the crack propagation path is
no longer governed by a Maxwell-Boltzmann distribution. An interesting character-
istic is that macroscopic features impose the departure from local thermodynamic
equilibrium and macroscopic quantities of are practical interest. the solid deforms
before it breaks. New statistical methods are needed for the complicated situations.

Stochastic modeling and computation in biology. The explosion of interest in
mathematical and statistical modeling and computation in the biological and medi-
cal sciences, where stochasticity is present at nearly every scale, has been one of the
most exciting trends in the biosciences in the last ten years. Math biology has grown
from a niche area to a major research group in many US math departments, and
graduate programs in mathematics are scrambling to cope with a wave of students
seeking to do graduate work in interdisciplinary research areas. Programs in bio-
statistics, bio-informatics, and bio-medical engineering are also seeing increased
growth.

Dynamics of social networks. Social network data are distinguished by the inher-
ent dependencies among units. These dependencies, usually represented by binary
or more general links, are a primary focus of many analyses. To date, however, both
models of, and techniques for inference for, social networks, have focused on static
networks. Virtually no extant models address the appearance or disappearance of
nodes, the evolution of link existence or strength, or the characteristics of nodes.
One SAMSI-generated exception is Banks et al. (2008), which uses stochastic dif-
ferential equations to model joint evolution of the edge set and node characteristics,
with a focus on characterizing the role of stochastic variability. Indeed, at an NSF
workshop in October 2007 on “Discovery in Complex or Massive Data: Common
Statistical Themes,” there was consensus about urgent need for models of the dy-
namics of networks and associated tools for inference.

1.2.2.2 Space-Time Analysis for Environmental Mapping, Epidemiology, and
Climate Change, 2009–2010

It is challenging to deal with problems encountered in dealing with random space-
time fields, both those that arise in nature and those that are used as statistical rep-
resentations of other processes. The sub-themes of environmental mapping, spatial
epidemiology, and climate change are interrelated both in terms of key issues in
underlying science and in the statistical and mathematical methodologies needed
to address the science. Researchers from statistics, applied mathematics, environ-
mental sciences, epidemiology, and meteorology are involved, and the program is
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promoting the opportunity for interdisciplinary, methodological, and theoretical re-
search. The following key issues are of interest.

Environmental mapping. Spatial or spatial-temporal statistical analysis in environ-
metrics often entails the prediction of unobserved random fields over a dense grid
of sites in a geographical domain, based on observational data from a limited num-
ber of sites and possibly simulated data generated by deterministic physical models.
In important special cases, spatial prediction requires statisticians to estimate spa-
tial covariance functions and generalized regression tools (also called geostatistical
methods). Methods for spherical data, especially appropriate for climate research,
are currently being developed, but they need to address complications similar to
those that occur for multivariate random fields.

Spatial epidemiology. Many studies during the past two decades have demonstrated
a statistical association between exposure to air pollutants (principally, particulate
matter and ozone) with various (mostly acute) human health outcomes, including
mortality, hospital admissions, and incidences of specific diseases such as asthma.
While a number of different study designs have been used, two dominate. The first,
the time series studies, relate variations in daily counts of these adverse health out-
comes with variations in ambient air pollution concentrations through multiple re-
gression models that include air pollution concentrations while removing the effects
of long-term trends, day of week effects, as well as possible confounders such as
meteorology. However, the relative health risks of air pollution are small say com-
pared to smoking. Thus some studies have through Bayesian hierarchical modeling
combined the estimated air pollution coefficients for various urban areas to borrow
strength.

Climate change. Much of the case for climate change and the estimation of its dele-
terious effects has relied on deterministic climate models that embrace physical and
chemical modeling. The GCM (General Climate (or Circulation) Model) yields sim-
ulated climate data at fairly coarse spatial scales that serves as input to the RGCM
(regional GCM) that runs at finer spatial scales.

The results of climate models are extremely multi-dimensional. It is very difficult
to present all of this information concisely in a manner that can be understood by
decision makers. Dimension reduction and data presentation techniques are needed
for contrasting spatial data, explaining what is being presented, and determining
how to describe the confidence of projections from non-random samples.

1.2.3 Research Topics in Future Programs

1.2.3.1 Semiparametric Bayesian Inference: Applications in
Pharmacokinetics and Pharmacodynamics, Summer 2010

Pharmacokinetics (PK) is the study of the time course of drug concentration re-
sulting from a particular dosing regimen. PK is often studied in conjunction with
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pharmacodynamics (PD). PD explores what the drug does to the body, i.e., the re-
lationship of drug concentrations and a resulting pharmacological effect. Pharma-
cogenetics (PGx) studies the genetic variation that determines differing response to
drugs. Understanding the PK, PD, and PGx of a drug is important for evaluating
efficacy and determining how best to use such agents clinically.

Hierarchical models have allowed great progress in statistical inference in many
application areas. Hierarchical models for PK and PD data that allow borrowing of
strength across a patient population are known as population PK/PD models. These
models have allowed investigators to learn about important sources of variation in
drug absorption, disposition, metabolism, and excretion, allowing the researchers
to begin to tailor drug therapy to individuals. Newer Bayesian non-parametric pop-
ulation models and semi-parametric models offer the promise of individualizing
therapy and discovering subgroups among patients even further, by freeing model-
ers from restrictive assumptions about underlying distributions of key parameters
across the population. The purpose of this program is to bring together a mix of ex-
perts in PK and PD modeling, non-parametric Bayesian inference, and computation.

The aims of the study are (i) to identify the critical new developments of in-
ference methods for PK and PD data; (ii) to determine open challenges; and (iii)
to establish inference for PK and PD as an important motivating application area
of non-parametric Bayes. Among these, (iii) is particularly important for new and
promising researchers.

1.2.3.2 Complex Networks, 2010–2011

Network science is highly interdisciplinary field and is characterized by novel inter-
actions in the mathematical sciences occurring at the interface of applied mathemat-
ics, statistics, computer science, and statistical physics, as well as those areas with
network-oriented thrusts in biology, computer networks, engineering, and the social
sciences. Four research areas are as follows.

Network modeling and inference. The analysis of network data has become a ma-
jor endeavor across the sciences, and network modeling plays a key role. Frequently,
there is an inferential component to the process of network modeling, i.e., inference
of network model parameters, of network summary measures, or of the network
topology itself. For most standard types of data (e.g., independent and identically
distributed, time series, spatial, etc.), there is a well-developed mathematical infras-
tructure guiding modeling and inference in practice.

Flows on networks. In their simplest form, network flows are defined on directed
graphs. Each edge receives a flow in an amount that cannot exceed the capacity of
the edge. Many transport applications correspond to network flows: hydraulics and
pipeline flows, rivers, sewer and water systems, traffics and roads, supply chains and
cardiovascular systems, to name but a few. Several by now classical problems for
network flows such as maximum flow have been solved for static flow. These results
only partially carry over to dynamic flows (time extended networks) and much re-
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mains to be done. Some applications such as communication systems typically split
data into packages. There are obvious technical limitations regarding the fineness
of such decompositions that have to be taken into account when seeking (quasi-)
optimal solutions. Several of the relevant open questions fall under the umbrella of
combinatorial optimization.

Network models for disease transmission. Network models provide a natural way
to model many infectious diseases. Many diseases, such as sexually transmitted in-
fections (STIs), have long been studied in terms of networks, but in recent years
the approach has been adopted in a wider range of disease settings, including acute
rapidly spreading infections. Disease transmission networks are highly dependent
on the infection of interest: the sexual partnership network across which an STI
spreads has a quite different structure from the social network on which a respiratory
infection (such as influenza) would spread. Even in the same population, different
diseases “see” different networks.

Dynamics of networks. The changing structure of networks over time is inherent
in the study of a broad array of phenomena. Examples for which a static transmis-
sion network is inadequate abound: from disease transmission to communications
networks with changing landscape of connections to political networks where asso-
ciations and voting similarities vary from one legislative session to the next. While
the nature of the underlying processes differs, the flow of generalized information,
for all three examples, depends in a nontrivial way on the changes in the node roles,
in the structure of communities and in other coarse structural units. The importance
of dynamics in networks has been long recognized. The increasing accessibility of
network data has led to renewed interest in this area; examples of data include lon-
gitudinal data waves and financial correlations with strengths of connection defined
over moving windows in time.

1.2.3.3 Analysis of Object Data, 2010–2011

Analysis of Object Data extends the very active research area of functional data
analysis and generalizes the fundamental FDA concept of curves as data points, to
the more general concept of objects as data points. Examples include images, shapes
of objects in 3D, points on a manifold, tree structured objects, and various types of
movies. Specific AOOD contexts can be grouped in a number of interesting ways.

Euclidean, i.e., (constant length) vectors of real numbers. There are two inter-
esting areas. One area is on Functional Data Analysis (FDA), viewing curves as
data. These curves are commonly either simply digitized, or else decomposed by
a basis expansion, which gives a vector that represents each data curve. A second
area is Time Dynamics Data, with an emphasis on differential equations and dy-
namic systems as drivers of fully or incompletely observed samples of stochastic
processes. Various applications include engineering, biological modeling of growth
or cell kinetics in control, the analysis of auction dynamics in e-commerce, repeated
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events such as child births of a woman in the social sciences, the dynamics of HIV
infections, and the dynamics of gene expression in medical studies.

Mildly non-Euclidean, i.e., points on a manifold and shapes. Shape Analysis and
Manifold Data, where for example 2 or 3 dimensional locations of a set of com-
mon landmarks are collected into vectors that represent shapes. While these vectors
are just standard multivariate data, they frequently violate standard multivariate as-
sumptions, such as the sample size being (usually much) larger than the dimension.
Research in the direction of High Dimension Low Sample Size (HDLSS) issues will
be a major emphasis of the proposed SAMSI program. In addition, the landmarks
may be invariant to certain transformations such as location, rotation, and scale,
and Kendall’s shape analysis of such objects leads to non-Euclidean distances being
the most natural. Further recent examples include analysis of shapes of unlabeled
points, especially on curves, surfaces, and images. The closely related manifold data
also are based on non-Euclidean distances.

Strongly non-Euclidean, i.e., tree or graph structured objects. The data space
admits no tangent plane approximation. Thus, there is no apparent approach to
adapting even approximate Euclidean methodologies, and statistical analysis must
be invented from the ground up.

1.3 Overview of the Book

The book is organized as follows. There are a total of 14 chapters. Each chapter
consists of 2 to 4 sections reviewing research challenges related to a common theme.
All cited references, author indices, and subject indices are placed at the end of the
book.

Chapters 2 through 4 deal with the basic framework of Bayesian inference, in-
cluding a discussion of prior choices in Chapter 2, some aspects of posterior infer-
ence in Chapter 3 and model comparison and testing in Chapter 4. Objective priors
play a crucial role, both in classical and Bayesian inference. Chapter 2 discusses the
constructions, the properties, and applications of reference priors. In Section 2.1,
Bernardo and Tomazella use the classic hypothesis of the Hardy-Weinberg equilib-
rium to introduce objective Bayesian testing. In Section 2.2, Liseo, Tancredi, and
Barbieri discuss and illustrate a novel approach for deriving reference priors when
the statistical model can be expressed via a stochastic representation or a latent
structure. In Section 2.3, Clarke and Yuan derive asymptotic expansions for prior-
to-posterior distance under an empirical likelihood and use the results to propose a
corresponding reference prior.

Chapter 3 reviews shrinkage estimation in Bayesian analysis and demonstrates
that this long-standing research area still remains an active frontier with many
open problems and new applications. In Section 3.1, Strawderman gives a deci-
sion theoretic account of Bayesian shrinkage estimation, focusing on inference in
multivariate normal location models under quadratic loss. He emphasizes Stein-
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type shrinkage and minimaxity in higher dimensions. In Section 3.2, George and
Xu describe a variety of recent results that use a decision theoretic framework
based on expected Kullback-Leibler loss to evaluate the long run performance of
Bayesian predictive estimators. In particular, they focus on high dimensional pre-
diction under a multivariate normal model and extensions to normal linear regres-
sion. In Section 3.3, Meng provides a spirited discussion of a recently published pa-
per on shrinkage estimation for a study in gene-environment interaction. Please see
http://www.stat.uconn.edu/bergerbook.html for a rejoinder from
the authors of the original paper.

Chapter 4 reviews current research frontiers in model comparison and Bayesian
testing. In Section 4.1, Steele and Raftery discuss Bayesian model selection for
Gaussian mixture models. They report a simulation study to compare six methods
for choosing the number of components in a mixture model. The design of the sim-
ulation study is based on a survey of literature on the estimation of mixture model
parameters. In Section 4.2, Pericchi discusses alternative approaches for choosing
an optimal training sample size. In Section 4.3, Johnson demonstrates that misspec-
ification of the prior distribution used to define the alternative hypothesis always
results in a decrease in the expected weight of evidence collected against the null
hypothesis. In Section 4.4, Lipkovich, Ye, and Smith use simulation to evaluate the
performance of Bayesian model averaging in linear regression models. They com-
pare performance over different subsets of models and evaluate the importance of
correlation among predictors on efficiency.

Chapters 5 and 6 introduce extensions of basic parametric Bayesian inference
that give rise to challenging current research areas. Chapter 5 reviews Bayesian in-
ference for large, complex and highly structured computer models, introducing the
notions of simulation models and more efficient emulation models. In Section 5.1,
Bayarri provides a review of Bayesian inference for deterministic computer models.
She highlights the unavoidable non-identifiability issue and its consequences and
discusses a partial solution to it. The calibration of computer models involves com-
bining information from simulations of a complex computer model with physical
observations of the process being simulated by the model. In Section 5.2, Bhat, Ha-
ran, and Goes study an approach for computer model calibration with multivariate
spatial data. They demonstrate the application of this approach to the problem of
inferring parameters in a climate model.

Chapter 6 deals with non-parametric and semi-parametric Bayesian inference.
This is one of the currently fastest growing research areas in Bayesian inference.
In Section 6.1, Tokdar, Chakrabarti, and Ghosh survey the literature on Bayes non-
parametric testing. The discussion concentrates on Bayesian testing of goodness of
fit for a parametric null with nonparametric alternatives. In Section 6.2, Lee reviews
the species sampling model and issues that arise in statistical inference with species
sampling model. In Section 6.3, Jordan discusses hierarchical and nested modeling
concepts within the framework of Bayesian nonparametrics.

Chapter 7 reports on research challenges related to taking a critical second look
at Bayesian inference, by questioning and critiquing the influence of the various
elements of a Bayesian inference model. The investigation includes the evaluation
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and consideration of frequentist summaries. In Section 7.1, Zhu, Ibrahim, Cho, and
Tang provide a comparative review of three primary classes of Bayesian influence
methods including Bayesian case influence measures, Bayesian global robustness,
and Bayesian local robustness. They elaborate on the advantages and disadvantages
of each class of Bayesian influence methods. In Section 7.2. Datta and Rao review
the choice of hyperpriors in hierarchical models. They choose an approach based on
frequentist validation, i.e., considering frequentist summaries of the implied infer-
ence to determine a prior choice. In Section 7.3, Dai and Sun discuss the objective
inference of parameters in a multivariate normal model based on a class of objective
priors on normal means and variance. They derive the exact frequentist matching
priors for multivariate normal parameters and their related functions.

The next few chapters discuss research frontiers in Bayesian analysis that arise
from important application areas. Chapter 8 discusses the rapidly expanding re-
search area of Bayesian inference in clinical trial design. Many current problems are
related to adaptive clinical trial design and hierarchical models to borrow strength
across related subpopulations and studies. In Section 8.1, Wathen and Thall review
a recently developed Bayesian sequential design and illustrate it with an application
to a trial with non small cell lung cancer patients. In Section 8.2, Weiss and Wang
develop Bayesian methodology to choose the sample size and experimental design
for normal longitudinal models and apply the methodology to designing a follow-up
longitudinal study with a predictive prior based on an earlier study. In Section 8.3,
Müller, Sivaganesan, and Laud discuss a Bayesian approach to subgroup analysis.
The underlying research challenge is the correct adjustment for multiplicities when
considering results in a clinical study specific to many possible subpopulations.

Chapter 9 reports on the rapidly expanding area of Bayesian inference for high
throughput genomic data and related challenges. In Section 9.1, Shen and West
present a Bayesian approach for inference on multiple gene expression signatures.
Their discussion includes a Monte Carlo variational method for estimating marginal
likelihoods for model comparisons. In Section 9.2, Monni and Li present a Bayesian
variable selection procedure when covariates are measured on a graph. The motivat-
ing application is the incorporation of known molecular pathways in inference for
genomic data. One of the strengths of Bayesian analysis that gives rise to many re-
search opportunities is the natural and principled approach to simultaneously mod-
eling multiple related processes. In Section 9.3, Bloomquist and Suchard review
how this feature is exploited in Bayesian inference for phylogenetics.

Bayesian data mining and machine learning involves many challenging research
problems related to the exploration of redundant and high-dimensional data. This
is the focus of Chapter 10. In Section 10.1, Mallick, Ray, and Dhavala address au-
tomatic model selection of the ideal number of principal components using exact
inference with reversible jump MCMC. In Section 10.2, Balakrishnan and Madigan
explore the use of proper priors for variance parameters of certain sparse Bayesian
regression models that can be defined as generalizations of the popular Bayesian
Lasso. In Section 10.3, Airoldi, Fienberg, Joutard, and Love utilize hierarchical
Bayesian mixed-membership models and present several examples of model specifi-
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cation and variations, both parametric and nonparametric, in the context of learning
the number of latent groups and associated patterns for clustering units.

Chapter 11 presents current research challenges and applications of Bayesian
analysis in political science, finance, and marketing research. In Section 11.1, Gel-
man discusses the role of prior constructions in political science applications. The
importance of subjective priors in political science examples contrasts the semi-
automatic approaches implemented in machine learning methods discussed in the
previous chapter. In Section 11.2, Hore, Johannes, Lopes, McCulloch, and Polson
describe computationally challenging inference problems in Finance. In Section
11.3, Jacquier and Polson consider a simulation-based approach to optimal port-
folio selection. In Section 11.4, Fong reviews recent development of Bayesian mul-
tidimensional scaling models for multiple choice data in marketing research.

Chapter 12 discusses research challenges and recent development of Bayesian
inference for binary and categorical data. In Section 12.1, Albert presents a Good
(1967) Bayesian approach to inference for sparse contingency tables. In Section
12.2, Ghosh and Mukherjee consider the analysis of data with matched pairs, mainly
in the context of case-control studies. In Section 12.3, Chen, Kim, Kuo, and Xie dis-
cuss critical issues involved in modeling binary response data and present a recently
developed Stepping-Stone method for computing marginal likelihoods.

Chapter 13 focuses on Bayesian modeling and inference for spatial and/or time
series data. In Section 13.1, Banerjee and Gelfand develop inference for spatial gra-
dients. The method is illustrated through an analysis of urban land value gradients
using a portion of Olcott’s classic Chicago land value data. In Section 13.2, Wang,
Dey, and Banerjee apply a new flexible skewed link function in the binomial model
for the point-level spatial data based on the generalized extreme value distribution.
In Section 13.3, De Oliveira provides a review of the main results obtained in the
last decade on objective (default) Bayesian methods for the analysis of spatial data
using Gaussian random fields.

A review of frontiers in Bayesian analysis would be incomplete without a discus-
sion of ever-evolving computational methods, including posterior simulation, vari-
able selection and model comparison. Chapter 14 discusses related research prob-
lems. In Section 14.1, Marin and Robert review alternative approaches to evaluate
Bayes factors for model comparison, including brute-force evaluation of marginal
probabilities, importance sampling methods, bridge sampling, and the use of candi-
dates formula. In Section 14.2, Heaton and Scott discuss an important special case of
model comparison. They summarize several recently proposed methods for variable
selection in linear models. Heaton and Scott convincingly argue that this venerable
topic is still and again a very active research area. Finally, in Section 14.3, Liechty,
Liechty, and Müller focus on another specific research challenge related to posterior
simulation. They consider problems that arise from the use of constrained parameter
and sample spaces.



Chapter 2
Objective Bayesian Inference with Applications

It is natural to start a review of research frontiers in Bayesian analysis with a dis-
cussion of research challenges related to prior choices. In particular, in this chapter
we discuss the definition of reference priors in some non-standard settings as well
as the use of reference priors to define objective Bayesian testing.

2.1 Bayesian Reference Analysis of the Hardy-Weinberg
Equilibrium

José M. Bernardo and Vera Tomazella

An important problem in genetics, testing whether or not a trinomial population
is in Hardy-Weinberg equilibrium, is analyzed from an objective Bayesian per-
spective. The corresponding precise hypothesis testing problem is considered from
a decision-theoretical viewpoint, where the null hypothesis is rejected if the null
model is expected to be too far from the true model in the logarithmic divergence
(Kullback-Leibler) sense. The quantity of interest in this problem is the divergence
of the null model from the true model; as a consequence, the analysis is made using
the reference prior for the trinomial model which corresponds to that divergence
being the parameter of interest. The results are illustrated using examples both with
simulated data and with data previously analyzed in the relevant literature.

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 31
and Bayesian Analysis, DOI 10.1007/978-1-4419-6944-6 2,
c© Springer Science+Business Media, LLC 2010
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2.1.1 Problem Statement

2.1.1.1 The Hardy-Weinberg (HW) Equilibrium in Genetics

At a single autosomal locus with two alleles, a diploid individual has three possible
genotypes, typically denoted {AA,aa,Aa}, with (unknown) population frequencies
{α1,α2,α3}, where 0 < αi < 1 and ∑3

i=1αi = 1.
The population is said to be in HW equilibrium if there exists a probability p =

P(A), 0 < p < 1, such that {α1,α2,α3} = {p2,(1− p)2,2p(1− p)}. To determine
whether or not a population is in HW equilibrium, which is often the case when
random mating takes place, is an important problem in biology.

Given a random sample of size n from the population, and observed {n1,n2,n3}
individuals (with n = n1 + n2 + n3) from each of the three possible genotypes
{AA,aa,Aa}, the question is whether or not these data support the hypothesis of
HW equilibrium.

This is an important example of precise hypothesis in the sciences, for HW equi-
librium corresponds to a zero measure set within the original parameter space.

2.1.1.2 Statistical Formulation

Since ∑3
i=1αi = 1, there are only two independent parameters. In terms of the pop-

ulation frequencies α1 and α2 of the two pure genotypes AA and aa, the relevant
statistical model is the trinomial

Tri(n1,n2|n,α1,α2) =
n!

n1! n2! (n−n1 −n2)!
αn1

1 α
n2
2 (1−α1 −α2)n−n1−n2

with 0 < α1 < 1, 0 < α2 < 1, and 0 < α1 +α2 < 1 and, in conventional language, it
is required to test the null hypothesis

H0 = {(α1,α2); α1 = p2,α2 = (1− p)2, 0 < p < 1}.

This is the parametric form of the equation of the line
√
α1 +

√
α2 = 1, represented

with a solid line in Figure 2.1, and it is a set of zero measure within the parameter
space, the simplex A = {(α1,α2); 0 < α1 < 1, 0 < α2 < 1, 0 < α1 +α2 < 1}.

Testing a trinomial population for HW equilibrium is a problem that has re-
ceived a fair amount of attention in the statistical literature. Main pointers include
the frequentist analysis of Haldane (1954), an “exact” test based on the distri-
bution p(n1,n2|H0,n1 − n2,n), and the Bayesian analysis of Lindley (1988) who
reparametrizes to

ψ(α1,α2) =
1
2

log
4 α1 α2

(1−α1 −α2)2 ,

so that ψ = 0 when H0 is true, and then obtains approximations to the posterior
density of ψ , π(ψ|n1,n2,n3) for a range of different prior choices.
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FIGURE 2.1. Precise null (solid line) within the parameter space (shaded region).

2.1.2 Objective Precise Bayesian Testing

2.1.2.1 The Decision Problem and the Intrinsic Loss Function

If data z are assumed to have been generated from the probability model M ≡
{pz(·|φ ,ω), z∈Z , φ ∈Φ , ω ∈Ω}, then testing whether of not the observed data z
are compatible with the precise hypothesis H0 = {φ = φ0} may be seen as a simple
decision problem with only two alternatives:

1. a0: To accept H0, and work as if data were generated from the reduced model
M0 ≡ {pz(·|φ0,ω), z ∈ Z , ω ∈Ω}; and

2. a1: To reject H0, and keep working with the assumed model M .

Foundations then dictate (see, e.g., Bernardo and Smith, 1994, Chapter 2 and refer-
ences therein) that one must

1. Specify a loss function �{ai,(φ ,ω)}, i = 0,1.
2. Specify a prior function p(φ ,ω), on Φ×Ω , and use Bayes to obtain

p(φ ,ω|z) ∝ p(z|φ ,ω) p(φ ,ω).

3. Reject H0 if, and only if, l(a0|z) > l(a1|z), where

l(ai|z) =
∫
Φ

∫
Ω

�{ai,(φ ,ω)}p(φ ,ω|z)dφdω.

One should then reject H0 if, and only if, l(a0|z) > l(a1|z), hence if, and only if,
∫
Φ

∫
Ω

[ �{a0,(φ ,ω)}− �{a1,(φ ,ω)} ] p(φ ,ω|z)dφdω > 0,
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which only depends on the loss increase from rejecting H0, given by

Δ(φ ,ω) = �{a0,(φ ,ω)}− �{a1,(φ ,ω)}.

Without loss of generality, the loss increase Δ(φ ,ω) may be written in the form
δ{φ0,(φ ,ω)}−d0, where

1. δ{φ0,(φ ,ω)} is the non-negative terminal loss to be suffered by accepting φ = φ0

as a function of (φ ,ω); and
2. d0 is the strictly positive utility of accepting H0 when it is true.

With this notation, one should reject the null if, and only if,
∫
Φ

∫
Ω
δ{φ0,(φ ,ω)} p(φ ,ω|z) dφdω > d0,

that is, if (and only if) the null model is expected to be too divergent from the true
model.

For any one-to-one function ψ = ψ(φ) the conditions to reject φ = φ0 should
certainly be precisely the same as the conditions to reject ψ = ψ(φ0) (a property
unfortunately not satisfied by many published hypothesis testing procedures). This
requires the use of an invariant loss function.

Model-based loss functions are loss functions defined in terms of the discrepancy
measures between probability models. Within a family F ≡ {pz(·|ψ),ψ ∈Ψ}, the
loss suffered from using an estimate ψ̃ is of the form

�(ψ̃,ψ) = δ{pz(·|ψ̃), pz(·|ψ)},

defined in terms of the discrepancy of pz(·|ψ̃) from pz(·|ψ), rather than on the
discrepancy of ψ̃ from ψ . Model-based loss functions are obviously invariant under
one-to-one reparametrization.

A model-based loss function with unique additive properties and built in calibra-
tion, is the intrinsic loss function, defined as the minimum expected log-likelihood
ratio against the null:

δ{φ0,(φ ,ω)} = inf
ω0∈Ω

∫
Z

p(z|φ ,ω) log
p(z|φ ,ω)

p(z|φ0,ω0)
dz.

This may be also be described as the minimum (Kullback-Leibler) logarithmic di-
vergence of M0 from the assumed model.

2.1.2.2 Reference Analysis and Precise Hypothesis Testing

Given a model M ≡ {pz(·|φ ,ω), z ∈ Z , φ ∈ Φ , ω ∈ Ω}, the θ -reference prior
function πθ (φ ,ω) (see Bernardo, 2005, and references therein) is that which max-
imizes the missing information about θ = θ(φ ,ω). The corresponding marginal
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reference posterior π(θ |z) summarizes inferential statements about a quantity of
interest θ which only depend on the model assumed and the data obtained.

The Bayesian Reference Criterion (BRC) to test H0 ≡ {φ = φ0} is the solution
to the hypothesis testing decision problem corresponding to the intrinsic loss and
the relevant reference prior. It only requires computing the intrinsic test statistic,
defined as the reference posterior expectation,

d(H0|z) =
∫ ∞

0
δ π(δ |z)dδ ,

of the intrinsic discrepancy loss δ (φ ,ω) = δ{φ0, (φ ,ω)}, which is in this case of
the quantity of interest.

The intrinsic test statistic is a direct measure of evidence against H0, in a log-
likelihood ratio scale, which is independent of the sample size, the dimensionality of
the problem, and the parametrization used. For further details and many examples,
see Bernardo (2005) and references therein.

2.1.3 Testing for Hardy-Weinberg Equilibrium

2.1.3.1 The Quantity of Interest

Within the trinomial model,

Tri{n1,n2|n,α1,α2} =
n!

n1! n2! (n−n1 −n2)!
αn1

1 α
n2
2 (1−α1 −α2)n−n1−n2 ,

the logarithmic divergence of a member Tri{n1,n2|n, p2
0,(1− p0)2} of the null

H0 = {(α1,α2); α1 = p2,α2 = (1− p)2, 0 < p < 1}

from the assumed model Tri{n1,n2|n,α1,α2} is

k{p0|α1,α2} = E(n1,n2|α1,α2)

[
log

Tri{n1,n2|n,α1,α2}
Tri{n1,n2|n, p2

0,(1− p0)2}
]

which, after some algebra, reduces to

n[(α2−α1−1) log(p0)+(α1−α2−1) log(1− p0)−(1−α1−α2) log(2)−H{α}],

where H{α} = −α1 logα1 −α2 logα2 − (1−α1 −α2) log(1−α1 −α2) is the en-
tropy of α = {α1,α2,1−α1−α2}. The last expression is minimized, for 0 < p0 < 1,
when p0 = (1+α1 −α2)/2, and substitution yields the intrinsic loss function,

δ{H0,(α1,α2)} = inf
0<p0<1

k{p0|α1,α2} = nθ(α1,α2),
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where

θ(α1,α2) = 2 H{ω,1−ω}−H{α1,α2,1−α1 −α2}− (1−α1 −α2) log(2),

and ω = ω(α1,α2) = (1 +α1 −α2)/2 is the value of p for a trinomial popula-
tion Tri{n1,n2|n, p2,(1− p)2} in HW equilibrium which is closest, in the logarith-
mic divergence sense, to the trinomial population Tri{n1,n2|n,α1,α2}. The func-
tion δ{H0,(α1,α2)} measures the discrepancy of the null from the trinomial model
Tri{·|n,α1,α2}.

FIGURE 2.2. The quantity of interest, θ = θ(α1,α2).

The quantity of interest in this problem is clearly the function θ = θ(α1,α2)
since δ{H0,(α1,α2)} = n θ(α1,α2) precisely measures how far the null H0 is from
the assumed model. In particular, the population is in HW equilibrium if, and only
if, θ = 0, in which case,

√
α1 +

√
α2 = 1 or α2 = (1−√

α1)2. Figure 2.2 provides
a 3D plot of the surface θ(α1,α2). It is zero for all HW equilibrium values and
achieves its maximum value, log(2), at both (0,0) and (1/2,1/2). Hence, in this
problem, the intrinsic loss is a bounded function.

2.1.3.2 The Reference Prior

To obtain the joint reference prior πθ (α1,α2) when θ = θ(α1,α2) is the quantity of
interest, a complementary parameter ω = ω(α1,α2) must be chosen, so that (θ ,ω)
is a one-to-one transformation of (α1,α2). A convenient choice is the function
ω(α1,α2) = (1 +α1 −α2)/2, which occurs in the expression of δ{H0,(α1,α2)}
obtained above. The reference prior in this parametrization when θ is the param-
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eter of interest is then obtained as πθ (θ ,ω) = π(ω|θ)π(θ). Finally, the required
reference prior in the original parametrization is obtained as

πθ (α1,α2) = |J(α1,α2)|πθ (θ(α1,α2),ω(α1,α2)),

where J(α1,α2) =
(
∂θ ∂ω
∂α1 ∂α2

)
is the corresponding Jacobian matrix.

The required transformation, represented in Figure 2.6, is delicate. Indeed, the
Jacobian determinant |J(α1,α2)| = log(1−α1 −α2)− 1

2 log(4α1α2) is null at the
HW line, positive below, negative above, and diverges at the simplex borders. A one-
to-one transformation is only obtained in each of the two separate regions defined by
the equilibrium line. Thus a one-to-one transformation is {α1,α2} ⇐⇒ {θ ,ω,λ}
where λ ∈ {1,2} indicates region, with λ = 1 when

√
α1 +

√
α2 < 1, and λ = 2

when
√
α1 +

√
α2 > 1. Formally,

πθ (α1,α2) = πθ (α1,α2|λ = 1)+πθ (α1,α2|λ = 2).

The joint reference priors in each of the two regions must be be separately computed.
This model is regular. Hence, the reference prior π(ω|θ)π(θ) may be found in

terms of the relevant Fisher information matrix. In the original parametrization, the
inverse of Fisher matrix F1 is

F−1
1 (α1,α2) =

(
α1(1−α1) −α1 α2

−α1 α2 α2(1−α2)

)
,

so that, in the new parametrization, Fisher matrix is F2 such that

F−1
2 (θ ,ω) = J(α1,α2) ·F−1

1 (α1,α2) · Jt(α1,α2),

evaluated with the inverse functions α1(θ ,ω) and α2(θ ,ω). Fisher matrix F2 has a
complex, but analytical expression, in terms of α1 and α2, but the inverse functions
αi(θ ,ω) must be numerically computed.

The reference prior π(ω|θ)π(θ) may be found in terms of H = F2 and V = F−1
2

(Berger and Bernardo, 1992a), from

π(ω|θ) ∝ h1/2
22 (θ ,ω)

and

π(θ) ∝ exp

[∫
Ω(θ)

π(ω|θ) log{v−1/2
11 (θ ,ω)} dω

]
.

Lower region: R1 = {(α1,α1);
√
α1 +

√
α2 ≤ 1}. The reference conditional priors

are numerically found to be approximate the Beta densities (see Figure 2.3)

π1(ω|θ) ≈ 1
ω1(θ)−ω0(θ)

Be

(
ω−ω0(θ)

ω1(θ)−ω0(θ)

∣∣∣∣12 ,
1
2

)
, ω0(θ) < ω < ω1(θ),

where ω0(θ) and ω1(θ) are respectively the inverse functions of
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θ1(ω) = (2ω−1) log(2ω−1)−2ω log(ω), 1/2 < ω < 1,

θ0(ω) = (1−2ω) log(1−2ω)−2(1−ω) log(1−ω), 0 < ω < 1/2.
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FIGURE 2.3. Conditional reference priors of ω ∈ (ω0(θ),ω1(θ)), in the lower region of the pa-
rameter space, for θ = 0.05,0.20 and 0.40.

Using the analytical approximation for the conditional reference priors, the
marginal reference prior for the quantity of interest results

π1(θ) ≈ 1
log(2)

Be

(
θ

log(2)

∣∣∣∣12 ,
1
2

)
, 0 < θ < log(2).
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FIGURE 2.4. Contour plot of the joint reference prior π1(θ ,ω) in the lower region.
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The joint reference prior for this region is then π1(θ ,ω) = π1(ω|θ)π1(θ). The
contour plot of this joint refernce prior is shown in Figure 2.4. Notice that these
reference priors are all proper.

Upper region: R2 = {(α1,α1);
√
α1 +

√
α2 ≤ 1}. Similarly, in the region over the

HW equilibrium line, the reference conditional priors are numerically found to be

π2(ω|θ) ≈ 1
ω1(θ)−ω0(θ)

Be

(
ω−ω0(θ)

ω1(θ)−ω0(θ)

∣∣∣∣12 ,
1
2

)
, ω0(θ) < ω < ω1(θ),

where ω1(θ) and ω0(θ) are respectively the inverse functions of

θ1(ω) = −ω log(ω)− (1−ω) log(1−ω), 1/2 < ω < 1

θ0(ω) = −ω log(ω)− (1−ω) log(1−ω), 0 < ω < 1/2.

The marginal reference prior for θ in the upper region is

π2(θ) ≈ 1
log(2)

Be
( θ

log(2)

∣∣∣1
2
,

1
2

)
, 0 < θ < log(2).

The joint reference prior for the upper region is then π2(θ ,ω) = π2(ω|θ)π2(θ).
Again, all these reference priors are all proper.
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FIGURE 2.5. Contour plots of the joint reference prior in the original parametrization and a Dirich-
let density with parameter (1/3,1/3,1/3).

Joint reference prior in the original parametrization. Returning to the orig-
inal parametrization and combining the results from the two regions produces
πθ (α1,α2), whose contour plot is represented in the left panel of Figure 2.5. For
comparison, the right panel represents the contour plot of a Dirichlet density with
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parameter vector (1/3,1/3,1/3). This could be used as an approximation if exact
computation is not needed.

2.1.3.3 Posterior Inference: Estimation and Testing

Joint reference posterior. For any data set, {n1,n2,n3}, where n1 and n2 are re-
spectively the number of observed pure genotypes AA and aa, and n3 is the number
of observed mixed genotypes Aa, the joint reference posterior is

πθ (α1,α1|n1,n2,n3) = c−1(n1,n2|n) Tri{n1,n2|n,α1,α2} πθ (α1,α2),

where n = n1 +n2 +n3 and

c(n1,n2|n) =
∫ 1

0

{∫ 1−α1

0
Tri{n1,n2|n,α1,α2} πθ (α1,α2) dα2

}
dα1,

a delicate numerical integral given the prior shape.
The posterior probabilities of the two non-equilibrium regions are

P[R1|n1,n2,n3] =
∫ 1

0

{∫ (1−√α1)2

0
πθ (α1,α1|n1,n2,n3) dα2

}
dα1,

and P[R2|n1,n2,n3] = 1−P[R1|n1,n2,n3].
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FIGURE 2.6. Original and transformed parameter spaces.

Since the transformation between (α1,α2) and (θ ,ω) is not one-to-one, com-
puting the joint posterior density in terms of the (θ ,ω) requires identification of
the two possible inverse values α1(θ ,ω) and α2(θ ,ω). This is done in terms of



2.1 Bayesian Reference Analysis of the Hardy-Weinberg Equilibrium 41

S1 = Image(R1), where R1 is the region below H0, and S2 = Image(R2), where R2 is
the region above H0. Thus, if (θ ,ω) ∈ S1, which is contained in S2), then there are
two diffferent pairs of (α1,α2) values which map into (θ ,ω) (see Figure 2.6).

It follows that, for any data z = {n1,n2,n3},

π(θ ,ω|z) = π(θ ,ω|z,S1)P(R1|z)+π(θ ,ω|z,S2)P(R2|z)

π(θ ,ω|z,Si) =
π(α1,α2|z,Ri)
|J(α1,α2)| , α j → α ji(θ ,ω), i = 1,2,

where {α1i,α2i} is the inverse function mapping Si into Ri.
The required marginal reference posterior for the quantity of interest θ is then

π(θ |z) =
∫
Ω(θ)

π(θ ,ω|z) dω.

This will concentrate on its extreme value θ = 0 if, and only if, the population is in
approximate HW equilibrium.

Intrinsic test statistic. As described in Section 2.1.2, the intrinsic test statistic
d(H0|z) is the reference posterior expectation of δ{H0,(α1,α2)}, defined as the
minimum logarithmic divergence of the null model from the true model. Since
δ{H0,(α1,α2)} = n θ(α1,α2), the intrinsic statistic is simply

d(H0|z) = n
∫ log(2)

0
θ π(θ |z) dθ = n E[θ |z],

the reference posterior expectation of the quantity of interest times the sample
size. This is precisely the reference posterior expectation of the log-likelihood ratio
against the null and, therefore, d(H0|z) has an immediate meaning as an objective
measure of the evidence against the null provided by the data.

2.1.4 Examples

2.1.4.1 Simulations

Data simulated under HW equilibrium. A trinomial sample of size n = 30
from a population in HW equilibrium was simulated with P[A] = p = 0.3, so that
{α1,α2} = {p2,(1− p)2} = {0.09,0.49}, ω = p = 0.3, and θ = 0. The simulation
yielded {n1,n2,n3} = {2,15,13}.

Figure 2.7 represents the marginal reference posterior of δ = nθ which, as
expected, concentrates around the null value δ = 0, with d(H0|z) = n, E[θ |z] =
0.321 = log(1.38), so that the likelihood ratio against the null is expected to be only
about 1.38, and the null is accepted: one may safely proceed as if the population
where in HW equilibrium, suggesting random mating.
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FIGURE 2.7. Reference posterior distribution of δ = nθ with data simulated from a population in
HW equilibrium.

Data simulated under non-HW equilibrium. A trinomial sample of size n = 30
was simulated with {α1,α2} = {0.45,0.40}, so that ω = 0.525, θ = 0.269, and the
population is not in HW equilibrium. The simulation then yielded {n1,n2,n3} =
{12,12,6}.
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FIGURE 2.8. Reference posterior distribution of δ = nθ with data simulated from a population not
in HW equilibrium.

As Figure 2.8 illustrates, the marginal reference posterior of δ = nθ has an inte-
rior mode, d(H0|z) = n, and E[θ |z] = 5.84 ≈ log(344), so that the likelihood ratio
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against the null is expected to be about 344. Thus, the null should certainly be re-
jected, and one should work under the assumption that the population is not in HW
equilibrium, thus suggesting non random mating.

2.1.4.2 An Example from the Literature

Lindley data. Lindley (1988) analyzed the data z = {0,90,10} from a Bayesian
viewpoint, noting that asymptotic results are scarcely satisfactory in this case, and
performing an analysis of the clear dependence of the results on the prior chosen.
This could be expected, for these data are somewhat extreme due to the fact that
there are no observations from the pure AA genotype. Conclusions from extreme
data are often very sensitive to the prior, and they cannot be usually be well approx-
imated with asymptotic arguments.
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Π �Δ � 0, 90, 10�

Δ � n Θ

FIGURE 2.9. Marginal reference posterior distribution of δ = nθ for Lindley (1988) data.

Reference analysis has been known to perform fine in many other problems with
extreme data. This provides yet another example. As Figure 2.9 illustrates, it is
found that π(δ |z), the reference posterior density of the expected discrepancy from
the null is again very concentrated around the null value δ = 0. Indeed, the test
statistic is d(H0|z) = nE[θ |z] = 0.51 = log(1.66) and, hence, the likelihood ratio
against the null may the expected to be just about 1.66.

We must therefore conclude that the HW equilibrium hypothesis is compatible
with these data.



44 2 Objective Bayesian Inference with Applications

2.2 Approximate Reference Priors in the Presence of Latent
Structure

Brunero Liseo, Andrea Tancredi, and Maria M. Barbieri

Objective priors play a crucial role both in classical and Bayesian inference. For a
subjective Bayesian they represent, at the very least, the formalization of the vague
idea of absence of prior information and they are a particularly useful tool in appli-
cations; from a frequentist perspective, objective priors can be seen as a black box
to produce statistical procedures with excellent repeated sampling properties; for a
remarkable example of this phenomenon see Berger and Sun (2008). The Jeffreys’
and the reference prior approaches are nowadays the most popular in applications
and both of them rely upon the explicit calculation of the expected Fisher informa-
tion matrix I(θ) (but see Berger, Bernardo, and Sun (2009) for a different and more
general route to derive reference priors).

It may happen that the direct calculation of I(θ) is too difficult or sometimes
impossible to obtain in closed form. In some of these cases one can try to express
the model into a more general way, based on the introduction of a vector of latent
quantities, say z. The idea of model completion has been already well exploited in
Bayesian computation (Robert, 2001), since it is at the core of the data augmentation
strategies (Tanner and Wong, 1987) or for extensions of the use of Gibbs sampling
in non-conjugate settings (Damien, Wakefield, and Walker, 1999).

Suppose that the generic sampling distribution of our model, say p(·;θ), can be
written as

p(·;θ) =
∫

Z
g(·;z,θ)h(z;θ)dz, (2.2.1)

where z is a suitable vector of latent or auxiliary variables. One can pretend, then,
that the working model is actually

g(·;z,θ),

where θ is the vector of unknown parameters and z can be considered either an
additional parameter to be estimated or an additional vector of observations. In both
cases the extended Fisher information matrix can be calculated for the new model; in
many practical cases (see Section 2.2.2 below) it turns out that the extended Fisher
matrix will have a simpler expression.

Sun and Berger (1998) propose a method of deriving reference prior in the pres-
ence of partial information. In particular they consider two cases of interest for our
development: assume that the parameter vector θ can be split into (θ 1,θ 2), for in-
ferential reasons. Then one can be interested in deriving

(A) the reference conditional prior for θ 1 given θ 2 when the marginal prior for θ 2

is available from subjective information sources.

(B) the reference marginal prior for θ 1 given that the conditional prior for θ 2 given
θ 1 is available from subjective information sources.
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These contexts resemble in several aspects our enlarged model after we pretend
that the latent structure z is a parameter of the model. As we see in the next sec-
tion, we consider separately the case where h(z;θ) actually depends on θ from the
case where h(z;θ) does not really depend on θ . Section 2.2.1 is devoted to the il-
lustration of our approach. In Section 2.2.2, we illustrate the method via several
examples. In particular we derive the reference prior for the Warner model (Warner,
1965) for dealing with sensible questions, the general scale mixture model, and the
probit model, for which no previous formal objective priors have been proposed. We
also discuss, for pedagogical reasons, an example where our method cannot be used,
namely the Student t model with an unknown number of degrees of freedom. In Sec-
tion 2.2.3, we discuss a possible extension to situations where nuisance parameters
are present.

The reference priors which we obtain in this section need not be equal to the
“orthodox” ones. This happens because we are actually considering a “different
model.” However, in terms of frequentist coverage, they always show a similar and
reasonable behavior. In some specific examples, such as the Warner model, our prior
seems more natural than the “orthodox” Jeffreys prior; see the next section for de-
tails. Also, in complicated models, where there is no closed form reference prior,
this method, when applicable, provides easy-to-handle solutions.

2.2.1 The Method

First we briefly recall, in our notation, the approach proposed in Sun and Berger
(1998, Sections 2.2 and 2.3). First consider case A: suppose one knows the marginal
prior for z, say πs(z) and wants to derive the reference conditional prior π(R)(θ | z).
Following the reference prior approach, one must find that conditional prior that
asymptotically maximizes the expected value of the Kullback-Leibler divergence
between the conditional posterior density of θ , given z and the data, say Xn, and the
conditional prior of θ , given z.

From an asymptotic expansion of the distance and using a result in Ghosh and
Mukerjee (1992), one can argue that the maximizing conditional prior is

π(R)(θ | z) ∝| Iθ ,θ |1/2 . (2.2.2)

where Iθ ,θ = Iθ ,θ (θ ,z) is the Fisher information for θ , given that z is held fix, and
| Iθ ,θ | denote the determinant of Iθ ,θ .

If the above conditional prior is proper, then (2.2.2) is the conditional refer-
ence prior. Otherwise one should consider normalization concerns, following the
approach in Sun and Berger (1998) or Berger, Liseo, and Wolpert (1999). Choose a
nested sequence λ 1 ⊂ λ 2 ⊂ . . . of compact subsets of the enlarged parameter space
Θ ×Z such that ∪iλ i =Θ ×Z. For each i, define Gi(θ : (θ ,z) ∈ λ i). Also, let

Ki(z) =
∫

Gi

| Iθ ,θ (θ ,z) |1/2 dθ .
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Sun and Berger (1998) show that the conditional reference prior is given by

π(R)(θ | z) ∝ lim
i→∞

Ki(z∗)
Ki(z)

| Iθ ,θ (θ ,z) |1/2,

where z∗ is any fixed value in the interior of Z. It is also easy to see that, when
Iθ ,θ (θ ,z) factorizes into the product of two functions, one depending on θ and the
other depending on z, and the sequence of compact sets λ i are chosen to be the
Cartesian product of intervals in θ and z dimensions, then

π(R)(θ | z) ∝| Iθ ,θ (θ ,z) |1/2 .

In this procedure the subjective input is concentrated on the choice of the sequence
of the λ i’s: however, in many practical examples, there will be a natural, objective
way of choosing them.

In case B, one needs to derive the marginal prior of θ in the presence of “con-
ditional” prior information about (z | θ). Following Sun and Berger (1998), the
marginal reference prior is then

π(R)(θ) ∝ η(θ),

where

η(θ) = exp

(
1
2

∫
p(z | θ) log

( | I |
| Izz |

)
dz
)

, (2.2.3)

and Izz represents the lower right corner block of the Fisher matrix. In the special
case that the quantity | I |/| Izz | does not depend on z, then

π(R)(θ) ∝ (| I | / | Izz |)1/2 . (2.2.4)

Note that, in this case, since the distribution of z depends on θ , it will be necessary
to include this part of the model into the likelihood.

The transposition of the Sun and Berger approach into our framework would
not be complete before considering the problem of the sample size. In fact, the
completion formula (2.2.1) is almost always used at unit level: this implies that,
for a sample of n i.i.d. observations, the vector length of latent variables z would
depend on the sample size. Thus the conditional or the marginal reference prior for
θ would depend on the sample size. However, in practical uses of the method, we
will see that the dependence is rather weak. Alternatively one can argue that the Sun
and Berger method is essentially asymptotic; therefore one can directly compute the
conditional prior for θ by letting n → ∞. We will discuss these alternative routes
in the Examples section. Notice that all the examples related to case B which are
discussed in this section share the common fact that the explicit introduction of
the latent vector z into the likelihood makes the observed vector y conditionally
independent of θ . However, more complex situations can be considered.
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2.2.2 Examples

2.2.2.1 Sensible Answers

In order to protect confidentiality, questionnaires which contain sensitive questions
may use some form of counfoundness: the following is a very simple example
(Warner, 1965). Suppose we are interested in the fraction of regular drug users in
a given population. In order to avoid non-responses, one can ask the person to be
interviewed to toss a coin: if the coin gives H, he/she should answer the real ques-
tion: “Do you make regular use of drugs?”; if the coin gives T, then he/she should
answer to a more innocuous question (e.g., “Are you born in the first semester of
the year?”). The interviewer, of course, does not know which question has been an-
swered. The statistical model is then easily set up. Let Yj, j = 1, . . . ,n be the binary
answer of the jth unit. Let θ be the true fraction of drug users in the population and
let p be the fraction in the population which would answer YES to the innocuous
question; p is assumed to be known. Then,

Pr(Yi = y;θ , p) =
(
θ + p

2

)y(
1− θ + p

2

)1−y

, y = 0,1; i = 1, . . . ,n.

Straightforward calculations lead to the Fisher information quantity for θ which is

I(θ) = ((θ + p)(2−θ − p))−1 .

The Jeffreys prior for the model is then proportional to

π(J)(θ) ∝ ((θ + p)(2−θ − p))−1/2 . (2.2.5)

This prior clearly depends on p and it is symmetric only when p = 0.5. Note that
p is supposed to be a known quantity and it represents the probability of answering
YES to a completely instrumental question, which is not the object of our interest.
That the prior distribution of θ would depend on p is obviously disturbing.

Consider now our alternative approach and, for each observation Yi, introduce a
Bernoulli latent variable Zi representing the result of the coin toss for individual i,
i = 1, . . . ,n. Also, treat the vector z = (Z1, . . . ,Zn) as an unknown parameter. Then,
for each observation,

Pr(Yi = y | Zi,θ) =
[
θ y(1−θ)1−y]Zi [py(1− p)1−y]1−Zi . (2.2.6)

This is an example where we know the marginal distribution of the latent variables
z and we look for the conditional reference prior for θ | z. From Section 2.2.1 we
know that this is proportional to the square root of Iθθ , the diagonal element of
the Fisher matrix corresponding to θ . Now we show that Iθθ = nz (θ(1−θ))−1,
where nz is the number of Zi equals to 1. With the augmented model (2.2.6), the
log-likelihood function is
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�(θ ,z) ∝∑
i

yizi logθ +∑
i

zi log(1−θ)−∑
i

yizi log(1−θ);

then

−∂�(θ ,z)
∂θ 2 = ∑i yizi

θ 2 + ∑i(1− yi)zi

(1−θ)2 .

Since IE(Yi | Zi = z) = θ z p1−z, then

IE

(
∑

i
Yi | z

)
=∑

i
ziθ zi p1−zi = nzθ .

Finally,

Iθ ,θ =
nz

θ
+

nz(1−θ)
(1−θ)2 = nz

(
1
θ

+
1

1−θ
)

.

This means that the conditional reference prior for θ given z is

π(R)(θ | z) ∝
1√

θ(1−θ)
(2.2.7)

Since the marginal distribution of the vector z does not depend on θ , (2.2.7) is also
the marginal reference prior for the actual parameter of interest. The prior (2.2.7)
is then the usual Jeffreys or reference prior for the binomial model and, contrary to
(2.2.5), it does not depend on p. This is a simple example where the new approach
does not provide the same result as the orthodox Jeffreys prior. We have compared
priors (2.2.7) and (2.2.5) in terms of frequentist coverage of one tail credible inter-
vals. In Tables 2.1 and 2.2, for three different values of n, we report the frequentist
coverage at level 0.95 for the two priors, for different values of the parameters θ and
p. Simulations are based on 10000 samples for each combination of true parameter
values and sample sizes. The performances are definitely comparable.

TABLE 2.1. Frequentist coverage at level 0.95 of π(R) for different values of θ and p.

n = 10 n = 30 n = 100
0.10 0.50 0.90 0.10 0.50 0.90 0.10 0.50 0.90

p = 0.1 1 1 0.97 1 0.97 0.98 0.94 0.95 0.97
p = .25 1 1 0.94 1 0.92 0.98 0.97 0.95 0.98
p = 5 1 1 0.94 1 0.95 0.96 0.98 0.95 0.97

p = 0.75 1 1 0.96 1 0.94 0.97 0.98 0.95 0.96
p = 0.9 1 1 0.95 1 0.92 0.97 0.98 0.94 0.96

Beyond the simplicity of this example, we must notice that there exist several
generalizations of this model for which the “orthodox” derivation of the reference
prior can be quite involved (see, for example, van den Hout and van der Heijden,
2002; or Bockenholt, Barlas, and der Heijden, 2009). Our method, in a sense, de-
convolves the problem and provides a reasonable “objective” prior.
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TABLE 2.2. Frequentist coverage at level 0.95 of πJ for different values of θ and p.

n = 10 n = 30 n = 100
0.10 0.50 0.90 0.10 0.50 0.90 0.10 0.50 0.90

p = 0.1 1 1 0.97 1 0.93 0.95 0.98 0.95 0.95
p = .25 1 1 1.94 1 0.97 0.92 0.99 0.95 0.95
p = 5 1 1 0.94 1 0.95 0.92 1 0.95 0.95

p = 0.75 1 1 0.96 1 0.94 0.94 1 0.95 0.94
p = 0.9 1 1 0.95 1 0.96 0.93 1 0.94 0.96

2.2.2.2 Scale Mixtures

Suppose X is a random variable with density fX (x;θ) which depends on some un-
known parameter θ ∈R

d . Let Iθθ be the corresponding Fisher matrix for the model.
Let Y = X/Z be a scale mixture arising from the above model; here X and Z are in-
dependent and Z is a positive random variable with some given density g(z), which
does not depend on θ . If we consider Z as an unknown parameter, the density of Y
can be obviously written as

fY (y;θ) = z fX (zy;θ). (2.2.8)

The most popular example of this set up is the Student t distribution with (known) ν
degrees of freedom; it is a scale mixture of Gaussian distributions and, in this case
Z2 ∼ Gamma(ν/2,ν/2). Another example is the scalar skew t distribution which
can be seen as a scale mixture of skew normal random variables. The following
result allows to directly derive the reference prior for scale mixture models.

Theorem 2.1. Suppose Y1, . . . ,Yn is a random sample from the density (2.2.8), and
write each Yj as Xj/Z j with Z = (Z1, . . . ,Zn) unknown parameters. Then the upper
left corner of the Fisher matrix related to θ does not depend on Z, and the condi-
tional reference prior for θ in the model (2.2.8) is the same as the reference prior
for θ in the model fX (x;θ).

Proof. Without loss of generality, assume that d = 1, so θ is a scalar parameter. The
log-likelihood function for (θ ,Z) is

�(θ ,Z) =
n

∑
j=1

[logZ j + log fX (z jy j;θ)] .

Straightforward algebra shows that

− ∂ 2

∂θ 2 �(θ ,Z) =
n

∑
j=1

1
fX (z jy j;θ)

{
[(∂/∂θ) fX (z jy j;θ)]2

fX (z jy j;θ)
+
∂ 2

∂θ 2 fX (z jy j;θ)
}

.

Then
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Iθθ =
n

∑
j=1

∫
R

{
[(∂/∂θ) fX (z jy j;θ)]2

fX (z jy j;θ)
+
∂ 2

∂θ 2 fX (z jy j;θ)
}

Z jdy j =

=
n

∑
j=1

∫
R

{
[(∂/∂θ) fX (w j;θ)]2

fX (w j;θ)
+
∂ 2

∂θ 2 fX (w j;θ)
}

dw j = nIθθ .

The obvious consequence of this theorem is that the reference prior for the loca-
tion and scale parameters of a Student t distribution with a known number of degrees
of freedom is the same as the reference prior for the parameters of a Gaussian model.
This results was already known. However it is not known what is the exact reference
prior for the parameters of a skew t distribution (Azzalini and Capitanio, 2003). The
above result suggests that this reference prior can be the same as the one derived in
Liseo and Loperfido (2006) for the scalar skew normal model (see also Bayes and
Branco, 2007, for a useful approximation).

2.2.2.3 The Degrees of Freedom of a Student t Density

Here we consider an example of type B, where the distribution of the vector z actu-
ally depends on θ and the conditional distribution of Ȳ given z does not.

Suppose Y1, . . . ,Yn
iid∼ St(0,1,ν), that is for the sake of simplicity we assume

the location and scale parameters of the t distribution are known and the object of
interest is the value of the degrees of freedom. It is well known that, in this case, Yi

can be represented as Yi = Xi/
√

Zi where Xi is independent of Zi, Xi ∼N(0,1) and
Zi ∼Ga(ν/2,ν/2). Using this representation, one can say that, for i = 1, . . . ,n,

Yi | Zi ∼ N(0,1/Zi).

The augmented log-likelihood for the model is then

�(z,ν) = c+
(
ν−1

2

)
∑

i
logZi − 1

2∑i
ZiY

2
i +

nν
2

log
ν
2
−n logΓ

(ν
2

)
− ν

2∑i
Zi,

where c is constant with respect to z and ν . Now we consider the Fisher information
matrix with respect to the enlarged model, where the expected values will be taken
with respect the joint distribution of (Ȳ ,Z). Standard calculations show that

Iν ,ν = IE

(
− ∂ 2

∂ν2 �(z,ν)
)

=
n
4

(
ψ ′
(ν

2

)
− 2
ν

)
,

Izi,ν = IE

(
− ∂ 2

∂ zi∂ν
�(z,ν)

)
= − 1

ν−2
,

Izi,zi = IE

(
− ∂ 2

∂ z2
i

�(z,ν)
)

=
ν2(ν−1)

2(ν−2)(ν−4)
,

Izi,z j = IE

(
− ∂ 2

∂ zi∂ z j
�(z,ν)

)
= 0,
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where ψ ′(·) is the Trigamma function, defined as the second derivative of the loga-
rithm of the Eulero Gamma function.

Following the approach in Section 2.2.1, the marginal reference prior for ν is
then given by

π(R)(ν) ∝ (| I | / | Iz,z |)1/2 ,

where Iz,z is the lower right corner of the matrix I, relative to the vector parameter z.
The ratio of the two determinants can be evaluated as a special case of the following
theorem, which is stated without proof.

Theorem 2.2. Let (a1,a2, . . . ,an), (b1,b2, . . . ,bn) and c be all real numbers not
equal to zero. Suppose D is a symmetric (n+1)× (n+1) matrix with the following
structure

d11 = c; d1 j = d j1 = a j, j = 2, . . . ,n+1,

d j j = b j, j = 2, . . . ,n+1,

di j = 0, otherwise.

Then

| D |= c
n

∏
i=1

bi −
n

∑
j=1

(
a2

j∏
k �= j

bk

)
. (2.2.9)

When a j = a and b j = b for all j, (2.2.9) simplifies to

| D |= bn−1(bc−na2).

Then the ratio is equal to

| I | / | Iz,z |= n

[
ψ ′
(ν

2

)
− 1
ν

]
− 2n(ν−4)
ν2(ν−1)(ν−2)

. (2.2.10)

The reference prior πR(ν) is then defined as the square root of the above quantity.
Now we study the asymptotic behavior of πR(ν). To this end, we recall one property
of the Trigamma function: for a → ∞,

ψ ′(a) = a−1 +(2a2)−1 +(6a3)−1 +o(a−4).

Then, for large values of ν , (2.2.10) can be approximated by

| I | / | Iz,z |≈ n

(
ν+2
ν2 − 2(ν−4)

ν2(ν−2)(ν−1)

)
= O(ν−2),

and the reference prior obtained in this way is improper. This result differs from the
one obtained, in the orthodox way, by Fonseca, Ferreira, and Migon (2008). Since
it is known that the likelihood function arising from an i.i.d. sample of t observa-
tion approaches a constant as ν → ∞, our prior cannot be used. Although this is
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a negative result, we include it in this section as an example of a conjecture: our
approximate reference prior tends to be more diffuse than the orthodox ones. As a
consequence, when dealing with improper priors, one should always check whether
the use of the prior may lead to improper posterior distributions, as in this example.

2.2.2.4 Probit Model

Consider the standard probit model, where n independent Bernoulli r.v.’s (Y1, . . . ,Yn)
are observed and, for i = 1, . . . ,n,

Yi =

{
1 Φ(x′iβ ),
0 1−Φ(x′iβ ),

where xi and β are p-dimensional vectors of covariates and parameters.
Textbook Bayesian analysis (Rossi, Allenby, and McCulloch, 2005) of this model

is performed via the introduction of a latent variable Zi for each observation, in such
a way that

Zi = x′iβ + εi, εi ∼ N(0,1),

and

Yi =

{
1 Zi > 0,

0 Zi ≤ 0.

The augmented likelihood function f (y,z;β ) then factorizes into

f (y,z | β ) = f (y | z) f (z | β ) (2.2.11)

with

f (z | β ) =
n

∏
i=1
ϕ(zi;x′iβ ,1),

where ϕ(x;b,c) denotes the density of a normal random variable with mean b and
variance c, evaluated at x. The relation between the yi’s and the zi’s is then deter-
ministic:

f (y | z,β ) =
n

∏
i=1

[I(zi > 0)I(yi = 1)+ I(zi ≤ 0)I(yi = 0)] .

From equation (2.2.11), this model belongs to case B and the reference prior for β is
given by (2.2.4). Simple calculations show that the extended Fisher matrix for (β ,z)
is given by

I(β ,z) =
(

X′X 2X′
2X In

)
,

where X is the design matrix and In is the n-dimensional diagonal matrix. Since the
above matrix does not depend on β it is clear that the reference prior for β is then
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the flat prior
π(R)(β ) ∝ 1.

This prior has been used for many years, although it has not been derived as “the”
objective prior for the probit model.

2.2.3 The Case with Nuisance Parameters

In practice, one often use models with many nuisance parameters and our method
should be generalized to these situations. Suppose that θ can be split into a vector ψ
of parameters of interest and a vector λ , consisting of nuisance parameters. In this
case, starting from the general expression of the model

p(y,z;ψ,λ ) = g(y;z,ψ,λ )h(z;ψ,λ ),

different special situations can arise. In particular, we will discuss the following two
cases:

(C) g depends on ψ and h depends on λ , that is

p(y,z;ψ,λ ) = g(y;z,ψ)h(z;λ ); (2.2.12)

(D) g depends on λ and h depends on ψ , that is

p(y,z;ψ,λ ) = g(y;z,λ )h(z;ψ).

Consider first case C. Following in spirit the reference prior algorithm, one should
first derive the conditional prior for λ | ψ and then the marginal prior for ψ . In
this case one starts taking ψ as known. From (2.2.12) it is clear that, conditionally
on ψ , we are back to case B of Section 2.2.1. Then it is possible to derive the
approximate reference prior for λ (notice that this a marginal prior with respect to z
and a conditional prior with respect to ψ!), say π(R)(λ | ψ). Now, one could ideally
integrate out λ and obtain

π(z;ψ) =
∫
λ

h(z;λ )π(R)(λ | ψ)dλ

and use again the approach for case B in 2.2.1. However the above integral rarely
has a closed and simple form: then it might be preferable to consider z as a vector
of observations and derive the marginal prior for ψ as in the usual reference prior
algorithm. In this case one could start from the model p(y,z;λ ,ψ) and from the
conditional reference prior π(R)(λ | ψ), and directly apply the approach described
in Sun and Berger (1998).

Consider now case D: here the augmented model can be written as p(y,z;ψ,λ ) =
g(y;z,λ )h(z;ψ). Taking ψ as fixed, one falls again in case A of Section 2.2.1; it is
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then easy to derive the conditional (on ψ and z) reference prior for λ as

π(r)(λ | ψ,z) ∝
√

Iλ ,λ (λ ,ψ).

In this case the use of the latent variables makes the observations y independent of
ψ (conditionally on z). Then the marginal reference prior for ψ can be derived using
h(z;ψ) as the likelihood and the conditional reference prior for λ as our partial prior
information.

Negative binomial regression example. The negative binomial regression model is
very popular when overdispersion is suspected in regression analysis for count data.
It is often expressed in hierarchical terms as follows: let (Y1, . . . ,Yn) be independent
Poisson r.v. with

IE(Yi) = Zi exp
{

x′iβ
}

, i = 1, . . .n.

For simplicity set μi = exp{x′iβ}. The overdispersion is introduced by assuming
that

Z1, . . . ,Zn
iid∼ Gamma(δ ,δ ).

This way, while the unconditional mean of Yi is still μi, the unconditional variance
is

Var(Yi) = μi
(
1+μiδ−1) .

The latent variable Zi will be then included in the augmented log-likelihood which
is then, up to an additive constant, equal to

�(μ,δ ) =
n

∑
i=1

[−zi(μi +δ )+ yi log(ziμi)+δ logδ − logΓ (δ )+(δ −1) logzi] .

Simple calculations show that the Fisher matrix for (δ ,μ) is of the form

I(δ ,μ) =

⎛
⎜⎜⎜⎜⎜⎝

c a a . . . a
a b1 0 . . . 0
a 0 b2 . . . 0
...

...
...

...
...

a 0 0 . . . bn

⎞
⎟⎟⎟⎟⎟⎠

with

bi = μi
δ

δ −1
+

δ 2

δ −2
, i = 1, . . .n,

and
c = n(ψ ′(δ )−δ−1); a = −(δ −1)−1.

Using Theorem 2.2, one can see that the conditional (on μ) reference prior for δ is

π(R)(δ | μ) ∝

{
nψ ′(δ )− n

δ
− δ −2
δ (δ −1)

n

∑
i=1

{μi(δ −2)+δ (δ −1)}−1

}1/2

.
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Under the assumption of no covariates (μi = μ = eβ ) the above expression simplifies
to

π(R)(δ | μ) ∝
{
ψ ′(δ )− 1

δ
− δ −2
δ (δ −1)

{μ(δ −2)+δ (δ −1)}−1
}1/2

.

Now we derive the marginal prior for μ (or β ) under the simplifying assumption
of no covariates. To this end it is easier to work with the negative binomial model
with parameters (δ ,μ) and directly apply the Sun and Berger approach, which is
based on (2.2.3) and (2.2.4). The log-likelihood is then

�(δ ,μ) = const.+
n

∑
i=1

[
yi log

μ
μ+δ

+δ log
δ

μ+δ
+ logΓ (yi +δ )− logΓ (δ )

]
.

Standard calculations show that the Fisher matrix in (δ ,μ) is diagonal and

| I |
Iδ ,δ

= Iμ,μ = n
δ

μ(μ+δ )
,

which depends on δ . Then the marginal prior for μ is

π(R)(μ) = exp

(
1
2

∫
π(δ | μ) log

{
n

δ
μ(μ+δ )

}
dδ
)

, (2.2.13)

which must be evaluated numerically for each value of μ . Notice that the use of this
approach avoids the explicit evaluation of the expected value of ψ ′(Y + δ ) which
would be necessary under the regular reference prior algorithm for this model.

2.2.4 Conclusions

We have discussed a simple method to derive (approximate) reference priors when
the statistical model is expressed in terms of a latent structure. In many situations
the method produces the “orthodox” reference priors. In some cases, however, the
result is different and our conjecture is that the “true” reference prior is never more
vague than the one we obtain.

We start from the basic simple idea that the latent variables are turned into un-
known parameters and the Fisher information matrix has then the dimension of
(θ ,z). Consequently, the expected values of the likelihood function should be calcu-
lated with respected to the conditional distribution of Y given (θ ,z). In the Student t
example with an unknown number of degrees of freedom, we calculated the Fisher
matrix by taking expectation also with respect to Z. We did that just for computa-
tional reasons, since taking expectation only with respect to Ȳ would produce messy
results.
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Our future work will be to establish, in terms of some probability metrics, a
distance between the proposed prior and the true reference prior. For example it will
be interesting to explore whether the priors we obtained are still matching priors.

2.3 Reference Priors for Empirical Likelihoods

Bertrand Clarke and Ao Yuan

Since Owen (1988, 1990, 1991), empirical likelihood (EL) techniques have gained
popularity largely because they incorporate information for parameter estimation
into a non-parametric context by constrained optimization. Despite extensive use
in the Frequentist context, EL has only recently come into use in Bayesian analy-
sis. Lazar (2003) observed that the properties of EL are in many respects similar to
those of parametric likelihoods and proposed ways they could be used in Bayesian
inference. She presented several simulations under different conditions to show the
effect of prior selection in ELs was much the same as in independence likelihoods.
Further similarities between ELs and parametric likelihoods have been delineated
in Yuan, Zheng, and Xu (2009). The implication of this is that reference priors for
ELs may behave similarly to the way reference priors in independence likelihoods
do. Specifically, they may give slightly narrower credibility sets than the normal
priors with large variances as studied in Lazar (2003). In econometrics, Moon and
Schorfheide (2004) used ELs for a Bayesian analysis by choosing priors that put
most of their mass on parameter values for which the moment constraint was ap-
proximately satisfied. Recently, Grendar and Judge (2009) established that ELs can
be regarded as a posterior mode in an asymptotic sense.

Here, our main contribution is the identification of reference priors for empirical
likelihood. This is important because, in principle, once a model and prior have been
chosen, the posterior is determined and Bayesian analysis can proceed computation-
ally. Indeed, automating prior selection — regardless of whether the resulting priors
are used to form credibility sets — can help with posterior exploration. We recall
that reference priors are merely one class of objective priors, see Liu and Ghosh
(2009) for a recent survey.

In the next section we briefly review the formulation of empirical likelihoods.
Then, in Section 2.3.2, we review the concept of reference priors for IID likeli-
hoods, set up the corresponding optimization problem for the EL, and quote a result
that will help us solve it. In Sections 2.3.3–2.3.5, we state our main results giving
asymptotic expansions for three distances between priors and posteriors obtained
from ELs and identify the reference priors they generate. In Section 2.3.6, we dis-
cuss the implications of our work.
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2.3.1 Empirical Likelihood

The basic formulation of EL as given by Owen (1988) can be expressed as in
Qin and Lawless (1994) and stated as follows. Let Xn = (X1, ...,Xn) be IID d-
dimensional random vectors with unknown distribution function F and suppose the
q-dimensional parameter θ = (θ1, . . . ,θq)′ is a functional value of F , i.e., there
is a function T so that T (F) = θ . Write xn = (x1, . . . ,xn) to denote outcomes
of Xn and x to denote outcomes of an individual random variable X . Suppose
that additional information linking θ and F is available from a set of functions
g(x,θ) = (g1(x,θ), ...,gr(x,θ))′ where r ≥ q and E[g(X ,θ)] = 0. The expectation
is taken in the distribution F = FT taken to be true and it is assumed that the true θ ,
θT satisfies T (FT ) = θT . Indeed, here we assume that θ is identifiable with respect
to g, i.e., θ ∗ �= θ implies E[g(X ,θ ∗)] �= 0.

An expression for the EL can be given as follows. Let F be a distribution function
varying over a class and consider the likelihood

L(F) =
n

∏
i=1

F({xi}). (2.3.1)

Now, write wi = F({xi}) and w = (w1, ...,wn). The EL is subject to the auxilliary
information constraints from g and achieves

max
w

n

∏
i=1

wi subject to
n

∑
i=1

wi = 1 and
n

∑
i=1

wig(xi,θ) = 0.

Let t = (t1, ..., tr)′ be the Lagrange multipliers corresponding to the constriant with
g(x,θ), then one can derive

wi =
1
n

1
1+ t ′g(xi,θ)

and that t = tn(x1, ...,xn,θ) is determined by

n

∑
i=1

g(xi,θ)
1+ t ′g(xi,θ)

= 0. (2.3.2)

Note that t = 0 satisfies (2.3.2), but then wi = 1/n and the side information from g
does not enter the EL. So, we henceforth require t �= 0 to avoid trivality. Thus, the
empirical likelihood assumes the form

pn
θ = p(xn|θ) =

n

∏
i=1

1
n

1
1+ t ′g(xi,θ)

=
n

∏
i=1

wi. (2.3.3)

Note that even though the data is IID F , (2.3.3) does not in general factor into
a product of terms each depending on only one of the xis. Thus, ELs are not in
general independence likelihoods (unlike (2.3.1) ) even though they may be regarded
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as identical. They are a generalization of IID to permit the dependence structure
induced by the constraint. Indeed, the data enter the constraint symmetrically so we
expect that they will remain symmetric in the empirical likelihood itself. Because of
this dependence, it is difficult to assign priors to ELs and so Bayesian analysis has
been limited. Our main contribution is the extension of objective Bayes methods to
the EL context by deriving reference priors for them.

2.3.2 Reference Priors

In a pair of seminal papers, Shannon (1948a, 1948b) gave an outline of the general
theory of communication. One of the basic ideas was to reinterpret the conditional
density given a parameter, or likelihood, as an “information theoretic channel.” The
idea is that θ is a message drawn from a source distribution of messages, say Π
with density π , and the sender wants to send a randomly chosen message θ to a col-
lection of receivers. The receivers, however, do not receive θ exactly. Each receiver
for i = 1, . . . ,n receives a noisy version of θ , say Xi = xi, from which they want to
decode θ . The relationship between the θ sent and the x received is given by p(x|θ);
the difference between a channel and likelihood is that the channel is a conditional
density that will be used repeatedly (with both arguments redrawn), whereas a like-
lihood is a function of θ for fixed xn. Now, assume each of the n receivers receives
an xi independently of the rest, but they pool their xis to decode θ . If this process
occurs many times, Shannon showed the rate of information transmission is

I(Θ ;Xn) =
∫ ∫

π(θ)p(xn|θ) log
p(xn|θ)
m(xn)

μ(dxn)μ(dθ), (2.3.4)

(in nats per symbol sent) where μ generically denotes a dominating measure for its
argument. The quantity in (2.3.4) is the (Shannon) mutual information. The natural
question is how large it can be. This is answered by maximizing over W to find the
maximal rate, the capacity of the channel p(·|·). The result is

Πcap(·) = argmax
Π

I(Θ ;Xn),

the capacity achieving source distribution. Asymptotically in n, Ibragimov and Has-
minsky (1973) showed Πcap was Jeffreys prior for regular finite-dimensional para-
metric families.

Bernardo (1979) wrote

I(Θ ,Xn) = EmD(π(·)‖π(·|Xn)),

where, for densities p and q with respect to a common dominating measure, the
relative entropy is

D(p||q) =
∫

p(x) log
p(x)
q(x)

μ(dx).
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That is, the capacity achieving source distribution is the prior that makes the asymp-
totic distance between a prior and its corresponding posterior as far apart as possible,
on average, in relative entropy. Bernardo (1979) also called Πcap a reference prior
on the grounds that it could be used as a prior, or more typically, used as a way to
assess the amount of information in a subjective prior.

We comment that reference prior results are asymptotic in n and we assume this
without further comment apart from noting that reference priors obtained for fixed
n are usually discrete, see Berger, Bernardo, and Mendoza (1989). Even so, Zhang
(1994) provided a convergence result ensuring the discrete priors converge to Jef-
freys prior for many regular parametric families.

Berger and Bernardo (1989) examined a conditional form of the Shannon mutual
information to identify

argmax
Π

I(Θ ;Xn|Ψ) =argmax
Π

∫
π(θ |ψ)p(xn|θ ,ψ) log

p(xn|θ ,ψ)∫
p(xn|θ ,ψ)π(θ |ψ)μ(dθ)

μ(dxn)μ(dθ)π(ψ)μ(dψ),

where (Θ ,Ψ) = (Θ1, . . . ,Θq,Ψ1, . . . ,Ψ�) andΨ is a nuisance parameter. A proof for
regular finite-dimensional families can be found in Ghosh and Mukerjee (1992).
Further treatment of the multiparameter case can be found in Berger and Bernardo
(1992a, 1992b, 1992c). Sun and Berger (1998) examined conditional mutual infor-
mation further, and Clarke and Yuan (2004) gave a complete treatment.

Of recent interest is the work done by Ghosh, Mergel, and Liu (2009) and Liu
and Ghosh (2009) to obtain reference priors under alternative measures of distance.
They establish that Jeffreys prior is the reference prior for almost all members of
the power divergence family. The exception is the Chi-square distance for which the
prior turns out to be proportional to the fourth root of the determinant of the Fisher
information.

To be precise about the quantities we examine for the EL, write

mn(xn) = m(xn) =
∫

p(xn|θ)π(θ)dθ ,

where p(xn|θ) is an in (2.3.3), giving posterior

π(θ |xn) =
π(θ)p(xn|θ)

m(xn)
.

Then, the relative entropy between π(θ |xn) and π(θ) is

D(π(·|xn)||π(·)) =
∫
π(θ |xn) log

π(θ |xn)
π(θ)

dθ ;

the Hellinger distance between π(θ |xn) and π(θ) is

H(π(·|xn),π(·)) =
∫

(
√
π(θ)−

√
π(θ |xn))2dθ ;
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and the Chi-square distance between π(θ |xn) and π(θ) is

χ2(π(·|xn),π(·)) =
∫ (π(θ |xn)−π(θ))2

π(θ)
dθ .

Here, we examine the expectation of the above three quantities, namely

Emn D(π(·|xn)||π(·)), Emn H(π(·|xn),π(·)), and Emnχ
2(π(·|xn),π(·)).

These three distance measures have interpretations that may make them more or
less useful in a given setting. The relative entropy occurs in probabilistic coding
theory and usually represents an amount of information (in nats). The Chi-square
distance is familiar from goodness-of-fit testing (see Clarke and Sun, 1997; Hervé,
2007). The Hellinger distance originates from geometry in which the square root
converts a great circle on the unit sphere to a line segment in a plane. It can be
verified that as distances, χ2(p,q) ≥ D(p||q) ≥ H(p,q) for any two densities p, q
for which they are defined.

Observe that m(xn) is the Bayes action for estimating Pθ under relative entropy
i.e.,

m(xn) = argmin
Q

∫
w(θ)D(Pn

θ ||Q)μ(dθ).

and the chain rule for relative entropy gives

D(Pn
θ ||Mn) =

n

∑
k=1

EmD(Pθ ||Mk(·|Xk−1)). (2.3.5)

However, under Hellinger distance the Bayes action for estimating of Pθ is

mH(xn) =
{∫

w(θ)p(xn|θ)1/2μ(dθ)
}2

= argmin
Q

∫
w(θ)H(Pn

θ ||Q)μ(dθ),

and under Chi-square distance the Bayes action for estimating Pθ is

mχ2(xn) =
∫

w(θ)p(xn|θ)2μ(dθ) = argmin
Q

∫
w(θ)χ2(Pn

θ ||Q)μ(dθ).

It is seen that neither is a probability (unless additional constraints are imposed) and
neither satisfies an additive risk condition like (2.3.5). This means that the reference
priors under Hellinger or Chi-square distance are not for the Bayes action and so
need not be least favorable. However, they do provide priors maximally changed on
average by the data.

Note that, to date, almost all reference prior work has been in the regular para-
metric family context. However, there are cases, such as EL, in which we do not
have a well-defined IID parametric likelihood. Indeed, as can be seen from (2.3.3),
the EL is stationary but not independent. However, the stationarity is close enough
to independence that MLEs are consistent and Laws of Large Numbers and Central
Limit Theorems hold.
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To see this more formally, define the following notation. Let θ be the “true” pa-
rameter value for the observed data and assume θ is in an open set whose closure is

compact. Write li(θ) = logwi(θ) with first derivative denoted l(1)
i (θ) = ∂ li(θ)/∂θ

and second derivative denoted l(2)
i (θ) = ∂ li(θ)/[∂θ∂θ ′]. Next, consider the follow-

ing regularity conditions.

• R1. The constraint function has bounded moments, i.e., E||g(X ,θ)||α < ∞ for
some α > 2.

• R2. The outer product matrix Ω = E[g(X ,θ)g′(X ,θ)] is positive definite.
• R3. The Jacobian matrix D = E[∂g(X ,θ)/∂θ ] is of rank r.
• R4. The norms ||g(x,θ)|| and ||g′(x,θ)g(x,θ)|| are bounded by an integrable

function function G(x), in each neighborhood of θ .
• R5. The prior π(·) is continuous and the matrix Λ(θ) = D′(θ)Ω−1(θ)D(θ) is

invertible.
• R6. The prior π(·) and the l(2)

i (·) for i = 1, . . . ,n are bounded.

Let θ̂n = argsupθ log p(xn|θ) denote the maximum empirical likelihood estimate
of θ . Then, we have the following asymptotic results which parallel the correspond-
ing results for regular IID likelihoods.

Theorem 2.3. Assume R1–R4. Then θ̂ is consistent and asymptotically normal with
asymptotic variance matrix Λ−1(θ). That is,

θ̂n → θ a.s. and
√

n(θ̂n −θ) D→ N(0,Λ−1).

Proof. See Yuan, Zheng, and Xu (2009).

2.3.3 Relative Entropy Reference Priors

Equipped with the EL setting of Section 2.3.1 and the reference prior formulation
of Section 2.3.2, we can now state the first of our main results.
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Theorem 2.4. Assume R1–R6. Then

Emn D(π(·|xn)||π(·)) =
q
2

log
n

2πe
−
∫
π(θ) log

π(θ)
|Λ−1(θ)|1/2

dθ +o(1).

So, the reference prior for the EL under relative entropy is π∗KL(θ) ∝ |Λ−1(θ)|1/2.

We comment that the proof of the asymptotic expression is a sequence of asymp-
totically valid approximations whose convergence identifies the leading terms. The
highest-order term depending on the prior is optimized in the usual way to give the
reference prior. The same comment applies to Theorems 2.5 and 2.6 below.

Proof. Recall li(θ) = logwi(θ) and l(2)
i (θ) = ∂ 2li(θ)/(∂θ∂θ ′) and consider the

limit of the mean of the l(2)
i s. As in the proofs of Theorem 1 and 2 in Yuan, Zheng,

and Xu (2009), we have

wi(θ) =
1
n

1
1+ t ′g(xi,θ)

=
1
n

{
1− t ′g(xi,θ)+g′(xi,θ)g(xi,θ)O(n−1(log logn))

}

=
1
n

{
1−B′

ng(xi,θ)+ ||g(xi,θ)||o(n−(1−1/α)(log log(n))

+g′(xi,θ)g(xi,θ)O(n−1(log logn))
}
, (2.3.6)

where Bn =
{

1
n ∑

n
i=1 g(xi,θ)g′(xi,θ)

}−1
1
n ∑

n
i=1 g(xi,θ).

By using the Taylor expansion log(1+ x) ≈ x on (2.3.6) we get

1
n

n

∑
i=1

li(θ) = − logn−B′
n

1
n

n

∑
i=1

g(xi,θ)+
1
n

n

∑
i=1

||g(xi,θ)||o(n−(1−1/α)(log log(n))

1
n

n

∑
i=1

g′(xi,θ)g(xi,θ)O(n−1(log logn))+O(n−1 log logn). (2.3.7)

Taking second derivatives in (2.3.7) by using the product rule gives
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1
n

n

∑
i=1

l(2)
i (θ)

= −
[

2
{ ∂ 2

∂θ∂θ ′
1
n

n

∑
i=1

g′(xi,θ)
}{1

n

n

∑
i=1

g(xi,θ)g′(xi,θ)
}−1 1

n

n

∑
i=1

g(xi,θ)

+2
{ ∂
∂θ

1
n

n

∑
i=1

g′(xi,θ)
}{ ∂

∂θ ′
(1

n

n

∑
i=1

g(xi,θ)g′(xi,θ)
)−1}1

n

n

∑
i=1

g(xi,θ)

+
1
n

n

∑
i=1

g′(xi,θ)
{ ∂ 2

∂θ∂θ ′
(1

n

n

∑
i=1

g(xi,θ)g′(xi,θ)
)−1}1

n

n

∑
i=1

g(xi,θ)

+
{ ∂
∂θ

1
n

n

∑
i=1

g′(xi,θ)
}{1

n

n

∑
i=1

g(xi,θ)g′(xi,θ)
}−1{ ∂

∂θ ′
1
n

n

∑
i=1

g(xi,θ)
}

+
1
n

n

∑
i=1

∂ 2

∂θ∂θ ′
||g(xi,θ)||o(n−(1−1/α)(log log(n))

+
{1

n

n

∑
i=1

∂ 2

∂θ∂θ ′
g′(xi,θ)g(xi,θ)+1

}
O(n−1(log logn))

]
. (2.3.8)

By the strong law of large numbers, 1
n ∑

n
i=1 g(xi,θ) → Eg(X ,θ) = 0 a.s., thus

for any θn → θ (P or a.s.), only the fourth term on the right of (2.3.8) above is
asymptotically non-zero. This gives

1
n

n

∑
i=1

l(2)
i (θn)

→ − lim
n

{ ∂
∂θ

1
n

n

∑
i=1

g′(xi,θ)
}{1

n

n

∑
i=1

g(xi,θ)g′(xi,θ)
}−1{ ∂

∂θ ′
1
n

n

∑
i=1

g(xi,θ)
}

= −D′(θ)Ω−1(θ)D(θ) = −Λ(θ), (P or a.s.). (2.3.9)

We use (2.3.9) in the following Laplace expansion argument.
By a second order Taylor expansion in Lagrange form, we have

p(xn|θ) = exp
[ n

∑
i=1

li(θ̂n)+
1
2

n(θ̂n −θ)′
{1

n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −θ)

]
, (2.3.10)

where θn is betwen θ̂n and θ . Similarly,

m(xn) =
∫
π(θ)exp

[ n

∑
i=1

li(θ̂n)+
1
2

n(θ̂n −θ)′
{1

n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −θ)

]
dθ .

(2.3.11)
So,

log
p(xn|θ)
m(xn)

= log
exp

[
1
2 n(θ̂n −θ)′

{
1
n ∑

n
i=1 l(2)

i (θn)
}
(θ̂n −θ)

]
∫
π(α)exp

[
1
2 n(θ̂n −α)′

{
1
n ∑

n
i=1 l(2)

i (θn)
}
(θ̂n −α)

]
dα

.
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Let φ(·|θ̂n,Λ) be the q-dimensional normal density with mean θ̂n and covariance
matrix Λ . Now, for any δ > 0,

∫
π(α)exp

[1
2

n(θ̂n −α)′
{1

n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −α)

]
dα

=
∫
||α−θ̂n||≤δ

π(α)exp
[1

2
n(θ̂n −α)′

{1
n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −α)

]
dα

+
∫
||α−θ̂n||>δ

π(α)exp
[1

2
n(θ̂n −α)′

{1
n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −α)

]
dα. (2.3.12)

Write Λn(θn)−1 = − 1
n ∑

n
i=1 l(2)

i (θn), with θn and θ1,n in the ball B(θ̂n,δ ) = {α :
||α− θ̂n|| ≤ δ}. Then, the first term on the right in (2.3.12) is

π(θ1,n)
∫
||α−θ̂n||≤δ

exp
{
− 1

2
n(θ̂n −α)′Λ−1

n (θn)(θ̂n −α)
}

dα

= π(θ1,n)(2π)q/2n−q/2|Λn(θn)|−1/2
∫
||α||≤δ√n

φ(α|0, Iq)dα

∼ π(θ)(2π)q/2n−q/2|Λ−1(θ)|1/2, (2.3.13)

since δ > 0 is arbitrary, by R6. To deal with the second term in (2.3.12), note that it
admits the bound

0 ≤ e(−n/4)δ 2||Λn||
∫
||α ′||>δ√n

π(α ′)exp
[1

4
nα ′{1

n

n

∑
i=1

l(2)
i (θn)

}
α ′
]
dα ′ (2.3.14)

with probability going to one, where α ′ = θ̂n −α , since Λn converges to Λ . Doing
the normal integral in (2.3.14) gives a factor of order O(n−q/2) which is multiplied
by a factor of order exp[(−nδ 2)||Λn(θn)||]. The result is of lower order than the first
term in (2.3.12).

By Theorem 2.3, observe that Yn = n(θ̂n−θ)′Λ(θ)(θ̂n−θ) D→ χ2
q under p(xn|θ).

Since Eχ2
q = q for ε > 0, we can find M > 0 such that |E[χ2

q I(χ2
q ≤ M)]− q| < ε .

Weak convergence gives E[YnI(Yn ≤ M)] → E[χ2
q I(χ2

q ≤ M)]. Provided n(θ̂ −θ) is
uniformly integrable in Pθ , uniformly for θ , we have E(Yn) → E(χ2

q ) = q as ε→ 0.
Using (2.3.13) and (2.3.14) in (2.3.12) and the result from Theorem 2.3, we have

Emn D(π(·|Xn)||π(·)) =
∫ ∫

π(θ)p(xn|θ) log
p(xn|θ)
m(xn)

dμ(xn)dθ

∼ −
∫
π(θ)Ep(xn|θ)

{1
2

n(θ̂n −θ)′Λ(θ)(θ̂n −θ)
}

dθ

+
q
2

log
n

2π
−
∫
π(θ) logπ(θ)dθ − 1

2

∫
π(θ) log |Λ−1(θ)|dθ

∼ − q
2

+
q
2

log
n

2π
−
∫
π(θ) logπ(θ)dθ − 1

2

∫
π(θ) log |Λ−1(θ)|dθ .
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2.3.4 Hellinger Reference Prior

Next, we state and prove the analogous result for the Hellinger distance.

Theorem 2.5. Assume R1–R6. Then

Emn H(π(·|xn),π(·))
= (2π/n)q/4E

[
exp

(1
4
χ2

q

)]∫ |Λ−1(θ)|1/4π3/2(θ)dθ +o(
1

nq/4
).

So, the reference prior for the EL under the Hellinger metric is π∗H(θ)∝ |Λ(θ)|1/2.

Note that the reference prior under the Hellinger distance is the inverse of the
reference prior under the relative entropy.

Proof. It is easy to see that

Emn H(π(·|xn),π(·)) = 2
{

1−
∫ ∫

π(θ)
√

m(xn)p(xn|θ)dμ(xn)dθ
}
. (2.3.15)

Recalling (2.3.10) and (2.3.11) from the proof of Theorem 2.4, we set up a slight ex-
tension of Laplace’s method by expanding the prior to second order. Let π(1)(α) =
∂π(α)/∂α and π(2)(α) = ∂ 2π(α)/[∂α∂α ′] and recall that

∫
α ′Aαφ(α|0, Iq)dα =

tr(A). Then, taking convergences in p(xn|θ), we have

∫
π(α)exp

[1
2

n(θ̂n −α)′
{1

n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −α)

]
dα

=(2π/n)q/2|Λ−1(θn)|1/2

×
∫ {

π(θ̂n)+(α− θ̂n)′π(1)(θ̂n)+
1
2
(α− θ̂n)′π(2)(θ2,n)(α− θ̂n)

}

×φ(α|θ̂n,Λ−1(θn)/n)dα

= (2π/n)q/2|Λ−1(θn)|1/2
∫ {

π(θ̂n)+
1
n
α ′Λ−1/2′(θn)π(2)(θ2,n)Λ−1/2(θn)α

}

×φ(α|0, Iq)dα

∼ (2π/n)q/2|Λ−1(θn)|1/2π(θ̂n)
[
1+

1
2n

tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}]

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ̂n)
[
1+

1
2n

tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}]

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ). (2.3.16)

The key term in (2.3.15) is

∫ ∫
π(θ)

√
m(xn)p(xn|θ)dμ(xn)dθ =

∫ ∫ √
m(xn)

p(xn|θ)
π(θ)p(xn|θ)dμ(xn)dθ .
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So, using the square root of the ratio of (2.3.10) to (2.3.11), and (2.3.16) we have
that
∫ ∫

π(θ)
√

m(xn)p(xn|θ)dμ(xn)dθ ∼ (2π/n)q/4
∫ [∫

|Λ−1(θ)|1/4π3/2(θ)

× exp
{1

4
n(θ̂n −θ)′Λ(θ)(θ̂n −θ)

}
p(xn|θ)dμ(xn)

]
dθ .

By Theorem 2.3, θ̂n → θ a.s. and n(θ̂n −θ)′Λ(θn)(θ̂n −θ) D→ χ2
q under p(xn|θ).

So, if the convergence of the exponent to χ2
q is uniform over θ , we get

∫ ∫
π(θ)

√
m(xn)p(xn|θ)dμ(xn)dθ

∼ (2π/n)q/4E
[

exp
(1

4
χ2

q

)]∫ |Λ−1(θ)|1/4π3/2(θ)dθ ,

as claimed and

π∗(θ) = argmin
π

{∫
|Λ−1(θ)|1/4π3/2(θ)dθ subject to

∫
π(θ)dθ = 1

}
.

Using Lagrange multipliers and taking derivatives of
∫ |Λ−1(θ)|1/4π3/2(θ)dθ −

λ
∫
π(θ)dθ with respect to π(θ) for fixed θ , we get

3
2
|Λ(θ)|−1/4π1/2(θ)−λ = 0, or π(θ) ∝ |Λ(θ)|1/2.

2.3.5 Chi-square Reference Prior

The following result under the Chi-square distance is analogous to Clarke and Sun
(1997) and Ghosh, Mergel, and Liu (2009), however, the solution is hard to obtain
explicitly.

Theorem 2.6. Assume R1–R6. Then

Emnχ
2(π(·|xn),π(·))

=
( n

2π

)q/2
E
[

exp
(− 1

2
χ2

q

)]∫ |Λ(θ)|1/2dθ −n(q−2)/22(q+2)/2πq/2

×E
[

exp
(− 1

2
χ2

q

)]∫ |Λ(θ)|1/2tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}

dθ

+o(n(q−2)/2).

So, the reference prior for the EL under the Chi-square distance is
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π(·) = argmin
π(·)

∫
|Λ(θ)|1/2tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]dθ ,

subject to
∫
π(θ)dθ = 1.

Proof. As in Theorem 2.5, let π(1)(θ) = ∂π(θ)/∂θ and π(2)(θ) = ∂ 2π(θ)/[∂θ∂θ ′]
and recall that

∫
θ ′Aθφ(θ |0, Iq)dθ = tr(A). Now, when p(xn|θ) defines the mode

of convergence, Taylor expanding gives

∫
π(α)exp

[1
2

n(θ̂n −α)′
{1

n

n

∑
i=1

l(2)
i (θn)

}
(θ̂n −α)

]
dα

∼ (2π/n)q/2|Λ−1(θ)|1/2

×
∫ {

π(θ̂n)+(α− θ̂n)′π(1)(θ̂n)+
1
2
(α− θ̂n)′π(2)(θ2,n)(α− θ̂n)

}

×φ(α|θ̂n,Λ−1(θ)/n)dα

= (2π/n)q/2|Λ−1(θ)|1/2

×
∫ {

π(θ̂n)+
1√
n
α ′Λ−1/2′(θ)π(1)(θ̂n)+

1
2n
α ′Λ−1/2′(θ)π(2)(θ2,n)Λ−1/2(θ)α

}

×φ(α|0, Iq)dα

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ)
[
1+

1
2n

tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}]

.

(2.3.17)

Using the inverse of (2.3.17), we have that Emnχ2(π(·|xn),π(·)) equals

∫ ∫
π(θ)

p2(xn|θ)
m(xn)

dμ(xn)dθ −1

=
∫ ∫

π(θ)p(xn|θ)
exp

[
1
2 n(θ̃n −θ)′

{
1
n ∑

n
i=1 l(2)

i (θn)
}
(θ̃n −θ)

]
∫
π(α)exp

[
1
2 n(θ̃n −α)′

{
1
n ∑

n
i=1 l(2)

i (θn)
}
(θ̃n −α)

]
dα

×dμ(xn)dθ −1

∼ ( n
2π
)q/2

∫ ∫
|Λ(θ)|1/2

[
1− 1

2n
tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}]

× exp
[1

2
n(θ̃n −θ)′

{1
n

n

∑
i=1

l(2)
i (θ̃n)

}
(θ̃n −θ)

]
p(xn|θ)dμ(xn)dθ −1

∼ (
n

2π
)q/2E

[
exp

(− 1
2
χ2

q

)]

×
∫

|Λ(θ)|1/2
[
1− 1

2n
tr
{
Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)
}]

dθ .
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2.3.6 Discussion

It is seen that the reference prior for ELs under Hellinger is based on the recip-
rocal of the reference prior under relative entropy and that these differ from the
reference prior under χ2 which is hard to obtain explicitly. This is somewhat dif-
ferent from the treatment given in Ghosh, Mergel, and Liu (2009) who obtained
the Jeffreys prior for all members of the power divergence family except the Chi-
square distance. Here, it is only in the relative entropy case that the reference
prior is based on the transformation that makes an efficient CAN estimator con-
verge to N(0, Iq). Nevertheless, the role of Jeffreys prior is roughly analogous to
Λ−1(θ) = (D′(θ)Ω−1(θ)D(θ))−1.

An examination of the proof of all three theorems reveals a common structure:
Approximate the ratio p(xn|θ)/m(xn) by a Laplace’s method argument, take a func-
tion of the density ratio, and examine its limiting expectation using standard results
and assumptions. Consequently, we conjecture that our basic technique extends to
any Csiszár f -divergence, see Csiszár (1967), defined as D f (p||q) = Ep f (p/q) for
some convex f where p and q are densities. The power divergence family (whose
members often play a role in goodness-of-fit testing) is contained in this class. Many
reference priors with different interpretations can be generated this way. Their di-
vergence from the least favorable priors outside the relative entropy case means
reference priors reflect a notion of minimal information rather than any decision-
theoretic concept.

Acknowledgments: Yuan’s works is partly supported by the National Center for Re-
search Resources by NIH grant 2G12RR003048.



Chapter 3
Bayesian Decision Based Estimation and
Predictive Inference

Shrinkage estimation is a traditional research topic in Bayesian analysis. The three
sections in this chapter convincingly argue that this venerable topic remains a cur-
rent research frontier with many open problems. The chapter starts with a review
of the current state of research and concludes with an insightful discussion of a
very specific form of shrinkage estimation arising in recent work on inference in
gene-environment interaction studies.

3.1 Bayesian Shrinkage Estimation

William E. Strawderman

This section gives a decision theoretic account of Bayesian shrinkage estima-
tion largely concentrating on multivariate normal location models with respect to
squared error loss. There is considerable emphasis on Stein-type shrinkage and
minimaxity in three and higher dimensions. Specifically, consider the problem of
estimating the mean, θ of a p-dimensional multivariate normal distribution with
covariance matrix equal to a multiple of the identity,

X ∼ Np(θ ,σ2I), (3.1.1)

and loss equal to the sum of squared errors loss

(θ ,d) = ||d −θ ||2 = Σ(di −θi)2. (3.1.2)

Much of the paper will deal with this most simple version of the problem.
Section 3.1.1 is devoted to giving intuition into why shrinkage seems desirable

from both a frequentist and a Bayesian perspective. In particular, we show that a par-
ticular form of shrinkage estimator (the James-Stein estimator) (James and Stein,
1961) arises quite naturally from both frequentist and Bayesian perspectives and

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 69
and Bayesian Analysis, DOI 10.1007/978-1-4419-6944-6 3,
c© Springer Science+Business Media, LLC 2010
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does not rely on normality of the underlying population. Section 3.1.2 is devoted to
the theory of minimax Bayesian shrinkage for the simplest model mentioned above
and lays the groundwork for results in more complex models. We give conditions
under which various forms of (empirical, generalized, hierarchical, and pseudo-)
Bayes estimators improve on the “usual” estimator X , which already has a nice col-
lection of associated optimality properties (such as minimaxity, best equivariance,
and best unbiasedness). Section 3.1.3 studies some of the details for the more com-
plex case of a general covariance matrix and general quadratic loss, and section
3.1.4 gives some concluding remarks. Much of the development follows Strawder-
man (2003).

3.1.1 Some Intuition into Shrinkage Estimation

Suppose we have a p-dimensional vector of data, X = (X1, . . . ,Xp)′, such that
E[Xi] = θi, and cov(X) =σ2Ip, where σ2 is known. Suppose also that X has a known
density, f (x), with respect to Lebesgue measure ( f (·) is not necessarily assumed to
be normal). Assume we want to estimate the mean vector, θ = (θ1, . . . ,θp)′ and that
the loss is equal to the sum of squared errors loss (L(θ ,d) = ||d −θ ||2).

The vector X is an obvious unbiased estimator of θ that we will occasionally
refer to as the “usual” estimator. As a first frequentist pass at understanding why we
might want to shrink X , consider the class of linear estimators of the form bX . Is
there a best value for b? A simple calculation shows that the risk,

R(θ ,bX) = E[L(θ ,bX)] = E[||bX −θ ||2] = pb2σ2 +(b−1)2||θ ||2,

and that the value which minimizes this expression is

b(||θ ||2) = ||θ ||2/(pσ2 + ||θ ||2) = (1− pσ/(pσ2 + ||θ ||2).

Unfortunately this optimizing b depends on the unknown mean, so it does not seem
particularly useful. However, upon realizing that E[||X ||2] = pσ2 + ||θ ||2, it appears
that we may estimate the optimal b by the quantity (1− pσ2/||X ||2), and hence the
optimal “estimator,” bX , by

δ (X) = (1− pσ2/||X ||2)X . (3.1.3)

If “p” is replaced by “p − 2” in (3.1.3), the resulting estimator is known as the
James-Stein estimator. One striking aspect of the above intuitive argument is that it
does not depend on an underlying assumption of normality.

There is an equally general empirical Bayes argument (see Strawderman, 1992)
that arrives at the same estimator. We assume the above model for X with density
f (x). Also assume that the prior distribution of θ is given by π(θ) = f ∗n(θ), the n
fold convolution of f (.) with itself. Hence the prior distribution of θ can be repre-
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sented as the distribution of a sum of n iid variables ui, i = 1, . . . ,n, where each u is
distributed as f (u).

Also, the distribution of u0 = (X −θ) has this same distribution and is indepen-
dent of each of the other u’s. Then the Bayes estimator can be represented as

δ (X) = E[θ |X ] = E[θ |X −θ +θ ] = E
[ n

∑
i=1

ui

∣∣∣
n

∑
i=0

ui

]
,

and hence by exchangeability,

δ (X) = nE
[
u j

∣∣∣
n

∑
i=0

ui

]
=

nE
[ n
∑

i=0
ui

∣∣∣∑n
i=0 ui

]

n+1
=

nE[X |X ]
n+1

=
nX

n+1
,

or equivalently,

δ (X) = E[θ |X ] =
(

1− 1
n+1

)
X .

To find an empirical Bayes version of this estimator, suppose that n is unknown.
We may estimate it from the marginal distribution of X , which has the same dis-
tribution as X − θ + θ = ∑n

i=0 ui. In particular, since E[ui] = 0 and cov(ui) = σ2I,

E[||ui||2] = pσ2 and Eθ [||X ||2] = E
[
||∑n

i=0 ui||2
]

= ∑n
i=0 E

[∥∥ui
∥∥2
]

= (n + 1)pσ2.

Therefore, n+1 can be estimated by ||X ||2/pσ2. Substituting this estimator of n+1
in the expression for the Bayes estimator, we have an empirical Bayes estimator

δ̂ (X) = (1− pσ2/||X ||2)X ,

which is again (3.1.3), the James-Stein estimator save for the substitution of p for
p−2.

Recall again, that in both of the above developments, the only assumptions were
that Eθ (X) = θ , and Cov(X)=σ2I (the assumption of a density, f (·), was just a
notational convenience to give the prior density as a convolution).

It seems worth remarking also that the above development is closely related to
a standard argument giving the James-Stein estimator as an Empirical Bayes esti-
mator in the normal case, except that in the above development, the variance of the
prior distribution is restricted to be an integer multiple of variance of the individ-
ual X’s. In the case of a normal distribution, the prior distribution has covariance
matrix τ2I, the resulting Bayes estimator is (1 − σ2/(σ2 + τ2))X . The marginal
distribution of X is p-variate normal with mean vector 0 and covariance matrix
(σ2 + τ2)I. Hence (based on the marginal distribution of X) the best unbiased esti-
mator of 1/(σ2 + τ2) is (p− 2)/||X ||2, and an empirical Bayes estimator is given
by (1− (p−2)σ2/||X ||2)X , which is the classical James-Stein estimator.

The Stein-type estimator thus appears intuitively, at least, to be a reasonable es-
timator in a general location problem, as an approximation either to the best lin-
ear estimator or a conjugate prior Bayes estimator. We’ll show, in the next sec-
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tion, that the James-Stein estimator of the form (1− aσ2/||X ||2)X , is minimax for
0 ≤ a ≤ 2(p−2), provided p ≥ 3.

3.1.2 Some Theory for the Normal Case with Covariance σ2I

3.1.2.1 Minimaxity and Unbiased Estimators of Risk

In this section we indicate basic developments for the relatively simple case of a
normal distribution with covariance matrix equal to σ2I. We will develop this further
for more complex covariance structures in Section 4. We use the following notation,

∇′g =∑∇igi, where ∇i =
∂
∂Xi

.

Consider model (3.1.1) with loss (3.1.2). Stein’s Lemma (Lemma 3.2) is a basic
tool in evaluating the risk function of a (nearly) general estimator when the loss
function is quadratic. A simple one dimensional version of the lemma is the follow-
ing whose proof is trivial by using integration by parts.

Lemma 3.1. Let X ∼ N(θ ,σ2) and let h(X) be a continuously differentiable func-
tion such that E[h′(X)] is finite. Then E[(X −θ)h(X)] = σ2E[h′(X)].

The multivariate extension given next follows from a one variable at a time applica-
tion of Lemma 3.1 if stringent conditions are placed on h(·), but it follows under the
much weaker stated conditions using Stoke’s theorem. Stein’s (1981) development
does not use Stokes theorem but is essentially equivalent.

Lemma 3.2. Suppose X has distribution (3.1.1). If h : Rp → Rp is an almost differ-
entiable function with Eθ [∇′h(X)] < ∞, then

Eθ [(X −θ)′h(X)] = σ2Eθ [∇′h(X)].

An expression for the risk function follows easily from this result.

Theorem 3.1. Suppose X ∼ Np(θ ,σ2I), and consider the estimator δ (X) = X +
σ2g(X) of θ under loss (3.1.2). Assume g : Rp → Rp is an almost differentiable
function for which Eθ [∇′g(X)] < ∞, then

R(θ ,δ ) = pσ2 +σ4Eθ [||g(X)||2 +2∇′g(X)].

Proof. R(θ ,δ ) = Eθ [||X +σ2g(X)−θ ||2] = Eθ [||X−θ ||2 +σ4||g(X)||2 +2σ2(X−
θ)′g(X)], and so, by using Lemma 3.2 on the final term,

R(θ ,δ ) = pσ2 +σ4Eθ [||g(X)||2 +2∇′g(X)],

which completes the proof. �

The next result also follows immediately from the Theorem 3.1.
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Corollary 3.1. Under the conditions of Theorem 3.1,

(a)pσ2 +σ4(||g(X)||2 +2∇′g(X)) is the UMVUE of the risk function of (X), and
(b)A sufficient condition for δ (X), to dominate X (and hence be minimax) is that

||g(X)||2 + 2∇′g(X) ≤ 0 a.e., and that strict inequality hold on a set of positive
measure.

A very useful version of the result follows easily for estimators of Baranchik’s
(1964) form, which include the James-Stein class.

Corollary 3.2. Let X ∼ Np(θ ,σ2I)(p ≥ 3), and δ (X) = X +σ2g(X) where g(X) =

−
(

r(‖X‖2)
‖X‖2

)
X, for r(.) a non-decreasing function such that 0 < r(.)≤ 2(p−2), and

assume there is strict inequality on a set of positive measure. Then, for quadratic
loss (3.1.2), δ (X) has smaller risk than X and is thus minimax.

Proof. To prove this result, from Corollary 3.1, we need only show that [||g(X)||2 +
2∇′g(X)] ≤ 0. Notice that

||g(X)||2 +2∇′g(X) =
∥∥∥−

( r(‖X‖2)
‖X‖2

)
X
∥∥∥2

+2∇′
(−r(‖X‖2)X

‖X‖2

)
.

Now

2∇′
( r(‖X‖2)X

‖X‖2

)
= 2(p−2)

( r(‖X‖2)
‖X‖2

)
+4

( r′(‖X‖2)
‖X‖2

)
≥ 2(p−2)Eθ

[ r(‖X‖2)
‖X‖2

]

since r(·) is a nondecreasing function. Further, since 0 < r(.) ≤ 2(p−2),

∥∥∥−
( r(‖X‖2)

‖X‖2

)
X
∥∥∥2

=
r2(‖X‖2)
‖X‖2 ≤ 2(p−2)

( r(‖X‖2)
‖X‖2

)
.

Thus

||g(X)||2 +2∇′g(X) ≤ 2(p−2)Eθ
( r(‖X‖2)

‖X‖2

)
−2(p−2)Eθ

[ r(‖X‖2)
‖X‖2

]
= 0,

and the result follows, since the inequality is strict on a set of positive measure. �

If we take the function r(t)≡ a, then the estimator is a James-Stein type estimator
and is seen to be minimax for 0 ≤ a ≤ 2(p−2). A closer look at the proof for this
case also gives the risk (since r′(t) is 0) as pσ2 +a(a−2(p−2))σ4Eθ [1/||X ||2], and
hence a = (p−2) is the uniformly best choice (since a = (p−2) minimizes a(a−
2(p− 2))). Further, a simple calculation, shows that the risk at θ = 0, is equal to
2σ2 (compared to pσ2 for the estimator X) regardless of the dimension, p, provided
that p ≥ 3. Hence a substantial savings in risk is possible in a neighborhood of 0.
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3.1.2.2 Bayes Minimax Shrinkage Estimators

Under the model (3.1.1) and loss (3.1.2), a (generalized) Bayes estimator with re-
spect to a prior distribution π(θ) on θ is given by the posterior expectation of
θ ,E[θ |X ], which has the following representation:

δ (X) = E[θ |X ] = X +σ2E[(θ −X)/σ2|X ] = X +σ2g(X),

where g(X) is given by

g(X) =
∫ {(θ −X)/σ2}exp{−(x−θ)2/2σ2}π(θ)dθ∫

exp{−(x−θ)2/2σ2}π(θ)dθ
= ∇m(X)/m(X),

and m(X) =
∫

exp{−(x−θ)2/2σ2}π(θ)dθ/(2πσ)p/2 is the marginal distribution
of X .

We will variously refer to such estimators of the form

δ (X) = X +σ2∇m(X)/m(X) (3.1.4)

as (proper) Bayes, or generalized Bayes according as m(X) arises from a proper or
generalized prior π(θ). We will use the term Pseudo-Bayes (see, e.g., Bock, 1988)
if the function m(X) is (weakly) differentiable, but may not be the marginal corre-
sponding to any (proper or generalized) prior distribution. For example, the James-
Stein type estimators are Pseudo-Bayes in this sense, corresponding to m(X) =
‖X‖−2a, where a = (p−2)/2 corresponds to the James-Stein estimator itself.

The next result is a basic minimaxity result for such estimators.

Theorem 3.2. Suppose X ∼ Np(θ ,σ2I), and consider the estimator (3.1.4) of θ
under loss (3.1.2). The risk function (provided E[||g(X)||2] < ∞) is given by

R(θ ,δ )= pσ2 +σ4E
[2m(X)∇2m(X)−||∇m(X)||2

(m(X))2

]
= pσ2 +4σ4E

[∇2(m(X))1/2

(m(X))1/2

]
.

The proof of the first expression is a straightforward application of Theorem 3.1 to
the estimator of the form (3.1.4). The second expression follows from the first by
direct calculation.

An immediate and useful corollary is the following.

Corollary 3.3. An estimator of finite risk of the form (3.1.4) is minimax (and domi-
nates X) provided either

(a)m(X) is superharmonic (i.e., ∇2m(X) ≤ 0) (and strictly superharmonic on a set
of positive measure),

(b)m(X)1/2 is superharmonic (and strictly superharmonic on a set of positive mea-
sure), or

(c)If the estimator is generalized Bayes and π(θ) is superharmonic (and strictly
superharmonic on a set of positive measure).
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Further, (c) implies (a) implies (b).

Proof. The proof of (a) and (b), as well as the implication that (a) implies (b), is
immediate from Theorem 3.2. Also the proof of (c), and that (c) implies (a), follows
from the fact that the average of superharmonic functions is superharmonic (m(X)
is the average of π(θ) with respect to a Np(X ,σ2I) distribution). �

It is interesting to note that estimators of the James-Stein type (corresponding to
m(X) = ||X ||−2a) are shown to be minimax for 0 < a ≤ (p− 2) using part (a), and
for 0 < a ≤ 2(p− 2) using part (b). This follows since, as can easily be checked,
m(X) = ||X ||−2a is superharmonic for 0 ≤ a ≤ (p− 2). Hence part (b), although
more complicated, is substantially more powerful than part (a).

Incidentally, the inclusion of a = 0 in the range of values for minimaxity is jus-
tified since a = 0 corresponds to the estimator X itself, which is minimax, but of
course does not (strictly) dominate itself. Interestingly, the same holds true of the
inclusion of a = 2(p−2) for minimaxity, but not domination over X . This is so since
X and the James-Stein estimator with a = 2(p−2) have the same risk function (e.g.,
see the discussion after Corollary 3.2).

While Theorem 3.2 gives a quite general result for minimaxity of Bayes estima-
tors, it is sometimes (often) more convenient to use Corollary 3.2 directly to prove
minimaxity of (generalized, proper, or pseudo-) Bayes estimators. As an example,
consider the following class of hierarchical generalized and proper Bayes minimax
estimators.

Example 3.1. (Strawderman, 1971). Suppose the prior distribution has the two
stage prior.

First stage: θ |λ ∼ Np(0,{(1−λ )/λ}σ2I);
Second stage: λ ∼ (1+b)λ b for 0 < λ < 1.

The proper (if b > −1) or generalized Bayes estimator is given by

δπ(X) = E(θ |X) = E[E(θ |X ,λ )|X ] = {1−E(λ |X)}X .

The second equality follows since the first stage conditional distribution of θ
given X and λ is Np((1−λ )X ,(1−λ )σ2I) by a standard conjugate Bayes calcula-
tion. A direct way to calculate the Bayes estimator δπ(X) is to use the expression
(3.1.4).

Note that the distribution of X conditional on λ is equal to the distribution of (X−
θ)+θ conditional on λ or Np(0(σ2/λ )I). Hence m(x)∝

∫ 1
0 λ

p
2 +b exp{−λ‖x‖2

2σ2 }dλ ,
and so

δπ(X) = X +σ2∇m(X)
m(X)

=

{
1−σ2

∫ 1
0 λ

p
2 +b+1 exp(−λ‖x‖2

2σ2 )dλ

σ2
∫ 1

0 λ
p
2 +b exp(−λ‖x‖2

2σ2 )dλ

}
X . (3.1.5)

The following result gives the conditions under which the above Bayes estimator is
minimax.
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Theorem 3.3. (a) For p ≥ 3 the estimator (3.1.5) is generalized Bayes and minimax
provided − (p+2)

2 < b ≤ (p−6)
2 . (b) For p ≥ 5 the estimator (3.1.5) is proper Bayes

and minimax provided −1 < b ≤ (p−6)
2 .

Proof. The estimator (3.1.5) is of the Baranchik form as in Corollary 3.2 with

r(||X ||2) = (||X ||2/σ2)

{∫ 1
0 λ

p
2 +b+1 exp

(− λ‖x‖2

2σ2

)
dλ

∫ 1
0 λ

p
2 +b exp

(− λ‖x‖2

2σ2

)
dλ

}
.

Note that p/2+b > −1 is required for the integrals to exist, and that this is the first
inequality in part (a), i.e., is a condition for the estimator to be generalized Bayes.
Note too, that the first inequality in part (b) is the condition for the estimator to be
proper Bayes.

Integration by parts in the numerator gives

r(||X ||2) = p+2+2b− 2exp
(− ‖x‖2

2σ2

)
∫ 1

0 λ
p
2 +b exp

(− λ‖x‖2

2σ2

)
dλ

= p+2+2b− 2∫ 1
0 λ

p
2 +b exp

{ (1−λ )‖x‖2

2σ2

}
dλ

.

It is apparent that r(t) ≤ (p + 2 + 2b) and is non increasing. Hence the estimator
(3.1.5) is minimax by Corollary 3.2 provided 0 < p + 2 + 2b ≤ 2(p− 2), which is
equivalent to the second inequality in both (a) and (b). Also, the inequality in (a)
requires that p ≥ 3 and in (b), that p ≥ 5. This completes the proof. �

Strawderman (1972) showed that no proper Bayes minimax estimators exist for
p < 5. The following result extends the above class of Bayes minimax estimators to
include shrinkage functions that are not necessarily monotone. It is essentially the
main result in Fourdrinier, Strawderman, and Wells (1998) (FSW).

Theorem 3.4. Suppose θ has a prior distribution with the following hierarchical
structure: θ |λ ∼ Np(0,σ2(1− λ )λ−1I) and, λ ∼ h(λ ),0 < λ < 1. Then

√
m(X)

is superharmonic (and hence δΠ (X) is minimax) provided h(λ ) satisfies λh′(λ )
h(λ ) =

�1 (λ )+ �2(λ ), where �1 (λ ) ≤ A is nonincreasing in λ , 0 ≤ �2(λ ) ≤ B, 1
2 A + B ≤

(p−6)
4 , limλ→0λ p/2h(λ ) = 0, and limλ→1 h(λ ) <∞. Further, the estimator is proper

Bayes if h() is integrable.
An interesting and useful class of priors to which this result applies are certain

scaled multivariate-t priors. See FSW for the proof and further examples.
George (1986a) studied multiple shrinkage estimators, for example, estimators

for which there are several possible points vi, i = 1,2, . . .k, towards which to shrink.
The goal is to shrink “adaptively” toward one of the points so that the resulting
procedure will be minimax. Again, using the fact that mixtures of superharmonic
functions are superharmonic the following version of one of George’s results follows
immediately from Corollary 3.3.
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Theorem 3.5. Suppose πα(θ), α ∈ A, is a collection of superharmonic (general-
ized) priors with corresponding marginals mα(X). Let λ (α) be any finite mixing
distribution on α ∈ A. Then

(a)π(θ) =
∫
πα(θ)h(α)dα is superharmonic with corresponding superharmonic

marginal m(x) =
∫

mα(X)h(α)dα .
(b)The resulting generalized (or pseudo-, if mα(X) are given but don’t correspond

to a prior) Bayes estimator is minimax.

Example 3.2. Suppose vi, i = 1,2, . . .k are vectors in Rp, and mi(X) = 1
‖X−νi‖2b for

0 < b < (p− 2)/2. Let m(X) = 1
k

k
∑

i=1
mi(X). Then mi(X) and m(X) are superhar-

monic and the resulting pseudo-Bayes estimator given by

δm(X) = X − 2bσ2∑k
i=1{(X −νi)/‖X −νi‖2b+2}
∑k

i=1(1/‖X −νi‖2b)

is minimax. This estimator “adaptively” shrinks X toward the “closest” vi or alter-
natively, δm(X) is a weighted combination of James-Stein like estimators shrinking
toward the vi with greater weights 1/||X −νi||2b put on the vi closest to X . While
this estimator is pseudo-Bayes, a similar generalized Bayes is easily given whereby
π(θ) = ∑k

1(1/‖θ −νi‖2b) and 0 ≤ b ≤ (p−2)/2.
It is interesting to note that the result as given is confined to priors or marginals

which are superharmonic (0≤ b≤ (p−2)/2), and not “square-root” superharmonic
(0 ≤ b ≤ p−2). This is because it need not be that a mixture of square-root super-
harmonic functions is itself square root superharmonic. As FSW show, a superhar-
monic marginal or prior cannot be proper, and hence the above result doesn’t apply
to mixtures of proper priors.

3.1.3 Results for Known Σ and General Quadratic Loss

3.1.3.1 Results for the Diagonal Case

Much of this section is based on the discussion in Strawderman (2003). We begin
with a discussion of the multivariate normal case where Σ is diagonal. Let

X ∼ Np(θ ,Σ), (3.1.6)

where Σ is diagonal, Σ = diag(σ2
1 , . . . ,σ2

p) and loss equal to a weighted sum of
squared errors loss

L(θ ,δ ) = (δ −θ)′D(δ −θ) = Σ(δi −θi)2di (3.1.7)
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The results of the previous section extend by the use of Stein’s Lemma in a straight-
forward way to give the following basic theorem.

Theorem 3.6. Let X have the distribution (3.1.6) and let the loss be given by (3.1.7).

(a)If δ (X) = X +Σg(X), where g(X) is weakly differentiable and E||g||2 < ∞, then
the risk of δ is

R(δ ,θ) = Eθ [(δ −θ)′Q(δ −θ)] = tr(ΣD)+Eθ
[ p

∑
i=1
σ4

i di

{
g2

i (X)+2
∂gi(X)
∂Xi

}]
.

(b)If θ ∼ π(θ), then the Bayes estimator of θ is δΠ (X) = X +Σ ∇m(X)
m(X) , where m(X)

is the marginal distribution of X.
(c)If θ ∼ π(θ), then the risk of a proper (generalized, pseudo-) Bayes estimator of

the form δm(X) = X +Σ ∇m(X)
m(X) is given by

R(δm,θ) = tr(ΣD)+Eθ

[
2m(X)∑p

i=1σ
4
i di

∂m2(X)
∂ 2Xi

m2(X)
−
∑p

i=1σ
4
i di

(
∂m2(X)
∂ 2Xi

)2

m2(X)

]

= tr(ΣD)+4Eθ
[∑p

i=1σ
4
i di∂ 2

√
m(X)/∂ 2Xi√

m(X)

]
.

(d)If ∑
p
i=1σ

4
i di∂ 2

√
m(X)/∂ 2Xi√

m(X)
is non-positive, the proper (generalized, pseudo-) Bayes

δm(X) is minimax.

The proof follows closely that of corresponding results in Section 3. The result
is basically from Stein (1981).

A key observation that allows us to construct Bayes minimax procedures for this
situation, based on the procedures for the case Σ = D = I, is the following.

Lemma 3.3. Suppose η(X) is such that ∇2η(X) = ∑p
i=1 ∂

2η(X)/∂ 2X2
i ≤ 0 (i.e.

η(X) is superharmonic) then η∗(X) = η(Σ−1D−1/2X) is such that

p

∑
i=1
σ4

i di∂ 2η∗(X)/∂ 2Xi ≤ 0.

The proof is a straightforward calculation. Details can be found in Strawderman
(2003).

Note, also, that for any scalar, a, if η(X) is superharmonic, then so is η(aX).
This all leads to the following main result.

Theorem 3.7. Suppose X has distribution (3.1.6) and loss is given by (3.1.7).

(a)Suppose
√

m(X) is superharmonic (m(X) is a proper, generalized, or pseudo-
marginal for the case Σ = D = I). Then
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δm(X) = X +Σ

(
∇m(Σ−1D−1/2X)
m(Σ−1D−1/2X)

)

is a minimax estimator.

(b)If
√

m(‖X‖2) is spherically symmetric and superharmonic, then

δm(X) = X +
2m′(X ′Σ−1D−1Σ−1X)D−1Σ−1X

m(X ′Σ−1D−1Σ−1X)

is minimax.
(c)Suppose π(θ) has the hierarchical structure θ |λ ∼ Np(0,Aλ ) for λ ∼ h(λ ), 0 <
λ < 1, where Aλ = (c/λ )ΣDΣ −Σ and c is such that A1 is positive definite and
h(λ ) satisfies the conditions Theorem 3.3. Then

δπ(X) = X +Σ
∇m(X)
m(X)

is minimax.
(d)Suppose mi(X), i = 1,2, . . . ,k, are superharmonic, then the multiple shrinkage

estimator

δm(X) = X +Σ
{∑k

i=1∇mi(Σ−1D−1/2X)

∑k
i=1 mi(Σ−1D−1/2X)

}

is a minimax multiple shrinkage estimator.

Proof.

(a)This follows directly from Theorem 3.6 parts (c) and (d) and Lemma 3.3.
(b)This follows from part (a) and Theorem 3.6 part (b) with a straightforward cal-

culation.
(c)First note that θ |λ ∼ Np(0,Aλ ) and X − θ |λ ∼ Np(0,Σ). Thus, X − θ and θ

are therefore conditionally independent given λ . Hence X |λ ∼ Np(0,Aλ +Σ). It
follows that

m(X) ∝
∫ 1

0
λ p/2 exp

{
− λ

c
(X ′Σ−1D−1Σ−1X)

}
h(λ )dλ

but m(X) = η(X ′Σ−1D−1Σ−1X/c), where
√
η(X ′X) is superharmonic by The-

orem 3.4. Hence by part (b) δπ(X) is minimax (and proper or generalized Bayes
depending on whether h(λ ) is integrable or not).

(d)Since superharmonicity of η(X) implies that of
√
η(X), part (d) follows from

part (a) and superharmonicity of mixtures of superharmonic functions. �

Example 3.3. Pseudo-Bayes minimax estimators. When Σ = D = σ2I, we saw in
Section 3.1.2 that by choosing m(X) = 1

‖X‖2b , the pseudo-Bayes estimator was the

James-Stein estimator δm(X) = (1− 2bσ2

‖X‖2 )X . It now follows from this and part (b)

of Theorem 3.7 that m(X ′Σ−1D−1Σ−1X) = (1/X ′Σ−1D−1Σ−1X)b has associated
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with it the pseudo-Bayes estimator δm(X) = (1− 2bD−1Σ−1

X ′Σ−1D−1Σ−1X
X . This estimator is

minimax for 0 < b ≤ 2(p−2).

Example 3.4. Hierarchical proper Bayes minimax estimator. As suggested by
Berger (1976) suppose the prior distribution has the hierarchical structure θ |λ ∼
Np(0,Aλ ), where Aλ = cΣDΣ −Σ , c > 1/min(σ2

i di) and h(λ ) = (1 + b)λ b, 0 <

λ < 1 for −1 < b ≤ (p−6)
2 . The resulting proper Bayes estimator will be minimax

for p ≥ 5 by Theorem 3.7 part (c) and Example 3.1. For p ≥ 3 the estimator δπ(X)
given in part (c) of Theorem 3.7 is a generalized Bayes minimax provided − (p+2)

2 <

b ≤ (p−6)
2 .

It can be shown to be admissible if the lower bound is replaced by −2, by the
results of Brown (1971) (See also Berger and Strawderman (1996) and Kubokawa
and Strawderman (2007)).

Example 3.5. Multiple shrinkage minimax estimator. It follows from Example
3.3 and Theorem 3.7 that m(X) = ∑k

i=1

{
1

(X−νi)′Σ−1D−1Σ−1(X−νi)

}b
satisfies the con-

ditions of Theorem 3.7 (d) for 0 < b ≤ (p−2)/2 and hence that

δm(X) = X −
2b∑k

i=1

{
[D−1Σ−1(X −νi)]/[(X −νi)′Σ−1D−1Σ−1(X −νi)]b+1

}

∑k
i=1

{
1/[(X −νi)′Σ−1D−1Σ−1(X −νi)]b

}

is a minimax multiple shrinkage (pseudo-Bayes) estimator.
If, as in Example 3.2, we used the generalized prior

π(θ) =
k

∑
i=1

{ 1
(θ −νi)′Σ−1D−1Σ−1(θ −νi)

}b
,

the resulting generalized Bayes (as opposed to pseudo-Bayes) estimators would be
minimax for 0 < b ≤ (p−2)/2.

3.1.3.2 General Σ and General Quadratic Loss

Here we generalize the above results to the case of

X ∼ Np(θ ,Σ), (3.1.8)

where Σ is a general positive definite covariance matrix, and

L(θ ,δ ) = (δ −θ)′Q(δ −θ), (3.1.9)

where Q is a general positive definite matrix. We will see that this case can be
reduced to the canonical form Σ = I and Q = diag(d1,d2 . . . ..dp) = D. We continue
to follow the development in Strawderman (2003).
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The following well known fact will be used repeatedly to obtain the desired gen-
eralization.

Lemma 3.4. For any pair of positive definite matrices, Σ and Q, there exits a non-
singular matrix A such that AΣA′ = I and (A′)−1QA−1 = D where D is diagonal.

Using this fact we can now present the canonical form of the estimation problem.

Theorem 3.8. Let X ∼ Np(θ ,Σ) and suppose that the loss is L1(δ ,θ) = (δ −
θ)′Q(δ − θ). Let A and D be as in Lemma 3.4, and let Y = AX ∼ Np(v, I), where
v = Aθ , and L2(δ ,v) = (δ − v)′D(δ − v).

(a)If δ1(X) is an estimator with risk function R1(δ1,θ) = EθL1(δ1(X),θ), then
the estimator δ2(Y ) = Aδ1(A−1Y ) has risk function R2(δ2,v) = R1(δ1,θ) =
EθL2(δ2(Y ),v).

(b)δ1(X) is proper or generalized Bayes with respect to the proper prior distribu-
tion π1(θ) (or pseudo-Bayes with respect to the pseudo-marginal m1(X)) under
loss L1 if and only if δ2(Y ) = Aδ1(A−1Y ) is proper or generalized Bayes with re-
spect to π2(v) = π1(A−1v) (or pseudo-Bayes with respect to the pseudo-marginal
m2(Y ) = m1(A−1Y )).

(c)δ1(X) is admissible (or minimax or dominates δ ∗1 (X)) under L1 if and only if
δ2(Y )= Aδ1(A−1Y ) is admissible (or minimax or dominates δ ∗2 (Y )= Aδ ∗1 (A−1Y )
under L2).

Proof.

(a)The risk function

R2(δ2,v) = EθL2[δ2(Y ),v] = Eθ [(δ2(Y )− v)′D(δ2(Y )− v)]

= Eθ [{Aδ1(A−1(AX))−Aθ}′D{Aδ1(A−1(AX))−Aθ}]
= Eθ [(δ1(X)−θ)′A′DA(δ1(X)−θ)]
= Eθ [(δ1(X)−θ)′Q(δ1(X)−θ)] = R1(δ1,θ).

(b)The Bayes estimator for any quadratic loss is the posterior mean. Hence, since
θ ∼ π1(θ) and v = Aθ ∼ π2(v) = π1(A−1v) (ignoring constants) then

δ2(Y ) = E[v|Y ] = E[Aθ |Y ] = E[Aθ |AX ] = A E[θ |X ] = A δ1(X) = Aδ1(A−1Y ).

(c)This follows directly from part (a). �

Note: If Σ 1/2 is the positive definite square root of Σ and A = PΣ−1/2 where P is
orthogonal and diagonalizes Σ 1/2QΣ 1/2, then this A and D = PΣ 1/2QΣ 1/2P′ satisfy
the requirements of the theorem.

Example 3.6. Proceeding as we did in Example 3.3 and applying Theorem 3.8,

m(X ′Σ−1Q−1Σ−1X) = (X ′Σ−1Q−1Σ−1X)−b

has associated with it, for 0 < b ≤ 2(p−2), the pseudo-Bayes minimax James-Stein
estimators is
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δm(X) =
{

1− 2bQ−1Σ−1

X ′Σ−1Q−1Σ−1X

}
X .

Generalizations of Example 3.4 to hierarchical Bayes minimax estimators and
Example 3.5 to multiple shrinkage estimators are straightforward. We omit the de-
tails.

3.1.4 Conclusion and Extensions

I have attempted to present a development of much of what is known regarding
Bayes minimax estimation of the mean vector of a multivariate normal mean vector
under quadratic loss when the covariance is known. The presentation is designed to
highlight the essential fact that the basic case is that of the identity covariance matrix
and diagonal loss, and that general results flow with relative ease from that case. The
approach has been more decision theoretic than purely Bayesian and puts substantial
emphasis on minimaxity and Stein estimation. It has followed fairly closely the
development in Strawderman (2003) (see also Brandwein and Strawderman, 2005).

Below are some of the areas we have not covered together with a few references
that contain additional related references so that the interested reader may learn
more.

The unknown covariance case. Strawderman (1973) found proper Bayes minimax
estimators for the multivariate normal case when Σ = σ2I (σ2 unknown) and the
loss is scaled squared error loss. Berger et al. (1977), Gleser (1979), and Lin and Tsai
(1973) found minimax Stein-like estimators for the case of completely unknown Σ
and general quadratic loss. See also Maruyama and Strawderman (2005).

The non-normal location vector case. Strawderman (1974) developed Baranchik-
type and also generalized Bayes minimax estimators of the mean vector of a scale
mixture of multivariate normal distributions under squared error loss. Brandwein
and Strawderman (1978) and Brandwein (1979) gave Baranchik-type minimax esti-
mators for spherically symmetric unimodal and spherically symmetric distributions
respectively under squared error loss. Berger (1975) also gave similar results but
with different methods of proof in the spherically symmetric case. See also Shi-
nozaki (1984), Brandwein and Strawderman (1991), Cellier and Fourdrinier (1995),
Fourdrinier and Strawderman (1996), Maruyama (2003a and 2003b), Fourdrinier,
Kortbi, and Strawderman (2008), and Fourdrinier and Strawderman (2008).

Non-quadratic loss. Brandwein and Strawderman (1978) gave minimax Baranchik-
type estimators for spherically symmetric distributions when the loss function is
a concave function of quadratic loss. Hwang and Casella (1982) and Casella and
Hwang (1983) gave shrinkage based confidence sets.

Admissibility. Brown (1966) establishes admissibility (for p < 3) and inadmissibil-
ity conditions (for p ≥ 3), for the best equivariant estimator of a location parameter
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under a very general loss function. Brown (1971) gave conditions on the prior dis-
tribution under which a Bayes estimator is admissible or inadmissible for the known
covariance, quadratic loss case. See also Berger and Strawderman (1996), Berger,
Strawderman, and Tang (2005), and Kubokawa and Strawderman (2007).

Non-location problems. See Clevensen and Zidek (1975) for Bayes minimax
shrinkage estimators for several Poisson parameters, Berger (1980) for estimation of
multiple Gamma scale parameters, and Tsui (1979) and Hwang (1982) for discrete
exponential families.

3.2 Bayesian Predictive Density Estimation

Edward I. George and Xinyi Xu

Predictive analysis, which extracts information from historical and current data to
predict future trends and behavior patterns, is one of the most fundamental and
important areas in statistics. Of the many possible forms a prediction can take, the
richest is a predictive density, a probability distribution over all possible outcomes.
Such a comprehensive description of future uncertainty opens the door to sharper
risk assessment and better decision making. The statistical challenge of course is
how to estimate an unknown predictive density from historical or current data. For
this purpose, the Bayesian approach of introducing a prior on the unknowns provides
a natural and immediate answer. For example, suppose we observe data X ∼ p(x|θ)
with unknown parameter θ and wish to predict Y ∼ p(y|θ). Given a prior π on θ , it
follows from purely probabilistic considerations that a natural estimate of p(y|θ) is
the predictive density

p̂π(y|x) =
∫

p(y|θ)π(θ |x)dθ , (3.2.1)

where π(θ |x) is the posterior distribution of θ . The sheer generality of this formula-
tion provides a systematic approach to estimating p(y|θ) in a wide variety of setups.
For instance, in subsequent sections we will illustrate how such predictive density
estimates can borrow strength by combining information across dimensions in a
multivariate setting and how they can adapt under model uncertainty in a regression
setup. Furthermore, modern developments in numerical and simulation methods,
such as Markov Chain Monte Carlo, and the rapid growth in computing power have
unleashed the potential of these Bayesian predictive methods even in rather compli-
cated settings.

Although a subjective Bayesian would find the predictive formulation above to
be compelling, a skeptical frequentist might wonder how one should go about se-
lecting a “good” prior or, for that matter, why should one even restrict attention to
a Bayesian predictive density in the first place. At it turns out, these questions can
be answered within a statistical decision theory framework, at least for certain for-
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mulations. In such a framework, the performance potential of a density estimator
p̂(y|x) of p(y|θ) is evaluated by a loss L(p, p̂) which is typically averaged over x or
θ or both (Berger, 1985). An appealing loss function here is the Kullback-Leibler
(KL) or entropy loss,

L(p, p̂) =
∫

p(y|θ) log
p(y|θ)
p̂(y|x) dy, (3.2.2)

which when averaged with respect to p(x|θ) leads to a measure of average long run
performance, the KL risk criterion

RKL(p, p̂) =
∫

p(x|θ)L(p, p̂)dx. (3.2.3)

Aitchison (1990) noted that the KL loss is coherent here in the sense that for a
given π(θ), the Bayes rule under RKL(p, p̂) is p̂π(y|x), a property not shared for
example by the symmetrized KL loss. For further discussion of the many attractive
properties of KL loss, including considerations of information theory, proper local
scoring and invariance, see Bernardo and Smith (1994) and the references therein.
A more general class of loss functions, the divergence losses, have been considered
for prediction in Ghosh, Mergel, and Datta (2008).

A traditional approach to predictive density estimation has been to substitute an
estimator θ̂ for θ and then use p̂(y|x) = p(y|θ̂). Although appealing in its simplic-
ity, this commonly used “plug-in” approach has been shown by many to often lead
to inferior predictive density estimators (Aitchison, 1975; Levy and Perng, 1986;
Geisser, 1993; Komaki, 1996; Barberis, 2000; Tanaka and Komaki, 2005; Tanaka,
2006). In particular, Aitchison (1975) showed that maximum likelihood plug-in den-
sity estimators for Gamma models and for normal models are uniformly dominated
under RKL(p, p̂) by Bayesian predictive estimators based on flat priors (π(θ) ≡ 1).
Intuitively, the problem with plug-in estimators is that they ignore the uncertainty
about θ by treating it as if were known and equal to θ̂ . In contrast, the Bayesian
approach directly addresses this parameter uncertainty by margining out θ with re-
spect to a prior distribution, thereby incorporating it into the density estimator.

We note in passing that for plug-in estimators, KL predictive risk is closely re-
lated to squared error estimation risk since by a Taylor expansion

RKL(p(y|θ), p(y|θ̂)) ≈ I(θ)
2

E(θ − θ̂)2, (3.2.4)

where I(θ) is the Fisher information. However, for Bayesian predictive estimators,
this simple relationship does not hold. In fact, a Bayes rule does not necessarily
belong to the class {p(y|θ) : θ ∈ Rp}, i.e., p̂π(y|x) does not correspond to a “plug-
in” estimator for θ , although under suitable conditions on π , p̂π(y|x) → p(y|θ) as
the sample size n → ∞. Interestingly, as will be described in the next section, for
Bayesian predictive densities under the multivariate normal model, there is a direct
relationship between the KL predictive risk and the squared error estimation risk, a
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connection that was established using Stein’s unbiased estimate of risk in George,
Liang, and Xu (2006).

The main challenge for the implementation of the Bayesian predictive approach
is the choice of an appropriate prior π . Ideally, such a choice would be guided by
meaningful subjective information. However, such information is often not avail-
able, especially in complicated problems with many unknown parameters. As noted
by Liang et al. (2008), “Subjective elicitation of priors for model-specific coeffi-
cients is often precluded, particularly in high-dimensional model spaces, such as in
nonparametric regression using spline and wavelet bases. Thus, it is often necessary
to resort to specification of priors using some formal method (Kass and Wasserman,
1995; Berger and Pericchi, 2001).” Perhaps the simplest such “objective” approach
is to attempt to reduce prior influence by using a diffuse prior such as a flat prior.
Although such priors may yield reasonable procedures in low dimensional settings,
such priors can also lead to inadequate predictive estimators, especially in high di-
mensional settings (see, e.g., Jeffreys, 1961; Berger and Bernardo, 1989).

Ultimately, a criterion such as the KL risk function described above provides
a statistical decision theory framework in which the performance properties of
Bayesian predictive densities can be compared and evaluated. Recent work using
this approach has been fruitful for a number of high dimensional problems. In par-
ticular, work by Komaki (2001), Liang and Barron (2004), George, Liang, and Xu
(2006), and Brown, George, and Xu (2008) has established conditions for minimax-
ity and admissibility as well as complete class results for Bayesian predictive density
estimators in the fundamental multivariate normal setup. For distributions beyond
the normal, new KL risk results for Bayesian predictive densities have been devel-
oped by Aslan (2006), Hartigan (1998), Komaki (1996, 2001, 2004), and Sweeting,
Datta, and Ghosh (2006). In the following sections, we begin by describing the
multivariate normal results in more detail, showing how they lead to uniformly im-
proved Bayesian predictive density estimators over those based on uniform priors.
We then proceed to describe how these results can be extended to the linear regres-
sion setting. After a simulated illustration of the potential of some of these Bayesian
predictive estimators, we conclude with a discussion of directions for future research
in this area.

3.2.1 Prediction for the Multivariate Normal Distribution

We now focus exclusively on predictive density estimation for the multivariate
normal distribution, the centerpiece of parametric models. For this setup, we ob-
serve X |μ ∼ Np(μ ,vxI) and wish to predict Y |μ ∼ Np(μ ,vyI), two independent
p-dimensional multivariate normal vectors with common unknown mean μ . Here
vx > 0 and vy > 0 are assumed to be known. By a sufficiency and transformation
reduction, this problem is equivalent to estimating the predictive density of Xn+1

based on observing X1, · · · ,Xn where X1, · · · ,Xn|θ i.i.d. ∼ Np(θ ,Σ) with unknown
θ and known Σ .
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The Bayesian predictive density p̂U under the uniform prior πU (θ) ≡ 1, namely

p̂U (y|x) =
1

{2π(vx + vy)}
p
2

exp

{
− ‖y− x‖2

2(vx + vy)

}
, (3.2.5)

dominates the plug-in rule p(y|θ̂MLE), which substitutes the maximum likelihood
estimate θ̂MLE = x for θ (Aitchison, 1975). Moreover, it is best invariant and min-
imax with constant risk (Murray, 1977; Ng, 1980; Liang and Barron, 2004), and is
admissible when the model dimension p = 1 or 2 (Liang and Barron, 2004; Brown,
George, and Xu, 2008). However, when p ≥ 3, it turns out that p̂U (y|x) can be fur-
ther dominated by other predictive estimators. Indeed, Komaki (2001) showed that
p̂H , the Bayesian predictive density under the Harmonic prior πH(β ) ∝ ‖β‖−(p−2)

dominates p̂U when the number of potential predictors p ≥ 3. Similarly, Liang and
Barron (2004) showed that proper Bayes rules p̂a under Strawderman priors πa(β ),
which are defined hierarchically as β |s ∼ Np(0,sv0I),s ∼ (1+ s)a−2, also dominate
p̂U when p ≥ 5.

It is interesting to note that these results closely parallel some key developments
concerning minimax estimation of a multivariate normal mean under quadratic loss.
Based on observing X |θ ∼ Np(θ , I), that problem is to estimate θ under

RQ(θ , θ̂) = E‖θ̂ −θ‖2. (3.2.6)

The maximum likelihood estimator θ̂MLE , which is best invariant, minimax and ad-
missible when p = 1 or 2, is dominated by the Bayes rules θ̂π =

∫
θ π(θ |x)dθ under

the Harmonic prior (Stein, 1974) and under the Strawderman prior (Strawderman,
1971) in high dimensions. Note that in the predictive density estimation problem,
p̂U plays the same “straw man” role as θ̂MLE in the point estimation problem. A
further connection between θ̂MLE and p̂U is revealed by the fact that θ̂MLE can also
be motivated as the Bayes rule under the uniform prior πU (θ) ≡ 1.

George, Liang, and Xu (2006) drew out these parallels by establishing a unifying
theory that not only subsumes the specialized results of Komaki (2001) and Liang
and Barron (2004), but can also be used to construct large new classes of improved
minimax Bayesian predictive densities. Their developments began by showing that
any Bayes predictive density p̂π can be represented in terms of the uniform prior
estimator p̂U and the corresponding marginal mπ , namely

p̂π(y|x) =
mπ(w;vw)
mπ(x;vx)

p̂U (y|x), (3.2.7)

where W = vyX+vxY
vx+vy

is a weighted average of X and Y . The principal benefit of the
representation (3.2.7) is that it reduces the KL risk difference between p̂π and p̂U to
a simple functional of the marginal mπ(z;v)



3.2 Bayesian Predictive Density Estimation 87

RKL(θ , p̂U )−RKL(θ , p̂π) = Eθ ,vw logmπ(W ;vw)−Eθ ,vx logmπ(X ;vx)

=
∫ vx

vw

∂
∂v

Eθ ,v logmπ(Z;v)dv. (3.2.8)

Using the heat equation, Brown’s representation (Brown, 1971) and Stein’s identity
(Stein, 1981), this risk difference can be represented by

RKL(θ , p̂U )−RKL(θ , p̂π) =
∫ vx

vw

Eθ ,v

(∇2mπ(Z;v)
mπ(Z;v)

− 1
2
‖∇ logmπ(Z;v)‖2

)
dv

=
∫ vx

vw

Eθ ,v

[
2∇2

√
mπ(Z;v)/

√
mπ(Z;v)

]
dv. (3.2.9)

It is easy to see from (3.2.9) that a sufficient condition for a Bayes predictive density
p̂π to be minimax is that mπ(z;v) or

√
mπ(z;v) is superharmonic, or as a direct col-

lary, that the prior π is superharmonic. These conditions are essentially the same as
the minimax condition for the quadratic risk estimation problem. In both problems,
that the Bayes rules under the harmonic prior and the Strawderman prior are min-
imax in high dimensions now follows easily from the fact that their corresponding
marginals or square rooted marginals are superharmonic.

Comparing (3.2.9) with Stein’s unbiased estimate of risk (Stein, 1974, 1981),
George, Liang, and Xu (2006) reveals a fascinating identity that provides a connec-
tion between KL risk reduction to quadratic risk reduction

RKL(θ , p̂U )−RKL(θ , p̂π) =
1
2

∫ vx

vw

1
v2

[
Rv

Q(θ , θ̂ v
U )−Rv

Q(θ , θ̂ v
π)
]

dv. (3.2.10)

Ultimately, it is this connection identity that yields similar sufficient conditions for
minimaxity and domination in these two problems.

Brown, George, and Xu (2008) used the connection identity (3.2.10) to in-
vestigate the admissibility of Bayesian predictive density estimators. As proper
Bayes rules are easily shown to be admissible in the KL risk setting, see Berger
(1985), the focus was on formal Bayes rules. They showed that under essentially
the same tail conditions for π as in Brown and Hwang (1982), there exists a se-
quence of densities {πn} such that

∫
‖θ‖≤1πn(θ)dθ =

∫
‖θ‖≤1π(θ)dθ > 0 and that

BQ(πn, θ̂)−BQ(πn, θ̂πn) → 0, which using (3.2.10) leads to

BKL(πn, p̂π)−BKL(πn, p̂πn) =
1
2

∫ vx

vw

1
v2

[
Bv

Q(πn, θ̂π)−Bv
Q(πn, θ̂πn)

]
dv → 0.

Then by a variant of Blyth’s method, the corresponding Bayes predictive estimator
p̂π is admissible. The admissibility of p̂U when p = 1 or 2, and the admissibility of
the Bayes rule under the harmonic prior when p ≥ 3 follow directly from these tail
conditions.

Going beyond obtaining prior tail conditions for admissibility, Brown, George,
and Xu (2008) established a compelling justification for restricting attention to
Bayesian predictive density estimators for the multivariate normal setup. They
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showed that for this setup, the class of all generalized Bayes rules forms a com-
plete class under the KL risk criterion. Thus, any predictive estimator, including any
plug-in estimator, can at least be matched if not dominated in risk, by some Bayesian
predictive density estimator.

These recent results for the multivariate normal model have laid the foundations
for the development of new predictive methods for more complicated settings. In
particular, the connection identity (3.2.10) provides a bridge between the predictive
density estimation problem and the classic point estimation problem, providing a
tool to borrow strength from some important, beautiful, and fundamental results in
the latter area.

3.2.2 Predictive Density Estimation for Linear Regression

Linear regression models are the mainstay of statistical modeling, in many scenarios
at least providing useful approximations to the relationship between explanatory
variables and the future outcome of interest (Gelman et al., 2003). George and Xu
(2008) and Kobayashi and Komaki (2008) both independently studied the problem
of predictive density estimation under KL loss in a linear regression setting where
they successfully extended a variety of the results discussed in the previous section.

The predictive density estimation problem in this context begins with the canon-
ical normal linear model

Yn×1 = Xn×pβp×1 + εn×1, (3.2.11)

where ε ∼Nn(0,σ2I) and X is a full rank, fixed n× p matrix of p potential predictors
where n≥ p. Based on observing X = x, the goal is to estimate the density of a future
vector Ỹ where

Ỹm×1 = X̃m×pβp×1 + τm×1.

Here τ ∼ Nm(0,σ2I) is independent of ε and X̃ is a fixed m× p matrix of the same
p potential predictors in X with possibly different values. Assume that σ2 is known,
and without loss of generality set σ2 = 1 throughout.

Letting β̂y be the traditional maximum likelihood estimate of β based on the ob-
served data, it is tempting to consider the plug-in predictive estimate p̂plug−in(ỹ|β̂y),
which simply substitutes β̂y for β in p(ỹ|β ). However, as shown by George and Xu
(2008), it can be dominated by the Bayesian predictive density p̂U (ỹ|y) under the
uniform prior π(β ) ≡ 1, namely,

p̂L
U (ỹ|y) =

1

(2πσ2)
p
2 |Ψ |

exp

{
(ỹ− X̃ β̂y)′Ψ−1(ỹ− X̃ β̂y)

2σ2

}
, (3.2.12)
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whereΨ = I + X̃(X ′X)−1X̃ ′. Moreover, p̂L
U has constant risk and is minimax under

the KL loss (Liang and Barron, 2004). Thus, like p̂U in (3.2.5), it plays the role of
straw man in this linear regression setup and is a good default predictive estimator.
But not surprisingly, it can be improved upon by other Bayesian predictive densities
when p ≥ 3.

Analogous to the development in the multivariate normal case, the key marginal
representation for Bayesian predictive estimator p̂L

π in linear regression can be ex-
pressed as

p̂L
π(ỹ|y) =

mπ(β̂y,ỹ,(W ′W )−1)

mπ(β̂y,(X ′X)−1)
p̂L

U (ỹ|y), (3.2.13)

where W = (X ′, X̃ ′)′, β̂y = (X ′X)−1X ′y ∼ Np(β ,(X ′X)−1), and

β̂y,ỹ = (W ′W )−1W ′(x′,y′)′ ∼ Np(β ,(W ′W )−1).

The representation (3.2.13) facilitates the the KL risk comparison of p̂L
U and p̂L

π ,
where the difference takes the form

RKL(β , p̂L
U )−RKL(β , p̂L

π)

= Eβ ,(W ′W )−1 logmπ(β̂y,ỹ;(W ′W )−1)−Eβ ,(X ′X)−1 logmπ(β̂y;(X ′X)−1).

Since (W ′W )−1 and (X ′X)−1 are both symmetric and positive definite, there exists
an invertible p× p matrix P such that

(X ′X)−1 = PP′ and (W ′W )−1 = PΣDP′, (3.2.14)

where ΣD = diag(d1, . . . ,dp). Moreover, di ∈ (0,1] for all 1 ≤ i ≤ p with at least
one di < 1, because (W ′W )−1 = (X ′X + X̃ ′X̃)−1 and X̃ ′X̃ is nonnegative definite.
Therefore, the KL risk difference between p̂U and p̂π can then be represented by

RKL(β , p̂L
U )−RKL(β , p̂L

π) =
p

∑
i=1

(1−di)
∫ 1

di

∂
∂vi

Eβ ,V logmπP(Z,V )dvi,(3.2.15)

where πP(β ) = π(Pβ ) and V = diag(v1, · · · ,vp). Paralleling the development of
(3.2.9), unbiased estimates of the components in (3.2.15) can be obtained. By com-
bining the above results, George and Xu (2008) established that a sufficient con-
dition for p̂L

π to be minimax is trace
{

H(mπ(z;PVwP′))[(X ′X)−1 − (W ′W )−1]
} ≤ 0

or trace
{

H(
√

mπ(z;PVwP′))[(X ′X)−1 − (W ′W )−1]
}
≤ 0 for all 0 ≤ w ≤ 1, where

H( f (z1, · · · ,zp)) is the Hessian matrix of a function f (z1, · · · ,zp). These results pro-
vide substantial generalizations of those in George, Liang, and Xu (2006), and can
be used to construct improved predictive predictive estimators for linear regression
models using scaled harmonic priors, shifted inverted gamma priors, and general-
ized t-priors, following the development in Fourdrinier, Strawderman, and Wells
(1998).
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3.2.3 Multiple Shrinkage Predictive Density Estimation

As will be illustrated in the simulation examples of the next section, Bayesian pre-
dictive density estimators can achieve dramatic risk reduction, but only in relatively
small neighborhoods of prior modes. Thus, a desirable prior will not only satisfy
the minimax and domination conditions above, but will also concentrate prior prob-
ability in a neighborhood of β . Now although β will almost always be unknown,
there will sometimes be good reason to believe that β may be close to a particu-
lar subspace. For example, in large regression problems, it will often be suspected
that at least some subset of the predictors is irrelevant in the sense that their coeffi-
cients, the corresponding components of β , are very small or zero. In this case, this
suspicion would translate into the belief that β might be close to a subspace of β
values for which a subset of components is identically zero. To exploit this possi-
bility, George and Xu (2008) proposed the following minimax multiple shrinkage
predictive estimators that adaptively shrink β towards the subspace most favored by
the data.

First consider the construction of a predictive density estimator that shrinks a
particular subset of the β components towards 0. Let S be the subset of {1, . . . , p}
corresponding to the indices of the irrelevant predictors, and let βS be the subvector
of β corresponding to the columns of X indexed by S. If the components of βS were
in fact small or zero, it would be have been effective to have used a prior, such as
the harmonic prior, that was centered around 0 on βS and was uniform on βS̄, where
S̄ denotes the complement of S. Denoting such a prior by πS and letting π∗S be the
restriction of πS to βS, i.e., π∗S (βS) = πS(β ) is a function of βS only, the Bayesian
predictive density p̂L

πS
(y|x) can be expressed as

p̂π∗S (ỹ|y) =
mπ∗S (β̂S,y,ỹ,(W ′

SWS)−1)

mπ∗S (β̂S,y,(X ′
SXS)−1)

p̂U (ỹ|y).

This shrinkage predictive density estimator offers substantial risk reduction when
the components of βS are all very small or zero by shrinking the posterior on the
corresponding coefficients of β towards 0.

As was mentioned above, there will typically be uncertainty about which subset
of the p predictors in X should be included in the model. Rather than arbitrarily se-
lecting S, an attractive alternative is to use a multiple shrinkage predictive estimator
which uses the data to emulate the most effective p̂πS . Let Ω be the set of all po-
tentially irrelevant subsets S, possibly even the set of all possible subsets. For each
S ∈ Ω , let πS be a shrinkage prior constructed as above, and assign it probability
wS ∈ [0,1] such that ∑S∈Ω wS = 1. Then the mixture prior

π∗(β ) = ∑
S∈Ω

wS πS(β )

will yield a multiple shrinkage predictive estimator
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p̂∗(ỹ|y) = ∑
S∈Ω

p̂(S|y)p̂πS(ỹ|y), (3.2.16)

where p̂(S|y) is the model posterior probability of the form

p̂(S|y) =
wS mπ∗S (β̂S,y,(X ′

SXS)−1)

∑S∈Ω wS mπ∗S (β̂S,y,(X ′
SXS)−1)

.

The expression (3.2.16) shows that p̂∗(y|y) is an adaptive convex combination of
the individual shrinkage predictive estimates p̂πS . Note that through p̂(S|y), p̂∗ dou-
bly shrinks p̂U (ỹ|y) by putting more weight on the p̂πS for which mπ∗S is largest and
p̂πS shrinks most. Thus p̂∗ is adaptive in the sense that it automatically adjusts to
the subset index S for which βS corresponds exactly to the zero or very small com-
ponents of β . We expect p̂∗ to offer meaningful risk reduction whenever any βS is
small for S ∈ Ω , and so the potential for risk reduction using p̂∗ is far greater than
the risk reduction obtained by using an arbitrarily chosen p̂πS .

It should be pointed out that the allocation of risk reduction by p̂∗ is in part
determined by the wS weights in p̂(S|x). Because each p̂(S|y) is so sensitive, through
mπ∗S , to the value of β̂S,y, choosing the weights to be uniform should be adequate.
However, one may also want to consider some of the more refined suggestions in
George (1986b) for choosing such weights.

3.2.4 Simulation Studies

In this section, we demonstrate the shrinkage properties of some Bayesian predictive
densities and their risk improvements over the default procedure under the uniform
prior. To make the illustration simple and easy to understand, we use the multivariate
normal setup from Section 3.2.1 for our simulations. Similar results can be obtained
for linear regression models through direct extensions.

Figure 3.1 illustrates the shrinkage property of the Bayesian predictive density
p̂H(y|x) under the harmonic prior when vx = 1,vy = 0.2 and p = 5. Analogous to
Bayes estimators Eπ(θ |x) of θ that “shrink” θ̂MLE = x, the marginal representa-
tion (3.2.7) reveals that Bayes predictive densities p̂π(y|x) “shrink” p̂U (y|x) by a
multiplicative factor of the form mπ(w;vw)/mπ(x;vx). However, the nature of the
shrinkage by p̂π(y|x) is different than that by Eπ(θ |x). To insure that p̂π(y|x) re-
mains a proper probability distribution, the factor cannot be strictly less than 1. In
contrast to simply shifting θ̂MLE = x towards the mean of π , p̂π(y|x) adjusts p̂U (y|x)
to concentrate more on the higher probability regions of π .

To study the potential risk improvements provided by Bayesian predictive den-
sities, we illustrate the risk differences of p̂U (y|x) with the Bayes rules under the
harmonic prior πH or the Strawderman prior πa with a = 0.5. Because p̂H and p̂a are
unimodal at 0, it intuitively seems that the risk functions RKL(θ , p̂H) and RKL(θ , p̂a)
should take on their minima at θ = 0, and then asymptote up to RKL(θ , p̂U ) as
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FIGURE 3.1. Shrinkage of p̂U (y|x) to obtain p̂H(y|x) when vx = 1,vy = 0.2 and p = 5. Here y =
(y1,y2,0,0,0).

‖θ‖ → ∞. That this is exactly what happens for these priors is illustrated in Fig-
ures 3.2 and 3.3, which display the difference at θ = (c, . . . ,c)′, 0 ≤ c ≤ 4 when
vx = 1 and vy = 0.2 for dimensions p = 3,5,7,9. The largest risk reduction in all
cases occurs close to θ = 0 and decreases rapidly to 0 as ‖θ‖ increases. (Recall that
RKL(θ , p̂U ) is constant as a function of θ ). At the same time, risk reduction by p̂H

and p̂a is larger for larger p at each fixed ‖θ‖. Note that p̂a offers more risk reduction
than p̂H , apparently because it more sharply “shrinks p̂U (y|x) towards 0.” Note also
that when p = 3, [RKL(θ , p̂U )−RKL(θ , p̂a)] is negative for large θ , a manifestation
of the non minimaxity of pa when a = 0.5 and p = 3.

As we have seen in Section 3.2.3, the underlying priors and marginals of the
Bayesian predictive densities can be readily modified to obtain minimax shrinkage
towards subspaces, and linear combinations of superharmonic priors and marginals
can be constructed to obtain minimax multiple shrinkage predictive densities p̂∗ as
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FIGURE 3.2. The risk difference between p̂U and p̂H when θ = (c, · · · ,c),vx = 1,vy = 0.2.
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FIGURE 3.3. The risk difference between p̂U and p̂a with a = 0.5, vx = 1,vy = 0.2, and
θ = (c, · · · ,c).



94 3 Bayesian Decision Based Estimation and Predictive Inference

in (3.2.16), which are analogues of the minimax multiple shrinkage estimators of
George (1986abc). As a result of the shrinkage behavior of p̂∗, we would expect
the risk reduction of RKL(θ , p̂∗) over RKL(θ , p̂U ) to be greatest wherever any βS is
small for S ∈Ω .
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FIGURE 3.4. The risk difference between pU and multiple shrinkage pH∗ , with
θ = (c, · · · ,c),vx = 1,vy = 0.2,a1 = 2,a2 = −2, and w1 = w2 = 0.5.

To see that this is precisely what would happen with p̂H∗ , a multiple shrinkage
version of p̂H in the multivariate normal setting of Section 3.2.1, we consider p̂H∗
obtained analogously to (3.2.16) but using harmonic priors recentered at s1,s2 ∈ Rp,
namely πH1(β ) ∝ ‖β − s1‖−(p−2) and πH2(β ) ∝ ‖β − s2‖−(p−2). Figure 3.4 illus-
trates the risk reduction [RKL(θ , p̂U )−RKL(θ , p̂H∗)] at various θ = (c, . . . ,c)′ ob-
tained by p̂H∗ , which adaptively shrinks p̂U (y|x) towards the closer of the two points
s1 = (2, . . . ,2)′ and s2 = (−2, . . . ,−2)′ using equal weights w1 = w2 = 0.5. As in
Figures 3.2 and 3.3, we considered the case vx = 1,vy = 0.2 for p = 3,5,7,9. As the
plot shows, maximum risk reduction occurs when θ is close to either s1 or s2, and
goes to 0 when θ moves away from these points. At the same time, for each fixed
‖θ‖, risk reduction by p̂H∗ is larger for larger p. It is impressive that the size of the
risk improvement offered by p̂H∗ is nearly the same as each of its single target coun-
terparts. The cost of multiple shrinkage enhancement seems negligible, especially
compared to the benefits.
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3.2.5 Concluding Remarks

Bayesian predictive densities have been widely used in many research areas. Be-
sides predicting future trends and behavior patterns (Taylor and Buizza, 2004; Lewis
and Whiteman, 2006; Weinberg, Brown, and Stroud, 2007), they have also been
used in model checking and model diagnostics (Pardoe, 2001; Gelman et al., 2003;
Sinharay, Johnson, and Stern, 2006), missing data analysis (Rubin, 1996; Gelman,
King, Liu, 1998; Schafer, 1999; Gelman and Raghunathan, 2001; Little and Rubin,
2002), and data compression and information theory (Barron, Rissanen, and Yu,
1998; Clarke and Yuan, 1999; Liang and Barron, 2004).

Recent developments in Bayesian predictive density estimation for
high-dimensional models provide valuable guidance for the construction of predic-
tive estimators for particular setups. However, there are many open directions with
much more to be done, especially for more general model setups. In this vein, Kato
(2009) considered the predictive density estimation problem for a multivariate nor-
mal distribution where both the means and the variances are unknown. The Bayesian
predictive estimator under an improper shrinkage prior was shown to dominate the
default one under the right invariant prior when p ≥ 3 and therefore be minimax. In
another new direction, Xu and Liang (2010) explored the problem of estimating the
predictive density of future observations from a nonparametric regression model.
To evaluate the exact asymptotics of the minimax risk, they derived the convergence
rate and constant for minimax risk among Bayesian predictive densities under Gaus-
sian priors, and then showed that this minimax risk is asymptotically equivalent to
that among all the density estimators. Such results provide not only powerful theo-
retical tools, but also easily implementable prior selection strategies for predictive
analysis.

Acknowledgments: This work was supported by NSF grants DMS-0605102 and
DMS-0907070.

3.3 Automated Bias-variance Trade-off: Intuitive Inadmissibility
or Inadmissible Intuition?

Xiao-Li Meng

Prologue

Seeking an appropriate bias-variance trade-off is a common challenge for any
sensible statistician, especially those at the forefront of statistical applications. Re-
cently, addressing a class of bias-variance trade-off problems for studying gene-
environment interactions, Mukherjee and Chatterjee (2008) adopted an approximate
empirical partially Bayes approach to derive an estimator that amounts to using the
following weighted estimator as a compromise:



96 3 Bayesian Decision Based Estimation and Predictive Inference

β̂c =
(β̂ − β̂0)2

V̂ar(β̂ )+(β̂ − β̂0)2
β̂ +

V̂ar(β̂ )

V̂ar(β̂ )+(β̂ − β̂0)2
β̂0.

Here β̂ and V̂ar(β̂ ) are respectively our point estimator and its variance estimate of
a parameter β under a model, and β̂0 is a more efficient estimator of β under a sub-
model via fixing a nuisance parameter. The intuition here appears to be that since
B̂ = β̂0 − β̂ is an estimate of the bias in β̂0 when the sub-model fails, β̂c should au-
tomatically give more weight to the robust β̂ or the efficient β̂0 depending whether
or not B̂2 is larger than V̂ar(β̂ ). The implication here seems to be that the original β̂
is inadmissible in terms of Mean-Squared Error (MSE) because it is dominated by
β̂c, which appears to possess this magic self-adjusting mechanism for bias-variance
trade-off without needing any assumption beyond those that guarantee the validity
of the original β̂ . But is this intuition itself admissible? This question was posed as
a Ph.D. qualifying exam problem at Harvard, in the context of a bivariate normal
model. This section documents this examination, and concludes with a suggestion
of revisiting the classic theory of admissibility, to which Professor Jim Berger has
made fundamental contributions. The investigation also reveals a partial shrinkage
phenomenon of the partially Bayes method, as well as a misguided insight in the lit-
erature of gene-environment interaction studies. Parts of this section adopt an inter-
lacing style interweaving research investigations with pedagogical probes, honoring
Berger’s prolific contributions in both endeavors.

3.3.1 Always a Good Question ...

To many students, job candidates, and even some seasoned seminar speakers, a few
faculty members are known to be “intimidating.” We pose tough questions, demand
intuitive explanations, challenge superficial answers, and we do so almost indiscrim-
inately. A few students have expressed their surprise to me: “How could you guys be
able to pick on almost any topic, and ask those penetrating questions even for things
you apparently have never worked on?” I cannot speak for my fellow challengers,
but the students are certainly correct that I have never worked on many of these
topics, some of which I heard for the first time before I posed a question. If there is
any secret—or bragging—here, it is the one that many senior statisticians work hard
to pass on to our future generations. That is, there are only a very few fundamental
principles in statistics, and the bias-variance trade-off is one of them. It is so deeply
rooted in almost any statistical analysis, whether the investigator/speaker realizes it
or not. Equipped with a few such powerful weapons, one can fire essentially in any
situation, and almost surely not miss the target by too much.

The story I am about to tell is squarely a case of understanding bias-variance
trade-off. In the context of a genetic study, a speaker mentioned a recent proposal
by Mukherjee and Chatterjee (2008; hereafter M&C) for automatically achieving
an appropriate bias-variance trade-off. The moment I saw the proposed formula, as
given in the prologue, I knew silence would not be golden in this case. The method,
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if it has the properties it was designed for, would have profound general implica-
tions given its simplicity and the practical demand for such “automated” methods.
For the very same reason, however, it could do serious damage if it is applied indis-
criminately but without its advertised properties in real terms.

As it happened, shortly after the seminar I needed to submit a problem for our
Ph.D. qualifying examination. What could be more appropriate to test students’ un-
derstanding of bias-variance trade-off, and at the same time their ability to carry
out a rigorous investigation of a seemingly intuitive idea? The resulting qualifying
exam problem is reproduced in Section 3.3.5 below, and the annotated solution is
given in Section 3.3.6. Before presenting these materials in verbatim, which doc-
ument an effort of integrating research investigation with pedagogical exploration,
obviously the stage needs to be set. This is accomplished by Section 3.3.2, which
discusses a gene-environment interaction study that motivates M&C; and by Sec-
tion 3.3.3, which illustrates M&C’s partially empirical Bayes approach via a bi-
variate normal example. Sections 3.3.2 and Section 3.3.3 also reveal, respectively,
a misguided approximation in the literature of gene-environment interactions, and a
partial shrinkage phenomenon of partially Bayes methods, and therefore they may
be of independent interest. Indeed, Section 3.3.7 concludes with a suggestion of re-
visiting the classic theory of admissibility but with partially Bayes risk, which is
also hoped to be a piece of admissible cake to the birthday-cake tasting (testing?)
event for Jim Berger, an amazingly prolific scholar and Ph.D. adviser.

3.3.2 Gene-Environment Interaction and a Misguided Insight

3.3.2.1 Estimating Multiplicative Interaction Parameter

The motivation for M&C’s proposal appears to be the need to address a bias-
variance trade-off in studying gene-environment interactions. Following their setup,
let E and G be respectively a binary environmental factor and a binary genetic fac-
tor, and D be the binary disease indicator; value “1” of any these binary variables
indicates the presence (e.g., exposed, carrier, or with disease). One key interest here
is to assess if there is a gene-environment (G-E) interaction in their impact on the
odds of developing the disease. Let

O(G,E) =
Pr(D = 1|G,E)
Pr(D = 0|G,E)

,

that is, the odds of disease in the sub-population defined by the pair {G,E}. Then
the so-called multiplicative interaction parameter ψ is defined as

ψ =
O(0,0)O(1,1)
O(1,0)O(0,1)

, (3.3.1)
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which can be remembered as “odds ratio of odds,” by analogy with the well-known
ratio of cross-product expression of an odds ratio (OR), namely, the OR for a bivari-
ate binary distribution P(i, j) = Pr(X = i,Y = j), expressed as

OR(X ,Y ) =
P(0,0)P(1,1)
P(0,1)P(1,0)

.

This analogy also helps us to see why ψ is useful for assessing whether the fac-
tors G and E contribute to the odds of disease in a multiplicative fashion, that is,
whether we can write O(G,E) = g(G)e(E) for some functions g and e. This is be-
cause the mathematical reasoning behind the theorem “OR(X ,Y ) = 1 if and only if
P(i, j) factors” is identical to that for “ψ = 1 if and only if O(G,E) factors.”

Consequently, by assessing whether β = log(ψ) = 0, we can infer whether the
effects of G and E are additive on the logit scale of the disease rate Pr(D = 1|G,E).
In general, to estimate β directly (and therefore to assess it) would require a repre-
sentative sample of {D,G,E}, as hinted by its expression in (3.3.1). Note however,
by Bayes’ Theorem,

O(G,E) =
P(G,E|D = 1)Pr(D = 1)
P(G,E|D = 0)Pr(D = 0)

∝
P(G,E|D = 1)
P(G,E|D = 0)

.

It is then easy to verify that ψ = OR1/OR0, and hence

β = log(ψ) = log(OR1)− log(OR0) ≡ β0 −θ , (3.3.2)

where ORi = OR(G,E|D=i) is the odds ratio for the conditional bivariate binary dis-
tribution P(G,E|D = i), i = 0,1. Consequently, if G and E are conditionally in-
dependent given D = 0, an assumption that will be labeled Assumption (0), then
θ ≡ log(OR0) = 0. This means that under Assumption (0), estimating β would be
the same as estimating β0 ≡ log(OR1), the log odds ratio of the diseased population
(a.k.a., the “cases”). This suggests the use of methods from retrospective sampling
design, which typically is more effective, in terms of sampling cost and/or statistical
efficiency, than prospective designs, especially when the disease prevalence is low;
see Section 3.3.1 of M&C and the references therein.

3.3.2.2 A Potentially Misleading Insight

There is, of course, no free lunch. From a statistical inference perspective, the in-
creased precision comes at the expense of possible serious bias when the assump-
tion θ = 0 fails. Incidently, in M&C, following an argument in Schmidt and Schaid
(1999), this assumption is made as a consequence of another two assumptions: As-
sumption (1) G and E are independent in the general population (that is, not condi-
tioning on the disease status) and Assumption (2) the disease is rare. Whereas these
two assumptions do imply Assumption (0) hold approximately because when the
diseased population is very small, the odds ratio between G and E for the disease-
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free population can be approximated by that of the general population, these two
assumptions were needed by Schmidt and Schaid (1999) apparently because they
did not recognize that the second factor in their equation (1) is simply OR−1

0 , us-
ing our notation above. Consequently, instead of invoking the theoretically more
insightful Assumption (0), they had to invoke the assumption that “the disease risk
is small at all levels of both study variables” (“both study variables” here means the
gene variable and environmental variable) in order to justify that the aforementioned
second factor is (approximately) 1 (and hence θ ≈ 0). This unnecessary assumption
apparently was inherited from Piegorsch, Weinberg, and Taylor (1994), who cor-
rectly pointed out the usefulness of the case-only studies.

This is a good demonstration of the value of precise theoretical derivation, be-
cause identity (3.3.2) shows clearly that β = β0 if and only if θ = 0, a condition
that has little to do with the disease being rare. That is, it would be quite unfor-
tunate if the quote above is interpreted as declaring that the so-called “case-only”
approach for estimating ψ is useful only for rare diseases. Indeed, the only ratio-
nale for relying on Assumption (1) (and hence Assumption (2)) I can think of is if
checking the independence of G and E in the general population is easier than that
in the disease-free population. This could be a case when we do not trust the disease
diagnosis, because the former does not require knowing each individual’s disease
status. But this advantage seems rather inconsequential in gene-environment inter-
action studies—if we do not have the disease status or do not trust them, then we
have much more to worry about than assessing the independence between G and E.

Indeed, M&C’s approach did not actually use Assumption (1) or Assumption (2).
Instead, they directly use (3.3.2) by writing β = β (θ) = β0 −θ and then re-express
(3.3.2) as

β (θ) = β (0)−θ . (3.3.3)

This re-expression allows M&C to invoke a partially Bayes approach (Cox, 1975;
McCullagh, 1990), which puts a prior on the nuisance parameter θ only. Since
β (0) = log(OR1) is a characteristic of the diseased population (i.e., D = 1), its in-
ference does not involve θ = log(OR0), which is a characteristic of the disease-free
population (i.e, D = 0). This separation allows M&C to first infer β (0) via maximum
likelihood estimation, and once β (0) is replaced by its MLE, to infer β = β (θ) as
a Bayesian inference problem of a function of the nuisance parameter θ . This is the
essence of M&C’s method, though their derivation contains a couple of theoretical
complications that do not seem necessary (see Section 3.3.4).

Of course, for a pure Bayesian, such a hybrid “two-stage” method is neither
necessary nor justifiable. However, as I argued in Meng (1994) in the context of
a posterior predictive p-value (which is a posterior mean of a classic p-value as
a function of a nuisance parameter under a prior on the nuisance parameter only,
and hence a squarely partially Bayes entity), the value of such partially Bayesian
methods should not be underestimated. Minimally, they allow some Bayesian perks
to be enjoyed by those who do not wish to join the full B-club. For example, in the
current setting, it allows the use of the prior knowledge/belief that the dependence
between G and E is weak in the disease-free population. To see more clearly the
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pros and cons of the partially Bayes framework, the next section will examine it in
detail—and compare it with the fully Bayes approach—in the context of a normal
regression model with one predictor.

3.3.3 Understanding Partially Bayes Methods

3.3.3.1 A Partially Bayes Approach for Bivariate Normal

M&C presented their general approach via a heuristic argument, which essentially
amounts to assuming normality whenever needed, with variances treated as known.
To avoid the distractions of the heuristics, which cannot be made precise in general
because a Taylor expansion was invoked for approximating a prior distribution, let
us assume directly that we have an i.i.d. sample {y1, . . . ,yn} from the following
bivariate normal model:

Y =
(

X
Z

)
∼ N

((
α
β

)
,

(
1 ρ
ρ 1

))
, (3.3.4)

where ρ is a known constant. Our interest here is to estimate β , with α being treated
as a nuisance parameter.

As is well-known, without any prior knowledge, the MLE of β is β̂MLE = Z̄n =
∑i Zi/n, and the MLE for α is α̂MLE = X̄n =∑i Xi/n. On the other hand, if we happen
to know α , then the MLE of β is the regression estimator

β̂ (α) = Z̄n +ρ(α− X̄n). (3.3.5)

Note that this definition of the β̂ (α) function allows us to reexpress (3.3.5) as

β̂ (α) = β̂ (0)+ρα. (3.3.6)

Clearly, given the data, the only unknown quantity in β̂ (α) is α (recall ρ is
known here). Suppose we are willing to put down the prior N(0,τ2) for α , where τ2

represents our prior belief about how close α is to zero. Under this prior, the partially
Bayes approach combines it with the (partial) likelihood from X̄n|α ∼ N(α,n−1) to
arrive at the usual “shrinkage” posterior (e.g., Efron and Morris, 1973)

α|X̄n ∼ N
(
wτ X̄n, (n+ τ−2)−1) , (3.3.7)

where wτ = n/(n+τ−2). Given this posterior of α , we can infer any of its functions,
such as β̂ (α) of (3.3.5). In particular, M&C suggested to replace the α in (3.3.6)
by the posterior mean in (3.3.7), which results in, after noting from (3.3.5) that
β̂MLE − β̂ (0) = ρX̄n, their estimator

β̂ part
τ ≡ β̂ (0)+wτ(β̂MLE − β̂ (0)) = wτ β̂MLE +(1−wτ)β̂ (0). (3.3.8)
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Therefore, for a given hyperparameter τ2, the partially Bayes estimator β̂ part
τ for β

is a compromise between the MLE under the restrictive model with α = 0, β̂ (0),
and the MLE of β under the full model, β̂MLE = β̂ (α̂MLE), as weighted by the usual
shrinkage factor wτ .

3.3.3.2 Comparing Full Bayes with Simultaneous Partially Bayes

Before we discuss the issue of choosing τ2, it is informative to compare the above
partially Bayes solution to a full Bayes one, which of course would require a joint
prior for {α,β}. To simplify the algebra, let us assume that a priori β and α are
independent, and β ∼ N(0,ς2), with ς2 given. Under this setup, the joint posterior
of {α,β} obviously follows the usual regression calculation:

(
α
β

)∣∣∣∣∣
(

X̄n

Z̄n

)
∼ N

(
(Ω−1 +Σ−1

n )−1Σ−1
n

(
X̄n

Z̄n

)
, (Ω−1 +Σ−1

n )−1
)

, (3.3.9)

where Σn = 1
n

(
1 ρ
ρ 1

)
and Ω =

(
τ2 0
0 ς2

)
.

To understand the difference between the full Bayes and the partially Bayes
methods, however, it is more informative to invoke the following indirect deriva-
tion. Following the partially Bayes argument, we first treat α as a known constant.
Then it is easy to see that the β̂ (α) of (3.3.5) is a sufficient statistic for β and

β̂ (α)|β ∼ N
(
β , n−1

ρ

)
,

where nρ = n/(1−ρ2) (larger than n due to gained information via regressing on
α). Together with the prior β ∼ N(0,ς2), the identical calculation for (3.3.7) yields

β |β̂ (α) ∼ N
(

wς ,ρ β̂ (α),
(
ς−2 +nρ

)−1
)

, (3.3.10)

where wς ,ρ = nρ/(nρ +ς−2). The sufficiency of β̂ (α) for β for given α implies that
E[β |X̄n, Z̄n,α] = E[β |β̂ (α)], and hence, by iterated expectations and (3.3.6),

E[β |X̄n, Z̄n] = wς ,ρE[β̂ (α)|X̄n, Z̄n] = wς ,ρ(β̂ (0)+ρE[α|X̄n, Z̄n]). (3.3.11)

At first glance, (3.3.11) achieves nothing because it simply transfers the cal-
culation of E[β |X̄n, Z̄n] to the equally difficult (or easy) problem of calculating
E[α|X̄n, Z̄n]. But this observation should also remind us that we can simply switch
β with α (and accordingly ς with τ and Z̄n with X̄n) to arrive at its dual identity

E[α|X̄n, Z̄n] = wτ ,ρ(α̂(0)+ρE[β |X̄n, Z̄n]), (3.3.12)

where wτ ,ρ = nρ/(nρ + τ−2) and α̂(β ) = X̄n +ρ(β − Z̄n).
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It is now a simple matter to solve (3.3.11)-(3.3.12) to arrive at

β̂ full
τ ,ς ≡ E[β |X̄n, Z̄n] =

wς ,ρ [β̂ (0)+wτ ,ρρα̂(0)]
1−ρ2wς ,ρwτ ,ρ

, (3.3.13)

where the superscript “full” highlights the fact that it is identical to the fully Bayes
answer from (3.3.9), as can be verified directly.

To express (3.3.13) in a more insightful way, we can use the fact that ρα̂(0) =
ρX̄n −ρ2Z̄n = β̂MLE − β̂ (0)−ρ2β̂MLE to arrive at

β̂ full
τ ,ς = wςτ ,ρ β̂ part

τ , (3.3.14)

where β̂ part
τ is from (3.3.8),

wςτ ,ρ =
wς ,ρ −ρ2wς ,ρwτ ,ρ

1−ρ2wς ,ρwτ ,ρ
=

nρ,τ

nρ,τ + ς−2 ,

and
nρ,τ =

n
1−ρ2(1−wτ)

,

with wτ = n/(n+τ−2), as in (3.3.7). This means that, as far as point estimator goes,
the full Bayes estimator β̂ full

ς ,τ can be viewed as a further shrinkage of the partially

Bayes estimator β̂ part
τ towards zero. In particular, we notice that regardless of the

value of ρ , limτ→∞ nρ,τ = n and hence limτ→∞wςτ ,ρ = n/(n + ς−2) ≡ wς . This
means that when τ = ∞, the fully Bayes estimator for β would reduce to the usual
shrinkage estimator wς Z̄n based on the Z̄n margin alone. Intuitively, when τ = ∞,
there is no information to borrow from the prior knowledge of α for estimating β
even if ρ �= 0, and hence all the information is in the {Z,β} margin.

3.3.3.3 Sequential Partially Bayes Methods and Partial Shrinkage

Intuitively, the fully Bayes method takes into account the prior information β ∼
N(0,ς2), which was not used by β̂ part

τ . The above derivation shows how one can
achieve the full Bayes efficiency by performing two partially Bayes steps simulta-
neously, namely, by solving (3.3.11)-(3.3.12) as a pair, which is a special case of
applying the “self-consistency” principle (Meng, Lee, and Li, 2009). In contrast, if
we have carried out the partially Bayes method sequentially, that is, in two stages,
then the full efficiency is not guaranteed even if priors for both β and α are used.

To see this more clearly, suppose we follow M&C’s general argument and first
treat the nuisance parameter α as known. Then conditioning on α , but taking into
account the prior information on β via N(0,ς2), our Bayes estimator for β is as
given in (3.3.10),

β̂ς (α) ≡ E[β |β̂ (α)] = wς ,ρ β̂ (α) = wς ,ρ
(
β̂ (0)+ρα

)
. (3.3.15)
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Now, unlike in the simultaneous method described above, if we follow the general
argument as in M&C to treat β̂ς (α) as the objective of our inference, we would
replace α in the right most side of (3.3.15) by its (partial) posterior mean E(α|X̄n) =
wτ X̄n. This substitution then will lead to the sequential partially Bayes estimator

β̂ seqe
ςτ ,ρ = wς ,ρ

(
β̂ (0)+wτ(ρX̄n)

)
= wς ,ρ β̂ part

τ . (3.3.16)

Comparing (3.3.16) to (3.3.14), we see that although both of them are further shrink-
ages of the same β̂ part

τ of (3.3.8) and both shrinkage factors depend on ς , β̂ seqe
ςτ ,ρ

shrinks less towards zero than the full Bayes estimator β̂ full
ςτ ,ρ . This is because

wςτ ,ρ ≡ nρ,τ

nρ,τ + ς−2 <
nρ

nρ + ς−2 ≡ wς ,ρ , (3.3.17)

provided that

nρ,τ ≡ n
1−ρ2(1−wτ)

<
n

1−ρ2 ≡ nρ ,

which is the case as long as ρ �= 0 because wτ = n/(n+ τ−2) > 0.

Intuitively, β̂ seqe
ςτ ,ρ only achieves partial shrinkage compared to β̂ full

ςτ ,ρ because it
fails to take into account the prior information β ∼ N(0,ς2) when estimating α .
Even when β and α are a priori independent, as long as X and Z are correlated con-
ditional on the model parameter, X and Z are correlated with respect to the predictive
distribution, that is, with the model parameter integrated out according to the prior.
In our current setting, the correlation between (X ,Z) with respect to their predictive
distribution is ρτ ,ς = ρ/

√
(1+ τ2)(1+ ς2). As long as ρτ ,ς �= 0, the information

on the marginal distribution of Z via α will have an impact on the marginal distri-
bution of X (and vice versa). However, as ς → ∞, ρτ ,ς → 0 and hence this impact
disappears as the prior information for β becomes diffuse. This can also be seen
from (3.3.17), which becomes equality and hence β̂ seqe

ςτ ,ρ = β̂ fall
ςτ ,ρ whenever ς = ∞,

regardless of the value of ρ or τ .

3.3.4 Completing M&C’s Argument

For a given value of τ2, M&C’s general approach is essentially an approximate
version of what is presented in Section 3.3.3.1, resulting in the same partially Bayes
estimator general expression as in (3.3.8). I say essentially because M&C apparently
introduced a technical complication that is not necessary. The derivation in Section
3.3.3.1 relies on treating β̂ (α) of (3.3.5) as our estimand. Note β̂ (α) actually depend
on data, but from the Bayesian perspective, treating it as a known function of the
unknown α only presents no conceptual or technical complication. However, M&C
introduced β (θ) (using their generic notation θ , which is the same as α for the
bivariate normal example), the limit of β̂ (θ), as the data-free estimand, and then
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derive a partially Bayes estimator for β (θ) via the delta method β (θ)− β (0) ≈
β ′(0)θ and the (partially Bayes) posterior on θ .

In the example of the gene-environment interaction, this definition of β (θ)
worked well, because (3.3.3) holds for both the population version and sample ver-
sion. However, for the bivariate normal example, although the sample version β̂ (α)
of (3.3.5) is a linear function of α , the limit version, according to M&C’s defini-
tion, would be a constant function because β (α) = β for all α and hence β ′(0) = 0.
Consequently, in general, the aforementioned delta method can be meaningless. For-
tunately, this complication is really unnecessary, as we can work directly with β̂ (α)
as the estimand for the partially Bayes method.

Another unnecessary complication is in M&C’s treatment of estimating the prior
variance as a hyperparameter. Given the prior θ ∼ N(0,τ2), M&C first approxi-
mated the prior for φ ≡ β (θ) by N(φ0,τ2

φ ), where φ0 = β (0) and τ2
φ = [β ′(0)]2τ2.

(Perhaps this is where M&C felt the need to introduce the population version
β (θ) because it might seem odd to put a prior on a data-dependent quantity β̂ (θ);
but there is actually nothing incoherent in the partially Bayes framework for the
latter operation.) To estimate τφ , M&C invoked an empirical Bayes argument,
which estimates the hyperparameter τ2 by max{θ̂ 2− v̂2,0} when the approximation
v̂−1(θ̂ − θ)|θ ∼ N(0,1) holds for some statistic v̂. A critical ingredient of M&C’s
proposal is to use θ̂ 2 as a conservative estimate of τ2, which then leads to a conser-
vative estimator of the corresponding hyperparameter τ2

φ as τ̂2
φ = [β̂ ′(0)]2θ̂ 2. Substi-

tuting this estimator for the hyperparameter in a general version of (3.3.8) leads to
M&C’s general proposal. But β̂ ′(0)θ̂ is nothing but the first-term Taylor expansion
of β̂ (θ̂)− β̂ (0) = β̂ − β̂0 (though note the hidden assumption that β̂ (θ̂) = β̂ ). This
suggests that we can bypass the calculation of β̂ ′(0) and directly use (β̂ − β̂0)2 as
a conservative estimator of τ2

φ . Indeed, with this modification, M&C’s proposal has
the simpler expression as given in the prologue.

What is necessary is that once the hyperparameter is estimated from the data,
the operating characteristics of the resulting estimator must be evaluated specifi-
cally according to the estimation method used. That is, we can no longer rely on
the established general properties of the (fully) Bayesian estimators to justify their
corresponding empirical counterparts. We do tend to believe that such empirical esti-
mators are reasonably accurate in a variety of situations in practice, as demonstrated
in M&C via simulations. But the same belief sometimes can get us into deep trouble
when we put too much faith on simulations, which are necessarily limited. Indeed,
intuitively speaking, the idea that we can achieve a good universal compromise be-
tween β̂ and β̂0 only using themselves plus an estimate of Var(β̂ ) (see the formula
in prologue or (3.3.18) below) is just too good to be true. It is true that when β̂ is an
unbiased estimator of β , B̂ ≡ β̂0 − β̂ provides an unbiased estimator of the bias in
β̂0. But it would be illogical for us to worry about β̂ having too large a variance—
and hence the need to seek a reduction by bringing in a more efficient estimator
β̂0—but not to worry about the large variability in B̂, which depends on β̂ critically.
How can we be sure that the large error in the estimated weight ŵτφ = wτ̂φ , which
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in turn depends critically on B̂, would not offset the gain in mean-squared error due
to the (correct) weighting via wτφ ?

Indeed, we are not sure at all, as demonstrated in the following Ph.D. qualify-
ing exam problem. (Again, both Section 3.3.5 and Section 3.3.6 are reproduced in
verbatim from the actual exam, other than correcting a few typographical errors.)

3.3.5 Learning through Exam: The Actual Qualifying Exam
Problem

During a recent departmental seminar, our speaker made an assertion along the fol-
lowing lines: “I have two estimators, β̂ and β̂0 for the same parameter β . The former
is more robust because it is derived under a more general model, and the second is
more efficient because it is obtained assuming a more restrictive model. The follow-
ing is a compromise between the two:

β̂c =
(β̂ − β̂0)2

V̂ar(β̂ )+(β̂ − β̂0)2
β̂ +

V̂ar(β̂ )

V̂ar(β̂ )+(β̂ − β̂0)2
β̂0, (3.3.18)

where V̂ar(β̂ ) is a consistent estimate of the variance of β̂ . This should work better
because when the more restrictive model is true, β̂c tends to give more weight to the
more efficient β̂0, and at the same time, β̂c remains consistent because asymptoti-
cally it is the same as β̂ .”

As some of you might recall, I was both intrigued by and skeptical about this
assertion. This problem asks you to help me to understand and investigate the
speaker’s assertion. To do so, let’s first formalize the meaning of a general model
and a more restrictive one.

Suppose we have i.i.d. data Y = {y1, . . . ,yn} from a model f (y|θ), where θ =
{α,β}, both of which are scalar quantities, with β the parameter of interest, α
the nuisance parameter, and the meaning of β does not depend on the value of α .
Suppose the restrictive model takes the form f0(y|β ) = f (y|α = 0,β ), i.e., under the
restrictive model we know the true value of α is zero. Let θ̂ = {α̂, β̂} be a consistent
estimator of θ under the general model f (y|θ), and let β̂0 be a consistent estimator
of β0, which is guaranteed to be β only when the restrictive model f0(y|β ) holds.
We further assume all the necessary regularity conditions to guarantee their joint
asymptotic normality, that is,

√
n

[(
θ̂
β̂0

)
−
(
θ
β0

)]
→ N

((
0
0

)
,Σ =

(
Σθ CT

C σ2
β0

))
. (3.3.19)

For simplicity of derivation, we will assume Σ ≥ 0 (i.e., a semi-positive definite
matrix) is known, and the convergence in (3.3.19) is in the L2 sense (i.e., Xn → X
means limn→∞E||Xn −X ||2 = 0).
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(A) The speaker clearly was considering a variance-bias trade-off, assuming that
β̂0 is more efficient than β̂ when the more restrictive model is true. Under the setup
above, prove this is true asymptotically when θ̂ and β̂0 are maximum likelihood es-
timators (MLE, as in the superscript below) under the general model and restrictive
model respectively and when we use the Mean-Squared Error (MSE) criterion (we
can then assume Σθ and σ2

β are given by the inverse of the corresponding Fisher
information). That is, prove that if the restrictive model holds, the (asymptotic) rel-
ative efficiency (RE) of β̂0 to that of β̂ is no less than 1:

RE ≡ lim
n→∞

E[β̂MLE −β ]2

E[β̂MLE
0 −β ]2

≥ 1, (3.3.20)

and give a necessary and sufficient condition for equality to hold. Provide an in-
tuitive statistical explanation of this result, including the condition for equality to
hold.

(B) Give a counterexample to show that (3.3.20) no longer holds if we drop the
MLE requirement. What is the key implication of this result on the speaker’s desire
to improve β̂ via β̂0?

(C) Since we assume Σ is known, we can replace V̂ar(β̂ ) in (3.3.18) by σ2
β/n,

where σ2
β is an appropriate entry of Σθ . We can therefore re-express (3.3.18) as

β̂c = (1−Wn)β̂ +Wnβ̂0, where Wn =
σ2
β

σ2
β +n(β̂ − β̂0)2

. (3.3.21)

Prove that, under our basic setup (3.3.19), limn→∞E(Wn) = 0 if and only if β �= β0.

(D) Using Part (C) to prove that whenever β �= β0,

lim
n→∞

E[β̂c −β ]2

E[β̂ −β ]2
= 1. (3.3.22)

Which aspect of the speaker’s assertion this result helps to establish?

(E) To show that the condition β �= β0 cannot be dropped in Part (D), let us
consider that our data {y1, . . . ,yn} are i.i.d. samples from the following bivariate
normal model:

Y =
(

X
Z

)
∼ N

((
α
β

)
,

(
1 ρ
ρ 1

))
, (3.3.23)

where ρ is known. Show that under this model, when we use MLEs for β̂ and β̂0,√
n(β̂c −β ) has exactly the same distribution as

ξ = Z0 −ρ(X0 +
√

nα)W̃n = (Z0 −ρX0)+ρ[(1−W̃n)X0 −W̃n
√

nα], (3.3.24)

where (X0,Z0)� has the same distribution as in (3.3.23) but with both α and β set
to zero, and



3.3 Automated Bias-variance Trade-off: Intuitive Inadmissibility or Inadmissible Intuition? 107

W̃n ≡ W̃n(ρ,α) =
1

1+ρ2(X0 +
√

nα)2 .

Use the right-most expression in (3.3.24) to then show that

nE[β̂c −β ]2 = 1−ρ2 +ρ2Gn(ρ,α), (3.3.25)

where
Gn(ρ,α) = E[(1−W̃n(ρ,α))X0 −W̃n(ρ,α)

√
nα]2. (3.3.26)

(F) Continuing the setting of Part (E), use (3.3.25) to prove that when α = 0, for
all n,

E[β̂MLE
0 −β ]2 < E[β̂c −β ]2 < E[β̂MLE −β ]2,

as long as ρ �= 0. Why does this result imply that β �= β0 cannot be dropped in Part
(D)? What happens when ρ = 0?

(G) Still under the setting of Parts (E) and (F), verify that Gn(0,α) = nα2, and
then use this fact to prove that as long as nα2 > 1, there exists a ρ∗n,α > 0 such that
for all 0 < |ρ| < ρ∗n,α ,

nE[β̂c −β ]2 > 1 = nE[β̂MLE −β ]2.

Does this contradict Part (D)? Why or why not?

(H) What do all the results above tell you about the speaker’s proposed estimator
β̂c? Does it have the desired property as the speaker hoped for? Would you or when
would you recommend it? Give reasons for any conclusion you draw.

3.3.6 Interweaving Research and Pedagogy: The Actual Annotated
Solution

(A) This part tests a student’s understanding of the most basic theory of likelihood
inference, especially the calculation of Fisher information, and the fact that the MLE
approach is efficient/coherent in the sense that when more assumptions are made its
efficiency is guaranteed to be non-decreasing.

The result (3.3.20) is easily established using the fact that if we write the expected
Fisher information under the general model (with n = 1) as

I(θ) =
(

iαα iαβ
iαβ iββ

)
, and notationally I−1(θ) =

(
iαα iαβ

iαβ iββ

)
,

then iββ = [iββ − i2αβ i−1
αα ]−1. The Fisher information under the restrictive model of

course is given by iββ with α = 0. Consequently, under our basic setup, when α = 0,
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RE =
iββ

i−1
ββ

=

[
1−

i2αβ
iαα iββ

]−1

≥ 1, (3.3.27)

where equality holds if and only if iαβ = 0 when α = 0, that is, when β and α
are orthogonal (asymptotically) under the restrictive model. Intuitively, the gain
of efficiency of β̂MLE

0 over β̂MLE is due to β̂MLE’s covariance adjustment via
α̂MLE−α when α = 0. However, this adjustment can take place if and only if β̂MLE

is correlated with α̂MLE when α = 0, which is the same as iαβ �= 0.

(B) This part in a sense is completely trivial, but it carries an important message.
That is, the common notation/intuition that “the more information (e.g., via model
assumptions) or the more data, the more efficiency” can be true only when the pro-
cedure we use processes information/data in an efficient way (e.g., as with MLE).

There are many trivial and “absurd” counterexamples. For example, in Part (A),
if we use the same MLE under the general model, but only use 1/2 our samples
when applying the MLE under the restrictive model, then the RE ratio in (3.3.27)
obviously will be deflated by a factor 2, and hence it can easily be made to be less
than one.

[A much less trivial or absurd example is when we want to estimate the correla-
tion parameter ρ with bivariate normal data {(xi,yi), i = 1, . . . ,n}. Without mak-
ing any restriction on other model parameters, we know the sample correlation
is asymptotically efficient with asymptotic variance (1 − ρ2)2/n (see Ferguson,
1996, Chapter 8). Now suppose our restrictive model is that both X and Y have
mean zero and variance 1. The Fisher information for this restrictive model is
(1 + ρ2)/(1− ρ2)2, therefore RE = 1 + ρ2 ≥ 1, which confirms Part (A). How-
ever, since E(XY ) = ρ under the restrictive model, someone might be tempted to
use the obvious moment estimator r̂n =∑i xiyi/n for ρ . But one can easily calculate
that the variance (and hence MSE) of r̂n is (1+ρ2)/n for any n. Consequently, the
RE of r̂n compared to the sample correlation is (asymptotically) (1−ρ2)2/(1+ρ2),
which is always less than one and actually approaches zero when ρ2 approaches 1.
So the additional assumption can hurt tremendously if one is not using an efficient
estimator! (Students may recall that my qualifying exam problem from a previous
year was about this problem.) Moments estimators are used frequently in practice
because of their simplicity and robustness (to model assumptions), but this example
shows that one must exercise great caution when using moment estimators, espe-
cially when making claims about their relative efficiency when adding assumptions
or data.]

(C) Intuitively this result is obvious, because when β �= β0, the denominator in Wn

can be made arbitrarily large as n increases, and hence its expectation should go to
zero. But this part tests a student’s ability to make such “hand-waving” argument
rigorous without invoking excessive technical details, which is an essential skill for
theoretical research.

Let Δn =
√

n(β̂ − β̂0 − δ ), where δ = β − β0. Then by (3.3.19), Δn converges
in L2 to N(0,τ2), where τ2 = a�Σa, with a = (0,1,−1)�. Therefore, there exists a
n0 such that for all n ≥ n0, Var(Δn) ≤ 2τ2. Consequently, for any ε > 0, if we let
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Mε =
√

2τ2/ε , and An = {|Δn| ≥ Mε}, then by Chebyshev’s inequality, we have

Pr(An) = Pr(|Δn| ≥ Mε) ≤ Var(Δn)
M2
ε

≤ ε. (3.3.28)

Now if δ �= 0, then as long as n ≥ M2
ε
δ 2 , we have, noting 0 < Wn =

σ2
β

σ2
β+(Δn+

√
nδ )2 ≤ 1,

0 ≤ E(Wn) = E(Wn1An)+E(Wn1Ac
n
) ≤ Pr(An)+

σ2
β

σ2
β +(

√
n|δ |−Mε)2

, (3.3.29)

where in deriving the last inequality we have used the fact that (u+v)2 ≥ (|u|−|v|)2.
That E(Wn) → 0 then follows from (3.3.28) and (3.3.29) by first letting n → ∞ in
(3.3.29), and then letting ε → 0 in (3.3.28).

To prove the converse, we note that when δ = 0, Wn =
σ2
β

σ2
β+Δ2

n
. Therefore, by

(Jensen’s) inequality E(X−1) ≥ [E(X)]−1, we have

E(Wn) ≥
σ2
β

σ2
β +E(Δ 2

n )
→

σ2
β

σ2
β + τ2

> 0.

(D) This part is rather straightforward, as long as the student is familiar with the
Cauchy-Schwarz inequality (which is a must!)

From (3.3.21), we have
√

n(β̂c − β ) =
√

n(β̂ − β ) − WnDn, where Dn =√
n(β̂ − β̂0). It follows then

nE(β̂c −β )2 = nE(β̂ −β )2 +E(W 2
n D2

n)−2E[
√

n(β̂ −β )(WnDn)]. (3.3.30)

Under our assumptions, the first term on the right hand side of (3.3.30) converges
to σ2

β > 0, so (3.3.22) follows if we can establish that the second term on the right
hand side of (3.3.30) converges to zero. This is because, by the Cauchy-Schwarz
inequality, the third term on the right hand side of (3.3.30) is bounded above in

magnitude by 2
√

nE(β̂ −β )2E(W 2
n D2

n), and hence it must then converge to zero as
well if the second term does so. But by the definition of Wn in (3.3.21),

E(W 2
n D2

n) = E

[
Wn

σ2
βD2

n

σ2
β +D2

n

]
≤ σ2

βE(Wn),

which converges to zero by Part (C) when δ = β −β0 �= 0. The implication of this
result is that the speaker’s assertion that β̂c is asymptotically the same as β̂ is correct,
as long as β �= β0. [Note there is a subtle difference between β = β0 and α = 0. The
latter implies the former, but the reverse may not be true because one can always
choose β̂0 to be β̂ even if the restrictive model is not true.]
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(E) This part tests a student’s understanding of multi-variate normal models and
the basic regression concepts, with which one can complete this part without any
tedious algebra.

The most important first step is to recoganize/realize that under the general
model, β̂MLE=Z̄n, and under the restrictive model, β̂MLE

0 =Z̄n−ρX̄n, where X̄n and Z̄n

are the sample averages; hence Dn=ρ
√

nX̄n. The first expression in (3.3.24) then fol-
lows from (3.3.21) when we re-write it as β̂c =Z̄n−Wn(ρX̄n) and let X0 =

√
n(X̄n−α)

and Z0 =
√

n(Z̄n −β ), and the fact that (X0,Z0) has the same bivariate normal dis-
tribution as in (3.3.4) but with zero means. The second expression is there to hint
at the independence of the two terms, because the first term (Z0 −ρX0) is the resid-
ual after regressing out X0, and the second term is a function of X0 only. With this
observation, (3.3.25) follows immediately because the residual variance is 1−ρ2.

(F) Again, this part does not require any algebra if a student understands the most
basic calculations with bivariate normal and regression.

When α = 0, W̃n(ρ,0) = 1
1+ρ2X2

0
, and

Gn(ρ,0) = E[X0(1−W̃n(ρ,0))]2 = E

[
X2

0

(
ρ2X2

0

1+ρ2X2
0

)2
]
≡Cρ ,

where the constant Cρ > 0 is free of n and it is clearly less than E(X2
0 ) = 1. Therefore

the identity (3.3.25) immediately leads to nE[β̂c −β ]2 = 1− (1−Cρ)ρ2, which is
strictly larger than nE[β̂MLE

0 −β ]2 = 1−ρ2 and smaller than nE[β̂MLE−β ]2 = 1, as
long as ρ �= 0. Clearly in this case (3.3.22) of Part (D) will not hold because the ratio
there will be 1− (1−Cρ)ρ2 < 1, hence the condition β �= β0 cannot be dropped in
Part (D) – note when ρ �= 0, β �= β0 is equivalent to α �= 0.

When ρ = 0, β̂MLE = β̂MLE
0 , and hence regardless of the value of α , Part (D)

holds trivially even though the condition β �= β0 is violated. This also provides
another (trivial) example that β = β0 does not imply α = 0, as we discussed at the
end of the solution to Part (D) above.

(G) This part demonstrates the need of some basic mathematical skills in order to
derive important statistical results (that cannot be just “hand-waved”!).

When ρ = 0, W̃n(0,α) = 1, and hence Gn(0,α) = nα2. From its expression
(3.3.26), the (random) function under expectation is continuous in ρ and bounded
above by X2

0 + nα2, which has the expectation 1 + nα2. Hence, by the Dominated
Convergence Theorem, Gn(ρ,α) is a continuous function of ρ for any given α and
n. Consequently, whenever Gn(0,α) = nα2 > 1, there must exist a ρ∗n,α > 0, such
that for any |ρ| ≤ ρ∗n,α , Gn(ρ,α) > 1 as well. It follows then, when 0 < |ρ| ≤ ρ∗n,α ,
from (3.3.25),

nE[β̂c −β ]2 = 1−ρ2 +ρ2Gn(ρ,α) > 1−ρ2 +ρ2 = 1 = nE[β̂MLE −β ]2.

This inequality, however, does not contradict Part (D) because the choice of ρ∗n,α
depends on n, so Part (D) implies that as n increases, ρ∗n,α → 0.
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(H) Parts (A) and (B) demonstrate that in order for the proposed estimator (3.3.18)
to achieve the desired compromise, a minimal requirement is that there should be
some “efficiency” requirement on the estimation procedures, especially the one un-
der the more restrictive model. Otherwise it would not be wise in general to bring
in β̂0 to contaminate an already more efficient and more robust estimator β̂ .

Parts (C) and (D) proved that under quite mild conditions, the proposed β̂c is
equivalent asymptotically to the estimator under the general model, as long as the es-
timator under the more restrictive model is inconsistent, that is, as long as β0 �= β . So
in that sense the speaker’s proposal is not harmful but not helpful either asymptot-
ically, and therefore any possible improvement must be a finite-sample one (which
apparently is what the speaker intended and indeed the only possible way if one uses
MLE to start with).

Parts (E)-(G) give an example to show that when the restrictive model is true, the
speaker’s proposal can achieve the desired compromise, that is, β̂c beats β̂MLE in
terms of MSE for all n, but it is not as good as β̂MLE

0 . The latter is not surprising at
all because in this case β̂MLE

0 is the most efficient estimator (asymptotically, but also
in finite sample given its asymptotic variance is also the exact variance). However,
when the restrictive model is not true, then there is no longer any guarantee that β̂c

will dominate β̂ (indeed this is not possible in general whenever β̂ is admissible).
The result in Part (G) also hinted that in order for β̂c to beat β̂ , the “regression
effect” of β̂ on α̂ must be strong enough (e.g., expressed in this case via |ρ|> ρ∗n,α )

in order to have enough borrowed efficiency from β̂0 to make it happen.
In summary, the speaker’s proposal can provide the desired compromise when the

restricted model is close to being true and the original two estimators are efficient in
their own right, but it cannot achieve this unconditionally. In general, it is not clear
at all as when one should use such a procedure, especially when the original two
estimators are not efficient to start with.

3.3.7 A Piece of Inadmissible Cake?

M&C’s β̂c evidently was proposed as an improvement on the original β̂ , with MSE
as the intended criterion. Adopting the classic framework of decision theory (Berger,
1985), the hope is that β̂c is R-better than β̂ in terms of the squared loss:

R(β̂ ;(α,β )) =
∫

y
(β̂ (y)−β )2 f (y|α,β )μ(dy),

where f (y|β ,α) is the sampling density and μ is its corresponding baseline mea-
sure. But for R(β̂c;(α,β )) ≤ R(β̂ ;(α,β )) to hold for all β and α (and with strict
inequality for at least one (α,β )) means β̂ is not admissible under the squared loss.
The simple normal problem investigated in Section 3.3.5 and Section 3.3.6 demon-
strates clearly that this would be wishful thinking in general. The question then is:
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How do we quantify the apparently good properties of β̂c, as suggested by the em-
pirical evidences in M&C?

If we have a joint prior on {α,β}, of course we can compare the Bayesian risks
of β̂c and β̂ . But the partially Bayes approach precisely wants to avoid any prior
specification about β . This leads to the notion of partially Bayes risk

rπ(β̂ ;β ) =
∫

R(β̂ ;(α,β ))π(dα).

If we adopt such a measure, then one fundamental question is: Under which prior
π(α) the original β̂ is dominated by β̂c, that is, rπ(β̂c;β ) ≤ rπ(β̂ ;β ) for all β?

Intuitively, it is possible for β̂c to dominate β̂ in terms of rπ when π puts enough
mass on or near α = 0, as suggested by Part (F) of Section 3.3.5. The trouble is that
in practice we will not know how close the restrictive model is to the truth when we
wish for an automated bias-variance trade-off, because if we knew, then we surely
should have included the information in our model to improve our estimator (e.g.,
via an informative prior), just as if we know α = 0 for sure, then we should just use
β̂0 (assuming it is an efficient estimator under the sub-model). We therefore seem to
run into a circular situation. The information we need to evaluate β̂c meaningfully
makes β̂c unnecessary, but without it, there does not seem to exist a meaningful way
to establish the superiority of β̂c.

This was the main reason that I suspected that β̂c was more a craving than a
creation. I of course hope my suspicion is groundless and that M&C’s proposal can
lead to a real advancement at the frontier of methods for accomplishing appropriate
bias-variance tradeoff. But this is a case where only hard theory, not simulations nor
intuitions, can settle the matter. After all, the whole industry of shrinkage estimation
came out of the counter-intuitive—at least initially—Stein’s paradox established
by rigorous theory (Stein, 1956; James and Stein, 1961; Efron and Morris, 1977).
There might be an empirical partially Bayes theory in parallel to the elegant one
established by Efron and Morris (1973) for shrinkage via empirical Bayes, but the
key ingredient in M&C, that is, estimating the prior variance via the conservative
(β̂0 − β̂ )2 is likely to be fatal to this line of exploration because the performance of
β̂c depends critically on the reliability of this estimation.

Evidently, there is a lot to be learned from the classic theory of admissibility
before we can settle this matter, because this is squarely a problem of comparing
estimators under the squared loss. Professor Berger has done much to build this
field, so it is only fitting for me to present the problem of comparing β̂c and β̂ in
general as a piece of cake to him on the occasion of his 60th birthday.

Happy Birthday, Jim, even if the cake turns out to be inadmissible!

Acknowledgments: The author thanks Alan Agresti, Joe Blitzstein, and Xianchao
Xie for constructive comments, Bhramar Mukherjee and Nilanjan Chatterjee for
their truly inspirational article, and NSF for partial financial support.



Chapter 4
Bayesian Model Selection and Hypothesis Tests

Model comparison remains an active research frontier in Bayesian analysis. The
chapter introduces related specific research problems, including the selection of a
number of components in a mixture model and the choice of a training sample size
when using virtual simulated training samples. The chapter also discusses an in-
triguing general property that sets Bayesian testing apart from frequentist testing,
by effectively rewarding honest choice of an alternative hypothesis. Cheating does
not pay.

4.1 Performance of Bayesian Model Selection Criteria for
Gaussian Mixture Models

Russell J. Steele and Adrian E. Raftery

It is a great pleasure to congratulate James O. Berger on his 60th birthday. Jim is
one of the giants of the Bayesian renaissance of the past few decades, and one area
on which he has had an overwhelming impact is Bayesian model selection. In this
section we discuss Bayesian model selection for Gaussian mixture models.

Throughout his career, Jim has built a strong case for using Bayesian methods
for model selection, particularly as opposed to standard frequentist methods based
on p values (Berger and Delampady, 1987; Berger and Sellke, 1987; Barbieri and
Berger, 2004). The case is especially strong for the problem of choosing the num-
ber of components in mixture models, where frequentist methods have difficulties.
There is an elegant but rather complicated theory for frequentist testing of one mix-
ture component versus two, or one versus more than one (Lindsay, 1995), but we
do not know of a fully satisfactory frequentist theory for selecting the number of
components more generally.

Here we compare some of the Bayesianly motivated or justifiable methods for
choosing the number of components in a mixture. We consider posterior probabili-
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ties for a widely used proper prior, BIC, ICL, DIC, and AIC. We also introduce an
explicit unit-information prior for mixture models, analogous to the prior to which
BIC corresponds in regular models.

We compare these criteria via a simulation study. The design of the simulation
study is critical, as it is easy to design a simulation study to favor one criterion
or another. As a result, we based the design on the scientific literature rather than
just specifying values ourselves, as is often done. We extracted 43 published esti-
mates of mixture model parameters from the literature across a range of disciplines,
achieving broad coverage of the literature prior to 2000. Using cluster analysis after
appropriate normalization, we identified six representative sets of parameter values
for our study.

The results were perhaps surprising: BIC outperformed the other criteria, includ-
ing posterior probabilities based on proper priors. This does confirm the informal
experience of workers in the area, particularly those using mixture models for clus-
tering, who have been using BIC widely for this purpose for the past decade.

In Section 4.1.1 we review the existing Bayesian model selection criteria for
mixture models that we include in our comparison. In Section 4.1.2 we describe our
new unit information prior for mixture models. In Section 4.1.3 we give results for
a simulated example and a real data example. Then in Section 4.1.4 we describe
our simulation study and give the results. In Section 4.1.5 we discuss some other
methods and issues in this area.

4.1.1 Bayesian Model Selection for Mixture Models

4.1.1.1 Priors for Mixture Models

We consider the univariate Gaussian mixture model with G components where ob-
servations y1, . . . ,yn are independently and identically distributed with the density

p(yi|μ ,σ2,λ ) =
G

∑
g=1

λg f (yi|μg,σ2
g ),

where f is the univariate normal density with mean and variance parameters μg and
σ2

g , λi ∈ (0,1), and ∑G
i=1λi = 1.

Initially the most used prior was a semi-conjugate specification for the parame-
ters of the mixture model, which was conjugate conditional on the unknown mixture
component memberships (West, 1992; Diebolt and Robert, 1994; Chib, 1995). This
assumes a Gaussian prior for each of the μ j with prior mean ξ j and prior vari-
ance σ2

j τ j. The priors for the variances are scaled inverse χ2 random variables, i.e.,

σ−2
j ∼ 1

2β χ
2
2α , where α and β are fixed hyperparameters. With this prior, full con-

ditional posterior distribution conditional on the unknown cluster memberships can
be found in closed form. Nobile and Fearnside (2007) used a similar structure, but
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they placed an additional level of hierarchical, uniform prior distributions on τ j and
β j.

Another commonly used approach is the conditionally semi-conjugate prior of
Richardson and Green (1997). This differs from the conditionally conjugate prior
in that the priors for the component density means are assumed to be independent
of the component density variance parameters. It has been used as for finite Gaus-
sian mixture models (Robert, Rydèn, and Titterington, 2000; Stephens, 2000a), and
also more recently for Gaussian hidden Markov Models (Spezia, 2009) and image
segmentation (Ferreira da Silva, 2009).

Richardson and Green (1997), and subsequent authors, also assigned an addi-
tional hierarchical prior to the scaling constant of the prior for the variances, as-
suming that β ∼ 1

2hχ
2
2g. The prior proposed by Stephens (2000a) differs slightly

from that of Richardson and Green in that κ and ξ are also allowed to vary, namely
ξ ∼ Unif[∞,∞], and κ−1 ∼ 1

l χ
2
l where l = 0.0001. Stephens suggested this prior

because he found that the posterior for the number of components G was sensitive
to the the prior on μ (and thus to the value of κ).

The choice of prior hyperparameters can have a big effect on the estimation of
the mixture parameters (Jasra, Holmes, and Stephens, 2005). In general, the hy-
perparameters for the component density priors have been chosen to be the same
for each component density (Frühwirth-Schnatter, 2006). Data-dependent choices
of the hyperparameters have been proposed by Raftery (1996a), Wasserman (2000),
and Richardson and Green (1997) to achieve weakly informative priors. Richardson
and Green (1997) chose ξ to be the overall mean of the data, the prior variance of the
component means to be proportional to the square of the range of the data, the prior
distribution of the variances to have scale parameters proportional to the square of
the range, and α = 2. Richardson and Green (1997) used a uniform Dirichlet prior
for the mixture proportions, λg, although this choice can cause difficulties in conver-
gence of Markov Chain Monte Carlo algorithms (Plummer, 2008). In our reading
of the literature, we have found that these choices have been regularly used in both
methodological and applied work.

4.1.1.2 Criteria for Choosing the Number of Mixture Components

Fully Bayesian MAP estimate. The obvious Bayesian choice of the number of mix-
ture components is the posterior mode, or maximum a posteriori (MAP) estimate of
G. This can be evaluated by reversible jump MCMC (Richardson and Green, 1997),
or by the marked point process method of Stephens (2000b). Here we use Stephen’s
hierarchical modification of Richardson and Green’s prior; his paper provides some
evidence that it performs similarly to theirs, but is less sensitive to prior specifica-
tion. We also use his marked point process algorithm, as implemented in his soft-
ware, available at http://www.stat.washington.edu/stephens/papers/software.tar.

BIC. The BIC (Schwarz, 1978) provides a widely used approximation to the inte-
grated likelihood (integrated over the model parameters) for regular models. It was
used for mixtures by Roeder and Wasserman (1997) and has been widely used for
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mixture models since, particularly for clustering (Dasgupta and Raftery, 1998; Fra-
ley and Raftery, 2002), with good results in practice. It is defined as

BIC(G) = 2p(y|τ̂,G)−d log(n),

where d is the number of free parameters in the mixture model. For regular models,
BIC is derived as an approximation to twice the log integrated likelihood using the
Laplace method (Tierney and Kadane, 1986), but the necessary regularity condi-
tions do not hold for mixture models in general (Aitkin and Rubin, 1985). However,
Roeder and Wasserman (1997) showed that BIC leads to to a consistent estimator of
the mixture density, and Keribin (2000) showed that BIC is consistent for choosing
the number of components in a mixture model.

DIC. The DIC (Spiegelhalter et al., 2002) is an AIC-like likelihood penalization
criterion, where the number of effective model parameters is used instead of the
actual number of free parameters in the model. One stated objective of the DIC for
model comparison is to minimize predictive error of the selected model. It has the
form

DIC(G) = −2log p(y|τ̂,G)+2pd ,

where τ̂ is a “good” estimate of τ with respect to the posterior distribution of the
data (often a posterior mean, median, or mode) and pd can be written as:

pD = Eτ |y(log p(y|τ̂))− log p(y|τ̂).

One can thus estimate pD (and possibly τ̂) via τt , t = 1, ...,T where the τt are draws
from a posterior sampling algorithm. This gives the following empirical estimate of
the effective number of parameters for a particular model to be used in the above
DIC calculation:

p̂D =
1
T

T

∑
i=1

log p(y|τt)− log p(y|τ̂).

The choice of τ̂ can have a large influence on the estimated number of param-
eters. Although Spiegelhalter et al. (2002) used the posterior mean in most cases,
here we will use the largest posterior mode. The posterior mean (and the posterior
median as well) can give poor results (e.g., negative numbers of parameters) because
of the multimodality of the mixture density.

Celeux, et al. (2006) discussed several alternative choices for τ̂ , although they
did not come to a definitive conclusion as to which would perform the best for
choosing the order of a mixture. Plummer (2008) proposed a modification of the
DIC to adjust for the complications with respect to estimating the effective number
of parameters derived through a view of the DIC as an approximate penalized loss
function. McGrory and Titterington (2007) used a variational Bayes approach to
derive a version of the DIC that they found to perform well for choosing the number
of components.

ICL. Biernacki, Celeux, and Govaert (1998) suggested an information criterion
based on the complete data likelihood. They noted that although integrating over
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the parameters of the observed is difficult, the following integral

p(y,z|G) =
∫

p(y,z|τ,G)p(τ)dτ

is sometimes available in closed form. Even if it is not, one can rewrite the integral
as

p(y|z,G)p(z|G) =
∫

p(y|z,τ,G)p(z|G,τ)p(τ)dτ.

Biernacki, Celeux, and Govaert (1998) noted that Laplace approximations to p(y|z,τ ,
G) are often valid and that the remaining integral of p(z|τ,G) over p(τ) are often
available in closed form, as long as p(τ) = p(τ)p(λ ) and the prior distribution of
z is independent of τ . Therefore, they proposed approximating log(p(y|z,G)) using
the BIC approximation

log(p(y|z, τ̂∗,G)))− d
2

log(n),

where τ̂∗ = argmaxτ p(y|z,τ,G), which will not necessarily be the same as τ̂ from
maximizing the observed data likelihood.

This leads to approximating twice the negative integrated classification likeli-
hood by

ICL = −2∗ log(p(y|ẑ′, τ̂∗,G)))+(d − (G−1))∗ log(n)−2∗K(ẑ′),

where K(z) =
∫

p(z|λ ,G)p(λ |G) depends on the prior for λ , d is the number of
total free parameters in the mixture model as before, and ẑ′ is the MAP estimate of
z given τ̂∗, i.e.

ẑ′i j =
{

1 if argmaxgẑ∗ig = j,
0 otherwise.

If one specifies a Dirichlet(α1, . . . ,αG) distribution for the mixing parameters, then
K(z) can be obtained in closed form as

K(z) = log(Γ (
G
2

))+
G

∑
g=1

log(Γ (ng(z)+αg))−
G

∑
g=1

log(Γ (αg))− log(Γ (n+
G

∑
g=1
αg)),

where n(z)g is the number of observations assigned to the g-th group by the alloca-
tion matrix z.

Biernacki, Celeux, and Govaert (1998) noted that if the ng(z) are far from zero,
an additional approximation for K(z) can be made using a Stirling’s approximation
(dropping O(1) terms) as

K(z) ≈ n
G

∑
g=1

λ̂g log(λ̂g)− 1
2
(G−1)∗ log(n)
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which gives us the following BIC approximation to the integrated complete-data
likelihood

ICL–BIC = −2∗ log(p(y, ẑ′|τ̂∗,G)))+d ∗ log(n).

Biernacki, Celeux, and Govaert (2000) presented just the ICL–BIC, with the addi-
tional suggestion to use τ̂ instead of τ̂∗. This is the form of ICL that we use in our
experiments.

AIC. The best known of the information criteria used for determining the number
of components is Akaike’s Information Criterion (AIC). The AIC is calculated for
mixtures as:

AIC(G) = −2log p(y|τ̂,G)+2d,

where d is the number of free parameters in the mixture (e.g., for one-dimensional
normal mixtures with unconstrained variances, d = 3 ∗G− 1). The theoretical jus-
tification for AIC is that choosing the minimum value of the AIC asymptotically
minimizes the mean Kullback-Leibler information for discrimination between the
proposed distribution and the true distribution, i.e., the model with the minimum
value value of the AIC should be asymptotically closest in Kullback-Leibler dis-
tance to the true model. However, several studies (Koehler and Murphree, 1988;
Celeux and Soromenho, 1996) have found that the AIC overestimates the number
of components for mixtures, most likely due to violations of the regularity condi-
tions required for the approximation to hold. Compared to BIC, the AIC penalizes
models with larger numbers of parameters less, leading to the choice of more mix-
ture components.

AIC also has a Bayesian interpretation, leading to the MAP estimate in regular
models when the amount of the information in the prior is of the same order as
the amount of information in the data (Akaike, 1983). This is a highly informative
prior, and will not be plausible in most cases, so the Bayesian interpretation of AIC
is questionable in many situations.

4.1.2 A Unit Information Prior for Mixture Models

Kass and Wasserman (1995) showed that for regular models, the BIC provides an
approximation to Bayes factors (posterior odds for one model against another when
prior odds are equal to 1, in turn equal to ratios of integrated likelihoods) under a
certain prior for the parameters. This is the so-called unit information prior (UIP),
equal to a multivariate normal prior distribution with mean equal to the maximum
likelihood estimates for the parameters and covariance matrix equal to the inverse
information matrix scaled by the number of observations, i.e. the observed informa-
tion matrix for a single observation. Raftery (1995) extended this result to show that
BIC approximates the integrated likelihood for a single model under the UIP.

However, these results do not hold for mixture models because the required reg-
ularity conditions are not satisfied. As a result, we propose here an analogy to the
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UIP for mixture models. We subsequently use the resulting MAP of G as another
Bayesian estimator of G and assess its performance.

Let z be a matrix of indicator variables, such that zi j = 1 if observation i is sam-
pled from component j and 0 otherwise. Then one can write:

p(y,z|μ ,σ2,λ ) =
n

∏
i=1

G

∏
g=1

λ zig
g f (yi|μg,σ2

g )zig .

Conditional on z, the complete-data information matrix for the parameters μ and
σ2 becomes block diagonal by component:

iC(μ ,σ2) =

μ1

σ2
1
...
μG

σ2
G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n(z)1
σ2

1
0 · · · 0 0

0 n(z)1
2σ4

1
· · · 0 0

0 0 0 0 0

0 0 · · · n(z)G
σ2

G
0

0 0 · · · 0 n(z)G
2σ4

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where n(z)g is equal to the number of observations assigned to group g according to
the matrix z.

We now propose a data-dependent prior for mixture models based on the ob-
served information for the complete data likelihood and n(z)g = 1 for all g = 1, ...,G.
We use the following conjugate form for the priors for the component parameters:

• λ ∼ Dirichlet (α1, ...,αG);
• μg ∼ Normal (μ0

g ,σ2
g /κg); and

• σ2
g ∼ σ2(0) Inv-χ2

νg
.

Each of the priors would be conjugate for the likelihoods in question if the group
memberships were known and, hence, p(y,z) has an analytic form.

One approach for specifying values for the prior’s hyperparameters is to set the
prior covariance matrix for the prior parameters equal to the scaled inverse of the
observed information matrix for a single observation. Kass and Wasserman (1995)
suggested this approach, but in the context of multivariate normal distributions for
the parameters, rather than for the conjugate priors above. The prior variance matrix
for the parameters μg and σ2

g is

Varπ(μg,σ2
g ) =

⎡
⎣

σ2(0)

κg(νg−2) 0

0 2(σ2(0)
g )2

(νg−2)2(νg−4)

⎤
⎦ .

Setting the prior variance matrix equal to i−1
C (μ̂g, σ̂2

g ), it is necessary to solve a
system of two equations in three variables:
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σ̂2
g =

σ2(0)

κg(νg −2)
and 2(σ̂2

g )2 =
2(σ2(0)

g )2

(νg −2)2(νg −4)
,

which has the following set of solutions:

(νg −4) = κ2
g and (νg −2)σ̂2

g = σ2(0)
g .

We choose νg = 5 and κg = 1, yielding σ2(0)
g = 3σ̂2

g , because νg = 5 is the small-
est integer number of degrees of freedom that guarantees a finite variance for the
variance parameters. This also has the very appealing feature of yielding a marginal
unit-information prior for the component means. Figure 4.1 shows plots of the pri-
ors for the component means for a simulated data set of 400 observations where the
true G = 3 (a histogram of the data is shown in Figure 4.2).
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FIGURE 4.1. Plots of marginal priors for means for 1-4 components for the trimodal data set using
the standard approximate unit information prior.

Note that we do not assume that the mean and variance parameters have the same
prior distribution for each mixture component, and so we impose a prior labeling on
the parameters of the mixture. One would need to take this into account when mak-
ing inference about any of the parameters of the mixture model with the exception
of G. In the absence of prior knowledge about the group labelings, the methods of
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Simulated three component example
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FIGURE 4.2. Histogram of 400 simulated data points.

Stephens (2000b) could be applied in order to make inference about all parameters
of the distribution.

In the case of G, relabeling is not necessary, as the suggested prior yields poste-
rior inference about G equivalent to the posterior inference using an exchangeable
mixture prior with G! components with each component corresponding to a differ-
ent labeling for the components of the prior above. This is shown by the following
theorem.

Theorem 4.1. Posterior inference for the number of components based on a non-
exchangeable prior distribution for the component parameters is equivalent to in-
ference based on an exchangeable mixture prior that contains all G! label-permuted
versions of the non-exchangeable prior.

Proof. Let p1(τ) be the non-exchangeable prior distribution of interest. Let ps(τ),s =
1, . . . ,G! be the the G! label-permuted versions of the non-exchangeable prior. Let
π∗(τ) be the exchangeable mixture of ps(τ). Then p(y|G) =

∫
p(y|τ)pi(τ)dτ is the

same for i = 1, ...,G! because the likelihood is symmetric with respect to permuta-
tions of the labels. Thus, we have
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p1(y|G) =
1

G!
G!
∫

p(y|τ,G)p1(τ|G)dτ =
1

G!

G!

∑
s=1

∫
p(y|τ,G)ps(τ|G)dτ

=
∫

p(y|τ,G)
{ 1

G!

G!

∑
s=1

ps(τ|G)
}

dτ =
∫

p(y|τ,G)π∗(τ)dτ = p∗(y|G).

Because posterior inference about G depends on τ only through p(y|G), any poste-
rior inference about G using p1(τ) as a prior will be equivalent to inference using
π∗(τ) as a prior. �

Theorem 4.1 shows that the simpler non-exchangeable prior provides the same
posterior inference about G as the computationally more expensive exchangeable
mixture prior with G! components. The exchangeable prior has the appealing char-
acteristic that it does not assign substantial prior mass to values of the μg’s far from
the likelihood modes.

We compute the posterior probabilities of different values of G with this prior us-
ing the incremental mixture importance sampling (IMIS) method of Steele, Raftery,
and Emond (2006).

4.1.3 Examples

We now compare the results of choosing the number of mixture components from
the methods described above for one simulated example and one real data example.

4.1.3.1 Simulated Example

Figure 4.3 shows the posterior probabilities of different values of G for the trimodal
dataset in Figure 4.2 using the different methods discussed above. In Figure 4.3, IL
indicates estimated posterior probabilities from the unit information prior of Section
4.1.2, and Step-MPP indicates estimated posterior probabilities using the prior and
methods of Stephens (2000a). For AIC, the posterior probabilities are derived from
the Bayesian interpretation of AIC as minus twice the log integrated likelihood for a
highly informative prior, as p(G|y)∝ exp(−AIC/2). DIC is computed using the unit
information prior in Section 4.1.2 and is also viewed as an approximation to minus
twice the log integrated likelihood. The prior for G was uniform over the integers
1,2, . . . ,7 for each of the component density priors. The true number of components
in this case is G = 3, and BIC and ICL both put almost all the posterior mass on this
value. The other methods put some posterior mass on bigger values.
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FIGURE 4.3. Posterior probabilities of G for trimodal data in Figure 4.2.

4.1.3.2 Galaxy Data

Figure 4.4 shows the posterior probabilities of G for the canonical galaxy velocity
data set (Postman, Huchra, and Geller, 1986) analyzed by Roeder (1990) and several
others since.

The methods give very different results. The fully Bayesian approach of Stephens
(2000a) (which is similar to that of Richardson and Green, 1997) puts the most mass
on the largest value considered, G = 7. AIC, DIC and the Bayesian approach using
our unit information prior put most of the mass on G = 6 and G = 7. BIC shares the
mass between G = 3 (25%) and G = 6 (75%), while ICL puts almost all the mass
on G = 3.

We do not know the “correct” answer for this famous dataset, and so we can-
not say which methods are “right” or “wrong.” However, exploratory analysis of
this dataset by Fraley and Raftery (2007) sheds some light. If one looks at the full
dataset using standard goodness-of-fit assessment methods (the empirical cumula-
tive distribution function and Kolmogorov-Smirnov tests), it is clear that it is not
well fit by a single normal. This is in line with the fact that all methods give essen-
tially zero posterior probability to G = 1.

There are two clear small “clusters,” one at the left and one at the right of the
dataset. When a mixture model with G = 3 is fit, these are clearly separated out, with
one component corresponding to each of these small clusters, and the remaining
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FIGURE 4.4. Posterior probabilities of G for galaxy example.

components corresponding to the majority of points in the middle (72 of the 82
points).

When one looks at this majority group of points in the middle, there are no strong
deviations from normality apparent (Fraley and Raftery, 2007, Figure 4), and stan-
dard goodness of fit tests do not reject normality. For example, the P-value from a
Kolmogorov-Smirnov test of normal is 0.254.

This suggests that no reasonable statistical analysis based on the data alone
should categorically exclude G = 3 in favor of larger values of G. Yet, AIC, DIC,
and the fully Bayesian analyses based on both priors considered do just that. ICL
goes to the other extreme: it overwhelmingly favors G = 3 over all other possibil-
ities. That leaves BIC, which gives mass to both G = 3 and G = 6, which seems
scientifically reasonable.

We attach two caveats to these results. First, the DIC is based on the unit in-
formation prior in Section 4.1.2, and the results might be different for other priors,
including the (very similar) priors of Richardson and Green (1997) and Stephens
(2000a). Second, only BIC, the fully Bayesian methods and, arguably, AIC, can be
interpreted as yielding posterior probabilities, but we put DIC and ICL on the same
probabilistic evidence scale for comparison purposes.
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4.1.4 Simulation Study

We now describe our simulation study to compare the different methods for choos-
ing the number of components.

4.1.4.1 Study Design

The results of a simulation study for comparing methods can depend critically on
the study design. Often the simulation study is designed by the researcher in a fairly
arbitrary way. Given this, we tried to ground our study explicitly on the published
experience with mixture models.

We searched the literature for published parameter estimates to be used as the
basis for our design. In order to choose examples in a fair, comprehensive, but rea-
sonable fashion, we looked at all papers published before July 1999 listed in the
Science Citation Index/Web of Science that referenced one of three textbooks on
mixture models:

• Everitt and Hand, Finite Mixture Distributions (1981);
• Titterington, Smith, and Makov, Statistical Analysis of Mixture Distributions

(1985); and
• McLachlan and Basford, Mixture Models: Inference and Applications to Clus-

tering (1987).

We also included a set of examples that were listed in the Titterington, Smith, and
Makov book. In all, we looked at over 200 papers published between 1936 and 1999.
Of these, we found 22 papers that listed 43 parameter estimates for two-component
models. (There were very few reported estimates for mixture models with more than
two components.)

The 43 two-component examples and references are listed in Tables 4 and 5 of
Steele and Raftery (2009), along with the mixture parameter estimates. We stan-
dardized each example’s parameters such that the group with the larger estimated
component membership had mean 0 and variance 1. The smaller group’s mean was

then normalized to |μ2 − μ1| and the variance to
σ2

2
σ2

1
. The standardized values are

shown in Table 6 of Steele and Raftery (2009).
From an experimental design perspective, one would like the simulation study

to “cover” the space of the mixture examples in the literature. Using the model-
based clustering R package mclust (Fraley and Raftery, 1998), we fit a mixture
of multivariate normal distributions to the literature parameter estimates, restrict-
ing the component densities to have equal, diagonal covariance matrices, using the
BIC to choose the “optimal” number of components. Similar experimental design
approaches for computer experiments can be found in texts on number theoretic
methods (see for example Fang and Wang, 1994).

The BIC suggested 5 components, and we therefore used 5 settings of the mixture
parameters for the two-component mixture model in our experiment. For balance we
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TABLE 4.1. Parameters for the simulation study, as suggested by the 43 parameter estimates from
the literature.

G=1: (Experiments 1-5) n=400, 300, 200, 150, 100
μ1 = 0,σ1 = 1, for all experiments
G=2: μ1 = 0,σ1 = 1 for all experiments
Experiment μ2 σ2 λ2 n

6 1.0 0.5 .25 400
7 2.0 2.0 .25 300
8 3.0 1.0 .25 200
9 4.0 2.5 .25 150
10 6.0 1.5 .25 100
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FIGURE 4.5. Simulation study: The densities used. The top left plot shows the one-component
normal density which was the basis for experiments 1–5. The remaining plots show the two-
component mixture of normals used for experiments 6–10.
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also included 5 experiments with one component, and different sample sizes. The
final simulation study design is shown in Table 4.1, and the mixture densities used
are shown in Figure 4.5.

We generated 50 data sets for each of the 10 experiments. For each of the 500
simulated datasets, we then found the selected number of components for each of
the six selection methods compared, as described in Section 4.1.3.

4.1.4.2 Results

The average number of components selected by each method in each experiment
is shown in Figure 4.6. In Figure 4.6, the experiments are listed in Table 4.1, ICLB
refers to the ICL-BIC criterion, IL is the integrated from the unit information prior in
Section 4.1.2, and Steph refers to the MAP estimate from Stephens’s fully Bayesian
method. For experiments 1–5 for which the true number of components was 1, BIC
and ICL were very accurate, Stephens’s fully Bayesian method was almost as accu-
rate, while AIC, our new UIP, and, most strikingly, DIC, overestimated the number
of components considerably.

For experiments 6–10, for which the true number of components was 2, BIC
was highly accurate on average for experiments 7–10 but less so for experiment 6.
Stephens’s method was also accurate on average. AIC overestimated the number
somewhat on average for experiments 9 and 10. The other methods, ICL, the UIP
and DIC, were much more variable and inaccurate.

TABLE 4.2. Simulation study: the number of times each of the six model selection criteria chose
the correct number of components for the ten experiments in Table 4.1.

Experiment BIC Stephens AIC ICL UIP DIC
1 50 49 45 50 44 20
2 50 48 38 50 39 17
3 50 50 42 50 40 22
4 49 48 34 50 30 14
5 49 46 33 49 19 16
6 23 29 35 0 40 20
7 50 42 46 19 34 23
8 47 45 45 16 33 14
9 50 41 37 39 22 10

10 50 43 39 50 7 20
Total 468 441 394 373 308 176

% Correct 94 88 79 75 62 35

The number of times each method chose the correct number of components is
shown in Table 4.2. In Table 4.2, UIP refers to the MAP estimate from the fully
Bayesian analysis with the unit information prior in Section 4.1.2. BIC performed
best overall, achieving almost perfect accuracy for each experiment except experi-
ment 6. This may be because experiment 6, while a two-component mixture, is very
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FIGURE 4.6. Average selected number of mixture components by method and experiment. (a)
Experiments 1–5, for which the true G = 1. (b) Experiments 6–10, for which the true G = 2.

close to a single Gaussian, and BIC chose G = 1 a relatively high proportion of the
time. Stephens’s method was second best overall, clearly outperforming the other
methods. It also did worse for experiment 6 than for the other experiments.

DIC performed particularly poorly, uniformly across all experiments. This may
be due to the fact that it used our unit information prior, but the fully Bayesian
method using the UIP performed much better, so this is doubtful.

Mixture modeling is often done to estimate the density rather than to assess the
number of components. We therefore compared the performance of the six methods
for density estimation. To do this in a comparable way, we chose the value of G
selected by each method and then found the MLE of the parameters for that value of
G and the corresponding density, and computed its mean integrated squared error.
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TABLE 4.3. The average Mean Integrated Squared Error (MISE) for the 10 experiments in Table
4.1. The values in the table are multiplied by 1000.

Experiment BIC Stephens AIC ICL UIP DIC
1 0.19 0.21 0.22 0.19 0.23 0.67
2 0.21 0.24 0.33 0.21 0.31 0.65
3 0.35 0.35 0.41 0.35 0.50 1.32
4 0.48 0.51 1.30 0.48 1.35 2.24
5 0.60 1.00 1.58 0.60 2.75 3.20
6 1.53 1.13 0.86 2.31 0.77 0.76
7 0.23 0.24 0.23 2.18 0.25 0.28
8 0.55 0.39 0.37 2.45 0.42 0.61
9 0.37 0.75 0.47 0.61 0.58 0.77

10 0.34 0.44 0.39 0.34 0.75 0.58
Mean 0.48 0.53 0.62 0.97 0.79 1.11

The results are shown in Table 4.3. Again, BIC did best, followed by the fully
Bayesian Stephens’s method, and DIC did worst by far.

4.1.5 Discussion

We have considered five established Bayesianly motivated methods for choosing the
number of components in a mixture model, and introduced an additional one based
on a new unit information prior for mixture models. We compared all six methods
using a simulation study whose design was based on a broad survey of mixture
model parameter estimates published in the literature before 2000. BIC performed
best, quite decisively, with the fully Bayesian method of Stephens (2000a) (similar
to that of Richardson and Green 1997) outperforming the other methods. AIC, ICL
and DIC performed poorly. So did our own new proposed prior in this context,
unfortunately.

There are other Bayesian approaches to choosing the number of components that
we have not considered here. Steele (2002) proposed a modification of BIC, defined
as follows:

BIC2 = 2log(p(y|τ̂,G)+2
G

∑
g=1

log(n̂g +0.0001)+(G−1) log(n). (4.1.1)

BIC2 penalizes the parameters of the mixture components by the logarithm of the
estimated sample size of their component rather than of the entire sample size, which
seems more in line with the derivation of BIC for regular models. However, BIC2

performed less well than the raw BIC in Steele’s (2002, chapter 3) simulation study,
and so we did not include it here.

Fraley and Raftery (2007) proposed a regularized version of BIC. This addressed
the problem with BIC that it depends on the maximum likelihood estimator, which
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can sometimes be degenerate in mixture models, particularly if there are ties in the
data. It replaced the MLE by the posterior mode with a very weakly informative
prior, crafted so that the posterior mode hardly differs from the MLE except when
the MLE is degenerate. This is implemented in the mclust R package. We did
not include this in the current comparison, and we conjecture that it would perform
similarly to BIC, but perhaps slightly better because of the regularization.

We have addressed only one aspect of the prior specification, namely the prior
for the component density parameters. Analysts also have the flexibility to specify
different priors on the mixing parameters (for example, a choice between the often
used uniform Dirichlet and the Jeffrey’s prior (Robert, 2001)), but this has been rela-
tively unexplored in the mixture literature. Stephens (2000a) uses a Poisson prior on
the number of components, and it would be interesting to examine how the interplay
between the three priors (on the component densities, mixing parameters, and the
number of components, respectively) affects inference and can be used by analysts
in a constructive way.

We did not consider the class of Dirichlet process mixture priors (Escobar and
West, 1995), mostly for reasons of brevity and relevance. The motivation behind the
use of the Dirichlet process mixture approach to finite mixture models is mostly to
model the underlying population density, rather than to make inference about the
number of components. For further discussion of this issue, see Green and Richard-
son (2001) on the choice between parametric and non-parametric modeling for mix-
tures and the effect on choosing the number of components.

Gaussian mixture models are often used for clustering, particularly in more than
one dimension. Choosing the number of mixture components is not necessarily the
same as choosing the number of clusters. This is because a cluster may arise from a
non-Gaussian distribution, which is itself approximated by a mixture of Gaussians.
Methods for combining mixture components to form clusters have been proposed
by Wang and Raftery (2002, Section 4.5), Tantrum, Murua, and Stuetzle (2003), Li
(2005), Jörnsten and Keleş (2008), and Baudry et al. (2008).
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4.2 How Large Should the Training Sample Be?

Luis Pericchi

The original approach taken by Berger and Pericchi (1996a,b), the “Empirical In-
trinsic Bayes Factor,” was based on taking (several) real minimal (in size) training
samples, and then forming the arithmetic average of Bayes factors. Minimal Train-
ing Samples were the most natural, since each training sample used for training
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was lost for discrimination of models, and furthermore under several points of view
minimality of training samples encapsulates the concept of Unit Information Priors
(Kass and Wasserman, 1995), and Matching Predictive Priors (Berger and Pericchi,
2001). The Empirical Intrinsic approach besides solving a problem, that of finding
a proper scaling of a Bayes factor, opened up a host of new possibilities for ob-
jective hypothesis testing and model selection. Among them: 1) the possibility of
using longer than minimal real training samples; 2) the possibility of using Intrinsic
Priors directly, without any real training sample (when Intrinsic Priors can be cal-
culated); and 3) the possibility of using simulated training samples, of virtually any
size smaller than the sample size M ≤ n. The third possibility offers a “wonderland”
or “free lunch” situation, on which the use of training samples does not “waste” real
samples. The usual situation in Cross-Validation or in the framework of Chakrabarti
and Ghosh (2007) is not in Wonderland, since they use real training samples, but
Casella and Moreno (2009) for example, are in situation 3, that is in Wonderland.
Now the question we address is: How can we decide an optimal training sample
size M* in Wondeland? For different purposes of the analysis, does the optimal size
change?

For simple null hypotheses, we explore two perspectives.

1. The first is the identification perspective when the correct identification of the
hypothesis is the central focus. We explore rules like “The Type I Error Rule” for
selecting the (simulated) training sample size or minimizing the sum of Type I and
Type Error II. We conclude in favor for extremely small training samples if not
minimal. This validates the original suggestion by Berger and Pericchi (1996a)
of using minimal training samples.

2. On the other hand, if prediction of future observations with square loss by
model averaging is the primary goal, that is, the prediction perspective, then very
large training samples may reduce the error of prediction. For purely prediction
purposes, this opens up a window of exciting new methods.

These opposing answers leave us in a drama when the purpose of analysis is not ab-
solutely either identification or prediction. We suggest then a compromise solution
on which the errors of identification are kept small, assuring large sample consis-
tency and the error of prediction is drastically diminished. We call it the 5% cubic
root rule on which the compromise training sample M∗ is taken as a simple function
of the sample size n: M∗ = Min[0.05n,n1/3]. More general null hypotheses will be
addressed elsewhere.

4.2.1 General Methodology

In this section, for simplicity and ease of exposition, we assume that we have a point
simple null hypothesis, that is,

H0: θ = θ 0 versus H1: θ �= θ 0.
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The more general situation is a subject of current research (see Pericchi, 2009).
Our starting point is The Intrinsic Prior Equation, which for exchangeable

observations (for the sake of simplicity) is (Berger and Pericchi, 1996a,b):

π I(θ) = πN(θ)
∫

f (x(l)|θ)
f (x(l)|θ 0)
mN

1 (x(l))
dx(l), (4.2.1)

where x(l) is a random training sample of size (length) M and

mN
1 (x(l)) =

∫
f (x(l)|θ)πN(θ)dθ .

Exponential Distribution Example. Assume the data comes from an exponential
likelihood:

f (xi|β ) = β exp(−βxi), xi > 0, β > 0.

In this illustration, the hypotheses are:

H0: β = β0 = 2 versus H1: β �= β0.

It turns out, using the moment generating function of an exponential distribution,
that for a training sample of length M, in terms of the sufficient statistics X̄M =
1
M ∑

M
i=1 xi,

f (X̄M|β ) =
(Mβ )M

Γ (M)
X̄ (M−1)

M exp(−Mβ X̄M). (4.2.2)

The Jeffreys prior for β is πN(β ) = 1/β , and it follows that mn
1(X̄M) = 1

X̄M
. There-

fore, using expressions (4.2.1) and (4.2.2), the Intrinsic Prior (IPrior) for a training
sample of length M is

π I(θ) = πN(θ)
∫

f (X̄M|β )[Mβ0X̄M]M exp[−Mβ0X̄M]dX̄M.

It turns out that this integral is

π I(θ) =
Γ (2M)
Γ (M)2 ×βM

0 × β (M−1)

(β0 +β )(2M) .

This is a very interesting distribution. In fact,

β/β0 ∼ Beta2(M,M).

Definition: Beta Distribution of the Second Kind.

p(y|p,q) =
Γ (p+q)
Γ (p)Γ (q)

× yp−1

(1+ y)(p+q) , y > 0,
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denoted by y ∼ Beta2(p,q), and to generate samples from Beta2(p,q), we can use
the following algorithm: (a) z ∼ Beta(p,q) and (b) y = z

1−z .

(a)

(b)

FIGURE 4.7. (a) Intrinsic priors for the exponential example with minimal training sample M = 1
(points) and M = 5, M = 10 and H0 = β0 = 2; and (b) Type I errors for the exponential example as
a function of M.

In Figure 4.7(a), the IPrior is plotted for M = 1, minimal training sample, and
also for M = 5 and 10. All three priors are sensible since apart from being proper,
their medians are all equal to β0 = 2, so it is balanced and the null hypothesis is in
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the “center” of the prior. However, it can be argued that for M > 1, the prior is more
concentrated around the null hypothesis, which is “more pleasant to the mind.” Fine,
but....now we have opened a “Pandora Box,” how to assign M? One possibility is
to consider the class of IPriors for 1 < M < n, where n is the sample size, this is
the approach taken by Casella and Moreno (2009). This is fine if there is robustness
with respect to the decision. But this is the exception rather than the rule, since there
is an enormous variation in that class of priors. Decision robustness can only be
obtained when there is an overwhelming support for one of the hypotheses. It is the
intermediate cases which are the most interesting, particularly when the data tend to
favor the null hypothesis. This can not be addressed by the whole class of IPriors.

We explore different ways to assign M on a non-trivial set of training samples
1 < M < M1. In order to compute the Bayes factor in this example, we need to
calculate:

mI(x̄) =
∫
β n exp(−βnx̄)π I(β )dβ .

Since this is an involved integral, we resort to the following general approximation
(Berger and Pericchi, 1996a)

mI(x̄) = mN(x̄)[π I(β̂ )/πN(β̂ )+o(1/n)].

Using this approximation, it follows that the Bayes factor satisfies approximately
the following expression:

BM
01 = β n

0 exp(−β0nx̄n)(x̄n)(n+M)(β0 +
1
x̄n

)(2M) nnΓ (M)2

βM
0 Γ (n)Γ (2M)

.

We may try to explore here a rule like Type I Error Rule as follows. We compute

Pr(BM
01 ≤ 1|H0 : β = β0) = α(M,n),

by simulation from H0 and the range to be considered for M is such that α(M,n) ≤
0.05.

We performed extensive simulations in Figure 4.7(b), and we conclude that Type
I Error is increasing with M, and thus the optimal is the minimal training sample
M0 = 1, although small values of M above M = 1 lead to small type I error. An
interesting curiosity is that a 5% type I error corresponds to a M = 0.05n. This
curiosity will be confirmed in our next important example. Tentatively we consider
the class of IPriors:

Five PerCent Class: {π I(β |M),M = Max[1,Min[0.05n,5]]}.

Remark: It is advisable to avoid letting M be a proportion of the sample size n, since
then consistency will be lost when sampling from the null hypothesis, as will be
clearly seen in the next example. By bounding the class by 5 as above, consistency,
under the null hypothesis, is guaranteed. To continue the exploration of different
routes to choose M in a non-trivial manner, we move to a normal example.
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4.2.2 An Exact Calculation

We now explore in depth a case amenable to all calculations for a normal mean with
known variance.

Yi ∼ N(μ ,σ2
0 ), with hypotheses: H0: μ = μ0 versus H1: μ �= μ0.

Using the intrinsic prior equation (4.2.1), for a training sample of size M we find

π I(μ) = N(μ0,2σ2
0 /M). (4.2.3)

Using this prior we get the marginal under H1 given by

mI
1(ȳ|M) = N(μ0,σ2

0 (
M +2n

nM
)) (4.2.4)

and using the intrinsic prior (4.2.3), the Bayes factor is given by

2log(B01) = log(1+2n/M)− n(ȳ−μ0)2

σ2
0

2n
M +2n

. (4.2.5)

Then, under H0
n(ȳ−μ0)2

σ2
0

∼ χ2
1 ,

and under H1 according to the marginal density (4.2.4),

(ȳ−μ0)2

σ2
0 (M+2n

nM )
∼ χ2

1 .

4.2.2.1 The Identification Route

We begin setting the problem as an Identification Problem, and we compare pro-
cedures by (Bayesian versions) of Type I and Type II errors.

Definition: Bayesian Type I Error.

αB(M,n) = Pr[2logB01 < 0|H0].

In the example of this section, since under H0, n(ȳ−μ0)2

σ2
0

∼ χ2
1 , it turns out that

αB(M,n) = Pr(χ2
1 > (1+ f /2) log(1+2/ f )),

where f = M/n is the fraction of the sample, which is the training sample, and, for
example, f = 0.05 is that the training sample is 5% of the sample n.
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FIGURE 4.8. Bayesian Type I Error as function of M. 5percent proportion produces 5percent type
I error.

Definition: Bayesian Type II Error.

βB(M,n) = Pr(2log(B01) > 0|H1),

where the probability is calculated from m1(y|M). In the Normal mean example it
turns out that

βB(M,n) = Pr(χ2
1 < ( f /2) log(1+2/ f )),

since under m1 it is the case that nM(ȳ−μ0)2

σ2
0 (M+2n)

∼ χ2
1 . The surprising fact is that both

Type I and Type II Bayesian errors are increasing with f , see Figures 4.8-4.12. In
fact, it is very interesting that 5 percent as training sample leads to a near 5 percent
of Bayesian Type 1 error, a curiosity already noted in the previous example.

Conclusion. To reduce both types of error, we should reduce training samples, that
is take Minimal Training Samples, in this case M = 1 is optimal in that sense. If a
compromise has to be reached still the training sample sizes should be rather smaller
than large. Alternatively, instead of a fraction we may like to use a power of sample
size. The fact is that if we use any fraction f > 0 of sample size, then under H0 the
2log(B01) is bounded for all sample sizes, an so it is not consistent under H0. This
fact can be easily deduced for example from (4.2.5), for M/n = f =constant. For
f = 0.05, Figure 4.9 tells us that a power of 0.7 approximates for a long range, so
if this power is assumed the 5 percent rule is approximately obeyed. Sample size to
the power of 0.7 will yield a consistent procedure, but with a high Bayesian Type II



4.2 How Large Should the Training Sample Be? 137

FIGURE 4.9. Power of M equivalent to 5 percent.

FIGURE 4.10. Bayesian Type II Error as function of M, growing steady.



138 4 Bayesian Model Selection and Hypothesis Tests

FIGURE 4.11. Bayesian Type II Error as function of M. 5percent proportion produces 25percent
type II error.

FIGURE 4.12. Bayesian Type I and Type II Error as function of M.
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error of about βB = 0.25, see Figure 4.10, and with a non-negligible Type I Error of
0.05 even for very large sample sizes. This seems to be unacceptably large. Thus,
if we are going to envisage a “power rule” that power should be much smaller than
0.7. Next, we turn to a radically different criterion.

4.2.2.2 The Prediction Route

We now take a completely different route: We focus on the Bayesian Risk of pre-
dicting the observations, but NOT by one single model but by the fully Bayesian
route of Model Averaging, which is the most widely justifiable procedure under
a Bayesian point of view. For which training sample size M will be the Bayesian
risk minimized? First of all notice that typically the variance of the log of the Bayes
factor decreases with M.
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FIGURE 4.13. Variance of 2LogB01 as function of fraction f = M/n to minimize variance increase
fraction f .

Normal Example Continued. From the expression (4.2.5), we get that under H0

the Var(2log(B0,1)) is 2( 2n
M+2n )2 or ( 2

2+ f )
2. Under m1 the factor turns to be ( 2

f )
2

both decreasing with M as seen in Figure 4.13. This variance reduction may antici-
pate an effect in the reduction of error of prediction.

Prediction Criteria. We use square error loss, the most used (over-used?) loss func-
tion.
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Definition: The Prediction Risk as a function of M.

Risk(M) =
∫

(ŷ∗ − ȳ)2 p(ȳ|M)dȳ,

where
p(ȳ|M) = P(H0|y,M) f (ȳ|μ0)+P(H1|y,M)m1(ȳ|M),

and

ŷ∗ = P(H0|y,M)
∫

ȳ f (ȳ|μ0)dȳ+P(H1|y,M)
∫

ȳm1(ȳ|M)dȳ

= P(H0|y,M)ŷ∗0 +P(H1|y,M)ŷ∗1.

Lengthy algebra yields that

Risk(M) = (ŷ∗0 − ŷ∗1)
2P(H0|y,M) P(H1|y,M)+Var0(ȳ)P(H0|y,M)

+Var1(ȳ|M)P(H1|y,M),

where Var0(ȳ) = σ2
0 /n,Var1(ȳ|M) = σ2

0 (1/n+2/M).

FIGURE 4.14. Effects on the relative risk of the training sample size M, showing rapid decrease
with M.

Figure 4.14 shows the reduction of the risk as the training sample size grows.
Note however an important phenomenon: the decrease in risk is quite fast. So al-
lowing slightly bigger than minimal training samples permits a drastic reduction of
the prediction risk. On the other hand, we see in Figure 4.15 that the change in the
Probability of the null may be sizeable with M. Taking into consideration all these
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FIGURE 4.15. Effects on the probability of the alternative and the relative risk of the training
sample size M.

FIGURE 4.16. The five percent-cubic root rule as a function of sample size n.
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facts we finally propose the rule:

M = min[0.05n;(n)1/3].

The 5percent-cubic root rule is depicted in Figure 4.16.

4.2.3 Discussion of the FivePercent-Cubic-Root Rule

Limitations. It should first be noted that we considered situations on which the
Null Hypothesis is simple and the alternative is one-dimensional. Generalizations
are being worked out.

Versions. Apart from the continuous version, we may take integer versions, by tak-
ing the function “ceiling” in the rule above. There is nothing to prevent the use of
fractional M though, like M = 0.25 for n = 5. The ceiling version would lead to
M = 1. This seems fine, but smaller type I errors seems preferable.

Pure Cubic Root Rule? Setting the rule simply as: M = (n)1/3, achieve most of
the desiderata of a sensible procedure. Nevertheless the simple cubic root will allow
higher values of type I error for very small sample sizes, so our preference for M =
Min[0.05n;(n)1/3].

Different Thresholds. It may be argued that the rule depends on the threshold (on
the log Bayes factor) of 0 in the definitions of Bayesian Type I and II Errors. How-
ever the value of zero is a natural one, and does not seem esential in our arguments
which involve type II error. On the other hand, Type I error seems to be fairly flat
with respect to the training sample size for thresholds which are smaller than one.

Tentative Nature of the Rule. Still the rule should be contrasted with practical
experiences, for fine tuning. However a compromise between minimal and maximal
training samples seems useful to be considered.

Acknowledgments: This work was supported in part by NIH Grant P20-RR016470.

4.3 A Conservative Property of Bayesian Hypothesis Tests

Valen E. Johnson

Statistical hypothesis tests can be conducted for a variety of purposes. As Marden
(2000) notes, the two (or more) hypotheses under consideration may be on equal
footing, or one hypothesis may represent a simplification of a larger model and
interest may lie in determining whether the simpler model provides an adequate
representation of the data. In classical statistical tests, the null hypothesis occasion-
ally represents a theory that one believes is true, but more often it represents a straw
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man that one hopes to reject. In this article, I restrict attention to the latter case and
assume that a null hypothesis has been completely specified and that the goal of an
investigation is to reject it. If a Bayesian test is used for this purpose, I demonstrate
that the expected weight of evidence against the null hypothesis is maximized when
the “true” alternative hypothesis has been specified. I discuss the implications of this
fact from several perspectives, and demonstrate that it implies, among other things,
that a Bayesian cannot skew the results of a hypothesis test in favor of the alternative
hypothesis by specifying an overly optimistic (or pessimist) prior distribution on the
parameters of interest.

4.3.1 An Inequality

In parametric settings, if x denotes data collected during a study and θ denotes a
parameter of interest, then a classical test of a point null hypothesis is often stated
as a test of

H0: θ = θ 0 versus H1: θ �= θ 0. (4.3.1)

The specification of Bayesian tests is more complex, requiring that (proper) prior
densities be specified on θ under both the null and alternative hypotheses. A
Bayesian hypothesis test corresponding to (4.3.1) might thus be written

H0: θ ∼ π0(θ) versus H1: θ ∼ π1(θ), (4.3.2)

where π0(θ) assigns unit mass to θ 0, and π1(θ) represents any other probability
density function. For purposes of this article, I assume that π0(θ) is known and that
there is no ambiguity regarding its functional form. It need not, however, represent
a density function that assigns unit mass to a single point—any probability density
function will do.

In contrast to the specification of π0(θ), there is often controversy surrounding
the specification of π1(θ). For example, in testing whether two variables are cor-
related, the null hypothesis is usually specified as a statement that the correlation
coefficient is 0. What to assume about the correlation coefficient under the alterna-
tive hypothesis is generally less clear.

To complete the specification of the hypothesis test indicated in (4.3.2), let
f (x |θ) denote the sampling density of x given θ . I assume that π1(θ) is specified
before x is observed.

In a Bayesian hypothesis test, the posterior odds in favor of the alternative hy-
pothesis are obtained by multiplying the prior odds in favor of the alternative hy-
pothesis by the Bayes factor. This relation can be expressed mathematically as

Pr(H1 |x)
Pr(H0 |x)

=
m1(x)
m0(x)

× α
1−α , (4.3.3)
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where α is the prior probability assigned to the alternative hypothesis and α/(1−
α) are the prior odds in favor of the alternative hypothesis. The quantities m1(x)
and m0(x) denote the marginal densities of the data under the alternative and null
hypotheses, respectively, and their ratio is called the Bayes factor. The marginal
density of the data under the alternative hypothesis is defined to be

m1(x) =
∫
Θ

f (x |θ)π1(θ) dθ , (4.3.4)

which is just a weighted average of the sampling density of the data, weighted with
respect to the prior density on the unknown parameter vector. A similar expression
provides the marginal density of the data under the null hypothesis. The Bayes fac-
tor, m1(x)/m0(x), may thus be regarded as a ratio of integrated likelihood functions.

Often, the null and alternative hypotheses are assumed to be equally likely a
priori, which means that α = 0.5 and α/(1−α) = 1. In this case, the Bayes factor
equals the posterior odds in favor of the alternative hypothesis.

The logarithm of the Bayes factor is called the weight of evidence and is used by
Bayesians to summarize the result of a hypothesis test.

The expected weight of evidence in a hypothesis test has the following property.
Suppose that the prior density π1(θ) assumed for the parameter vector θ under the
alternative hypothesis is “incorrect,” and that the “true” prior density for θ is πt(θ).
The meanings of “incorrect” and “true” in this context are discussed below. Let
mt(x) denote the marginal density of x obtained from (4.3.4) with πt(θ) substituted
for π1(θ). Then from Gibbs’ inequality, it follows that

∫
X

mt(x) log

[
mt(x)
m0(x)

]
dx −

∫
X

mt(x) log

[
m1(x)
m0(x)

]
dx

=
∫

X
mt(x) log

[
mt(x)
m1(x)

]
dx

≥ 0.

That is, ∫
X

mt(x) log

[
mt(x)
m0(x)

]
dx ≥

∫
X

mt(x) log

[
m1(x)
m0(x)

]
dx. (4.3.5)

The last inequality states that the expected weight of evidence in favor of the alter-
native hypothesis is always greater if the true prior is used in its definition. This is a
slightly different way of stating that the expected weight of evidence always favors
the true hypothesis (e.g., Good, 1950), but the introduction of the device of a “true”
prior is useful for examining the effects of misspecifying the prior density used to
define the alternative hypothesis is (4.3.2).
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4.3.2 Discussion

Equation (4.3.5) can be interpreted in a number of ways. From a frequentist per-
spective, the true value of a model parameter is assumed to be an unknown constant.
The true prior density is then the density function that places unit mass on this value.
The more mass that π1(θ) assigns away from this value, the higher the penalty the
Bayesian pays for not concentrating his prior on it. In other words, the posterior
odds computed in favor of the alternative hypothesis using any prior that does not
concentrate its mass on the true (but unknown) parameter value are very likely to be
smaller than the posterior odds that would be achieved by using the correct prior.

The interpretation of (4.3.5) from a Bayesian perspective is more direct. When
planning an experiment with the goal of rejecting a null hypothesis, it is in the inves-
tigator’s best interest to define the alternative hypothesis using the prior distribution
that most accurately represents available prior information.

It is worth noting that many objective Bayesian testing procedures use non-
informative prior densities to define alternative hypotheses. Presumably this is done
in an effort to avoid “biasing” test results in favor of the alternative hypothesis. In
fact, however, (4.3.5) demonstrates that the use of such priors inevitably results in
a decrease in the expected weight of evidence that would be collected in favor of a
true alternative hypothesis. The prior density used to define the alternative hypoth-
esis should be based on the most accurate information available regarding the value
of the parameter of interest, under the assumption that the null hypothesis is false.
That is, the prior density used to define the alternative hypothesis should represent
the alternative hypothesis being tested, not a disperse version of the null hypothesis.

Equation (4.3.5) cannot be extended to obtain a similar inequality on posterior
model probabilities. Nonetheless, for an accepted value of the prior odds, (4.3.5)
might be interpreted to mean that the posterior probability assigned (by another
Bayesian) to the alternative hypothesis represents (for you) a conservative estimate
of the true posterior probability of the alternative hypothesis. In fact, a plausible rule
of thumb is to assume that the true posterior probability of the alternative hypothesis
will usually lie between the posterior probability reported by another Bayesian and
the posterior probability obtained by setting the Bayes factor equal to the likelihood
ratio statistic (i.e., by letting π1(θ) concentrate its mass on the maximum likelihood
estimate of θ ).

As a final comment, it is worth contrasting Bayesian testing procedures to
Bayesian inferential procedures used in testing contexts. Because Bayesian test-
ing procedures require the specification of proper prior distributions on parameters
of interest under both null and alternative hypotheses, it is common practice to use
Bayesian inferential procedures in place of formal hypothesis tests even in what are
inherently testing problems. For example, instead of testing whether a new medical
treatment has a higher efficacy rate than a standard treatment, many scientists will
instead report the posterior probability that the new treatment’s efficacy rate exceeds
the rate assumed for the standard treatment. Such posterior probabilities are often
calculated using a non-informative prior density on the new therapy’s efficacy rate.
Equation (4.3.5), however, reveals an important distinction between Bayesian test-
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ing procedures and Bayesian inferential procedures. A simple example illustrates
this difference.

Suppose that an (unscrupulous) investigator wishes to reject a null hypothesis
that a success probability p is equal to, say, 0.2. To this end, he imposes a prior
distribution on p that concentrates all of its mass on the interval (0.8,1.0), and then
collects a binomial observation x with denominator n and success probability p.
Because the investigator assigned no prior mass outside of the interval (0.8,1.0),
his posterior distribution on p will also concentrate all of its mass on the interval
(0.8,1.0). The posterior probability that p < 0.8 is then 0, no matter what the value
of x is.

The situation is fundamentally different when viewed as a statistical test. Sup-
pose, for instance, that x = 40 and n = 100. Assuming that the prior odds between
null and alternative hypotheses are 1.0 and using the same prior distribution on p
as before, a simple calculation shows that the posterior probability assigned to the
alternative hypothesis is less than 9×10−13, which for practical purposes is 0. Thus,
while the inferential procedure concludes that the probability that p ≥ 0.8 is 1, the
testing procedure concludes that the probability p ≥ 0.8 is essentially 0.

Taking this example a bit further, suppose that the investigator had defined the
alternative hypothesis by instead assuming that p had a uniform distribution on the
unit interval. With this prior, the posterior probability assigned to the alternative
hypothesis would have been 0.9998, or very close to 1. By attempting to bias the
result of the test against the null hypothesis, the investigator increased the weight of
evidence collected in its favor.

4.4 An Assessment of the Performance of Bayesian Model
Averaging in the Linear Model

Ilya Lipkovich, Keying Ye, and Eric P. Smith

Bayesian model averaging (BMA) is an approach in modern applied statistics that
provides data analysts with an efficient tool for discovering promising models and
obtaining estimates of their posterior probabilities via Markov chain Monte Carlo
(MCMC) (see Hoeting et al., 1999). These probabilities can be further used as
weights for model averaged predictions and estimates of the parameters of inter-
est. As a result, variance components due to model selection are estimated and ac-
counted for, contrary to the practice of conventional data analysis (such as, for ex-
ample, stepwise model selection). In addition, variable activation probabilities can
be obtained for each variable of interest.

BMA (and the frequentist counterpart) is becoming an increasingly popular data
analysis tool which allows the data analyst to account for uncertainty associated
with the model selection process. An interesting application of BMA methodology
in the context of linear regression is a method of simultaneous variable selection and
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outlier detection presented in Hoeting, Raftery, and Madigan (1996) and Hoeting et
al. (1999).

Prior to model averaging, variable selection has been recognized as “one of the
most pervasive model selection problems in statistical applications” (George, 2000),
and a lot of different methods emerged during the last 30 years, especially in the
context of linear regression (see Miller, 2002; McQuarrie and Tsai, 1998). Many
researchers focused on developing an appropriate model selection criterion assum-
ing that few reasonable models are available. Such methods include PRESS (Allen,
1971), Mallows’ Cp (Mallows, 1973), Akaike’s AIC (Akaike, 1973), Schwarz’s BIC
(Schwarz, 1978), RIC (Foster and George, 1994), bootstrap model selection (Shao,
1996), and others. In reality, however, the researchers often have to choose a single
or few best models from the enormous amount of potential models using techniques
such as stepwise regression of Efroymson (1960) and its different variations, or, for
example, the leaps-and-bounds algorithm of Furnival and Wilson (1974).

Typically researchers use both approaches, first trying to generate several best
models for different numbers of variables, and then select the best dimensional-
ity according to one of the criteria listed. Any combination of these approaches to
model selection, however, do not seem to take into account the uncertainty associ-
ated with model selection and therefore in practice tend to produce overoptimistic
and biased prediction intervals, as will be discussed later. In addition, the statisti-
cal validity of various variable selection and elimination techniques (stepwise and
forward selection, backward elimination) is suspect. The computations are typically
organized in “one variable at a time” fashion seemingly employing the statistical
theory of comparing two nested hypotheses, however ignoring the fact that the true
null distributions of the widely used “F statistics” (such as F-to-enter) are unknown
and can be far from the assumed F distribution (see Miller, 2002).

The two elements of the model selection problem (model search and model se-
lection criterion) are naturally integrated in model averaging. This overcomes the
inherent deficiency of the deterministic model selection approach by combining
(averaging) information on all or a subset of models when estimating parameters,
making inferences, or predicting new observations, instead of using a single model.

The technical approach to BMA is relative straightforward and involves updating
information across a set of possible models. Following Madigan and Raftery (1994),
if Δ is the quantity of interest, such as a parameter of the regression model or a future
observation, then its posterior distribution given data D and a set of K models is a
mixture of posterior distributions (see also Leamer, 1978):

P(Δ |D) =
K

∑
i=1

P(Δ |Mk,D)P(Mk|D),

the posterior probability for model Mk is given by

P(Mk|D) =
P(D|Mk)P(Mk)

K
∑

i=1
P(D|Mi)P(Mi)

,
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where
P(D|Mk) =

∫
P(D|β k,Mk) f (β k|Mk)dβ k

is the predictive distribution for model Mk.
The standard Bayesian approach to quantifying uncertainty is by incorporating it

as an extra layer in the hierarchical model. In BMA we assume an extension of the
Bayesian hierarchical model, as explained in George (1999), “By using individual
model prior probabilities to describe model uncertainty, the class of models under
consideration is replaced by a single large mixture model. Under this mixture model,
a single model is drawn from the prior, the prior parameters are then drawn from the
corresponding parameters’ priors and finally the data is drawn from the identified
model.”

In this section, we will try to think about models in a broad context when appro-
priate since different researchers have applied BMA within quite different classes
of models. In many cases however the model space will be reduced to the subsets
of predictors in the linear regression model. The objective of this research is to use
simulation to assess BMA. Using a basic multiple regression model, we evaluate
the efficiency of BMA relative to a “true” model and a single selected model. We
use simulation experiments to evaluate the performance of the Bayesian Model Av-
eraging method by comparing averaged linear models against a single model. We
compare performance over different subsets of models and evaluate the importance
of correlation among predictors on efficiency.

4.4.1 Assessment of BMA Performance

One of the main arguments for using the BMA is based on its ability to improve
our predictions, as measured by the out-of-sample prediction error. Summarizing
the experience of several studies, Raftery (1995) state that “in most cases BMA im-
proves predictive performance over the single best model by about the same amount
as would be achieved by increasing the sample size by 4%.”

Hoeting et al. (1999) present several examples of BMA applications that use
out-of-sample validation methods to illustrate its predictive performance. The cross-
validation was performed by splitting each data set into two parts: training set, DT

and prediction set, DP. The training set is used for model selection and the second
set for prediction. Using several models turned out better than using a single model
in most of the cases.

Two measures of predictive ability were used, the coverage for a 90% predictive
interval, measured by the proportion of observations of the second set falling within
the 90% of the corresponding posterior prediction interval (see Hoeting et al., 1999).
The second measure is the logarithmic scoring rule of Good (1952). Specifically
they measure the predictive ability of a single model M as

− ∑
Δ∈DP

log
{

P(Δ |M,DT )
}
,
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and compare it with predictive ability of BMA as measured by

− ∑
Δ∈DP

{
log

[ K

∑
k=1

P(Δ |Mk,D
T )P(Mk|DT )

]}
.

The smaller the predictive log score for a given model or model average, the better
the predictive performance.

An intuitive explanation of the superior performance of BMA was given in
George (1999), who noted that BMA-based prediction can be viewed as an ap-
plication of averaging of several approximately unbiased estimates with weights
adaptively accounting for their different variance, hence better prediction. A more
analytical argument was used in Madigan and Raftery (1994), which follows from
the non-negativity of the Kullback-Leibler information divergence:

−E
[

log
{ K

∑
k=1

P(Δ |Mk,D
T )P(Mk|DT )

}]
≤−E[log{P(Δ |Mj,D)}]

for j = 1, . . . ,K. See also Chickering and Heckerman (2000) who used Bayesian
networks and found that the predictive ability of model averaging is better than
using a single model.

4.4.2 A Simulation Study of BMA Performance

4.4.2.1 Out-of-Sample Performance of BMA

To assess the performance of BMA in the case of a multiple linear regression, we
conducted a simulation study. The idea of simulation was to use some “true” model
to generate the data and then compare the out-of-sample prediction for the averaged
model to that of various candidate models (full model, top selected model, and true
model). Of course, the usefulness of the results is limited because the simulation is
based on the assumption that a “true” model exists, which may not be the case in a
real-life situation. However, the simulation study can be used as a way of validating
the BMA procedure.

The simulation procedure started at generating training and prediction data, de-
noted by DT and DP, respectively under the same generation scheme. The number
of explanatory variables was taken to be 20 and the number of cases in both train-
ing and prediction data sets was set to 100, and 500. Both fixed and random design
matrices (X) were considered in the simulation experiment. For the fixed design
the same (generated from a multivariate normal distribution) values of explanatory
variables for both training and prediction data sets were used; for the random design
different X matrices for the two data sets were generated. The design matrix had one
of three correlation patterns: high (r = 0.8), medium (r = 0.5), and uncorrelated. For
this purpose, variables were divided into 4 groups (x1 − x5), (x6 − x10), (x11 − x15),
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(x16 − x20), with equal correlations within each group and uncorrelated across the
groups. All x’s were standardized to have zero means and unit variances. The val-
ues for response variable, y’s, were generated by applying the same coefficients for
those variables in the same group, β ∈ (0.1,0.2,0.3,0.0) and adding normal errors
with zero means and unit variances. Notice that the coefficients in the last group
are set to zero, which means that the full model is not the true model. To ensure
that different data sets are comparable (have similar R2), the β coefficients were
adjusted by the appropriate factor, c so as to make the R2 for the simulated data to
be 0.5 when the true coefficients are applied. This factor is data-dependent and it is
computed as

c =
{

N−1
N

∑
i=1

( 20

∑
j=1
β jxi j

)2
}−1/2

,

where N is the sample size, β ’s are the assumed model coefficients and the x’s are
simulated. This can be motivated as follows: for a regression model with random
design, unit variance of standard error, and true coefficients, β , the expected R2 is
computed as

R̃2 =
E
( p
∑
j=1
β jx j

)2

1+E
( p
∑
j=1
β jx j

)2 ,

(see Breiman, 1996), and hence the correction factor needed to achieve a certain
target R2

t can be estimated as

c =
Rt√

N−1
N
∑

i=1

( p
∑
j=1
β jxi j

)2
(1−R2

t )

.

Next we ran 20,000 iterations of the Markov chain Monte Carlo model composi-
tion (MC3, see Madigan and York, 1995) algorithm on the training data and obtain
a list of models and associated values of the Bayesian Information Criterion (BIC)
(Schwarz, 1978). Then Occam’s window was applied to reduce the model set by
dropping the models whose BIC were worse by a certain amount than that of the
model with highest BIC (see Raftery, 1995, p. 31 for guidelines about interpreting
differences in BICs). For this simulation the size of the window was varied from 5
to 25 units of BIC.

In the next step, we estimated the regression coefficients for the model from
the model set using training data (DT ). Prediction error measures, based on the
differences between actual and fitted values were computed. Let

PEM(A,B) =
N

∑
i=1

(
yB

i − ∑
j∈M

xB
i jβ̂A

j

)2
, (4.4.1)



4.4 An Assessment of the Performance of Bayesian Model Averaging in the Linear Model 151

be a measure of prediction error for model M fitted to data A and applied to predict
y’s in data B. This means that the coefficients for a model M are first estimated on
data set A and further applied to the explanatory variables in the data B. This quan-
tity can be computed for the top model (model with highest BIC found by our MC3

algorithm), full model and the “BMA model.” The fitted vales for the “BMA mod-
els” are the weighted averages of predictions obtained by using individual models,

∑
M∈M

(
∑

j∈M
xB

i jβ̂A
j

)
P̂(M|D), where M is the set of active models after applying Oc-

cam’s window. The model weights were computed using the BIC approximation to
posterior model probabilities (see Raftery, 1995).

Once we have all of the above, for the top, full, BMA and the true models, we
computed PEtop(DT ,DP), PE f ull(DT ,DP), PEBMA(DT ,DP), and PEtrue(DT ,DP) re-
spectively as defined in (4.4.1). These quantities are used to compute the relative
efficiency of the averaged model when applied to the new observations. Of course,
we hope that BMA will be efficient when applied not only to the data used for es-
timation but also to a new data. Finally, we express the relative efficiency of BMA
with respect to the top, full, and true models as the ratios

PEtop(DT ,DP)
PEBMA(DT ,DP)

,
PE f ull(DT ,DP)
PEBMA(DT ,DP)

, and
PEtrue(DT ,DP)
PEBMA(DT ,DP)

.

For example, a relative efficiency of 1.07 means that using BMA is equivalent to a
7% increase in sample size.

TABLE 4.4. Summary for BMA out-of-sample performance (relative efficiency) against top, full
and true models. Occam’s window for computing BMA was set to 25 units. The ratios are

averages over 200 iterations, standard errors are in parentheses.

Relative Efficiency of BMA
X-Design Correlation among X’s PEtop/PEBMA PE f ull/PEBMA PEtrue/PEBMA

High (0.8) 1.054 (0.009) 1.057 (0.014) 0.979 (0.008)
Random Medium (0.5) 1.083 (0.014) 1.007 (0.014) 0.909 (0.012)

Low (0.0) 1.085 (0.008) 1.075 (0.017) 0.937 (0.015)
High (0.8) 1.083 (0.037) 1.007 (0.014) 0.909 (0.012)

Fixed Medium (0.5) 1.059 (0.024) 0.993 (0.009) 0.918 (0.007)
Low (0.0) 1.071 (0.022) 1.028 (0.012) 0.953 (0.008)

The described procedure was repeated 200 times for each scenario, the results are
summarized in the series of tables which contain the averages based on 200 repli-
cates and the estimates of associated Monte Carlo standard errors in parentheses.
Table 4.4 gives the relative efficiencies for BMA approach compared to the top, full
and true models. For this part of the experiment, Occam’s window was set to 25
units which, on average, translated into about 4,000 models captured. We see that
BMA tends to outperform both full and top models in terms of the out-of-sample
prediction.
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Of course, BMA fails to outperform the true model. However, in real life we
never know the true model, if such exists, and that is why we are using BMA in
the first place. The fact that BMA outperforms the full model is of course due to a
relatively small number of observations in the sample, N = 100. When we tried the
same experiment with N = 500 (the results are not reported here), the advantage of
BMA vanished. This is because with a large sample the coefficients of the irrelevant
variables can be estimated accurately in the full model. In our results, there does
not seem to be a difference between the correlated and independent designs, which
seems to be counterintuitive. When the predictor variables are correlated, there is
some overlap between them and, consequently, there is an overlap between differ-
ent models so we would expect to see an increased efficiency of BMA. In other
simulations, we tried to introduce some x’s which were unrelated to y (the regres-
sion coefficients were set to zero), while they could maintain high correlations with
other x’s related to y via their non-zero coefficients, and therefore affect y indirectly.
We wanted to see if BMA would prove more efficient in the situation of corre-
lated design, picking on this extra information about y that could be provided by
“irrelevant” x’s. However, as in the present simulation, the efficiencies of BMA for
both correlated and uncorrelated design matrices were about the same. Interestingly,
BMA appeared more efficient compared to using the full model when the design is
random.

TABLE 4.5. Summary of BMA out-of-sample performance when using different size of Occam’s
window (random design and high correlations, standard errors are in parentheses).

Average number of models Relative Efficiency of BMA
Occam’s window size contained in model set PEtop/PEBMA PE f ull/PEBMA

5 106.60 1.033 (0.006) 1.039 (0.016)
10 1014.5 1.035 (0.007) 1.037 (0.011)
15 2586.2 1.048 (0.009) 1.067 (0.013)
20 3902.3 1.051 (0.010) 1.079 (0.013)
25 4551.2 1.054 (0.009) 1.057 (0.014)

Table 4.5 shows the simulation summaries for the case of random design, high
correlations, and with different widths of Occam’s window (the difference in BIC
between the best and the worst model included in the model set). The second col-
umn contains the number of models captured with the Occam’s window, averaged
over 200 runs. As one can see, increasing the size of the window somewhat im-
proves the performance of BMA. There is some evidence that after the number of
models in the set exceeds some optimum level, the performance begins to decrease.
In summary, our experiment supports the claim made in Raftery (1995, p. 147) that
“taking account of model selection uncertainty yields better out-of-sample predic-
tive performance than any one model that might reasonably have been selected. This
is true whether one averages across all models or used Occam’s window.” As our
study shows, averaging across only 100 models with top BIC gives about the same
improvement in terms of predicting power, as using thousands of available models.
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4.4.2.2 The Limits of BMA

Some authors (Hoeting et al., 1999) made a point that averaging across a large set of
models is better than using a single model because a single model is always condi-
tional on a single data set which may reflect the idiosyncrasy of this particular data
that may not be seen in new replications. They also suggested that the “averaged”
model would allow a researcher to overcome this limitation. It appears, however,
that since the model weights computed in BMA are also based on a single data set,
they would be more suitable to this particular data and therefore may not perform as
well when applied to some new data. To show that the “averaged model” is giving
a false sense of performance when applied to the same data that was used to se-
lect the set of models and determine their posterior weights, we designed a special
procedure as follows.

First we construct the model weights by running the MC3 procedure on the train-
ing data, as in the previous simulation experiment. Then we observe that if the av-
erage of all these models were used to predict the same training data, its apparently
good performance could be explained by the fact that (i) the model coefficients
were estimated using the same data set as the one used for prediction and (ii) the
model weights were obtained using the same data set as the one used for predic-
tion. To remove the first source of overfitting, (i), from our analysis and evaluate
the role of the second source, (ii), we developed the following procedure. First we
estimate each model in the model set using an independent data set (the predic-
tion set, DP) and then apply these coefficients to the original training set, using the
same model weights as were obtained on that training data. The prediction error,
PEBMA(DP,DT ), has to be compared with our previous estimate of “out-of-sample”
prediction error, PEBMA(DT ,DP). Now we argue that if the former is systematically
smaller than the latter, the only explanation would be that the model weights were
somehow adapted to the idiosyncrasies of the training data and therefore may not
generalize well to the new data. For example, it may happen that some variable
which has a large coefficient in the “true” model did not come out very significant
when estimated in the training sample. This would affect the estimate of its activa-
tion probability (sum of weights for the models where this variable was included)
obtained from that same sample. Hence, the composition of model weights may be
not optimal for predicting observations from another sample of the same population.

To put it more technically, we compute the “backward” prediction errors:

PEtrue(DP,DT ), PE f ull(DP,DT ), and PEBMA(DP,DT )

and use them to obtain the following ratios,

PEBMA(DT ,DP)
PEBMA(DP,DT )

,
PEtop(DT ,DP)
PEtop(DP,DT , and

PE f ull(DT ,DP)
PE f ull(DP,DT )

.

Notice that the PEs in both numerator and denominator use different data sets for
estimating model parameters and prediction, the only asymmetry being that the pre-
diction error in the denominator is computed when the same data are used for model
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selection and prediction (note that DT is always used for model(s) selection). There-
fore, ratios higher than 1.0 for BMA would indicate that it is “working better” when
the same data are used for prediction and model selection. This difference should
obviously vanish for the full or true models (since there is no model selection here),
hence we expect the corresponding ratio to be centered around 1.0. Our hope is that
BMA would also produce a ratio close to 1.0, or at least lower than that produced
by the top model.

TABLE 4.6. Summary of BMA performance against the top, full, and true models when the same
data are used for model selection and prediction, standard errors are in parentheses.

Relative Efficiency of BMA
X-Design Correlation among X’s PEtop/PEBMA PE f ull/PEBMA PEtrue/PEBMA

High (0.8) 1.072 (0.010) 1.451 (0.027) 1.343 (0.020)
Random Medium (0.5) 1.132 (0.013) 1.533 (0.033) 1.403 (0.026)

Low (0.0) 1.030 (0.007) 1.129 (0.016) 1.006 (0.011)
High (0.8) 1.132 (0.013) 1.533 (0.033) 1.403 (0.026)

Fixed Medium (0.5) 1.125 (0.009) 1.463 (0.024) 1.355 (0.021)
Low (0.0) 1.027 (0.005) 1.096 (0.014) 1.027 (0.010)

TABLE 4.7. Summary of over-optimism for BMA and the top model when predicting the same
data that were used for model selection. Occam’s window for BMA set to 25 BIC units. The ratios

are averaged over 200 runs, standard errors are in parentheses.

Measure of over-optimism due to model selection,
Correlation ratio of PE(DT ,DP)/PE(DP,DT )

X-Design among X’s BMA Top Model Full Model True Model
High (0.8) 1.432 (0.036) 1.394 (0.037) 1.033 (0.024) 1.031 (0.022)

Random Medium (0.5) 1.593 (0.040) 1.512 (0.039) 1.042 (0.028) 1.026 (0.027)
Low (0.0) 1.046 (0.026) 1.075 (0.024) 0.969 (0.018) 0.949 (0.020)
High (0.8) 1.593 (0.040) 1.512 (0.039) 1.042 (0.028) 1.026 (0.027)

Fixed Medium (0.5) 1.513 (0.038) 1.424 (0.037) 1.023 (0.019) 1.024 (0.022)
Low (0.0) 1.056 (0.032) 1.083 (0.030) 0.969 (0.021) 0.962 (0.024)

The simulation results are summarized in Tables 4.6 and 4.7. Table 4.6 is analo-
gous to the Table 4.4, showing the out-of-sample prediction error for BMA against
prediction errors for the other methods. The only difference is that now the set of
models used for BMA is determined with the same data set that is used for predic-
tion. Similarly, we let the top model predict the data that were used in selecting this
model. There should be no special advantage for the full and true models in switch-
ing the two data sets. The size of Occam’s window was set to the highest value,
25, which on average corresponded to 4,600 models. Interestingly, the performance
of BMA against that of the true and full models has improved dramatically when
compared to the results shown in Table 4.4. This “improvement” is an artifact, since
the “BMA model” is now put in the advantageous position. Surprisingly, the ratio
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PEtop/PEBMA is also higher now (for most of the scenarios), though one would ex-
pect that it is the top model that should receive the greatest advantage when using
the using the same data for prediction and model selection.

Table 4.7 shows that, as we expected, the ratio for the full model is around unity
and the ratio for the model with top BIC is higher when it is applied to the training
set. Observe, however, that our measure of BMA over-optimism is still rather high,
and in most of the cases is even higher than that for the top model. This means that
our model weights based on the top BIC that were found in the training data and
included in the Occam’s window, may still contain selection bias and probably can
be improved by using cross-validation or bootstrap in conjunction with the MC3 ap-
proach. The summaries in Table 4.7 were computed for the size of Occam’s window
set to 25 units and similar ratios of over-performance (not reported here) were ob-
served when using windows of smaller sizes (from 5 to 20). Therefore, increasing
the size of Occam’s window does not remove the effect of the over-fitting due to
model selection.

4.4.3 Summary

Our simulation has confirmed earlier work that indicates an improvement in predic-
tion error from BMA. The improvement is sample size dependent and is smaller for
larger sample sizes. We did not find an effect due to correlation between the design
variables on the BMA performance. The fact that there appear to be substantial over-
fitting in BMA due to model selection suggests that an improved procedure may be
constructed by making the model selection process to be less driven by the training
data. This can be accomplished by using resampling or subsampling of training data
when navigating through model space and computing associated BICs and model
weights.



Chapter 5
Bayesian Inference for Complex Computer
Models

One of the big success stories of Bayesian inference is inference in large complex
and highly structured models. A typical example is inference for computer models.
Scientists use complex computer models to study the behavior of complex physical
processes such as weather forecasting, disease dynamics, hydrology, traffic models,
etc. Inference involves three related models, the true system, the complex simulation
model and possibly a computationally more efficient emulation model. Appropriate
propagation of uncertainties, good choice of emulation models, and calibration of
parameters for the emulation model pose challenging inference problems reviewed
in this chapter.

5.1 A Methodological Review of Computer Models

M.J. Bayarri

Statistical analyses combining computer models and field data pose new and im-
portant challenges for statisticians. Jim Berger has made important contributions to
address many of these challenges, and has provided the field with very valuable in-
sights. Space is too limited here to give an adequate summary of all his contributions
in the area, so the focus will be narrow and very methodological, highlighting some
few key methodological contributions that, even if covered in other papers, can go
unnoticed by the complexity of the particular analysis at hand. Other methodological
contributions are briefly mentioned. No effort is made to summarize other aspects
of the analyses, such as important issues arising in MCMC implementations. Ref-
erences to very relevant work by other authors are avoided, not because they are
not important or less influential, but because of the unique emphasis of this review
(summarizing some of Jim Berger’s contributions to the world of computer model-
ing) and the severe lack of space. The work discussed is mostly Bayesian, which is
a particularly relevant methodology in this area because of the need to handle and
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combine the disparate sources of uncertainties present, and to deal with confound-
ing. Likelihood-based simplifications are often required, however. When possible,
objective priors (proper and improper) are used, but the special characteristics of the
problem might require extensive use of (quite) informative priors for some parame-
ters.

5.1.1 Computer Models and Emulators

Numerical (computer) solvers of complex mathematical/physical models, known as
simulators or computer models, are ubiquitous in all areas of application, science
and everyday life; they are created to ‘simulate’ real processes. They have been
used for multiple purposes (sensitivity analysis, optimization, understanding of the
underlying physical processes, etc.), but their main role is increasingly becoming
that of prediction at untried situations (extrapolation), when physical data are lack-
ing or very scarce.

Analysis of computer model experiments involve both runs of the computer
model at various inputs and field data. Most common computer models are deter-
ministic, that is, if the computer model is run more than once at the same set of
inputs, it produces the same output, and we will assume so in this section. Typical
computer models have two types of inputs, denoted by x and u. Inputs x occur in
both the computer model and the field runs, whereas u are calibration/tuning pa-
rameters that are only needed to run the computer model. The inputs x are usually
controllable by the experimenter, and are known for the field data (but see Section
5.1.5).

The outputs of computer models are usually extremely complex, but in applica-
tion, the main interest is typically in a much simpler function, yM(x,u), which we
assume (for the moment) to be scalar, and refer to it as ‘the output’ of the simulator.

Computer models never reproduce reality perfectly. This is explicitly modeled
by introducing a discrepancy (or bias) function between the real process yR(x) and
the model, so that

yR(x) = yM(x,u∗)+bu∗(x), (5.1.1)

where u∗ is the (unknown) true value of a calibration parameter (or the ‘best fit’ of a
tuning parameter), and bu∗(x) is the discrepancy between the best model prediction
and reality at input x. Field data are assumed to be noisy observations of the real
process, so that

yF
j (x) = yR(x)+ εx j, (5.1.2)

where yF
j (x) denotes the jth field replication at input x, and εx j are measurement

errors, εx j ∼ N(0,1/λF).
For fast simulators, that is, when yM(x,u) is readily available as often as required,

Bayesian analysis proceeds by assessing priors for all the unknowns and obtaining
simulations (via MCMC) from their posterior distributions given field data yF , the
vector of all n j replications yF

j (x) at inputs x ∈ DF . Bayesian analysis can thus si-
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multaneously assess the accuracy of the computer model (learning about bu∗(x))
and provide predictions of the real process yR(x) incorporating all sources of uncer-
tainty. Calibration (learning about u∗) is a byproduct of this analysis (but see Section
5.1.3).

Many computer models however are very slow, some requiring hours or days
to produce a single run yM(x,u). Analysis then proceeds by developing a fast sur-
rogate — an emulator — to the expensive-to-run computer code. Gaussian pro-
cess response-surface methodology (GASP) has been consistently effective for con-
structing such emulators. The idea is to recognize the computer yM(·) as an effec-
tively unknown function (known only at some few inputs) and assign it a Gaussian
stochastic process prior distribution,

yM(·) ∼ GP

(
μM,

1
λM

cM(·, ·)
)

, (5.1.3)

where μM , λM and cM(·, ·) are the mean, precision, and correlation function that
characterize the Gaussian process. The most commonly used correlation function
for emulators is the exponential correlation function

cM
(
yM(x,u),yM(x̃, ũ)

)
= exp{−∑

k

βk | xk − x̃k |αk}× exp{−∑
l

β ∗
l | ul − ũl |α∗

l }.
(5.1.4)

The separability of this correlation function (each factors is itself a correlation func-
tion in one-dimension) greatly simplifies computation and allows for scalability to
high dimensional inputs while still producing a sensible approximation to the simu-
lator.

The computer model is run at some designed set of inputs DM yielding the com-
puter model data yM , that is, the vector of runs yM(x,u) for (x,u) ∈ DM . At any
(untried) input (x,u) /∈ DM , the emulator predicts the corresponding output using
the posterior predictive distribution of yM(·), π(yM(x,u) | data), where ‘data’ refers
to both field data yF and computer model runs yM . The posterior predictive mean of
yM(·) passes through the simulator runs yM , and interpolates in between, a conve-
nient property for emulators.

5.1.2 The Discrepancy (Bias) Function

There are several distinctive issues in the statistical analysis of computer model
data. Perhaps the most important is the need to explicitly consider and adequately
model the discrepancy term, bu∗(x), when relating computer model to reality in
(5.1.1). This term is crucial to avoid overtuning of u, to appropriately incorporate
uncertainty about computer model output, to assess model adequacy, and to allow
improved use of simulator-based predictions (see Bayarri et al., 2007b). From now
on, we drop the implicit dependence of b on u∗ from the notation; we will also
denote u∗ simply by u.
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A somewhat common approach to calibration of computer models (estimation
of u) is to model the bias function (discrepancy, offset, sometimes called ‘error in
the model’) as additive random error. In such analyses, it is assumed that the real
process is related to the computer model by

yR(x) = yM(x,u)+bx, (5.1.5)

where bx is (non-observable) random noise; field data is still modeled as given by
(5.1.2). This approach is generally not appropriate. The reasons why a necessarily
simplified computer model does not match reality are complex; the assumption that
random variation can adequately model this mismatch is unrealistic. It is useful to
study some of these issues through a simple pedagogical example.

Toy Example. This example was produced by engineers to help them understand
the ‘nuts and bolts’ of our methodology as applied to complex, real examples (see
Bayarri et al., 2007b; and Liu, Bayarri, and Berger, 2009 for details of the analy-
sis). It builds on the kinetics of chemical reaction SiH4 → Si +2H2. Let y(t) denote
concentration of SiH4 at time t. The entertained model is:

dy(t)
dt

= −uy(t), y(0) = y0,

where y0 is initial concentration, and u is an unknown rate (an unknown calibration
parameter). Therefore, at inputs (u, t) the computer model output is

yM(t,u) = y0 exp(−ut). (5.1.6)

Suppose further that, in reality, a residual concentration c is left unreacted, so the
real kinetics is

yR(t,u) = (y0 − c)exp(−ut)+ c.

Assume that y0 = 5.0 is known to the experimenter, but not yR(·), and hence neither
u nor c, taken to be u = 1.7 and c = 1.5. Data are simulated at a grid of t-values,
adding i.i.d. mean zero Gaussian error to the real process yR at these values. Note
that, in this example, b(t) = 1.5{1− exp(−1.7 t)}.

Simulated field data and the ‘best fit’ computer model (that is, yM(t, û), for the
MSE or MLE estimate û = 0.63) are displayed in Figure 5.1, First notice that ignor-
ing the bias term entirely (like using û to estimate u) produces a significant ‘over-
tuning’ of the calibration parameter u: the fit tries to ‘make up’ for the model inad-
equacy by over-shifting u to compensate, resulting in û = 0.63, quite far from the
‘true’ value u = 1.7.

A similarly severe overtuning occurs when assuming that the discrepancy be-
tween reality and the computer model can be represented by random error, which
is clearly revealed by a formal (Bayesian) analysis. The analysis is based on use of
a uniform prior for u, over the known possible range (0,3), and exponential priors
for the precisions of the model error bx and the field error; the priors are centered at
moderate multiples of their respective MLEs (specifically at 5 times the MLEs). For
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FIGURE 5.1. Maximum likelihood fit of model (5.1.6), and data for the toy example.
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FIGURE 5.2. Toy example with the bias modeled as random error. Left Panel: Posterior distribu-
tion of u. Right Panel: The solid line is the mean prediction of reality, the dashed lines are 90%
confidence bands. The dash-dotted and dotted lines correspond, respectively, to the strictly model
prediction (no bias) associated to the posterior mean and to the least-squares estimate of u. The
white circles are the true values of the real process, whereas the black ones represent the observed
field data.
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further details and discussion of these priors see Bayarri et al. (2005). The analysis
yields entirely unreliable values of the calibration parameter u, and then compen-
sates by producing very wide confidence bands for yR(.). This can clearly be seen
in Figure 5.2; the left panel displays the posterior distribution of u, which curiously
gives essentially no mass near the true value u = 1.7. The right panel shows the
prediction of yR(·) along with 90% confidence bands; not only does the predictive
mean have a curiously rough shape, but the confidence bands are forced to be very
wide to accommodate the discrepancy between the model and the field data.

An alternative standard statistical strategy for dealing with this situation would
be to consider the residuals from model (5.1.5), to try to learn about the discrepancy
between model and data. This has the difficulty that the overfitting gives ‘false’
residuals, so that it would be problematical to believe any structure found in the
residuals.

To see why the modeling in (5.1.1) is superior to simply assuming that the bias
is additive noise, let us return to the toy example, using GASP modeling for b(·).
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FIGURE 5.3. Toy example with GASP bias. Left Panel: Posterior distribution of u. Right Panel:
The solid line is the mean prediction of reality, the dashed lines are 90% confidence bands. The
dash-dotted and dotted lines correspond, respectively, to the strictly model prediction (no bias)
associated to the posterior mean and to the least-squares estimate of u. The white circles are the
true values of the real process, whereas the black ones represent the observed field data.

Toy Example (continued). We repeat the analysis of the Toy Example data but now
using the modeling in (5.1.1), with a GASP prior for the bias with mean μb = 0, pre-
cision λb and correlation function cb(b(t),b(t̃)) = exp{−βb(t − t̃)1.9}. The prior for



5.1 A Methodological Review of Computer Models 163

u and for the field and bias precisions are identical to the ones in the previous anal-
ysis; βb is fixed at its MLE (for details, see Bayarri et al., 2005 and 2007b). Results
are shown in Figure 5.3. In contrast to the previous analysis, the non-parametric
modeling of the bias term dramatically improves both calibration and prediction of
reality; the posterior distribution of u is much more sensible, and the confidence
bands for the prediction of reality are much tighter (and still include reality).

Notice, however, that one does not really learn the value of the calibration param-
eter u; its posterior distribution is only modestly tighter than its prior distribution.
This is not a flaw; there simply is not sufficient information available to learn pre-
cisely about u (see also Section 5.1.3). The point is that the analysis does not rule
out the correct value of u, as happened with the overtuning when the bias was in-
correctly modeled as additive noise, and instead allows the bias to adjust to the
discrepancy between model and data. Avoiding the overtuning allows the prediction
to be done more accurately, with tighter confidence bands.

Modeling the discrepancy outside the computer model, as in (5.1.1) (or using a
multiplicative bias version, as in Bayarri et al. (2007a), is most common when the
model is very expensive to run and is treated as a ‘black box.’ For simple determin-
istic models, in which access to the equations defining the model is possible and
their solution is not too complex, the bias term can be taken inside the model itself
so that it can be evolved according to the dynamics that govern the computer model.

5.1.3 Confounding of Tuning and Bias

Because of the nature of computer models, it is usually best to allow b(·) to be
modeled noparametrically, as opposed to assuming that it has a specific parametric
form or (worst) simply treating it as random error. This causes a major difficulty,
however: there is then a severe confounding between u and the bias function; they
are not identifiable. To see this, suppose that one observes a huge amount of field
data so that reality yR(x) becomes effectively known. Suppose also that we can view
yM(x,u) as a completely known function. Then — even in this most favorable situ-
ation — for each u, there is a b(x) = yR(x)− yM(x,u) that gives back reality yR(x);
they cannot separately be identified. Note that this happens because the support of
the prior for b(x) is any (appropriately smooth) function but, again, this flexibility
is usually required for appropriate modeling.

This non-identifiability between u and the bias was not recognized in the origi-
nal literature in this area, so its profound implications for the analysis of computer
models has only been highlighted in recent years. Bayesian analysis is still tenable,
of course, but the following considerations are a result of this understanding:

• A fairly informative prior on u is highly desirable, and is often available when u
has physical meaning (or physical limitations). In contrast, it is highly unlikely to
have enough information about b(·) to produce a tight prior; common strategies
to ‘tighten’ the prior on b(·) are to ‘encourage’ the bias to be 0 (by taking the
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GASP prior to be μb = 0) and to make it smooth (by taking all components of
αb to be 2 or 1.9 in the GASP correlation function).

• Because of the confounding, separate inference on u and b(x) is usually very
sensitive to the priors. In fact, since the bias function is a priori quite uncertain,
one can not typically learn much about u by only comparing computer model
and field data. Careful Bayesian analysis clearly reveals this issue; small changes
in the highly uncertain prior for b(·) usually have an appreciable impact on the
posterior distribution of u. If calibration (learning about u) is a primary goal, it
is crucial to incorporate good prior information about u.

• Sometimes it is of specific interest to modelers to learn about the bias function
and how it behaves in different parts of the input space. For this purpose, a good
prior on u would be extremely useful. In any case, modelers could be presented
with the marginal posterior of b(·) along with conditional posteriors for the bias
functions corresponding to specific values u of interest. Useful information as to
the nature of the bias and its inherent uncertainty can still be obtained from the
analysis.

• Perhaps surprisingly, prediction (and attached uncertainties) remain very stable
over different priors specifications; u and the bias compensate for each other in
a fashion that leaves prediction quite stable. For the typical real goal, which is
prediction beyond the range of the data, it is crucial to thus use this joint posterior
distribution of u and the bias (as in Bayarri et al., 2007a).

Some of the consequences of the confounding between bias and calibration pa-
rameters seem unsettling, in particular the difficulty of learning about the calibration
parameters. It should be kept in mind, however, that this is just the reality of the sit-
uation; avoiding the confounding by overly restrictive modeling of the bias function
(the most restrictive being ignoring it or treating it as random error) is likely to
produce severe over-tuning of u rendering the results even less useful. Note, also,
that it is unclear how one would approach this crucial issue of confounding from a
non-Bayesian perspective.

5.1.4 Modularization

Modularization refers to partially keeping ‘good modules’ (or components) of an
overall model separate from uncertain ones in Bayesian learning. Modularization is
discussed at length in Liu, Bayarri, and Berger (2009), where it is methodologically
motivated as a reasonable ‘quick and dirty’ method for preventing a misspecified
module from “contaminating” correctly specified modules. The motivation is to im-
prove modeling in very complex situations (as in computer models) in which use of
more standard statistical model validation strategies are not possible. Note that not
any modularization is deemed reasonable; indeed, it is argued in Liu, Bayarri, and
Berger (2009), that modularization ideally should be justified from a modeling per-
spective, and not simply be viewed as a trick to improve computation (e.g., mixing
in MCMC).
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The idea of modularization is sketched next in a simple example, followed by
indicating how and why it can usefully be applied to analysis of computer models.
For further details, a thorough discussion of the method, and references to related
ideas, see Liu, Bayarri, and Berger (2009).

Random Effects Example. Consider a simple random effects model in which we
have n independent observations on each of N groups:

yi j | bi = bi + εi j , j = 1, . . .n; i = 1 . . .N ,

εi j | σ2
i ∼ N(0,σ2

i ), bi | τ2 ∼ N(0,τ2). (5.1.7)

Assume here that our ‘suspect’ module is the distribution of the random effects,
about which we are not very confident, while the ‘good’ module is the distribution
of the observables yi j. We also assume that the number of groups N is very large,
while the number of replications n is very small in comparison, but large enough for
reasonable estimation of the σ2

i . This is an extremely simplified version of a situa-
tion encountered in Bayarri et al. (2007a), in which functional data (both computer
model and field data) were represented in terms of a large number of basis elements,
with the modeling (5.1.1) and (5.1.2) applied to each coefficient, and the coefficients
of the bias functions were modeled hierarchically.

Let σ2, ȳ,s2 denote N-vectors with components respectively σ2
i , ȳi and s2

i =
∑n

j=1(yi j − ȳi)2/n. With objective priors π(σ2
i ) ∝ (σ2

i )−1 and π(τ2 | σ2) ∝ (τ2 +
σ̄2/n)−1, the marginal posterior for τ2 and σ2 is

π(τ2,σ2 | ȳ,s2) ∝
1

τ2 + σ̄2/n

N

∏
i=1

[
(σ2

i )−
n+1

2 exp
(
− ns2

i

2σ2
i

)

× 1

(τ2 +σ2
i /n)1/2

exp
{
− ȳ2

i

2(τ2 +σ2
i /n)

}]
. (5.1.8)

Suppose now that one of the random effects, say bk, happens to be very large while
the others are small. (In this simple setting, this would suggest a violation of the nor-
mality assumption for the bi, and point to the need for modeling with, say, heavier
tails but, in the world of complex computer models, neither the cause nor the im-
proved modeling are usually clear.) One might imagine that the unusually large bk

would cause τ2 to be large, resulting in little shrinkage; then, while the hierarchical
analysis would be ‘wasted,’ no real harm would result. However, a careful inspec-
tion of the posterior (5.1.8) reveals that (because N is large) the Bayesian analysis
will, instead, force σ2

k /n to be large while keeping τ2 small. The consequence of
having σ2

k /n large and τ2 small will result in a dramatic — and very incorrect —
shrinkage of bk from the large ȳk towards 0 (see Liu, Bayarri, and Berger, 2009).

The modular approach in this example is simply to insist that the posterior for
σ2 be based only on the replicate observations, which contain almost all of the
real information about σ2

k (and which would say that σ2
k is not large), effectively

replacing π(σ2 | ȳ,s2) by π(σ2 | s2). Note that the conditional posterior distributions
for τ2 and b are unchanged in terms of their mathematical expressions, but will
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change very considerably in terms of their location: with σ2
k no longer being able to

accommodate the outlier, τ2 will become large, and the posterior for bk will remain
near the large ȳk (and not 0).

In this simple example, it is easy to point to the culprit of the deceiving analy-
sis: a normal distribution for the random effects is not good when a very big bk is
possible. The solution is equally simple: use a heavy tail distribution instead. The
appeal of modularization is that it can be much easier to identify a useful restriction
of the Bayesian analysis, than to develop a better model for suspect modules. In the
previous example, deciding that the σ2

i will be determined only from the replica-
tions is much simpler than attempting to infer a good model for the random effects
(which are not directly observed). In more complicated scenarios, as with complex
computer models, this difference in difficulty is much more pronounced, and (smart)
modularization can be the only feasible way to protect the information from ‘good’
modules from being unduly altered by uncertain modules.

Computer models have three modules: the computer model itself, the field data,
and the bias or discrepancy term. Modularization has been explored and imple-
mented for each of them (for details see Liu, Bayarri, and Berger, 2009):

• In the computer model. A most useful modularization consists in using only
computer model runs data (and no field data) in learning about the correlation
parameters in the GASP approximation. This is a very intuitive simplification,
since usually the computer model runs have been carefully designed and there are
enough of them to approximate the output of interest to a reasonable accuracy.
This modularization is indeed explicitly or implicitly done by many researchers
in practice. In both our previous analyses of the Toy Example data, the computer
model was assumed to be unknown with a GASP prior as in (5.1.3) and (5.1.4),
with the usual objective priors for μM , and λM , exponential priors for the β ’s cen-
tered at 10 times their respective MLE’s, and the α’s been fixed at their MLE’s.
Whenever the analysis required posterior draws from these parameters, they were
generated from their posterior distribution given only the computer model runs.

• In the field data. When there are enough replications, it might be advisable to
learn about field error based only on field residuals. This is the situation in the
previous random effects model, and has been shown to prevent severe underesti-
mation of important components of bias (see Bayarri et al., 2007a).

• In the bias function. In challenging situations with over parameterization and
random inputs, Liu et al. (2008) proposes learning about correlation parame-
ters of the bias function based on discrepancies. Several possible modularization
schemes are entertained and critically compared.

Appropriate modularization in the computer models world is generally benefi-
cial; indeed, the unavoidable confounding and uncertainties present increase the
danger of a poor module wrongly ‘contaminating’ a good one. Modularization of
influential hyperparameters (such as the mean and precision of the GASP for the
bias function) is generally not advisable, however.
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5.1.5 Additional Issues

Statisticians who have not been involved with computer models are often curious as
to why computer model validation/checking can not be dealt with in the same way as
one deals with standard statistical model validation/checking. This is an interesting
question and is explicitly addressed in Bayarri et al. (2007a, 2007b).

Although we have taken the output of interest from the computer model yM(x,u)
to be a scalar in this review, it is usually a function, say of time t. If the function is
smooth, one can recover it from relatively few t-values, so that t can then simply be
considered another input in the analysis; simplifying assumptions on the correlation
function are usually needed to efficiently handle the resulting correlation matrices
(Bayarri et al., 2009b; Liu et al., 2008).

If the output function is not smooth, a common approach is to represent the un-
known model and bias functions in terms of common basis elements and apply the
methodology to each of the (unknown) coefficients; a hierarchical structure for the
coefficients of the bias is often required (see Bayarri et al., 2007a and references
there).

Often, the inputs contain both categorical and numerical components, so an over-
all GASP analysis is not appropriate. A possibility is to have a GASP over the nu-
merical components for each value of the categorical inputs which are then related
hierarchically (as in Bayarri et al., 2009b).

Sometimes the inputs x which enter both field data and computer model are not
known precisely in the field: maybe only a ‘nominal’ value (that is, subject to error)
is known (Bayarri et al., 2007a), or they vary from replication to replication (Liu et
al., 2008), or maybe the field data are themselves random occurrences, at random in-
puts x, and these distributions have to be ascertained based on relevant experiments
(Bayarri et al., 2009a).

Computer models are increasingly being used for extrapolation past the range of
the data; see Bayarri et al. (2007a) for such an analysis and the delicate method-
ological issues involved. In particular, they are often used to help assess the risk of
catastrophic events; in Bayarri et al. (2009a) a combination of statistical modeling
for extremes, utilization of data related to the geophysical process and computer
model simulations allows for such an extrapolation.

In this section we have concentrated on deterministic computer models. There
are large classes of stochastic computer models. One such class adds randomness
to the differential equations defining the model; we do not comment on those here.
Network models are a different class of stochastic models in which individual agents
move (and interact) in a pre-defined network according to probability distributions
and deterministic rules. In Molina, Bayarri, and Berger (2005) and Bayarri et al.
(2004), one such simulator was used to model Chicago downtown traffic in rush
hours. These models pose new methodological issues. First, ignoring uncertainty
in the inputs not only results in severe underestimation of the prediction errors of
measures of congestion, but can actually seriously bias the predictions themselves
(Bayarri et al., 2004). Bayesian analysis takes care of and combines uncertainties in
stochastic networks, but it is not easy. Implementation typically requires the use of
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probabilistic networks to partially reproduce the movement of agents in the network
(although not their interaction). Also, direct data on the system often consists of
observing some measures of congestions in some of the links. This results in highly
constrained parameter spaces, which are extremely difficult to handle; a solution is
proposed in Molina, Bayarri, and Berger (2005). The technique should be applicable
to many other discrete networks, such as telecommunications networks and certain
agent-based models.

5.1.6 Summary

This very brief review highlights some key methodological contributions of Jim
Berger to the analysis of computer model data; these often go unnoticed, hidden in
part by the complexity of the applications themselves. They are however crucial in
choosing and interpreting the appropriate analysis for computer models. Particular
emphasis has been placed on (i) demonstrating the requirement of including a flexi-
ble discrepancy term in the analysis; (ii) highlighting the resulting unavoidable non-
identifiability issue and its consequences; and (iii) discussing a partial solution to
the frequent problem that one has varying confidence in different components of the
overall analysis model and wants the analysis to be robust to ill-understood compo-
nents. These issues arise in virtually all computer model analyses. Other important
methodological issues were also briefly mentioned. Key references to previous work
on these issues can be found in the references.
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5.2 Computer Model Calibration with Multivariate Spatial
Output

K. Sham Bhat, Murali Haran, and Marlos Goes

Complex computer models are widely used by scientists to understand and predict
the behavior of complex physical processes. Examples of applications include cli-
mate science, weather forecasting, disease dynamics, and hydrology. Inference on
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these complex systems often combines information from simulations of the com-
plex computer model with field data collected from experiments or observations on
the real physical system. The computer model simulations are frequently very com-
putationally expensive, with each simulation taking minutes, days, or even weeks
to complete, which makes Monte Carlo-based approaches to inference infeasible.
Computer model emulation is a powerful approach pioneered by Sacks et al. (1989)
to approximate the expensive computer model by a Gaussian process. Emulation
allows approximate output at any parameter setting to be obtained from a compu-
tationally tractable Gaussian process fit to the output from the computer model at
several parameter settings. This approach can then be used in a larger framework that
includes a model for physical observations in order to do computer model calibra-
tion. Computer model calibration finds the value of the computer model parameters
or ‘inputs’ most compatible with the observations of the process. Here we follow
the general framework described in Kennedy and O’Hagan (2001) and further de-
veloped by many others (cf. Bayarri et al., 2007a; Sansó, Forest, and Zantedeschi,
2008).

Increasingly, computer model output is multivariate (cf. Bayarri et al., 2007a;
Higdon et al., 2008). Of particular interest are models where the output is in the form
of multivariate spatial data. We consider as a case study the problem of inferring the
value of a climate parameter based on climate model output and physical observa-
tions that are in the form of multivariate spatial data sets. This problem is motivated
by the goal of assessing the risks of future climate change. Specifically, we focus
on the problem of learning about the climate parameter ‘background ocean vertical
diffusivity’ (Kv), which determines the strength of the heat and salt diffusion in the
ocean component of the climate model, and is a key parameter in climate model pre-
dictions of the Atlantic Meridional Overturning Circulation (AMOC). The AMOC,
part of the global ocean circulation system, plays an important role in global cli-
mate. A weakening or possible collapse of the AMOC can potentially result in major
temperature and precipitation changes and a shift in terrestrial ecosystems. AMOC
predictions may be obtained from climate models, which include several parame-
terizations in order to mimic real physical processes. Of the model parameters, Kv

is particularly important for predictions of AMOC. Reducing the uncertainty about
the value of Kv will also reduce the uncertainty of other key model parameters like
climate sensitivity (Forest et al., 2002). While the value of the parameter Kv may not
resemble the observed ocean diffusivity, because it is intended to represent several
mechanisms that generate turbulent mixing in the ocean, ocean tracers can provide
information about large scale ocean patterns. Such information can be used to in-
fer Kv in the model, since observed tracers are strongly affected by this parameter.
For example, larger observed values of the tracer Δ 14C in the deep ocean suggest a
higher intensity of vertical mixing. These tracer data are in the form of spatial fields.
Hence, the computer model calibration problem here involves climate parameter in-
ference based on multivariate spatial data. In this section, we consider inference
based on three oceanic tracers, all in the form of relatively small one-dimensional
spatial fields. We present a simple framework for combining information from mul-
tiple spatial fields from model simulations and physical observations in the context
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of inferring the climate parameter Kv. We study the impact of including a Gaussian
process model for the discrepancy between the model and the true system. In addi-
tion, we study the impact of model assumptions by holding out model output at a
particular parameter setting and treating noisy versions of this output as ‘real data.’
We consider two statistical models, one that combines observation error and model
discrepancy into a single independent error term, the second where model discrep-
ancy is modeled separately using a Gaussian process. We are particularly interested
in studying the impact of the discrepancy term on climate parameter inference. We
also then examine the effect of estimating emulator spatial variance in a Bayesian
framework versus using a plug-in approach.

The rest of this section is organized as follows. In Section 5.2.1, we discuss
our approach for calibration with spatial output. We build upon this framework to
perform parameter inference with multiple spatial fields in Section 5.2.2, paying
special attention to model discrepancy and emulator variances. In Section 5.2.3, we
describe our case study, discussing both the data set and modeling and implementa-
tion details. We describe the results of our study in Section 5.2.4 and conclude with
a summary and discussion in Section 5.2.5.

5.2.1 Computer Model Calibration with Spatial Output

In this section, we describe our model for inferring calibration parameters from
the observations and model output of a single spatial field. We use the two-stage
approach described below for model calibration. We will also discuss the importance
of various modeling assumptions.

In the first stage of our approach, we emulate the computer model by fitting a
Gaussian process to the spatial computer model output. In the second stage, we
connect the calibration parameters to the observations using the emulator, while al-
lowing for other sources of uncertainty, such as model discrepancy and observation
error. This allows us to use a Bayesian approach to obtain a posterior distribution
for the parameters. Our approach of splitting inference into two stages has several
advantages over fitting a single model in one inferential step including separating
the parts of the statistical model that are known to be correct from the parts of the
model that are questionable, improved diagnostics, and computational advantages
(see Bayarri et al., 2007b; Liu, Bayarri, and Berger, 2009; Rougier, 2008a).

We begin with some notation. Let Z(s) be the observation of the spatial field
at location s, where s ∈ D with D ∈ R

d . For simplicity, and given the case study
in Section 5.2.3, we assume that d = 1, i.e., we have a one-dimensional spatial
field. Let θ be the calibration or model parameter of interest; our framework may
easily be expanded to allow for vectors of parameters. Y (s,θ) denotes the computer
model output at the location s, and at the calibration parameter setting θ . In general,
the spatial data from the computer model grid may or may not coincide with the
locations of the observations. The objective here is to infer a posterior distribution
of θ given the observed data and computer model output.
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Let Y = (Y11, · · · ,Yn1,Y12, · · · ,Yn2, · · · ,Y1p, · · · ,Ynp)′, obtained by stacking com-
puter model output at all calibration parameter settings, denote the computer model
output for a single spatial field. Yik corresponds to the model output for location si

and calibration parameter setting θk, n is the number of model output locations, and
p is the number of calibration parameter settings. Similarly, Z = (Z1, · · · ,ZN)′ are
the observations for the spatial field, where N is the total number of observations.

5.2.1.1 Computer Model Emulation

We model the computer model output Y using a Gaussian process:

Y | β ,θ ,ξm ∼ N(μβ (θ),ΣM(ξm)),

where we assume a linear mean function, μβ (θ) = Xβ , with X a covariate matrix
of dimension np× b, where there are (b− 1) covariates. The covariates we use are
location and the calibration parameter. ξm is a vector of covariance parameters that
specify the covariance matrix ΣM(ξm) and β is a vector of regression coefficients.
We use a Gaussian covariance function as described below:

(ΣM)i j(φ ,κ) = ζ I(i = j)+κ exp

(
−‖si − si‖2

φ 2
s

− |θi −θ j|2
φ 2

c

)
, (5.2.1)

where φ = (φs,φc), κ,ζ ,φs,φc > 0. The covariance function is separable over space
and calibration parameters, although a nonseparable covariance could be chosen if
appropriate (see Gneiting, 2002). Note that this function can be easily adapted to
models for multiple calibration parameters, as well as multiple spatial dimensions.

Let the maximum likelihood estimate of (ξm,β ) be (ξ̂m, β̂ ). Let S be the set
of locations where the observations were collected. Following the standard kriging
framework (Cressie, 1993; Stein, 1999), the multinormal predictive distribution for
the computer model output at a new θ at S is obtained by substituting (ξ̂m, β̂ ) in
place of (ξm,β ) and conditioning on Y. We denote the random variable with this
predictive distribution by η(Y,θ) in the second stage of our inference below.

5.2.1.2 Computer Model Parameter Inference

In order to infer θ based on the observations Z, we need a probability model con-
necting θ and Z. The predictive distribution from Section 5.2.1.1 provides a model
for computer model output at any θ and any set of new locations. We now model the
observations Z as realizations from a stochastic process obtained by accounting for
additional error to the computer model emulator from Section 5.2.1.1. Our model
for the observations Z is therefore

Z = η(Y,θ)+δ (S)+ ε,
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where η(Y,θ) is as described in Section 5.2.1.1, ε ∼N(0,ψI), and ε = (ε1, · · · ,εN)′
is the observation error with ψ > 0 as the observation error variance. The model
discrepancy, δ (S), is modeled as a zero-mean Gaussian process. Hence, δ (S) ∼
N(0,Σd(ξ d)), where ξ d is a vector of covariance parameters that specify the co-
variance matrix Σd(ξ d). We have in essence ‘inferred a likelihood’ for use in our
Bayesian framework, since for any fixed Z, we can obtain a value of the likelihood
for any value of θ . We will discuss the merits of including a model discrepancy term
in Section 5.2.2.3.

We may allow the emulator spatial variance scale parameter from the first stage,
κ , to vary, rather than plugging in the MLE κ̂ . We can now perform inference on θ ,
ψ , κ , and ξ d by specifying a prior for these parameters. Using Markov chain Monte
Carlo (MCMC), we can estimate a posterior distribution for θ . It should be noted
that the computational complexity of the matrix operations involved in the second
stage of our approach is solely dependent on N, the size of Z, and not M = np, where
M is the size of the ensemble of model output Y. We will discuss prior selection for
θ , ψ , κ , and ξ d in Section 5.2.3.2.

5.2.2 Calibration with Multivariate Spatial Output

In this section, we discuss how our approach can be used to combine informa-
tion from multiple spatial fields. We use a separable covariance model (see for
instance, Banerjee, Carlin, and Gelfand, 2004) to model the relationship of the com-
puter model output from the three spatial fields. The similar shape of the empiri-
cal variograms of the model output from three spatial fields in our case study in
Section 5.2.3 justify the use of a separable covariance model. We extend our nota-
tion to allow for multiple spatial fields. Let Y1 = (Y11 · · ·Y1np)′, Y2 = (Y21 · · ·Y2np)′,
and Y3 = (Y31 · · ·Y3np)′ denote the computer model output for three spatial fields.
Similarly, Z1 = (Z11 · · ·Z1N)′, Z2 = (Z21 · · ·Y2N)′, and Z3 = (Z31 · · ·Y3N)′ are the
observations for the same three spatial fields. For convenience, we write Y =
(Y11,Y21,Y31,Y12 · · ·Y1np,Y2np,Y3np)′, and Z = (Z1 Z2 Z3).

5.2.2.1 Stage 1: Emulation for Multivariate Data

The computer model output for the spatial fields are modeled using using a separable
cross-covariance function as described below:

Y | β ,θ ,ξm ∼ N(μβ (θ),ΣM(ξm)),

μβ = (μβ1
,μβ2

,μβ3
)′,

ΣM(ξm) = P(ζ )+H(φ)⊗T (κ,ρ),

where μβi
is a function of the calibration parameters, and β1,β2,β3 are the coeffi-

cient vectors for Y1,Y2,Y3 respectively. We note that we are implicitly assuming
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a linear relationship among the spatial fields. For an approach based on a flexible
hierarchical model allowing for non-linear relationships among spatial fields, see
Bhat et al. (2009). A computationally inexpensive approach that avoids computer
model emulation and hence utilizes several simplifying assumptions is described in
Goes et al. (2009).

We now assume μβi
(θ) = Xβi (for i=1,2) where X is the covariate matrix of

dimension M × b, with covariates (depth and calibration parameters) as specified
in Section 5.2.1.1. ξm is a vector of covariance parameters that specify the cross-
covariance matrix ΣM(ξm). H(φ) explains spatial dependence, while T (κ,ρ) is in-
terpreted as the cross-covariance between spatial fields. P(ζ ) is a matrix that de-
scribes microscale variance of the process. The covariance matrices are defined as
follows:

Hi j(φ) = exp
(
− ‖si − si‖2

φs
− |θi −θ j|2

φc

)
,

T =

⎡
⎣ κ1 ρ12

√
κ1κ2 ρ13

√
κ1κ3

ρ12
√
κ1κ2 κ2 ρ23

√
κ2κ3

ρ13
√
κ1κ3 ρ23

√
κ2κ3 κ3

⎤
⎦ , P =

⎡
⎣ζ1IN 0 0

0 ζ2IN 0
0 0 ζ3IN

⎤
⎦ ,

where φ = (φs,φc), and κi,ζi,φs,φc > 0, −1 ≤ ρi j ≤ 1. We reduce parameters and
ensure that ΣY is positive definite and symmetric by letting ρii = 1 and ρi j = ρ ji.
We estimate MLEs for the following parameters using the computer model out-
put: Y: ζ1,ζ2,ζ3,κ1,κ2,κ3,φs,φc. In principle, β1,β2,β3 and ρ may be estimated
using maximum likelihood, but in the case study in Section 5.2.3, we estimate
β1,β2,β3 using least squares regression and ρ using empirical sample correlations.
As in Section 5.2.1.1, we obtain a multinormal predictive distribution η(Y,θ) each
θ at S by plugging in the MLEs and conditioning on Y. For ease of computa-
tion, we order the model output by depth and calibration parameter, and we write
Y = (Y11,Y21,Y31,Y12 · · ·Y1np,Y2np,Y3np)′.

5.2.2.2 Stage 2: Inference for Multiple Spatial Fields

We write the model for the observed data as follows:

Z = η(Y,θ)+δ (S)+ ε,

where η(Y,θ) is as described earlier in Section 5.2.2.1, and ε = (ε11, · · · ,εN1,
ε12, · · · ,εN2, ε13, · · · ,εN3)′ is the observation error. We assume that ε ∼ N(0,Σε )
with

Σε =

⎡
⎣ψ1IN 0 0

0 ψ2IN 0
0 0 ψ3IN

⎤
⎦ ,

where ψ1,ψ2,ψ3 > 0 are the observation error variances for the three spatial fields.
The model error or discrepancy δ (S) is modeled as a vector of three indepen-
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dent zero-mean Gaussian processes. The model for discrepancy is given in Section
5.2.2.3, and includes covariance parameters ξ d1, ξ d2, and ξ d3.

Using the observations Z, we obtain the posterior distribution of θ , ψ1, ψ2, ψ3,
ξ d1, ξ d2, and ξ d3 using MCMC as discussed in Section 5.2.1.2. We may also allow
the emulator spatial variance parameters from the first stage, κ1, κ2, and κ3 to be
reestimated, rather than using plug-in MLEs. This can be done using by estimating
the matrix T using an inverse Wishart prior. More details about prior selection are
discussed in Section 5.2.3.2.

5.2.2.3 Model Discrepancy

An important concern in the process of calibration is whether the model is an ade-
quate representation of the true phenomena in the system. When this is not the case,
there is a need to consider ways to incorporate the difference between the computer
model and reality. The latter is usually referred to as model discrepancy.

A framework to account for model discrepancy is introduced in Kennedy and
O’Hagan (2001), and strong arguments in favor of inclusion of a model discrepancy
term in any calibration approach is made in Bayarri et al. (2007b). Specifically, the
argument is made that neglecting to account for the model discrepancy results in
overfitting, resulting in potentially biased and incorrect inference of the calibration
parameters. A test is introduced for whether model discrepancy is needed in Ba-
yarri et al. (2009b), which almost always results in rejecting the hypothesis that the
model represents the truth. However, O’Hagan (2009) suggests that the inclusion
of a model discrepancy does not always result in a less biased estimates of calibra-
tion parameters, rather more biased estimates are possible. A further difficulty in
including a model discrepancy term in our statistical model is the high dependence
between the calibration parameter and model discrepancy term (Liu, Bayarri, and
Berger, 2009). Previous work has shown that attempting to separate observation er-
ror and model error can impose nontrivial computation and conceptual problems
(Kennedy and O’Hagan, 2001; Sansó, Forest, and Zantedeschi, 2008). An approach
that combines observation error and model error into a single term, rather than es-
timate them separately is described in Sansó, Forest, and Zantedeschi (2008). Even
this approach requires substantial compromises in computing techniques in order to
fit the model. In our case study, we consider the two different approaches to incor-
porate the error into our statistical model as follows:

Approach 1: No model discrepancy term (model discrepancy and observation
error combined).

Z = η(Y,θ)+ ε,

where η(Y,θ) is the predictive distribution as described earlier in Section 5.2.2.1,
and ε = (ε11, · · · ,εN1,ε12, · · · ,εN2,ε13, · · · ,εN3)′ is the observation error, and ε ∼
N(0,Σε ), with
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Σε =

⎡
⎣ψ1IN 0 0

0 ψ2IN 0
0 0 ψ3IN

⎤
⎦ ,

where ψ1,ψ2,ψ3 > 0 are the observation error variances for the three spatial fields.
In the univariate case, ε ∼ N(0,ψI), where ε = (ε1, · · · ,εN)′ is the observation error
with ψ > 0 as the observation error variance.

Approach 2: Model discrepancy modeled as a zero-mean Gaussian process.

Z = η(Y,θ)+δ (S)+ ε,

where η(Y,θ) and ε are the same as in Approach 1 above. The model error or
discrepancy δ (S) is modeled as a vector of three independent zero mean Gaussian
processes below:

δ (S) ∼ N

⎛
⎝
⎡
⎣0

0
0

⎤
⎦ ,

⎡
⎣Σd1(ξ d1) 0 0

0 Σd2(ξ d2) 0
0 0 Σd3(ξ d3)

⎤
⎦
⎞
⎠ ,

where ξ dk=((φdk)i,κdk) covariance matrix Σdk(ξ dk) is as follows:

(Σdk)i j(φdk,κdk) = κdk exp

(
−‖si − s j‖2

φ 2
dk

)
, κdk,(φdk) > 0. (5.2.2)

In the univariate case, δ (S) ∼ N(0,ΣD(ξ d)), where the covariance matrix ΣD(ξ d)
is the same form as equation (5.2.2). While it can be argued that the model discrep-
ancy should not be assumed to have zero mean, in practice it may be too hard to
identify a non-zero mean. The Gaussian process is flexible enough to correct for an
incorrect mean structure. Further, additional parameters to model the mean of the
model discrepancy would be confounded with the climate calibration parameter.

5.2.2.4 Estimation of Emulator Spatial Variance Parameters

Bayarri et al. (2007b) discusses the issue of estimating emulator spatial parame-
ters in a modularization framework; specifically the question of whether to estimate
these parameters in a full Bayesian approach as opposed to a plug-in MLE approach.
Bayarri et al. (2007b) argues that while a full Bayesian approach would be more in-
formative because uncertainty in the emulator parameters is taken into account, such
uncertainties are often small compared to the uncertainties due to the model discrep-
ancy resulting in little difference in the final results. Further, using a full Bayesian
approach often leads to a significant increase in computation time. The full Bayesian
approach also results in identifiability issues. For example, attempting to estimate
the microscale variation (emulator nugget) in the second stage is difficult because it
is clearly confounded with the observation error variance. We have therefore used a
plug-in approach so far.
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We now study the estimation of the emulator spatial variance in a Bayesian
framework in the second stage for Model 2, where a model discrepancy term is
included. For the univariate case, this consists of estimating κ , in the multivariate
case, we need to estimate the cross-covariance matrix T (κ,ρ) in the second stage.

5.2.3 Application to Climate Parameter Inference

5.2.3.1 Ocean Tracer Data

In this study, we focus on three tracers that have previously been shown to be in-
formative about Kv in ocean models: Δ 14C, trichlorofluoromethane (CFC11), and
ocean temperature (T) (cf. Schmittner et al., 2009). 14C (radiocarbon) is a radioac-
tive isotope of carbon, which may be produced naturally and by detonation of ther-
monuclear devices. 14C and CFC11 enter the oceans from the atmosphere by air-sea
gas exchange and are transported from the ocean by advection, diffusion, and to a
lesser degree by biological processes (McCarthy, Bower, and Jesson, 1977; Key et
al., 2004.)
Δ 14C, CFC11, and ocean temperature (T) measurements were collected for all

oceanic basins in the 1990s, with locations denoted by a latitude, longitude, and
depth. The data have been controlled for quality and gridded by Key et al. (2004).
We use the observations from the data synthesis project by Key et al. (2004), which
are then aggregated globally (i.e., aggregated over latitude and longitudes), resulting
in a data set with N = 13 depths. In addition, model output at p = 10 different values
of Kv, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 cm2/s, on a grid of
locations of latitude, longitude, and ocean depth were evaluated from University
of Victoria (UVic) Earth System Climate Model as described in Schmittner et al.
(2009). The model output were also aggregated globally, providing a ‘depth profile’
representing an average between 1990-2000 (cf. Goes et al., 2009). The total number
of depths in the model output is n = 13, resulting in M=np=130 model output values
per tracer. Depths below 3000 m are excluded to minimize problems due to sparse
sampling (Key et al., 2004) and model artifacts (Schmittner et al., 2009).

To perform statistical inference on climate parameters, we need to establish a re-
lationship between the observations and the climate parameters. We accomplish this
by using an earth system model, which simulates the complex phenomenon of the
atmosphere and the oceans under specific input parameter settings to obtain output.
The climate models are complex computer codes representing the solution to a large
set of differential equations that approximate physical, chemical, and biological pro-
cesses (Weaver et al., 2001). These climate models often take weeks to months to
execute for any given calibration parameter setting, making it very computationally
expensive to obtain output at a large number of parameter settings. This provides a
compelling argument for using emulation.
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5.2.3.2 Implementation Details

In this section, we discuss some of the details of the application of our approach
to the ocean tracer data. We verify the emulator using a leave one out cross-
validation approach, where we leave out the model output for one calibration pa-
rameter (Rougier, 2008b) and predict at all locations for that calibration parameter
setting. Plots for the model output and predictions using this cross-validation ap-
proach for Kv=0.2 and 0.4 are shown in Figure 5.4. The predictions for the removed
locations using cross-validation appear to be visually similar to the original model
output (Figure 5.4).

In the second stage, we use MCMC to obtain the posterior distributions of θ .
We use a Lognormal (-1.55, 0.59) on θ which reflects the geoscientists’ prior un-
certainty about Kv based on previous research (Bhat et al., 2009). We use a wide
inverse gamma prior for the observation error and model discrepancy variances,
specifically ψ1 ∼ IG(2,10) and κd1 ∼ IG(2,1000) for Δ 14C, ψ2 ∼ IG(2,0.1) and
κd2 ∼ IG(2,0.6) for CFC11, and ψ3 ∼ IG(2,0.1) and κd3 ∼ IG(2,15) for T. We use
wide uniform priors for the model discrepancy range parameter. For the emulator
spatial variances, we use κ1 ∼ IG(5,24000), κ2 ∼ IG(5,2.4), and κ3 ∼ IG(5,60).
When combining multiple spatial fields we can instead place an inverse Wishart
prior on the cross covariance matrix T , specifically, T ∼ IW (10,8TMLE). Here TMLE

is matrix for T obtained by plugging in the MLE from the first stage. The other
parameters for the Inverse Wishart were determined using formulae from Anderson
(2003) to ensure that the distribution is centered around TMLE and variances of indi-
vidual matrix elements are relatively small. Specifically, the variances of individual
matrix elements decrease as the first parameter of the Inverse Wishart distribution
is increased. These priors were obtained after an exploratory analysis of the data
suggested the approximate scale of these parameters. While we understand that one
needs to be careful about using the data in any way to determine priors, our pri-
ors are fairly wide with infinite variance (except for the emulator spatial variance
terms), and are not strongly informative.

To ensure convergence of our MCMC based estimates in the second stage, we
obtained Monte Carlo standard errors for the posterior mean estimates of θ and
other parameters computed by consistent batch means (Jones et al., 2006; Flegal,
Haran, and Jones, 2008). The posterior mean estimates of θ had MCMC standard
errors below 10−4 for both the univariate and bivariate approaches. The MCMC
standard errors for the other parameters were less than 10−3 for both the univariate
and bivariate approaches.
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FIGURE 5.4. Cross-validation plots of predictions at Kv=0.2 and 0.4 with model output at Kv

value held out. Black dots: model output, solid black lines: predictions, dotted black lines: 95%
confidence regions. Left: Kv=0.2, Right: Kv = 0.4. Top row: Δ 14C, Middle row: CFC11, Bottom
row: T.
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5.2.4 Results

5.2.4.1 Ocean Tracer Data

In this section we present the results from our analyses using the tracers Δ 14C,
CFC11, and T. While there is substantial overlap among the posterior distributions
of Kv (with model discrepancy is included) obtained by using Δ 14C, CFC11, and
T separately and then jointly, there are also clear differences (Figure 5.5). We cal-
culated credible regions using the Highest Posterior Density (HPD) method (Chen,
Shao, and Ibrahim, 2000). The 90% credible region for Kv using the single tracer
Δ 14C is between 0.057 and 0.352 cm2/s, the 90% credible region for Kv using the
single tracer CFC11 is between 0.170 and 0.407 cm2/s, the 90% credible region for
Kv using the single tracer T is between 0.156 and 0.420 cm2/s, and the 90% credible
region for Kv using the tracers jointly is between 0.164 and 0.313 cm2/s. Combining
the information from all three tracers results in a sharper posterior distribution of Kv

when model discrepancy is included (Figure 5.5).
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FIGURE 5.5. Log Normal Prior (dotted black line) and posterior of Kv with model discrepancy
term included using (i) CFC11 tracer (dotted black line), (ii) Δ 14C tracer (dotted-dashed black
line), (iii) T tracer (dotted-dashed black line), and (iv) all three tracers jointly (solid black line).

Inclusion of the model discrepancy term appears to shift the posterior probability
distribution to the left when we combine the three tracers (Figure 5.6) and when we
use the CFC and T tracers individually (Figure 5.7), suggesting that an approach
without taking model discrepancy into account results in a bias. The 90% credi-
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FIGURE 5.6. Posterior for Kv for all three tracers jointly: (i) excluding model error (dotted black
line), (ii) including model error (solid black line), and (iii) including model error and estimation of
emulator spatial variances (dotted-dashed black line).

ble region for Kv using the tracers jointly is between 0.194 and 0.390 cm2/s when
model discrepancy is not included, between 0.164 and 0.313 cm2/s when model
discrepancy is included, and between 0.130 and 0.395 cm2/s, when emulator spatial
variance is also estimated in a fully Bayesian approach. There is little difference
when the tracer Δ 14C is used, however, between the approach including model dis-
crepancy and the approach that does not do so. Further, it appears that estimating
emulator spatial variance in a fully Bayesian approach results in wider posterior
probability distributions, likely due to the additional uncertainty contributed by the
emulator. It appears that the posterior distribution for Kv for the tracers jointly is
clearly sharper than for the tracers individually for all of the approaches (Figures
5.6 and 5.7).

5.2.4.2 Simulation Study

We investigated the impact of including a model discrepancy term as described in
Section 5.2.2.3. Our goal in this study is to determine whether the inclusion of model
discrepancy and estimation of emulator spatial variance actually results in better in-
ference of the calibration parameter under different error situations. We hold out a
calibration parameter setting, say Kv=0.35, and treat the model output (for all the
tracers) for that parameter setting as the observations. We then apply our two stage
approach as described earlier to the remainder of the model output and the synthetic
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FIGURE 5.7. Posterior for Kv for the three tracers: (i) excluding model error (dotted black line), (ii)
including model error (solid black line), and (iii) including model error and estimation of emulator
spatial variances (dotted-dashed black line).

observations for all three modeling approaches; exclusion of the model discrep-
ancy term, inclusion of the model discrepancy term, and inclusion of the model
discrepancy term plus estimation of the emulator spatial variance. This procedure is
executed for all three scenarios below:

Scenario 1: No error. In this scenario, we simply define the observations as
the model output at the held out calibration parameter setting. That is, Z∗

k(si) =
Yk(si,θ ∗) for i = 1, · · · ,N, where θ ∗ is the held out calibration parameter setting
and k = 1,2,3 denotes the tracer of interest.
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Scenario 2: Independent and identically distributed (i.i.d.) error. In this sce-
nario, we add N(0,σ2

k ) to the model output at the calibration parameter setting
for each location for tracer i. Specifically, Z∗

k(si) = Yk(si,θ ∗) + ε∗k , where ε∗ki ∼
N(0,σ2

k ). Since the scale of the three tracers are different, we must select different
values for σ2

k .

Scenario 3: Model discrepancy plus i.i.d. error. In this scenario, we add a
GP(μk,Σk) to the observations in Scenario 2. Specifically, Z∗

k(si) = Yk(si,θ ∗) +
δ ∗k + ε∗k , where δ ∗k ∼ GP(μk,Σk). Again since the scale of the three tracers are dif-
ferent, so are the parameters of the Gaussian processes.

The results of this experiment suggest that adding a model discrepancy term re-
sults in more accurate inference and less overfitting for all three scenarios (Figure
5.8(a)-(c)). Estimation of the emulator spatial variance term results in much wider
posterior probability distributions for all three scenarios (Figure 5.8(a)-(c)). In Sce-
nario 1, both approaches of excluding and including the model discrepancy term re-
sult in having a posterior distribution centered near the held out parameter Kv=0.35.
However the posterior distribution is sharper and slightly more accurate when the
model parameter is included (Figure 5.8(a)). Estimation of the emulator spatial vari-
ance term results in a wider posterior probability distribution, but correctly centered
around the held out parameter Kv=0.35 (Figure 5.8(a)). In Scenario 2, excluding the
model discrepancy term results in a bias to the left (smaller values of Kv), while in-
cluding the model discrepancy results in more accurate inference and a sharper pos-
terior for the calibration parameter (Figure 5.8(b)). Estimating the emulator spatial
variance results in a slightly biased and wider posterior for the calibration parame-
ter (Figure 5.8(b)). In Scenario 3, excluding the model discrepancy term results in
a clearly biased distribution that has a wide bimodal posterior, while including the
model discrepancy term results in a posterior distribution that has much less bias, is
unimodal, and is sharper (Figure 5.8(c)). Estimating the emulator spatial variance re-
sults in a wider posterior distribution that is biased slightly to the left (Figure 5.8(c)).
It is important to stress that obtaining such results required much experimentation in
determining instructive parameters for σk and Σk. Simulating observations with too
much noise would clearly result in the signal being too weak, and thus the inabil-
ity to obtain reasonable inference about the calibration parameter, while adding too
little error would result in virtually the same inference as in the case with no added
error.

Inspired by the suggestion from O’Hagan (2009) that the inclusion of a model
discrepancy term may actually result in more biased estimates of the calibration pa-
rameter, we attempted to find a situation where the inclusion of the model discrep-
ancy term ‘makes the situation worse.’ To do so we added a function proportional
to 1/depth or 1/depth2 as ‘error’ to the model output at Kv=0.35, and we obtained a
situation where the inference was more biased and less accurate by including model
discrepancy than without model discrepancy (see Figure 5.8(d)). Hence, in some
situations, adding model discrepancy may make inference about calibration param-
eters worse.
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FIGURE 5.8. Posterior for Kv for the three tracers jointly: (i) excluding model error (dotted black
line), (ii) including model error (solid black line), and (iii) including model error and estimation
of emulator spatial variances (dotted-dashed black line) for simulation experiments. Top left: ‘Ob-
servations’ as model output at Kv=0.35 with no error, Top right: simulated iid error added, Bottom
left: simulated model discrepancy. Bottom right: error function proportional to 1/depth2 added.
True parameter value of Kv=0.35 denoted by thick black line.
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5.2.5 Summary

We develop and apply an approach for inferring calibration parameters by com-
bining information from observations and climate model output for multiple trac-
ers while taking into account multiple sources of uncertainty. We find that, as one
would expect, combining information from multiple spatial fields results in tighter
posterior distributions for the climate model parameter. We studied the impact of
modeling the model discrepancy and observation error. Based on our study, we find
that it is important to include a model discrepancy term, and modeling the discrep-
ancy via a zero mean Gaussian process seems to be the safest approach to guard
against bias and overfitting. These results corroborate, in the spatial output setting,
the conclusions of Bayarri et al. (2007b). We note, however, that when the computer
model is a poor representation of reality, the resulting inference may be more biased
when model discrepancy is included. Our study suggests that estimating the emu-
lator spatial variance in a fully Bayesian framework appears to simply reflect the
uncertainty from the prior distribution of the emulator spatial variance to the poste-
rior distribution of the calibration parameter. Hence, we recommend using a plug-in
estimate of the emulator spatial variance unless there is clear prior information for
these parameters.

A possible issue with calibration in general is the known confounding between
the calibration parameters and the model discrepancy parameters. We also note that
the climate parameter inference obtained here is based on heavily aggregated data,
which neglects local spatial effects and small-scale behavior across the ocean, and
uses a simple covariance function. Hence, computationally tractable approaches,
for large datasets, such as those explored in Bhat et al. (2009), may provide more
scientifically rigorous conclusions than those reported here.
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Chapter 6
Bayesian Nonparametrics and Semi-parametrics

One of the fastest growing research areas in Bayesian inference is the study of prior
probability models for random distributions, also known as nonparametric Bayesian
models. While the literature goes back to the 1970s, nonparametric Bayes remained
a highly specialized field until the 1990s when new computational methods facili-
tated the use of such models for actual data analysis. This eventually led to a barrage
of new nonparametric Bayesian literature over the last 10 years. In this chapter we
highlight some of the current research challenges in nonparametric Bayes.

6.1 Bayesian Nonparametric Goodness of Fit Tests

Surya T. Tokdar, Arijit Chakrabarti, and Jayanta K. Ghosh

In goodness of fit problems we test a parametric null against a nonparametric al-
ternative. For example, we may wish to test the accuracy of an algorithm that is
supposed to generate standard normal variates, from n independent observations
X1:n = (X1,X2, · · · ,Xn) produced by it. We will test for goodness of fit to standard
normal against a rather general class of alternatives, which will typically be non-
parametric. More generally, it is common to test the normality assumption of a given
data set before processing it further. In this case one would test the null hypothesis
that the true density is N(μ ,σ2) against a rich nonparametric class of densities. The
Bayesian will either put a prior on the null and alternative and calculate the Bayes
factor or put an overarching prior on both null and alternative and compute the pos-
terior probability of the null.

The Bayesian literature on these testing problems is still rather meagre, unlike the
case of nonparametric estimation on which elegant theory, algorithms, and applica-
tions exist; see the review papers by Müller and Quintana (2004) and Choudhuri,
Ghosal, and Roy (2005), more references are provided in the following sections.
In this section we survey what has been done by way of Bayesian nonparametric
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testing of goodness of fit problems involving both simple and composite parametric
nulls and nonparametric classes of alternatives. We take up the papers in roughly
the same sequence they have been published. We also include some unpublished
material being written for submission to a journal.

Our survey begins with a review of Rubin and Sethuraman (1965) in Section
6.1.1. Rubin and Sethuraman (1965) use neither a Bayes factor, nor the posterior
probability of the null. Instead they start with a classical goodness of fit test and
evaluate it asymptotically from a Bayesian point of view.

We next consider in Section 6.1.2 a paper by Dass and Lee (2004) presenting a
theoretical treatment of consistency of posterior for testing a simple null hypothesis
H0 : f = f0, where f0 is a fully specified density like N(0,1) and the alternative is
a nonparametric class of densities. Invoking Doob’s theorem on consistency (see
for example Ghosh and Ramamoorthi, 2003), Dass and Lee (2004) prove that if the
prior assigns a positive prior probability to the null and the null is actually true, then
the posterior probability of the null will tend to one and hence the Bayesian will
accept the null with probability tending to one as sample size n tends to infinity.
Dass and Lee (2004) also present consistency theorems for the alternative. The use
of Doob’s theorem reduces a hard problem to one where we have an answer almost
without any technical work.

If the null is composite as in the case of H0 : f = N(μ ,σ2), −∞< μ <∞, σ2 > 0,
Doob’s theorem cannot be used to settle the question of consistency under the null.
This case has to be treated by other methods, due to Ghosal, Lember, and van der
Vaart (2008) and McVinish, Rousseau, and Mengersen (2009). We discuss these in
Section 6.1.3.

Possibly the most important paper for our survey is Berger and Guglielmi (2001)
who consider a composite null as described above and embed it into an alternative
model constructed with a Polya Tree prior. They argue how such an embedding lets
the null parameters carry their identity over to the alternative and discuss choice
of objective prior distributions for these parameters. They show how to calculate
the Bayes Factor efficiently. Most importantly, they also examine in detail how the
test accepts and rejects the null for different data sets and then discuss carefully if
such a decision is indeed consistent with our intuitive notions of normality or lack
of it for a finite data set. We survey the test and the above facts in Section 6.1.4.
We also include in this section a brief discussion of earlier attempts at Bayesian
nonparametric testings based on Dirichlet processes and a recent, yet unpublished
work that uses Dirichlet mixture priors.

We end this introduction by drawing attention to a closely related problem of
Bayesian cluster analysis via Dirichlet mixtures, as developed in Bhattacharya,
Ghosh, and Samanta (2009). We may treat each clustering of parameters as related to
a partitioning of the Xi’s in such a way that all Xi’s in the partition are iid N(μi,σ2

i ).
In particular the case of a single cluster containing all Xi’s would correspond to the
null hypothesis. Other clusterings will correspond to other models that are part of
the alternative.
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6.1.1 An Early Application of Bayesian Ideas in Goodness of Fit
Problems

One of the earliest applications of Bayesian ideas to a nonparametric goodness of
fit problem is due to Rubin and Sethuraman (1965). They don’t use a nonparametric
prior, in fact their paper predates that of Ferguson’s (1973) seminal contribution by
nearly a decade. We include it because it is a pioneering Bayesian contribution to
a goodness of fit problem with a nonparametric flavor. We will avoid the involved
notations in the original paper but simply summarize some relevant facts in our own
notation.

Suppose X1, . . . ,Xn are iid with a normal distribution. Rubin and Sethuraman
(1965, Section 3) test

H0: true density is N(0,1) against H1: true density is N(μ ,σ2),

where (μ ,σ2) is arbitrary, and assume that the critical region is given by large val-
ues of the Kolmogorov-Smirnov test statistic. They determine the cut-off point by
varying critical regions of this kind and finding the one which minimizes the Bayes
risk with respect to their assumed product of loss function and prior probability of

(μ ,σ2) under the alternative. The “optimal” threshold is of the form a
√

logn
n , where

a (possibly dependent on n) is essentially determined by the product of loss function
and prior. They also determine the region in the parameter space for high acceptance
of the null and observe that when μ ≈ 0 and σ ≈ 1, this region is approximately the
region where the Kolmogorov-Smirnov distance between N(0,1) and N(μ ,σ2) is
less than the cut-off point. It is unclear if this test has any other good nonparametric
property.

There is an interesting discussion in the last paragraph of Section 2 of Rubin and
Sethuraman (1965) about the effect of an “incorrect” use of the constant a, instead
of the optimal one for the critical region, which seems to be applicable beyond the
example treated in that section. They show that type I error can be highly sensitive
to even a small deviation from the optimal a while type II error is not.

6.1.2 Testing a Point Null versus Non-parametric Alternatives

In this section we focus on the issue of consistency in Bayesian testing of a point
null hypothesis versus a nonparametric alternative. Operationally a Bayes test is per-
formed through the evaluation of a Bayes factor and consistency (or lack of it) of a
test is determined by the behavior of the same as the sample size grows. Our discus-
sion is based on Dass and Lee (2004) and we will usually adhere to the notations
adopted by them. We start with the basic definitions first before discussing the main
results in their paper.
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Consider a complete separable metric space X with the corresponding Borel
sigma field A . Let μ be a σ -finite measure on (X ,A ) and F the space of all
probability densities with respect to μ with support X . Let Pf be the probability
measure having density f . Up to an equivalence class (whereby two densities f and
g belong to the same equivalence class if and only if f = g a.e. μ), the correspon-
dence between f and Pf is unique. In what follows X ∞ and P∞f will denote usual
infinite products of X and Pf respectively.

Let X be a random variable taking values in X with a distribution having density
f ∈ F . We are interested in testing H0 : f = f0 versus H1 : f �= f0, where f0 is
completely specified. In the Bayesian approach to this testing problem, one first puts
prior probabilities p0 > 0 and p1 = (1− p0) for H0 and H1 to be true and also puts
a nonparametric prior π1 on the space H1. This amounts to defining an overall prior
π∗( f ) = p0I f0( f )+ (1− p0)π1( f ) on H0 ∪H1. The Bayes factor based on sample
X1:n = (X1,X2, · · · ,Xn), where Xi’s are independent copies of X , is defined as

BF01(X1:n) = ∏n
i=1 f0(xi)∫

H1
∏n

i=1 f (xi)π1(d f )
.

Taking the usual choice of p0 = 1/2, the Bayes factor exactly equals the posterior
odds ratio of H0 with respect to H1, given by π∗(H0 | X1:n)/π∗(H1 | X1:n). Thus the
Bayes factor is a measure of the relative odds of H0 in comparison to H1 in the light
of the observed data. As the data size grows quite large, ideally the Bayes factor
should be such that either H0 or H1 is favored very strongly (through their posterior
odds ratio), depending on the true data generating density. Thus the Bayes factor is
defined to be consistent if

lim
n→∞BF01(X1:n) = ∞, a.s. P∞f0 , and

lim
n→∞BF01(X1:n) = 0 a.s. P∞f for any f �= f0.

Trivially, consistency of Bayes factor implies and is implied by posterior consistency
of the testing procedure.

We are now in a position to state the main results about consistency of Bayes
factors in Dass and Lee (2004).

Theorem 6.1. limn→∞BF01(X1:n) = ∞, a.s. P∞f0 .

Theorem 6.2. LetΘ = { f ∈ H1 : BF01(X1:n) → 0 a.s. P∞f }. Then π1(Θ) = 1.
Before stating the last result we need a definition. Given f ∈ F , define Kε( f ) =

{g ∈ F : K( f ,g) < ε} for ε > 0, where K( f ,g) is the Kullback-Leibler divergence
between f and g. Say that f is in the Kullback-Leibler support of a prior on F if
the prior puts positive probability to the neighborhood Kε( f ) of f , for each ε > 0.

Theorem 6.3. Suppose f ∈ H1 and f is in the Kullback-Leibler support of π1. Then,
limn→∞BF01(X1:n) = 0 a.s. P∞f .

Remark 6.1. Theorem 6.1 establishes consistency of Bayes factor under the null
for any arbitrary nonparametric prior on H1, while Theorem 6.2 says that the con-
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sistency holds under the alternative for a class of densities that has π1 probability
1. But Theorem 6.2 is not of much practical use since given a non-null density, one
is not sure whether consistency holds or not if the true data were coming from this
density. Theorem 6.3 specifies an explicit condition that takes care of this lacuna and
can tell us definitively whether the Bayes factor is consistent for any given non-null
density. For certain nonparametric priors π1, sufficient conditions ensuring that a
density indeed belongs to its Kullback-Leibler support are available in the literature
(Ghosal, Ghosh, and Samanta, 1995; Ghosal, Ghosh, and Ramamoorthi, 1999ab;
Barron, Schervish, and Wasserman, 1999; Petrone and Wasserman, 2002; Tokdar,
2006; Tokdar and Ghosh, 2007; Choi and Ramamoorthi, 2008; Wu and Ghosal,
2008ab). See also the next section for a general sketch of proof of this result.

We will not give the details of the proofs of the above results, but just sketch
the main idea of the proof of Theorem 6.1. This is based on a clever applica-
tion of Doob’s theorem (Ghosh and Ramamoorthi, 2003, pp. 22-24) about poste-
rior consistency. Doob’s theorem says that the posterior is consistent for almost
all f ’s under the prior π∗ on H0 ∪H1. Since the prior probability of the (simple)
null is positive, this implies that conditionally on the null being true, the posterior
probability of the null will tend to 1 for almost all sequences under the null den-
sity f0. This, in turn, implies that the Bayes factor BF01(X1:n) → ∞ a.s. P∞f0 , since

BF01(X1:n) = π∗({ f0}|x̃n)
1−π∗({ f0}|x̃n) .

6.1.3 Posterior Consistency for a Composite Goodness of Fit Test

When the null hypothesis is composite, i.e., H0 = { f ∈ F0}, where F0 is not sin-
gleton, the study of posterior consistency gets a lot more involved than the elegant
treatment of Dass and Lee (2004) discussed in the previous section. We shall denote
a Bayesian testing procedure for the composite case by the triplet (p0,π0,π1) with
the understanding: Pr(H0) = p0 = 1− Pr(H1), ( f | H0) ∼ π0 and ( f | H1) ∼ π1.
We call (p0,π0,π1) consistent if Pr(H0 | X1:n) → 1 when the null is true, and
Pr(H0 | X1:n) → 0 otherwise. As noted in the previous section, consistency of the
testing procedure is equivalent to requiring that the Bayes factor

BF01(X1:n) =
∫
∏n

i=1 f (Xi)dπ0( f )∫
∏n

i=1 f (Xi)dπ1( f )

of the null hypothesis to the alternative converges asymptotically to infinity when
the null is true, and to zero otherwise.

For testing a parametric null against nonparametric alternatives, it is relatively
easy to establish BF01(X1:n) → 0 when Xi’s arise from a density f which is not
a member of the null parametric family. A common requirement is that density
estimation based on π1 is consistent at the true f in some topology whereas the
closure of F0, determined by the same topology, leaves out f . For example, if f
belongs to the Kullback-Leibler support of π1, then density estimation based on
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π1 is weakly consistent at f , due to Schwartz’s theorem (see Schwartz, 1965 or
Chapter 4.4 of Ghosh and Ramamoorthi, 2003). For any such f that is outside the
weak closure of F0, BF01(X1:n) → 0 asymptotically. This result can be formally
proved by arguing that the composite prior π∗ = 0.5π0 +0.5π1 has f in its Kullback-
Leibler support and hence F0, lying entirely outside a weak neighborhood of f ,
receives vanishing mass from the posterior distribution π∗(· | X1:n). Consequently,
BF01(X1:n) = π∗(F0|X1:n)/[1−π∗(F0|X1:n)] → 0.

It is much more difficult to prove BF01(X1:n) →∞ when f ∈ F0. This is because
the usual choices of π1 contain F0 in their support and can recover an f ∈ F0 from
data nearly as efficiently as the parametric model itself. See, for example, the almost-
parametric rate of convergence of Dirichlet mixture of normal priors discussed in
Ghosal and van der Vaart (2001). The special case of a simple null hypothesis H0 :
f = f0 as discussed in Section 6.1.2, eschews this difficulty because no estimation
is required for the null model. For the composite null case, one needs a careful
comparison of how π1 concentrates around an f ∈ F0 in comparison to π0. Both
Ghosal, Lember, and van der Vaart (2008) and McVinish, Rousseau, and Mengersen
(2009) discuss formal ways to make this comparison based on neighborhoods of f ∈
F0, shrinking at the same rate at which π1 can recover an f in a density estimation
setting. Ghosal, Lember, and van der Vaart (2008) discuss goodness of fit tests as
a special case of the more general problem of adaptive selection of nested models.
For this review, we summarize the more direct treatment of McVinish, Rousseau,
and Mengersen (2009).

To fix notations, let F0 = { fθ : θ ∈Θ} where Θ is a d-dimensional Euclidean
subspace. Fix an f ∗ = fθ∗ for some θ ∗ ∈Θ and let P∗ denote the product measure
of X1:∞ under this density. Assume that for some universal constants c > 0,C > 0
the following conditions hold.

A1. Density estimation based on π1 is consistent at fθ∗ with rate εn (see Ghosal,
Ghosh, and van der Vaart, 2000 and Shen and Wasserman, 2001). That is, there
exists a metric d(·, ·) on the densities and positive numbers εn ↓ 0 such that

π1({ f : d( f , fθ∗) < εn} | X1:n) → 1

in P∗ probability.

A2. π0(Kn := {θ : K( f ∗, fθ ) < cn−1,V ( f ∗, fθ ) < cn−1}) ≥ Cn−d/2, where for any
two densities p and q, K(p,q) =

∫
p log(p/q) and V (p,q) =

∫
p(log(p/q))2. One

could replace Kn with a simpler definition: Kn = {θ :
∫

f ∗(log( f ∗/ fθ ))+ < cn−1},
where x+ = max(x,0).

A3. π1(An := { f : d( f , fθ∗) < εn}) = o(n−d/2).

A2 is a natural support condition which holds for many standard parametric models.
Conditions A1 and A3 maintain a fine balance with respect to the rate εn. Slowing
down this rate favors A1 but may lead to a violation of A3, speeding up has the oppo-
site effect. The main result of McVinish, Rousseau, and Mengersen (2009, Theorem
1) and its elegant proof offered by these authors are reproduced below.
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Theorem 6.4. [BF01(X1:n)]−1 → 0 in P∗ probability.

Proof. Express the inverse of the Bayes factor as

[BF01(X1:n)]−1 =

∫
An∏

n
i=1

f (Xi)
f ∗(Xi)

π1(d f )
∫
Θ ∏

n
i=1

fθ (Xi)
f ∗(Xi)

π0(dθ)

1
π1(An | X1:n)

≤
nd/2 ∫

An∏
n
i=1

f (Xi)
f ∗(Xi)

π1(d f )

nd/2
∫

Kn∏
n
i=1

fθ (Xi)
f ∗(Xi)

π0(dθ)

1
π1(An | X1:n)

From A1, [π1(An | X1:n)]−1 = OP∗(1). Define Ln(θ) = 1
n ∑

n
i=1 log f ∗(Xi)

fθ (Xi)
, θ ∈Θ and

take π0,Kn to be the restriction of π0 to Kn. Then for small δ > 0,

P∗
(

nd/2
∫

Kn

n

∏
i=1

fθ (Xi)
f ∗(Xi)

π0(dθ) ≤ δ
)

≤ P∗
(∫

Ln(θ)π0,Kn(dθ) ≥ 1
n

log
π0(Kn)
δn−d/2

)

≤ P∗
(∫

[Ln(θ)−K( f ∗, fθ )]π0,Kn(dθ) ≥ 1
n

[
log

π0(Kn)
δn−d/2

− c

])

≤ n
∫

V ( f ∗, fθ )π0,Kn(dθ)
(logπ0(Kn)+(d/2) logn− logδ − c)2

≤ c
(log(C/δ )− c)2 ,

where the first inequality follows from Jensen’s inequality, the third from Cheby-
shev’s inequality, and the second and the fourth from A2. Therefore,

[nd/2
∫

Kn

n

∏
i=1

fθ (Xi)
f ∗(Xi)

π0(dθ)]−1 = OP∗(1).

An application of Markov’s inequality shows

P∗
(

nd/2
∫

An

n

∏
i=1

f (Xi)
f ∗(Xi)

π1(dθ) > δ
)
≤ δ−1nd/2π1(An)

and hence, by A3, nd/2 ∫
An∏

n
i=1

f (Xi)
f ∗(Xi)

π1(dθ) = oP∗(1). Combining these we get

BF01(X1:n)−1 = oP∗(1).
A number of recent papers give sharp rates of convergence for popular non-

parametric priors on densities, including the Dirichlet mixture priors (Ghosal and
van der Vaart, 2007) and the logistic Gaussian process priors (van der Vaart and
van Zanten, 2008). However, a rigorous demonstration of A3 is currently available
for only a handful of cases, such as the Dirichlet mixture of Bernstein polynomi-
als, log spline densities (Ghosal, Lember, and van der Vaart, 2008), and mixtures
of triangular densities (McVinish, Rousseau, and Mengersen, 2009). It is not yet
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clear whether A3 is a natural condition that is going to be automatically satisfied
by many nonparametric priors, as it requires the prior distribution not to sit too
tightly around elements of F0. Some insight into A3 may be gained by considering
a1n−1/2 ≤ εn ≤ a2n−1/2+Bea for some Bea ∈ (0,1/2), a1,a2 > 0. In this case one
can replace A3 with

A3′. π1({ f : d( f , f ∗) < ε}) = O(εD) for some D > d/(1/2−β ).

The above gives a sharp lower bound on the effective dimensionality of the non-
parametric prior π1 around f ∗. Deeper investigations of the popular choices of π1

will reveal whether such conditions hold, possibly for well chosen values of hyper-
parameters. McVinish, Rousseau, and Mengersen (2009), however, argue the ne-
cessity of A1-A3 via an example where a violation of these conditions leads to
inconsistency of the testing procedure.

If it turns out that use of popular nonparametric priors like Dirichlet mixtures of
normals may lead to inconsistency in goodness of fit tests, one should explore the
possibility of introducing an indifference zone to separate the null and the alterna-
tive. This would make the consistency problem easier to resolve but specification of
the indifference zone cannot be done without some subjective input from the user.

6.1.4 Bayesian Goodness of Fit Tests

The earliest papers, for example Florens, Richard, and Rolin (1996) and Carota and
Parmigiani (1996), use a mixture of Dirichlet process prior (Antoniak, 1974; Ghosh
and Ramamoorthi, 2003, p 113) on the alternative hypotheses. Letting θ denote
the parameter underlying the null model, these authors use the following hierar-
chical formulation of the alternative: the alternative distribution given θ follows a
Dirichlet process (DP) prior with precision constant αθ and base measure ᾱθ and
θ is modeled by a parametric prior that may match with the prior used on the null
model. As the authors of these papers and also Berger and Guglielmi (2001) point
out, this approach is flawed as the prior on the alternative sits on the discrete dis-
tributions, whereas in goodness of fit problems, we want it to sit on densities. Both
these papers run into serious difficulties caused by this. A more promising paper,
also mentioned and discussed in more detail by Berger and Guglielmi (2001), is
Verdinelli and Wasserman (1998) which assigns a mixture of Gaussian processes as
the prior on the alternative. The prior is constructed quite ingeniously and allows
calculation of the Bayes factor.

Why are the priors on the alternatives mixtures? This is done so that the com-
posite null like N(μ ,σ2) can have a natural embedding, i.e., nesting in some sense
in the alternative space. For example, Florens, Richard, and Rolin (1996) ensure
that for every θ , the conditional predictive distribution of a single observation is the
same under both hypotheses. In the same vein, but avoiding a prior like the mixture
of Dirichlet or the ingenious construction used by Verdinelli and Wasserman (1998),



6.1 Bayesian Nonparametric Goodness of Fit Tests 193

Berger and Guglielmi (2001) take resort to a mixture of Polya tree priors (Lavine,
1992, 1994; Mauldin, Sudderth, and Williams, 1992).

Suppose the parametric null is θ ∈Θ and the distribution of X corresponding to
θ is μθ . Berger and Guglielmi (2001) require

EPθ = μθ , for all θ ∈Θ ,

where Pθ is the random distribution of X under the nonparametric alternative and θ
on the left is a hyperparameter of the Polya tree prior under the alternative.

There are many advantages of the Polya tree priors. A Polya tree process defines
a random measure by assigning random conditional probabilities to sets within a
nested dyadic partition of an infinite depth. For each dyadic set its random con-
ditional probability given the parent in the previous partition is assigned a beta
distribution with two shape parameters, namely, α’s, which function like the two
parameters of the Dirichlet process. They specify the mean and precision. Unlike
the Dirichlet process, the use of infinitely many precision constants offers a greater
control over the smoothness of the random measure defined by a Polya tree process.
Indeed, by choosing a common value rm for the precision constants at depth m of the

partition, such that ∑m r−1/2
m < ∞, one ensures that the Polya tree sits on densities

and obtains posterior consistency for estimating a large class densities (Ghosh and
Ramamoorthi, 2003, pp. 186, 190; Walker, 2003, 2004; see also an earlier weaker
result in Barron, Schervish, and Wasserman, 1999). Berger and Guglielmi (2001)
discuss two constructions of a Polya tree prior, one where only the partition de-
pends on θ and another where only the beta shape parameters depend on θ . Either
choice embeds as prior mean the conditional predictive density under the null model
with parameter θ . Berger and Guglielmi (2001) use the second approach in their ex-
amples, as a fixed partition offers significant computational advantages, as detailed
in their Section 5. This flexible embedding of the null model within the alternative
appears to be a key motivation for Berger and Guglielmi (2001) to use mixtures of
Polya tree priors for the alternative model. We quote

...as we were striving for a nonsubjective approach, we wished to utilize (typically im-
proper) noninformative prior distributions for θ in the models. Although θ occurs under
both H0 and H1 , it could have very different meanings under each and could, therefore,
require different noninformative priors. We felt that use of the mixture Polya tree process
could solve this problem, in the sense that we could use results from Berger and Pericchi
(1996c) and Berger, Pericchi, and Varshavsky (1998) to show that the usual noninforma-
tive priors for θ are appropriately calibrated between H0 and H1 when the alternative is a
suitable mixture of Polya tree processes.

We refer the reader to Berger and Guglielmi (2001) for the details of their subtle
justification for using the same noninformative prior for θ under both null and al-
ternative.

Berger and Guglielmi (2001) also introduce an additional scaling factor h for rm

free of the partition depth m. They use different values of h to see the robustness
of the Bayes factor with respect to h. They minimize over h to make a conservative
choice of the Bayes Factor in their Table 1. This is another innovative contribution of
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Berger and Guglielmi (2001), for which the reader needs to go back to the original
paper to appreciate its full significance.

Berger and Guglielmi (2001) examine the results of the test for three examples.
We consider only the first one with data being 100 stress rupture life times of Kevlar
vessels, taken from Andrews and Herzberg (1985, p 183). In the log scale the data
are claimed to be N(μ ,σ2) under the null.

Table 1 of Berger and Guglielmi (2001) gives the minimum of the Bayes factor
with respect to the constant h for the two different choices of the Polya tree mixture
mentioned above. The values of the minimized Bayes factor are very close to each
other (in the range 0.0072 to 0.00180) and to the value of the Bayes factor based on
the prior of Verdinelli and Wasserman (1998). This is a pleasant fact that provides
support to both the Bayes factor tests and shows that the introduction of h seems to
ameliorate the problem of the proper choice of rm by reporting the minimized Bayes
factor.

All these nice properties of the Polya tree priors notwithstanding, the random
densities chosen by the prior have discontinuities on the countable dense set formed
by the boundaries of the sets in the partition. This is at least one reason why
there has been a lot of interest in priors sitting on smooth densities like Gaus-
sian process priors, vide Tokdar and Ghosh (2007), Tokdar (2007), Lenk (1988,
1991) and the Dirichlet process mixture of normals, vide Lo (1984), Ferguson
(1983), Escobar and West (1995), Müller, Erkanli, and West (1996), MacEach-
ern and Müller (1998, 2000) and MacEachern (1998). Recently, for testing H0:
f = N(μ ,σ2) for some μ ,σ2, Tokdar (2009) has proposed the following alternative
model: H1: f =

∫
N(φ ,ρσ2)P(dφ ,dρ) where the mixing distribution P is modeled

as p(P | μ ,σ2) = DP(α,G0(· | μ ,σ2)) with

G0(φ ,ρ | μ ,σ2) = N(φ | μ ,(1−ρ)σ2)Be(ρ | ω1,ω2).

This alternative ensures E[ f | μ ,σ2,H1] = N(μ ,σ2) and thus provides an embed-
ding similar to the one in Berger and Guglielmi (2001). Tokdar (2009) also discuss
efficient computation of the Bayes factor via a variation of the sequential importance
sampling algorithm of Liu (1996).

6.2 Species Sampling Model and Its Application to Bayesian
Statistics

Jaeyong Lee

Since its introduction, the Dirichlet process (Ferguson, 1973) has been a central
model in Bayesian nonparametric statistics. From the beginning, two important
properties of the Dirichlet process have been known: discreteness and marginaliza-
tion property of the Dirichlet process. The discreteness is often considered problem-
atic in statistical modeling, for most statistical models deal with continous densities.
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An easy remedy for this is the use of mixtures of Dirichlet processes, a convolu-
tion of a Dirichlet process with a continuous density (Lo, 1984; Escobar and West,
1995; Müller, Erkanli, and West, 1996). It is ironic that the problematic feature and
its remedy turn out a great success in Bayesian nonparametric modeling, because
it has found vast applications covering unexpected areas. For recent applications of
Dirichlet mixtures, see Teh et al. (2006) and Fox, Sudderth, and Willsky (2007), for
examples.

The marginalization property of the Dirichlet process, discussed in Blackwell
and MacQueen (1973), is that a random sample from a random distribution with
a Dirichlet process prior forms a Polya urn sequence. The Polya urn sequence has
a predictive distribution of a very simple form and has been the main computa-
tional tool for implementation of posterior inference in Dirichlet mixture models.
The computational effort for posterior simulation in Dirichlet mixture models re-
duces to essentially the same as posterior simulation for a related parametric model.
Posterior computation can be done without sampling random probability measure
unlike other nonparametric priors (Lavine, 1992; Lee, 2007).

The marginalization property of the Dirichlet process has also found important
applications in population genetics, ecology, number theory, and combinatorics. See
Kingman (1975), Aldous (1985), Pitman (1996, 2003) and references therein. In
this connection, a new class of random probability measures, called species sam-
pling models (SSM), has emerged. The SSM is the directing (or de Finetti) mea-
sure of the species sampling sequence (SSS) which is an exchangeable sequence of
random variables with a certain form of predictive distribution. SSM and SSS are
generalizations of the Dirichlet process and the Polya urn sequence, respectively.
This literature has been largely neglected by the Bayesian community until recently.
Only recently inference with SSM’s has become an active research area in Bayesian
statistics. On one side, the SSM is defined by a predictive distribution, and thus po-
tentially shares the simplicity of posterior simulation with the Dirichlet process. On
the other side, the SSM provides a large family of predictive distributions, allow-
ing data analysts greater flexibility. Research on applications of SSM’s to statistical
inference includes Ishwaran and James (2003), Lijoi, Mena, and Prünster (2005),
Navarrete, Quintana, and Müller (2008), Lijoi, Prünster, and Walker (2008), and
Jang, Lee, and Lee (2010), to name just a few.

In this section, we review the basic theory of the SSM and applications. In Sec-
tion 6.2.1, we introduce the exchangeable random partition and the SSS. In Sec-
tion 6.2.2, we discuss three methods to construct the SSS, a generalization of the
Chinese restaurant process, Poisson-Kingman partitions, and Gibbs partitions. In
Section 6.2.3, we discuss the application of SSM’s mixture models to statistical
inference and some asymptotic results. The section concludes with a discussion.
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6.2.1 Basic Theory

A SSM is characterized by the distribution of the exchangeable random partition
and a diffuse probability measure. In this section, we review the basic theory of the
SSM, and introduce the exchangeable random partition and SSS.

6.2.1.1 Exchangeable Random Partitions

We first introduce basic concepts of the exchangeable random partition. This is
an important concept in the theory of SSM’s. For a positive integer n, let [n] =
{1,2, . . . ,n}. Any ordered finite sequence n = (n1,n2, . . . ,nk) is called a composi-
tion of n if

ni ≥ 1, 1 ≤ i ≤ k, and
k

∑
i=1

ni = n (6.2.1)

and an unordered finite sequence {n1,n2, . . . ,nk} with the same property (6.2.1) is
called a partition of n. For any partition {A1,A2, . . . ,Ak} and permutation σ of [n],
let σ({A1,A2, . . . ,Ak}) = {σ(A1),σ(A2), . . . ,σ(Ak)} where σ(A) = {σ(a) : a∈ A}.
A random partition Πn = {A1,A2, . . . ,Ak} of [n] is called exchangeable if Πn and
σ(Πn) has the same distribution for any permutation σ of [n], i.e., for any partition
{A1,A2, . . . ,Ak} and permutation σ of [n],

P(Πn = {A1,A2, . . . ,Ak}) = P(σ(Πn) = {A1,A2, . . . ,Ak}).

It is not hard to see that Πn is an exchangeable random partition of [n] if and only if
for any partition {A1,A2, . . . ,Ak} of [n],

P(Πn = {A1,A2, . . . ,Ak}) = p(|A1|, |A2|, . . . , |Ak|) (6.2.2)

for some symmetric function p defined on Cn, where |A| is the cardinality of a set
A and Cn is the set of all compositions of n. The function p in (6.2.2) is called an
exchangeable partition probability function (EPPF) of Πn.

The distribution of an exchangeable random partition can be characterized by a
distribution of exchangeable random variables. Let (x1,x2, . . . ,xn) be an ordered list
of n elements. Define an equivalence relation on [n] from (x1,x2, . . . ,xn) as follows:

for any i, j ∈ [n], i ∼ j if and only if xi = x j. (6.2.3)

The equivalence classes of the equivalence relation (6.2.3) induces a partition of
[n]. Let Π(x1, . . . ,xn) be the partition of [n] defined by equivalence classes of
(6.2.3). If (X1,X2, . . . , Xn) is an exchangeable sequence of random variables, then
Π(X1,X2, . . . ,Xn) is an exchangeable random partition. The following theorem as-
serts that in fact any exchangeable random partition can be obtained by exchange-
able random variables.
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Theorem 6.5. Let Πn be an exchangeable random partition of [n] and πn =
(N↓

n,1,N
↓
n,2, . . . ,N

↓
n,k) be a partition of n defined by decreasing arrangement of block

sizes of Πn. Then,

Πn|πn
d=Π(X1,X2, . . . ,Xn)|πn,

where (X1,X2, . . . ,Xn)|πn
d= (xσ(1),xσ(2), . . . ,xσ(n)), σ is a uniform random permu-

tation of [n] and (x1,x2, . . . ,xn) is the sequence of N↓
n,1 1’s, N↓

n,2 2’s,..., N↓
n,k k’s.

We now consider exchangeable random partition defined on the set of positive
integers N. Suppose Πn is an exchangeable random partition of [n]. For 1 ≤ m ≤
n, let Πm,n be the restriction of Πn to [m], i.e., the partition of [m] obtained from
Πn by removing {m + 1, . . . ,n}. If Πn is an exchangeable random partition of [n],
then Πm,n is an exchangeable random partition of [m], 1 ≤ m ≤ n. A sequence of
random partition Π∞ = (Πn)n≥1 is called an infinite exchangeable random partition
(or exchangeable random partition on N), if

(i) Πn is an exchangeable random partition of [n] for all n; and
(ii) Πm =Πm,n a.s. for all 1 ≤ m ≤ n < ∞.

The notion of the EPPF can be also extended to N. Let C = ∪∞n=1Cn. For n =
(n1, . . . ,nk) ∈ C , let n j+ = (n1, . . . ,n j−1,n j +1,n j+1, . . . ,nk) for j = 1,2, . . . ,k and
n(k+1)+ = (n1, . . . ,nk,1). A function p : C → [0,1] is called an (infinite) EPPF of
(Πn) if

(a) p(1) = 1;
(b) (addition rule) for all n ∈ C , p(n) = ∑k+1

j=1 p(n j+); and
(c) p|Cn is the EPPF of Πn for all n.

The characterization of the exchangeable random partition through exchangeable
random variables still holds. The infinite exchangeable random partitionΠ∞ = (Πn)
is said to be an exchangeable random partition of N generated by (Xn)n≥1 if
Πn = Π(X1, . . . ,Xn) for all n. For a given Π∞, let (N↓

n,i, i ≥ 1) be the decreasing

arrangement of block sizes of Πn, where N↓
n,i = 0 if Πn has fewer than i blocks.

Theorem 6.6. (Kingman’s representation) Let Π∞ = (Πn) be an exchangeable
random partition of N and (N↓

n,i, i ≥ 1) be the decreasing arrangement of block sizes

of Πn for n ≥ 1. Then, nk+

(a)
N↓

n,i

n
→ P↓

i a.s. for all i ≥ 1.

(b) Π∞|(P↓
i , i ≥ 1) d= Π(X1,X2, . . .), where X1,X2, . . . follow iid F and F has

ranked atoms (P↓
i , i ≥ 1).

Remark 6.1. A consequence of Theorem 6.6 is that Π∞ is an exchangeable random
partition of N if and only if there exists a random probability distribution F such

that Π∞ =Π(X1,X2, . . .) where X1,X2, . . . |F iid∼ F .



198 6 Bayesian Nonparametrics and Semi-parametrics

Remark 6.2. The random distribution F is used as a nonparametric prior in the
nonparametric Bayesian context. Thus, for each exchangeable random partition of
N, there is a corresponding random probability measure F .

6.2.1.2 Species Sampling Sequences

In this subsubsection, we take a closer look at the sequence of exchangeable ran-
dom variables which induces an exchangeable random partition and consequently a
random probability measure. We form a sequence of random variables (X1,X2, . . .)
in the following way. Suppose we land on an unknown planet with infinitely many
species. As we explore the planet, we encounter species and give a name Xi to the
ith species encountered. We record whether the ith and jth species encountered are
the same, Xi = Xj. For convenience, we pick a point in a complete separable metric
space X randomly and use it as a name whenever we need a new name.

For a mathematical treatment, we introduce some notation. Let Mj be the index
of the first appearance of the jth species, i.e., let M1 = 1 and Mj = inf{n : n >
Mj−1,Xn /∈ {X1, . . . ,Xn−1}} for j ≥ 2, where inf /0 = ∞. Let X̃ j = XMj be the jth
distinct species to appear which is defined on the event Mj < ∞. Let n j = n jn be the
number of times the jth species X̃ j appears in (X1, . . . ,Xn)

n jn =
n

∑
m=1

I(Xm = X̃ j), j = 1,2, . . .

n = nn = (n1n,n2n, . . .) or (n1n,n2n, . . . ,nkn,n),

where k = kn = max{ j : n jn > 0} be the number of different species to appear in
(X1, . . . ,Xn).

Let ν be a diffuse (or atomless) probability measure on X . We now give the
definition of the SSS. An exchangeable sequence (X1,X2, . . .) is called a species
sampling sequence if X1 ∼ ν and

Xn+1|X1, . . . ,Xn ∼
kn

∑
j=1

p j(nn)δX̃ j
+ pkn+1(nn)ν ,

where δx is the degenerate probability measure at x. Here ν is called the base prob-
ability measure and the sequence of functions (p1, p2, . . .) is called a sequence of
predictive probability functions (PPF). Each p j is a positive real-valued function
defined on C and satisfies ∑kn+1

j=1 p j(n) = 1 for all n ∈ C . Note that

p j(n) = P(Xn+1 = X̃ j|X1, . . . ,Xn), j = 1, . . . ,k,

pkn+1(n) = P(Xn+1 /∈ {X1, . . . ,Xn}|X1, . . . ,Xn).

The SSS defines an exchangeable random partition by (Πn) = (Π(X1, . . . ,Xn)) and
its EPPF p and PPF (p j) have the following relation:
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p j(n) =
p(n j+)
p(n)

, for all n ∈ C , 1 ≤ j ≤ k +1.

It is clear from the definition that the distribution of the SSS is characterized by the
PPF (or EPPF) and base measure.

The following theorem (Pitman, 1996) characterizes the directing measure of a
SSS.

Theorem 6.7. Let (Xn)n≥1 be a SSS with PPF (p j) and the base probability measure
ν . Then,

(i)
n jn

n
→ P̃j a.s. for some positive random variable P̃j for all j ≥ 0.

(ii) ||Fn −F|| → 0 a.s., as n → ∞, where || · || is the total variation norm, and

Fn =
kn

∑
j=1

p j(nn)δX̃ j
+ pkn+1(nn)ν ,

F =∑
j

P̃jδX̃ j
+(1−∑

j
P̃j)ν . (6.2.4)

(iii) (X̃ j) are independent of (P̃j) and follow iid ν .
(iv) Conditionally on F, (Xi) are iid F.

Remark 6.3. A sequence of random variables (Xn) is a SSS if and only if X1,X2, . . . |F
is random sample from F where

F =
∞

∑
i=1

PiδX̃i
+Rν (6.2.5)

for some sequence of positive random variables (Pi) and R such that 1 − R =
∑∞i=1 Pi ≤ 1, (X̃i) is a random sample from ν , and (Pi) and (X̃i) are independent.

Remark 6.4. The random probability distribution (6.2.4) is the directing measure
of the species sampling sequence (Xi) and it is called the species sampling model of
(Xi). We will also sometimes call it the species sampling process (or prior). Since it
is characterized by the EPPF p (or PPF (p j)) and a diffuse probability measure ν ,
we will denote it by SSM(p,ν) or SSM((p j),ν). Similarly, the distribution of the
SSS is denoted by SSS(p,ν) or SSS((p j),ν).

Example 6.1. Dirichlet process. The celebrated Dirichlet process (Ferguson, 1973)
is a special case of the SSM. Suppose (X1,X2, . . .) is a sample from F which follows
DP(θν), the Dirichlet process with parameter θν with θ > 0. Then, marginally
(X1,X2, . . .) is a Pólya urn sequence with distribution X1 ∼ ν and

Xn+1|X1, . . . ,Xn ∼
kn

∑
j=1

n jn

n+θ
δX̃ j

+
θ

n+θ
ν .

Thus, (X1,X2, ...) is a SSS with the base probability measure ν and PPF
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p j(nn) =
n jn

n+θ
I(1 ≤ j ≤ kn)+

θ
n+θ

I( j = kn +1). (6.2.6)

Sethuraman (1994) showed that the Dirichlet process can be represented in form
(6.2.5). Let W1,W2, . . . be an iid sequence from Beta(1,θ). From (Wi), discrete prob-
ability masses (Pi) are constructed by the stick breaking process. In particular,

P1 = W1,

Pj = Wj

j−1

∏
i=1

(1−Wi), j = 2,3, . . . .
(6.2.7)

Suppose X̃1, X̃2, . . . is an iid sequence from ν , and (Pi) and (X̃i) are independent.
Then,

F =
∞

∑
j=1

PjδX̃ j
∼ DP(θν).

Example 6.2. Pitman-Yor process. Pitman and Yor (1997) introduced an interest-
ing class of discrete random measures which includes the Dirichlet process. Let a
and b be real numbers with either 0 ≤ a < 1 and b > −a or a < 0 and b = −ma for
some m = 1,2, . . . and let ν be a diffuse probability measure. For j = 1,2, . . . , let

Wj ∼ Beta(1−a,b+ ja).

Construct (Pi) from (Wj) by the stick breaking process as in (6.2.7). Let (X̃ j) be an
iid sequence from ν independent of (Pj). We call the random probability measure
F = ∑∞j=1 PjδX̃ j

the Pitman-Yor process and denote it by PY (a,b,ν). The distribu-
tion of (Pj) is called Griffiths-Engen-McClosky distribution with parameter (a,b)
or GEM(a,b) and the ranked frequency (P↓

j ) of (Pj) is called Poisson-Dirichlet dis-

tribution with parameter (a,b) or PD(a,b), where P↓
j is the jth largest value among

Pj’s. Note PY (0,θ ,ν) is DP(θν). Sometimes Poisson-Dirichlet distribution is re-
ferred with only one parameter θ > 0, in this case PD(θ) = PD(0,θ).

The following theorem of Pitman (1996) characterizes the posterior distribution
of the SSM.

Theorem 6.8. Suppose X1,X2, . . . ,Xn|F iid∼ F and

F =
∞

∑
i=1

P̃jδX̃ j
+(1−

∞

∑
j=1

P̃j)ν .

Then, the conditional distribution of F given X1,X2, . . . ,Xn are determined as fol-
lows.

(a) X̃1, X̃2, . . . , X̃kn are measurable functions of (X1,X2, . . . ,Xn).

(b) X̃ j
iid∼ ν , for j > kn.
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(c) (P̃j) and (X̃ j) are independent and for all nonnegative measurable functions
f ,

E( f (P̃)|X1,X2, . . . ,Xn,N = n) =
E( f (P̃)Π(n, P̃))

p(n)
,

where Π(n, P̃) =
(
∏k−1

i=1 [P̃ni−1
i (1−∑i

j=1 P̃j)]
)

P̃nk−1
k and p(n) = EΠ(n, P̃).

Corollary 6.1. Suppose F ∼PY (α,θ ,ν) and X1,X2, . . . ,Xn|F iid∼ F, where X̃1, . . . , X̃k

are distinct values of X1,X2, . . . ,Xn and ni = |{ j : Xj = X̃i}|. Then,

F | X1, . . . ,Xn
d=

k

∑
i=1

P̃jδX̃ j
+ R̃kFk,

where (P̃1, P̃2, . . . , P̃k, R̃k) ∼ Dirichlet(n1 −α,n2 −α, . . . ,nk −α,θ + kα) and Fk ∼
PY (α,θ + kα,ν).

6.2.2 Construction Methods for EPPFs

A SSM is characterized by an EPPF (or PPF) and a diffuse base probability measure
ν . Thus, to obtain different SSM, we need to have methods to construct an EPPF. In
this subsection, we review three commonly used methods.

6.2.2.1 Generalization of Chinese Restaurant Process

Consider a restaurant which has infinite number of circular tables 1,2, . . . and each
table can accommodate an infinite number of customers. Entering the restaurant,
customers are seated according to the following seating plan.

• Customer 1 sits at table 1.
• Suppose n customers entered the restaurant and they are seated at tables 1,2, . . . ,k

with n j ≥ 1 customers at table j for 1 ≤ j ≤ k with ∑k
j=1 n j = n. Upon entering

the restaurant, customer n + 1 is seated at table j with probability p j(n) for 1 ≤
j ≤ k, or alone at table k+1 with probability pk+1(n), where ∑k+1

j=1 p j(n) = 1 and
p j(n) ≥ 0, where n = (n1, . . . ,nk).

Let Ai = {1 ≤ j ≤ n : customer j is seated at table i}. Then Πn = {A1,A2, . . . ,Ak}
defines a partition of [n]. Note that not every p j results in an exchangeable random
partition. For a more detailed discussion on this issue, see Pitman (1995).

Example 6.3. For θ > 0, let

p j(n1, . . . ,nk) =

{
ni

n+θ , j = 1,2, . . . ,k,
θ

n+θ , j = k +1.
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In this case, the PPF results in an symmetric EPPF which is

p(n1,n2, . . . ,nk) =
θ k∏k

i=1(ni −1)!
(θ)n↑

, (6.2.8)

where (θ)n↑ = θ(θ +1) · · ·(θ +n−1).

Example 6.4. For either α = −k < 0,θ = mk for some m = 1,2, . . . or 0 ≤ α ≤ 1
and θ > −α , let

p j(n1, . . . ,nk) =

{
ni−α
n+θ , j = 1,2, . . . ,k,
θ+kα
n+θ , j = k +1.

The above PPF also results in an EPPF and it is

p(n1,n2, . . . ,nk) =
(θ)k↑α ∏k

i=1(1−α)ni−1↑
(θ)n↑

,

where (θ)k↑α = θ(θ +α) · · ·(θ +(k−1)α).

6.2.2.2 Poisson-Kingman Partitions

In Section 6.2.1, we have seen that an exchangeable random partition can be ob-
tained by a random sample (Xn) from a random distribution with atoms (Pi). In
this subsubsection, we review a method to construct (Pi) using the jump times of a
non-homogeneous Poisson process on (0,∞) and its EPPF.

Suppose (N(t), t ≥ 0) is the Poisson process on (0,∞) with intensity measure
Λ(dx) = ρ(x)dx such that

∫ 1

0
xΛ(dx) < ∞ and Λ [1,∞) < ∞.

Let J↓1 ≥ J↓2 ≥ . . . be the ordered jump times of N(t) and T = ∑∞i=1 J↓i . For the fol-
lowing discussion, we assume that the random variable T has density f (t) that is
strictly positive and continuous on (0,∞). Let P↓

i = J↓i /T for i ≥ 1. The distribution

of (P↓
i ) is called the Poisson-Kingman distribution with Levy density ρ and denoted

by PK(ρ). The conditional distribution of (P↓
i ) given T = t is denoted by PK(ρ|t).

We denote the distribution of PK(ρ|t) with mixing distribution γ(dt) by

PK(ρ,γ) =
∫ ∞

0
PK(ρ|t)γ(dt).

Define a random permutation (τ(i), i ∈ N) of N as follows: τ(1) = i with proba-
bility P↓

i , i ≥ 1. After τ(1), . . . ,τ( j−1) are determined, τ( j) = i with probability
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P↓
i

1−Pτ(1)−Pτ(2)− . . .−Pτ( j−1)
, for i ∈ N−{τ(1), . . . ,τ( j−1)}.

Let P̃i = P↓
τ(i) for i ≥ 1. The sequence (P̃i) is called the size-biased permutation of

(P↓
i ).
The EPPF of an exchangeable random partition (Π(X1,X2, . . . ,Xn),n ≥ 1) is ob-

tained in the following theorem (Pitman, 2003), where X1,X2, . . . are a random sam-
ple from a random distribution F with atoms (P↓

i ).

Theorem 6.9. The EPPF of the partition induced by a driving measure with PK(ρ|t)
prior is given by

p(n1,n2, . . . ,nk|t) = tk−1
∫ 1

0
pn+k−2I(n1,n2, . . . ,nk; t p) f̃ (p|t)d p,

where n = ∑k
i=1 ni, I(n1,n2, . . . ,nk;v) is defined as follows: for k = 1 and n1 = n,

I(n;v) = 1 and

I(n1, . . . ,nk;v) =
1
ρ(v)

∫
Sk

k

∏
i=1
ρ(v−ui)u

ni
i du1 . . .duk−1,

Sk = {(u1, . . . ,uk) : ui ≥ 0,u1 + . . .+ uk = 1}, and f̃ (p|t) is the conditional density
of P̃1 given T = t, which is given by

f̃ (p|t) = ptρ(pt)
f ((1− p)t)

f (t)
, 0 < p < 1.

The EPPF of PK(ρ) partition is given by

p(n1,n2, . . . ,nk) =
∫ ∞

0
. . .
∫ ∞

0

f (v)dv∏k
i=1ρ(xi)x

ni
i dxi

(v+∑k
i=1 xi)n

. (6.2.9)

Example 6.5. If ρ(x) = θx−1e−bx, θ ,b > 0, then T ∼ Gamma(θ ,b) with mean
θ/b. One can compute the EPPF using (6.2.9) and it is the same as (6.2.8). Thus,
PK(ρ) = PD(θ).

6.2.2.3 Gibbs Partitions

Motivated by the form of the EPPF of the Dirichlet process, Gnedin and Pitman
(2006) study the EPPF of Gibbs form. The exchangeable random partition Π on N

is said to be of Gibbs form if there exists sequences random variables (Wj, j ≥ 1)
and (Vn,k,n,k ≥ 1) such that the EPPF of Π is given by



204 6 Bayesian Nonparametrics and Semi-parametrics

p(n1, . . . ,nk) = Vn,k

k

∏
j=1

Wn j .

There are redundancies in the representation of the EPPF of Gibbs form. In fact, for
any γ > 0, if we change Wj to γ jWj and Vn,k to γ−nVn,k, or Wj to γWj and Vn,k to
γ−kVn,k, the EPPF does not change. The following proposition (Gnedin and Pitman,
2006) characterizes the EPPF of Gibbs form.

Proposition 6.1. The sequences of random variables (Wj, j ≥ 1) and (Vn,k,n,k ≥ 1)
define a partition of Gibbs form if and only if there exist b ≥ 0 and a ≤ b such that

(a) Wj = (b−a) j−1↑b, j = 1,2, . . .; and
(b) Vn,k = (bn−ak)Vn+1,k +Vn+1,k+1, 1 ≤ k ≤ n.

This proposition motivates the following definition. For α < 1, an exchangeable
random partition Π is said to follow Gibbs of type α if

Wj =
{

(1−α) j−1↑, −∞< α < 1,
1, α = −∞,

Vn,k = γn,kVn+1,k +Vn+1,k+1,

with V1,1 = 1 and

γn,k =
{

n−αk, −∞< α < 1,
k, α = −∞.

6.2.3 Statistical Applications

6.2.3.1 Mixture Modeling with SSM

The realization of a SSM is with positive probability a discrete probability measure.
A simple way to remedy this is to convolute the SSM with a family of distributions
with continuous density h(x|θ) for θ ∈Θ . Suppose G is a realization of SSM(p,ν)
where p is an EPPF and ν is a diffuse probability measure. Define a probability
measure F with continuous density by

f (x) =
∫

h(x|θ)G(dθ). (6.2.10)

There are many choices for h. Popular choices of h are the densities of the normal
distribution N(μ ,σ2) with μ ∈ R and σ > 0, and the uniform distribution U(μ −
σ ,μ+σ) with μ ∈ R and σ > 0. In both cases, θ = (μ ,σ).

The SSM mixture model has the following structure. For an EPPF p and a diffuse
probability measure ν ,

G ∼ SSM(p,ν),

X1,X2, . . . ,Xn|F iid∼ F, (6.2.11)
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where F has density of form (6.2.10). Model (6.2.11) is equivalent to

G ∼ SSM(p,ν),

θ1,θ2, . . . ,θn|G iid∼ G, (6.2.12)

Xi|θi
ind∼ h(x|θi), i = 1,2, . . . ,n.

By integrating out G from (6.2.12), the sequence θ1,θ2, . . . ,θn becomes the species
sampling sequence, i.e.,

θ1,θ2, . . . ,θn ∼ SSS(p,ν).

In a Markov chain Monte Carlo (MCMC) simulation of the posterior, one uses the
following structure:

θ1,θ2, . . . ,θn ∼ SSS(p,ν),
Xi|θi ∼ h(x|θi), i = 1,2, . . . ,n.

Since the conditional distribution of θi given θ−i, the vector obtained by remov-
ing θi from (θ1,θ2, . . . ,θn), is well known for the species sampling sequence, the
conditional posterior distribution of θi given θ−i,X1, . . . ,Xn is easily obtained and is

π(dθi|θ−i,X1, . . . ,Xn) ∝ h(xi|θi)
{ k−i

∑
j=1

p j(n−i)δθ∗−i, j
(dθi)+ pk+1(n−i)ν(dθi)

}
,

(6.2.13)
where ni is the composition of n−1 generated by θ−i, k−i is the number of blocks in
θi , and θ ∗−i, j is the jth distinct value in θ−i. The Gibbs sampling can be done by sam-
pling θi from the distribution (6.2.13). For more elaborate computation algorithms,
see Navarrete, Quintana, and Müller (2008).

6.2.3.2 Large Sample Properties

Jang, Lee, and Lee (2010) consider a simple nonparametric model

X1, . . . ,Xn|F ∼ F, F ∼ SSM(p,ν), (6.2.14)

and obtain necessary and sufficient conditions for posterior consistency under quite
general assumptions. Let

F0 =∑
j

q jδz j +λμ (6.2.15)

be the true distribution from which X1,X2, . . . ,Xn are sampled, where z j ∈ X , q j ≥
0, λ = 1−∑ j q j ≤ 1 and μ is a diffuse probability measure. Let n = (n1,n2, . . . ,nk)
be the composition of n generated by the block sizes of Π(X1,X2, . . . ,Xn), let X̃ j,
1 ≤ j ≤ k, be the distinct values of X1,X2, . . . ,Xn, and Z = {z1,z2, . . .}.
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Suppose the predictive probability function of SSM(p,ν) satisfies the smooth-
ness condition:

Sn = Sn(n) = max
1≤i≤k

k

∑
j=1

∣∣∣p j(n)− p j(ni+)
∣∣∣→ 0, F0 −a.s., as n → ∞, (6.2.16)

and the support of the discrete part of F0 satisfies the separability condition: there
exists ε > 0 such that for all i �= j

d(zi,z j) > ε, (6.2.17)

where d is the metric of X . Under these assumptions, Jang, Lee, and Lee (2010)
obtained the following theorem.

Theorem 6.10. Suppose X1,X2, . . . is an iid sequence from F0 of form (6.2.15) with
separability condition (6.2.17). Under the model (6.2.14) with prior SSM(p,ν)
which satisfies the smoothness condition (6.2.16), the posterior given X1, . . . ,Xn is
weakly consistent at P0 if and only if the predictive probability function satisfies

lim
n→∞

k

∑
j=1

|p j(n)−n j/n|I(X̃ j ∈ Z ) = 0, F0 −a.s.,

and one of the following holds

(i) pk+1(n) → 0 as n → ∞, F0 −a.s.
(ii) F0 is a mixture of a discrete probability measure and the diffuse measure ν .

The message of the theorem is that unless the predictive distribution behaves sim-
ilar to the empirical distribution, posterior consistency is not granted. This restricts
the class of SSM(p,ν) priors with posterior consistency to essentially the Dirichlet
process. This point becomes clearer if one considers PY (a,b,ν). If the prior class is
the Pitman-Yor process, the only priors which give rise to consistent posteriors under
all true probability measures are Dirichlet processes. This fact has also been proved
independently by James (2008). Also, Jang, Lee, and Lee (2010) show that some
popular sub-classes of SSM’s include no prior with consistent posteriors. If one
considers the mixture models with SSM, however, the posterior consistency holds
for much wider class of SSM. See Jang, Lee, and Lee (2010) and Lijoi, Prünster,
and Walker (2005).

6.2.4 Discussion

In this section, we have reviewed the basic theory of SSMs and their statistical ap-
plications. An SSM is defined through the predictive distribution. Since the success
of the Dirichlet process relies greatly on the simplicity of its predictive probabil-
ity function, the SSM would seem to be a promising alternative for non-parametric
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Bayesian inference. However, real success remains to be seen. From the outset, the
SSM overcomes a shortcoming of Dirichlet process mixture models. Suppose in
the mixture model (6.2.12), instead of SSM(p,ν) the Dirichlet proces DP(ανθ ) is
used, where α > 0 and νθ belongs to a parametric family of distribution with pa-
rameter θ . The parameter α is often called the prior sample size, because it controls
the amount of information the prior has. In many applications, one wishes to set
α ≈ 0 to represent little prior knowledge. But, this has the unexpected effect that
the mixture model becomes essentially the parametric model αθ . This can be seen
from Sethuraman’s representation (6.2.7). It is due to the fact that α controls both
the amount of the prior information and the distribution of the cluster size. It can be
overcome by separating parameters for these two effects, for example, by adopting
Pitman-Yor process. Thus, the flexibility of the general SSM does enhance Bayesian
nonparametric modeling.

We have added a new tool to the Bayesian toolbox which is quite versatile and
flexible. However, we need to hone this tool more to deploy in action. Some com-
ments are in order. First, although in theory the SSM frees data analysts from the
rigid restriction on the form of the PPF, practical use of wide class of PPFs seems to
be limited currently, and computational methodology for general PPFs needs to be
developed. Second, from the asymptotic point of view, it is not clear yet to what ex-
tent SSM’s can be recommended, although there are some indications as discussed
in Section 6.2.3. Thirdly, more freedom may confuse the data analysts even more.
Practical guidelines for the choice of PPFs in actual data analysis will be beneficial
to data analysts. Finally, examples of real data analysis with SSM’s would convince
more data analysts to use SSM.

6.3 Hierarchical Models, Nested Models, and Completely
Random Measures

Michael I. Jordan

Statistics has both optimistic and pessimistic faces, with the Bayesian perspective
often associated with the former and the frequentist perspective with the latter, but
with foundational thinkers such as Jim Berger reminding us that statistics is funda-
mentally a Janus-like creature with two faces. In creating one field out of two per-
spectives, one of the unifying ideas emphasized by Berger and others is the Bayesian
hierarchy, a modeling framework that simultaneously allows complex models to be
created and tames their behavior.

Another general tool for creating complex models while controlling their com-
plexity is by nesting simplified models inside of more complex models, an appeal
to the principle of “divide-and-conquer.” An example is the classical finite mixture
model, where each data point is modeled as arising from a single mixture com-
ponent. Note that this appeal to divide-and-conquer is quite different from the re-
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cursive principle underlying hierarchical modeling—the latter strategy provides a
way to share statistical strength among components while the former strategy tends
to isolate components. Of course, many complex models involve a blend of these
strategies.

If the need to exploit hierarchical and nested structures is compelling in paramet-
ric models, it is still more compelling in Bayesian nonparametrics, where the growth
in numbers of degrees of freedom creates significant challenges in controlling model
complexity. The basic idea of Bayesian nonparametrics is to replace classical finite-
dimensional prior distributions with general stochastic processes, thereby allowing
an open-ended number of degrees of freedom in a model. The framework expresses
an essential optimism—only an optimist could hope to fit a model involving an in-
finite number of degrees of freedom based on finite data. But it also expresses the
pessimism that simplified parametric models may be inadequate to capture many
real-world phenomena, particularly in the setting of large data sets in which increas-
ingly subtle aspects of those phenomena may be revealed. From either perspective,
care needs to be taken to exploit and manage the large number of degrees of freedom
available within a nonparametric model.

In this section we discuss hierarchical and nested modeling concepts within the
framework of Bayesian nonparametrics. To keep the discussion focused, we restrict
ourselves to a special class of stochastic processes known as “completely random
measures.” These random measures have the simplifying property that they assign
independent random mass to disjoint regions of a probability space. This property
turns out to imply that these measures are discrete (up to a deterministic component
and a Brownian motion component that are of limited value for Bayesian modeling).
While the discreteness is limiting for some applications, it also has some significant
virtues. In particular it provides a natural tool for focusing on structural aspects of
models, where the effects of hierarchy and nesting have relatively simple interpre-
tations.

6.3.1 Completely Random Measures

Letting Ω denote a measurable space endowed with a sigma algebra A , a random
measure G is a stochastic process whose index set is A . That is, G(A) is a random
variable for each set A in the sigma algebra. A completely random measure G is
defined by the additional requirement that whenever A1 and A2 are disjoint sets in
A , the corresponding random variables G(A1) and G(A2) are independent. This
idea generalizes the notion of “independent increments processes” that is familiar
in the special case in which Ω is the real line.

Kingman (1967) presented a way to construct completely random measures
based on the nonhomogeneous Poisson process. This construction has significant
consequences for Bayesian modeling and computation; in particular, it allows con-
nections to be made to the exponential family and to conjugacy. The construction
is as follows (see Figure 6.1 for a graphical depiction). Consider the product space
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Ω

R
FIGURE 6.1. The construction of a completely random measure on Ω from a nonhomogeneous
Poisson process on Ω ⊗ℜ.

Ω ⊗ℜ, and place a sigma-finite product measure η on this space. Treating η as the
rate measure for a nonhomogeneous Poisson process, draw a sample {(ωi, pi)} from
this Poisson process. From this sample, form a measure on Ω in the following way:

G =
∞

∑
i=1

piδωi . (6.3.1)

We refer to {ωi} as the atoms of the measure G and {pi} as the weights.
Clearly the random measure defined in (6.3.1) is completely random because

the Poisson process assigns independent mass to disjoint sets. The interesting fact is
that all completely random processes can be obtained this way (up to a deterministic
component and a Brownian motion).

As an example of a completely random measure, define the rate measure η as
a product of an arbitrary sigma-finite measure B0 on Ω and an “improper” beta
distribution on (0,1):

η(dω,d p) = cp−1(1− p)c−1d pB0(dω),

where c > 0. Note that the expression cp−1(1− p)c−1 integrates to infinity; this has
the consequence that a countably infinite number of points are obtained from the
Poisson process. The resulting completely random measure is known as the beta
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process.1 We denote a draw from the beta process as follows:

B ∼ BP(c,B0),

where c > 0 is referred to as a concentration parameter and where B0 is the base
measure. Note that for the beta process the weights {pi} lie in the interval (0,1).
Their sum is finite (a consequence of Campbell’s theorem), with the magnitude of
the sum controlled by the concentration parameter c and by B0(Ω). The locations
of the atoms are determined by B0.

As a second example, let the rate measure be a product of a base measure G0 and
an improper gamma distribution:

η(dω,d p) = cp−1e−cpd pG0(dω). (6.3.2)

Again the density on p integrates to infinity, yielding a countably infinite number of
atoms. The resulting completely random measure is known as the gamma process.
We write:

G ∼ GP(c,G0)

to denote a draw from the gamma proess. Note that the weights {pi} lie in (0,∞)
and their sum is again finite.

It is also of interest to consider random measures that are obtained from com-
pletely random measures by normalization. For example, returning to the rate mea-
sure defining the gamma process in (6.3.2), let {(ωi, pi)} denote the points obtained
from the corresponding Poisson process. Form a random probability measure as
follows:

G =
∞

∑
i=1
πiδωi , (6.3.3)

where πi = pi/∑∞j=1 p j. This is the famous Dirichlet process (DP) (Ferguson, 1973).
We denote a draw from the DP as G ∼ DP(α0,H0), where α0 = G0(Ω) and H0 =
G0/α0. Note that the DP is not a completely random measure—for disjoint sets A1

and A2, the random variables G(A1) and G(A2) are negatively correlated due to the
normalization.

6.3.2 Marginal Probabilities

At this point it is useful to recall De Finetti’s theorem, which states that infinitely
exchangeable sequences of random variables are obtained by drawing a random el-
ement G and then drawing the elements of the sequence independently conditional
on G. Given the ubiquity of this conditional independence motif in Bayesian mod-

1 For further details on this derivation of the beta process, see Thibaux and Jordan (2007). For an
alternative derivation that does not make use of the framework of completely random measures,
see Hjort (1990).
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eling, it is of interest to ask what kinds of exchangeable sequences are obtained if G
is one of the random measures discussed in the previous section.

In the case of the DP, the answer is classical—one obtains the Pólya urn model
(Blackwell and MacQueen, 1973). This model can be described in terms of the
closely related Chinese restaurant process (CRP) (Aldous, 1985). Consider a restau-
rant with an infinite number of tables, listed in some (arbitrary) order. Customers
enter the restaurant sequentially. The first customer sits at the first table. Subsequent
customers choose a table with probability proportional to the number of customers
already sitting at that table. With probability proportional to a parameter α0 they
start a new table. This defines the CRP as a distribution on partitions of the cus-
tomers. To define the Pólya urn we augment the model to place a parameter φk at
the kth table, where the {φk} are drawn independently from some distribution G0.
All customers sitting at the kth table are assigned the parameter φk. Letting θi denote
the parameter assigned to the ith customer, this defines an exchangeable sequence
(θ1,θ2, . . .).

This connection between the DP and the CRP and Pólya urn model can be under-
stood by noting that the representation of the DP in (6.3.3) is essentially a mixture
model with a countably infinite number of components. We can view the CRP as
a draw from this mixture model. In particular, let us associate an integer-valued
variable Wi to the ith customer as follows:

G ∼ DP(α0,G0),
p(Wi = k | G) = πk, i = 1, . . . ,n.

In the language of the CRP, the event {Wi = k} means that the ith customer sits at
the kth table. In essence, the DP defines an infinite collection of random probabil-
ities that, when integrated out according to the De Finetti construction, yield the
CRP. The specific rule underlying the CRP—that customers sit at a table propor-
tional to the number of customers already at that table—reflects classical Dirichlet-
multinomial conjugacy.

Similar connections can be obtained for priors obtained from completely ran-
dom measures. Consider in particular the beta process. Here the weights {pi} lie
in (0,1), and thus it is natural to view the beta process as yielding an infinite col-
lection of coin-tossing probabilities. Moreover, given the definition of a completely
random measure, we are motivated to toss these coins independently. This defines
the following hierarchy:

B ∼ BP(c,B0),
Z | B ∼ BeP(B),

where Z =∑∞k=1 zkδωk is a completely random measure known as the Bernoulli pro-
cess. The atoms {ωk} are the same atoms as in B and the weights {zk} are binary
values that are equal to one with probability pk and equal to zero otherwise.

Returning to the De Finetti conditional independence motif, we can draw repeat-
edly from the Bernoulli process given an underlying draw from the beta process:
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B ∼ BP(c,B0),
Zi | B ∼ BeP(B), i = 1, . . . ,n. (6.3.4)

This defines a binary-valued matrix with n rows and an infinite number of columns.
Campbell’s theorem can again be invoked to show that we obtain a sparse matrix
in which the number of ones in each row is finite with probability one. Viewing
the columns as “latent traits” or “features,” this matrix can be viewed as a sparse
featural representation of objects, or alternatively as a model in which each object
is assigned to a subset of classes. Note that this differs from the Dirichlet process,
where each object is assigned to a single class.

It is also possible to define this probability law directly via a sequential process
that is known as the Indian buffet process (IBP) (Griffiths and Ghahramani, 2006).
In the IBP, customers enter a restaurant sequentially and select dishes in the buf-
fet line. Dishes that have been chosen previously by other customers are selected
with probability proportional to the number of times they have been selected by the
previous customers. Each customer also selects a random number of new dishes ac-
cording to a Poisson distribution (with decreasing rate). As shown by Thibaux and
Jordan (2007), this probability law can be obtained by marginalizing out the beta
process in the hierarchy in (6.3.4). Their argument is the analog of the derivation
of the CRP from the DP. In particular, as alluded to above, the CRP can be derived
as a simple consequence of the fact that a posterior DP is itself a DP (Ferguson,
1973). A similar conjugacy relationship holds for the beta process—a posterior BP
is itself a BP (Kim, 1999). The posterior BP contains atoms in its base measure, and
these are necessarily present in any subsequent draw from the BP. Indeed, these act
like independent coins relative to the rest of the random measure. Posterior updating
of the probabilities associated with these coins is classical beta-Bernoulli updating,
which is the rule underlying the IBP.

6.3.3 Hierarchical Models

Bayesian nonparametric models often incorporate classical finite-dimensional
parameters—e.g., location parameters, scale parameters, regression parameters and
correlation parameters—and it is common to build hierarchies on these parame-
ters. In this section, however, we wish to consider a more thoroughgoing form of
Bayesian hierarchy in which the infinite-dimensional parameters of nonparametric
models are also linked via hierarchies. Specifically, we discuss conditional indepen-
dence hierarchies in which a set of completely random measures, {G1,G2, . . . ,GM},
are conditionally independent given a base measure G0, and where G0 is itself a
completely random measure.

To see the value of this kind of construction, let us consider the case of the Dirich-
let process, and consider M groups of data, {x1i}, {x2i}, and {xMi}, where each
group is to be modeled as a DP mixture. If we have reason to believe that these
groups are related, then we may wish to couple the underlying random probability
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measures via the following hierarchical Dirichlet process (HDP) construction (Teh
et al., 2006):

G0 ∼ DP(γ,H)
Gm | G0 ∼ DP(α0,G0), m = 1, . . . ,M

θmi | Gm ∼ Gm, m = 1, . . . ,M, i = 1, . . . ,Nm

xmi | θmi ∼ Fθmi , m = 1, . . . ,M, i = 1, . . . ,Nm, (6.3.5)

where {Fθ} is a parametric family of distributions. The nature of the coupling that is
induced by this hierarchy is easily understood by considering a Chinese restaurant
representation. Each random measure Gm corresponds to a Chinese restaurant where
the atoms forming that random measure correspond to the tables in the restaurant.
Some of these tables tend to have large occupancy—these correspond to the atoms
with particularly large weights. All of the customers sitting around a single table
can be viewed as belonging to a cluster; this is reflected in the fact that the corre-
sponding parameters θmi are equal to each other. Now if we have reason to believe
that the M groups are related, we might expect that a cluster discovered in group m
will be useful in modeling the data in the other groups. To achieve this we need to
share atoms not only within groups but also between groups. This is achieved by the
specification in (6.3.5): the fact that G0 is drawn from a DP means that it is atomic,
and each Gm re-draws from among these atoms. Thus, atoms are shared among the
{Gm}.

Note that it is also possible to couple the random measures {Gm} via a clas-
sic parametric hierarchy, but this would not generally achieve the goal of sharing
clusters among the groups. For example, suppose that G0 were a parametric distri-
bution depending on a location parameter μ . Bayesian inference for μ would share
statistical strength among the groups by centering their base measure at a common
location, but, due to the absolutely continuous nature of G0, the atoms in Gm would
be distinct from those in Gm′ for m �= m′. That is, none of the θmi would be equal to
θm′i; there would be no sharing of clusters among groups.

The HDP has been used in a wide variety of applications, including social net-
work analysis (Airoldi et al., 2008), genetic analysis (Xing, Jordan, and Sharan,
2007), computational vision (Sudderth, 2006; Kivinen, Sudderth, and Jordan, 2007),
natural language parsing (Liang, Jordan, and Klein, 2010), information retrieval
(Cowans, 2004), and music segmentation (Ren, Dunson, and Carin, 2008).

The sharing of atoms achieved via the hierarchical nature of the HDP is also
useful for the beta process and other members of the family of completely random
measures. Recall that the beta process can be viewed as providing a featural descrip-
tion of a collection of objects, where the weights {pi} are probabilities of the objects
possessing or not possessing a given feature. In the setting of multiple collections of
objects, it may be useful to transfer the features discovered in one collection to other
collections. As an example of this hierarchical beta process construction, Thibaux
and Jordan (2007) presented an application to document modeling, where the groups
correspond to document corpora. Each document is represented as a binary vector
indexed by the vocabulary items, and this probability vector is modeled as a draw
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from a Bernoulli process. The sparseness of word occurrences in documents means
that it is useful to transfer probabilities between corpora.

Similarly, it is useful to consider hierarchies based on the gamma process, where
the data might consist (for example) of counts of items in some open-ended vocab-
ulary and the gamma process encodes the Poisson rates underlying these counts.

6.3.4 Nested Models

Hierarchical models provide a way to share atoms among multiple random mea-
sures, a useful idea when these measures are viewed as related. It can also be worth-
while, however, to consider the opposite end of the spectrum, where atoms are sep-
arated into different, non-interacting groups. From a modeling point of view, this
allows complex models to be built of simpler components. There is also a compu-
tational argument. When atoms are shared, the inferential problem of computing
the posterior distribution becomes a highly coupled problem in which each data
point has an inferential impact on each atom. Such highly coupled problems can be
difficult to solve numerically; in particular, in the MCMC setting the correlations
introduced by the coupling can increase the mixing time of MCMC algorithms. The
coupling also has an effect on the difficulty of implementing inference algorithms;
in particular, it makes it difficult to use divide-and-conquer strategies.

Nesting is a general strategy for building complex models out of simpler compo-
nents. To illustrate, let us consider a nested version of the Chinese restaurant process
(Blei, Griffiths, and Jordan, 2010). In the nested CRP, the restaurant metaphor is ex-
tended to a set of restaurants organized according to a branching structure, where
individuals partake of a sequence of dinners as they proceed down a path in the tree.
All individuals enter a fixed restaurant at the root node of the tree. They select a
table according to the usual CRP rule (i.e., they sit at a table with probability pro-
portional to the number of customers who have previously selected the table). The
table also has a card on it giving the address of a restaurant where the customers will
eat the following night. This construction recurses, yielding an infinitely-branching
tree where each customer follows a particular path down the tree. After n customers
have entered the tree, there will be up to n paths selected in the tree, with some paths
selected by multiple customers. The depth of the tree can be fixed and finite, or it
can be infinite.

The nested CRP defines a sequence of distributions on partitions, one for each
level of the tree. To turn this into a random measure, we introduce atoms drawn from
a base measure G0 at the tables in the restaurants (one atom per table). One possible
option is to consider a tree of fixed depth and to place atoms only at the tables in
the restaurants at the leaves of the tree, but it can also be useful to place atoms
throughout the tree. In either case, the construction separates atoms into distinct
groups. In particular, having selected a branch at the root node, only the atoms in
the clade below that branch are available.
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This nested construction can also be expressed using random measures directly.
In particular, consider the following specification of a two-level nested Dirichlet
process (nDP) (Rodrı́guez, Dunson, and Gelfand, 2008):

G ∼
∞

∑
k=1

π∗k δG∗
k
,

G∗
k =

∞

∑
j=1
πk jδθk j , (6.3.6)

where the weights {πk j} and {π∗k } are obtained as in (6.3.3). We see that G is a
draw from a DP that selects among an infinite set of components {G∗

k}, where each
component is itself a DP. Note that the atoms associated with the lower-level DPs are
distinct (assuming a continuous base measure). From the point of view of the nCRP
formalism the specification in (6.3.6) corresponds to a two-level tree in which atoms
are associated only with the tables at the leaves of the tree. The top-level restaurant
implements the choice among the Gk and each Gk corresponds to a restaurant at the
second level of the tree. More generally, the nDP can be extended to an arbitrary
number of levels, and a K-level nCRP is obtained by integrating out the Dirichlet
processes in a K-level nDP.

Rodrı́guez, Dunson, and Gelfand (2008) discussed an application of the two-level
nDP to a problem in health care where the goal is to model an outcome variable for
the hospitals in the fifty US states. The intra-state distribution is generally multi-
modal and thus it is natural to use DP mixtures for each state. Moreover, there are
inter-state similarities as well, and one approach to capturing these similarities is to
cluster the states. This is done at the higher level of the nDP by allowing similar
states to select the same low-level DP. Note the difference between this approach
and an HDP-based approach, where all atoms would be shared among all of the
groups; here, atoms are shared only when states fall in the same cluster.

There are also natural applications of infinite-level nested models. Blei, Grif-
fiths, and Jordan (2010) presented an application of the nCRP to the problem of
discovering topics in document collections. A topic is defined to be a probability
distribution across the words in some vocabulary. The nCRP is augmented to place
a topic at each table at every restaurant in the tree. The generation of the words in
a document is modeled as follows. The first step is to select a path down the (in-
finite) tree according to the nCRP. Fixing that path, we repeatedly pick a level in
the tree using the GEM (“stick-breaking”) distribution and pick a word from the
topic distribution at that level on the selected path.2 Given that nodes at the higher
levels in the tree tend to be shared across multiple documents (e.g., the root node
is shared across all documents), there is statistical pressure to force topics at higher
levels in the tree to concentrate on words that are useful across many documents.

2 The GEM distribution is closely related to the Dirichlet process; the GEM probabilities can be
obtained by randomly permuting the weights {πk} in the Dirichlet process according to a size-
biased permutation.
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Topics at lower levels can focus on more specialized words. Thus the model yields
an abstraction hierarchy.

It is also of interest to consider nesting for random measures other than the DP.
In particular, we can define a nested beta process in the following way:

B ∼ BeP
( ∞

∑
k=1

p∗kδB∗
k

)
,

B∗
k =

∞

∑
j=1

pk jδθk j .

This defines a random measure B that is a collection of atoms, each of which is a beta
process. Instead of picking a single path down a tree as in the nDP, this definition
makes it possible to pick multiple paths down a tree. This construction is quite
natural in applications; indeed, in the setting of document modeling it is a natural
generalization of latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003).
LDA is a topic model that allow documents to range over arbitrary collections of
topics. In the nCRP model, topics are restricted to lie along a single path of the tree,
differing only in level of abstraction but not in thematic content. A model based on
the nested BP would allow a document to range over both thematic content and level
of abstraction.

Similarly, it is of interest to consider a nested gamma process construction, which
could be used to select multiple branches at each level of a tree, each of which is
associated with a count or a rate.

6.3.5 Discussion

We have reviewed some recent developments in Bayesian nonparametrics. Our dis-
cussion has focused on completely random measures, a broad class of random mea-
sures that have simplifying representational and computational properties. Addi-
tional random measures can be obtained by normalization of such measures; in par-
ticular, the Dirichlet process can be obtained in this way.

The proliferation of parameters (i.e., atoms) in models based on completely ran-
dom measures calls for organizational principles to control these models in statisti-
cally and computationally sound ways. We have focused on two such principles—
hierarchy and nesting. While familiar in the parametric setting, these principles have
only recently begun to be exploited fully and explicitly in the nonparametric setting.
We anticipate many further developments in this vein. We also note that the theory
of Bayesian nonparametrics is in an early stage of development, and in particular we
have not yet seen theoretical results in which hierarchy and nesting play an explicit
role. Given the important role these concepts play in parametric theory, we expect
to see analogous theory emerging in nonparametrics. Finally, we note that hierarchy
and nesting are applicable to a wide range of Bayesian nonparametric models that
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lie outside of the class of completely random measures; indeed, the Pólya tree is one
instance of nesting that is well known in Bayesian nonparametrics.

Acknowledgments: I would like to thank Percy Liang, Kurt Miller, Erik Sudderth,
and Yee Whye Teh for helpful comments.



Chapter 7
Bayesian Influence and Frequentist Interface

Under the Bayesian paradigm to statistical inference the posterior probability distri-
bution contains in principle all relevant information. All statistical inference can be
deduced from the posterior distribution by reporting appropriate summaries. This
coherent nature of Bayesian inference can give rise to problems when the implied
posterior summaries are unduly sensitive to some detail choices of the model. This
chapter discusses summaries and diagnostics that highlight such sensitivity and
ways to choose a prior probability model to match some desired (frequentist) sum-
maries of the implied posterior inference.

7.1 Bayesian Influence Methods

Hongtu Zhu, Joseph G. Ibrahim, Hyunsoon Cho, and Niansheng
Tang

A formal Bayesian analysis for analyzing data Y involves the specification of a
sampling distribution for Y, denoted by p(Y|θ), and a prior distribution for all pa-
rameters of interest θ , denoted by p(θ). The posterior distribution of θ given Y is
given by

p(θ |Y) =
p(θ)p(Y|θ)∫
p(θ)p(Y|θ)dθ

,

which forms a basis for carrying out any formal Bayesian analysis. In practice, how-
ever, posterior quantities such as the Bayes factor can be sensitive to three kinds of
discrepancies: influential observations relative to the fitted model, the prior distribu-
tion, and the sampling distribution. There is a large body of literature on developing
various Bayesian influence methods for detecting these discrepancies.

Three primary classes of Bayesian influence methods, including Bayesian case
influence measures, Bayesian local robustness, and Bayesian global robustness have
been proposed to assess the influence of various discrepancies in a Bayesian analy-
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sis (Kass, Tierney, and Kadane, 1989; McCulloch, 1989; Berger, 1990, 1994; Weiss,
1996; Gustafson, 2000; Sivaganesan, 2000; Oakley and O’Hagan, 2004; Cho, 2009;
Cho et al, 2009; Zhu, Ibrahim, and Tang, 2009; Zhu, Ibrahim, and Cho, 2010).
Bayesian case influence measures primarily assess the influence of individual ob-
servations (or generally, a set of observations) in a Bayesian analysis in order to
identify outliers and high leverage points. Considerable research has been devoted
to developing single case influence measures for various specific statistical models
including generalized linear models, time series models, and survival models (Box
and Tiao, 1973; Geisser, 1975, 1993; Johnson and Geisser, 1983; Johnson, 1985;
Pettit, 1986; Chaloner and Brant, 1988; Kass, Tierney, and Kadane, 1989; McCul-
loch, 1989; Carlin and Polson, 1991a; Gelfand, Dey, and Chang, 1992; Weiss and
Cook, 1992; Blyth, 1994; Peng and Dey, 1995; Weiss, 1996; Bradlow and Zaslavsky,
1997; Christensen, 1997). The influence of individual observations is often assessed
either on the posterior distributions or the predictive distributions through case dele-
tion. The two most popular Bayesian case influence measures are the Conditional
Predictive Ordinate (CPO) (Gelfand, Dey, and Chang, 1992; Geisser, 1993) and
the Kullback-Leibler (KL) divergence (Peng and Dey, 1995). For instance, Pettit
(1986) uses the KL divergence in detecting influential observations in his review
of Bayesian diagnostics, whereas Weiss (1996) and Weiss and Cho (1998) assess
the influence of deleting a single case as well as establishing its relationship to the
KL divergence and CPO. Zhu et al. (2010) introduce three types of Bayesian case
influence measures based on case deletion, namely φ -divergence, Cook’s posterior
mode distance, and Cook’s posterior mean distance, and then evaluate the effects of
deleting a set of observations on these three measures in general parametric models.
Another class of simple Bayesian case influence measures is to check whether the
posterior distribution of a checking function, which is a function of Y and/or θ , is
far from an appropriate measure of center (Zellner, 1975; Chaloner and Brant, 1988;
Meng, 1994; Gelman, Meng, and Stern, 1996).

The global robustness (Berger, 1984, 1990, 1994) approach is based on com-
puting a range of posterior quantities in a perturbation set based on perturbations
to Y, p(θ) and/or p(Y|θ) (Basu, 1999; Moreno, 2000; Sivaganesan, 2000). Global
influence methods, however, are generally computationally intensive even in rel-
atively simple models with several parameters (Berger, Rı́os Insua, and Ruggeri,
2000; Sivaganesan, 2000). For a given posterior quantity h(θ), one may conclude
that a small range indicates robustness. A serious issue associated with examin-
ing the range is that the value of the range itself might be misleading because it
strongly depends on the appropriate scale chosen for h(θ) and the size of the pertur-
bation set. For instance, for any given set and posterior quantity h(θ), the range of
E[ch(θ)|Y] is c times the range of E[h(θ)|Y], where c is any nonzero scalar. To ad-
dress this issue, several scaled versions of the range including a relative sensitivity
have been introduced (Sivaganesan, 1991; Gustafson, 1994; Boratinska, 1996; Rug-
geri and Sivaganesan, 2000). By utilizing the concept of differential geometry, Zhu,
Ibrahim, and Tang (2009) propose several global influence measures to quantify the
degree of various perturbations to statistical models.
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The local robustness approach primarily computes the derivatives of poste-
rior quantities with respect to a small deviation from Y, p(θ) and/or p(Y|θ)
(Berger, 1994; Gustafson and Wasserman, 1995; Shi and Wei, 1995; Gustafson,
1996a; Berger, Rı́os Insua, and Ruggeri, 2000; Perez, Martı́n, and Rufo, 2006; Zhu,
Ibrahim, and Tang, 2009). The local robustness approach has strong connections
with Cook’s (1986) seminal local influence approach for perturbing p(Y|θ) for de-
tecting influential observations and assessing model misspecifications (Tsai and Wu,
1992; Poon and Poon, 1999; Zhu and Lee, 2001; Zhu et al., 2003, 2007). McCulloch
(1989) generalizes Cook’s (1986) local influence to assess the effects of perturbing
the prior in a Bayesian analysis. Further research has been developed for carrying
out local robustness utilizing the Frechét derivative of the posterior with respect to
the prior (Berger, 1994; Gustafson and Wasserman, 1995; Gustafson, 1996a; Berger,
Rı́os Insua, and Ruggeri, 2000). Clarke and Gustafson (1998) consider simultane-
ously perturbing (Y, p(θ), p(Y|θ)) in the context of independent and identically
distributed data. Zhu, Ibrahim, and Tang (2009) propose several local influence mea-
sures to quantify the degree of simultaneously perturbing (Y, p(θ), p(Y|θ)) for a
large class of statistical models, while accounting for missing data.

The rest of this section is organized as follows. In Section 7.1.1, we give a thor-
ough review of Bayesian case influence measures. In Section 7.1.2, we provide an
overview of Bayesian global and local robustness approaches. In Section 7.1.3, we
illustrate the existing methodologies with a real data set.

7.1.1 Bayesian Case Influence Measures

Various Bayesian case influence measures have been proposed to identify outliers
and influential points, but we primarily review four major types, including the pos-
terior probability of outlying sets, posterior outlier statistics, predictive diagnostics,
and posterior diagnostics. The first type of Bayesian case influence measures in-
cludes Box and Tiao’s (1968) approach and its extensions. The key idea of Box
and Tiao (1968) is to calculate the posterior probability of an event AS that a set
of observations, denoted by YS, is an outlying set, where S denotes a subset of all
observations. This approach requires at least three strong assumptions as follows.
The first one is to specify the prior probability of AS such that

P(AS) ≥ 0 and ∑
S

P(AS) = 1.

The second assumption is to specify an explicit sampling distribution of Y given the
fact that AS is true, denoted by p(Y|AS,θ), for each AS. The third assumption is that
when AS is true,
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p(YS|AS,θ) =
∫

p(Y|AS,θ)dY[S] �= p(YS|θ) =
∫

p(Y| /0,θ)dY[S],

p(Y[S]|AS,θ) =
∫

p(Y|AS,θ)dYS = p(Y[S]|θ) =
∫

p(Y| /0,θ)dYS,

where /0 denotes the empty set, YS denotes a subsample of Y consisting of all the
observations in S and Y[S] denotes a subsample of Y with all observations in S (or
YS) deleted. Finally, for each set AS, we calculate the posterior probability of AS

given Y as follows:

P(AS|Y) =
p(Y|AS)P(AS)
∑S p(Y|AS)P(AS)

,

where p(Y|AS) =
∫

p(Y|AS,θ)p(θ)dθ is the marginal distribution of Y under AS.
If P(AS|Y) is relatively large for a specific set S, then it is fair to claim that all
observations YS are outlying observations.

Example 7.1. Consider a linear model yi = x′iβ + εi for i = 1, · · · ,n, where xi and
β are p × 1 vectors. For a set S, it is assumed that εi ∼ N(0,σ2) for i �∈ S and
εi ∼ N(0,ω2σ2) otherwise. Let α be the prior probability that any (xi,yi) is an
outlier. Thus, P(AS) =αk(1−α)n−k, where k is the size of S. We consider a Normal-
Gamma prior for (β ,σ−2). Let X = (x′1, . . . ,x

′
n)

′ and XS contain all xi for i ∈ S and
X[S] is a submatrix of X with all observations xi with i ∈ S deleted. After some
calculations, it has been shown in Box and Tiao (1968) that p(AS|Y) is given by

C

(
α

1−α
)k

ω−k|X′X|1/2|X′X− (1−ω−2)X′
SXS|−1/2

(
RSSω(S)

RSS

)−(n−p)/2

,

where C is a constant, RSS = (Y−Xβ )′(Y−Xβ ) and

RSSω(S) = (Y[S]−X[S]β̂ω(S))′(Y[S]−X[S]β̂ω(S))

+ω−2(YS −XSβ̂ω(S))′(YS −XSβ̂ω(S)),

in which β̂ω(S) = (X′
[S]X[S] +ω−2X′

SXS)−1(X′
[S]Y[S] +ω−2X′

SYS).
While Box and Tiao’s approach is conceptually simple, it is difficult to imple-

ment in many scenarios. The major difficulty is to specify an explicit distribution
p(Y|AS,θ) for characterizing the outlying observations in AS. Another difficulty is
to compute the marginal distribution p(Y|AS) for a large class of models for missing
data, such as models with missing covariates and generalized linear mixed models
with/without missing data. Yet another difficulty is that the computation of p(AS|Y)
is numerically infeasible given the large number of all possible events AS. Given
these difficulties, this approach is limited to simple models, such as linear regres-
sion with conjugate prior distributions and some models for time series (Abraham
and Box, 1979).

The second type of Bayesian case influence measures include Chaloner and
Brant’s (1988) posterior residual approach and its extensions. The original idea of
Chaloner and Brant (1988) is to use the posterior distribution of the realized error
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terms for residual analysis to define outliers and calculate posterior probabilities of
observations being outliers in a linear model (Zellner, 1975; Zellner and Moulton,
1985). This method has been further extended to generalized linear models, sur-
vival models, latent variable models, state space models, and many others (Chaloner,
1991; Albert and Chib, 1993; Lee and Zhu, 2000). The key idea is summarized as
follows. One first specifies an objective function g(YS,θ), which may be a function
of the data and unknown parameters, and then calculates the posterior probability of
the event ES = {g(YS,θ) > Kg}, called the posterior outlier statistic, which is given
by

P(ES|Y) =
∫

1(g(YS,θ) > Kg)p(θ |Y)dθ ,

where Kg is a prespecified constant determined by the model assumptions and 1(·)
is an indicator function of an event. Moreover, one may allow for missing data in
g(YS,θ). If one considers all observations Y and sets Kg = g(Yrep,θ), then one
obtains the posterior predictive p−value, which was formally introduced by Meng
(1994) and Gelman, Meng, and Stern (1996). The posterior predictive p−value may
be used to assess the plausibility of a proposed statistical model. If P(ES|Y) is rel-
atively small for a given Kg, then it is fair to claim that all observations in YS are
outlying observations.

Example 7.2. Consider a linear model yi = x′iβ + εi for i = 1, · · · ,n, where xi and
β are p×1 vectors and εi ∼ N(0,σ2) for all i. We consider a Normal-Gamma prior
for (β ,σ−2), that is β |σ−2 ∼ N(m0,σ2Σ−1

0 ) and σ−2 ∼ Γ (α0,α1). It has been
shown in Chaloner and Brant (1988) that εi|Y ∼ t(ei,a1b1h−1

i,i ,2a1), where ei = yi−
x′im1, m1 = (Σ0 + X′X)−1(Σ0m0 + X′Y), hi,i is the (i, i)th element of H = X(Σ0 +
X′X)−1X′, a1 = α0 + n/2, and b1 = α1 + 0.5[(Y−Xm1)′Y + (m0 −m1)′Σ0m0].
Thus, it can be shown that the posterior probability that |εi| > mσ is given by

P{|εi| > mσ |Y} =
∫ ∞

0
[1−Φ(z1)+Φ(z2)]p(τ|Y)dτ,

where τ = σ−2,Φ(·) is the distribution function of the standard normal distribution,

z1 = (m− ẽiτ1/2)h−1/2
i,i , and z2 = (−m− ẽiτ1/2)h−1/2

i,i .
The second class of case influence measures has its merits and limitations. Its

merit is that it is computationally straightforward even for very complicated statis-
tical models, such as hierarchical models with missing response and/or covariate
data. Specifically, the posterior outlier statistic can be directly estimated by using
samples drawn from Markov chain Monte Carlo methods (MCMC) (Chen, Shao,
and Ibrahim, 2000). However, because P(ES|Y) and its associated posterior predic-
tive p−value were criticized for double use of the data, they do not have ‘standard’
probability interpretations, that is, the uniform scale is not appropriate (Bayarri and
Berger, 2000; Robins, van der Vaart, and Ventura, 2000; de la Horra and Rodriguez-
Bernal, 2001; Hjort, Dahl, and Steinbakk, 2006). Hjort, Dahl, and Steinbakk (2006)
propose a calibration of the posterior predictive p (ppp) values, which results in
calibrated ppp values, while the calibrated ppp values are uniform in [0, 1] under a
correct model specification. Computing the calibrated ppp values, however, gener-
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ally involves in a double-simulation scheme and can be computationally intensive.
Further development of the calibrated ppp values for hierarchical models is given in
Steinbakk and Storvik (2009). Instead of calibrating ppp values, several measures
of surprise, such as the p−value and the relative predictive surprise, have been pro-
posed for outlier detection and model assessment in some relatively simple models
(Bayarri and Berger, 2000; Bayarri and Morales, 2003; Bayarri and Castellanos,
2007).

The third type of Bayesian case influence measures include all predictive diag-
nostics (Box, 1980; Geisser, 1993; Gelfand and Dey, 1994; Sinha and Dey, 1997).
The key idea of predictive diagnostics is to assess the discordancy of a set of obser-
vation YS based on the predictive distribution of YS using

E[g(YS,Y∗
S)|Y[S]] =

∫
g(YS,Y∗

S)p(Y∗
S|Y[S])dY∗

S,

where g(YS,Y∗
S) is a checking function and Y∗

S is a future value of YS. A particular
predictive diagnostic is

P(Y∗
S ∈ RS|Y[S]) =

∫
1(Y∗

S ∈ RS)p(Y∗
S|Y[S])dY∗

S,

where p(Y∗
S|Y[S]) is the predictive distribution of Y∗

S given Y[S] given by

p(Y∗
S|Y[S]) =

p(Y∗
S,Y[S])

p(Y[S])
=

1∫
[p(Y∗

S|Y[S],θ)]−1 p(θ |Y∗
S,Y[S])dθ

.

Moreover, the region RS can be a region around either the predictive mean, mode,
or median of p(YS|Y[S]), or {TS(Y∗

S) ≥ TS(YS)}, in which TS(·) is a scalar func-
tion. By setting g(YS,Y∗

S) = 1(YS : ||YS −Y∗
S|| ≤ ε)/V (ε,S), the conditional pre-

dictive ordinate statistic p(YS|Y[S]) for the set S, denoted by CPOS, is the limit
of E[g(YS,Y∗

S)|Y[S]] as ε → 0, where V (ε,S) is the volume of a sphere with ra-
dius ε in [dim(YS)+1]−dimensional Euclidean space (Geisser, 1993; Gelfand and
Dey, 1994; Sinha and Dey, 1997; Chen, Shao, and Ibrahim, 2000). If CPOS is rel-
atively small for a specific set S, then one could reject that YS is concordant with
Y[S]. These predictive diagnostics have been used to create model selection crite-
ria including pseudo-Bayes factors and posterior Bayes factors for model selection
(Aitkin, 1991; Geisser, 1993; Berger and Pericchi, 1996a; Gelfand and Ghosh, 1998;
Ibrahim, Chen, and Sinha, 2001; Chen, Dey, and Ibrahim, 2004).

Example 7.3. Consider an independent and identically distributed sample Y1, · · · ,Yn

from p(y|θ) = θ exp(−θx). Suppose that p(θ)∝ θN0−1 exp(−θN0y0). First, by set-
ting S = {i} and g(Yi,Y∗

i ) = 1(Y∗
i ≥ Yi), we have

Pi = E[1(Y∗
i ≥ Yi)|Y[i]] =

(
N0y0 +ny

N0y0 +ny+Yi

)n+N0

.
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The predictive diagnostic Pi is conceptually simple, but it can be computation-
ally difficult for complicated statistical models, such as multilevel models with
missing data. Specifically, except for very simple models, approximating P(Y∗

S ∈
RS|Y[S]) involves drawing samples using MCMC methods and the approximation
of
∫
[p(Y∗

S|Y[S],θ)]−1 p(θ |Y∗
S,Y[S])dθ in the denominator is typically numerically

unstable (Chen, Shao, and Ibrahim, 2000). Moreover, to accurately approximate
P(Y∗

S ∈ RS|Y[S]), we must draw many samples from p(θ |Y∗
S,Y[S]) for a large num-

ber of different Y∗
S. For complex models, however, it is very challenging to obtain a

suitable and accurate approximation of these model selection criteria based on the
predictive distribution.

The fourth type of Bayesian case influence measures include all posterior diag-
nostics (Csiszár, 1967; Johnson and Geisser, 1985; Pettit and Smith, 1985; Pettit,
1986; Weiss and Cook, 1992; Weiss, 1996). In contrast to predictive diagnostics,
posterior diagnostics compare the posterior distributions of θ given the complete
data Y and the reduced data Y[S]. A well-known example is the φ−influence of Y[S],
defined by

Dφ (S) =
∫
φ(R[S](θ))p(θ |Y )dθ ,

where R[S](θ) = p(θ |Y[S])/p(θ |Y ) and φ(·) is a convex function with φ(1) = 0
(Weiss and Cook, 1992; Weiss, 1996). It has been shown in Cho (2009) and Zhu,
Ibrahim, and Tang (2009) that Dφ (S) can be approximated by Cook’s posterior
mode distance, denoted by CP(S), and Cook’s posterior mean distance, denoted
by CM(S). A large value of Dφ (S) indicates that S contains an influential set of
observations. These posterior diagnostics can also be used to form model selection
criteria, which have strong connections with the Deviance Information Criterion
(Spiegelhalter et al., 2002; Cho, 2009; Zhu, Ibrahim, and Tang, 2009).

Similar to predictive diagnostics, posterior diagnostics are also conceptually sim-
ple, but can be computationally difficult for complicated statistical models, particu-
larly, hierarchical models with missing data. Let pS(θ) be p(YS|Y[S],θ). Then, we
have p(θ |Y[S]) = [pS(θ)]−1 p(Y|θ)p(θ)/

∫
[pS(θ)]−1 p(Y|θ)p(θ)dθ and the com-

putational formula for dφ (S) can be obtained as

dφ (S) = Eθ |Y

[
φ
(

[pS(θ)]−1

Eθ |Y{[pS(θ)]−1}
)]

,

where Eθ |Y denotes the expectation taken with respect to the posterior distribu-
tion p(θ |Y). It is challenging to accurately calculate dφ (S) for all possible sets
S. It has been shown that Dφ (S) can be approximated by a quadratic form in
∂θ log pS(E[θ |Y]) even for S with a relatively large number of observations (Cho,
2009; Zhu, Ibrahim, and Tang, 2009). This result provides a one-step approximation
to Dφ (S), which is computationally simple.

Example 7.4. We consider the normal linear model as yi = x′iβ + εi, where β is
p× 1 parameter vector, ε = (ε1, · · · ,εn)′ ∼ Nn(0,τ−1I), and τ = 1/σ2 is assumed
known. Thus, we have Y|β ,τ ∼ Nn(Xβ ,τ−1I), where X = (x1, . . . ,xn)′ and Y =
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(y1, . . . ,yn)′. We consider a conjugate prior for β as Np(μ0,τ−1Σ0). The posterior
distributions of β based on the full data, p(β |Y), and with the ith case deleted,
p(β |Y[i]), are given by

β |Y ∼ Np(β̃ , τ−1(X′X+Σ−1
0 )−1) and β |Y[i] ∼ Np(β̃[i], τ−1(X′

[i]X[i] +Σ−1
0 )−1),

where β̃ = (X′X+Σ−1
0 )−1(X′Y+Σ−1

0 μ0), β̃[i] = (X′
[i]X[i] +Σ−1

0 )−1(X′
[i]Y[i] +Σ−1

μ0), X[i] is X with x′i deleted, and Y[i] is Y with yi deleted. Note that X′
[i]X[i] =

X′X−xix′i and X′
[i]Y[i] = X′Y−xiyi.

For the K-L divergence, we can get an exact theoretical form for dφ (i) by apply-
ing the formula for the K-L divergence between two normal distributions (Cook and
Weisberg, 1982) as

dφ (i) = 0.5[τ(β̃ − β̃[i])
′(X′X+Σ−1

0 )(β̃ − β̃[i])− τ(β̃ − β̃[i])
′(xix′i)(β̃ − β̃[i])

− log |1−x′i(X
′X+Σ−1

0 )−1xi|− tr{x′i(X
′X+Σ−1

0 )−1xi}].

Let Q = X(X′X +Σ−1
0 )−1X′ with ith diagonal element qii = x′i(X′X +Σ−1

0 )−1xi.
Then we have

β̃ − β̃[i] =
1

1−qii
(X′X+Σ−1

0 )−1xi(yi −x′iβ̃ )

and therefore, we obtain

dφ (i) = 0.5

{
τ · qii

1−qii
(yi −x′iβ̃ )′(yi −x′iβ̃ )− log(1−qii)−qii

}
.

7.1.2 Bayesian Global and Local Robustness

Bayesian global and local robustness methods assess the degree of sensitivity of the
results obtained from a Bayesian analysis to the data, the prior, and the sampling
distribution (Sivaganesan, 1991; Berger, 1994; Gustafson, 1994; Gustafson and
Wasserman, 1995; Shi and Wei, 1995; Boratinska, 1996; Gustafson, 1996a; Basu,
1999; Berger, Rı́os Insua, and Ruggeri, 2000; Moreno, 2000; Ruggeri and Siva-
ganesan, 2000; Sivaganesan, 2000; Perez, Martı́n, and Rufo, 2006; Zhu, Ibrahim,
and Tang, 2009). Bayesian robustness methods are sequentially executed in two
steps: defining a perturbation class, denoted by Γ , which includes a class of pos-
terior densities representing the uncertainty in the prior and sampling distribution,
and computing global or local influence measures based on Γ . For instance, for a
given Γ and a target quantity h(θ), the most commonly used measure in Bayesian
global robustness is the range of a posterior quantity given by

Rh = h−h = max
p(θ |Y)∈F

E[h(θ)|Y]− min
p(θ |Y)∈F

E[h(θ)|Y], (7.1.1)
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where E[h(θ)|Y] is a posterior expectation of h(θ). The value Rh measures the
maximum variation caused by the uncertainty in F . If Rh is small, then one may
claim that the Bayesian analysis is robust.

7.1.2.1 Perturbation Class

We briefly review different perturbation classes to characterize specific perturbation
schemes to the data, the prior or/and sampling distributions. First, we outline vari-
ous sophisticated perturbation classes of priors in the literature. We refer the reader
to Berger (1994) and Ruggeri and Sivaganesan (2000) for a detailed review. Some
prior classes include parametric classes (Berger, 1990, 1994), classes with a given
shape and smoothness (Bose, 1990, 1994), classes with specified generalized mo-
ments (Goutis, 1994; Betro, Meczarski, and Ruggeri, 1994), contamination classes
(Huber, 1973; Sivaganesan and Berger, 1989, 1993; Gelfand and Dey, 1991), classes
with a topological neighborhood (Fortini and Ruggeri, 1994a,b; Basu, 1995), the
density ratio class (DeRobertis and Hartigan, 1981), mixture classes (Bose, 1994),
and marginal and independence classes (Lavine, Wasserman, and Wolpert, 1991;
Berger and Moreno, 1994). Among them, the parametric classes, the contamination
classes, and the mixture classes are most popular, because they are conceptually
easy and easily generalizable even for commonly used hierarchical models.

We consider the contamination classes as an example. The mixture contamina-
tion classes have the form

ΓCC = {p(θ) : p(θ) = (1− ε)p0(θ)+ εg(θ),g ∈ G },

where ε ∈ [0,1], p0(θ) is a base density, and G is a class of densities. This class has
been widely used in robust statistics (Huber, 1973). Other contamination classes
include the linear and nonlinear perturbation classes (Gustafson, 1996a) and the
general ε and geometric contamination classes (Perez, Martı́n, and Rufo, 2006). The
contamination classes are easy to elicit and can be easily generalized to hierarchical
models with multivariate parameters. There has been extensive research on finding a
suitable G (Sivaganesan, 1988, 1989, 1991; Sivaganesan and Berger, 1989; Moreno
and Gonzalez, 1990). For large G , the class Γ can be too large, which is common
for high dimensional θ , and thus robustness can be hard to achieve.

Another interesting class is the distribution band class defined as

ΓDBC = {p(θ) : L(θ) ≤
∫ θ
−∞

p(x)dx ≤U(θ)},

where L(θ) and U(θ) are, respectively, specified cumulative density functions with
L(θ) ≤U(θ). This class includes the well known Kolmogorov and Levy neighbor-
hoods (Ruggeri, Rı́os Insua, and Martı́n, 2005). Moreover, it is straightforward to
compute the associated influence measures. However, it is hard to choose an appro-
priate L(θ) and U(θ). We refer the reader to Berger (1994) and Ruggeri, Rı́os Insua,
and Martı́n (2005) for further details.
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We consider two types of sampling distribution classes, including single-case
perturbation classes and global perturbation classes. The single-case perturbation
classes are to independently perturb individual observations Yi in order to iden-
tify influential observations (Cook, 1986; Zhu and Lee, 2001, 2003; Zhu et al.,
2007). We consider an independent-type-incomplete-data (ITID) model defined by
p(Y;θ) = ∏n

i=1 p(Yi;θ), which subsumes most commonly used models, such as
generalized linear models with missing responses and/or covariates (Ibrahim, Chen,
and Lipsitz, 1999, 2005). In this case, a single-case perturbation class can be defined
by

ΓSC = {p(Y;θ ,ωS) =
n

∏
i=1

p(Yi;θ ,ωS,i) : ωS ∈ Rn},

where ωS = (ωS,1, · · · ,ωS,n) and ωS,i denotes the perturbation to the ith observation.
The global perturbation classes are to introduce a global perturbation to the sam-

pling distribution in order to assess the goodness of fit of the sampling distribution.
A class of commonly used perturbation densities is defined by

ΓGP = {p(Y;θ)exp{
m

∑
j=1
ωG, ju j(Y;θ)−0.5

m

∑
j=1
ω2

G, ju j(Y;θ)2

−C(θ ,ωG)} : ωG ∈ Rm},

where C(θ ,ωG) is the normalizing constant, ω = (ω j) is an m × 1 vector, and
u j(Y;θ) is any scalar function having zero mean under p(Y;θ). In this case, the
m×1 vector ω0

G(Y,θ) = (0, · · · ,0)′ represents no perturbation. The number m can
either be as small as one or increase with n (Gustafson, 2000; Troxel, Ma, and Heit-
jan, 2004; Copas and Eguchi, 2005; Zhu et al., 2007). It is also possible to introduce
the additive ε−contamination class and the geometric contamination class for the
sampling distribution. For instance, we may consider an additive ε−contamination
class defined as

ΓGε = {p(Y;θ)1−εg(Y;θ)ε : g(Y;θ) ∈ GY},

where GY is a class of densities of Y and ε ∈ [0,1].
Besides individual perturbations to the prior and the sampling distribution, we

can also consider a perturbation class to simultaneously perturb the data, prior and
sampling distribution. Based on the joint perturbation class, we may measure the
amount of perturbation, the extent to which each component of a perturbation model
contributes to, and the degree of orthogonality for the components of the perturba-
tion model. Such a quantification is very useful for rigorously assessing the rela-
tive influence of each component in the Bayesian analysis, which can reveal any
discrepancy among the data, the prior, or the sampling model. To the best of our
knowledge, Clarke and Gustafson (1998) is one of the very few papers on simultane-
ously perturbing the data, prior and sampling distribution in the context of indepen-
dent and identically distributed data. Recently, Zhu, Ibrahim, and Tang (2009) pro-
pose the simultaneous perturbation class in general parametric models. Specifically,
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Zhu, Ibrahim, and Tang (2009) develop a Bayesian perturbation manifold (BPM)
for the perturbation class. Suppose that the perturbation class Γ can be written as
{p(Y,θ ;ω) : ω ∈ Ω}, where Ω can be either a finite dimensional set or an infinite
dimensional set. We assume that C(t) : pY (ω(t)) = p(Y,θ ;ω(t)) is a differentiable
function mapping from t ⊂ I ∈ R to the manifold Γ with pY (ω(0)) = p(Y,θ ;ω),
where I is an open interval covering 0. Let ṗY (ω(t)) = d pY (ω(t))/dt. At each ω ,
there is a tangent space TωΓ of Γ spanned by ṗY (ω(0)). The inner product of any
two tangent vectors v1(ω) and v2(ω) in TωΓ is defined as

g(v1,v2)(ω) =
∫ v1(ω)

pY (ω)
v2(ω)
pY (ω)

pY (ω)dYdθ .

Let u(ω) = u(pc(ω)) and v(ω) = v(pc(ω)) be two smooth vector fields defined
fromΓ to T Γ . We can define the covariant derivative for the Levi-Civita connection
∇vu and a geodesic on the manifold between any two densities p(Y,θ ;ω1) and
p(Y,θ ;ω2). The geodesic is a direct extension of the straight line ω(t) = ω0 +
th in finite dimensional Euclidean space (Amari, 1990; Kass and Vos, 1997). A
Bayesian perturbation manifold (Γ ,g(u,v),∇vu) is the manifold Γ with an inner
product g(u,v) and a covariant derivative for the Levi-Civita connection denoted by
∇vu. There are several advantages of building the Bayesian perturbation manifold
framework for the perturbation class.

(i) It allows one to quantify the ‘shortest’ distance between any two densities in
the class. Then, we can calculate the maxima of the distances between any two
densities in the class to determine the size of the perturbation class. In addition, we
may measure the amount of perturbation and the extent to which each component
of a perturbation model contributes.

(ii) The Bayesian perturbation manifold is relatively simple even for simultaneous
perturbations to the prior, the data, and the sampling distribution (Zhu, Ibrahim,
and Tang, 2009). Based on the inner product g(v1,v2) of the Bayesian perturbation
manifold for the joint perturbation class, we may measure the degree of orthogo-
nality for the components of the perturbation model. Such a quantification is very
useful for rigorously assessing the relative influence of the data, prior and sampling
distribution in a Bayesian analysis.

The last issue is how to choose the different perturbation classes. Discussions
on the choice of reasonable perturbation classes are given in Berger (1990), Lavine
(1991), Pericchi and Walley (1991), Sivaganesan (1991), Walley (1991), Wasserman
(1992), and Moreno and Pericchi (1993). The consensus from these papers can be
summarized as follows:

(i) The class should be relatively easy to elicit and interpret.

(ii) The class should be relatively easy to compute. Generally, the computational
burden is strongly associated with the dimension of the class and the number of
elicited features of the prior and sampling distribution.
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(iii) The size of the class should be appropriately chosen. For a small class, one
may easily conclude robustness compared with a larger class, whereas for a large
class, one might conclude that robustness is lacking. Thus, one needs to quantify
the size of a specific class by measuring the maximum of the distances between any
two densities in the class. Recently, by using concepts in differential geometry, Zhu,
Ibrahim, and Tang (2009) suggest computing the geodesic distance between any two
densities in the class in order to measure the size of the class.

(iv) The class should be relatively easy and generalizable to a wide range of sta-
tistical models. Many prior classes may be hard to use for models with multiple
parameters.

7.1.2.2 Global Influence Measures

Various global influence measures have been developed for carrying out global ro-
bustness inference (Berger, 1994; Ruggeri, Rı́os Insua, and Martı́n, 2005). The most
commonly used measure in Bayesian global robustness is the range of a posterior
quantity in (7.1.1). Its value quantifies the degree of variation caused by the uncer-
tainty in the perturbation class. The range itself, however, can be misleading since it
depends strongly on two quantities: (i) the size of the perturbation class and (ii) the
scale of h(θ). To address this drawback, several scaled versions of the range have
been proposed for the prior perturbation class (Sivaganesan, 1991; Gustafson, 1994;
Ruggeri and Wasserman, 1995; Ruggeri and Sivaganesan, 2000). Let p0(θ |Y) be the
unperturbed (baseline) posterior density. For a given perturbation class Γ , Ruggeri
and Sivaganesan (2000) consider a relative sensitivity defined by

RS(h, p) =
{E[h(θ)|Y, p]−E[h(θ)|Y, p0]}2

Var[h(θ)|Y, p]
,

where E[·|Y, p] and Var[·|Y, p], respectively, denote the conditional expectation and
variance with respect to p(θ |Y) ∈ Γ . The relative sensitivity RS(h, p) is a linear
functional and scale invariant, because RS(h, p) = RS(kh, p) for any k �= 0. The rel-
ative sensitivity has its limitations. It also depends on the size of Γ because RS(h, p)
does not account for the distance between p(θ |Y) and the baseline posterior density.
In addition, the relative sensitivity is defined only for the linear functional, but not
for nonlinear functionals.

Example 7.5: (Ruggeri and Sivaganesan, 2000). We consider a normal prior with
the mean in a range. Suppose that Y is distributed as N(θ ,σ2) with Γ = {N(μ ,τ2) :
−6 < μ < 6} and p0(y) = N(0,τ2) in which σ2 = τ2 = 32. Also let h(θ) = θ
and y = 0. Then, E[h(θ)|y, p0] = 0, and for p(y) ∈ Γ , E[h(θ)|Y, p] = μ/2 and
Var[θ |Y, p] = 16. Thus, the range E[h(θ)|Y, p] is (-3,3), which would probably be
regarded as large, indicating a lack of robustness. But sup RS(h, p) = 1/4, which
means that, for any p(y)∈Γ , the value of E[h(θ)|Y, p0] is at most one-half of a pos-
terior standard deviation away from E[h(θ)|Y, p]. Hence, the value of sup RS(h, p)
is likely to be thought of as small, indicating robustness.
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Based on the Bayesian perturbation manifold, Zhu, Ibrahim, and Tang (2009) in-
troduce several global influence measures to assess the degree of variation caused
by the uncertainty in the perturbation class. Let pY (ω0) and pY (ω) be, respectively,
the baseline and perturbed posterior densities, where ω0 and ω belong to Ω . Let
C(t) = pY (ω(t)) : [−δ ,δ ] → Γ be a smooth curve on Γ joining pY (ω0) and pY (ω)
such that C(0) = pY (ω0) and C(1) = pY (ω), where δ > 1. We consider a function
of the baseline and perturbed posterior distributions as a smooth function of interest
f (ω) = f (pY (ω)) : Γ → R for sensitivity analysis. Some well-known examples in-
clude the φ -divergence function, Cook’s posterior mean distance, or the logarithm
of the Bayes factor. Thus, f (ω(t)) : [−δ ,δ ] → R is a real function of t. One can
assess the global influence of perturbing the posterior distribution based on the ob-
jective function f (ω(t)). Specifically, Zhu, Ibrahim, and Tang (2009) introduce the
intrinsic global influence measure for comparing pY (ω0) and pY (ω) given by

IGI f (ω0,ω) =
{ f (ω)− f (ω0)}2

d(ω0,ω)2 ,

where d(ω0,ω) is the minimal distance between pY (ω0) and pY (ω). IGI f (ω0,ω)
can be interpreted as the ratio of the change of the objective function over the mini-
mal distance between pY (ω0) and pY (ω) on Γ .

The intrinsic global influence measure has its merits and limitations. IGI f (ω0,ω)
as a sensitivity measure explicitly accounts for the size of a specific perturbation
relative to the baseline density, whereas RS(h, p) does not. The intrinsic global in-
fluence measure allows us to directly compare the degree of a specific perturbation
relative to ω0. Moreover, IGI f (ω0,ω) is invariant to any diffeomorphism transfor-
mation of ω and can be defined for both linear and nonlinear functionals. For large
classes, however, it can be computationally challenging to compute d(ω0,ω). The
calibration of the intrinsic global influence measure is also a topic of current re-
search.

7.1.2.3 Local Influence Measures

A variety of local influence measures have been developed to assess the effect of
minor perturbations to the data, prior and sampling distribution (Cook, 1986; Mc-
Culloch, 1989; Birmiwal and Dey, 1993; Ruggeri and Wasserman, 1993; Sivagane-
san, 1993; Basu, 1996; Dey, Ghosh, and Lou, 1996; Gustafson, 1996a,b, 2000; Zhu
et al., 2007; Zhu, Ibrahim, and Tang, 2009). For instance, for the prior perturba-
tion class, almost all local influence measures involve differentiating a posterior
quantity with respect to a changing prior and then evaluating it at a baseline prior.
Diaconis and Freedman (1986) used Fréchet derivatives with respect to the prior
distribution and proposed the use of the norm of the derivative as a sensitivity mea-
sure. Gateaux derivatives are considered in Srinivasan and Truszaczynska (1990),
Ruggeri and Wasserman (1995), Dey, Ghosh, and Lou (1996), Sivaganesan (2000),
Perez, Martı́n, and Rufo (2006), and among others. These measures differ from each



232 7 Bayesian Influence and Frequentist Interface

other in the ways that the prior distributions are perturbed, and that either the poste-
rior distribution or a scalar posterior summary is used.

As an illustration, we consider the Fréchet derivative of E[h(θ)|Y, p] with respect
to the prior p(θ). For p(θ), we perturb it with a signed measure δ (θ) with zero mass
and then obtain a posterior distribution pδ (θ |Y) based on the prior p(θ) + δ (θ).
Suppose that there is the Fréchet derivative of E[h(θ)|Y, p] in the direction δ (θ),
denoted by Ė[h(θ)|Y, p](δ ), satisfying

|E[h(θ)|Y, pδ ]−E[h(θ)|Y, p]− Ė[h(θ)|Y, p](δ )| = o(||δ ||),

where ||δ || is a specific norm of δ . A local influence measure is based on the norm
of the linear operator Ė[h(θ)|Y, p](δ ), given by

||Ė[h(θ)|Y, p](δ )|| = sup
δ

|Ė[h(θ)|Y, p](δ )|
||δ || .

Furthermore, we may consider d(p(θ |Y), pδ (θ |Y)) as a target of interest and then
we can similarly use a derivative norm given by

sup
δ

d(p(θ |Y), pδ (θ |Y))
d(p(θ), p(θ)+δ (θ))

.

Computationally, it is relatively straightforward to approximate these local influ-
ence measures using Markov chain Monte Carlo methods (Chen, Shao, and Ibrahim,
2000).

Although the computation of these local influence measures is relatively straight-
forward, they may not have desirable properties as the sample size increases to
∞ (Gustafson and Wasserman, 1995; Gustafson, 1996a, 2000). Particularly, it has
been shown that the derivative norm diverges to ∞ as the sample size increases to
∞, leading to the wrong conclusion that prior influence increases with sample size
(Gustafson and Wasserman, 1995) Furthermore, consider posterior means under lin-
ear prior perturbations and the Lm norm for ||δ ||. It is only when m = 2 that the local
influence measure asymptotically depends jointly on the sample size and the prior
(Gustafson, 1996a).

Example 7.6: (Gustafson and Wasserman, 1995). Let X1, . . . ,Xn|θ ∼ N(θ ,1) and
θ ∼ N(0,1). Then, we have

||Ė[θ |X , p](δ )|| = √
n+1 exp

{(
n

n+1

)
x̄2

n

2

}
≈√

nexp

{
x̄2

n

2

}
,

which diverges at rate
√

n for almost all sample paths, where X = {X1, . . . ,Xn},
x̄n = n−1∑n

i=1 xi, and p denotes the prior density of θ .
Based on the Bayesian perturbation manifold, Zhu, Ibrahim, and Tang (2009)

systematically examine local influence measures to assess the effects of perturbing
the posterior distribution. By using a Taylor’s series expansion, they obtain
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f (ω(t)) = f (ω(0))+ ḟ (ω(0))t +0.5 f̈ (ω(0))t2 +o(t2),

where ḟ (ω(0)) and f̈ (ω(0)) denote the first- and second order derivatives of
f (ω(t)) with respect to t evaluated at t = 0. There are two cases: ḟ (ω(0)) �= 0
for some smooth curves ω(t) and ḟ (ω(0)) = 0 for all smooth curves ω(t). When
ḟ (ω(0)) �= 0 holds for some smooth curves ω(t), the first-order local influence mea-
sure is given by

FI f [v](ω(0)) =
{d f [v](ω(0))}2

g(v,v)(ω(0))
,

which can be regarded as the first-order measure in an infinite-dimensional manifold
and it is invariant with respect to any reparametrizations of the curve ω(t). Further-
more, Zhu, Ibrahim, and Tang (2009) use f̈ (ω(0)) to assess the second-order local
influence of ω to a statistical model (Wu and Luo, 1993; Zhu et al., 2007; Zhu,
Ibrahim, and Tang, 2009). Specifically, they introduced a second-order influence
measure (SI) in the direction v ∈ Tω(0)Γ given by

SI f [v](ω(0)) =
Hess( f )(v,v)(ω(0))

g(v,v)(ω(0))
,

where Hess( f )(v,v)(ω(0)) = f̈ (Expω(0)(tv))|t=0 is a covariant (or Riemmanian)
Hessian (Lang, 1995). SI f [v](ω(0)) is invariant with respect to scalar transforma-
tions. FI f [v](ω(0)) and SI f [v](ω(0)) are defined for finite-dimensional and infinite-
dimensional spaces and have nice geometric interpretations. However, the calibra-
tion of these local influence measures is a current topic of research.

7.1.3 An Illustrative Example

We first illustrate the methodology with a logistic regression example. We consid-
ered data on 200 men taken from the Los Angeles Heart Study conducted under the
supervision of John M. Chapman (Dixon and Massey, 1983). The response vari-
able is occurrence or nonoccurrence of a coronary incident in the previous ten
years. Of the 200 cases, 26 had coronary incidents and the dataset contains six
other covariates: Age (x1) (mean= 42.56, sd=11.65), Systolic blood pressure (x2)
(mean=121.64, sd=16.70), Diastolic blood pressure (x3) (mean=81.59, sd=9.99),
Cholesterol (x4) (mean=285.11, sd=65.04), Height (x5) (mean=65.58, sd=2.5) and
Weight (x6) (mean=165.19, sd=24.94). The logistic regression analysis of these data
has been done by Christensen (1997) from a frequentist viewpoint. Here, we illus-
trate the proposed Bayesian diagnostic and model selection statistics under both
uniform improper and normal priors for β .

The full model is given by

log{pi/(1− pi)} = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6, (7.1.2)
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where pi is the probability of the occurrence of coronary incident for the ith case
for i = 1, · · · ,200, X = (x1, . . . ,xn)′ in which xi = (1,xi1, . . . ,xi6)′. For the normal
prior for β , we took β ∼ N(0,κ(X′X)−1), and considered several values of κ in-
cluding κ = 1, 3, 10, and 100. The posterior samples were obtained using Adaptive
Rejection Metropolis Sampling (ARMS) (Gilks, Best, and Tan, 1995) Gibbs and
40,000 MCMC posterior samples were used in the analysis after burn-in. For nu-
merical stability in the MCMC sampling, we standardized all of the covariates. The
posterior means (standard deviations) for β = (β0,β1,β2,β3,β4,β5,β6)′ were, re-
spectively, given by: -2.375 (0.289), 0.559 (0.285), 0.113 (0.356), -0.069 (0.400),
0.433 (0.245), -0.196 (0.274), and 0.528 (0.258).

TABLE 7.1. Case influence diagnostics for Chapman data.

Uniform Normal (κ=10) Normal (κ=100)
Case KL(i) Cal. CM(i) Case KL(i) Cal. CM(i) Case KL(i) Cal. CM(i)
86 0.202 0.788 0.404 41 0.067 0.677 0.134 41 0.150 0.754 0.299
151 0.191 0.782 0.382 5 0.055 0.661 0.110 151 0.139 0.747 0.279
192 0.179 0.774 0.358 19 0.050 0.654 0.099 192 0.122 0.732 0.243
41 0.177 0.773 0.355 151 0.048 0.651 0.096 126 0.121 0.732 0.242
126 0.166 0.766 0.331 126 0.043 0.644 0.087 86 0.121 0.732 0.242
48 0.150 0.755 0.300 48 0.041 0.641 0.083 48 0.111 0.724 0.223
129 0.143 0.749 0.286 192 0.039 0.637 0.078 5 0.105 0.718 0.210
5 0.123 0.734 0.246 113 0.037 0.633 0.073 129 0.100 0.713 0.200
21 0.108 0.720 0.216 129 0.034 0.628 0.068 19 0.088 0.701 0.177
159 0.106 0.718 0.212 111 0.032 0.624 0.064 21 0.071 0.682 0.143

Cal. denotes calibration of KL(i), computed by the methods in McCulloch (1989)
and Cho et al. (2009).

To examine the performance of the proposed diagnostic measures, we computed
the K-L divergence (φ(u) = − log(u)), denoted by KL(i), and CM(i). The changes
in the posterior estimates across the cases were computed as well. Table 7.1 shows
the top ten most influential cases based on the uniform and normal priors. We ob-
serve from Table 7.1 that case 86 (KL=0.202, CM=0.404) is identified as the most
influential case followed by cases 151, 192, and 41 for the uniform prior. Under
the normal prior with κ=10 and κ=100, case 41 is identified as the most influential,
whereas for the normal prior with κ=1 and κ=3, essentially no influential cases are
identified. This is due to the fact that the prior is very informative and thus dominates
the likelihood. When κ gets large, the normal prior becomes more noninformative
and thus yields similar results to the uniform prior. The changes in the posterior esti-
mates also describe the influence of the identified cases very well (results not shown
for brevity). After an investigation as to the reasons why these identified cases were
more influential than others, we found that one or two of the covariate values are
extreme, or that a coronary incident occurred for the cases having covariate values
corresponding to those of lower risk of a coronary incident. For example, case 86 has
low values of the covariates, corresponding to a low risk of a coronary incident (age
(x1)=34, cholesterol(x4)=214, and weight (x6)=139), but a coronary incident had oc-
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curred for this case. Case 41 has an exceptionally high cholesterol value (x4=520),
and case 151 has low weight (x6=128), which is the smallest weight among those
who had coronary incidents.
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FIGURE 7.1. Bayesian local-influence measures from Chapman data. Index plots of local influence
measures (a) vB

max; (b)SIDφ ,e j
; (c) SICMh,e j ; and (d) gii for simultaneous perturbation.

We use model (7.1.2) to fit the above data under the prior β ∼ N
(
β 0,(X′X)−1

)
,

where β 0 is taken to be the maximum likelihood estimate of β . We simultaneously
perturbed the model (7.1.2) and the prior distribution of β , whose perturbed log-
posterior is given by
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log p(β |X,Y,ω)

=
n

∑
i=1

[yi(xi +ωi1p)′β − log(1.0+ exp(xi +ωi1p))]+
p
2

log(ωκ)

− ωκ
2

(β −β 0 −ωβ1p)′X′X(β −β 0 −ωβ1p)+Constant, (7.1.3)

where ω = (ω1, . . . ,ωn,ωβ ,ωκ)′, n = 200, p = 7, Y = (y1, . . . ,yn)′ and 1p =
(1, . . . ,1)′. In this case, ω0 = (0, . . . ,0,0,1)′ represents no perturbation. After some
calculations, we have

G(ω0) = diag(g11, . . . ,gnn,1′pX′X1p, p/2),

where gii = E{exp(x′iβ )(1′pβ )2/(1.0 + exp(x′iβ ))2} for i = 1, . . . ,n and the expec-
tation is taken with respect with the prior distribution of β . Then, we chose a new
perturbation scheme ω̃ = ω0 + G(ω0)1/2(ω −ω0) and calculated the associated
local influence measures vB

max = argmax{FIB[v](ω̃(0))}, SIDφ ,e j
and SICMh,e j via

40,000 MCMC posterior samples after burn-in, in which φ(.) was chosen to be the
Kullback divergence and h(β ) = β . Examination of Figures 7.1 (a) and 7.1 (b) indi-
cates that cases 21, 86, 151, 159, and 192 were detected to be influential by our local
influence measures; Figure 7.1 (c) shows that cases 19, 86, 108, 111, 113, 151, and
159 were detected to be influential by our local influence measures, and the prior
for β has a large effect on the analysis; Figure 7.1 (d) shows that the metric tensor
gii(ω0) for perturbation (7.1.3) changes very little for all individuals, but there is
a large change for the metric tensor gii(ω0) corresponding to a perturbation in the
prior mean of β .

To examine the robustness of the sampling model, we consider the following
global perturbation to p(X,Y|β ):

p(X,Y|β ,ω) = exp{
n

∑
i=1

[yi(x′iβ +ω)− log(1.0+ exp(x′iβ +ω))]}.

In this case, ω = ω0 = 0 represents no perturbation. After some calculations, we
have G(ω0) = E{∑n

i=1 exp(x′iβ )/(1.0 + exp(x′iβ ))2}. Three local influence mea-
sures, including the Bayes factor, φ -divergence and posterior mean with h(β ) = β
for the above Chapman dataset are calculated with the prior β ∼ (

β 0,(X′X)−1
)
,

and are denoted by tB, tφ and tP, respectively. Let β̃ denote the posterior mean of
β obtained via the Gibbs sampler. For 100 bootstrap datasets which are generated
from the fitted model (7.1.2) with β = β̃ , the three corresponding local influence
measures, denoted by tk

bB, tk
bφ and tk

bP (k = 1, . . . ,100), are calculated using the prior

of β ∼ N
(
β̃ ,(X′X)−1

)
for each generated bootstrap dataset. The three correspond-

ing p-values are given by 0.70, 0.53, and 0.10, respectively. These results show that
these influences measures are not “significant” and therefore the sampling model
may be correctly specified.



7.2 The Choice of Nonsubjective Priors on Hyperparameters for Hierarchical Bayes Models 237

Acknowledgments: This work was supported in part by NSF SES-06-43663 and
BCS-08-26844, NIH grants UL1-RR025747-01, MH086633 and AG033387 to Dr.
Zhu, NIH grants GM 70335 and CA 74015 to Dr. Ibrahim, and NSFC 10961026
and NCET-07-0737 to Dr. Tang. The work was done while Hyunsoon Cho was at
the University of North Carolina at Chapel Hill.

7.2 The Choice of Nonsubjective Priors on Hyperparameters for
Hierarchical Bayes Models

Gauri S. Datta and J.N.K. Rao

We start with a quote from Berger, Strawderman, and Tang (2005), “Hierarchical
modeling is wonderful and here to stay, ...”. Hierarchical models, which can also
be represented as random effects models, are quite common in statistics. These
models are used for simultaneous estimation of many similar parameters represent-
ing some common characteristic for several subpopulations. Among many appli-
cations of such models, small area estimation is at the forefront. Random effects
models have played a central role in obtaining reliable indirect estimators of small
area means when the traditional area-specific direct estimators are not suitable due
to small area-specific samples. Usefulness of this approach relies heavily on the
availability of suitable external auxiliary information. For a detailed account of the
model-based approach to small area estimation we refer the reader to Rao (2003);
see Datta (2009) for a recent review.

Both Bayesian and frequentist approaches to model fitting are popular in model-
based estimation of small area means. In the Bayesian approach small area means
are assigned a prior distribution, while in the frequentist approach they are expressed
as functions of random effects and regression on some auxiliary variables. The ran-
dom effects attempt to explain possible lack of fit in a regression between the small
area mean of the response and the explanatory variables. While a Bayesian model-
ing is inherently hierarchical, the steps in frequentist modeling are essentially the
same with a hierarchical structure. In the frequentist approach, a sampling model
for the data (or direct estimators) is specified in the first-stage, conditional on the
random effects, and in the second-stage a model for the random effects is specified.
Here all the parameters including the variance components (of the random effects
and/or the sampling error) and the regression parameter(s) are collectively called
model parameters. In the HB approach, the prior distribution of the first-stage pa-
rameters involves other parameters, which are called hyperparameters. Usually, the
hyperparameters and model parameters have a large overlap.

In the frequentist approach, a Bayes predictor of a small area mean is first ob-
tained and the unknown model parameters in the predictor is then replaced by suit-
able estimators, leading to an empirical Bayes (EB) predictor of the small area mean.
On the other hand, in the HB approach some suitable prior distribution (also known
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as hyperprior) is assigned to the hyperparameters. The posterior distribution of the
hyperparameters is used to integrate them out from the Bayes predictor of a small
area mean. The latter approach, which is fully Bayesian, is called the HB approach.

An advantage of the Bayesian approach is that the information on a parame-
ter based on data (or likelihood) and a prior distribution, possibly subjective, can
be combined in a probabilistic manner. Unfortunately, in many circumstances no
suitable subjective prior is available. In such situations, to implement the Bayesian
machinery one usually considers some nonsubjective priors. Such priors are usually
diffuse or noninformative, and not unique. Furthermore, not all those choices nec-
essarily lead to “good” Bayesian solutions. There is a large literature devoted to the
development of suitable nonsubjective priors which produce reasonable Bayesian
solutions. Two major developments are based on the reference prior idea of Berger,
Bernardo and others, and the probability matching approach by Welch and Peers
(1963) and others. However, such developments are mostly aimed at standard non-
hierarchical models.

Both the reference prior and the probability matching prior approaches partition
the parameter vector into a vector of interest parameters and a vector of nuisance
parameters. A reference prior is obtained by maximizing certain expected Kullback-
Leibler distance of the prior and the resulting posterior. Derivation of such a prior is
usually very involved. One may find details of this approach in Berger and Bernardo
(1992a), Ghosh and Mukerjee (1992), and Berger, Bernardo, and Sun (2009). The
probability matching approach, on the other hand, imposes the requirement on a
nonsubjective prior to generate a Bayesian solution that also possesses good fre-
quentist property. For a thorough account of this approach, we refer the reader to
Ghosh (1994), Ghosh and Mukerjee (1998), Datta and Mukerjee (2004), and Datta
and Sweeting (2005).

The above mentioned concepts for the development of nonsubjective priors have
been mostly used to propose suitable priors for specified parameters of interest in
non-hierarchical models. They have also been used in such models to derive appro-
priate priors when the interest is not in estimation but in the prediction of a future
observation. Kuboki (1998) developed reference priors and Datta et al. (2000) and
Datta and Mukerjee (2003) developed probability matching priors for prediction of
a future observation in non-hierarchical models. However, the development of suit-
able nonsubjective hyperpriors for the hyperparameters in HB models has been very
sparse. It is worthwhile to point out that in HB models usually at the second-stage of
the hierarchy, proper priors, typically some suitable conjugate priors, are specified
for the parameters appearing in the first-stage, which is usually the likelihood part,
of the model. In small area estimation, the first-stage parameters are related to small
area means. In an HB model in the absence of suitable hyperpriors, hyperparameters
are usually assigned some diffuse or noninformative priors. In this context, we refer
the reader to Berger and Strawderman (1996) and Berger, Strawderman, and Tang
(2005) on the importance on the selection of appropriate hyperpriors. In the context
of normal HB model problems, they noticed that these default hyperpriors can lead
to an inadequate overall prior (for the first-stage parameters) which often leads to
inadmissible Bayes estimates.
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Usually the parameters of interest in an HB model are the first-stage parame-
ters. Conditional on some hyperparameters, the first-stage parameters are assigned
a proper distribution. However, it is necessary to derive suitable nonsubjective priors
on the hyperparameters of the model. Derivation of such priors is usually quite com-
plicated (see Section 7.2.3). Indeed, to the best of our knowledge there is no pub-
lished article on reference hyperpriors. However, based on the probability matching
approach Datta et al. (2000) and Chang, Kim, and Mukerjee (2003) derived non-
subjective hyperpriors in simple hierarchical models. They derived these priors by
treating the unobservable random effects as objects of inferential interest. The ran-
dom effects are actually related to the first-stage parameters or the small area means
in HB models.

In small area estimation usually two types of data are available. In most fre-
quently occurring applications, only area-level summary data are available both for
the response variable and the auxiliary variables. Occasionally, there are also ap-
plications where such data are available at the unit-level within each small area.
Two popular hierarchical models in small area estimation are the model by Fay and
Herriot (1979) for area-level data, and the nested error linear regression model of
Battese, Harter, and Fuller (1988) for unit-level data. The latter model is really an
extension of a one-way ANOVA model for random effects to include explanatory
variables.

In small area estimation the goal is to obtain reliable point estimates of small area
means and accurate estimates of variability of the point estimates. In the frequentist
approach to small area estimation, point estimates are provided by EB predictors,
and nearly unbiased estimates of the mean-squared error (MSE) of the estimates are
provided for the variability of the estimates. Accurate asymptotic estimation of the
MSE of the EB predictor has been extensively discussed in the small area estimation
literature (see for example, Chapters 7 and 9 of Rao, 2003).

In an HB approach to small area estimation, posterior means and posterior vari-
ances provide the necessary inference. To derive these Bayesian estimates, default
noninformative priors on hyperparameters have been routinely used in small area
estimation (see for example, Datta, Fay, and Ghosh, 1991; Datta and Ghosh, 1991;
Nandram and Sedransk, 1993). Even though the resulting posterior means and the
EB predictors are in reasonable agreement, at least for the normal linear model, the
corresponding frequentist and Bayesian measures of uncertainty are not necessar-
ily close. Datta, Rao, and Smith (2005) showed that for the Fay-Herriot area-level
model it is possible to choose a prior for the hyperparameters so that the resulting
posterior variance of a small area mean agrees with the estimated MSE of the corre-
sponding EB predictor in certain asymptotic sense. The underlying principle in this
solution is similar to that in the probability matching approach. In both cases, suit-
able frequentist performance of a Bayesian procedure is evaluated and the priors are
selected in order to ensure good frequentist performance of the resulting Bayes pro-
cedure. While in probability matching context, usually the frequentist validity of a
posterior quantile is sought, Datta, Rao, and Smith (2005) sought frequentist validity
of a posterior variance as a suitably accurate estimator of the MSE of the empirical
best linear unbiased prediction (EBLUP). In both cases these priors are typically
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obtained by solving certain partial differential equations. We present details of this
method in Section 7.2.2. In Section 7.2.1, we present probability matching priors in
small area estimation based on the Fay-Herriot model. This is done by ensuring an
approximate frequentist validity of the posterior quantile of a small area mean. In
Section 7.2.3 we present a discussion outlining the difficulty in developing suitable
reference hyperpriors in an HB model.

7.2.1 Probability Matching in Small Area Estimation

In this section we first briefly review the probability matching equation by Chang,
Kim, and Mukerjee (2003) for prediction of the first-stage parameters in an HB
model. These authors considered random variables Y1, . . . ,Ym and θ1, . . . ,θm, with
their joint distribution indexed by an unknown parameter δ = (δ1, . . . ,δq)′. They
specified

(a) conditional on θ1, . . . ,θm and δ , the observable random variables Y1, . . . ,Ym are
independently distributed with a density of Yi given by f (yi|θi,δ ); and

(b) conditional on δ , the unobservable first-stage parameters θ1, . . . ,θm are indepen-
dent and identically distributed, each with a common density g(·|δ ). It is assumed
that θi’s are scalars.

Note that given δ , marginally Y1, . . . ,Ym are iid with the joint density

m

∏
i=1
ψ(yi|δ ) =

m

∏
i=1

∫ ∞

−∞
f (yi|θi,δ )g(θi|δ )dθi. (7.2.1)

Let λ (δ ) denote the average log-likelihood m−1∑m
i=1 logψ(Yi|δ ) for δ based on the

marginal distribution. We use δ̂ to denote the MLE of δ based on this likelihood.
It is assumed that I(δ ), the per unit observation information matrix for δ based on
the distribution in (7.2.1), is positive definite. Elements of I(δ )−1 are denoted by
Ist(δ ). We use the notation D j ≡ ∂/∂δ j. Suppose c jr = −{D jDrλ (δ )}δ=δ̂ , a jrs =
{D jDrDsλ (δ )}δ=δ̂ . Let C−1 with elements c jr denote the inverse of the observed
information matrix C. Let a prior π(δ ) on the hyperparameter δ be positive and
three times continuously differentiable. Let h(θi|Yi,δ ) be the conditional density of
θi given Yi and δ , and for 0 < α < 1, let q(δ ,α,yi) be the (1−α)−quantile of the
density h(θi|yi,δ ). Let π̃(θi|Y) denote the posterior predictive density of θi given
the data Y = (Y ′

1, . . . ,Y
′
m)′, under the hyperprior π(δ ).

We further define: π j(δ ) = D jπ(δ ), h j(θi|Yi,δ ) = D jh(θi|Yi,δ ) and h jr(θi|Yi,δ )
= D jDrh(θi|Yi,δ ). Using summation convention, Chang, Kim, and Mukerjee (2003)
showed
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π̃(θi|Y)

= h(θi|Yi, δ̂ )+
1

2m

[
cst
{

c jra jrs +
2πs(δ̂ )

π(δ̂ )

}
ht(θi|Yi, δ̂ )+ c jrh jr(θi|Yi, δ̂ )+o(1)

]
.

Then Chang, Kim, and Mukerjee (2003) showed that a prior π(δ ) is probability
matching, in the sense of ensuring frequentist validity of the posterior quantiles of
θi, with a margin of error up to o(m−1), if and only if it solves the partial differential
equation

Ds{IstVt(δ ,α)π(δ )} = 0, (7.2.2)

where, using Eδ (·) to denote the expectation under the marginal density (7.2.1),

Vt(δ ,α) = Eδ
{∫ ∞

q(δ ,α,Yi) ht(θi|Yi,δ )dθi

}
.

We now focus on developing probability matching hyperprior for the basic Fay-
Herriot small area model. This model is given by

(i) Yi|θi,δ
ind∼ N(θi,Ci), i = 1, . . . ,m; (ii) θi|δ ind∼ N(x′iβ ,τ2), i = 1, . . . ,m.

(7.2.3)
Here Yi is a direct estimator of the small area mean θi, and Ci is the sampling vari-
ance of Yi assumed to be known. Further, xi is a known p× 1 vector of auxiliary
variables associated with area i and δ = (β ′,τ2)′ with q = p + 1. In practice, the
sampling variances are unknown, but methods have been proposed in the literature
to produce stable estimates of the Ci’s which are then treated as if known (see Rao,
2003, Chapter 7 for examples). You and Chapman (2006) studied a fully HB model
by using a prior on the Ci, assuming that independent estimators of the sampling
variances Ci are available.

Due to the presence of the auxiliary variables xi’s and possibly unequal Ci’s, the
Yi’s are not identically distributed marginally, but under suitable conditions on the
xi’s and Ci’s (such as max1≤i≤m Ci/min1≤i≤m Ci bounded), it can be established that
the matching equation (7.2.2) still holds.

Remark 7.1. Suppose τ2 is known. In this case, δ = β . It can be checked that
the elements Ist and Vt in (7.2.2) are free from δ . Then the flat prior π(δ ) ≡ 1
satisfies the differential equation (7.2.2). Indeed in this case it can be shown that the
matching property is exact under the flat prior. For similar exact matching results for
estimation and prediction in non-hierarchical models, we refer the reader to Welch
and Peers (1963), Datta, Ghosh, and Mukerjee (2000), Severini, Mukerjee, and
Ghosh (2002), and Berger and Sun (2008).

Now suppose that both β and τ2 are unknown. In this case, δ = (β ′,τ2)′. It can
be checked that I(δ ) is given by

I(β ,τ2) = diag

(
m−1

m

∑
i=1

(τ2 +Ci)−1xix′i,(2m)−1
m

∑
i=1

(τ2 +Ci)−2

)
,

depending only on τ2. In view of the orthogonality of β and τ2, and Remark 7.1,
it is compelling to use π(δ ) of the form π0(τ2), depending only on τ2. It can also
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be checked that Vt’s depend only on τ2 and Vq = u(zα)Ci/{τ2(τ2 +Ci)}, where
u(zα) is a known function of zα , the α−quantile of standard normal distribution.
The matching prior is given by π(β ,τ2) = π0(β )π0(τ2) with π0(β ) = 1 and

π0(τ2) ∝
τ2(τ2 +Ci)

Ci

m

∑
i=1

(τ2 +Ci)−2. (7.2.4)

While the prior in (7.2.4) is not proper, it can be shown that the resulting posterior
will be proper for m ≥ p + 2 where p is the full column rank of the matrix X =
(x1, . . . ,xm)′. An unpleasant feature of this prior is that it depends on the index i of
the small area. However, this is consistent with the idea of a probability matching
prior which is always obtained for a specific parameter or parametric function. If
Ci’s are all equal to C0, thereby leading to the balanced Fay-Herriot model, then the
prior in (7.2.4) simplifies to π0(τ2) ∝ τ2/(τ2 +C0). Datta, Ghosh, and Mukerjee
(2000), derived this prior earlier through a direct argument. Note that this prior is
different from the uniform prior for τ2 on (0,∞), recommended by Morris (1983)
and Berger (1985).

The area specific prior (7.2.4) is appropriate for making inference on the small
area mean θi. However, a quantile matching prior for a weighted mean ∑m

i=1 wiθi

of all areas with specified weights w1, . . . ,wm,∑m
i=1 wi = 1, can be derived. In a

somewhat informal way, it can be shown that a matching prior in this case will have
the form

π0(τ2) ∝
τ2∑m

i=1 w2
i Ci(τ2 +Ci)−1

∑m
i=1 w2

i C2
i (τ2 +Ci)−2

×
m

∑
i=1

(τ2 +Ci)−2.

If wi ∝C−1
i then π0(τ2) is proportional to ∑m

i=1 τ2/{Ci(τ2 +Ci)}.

7.2.2 Frequentist Evaluation of Posterior Variance

Second-order accurate approximation to the MSE of an EBLUP or EB predictor
of a small area mean and second-order (or nearly) unbiased estimation of the MSE
have played a dominant role in frequentist approach to small area estimation; see for
example Prasad and Rao (1990) for an early development and Rao (2003) for sub-
sequent developments. In the second-order approximation, terms of order smaller
than O(m−1) are neglected. For the Fay-Herriot model in (7.2.3), for known δ , the
best (or Bayes) predictor of θi under squared error loss is given by

θ̃B
i (δ ) = E(θi|Yi) = Yi − Ci

τ2 +Ci
(Yi −x′iβ ) = {1−Bi(τ2)}Yi +Bi(τ2)x′iβ ,

where Bi(τ2) = Ci/(τ2 +Ci). Let δ̂ denote an estimator of δ . Then an EB predictor
or an EBLUP of θi is θ̃B

i (δ̂ )(≡ θ̂EB
i ). While different estimators of δ have been

considered in the literature, we will focus here on the maximum likelihood or the
residual maximum likelihood estimator. The MSE of the resulting EBLUP predictor
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is asymptotically smaller than the MSE of other EBLUP predictors resulting from
different choices of estimators of δ (Datta, Rao, and Smith, 2005; Datta, 2009).

Datta and Lahiri (2000) showed that

MSE(θ̂EB
i ) = g1i(τ2)+g2i(τ2)+g3i(τ2)+o(m−1), (7.2.5)

where g1i(τ2) = Ci(1−Bi(τ2)), g2i(τ2) = {Bi(τ2)}2x′i
[
∑m

i=1(τ2 +Ci)−1xix′i
]−1

xi

and

g3i(τ2) = 2C2
i (τ2 +Ci)−3

{ m

∑
i=1

(τ2 +Ci)−2
}−1

.

In the decomposition of the MSE(θ̂EB
i ) in (7.2.5), the first term is of the order O(1),

while the last two terms are of the order O(m−1). Datta, Rao, and Smith (2005) de-
rived a hyperprior π(δ ) by requiring that the posterior variance V (θi|Y) is a second-
order unbiased estimator of MSE(θ̂EB

i ) in the sense that

Eδ{V (θi|Y)} = MSE(θ̂EB
i )+o(m−1). (7.2.6)

The posterior variance of θi for such a prior will have a dual justification. Such a
dual justification of a measure of variability of small area estimators is appealing to
survey practitioners.

As in Section 7.2.1, we first assume that τ2 known and use a uniform prior on
β . For known τ2, the frequentist predictor is the BLUP and is identical with the
hierarchical Bayes (HB) predictor of θi. Moreover the MSE is known, and exactly
the same as the posterior variance, and it is given by g1i(τ2)+g2i(τ2).

We now turn to the case of unknown τ2 and, as in the last section, consider prior
π(δ ) of the form π0(τ2). The posterior variance of θi may be written as

V (θi|Y) = E[g1i(τ2)|Y]+V [Bi(τ2)(Yi −x′iβ )|Y]. (7.2.7)

To derive an expansion of the posterior variance, given by (7.2.7), we employ the
following lemma, using the notation of Section 7.2.1.

Lemma 7.1. For a smooth function b(δ ) and prior exp(ρ(δ )),

E[b(δ )|y] = b(δ̂ )+
1
m
{b̂ jρ̂kc jk +

1
2

a jrsb̂kc jrcks +
1
2

b̂ jkc jk}+o(m−1)

= b(δ̂ )+
1
m
{b̂ jρ̂kÎ jk +

1
2

a jrsb̂kÎ jr Îks +
1
2

b̂ jkÎ jk}+o(m−1),

V [b(δ )|y] =
1
m

b̂ jb̂kc jk +o(m−1) =
1
m

b̂ jb̂kÎ jk +o(m−1).

In the above, we use the notation f̂ to denote f (δ̂ ). Note that up to the order of
o(m−1) the posterior variance of b(δ ) is free from the prior.

Using the second part of Lemma 7.1, after some simplifications it can be shown
that
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Eδ
[
V{Bi(τ2)(Yi −x′iβ )|Y}

]
= g2i(τ2)+g3i(τ2)+o(m−1). (7.2.8)

Now by the first part of Lemma 7.1,

Eδ
[
E{g1i(τ2)|Y}

]
= Eδ{g1i(τ̂2)}+

1
m

Eδ{g1i, j(τ̂2)ρ̂0
k Î jk}

+
1

2m
Eδ{a jrsg1i,k(τ̂2)I jrIks}+

1
2m

Eδ{g1i, jk(τ̂2)Î jk}
+o(m−1). (7.2.9)

Let Σ(τ2) = diag(τ2 +C1, . . . ,τ2 +Cm). After considerable simplifications we get:

Eδ{g1i(τ̂2)} = g1i(τ2)−
B2

i (τ2)tr
[
(X′Σ−1(τ2)X)−1(X′Σ−2(τ2)X)

]

∑m
i=1(τ2 +Ci)−2

−g3i(τ2)+o(m−1), (7.2.10)

second term on the rhs of (7.2.9) =
2B2

i (τ2)ρ0′(τ2)
∑m

i=1(τ2 +Ci)−2 +o(m−1), (7.2.11)

third term on the rhs of (7.2.9) =
B2

i (τ2)tr
[
(X′Σ−1(τ2)X)−1(X′Σ−2(τ2)X)

]

∑m
i=1(τ2 +Ci)−2

+
4B2

i (τ2)∑m
i=1(τ2 +Ci)−3

{∑m
i=1(τ2 +Ci)−2}2 +o(m−1), (7.2.12)

and fourth term on the rhs of (7.2.9) = −g3i(τ2)+o(m−1). (7.2.13)

Equation (7.2.10) follows from equation (7) and Remark 1 of Datta and Lahiri
(2000). Also, in (7.2.11), we write ρ0(τ2) = logπ0(τ2). From (7.2.9) to (7.2.13),
we get

Eδ
[
E{g1i(τ2)|Y}

]
= g1i(τ2)−2g3i(τ2)+2B2

i (τ2)ρ0′(τ2)
{ m

∑
i=1

(τ2 +Ci)−2
}−1

+
4B2

i (τ2)∑m
i=1(τ2 +Ci)−3

{∑m
i=1(τ2 +Ci)−2}2 +o(m−1). (7.2.14)

Now from (7.2.5), (7.2.7), (7.2.8), and (7.2.14), in order to achieve (7.2.6) we need
to solve the following differential equation:

−2g3i(τ2)+2B2
i (τ2)ρ0′(τ2)

{ m

∑
i=1

(τ2 +Ci)−2
}−1

+
4B2

i (τ2)∑m
i=1(τ2 +Ci)−3

{∑m
i=1(τ2 +Ci)−2}2 = 0.

A solution of the differential equation is given by
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π0(τ2) ∝ (τ2 +Ci)2{
m

∑
i=1

(τ2 +Ci)−2}. (7.2.15)

The MSE matching prior (7.2.15) was obtained by Datta, Rao, and Smith (2005).
Note that this prior is usually different from the uniform prior of Morris. Also, it
is dependent on the individual small area we are interested in. If Ci = C0 for all
areas i, then (7.2.15) reduces to the uniform prior. Ganesh and Lahiri (2008) made a
slight generalization of the above result. Note that the MSE matching prior (7.2.15)
is different from the probability matching prior (7.2.4).

Suppose as in Section 7.2.1 for some suitable weights wi’s one is interested in
matching prior for the weighted mean ∑m

i=1 wiθi. Then it can be shown that this prior
is given by π(τ2) ∝ {∑m

i=1(τ2 +Ci)−2}{∑m
i=1 w2

i C2
i (τ2 +Ci)−2}−1. In the special

case when wi ∝C−1
i , the above solution simplifies to the uniform prior on (0,∞).

We now turn to the MSE matching prior for the nested error regression model.
This model is useful for unit-level data and is given by

Yi j = x′i jβ + vi + ei j, j = 1, . . . ,ni, i = 1, . . . ,m,

where vi’s and ei j’s are all independent, with vi ∼ N(0,τ2) and ei j ∼ N(0,σ2) and
unknown variance parameters τ2 and σ2. Auxiliary variables xi j’s are such that
the design matrix is of full column rank. In small area estimation, the goal is the
prediction of θi = X̄′

iβ + vi, where X̄i is the finite population mean vector of the
auxiliary variables for the ith small area, and is assumed to be known. Based on our
discussion of the Fay-Herriot model, it is clear that the auxiliary variables do not
play any role in determining “matching hyperpriors.” In fact, a uniform prior for β
is standard, and our goal is to determine hyperprior for the variance components τ2

and σ2. For this purpose, one can assume β = 0. This will simplify the problem to
the prediction of vi, the random effect based on the nested error model given above
without the x′i jβ term.

First, we consider the balanced setup where all ni’s are equal to n. After consid-
erable simplifications, the MSE matching hyperprior for τ2 and σ2 is given by

π(τ2,σ2) ∝ σ−2(σ2 +nτ2)2/(n−1).

It can be checked that the resulting posterior will be proper. For the balanced nested
error model, Chang, Kim, and Mukerjee (2003) obtained the quantile matching prior
(for predicting vi) given by π(τ2,σ2) ∝ τ2σ−2(σ2 + nτ2)(3−n)/(n−1). For the un-
balanced nested error model, the MSE matching equation is very complicated and
apparently there is no explicit solution to the equation.

7.2.3 Discussion

In this section we have discussed some methods for determining nonsubjective pri-
ors for the hyperparameters in hierarchical Bayes (HB) models. We have taken the
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frequentist validation approach to determine such priors. In particular, for HB mod-
els in small area estimation, we have used both the quantile matching and the MSE
matching criteria of a resulting HB procedure to determine suitable nonsubjective
priors. The hyperpriors that we obtained in our examples are less attractive in the
sense that, unlike in non-hierarchical models, these hyperpriors usually depend on
the individual small area under consideration. While this is not a problem for param-
eters in non-hierarchical models, the dependence of the hyperprior on an individual
small area implies that the same hyperprior will not have good frequentist properties
for all the small areas. However, the situation is not really any different from non-
hierarchical models. In non-hierarchical models as well, for different parameters of
interest we usually get different matching priors. While in non-hierarchical mod-
els we may not have more than one interest parameter, in contrast we are usually
interested in all the first-stage parameters in HB models.

While we have presented alternative methods to determine nonsubjective hyper-
priors, the most popular approach in determining nonsubjective priors, at least for
non-hierarchical models, is the reference prior approach by Berger, Bernardo and
their collaborators. According to this approach, for a non-hierarchical model p(y|δ )
when δ is the parameter of interest, determination of a reference prior p(δ ) for the
parameter vector δ considers the Kullback-Leibler divergence between the posterior
p(δ |y) and the prior p(δ ); in particular, the functional

J{p(δ ),Y} = E(Y,δ )
[
Eδ |Y

{
log

p(δ |Y)
p(δ )

}]
, (7.2.16)

where the expectation Eδ |Y(·) is with respect to the posterior distribution p(δ |Y),
and the expectation E(Y,δ )(·) is with respect to the joint distribution of Y and δ .
Through suitable technical modifications of the functional in (7.2.16), Bernardo
(1979) showed that Jeffreys’ prior is obtained as the reference prior for δ . When
only a subvector of δ is of interest, and the other components of δ are nuisance
parameters, appropriate modifications have been proposed by Berger and Bernardo
(1989, 1992a).

To apply the reference prior approach to determine a nonsubjective hyperprior
for the hierarchical model presented in the beginning of Section 7.2.1, we need to
consider the first-stage parameters θ1, . . . ,θm as the vector of interest parameter. A
reasonable functional which is analogous to the functional in (7.2.16) is given by

J{p(δ ),Y} = E(Y,δ )
[
Eθ |Y

{
log

p(θ |Y)
p(θ)

}]
, (7.2.17)

where p(θ) (with slight abuse of notation) is a marginal prior density for θ given by∫
g(θ |δ )p(δ )dδ . The hyperprior p(δ ) appears in the functional indirectly through

p(θ). It is technically quite challenging to maximize the functional in (7.2.17) to
obtain p(δ ). As a simple illustration of the method, consider a special case of the
Fay-Herriot model in (7.2.3) with x′iβ = μ , a scalar, which is treated as unknown but
τ2 is considered known. Also, if we restrict choosing prior for μ from the class of all
normal distributions N(ν ,r−1), then it can be shown that the functional in (7.2.17)
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simplifies to

1
2

[ m

∑
i=1

log{(τ2 +Ci)/Ci}+ log{1+ r−1
m

∑
i=1

(τ2 +Ci)−1}
]
,

which is maximized with respect to r by taking it to be zero. The resulting hyperprior
for μ becomes a uniform prior on the real line. This result is in agreement with the
other solutions that we obtained earlier through other criteria. However, the problem
in its full generality is far from being solved.

Acknowledgments: G.S. Datta’s research on this project was partially supported by
the U.S. National Science Foundation and the U.S. National Security Agency. J.N.K.
Rao’s research was supported by the Natural Sciences and Engineering Research
Council of Canada.

7.3 Exact Matching Inference for a Multivariate Normal Model

Luyan Dai and Dongchu Sun

A p-dimensional multivariate normal population, x = (x1, . . . ,xn)′ ∼ Np(μ ,Σ), has
the probability density function,

f (x | μ ,Σ) = (2π)−p/2|Σ |−1/2 exp
{
− 1

2
(x−μ)′Σ−1(x−μ)

}
, (7.3.18)

where μ = (μ1, . . . ,μn)′ are the normal means and Σ is the covariance matrix.
In Bayesian analysis, the most commonly used priors are flat Gaussian priors

for normal means μ and inverse Wishart priors for the covariance matrix Σ . These
priors are used for ease of computation and convenience due to the conjugate proper-
ties. However, Stein (1956) showed that such priors may lead to inferior inferences
and be lack of flexibility. Later, Brown (2001) developed the generalized inverse
Wishart priors to allow more flexibility and overcome the major deficiency of that
distribution whilst retaining much of the ease of the inverted Wishart distribution in
Bayesian analysis for normal sampling.

Another extensively discussed priors require a Cholesky decomposition of preci-
sion matrix, Σ−1,

Σ−1 =Ψ ′Ψ ,

whereΨ is a p× p lower triangular matrix with positive diagonal elements ψii and
off-diagonal ones ψi j for j = 1, . . . i− 1 and i = 1, . . . , p. There is a class of such
priors for (μ ,Ψ) that include many famous and popular ones as special cases. Let
a = (a1, . . . ,ap)′. Those priors have the form,

πa(μ ,Ψ)dμdΨ =
p

∏
i=1

1
ψai

ii
dμdΨ , (7.3.19)
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which suggests a constant prior for μ be independent of the prior component for
Ψ . When ai = p− i, the prior in (7.3.19) corresponds to the Jeffreys (1961) (rule)
prior πJ , one of the earliest objective priors discussed and applied in the Bayesian
literature. A prior closely related to πJ is the independence−Jeffreys prior πIJ when
ai = p− i + 1 in πa. It is derived using a constant prior for normal mean μ and
the Jeffreys (rule) prior separately for Ψ conditioning on μ . These two Jeffreys
priors are generally successful for bivariate normal distributions. Nevertheless, they
perform badly when the dimension p goes higher.

Geisser and Cornfield (1963) proposed a prior yielding the exact frequentist
matching inference for all means and variances. It also belongs to the class of priors
defined in (7.3.19) and corresponds to the one with ai = 2− i. In bivariate normal
models, it agrees with πJ , while it is equivalent to πIJ in univariate models. How-
ever, this prior fails to prevail in estimation of correlation parameters, predictions, or
other inferences involving a multivariate normal distribution. Since more desirable
priors were in need, Sun and Berger (2007) derived the reference prior of (μ ,Ψ) for
the ordered group {μ1, . . . ,μp,ψ11,(ψ21,ψ22), . . . ,(ψp1, . . . ,ψpp)}, which is given
by

πR1(μ ,Ψ) ∝
p

∏
i=1

1
ψii

.

It corresponds to πa with ai = i for i = 1, . . . , p.
When ai = i, it is the right Haar measure prior πH introduced by Stein (1956).

It could be used to calculate certain distributions arising in invariant multivariate
situations. According to the discussion by Eaton (1989), the best invariant decision
rule is often the formal Bayes rule for right Haar measure. Recently, Berger and Sun
(2008) considered the objective inference for parameters in bivariate normal distri-
butions with special focus on development of objective confidences or credible sets.
A variety of surprising results were found including the availability of objective pri-
ors that yield exact frequentist inferences for many functions of the bivariate normal
parameters, such as the correlation coefficient. The right Haar measure prior is the
one that yields exact frequentist inference most frequently. Sun and Berger (2007)
generalized part of the results into multivariate normal distributions particularly on
reference priors for many parameters and functions of parameters. Some of the re-
sults about exact matching for the right Haar measure prior are also given in Sun
and Berger (2007). We should point out that general results on probability matching
priors can be found in Datta and Mukerjee (2004).

In this section, we focus on exploring exact matching inferences of the class
of the objective priors πa for more multivariate normal parameters and their related
functions. We use the tool of constructive posterior distributions (see, e.g., Berger
and Sun, 2008) to prove the results. Section 7.3.1 illustrates various key concepts.
Several critical results of the posterior distributions relating to the objective priors
πa are summarized. Whereafter, Section 7.3.2 gives the main results on the objective
inference of the parameters and some functions of the parameters.
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7.3.1 The Background

7.3.1.1 Frequentist Coverage Probability and Exact Matching

Suppose π(θ |x) is the posterior density of parameter θ provided by data information
x. Let η be a function of θ . Define the one-sided interval (ηL,q1−α(X)] of parameter
η , where ηL is the lower bound of η and q1−α(X) is the (1−α) posterior quantile
(i.e., P{η ≤ q1−α(x) | x} = 1 −α). An appealing objective prior is to yield the
frequentist coverage probability of corresponding confidence interval, i.e.,

P
{
η ≤ q1−α(X) | θ}

as close as possible to the nominal 1−α . If it equals 1−α exactly, we conclude the
prior is the exact matching prior for η .

The following lemma will be repeatedly utilized in the later context. The proof
is straightforward and omitted here.

Lemma 7.2. Let Y1−α denote the 1−α quantile of random variable Y .

(a) If g(·) is a monotonically increasing function, [g(Y )]1−α = g(Y1−α) for any
α ∈ (0,1).

(b) If W is a positive random variable, (WY )1−α ≥ 0 if and only if Y1−α ≥ 0.

7.3.1.2 Constructive Posterior Distributions

Let X1, . . . ,Xn be a random sample from multivariate normal distribution Np(μ ,Σ)
with the density function as in (7.3.18). It is known that the sufficient statistics are
sample means X̄n and sample variance S such that,

X̄n =
1
n

n

∑
i=1

Xi, S =
n

∑
i=1

(Xi − X̄n)(Xi − X̄n)′.

Recall that Σ−1 =Ψ ′Ψ . The likelihood function of (μ ,Ψ) can be uniquely deter-
mined and expressed by the sufficient statistics such that,

L(μ ,Ψ | X̄n,S)

= (2π)−np/2|Ψ |n exp
{
− n

2
(X̄n −μ)′Ψ ′Ψ(X̄n −μ)− 1

2
tr(SΨ ′Ψ)

}
. (7.3.20)

Under the prior πa, the conditional posterior distributions of μ are p-variate mul-
tivariate normal with mean X̄n and variance 1

nΨ
−1(Ψ−1)′. The marginal posterior

distribution of Ψ , obtained by integrating μ , is determined by sample variance S
such that,

[Ψ | S] ∝
p

∏
i=1
ψn−ai−1

i exp
{
− 1

2
tr(ΨSΨ ′)

}
. (7.3.21)
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We would like to express the marginal posteriors (7.3.21) in computational closed
form, allowing direct Monte Carlo simulation. Berger and Sun (2008) called this
representation as the Constructive Posterior Distributions. For instance, a random
variable Z from the Chi-square distribution χ2

n with n degrees of freedom can be
directly expressed as the way how to sample it, i.e., Z = χ2

n . For simplicity, χn ≡√
χ2

n . We follow the notation used by Sun and Berger (2007) that ∗ distinguishes the
constructive posterior distribution from later expression involving data randomness.

From (7.3.21), the constructive posterior distributions of ψ = (ψ11,ψ21,ψ22, . . .,
ψp1, . . . ,ψpp) can be formulated based on sample covariance S. First, we consider
the decomposition of S by lower triangular matrix V such that S = VV′, where the
diagonal elements are vii > 0 and off-diagonal elements are vi j for j = 1, . . . , i− 1,
i = 1, . . . , p. Second, we write

V1 = v11,V2 =
(

v11 0
v21 v22

)
, · · · ,Vp =

(
Vp−1 0
v′p,p−1 vpp

)
,

where vi,i−1 denotes the (i − 1)× 1 vector of the last row of Vi excluding vii,
i = 2, . . . , p. Note that Vp = V. Then, the constructive posterior distributions of
(ψ11,ψ21,ψ22, . . . ,ψp1, . . . ,ψpp) given data information V can be expressed as

ψ∗
ii =

χ∗n−ai

vii
, i = 1, · · · , p,

ψ∗
i,i−1 = V−1′

i−1z∗i,i−1 −
χ∗n−ai

vii
V−1′

i−1vi,i−1, i = 2, · · · , p, (7.3.22)

where z∗i,i−1 denotes independent draws from a multivariate normal distribution
Ni−1(0,Ii−1), and χ∗n−ai

denotes the positive square root of the independent draws
from a Chi-square distribution with degree of freedom n−ai. The detailed proof of
the results can be found in Section 3.2.1 in Sun and Berger (2007). They showed that
the right Haar measure prior πH can yield the exact frequentist matching inference
for diagonal elements ψii, the conditional variance di = 1/ψ2

ii , and the determinant
of all the upper and left corner blocks in covariance matrix, |Σ i| = ∏i

j=1 di in the
multivariate normal model (7.3.20). As a special case, bivariate normal models have
been paid more attention and discussed thoroughly by Berger and Sun (2008) in
terms of the exact matching inference provided by objective priors (e.g., right Haar
measure prior). One of the most important findings is that the right Haar measure
prior yields the exact matching inferences for off diagonal element ψ21 in matrixΨ .
Regardless, it is still unknown if the properties retain for off-diagonal elements ψi j

and functions of ψ = (ψ11,ψ21,ψ22, . . . ,ψp1, . . . ,ψpp)′ for p > 2.

7.3.1.3 Two Lemmas

Theoretically, we can always adopt the constructive posterior distributions in (7.3.22)
to explore the properties of exact matching inference for off-diagonal elements
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ψi j. However, the practical proof is troublesome due to the matrix inverse V−1
i−1

in (7.3.22). The next lemma reveals an explicit form of the constructive posterior
distributions ofΨ in a matrix form.

Lemma 7.3. The constructive posterior distributions of Ψ given V described in
(7.3.22) is equivalent to

E∗ =Ψ ∗V or Ψ ∗ = E∗V−1, (7.3.23)

where

E∗ =

⎛
⎜⎜⎜⎜⎜⎝

χ∗n−a1
0 0 0 0

Z∗
21 χ∗n−a2

0 0 0
Z∗

31 Z∗
32 χ∗n−a3

0 0
...

...
...

...
...

Z∗
p1 Z∗

p2 Z∗
p3 · · · χ∗n−ap

⎞
⎟⎟⎟⎟⎟⎠

p×p

,

assuming matrix elements Z∗
i j’s and χ∗n−ai

’s are independent for j = 1, . . . , i− 1,
i = 1, . . . , p. Z∗

i j’s denote independent draws from a standard normal distribution
N(0,1) and χ∗n−ai

’s denote positive square root of a Chi-square distribution with
degree of freedom n−ai.

Proof. The results can be verified from (7.3.22) by some tedious derivations.
Note that the constructive posterior distribution of Σ is simply Σ ∗ =Ψ ∗−1(Ψ ∗−1)′.

It is also can be shown that the indicated data distribution of v = (v11,v21,v22, . . .,
vp1, . . . ,vpp)′ is

ψiivi j +
i−1

∑
k= j

ψikvk j = Zi j ∼ N(0,1), j = 1, · · · , i−1

(viiψii)2 ∼ χ2
n−i, i = 1, . . . p (7.3.24)

given n ≥ p. The detail of the results can be found in Section 3 of Sun and Berger
(2007). Similarly, the above indicated distributions have a matrix form.

Lemma 7.4. The indicated distributions in (7.3.24) can be written into a matrix
form with

E =ΨV or V =Ψ−1E, (7.3.25)

where

E =

⎛
⎜⎜⎜⎜⎜⎝

χn−1 0 0 0 0
Z21 χn−2 0 0 0
Z31 Z32 χn−3 0 0

...
...

...
...

...
Zp1 Zp2 Zp3 · · · χn−p

⎞
⎟⎟⎟⎟⎟⎠

,

assuming matrix elements Zi j’s and χn−ai ’s are independent for j = 1, . . . , i− 1,
i = 1, . . . , p. Zi j’s denote independent draws from a standard normal distribution
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N(0,1) and χn−ai ’s denote positive square root of a Chi-square distribution with
degree of freedom n− i.

Proof. The proof follows (7.3.24) and can be verified easily.
In fact, (7.3.23) and (7.3.25) suggest that the multivariate normal model (7.3.20)

marginalizing population mean μ belong to the functional models discussed by
Dawid and Stone (1982). Some related discussion can be seen in the next section.

7.3.2 Main Results

7.3.2.1 The Exact Matching Inference ofΨ

We now show the properties of exact frequentist matching inferences for any ele-
ment ψi j inΨ under πa in the following theorem. The proof applies the matrix form
of constructive posterior distributions (7.3.23) and the marginal distribution of V
givenΨ (7.3.25).

Theorem 7.1. For fixed i, i = 1, . . . , p, denote the (1−α) posterior quantile of ψi j

under the prior πa by (ψ∗
i j)1−α , j = 1, . . . , i. For any α ∈ (0,1),

P
{
ψi j ≤ (ψ∗

i j)1−α | ψ j j,ψ j+1, j, . . . ,ψp j
}

= 1−α,

if and only if ai = i.

Proof. Let li denote a p× 1 vector with entry 1 in the ith location and 0 elsewhere
for i = 1, · · · , p. Clearly, ψi j = l′iΨ l j. It follows from (7.3.25) thatΨ = EV−1 and
thus ψi j = l′iEV−1l j. By Lemma 7.3, the (1−α) posterior quantile of ψi j is

(ψ∗
i j)1−α = (l′iΨ ∗l j)1−α = (l′iE

∗V−1l j)1−α ,

Let ψ = (ψ11,ψ21,ψ22, . . . ,ψp1, . . . ,ψpp). Consequently,

P
{
ψi j ≤ (ψ∗

i j)1−α | ψ
}

= P
{

l′iEV−1l j ≤ (l′iE
∗V−1l j)1−α | ψ

}

= P
{

l′iEE−1Ψ l j ≤ (l′iE
∗E−1Ψ l j)1−α | ψ j j,ψ j+1, j, . . . ,ψp j

}
. (7.3.26)

The last equation is true sinceΨ l j = (ψ j j,ψ j+1, j, . . . ,ψp j)′.
If (7.3.26) equals (1−α) for any ψi j ∈ R, consider the coverage probability of

ψii, i.e., j = i. It is known from (7.3.22) that ψ∗
ii =

χ∗n−ai
vii

and vii = χn−i
ψii

. Then,

P
{
ψii ≤ (ψ∗

ii)1−α | ψ}= P
{
ψii ≤

(χ∗n−ai

χn−i
ψii

)
1−α

| ψii

}
= P

{
χn−i ≤ (χ∗n−ai

)1−α
}
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equals (1−α) if ai = i. Then necessity is verified.
In (7.3.26), it is clear that

l′iE = (Zi1, . . . ,Zi,i−1,χn−i)′ and l′iE
∗ = (Zi1, . . . ,Zi,i−1,χ∗n−ai

)′.

If ai = i, l′E and l′iE∗ are the same in terms of distributions. Provided by mutu-
ally independent elements in E∗ and E, it is obvious that a sufficient condition
of coverage probability in (7.3.26) to be (1 − α) is that ai = i conditioning on
(ψ j j,ψ j+1, j, . . . ,ψp j) when fixing i.

Since the right Haar measure πH implies ai = i for all i’s and E∗ and E are the
same in terms of distributions, πH is the exact matching prior for every element inΨ
by Theorem 7.1. Furthermore, πH yields a fiducial model (Dawid and Stone, 1982)
formulated by the functional model. Recall that

V =Ψ−1E and Ψ = EV−1,

where data information V is uniquely determined byΨ and E has a known distribu-
tion over the space E , whatever the value ofΨ . ThusΨ is the pivotal statistic. By the
results of Section 4.1 in Dawid and Stone (1982), fix set A ⊂ E with P(A) = 1−α
and define

Av−1 = {ev−1 : e ∈ A} = {ψ ∈Ψ v : ψv ∈ A}.
We have

Pψ(ψ ∈ AV−1) = Pψ(ψv ∈ A) = P(A) = 1−α.

Also

∏
v

(Av−1) = P({e∗ : e∗v−1 ∈ Av−1}) = P(A) = 1−α,

where ∏v denotes the posterior distribution ofΨ . For any ψi j, we just need to care-
fully specify the set A to satisfy P(A) = 1−α . The results hold consequently. It re-
quires that ai = i for all the i’s simultaneously, although the same conclusion can be
obtained by using the theory of pivotal simple fiducial models. However, Theorem
7.1 provides a much relaxed condition because it only requires ai = i in πa for any
fixed i to yield the exact matching inference for ψi j for arbitrary j, j = 1, . . . , i− 1
in the multivariate normal model (7.3.20).

7.3.2.2 The Exact Matching Inference for Functions ofΨ

Many critical parameters in mutlivariate normal models can be uniquely determined
by ψ .

Example 7.7. Consider the decomposition of precision matrix as Σ−1 = T′Ψ̃ 2
T,

where Ψ̃ = diag(ψ11, · · · ,ψpp) and
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ti j =

⎧⎨
⎩

0, if i < j,
1, if i = j,
ψi j
ψii

, if i > j.
(7.3.27)

Pourahmadi (1999) pointed out ti j’s are the negatives of the coefficients of the
best linear predictor of xi based on (x1, · · · ,xi−1), and ψ2

ii’s are the precisions of the
predictive distribution, since

x1 ∼ N(μ1,ψ−2
11 ), xi ∼ N

(
μi −

i−1

∑
j=1

ti j(x j −μ j),ψ−2
ii

)
, i ≥ 2.

Theorem 7.2. Let t j = (t21, t31, t32, . . . , t j1, . . . , t j, j−1)′ and ψ̃ j = (ψ11, . . . ,ψ j j)′, j =
2, . . . , p. For fixed i, i = 2, . . . , p, define (t∗i j)1−α be the (1−α) posterior quantile
of ti j under the prior πa in (7.3.19) for arbitrary j ∈ {1, . . . , i− 1}. Then, for any
α ∈ (0,1), the frequentist coverage probability of the credit interval (−∞,(t∗i j)1−α ]
is

P
{

ti j ≤ (ti j)∗1−α | t j, ψ̃ j
}

= 1−α
if and only if ai = i.

Proof. From (7.3.22), it is easy to verify the constructive posteriors of ti,i−1 =
(ti1,, . . . , ti,i−1) to be

t∗i,i−1 = V−1
i−1z∗i,i−1

vii

χ∗n−ai

−V−1
i−1vi,i−1.

The indicated data distributions of ti,i−1 are

ti,i−1 = V−1
i−1zi,i−1

vii

χn−1
−V−1

i−1vi,i−1, i = 2, . . . , p.

Let lik denotes a i×1 vector with entry 1 at the kth location and 0 elsewhere. Obvi-
souly, ti j = l′i−1, jti,i−1 and t∗i j = l′i−1, jt

∗
i,i−1. Then,

(t∗i j)1−α =
(

l′i−1, jV
−1
i−1z∗i,i−1

vii

χ∗n−ai

)
1−α

− l′i−1, jV
−1
i−1vi,i−1

and ti j = l′i−1, jV
−1
i−1zi,i−1

vii

χn−i 1−α
− l′i−1, jV

−1
i−1vi,i−1.

Therefore,

P
{

ti j ≤ (t∗i j)1−α | t, ψ̃
}

= P
{

l′i−1, jV
−1
i−1zi,i−1χ−1

n−i ≤ (l′i−1, jV
−1
i−1z∗i,i−1χ∗−1

n−ai
)1−α | t, ψ̃

}
. (7.3.28)

For i = 2, . . . , p, define Ψ̃ i, Ei, and Ti be the upper and left i× i corner of matrices
Ψ̃ , E, and T, respectively. From (7.3.24), the two sides of the inequality in (7.3.28)
can be written as
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l′i−1, jE
−1
i−1Ψ̃ i−1Ti−1zi,i−1χ−1

n−i and l′i−1, jE
−1
i−1Ψ̃ i−1Ti−1z∗i,i−1χ∗−1

n−ai
. (7.3.29)

which only involove parameters in matrices Ψ̃ j and T j, i.e.,

P
{

ti j ≤ (t∗i j)1−α | t, ψ̃
}

= P
{

ti j ≤ (t∗i j)1−α | t j, ψ̃ j
}
.

If ai = i, the two terms in (7.3.29) have the same distribution. Thus, the cover-
age probability in (7.3.28) would be exactly 1 − α . To prove necessity, choose
t = (0, . . . ,0) and ψ̃ = (1, . . . ,1). Then T = I and Ψ̃ = I. Consider j = 1, and then

l′i−1,1E−1
i−1Ψ̃

−1
i−1Ti−1 = (χ−1

n−1,0, . . . ,0). Clearly,

P{ti1 ≤ (t∗i1)1−α} = P
{
χ−1

n−1Zi1χ−1
n−1 ≤ χ−1

n−1(Z
∗
i1χ∗−1

n−ai
)1−α

}
= P

{
ξn−i ≤ (ξ ∗n−ai

)1−α
}
, (7.3.30)

where ξn−i = Zi1
χn−i

and ξn−ai = Z∗
i1

χn−ai
, representing the constrcutive distributions of

random variables following the t-distribution with degree of freedom n− i and n−ai

individually. Note that 1i−1 is the unit vector with lenght of i−1. Because (7.3.30)
equals 1−α , ai = i.

Example 7.8. Consider the parameterization D = diag(d1, · · · ,dp) and T defined in
(7.3.27), where di = 1/ψ2

ii . We can write Σ−1 = T′D−1T.
Theorem 7.3.

(a) For any α ∈ (0,1), the posterior 1−α quantile of di under the prior in (7.3.19)
πa has the expression

(d∗
i )1−α =

( v2
ii

χ2∗
n−ai

)
1−α

. (7.3.31)

(b) For given i, i = 1, . . . , p, the frequentist coverage probability of the credible
interval (0,(d∗

i )1−α ] is

P(di ≤ (d∗
i )1−α | μ , ψ̃) = P

{ 1

χ2
n−i

≤
( 1

χ2∗
n−ai

)
1−α

}
, (7.3.32)

which does not depend on (μ , ψ̃) and equals 1−α if and only if ai = i.

Proof. From (7.3.22), part (a) is obvious. Combining (7.3.24), we have

(d∗
i )1−α =

( χ2
n−i

χ2∗
n−ai

)
1−α

1
ψii

.

Clearly,
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P(di ≤ (d∗
i )1−α | μ , ψ̃) = P

{ 1
ψii

≤ 1
ψii

( χ2
n−i

χ2∗
n−ai

)
1−α

| ψii

}

= P
{ 1

χ2
n−i

≤
( 1

χ2∗
n−ai

)
1−α

}
,

which equals 1−α if and only if ai = i.

Example 7.9. Consider ηi ≡ |Ψ i| =∏i
j=1 d j, the generalized variance of the upper

and left i× i submatrix of Σ .

Corollary 7.1.

(a) For any α ∈ (0,1), the posterior 1−α quantile of ηi under the prior πa in
(7.3.19) has the expression

(η∗
i )1−α =

( i

∏
j=1

v j j

)( i

∏
j=1

1

χ2∗
n−a j

)
1−α

.

(b) The frequentist coverage probability of the credible interval (0,(η∗
i )1−α ] is

P(ηi ≤ (η∗
i )1−α | ψ̃) = P

{ i

∏
j=1

1

χ2
n− j

≤
( i

∏
j=1

1

χ2∗
n−ai

)
1−α

}
,

which equals 1−α if and only if (a1, . . . ,ai) = (1, . . . , i).

Proof. The proof is similar to that of Theorem 7.3.



Chapter 8
Bayesian Clinical Trials

Innovative clinical trial design is one of the currently most exciting and high impact
frontiers in a Bayesian analysis. The increasingly complex nature of clinical study
designs and the increasing pressures for efficient and ethical design naturally lead
to Bayesian approaches. In this chapter we discuss some examples of specific re-
search problems, including adaptive and sequential trial design, sample size choice
determination for longitudinal studies, and subgroup analysis.

8.1 Application of a Bayesian Doubly Optimal Group Sequential
Design for Clinical Trials

J. Kyle Wathen and Peter F. Thall

One of the big success stories of Bayesian inference for clinical trial design is the
possibility to construct sophisticated adaptive and sequential designs. The sequen-
tial design proposed in Wathen and Thall (2008) is a typical example of such ap-
proaches. We review their design and illustrate it with an application to a trial with
non-small cell lung cancer patients. A simulation study compares their method to a
standard frequentist approach for sequential clinical trials.

8.1.1 A Non-Small Cell Lung Cancer Trial

Lung cancer is the leading cause of cancer-related death worldwide, with over one
million new cases diagnosed and over 900,000 deaths from this disease each year.
Approximately 75% to 80% of all lung cancers are non-small cell lung cancer
(NSCLC). Patients with NSCLC that is metastatic, where the cancer cells origi-
nating in the lungs have invaded the lymphatic system, bones, or internal organs,

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 257
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have a median progression-free survival (PFS) time of roughly four months. Once
the disease has progressed, death follows very quickly, with reported median overall
survival (OS) time in most studies between 5 and 7 months.

While NSCLC treatment typically involves a combination of chemotherapy, radi-
ation, and localized surgery, the comparative benefits of these therapeutic modalities
remain unclear. To address this issue, a randomized phase III trial for patients with
metastatic NSCLC was organized to compare localized surgery or radiation ther-
apy (LS/RT) to systemic chemotherapy (SC), the standard treatment. The primary
outcome was PFS time, defined as the time from start of therapy to death or dis-
ease progression occurring in sites previously identified or in new sites not seen at
the patient’s baseline evaluation. Initially, a conventional design was planned. This
was a two-sided group-sequential log rank testing procedure with O’Brien-Fleming
(OF) boundaries (O’Brien and Fleming, 1979) up to two interim tests and a third,
final test, overall size 0.05 and power 0.90 to detect a 100% increase (doubling) in
median PFS time from 4 to 8 months. Using East version 5 (2007), the test cut-offs
in terms of the standardized logrank statistic Z-score are ±3.7103 when 30 events
are observed, ±2.5114 at 60 events and ±1.993 at 89 events. The anticipated accrual
rate was 2 to 4 patients per month, since in practice accrual to clinical trials can be
quite variable. Table 8.1 gives trial durations and sample sizes with this design for a
range of possible monthly accrual rates.

TABLE 8.1. Sample size and trial duration as functions of accrual rate for the conventional group
sequential design with O’Brien-Fleming boundaries.

Accrual Rate Trial Duration (Months) Number of Patients
(Patients/Month) Min Mean Max Min Mean Max

2.0 44.2 48.6 53.0 89 97 106
2.5 35.4 39.7 44.1 89 99 110
3.0 29.5 33.8 38.1 89 101 114
3.5 25.3 29.5 33.8 89 103 118
4.0 22.1 26.4 30.5 89 105 122

At the time the trial was designed, a previous NSCLC study of standard treatment
in metastatic NSCLC had been published containing a Kaplan-Meier (KM) plot of
PFS (Ciuleanu et al., 2008). Since this raised the concern that the assumption of pro-
portional hazards (PH) would not be met, we developed an alternative design using
the Bayesian Doubly Optimal Group Sequential (BDOGS) methodology proposed
by Wathen and Thall (2008).

In this section we provide an overview of the BDOGS design and illustrate it
by application to the lung cancer trial. We also describe how one may utilize infor-
mation from available KM plots when constructing a BDOGS design. In Section
8.1.2 we review the essential features of the BDOGS design. In Section 8.1.3 we
describe the application to the NSCLC trial, including simulation results comparing
BDOGS to the conventional design using OF boundaries. We conclude with a brief
discussion in Section 8.1.4.
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8.1.2 Bayesian Doubly Optimal Group Sequential Designs

8.1.2.1 Hypotheses and Decision Criteria

When the primary outcome of a randomized clinical trial is patient survival or PFS
time, the standard group sequential approach requires that the treatments have event
time distributions satisfying the PH assumption. Under this assumption, interim de-
cision boundaries for stopping and concluding superiority or possibly futility are
constructed, often using the Lan-DeMets α-spending function approach (Lan and
DeMets, 1983). The stopping boundaries are designed to maintain a desired overall
false-positive probability, α∗, and power, β ∗. At each interim analysis, a standard-
ized normal statistic (Z-score), usually based on a log rank statistic, is calculated
using the most recent data and compared to the decision boundaries to determine
whether the trial should stop in favor of one of the treatments, stop for futility, or
continue to enroll more patients and obtain additional information. If the PH as-
sumption is not met, however, the properties of a conventional group sequential
design may be quite different from what is assumed, and in particular the actual
power may differ substantially from the nominal power (Wathen and Thall, 2008).

To simplify notation, we denote the LS/RT treatment by E and the SC treatment
by S. Denote the median PFS times of E and S by θE and θS, δ = θE − θS with
targeted improvement δ ∗, and the observed data by XXX . The goal of the trial is to test
H0 : δ = 0 versus H1 : δ �= 0. In contrast with conventional designs, which use Z-
scores as test statistics and a single set of stopping boundaries, the BDOGS approach
uses decision criteria based on posterior probabilities and applies sequentially adap-
tive Bayesian model selection. The BDOGS approach first defines a set of candidate
models. Optimal boundaries are derived under each candidate model, and these are
stored for future use. The candidate models are characterized in terms of the shapes
of their event hazard functions. Under each model, the boundaries are optimal in the
sense that they minimize the expected sample size computed as an equally weighted
average under the null and alternative hypotheses. The trial is monitored group se-
quentially with up to K analyses and a maximum of N patients randomized fairly
between the two treatments. At each interim analysis, BDOGS uses Pr( δ > δ ∗ |XXX)
and Pr( δ < −δ ∗ |XXX) as decision criteria, which are analogous to, but very different
from, the Z-statistics used in the conventional approach.

Based on the data at each interim decision during the trial, the optimal model,
defined as that having highest posterior probability, is determined. The optimal de-
cision boundaries under that model are used for that interim decision. Because this
computation is repeated at each interim analysis, this allows the possibility that the
optimal model, and consequently the boundaries, may change from one interim
decision to the next as more data are obtained. By using adaptively chosen deci-
sion boundaries in this way, compared to conventional group-sequential methods
the BDOGS design substantially reduces the sample size in most cases, and better
maintains the targeted size and power when the PH assumption is not met.
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8.1.2.2 Bayesian Model Selection

Bayesian model selection and model averaging have been used extensively in many
settings (Madigan and Raftery, 1994; Kass and Raftery, 1995). However, Bayesian
model selection has not been used in clinical trial design. Denote the set of J models
under consideration by MMM = {M1,M2, . . .MJ}, the prior probability of model M�

by f (M�), and the prior odds of M� to M1 by ξ� = f (M�)/ f (M1), with ξ1 = 1.
Let ψψψ� be the parameter vector and π(ψψψ� | M�) the prior density of ψψψ� under M�.
For � = 1,2, . . . ,J, the posterior probability of M� given the current data XXX is

f (M� |XXX) =
f (XXX | M�) f (M�)

∑J
r=1 f (XXX | Mr) f (Mr)

, (8.1.1)

where
f (XXX | M�) =

∫
f (x |ψψψ�,M�)π(ψψψ� | M�)dψψψ�

is the marginal likelihood.
Computing f (XXX | M�) can be very time consuming, especially if the dimension

of eachψψψ� is large. The BDOGS method is computationally intensive and in particu-
lar requires model selection to be done repeatedly during simulation, hence requires
f (M� | XXX) to be computed many times. Thus, the method requires a fast method
for calculating the posterior model probabilities in (8.1.1). In addition, during the
design phase when simulations are being run in order to obtain the design’s op-
erating characteristics, the efficiency of the method used to compute the posterior
model probabilities is critical. Consequently, to ensure feasibility BDOGS uses an
approximation of the Bayes factor given in Raftery (1996b) to compute the posterior
probability of each M� given by (8.1.1). The Bayes factor for model M� versus M1

is the ratio of the posterior to prior odds,

B�,1 =
f (M� |XXX)/ f (M1 |XXX)

f (M�)/ f (M1)
=

f (XXX | M�)
f (XXX | M1)

, (8.1.2)

with B1,1 = 1. Let L�(XXX |ψψψ�,M�) denote the likelihood, χ2 = 2[logL�(XXX | ψ̂ψψ�,M�)−
logL0(XXX | ψ̂ψψ1,M1)], n the number of observations, ψ̂ψψ� the MLE of ψψψ� under M�,
and p� = dim(ψψψ�). Raftery (1996b) gives the approximation

2logB�,1 ≈ χ2 − (p� − p1) logn, (8.1.3)

where the notation an ≈ bn means that limn→∞(an/bn) = 1. To compute f (M� |
XXX), the posterior model probabilities in (8.1.1) can be expressed in terms of Bayes
factors, and the approximation of Raftery (1996b) exploited to obtain B�,1 for � =
2,3, . . . ,J. Combining (8.1.1) and (8.1.2), the posterior probability of M� is

f (M� |XXX) =
B�,1 ×ξ�

∑J
r=1 Br,1 ×ξr

. (8.1.4)
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Substituting (8.1.3) into (8.1.4) gives an approximate value of f (M� | XXX) for
� = 2, . . . ,J. The main computational requirements are obtaining the MLEs of
ψψψ1,ψψψ2, . . . ,ψψψM under their respective models. While Raftery provides other approx-
imations which are more accurate, BDOGS uses the slightly less accurate approxi-
mation in (8.1.3) to gain speed. Still, as the numerical illustration given below will
show, the advantages afforded by BDOGS compared to the conventional approach
are substantial.

8.1.2.3 Decision Boundaries and Utility Function

The goal of the BDOGS design is to test H0 : δ = 0 versus H1 : δ �= 0 subject to
size and power constraints without requiring the often incorrect assumption of pro-
portional hazards. The utility function employed by BDOGS is the achieved sample
size, which is random due to the group sequential structure. The expected utility is
computed as the equally weighted average of the sample sizes under the null and al-
ternative hypothesis. For brevity, we omit additional details of the decision-theoretic
framework utilized by BDOGS, which are given in section 2 of Wathen and Thall
(2008).

A standard approach to obtain the optimal decision procedure in a decision-
theoretic design is backward induction (BI) (DeGroot, 1970). However, computa-
tional difficulties in implementing BI impose severe practical limitations on Bayesian
optimal designs. Consequently, most Bayesian optimal designs using BI assume
simple models (Berry and Ho, 1988; Lewis and Berry, 1994).

Alternative approaches to fully sequential BI have been proposed by many au-
thors (Stallard, Thall, and Whitehead, 1999; Kadane and Vlachos, 2002; Stallard,
2003; Christen et al., 2004; Wathen and Christen, 2006). Carlin, Kadane, and
Gelfand (CKG) (1998) proposed forward simulation (FS) as a practical alternative
to BI. With FS, an optimal design is obtained by first simulating the trial repeatedly
and storing the results. A given sequential decision procedure is applied to each sim-
ulated data set, and expected utilities are computed empirically from the simulated
data. Since the simulation results have been stored, different decision procedures
may be evaluated and a suitable search algorithm can be used to find the decision
procedure that maximizes the expected utility. Storing the simulated data and the
results of any time-consuming calculations eliminates the need to re-simulate the
trial. BDOGS utilizes FS to obtain the optimal boundaries under each candidate
model, subject to the size and power constraints. Without employing FS and storing
the results of time consuming calculations it would not be possible to implement
BDOGS. Specific details of the algorithms used in BDOGS are provided in Wathen
and Thall (2008).

To facilitate computation of the optimal boundaries, BDOGS defines the decision
boundaries in terms of two flexible monotone functions, each having three param-
eters. Let γγγ = (aU , bU , aL, bL,cU , cL) denote the decision boundary parameter
vector, XXXn the data for the first n patients and let N +(XXXn) the number of treatment
failures (events) in XXXn. BDOGS defines the boundary functions as
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PU (XXXn,aU ,bU ,cU ) = aU −bU

(
N+(XXXn)

N

)cU

,

PL(XXXn,aL,bL,cL) = aL +bL

(
N+(XXXn)

N

)cL

, (8.1.5)

with the requirement that PL(XXXnk ,aL,bL,cL) ≤ PU (XXXnk ,aU ,bU ,cU ). If PL(XXXn,aL,bL,
cL) > PU (XXXn,aU ,bU ,cU ) then BDOGS sets PL(XXXn,aL,bL,cL) = PU (XXXn,aU ,bU ,cU ).
In these boundary functions, aU and aL define the initial decision boundaries before
any patients are enrolled, bU and bL determine the final boundaries when all events
have been observed, and cU and cL determine the rate at which PU decreases and PL

increases with the number of failure events.
Denote the Bayesian posterior decision criteria pE>S(XXXn) = Pr(δ > δ ∗ | XXXn)

and pS>E(XXXn) = Pr(δ < −δ ∗ | XXXn). BDOGS uses the decision boundaries and the
two posterior probabilities to determine if a trial should stop, either for futility or
superiority, or continue. The trial is conducted as follows:

1. Superiority: (a) If pE>S(XXXnk) > PU (XXXn,aU ,bU ,cU ) > pS>E(XXXn), then terminate
the trial and select E. (b) If pS>E(XXXn) > PU (XXXn,aU ,bU ,cU ) > pE>S(XXXn), then
stop the trial and select S.

2. Futility: If max{pE>S(XXXn), pS>E(XXXn)} < PL(XXXn,aL,bL,cL), then stop the trial
and conclude that neither treatment is superior to the other.

3. Continuation: If either (a) PL(XXXn,aL,bL,cL) ≤ pE>S(XXXn), pE>S(XXXn) ≤ PU (XXXn,
aU ,bU ,cU ) or (b) min{pE>S(XXXn), pE>S(XXXn)} ≥ PU (XXXn,aU ,bU ,cU ), then con-
tinue enrolling patients.

Part (b) of rule 3 is included to deal with cases where Var(δ |XXXnk ) is large and both
pS>E(XXXnk) and pE>S(XXXnk) are large, although in practice both values being ≥ PU

rarely occurs. At the final analysis, if the superiority rule does not apply for either
treatment then BDOGS concludes δ = 0.

BDOGS utilizes an algorithm for calculating and storing calculations in con-
junction with an efficient search algorithm to determine the numerical values of
γγγ that maximize the expected utility under each model. For example, if there are
J = 5 models under consideration then BDOGS determines optimal boundaries un-
der each of the 5 models, and thus there would be 5 distinct γγγ vectors, one for each
potential model.

8.1.3 Application of BDOGS to the Lung Cancer Trial

In Section 8.1.3.1, we describe how to use an available Kaplan-Meier plot to identify
potential hazard distributions which can be used in a simulation study. In Section
8.1.3.2 we provide specific details for applying BDOGS to the lung cancer trial,
and Section 8.1.3.3 summarizes a simulation study comparing the BDOGS and OF
designs.
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In the original proposal for the lung cancer trial, as in many studies, there was
uncertainty about the patient accrual rate, with the anticipated range from 2 to 4
patients per month. This resulted in a maximum sample size ranging from 106 to 122
patients for the OF design. Since maintaining the targeted power is very important,
we chose to develop a BDOGS design with maximum sample size of 122 patients,
and we evaluated both designs under an assumed accrual of 2 patients per month.

8.1.3.1 Using Kaplan-Meier Plots to Identify Potential Survival Distributions

A previous study provided a KM plot of the PFS time distribution for NSCLC pa-
tients given the standard SC treatment (Ciuleanu et al., 2008). Since the raw PFS
data from this study were not available, we used the published KM plot to identify
potential PFS time distributions. The Weibull and Log-Normal (LN) distributions
both were considered to be reasonable possible models since both have flexible haz-
ard functions. The Weibull distribution allows a wide variety of hazards, including
a constant, increasing or decreasing hazard. The Log-Normal allows non-monotone
hazards that may increase and then decrease, or decrease and then increase.

Denote T = PFS time and S(t) = Pr(T > t). We visually extracted the estimates
ŜKM(t) = P̂r(T > t) from the KM curve at each time point t ∈ T = {0.5, 1.5, 2, 3,
4, 5, 6, 7, 8, 9, 10, 12, 18}. The corresponding estimates ŜKM(t) were {0.975, 0.95,
0.70, 0.60, 0.50, 0.43, 0.375, 0.30, 0.25, 0.20, 0.175, 0.10, 0.05}. The time points
were chosen so that straight lines connecting (t, ŜKM(t)) pairs for consecutive t ∈ T
gave a close fit to the KM plot. To determine numerical values for each distribution
that provided the best fit, we used the sum of squared differences between the sur-
vival probability function for the parametric distribution and the estimated survival
probability function obtained from the KM curves. Denote the survival function at
time t for a LN or Weibull distribution with parameters a and b by S(t|a,b). For
each distribution, we solved for its parameters by minimizing

D(a,b) = ∑
t∈T

{
S(t|a,b)− ŜKM(t)

}2

.

For each parametric distribution, we performed a grid search to determine the values
of a and b minimizing D(a,b). For the LN where log(T) ∼ N(μ ,σ2), for a = μ and
b = σ2 we evaluated D(a,b) over the domain a ∈ [−100,100] and b ∈ (0, 100]
with initial grid size Δ = 0.50. Once an initial minimum was found we repeated the
search locally with Δ = 0.10 and finally with Δ = 0.01. This gave minimizing values
a = 1.41 and b = 0.95 with D(1.41,0.95) = 0.018. For the Weibull distribution given
by S(t|a,b) = exp(−ta/b), performing the grid search in the same way over (a,b)
∈ (0, 100]2 gave a = 1.18 and b = 5.94 with minimum value D(1.18,5.94) = 0.024,
a 33% increase over the minimum value achieved by the LN. As a simple alternative
to the Weibull and LN distributions, we also evaluated the Exponential distribution
with mean a. For the exponential, D(a) was minimized at a = 5.99 with minimum
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value D(5.99) = 0.035. Thus, the LN gave the best fit. Plots of the corresponding
survival and hazard functions are displayed in Figure 8.1.
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FIGURE 8.1. Survival functions and hazard functions for the best fitting Log-Normal (LN) distri-
bution (A&B) and Weibull distribution (C&D). The solid lines in A & C represent the estimates
obtained by visually extracting values from the available Kaplan-Meier plots.

8.1.3.2 A BDOGS Trial Design

By construction, BDOGS finds the optimal decision bounds of the form described
in Section 8.1.2.3 under each of a variety of specified potential models, equiva-
lently hazard functions. A key strength of the BDOGS procedure is its ability to
adaptively switch decision boundaries based on the accruing information. In order
to achieve a high degree of flexibility while still allowing implementation of the
BDOGS method to be feasible, to design the NSCLC trial we included 5 potential
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FIGURE 8.2. Stopping boundaries under the BDOGS design for each of the 5 candidate models,
M1: increasing hazard, M2: decreasing hazard, M3: constant hazard, M4: initially increasing haz-
ard followed by a slight decrease and M5: initially increasing hazard followed by a large decrease.
The definitions of PL and PU are given in Section 8.1.2.3.

models, (1) M1: increasing hazard, (2) M2: decreasing hazard, (3) M3: constant
hazard, (4) M4: initially increasing hazard followed by a slight decrease and (5)
M5: initially increasing hazard followed by a large decrease. If significantly infor-
mative prior data were available, one could specify the prior model probabilities to
reflect such knowledge. However, since we did not have sufficient information to
assign different prior model probabilities, we took the conservative approach of as-
suming that the five models were equally likely, that is, f(M j) = 0.20 for j = 1, ...,5.
Recall that with a BDOGS design the decisions are not based on Z-scores, but rather
posterior probabilities using the decision boundaries given by (8.1.5). Since the de-
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cision boundaries are model specific, we provide a graph of the boundaries under
each model in Figure 8.2.

The initial OF design was proposed with up to two interim analyses and one
final analysis. To accommodate a wider range of potential hazards and reduce the
expected sample size, the BDOGS design was implemented allowing up to 6 interim
analyses plus a final analysis. The analyses are conducted after observing 25, 50, 75,
87, 100, 112, and 122 events. Like the OF design, the BDOGS design has overall
size 0.05 and power 0.90 to detect a 100% increase (doubling) in median PFS time
from 4 to 8 months.

8.1.3.3 Simulations

To make the comparison of the OF and BDOGS designs fair, we increased the num-
ber of interim tests in the OF design to six in order to match the BDOGS design.
In addition, both approaches monitored the trial at the the same interim numbers of
events and had the same maximum sample size. Also to ensure fairness, for each
iteration of the simulations we first generated the patient arrival times and simulated
the event times under the assumed underlying distribution, and presented the two
methods with the same patient data.

To assess robustness, we simulated the trial assuming seven different true PFS
time distributions, defined in terms of their hazard functions. Aside from the case of
a constant hazard, the hazard functions of the true distributions used in the simula-
tions are plotted in Figure 8.3. The true hazard functions were the Log-Normal that
provided the best fit to the KM plot (LN-Best Fit), the Weibull that provided the sec-
ond best fit to the KM plot (W-Second Best Fit), a Weibull with decreasing hazard
(WD), a Log-Normal with a hazard that increases then decreases slightly (LN-ID2),
a Log-Normal with a hazard that increases followed by a large decrease (LN-ID3)
and a Weibull with an increasing hazard (WI). The simulation results are summa-
rized in Table 8.2 and 95% confidence intervals of the sample size distributions for
BDOGS and OF under each true hazard are plotted in Figure 8.4.

When the true hazard was constant (Exp), both BDOGS and OF maintained the
targeted false positive rate. However, in the null Exp case the mean sample was 53
for BDOGS compared to 80 for OF, and in the alternative Exp case when δ = 4 was
65 for BDOGS compared to 87 for OF.

Under the distribution that provided the best fit to the historical KM curve, LN-
BF, BDOGS had actual power 0.88 compared to 0.89 for OF. In terms of median
sample size, BDOGS enrolled 39 patients in the null and 43 in the alternative LN-BF
case, compared to 86 and 91 patients for OF. Thus, BDOGS provided over a 50%
reduction in average sample size with a trivial drop in power. Similar results were
obtained in the W-SBF case, where both BDOGS and OF maintained the desired
false positive rate and power but BDOGS had a much smaller average sample size.

When the true hazard function is increasing followed by a substantial decrease
(LN-ID3), OF has actual power 0.71 compared to 0.89 for BDOGS. The false-
positive rate of BDOGS is 0.07. The average sample size for BDOGS is substantially
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FIGURE 8.3. Hazard functions of the true distributions used in the simulation study: Log-Normal
best fit (LN-Best Fit), Weibull second best fit (W-Second Best Fit), Weibull with a decreasing haz-
ard (WD), Log-Normal with hazard that increases initially then decreases slightly (LN-ID2), Log-
Normal with hazard that increases initially followed by a large decrease (LN-ID3), and Weibull
with an increasing hazard (WI). The standard treatment (solid line) has median PFS 4 months.
Under the alternative, the experimental treatment (dashed line) has median PFS 8 months.

smaller than that of OF, 66 compared to 85 under the null and 71 compared to 95
under the alternative. The main reason that BDOGS fails to maintain the desired
size is that the initial model selection is performed after observing only 25 events.
In general, if the first model selection in BDOGS is performed with a small amount
of data the posterior model probabilities may favor incorrect models, resulting in an
inflated false-positive rate.
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TABLE 8.2. Simulation study to compare the Bayesian doubly optimal group sequential
(BDOGS) design with the O’Brien-Fleming (OF) design. In all cases, the true null median PFS

time is 4 months for the Standard treatment and the alternative PFS time is 8 months.

True False Sample Size, δ = 0 (δ = 4)
Hazard Method Pos. Power Mean 2.5% 25% 50% 75% 97.5%

Proportional Hazards Assumption Met
Exp BDOGS 0.05 0.90 53(65) 30(35) 35(41) 58(63) 63(91) 93(117)

OF 0.05 0.90 80(87) 56(61) 64(70) 85(91) 90(98) 111(118)

Robustness Study - Proportional Hazards Assumption Not Met
LN-BF BDOGS 0.05 0.88 49(54) 31(34) 35(39) 39(43) 62(67) 92(113)

OF 0.05 0.89 81(86) 56(59) 65(69) 86(91) 91(98) 111(118)
W-SBF BDOGS 0.02 0.90 47(44) 30(32) 34(37) 39(40) 60(44) 85(85)

OF 0.05 0.90 79(80) 55(47) 63(64) 84(86) 89(93) 110(114)
WD BDOGS 0.07 0.90 65(71) 31(36) 56(43) 63(68) 87(96) 114(122)

OF 0.05 0.81 82(94) 58(63) 66(89) 87(96) 92(105) 113(122)
LN-ID2 BDOGS 0.04 0.90 41(46) 29(33) 33(38) 36(40) 41(45) 68(94)

OF 0.05 0.97 80(77) 56(44) 64(64) 85(71) 89(91) 110(110)
LN-ID3 BDOGS 0.07 0.89 66(71) 31(36) 39(43) 64(68) 89(98) 122(122)

OF 0.05 0.71 85(95) 59(63) 68(88) 90(97) 95(108) 116(122)
WI BDOGS 0.01 0.91 33(39) 28(32) 32(36) 34(38) 36(41) 41(65)

OF 0.01 0.99 78(63) 54(37) 61(60) 82(63) 87(66) 108(90)

When the true hazard is increasing (WI) then both BDOGS and OF maintain the
desired size and power. However, BDOGS has a mean sample size that is less than
half that of OF in the null case, 33 patients for BDOGS compared to 78 for OF.
Under the alternative, BDOGS provides a reduction of 24 patients (39%) in mean
sample size, from 63 to 39. The main reason for this substantial decrease in average
sample size afforded by BDOGS is that, in this case, OF has a greatly inflated actual
power of 0.99.

8.1.3.4 Logistics of Trial Conduct

With a conventional group sequential approach, interim analyses typically are con-
ducted less frequently than with the BDOGS design. As the number of interim anal-
yses increases, however, so does the logistical complexity of actually conducting the
trial. This is an important issue in a multi-center trials. Logistical issues include the
complexity and time involved to collect, clean, and prepare the data for analysis in a
timely fashion. While such issues are a valid concern, the use of available technolo-
gies can greatly mitigate many potential problems. For example, for conducting the
NSCLC trial a secure website has been developed that is similar to the ones utilized
to conduct the adaptive trial described in Maki et al. (2007). The use of such a web-
site greatly decreases the chance of errors in data collection, and also substantially
reduces the logistical burden of collecting and tracking the trial data in real time.
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FIGURE 8.4. Sample size distributions for BDOGS (B) and O’Brien-Fleming (OF) designs un-
der the A) Null case and B) Alternative case. For each line, the dot represents the mean and the
endpoints are the 2.5% and 97.5% percentiles.

8.1.4 Discussion

BDOGS is a computationally intensive Bayesian methodology that provides a very
attractive alternative to conventional group sequential designs for randomized clin-
ical trials. Our simulation study in the context of the NSCLC trial illustrated the
general facts that, compared to a conventional group sequential design using OF
boundaries, BDOGS provides a substantial decrease in expected sample size while
doing a better job of maintaining the targeted power. Under the distribution that best
fit the historical data, BDOGS provided nearly a 40% reduction in expected sample
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size while obtaining actual size and power that were comparable to the standard ap-
proach. A more extensive simulation study given by Wathen and Thall (2008) that
included three different conventional group sequential designs gave very similar re-
sults.

The biggest potential problem with BDOGS arises if the first model selection is
done too early in the trial. With very little data, the performance and accuracy of
the model selection is limited and can increase the false positive rate. Under both
the WD and LN-ID3 distributions, the actual size of the BDOGS design was 0.07,
while in both cases the OF method maintained size 0.05. However, in these cases
the OF method’s power figures were greatly degraded from the nominal 0.90 to
0.81 under WD and 0.71 under LN-ID3, and moreover the sample sizes were much
larger with OF compared to BDOGS. Recall that the first test is conducted when
25 events are observed. This was specified since the possibility of a low accrual rate
was a concern, and an accrual rate of 2 patients per month would lead to the first test
being conducted one year into the trial. While conducting the first test later would
increase the probability of selecting the correct model at that look and thus reduce
the overall false positive probability, it also would increase the sample size. Thus,
the small increase in overall false positive rate with BDOGS seen in some cases may
be viewed as an acceptable trade-off for the large decrease in expected sample size
and greater power, compared to conventional methods, under most distributions.

A computer program, “BDOGS,” for simulating the BDOGS method is available
upon request from the first author.

8.2 Experimental Design and Sample Size Computations for
Longitudinal Models

Robert E. Weiss and Yan Wang

In many studies the goal is to test a point null hypothesis against an alternative
hypothesis. Longitudinal designs are extremely common, but appropriate methods
for sample size specification are rare; exceptions are Lui and Cumberland (1992),
Muller et al. (1992), Liu and Liang (1997), Hedeker, Gibbons, and Waternaux
(1999), and Roy et al. (2007). Uncertainty in unknown parameters is not propagated.
Previous Bayesian sample size methodology includes Spiegelhalter and Freedman
(1986), Adcock (1997), Müller and Parmigiani (1995), Wang and Gelfand (2002),
and De Santis (2007). In longitudinal data, a key additional issue includes the num-
ber and spacing of longitudinal measures.

The Bayesian tool for hypothesis testing is the Bayes factor (Berger, 1985). Weiss
(1997) introduced the idea of choosing the sample size to guarantee that the Bayes
factor is larger than a certain prespecified size. Let Y denote the data, let X be the
covariates, also let Hk for k = 0,1 be competing hypotheses with parameters θk,
sampling distributions f (Y |θk,X ,Hk) and priors p(θk|Hk). The prior predictive dis-
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tributions of the data are f (Y |Hk) =
∫

f (Y |θk,X ,Hk)p(θk|Hk)dθk. The Bayes factor
B01 for H0 against H1 is

B01 =
f (Y |H0)
f (Y |H1)

and define the log Bayes factor b01 = logB01. Kass and Raftery (1995) suggest
b01 greater than +3 or less than −3 constitute strong support for or against H0,
respectively; and b01 > 5 or b01 < −5 is said to constitute very strong support for
H0 or H1, respectively.

Our goal is to select the sample size n and other design aspects so that the
prior predictive probabilities p0(a0) = P(b01 > a0|H0) and/or p1(−a1) = P(b01 <
−a1|H1) are suitably large for some a0,a1 ≥ 0. We explore choices of a0 = a1 equal
to 3 or 5. We use a combination of Monte Carlo simulation, algebraic calculations,
and numerical integration to calculate p(b01|Hk), k = 0,1 using a predictive prior
(Weiss, Wang, and Ibrahim, 1997) based on data from a previous experiment. Sec-
tion 8.2.1 discusses modeling issues. Section 8.2.2 outlines a general algorithm to
simulate the distributions p(b01|Hk), k = 0,1. Section 8.2.3 illustrates the problem
of choosing a sample size for a complicated hierarchical repeated measures data
random effects model based on a prior study. An expanded version of this work
with formal proofs and computational formulas is available from the first author.

8.2.1 Covariates and Missing Data

The sampling density f (Y |θk,X ,Hk) depends on covariates X whose distribution
is uncertain except in special cases. Specifying known X is inappropriate because
it underestimates uncertainty. Parametrically, we can model a sampling density
g(X |φ) for covariates as depending on unknown parameters φ with prior q(φ).
A randomized binary treatment indicator can be modeled as a Bernoulli random
variable with probability of success equal to π = 0.5. When a prior sample x j,
j = 1, . . . ,J of continuous m-dimensional covariates is available, a kernel density
estimator may be used to estimate the distribution of the covariates. Under indepen-
dence between X ,φ and the hypotheses k and θk, then the Bayes factor B01 calcula-
tion does not involve g(X |φ) or q(φ). Longitudinal studies routinely feature missing
data, as in the example reported below. Let Yobs ⊂ Y denote the observed subset of
the complete data. Assuming the data are missing at random (MAR) (Little and Ru-
bin, 2002), then the Bayes factor does not depend on the missingness pattern nor on
the underlying parameters that control the missingness pattern.

8.2.2 Simulating the Predictive Distributions of the Bayes Factor

After specifying the necessary distributions, simulating p(b01|Hk) for a given sam-
ple size Lk involves the following steps. For each of l ∈ {1,2, . . . ,Lk} repeat
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1. Sample φ (l), the parameters of the X distribution from q(φ).
2. Sample the covariates X (l) from g(X |φ (l)).
3. Sample ψ(l), the parameters of the missingness distribution from its distribution

r(ψ).
4. Sample the missingness indicator variable R(l) from its distribution p(R|ψ(l),X (l)).

The variable R is a data structure of 0-1 indicator variables, 1 for missing, 0 for
observed, with the same structure as the complete data vector Y .

5. Sample the unknown parameters θ (l)
k from the prior p(θ |Hk).

6. Sample the data Y (l)
k from f (Y |X (l),θ (l)

k ,R(l),Hk).
7. Calculate the Bayes factor b(l)

01,k = log[ f (Y (l)
obs,k|H0)/ f (Y (l)

obs,k|H1)].

It is usually possible to sample only the observed portion of the data vector Yobs

rather than the entire Y vector. It is also possible to reduce computations by reusing
φ (l), X (l), ψ(l), and R(l) for simulations under both H0 and H1 and for different
designs. Having calculated samples from p(b01|Hk), we estimate the sum P(b01 >
a0|H0)+ P(b01 < −a1|H1) or other summary statistic as desired, depending on the
specific utility function used in designing the study.

For early calculations, we take Lk small, such as 100, which gives a standard error
of approximately 0.05 = (0.52/100)1/2 for the estimated probability of interest. We
increase Lk after tentatively bracketing the needed sample size.

8.2.3 Sample Size for a New Repeated Measures Pediatric Pain
Study

We design a followup study to a previous longitudinal pediatric pain study (Weiss,
2005). The outcome is the log of the time in seconds that a child could keep his
or her hand immersed in cold water, a proxy for pain tolerance. The main analysis
had two important covariates, Coping Style (CS) and Treatment (TMT). Children’s
coping style can be attender (A) or distracter (D) with attenders paying attention to
their arm and the experimental apparatus during each trial while distracters think
about other things such as vacation or schoolwork. TMT was randomized to one of
three counseling interventions: counseling to attend (A), to distract (D), or a null
treatment (N).

If treatment has an effect, then CS and TMT are thought to interact. CS is ob-
served and is not under the direct control of the investigator. The hypotheses are H0:
no treatment effect and H1: a treatment effect which may be different for attenders
and distracters. Weiss, Wang, and Ibrahim (1997) used a predictive prior and the 58
complete data cases to indicate that the data strongly supported H0 against H1. This
was somewhat surprising, given that other analyses (Fanurik et al., 1993; Weiss,
1994) supported H1. Thus there is interest in designing a followup study to discover
whether the treatment intervention does indeed have an effect on pain tolerance. In
the followup study we eliminate the N treatment.
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8.2.3.1 Design Considerations

The previous study design had m1 = 3 baseline observations followed by the coun-
seling intervention, and then m2 = 1 response observations for a total of 4 repeated
measures. The four trials of the original study were given on two days, approxi-
mately two weeks apart. No effect due to practice, i.e., a time trend, or due to day
has been found. In the followup, it is planned to have three trials per day with the
intervention taking place before the fourth or fifth trial. Efficiency considerations
might put the intervention before the third trial, but this is problematic, since the
effect of the two week break between trial 3 and 4 on the intervention efficacy is
unknown, is not of interest, and is unlikely to be ignorable. As long as the interven-
tion takes place on day two, we are comfortable assuming that the mean structure is
the same across trials before intervention, changes because of the intervention, and
then remains constant again. The most reasonable design for the followup study will
have m1 = 3 pre-treatment trials and m2 = 3 post-treatment trials; we investigate the
effects of taking m1 = 4 and m2 = 2 and m1 = 2 and m2 = 4 as a form of sensitivity
analysis. We call these designs the 3-3 design, the 4-2 design, and the 2-4 design.

For the new study design, we explore the ability to generate Bayes factors greater
than 3 and 5 over a range of possible sample sizes. We propose a logistic regression
methodology to estimate the utility of various intermediate sample sizes.

8.2.3.2 Sampling Density for Y and Prior Density for Parameters

The sampling distribution for the ni vector of observations Yi for a single case in-
dexed by i is modeled using the random effects model

Yi = Xiα+Ziβi + εi, (8.2.1)

where random effect βi ∼ Nq(0,σ2D) and residual vector εi ∼ Nni(0,σ2I). The de-
sign matrix Xi for a completely observed case for the original study under H1 is 4×8,
with a column of ones for the intercept, a time-fixed indicator column of all zeros or
ones for the effect of CS, and a 4× 6 block of zeros, except for a single one in the
fourth row to indicate which of the 6 TMT*CS groups the child belonged to. The
Zi matrices are ni columns of ones in both the original and followup studies under
both H0 and H1. Missing data within a case will cause rows of Yi and corresponding
rows of Xi and Zi to be omitted. Under H0, the Xi matrix is 4× 2 with columns for
the intercept and CS only; all columns for the treatment effect are omitted.

The pre-prior for the prior data is a flat prior, p0(α,σ2,D) ∝ 1, which will
produce a proper posterior (Hobert and Casella, 1996). Data Yold from all 64
children in the original study were used with this pre-prior to produce a prior
p(α,σ2,D|Yold,Hk) for k = 0,1 to design the future study. We made one modifi-
cation to this prior. The prior for D was taken to be a gamma(c0,c1), where the
mean c0/c1 was set equal to the sample mean of the Gibbs sample for D from the
prior, and the variance c0/c2

1 was set equal to the variance of the Gibbs sample of D.
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For the followup study, the two columns of Xi and the corresponding elements
of α that refer to the N treatment are omitted. The length of Yi will be 6 in the
absence of missing data. The Xi matrix will have an initial column of ones and a
second column of ones or zeros coding the CS value. Under H1, the third through
sixth columns will be all zeros except for m2 ones in the last m2 rows of whichever
column of Xi is the indicator variable of the CS*TMT group that the case belongs
to.

For brevity, technical details of the prior and Bayes factor calculation are given
in the associated technical report. With some modifications, the prior follows the
methods of Weiss, Wang and Ibrahim (1997), hereafter WWI. The data set that is
used to form our prior is the data set analyzed in WWI. In WWI, the prior for σ2

does not depend on D while our prior for σ2 is directly a predictive prior for σ2

derived from the prior data and dependent on D. Finally, our prior for D is based
directly on the prior data as already described.

8.2.3.3 Covariate and Missing Data Distributions

There are two covariates in the study to be designed: CS and TMT, both binary. Of
64 children in the original study, 32 were observed to be distracters, and 32 were
attenders. Starting with a uniform prior Beta(1,1) for πCS, the probability that a
new child is a distracter, we will sample πCS as a Beta(33,33), and then for the n
individuals in the followup study we sample CSi as Bernoulli(πCS). If the followup
study were to be the same as the original, then the distribution of TMT is known
to be multinomial(1/3,1/3,1/3). Since we are eliminating the N treatment group,
TMT is Bernoulli(1/2).

In the original study the design called for 4 repeated measures per child for
a total of 64× 4 = 256 observations on n = 64 cases. However, 11 observations
were missing on 6 children. Missingness appeared to be MCAR, related to things
like school absence or illness and not to an inability to follow instructions or feel-
ings about the experiment. A simple missingness model is one possibility, where
πmis the probability that an observation is missing has prior probability density
Beta(11+1,256−11+1), and every observation might be deleted at random with
probability πmis,obs. This simple model violates prior knowledge plus missing ob-
servations tended to cluster; 11 observations on only 6 children is unlikely to occur
by chance if observations are randomly missing.

The method we actually used was to consider that children divide into two
groups, missers and non-missers. Non-missers never have missing data, while each
observation on a misser is missing with probability πwithin. The probability that a
child is a misser is πmisser. The probability that a misser has no missing data is
(1− πwithin)ni , where ni is the designed number of observations for the child. For
the prior study, ni ≡ 4, and for the study under design, ni ≡ 6. The prior data has 58
complete data cases, and 6 missers with a total of 11 missing observations. Includ-
ing one extra unknown, l0, the number of missers with zero missing observations
allows us to produce a simple Gibbs sampler to draw samples from the posterior of
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πwithin and πmisser. Assuming flat Beta(1,1) priors, the resulting posterior mean and
standard deviation are 0.188 and 0.086 for πmisser and 0.226 and 0.085 for πwithin.

8.2.3.4 Smoothing Simulation Results

Simulation sample sizes are never as large as we might desire, it is helpful to borrow
strength from different simulations to estimate the design characteristics for differ-
ent sample sizes. We did this by fitting a logistic regression model to the raw results
(not shown) for each calculation such as P(b01 > 3|H0). For example, for the 3-3 de-
sign, and for the probability P(b01 > 3|H0) there were 7 simulation data points, with
sample sizes n = (20,30,37,38,39,40,50), and observed successes mi equal to the
number of times that b01 > 3 — these values were m = (67,71,81,78,79,88,88),
respectively, for the listed sample sizes. Then mi ∼ binomial(Li,πi) with Li equal to
the number of simulations, usually 100, but for ni = 38,39, Li was 1200 and 800.
We modeled log(πi/(1−πi)) = β0 +β1ni. The probabilities within a column do not
vary greatly and a linear logistic regression can be expected to do a good job of
interpolating and smoothing the results of the study. The resulting estimated values
are given in Table 8.3 and substantially increase the effective sample size of most
results often by a factor of 3 or 4.

8.2.3.5 Results

We simulated distributions p(b01|Hk) for the 3-3, 2-4, and 4-2 designs. Generally
we increased n in steps of 10 starting from n = 20, searching for the point where
the power was equal to 0.8. For the 3-3 design, we also investigated more carefully
the power for sample sizes n ∈ (37,38,39). Detailed results on the 4-2 design are
omitted.

Results are reported in Table 8.3. The first column gives the sample size n, the
second column is the simulation sample size. Column 3 givesψ0.05(n), the lower 5%
tail of the distribution p(b01|H0) and column 4 is the power P(b01 > ψ0.05(n)|H1),
which is the probability under H1 that b01 is greater than the cutoff in column 3.
Columns 5-7 give the probabilities that the log Bayes factor is greater than 5, 3, and
0 if H0 is true, and columns 8-10 give the probabilities that b01 is less than −5, −3,
and 0 given that H1 is true.

For the 3-3 design, the power achieves a level of 0.8 for a sample of size n = 39.
We might expect the cutoff points ψ0.05(n) to be monotone in n, however, they
are not. This is because of sampling variability in the calculations. The standard
error of estimation of ψ0.05(n) from a sample of size 100 is approximately 0.9, and
for a sample of size 1000, the standard error is approximately 0.3, so none of the
inversions or equalities are too surprising. For the 2-4 design we appear to need less
than 40 observations. The 4-2 design does appear to have less power than the other
two, while the 3-3 and 2-4 are close in power.
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TABLE 8.3. Smoothed results for the 3-3 and 2-4 designs.

3-3 design
P(b01 > a|H0) P(b01 < −a|H1)

n L ψ0.05(n) power a = 5 a = 3 a = 0 a = 5 a = 3 a = 0
20 100 -2.00 0.40 0.29 0.64 0.89 0.25 0.35 0.61
30 100 -1.00 0.63 0.36 0.73 0.94 0.31 0.44 0.68
37 100 0.40 0.77 0.42 0.78 0.97 0.36 0.50 0.73
38 100 0.75 0.78 0.43 0.79 0.97 0.37 0.51 0.74
39 100 0.50 0.80 0.44 0.79 0.97 0.38 0.52 0.74
40 100 1.13 0.81 0.45 0.80 0.97 0.38 0.53 0.75
50 100 1.50 0.92 0.54 0.86 0.99 0.46 0.61 0.80

2-4 design
P(b01 > a|H0) P(b01 < −a|H1)

n L ψ0.05(n) power a = 5 a = 3 a = 0 a = 5 a = 3 a = 0
20 100 -0.05 0.61 0.21 0.65 0.93 0.19 0.30 0.61
30 100 0.70 0.74 0.32 0.76 0.96 0.27 0.39 0.67
40 100 0.70 0.84 0.45 0.84 0.98 0.36 0.49 0.72
50 100 2.80 0.90 0.59 0.89 0.99 0.47 0.59 0.77

Inspection of Table 8.3 suggests that if we wanted to make P(b01 > 3|H0) +
P(b01 < −3|H1) ≥ 1, then the necessary sample size appears to be barely over 20
for the 3-3 and 2-4 designs, but will be close to 30 for the 4-2 design. If we try for
P(b01 > 5|H0)+P(b01 < −5|H1) ≥ 1, then we need an n of slightly over 50 for the
3-3 design, slightly under 50 for the 2-4 design, and approximately 60 for the 4-2
design.

Interpolation of Table 8.3 suggests that we need 39 cases for the 3-3 design to
have power of 0.8, 34 cases for the 2-4 design and (not shown) fully 53 cases for the
4-2 design. The sample sizes needed to produce P(b01 > 3|H0)+P(b01 <−3|H1)≥
1 are 21, 23, and 32 for the 3-3, 2-4, and 4-2 designs. Sample sizes to give P(b01 >
5|H0)+P(b01 < −5|H1) ≥ 1 are 50, 48, and 60.

Approximately sixty children are available for the followup study. Sample size
selection is driven by power, cost, subject availability, and other considerations. Our
analysis shows we have sufficient power and reasonable probability of determining
which hypothesis is correct.

Acknowledgments: This work was supported by grants GMS50011 and AI28697
from the National Institutes of General Medical Sciences and Allergy and Infectious
Diseases of the NIH.
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8.3 A Bayes Rule for Subgroup Reporting

Peter Müller, Siva Sivaganesan, and Purushottam W. Laud

Randomized clinical trials are carried out to establish the effectiveness of a treatment
in a specified patient population. When a trial fails to show effectiveness for the
original target population, the search for subgroups is a natural followup question.
In general, subgroup analysis investigates whether a conclusion about effectiveness
or lack of effectiveness in the overall population remains valid for subpopulations.
Subpopulations are characterized by covariates, including age, prior treatment his-
tory, different disease subtypes, biomarkers, etc.

The main challenges related to subgroup analysis are concerns about data dredg-
ing and multiplicity issues when many potential subgroups are available and the
search for subgroups is carried out in an unplanned fashion. Recent discussions of
subgroup analysis appear among others in Cook, Gebski, and Keech (2004), Pocock
et al. (2002), and Rothwell (2005). In this discussion we build on Sivaganesan, Laud,
and Müller (2009) who introduced a Bayesian approach to subgroup analysis based
on model selection. Let xi, i = 1, . . . , I, denote the list of reported covariates. For
each covariate xi they consider the family Mi of all subgroup models that can be de-
scribed by xi and define a probability models pi(M), M ∈Mi. Posterior probabilities
pi(M | data) are used to define an algorithm for subgroup reporting.

In this section we approach subgroup analysis as a Bayesian decision problem.
In Section 8.3.1 we lay out the problem and introduce notation. In Section 8.3.2 we
propose a Bayes rule for subgroup reporting. We use a simple extension of a 0/c
utility function for hypothesis testing. We propose a few pragmatic simplifications
to facilitate practical implementation. The resulting rule can be described in terms
of posterior odds for subgroup models compared to the overall null model M0 of no
treatment effects and compared to the overall alternative M1 of a common treatment
effect in the entire patient population.

8.3.1 The Model Space

We consider a 2-arm clinical trial. Let y denote the outcome observed on each pa-
tient. Let θ generically denote a treatment effect. In a 2-arm trial with continuous
outcomes, θ is the difference in mean outcomes across the two treatment arms. For
a binary response y ∈ {0,1}, the treatment effect could be the difference in success
probabilities under the two treatment arms, etc. The setup of the 2-arm trial is for
ease of presentation only. The following discussion remains almost unchanged with
any other sampling model or other designs.

We assume that the trial also records baseline covariates xi, i = 1, . . . , I for each
patient. Throughout we will use i to index covariates (not patients – we need no
index for patients). For the moment we assume that all covariates are binary, xi ∈
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{0,1}. The covariates define possible subgroups of patients. Each covariate defines
five alternative models by the patterns of how treatment effects could differ across
levels of xi. Let

γi = (γi0,γi1) ∈ {(0,0),(0,1),(1,0),(1,2),(1,1)}

indicate these five patterns of subgroup effects, with γi j = 0 indicating no treatment
effect for the subpopulation defined by xi = j, and γi j = 1 and 2 denoting the first
and second distinct non-zero treatment effect. For example, γi = (1,2) indicates non-
zero treatment effects for all patients, but with a different size effect for subgroups
defined by xi = 0 versus xi = 1, and γi = (1,0) indicates no treatment effect for
patients with xi = 1, and a non-zero treatment effect for patients with xi = 0. We use
Miγi to denote a model with treatment effects grouped as indicated by γi. The models
indexed by γi = (0,0) and γi = (1,1) are special. The model M0 ≡ Mi,(0,0) is the
overall null hypothesis of no treatment effect. The model M1 ≡ Mi,(1,1) is the overall
alternative hypothesis of a common treatment effect for the entire population. Let
Γ = {(0,1),(1,0),(1,2)} denote the possible subgroup arrangements distinct from
M0 and M1. In summary the family of all possible models is

M = {M0,M1,Miγi , i = 1, . . . , I, γi ∈ Γ }.

Conditional on M and the covariates we assume a sampling model for the observed
outcomes, generically p(y | M,x). Details of the sampling model are not required
for the upcoming discussion.

Subgroup analysis refers to inference about M ∈ M . In the following section
we describe a Bayes rule, and a simplified approximate Bayes rule to implement
inference about M. In the upcoming discussion we need to assume that the model
includes a probability model p(M) over the model space. We will define a specific
model p(M) later, in Section 8.3.3, only. But an important assumption implicit in
treating M as a random variable is that only one subgroup model M is correct.

8.3.2 Subgroup Selection as a Decision Problem

8.3.2.1 A Bayes Rule for Reporting Subgroups

The problem of reporting subgroups is naturally described as a Bayesian decision
problem. Let δ denote the desired decision. Possible decisions are to report an over-
all treatment effect, δ = M1; to report no evidence for any treatment effects, δ = M0;
or to report subgroup effects. When reporting subgroup effects we allow to report
multiple subgroups, one for each covariate i. Thus reporting subgroups involves
the identification of a set of covariates, AI ≡ {i1, . . . , im} ⊂ {1, . . . , I} together with
a subgroup model index γ i ∈ Γ for each covariate. Let Γ I = {γ i, i ∈ AI} and let
A = (AI , Γ I) denote the pair of covariate indices and list of subgroups for each
chosen covariate. Reporting subgroups is thus characterized as δ = A. In summary
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δ ∈ {M0,M1,A} ≡ D with A = (AI , ΓI).

Note that the action space D differs from the model space M because we allow to
report multiple subgroups simultaneously, but the probability model p(M) allows
only for one true subgroup model at a time.

A utility function u(δ ,M,y) represents the investigator’s relative preferences for
the alternative actions under an assumed true model M and data y. Let nA = |AI |
denote the number of reported subgroups when δ = A. We assume a natural gener-
alization of a traditional 0/c utility function for testing problems:

u(δ ,M,y) =

⎧⎪⎨
⎪⎩

u0 I(M = M0) if δ = M0,

u1 I(M = M1) if δ = M1,

u2 I(M ∈ ΓI)− (nA −1) if δ = A.

(8.3.1)

In short, we realize a reward when the correct model is reported, and we pay a price
for reporting more than one subgroup. Adding 1 in each row to include a price for
reporting M0 and M1 as well would only shift the utility function by 1 and leave the
optimal decision unchanged. Like in many decision problems, the specific choice
of u includes some arbitrary and simplifying choices. In particular, we assume that
the data enter the utility function only indirectly through the decision rule δ = δ (y).
This is typical for inference problems.

Let p(M) denote a probability model over the model space and let

U(δ ,y) ∝∑u(δ ,M,y) p(M | y)

denote the posterior expected utility. The optimal decision δ ∗ is the action with max-
imum expected utility. It is easy to show that the optimal decision under (8.3.1) can
be characterized as follows. Assume δ ∗(y) = A∗. If i ∈ A∗

I , i.e., we report subgroups
for covariate i, then the reported subgroups for i are the subgroups with highest
posterior probability,

γ∗i = argmax
γ∈Γ

{p(Miγ | y)},

and
A∗

I = {i : p(Miγ∗i | y) ≥ 1/u2},
i.e., we report subgroups for all covariates that include a model Miγ∗i with posterior
probability greater than 1/u2. Let Γ ∗

I = {γ∗i , i ∈ A∗
I }. In summary, if δ ∗ �∈ {M0,M1}

then it must be A∗ = (A∗
I ,Γ

∗
I ). Thus, to determine the Bayes rule δ ∗ we only need

to compare expected utilities for δ = M0, M1 and A∗:

U(δ ,y) =

⎧⎪⎨
⎪⎩

u0 p(M0 | y) if δ = M0,

u1 p(M1 | y) if δ = M1,

u2 ∑i∈A∗
I

p(Miγ∗i | y)− (nA∗ −1) if δ = A∗.

We can now see the Bayes rule. Write p(M) as short for p(M | y), let M∗
i =

Miγ∗i denote the maximum posterior subgroup model with covariate xi, let M∗ =
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argmax{p(M∗
i )} denote the highest posterior probability subgroup model and let

i∗ = argmaxi p(M∗
i ) denote the index of the covariate that defines M∗. Then

δ ∗ =

⎧⎪⎪⎨
⎪⎪⎩

M1 if p(M1)
p(M0) > u0

u1
and p(M1)

p(M∗) > u2
u1

+∑A∗
I \i∗

u2 p(M∗
i )−1

u1 p(M∗) ,

A∗ if p(M1)
p(M∗) < u2

u1
+∑A∗

I \i∗
u2 p(M∗

i )−1
u1 p(M∗) and p(M0)

p(M∗) < u2
u0

+∑A∗
I \i∗

u2 p(M∗
i )−1

u0 p(M∗) ,

M0 otherwise.

Note that u2 p(M∗
i ) > 1 for all i ∈ A∗

I , i.e., the terms in the sums are all strictly
positive (although some can be very small).

8.3.2.2 Simplified Rule

In the interest of ease of implementation we now depart from a strictly decision
theoretic implementation, and take the form of the Bayes rule δ ∗ as a motivation for
a slightly simplified rule. We drop the sum over A∗ \ i∗ in the conditions for reporting
A∗, i.e., we are slightly more conservative in reporting subgroups. Then

δ ∗ =

⎧⎪⎨
⎪⎩

M1 if p(M1)
p(M0) > u0

u1
and p(M1)

p(M∗) > u2
u1

,

A∗ if p(M1)
p(M∗) < u2

u1
and p(M0)

p(M∗) < u2
u0

,

M0 otherwise.

and finally, we replace A∗ by {Miγ∗i : p(Miγ∗i ) > 1
u2

max{p(M1)u1, p(M0)u0}}. This
enables us to describe the final rule in terms of thresholds on odds p(M1)/p(M0),
p(M∗

i )/p(M0) and p(M∗
i )/p(M1) only. Let t0 = u0/u1 and t1 = u1/u2. Noting that

p(M∗) < x ⇔ p(M∗
i ) < x ∀i we get

δ ∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1 if p(M1)
p(M0) > t0 and p(M∗

i )
p(M1) < t1 for all i,

A∗ if for some i: p(M∗
i )

p(M0) > t0t1 and p(M∗
i )

p(M1) > t1

and A∗ = {i : above holds},
M0 otherwise.

(8.3.2)

This is almost the rule proposed in Sivaganesan, Laud, and Müller (2009). A similar
rule is descibed there in terms of probabilities (rather than odds). The main differ-
ence to (8.3.2) is that t0t1 is replaced by t1. In Sivaganesan, Laud, and Müller (2009)
the rule is defined without reference to a decision problem, and only justified by
its frequentist properties. An important feature of δ ∗ is that the rule is described in
terms of posterior odds p(M0)/p(M1) and p(M∗

i )/p(Mj) ( j = 0,1) only.
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8.3.3 Probability Model

For a practical implementation of the proposed rule we still need to specify a prob-
ability model p(M) over the space of all models M . We proceed in steps. Let
Mi = {Miγ i

, γ i ∈ Γ }∪{M0,M1} denote the subspace defined by groupings based
on covariate xi, including the overall null and alternative. We define probability
models pi(M) for M ∈ Mi, i = 1, . . . , I. We construct pi such that π0 ≡ pi(M0) and
π1 ≡ pi(M1) are common across i. Eventually we will piece the sub-models together
to

p(M) =

⎧⎪⎨
⎪⎩
π0 for M = M0,

π1 for M = M1,

pi(M) 1
I for M = Miγ , γ ∈ Γ .

(8.3.3)

We propose this construction of the full model p(M) from models for the subspaces
Mi because we find it easier to think about subgroups defined by one covariate
at a time. We even further simplify the construction by using the same model for
each pi. The model pi(M) for each covariate is defined as a zero-enriched Polya
urn, indexed with parameters (p,α). By a slight abuse of notation we write p(γ i) as
short for pi(Miγ i

) and factor p(γ i) = p(γi0) p(γi1 | γi0) (The first factor refers to the
probability of all models with the treatment effect in the subpopulation defined by
xi = 0 being characterized by γi0, and similarly for the second factor.)

We start the definition of pi by p(γi0 = 0) = p(γi1 = 0 | γi0) = p, i.e., the proba-
bility of no treatment effect for any subpopulation is p, independently of the other
subpopulations. Conditional on γi1 �= 0, we have p(γi1 = 1 | γi0 = 0,γi1 �= 0) ≡ 1, by
definition of the notation. Finally, we define

p(γi1 = g1 | γi0 = 1,γi1 �= 0) =

{
1/(α+1) g1 = 1,

α/(α+1) g1 = 2.
(8.3.4)

Model (8.3.4) is the Polya urn (Blackwell and MacQueen, 1973) for two observa-
tions. Since we allow an additional probability for the special cluster γi j = 0 we
refer to the model as zero-enriched Polya urn. This description also clarifies the in-
terpretation of the model parameters (p,α). The first, p is the marginal probability
of no treatment effect in any subgroup defined by the covariate. The parameter α
determines the relative probability of the treatment effect for one subgroup being
different from the treatment effect for another subgroup with non-zero treatment
effect; α are odds of different treatment effect versus same treatment effect.

Model (8.3.4) can straightforwardly be extended for categorical covariates with
more than S = 2 levels. The interpretation of the parameters (p,α) remains un-
changed. This is the model used in Sivaganesan, Laud, and Müller (2009).

When substituting p(γ i) back into (8.3.3) for the definition of p(M) we have to
modify the definition for covariates with S > 2 levels. Let πS0 ≡ pi(M0) for covari-
ates with S levels, and similarly for πS1. For covariates with S > 2 levels we replace
pi(M) in the last line of (8.3.3) by pi(M) 1−π0−π1

1−πS0−πS1
, with π0 = π20 and π1 = π21, as

before.
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8.3.4 A Dementia Trial

Kovach et al. (2006) describe a two-arm double-blind randomized trial for late-
stage dementia. The experimental therapy is Serial Trial Intervention (STI). The
outcome of interest is the improvement in Discomfort-DAT (Discomfort-Dementia
of Alzheimer’s Type scale) from baseline to after intervention. The study enrolled
112 patients, with 55 randomized to control and 57 randomized to treatment. For
each patient the investigators recorded two baseline covariates. The first covariate
is an indicator x1 for FAST (Functional Assessment of Staging of Dementia) score
≥ 7 (x1 = 1) versus < 7 (x1 = 0). The second covariate is an indicator for presence
(x2 = 1) versus absence (x2 = 0) of vocalization in behavioral symptoms initiating
treatment (MVOCAL). Subgroup sample sizes defined by these two covariates vary
between 19 and 66. The same data was analyzed in Sivaganesan, Laud, and Müller
(2009) for possible subgroup effects. To facilitate comparison we use the same sam-
pling model and the same priors.

Let y0 and y1 denote the outcome of a patient under control and under STI, re-
spectively. Conditional on an assumed model Miγ i

we assume for a patient with
covariate xi = j the sampling model

y0 | xi = j ∼ N(μ0 j,σ2) and y1 | xi = j ∼ N(μ0 j +d j,σ2)

under control and treatment, respectively.
Here d j is the treatment effect in the subgroup defined by xi = j. The unknown

parameters are μ0 = (μ0 j, j = 0, . . . ,S−1), (d j, j = 0, . . . ,S−1) and σ2. Let K =
max{γ j, j = 0, . . . ,S−1} denote the number of distinct non-zero treatment effects.
We assume a hierarchical prior

d j | ηγ j ∼ N(ηγ j ,εσ
2)

with
ηk | g ∼ N(0,gσ2), k = 1, . . . ,K

for all distinct non-zero treatment effects and η0 ≡ 0. Here ε > 0 is a small constant.
The model is completed with a non-informative prior

p(g,μ0,σ
2) ∝

1
(1+g)2

1
σ2 , g > 0.

Such “mixture-g priors” have been proposed as reasonable non-informative priors
for linear models (Berger, 2006; Liang et al., 2008).

Still to allow easy comparison, we use similar cutoffs as in Sivaganesan, Laud,
and Müller (2009). They use cutoffs c0 = c1 = 0.76 and alternatively c0 = 0.86, c1 =
0.5 for probabilities p(M1)/(p(M1) + p(M0)) and for p(Miγi)/(p(Miγi) + p(M1)),
respectively. The cutoffs c on the probabilities are equivalent to cutoffs t = c

1−c on
the corresponding odds. There is no separate cutoff for comparing Miγi versus M0 in
the approach by Sivaganesan, Laud, and Müller (2009).
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These cutoffs were determined in Sivaganesan et al. to achieve a desired type I
error (TIE) rate and false subgroup rate (FSR). As usual, error rates are defined as
(frequentist) error rates under repeat experimentation under an assumed truth. Let
p f (A | M) denote the probability of a decision A under repeat experimentation under
an assumed true model M. We define

T IE = p f (M0 not selected | M0)

and
FSR = p f (some Miγ selected | M1).

See Sivaganesan, Laud, and Müller (2009). for a more extensive discussion of alter-
native error rates. As done in that paper, we used simulation to calculate an average
FSR, averaged over the normal distribution for the overall effect size with mean 0
and standard deviation equal to that of the data.

TABLE 8.4. Posterior probabilities of models for Kovach et al. (2006) data.

Model
M0 M1(1,0) M1(0,1) M1(1,2) M2(1,0) M2(0,1) M2(1,2) M1

Prior Prob. 3/8 1/16 1/16 3/32 1/16 1/16 3/32 3/16
Posterior Prob. 4×10−5 3×10−4 0.032 0.054 10−4 0.605 0.305 2.2×10−3

TABLE 8.5. Subgroup effect model as selected by the decision rule in Section 8.3.2.2 for Kovach
et al. (2006) data.

c0 c1 TIE Model(s) Selected Average FSR
0.76 0.76 0.03 M1(1,2),M2(0,1) 0.13
0.86 0.50 0.05 Same as above 0.33

The posterior probabilities of models using the Kovach et al. (2006) data are
given in Table 8.4. The selected models and the corresponding error rates are given
in Table 8.5. Recall that the covariates are x1=FAST and x2=MVOCAL. The se-
lected models are M1(1,2) and M2(0,1). Model M1(1,2) indicates non-zero and distinct
effects in the subgroups defined by FAST. Model M2(0,1) refers to a model with no
treatment effect when MVOCAL= 0 and a non-zero effect when MVOCAL= 1. For
comparison, in Sivaganesan, Laud, and Müller (2009), either M2(0,1), or both M1(1,2)
and M2(0,1) were selected depending on the chosen cutoffs or error rates.
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8.3.5 Discussion

We have outlined a practicable decision theoretic approach to subset selection. The
final rule is described in terms of simple thresholds on posterior odds of subgroup
models relative to the overall null and alternative models.

The strengths of the proposed approach are the principled nature and the sim-
plicity of the solution. The nature of the proposed solution as a Bayes rule makes
it easy to adjust for problem-specific variations. For example, if the relative utilities
(or losses) were to differ from (8.3.1), one could easily follow the same argument to
find alternative solutions. For example, (8.3.1) implies that the loss of not reporting
the correct model is the same, no matter which wrong model is reported.

Many limitations remain. Like in any decision theoretic approach, the solution
depends on the often arbitrary choice of the relative utilities u0, u1, and u2. The prob-
lem is mitigated by validation of frequentist operating characteristics like TIE and
FSR, which can help to calibrate these relative utilities and the implied thresholds
in the decision rule.

Finally, we note that although the problem involves massively multiple compar-
isons, commonly used false discovery rate (FDR) control is not meaningful. Since
the model p(M) implicitly allows only one true model, any reported set A of sub-
group models would trivially include at least |A|−1 false discoveries.

Acknowledgments: We thank Christine Kovach, PhD, RN of the University of
Wisconsin-Milwaukee and Brent Logan, PhD of the Medical College of Wiscon-
sin for providing advice and the data from their study. This research was initiated
during a program at SAMSI (Statistical and Applied Mathematical Sciences Insti-
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Chapter 9
Bayesian Methods for Genomics, Molecular and
Systems Biology

Inference for high throughput genomic data has emerged as a major source of chal-
lenges for statistical inference in general, and Bayesian analysis in particular. This
chapter discusses some related current research frontiers. The chapter highlights
how specific strengths of the Bayesian approach are important to model such data.
Bayesian inference provides a natural paradigm to exploit the considerable prior in-
formation that is available about important biological pathways. Another strength
of Bayesian inference that leads to research opportunities with phylogenomic data
is the natural ease of simultaneous modeling and inference on multiple related pro-
cesses.

9.1 Bayesian Modelling for Biological Annotation of Gene
Expression Pathway Signatures

Haige Shen and Mike West

Studies in high-throughput genomics often generate multiple gene expression sig-
natures—lists of genes with associated numerical measures of change in gene ex-
pression relative to an experimental condition or outcome. A biological or environ-
mental design factor in a controlled experiment generates a signature of response to
that factor (Huang et al., 2003b; Bild et al., 2006; Chen et al., 2008), while evalu-
ation of expression related to a specific clinical outcome may generate a signature
of the outcome in disease studies (West et al., 2001; Huang et al., 2003a; Rich et
al., 2005; Seo et al., 2007). Indeed, the concept of gene expression signatures as
characterizing pathway status has emerged as central in Bayesian analyses in ge-
nomics and emerging systems biology in cancer and other areas. The development
of sparse ANOVA and latent factor models to improve estimation of expression sig-
natures in both experimental (in vitro) and observational (in vivo) contexts has been
substantially motivated by this view (e.g., West, 2003; Lucas et al., 2006; Wang
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et al., 2007; Carvalho et al., 2008; Merl et al., 2009b). Recent applied studies of
deregulated pathways in cancer as well as other contexts, including basic biolog-
ical pathway discovery and evaluation studies, studies of drug responsiveness and
prognostic/predictive risk profiling, reflect this (e.g., Chen et al., 2008; Chang et al.,
2009; Lucas, Carvalho, and West, 2009; Merl et al., 2009a).

Interpretation of identified gene expression signatures relies in part on compari-
son with biological databases that contain lists of putatively pathway-specific genes.
The gene lists themselves, without real-biology connectivities explicitly described,
simply represent biological pathways through the sets of genes named as participat-
ing in the biological processes the pathways play roles in. A core challenge is to
assess the signatures against these databases to suggest potential pathway interpre-
tations. Our focus here is a formal, novel Bayesian approach to this problem.

Identification of this problem led to the non-Bayesian gene set enrichment anal-
ysis (GSEA) method (Subramanian et al., 2005) and follow-on approaches (Newton
et al., 2007). These methods aim to measure aggregate association between a full
list of genes ranked by their association with an outcome — also referred to as a
phenotype — and one or more given sets of genes. The underlying idea is to as-
sess whether or not a specified “pathway” gene set is enriched with genes that score
highly in association with the experimental outcome. Based on non-Bayesian test-
ing and (sample or gene) randomization methods, these methods tend to lead to false
positives, have difficulties in dealing with small sized gene sets, rely on an assump-
tion that pathway database gene lists are error-free, and are restricted in applications
to simple contexts of genes up/down regulated. On the latter point, we are particu-
larly interested in understanding potential biological pathways underlying estimated
latent factors applied to observational data sets (e.g., Lucas et al., 2006; Carvalho et
al., 2008; Lucas et al., 2009; Merl et al., 2009b) and these existing methods simply
do not apply to the forms of information summaries produced in such analyses.

Our Bayesian probabilistic pathway annotation (PROPA) model presented here
addresses these broader questions. PROPA provides: (a) probabilistic assessments
of phenotype-pathway concordance in terms of marginal likelihoods and posterior
probabilities; (b) an ability to assessment of experimental results against many bi-
ological pathways simultaneously and in comparison with each other; (c) adap-
tation to uncertainties and potential errors in both experimentally defined gene-
phenotype association measures and in biological databases; and (d) a general theo-
retical framework that allows the specific method to be extended to incorporate other
forms of genomic data. Item (c) here also leads to an ability to suggest refinements
to pathway gene lists. Simulation and breast cancer genomics examples illustrate
these points. A core component of the annotation analysis involves evaluation of
marginal likelihoods in models with high-dimensional parameters. For this, we de-
velop a novel extension of variational methods (e.g., Jordan et al., 1999; McGrory
and Titterington, 2007) that, in addition to proving extremely effective in the path-
way annotation analysis, is of broad interest and potential use in Bayesian model
evaluation.
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9.1.1 Context and Models

9.1.1.1 Notation and Framework

A biological study investigates the changes in gene expression on p genes due to an
experimental factor. We are interested in (a) which genes are related to this factor in
terms of the expression change, and (b) how does this factor relate to known, pub-
lished gene lists representing annotation of biological pathways? The experiment
leads to measures of association of the genes, in terms of expression changes, with
the experimental factor; these are inputs to annotation analysis. We define terminol-
ogy and notation as follows:

• G = {1, . . . , p}, the full list of genes; in human studies, p ∼ 20−25,000.
• A pathway is, simply, any specific subset of genes from G .
• F , an unknown list of genes whose expression changes are truly related to the

experimental factor; we call F the factor pathway to give it a definite name.
• Π = {πg, g = 1, . . . , p}, a set of numerical measures of association of each of the

genes, in terms of the expression change, with the experimental factor pathway
F .

• A , a generic label for a biological pathway; A is a simply an unknown list of
genes. A j, j = 1, . . . ,m, a full set of known biological pathways.

• A, a generic label for a list of genes in a published, annotated biological database,
putatively linked to a true, unknown biological pathway A . We call A a reference
gene list for pathway A . A j, j = 1, . . . ,m, the set of reference gene lists corre-
sponding to pathways A j.

We use the Molecular Signatures database (MSigDB C2 collection) (Broad Insti-
tute, 2007) to obtain m ≈ 1000 reference gene sets A j. These are, of course, incom-
plete and typically error-prone; A j provides incomplete and noisy information on
the pathway A j.

Based on the expression experiment, Π is known data to be used in assessing
concordance of the unknown, underlying experimental factor pathway F with can-
didate biological pathways A j, j = 1, . . . ,m. We do this with models that compute
the j = 1, . . . ,m posterior probabilities

Pr(F = A j|Π ,A1, . . . ,Am) ∝ Pr(F = A j|A1, . . . ,Am)p(Π |A1, . . . ,Am,F = A j).

Focus here on the likelihood terms p(Π |A1, . . . ,Am,F = A j) as j moves across all
the pathways; this is the overall measure from the experimental predictions Π that
underlies pathway assessment, and can be applied whatever the chosen values of the
Pr(F = A j|A1, . . . ,Am).

HereΠ may include essentially any measures, such as test statistics or other sum-
maries of a statistical analysis of the experimental data. Different measures should
be modelled differently within the overall framework. Here, our example measures
are probabilities of differential expression. In designed experiments, πg will be a
posterior probability of differential expression of gene g related to an experimental
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intervention. In observational studies, πg will be a posterior probability of a non-
zero regression coefficient or loading on a latent factor in a sparse factor model of
expression data (West, 2003; Lucas et al., 2006; Seo et al., 2007; Carvalho et al.,
2008). So πg ∈ [0,1] and larger values indicate stronger association with F ; typi-
cally very many of the πg will be very small, while those for genes associated with
F will be larger.

9.1.1.2 Statistical Model

Focus on a single, generic biological pathway A = A1 and its reference gene list
A = A1, and consider relevant statistical models for the core component p(Π |A1, . . .,
Am,F = A j).

Model for data Π assuming known pathway membership of genes. We first
assume that πg, given an associated pathway A and its reference gene set A, is
independent of the other {πg}k �=g. Note that this does not assume lack of interaction
or co-regulation among genes; that dependence should already be accounted for in
the analysis that led to the Π . If F = A , then πg will likely be higher for g ∈ A
than for g /∈ A , suggesting models of the form

(πg|g ∈ A ,F = A ) ∼ f1(πg) and (πg|g /∈ A ,F = A ) ∼ f0(πg), (9.1.1)

where f0, f1 are densities on [0,1] with f1 favoring high values of πg and f0 favoring
lower values. A natural choice is beta densities: f1(π) ≡ f1(π|α1) = Be(α1,1) and
f0(π) ≡ f0(π|α0) = Be(1,α0) with α0,α1 > 1 (Figure 9.1(a)). This picture is con-
sistent with histograms of πg values generated in sparse factor analyses (e.g., Car-
valho et al., 2008; Wang et al., 2007-present); see Figure 9.1(b) as an example. We
have explored model robustness to the assumed form in other examples, including
simulation examples, and have no major concerns about the beta forms being overly
restrictive, though other forms will be relevant in analyses with other definitions of
Π . We use independent reference priors for the α parameters, viz p(αr) ∝ α−1

r for
1 < αr (r = 0,1).

Model for pathway membership of genes. We do not know which genes are in
A ; the reference gene set A provides data. If g ∈ A, that suggests g ∈ A although
g may be a false-positive in the published list. Also, reference gene lists are subject
to revision as new biological information arises, so genes g /∈ A may be members in
future; hence, there may be false-negatives, i.e., genes g ∈ A but g /∈ A.

Introduce indicators z1, . . . ,zp such that, when F = A , zg = 1 if g ∈ A , and 0
otherwise. Call zg the pathway membership indicator of gene g. We need probabili-
ties over the zg; A provides relevant information. Assume conditionally independent
Bernoulli models Pr(zg = 1|βg) = βg, so that marginalization of (9.1.1) with re-
spect to zg yields the implied prior data distribution as a mixture of f1(πg|α1) and
f0(πg|α0) weighted by βg and 1−βg; see Figure 9.1(a). To complete the model re-
quires priors for the βg, which we take as (βg|g ∈ A,F = A ) ∼ Be(φArA,φA(1−
rA)) and (βg|g /∈ A,F = A ) ∼ Be(φBrB,φB(1− rB)) with specified means rA,rB ∈
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FIGURE 9.1. (a) f (πg) is a mixture of f1(π|α1) = Be(α1,1) and f0(π|α0) = Be(1,α0); in this
example, f0(πg) is very close to f (πg). (b) Histogram of πg of thousands of genes from a real
expression data analysis.

(0,1) and φA,φB > 0. Marginalizing over the βg, we see that rA is the á priori true
positive probability for genes g ∈ A, while rB is the false negative probability for
g ∈ A . Specification of rA should depend on the expectation of the quality of refer-
ence gene sets. In a pathway gene set database, genes sets are curated from a variety
of sources. We adopt a generic view that a published gene set A is a fairly good rep-
resentation of the true pathway gene set A but allow for errors, so take rA relatively
large, e.g., 0.7. For rB, note that the number of genes in A, typically tens to a few
hundreds, will usually be small compared to the full gene list G , and a reasonable
value of rB should be at least less than the ratio of the number of signature genes
(genes with high probabilities of association with F ) to the total number of genes,
e.g., 0.005. The specification of rA and rB is empirical and to some extent allows
flexibility. The impact of rA and rB specification is demonstrated in an example be-
low. The φA and φB constrain the variation range of the prior for the βg around these
means, and relatively small values provide robustness.

Annotated databases are incomplete and error prone. We can explore this using
posterior pathway membership probabilities for each gene g, namely

π∗g = Pr(g ∈ A |Π ,A,F = A ), (9.1.2)

with respect to the pathway A . This is exemplified below. In any one example,
there may well be genes known to lie in a specific biological pathway but that are
not activated under a specific experimental condition. Such genes will be treated as
false-positive members of a reference gene set in our model; they may, of course,
appear differently under other experimental conditions.
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9.1.1.3 Marginal Likelihood for Pathway Assessment

We use α0:1, β1:p and z1:p to denote {α0,α1}, {β1, . . . ,βp} and {z1, . . . ,zp}, respec-
tively, extending the use of this concise notation to other quantities as needed. The
full model likelihood p(Π |A,F = A ) can be expressed as

p(Π |A,F = A )

=
∫
α0:1

∫
β1:p
∑
z1:p

L (α0:1,z1:p)
p

∏
g=1

p(zg|βg)p(βg|A,F = A )p(α0:1)dβ1:pdα0:1

(9.1.3)

with L (α0:1,z1:p) =∏p
g=1 f1(πg|α1)zg f0(πg|α0)1−zg . We can integrate analytically

over β1:p,α0:1 reducing the computation to summation over the 2p values z1:p; see
Section 9.1.5.1 where we derive

p(Π |A,F = A ) =∑
z1:p

p(Π ,z1:p|A,F = A ) (9.1.4)

and where the quantity p(Π ,z1:p|A,F = A ) can be evaluated at any chosen z1:p.
The sum above is a difficult numerical problem addressed in Section 9.1.2.2.

Another reduced form that is theoretically attractive but practically of little value
results from marginalization over z1:p and β1:p conditional on α0:1, namely

p(Π |A,F = A ) =
∫
α0:1

p(Π |α0:1,A,F = A )p(α0:1)dα0:1. (9.1.5)

The integrand here can be evaluated, but only practicably when p is small; see Sec-
tion 9.1.5.1.

9.1.2 Computation

9.1.2.1 MCMC Posterior Simulation

The following conditional distributions are immediate; in each, only the condition-
ing quantities required to specify the distribution are mentioned.

First, α0 and α1 are conditionally independent with truncated gamma condi-

tionals; specifically, the two distributions are Ga
(
α0|∑p

g=1(1 − zg),−∑p
g=1(1 −

zg) log(1−πg)
)

and Ga
(
α1|∑p

g=1 zg,−∑p
g=1 zg logπg

)
, subject to 1 <αr (r = 0 : 1).

Second, the βg are conditionally independent with beta distributions Be(ag,bg)
depending on zg. For g ∈ A, ag = zg +φArA and bg = (1−zg)+φA(1−rA); for g /∈ A,
ag = zg +φBrB and bg = (1− zg)+φB(1− rB).

Third, the zg are conditionally independent with probabilities on zg = 1 of
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ρg = βgα1πα1−1
g /

(
βgα1πα1−1

g +(1−βg)α0(1−πg)α0−1) .
The posterior pathway membership probability π∗g is the posterior mean of ρg.

Efficient code for this MCMC evidences generally fast mixing and rapid conver-
gence across many examples. The rather low dependence among the zg, induced by
lack of knowledge of the α0:1, suggests swift convergence is to be expected even
though p ≈ 20−25,000.

9.1.2.2 Marginal Likelihood Computation: General Strategy

A core methodological issue is the evaluation of the determining marginal likelihood
of (9.1.3), and sets of such quantities p(Π |A1, . . . ,Am,F = A j) in the practical con-
text of assessing evidence for and against F = A j for a number or many pathways
j = 1, . . . ,m.

In very small, unrealistic examples we can use quadrature methods to compare
with other approximations. We do this in the simulated example in Section 9.1.3,
simply applying direct quadrature to the two-dimensional integral form of (9.1.5).
Even with p very small, this method is limited since it requires evaluation of inte-
grands on the density scale and quickly runs into floating-point overflow problem.
Quadrature is simply not relevant for real applications.

The reduced version of (9.1.4) has a closed form but involves summing over
all 2p values of z1:p so that numerical approximations are needed. Since we use
MCMC, then methods of marginal likelihood computation using MCMC outputs are
attractive. Having experimented with multiple such methods (Newton and Raftery,
1994; Chib, 1995), all found to be inapplicable due to either the floating-point over-
flow problem or difficulties in proposing good density functions to approximate the
joint posterior distribution of model parameters, we adapted mean-field variational
methods (VM) (Jordan et al., 1999; Corduneanu and Bishop, 2001; McGrory and
Titterington, 2007). The VM approach naturally solves the floating-point overflow
problem by using a summation of logarithmic terms to approximate the log marginal
likelihood. Our studies confirm the utility of this approach, especially in this high-
dimensional context. A VM method yields a lower bound on the target value of the
marginal likelihood; our extensions include an upper bound so we can bracket the
actual value.

For any two densities qL(z1:p),qU (z1:p) with the same support as p(z1:p|Π ,A,F =
A ), manipulating Jensen’s inequality easily yields

L(qL) ≤ log(p(Π |A,F = A )) ≤U(qU ),

where, for any such density q(z1:p), the quantities

L(q) =∑
z1:p

q(z1:p) log[p(Π ,z1:p|A,F = A )/q(z1:p)] (9.1.6)

and
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U(q) =∑
z1:p

p(z1:p|Π ,A,F = A ) log[p(Π ,z1:p|A,F = A )/q(z1:p)] (9.1.7)

bound the log marginal likelihood; see Section 9.1.5.2 for technical details.
The VM concept is to choose parametric variational densities qL(z1:p) and

qU (z1:p) to optimize these bounds. If each depends on a free parameter that can
be varied, the computational problem is optimizing these variational parameters.
The closer a variational density is to p(z1:p|Π ,A,F = A ), the better will be the
bound. Mean-field VM methods use factorized variational densities. This is natural
here since the zg have low dependence under the posterior. Thus we use qL,qU of
the form

q(z1:p|γ1:p) =
p

∏
g=1
γzg

g (1− γg)1−zg , (9.1.8)

where the γ1:p are vectors of variational parameters to be chosen.

9.1.2.3 Marginal Likelihood Computation: A Variational Method

We refer to the implementation of the above ideas that rely on the MCMC analysis
as Monte Carlo variational approximation. Full details appear in Ji, Shen, and West
(2009); essential results for the PROPA model are noted here, with more details in
Section 9.1.5.2

Upper Bound Optimization. With qU of the form in (9.1.8), it is trivially seen
that the global minimum value of the upper bound in (9.1.7) is achieved at γ1:p =
z̄1:p = E(z1:p|Π ,A,F = A ), i.e., by setting the latent indicators z1:p equal to their
posterior means. These means are estimated at values z̄1:p based on the MCMC
output {zi

1:p, i = 1, . . . , I} and the Monte Carlo approximation to the optimal upper
bound is simply

Ū = I−1
I

∑
i=1

{log p(Π ,zi
1:p|A,F = A )− logq(zi

1:p|z̄1:p)}.

This is easily computed and, assuming MCMC convergence, Ū converges almost
surely to the true global minimum upper bound of the log marginal likelihood.

Lower Bound Optimization. Existing mean-field, lower bound variational meth-
ods typically build on the Monte Carlo EM algorithm (Celeux and Diebolt, 1992;
Chan and Ledolter, 1995). By combining with a stochastic approximation step, con-
vergence of a stochastic version of EM was established under mild conditions in
Delyon, Lavielle, and Moulines (1999). This inspired the novel variational method
(Ji, Shen, and West, 2009) that is applied here; full algorithmic details are in Section
9.1.5.3.

The global optimizing value of γ1:p satisfies the set of p equations fg(γ1:p) = 0,
where for each g = 1, . . . , p,
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fg(γ1:p) =∑
z1:p

(zg − γg) [1+ logq(z1:p|γ1:p)− log p(Π ,z1:p|A,F = A )] . (9.1.9)

An iterative procedure successively approximates the solution to these equations
using Monte Carlo and stochastic approximation; the former allows us to estimate
fg(γ1:p) by Monte Carlo over z1:p at any value of γ1:p, while the latter applies to
successively update estimates of the optimizing vector γ1:p. As detailed in Section
9.1.5, an iterative algorithm uses these ideas to define a sequence of γ1:p vectors that
converges with probability one to γ∗1:p satisfying fg(γ∗1:p) = 0, g = 1, ..., p; a finite
run of the algorithm provides an iterative approximation to this optimizing value.
By further Monte Carlo sampling zh

1:p ∼ q(z1:p|γ∗1:p), (h = 1, . . . ,H), we can then
also evaluate a consistent estimate of the optimal lower bound,

L̄ = H−1
I

∑
h=1

{log p(Π ,zh
1:p|A,F = A )− logq(zh

1:p|γ∗1:p)}. (9.1.10)

9.1.3 Evaluation and Illustrations
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FIGURE 9.2. (a) πg in the simulated data set with p = 18. Genes in reference set A j are genes
1, . . . , j for each j = 1, . . . ,17. (b) Log marginal likelihood for each of the 17 pathways A j .

A “Small” Simulated Example (p = 18,m = 17). In a synthetic example to fix
ideas and demonstrate the marginal likelihood approximation, association probabil-
ities on p = 18 genes (Figure 9.2) show that the first five genes are likely members
of F , several genes with very low πg are not likely to be in F , while four genes
with πg near 0.5 are uncertain. Consider m = 17 biological pathway reference gene
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sets, A1, . . . ,A17, constructed as in Figure 9.2(a); reference set A j is the first j genes
in the ordered list of 18 genes. Analyses use rA = 0.8, rB = 0.1 and φA = φB = 8.

The log marginal likelihood (shifted and scaled to [0,1] in Figure 9.2(b)) in-
creases over j = 1, . . . ,5 to a peak at j = 5, suggesting pathways A4 and A5 are
supported by the data Π . This is consistent with the simulation design in that the
first few genes are the signature genes of F , having high πg values. The marginal
likelihood across the remaining reference gene sets is also reasonable given the val-
ues of the πg. Figure 9.2(b) shows that the Monte Carlo variational upper and lower
bounds agree well with the exact marginal likelihood values and quadrature based
approximations using (9.1.5). In this “tiny p” example, exact and quadrature com-
putations are feasible, and demonstrate the accuracy of the upper and lower bound
approximations. The spread between upper and lower bounds are small on the log
likelihood scale (∼ 0.05−0.2) and certainly good enough to distinguish the differ-
ent pathways/models.
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FIGURE 9.3. Pathway A8 membership evidence for each gene g, in terms of log base 10 Bayes’
factors for:against g ∈ A8, in analysis of simulated data with p = 18.

The MCMC provides estimates of posterior pathway membership probabilities
π∗g of (9.1.2) to aid false-positive/false-negative assessments. Focus on pathway A8;
reference set A8 is exactly the first 8 genes. For each g and each reference gene set,
compute π∗g and convert to the corresponding evidence dB scale, i.e., the log base
10 Bayes’ factors on g ∈ A8 versus g /∈A8; see Figure 9.3. Genes in A8 but with low
πg, and genes not in A8 but with high πg, might be regarded as false positives and
false negatives, respectively. Gene g = 6, a member of gene set A8, has membership
evidence close to −20dB, strongly suggesting it is not a member of the true pathway
A8 (false positive). Gene 13 is not a member of A8, but it has membership evidence
greater than 10dB, which is substantial evidence that this gene is in fact a member
of A8 (false negative).

Marginal Likelihood Approximation with Real Data: “Large” p = 19,645. With
realistically large p, the convergence of the iterative lower bound optimization can
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be slow. A slight modification of the bounding approach to address this is a com-
promise strategy with a pseudo-optimal lower bound; specifically, a bound as in
(9.1.10) but now with γ∗1:p replaced by z̄1:p, the MCMC posterior mean of z1:p. This
uses the same variational density as in the optimal upper bound approximation. The
rationale is that, when the factorized density q is a good approximation of the poste-
rior for z1:p, the optimal variational densities for upper and lower bounding will be
similar; this has been seen in multiple examples. The pseudo-optimal lower bound is
always less than the optimal, but is massively more attractive computationally when
p is large.

We demonstrate this with real data on p = 19,645 genes and with m = 15 path-
ways whose reference gene sets come from the MSigDB C2 collection. The Π are
probabilities of association between genes and a gene expression signature repre-
senting genes related to the responses of human mammary epithelial cells to lac-
tic acidosis (Chen et al., 2008; Merl et al., 2009a) Analysis assumes rA = 0.7,
rB = 0.005, φA = 8, and φB = 3. Figure 9.4(a) shows upper and pseudo-optimal
lower bounds of log marginal likelihoods for the 15 pathway gene sets. The dis-
tances between pairs of bounds are clearly small enough for practical usage; see
Figure 9.4(b).
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FIGURE 9.4. (a) Upper and quasi-lower bounds of log marginal likelihoods for each pathway
j = 1 : m,m = 15 in study with p = 19,645 genes. (b) Upper minus lower bound for each pathway
j = 1 : 15.
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9.1.4 Applications to Hormonal Pathways in Breast Cancer

9.1.4.1 ER Pathway

About two-thirds of diagnosed breast cancers show over-expression of ER, the
estrogen-receptor gene. ER status (high/low) is a key prognostic factor in breast
cancer (Moggs and Orphanieds, 2001; Deroo and Korach, 2006). Our prior study of
153 primary breast tumor samples (Carvalho et al., 2008) records expression data
and protein assay-based ER+/− status from immunohistochemical (IHC) stain-
ing. Analysis using BFRM (Wang et al., 2007) generated association probabilities
Π = π1:p as well as the sign of association between expression and ER+/− status
for p = 8,764 genes (unique Entrez gene IDs). The πg, displayed in Figure 9.5(a),
show that a substantial number of genes apparently associate with the experimental
factor pathway F , here known to be ER related. Figure 9.5(b) shows PROPA up-
per and pseudo-optimal lower bounds on log marginal likelihoods for the m = 956
MSigDB pathway gene sets. For almost all the pathways, the distance between up-
per and lower bound is very small and hence the evidence is reliably evaluated.
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FIGURE 9.5. Breast cancer ER status study. (a) Histogram of association probabilities πg. (b) Log
marginal likelihood upper (◦) and lower (×) bounds for pathway gene lists j = 1, . . . ,956 sorted in
decreasing order; the line demarks the “top 20” pathways.

Table 9.1 summarizes the top 20 pathway gene sets. The first two are breast tu-
mor ER−/+ signatures defined by experimental microarray studies in Van’t Veer
et al. (2002), clearly validating the PROPA results. PROPA identifies several other
pathway gene sets with defined links to breast tumor ER status. Patients with ER−
tumors generally have poorer prognoses than those with ER+ tumors, and there are
several well-known risk-related signatures linked to this that involve intersecting
gene sets (Maynard et al., 1978; Van’t Veer et al., 2002); these are well-represented
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TABLE 9.1. Summary of top ER-related pathways identified by PROPA.

Rank Pathway Size Log(ML): UB Log(ML): LB UB-LB
1 BRCA ER Neg 692 1289.58 1289.15 0.43
2 BRCA ER Pos 380 1102.39 1101.81 0.58
3 Flechner Kidney Transplant Rej/Up 81 694.82 694.20 0.62
4 BRCA Prognosis Neg 69 684.14 683.41 0.73
5 Caries Pulp Up 186 680.36 679.93 0.43
6 Cancer Undifferentiated Meta Up 65 676.26 675.72 0.55
7 UVB NHEK3 C7 50 670.12 669.43 0.68
8 CIS XPC Up 131 666.99 666.30 0.69
9 Serum Fibroblast Cell cycle 83 665.70 665.10 0.60
10 Li Fetal VS WT Kidney DN 157 662.48 661.74 0.74
11 Vantveer Breast Outcome/Down 58 661.27 660.69 0.58
12 Frasor ER Up 29 661.21 660.70 0.50
13 Tarte Plasma Blastic 295 660.86 660.28 0.58
14 BRCA Prognosis Pos 26 657.90 657.28 0.62
15 IFNA HCMV 6hrs Up 52 657.72 657.22 0.50
16 Caries Pulp High Up 83 656.37 655.75 0.62
17 Lindstedt Dend 8h vs 48h Up 64 654.77 654.11 0.66
18 Vantverr Breast Outcome/Up 20 654.63 654.02 0.60
19 Zhan MM Molecular Classi Up 34 653.06 652.42 0.64
20 Becker Tamoxifen Resistant DN 48 652.40 651.72 0.68
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FIGURE 9.6. Breast cancer ER status study. Histogram of πg for g ∈ A1 of Table 9.1. Gray/white
indicates genes whose expression levels are positively/negatively correlated with ER status, respec-
tively.
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among the highly scoring pathway gene sets, including A4, A11, A14 and A18 in Table
9.1. Further, ER− breast tumors tend to be less well differentiated that ER+s, con-
sistent with the novel PROPA identification of the undifferentiated cancer signature
A6. Figure 9.6 shows histogram of the πg for g ∈ A1. Genes in A1 have expression
associations with ER that are generally concordant.

9.1.4.2 ErbB2 Pathway

ErbB2 is an epidermal growth factor receptor for which high levels of activity rep-
resents a substantial cancer risk factor. About 20-25% of breast cancers have over-
expression of ErbB2, primarily due to gene amplification; this is the major cause of
ErbB2 pathway deregulation in breast cancers (Ménard et al., 2003; Badache and
Gonçalves, 2006). Immunohistochemistry assays of protein levels measure ErbB2
status (+/−) on 146 of the primary breast tumor samples in Carvalho et al. (2008)
together with expression data. Analysis using Bayesian factor regression modelling
method (BFRM) (Wang et al., 2007) generated posterior probabilities Π = π1:p, as
well as the sign of association between gene expression and ErbB2 status for the set
of p = 8,764 unique genes corresponding to Entrez gene IDs. The πg are displayed
in Figure 9.7(a) and show rather few genes are associated with the experimental
factor pathway F , here known to be the ErbB2 related. We re-curated the MSigDB
gene lists to align with gene names based on the Entrez human gene database. Since
the database does not include signatures explicitly linked to ErbB2, we curated two
additional gene sets from the literature: first, a molecular portrait set of several
genes in chromosome 17 linked to ErbB2 over-expression related to amplification
(Perou et al., 2000; Sørlie et al., 2001); second, genes differentially expressed with-
versus-without over-expression of the ErbB2 protein measured in data from tumors
and cell lines, from Bertucci et al. (2004).

PROPA generated upper and pseudo-optimal lower bounds on log marginal like-
lihoods for each of the 958 gene sets appear in Figure 9.7(b) The decrease in
marginal likelihoods notably diminishes after the first four or five pathways, sug-
gesting stronger evidence of association between these few pathways and ErbB2.
These pathways (Table 9.2) include the two ErbB2 signatures, ranked 1 and 4. These
two curated gene sets are also identified by GSEA in the top “up-regulated” list but
are ranked 4 and 6 by GSEA. Random set-based methods just fail to identify these
two gene sets. The small numbers of genes in these sets limits GSEA and random
set methods. In contrast, PROPA generally demonstrates good sensitivity and speci-
ficity when transcriptional evidence of phenotype-pathway association is relatively
weak in the sense of small numbers of genes in the reference gene lists.

Table 9.3 gives information on the ErbB2 molecular portrait reference gene set
A1. This includes pathway membership inference via the π∗g values and their corre-
sponding log Bayes’ factors as well as the initial πg. Six genes in the chromosomal
regions 17q11-q12 and 17q21 have relatively high probabilities πg of positive asso-
ciation with the experimental breast tumor ErbB2 factor pathway F . The posterior
membership probabilities of these genes confirm their membership in the molecular
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FIGURE 9.7. Breast cancer ErbB2 status study. (a) Histogram of association probabilities πg. (b)
Log marginal likelihood upper (◦) and lower bounds (×); pathways are sorted in order of decreas-
ing upper bound and the vertical line indicates the top 6 pathways.

TABLE 9.2. Summary of top ErbB2-related pathways identified by PROPA.

Rank Pathway Size Log(ML): UB Log(ML): LB UB-LB
1 ERBB2 overexpression cluster genes 9 3026.53 3026.29 0.24
2 Human Tissue Kidney 11 3014.87 3012.41 2.46
3 Croonquist IL6 Starve Up 31 3012.64 3012.59 0.05
4 ERBB2 gene expression signature 24 3009.77 3009.73 0.04
5 HDACI Colon Colon Cur16HRS DN 8 3008.42 3007.66 0.76
6 MMS Human Lymph Low 4HRS DN 16 3007.84 3007.81 0.03

TABLE 9.3. Genes in the ErbB2 molecular portrait gene set.

g Symbol Description Gene ID CHR. Loc. πg π∗g Log(BF) Corr.
1 STARD3 START domain containing 3 10948 17q11-q12 0.99 1.00 10.07 +
2 GRB7 growth factor receptor-bound 2886 17q12 0.99 1.00 10.07 +

protein 7
3 THRAP4 thyroid hormone receptor 9862 17q21.1 0.96 0.99 6.09 +

associated protein 4
4 ERBB2 v-erb-b2 oncogene homolog 2 2064 17q11.2-q12 0.94 0.99 4.34 +
5 TRAF4 TNF receptor-associated factor 4 9618 17q11-q12 0.90 0.92 1.60 +
6 FLOT2 flotillin 2 2319 17q11-q12 0.88 0.72 0.12 +
7 PCGF2 polycomb group ring finger 2 7703 17q12 0.57 0.00 −16.19 +
8 MMP15 matrix metallopeptidase 15 4324 16q13-q21 0.34 0.00 −30.78 +
9 SMARCE1 SWI/SNF related regulator 6605 17q21.2 0.21 0.00 −42.19 −

of chromatin
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portrait biological pathway A1. The other three genes with relatively low associ-
ation probabilities are inferred by PROPA as false positive genes. Notably, gene
MMP15 is located at 16q13-q21. It was included in the ErbB2 portrait gene set by a
gene clustering analysis based on microarray data; we conclude that MMP15 should
not be designated a member of the ErbB2 pathway. Several others genes not listed
(G6PC, ERAL1, OMG, RPL19, CRKRS) are located in the regions 17q11-q12 and
17q21, and each has positive correlation with ErbB2 status. The Bayes’ factors for
pathway membership on these genes are greater than 34 dBs, indicating very strong
if not decisive evidence for these genes being false negatives, i.e., they are members
of the ErbB2 pathway.

9.1.5 Theoretical and Algorithmic Details

9.1.5.1 PROPA Model Marginal Likelihood

Refer to the marginal likelihood function shown in (9.1.3). Integrating out β1:p and
α0:1 results in

p(Π ,z1:p|A,F = A )

= c(Π ,z1:p)
p

∏
g=1

[( rA

πg

)zg
( 1− rA

1−πg

)1−zg
]I(g∈A)[( rB

πg

)zg
( 1− rB

1−πg

)1−zg
]I(g/∈A)

,

where c(Π ,z1:p) = γ1:p(ν1)γ1:p(ν0)λ−ν1
1 λ−ν0

0 (1 −Ψ(1;ν0,λ0))(1 −Ψ(1;ν1,λ1))

with ν1 =
p
∑

g=1
zg, ν0 =

p
∑

g=1
(1−zg), λ1 =−

p
∑

g=1
(zg logπg), λ0 =−

p
∑

g=1
(1−zg) log(1−

πg), and Ψ are gamma cdfs. Then the marginal likelihood is p(Π |A,F = A ) =
∑z1:p

p(Π ,z1:p|A,F = A ), where each summand can be evaluated.
The alternative expression derived by summation over the z1:p and integration

over β1:p conditional on α0:1 is

p(Π |A,F = A ) =
∫
α0:1

p(Π |α0:1,A,F = A )p(α0:1)dα0:1,

where p(Π |α0:1,A,F = A ) =∏p
g=1 p(πg|α0:1,A,F = A ). The terms here are

p(πg|α0:1,A,F = A ) =

{
rA f1(πg|α1)+(1− rA) f0(πg|α0), g ∈ A,

rB f1(πg|α1)+(1− rB) f0(πg|α0), g /∈ A.

9.1.5.2 Marginal Likelihood Upper and Lower Bound Theory

For model M and data D, marginal likelihood in a general form is
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p(D|M) =
∫
Θ

p(θ ,D|M)dθ ,

with θ = {θ1, . . . ,θK} ∈Θ representing model parameters. In PROPA, data D is Π ,
model M is specified with A,F = A , and parameters are z1:p in the reduced form.

For any density function q(θ ;γ) parameterized by γ = {γ1, . . . ,γJ} ∈ Γ and with
the same support as the posterior for θ , p(θ |D,M), Jensen’s inequality

log p(D|M) ≥
∫
Θ

q(θ ;γ) log
p(θ ,D|M)

q(θ ;γ)
dθ

provides a lower bound for log marginal likelihood. Maximization of this lower
bound corresponds to minimization of the Kullback-Leibler divergence of model
parameter posterior density p(θ |D,M) from the variational density q(θ ;γ).

If q(θ ;γ) = p(θ |D,M), we can rewrite

log p(D|M) =
∫
Θ

p(θ |D,M) log p(D,θ |M)dθ −
∫
Θ

p(θ |D,M) log p(θ |D,M)dθ .

Combining this expression with Gibbs’ inequality

−
∫
Θ

p(θ |D,M) log p(θ |D,M)dθ ≤−
∫
Θ

p(θ |D,M) logq(θ ;γ)dθ

leads to

log p(D|M) ≤
∫
Θ

p(θ |D,M) log
p(θ ,D|M)

q(θ ;γ)
dθ ,

which provides an upper bound on the log marginal likelihood.

9.1.5.3 Monte Carlo Variational Algorithm

The Monte Carlo variational method using stochastic approximation to generate es-
timates of the lower bound of marginal likelihoods in the PROPA model has the key
steps below. The resulting algorithm is easy to implement, and its convergence can
be guaranteed as described, in more general contexts, in Ji, Shen, and West (2009).
In essentials here, it is first easy to see that the global, lower bound optimizing value
of γ1:p satisfies fg(γ1:p) = 0, g = 1, . . . , p for the function defined in (9.1.9). The
method is based on the observations that:

1. fg(γ1:p), g = 1, . . . , p is an expectation with respect to z1:p ∼ q(z1:p|γ1:p). Monte
Carlo averaging can efficiently estimate this expectation at any value of γ1:p;
in our model this simply involves generating repeat Monte Carlo sample of p
independent Bernoulli variates; and

2. the resulting Monte Carlo estimate of fg(γ1:p), g = 1, . . . , p can be used to de-
rive updated values of γ1:p using stochastic approximation (Robbins and Monro,
1951).
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The algorithmic implementation of these ideas is as follows:

• Begin at iterate t = 0 with values of γ1:p = z̄1:p, the approximate posterior means
from the MCMC posterior sample.

• At any later iterate t ≥ 1 based on current values γ(t−1)
1:p , generate a random sample

of z1:p from q(z1:p|γ(t−1)
1:p );

• Compute the implied Monte Carlo estimate of f (t−1)
g (γ(t−1)

1:p ), g = 1, . . . , p replac-
ing the sum in (9.1.9) with the Monte Carlo average over the samples of z1:p;

• Update via the stochastic approximation form

γ(t)
1:p = γ(t−1)

1:p + s(t) f (t−1)
1:p (γ(t−1)

1:p ),

where s(t) is a chosen sequence of weights whose sum over t ≥ 1 diverges but for
which the sum of squared values is finite, e.g., s(t) = c/t for some constant c > 0.

This is an example of a general algorithm for which it can be shown (Robbins and

Monro, 1951; Ji, Shen, and West, 2009) that γ(t)
1:p converges with probability one to

γ∗1:p satisfying fg(γ∗1:p) = 0, g = 1, . . . , p, providing an iterative approximation of
the lower bound optimizing value. Terminate the iterates at some finite step assum-

ing γ∗1:p ≈ γ(t)
1:p, draw a final, large Monte Carlo sample zh

1:p, (i = 1, . . . ,H), from
q(z1:p|γ∗1:p), and then evaluate the Monte Carlo estimate of lower bound

L̄ = H−1
I

∑
h=1

{log p(Π ,zh
1:p|A,F = A )− logq(zh

1:p|γ∗1:p)}.

This is a consistent estimate of the optimal lower bound assuming the stochastic
approximation estimate has converged (Ji, Shen, and West, 2009).

9.1.6 Summary Comments

PROPA is a formal, fully Bayesian framework for matching experimental signatures
of structure or outcomes in gene expression — represented in terms of weighted
gene lists — to multiple biological pathway gene sets from curated databases. In the
setting here, gene weights are explicit gene-factor phenotype association probabil-
ities. The analysis delivers estimated marginal likelihood values over pathways for
each factor phenotype, allowing quantitative assessment and ranking of pathways
putatively linked to the phenotype as well as gene-specific posterior membership
probabilities. We develop a novel Monte Carlo variational method for estimating
marginal likelihoods for model comparisons, and evaluate and illustrate the model
with simulated and cancer genomic data.

For the future, there is a key need for improved quality of biological pathway
databases, an area that PROPA can contribute to as we have exemplified. Open
methodological issues include specification of model priors across pathways, and



9.2 Bayesian Methods for Network-Structured Genomics Data 303

the use of alternative, multiple numerical summaries of the relationships between
genes and experimental phenotypes. Advances in these areas will enhance the con-
tributions of Bayesian reasoning in biological pathway studies. Software for prac-
titioners is also key; current PROPA code, with examples, is freely available at the
URL below.
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Software: http://www.stat.duke.edu/research/software/west/propa

9.2 Bayesian Methods for Network-Structured Genomics Data

Stefano Monni and Hongzhe Li

One of the main problems in biological research is the identification of genetic vari-
ants such as single nucleotide polymorphisms (SNPs) or gene expression levels that
are responsible for a clinical phenotype such as disease status. The problem can in
general be formulated as a variable selection problem for regression models. To deal
with high-dimensionality, many statistical methods have been developed, including
Lasso (Tibshirani, 1996) and its many extensions such as fused lasso (Tibshirani
et al., 2005), adaptive lasso (Zou, 2006), group lasso (Yuan and Lin, 2006), SCAD
(Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), LARS (Efron et al.,
2004), and the Dantzig selector (Candes and Tao, 2007). These methods are mainly
based on the idea of regularization. Alternatively, variable selection has also been
developed and extensively studied in a Bayesian framework, especially for linear
or generalized linear models (George and McCulloch, 1993, 1997; George, 2000).
Hans, Dobra, and West (2007) developed shotgun stochastic search in regression
with many predictors in order to make the Bayesian variable selection procedures
applicable and feasible to the analysis of genomic data. Bayesian formulations of
some regularized procedures are also available: a Bayesian Lasso, for example, has
been developed recently in (Park and Casella, 2008). Many of these methods have
also been employed to analyze genomic data, especially microarray gene expression
data in order to identify the genes that are related to a certain clinical or biological
outcome.

One limitation of all these popular approaches is that often the methods are
developed purely from computational or algorithmic points without utilizing any
prior biological knowledge or information and thus important structures of the data
may be ignored. For many complex diseases, especially for cancers, a wealth of
biological knowledge (e.g., pathway information) is available as a result of many
years of intensive biomedical research. This large body of information is now pri-

http://www.stat.duke.edu/research/software/west/propa
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marily stored in databases on different aspects of biological systems. Some well-
known pathway databases include KEGG, Reactome (www.reactome.org), Bio-
Carta (www.biocarta.com), and BioCyc (www.biocyc.org). Of particular interest
are gene regulatory pathways that provide regulatory relationships between genes
or gene products. These pathways are often interconnected and form a web of net-
works, which can then be combined and represented as a graph, the vertices of which
are genes or gene products and the edges representations of inter-gene regulatory
relationships of some kind. This information is a useful supplement to the standard
numerical data collected from an experiment. Incorporating the information from
these graphs into a data analysis is a non-trivial task, which is generating increasing
interest. In genome-wide association studies, the SNPs are often in linkage disequi-
librium (LD) and are therefore dependent. Li, Wei, and Maris (2009) introduced the
idea of weighted LD graphs based on the pair-wise r2 statistics between the SNPs.
The problem we encounter is that the predictors are constrained on a graph and the
challenge we face is to incorporate these constraints in the regression analysis. Mo-
tivated by a Gaussian Markov random field prior on the regression coefficients, Li
and Li (2008) proposed a network-constrained regularization procedure to incorpo-
rate the network-structure information into the analysis, and demonstrated gain in
sensitivity in identifying the relevant genes. In the Bayesian context, Li and Zhang
(2008) proposed a variable selection for Gaussian linear models with structured co-
variates using an Ising prior and a Gibbs sampling. Tai and Pan (2009) put forward a
similar approach using several different Markov random field priors. In this section
we consider a Bayesian variable selection method that takes account of the fact that
the covariates are measured on a graph for both linear Gaussian and probit models.
Because prior distributions model our a priori knowledge of the data, the network
structure is introduced in a very natural way at the level of prior probabilities. We
consider here an Ising prior, as in Li and Zhang (2008). An Ising model was also
used for network-based analysis in Wei and Li (2007). In addition, we implement an
MCMC sampler for estimating the posterior probabilities that a variable is selected
that is based on the Wolff algorithm (Wolff, 1989). This algorithm was introduced
to eliminate the critical slowing down of local updating schemes in Ising models,
and is extremely natural in this problem, as we hope will be clear.

The rest of the section is organized as follows. In Section 9.2.1, we formulate the
problem in the context of Bayesian variable selection and describe the models, the
prior probability distributions, and the algorithm used for inference. In Section 9.2.2,
we report the results of some applications of the method to simulated data sets and
to a real data set. Finally, we make some comments and present some discussions.

9.2.1 Bayesian Variable Selection with a Markov Random Field
Prior

From a statistics viewpoint, we are interested in the problem of Bayesian variable
selection in the case in which the data enjoy a graphical representation. Namely,
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variables have pairwise relations, which are represented as edges in a graph whose
nodes represent the variables. We assume the network to be simple and undirected,
i.e., that the relations are among pair of distinct variables and are symmetric (if the
variable i is related to j, then j is related to i). If one is able to assess the relative
strength of the pairwise interactions, one can furnish the edges with a quantitative
label (a weight) that measures such strengths. When such an assessment is not pos-
sible, the only information an edge encodes is the existence of the interactions. Both
situations are possible and will be taken into account in our model.

To fix notation, let X = (X1, . . . ,Xp) be the vector of p-covariates and Y the bi-
nary or continuous outcome. Each variable is measured on N samples. We denote by
Y = (y1, . . . ,yN)T the vector of responses, by X = (xi j) the N × p matrix of covari-
ate values, and by xT

i = (xi1, . . . ,xip), with the super-script T being transposition, the
ith row of the covariate matrix, that is, the values of the covariates for the ith sam-
ple. Finally, we let (Gi j) be the adjacency matrix of the network. For unweighted
networks

Gi j =
{

1 ifXi andXj arerelated, i, j = 1, . . . , p,
0 otherwise.

The assumption that the network is simple and undirected is tantamount to (Gi j)
being symmetric and having zeros along the diagonal.

In our approach the network structure will be taken into consideration in the
choice of prior distributions and in the Markov chain used for the inference. The rest
of the formalism is quite common, and will be sketched here to make the exposition
self-contained. We first describe the models used to relate the outcome Y to the
covariates when Y is binary or continuous. We then detail the inferential strategy.

9.2.1.1 Likelihood and Prior Distributions

Binary outcomes can be modeled in many ways. Here, we consider a probit model.
This choice allows us to write marginalized quantities in a manageable form. In this
model, the responses are assumed to be independent samples of Bernoulli distribu-
tions

Yi|β ,X ∼ Bernoulli(μi) i = 1, . . . ,N. (9.2.1)

The probability μi of success (yi = 1) is related to a linear combination of the co-
variates (linear predictor) by the following relation:

μi =Φ(xT
i β ),

where Φ is the cumulative distribution function of the standard normal distribution.
Alternatively, if the outcome is continuous, we consider instead a Gaussian linear
model

Yi = yi|β ,X,σ2 ∼ N(xT
i β ,σ2I). (9.2.2)
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We assume that some predictors have negligible coefficients β , which will then
be considered zero. Each model will thus be labeled by a vector of latent binary
variables γ = (γ1, . . . ,γp)T , with each component γi being 1 (0) if the corresponding
variable Xi is (not) present in the model: namely, γi = 0 if and only if βi = 0. Ac-
cordingly, we denote by pγ =∑i γi the number of variables, by Xγ the matrix N× pγ
obtained from X by removing any column i such that γi = 0. We leave explicit the
intercept β0 in the linear predictor so that Xγ will in fact be the N × (1+ pγ) matrix
of covariates, with the first column being a vector of 1, with an abuse of notation.

The expressions (9.2.1) and (9.2.2) are the likelihood functions for our models,
which share the parameters β . The normal model has the additional parameter σ2,
the residual variance.

We now specify the prior distributions. For the regression coefficients, we choose
the commonly used prior

βγ |γ ∼ N(mγ ,Σγ), (9.2.3)

where mγ is the mean and Σγ is the covariance matrix. The prior distribution of
the parameters γ will instead be non-standard. Indeed, the γi are generally chosen
independent, e.g. samples from a multivariate Bernoulli distribution, with probabil-
ities wi = P(γi = 1) either predetermined or (usually Beta) random samples. Here,
instead, we do not make the latter assumption as we want to take account of the
network structure. This is the first difference with the usually proposed Bayesian
variable selection models. Namely, we want a probability measure that enjoys the
Markov property, that is, we assume the conditional probability that a variable i is
in the model to depend only on its neighbors. In addition, we impose the stronger
requirement that the probability that a variable is selected be greater if its neighbors
are also selected. These conditions are satisfied by the following distribution

π(γ|J) ∝ exp
{
∑
i< j

Gi jδ (γi,γ j)Ji j

}
·ρ−∑i γi , (9.2.4)

where δ is the Kronecker delta, ρ and Ji j ≥ 0 are non-negative real numbers. The
omitted normalization constant is the sum over all γ configurations. One may have
recognized the form of the prior (9.2.4) as defining an Ising model. The parameter
ρ is chosen greater than one so as to penalize large models. As for the interaction
terms Ji j, the simplest model is that with all set equal to a constant J0. If the network
is a weighted network, Ji j can be chosen equal to the weights. A particular interest-
ing case is that in which the correlation structure of the covariates is used to define
J: Ji j ∝

∣∣Corr(Xi,Xj)
∣∣. With this choice, variables that are linked in the network are

a priori forced to be simultaneously inside the model (or outside the model) with a
probability that is higher for variables that are more highly correlated. It would also
be interesting to consider the case where Ji j are random samples from a distribu-
tion π(J) (that is, a random Ising model). There are some computational difficulties
associated with this situation. For example, the dependence of the normalization
constant of the prior (9.2.4) on J makes it difficult to find a prior distribution that
leads to a conditional distribution completely available in its analytic form.
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9.2.1.2 Posterior Distributions

Once the likelihood and the prior distributions are specified, we can apply the Bayes’
formula to obtain the posterior probability. Since the main goal of our analysis is to
determine which variables enter the model, we can do away with the sampling of
the regression coefficients, and average over them to compute marginalized pos-
terior probabilities. For continuous responses, we use the following values for the
parameters of the prior distribution (9.2.3) of the regression coefficients

mγ = 0, Σγ = τσ2(XT
γ Xγ +λ Iγ)−1, (9.2.5)

and assume the variance σ2 to be a random variable distributed according to the law

π(σ2) ∝
1
σ2 .

The prior for the regression coefficients with parameters (9.2.5) reduces to that of
Smith and Kohn (1996) when λ = 0, which is related to Zellner’s g-prior (Zellner,
1986). We fix τ = N. For possible implications of the values of τ in model selection,
we refer the reader to Chipman, George, and McCulloch (2001). The constant λ
in the covariance matrix is introduced so that Lγ can be computed even when the
number of selected variables pγ is larger than the sample size N.

With these choices, the posterior distribution is

p(γ,J|Y) ∝ p(Y|γ,J,X)π(γ|J),

where

p(Y|γ,J,X) =
∫

dσ2dβ p(Y|γ,β ,J,X,σ2)π(σ2)π(βγ |γ)

∝ (Y T LγY )−N/2 1√
detRγ

,

with Lγ and Rγ being the matrices

Lγ = I − τ
τ+1

Xγ

(
XT
γ Xγ +

λ
τ+1

I

)−1

XT
γ ,

and
Rγ = I + τXT

γ Xγ
(
XT
γ Xγ +λ I

)−1
.

For the binary case, we follow Albert and Chib (1993) and introduce N Gaussian
latent variables Zi i = 1, . . . ,N in terms of which the responses Y are recovered via
the relation: Yi = I(Zi > 0), with I being the indicator function. As a consequence,
one now needs to consider the joint posterior probability of the parameters of the
model and of the latent variables, which is
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p(Z,β ,γ,J|Y) ∝
N

∏
i=1

f (Yi|Zi) f (Zi|βγ ,γ)π(βγ |γ)π(γ|J)

with

f (Zi|βγ ,γ) =
1√
2π

exp
{− 1

2
(Zi −xi

T
γ β )2}, (9.2.6)

and
f (Yi|Zi) = P(Yi = yi|Zi) = I(zi > 0)δ (yi,1)+ I(zi ≤ 0)δ (yi,0).

The marginalized joint distribution of γ and Z

p(Z,γ,J|Y) = p(Z|γ,J,Y)π(γ|J)

is expressed in term of the marginalized distribution of Z, which we now compute.
Choosing the values (9.2.5), with σ2 = 1, for the parameters of the prior distribution
(9.2.3) of the regression coefficients, we have

p(Z|γ,Y,J)

∝
∫ N

∏
i=1

f (Yi|Zi) f (Zi|βγ ,γ)π(βγ |γ)dβγ

∝
exp{− 1

2 ZT LγZ}√
detRγ

N

∏
i=1

{
I(zi > 0)δ (yi,1)+ I(zi ≤ 0)δ (yi,0)

}
, (9.2.7)

with the matrices Lγ and Rγ as above.

9.2.1.3 Markov Chain Monte Carlo Inference

We have determined the marginalized posterior probabilities up to a normalizing
constant, which can not be computed. To deal with this problem and identify high-
probability models, we consider a Metropolis algorithm for γ . In the binary case,
we additionally draw Z from the conditional distribution which can be read out
from (9.2.7). It is in the Metropolis algorithm where we make use of the network
structure. Namely, we apply the algorithm devised by Wolff (1989). We randomly
select a variable, i, and construct a cluster of nodes Cl(i) around it iteratively and
stochastically. Each neighbor j of each node k in the cluster is added to the cluster
with probability pk j = Gk jδ (γk,γ j)λk j. The cluster Cl(i) initially contains only the
vertex i and is iteratively grown until no neighbor is available to be added to the
cluster. Cl(i) is therefore composed of nodes that have all the same gamma values
as i. Each proposed move is γ → γ ′ with

γ ′k =
{
γ ′k +1 mod 2 ifk ∈ Cl(i)
γ ′k otherwise.
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It is clear that if the randomly chosen variable i has no neighbors, it is the only one
that is added to (if γi = 0) or removed from (if γi = 0) the present model to obtain the
proposed model. In our implementation, we alternate a proposal to add variables to
the model with a proposal to remove variables from it. The proposed configuration
γ ′ is accepted with probability F(z) = min{1,z}, where

z =
p(Z|γ ′,J,Y)
p(Z|γ,J,Y)

·ρ−∑i(γ ′i−γi) (9.2.8)

for discrete Y, and

z =
p(Y|γ ′,J,X)
p(Y|γ,J,X)

·ρ−∑i(γ ′i−γi) (9.2.9)

for continuous Y. For the above relations (9.2.8, 9.2.9) to hold true, one must choose
the proposal probability λi j = 1− exp(−Ji j) because of equation (9.2.4) and the
detailed balance condition. For vanishing values of Ji j the algorithm reduces to a
single-variable updating, as in this case the network is effectively a collection of
isolated vertices. Larger values of Ji j favor larger clusters, and for sufficiently large
values, variables in the same connected component of the network will have the
same values of γ . The parameter ρ instead discourages large models. Thus, the
choice of J and the choice of ρ affect the realizations of the model. When the net-
work is very complex, it may seem preferable to stop the construction of the cluster
Cl(i) about the randomly selected variable i to include only its neighbors up to some
distance. For example, one can add to the cluster only the nearest neighbors j of i
with probability λi j = 1− exp(−Ji j) without iterating this procedure any further. In
this case, the equations (9.2.8) and (9.2.9) do not hold true anymore. Indeed, the first
factor of the prior (9.2.4) would give a contribution to the ratios z that would only be
partially canceled by the kernel of the proposed move. Ideally, and more naturally,
the same goal could be reached by modelling J with a distribution that decreases
rapidly with the distance.

The advantage of this collective updating algorithm over single updating algo-
rithms is that very few steps are generally necessary to go from one configuration
to an independent one. The Wolff algorithm can be viewed as a one-cluster variant
of the Swendsen-Wang algorithm (Swendsen and Wang, 1987), which was applied
in variable selection in Nott and Green (2004), and has the advantage of being more
easily implemented.

9.2.2 Numerical Examples

We present in this subsection some applications of the method to simulated and real
data.
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9.2.2.1 Simulated Regulatory Network

FIGURE 9.8. Tree-structured network used for the first simulated data sets. Rectangular nodes
represent the relevant variables.

We have considered a simulation with p = 399 covariates, one continuous out-
come Y , and the network represented in Figure 9.8. The rectangular nodes represent
the variables entering the simulated model, i.e., the variables that are related to the
response. The regression coefficients were assigned values according to two differ-
ent schemes. The assignment was completely random in a first set of simulations,
with values drawn uniformly in the interval I = [−2,−0.5]∪ [0.5,2]. In a second set
of simulations, the values were chosen in the same interval I, but constrained in such
a way that the top node in each group of defining variables had larger values than the
rest. For both simulations, the variables X were drawn from a multivariate normal
distribution with variance-covariance matrix Corr(Xi,Xj) = 0.3|i− j| + Gi j0.2|i− j|.
This choice of variance-covariance matrix insures that neighboring variables are a
bit more correlated than non-neighboring variables, although the added correlation
may be very small. The outcomes were sampled from a normal distribution cen-
tered about the linear predictor and with variance σ2 such that the noise-to-signal
ratio (NSR) for the data had values 0.1, 0.3, 0.4, 0.5, 1. We present the results of
runs carried out using one of the data sets simulated in one of the two simulation
schemes. Similar conclusions are valid for the other data. As one can expect, the
lower the noise-to-signal ratio, the easier it is to select the true model. In the easi-
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est case NSR = 0.1, all variables were selected but two (variable 300 and variable
302), and two false positives were identified using as a criterion that the posterior
probability that a variable i is in the model, P(γi = 1), is greater than 0.5. Increasing
the latter value to 0.75, the two false positives disappear. The same results are ob-
tained in this case if the network structure is ignored, viz. if one considers a network
of isolated vertices. For NSR = 1, which is the hardest case, only one variable is
selected (variable 302) when no network structure is used, while the network helps
select few other variables, but at the same time some false positives. This is a pat-
tern that was verified for other values of the noise-to-signal ratio as well: employing
the network structure detects more variables of the true model at the expense of
introducing some false positives.

TABLE 9.4. Results of simulations using the network represented in Figure 9.8 or without using
the network structure for two different noise-to-signal ratios (NSR).

NSR = 0.4 NSR = 0.3
with network 8, 16, 17, 32, 33, 116 8, 16, 32, 116, 132

132, 301, 303 164, 300, 301, 302
(356) (90,131,138, 168,261,298)

without network 8, 16, 17, 32, 116 8, 16, 132, 301
132, 301 (122, 322) (83)

Table 9.4 summarizes the results for NSR = 0.4 and NSR = 0.3. In Table 9.4,
the true model consists of variables 8,16,17,32− 35,64− 71,116,132,133,164−
167,300−303 and the variables listed have a posterior probability of being present
in the model greater than or equal to 0.5. Figure 9.9 shows the plots of the true
positive rate versus the false positive rate for four values of NSR, which give further
illustration of the advantage of employing the network structure. We observed that
in general the areas under the ROC curves are higher when the network structures
are utilized in the prior distribution and in the MCMC inferences.

9.2.2.2 Simulation Based on a KEGG Regulatory Network

We also considered a data set with a discrete outcome and a more complicated net-
work, with p = 400 nodes, which is represented, with the exception of some isolated
nodes, in Figure 9.10. This network is a subset of a real KEGG network (Kanehisa
and Goto, 2002) that was used in Wei and Li (2007, 2008). We sampled the cou-
pling J for each edge from an exponential distribution, and, starting from a random
assignment of values, we decided if a variable was in the model or not using the
conditional distributions obtained from (9.2.4)
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FIGURE 9.9. Regulatory network (tree) example. True positive rates vs. false positive rates for
different values of the noise-to-signal ratio (NSR), using the network structure (solid lines) and
without using the network structure (dashed lines).

P(γi = 1| · · ·) = K · exp
{
∑
j �=i

Gi jδ (γ j,1)Ji j

}
ρ−1

P(γi = 0| · · ·) = K · exp
{
∑
j �=i

Gi jδ (γ j,0)Ji j

}

with K−1 = exp{∑ j �=i Gi jδ (γ j,1)Ji j}ρ−1 +exp{∑ j �=1 Gi jδ (γ j,0)Ji j}. The variables
selected are depicted as black nodes in Figure 9.10. We then sampled Xik from a
normal distribution with variance-covariance matrix Cov(Xi,Xj) = Gi j/2, i �= j for
k = 1, . . . ,N = 200, and β , from a uniform distribution in the interval [−5,−2]∪
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[2,5], rather than take them from a multi-variate distribution (see (9.2.3)). Finally,
for each i, we drew Zi from (9.2.6) and took as Yi its sign.

The variables identified by the algorithm are the square and rectangular nodes in
Figure 9.10. The two shapes refer to two values of the posterior probabilities used
as the criteria for identifying the selected variables, with the rectangles referring
to a posterior probability of at least 0.5 and the squares of at least 0.4. We note
that all the variables in the models that are isolated nodes have been omitted from
Figure 9.10. Three of these variables entered the simulated models and one was
correctly identified with a posterior probability greater than 0.5. Other runs gave
similar results, with some variations in the variables selected in each true cluster.

FIGURE 9.10. A subset of the KEGG network used for the second simulation. The black nodes are
the relevant variables. Rectangles and squares indicate the selected variables based on a posterior
probability of 0.5 and 0.4 or greater, respectively.

9.2.2.3 Application to Real Data

Aging of human brain is one of the most complex biological processes. It is a cause
of cognitive decline in the elderly and a major risk factor in age-based degenerative
diseases such as Alzheimer’s. For this reason, uncovering the genetic underpinning
of brain-aging has become the focus of recent research. Indeed, there have been
a number of efforts to collect genetic data from brain tissue of individuals of dif-
ferent ages. In particular, Lu et al. (2004) gathered the transcriptional profiling of
the human frontal cortex from 30 persons of age ranging from 26 to 106, using
the Affymetrix HG-U95Av2 oligonucleotide arrays. In this section, we present the
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results of an analysis carried out using these data. Specifically, we set out to iden-
tify which genes and which pathways were related to brain aging. To do this, we
supplemented Lu’s data with pathways information acquired from the KEGG data
bases. We first constructed a (non-connected) 1668-node network by combining 33
KEGG regulatory pathways (Kanehisa and Goto, 2002), and then considered only
those genes on the U95Av2 chip and those nodes in the network that overlapped
and for which data were available on the entire cohort of 30 patients (N = 30). This
resulted in p = 1302 genes and a network with 5258 edges. Our method could have
also been applied to the entire genes on the U95Av2 chip by treating those genes
as additional isolated nodes for which no pathways information was available. We
log-transformed, centered and standardized the data. As responses we used the log-
arithm (in base 10) of the age.

FIGURE 9.11. Subnetwork of the KEGG network whose vertices represent variables with a poste-
rior probability of 0.5 in the real data analysis. Isolated nodes are not represented.

For this analysis, we fixed Ji j = J · ∣∣Corr(Xi,Xj)
∣∣, so as to favor highly correlated

variables that are connected in the network to be jointly in the model. The constants
J and ρ were chosen so as to allow very high acceptance rates and reasonable model
size. We have considered variables that have a posterior probability of being in the
model greater than 0.5: P(γi) ≥ 0.5. With this criterion, 44 variables were selected.
Figure 9.11 depicts the subnetwork composed of vertices among this set, except
for isolated vertices. There are a few interesting observations from these identi-
fied subnetworks. First, we identified a small subnetwork with 4 genes including
Somatostatin gene (SST) and its receptors (SSTR4 and SSTR5) and another gene
cortistatin (CORT) that also binds to the same receptors as SST. Somatostatin is an
important regulator of endocrine and nervous system function (Yacubova and Ko-
muro, 2002). Because its levels change with age, it is likely that age-related changes
are affected or affect SST (Reed et al., 1999). A role for SST in Alzheimer’s disease
has also been proposed (Saito et al., 2005). Another interesting pair of genes, the
complement component 1 inhibitor gene (SERPINGS) and the complement com-
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ponent 1 (C1R), was also reported to be related to aging related phenotypes. For
example, Ennis et al. (2008) identified an association between the SERPING1 gene
and age-related macular degeneration using a two-stage case-control study. The se-
lenium transport protein, selenoprotein P (SELP), and its ligand (SELPLG), are
essential for neuronal survival and function and were reported to be associated with
Alzheimer’s pathology in human cortex (Bellinger et al., 2008).

9.2.3 Discussion and Future Direction

Motivated by the application of incorporating prior pathway and network structure
information into the analysis of genomic data, we have considered Bayesian variable
selection for both linear Gaussian models and probit models when the covariates
are measured on a graph. In our approach, a flexible Markov random field prior that
takes account of the graph structure is employed and a Markov chain sampler based
on the Wolff algorithm is used. Our simulations indicate that incorporating the graph
structure can lead to increased sensitivity in identifying the relevant variables. The
algorithm performs better for continuous than for binary outcomes, as in the latter
case sampling of the Gaussian latent variables Z is required. This chapter focuses on
how to utilize the prior genetic pathway and network information in the analysis of
genomic data in order to obtain a more interpretable list of genes that are associated
with the genotypes. An equally important topic is how to construct these pathways
and networks. One area of intensive research in the last several years has been on
estimating sparse Gaussian graphical models based on gene expression data (Li and
Gui, 2006; Peng et al., 2009). Although such models built from gene expression
data can provide some information on how genes are related at the expression level,
they hardly correspond to any of the real biological networks. The future will likely
see more research on how to build meaningful biological networks by integrating
various types of genomic data. This leads to great challenges due to both the com-
plexity of the real biological networks and the high-dimensionality of the genomic
data. Again, utilizing the prior network information in the framework of Bayesian
analysis can lead to better network inference (Mukherjee and Speed, 2008). Alter-
native to the Gaussian graphical models, Bayesian networks provide more detailed
information on causal relationship among genes based on various types of genomic
data. However, the computation is even more challenging given the fact that a very
large model space has to be explored and novel MCMC methods are required (Ellis
and Wong, 2008). Finally, as more and more biological networks are accumulated,
statistical methods for analysis of these large graphs are also needed. Some inter-
esting problems include the identification of network modules and network motifs.
Here as well, Bayesian approaches seem to provide important solutions to these
problems (Berg and Lassig, 2004, 2006; Monni and Li, 2008).
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9.3 Bayesian Phylogenetics

Erik W. Bloomquist and Marc A. Suchard

Molecular phylogenetics aims to reconstruct and infer the evolutionary history re-
lating N organisms or taxa from molecular data such as DNA or protein sequences
that these organisms have shared through their history (Felsenstein, 2003). Addi-
tional goals include: the detection of selection, or the evolutionary success of novel
variation, the inference of population genetic demographic histories, and the mod-
eling of RNA virus epidemics. In all these studies, the molecular sequence typically
encountered can be abstracted into a matrix Y of size N×S. The N rows of Y repre-
sent contiguous stretches of molecular information from a specific taxa or organism.
The S columns, or phylogenetic sites, Ys in Y represent homology statements about
the sequence characters. In particular, the statements imply that each Ysn in the col-
umn Ys derives from the same common ancestral character some time in the past.
Each element Ysn in Y draws from an alphabet A whose structure depends upon the
particular application. For example, in the case of genetic DNA, A = {A,C,G,T},
where A, C, G, and T signify the four different nucleotide bases that compose DNA.
Other common alphabets include the arbitrary set of M distinct morphological traits,
the set of amino acids of size 20, and the set of codons of, generally, size 61.

Under the most basic likelihood-based framework, phylogenetic researchers
model the column vector Ys in Y at each site s = 1, . . . ,S as an independent draw
from a Markov process f (Ys |τ,D) where τ is a bifurcating tree topology and D is a
continuous-time Markov chain (CTMC). The CTMC D = {D(t)} dictates the char-
acter substitution process in time along the bifurcating tree τ . The CTMC D exists
on the state space A and is governed by the irreducible instantaneous rate matrix
Q and stationary distribution π , i.e., D = (Q,π). Over the past 50 years, numerous
models for D have appeared, typically following a progression of more flexible pa-
rameterizations for Q (Galtier, Gascuel, and Jean-Marie, 2005). Regardless of these
parameterizations, however, researchers rely on the Chapman-Kolmogorov equa-
tions to derive the finite-time transition probability matrix P(t) = exp{Qt}, where
Pi j(t) = p(D(t) = j |D(0) = i) equals the probability of the CTMC starting in state
i ∈A and ending in state j ∈A at time t. In most situations, the instantaneous rates
in Q and time t are confounded, necessitating specific restrictions on Q. Once deriv-
ing P(t), researchers imagine an unobserved character drawn from π at the root of τ ,
and then the CTMC D acting conditionally independently along each branch of τ to
arrive at the probability f (Ys | τ,D) of observing Ys, where each element Ysn asso-
ciates with an external tip on τ (Felsenstein, 1981). Due to the independence of each
site Ys, the full data likelihood f (Y | τ,D) expands into ∏S

s=1 f (Ys | τ,D). Suchard
and Rambaut (2009) provide a gentle introduction to the calculation of f (Ys | τ,D)
and the derivation of P(t). Excellent work by Felsenstein (2003) provides a compre-
hensive overview of molecular evolution in book-length form.

Adopting f as a probabilistic framework for Y, Bayesian methods for posterior
inference on τ and D began to flourish in the middle 1990s due to availability of in-
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expensive computing and the widespread introduction of Markov chain Monte Carlo
(MCMC) sampling techniques in statistics (Huelsenbeck et al., 2001). By adopting
relatively vague and initially independent priors for p(D) and p(τ) phylogenetic
researchers soon realized that posterior inference of τ and D

p(τ,D |Y) =
f (Y | τ,D)× p(τ)× p(D)∫

D

∫
τ f (Y | τ,D)× p(τ)× p(D)dDdτ

, (9.3.1)

provided numerous advantages over alternative methods for phylogenetic inference,
including methodological, applied, and philosophical considerations (Holder and
Lewis, 2003). As an example, the marginal posterior distribution of τ

p(τ |Y) ∝
∫

D
f (Y | τ,D)× p(D)× p(τ)dD, (9.3.2)

allows for easily interpretable probability statements about the topology τ (Sin-
sheimer, Lake, and Little, 1996) as opposed to the more traditional bootstrapping
methodology (Felsenstein, 1985). Moreover, a Bayes factor test B10 allows for the
direct comparison of non-nested hypotheses H1 and H0 regarding the space of bi-
furcating trees T . In practice, these Bayes factor tests are extremely difficult to
estimate, and research continues on more accurate and faster estimation techniques
(Suchard, Weiss, and Sinsheimer, 2005). For example, in a recent breakthrough, Lar-
tillot and Phillipe (2006) adopt path sampling to provide more sound estimates of
B10 than the more commonly used harmonic mean estimator of Newton and Raftery
(1994).

Due to the relative ease of inference under the Bayesian paradigm, investigators
have made numerous advances beyond the basic statistical model just presented.
As a prime example, researchers now allow for variation in the substitution rate D
across τ , avoiding the pitfalls of a “strict molecular clock.” In particular, researchers
extend the parametrization of D in terms of scalar rate multipliers along each branch
of τ and model the prior dependence between D and τ via p(D,τ) = p(D | τ) p(τ).
In the first instance of this idea under the Bayesian framework, Thorne, Kishino,
and Painter (1998) model the “rate of evolution of the rate of evolution” (Gillespie,
1991) using autocorrelated lognormal distributions for the rate multiplier portion of
p(D |τ). Building from this work, Drummond et al. (2006) relax the autocorrelation
assumption and instead adopt a discrete, Dirichlet-like, rate model for p(D |τ), with
a nod towards heterochronous data, i.e., data sampled at different points in time.
These methods provide vastly improved model fit for empirical datasets. Neverthe-
less, relaxation techniques remain poorly studied, especially on issues such as over-
parameterization and identifiability (Rannala, 2002). As such, Bayesian modeling
of rate variation will likely remain a major endeavor for the foreseeable future.

In addition to temporal variation along τ , investigators also allow for spatial vari-
ation in D along Y. For example, Pagel and Meade (2004) allow the substitution
model Ds at each site s to multinomially draw from a latent set of any J arbitrary sub-
stitution models {D(1), . . . ,D(J)}, where these J models may have different rates or
even different parameterizations. In another such effort, Huelsenbeck and Suchard
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(2007) allow the site-specific substitution process Ds at each site s to have its own
overall rate of substitution, but then nonparametrically cluster these rates using the
Dirichlet process. Taking a joint modeling approach, Blanquart and Lartillot (2008)
combine ideas from Pagel and Meade (2004) and Thorne, Kishino, and Painter,
(1998) to jointly model spatial variation in D along Y and temporal variation in D
along τ .

These spatial mixture models control for heterogeneity of D along Y. Neverthe-
less, these models still treat each site Ys as an exchangeable draw, ignoring the
possibly strong linear dependence in the site-specific processes. In many cases,
this dependence is of paramount biological interest (Minin et al., 2005). To cor-
rect this, two general approaches have been adopted. The first approach relies on a
hidden Markov model (HMM) to handle the linear dependence along Y, i.e., inves-
tigators assume each site s has its own substitution model Ds, but use a first-order
HMM p(D1, . . . ,DS) =∏S

s=2 p(Ds |Ds−1) p(D1) to explicitly model the dependence
among these S models (Lehrach and Husmeier, 2009). Avoiding the use of a HMM,
Suchard et al. (2003b) adopt a multiple change-point (MCP) that assumes a ran-
dom partitioning structure ρ along Y that divides Ds into homogeneous segments.
The partitioning structure ρ not only has random breakpoint locations, but a random
number of breakpoints as well.

More flexible and sophisticated Bayesian models, such as those presented above,
have resulted in deeper biological understanding. Nevertheless, researchers have
also advised caution in these new modeling endeavors (Huelsenbeck et al., 2002).
For example, Mossel and Vigoda (2005) demonstrate that, under specific circum-
stances, if Y derives from a mixture of two generative distributions, a simplified
MCMC sampler can take an exponential amount of time to converge to the station-
ary distribution. In another such instance, Suzuki, Glazko, and Nei (2002) find that
Bayesian posterior inference of τ can tend to give strong posterior support for group-
ings of taxa that are not present in the true tree. An uniformed evolutionary biologist
might view these cautionary tales as reasons to avoid Bayesian inference. However,
the unsuspected success of Bayesian modeling in providing biologically realistic
models supports the opposite view. In particular, Bayesian inference of molecular
evolution provides a rich research endeavor in which the field is only beginning
to understand. To alleviate any lingering concern in the phylogenetic community,
the development of reference priors (Berger and Bernardo, 1989) is an important
avenue of research; Ferreira and Suchard (2008) offer one such example of a condi-
tional reference prior for D.

The models and research highlighted above have transformed molecular phylo-
genetic research (Holder and Lewis, 2003). The Bayesian revolution has also led
to numerous well-developed and freely available software packages that implement
many of these advances, e.g., MrBayes and BEAST. Yet, the true power of the
Bayesian paradigm–its ability to jointly and simultaneously model the relationships
among generative processes–remains relatively unexplored. In the next two subsec-
tions, we touch on areas where simultaneous and joint modeling under a Bayesian
framework has generated significant success.

MrBayes
BEAST
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9.3.1 Statistical Phyloalignment

The preceding section implicitly assumes that the data likelihood describes a fixed
and known alignment Y whereby each column in Y represents a homologous site.
In practice however, we do not observe this alignment Y directly. Instead, the raw
genetic data consist of separate strings of molecular characters from A that must
first be aligned for homology.
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FIGURE 9.12. Statistical phyloalignment. The left hand side displays the raw observed sequence
data, and the right hand side displays the aligned homologous data.

Figure 9.12 provides a simple example of this alignment step. Due to the small
scale of this alignment, the process can be accomplished by eye in two steps. But
when dealing with highly divergent molecular data from whole genomes, especially
data affected by the insertion and deletion (indels) of characters over time, aligning
for homology becomes extremely challenging (Wong, Suchard, and Huelsenbeck,
2008).

Currently, investigators solve this alignment dilemma in two steps. First, an an-
alyst will enter their raw molecular sequence data into a bioinformatics algorithm
that attempts to find an “optimal” alignment Y from the raw data. Then conditioning
on this alignment Y, the analyst draws inference on τ and D by considering Y as
the observed data. Numerous bioinformatics tools and techniques exist to complete
the first step. Historically, ClustalW has the most widely used, but in recent years, a
wide variety of purportedly more accurate alignment algorithms and tools have ap-
peared (Edgar and Batzoglou, 2006). Unfortunately, the choice of alignment method
can significantly affect the alignment and resulting inference (Wong, Suchard, and
Huelsenbeck, 2008). Moreover, depending on the discipline, Morrison (2009) finds
that 26% to 78% of applied researchers manually edit the alignment Y after using a
computerized algorithm, suggesting that these bioinformatics tools remain far from
ideal.

Critically, conditioning on a single alignment can also lead to statistical overcon-
fidence in the second stage of analysis (Lake, 1991). Statisticians have been long

Clustal W
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aware of this problem with two-stage analyses. A classic simile occurs with the
single imputation strategy for inference of missing data (Rubin, 1978). In many lon-
gitudinal and health-related studies, missing observations due to drop-out and non-
responses plague investigators and make analysis using standard statistical tech-
niques much more difficult. To combat this issue, investigators commonly adopt
imputation to predict the missing values, so that standard statistical techniques can
be applied. The techniques used to predict the missing values are statistically valid;
nevertheless, this imputation approach ignores uncertainty in the missing responses
since only a single point estimate is predicted. As a result, inferential statements
tend to be overconfident. To correct this problem, Rubin (1978) instead suggests
that multiple values for missing observations should be predicted to properly ac-
count for uncertainty.

Uncertainty due to missing data directly relates back to homology alignment and
subsequent phylogeny estimation. Just as we must make inference on the missing
values to use standard statistical inferential techniques, we must make inference on
the raw dataΨ to form an alignment Y. Hence, if we ignore uncertainty in the align-
ment Y by conditioning on a single “probable alignment,” we fall into the same trap
as single imputation. Realizing this, statisticians and biologists have just recently
begun to estimate Y, τ , D, and an indel model Λ jointly from the raw molecular
data Ψ (Lunter et al., 2005; Redelings and Suchard, 2005). so that proper inference
can be made. Before moving to these models, we first outline the definition of the
observed raw molecular data. Under an abstract formulation, the raw data Ψ con-
sists of N strings of letters Ψ1, . . . ,ΨN from A , where each string has length |Ψn|.
As an example, in Figure 9.12 Ψ1 = ACGTTTCAG, Ψ2 = ACGTTTGAA, Ψ3 =
ACGAAA, andΨ4 = ACGAAT.

Using this formulation, joint modeling aims to find the posterior distribution of
τ , D, Λ, and the alignment Y given the raw dataΨ. The parameters in Λ characterize
the random indel processes along τ and Y. The posterior distribution equals

p(τ,D,Λ,Y |Ψ) ∝ f (Ψ |Y,τ,D,Λ)× p(Y | τ,Λ)× p(D,τ,Λ), (9.3.3)

where the first term f (Ψ |Y,τ,D,Λ) conveniently computes the same as f (Y | τ,D)
(Redelings and Suchard, 2005). The distribution p(Y | τ,Λ) provides a prior on the
alignment Y and has multiple formulations (Thorne, Kishino, and Felsenstein, 1992;
Redelings and Suchard, 2007). Notice that joint inference allows one to treat the
alignment Y as a random quantity that can be integrated out of the posterior distri-
bution

p(τ,D,Λ |Ψ) ∝∑
Y

f (Ψ |Y,τ,D,Λ)× p(Y | τ,Λ)× p(D,τ,Λ). (9.3.4)

Moreover, Gibbs sampling kernels from Redelings and Suchard (2005) provide an
MCMC algorithm that makes this integration step relatively straightforward. Cur-
rently, the freely available software packages BALi-Phy and StatAlign allow for
joint inference of alignment and phylogeny.

ACGTTTCAG
ACGTTTGAA
ACGAAA
ACGAAT
BALi-Phy
StatAlign
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Jointly estimating the alignment and the phylogeny has fundamentally altered re-
search in molecular phylogenetics (Wong, Suchard, and Huelsenbeck, 2008). Some
hurdles remain before the approach becomes more widely used, specifically com-
putational hurdles, but in the near future, it is likely that researchers will no longer
treat Y as the observed data and unknowingly bias their inference. Redelings and
Suchard (2009) provide a more comprehensive review of statistical phyloalignment.

9.3.2 Multilocus Data

The preceding section outlines a Bayesian framework to find the posterior distribu-
tion of τ and D from a single contiguous stretch of raw molecular information Ψ.
Nowadays, however, researchers typically have information from multiple genes or
even entire genomes due to the advances in genetic sequencing. Better put, phyloge-
nomic or multilocus applications contain continuous stretches of information from
M genes or loci, Y1, Y2, . . . ,YM . For ease of presentation, we assume the alignment
Ym is known in this subsection.

Investigators generally agree that the data likelihoods f (Ym | τm,Dm) remain ad-
equate models for Ym on each of the M loci (Rannala and Yang, 2008). More unex-
plored stands a hierarchical phylogenetic model to formalize the dependence within
p(τ1,τ2, . . . ,τM) that addresses biologically motivated research questions while ef-
fectively borrowing strength across loci (Suchard et al., 2003a). Hierarchical phylo-
genetic models p(D1, . . . ,DM) are relatively straightforward because a finite set of
exchangeable parameters on each loci M govern Dm (Suchard et al., 2003a).

To borrow strength across loci, researchers initially suggested one of two com-
peting approaches: the supermatrix or concatenation approach (Kluge, 1989) or the
supertree or independent (Bininda-Emonds, 2005) approach. Under the tenants of
the supermatrix approach, researchers ignore the partitioning in the data, and set
τ1 = · · · = τM = τ . Under the alternative supertree methodology, researchers adopt
a completely independent prior, and pool no information about τ1, . . . ,τM; instead,
researchers rely on descriptive tools to form a posteriori consensus estimates of
τ1, . . . ,τM . As might be suspected, both of these approaches possess serious statis-
tical and biological flaws (Rannala and Yang, 2008). In the supermatrix method-
ology, assumption of a single underlying τ ignores the presence of recombination,
reassortment, gene flow, hybridization, and other such non-vertical processes. Under
the other alternative supertree approach, pooling no information across loci leads to
noisy results that are difficult to interpret (Rokas et al., 2003).

To bridge these two extremes, Suchard et al. (2003b), Suchard (2005), and Ané
et al. (2007) stochastically cluster the tree topologies τm from each loci through
p(τm |ϒ ), where ϒ characterizes this clustering process. Suchard et al. (2003b)
adopt a multinomial process for p(τm |ϒ ), where the form ofϒ is hypothesis driven.
Ané et al. (2007) parameterize p(τm |ϒ ) under a flexible Dirichlet process. Lastly,
Suchard (2005) models the dependence amongst the trees using a stochastic random
walk process across tree space T , with a particular emphasis on horizontal gene
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transfer. All these approaches help bridge the gap between the supertree-supermatrix
ideologies. Nevertheless, the three models for p(τm |ϒ ) remain statistical abstrac-
tions without a direct biological mechanism as to why trees may differ.

A B C

Gene tree 1

Species tree

C

A B C

Gene tree 2

BA

A B C

FIGURE 9.13. Incomplete lineage sorting.

How to address this last issue remains unresolved. The most thoroughly studied
solution thus far involves incomplete lineage sorting. When multiple alleles of a
gene or loci exist in a population, genetic drift and rapid multiple speciation events
(Rannala and Yang, 2008) can result in gene histories differing from species histo-
ries (Rannala and Yang, 2003). Figure 9.13 displays this process whereby genetic
drift causes gene tree 2 to conflict with the species tree. Fortunately, coalescent
theory (Kingman, 1982) allows us to model incomplete lineage sorting in a single
unified framework. The framework assumes an underlying species history τspecies

that describes the history of the species under study. In Figure 9.13, τspecies cor-
responds to the large outer tree. The coalescent framework then embeds the drift
of each τm inside the species tree p(τm | τspecies,θ), where θ characterizes the drift
process. Rannala and Yang (2003) provide a formal derivation of p(τm | τspecies,θ)
in a phylogenetic context. In the final step, the coalescent framework assumes con-
ditional independence across the loci and hierarchically models the relationships
amongst the M loci through

M

∏
m=1

p(τm | τspeciesθ)× p(τspecies)× p(θ),

where p(τspecies) and p(θ) are prior distributions. Edwards, Liu, and Pearl (2007)
parameterize p(τspecies) according to a Yule process.

The idea of using a species tree τspecies and coalescent theory to model the vari-
ation amongst the M loci works extremely well for incomplete lineage sorting (Ed-
wards, Liu, and Pearl, 2007). This framework, however, does have limitations. Most
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glaring, this framework does not appropriately model horizontal gene transfer, re-
combination, reassortment, secondary contact, gene flow, hybridization, introgres-
sion, or other such processes. These later processes tend to dominate across many
scales of evolution and cannot be ignored (Koonin, 2009).

Statistical models that formally account for these non-vertical processes remain
in their infancy. Recently, Bloomquist, Dorman, and Suchard (2009) took initial
steps to correct these deficiencies when dealing with data under the influence of
recombination. Recognizing that a recombination event requires two parental se-
quences, Bloomquist, Dorman, and Suchard (2009) suggest that once a recombina-
tion event is inferred, an inferred recombinant sequence should be split into its two
inferred parentals, effectively increasing the size of the dataset by one. As a benefit
to this augmentation strategy, we can infer a single tree from the data and obtain
information on the dates of recombination events. Unfortunately, data augmenta-
tion requires the investigator to make a distinction between a parental sequence and
recombinant sequence before conducting an analysis.

Ancestral recombination graphs (ARG) and phylogenetic networks provide an-
other solution (Hudson, 1983; Huson and Bryant, 2006). ARGs are graph theoretic
structures G that provide a complete framework to model both vertical evolution
and non-vertical evolution (Bloomquist and Suchard, 2009). Intuitively, ARGs act
in a hierarchical fashion by drawing inference

M

∏
m=1

p(τm |G )× p(G |ξ ), (9.3.5)

across the M trees τm through p(τm |G ). The coalescent with recombination is the
most commonly used distribution for p(G |ξ ) (Hudson, 1983), although other such
distributions exist (Bloomquist and Suchard, 2009). As a case study, we focus on an
example of recombination between bacterial symbionts living in communion with
deep sea clams (Stewart, Young, and Cavanaugh, 2009). In the original analysis,
Stewart, Young, and Cavanaugh (2009) adopt a supertree approach, infer trees τm

on each individual locus m, and then analyze the discordance patterns between the
trees τm to confirm recombination. Instead of this multi-stage approach, we com-
bine a novel rate-variation model with the ARG model of Bloomquist and Suchard
(2009) to infer the presence of recombination. This rate-variation model allows for
more flexibility in τm than the model presented in Bloomquist and Suchard (2009).
We use a MCMC sampler developed in the phylogenetic software package BEAST
to make inference, and display the most probable ARG representing the history of
these symbionts in Figure 9.14. In Figure 9.14, the data give a 16% posterior proba-
bility for this particular history, double the probability of any other scenario. In par-
ticular, the figure displays two recombination events. In the event closer to the root,
the gene acrB has a distinct history from the four other genes. In the event closer
to the current time, the gene COI has a distinct from the other four. As shown, the
data support two recombination events in the evolutionary history of these organ-
isms, which agrees with the results in Stewart, Young, and Cavanaugh (2009). Nev-

BEAST
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ertheless, this joint analysis based upon ARGs provides a more statistically sound
approach for inference.
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FIGURE 9.14. Ancestral recombination graph representing the most probable history.

9.3.3 Looking Ahead

Broadly speaking, Bayesian methods for molecular phylogenetics are in their third
wave of growth. The first wave provided the initial spark and fostered a recogni-
tion of the value of the Bayesian framework (Holder and Lewis, 2003). The second
wave furnished far more sophisticated models, especially the substitution model D
(Suchard, Weiss, and Sinsheimer, 2001). Finally, the third and current wave draws
upon the full power of the Bayesian paradigm to formally and rigorously integrate
molecular evolution with other types of data. As examples, the Bayesian paradigm
allows for the integration of temporal rate variation, the integration of indel pro-
cesses (Lunter et al., 2005; Redelings and Suchard, 2005). and the integration of
incomplete lineage sorting and non-vertical processes for multilocus datasets (Ed-
wards, Liu, and Pearl, 2007).

This move towards joint models is likely to continue. Two broad areas of current
interest include the integration of continuous traits such as gene expression and cli-
matic data into the molecular evolution (Guo et al., 2007), and the joint modeling of
geography and molecular evolution. In addition, investigators have begun to explore
the relationships between molecular evolution, clinical medicine, and public health
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(Nesse and Stearns, 2008). For example, Kitchen et al. (2009) adopt a hierarchical
Bayesian framework to model the relationship between HIV evolution and antiretro-
viral therapy. On a final note, the deluge of data from next-generation sequencing
technology opens up vast new areas of inquiry.
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Chapter 10
Bayesian Data Mining and Machine Learning

Researchers in machine learning have developed methods for largely automated in-
ference with large data sets. With increasingly more powerful computing resources
and ever increasing needs for statistical inference for massive data sets, similar
methods are also being developed by researchers in Bayesian analysis. The dis-
tinction between machine learning and Bayesian analysis is starting to blur. This
chapter discusses several examples of such research.

10.1 Bayesian Model-based Principal Component Analysis

Bani K. Mallick, Shubhankar Ray, and Soma Dhavala

Principal component analysis (PCA) for dimension reduction finds use in many
applications ranging from biology to image processing, wherever redundant and
high-dimensional data are encountered. Recently, Tipping and Bishop (1999a) in
the so-called “Probabilistic PCA” have taken a classical linear model approach to
PCA. Minka (2000) later extends this into a Bayesian paradigm which enables auto-
matic selection of the dimensionality from PCA and precludes the use of previously
used heuristics. However, this model as briefed in Section 10.1.1, relies heavily on
Laplace approximation which has questionable performance for highly parameter-
ized models. In contrast, we perform exact inference to justify our estimates and
the derived models follow either in conjunction or subsequently from this initial
Random Principal Components (RPC) model. West (2003) developed PCA based
regression but their the main intention was prediction and the dimension of the prin-
cipal components was fixed. The assumptions set forth by the PCA model remain
largely unsatisfied in practice and dimension reduction by PCA is rendered sub-
optimal. Highly non-linear structures are not uncommon and even though not of
immediate use, are of interest in the study of manifolds. Hastie and Stuetzle (1989)
account for non-linear structure through principal curves, which although of theo-
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retical interest lack interpretation and scalability in higher dimensions. In contrast,
our approach is conceptually closer to Tibshirani’s (1992) work which tries to ap-
proximate the principal curve by a mixture smaller principal curvelets. We employ
several RPC models distributed over a partitioned space to create a piecewise lin-
ear RPC model. As shown in Section 10.1.2, the common familiarity with Bayesian
linear model theory makes this approach handy and inviting for more evolved mod-
els. For example, we allow the significant dimensions to vary between subspaces
for better conformity with the local variations or inflections in the sample space.
Recently, mixture modeling approaches have been used to develop flexible model
based PCA (Hinton, Dayan, and Revow, 1997; Tipping and Bishop, 1999b). The
locally adaptive partition model presented here is different than the mixture formu-
lation and it is equivalent to local modeling of the PCA where the local parameters
are estimated based on the partition or neighborhood.

PCA forms another common mode of exploratory analysis where a dimension
reduction step precedes the clustering procedure. The idea of using principal com-
ponents for clustering is appealing, in that the clustering algorithm deals only with
the relevant information available in the data and remains largely unaffected by
the unimportant variations. Several well-established clustering strategies have been
employed namely, hierarchical clustering (Eisen et al., 1998), and self-organizing
maps (SOMs) (Tamayo et al., 1999). All these methods, although purposeful, work
with the knowledge of the number of clusters to identify. In practice however, such
knowledge is unavailable and it is desirable to have a clustering technique which
would additionally estimate and adopt to the number of clusters (to the limits, that
the data would support). In a Bayesian context, clusters have been modeled using a
multivariate normal mixture and the BIC approximation (Fraley and Raftery, 2002)
is sought to simplify the posterior rule towards the estimation process.

In Section 10.1.3, we extend the RPC model to a general Bayesian framework
for clustering analysis by combining the two-fold problem of dimension reduction
and clustering rather than performing them separately. The novelty of the proposed
Bayesian model is it draws information from both the clustering and the PCA model.
In most of the existing models, a naive approach is used, where the estimates from
the PCA model are simply plugged into the clustering model. Thus the PCA model
is unaware of additional information in the clustering process as it completely over-
looks the clustering problem. Clustering is accomplished through Bayesian partition
models, whereby we assume the existence; and then look for separable partitions in
the sample space each supporting a multivariate normal distribution. Throughout
this paper, we emphasize on exact Bayesian posterior inference in estimation, and
avoid reliance on BIC or Laplace approximation methods (Kass and Raftery, 1995)
which have questionable performance for high-dimensional models.

The details of the reversible jump-based MCMC used to implement all the pre-
sented models are given in Section 10.1.4. Finally the experimental results for real
and synthetic data sets are presented in Section 10.1.5.
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10.1.1 Random Principal Components

In their recent study of PCA, Tipping and Bishop (1999a) produce classical esti-
mates of various parameters accompanying the eigendecomposition. The model in
its general form which can be variously approached for improvements and to mould
PCA into other well-known statistical models. For example, Minka (2000) auto-
mates the process of selecting the effective number of principal components using
a Bayesian methodology, an aspect that has been addressed in the past by use of
various rules of thumb (Jolliffe, 1986).

Our aim is to select the PCs that effectively capture the significant attributes in
data. Let Sd ⊂ R

d be the sample space of observations Y = (y1,y2, . . . ,yn) and
yi ∈ Sd . The dimension reduction in PCA is expressed in a linear model as

Y = μ11×n +Xβ + ε,

where the overall mean μ is assumed to be distributed uniformly on R
d , the un-

known transformation X projects Sd onto a smaller dimensional subspace of princi-
pal components Sk ⊂R

k (k � d), the coefficient β , denotes the collection Y on pro-
jection, i.e., β = (β1,β2, . . . ,βn)∈Sk and the error vector ε follows N(0,σ2Id ⊗ In).

The likelihood function is given by

f (Y |μ ,X ,σ2,k) ∝ |U |−n/2 exp
(
− n

2
trU−1Σ

)
,

where U = XX ′+σ2Id and Σ is the sample covariance. Tipping and Bishop (1999a)
derive the maximum likelihood estimates of X in the form X̂ = Γ (Λ −σ2Ik)1/2Θ ,
where the pair (Γ ,Λ) comprises the eigendecomposition of Σ after retaining k sig-
nificant dimensions andΘ is an arbitrary rotation. Thereafter, the residual variance
σ2 is estimated as the sample mean of the remaining d − k observed eigenvalues.

The model is highly parameterized and any attempts to fully describe the rich pa-
rameter class through prior distributions is computationally prohibitive. Conjugate
prior distributions are convenient and can be motivated from the likelihood function
based on the above mentioned estimates

f (Y |X ,σ2,k)

∝ |XX ′ +σ2Id |−(n−1)/2 exp
[
− 1

2
tr{(XX ′ +σ2Id)−1Σ}

]

=
{ k

∏
i=1
λiσ2(d−k)

}−(n−1)/2
exp

{
− ntr(Σ −Γ ′ΣΓ )

2σ2 − ntr(Λ−1Γ ′ΣΓ )
2

}
, (10.1.1)

where the overall mean μ has been averaged out with a uniform prior over R
d ; and

λi’s are the eigenvalues in the model. A balance between the significant eigenvalues
and the residual variance is apparent in (10.1.1). In the next subsection, we propose
priors to explore the full uncertainty distribution of k. This full uncertainty distribu-
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tion is also relevant to later developments in Sections 10.1.2 and 10.1.3, when we
introduce localized RPC models.

10.1.1.1 Priors

The posterior estimation of the transformation X rests on the knowledge of the di-
mensionality k of the problem. Following Minka (2000), we set three distinct priors
for the parameters (X ,σ2)≡ (Γ ,Λ ,Θ ,σ2) with the aim of facilitating the estimation
of k.

For any reduced dimension k (< d), the eigenvectors Γ form k frames in R
d . It is

instructive to express this jointly with the arbitrary rotation as a pair (Γ ,Θ) to form
k frames uniformly distributed in R

d . We write S(d−1,k) for the manifold spanned
by the frame and f (Γ ,Θ) ≡ f (Γ ) = U(S(d −1,k)) for the uniform distribution on
S(d − 1,k). Even though more accurate distributions have been derived for the k-
frames (for example, see Bingham, 1974), they tend to burden posterior inference
without contributing significantly to the model and we stay in our present course for
ease of treatment and implementation.

By standard practice of prior specification in the linear model, the eigenvalues Λ
are assumed to be i.i.d. inverse-gamma distributed for conjugacy,

f (Λ) ∝ |Λ |−(α+2)/2 exp
(
−α

2
trΛ−1

)
≡ IG(α,α), (10.1.2)

where α is a shape hyperparameter. The residual variance σ2 is elicited similarly as
f (σ2)∼ IG(α(d−k),(α+2)(d−k)/2−2) with hyperparameters tuned so that the
joint prior f (Λ ,σ2) is conjugate to the likelihood (10.1.1).

The dimension k is proposed to lie in the interval [1,d] as f (k)= Poisson(ηd)1[1,d]
for some 0 < η ≤ 1. For tighter estimates, one might restrict η to smaller values,
while more conservative estimates would require larger values of η that are close
to 1. The estimation can benefit from these adjustments when there is insufficient
information in the data.

Some assumptions made here are not altogether realistic, for example, the eigen-
vectors and eigenvalues are specified independently. In practice however, dealing
with dependent or correlated parameters in a high-dimensional model such as ours,
can be computationally restrictive and it is compelling to have relaxed conditions
for inferential ease.

10.1.1.2 Posterior Inference

The posterior distribution of the parameters conditional on the dimension k can be
obtained by combining these priors with (10.1.1),
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f (Γ ,Λ ,σ2|Y,k)

∝ |U |−m/2 exp
[
− 1

2
tr{U−1(Σ +αI)}

]

=
{
∏

i
λiσ2(d−k)

}−m/2
exp

{
− ntr(Σ −Σ ∗)

2σ2 − trΛ−1(nΣ ∗+αI)
2

}
, (10.1.3)

where m = (n + 1 +α)/2 and Σ ∗ = Γ ′ΣΓ . Our interest lies in the posterior esti-
mates of the parameters associated with the transformation (the number of principal
components retained and the corresponding transformation). First, we estimate the
significant number of principal components (PCs) k and conditional on it, the tuple
(Γ ,Λ ,σ2) is estimated. Calculations for marginalized inference can be tedious and
result in unstable forms that are difficult to contain in MCMC. On the other hand,
inference from the full posterior is quite tractable contrary to its involved look. Alter-
nately, the parameters (Γ ,Λ ,σ2) can be averaged out using Laplace approximation
(Minka, 2000) which is known to introduce bias for highly parameterized models
and leads to questionable estimates of k. We rely on the reversible jump sampler
(RJS) (Green, 1995) in MCMC methods to work with the full posterior distribution
(10.1.3) and to explore the parameter space of variable dimensions.

While the RPC model seems to fit quite well in fulfilling the objectives of tra-
ditional PCA, the linearity assumptions may not be satisfied by the data. Rather,
in various applications of model-based PCA such as in machine learning, it is re-
ally a chance that the data would embody such assumptions and transformations are
typically used to sufficiently attain them. Transformation to normality becomes in-
creasingly difficult with increasing dimensions, where the data are sparse and tend
to group in clusters. In such situations, it might help to treat the partitioned sample
space with the hope that each partition would better match the model conditions.
We take up this extension of the RPC model in the next section.

10.1.2 Piecewise RPC Models

The model heretofore (Tipping and Bishop, 1999b; Minka, 2000) attempts to de-
scribe the d-dimensional space by a small number k (< d) of basis vectors. The
method performs optimally when the assumptions of the linear model framework
are sufficiently satisfied. Otherwise, more evolved models that can capture the non-
linear structure will tend to be more effective. Many nonparametric approaches for
classification exist such as learning vector quantization (Kohonen, 1988), clustering
techniques (Duda, Hart, and Stork, 2000) etc.

A Bayesian scheme however has clear advantages over other methods, because it
becomes possible to easily incorporate and enrich it by extra information (or speci-
fications) into the model through priors. We employ Bayesian partitioning schemes
to direct the tessellation of the sample space which is represented as a collection
of � disjoint (linear) subspaces Sd(i), each equipped with its own RPC model and
containing ni samples (∑ni = n).
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The RPC model in Section 10.1.1, is highly parameterized for its descriptive na-
ture and for the use of full posterior distribution for exact Bayesian inference. We
look for representations of the tessellated sample space which do not heavily weigh
upon the already involved model. The Voronoi tessellation (Aurenhammer, 1991)
comprises such a frugal representation of the tessellated geometry and forms parti-
tions which directly relate to the decision regions between normal clusters in deci-
sion theory. These properties make Voronoi tessellation attractive for a partitioning
scheme that is delineating distinct regions (in the sense presumed by the model).

Let G = (g1,g2, ...,g�) be the collection of generators corresponding to the �
Voronoi partitions or cells, such that all enclosed sample points in a partition are
closer to its generator than any other. What remains is to propose these generating
points from a suitable statistical model such that the resulting Voronoi cells (V-cells)
form envelopes enclosing homogeneous groupings in the sample space.

Considering a tessellation with �partitions, we furnish each cell with a separate
RPC model with individual number of PCs and the corresponding eigentransforma-
tion,

f (Y |gi,Xi,μi,σ2
i ,ki) = N(μi,XiX

T
i +σ2

i Ik), i = 1 . . . �,

where Xi is a d × ki transformation matrix for the region Sd(i) and σ2
i is the noise

variance in each cell. The priors for each V-cell are independently specified as in
Section 10.1.1:

• f (μi|gi,σ2
i ,ki) = N(0,ciσ2

i ), where ci is a suitable scaling constant.
• f (σ2

i |gi,ki) = IG(α1(d − ki),(α2 +2)(d − ki)−2).
• f (Λi|gi,ki) = ∏ki

j=1 f (λ j(i)) = ∏ki
j=1 IG(α1,α2), where α1,α2 are hyperparame-

ters.
• f ((Γ ,Θ)i|gi,ki) ∝ 1/area of the manifold spanned by ki orthoframes.
• f (ki|gi) = Poisson(ηd)1[1,d].

Without affecting the posterior inference significantly, it may be possible to di-
rectly plug some of the local parameters, for example, the model may be condi-
tioned on local sample means, μ̂i = ∑i yiI(yi ∈ Sd(i))/ni and sample variances,
σ̂2

i = ∑i(yi − μ̂i)2I(yi ∈ Sd(i))/ni in Sd(i). Otherwise, the complete posterior dis-
tribution is a combined product of � individual posterior distributions of the form
(10.1.3).

The number and orientation of partitions or equivalently the generators G are ran-
domly proposed by an external reversible jump sampler in search for the ideal parti-
tioning supported by the complete posterior distribution and the non-linear structure
in data. This requires additional prior elicitation for the number of partitions � and
the intra-partition dimensions ki:
(a) Tessellation priors specify the size � and the corresponding generators G. Fol-
lowing Green (1995), we can setup reversible MCMC moves between models of
varying size. A combination of birth, death and update moves selected in a system-
atic or random manner can be used to find the optimal tiling. The size � is specified
by a Poisson prior distribution, truncated to some suitable size �max(� n). Tessella-
tions are assigned noninformative priors of the form f (G) ∝ 1/�, to penalize for a
large number of partitions.
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(b) Dimension priors look at the compressibility of each subspace, that is the ki’s
for the tessellation. It is convenient to use a Poisson prior (truncated at d) for the
subspace dimensions ki’s.

Previous work on nonlinear PCA, notable among which are by Hastie and Stuet-
zle (1989) and Tibshirani (1992). have some serious limitations. The Principal
curves developed by Hastie and Stuetzle although interesting may lack in its de-
scription of the nonlinear structure, as the concept is not extendible to multiple de-
scriptive curves.

Later Tibshirani (1992) takes a different approach, where a mixture of smaller
principal curvelets approximates the principal curves. This idea is related to the
concept of approximation by functional bases which are well understood and are of
interest due to their smoothing properties. While functional bases such as splines,
wavelets, etc, are popular tools for approximation in small dimensions, they have
limitations in higher dimensions.

Some improvement in the rates of approximation can be achieved by allowing
dictionaries of functional bases. In this spirit, the above discussed mixing of sampled
RPC models provides better approximation as the final approximation evolves as an
average of various RPC models. Suppose (G(1),G(2), . . . ,G(m), . . .) is a collection of
possible tessellations, where the mth tessellation has a size �(m) and the polygons
comprising it holds the parameters Π (m). The mixing provides estimates

E(Π ,G, �|Y ) =∑m>0(Π ,G, �) f (Π (m)|Y,G(m), �(m)) f (G(m), �(m)|Y ).

Gibbs sampling is used to draw the intra-partition parameters, {Πi}�
i=1, where Πi =

(μi,σ2
i ,Λi,Γi,ki), and the tessellation, G alternately. For the mth sampled tessellation

G(m), the parameters in jth partitionΠ j
(m), are sampled conditional on the remaining

partitions, {Π (m)
i }− j. Later the generators g(m+1)

i defining the tessellation G(m+1)

are sampled conditional on {Πi
(m)}�

i=1, one at a time by a reversible jump sampler
(RJS) to admit changes in �. Once the partition size �̂ has been established from
the sampled sizes (�(1), �(2), . . . , �(m), . . .), another round of Gibbs sampling gives
estimates for the tessellation Ĝ = {ĝi}�̂

i=1 and the intra-partition parameters, which
include the PCs that are oriented to capture the trend within each partition.

Sample statistics that assess the stationarity of the Markov chain can be useful in
determining the number of MCMC samples. The estimates (of the tessellation size
�̂ or that of the tessellation Ĝ) themselves can proceed from different statistics of
the MCMC samples, for example, when interpretability is desired, the modal values
come in handy. Details of the RJS based MCMC are left for Section 10.1.4, while
we discuss another extension of the RPC model with applications in clustering high-
dimensional data.
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10.1.3 Principal Components Clustering

Clustering can be loosely defined as the process of grouping similar objects in the
sample space. In the clustering literature, PCA is applied to reduce the dimensional-
ity of the data set a priori and to extract the structure relevant to cluster separation.
Partition models, used so far for isolation of linear subsets in data, can be modi-
fied to delineate regions in the space Sk of coefficients β . This projected space Sk

is tessellated so that every coefficient in β = (β1,β2, . . . ,βn)′ falls in exactly one
partition.

In general, the tessellations for clustering in Sk would vary with k. A natural
strategy is to search among tessellations in the whole range of spaces {S1, . . . ,Sd}
that originate from our initial RPC model

Y = μ11×n +Xβ + ε (10.1.4)

for different values of k. The two-fold problem of dimension reduction and par-
titioning are closely connected, and it is tempting to unify the RPC and partition
models. A unified model is rewarding as the uncertainties in two models are tied
and can be mutually informative in the search for interesting clusters in Sk(’s). Ad-
ditionally, as shown below, the data Y in this model-based approach, directly affects
the partitioning algorithm through posterior quantities.

We allow the partition model to determine the relevant clusters in Sk provided by
the anteceding RPC model in a hierarchical framework. Sticking with our notation
for the piecewise RPC model, we define a partition as a collection of �-disjoint
subsets Sk( j) ⊂ Sk, j = 1 . . . �. The cluster or data within each partition is assumed
to follow a multivariate normal distribution and this is expressed collectively for all
the partitions by writing a sub-linear model

β = γZ+ζ , (10.1.5)

where γ = (γ1,γ2, . . . ,γ�)′ is a collection of intra-partition means and Z links the
response βi in a particular partition to its mean, for example, if the ith row of Z
contains a 1 at the jth column, it indicates βi ∈ Sk( j). Thus the pair (γ,Z) fully
describes the tessellation in the PCC model. The uncertainty in this sub-model is
expressed by the error vector ζ containing elements ζi ∼ N(0, p jiσ2Ik), where p ji

= ∑ p j1βi∈Sk( j)
determines the variance of βi lying in Sk( j). In short, we write ζ ∼

N(0,σ2V ), where V = diag(p j1Ik, . . . , p j�Ik) and the elements of β lying in the jth

partition can be elicited by a prior

f (βi|γ j,{p j},σ2) = N(γ j, p jiσ2).

The exposition benefits from a simplified model that follows by plugging (10.1.5)
into (10.1.4) as

Y = μ11×n +XγZ +Xζ + ε, (10.1.6)
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which produces the marginal-likelihood f (Y |μ ,X ,σ2,γ,V,k) = N(μ11×n +XγZ,U)
where σ−2U = Id ⊗ In +X ⊗V ⊗X ′. A step further in the model hierarchy assumes
a scaled prior for γ ∼ N(0,qVσ2), where q may be selected for the prior to be
relatively diffuse on R

k. The new marginal takes the usual form

f (Y |μ ,X ,σ2,k,γ,Z) ∝ |U∗|−1/2 exp
(
− n

2
trU∗−1Σ

)
,

where U∗ = U +qσ2X ⊗V ⊗X ′ = σ2(Id ⊗ In +X ⊗V ⊗X ′ +X ⊗qV ⊗X ′).
To perform full Bayesian analysis, we again resort to the simplifications of Tip-

ping and Bishop model. This is made possible by making the equal intra-partition
variance assumption (i.e., qi = q j, ∀i, j), followed by a reparameterization that al-
lows us to write the contributions of the transformation X in the model covariance
U∗ as

X ⊗ (V +qV )⊗X ′ ≡ X̃ X̃ ′.

The estimates of X̃ arising from this simplification matches the estimates X̂ dis-
cussed in Section 10.1.1. In other words, the modelling precision lost by making
the equal variance assumption, is compensated amply by the sizeable reduction
in model complexity. This new model relates to the equal spherical variance (EI)
model of Banfield and Raftery (1993) who have shown it to perform better than
heteroscedastic models in their BIC approximation clustering paradigm.

Once the marginalized likelihood has been rewritten by conditioning on the tes-
sellation, the posterior inference follows directly from Section 10.1.1 with a few
additions at a hierarchical level. We write

f (Y |X̃ ,σ2,k,γ,Z) ∝ |U∗|−1/2 exp
(
− n

2
trU∗−1Σ

)

= |X̃ X̃ ′ +σ2Id |−n/2 exp
[
− 1

2
tr
{

(X̃ X̃ ′ +σ2Id)−1Σ
}]

=
{
∏

i
λiσ2(d−k)

}−n/2
exp

{
− ntr(Σ −Σ ∗)

2σ2 − ntr(Λ−1Σ ∗)
2

}
, (10.1.7)

where U∗ = σ2Id ⊗ In + X̃ X̃ ′, Σ retains the original notation for sample covariance
and so does Σ ∗ which equals Γ ′ΣΓ .

A model-based approach allows simultaneous evaluation of many underlying
cluster models in the data at the cost of some extra-parameterization. In the pre-
ceding section, we were successful in expressing the variability jointly by writing
the combined model (10.1.6) and consequently, expediting the estimation process
of the model defining parameters. In the following discussion, we look at the esti-
mation of the size �, the partitions means (γ1,γ2, . . . ,γ�) for the partitions separating
the unknown principal components β .

Each partition supports the model βi = γ j +εi, ∀ βi ∈Sk( j), where γ j is the model
mean associated with the jth cluster and εi ∼ N(0,σ2 p jiIk). The joint likelihood of
all the βi’s lying in Sk( j) is
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∏
βi∈Sk( j)

f (β j|γ j, p ji,σ2) = ∏
βi∈Sk( j)

N(γ j, p jiσ2).

The joint prior for γ j is conveniently expressed by a scaled conjugate normal prior,
f (γ j|σ2

j ) = Nn j(0,qp jiσ2Ik), which induces the posterior form

f (γ j|p ji,σ2,β ) = N(n∗−1
j ∑

i
βi,n

∗−1
j σ2),

where n∗j = n j +(qp ji)−1 and n j is the number of βi falling in Sk( j). We assume the
knowledge of within-partition variance p jσ2 (see (10.1.5) for notation), in that we
plug in the estimated variance within each partition in the model, without severely
affecting the full Bayesian flavor of our model. The partition size is again elicited
by f (�) ∝ exp(−υ�), where υ is a penalizing hyperparameter. The conditional dis-
tribution of β given γ is obtained by combining (10.1.4) and with the sub-model
(10.1.5) which is now treated as a model generating the prior distribution.

f (β |X ,σ2,k;γ,Z,V,Y ) = N(β ∗,σ2V ∗),

where V ∗ = (V−1 +X ′X)−1 = (V−1 + Ik)−1 and β ∗ = V ∗(V−1γZ +X ′Y ).
Starting with a randomly generated tessellation (γ,Z), the parameters (k,Γ ,Λ ,σ2,

β ) are sampled from their respective distributions by Gibbs sampling and the tessel-
lation is later updated conditional on the new states and this is repeated alternately.
Each component of the Gibbs sampler is shown below, assuming the priors listed in
Section 10.1.1.1 and a random initial partition Z, randomly oriented k orthoframe
and eigenvalues contained in X ,

RPC Parameters
1. σ2|Γ ,Π ,k,Y ∼ IG(ntr(Σ −Σ ∗)+α(d − k),(n+α+1)(d − k)/2−2),
2. Λ |Γ ,Π ,k,Y ∼ IG(nΣ ∗ +α,n+α+1),
3. Γ |σ2,Λ ,Π ,k,Y ∼M-H proposal of orthoframes in R

d ,
4. β |X ,σ2,Π ,k,Y ∼ N(β ∗,σ2V ∗),

Clustering Parameters
5. γ j|β ,σ2,Π−γ j ,k ∼ N(n∗−1

j ∑iβi,n
∗−1
j σ2), ∀ j,

6. k|X ,β ,σ2,Π ,Y ∼ M-H proposal with full conditional, and
7. Z, �|X ,β ,σ2,Π−{Z,l},k,Y ∼ RJS discussed in Section 10.1.4,

where Π = {γ,Z, �,q} is the collection of parameters from our partition model.
Since the number of partitions � is unknown, we require another RJS step (condi-
tional on the number of PCs k) to perform a model selection in the parameter space
∪�

k=1{k}×Sk. The details of RJS implementation (Steps 6 and 7) are detailed in
Section 10.1.4.
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10.1.4 Reversible Jump Proposals

This section is devoted to the Reversible jump based MCMC used to setup trans-
dimensional moves throughout our work. In the RJS terminology, we perform di-
mension matching by defining three distinct Markov chain moves, namely birth,
death and update with probability bk, dk and 1−bk −dk, respectively. The birth and
death moves are usually used to signify an increase or decrease in the dimension of
the space, while the update step simply updates the remaining parameters on a fixed
dimension. We commence by elaborating the RJS to search the parameter space
∪k{k,S(d−1,k),Rk+1} for the initial RPC model. These ideas are later extended to
design the RJS based moves for the extensions namely, the piecewise RPC and PCC
model.

10.1.4.1 Reversible Jump for RPC Model

The parameter space to be searched ∪k{k,S(d − 1,k),Rk+1} encompasses all the
posterior models for different dimensions k. A birth step results in a unit incre-
ment in the dimension k accompanied by an increase in the number of eigenvectors
and eigenvalues and necessary adjustments to the residual variance σ2 are made
to maintain a balance. The death step works oppositely to decrease k. Finally, the
eigenvalues, residual variance and the eigenvectors are updated by fixing the dimen-
sion k in the update step. While most of the parameters are directly sampled from
their respective inverse gamma posteriors, the eigenvectors require a Metropolis step
with proposals that isometrically and randomly rotate the k-frames in S(d−1,k) (the
Steifel manifold of k-frames in dimension d).

Some discussion about the cross-dimensional transitions is in order. During birth,
a new eigenvector is proposed uniformly in the orthogonal complement to the span
of given k-frames in S(d−1), the d-dimensional hypersphere. We write S⊥(d−k−
1) to denote this orthogonal complement. The next step involves the proposal of the
new residual variance σ2

k+1, from σ2
k and a uniformly distributed random variable,

σ2
k+1 ∼ τσ2

k , where τ ∼ U(0,1). (10.1.8)

The proposal of the new eigenvalue λk+1 can be inspired from the estimates dis-
cussed in Section 10.1.1, where the residual variance is the arithmetic mean of the
d − k insignificant eigenvalues. This relationship however does not lead to sound
proposals of λk+1, which in most cases go unaccepted in a high-dimensional search.
Better chain movement is achieved by assuming a geometric relationship of the form

σ2
k =

( d

∏
i=k+1

λi

)1/(d−k)
and σ2

k+1 =
{
σ2(d−k)

k /λk+1

}1/(d−k−1)
.
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Thus, once we have the proposed σ2
k+1 (10.1.8), the new eigenvalue λk+1 is obtained

as σ2(d−k)
k /σ2(d−k−1)

k+1 . The advantage of this altered set of calculations is apparent
from the acceptance probability of the new proposal—the polynomial terms in the
full posterior do not dominate the dimension matching transitions. Figure 10.1 de-
picts a birth step for a data cloud in R
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FIGURE 10.1. A birth step from {2,S(2,2),R3}→ {3,S(2,3),R4}.

In much the opposite fashion, the death step (k + 1 → k) means that one of the
k + 1 eigenvalues and the corresponding eigenvector, is randomly dropped. Yeung
et al. (2001) make the important observation that the first few PCs may not carry
information about the separability of the clusters and we acknowledge this fact by
not requiring the death step to remove only the last component. The new variance

σ2
k is the product (σ2(d−k−1)

k+1 λk+1)1/(d−k). The acceptance probability of a birth step
from k to k +1 is min(Rb(k),1), where

Rb = (posterior ratio)× (proposalratio)× (jacobian)

=
f (Γ ,Λ ,σ2

k+1,k +1|Y )
f (Γ ,Λ ,σ2

k ,k|Y )
dk+1/(k +1)

bk f (σ2
k+1)U(S⊥(d − k−1))

∣∣∣ (d − k)
(d − k−1)2

σ2
k+1

σ2
k λk+1

∣∣∣,
(10.1.9)

where bk = min(1, p(k +1)/p(k)) and dk = min(1, p(k)/p(k +1)). The acceptance
probability of a death step from k to k−1 is min(Rb(k−1)−1,1). The steps detailed
above directly provide the estimates (Γ̂ ,Λ̂ , σ̂2, k̂). Most importantly, the estimate k̂,
gives an idea of the number of PCs that would balance (with respect to posterior
risk) the informative and unwanted sections of the data.
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10.1.4.2 Extensions for the Piecewise RPC Model

In order to move between tessellations, we rely on the classical split-merge proce-
dure to search through RJS. We again setup the birth, death, and update moves with
the same interpretation as before except that in the present context it applies to the
number of partitions. The partitions are assumed to be located around corresponding
generators.

Since the individual generators g j are independent by assumption, it is possible
to sample them individually by a symmetric proposal distribution q(g j,g′j), where
g′j is the newly proposed generator accepted with an acceptance probability shown
in its general form below.

The split-merge technique is applied as follows. In a death step, two generators
are randomly selected and merged (vectorically added), whereas in a birth step a
randomly picked generator is split into two using a random variable u drawn from a
suitable distribution. The birth and death steps can be summarized as follows

Death – (g1, ..gr, ..gs, ..g�+1) → (g′1, . . . ,g
′
�−1,(gr +gs)/2),

Birth – (g1, ..gr, ..g�) → (g′1. . . . ,g
′
�−1,gr −u,gr +u).

In general, it is less trivial to devise reversible proposals for the other parameters.
For example, the mapping between the dimensionalities of the merged partition k

′
�

and the two preexisting partitions (kr,ks) is not evident without some knowledge
of the local trends in data. Similar mapping for other parameters which rely on
k
′
� is thus undetermined. An alternative that is attractive from the computational

side, is to propose new parameters by perturbing sampled estimates from the data
within newly formed partitions. The birth acceptance ratio for these proposals is
min{1,Rb}, where

Rb = (posterior ratio)× (proposal ratio)× (Jacobian)

=
∏�+1

j=1 f (Γ ′
j ,Λ

′
j,σ

′2
j ,k

′
j,G

′
j|Y )

∏�
j=1 f (Γj,Λ j,σ2

j ,k j,G j|Y )
d�+1(�+1)

b� f (u)�(�+1)/2

∣∣∣∣∂ (g′�,g
′
�+1)

∂ (gr,u)

∣∣∣∣ .

The Jacobian for the above mentioned split-merge procedure comes out to be 2.
Some care in selecting the dispersion of u, as very small values lead to small jumps
that are almost always accepted, whereas large values lead to excessively high re-
jection probability. All the partitions are unnecessarily involved in this sampling
step, to account for the changes that might occur in the tessellation for a localized
birth or death proposal. Things can be simplified by invoking properties of Voronoi
tessellations, whereby a proposed generator locally affects only those partitions that
encompass it in its Delaunay radius. In the update step, the parameters (Γi,Λi,σ2

i ,ki)
for each partition updated separately following the RJS moves (10.1.9).
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10.1.4.3 Reversible Jump for the PCC Model

As the reader would expect, the RJS moves for clustering the PCs are much the
same as that used for piecewise RPC model, but some new constraints are observed
on the Voronoi cells. We assume that the Voronoi cells are centroidal, that is the
intra-partition means γi coincides with the generators gi. Thus when a new partition
mean γi is sampled, the encompassing Voronoi cell is implicitly defined to hold the
data points yi which are closest to γi than any other partition mean. The compound
parameter space of interest now is ∪d

k=1{k,S(d,k),Rk+1,∪�{�,∪�
j=1Sk( j)}} unlike

∪�{�,∪�
j=1{Sd( j),∪d

k j=1{k j,S(d,k j),Rk j+1}}} for the piecewise RPC model. The
birth acceptance ratio for the RJS sampling new partitions conditional on other pa-
rameters can be written as min{1,Rb}, where

Rb = (posterior ratio)× (proposal ratio)× ( Jacobian)

=
∏�+1

j=1 f (γ ′j|β ,σ2,Π−γ j ,k) f (�+1)

∏�
j=1 f (γ j|β ,σ2,Π−γ j ,k) f (�)

d�+1(�+1)
b� f (u)�(�+1)/2

∣∣∣∣∂ (γ ′�,γ
′
�+1)

∂ (γr,u)

∣∣∣∣ .

10.1.5 Experimental Results

We consider three real data sets and one synthetic data set to evaluate the three
methodologies presented here in the paper. The data sets considered are:

SatImage data. The data, which is popular in the machine learning community,
consists of the multi-spectral values of pixels in 3× 3 neighborhoods in satellite
images. This data was generated from Landsat Multi-Spectral Scanner image data.
There are 6 classes in the data indicating the geography of the scene and each scene
is characterized by 36 features (9 pixel intensities × 4 spectral bands). A total of
6435 observations are recorded.

Integrated spatial and spectral data for the interpreting a scene: its topography,
land use, etc are important in remote sensing. It is of interest to classify distinct
patterns based on a reduced set of features generated by PCA of the Satellite image
data (Chang and Ghosh, 1998).

Gold Assay data. The data, which was used in their work on principal curves by
Hastie and Stuetzle (1989), consists of 250 pairs of gold assays. Following their ex-
ample, the data used here have been log-transformed for stabilizing the variance.
The data compare results of two laboratories assaying gold content of outgoing
cargo from a computer chip industry.

Hastie and Stuetzle use bootstrapping to check the adequacy of a linear model
for characterizing the assay data. In a Bayesian context, we justify a nonlinear char-
acterization with the Bayes factor which compares the posterior preference between
the simple RPC model and the piecewise RPC models. These results are discussed
below in Section 10.1.5.2.
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Yeast cell data. The ability of the DNA microarray technology to produce expres-
sion data on a large number of genes in a parallel fashion has resulted in a wealth
of data points. The main difficulty with microarray data analysis is that the sample
size n is very small when compared to the dimension of the problem (the number
of genes) p. The number of genes on a single array are usually in the thousands,
so the number of regressors p easily exceeds the number of observations n. This is
known as the “large p, small n” problem. In this situation, dimension reduction is
needed to reduce the high-dimensional gene space. RPC and piecewise linear PCA
approaches will be useful for this data reduction.

One commonly used approach in making conclusions from microarray data is to
identify groups of genes with similar expression patterns across different experimen-
tal conditions through a cluster analysis (D’haeseleer, Liang, and Somogyi, 2000).
The biologic significance of results of such analyses has been demonstrated in nu-
merous studies (Eisen et al., 1998; Tamyo et al., 1999; Tavazoie et al., 1999). We
will use hierarchical model based principal component clustering for the microarray
data.

Cho et al. (1998) measure the fluctuation of roughly 6000 genes expressed over
2 cell cycles. There are 17 time points within the cycles of data which are chosen
for analysis and they record the peaking of 384 genes at different periods within
the cycles. The cycles were identified at 5 different phases and it is the purpose of
the cluster analysis to identify these 5 cycles from the gene expression data. For
the experiments, the data was standardized and pre-processed by using multivariate
normality tests on the 5 cell cycles.

Synthetic normal mixture data. The data containing normally distributed clusters
are generated for evaluation of to check the performance and model adequacy of
the PCC model as real data sets can be noisy with indistinct classes. The results
presented here are for a collection of 3000 observations sampled from a multivariate
normal mixture model with four classes in thirty dimensions. Each class is generated
by randomly sampling from a multivariate normal distribution with a near diagonal
covariance matrix, which is common to all the classes.

10.1.5.1 Random Principal Components

Comparison with preexisting PCA algorithms. To test the performance relative to
other PCA algorithms for model selection, we simulate data from a known model
and compare the incidence of correct dimension selection by the various algo-
rithms. The method is compared with five estimators, namely the Laplace’s approx-
imated model (Minka, 2000), the BIC approximation for the same method (Kass
and Raftery, 1995; Minka, 2000), the Everson and Roberts’s method (Everson and
Roberts, 2000), Bishop’s ARD algorithm (Bishop, 1998) and Cross-Validation.

The comparisons are based on synthetic data sets generated from known multi-
variate normal models exemplifying various instances of PCA analysis. We consider
two models with dimensions, namely d = 10 and 50. For the former model, two sam-
ple sizes of n = 20,100 are considered, while for the latter, we take n = 120,300.
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In Figure 10.2, the estimators are compared for these four combinations over 500
runs, which have been posed to evaluate the effect that various d/n ratios have on
the performance. The figure plots the percentage of times the estimator hits upon
the true model dimension. Our estimator performs better than the rest in all these
situations, with the most notable improvement in large d or d/n valued cases.
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FIGURE 10.2. Comparison of correct dimension selection of various estimators for various (n,d).
The chances (percentage) of the estimators achieving the true model dimension is plotted for six
estimators (Exact, ER, Laplace, CV, BIC, and ARD).

Experiments with the SatImage and Yeast Cell data. The MCMC for the RPC
model was run for 10000 iterations for each dataset. The results in Table 10.1 give an
idea of the posterior preference of the significant PCs for the two data sets measured
after sufficient burn times:

TABLE 10.1. Relative frequency of PCs selected by RPC.

Dataset \ PCs 5 6 7 8 9 10 11
SatImage 0.01 0.05 0.11 0.22 0.28 0.09 0.02
Yeast Cell 0.04 0.22 0.31 0.25 0.05 0.02 0.01

For the SatImage data, the model with 9 PCs was the most favorable followed
by the 8 PC model. Modest reduction (0.22-0.25) in dimensionality in the SatImage
data, suggests the relative redundancy of information across the four spectral bands
and locations in the image. In contrast, the compressibility (≡ k̂/d) for the yeast cell
data (0.41-0.47) is low, which might indicate insufficient adherence with the model
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assumptions. In most cases, and for the examples considered, the data consists of
several correlated measurements of an event in time or space. Low compressibility
in such situations may result from the heterogeneity (or existence of clusters) in
the population. It is only pertinent therefore to explore the yeast cell data in the
Piecewise RPC paradigm and see if the compression helps from these refinements.

10.1.5.2 Piecewise RPC

We analyze the Gold data set, which has been typically associated with nonlinear
dimension reduction models. Hastie and Stuetzle (1989) used this data to fit their
principal curve, which is a nonlinear extension of the idea of principal components.
A principal curve is lacking in description and the concept of secondary principal
curves is seemingly vague and lacks a concrete definition. Direct extensions in this
spirit are Principal surfaces (Hastie and Stuetzle, 1989) which owing to the problems
in modeling remain largely unexplored.
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FIGURE 10.3. Nonlinear RPC for Gold data, showing 16 Voronoi polyhedra. The circles placed at
the generators within each cell, are aligned to the PCs.

In this regard, the piecewise RPCs although not entirely comparable with princi-
pal curves, seem to give a piecewise approximation to principal surfaces as shown
in Figure 10.3. More so, the each surface is free to have its own dimensionality.
Although, not considered in the present discussion, the transitions between surfaces
can also be smoothened by spline penalizers, in a way similar to Hastie and Stuetzle
(1989) and Tibshirani (1992). The results are tabulated in Table 10.2.
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TABLE 10.2. Piecewise RPC simulations for the Gold data.

Gold \ Size 15 16 17 18 19 20 21
Rel Freq 0.034 0.080 0.305 0.273 0.165 0.126 0.011
Bayes Factor 1.535 1.610 3.150 2.785 2.530 2.215 1.282

The piecewise RPC model is implemented for the higher dimensional yeast cell
data, wherein each partition is allowed to have its own dimensionality. A straightfor-
ward comparison is possible, between the piecewise RPC model and the simple RPC
model via Bayes Factors to assess the model choice. These results are presented in
the results below in Table 10.3 along with the partition size and the average di-
mensionality (since each cluster differs in its dimensions) of the overall partition.
The results strongly support the presence of heterogeneity and nonlinear structure
in yeast cell responses.

TABLE 10.3. Piecewise RPC simulations for the yeast cell data.

Yeast \ Size 3 4 5 6 7 8 9
Rel Freq 0.090 0.125 0.229 0.265 0.165 0.080 0.010
Bayes Factor×102 1.282 1.570 4.520 6.630 2.890 2.230 1.090
Avg. k 6.750 6.230 5.663 5.275 4.772 4.100 3.607

Additionally, we calculate the average compressibility (taken to be the average of
the significant number of PCs within each partition) for each cluster configuration.
Better dimension reduction is evident from these figures, which supports the stance
of the preceding subsection about the improved model adequacy from partitioning.

The results from the gold data and the yeast cell data, also reflects the relative
ease with which our piecewise RPC model is extended to model high-dimensional
nonlinear data, a flexibility that has been missing in preexisting nonlinear PCA mod-
els.

10.1.5.3 Principal Components Clustering

We demonstrate the usefulness of exact Bayesian inference in a model-based ap-
proach to clustering. The mixture model based clustering procedure of Banfield and
Raftery (1993) and Yeung et al. (2001) with BIC approximation and the heuristic
CAST algorithm (Ben-Dor and Yakhini, 1999) form the benchmark for our cluster
quality assessments. Liu et al. (2002) also used PCA based clustering and adopted
Bayesian approach to the choice of the number of PCs.

Simulations for PCC exhibit a different aspect of principal component selection,
where it is not necessary that the most significant PCs have a contribution towards
classification. Indeed, RPC when combined with the clustering model resembles a
variable selection procedure. The Rand index is used as a measure of agreement
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FIGURE 10.4. (a) Histogram of the number of partitions in the synthetic normal mixture data and
(b) Comparison of ARIs for the synthetic normal mixture data.

between a known partition to that provided by an external clustering criterion. The
Rand index is a combinatorial measure of the number of pairs of objects falling
in same or different groups in the two partitions and takes a value in the range
[0,1]. The adjusted rand index (ARI) (Hubert and Arabie, 1985), which has been
used in the simulations to evaluate the quality of clusters, additionally enforces that
the expected Rand index for random partitions be 0. A high ARI indicates a fair
agreement between two partitions.

Experiments were also performed for the simulated data set, in which case the
initial 4-10 PCs where found useful for clustering. The relative frequencies of the
number of clusters � and the ARIs for the synthetic data set are shown in Figure
10.4. The PCC model uniformly dominates the BIC approximated clustering model
and there is a clear preference for four clusters.

The PCC model was implemented for the Yeast cell data which showed a strong
preference for the initial 5-12 PCs. The relative frequencies of the number of clusters
in MCMC simulations are shown in Figure 10.5 (a). There is a strong evidence of 5
partition models in the yeast cell data, followed by the close competitors of 4 and 6
partitions. Figure 10.5 (b) presents the ARI when all the PCs from 5-12 are retained
and comparisons show improvement over the BIC approximated spherical variance
(EI) model used by Yeung et al. (2001).
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FIGURE 10.5. (a) Histogram of the number of partitions in the Yeast cell data and (b) Comparison
of ARIs for the Yeast Cell data.

10.2 Priors on the Variance in Sparse Bayesian Learning: the
demi-Bayesian Lasso

Suhrid Balakrishnan and David Madigan

Sparse Bayesian Learning (SBL) using automatic relevance determination as typ-
ified by the Relevance Vector machine (Tipping, 2001), has proved to be a very
effective and accurate method for a wide variety of regression and classification
problems. The SBL paradigm performs parameter learning via type-II maximum
likelihood where a marginal data likelihood maximization provides the parameter
estimates. Two related tracks, the Lasso (Tibshirani, 1996) and the Bayesian Lasso
(Park and Casella, 2008), approach the estimation task in rather different ways.
The Lasso considers regression and classification in the loss plus �1-regularization
framework. The resulting optimization problem can also be viewed in the Bayesian
setting as a maximum-a-posteriori (MAP) solution to a regression problem with
parameters having individual Laplace (or double exponential) priors. The Bayesian
Lasso instead makes use of the equivalence of a hierarchical Gaussian-Exponential
prior to the Laplace prior, and conducts fully Bayesian inference (via Markov chain
Monte Carlo or MCMC sampling algorithms) for parameter inference.

A number of recent papers have explored connections between these three ap-
proaches and our work is in that vein. For example Wipf and Nagarajan (2008)
clearly delineate the connection between SBL’s type-II maximum likelihood and
MAP estimation, by showing that SBL’s type-II maximum likelihood is equivalent
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to MAP estimation where the prior on the parameters is “non-factorial” (in other
words, the prior depends on the input basis functions, and cannot be decomposed
into independent terms involving each parameter). A natural question that arises is
whether type-II maximum likelihood is an effective way to train the Bayesian Lasso
model as well. This would have two advantages over the Bayesian Lasso. First, pa-
rameter estimates would be sparse, and second, the parameter estimates would be
obtained by optimization and not by computationally more demanding MCMC.

10.2.1 Background and Notation

We consider SBL, the Lasso and the Bayesian Lasso in the context of the classical
Gaussian linear regression modeling. Specifically, given a regressor matrix/feature
dictionary Φ , an observation/response vector y and i.i.d. Gaussian noise/errors ε ,
we consider linear models of the form

y =Φβ + ε. (10.2.1)

These assumptions lead to a likelihood of the form:

p(y|β ,σ2,Φ) = 2πσ2−N/2
exp

{
− ‖y−Φβ‖

2σ2

}
,

where the dataset, D comprises N responses y = (y1, . . . ,yN)T and the N x p design
matrix Φ = [φ(x1), . . . ,φ(xN)]T. The Gaussian noise distribution is mean zero and
variance σ2, p(ε) = N (ε|0,σ2I) and the parameter vector β is p dimensional.
We assume that the intercept parameter, if any, is estimated outside the estimation
schemes discussed here (for example, by centering the response). Loosely speaking,
the Lasso is the least “Bayesian” of three approaches while the Bayesian Lasso is the
most Bayesian. SBL along with the “demi-Bayesian” approach we describe below
are somewhere in between.

10.2.1.1 The Lasso

The Lasso formulation estimates β by solving the following convex optimization
problem:

min
β

(y−Φβ )T(y−Φβ )+ρ‖β‖1

(ρ is a non-negative scalar regularization parameter). The Lasso optimization prob-
lem has a MAP-Bayesian interpretation as follows (Tibshirani, 1996). Assign each
component β j of β an independent Laplacian or double-exponential prior distribu-
tion with mean 0:

p(β j|ρ j) =
ρ j

2
exp(−ρ j|β j|), ρ j > 0, j = 1, . . . , p
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with p(β ) =∏ j p(β j) and all ρ j = ρ . A prior of this form places high probability
mass near zero and along individual component axes thereby promoting sparsity
(see Figure 10.6). Figure 10.6 highlights the higher probability mass the Laplace
assigns along the axes and at zero as well as its heavier tails. It also has heavier tails
than a Gaussian distribution leading to some theoretical difficulties with regard to
variable selection1.

Now, in this setting, the Lasso optimization problem results in β estimates that
correspond to the posterior mode estimates (argmaxβ p(β |D ,ρ)). Predictions are

then made using this point posterior mode. By contrast, fully Bayesian inference
would typically integrate over the entire posterior distribution rather than condition-
ing on a specific value. In fact, while the posterior mode is an optimal point estimate
under zero-one loss, there is no particular reason to expect such a loss function to
be reasonable in any particular application. Nonetheless, the Lasso has provided ex-
cellent predictive performance in many applications (Genkin, Lewis, and Madigan,
2007).

FIGURE 10.6. A superposition of a standard (zero mean, unit variance) two dimensional Gaussian
distribution, and a Laplace distribution (ρ = 1).

10.2.1.2 Sparse Bayesian Learning

An alternative sparse linear modeling approach was proposed by Tipping (2001) in
his work on the relevance vector machine (referred to as SBL here). In this line of
work, a zero-mean Gaussian prior is assumed for each of the regression parameters:

1 It is now well-known that the Lasso does not possess an “Oracle Property,” typically failing to
set enough components of β to zero. See, for example, Zou (2006).
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p(β |γ) =
p

∏
j=1

N (β j|0,γ j), γ j > 0, j = 1, . . . , p, (10.2.2)

where crucially, each unknown weight has a separate non-negative hyperparameter
γ j controlling it’s variance (with γ being the p vector of these hyperparameters). In
the learning procedure, sparsity is achieved if certain γ j are set to zero. A further hi-
erarchical specification of the hyperparameters (for both the variance of the weights
and the noise) completes the prior specification, with p(γ) = ∏ j Gamma(γ j|a,b)
and p(σ2) = Gamma(σ2|c,d). In the relevance vector machine and further works
however, these priors are specified as flat and hence improper priors (a,b,c,d=0),
an important point of difference with what we propose.

Learning in the SBL paradigm involves exact posterior inference for the predic-
tions, where the hyperparameters are chosen to maximize the marginal data likeli-
hood. The literature refers to this procedure as type-II maximum likelihood or ev-
idence maximization (Berger, 1985; Mackay, 1992). Equivalently, SBL minimizes:

− log
∫

p(y|β )p(β |γ)dβ = log |Σy|+yTΣ−1
y y, (10.2.3)

where Σy = σ2I +ΦΓΦT and Γ = diag[γ] (see Tipping, 2001 or Wipf and Nagara-
jan, 2008). This optimization leads to some γ∗, which then leads to the posterior
distribution of the weights p(β |D ,γ∗,σ2) = N (β |μ,Σ). Here, μ =Γ∗ΦTΣ−1

y∗ y and
Σ = Γ −ΓΦTΣ−1

y∗ ΦΓ 2. The expression for the posterior mean μ , further empha-
sizes how if γ∗, j = 0, the corresponding β j is also zero and removed from the model.
Finally, the predictive density for a new/test point φ(xt) integrates over the posterior
density of β leading to a closed-form Gaussian expression:

p(yt |D ,γ∗,σ
2,φ(xt)) = N (yt |myt ,σt). (10.2.4)

myt = μTφ(xt),

σ2
t = σ2 +φ(xt)TΣφ(xt).

We note that SBL can be shown to be equivalent to Gaussian process regression
under particular restrictions; see, for example, Tipping (2001).

The objective function in the SBL optimization problem in (10.2.3) is multi-
modal, non-convex, and has fixed points at sparse solutions. Various algorithms have
been proposed in the literature for obtaining local minima (Mackay, 1992; Tipping,
2001; Tipping and Faul, 2003; Wipf and Nagarajan, 2008).

10.2.1.3 The Bayesian Lasso

The Bayesian Lasso (Park and Casella, 2008) starts with the data model of (10.2.1)
and the same Gaussian prior for the weights as in SBL (10.2.2). The hierarchical

2 The expressions are modeled on the Wipf and Nagarajan (2008) paper, and are equivalent to the
ones in the relevance vector machine paper where the notation is slightly different.



350 10 Bayesian Data Mining and Machine Learning

prior model differs slightly from that of SBL insofar as the variance parameters
are assumed to be drawn from an exponential distribution with rate hyperparameter
p-vector λ , instead of a gamma distribution,i.e.:

p(γ|λ ) =
p

∏
j=1

λ j

2
exp

{
− λ jγ j

2

}
, λ j > 0, j = 1, . . . , p.

The reason why this relates to the Lasso and sparse learning, is because this partic-
ular form of hierarchical prior results in a Laplace prior on β after marginalizing
out γ (p(β ) =

∫
p(β |γ)p(γ|λ )dγ). This result derives from the representation of the

Laplace distribution as a scaled mixture of Gaussians with an exponential mixing
density (Park and Casella, 2008):

√
a

2
exp(−√

a|z|) =
∫ ∞

0

1√
2πs

exp{−z2/(2s)}a
2

exp(−as/2)ds, a > 0.

Inference in the Bayesian Lasso is carried out in a fully Bayesian manner via pos-
terior simulation. Exploiting closed form marginal distribution calculations, Park
and Casella (2008) outline a Gibbs sampler that can be used to draw samples from
the posterior distribution p(β |D) (they also propose various techniques to esti-
mate/set/sample from the hyperparameter distribution). While this represents a sat-
isfying Bayesian solution, MCMC sampling poses a significant obstacle in terms of
the size of the applications this technique can reasonably be expected to handle. In
addition, the Bayesian Lasso does not yield a sparse solution unless ad-hoc rules
are used to threshold components of β that are small a posteriori. Other minor sam-
pling related drawbacks include difficulty in assessing convergence of the MCMC
sampler, and tuning of the sampling algorithm itself.

10.2.2 The demi-Bayesian Lasso

With the above background in place we turn to our proposals. To circumvent the
computational complexities associated with the MCMC sampling required for the
Bayesian Lasso, we propose fitting the Bayesian Lasso model through a type-II
maximum likelihood procedure (i.e., by maximizing the marginal data likelihood).
Conceptually, this inherits the benefits of the SBL framework and alleviates the
corresponding sampling associated problems. We now find hyperparameters via op-
timization and not sampling (thus greatly expanding the dimensionality of mod-
els that can be learnt efficiently), the resultant posterior distribution is analytically
tractable (Gaussian), and sparse models for prediction are obtained without thresh-
olding the posterior distribution. Of course, the flip side is that first, this proposal,
like SBL, is less than fully Bayesian, and second, also like SBL, it results in a non-
convex optimization problem.



10.2 Priors on the Variance in Sparse Bayesian Learning: the demi-Bayesian Lasso 351

Specifically, we propose to learn the Bayesian Lasso linear model y = Φβ + ε ,
with p(ε) = N (ε|0,σ2I) (we assume σ2 given in this work, and pick its value
from among a set of candidates based on predictive accuracy estimates such as cross
validation/validation error). Further, p(β |γ) = N (β |0,Γ ) (recall that Γ = diag[γ])
and we place an exponential prior on the variance components,

p(γ|λ ) =
p

∏
j=1

λ j

2
exp−λ jγ j

2
.

However, as in SBL, we choose to estimate the non-negative hyperparameters γ
by type-II maximum likelihood. In other words, we maximize the marginal data
likelihood in order to learn the hyperparameters:

p(γ|D ,λ ) ∝ p(y|γ)p(γ|λ )

=
(∫

p(y|β )p(β |γ)dβ
)

p(γ|λ ).

Taking the negative logarithm, using the result from (10.2.3), and removing quanti-
ties irrelevant to the optimization problem results in the following objective function
to be minimized:

L (γ) = log |Σy|+yTΣ−1
y y+λ

p

∑
j=1
γ j (10.2.5)

Note that for parsimony and convenience in further estimation, we set all the
λ j = 2λ , which we assume to be given (again picked from candidates using cross
validation). Also note that the key difference compared to SBL is the presence of
the proper variance prior, which results in the extra term in (10.2.5) as compared
to (10.2.3), and provides extra shrinkage. After obtaining (local) maximum values
for the hyperparameters γ∗ (the next section outlines algorithms for this purpose),
we then make posterior predictions also according to the SBL machinery, via the
expressions for p(yt |D ,γ∗,σ2,φ(xt)) and the related expressions for the mean and
variance, (10.2.4). We call this approach the demi-Bayesian Lasso (dBL).

It is worth mentioning that the above formulation can be obtained by considering
the original SBL formulation with a particular form of the Gamma prior on the
variance components γ j. This links the Bayesian Lasso model to the SBL model
and provides the motivation for our proper prior on the variances.

10.2.2.1 Algorithms

The key learning task with the model is finding optimal prior variance, γ values. This
then allows us to compute the posterior distribution over the weights and compute
the posterior predictive distribution (10.2.4). Due to the similarity with the SBL
objective function, many of the SBL algorithms apply with minor modifications.
Here we discuss two variants. The first is a modification of the EM algorithm that
was proposed in Tipping (2001). Starting with some γ , we iteratively apply the E
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step:
Σ = Γ −ΓΦTΣ−1

y∗ ΦΓ ,

with μ = Γ∗ΦTΣ−1
y∗ y and the M step:

γ j =
2(μ2

j +Σ j j)

1+
√

1+4λ (μ2
j +Σ j j)

,

for all j = 1, . . . , p, until convergence. We will refer to this algorithm as EM dBL.
The second variant modifies a recent algorithm by Wipf and Nagarajan (2008)

that possesses several nice properties, such as a global convergence analysis (to a
local minimum) and sparsity along the solution path. We state the algorithm next,
which we will call �1 dBL, followed by a brief deviation. We refer the reader to
Wipf and Nagarajan (2008) for further details.

The �1 dBL Algorithm

Data: D ,λ ,γ .
Result: Sparse β , γ , at each iteration.
Initialize β = 0, z = [1, . . . ,1]T.
while Convergence criteria not met do

β ∗ = argminβ ‖y−Φβ‖2
2 +2σ2∑ j(z j +λ )1/2|β j|,

γ j = (z j +λ )−1/2|β∗, j|,
z∗ = ∇γ log |Σy| = diag[ΦTΣ−1

y Φ ],
β = β ∗,
z = z∗.

end
β = E[β |y,γ∗] = Γ∗ΦTΣ−1

y∗ y.

The algorithm outlined above is guaranteed to converge monotonically to a lo-
cal minimum or saddle point of (10.2.5). This follows trivially from Theorem 1
and analysis in Wipf and Nagarajan (2008). The algorithm notably uses iterated re-
weighted �1 regression (step 1 in the while loop) to estimate the weights β , also
known as an adaptive Lasso problem (Zou, 2006). The �1 penalty results in sparse
β , which correspondingly results in sparse estimates of variance components γ—we
will refer to this algorithm as �1 dBL. The auxiliary variables z (a p-vector) arise
from the upper bound of the log-determinant term (see below). The choice of an
Exponential prior results in very small computational difference between the SBL
algorithm in Wipf and Nagarajan (2008) and the one presented here. In particular,
replacing z j +λ with z j is the only difference. Similarly, the prior results in a small
difference in the M-step in the corresponding update in Tipping (2001) algorithm,
where it is: γ j = μ2

j +Σ j j. As expected, the proper prior results in additional reg-
ularization of the variance parameters towards zero. We expect that this additional
regularization will come with a bias-variance trade-off, the additional flexibility cre-
ated by the single extra parameter λ potentially allowing us to generalize better.
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Deriving the �1 dBL algorithm. Here we briefly outline the algorithm derivation.
The log-determinant term in L (γ) (10.2.5) is concave in γ , and so can be expressed
via

log |Σy| = min
z
{zTγ−g∗(z)}.

In that expression, g∗(z) is the concave conjugate of log |Σy|, g∗(z) = minγ zTγ −
log |Σy|. This then leads to the upper bounding cost function:

L (γ,z) = zTγ−g∗(z)+yTΣ−1
y y+λ

p

∑
j=1
γ j ≥ L .

Following Wipf and Nagarajan (2008), the optimal z occurs when

z∗ = ∇γ log |Σy| = diag[ΦTΣ−1
y Φ ].

Re-expressing the term

yTΣ−1
y y = min

β
1
σ2 ‖y−Φβ‖2

2 +∑
j

β 2
j

γ j
,

we get an upper bounding term

Lz(γ,β ) =
1
σ2 ‖y−Φβ‖2

2 +
p

∑
j=1

(
(z j +λ )γ j +

β 2
j

γ j

)
≥ L

which is jointly convex in β and γ , which can be globally minimized solving for
γ and then β (Wipf and Nagarajan, 2008). Now, for any β , γ j = (z j + λ )−1/2|β j|
minimizes Lz(γ,β ). This then results in the �1 dBL algorithm which is an iterative
application of the steps of finding the optimal γ (minimizing the upper bounding
cost), and then finding the optimal z (which then leads to recomputing the optimal
upper bounding cost).

10.2.2.2 An EN Heuristic

While the use of of iterated re-weighted �1 regularized regression results in spar-
sity which is desirable, it also inherits some of the drawbacks of �1 regression. In
particular, an issue of concern is the instability of �1 regression solutions with re-
spect to highly correlated regressors (Zou and Hastie, 2005). Essentially, with highly
correlated regressors/basis functions, the weights β computed based on the �1 so-
lution are unstable—small differences in the dataset can result in the selection of
very different subsets of a set of correlated regressors3. Zou and Hastie’s (2005)
“elastic net” seeks to address this issue. The elastic net imposes an α�1 +(1−α)�2

3 For two perfectly correlated relevant regressors, one amongst them is chosen to have a non-zero
weight either at random or due to the particulars of the the algorithm implementation.
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penalty, 0 ≤ α < 1, on the weights. This has the attractive property of imposing a
simple additional convex loss and encourages a “grouping effect” which helps keep
weights on correlated regressors similar (Theorem 1 in Zou and Hastie, 2005). Zou
and Hastie (2005) show good results when applying this mixed penalty.

We attempt to capture the same effect in the dBL. This is done by solving an
elastic net problem in the �1 dBL algorithm instead of the re-weighted �1 regression
problem. Unfortunately, the heuristic doesn’t correspond to an intuitive prior on
the variance components and further is strongly tied to the iterated re-weighted �1

regression algorithm (an equivalent is hard to define for the EM style algorithms).
Nonetheless, we explore this heuristic in the experiments that follow—we will refer
to this as dBL+EN below.

10.2.3 Experiments and Results

We now turn to evaluation of the dBL via experimental studies. We consider both
simulation studies and three real data examples from the literature and evaluate the
strengths and weaknesses of the proposal.

10.2.3.1 Simulation Studies

Our simulation study models are based on the studies in (Zou and Hastie, 2005).
(Examples 10.2 and 10.4 correspond exactly, Examples 10.1 and 10.3 are minor
modifications of examples in their work). The aim is to highlight the differences
between the techniques in terms of predictive performance, but also in terms of vari-
able selection accuracy. We present five simulation study examples, each of which
consist of a training set, a validation set and a test set (all independent). Models are
fit using the training data only, and parameters/hyperparameters selected from ap-
propriate grids on reasonable values using the validation set. For the EN heuristic,
in all experiments we set the �1/�2 blending parameter α = 0.7. Borrowing notation
from Zou and Hastie (2005), we use x/y/z to denote x training observations (size of
the training data), y validation and z independent test samples. The four examples
attempt to gauge the performance of the methods in various scenarios:
Example 10.1. We simulate 200 data sets consisting of 20/20/200 observations with
8 predictors. The data generating mechanism is a linear model with y = Φβ +κε ,
where p(ε) = N (ε|0, I) and κ = 3. We set β = (3,1.5,0,0,2,0,0,0)′. The pairwise
correlation between Φ i and Φ j is set as Cov(i, j) = ρ |i− j|. In this example, the
covariance matrix is an identity matrix, Cov(i, j) = 0 for all i �= j and Cov(i, i) = 1.
Finally, Φ is drawn from a multivariate Gaussian with zero mean and the above
covariance matrix.
Example 10.2. This example is entirely analogous to Example 10.1 except with
non-identity covariance (introducing mild correlation between the regressors). Here,
ρ = 0.5.



10.2 Priors on the Variance in Sparse Bayesian Learning: the demi-Bayesian Lasso 355

Example 10.3. This example the same as Examples 10.1 and 10.2, except with
higher correlation between the regressors. Here, ρ = 0.85.
Example 10.4. This is an example where the data generating mechanism is a linear
model. We simulate 200 data sets with 100/100/400 observations and 40 predic-
tors. This time β = (0, . . . ,0,2, . . . ,2,0, . . . ,0,2, . . . ,2)′, with alternating blocks of
10 indices of zeros and 2s. Here, κ = 15 and Cov(i, j) = 0.5 for all i �= j, and
Cov(i, i) = 1.
Example 10.5. This is an example where the data generating mechanism is not a
linear model. Here we will not be able to gauge variable selection accuracy, but only
predictive performance. In this case we include some interaction terms and powers
of the regressors in computing the response. We simulate 40/40/400 observations
following polynomial model (for a single observation): y = 1.5φ 2

1 +2φ1φ2−φ5φ1 +
φ 3

5 + 2φ7 + 3ε where ε is a zero mean, unit variance Gaussian error. The learning
algorithms only get access to Φ and the responses.

For Examples 10.1 through 10.4, we compute the following quantities: i) the
mean squared error (MSE), computed on test data, ii) mean “parametric” error
(MPE), that is, the mean of the quantity (β − β true)

′Σ(β − β true), where Σ is the
covariance of Φ . This attempts to quantify closeness to the parameters that actually
generated the data. iii) Quantities related to structural errors: mean C (C̄) and mean
IC ( ¯IC). C is defined as the number of true weights that were zero which are cor-
rectly estimated as zero by the model (thus higher values are better). Similarly, IC is
defined as the number of non-zero true weights incorrectly estimated as zero by the
model (and thus lower IC values are preferred). Models that are excessively sparse
would tend to have high C values (good) and high IC values (not good). A model
that is completely non-sparse would have the lowest possible C value (bad) but the
lowest IC values (good) as well. For Example 10.5, since the data generating mech-
anism is outside the model hypothesis class we only report the test mean squared
error.

We evaluate the optimization based approaches, namely the Lasso (Lasso in the
results), the original SBL algorithm (Tipping, 2001, SBL), the Wipf and Nagarajan
(2008) SBL algorithm (�1 SBL), the dBL model with parameters found using the
EM algorithm (EM dBL) and the �1 variation (the �1 dBL algorithm) and finally, the
�1 based proposal with the EN heuristic (dBL + EN).

Table 10.4 and Figure 10.7 show the results. In all cases (modest to large) im-
provements are made over the flat-prior variants and over the Lasso both in terms of
prediction accuracy as well as structural accuracy. In the tables we show standard
errors of the estimates, and in Figure 10.7, we show boxplots of the squared error
showing the median, lower and upper quartiles, whiskers and outliers. We next turn
to some real data examples.

10.2.3.2 Prostate Cancer Data

The data in this example comes from a prostate cancer study done by Stamey (1989).
Eight clinical measurements serve as the regressors, which are, in order: log(cancer
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TABLE 10.4. Simulation study results.

Lasso SBL �1 SBL EM dBL �1 dBL dBL + EN
Example 10.1
MSE 14.40 (0.28) 14.39 (0.31) 14.66 (0.34) 14.23 (0.29) 14.04 (0.30) 14.11 (0.28)
MPE 3.99 (0.21) 4.02 (0.24) 4.25 (0.27) 3.83 (0.22) 3.64 (0.23) 3.70 (0.21)
C̄ 2.23 (0.12) 2.59 (0.12) 3.51 (0.10) 2.21 (0.11) 3.61 (0.10) 3.29 (0.09)
¯IC 0.24 (0.04) 0.26 (0.04) 0.38 (0.05) 0.22 (0.04) 0.30 (0.04) 0.26 (0.04)

Example 10.2
MSE 14.63 (0.36) 14.84 (0.37) 15.12 (0.42) 14.44 (0.36) 14.42 (0.36) 14.22 (0.37)
MPE 3.91 (0.22) 4.12 (0.23) 4.44 (0.30) 3.72 (0.21) 3.72 (0.21) 3.53 (0.22)
C̄ 2.24 (0.11) 2.77 (0.11) 3.56 (0.11) 2.23 (0.10) 3.58 (0.10) 3.25 (0.10)
¯IC 0.22 (0.03) 0.39 (0.04) 0.48 (0.05) 0.22 (0.03) 0.36 (0.04) 0.23 (0.03)

Example 10.3
MSE 14.20 (0.32) 14.42 (0.31) 15.20 (0.42) 13.83 (0.30) 13.99 (0.30) 13.44 (0.28)
MPE 3.33 (0.17) 3.56 (0.17) 4.21 (0.29) 2.96 (0.15) 3.09 (0.15) 2.53 (0.13)
C̄ 2.42 (0.09) 2.85 (0.10) 3.23 (0.09) 2.52 (0.09) 3.48 (0.09) 2.77 (0.08)
¯IC 0.65 (0.05) 0.78 (0.05) 0.91 (0.05) 0.58 (0.05) 0.92 (0.05) 0.38 (0.04)

Example 10.4
MSE 316.92 (2.41) 311.37 (2.32) 327.13 (2.78) 283.72 (1.95) 286.50 (2.03) 261.14 (1.67)
MPE 83.74 (1.64) 77.37 (1.39) 93.55 (2.02) 49.28 (0.90) 52.19 (1.03) 26.22 (0.49)
C̄ 9.72 (0.34) 14.61 (0.24) 8.39 (0.16) 11.99 (0.19) 14.66 (0.18) 8.03 (0.21)
¯IC 5.92 (0.19) 9.87 (0.19) 5.79 (0.13) 6.58 (0.14) 8.77 (0.15) 2.52 (0.12)

Example 10.5
MSE 30.78 (0.40) 30.56 (0.42) 31.64 (0.47) 30.32 (0.40) 30.07 (0.40) 30.37 (0.40)
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FIGURE 10.7. Boxplots for simulation studies 3 and 4, where Examples 3 and 4 correspond to
Examples 10.3 and 10.4. The horizontal dashed line is a visual guide and marks the location of the
minimum median from amongst the prior art, namely the Lasso, SBL and �1 SBL.
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volume) lcavol, log(prostate weight) lweight, age, log(amount of benign prostatic
hyperplasia) lbph, seminal vesicle invasion svi, log(capsular penetration) lcp, Glea-
son score gleason and percentage Gleason score 4 or 5 pgg45. The predictive quan-
tity of interest is the log(prostate specific antigen) l psa.

Following Zou and Hastie (2005), we divide the data into two parts, a training
set with roughly two thirds the number of observations, 64 observations and a test
set with 33 observations. Hyperparameters were selected from a grid of values via
10-fold cross validation using only the training data4. The methods are compared
via the prediction mean-squared error on the test data.

TABLE 10.5. Prostate data results.

Lasso SBL �1 SBL EM dBL �1 dBL dBL + EN
MSE 0.4505 0.5539 0.5765 0.5367 0.3781 0.5216
Vars all all but 6 all but 6 all but 6 (1,3,4,5) (1,5,7)
σ2 (λ ) 0.5 0.2 0.01 0.25 (1) 0.005 (500) 0.25 (1)

Our results (Table 10.5) show improved performance of the proposals over the
Lasso5 and SBL, with the �1 dBL providing the best performance. There is broad
consensus on the selected variables, with lcp being rejected by all models in our
experiments.

10.2.3.3 Diabetes Data

The data in this study come from Efron et al. (2004). The response is a quantitative
measure of diabetes progression in 398 patients one year after baseline. The predic-
tors include age, sex, body mass index, average blood pressure, and six blood serum
measurements, for a total of 10 regressors. As Efron et al. (2004) point out, linear
models are especially useful in this diagnostic application, because in addition to
predictive accuracy for future patients, the models would ideally provide disease
progression guidance by being interpretable. We standardized the regressors to have
zero mean 0 and unit variance.

We partition the data into a 266 patient training sample and a 132 patient test
sample. Hyperparameters were selected from a grid of values via 10-fold cross val-
idation using only the training data. We show test mean squared error, variables
selected and parameters (and hyperparameters used).

Our results agree with many reported findings on this dataset, and in our exper-
iments, the dBL + EN variant proved predictively best by a slight margin (Table
10.6). In terms of variable selection, the least important regressors appear to be 1,

4 For all the real data examples, we select the hyperparameters following the slight modification to
k-fold CV suggested in Chapter 7 of Hastie, Tibshirani, and Friedman (2001), namely we pick the
largest amount of regularization that is within 1 standard error of the minimum CV error.
5 Note that in the table, the σ2 is a proxy label for the regularization parameter for the Lasso.
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TABLE 10.6. Diabetes data results.

Lasso SBL �1 SBL EM dBL �1 dBL dBL + EN
MSE 3031.2 3045.1 3032.4 3034.2 3031.2 3029.3
Vars all but 1,6,8 all but 1,7 all all but 1,8 all but 1,6,8 all
σ2 (λ ) 1 500 500 500 (0.001) 100 (0.1) 500 (0.001)

6 and 8, which is also evident from the findings in Park and Casella (2008). Note
that in our experiments, the SBL model seems to deselect regressor 7, which is an
anomaly.

10.2.3.4 Biscuit NIR Data

In this application, we examine the biscuit dough data from Brown, Fearn, and Van-
nucci (1999). The response we look at is fat content of the dough (centered), and the
regressors are spectral characteristics of the dough, measured using near infrared
(NIR) spectroscopy (standardized). The spectral characteristics are described using
a grid of wavelengths, in particular reflectance measured at every 4nm from the
range of wavelengths: 1202–2400 nm. The data is split into 39 training samples and
31 test samples, and we standardize the regressors.

Hyperparameters were selected from a grid of values via 5-fold cross validation
using only the training data. The methods are compared via the prediction mean-
squared error on the test data.

TABLE 10.7. Biscuit NIR data results.

Lasso SBL �1 SBL EM dBL �1 dBL dBL + EN
MSE 0.0565 0.0551 0.0696 0.0543 0.0450 0.1001
|Non-zero Vars| 18 6 269 11 54 43
σ2 (λ ) 1.25 0.25 0.05 0.2 (0.1) 0.15 (0.2) 1 (1)

Our results (Table 10.7 and Figure 10.8 are consistent with previous studies that
use this data (West, 2003) and we find �1 dBL gives the best performance. In Figure
10.8, due to the coarse resolution of the plot, only high magnitude weights can be
discerned. Note the similarity between the high magnitude weights of the Lasso and
SBL solutions (the EM SBL high magnitude weights are very similar and hence
omitted). In particular, the non-zero β found by �1 dBL around 1710 nm are sig-
nificant because fat is known to have a characteristic absorbance in this range. Also
note that for this example, the dBL + EN heuristic appears to perform worse than
the others.
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FIGURE 10.8. Biscuit data β values. Shown from top to bottom are the final parameter weights for
the Lasso, SBL, �1 SBL, �1 dBL and dBL + EN.

10.2.4 Discussion

In this section we examine the use of proper priors in sparse Bayesian learning and
showed some promising experimental results. We show that with a single additional
hyperparameter (set through cross-validation), the model is augmented substantially
enough to make better predictions. Further, the choice of an exponential distribution
as a prior connects SBL to the recently proposed Bayesian Lasso, with our proposal
amounting to an attractive alternative way of estimating Bayesian Lasso model hy-
perparameters by maximizing marginal likelihood rather than Monte Carlo simula-
tion. We also explore the use of an EN-heuristic that, in our experiments, leads to
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better performance in the presence of correlated regressors. In future work we would
like to extend the proposals to classification problems. We would also like to exam-
ine the efficient SBL algorithm of Tipping and Faul (2003) to see if an analogous
procedure can be applied in this case as well. Finally, other forms of prior distribu-
tion on the variance are the topic of our further exploration, including additionally
sparsifying priors like the Laplace distribution etc.

10.3 Hierarchical Bayesian Mixed-Membership Models and
Latent Pattern Discovery

Edoardo M. Airoldi, Stephen E. Fienberg, Cyrille J. Joutard, and
Tanzy M. Love

Although hierarchical models have dominated the Bayesian literature since the
early 1970s, several variations on Hierarchical Bayesian Mixed-Membership Mod-
els (HBMMMs) have recently gained popularity thanks to their ability to deal with
minimal information and noisy labels in a systematic fashion. These models allow
each subject of study, e.g., documents or individuals, to belong to more than one
class, group, or cluster (Erosheva, Fienberg, and Lafferty, 2004; Erosheva and Fien-
berg, 2005; Airoldi et al., 2006, 2008; Airoldi, 2007).

We can specify HBMMMs in terms of a hierarchy of probabilistic assumptions
(i.e., a directed acyclic graph) that involves: (i) observations, x, (ii) latent variables,
λ , and (iii) parameters (constants) for the patterns associated with the groups or
clusters, θ . The likelihood of the data is then �(x|θ) =

∫
λ �(x,λ |θ)Dα(dλ ), where

Dα(dλ ) is a prior distribution over the latent variables. During pattern discovery,
i.e., posterior inference, we condition on the values of the observed data and max-
imize the likelihood with respect to a set of parameters θ that describe the group
patterns.

The focus in pattern discovery with HBMMMs is not on the variable amount of
information about the labels for the objects; rather, it is on the hierarchy of prob-
abilistic assumptions that the analyst believes provide the structure underlying the
data, which ultimately lead to the likelihood function. Whatever the amount of infor-
mation about the class labels, full, partial, minimal, or none, we simply treat the in-
formation as observations about the attributes and we condition upon it. The missing
information about the labels or weights on the classes or groups is recovered during
pattern discovery (i.e., via posterior inference) as is the information about other non-
observable patterns. In this sense, HBMMMs are essentially soft-clustering models
in that the mixed-membership error model for the labels associates each observation
with a vector of memberships that sum to one.

Because of their flexibility, instances of HBMMMs have gained popularity in
a variety of applications, e.g., population genetics (Pritchard, Stephens, and Don-
nelly, 2000; Rosenberg et al., 2002), scientific publications (Blei, Ng, and Jordan,
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2003; Erosheva, Fienberg, and Lafferty, 2004; Griffiths and Steyvers, 2004), words
and images (Barnard et al., 2003), disability analysis (Erosheva, 2002a,b, 2003; Ero-
sheva, Fienberg, and Joutard, 2007), fraud detection (Neville et al., 2005), biological
sequences and networks (Airoldi et al., 2008). HBMMMs are closely related to pop-
ular unsupervised data mining methods such as probabilistic principal component
analysis (Tipping and Bishop, 1999a), parametric independent component analysis,
mixtures of Gaussians, factor analysis, and hidden Markov models (Rabiner, 1989).

A fundamental issue of HBMMMs is that of model choice, involving the choice
of the number of latent categories, groups, or clusters. Positing an explicit model for
the category labels requires a choice regarding the number of existing categories in
the population, i.e., the choice of the crucial model dimension. A parametric model
for the labels would assume the existence of a predetermined number, K, of cat-
egories, whereas a nonparametric error model would let the number of categories
grow with the data. We explore the issue of model choice in the context of HBM-
MMs, both theoretically and computationally, by investigating the nexus between
strategies for model choice, estimation strategies, and data integration in the context
of data extracted from scientific publications and measures of disability for Amer-
icans aged 65+, cf. (Erosheva, Fienberg, and Joutard, 2007; Joutard et al., 2007;
Airoldi et al., 2009).

Overview of the section. In this section, we (i) describe HBMMMs a class of mod-
els that respond to the challenges introduced by modern applications, and we char-
acterize HBMMMs in terms of their essential probabilistic elements; (ii) identify
the issue of model choice as a fundamental task to be solved in each applied data
mining analysis that uses HBMMMs; (iii) survey several of the existing strategies
for model choice; (iv) develop new model specifications, as well as use old ones,
and we employ different strategies of model choice to find “good” models to de-
scribe problems involving text analysis and survey data; (v) study what happens as
we deviate from statistically sound strategies in order to cut down the computational
burden, in a controlled experimental setting.

PNAS biological sciences collection. Our data consists of abstracts and references
for a collection of articles from the Proceedings of the National Academy of Sciences
for 1997–2001. Erosheva, Fienberg, and Lafferty (2004) and Griffiths and Steyvers
(2004) report on their estimates about the number of latent topics, and find evidence
that supports a small number of topics (e.g., as few as 8 but perhaps a few dozen)
or as many as 300 latent topics, respectively. There are a number of differences be-
tween the two analyses: the collections of papers were only partially overlapping
(both in time coverage and in subject matter), the authors structured their dictionary
of words differently, one model could be thought of as a special case of the other but
the fitting and inference approaches had some distinct and non-overlapping features.
The most remarkable and surprising difference comes in the estimates for the num-
ber of latent topics: Erosheva, Fienberg, and Lafferty (2004) focus on values such
as 8 and 10, but admit that a careful study would likely produce somewhat higher
values, while Griffiths and Steyvers (2004) present analyses they claim support on
the order of 300 topics! Should we want or believe that there are only a dozen or so
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topics capturing the breadth of papers in PNAS or is the number of topics so large
that almost every paper can have its own topic? A touchstone comes from the jour-
nal itself, which states that it classifies publications in biological sciences according
to 19 topics. When submitting manuscripts to PNAS, authors select a major and a
minor category from a predefined list of 19 biological science topics, and possibly
those from the physical and/or social sciences.

Here, we develop an alternative set of analyses using the version of the PNAS
data on biological science papers analyzed in Erosheva, Fienberg, and Lafferty
(2004). We employ both parametric and non-parametric strategies for model choice,
and we make use of both text and references of the papers in the collection. This case
study gives us a basis to discuss and assess the merit of the various model choice
strategies.

Disability survey data. In the second example, we work with data extracted from
the National Long-Term Care Survey (NLTCS) by Erosheva (2002a) to illustrate
the important points of our analysis. The NLTCS is a longitudinal survey of the
U.S. population aged 65 years and older with waves conducted in 1982, 1984, 1989,
1994, 1999, and 2004. It is designed to assess chronic disability among the US el-
derly population, especially those who show limitations in performing some activi-
ties that are considered normal for everyday living. These activities are divided into
activities of daily living (ADLs) and instrumental activities of daily living (IADLs).
ADLs are basic activities of hygiene and healthcare: eating, getting in/out of bed,
moving inside the house, dressing, bathing and toileting. IADLs are basic activities
necessary to reside in the community: doing light and heavy housework and laundry,
cooking, grocery shopping, moving outside the house, traveling, managing money,
taking medicine, and telephoning. The data extract we work with consists of com-
bined data from the first four survey waves (1982, 1984, 1989, 1994) with 21,574
individuals and 16 variables (6 ADLs and 10 IADLs). For each activity, individuals
are either disabled or healthy on that activity. We then deal with a 216 contingency
table. Of the 216 = 65,536 possible combinations of response patterns, only 3,152
occured in the NLTCS sample.

Here we complement the earlier analyses in Erosheva (2002a), Erosheva and
Fienberg (2005), and Erosheva, Fienberg, and Joutard (2007) and employ both para-
metric and non-parametric strategies for model choice. We focus on increasing the
number of latent profiles to see if larger choices of K result in better descriptions of
the data and to find the value of K which best fits the data.

From the case studies we learn that: (i) Independently of the goal of the analysis,
e.g., predictive versus descriptive, similar probabilistic specifications of the mod-
els often support similar “optimal” choices of K, i.e., the number of latent groups
and patterns; (ii) Established practices aimed at reducing the computational burden
while searching for the best model lead to biased estimates of the optimal choices
for K, i.e., the number of latent groups and patterns.

Arriving at a “good” model is a central goal of empirical analyses. These models
are often useful in a predictive sense. Thus our analyses in this section are relevant
as input to those managing general scientific journals as they re-examine current
indexing schemes or consider the possible alternative of an automated indexing sys-
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tem, and to those interested in the implications of disability trends among the US
elderly population as the rapid increase in this segment of the population raises issue
of medical care and the provision of social security benefits.

10.3.1 Characterizing HBMM Models

There are a number of earlier instances of mixed-membership models that have
appeared in the scientific literature, e.g., see the review in Erosheva and Fien-
berg (2005). A general formulation due to Erosheva (2002a), and also described
in Erosheva, Fienberg, and Lafferty (2004), characterizes the models of mixed-
membership in terms of assumptions at four levels. In the presentation below, we
denote subjects with n ∈ [1,N] and observable response variables with j ∈ [1,J].

A1–Population Level. Assume that there are K classes or sub-populations in the
population of interest and J distinct characteristics measured on each subject. We
denote by f (xn j|θ jk) the probability distribution of jth response variable in the kth
sub-population for the nth subject, where θ jk is a vector of relevant parameters,
j ∈ [1,J] and k ∈ [1,K]. Within a subpopulation, the observed responses are assumed
to be independent across subjects and characteristics.

A2–Subject Level. The components of the membership vector λn = (λn[1], . . . ,λn[K])′
represent the mixed-membership of the nth subject to the various sub-populations.
Conditional on the mixed-membership scores, the response variables xn j are inde-
pendent of one another, and independent across subjects.

A3–Latent Variable Level. Assume that the vectors λn, i.e., the mixed-membership
scores of the nth subject, are realizations of a latent variable with distribution Dα ,
parameterized by vector α .

A4–Sampling Scheme Level. Assume that the R replications of the J distinct re-
sponse variables corresponding to the nth subject are independent of one another.
The probability of observing {xr

n1, . . . ,x
r
nJ}R

r=1, given the parameters, is then

P({xr
n1, . . . ,x

r
nJ}R

r=1|α,θ) =
∫ (

J

∏
j=1

R

∏
r=1

K

∑
k=1

λn[k] f (xr
n j|θ jk)

)
Dα(dλ ).

The number of observed response variables is not necessarily the same across
subjects, i.e., J = Jn. Likewise, the number of replications is not necessarily the
same across subjects and response variables, i.e., R = Rn j.
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10.3.2 Strategies for Model Choice

Although pathological cases can be built, where slightly different model specifica-
tions lead to quite different analyses, in real situations we expect models with similar
probabilistic specifications to suggest an optimal number of groups, K, in the same
ballpark.

In our application to scientific publications and survey data we explore the issue
of model choice by means of different criteria, two of which are popular in the data
mining community; namely, cross-validation and a Dirichlet process prior (Anto-
niak, 1974; Hastie, Tibshirani, and Friedman, 2001).

Cross-validation is a popular method to estimate the generalization error of a pre-
diction rule (Hastie, Tibshirani, and Friedman, 2001), and its advantages and flaws
have been addressed by many in that context, e.g., see Ng (1997). More recently,
cross-validation has been adopted to inform the choice about the number of groups
and associated patterns in HBMMMs (Barnard et al., 2003; Wang, Mohanty, and
McCallum, 2005). Guidelines for the proper use of cross-validation in choosing the
optimal number of groups K, however, has not been systematically explored. One
of the goals of our case studies is that of assessing to what extent cross-validation
can be trusted to estimate the underlying number of topics or disability profiles. In
particular, given the non-negligible influence of hyper-parameter estimates in the
evaluation of the held-out likelihood, i.e., the likelihood on the testing set, we dis-
cover that it is important not to bias the analysis towards unprincipled estimates
of such parameters, or with arbitrary ad-hoc choices that are not justifiable using
preliminary evidence, i.e., either in the form of prior knowledge, or outcome of
the analysis of training documents. Expert prior information was sought, but those
consulted expressed views on only a relatively narrow component of the data that
did not inform the hyper-parameters. In this situation, estimates obtained following
good statistical properties, e.g., empirical Bayes or maximum likelihood estimates,
should be preferred to others (Carlin and Louis, 2005).

Positing a Dirichlet process prior on the number of latent topics is equivalent to
assuming that the number of latent topics grows with the log of the number of doc-
uments or individuals (Ferguson, 1973; Antoniak, 1974). This is an elegant model
selection strategy in that the selection problem becomes part of the model itself,
although in practical situations it is not always possible to justify. A nonparametric
alternative to this strategy uses the Dirichlet Process prior as an infinite dimensional
prior with a specific parametric form as a way to mix over choices of K, e.g., see
McAuliffe, Blei, and Jordan (2006). This prior appears reasonable for static analyses
of scientific publications that appear in a specific journal.

The statistical and data mining literatures contain many criteria and approaches
to deal with the issue of model choice, e.g., reversible jump MCMC techniques,
Bayes factors and other marginal likelihood methods, cross-validation, and penal-
ized likelihood criteria such as the Bayesian Information Criterion (BIC), the Akaike
information criterion (AIC), the deviance information criterion (DIC), and mini-
mum description length (MDL). For further details and discussion see Joutard et al.
(2007).
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10.3.3 Case Study: PNAS 1997–2001

In this section we introduce model specifications to analyze the collection of papers
published in PNAS, which were submitted by the respective authors to the section
on biological sciences. Earlier related analyses appear in Erosheva, Fienberg, and
Lafferty (2004) and Griffiths and Steyvers (2004). After choosing an optimal value
for the number of topics, K∗, and its associated words and references usage patterns,
we also examine the extent to which they correlate with the actual topic categories
specified by the authors.

We organize our models into finite and infinite mixtures, according to the dimen-
sionality of the prior distribution, Dα , posited at the latent variable level. We char-
acterize an article, or document, by the words in its abstract and the references in its
bibliography. Introducing some notation, we observe a collection of N documents.
The nth document is represented as (x1n,x2n). We assume that words and references
come from finite discrete sets (vocabularies) of sizes V1 and V2, respectively. For
simplicity, we assume that the vocabulary sets are common to all articles, indepen-
dent of the publication time, although this assumption can be relaxed (Joutard et al.,
2007). We assume that the distribution of words and references in an article is driven
by an article’s membership in each of K basis categories, λ = (λ1, . . . ,λK), and we
denote the probabilities of the V1 words and the V2 references in the kth pattern by
θk1 and θk2, for k = 1,2, . . . ,K. These vectors of probabilities define the multino-
mial distributions over the two vocabularies of words and references for each basis
semantic pattern. Below, whenever the analysis refers to a single document, we omit
the document index n.

10.3.3.1 Finite Mixture Model

For an article with R1 words in the abstract and R2 references in the bibliography,
the generative sampling process is as follows:

1. Sample λ ∼ Dirichlet(α1,α2, . . . ,αK), where αk = α, for all k.
2. Sample x1 ∼ Multinomial(pλ ,R1), where pλ = ∑K

k=1λkθk1.
3. Sample x2 ∼ Multinomial(qλ ,R2), where qλ = ∑K

k=1λkθk2.

The conditional probability of words and references in a article is then

P
{
(x1,x2)|θ ,α

}
=
∫ 2

∏
j=1

Vj

∏
v=1

(
K

∑
k=1

λkθk j[v]

)x j[v]

dDα(λ ).

The hyper-parameters of this model are the symmetric Dirichlet parameter α ,
and the multinomial parameters for words, θk1, and references, θk2, for each of the
latent topics6 k = 1, . . . ,K. That is, through corresponding pairs of θ vectors (θk1 and

6 In this application, we refer to the sub-populations of assumption A1 in Section 10.3.1 as “topics.”
Despite the suggestive semantics, topics are pairs of latent distributions over the vocabulary and
the set of known citations, from a statistical perspective.
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θk2) we define a parametric representation of each of the K sub-populations (see
assumption A1 in Section 10.3.1), which we refer to as topics in this application.
Technically, they are pairs of latent distributions over the vocabulary and the set
of known citations. In other words, element v of θk1 encodes the probability of
occurrence of the v-th word in the vocabulary (containing V1 distinct words) when
the k-th topic is active, with the constraint that ∑v θk1[v] = 1 for each k. Similarly,
element v of θk2 encodes the probability of occurrence of the v-th reference in the set
of known citations (V2 of them) when the k-th topic is active. In this finite mixture
model, we assume that the number of latent topics is unknown but fixed at K. Our
goal is to find the optimal number of topics, K∗, which gives the best description of
the collection of scientific articles.

10.3.3.2 Infinite Mixture Model

In the infinite mixture case we posit a simpler and more traditional type of clustering
model, by assuming that each article is generated by one single topic. However,
in this case we do not need to fix the unknown number of topics, K, prior to the
analysis. This full membership model can be thought of as a special case of the
mixed membership model where, for each article, all but one of the membership
scores are restricted to be zero. As opposed to traditional finite mixture models that
are formulated conditional on the number of latent categories, however, this model
variant allows the joint estimation of the characteristics of the latent categories, θ ,
and of the number of latent categories, K. That is, prior to the analysis, the number
of sub-populations (see assumption A1 in Section 10.3.1) is unknown and possibly
infinite.

We assume an infinite number of categories and implement this assumption
through a Dirichlet process prior for λ , Dα , introduced and discussed in Fergu-
son (1973) and Neal (2000). The distribution Dα models the prior probabilities of
latent pattern assignment for the collection of documents. In particular, for the nth
article, given the set of assignments for the remaining articles, λ−n, this prior puts
a probability mass on the kth pattern (out of K distinct patterns observed in λ−n)
which is proportional to the number of documents associated with it. The prior dis-
tribution also puts a probability mass on a new, (K + 1)th latent semantic pattern,
that is distinct from the patterns (1, . . . ,K) observed in λ−n. That is, Dα entails prior
probabilities for each component of λ as follows:

p(λn[k] = 1|λ−n) =

⎧⎨
⎩

m(−n,k)
N−1+α if m(−n,k) > 0,
α

N−1+α if k = K(−n)+1,
0 otherwise,

where λ−n denotes the full-membership vectors for all but the nth document;
m(−n,k) is the number of documents that are associated with the kth latent pat-
tern, other than the nth document, i.e., m(−n,k) = ∑N

m=1 I(λm[k] = 1,m �= n); and
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K(−n) is the number of distinct latent patterns that are associated with at least one
document other than the nth document.

The generative sampling process for the infinite mixture model is as follows:

1. Sample λ ∼ DirichletProcess(α).
2. For each of the N articles

2.1. Sample x1n ∼ Multinomial(θc1,R1) where λn[c] = 1.
2.2. Sample x2n ∼ Multinomial(θc2,R2) where λn[c] = 1.

The hyper-parameters of this model are the scaling parameter of the Dirichlet
process prior, α , and the multinomial parameters for words, θk1, and references,
θk2, for each of the latent topics k = 1, . . . ,K. In this model, we assume that the
number of latent topics, K, is unknown and possibly infinite, through the prior for
λ , Dα , and we examine the posterior distribution of λ .

10.3.3.3 Empirical Results

We fit six models for latent topics in the PNAS dataset: using words alone or with
references, finite or infinite mixture models, and (for finite mixture) fitted or fixed
Dirichlet parameter α . We used variational methods for the finite mixtures, and
MCMC methods for the infinite mixture. For further details see Airoldi (2007) and
Joutard et al. (2007).

In Figure 10.9, we give the cross-validated log-likelihood obtained for the four
finite mixture models (at K = 5,10, · · · ,50,100,200,300). The plots of the log like-
lihood in Figure 10.9 suggest we choose a number of topics between 20 and 40
whether words or words and references are used. Values of K that maximize the
held-out loglikelihood are somewhat greater when the database is expanded with
references compared to when the database contains only words. Thus, adding refer-
ences allows for finer refinement of topics.

The infinite model generates a posterior distribution for the number of topics, K,
given the data. Figure 10.10 shows the posterior distribution ranges from 17 to 28
topics. The maximum a posteriori estimate of K is smaller for the model with words
and references compared to the model with words only. Further, the posterior range
of K is smaller for the model with words and references. Thus adding references to
the models reduces the posterior uncertainty about K.

Overall, the values of K in the region of 15-40 are supported by all our models.
A number in that range would be a plausible choice for the number of latent basis
categories in PNAS biological sciences research reports, 1997-2001. By choosing
K = 20 topics, we can meaningfully interpret all of the word and reference usage
patterns. We then fit the data with a 20 topics model for the finite mixture model
using words and references and focused on the interpretation of the 20 topics.

To summarize the distribution of latent aspects over distributions, we provide a
graphical representation of the distribution of latent topics for each of the PNAS
submission classification in Figure 10.11. When the references are included, the
relationship of estimated latent categories with designated PNAS classifications be-
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FIGURE 10.9. Top panel: Average held-out log-likelihood corresponding to four mixed-
membership models we fit to the PNAS Biological Sciences articles, 1997-2001, using words from
article abstracts (bottom panel) and words and references (top panel). Solid lines correspond to
models fitted by estimating the hyperparameter α; dashes lines correspond to models fitted by
setting the hyperparameter equal to α = 50/K.

comes more composite for both estimation methods. Models where α is fixed are
less sparse than the corresponding models with α fit to the data. For 20 latent top-
ics, we fix α = 50/20 = 2.5 > 1—each latent topic is expected to be present in
each document and a priori we expect equal membership in each topic. By contrast
the fitted values of α less than one lead to models that expect articles to have high
membership in a small number of topics. See Joutard et al. (2007) for further conse-
quences of these assumptions. The PNAS topics tend to correspond to fewer latent
topics when we estimate α and to low to moderate numbers topics when we fix α .
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FIGURE 10.10. Posterior distribution of the number of mixture components K for infinite models
for the PNAS Biological Sciences articles, 1997-2001, using words from article abstracts (solid
line) and words and references (dashed line).

Further, by examining Figure 10.11, we note that nearly all of the PNAS classi-
fications are represented by several word and reference usage patterns in all of the
models. This highlights the distinction between the PNAS submission categories
and the discovered latent topics. The assigned PNAS categories follow the structure
of the historical development of Biological Sciences and the divisions/departmental
structures of many medical schools and universities. These latent topics, however,
are structured around the current biological research interests.

We consider the best model of words and references, with K∗ = 20, and we offer
the following interpretation of all of the topics to demonstrate what a reasonable
model fit should look like in Table 10.8.

10.3.4 Case Study: Disability Profiles

All our models are special cases of HBMMMs presented in Section 10.3.1. Below,
we organize them into finite and infinite mixture models, as before, according to the
dimensionality of the prior distribution, Dα , posited at the latent variable level—
assumption A3.

We characterize an individual by a set of responses, x jn for j = 1, . . . ,J, which
were measured through a questionnaire. In our analysis we selected J = 16 binary
responses that encode answers to questions about the ability to perform six activities
of daily living (ADL) and ten instrumental activities of daily living (IADL). The
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FIGURE 10.11. Estimated average mixed membership of articles in 20 estimated topics by PNAS
submission classifications. In each panel, we plot average membership values for each submission
category (ordered on the Y axis) in the topics (ordered on the X axis). Panels 1 and 2 represent
models with only words while panels 3 and 4 use words and references. Panels 1 and 3 represent
models with α estimated from the data while panels 2 and 4 use a fixed value of α .

TABLE 10.8. A post-analysis interpretation for the model with K∗ = 20 basis catagories.

Topic Interpretation
1 population genetics
2 enzymes by protein kinases
3 problems of hormone levels

4 & 5 nuclear activity production of cdna and mrna & catalysts for dna copying
6 & 12 HIV and immune response & T-cell response to HIV infection

7 plant evolution and phylogenetic relationships
8 & 11 protein structure and folding & protein promotion by transcription binding factors

9 procedural explanations
10 genetic mutation
14 cancer markers

13 & 18 mutant mice and tumor suppression & tumor treatment for mice and humans
15 bone marrow stem cells
16 functional and visual responses to changes in the brain
17 neurons and neurotransmitters
19 nervous system development
20 electrical excitability of cell membranes
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jth response, x jn, is recorded as zero if the nth individual does not have problems
performing the jth activity (he is considered healthy, to that extent, for the purpose
of the survey), whereas it is recorded as one if the nth individual has problems
performing the jth activity (he is considered disabled, to that extent, for the purpose
of the survey).

10.3.4.1 Finite Mixture Model

To carry out the analysis of the NLTCS data in the finite mixture setting we use the
GoM model described in Erosheva, Fienberg, and Joutard (2007) and Joutard et al.
(2007), which posits the following generative process for all N individuals in the
survey.

1. Sample θ jk ∼ Beta (σ1,σ2) for each j and k.
2. For each of the N seniors

2.1. Sample λn ∼ Dirichlet (α[1], . . . ,α[K]).
2.2. Sample x jn ∼ Bernoulli (p jλ ) for each j, where p jλ = ∑K

k=1λkθ jk.

We sample the elements of θ from a symmetric Beta distribution with fixed hyper-
parameter σ1 = σ2 = 1. Note that the distribution on λ is not the symmetric distri-
bution we used in the previous case study, in the finite setting. In this model, θ is
a matrix that encodes the probability of being disabled with respect to each one of
the 16 activities for seniors who display disability characteristics specific to each of
the K latent profiles. That is, θ jk is the probability of being disabled with respect
to the j-th activity for a person who “belongs” completely to the k-th latent profile.
Note that in this model there are no constraints on the sum of the total probability of
having being disabled given any specific profile. For example, ∑J

j=1 θ jk is not neces-
sarily one as in the model of Section 10.3.3. The hyper-parameters of this model are
α and σ . In Joutard et al. (2007), we develop a variational approximation to perform
posterior inference on such hyper-parameters, and on the latent variables λn.

In our analyses, we also consider a fully Bayesian version of the GoM model,
following Erosheva (2002a), which posits the following generative process for all N
individuals in the survey.

1. Sample ξ ∼ Dα .
2. Sample α0 ∼ Gamma (τ1,τ2).
3. Sample θ jk ∼ Beta(σ1,σ2) for each j and k.
4. For each of the N seniors

4.1. Sample λn ∼ Dirichlet(α0ξ[1], . . . ,α0ξ[K]).
4.2. Sample x jn ∼ Bernoulli(p jλ ) for each j, where p jλ = ∑K

k=1λkθ jk.

In this fully Bayesian setting we fix the hyper-parameter for convenience. Accord-
ing to our model specifications Dα is a symmetric Dirichlet distribution with fixed
hyper-parameter α1 = · · · = αK = 1. The kth component of ξ , ξ[k], represents the
proportion of the seniors in the survey who express traits of the kth latent disability
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profile. Further, we fix a diffuse Gamma distribution, τ1 = 2 and τ2 = 10, to control
for the tails of the Dirichlet distribution of the mixed membership vectors, λn.

In both of the finite mixture models we presented in this section, we assume
that the number of latent profiles is unknown but fixed at K. Our goal is to find
the number of latent disability profiles, K∗, which gives the best description of the
population of seniors.

10.3.4.2 Infinite Mixture Model

In the infinite setting we do not fix the number of sub-populations K. As in the previ-
ous case study, we restrict subjects (elderly Americans) to complete membership in
one group (profile) and the mixed membership vectors λ1:N reduce to single mem-
bership vectors. The generative sampling process for the infinite mixture model is
as follows:

1. Sample λ ∼ DirichletProcess(α).
2. Sample θ jk ∼ Beta (σ1,σ2) for each j and k.
3. Sample x jn ∼ Bernoulli(θ jc) where λn[c] = 1 for each j and n.

Here Dα is the Dirichlet process prior described in Section 10.3.3.2. As in the finite
models, we specify a symmetric Beta distribution for the disability probabilities, θ ,
however, here we fix σ1 = σ2 = 10 to make moderate disability probabilities more
likely a priori than extreme probabilities. Further, we fix the hyper-parameter of the
Dirichlet process prior at α = 1, which encodes “indifference” toward additional
groups.

10.3.4.3 Empirical Results

We fit three models for disability propensity profiles to the NLTCS: the finite mix-
ture with random Dirichlet parameter α , the finite mixture with fixed but unknown α
using variational and MCMC methods, and the infinite mixture model using MCMC
methods. See Joutard et al. (2007), Erosheva, Fienberg, and Joutard (2007), and
Airoldi (2007) for details about inference and a variety of different approaches to the
choice of K, including a method based on residuals for the most frequent response
patterns, and information criteria such as DIC and BIC. These analyses yield results
consistent with those for cross-validation using variational approximation methods,
shown in Figure 10.12, which suggest a choice of 8 or 9 profiles.

The infinite model generates the posterior distribution for the number of profiles,
K, in Figure 10.12, which is concentrated on from 11 to 15 profiles. We expect that
the infinite model requires more profiles because it involves “hard clustering.”

Multiple criteria suggest that K = 9 is a reasonable choice for the NLTCS data.
Figure 10.13 shows the latent profiles obtained for the 9 profiles GoM model using
MCMC methods. The conditional response probabilities represented on the Y-axis
are the posterior mean estimates of θ jk = P(x jn = 1|λn[k] = 1), the probability of
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FIGURE 10.12. Left Panel: Log-likelihood (5 fold cv) for K = 2, . . . ,10,15 for the finite model.
Right Panel: Posterior distribution of K for the infinite model.

being disabled on the activity j for a complete member of latent profile k. We can
clearly distinguish two profiles for “healthy” individuals; these are the lower curves
(the solid, black curve and the dashed, black curve). The upper curve (solid, grey
curve) corresponds to seriously “disabled” individuals since most of the probabili-
ties are greater than 0.8. One profile (long-dashed, grey curve) has the second high-
est values for the IADLs “managing money,” “taking medicine,” and “telephoning.”
This focuses on individuals with some cognitive impairment. The profile with the
second highest probabilities for most of the ADLs/IADLs (dashed, grey curve) char-
acterizes “semi-disabled” individuals. The profile with very high probabilities for all
the activities involving mobility including the IADL “outside mobility” (dot-dashed,
grey curve) characterizes mobility-impaired individuals. Another profile character-
izes individuals who are relatively healthy but can’t do “heavy housework” (long-
dashed, black curve). The two remaining profiles (the dot-dashed, black curve and
the dotted, black curve) corresponds to individuals who are “semi-healthy” since
they show limitations in performing some physical activities.

We found similar interpretations with the estimates based on variational meth-
ods and MCMC methods despite some differences in the estimated values of the
conditional disability propensity probabilities θ jk.
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FIGURE 10.13. Latent profiles (θ·k’s) for the GoM model with K=9.

10.3.5 Summary

In this section, we have studied the issue of model choice in the context of mixed-
membership models. Often the number of latent classes or groups is of direct interest
in applications, but it is always an important element in determining the fit and
meaning of the model.

We used extensions of “latent Dirichlet allocation” (LDA) to analyze a corpus
of PNAS biological sciences publications from 1997 to 2001. We included k-fold
cross-validation and the Dirichlet process prior among our approaches for selecting
the number of latent topics, focusing on six combinations of models and model
choice strategies. We focused on K = 20 topics, a value that appears to be within the
range of possibly optimal numbers of topics, and we saw that the resulting topics
were easily interpretable and profile popular research subjects in biological sciences,
in terms of the corresponding words and references usage patterns. Much higher
choices for K lead to far more complex interpretations. For further details see Airoldi
et al. (2009).

For the NLTCS data, we have developed parametric and nonparametric variations
of the GoM model. We performed posterior inference using variational methods
and MCMC. We have used different criteria to assess model fit and reached the
conclusion that K = 9 latent profiles is an appropriate choice for the data set, cf.,
the related analyses reported in Erosheva, Fienberg, and Joutard (2007). This choice
allows us to identify profiles such as the one for individuals who are able to perform
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all activities except “doing heavy housework.” Further, we were able to interpret
all 9 of the profiles, although once we reach K = 5, the fit seems not to improve
markedly.
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Chapter 11
Bayesian Inference in Political Science, Finance,
and Marketing Research

Many current research challenges in Bayesian analysis arise in applications. A
beauty of the Bayesian approach is that it facilitates principled inference in essen-
tially any well-specified probability model or decision problem. In principle one
could consider arbitrarily complicated priors, probability models and decision prob-
lems. However, not even the most creatively convoluted mind could dream up the
complexities, wrinkles and complications that arise in actual applications. In this
chapter we discuss typical examples of such challenges, ranging from prior con-
structions in political science applications, to model based data transformation for
the display of multivariate marketing data, to challenging posterior simulation for
state space models in finance and to expected utility maximization for portfolio se-
lection.

11.1 Prior Distributions for Bayesian Data Analysis in Political
Science

Andrew Gelman

Jim Berger has made important contributions in many areas of Bayesian statistics,
most notably on the topics of statistical decision theory and prior distributions. It is
the latter subject which I shall discuss here. I will focus on the applied work of my
collaborators and myself, not out of any claim for its special importance but because
these are the examples with which I am most familiar. A discussion of the role of the
prior distribution in several applied examples will perhaps be more interesting than
the alternative of surveying the gradual progress of Bayesian inference in political
science (or any other specific applied field).

I will go through four examples that illustrate different sorts of prior distribu-
tions as well as my own progress—in parallel with the rest of the statistical research

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 377
and Bayesian Analysis, DOI 10.1007/978-1-4419-6944-6 11,
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community—in developing tools for including prior information in statistical anal-
yses:

• In 1990, we fit a hierarchical model for election outcomes in congressional dis-
tricts, using a mixture distribution with an informative prior distribution to model
districts held by Democrats and Republicans.

• In 1994, we returned to this example, replacing the mixture model with a re-
gression using incumbency as a predictor, with a flat prior distribution on the
regression coefficient.

• In 1997, we used a hierarchical model with poststratification to estimate state-
level public opinion from national polls. Formally, the model used noninforma-
tive prior distributions, but our poststratification actually used lots of external
information from the Census.

• In 2008, we used a varying-intercept, varying slope model to explore the relation
between income and voting in U.S. states. An attempt to extend this model to
include additional predictors revealed the limitations of our default approach of
marginal maximum likelihood.

11.1.1 Statistics in Political Science

Is there anything about the study of public opinion and politics (as compared to
economics, psychology, sociology, or history, for example) that would show up in
the statistical modeling, in particular in prior distributions? I don’t think so.

Important statistical issues do arise in particular examples, however. For exam-
ple, there have not been many national elections, but the fifty states are a natural
setting for hierarchical modeling—the states are hardly exchangeable but it can be
reasonable to model them with exchangeable errors after controlling for regional
indicators and other state-level predictors1. Much work in political science goes
into increasing the sample size, for example studying other countries (or, within the
United States, by studying state and local elections) or replacing binary data with
continuous variables. For example, students of the so-called “democratic peace” use
continuous measures for democracy and peace, allowing quantitative researchers to
examine more sophisticated hypotheses (see Garktze, 2007).

I now return to the statistical specifics of the examples listed above. As we shall
see, our models do not show any linear or even monotonic development. Rather,

1 I used to say that Alabama and Mississippi were exchangeable, along with North and South
Dakota, until Brad Carlin—a resident of the neighboring state of Minnesota—explained to me the
differences between these two sparsely populated northern states, thus also educated me in the
general principle, emphasized by Bayesians from De Finetti to Berger and beyond, that exchange-
ability is a state of mind as much as it is a description of the physical and social world. To this
day I remain blissfully ignorant of any important features distinguishing the two southern states
mentioned above. Not so many years ago many would’ve considered New Hampshire and Vermont
to be exchangeable as well, but the expanding Boston suburbs on one side and Ben & Jerry’s on
the other have made such a model untenable.
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we have used more informative prior distributions where needed because of data
limitations.

11.1.2 Mixture Models and Different Ways of Encoding Prior
Information

Gelman and King (1990) present a model for estimating the so-called seats-votes
curve: the expected percentage of seats won by a political party in a legislative elec-
tion, as a function of the party’s share of the national vote. For example, in 2008 the
Democrats won 59% of the seats in the U.S. House of Representatives based on an
average of 55% of the vote in House elections (after adjusting for uncontested seats;
see Kastellec, Gelman, and Chandler, 2009). In 2006 they garnered 53% of the seats
based on 52% of the vote. More generally, we can estimate a stochastic seats-votes
relation-and thus compute its expectation, the seats-votes curve—by setting up a
probability model for the vector of 435 congressional election outcomes.

For a Bayesian such as Jim Berger (or myself), inference under a probability
model is conceptually straightforward (even though it might require computational
effort and even research). The real challenge is setting up the model.

To use statistical notation, we have districts i = 1,2, . . . ,435, and in each there
is yi, the proportion of votes received in that district by the Democrats in the most
recent election (as noted above, our model corrects for uncontested races, a detail
which we ignore in our treatment here). We model

yi ∼ N(θi,σ2
y ),

where θi represents the expected level of support for the Democrats in that district
and year, with σy representing variation specific to that election. We estimated σy

by looking at the residual variance predicting an election from the election six years
ago, four years ago, and two years ago, and extrapolating this down to predict a
hypothetical variance at lag zero.

With one data point yi for each parameter θi, we certainly needed a prior distri-
bution, and what we used was a mixture model with three components: two major
modes roughly corresponding to Democratic and Republican-leaning districts, and
a third component with a higher variance to capture districts that did not fit in either
of the two main modes. This mixture of three normal distributions had eight hyper-
parameters, which we gave pretty strong prior distributions in order to separately
identify the modes from a single election’s worth of data.

Much has been written about the difficulty of estimating mixture models and the
failure of maximum likelihood or noninformative Bayesian inference in this setting;
here, we had to go even further because our mixture components had particular
interpretations that we did not want to lose. To be specific, we assigned following
informative prior distribution:
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• Mixture component 1: mean had a N(−0.4,0.42) prior distribution, standard de-
viation had an inverse-χ2(4,0.42) prior distribution;

• Mixture component 2: mean had a N(+0.4,0.42) prior distribution, standard de-
viation had an inverse-χ2(4,0.42) prior distribution;

• Mixture component 3: mean had a N(0,32) prior distribution, standard deviation
had an inverse-χ2(4,0.82) prior distribution; and

• The three mixture parameters had a Dirichlet(19,19,4) prior distribution.

(The model was on the logit scale, which was why the priors for the modes were
centered at −0.4, +0.4 rather than at 0.4, 0.6 as they would have been had the data
been untransformed.)

Finally, having performed inference for the model using the Gibbs sampler (or,
as we called it in those pre-1990 days, “the data augmentation method of Tanner
and Wong (1987)”), we can simulate hypothetical replications of the election un-
der different conditions and then map out a seats-votes curve by allowing different
nationwide vote swings.

We followed up this study a few years later (Gelman and King, 1994) with a
very similar model differing in only two particulars: First, we set up our model as a
regression in which for each data point yi there could be district-level predictors xi,
and as a predictor we took incumbency status: a variable that equaled 1 for Demo-
cratic congress members running for reelection, −1 for Republican incumbents,
and 0 for “open seats”—those districts with no incumbents running. The model was
essentially the same as before, except that the district-level variance represented
unexplained variation after accounting for this (and any other) predictors.

The other way in our 1994 model differed from that published four years earlier
was that we got rid of the mixture model and its associated informative prior dis-
tribution! It turned out that all the information captured therein—and more—was
contained in the incumbency predictor. This illustrates the general point that what
is important is the information, not whether it is in the form of a “prior distribution”
or a “likelihood2.”

11.1.3 Incorporating Extra Information Using Poststratification

In the wake of the successes of hierarchical Bayes for agricultural, social, and edu-
cational research (see, for example, Lindley and Smith (1972), and the accompany-
ing references and discussion), survey researchers began using these methods for
small-area estimation (Fay and Herriot, 1979).

Gelman and Little (1997) applied these models to the problem of estimating
state-level opinions from national surveys, using hierarchical logistic regression to
obtain estimates of the average survey response within population subgroups defined
by sex, ethnicity (2 categories), age (4 categories), education (4 categories), and

2 Contrary to what Bayesians sometimes say, however, neither a loss function nor any formal
decision analytic framework was needed to set up the model and use it to perform useful inferences.



11.1 Prior Distributions for Bayesian Data Analysis in Political Science 381

state (51, including the District of Columbia)—3264 cells in all, and thus certainly
a case of small-area estimation—and then summing those estimates over the 64 cells
within each state to estimate state-level averages.

Looked at in the traditional Bayesian way, the regression model was innocuous,
with predictors including sex×ethnicity, age×education, and state indicators, fitted
normal prior distributions for the 16 age×education, and a group-level regression
with normal errors for the 51 state predictors. The unmodeled coefficients and hy-
perparameters were given noninformative uniform prior distributions, and it was
easy enough to program a Metropolis algorithm that converged well and yielded
simulation-based inference for all the regression parameters, simulations that we
directly propagated to obtain inference for the 3264 population cells—a nice trick,
given that the procedure performs well even when fit to samples of 1500 or less.

A key place where external information enters into this example, though, is in
the next step, in which we construct inferences for the 51 states. The key step is
poststratification: summing over the cells in proportion to their population sizes
within each state. This step is not particularly Bayesian—given the computations
already done, it’s nothing more than the computation of 51 weighted averages for
each of our posterior simulations—but it does use prior information, in this case
the population counts from the Census. The poststratification framework allows us
to include external information structurally, as it were, in a way more natural than
would be the formal elicitation of a prior distribution.

This multilevel regression and poststratification approach has been useful in other
studies of public opinion. For example, Lax and Phillips (2009a) estimate state-level
opinion on several gay-rights issues and compare to state policies in this area. Lax
and Phillips (2009b) demonstrate that this approach outperforms classical methods
while using far smaller samples. The formal prior distribution is not important here,
but what is crucial is the use of prior information in the form of state-level predictors
(along with the external information from the Census, which is also implicitly used
in survey weighting).

11.1.4 Prior Distributions for Varying-Intercept, Varying-Slope
Multilevel Regressions

A striking feature of the American political map in the twenty-first century is that
the Democratic Party does best in the richer states of the northeast and west coast,
while the Republicans’ strength is in the poorer states in the south and middle of
the country—even while the parties retain their traditional economic bases, with
Democrats and Republicans continuing to win the votes of poorer and richer voters,
respectively. Gelman et al. (2008b) use Bayesian multilevel modeling to explore this
juxtaposition, using both individual-level and state-level incomes to predict vote
choice in a logistic regression model that includes unexplained variation at both
levels. The coefficients for state and individual incomes go in opposite directions,
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corresponding to rich Democratic states with rich Republican voters within each
state.

Our central model included varying intercepts and slopes—that is, the relation
between income and voting was allowed to be different in each state—and we
blithely fit it using noninformative uniform prior distributions for the hyperparame-
ters, which for this model included the unmodeled regression coefficients, the group-
level standard deviation parameters, and the correlation between the errors in the
state-level intercepts and slopes. All worked well, and we had the agreeable choice
of fitting the full Bayesian model in Bugs (Spiegelhalter et al., 1994, 2002) or run-
ning a quick approximate fit using a program in R that computed marginal maximum
likelihood estimates (Bates, 2005).

But we ran into trouble when we tried to extend the model by adding religious
attendance as a predictor (Gelman et al., 2008a, Chapter 6), thus requiring four
varying coefficients per state (income, religious attendance, their interaction, and a
constant term). A group-level covariance of dimension 4×4 was just too much for a
noninformative prior distribution to handle. Bugs simply choked—the program ran
extremely slowly and failed to move well through the posterior distribution—and the
marginal maximum likelihood estimate moved straight to the boundary of parameter
space, yielding an estimated covariance matrix that was not positive definite. These
problems arose even with sample sizes in the tens of thousands; apparently, the hy-
perparameters of even moderately-dimensional hierarchical regression models are
not well identified from data.

In our particular example of modeling vote choice given income and religious
attendance, we managed to work around the problem by accepting this flawed
estimate—our focus here was on the four coefficients for each state rather than on
the hyperparameters themselves—but we are convinced that a good general solu-
tion to this problem requires an informative prior distribution for the group-level
covariance matrix, possibly using the scaled-inverse-Wishart family (O’Malley and
Zaslavsky, 2005), whose redundant parameterization allows the user to supply dif-
ferent prior precisions for scale and correlation parameters.

11.1.5 Summary

In conclusion, prior information is often what makes Bayesian inference work.
I won’t say it’s always necessary–noniformative machine learning methods seem
to work pretty well in classification problems with huge sample sizes and simple
questions–but in the political science examples of which I’m aware, information
needs to come in, whether as regression predictors or regularization (that is, prior
distributions) on parameters. An important challenge for Jim Berger and his suc-
cessors in the theory of Bayesian statistics is to study the mapping from prior to
posterior in indirect-data settings such as hierarchical models, and thus to figure out
which aspects of the prior distribution we need to be particularly careful to spec-
ify well. Such theory may indirectly inform our understanding of public opinion,
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elections, and international relations, by enabling us to study social and political
phenomena with ever more realistic (and thus complicated and parameter-laden)
models.
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11.2 Bayesian Computation in Finance

Satadru Hore, Michael Johannes, Hedibert Lopes, Robert E.
McCulloch, and Nicholas G. Polson

Modern-day finance uses arbitrage and equilibrium arguments to derive asset prices
as a function of state variables and parameters of the underlying dynamics of the
economy. Many applications require extracting information from asset returns and
derivative prices such as options or to understand macro-finance models such as
consumption-based asset pricing models. To do this the researcher needs to combine
information from different sources, asset returns on the one hand and derivative
prices on the other. A natural approach to provide inference is Bayesian (Berger,
1985; Bernardo and Smith, 1994; Gamerman and Lopes, 2007).

Our computational challenges arise from the inherent nonlinearities that arise in
the pricing equation, in particular through the dependence on parameters. Duffie
(1996) and Johannes and Polson (2009) show that empirical asset pricing problems
can be viewed as a nonlinear state space models. These so-called affine models pro-
vide a natural framework for addressing the problem as well. Whilst affine pricing
models in continuous time go a long way to describe the evolution of derivative
prices, empirically extracting the latent state variables and parameters that drive
prices has up until now received less attention due to computational challenges. In
this paper, we address these challenges by using simulation-based methods, such as
Markov chain Monte Carlo (MCMC), Forward filtering backward sampling (FFBS)
and particle filter (PF). Hence we solve the inverse problem of filtering state vari-
ables and estimating parameters given empirical realizations on returns and deriva-
tive prices.

The statistical tools that we describe include MCMC methods, with particu-
lar emphasis on the FFBS algorithm of Carter and Kohn (1994) and Frühwirth-
Schnatter (1994). For sequential methods we describe PF algorithms, with particu-
lar emphasis on the sequential importance sampling with resampling (SISR) filter
of Gordon, Salmond, and Smith (1993) and the particle learning (PL) algorithm of
Lopes et al. (2010). This current research shows how to also estimate parameters
such as agents’ preferences from empirical data. In many cases the agents will be
given the underlying parameters and the problem becomes one of filtering the hid-
den states as conditioning information arrives.
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The rest of the section is outlined as follows. Section 11.2.1 describes asset
pricing problems and Bayesian inference for these problems. Section 11.2.2 de-
scribes sequential Bayesian computation. Section 11.2.3 provides an illustration to
equilibrium-based stochastic volatility models. Finally, Section 11.2.4 concludes.

11.2.1 Empirical Bayesian Asset Pricing

In order to solve the inference problem, namely calculating the joint posterior
p(θ ,Xt |Yt) where Y t = (Y1, . . . ,Yt) is a set of discretely observed returns, we have to
pick a suitable time-discretization of the continuous-time model and then perform
Bayesian inference on the ensuing state space model. We use an Euler discretization.

In order to make our discretization an accurate representation of the continuous
time model, we may discretize at a higher frequency than that of the observed data.
In this case, we simulate additional state variables between the observations via
the Euler discretization scheme. This introduces the concept of missing data. These
missing data are drawn via a Gibbs step.

One novel feature of Bayesian methods is that they allow data in the form of
observations of derivative prices to aid in the estimation problem. For example, sup-
pose that we observe a call price C(Xt ,θ) or a variance swap price. This information
can be combined with the current posterior distribution on states and price, namely
p(XT ,θ |Y T ), to obtain sharper parameter estimates.

We now provide the relevant Bayesian calculations. The conditional likelihood
can be written as

p(Rt+1,Pt+1|Xt+1,θ) = p(Rt+1|Xt+1)p(Pt+1|Xt+1,θ),

p(Pt+1|Xt+1,θ) ∼ N(F(Xt ,θ),σ2
D),

where σD is a pricing error of say (1,5)% and F(Xt ,θ) describes the pricing for-
mula obtained from equilibrium arguments. In the discretized system, log-returns
are given by Rt+1 = Yt+1 −Yt = ln(St+1/St) and p(Rt+1|Xt+1) describes the evolu-
tion of asset returns.

The goal of empirical asset pricing is to learn about the risk neutral and objective
parameters (θQ,θP), respectively. Moreover, one can also recover filtered estimates
of the state variables Xt+1, namely volatility, Vt+1, jump times, Jt+1 and jump sizes,
and the model specification from the observed asset returns and derivative prices.
In general, we have a joint system with data Yt+1 = (Rt+1,Pt+1) corresponding to
returns and derivative prices evolving according to the system

(
Pt+1

Rt+1

)
=
(

A(θP,θQ)Xt+1 +B(θP,θQ)
μP

)
+
(

σDεD
t+1√

Vt+1εR
t+1

)
.

Here σD is a pricing error and there exist pricing formulas for A(θP,θQ) and
B(θP,θQ). See Chernov and Ghysels (2000) and Polson and Stroud (2003) for fur-
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ther discussion. Traditional pure inversion methods infer parameters by first taking
the derivative price as given and then trying to match state and parameter values
to the given price, Pt , by inversion, namely (X̂t , θ̂) = C−1 (Pt). However, taking the
time series of implied states X̂t can also lead to parameter estimates that are incon-
sistent.

Posterior distribution. The Bayesian posterior distribution now uses both returns
and derivative pricing information to estimate (θP,Xt) and implicitly determine θQ.
This is given by

p(θP,θQ,Xt |Y t) ∝ p(Rt |θP,Xt)p(Pt |θP,θQ,Xt)p(Xt |θP)p(θP,θQ),

where Yt = (Rt ,Pt) contains returns and prices from the equilibrium model.
Hence we can sequentially filter p(θP,θQ,Xt+1|Y t+1). For very small pricing

errors the derivative price information will give very precise estimates of Xt+1 which
in turn will precisely estimate the parameters of the system. However, too restrictive
will lead to noisy co-variance estimates and the derivative prices will be in conflict
with the physical model evolution which may be a sign of model misspecification.

11.2.2 Bayesian Inference via SMC

Here we review the particle methods that are developed for state filtering and se-
quential parameter learning with and without derivative price information. Let Xt

denote a latent state variable, θ underlying parameters and observed data Yt at time
t. This might just be returns Rt or a combination of returns and derivative prices
(Rt ,Dt). Then, the models considered in the paper are instances of the following
general state-space model

(Yt |Xt−1,θ) ∼ p(Yt |Xt−1,θ),
(Xt |Xt−1,θ) ∼ p(Xt |Xt−1,θ)

for t = 1, . . . ,T and X0 ∼ p(X0|θ). The parameter θ is kept fixed (and omitted) for
the moment. There are three filtering and learning posterior distributions:

1. Filtering: computation of or sampling from p(Xt |Yt) on-line for t = 1, . . . ,T ;
2. Filtering and learning: computation of and/or sample from the posterior p(θ ,Xt |

Yt) from which we can calculate marginals p(Xt |Y t) and p(θ |Y t) for t = 1, . . . ,T ;
and

3. Smoothing: computation of or sampling from the full joint distribution p(θ ,XT |
Y T ).

Predictive distributions are also straightforward to compute as forward function-
als of the process taking into account this posterior uncertainty about parameters.
The optimal Bayesian nonlinear filters (under squared error loss) are X̂t = E(Xt |Y t)
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and θ̂ = E(θ |Yt). Given these filtered posterior estimates of the states and the pa-
rameters we can then provide estimates of the following dynamics: i) physical and
risk-neutral: P and Q dynamics; ii) market price of risk: given a specification of
market prices of risk we can calculate the posterior p(λ |Y T ) given a panel of deriva-
tive prices (calls, variance swaps).

Particle filters. Unfortunately, closed-form solution for the filtering and smoothing
distributions is only available for simple cases. For the general state-space model,
the filtered distributions are temporally connected via the following recursive prop-
agation/update equations:

p(Xt+1|Yt) =
∫

p(Xt+1|Xt)p(Xt |Yt)dXt , (11.2.1)

p(Xt+1|Yt+1) ∝ p(Yt+1)p(Xt+1|Yt), (11.2.2)

i.e., the propagation rule emulates the prior distribution of Xt+1 (a high dimensional
integral) to be combined with the likelihood p(Xt+1|Y t+1) via Bayes’ theorem (also
a function of a high-dimensional integral).

We use particle filter algorithms to sequentially update the particle set {X (1)
t , . . .,

X (N)
t } to the particle set {X (1)

t+1, . . . ,X
(N)
t+1} once Yt+1 become available. Particle fil-

ters provide a natural alternative to MCMC methods which are computationally
intensive for the sequential inference problem (see Johannes, Polson, and Stroud,
2009). The posterior distribution p(Xt |Yt) for the filtering and learning distribution
on states and parameters is approximated by

pN(Xt |Yt) =
1
N

N

∑
i=1
δ

X(i)
t

(Xt)

based on the particle set {X (i)
t , i = 1, . . . ,N}, where δz(·) denotes the delta-Dirac

mass located in z. We need to show how to efficiently update particles. More
precisely, after observing Yt+1, we need to efficiently produce a new particle set

{X (i)
t+1, i = 1, . . . ,N} that approximates p(Xt+1|Yt+1). We review the seminal sample-

importance resample or bootstrap filter of Gordon, Salmond, and Smith (1993) and
the particle learning schemes of Lopes et al. (2010). A recent and thorough litera-
ture review of existing methods and recent advances in sequential Monte Carlo is
provided by Cappé, Godsill, and Moulines (2007).

11.2.2.1 The Sample-Importance Resample (SIR) Filter

The classical bootstrap filter is also well known as the sequential importance sample
with resampling (SISR) filter, and can be described in two steps mimicking the
above propagation/update rule ((11.2.1) and (11.2.2)).

Let the particle set {X (i)
t , i = 1, . . . ,N} approximate p(Xt |Yt).
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1. Propagate: Draw X̃ (i)
t+1 ∼ p(Xt+1|X (i)

t ) and compute associated (unnormalized)

weights w(i)
t+1 ∝ p(Yt+1|X (i)

t+1), for i = 1, . . . ,N;

2. Resample: X (i)
t+1 = X̃ (ki)

t+1 , where ki ∼Multinomial(w(1)
t+1, . . . ,w

(N)
t+1), for i = 1, . . . ,N.

Now, the particle set {X (i)
t+1, i = 1, . . . ,N} approximate p(Xt+1|Y t+1). In words, the

propagation step generates particles that approximate the prior distribution at time
t +1, i.e. p(Xt+1|Yt) (11.2.1). Then, a simple SIR argument (reweighing prior draws
with their likelihoods) transforms prior particles into posterior particles that approx-
imate p(Xt+1|Y t+1) (11.2.2).

Despite (or due to) its attractive simplicity and generality, the SISR algorithm
suffers from particle degeneracy and is bounded to break down after a few hundred
observations, even in the simplest scenarios, such as the local level model. Addi-
tionally, SIR filters tend to become even more unstable when sequential parameter
learning is dealt with. We propose below a particle filter that overcomes these ob-
stacles in a large class of dynamic models.

11.2.2.2 Particle Learning

Bayes’ rule links these to the next filtering distribution through Kalman-type up-
dating. This takes the form of a smoothing and a prediction step that reverses the
standard order of the propagation/update rule of (11.2.1) and (11.2.2). More pre-
cisely,

p(Xt |Yt+1,θ) ∝ p(Yt+1|Xt ,θ)p(Xt |Yt ,θ),

p(Xt+1|Yt+1,θ) =
∫

p(Xt+1|Xt ,θ)p(Xt |Yt+1,θ)dXt ,

p(θ |Xt+1,Yt+1,θ) = p(θ |Zt+1),

where Zt+1 = Z (Zt ,Xt+1,Yt+1) is a vector of conditional sufficient statistics for
θ . This leads us to the following particle simulation algorithm. As before, let the
particle set {(Xt ,Zt ,θ)(i), i = 1, . . . ,N} approximate p(Xt ,θ ,Zt |Y t).

1. Resample: (X̃t , Z̃t , θ̃)(i) = (Xt ,Zt ,θ)(k
i), where ki ∼ Multinomial(w(1)

t , . . . ,w(N)
t )

and (unnormalized) weights w( j)
t ∝ p(Yt+1|X ( j)

t ,θ ( j)), for j = 1, . . . ,N;

2. Propagate: Draw X (i)
t+1 from p(Xt+1|X̃ (i)

t , θ̃ (i),Yt+1), for i = 1, . . . ,N;

3. Update sufficient statistics: Z(i)
t+1 = Z (Z̃(i)

t ,X (i)
t+1,Yt+1);

4. Parameter learning: θ |Z(i)
t+1 ∼ p(θ |Z(i)

t+1).

Central to PL algorithms is the possibility of directly sampling from the joint
posterior distribution of state (augmented or not) and parameter conditional suffi-
cient statistics. There are a number of advantages to using particle learning: (i) opti-
mal filtering distributions in sequential parameter learning cases (Pitt and Shephard,
1999); (ii) parameter sufficient statistics for Gaussian and conditionally Gaussian
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state-space models (Storvik, 2002); (iii) straightforward particle smoothing (God-
sill, Doucet, and West, 2004); (iv) state sufficient statistics reduces Monte Carlo
error (Chen and Liu, 2000); and (v) alternative to standard MCMC methods in
state-space models (Carvalho et al., 2009). Lopes et al. (2010) introduces PL as
a framework for (sequential) posterior inference for a large class of dynamic and
static models.

11.2.2.3 The 2007-2008 Credit Crisis: Extracting Volatility and Jumps

Lopes and Polson (2010) used particle filtering methods to estimate volatility and
examine volatility dynamics for three financial time series (S&P500, NDX100 and
XLF) during the early part of the credit crisis. Standard and Poor’s SP500 stock
index and the Nasdaq NDX 100 index are well known. The XLF index is an equity
index for the prices for US financial firms. They compared pure stochastic volatility
models to stochastic volatility models with jumps. More specifically, the stochas-
tic volatility jump model includes the possibility of jumps to asset prices and one
possible model is

dSt

St
= μ+

√
VtdBP

t +d

(
Nt+1

∑
s=Nt

Zs

)
,

d logVt = κv(θv − logVt)+σvdBV
t ,

where the additional term in the equity price evolution describes the jump process
and is absent in the pure stochastic volatility model. The parameter μ is an expected
rate of return and the parameters governing the volatility evolution are κv, θv and
σv. The Brownian motions (BP

t ,BV
t ) are possibly correlated giving rise to a leverage

effect. The probabilistic evolution P describes what is known as the physical dynam-
ics as opposed to the risk-neutral dynamics Q which is used for pricing. Sequential
model choice shows how the evidence in support of the stochastic volatility jump
model accumulates over time as market turbulence increases (Figure 11.1).

11.2.3 Bayesian Inference via MCMC

In this section we outline a simple and robust approach to the estimation of non-
linear state-space models derived from discretized asset pricing models. We illus-
trate the approach on asset pricing derived from the equilibrium conditions of a fully
specified economic model. Our approach is to discretize the states and then apply
the FFBS sampling algorithm (forward-filtering, backward-sampling, Frühwirth-
Schnatter, 1994; Carter and Kohn, 1994) as an alternative to the general MCMC
scheme of Carlin, Polson, and Stoffer (1992).
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FIGURE 11.1. Sequential (log) Bayes factor for the SV with jumps model versus the pure SV
model for the year 2007.

Our exposition and examples will assume a one-dimensional state space model.
In higher dimensional cases, we can update the components of the state one at a
time in a Gibbs sampler. The parameter θ is kept fixed during the FFBS step and is
usually sampled jointly. Hore, Lopes, and McCulloch (2009), for instance, used a
mixture of various Metropolis-Hastings chains to sample from p(θ |XT ,Y T ).

The rest of this section is largely based on Hore, Lopes, and McCulloch (2009).
They derive option prices in a general equilibrium setting under recursive prefer-
ences and time-varying growth rates. The key distinction from the option prices from
the previous section is that the market prices of risks are determined endogenously
from the solution of the agent’s utility maximization problem under recursive pref-
erences and stochastic growth rates. This highlights the strength of our estimation
procedure. We can apply our Bayesian methodology to estimate deep parameters of
a dynamic general equilibrium model and obtain full inference on the underlying
states (and parameters as well) given the data on prices (or return) and/or quantity
dynamics that are implied by the economic system. It takes a valuable step forward
in giving us inference on economic parameters that guide us to understand dynamic
rational expectations models that form the building block of structural asset pricing
problems.
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11.2.3.1 Forward Filtering, Backward Sampling

A general, nonlinear state-space model is specified by the distributions

p(X0), p(Xt |Xt−1), p(Yt |Xt ,Xt−1).

The first two distributions determine the distribution of the latent states {Xt} and the
third distribution gives the distribution of the observable {Yt} given the current and
previous states. Often the observation equation is given as p(Yt |Xt) so that the cur-
rent observation only depends on the current state. We will need the generalization
given above for our financial application.

Given the three distributions above, the joint distribution of (X0,XT ,Y T ), where
Zt = (Z1, . . . ,Zt), is given by

p(X0,X
T ,Y T ) = p(X0)

T

∏
t=1

p(Xt | Xt−1)
T

∏
t=1

p(Yt | Xt ,Xt−1). (11.2.3)

We now review the basic steps involved in FFBS. After we have finished our
review we will discuss the attractive simplicity of the state discretization strategy.
FFBS consists of first forward filtering (FF) and then backward sampling (BS). The
forward filtering step recursively updates

p(Xt−1,Xt |Yt) ⇒ p(Xt ,Xt+1 |Yt+1).

The backward sampling draws from the joint distribution of the states given the data
using

p(X1,X2, . . . ,XT |Y T ) = p(XT ,XT−1 |Y T )
1

∏
t=T−2

p(Xt |Xt+1,Xt+2, . . . ,XT ,Y T ).

That is, we first draw the last two states given all the data and then work backwards
in time drawing each state conditional on all the subsequent ones.

Forward Filtering

We do the forward filtering (FF) iteration in two steps: an evolution step and an
update step.

FF Evolution. In the first step, we extend our state knowledge at time t to include
the future state using the state equation:

p(Xt−1,Xt ,Xt+1 | Y t) = p(Xt−1,Xt |Yt) p(Xt+1 | Xt ,Xt−1,Yt)
= p(Xt−1,Xt |Yt) p(Xt+1 | Xt).

The first term on the right hand side is what we assume we know from the previous
iteration, i.e., the time t posterior distribution of (Xt−1,Xt), while the second term
is the state equation of the state-space model. We then margin out Xt−1 to obtain
p(Xt ,Xt+1 | Y t):
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p(Xt−1,Xt ,Xt+1 | Y t) ⇒ p(Xt ,Xt+1 | Y t).

Alternatively, we can first margin out Xt−1 from p(Xt−1,Xt | Y t) and then use the
state equation:

p(Xt ,Xt+1 | Y t) = p(Xt | Y t) p(Xt+1 | Xt).

This first step may be viewed as computing our prior knowledge of (Xt ,Xt+1) given
Yt , our observations up to time t.

FF Update. In the second step, we implement the Bayes’ theorem to update our
distribution of (Xt ,Xt+1) to incorporate the additional information in Yt+1. Keeping
in mind that Yt+1 = (Yt ,Yt+1),

p(Xt+1,Xt | Y t+1) ∝ p(Xt+1,Xt ,Yt+1 | Yt)
= p(Xt ,Xt+1 | Y t) p(Yt+1 | Xt ,Xt+1,Yt)
= p(Xt ,Xt+1 | Y t) p(Yt+1 | Xt ,Xt+1).

The first term on the right hand side is available from the above FF evolution step,
while the second term is the observation equation of the state-space model. The FF
step is really just the Bayes theorem repeated over time.

Backward Sampling

The backward sampling step depends on the observation that

p(Xt |Xt+1,Xt+2, . . . ,XT ,Y T ) = p(Xt | Yt ,Xt+1,Yt+1)
= p(Xt | Xt+1,Yt+1). (11.2.4)

Let Z̃t = (Zt ,Zt+1, . . . ,ZT ). So superscript t means everything up to and including
t and superscript combined with a ∼ on top means from t on including t. Using this
notation (11.2.4) becomes

p(Xt | Xt+1, X̃
t+2,Yt ,Yt+1,Ỹ

t+2) = p(Xt | Xt+1,Y
t ,Yt+1).

Stated in terms of conditional independence, this is equivalent to say that

Xt ⊥ (X̃t+2,Ỹ t+2) | Xt+1,Y
t ,Yt+1,

where ⊥ indicates independence. If the state space model is written as a DAG (di-
rected acyclic graph) and then converted to an undirected graph, this conditional
independence statement is obvious. We can also see the property given by (11.2.4)
directly from the joint distribution of (XT ,Y T ) by first noting that

p(Xt−1,Xt ,Y
t | Xt+1,Yt+1, X̃

t+2,Ỹ t+2) = p(Xt−1,Xt ,Y
t | Xt+1,Yt+1). (11.2.5)

Since the seven quantities in both sides of the above comprise all of (XT ,Y T ), this
relation may be easily seen simply by looking at the full joint given in (11.2.3) and
remembering that the conditional is proportional to the joint. That is, we can rewrite
(11.2.3) as
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p(X0,X
T ,Y T ) = p(X0) p(Xt−1 | X0) p(Xt | Xt−1) p(Xt+1 | Xt) p(X̃t+2 | Xt+1)

× p(Y t | Xt) p(Yt+1 | Xt+1,Xt) p(Ỹ t+2 | Xt+1, X̃
t+2)

and then (11.2.5) becomes apparent. Equation (11.2.4) then is obtained by first fur-
ther conditioning on Yt and then margining out Xt−1.

Discretized FFBS

Now that the essentials of FFBS have been laid out, we can review the necessary
computations and see that they are easily performed given a state discretization.
Let each X take on values in the grid (x1,x2, . . . ,xM). Then p(Xt−1,Xt | Y t) may
be represented by an M ×M matrix with rows corresponding to Xt−1 and columns
corresponding to Xt . We then obtain the marginal for Xt by summing the rows. We
then create the joint distribution of (Xt ,Xt+1) by constructing the matrix whose (i, j)
element is p(Xt = xi | Y t) p(Xt+1 = x j | Xt = xi). To update to conditioning on Yt+1,
we multiply each element of this matrix by p(Yt+1 | Xt = xi,Xt+1 = x j) and then
renormalize so that the sum over all elements of the matrix is equal to one. For
the BS step we can easily compute p(Xt = xi | Xt+1 = x j,Y t+1) from the matrices
representing the joints p(Xt ,Xt+1 | Yt+1) which we must store while doing the FF
step.

11.2.3.2 Equilibrium Put Option Pricing

In this section we sketch for the reader the continuous time general equilibrium
model in Hore, Lopes, and McCulloch (2009). The model simultaneously deter-
mines consumption dynamics and option prices given preferences and capital ac-
cumulation dynamics. The above application of FFBS is used to estimate the dis-
cretized version of the model.

At a very high level, the full state space dynamics of equilibrium quantities and
the underlying latent variable is given by

dCt

Ct
= μC(Xt)dt +a11(Xt)dBk +a12(Xt)dBx,

pti = f (Xt ,Si,τti,Rt),
dXt = δ (X̄ −Xt)dt +σxdBx,

where the Brownian motion terms Bk and Bx are correlated. There is a single state
variable Xt (here t denotes continuous time) which is the expected return on produc-
tion technology. Ct denotes the path of consumption in the economy under equilib-
rium and pti is the option price consistent with equilibrium consumption dynamic.
The ith option has strike price Si, time till expiration τit , and Rt is the equilibrium
wealth upon which the option is written.

We orthogonalize the Brownian motion terms and express the shocks driven by
independent Brownian motions. We can then write the model as
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dCt

Ct
= μC(Xt)dt +a11(Xt)dBk +a12(Xt)dBu,

pti = f (Xt ,Si,τti,Rt) i = 1, . . . , I,

dXt = δ (X̄ −Xt)dt +a21(Xt)dBk +a22(Xt)dBu,

where Bk and Bu are independent Brownian motions and pit is the price of the ith put
option having strike price Si and expiration time τit , for i = 1, . . . , I, while Rt is the
price of the underlying asset upon which the option is written. The parameters of the
model are δ and X̄ . The functions μC, ai j, and f are complex. They also depend on
other model parameters, but this dependence is suppressed in order to highlight the
state-space nature of the model. If we let θ denote these suppressed parameters then
θ includes, for example, utility parameters that capture the risk aversion, elasticity
of inter-temporal substitution, and time discount factor. The functions that describe
the consumption process are derived by maximizing the expected utility of the con-
sumption time path subject to constraints driven by the evolution of the expected
return on production. The option is written on equilibrium wealth Rt determined in
equilibrium by capital growth and current consumption level.

To form a discrete time version of the model over time interval Δ t, we discretize
the consumption and state equations and then add independent error to the option
pricing equations. Let gt+1 be the consumption growth from t to t + 1. Our dis-
cretized model is

gt+1 = μg(Xt)+a11(Xt)
√
Δ t Zt1 +a12(Xt)

√
Δ t Zt2,

pti = f (Xt ,Si,τti,Rt)+σ εti i = 1, . . . , I,

Xt+1 = α+ρXt +a21(Xt)
√
Δ t Zt1 +a22(Xt)

√
Δ t Zt2,

where μg(Xt) = μC(Xt)Δt , ρ = 1−δ X̄ , α = (1−ρ)Δt and all Zti and εti independent
and identically distributed standard normal shocks. To put this model in our gen-
eral form we let Wt = a11(Xt)

√
Δ t Zt1 +a12(Xt)

√
Δ t Zt2 and Vt = a21(Xt)

√
Δ t Zt1 +

a22(Xt)
√
Δ t Zt2. We then draw Vt from its marginal distribution and Wt from its con-

ditional distribution given Vt , or equivalently, its conditional distribution given Xt+1

and Xt . This gives rise to the following nonlinear state space model

gt+1 = μg(Xt)+Wt ,

pti = f (Xt ,Si,τti,Rt)+σ εti, i = 1, . . . , I,

Xt+1 = α+ρXt +Vt ,

where Wt ∼ p(Wt |Xt+1,Xt). The state equation could not be simpler, it is just an
AR(1). The observation equations relate the observed relative put prices and con-
sumption growth to the current and previous state as in our general prescription.

Inference for this complex model is now conceptually straightforward. At the
top level, we have Gibbs sampler that alternates between p(θ |XT ) and p(XT |θ).
Drawing the states given θ using the discretized FFBS is quite simple. The only
drawback is that since the function f is very expensive to compute it is necessary to
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precompute all possible p(yt |Xt ,Xt−1) where yt varies over all the observed values
and both Xt−1 and Xt vary over the grid values. The more difficult step is to draw
from p(θ |XT ). Hore, Lopes, and McCulloch (2009), for instance, used a mixture of
various Metropolis-Hastings chains.

FIGURE 11.2. The top panel shows the time-series plot of the four option prices. The next two
panels show the posterior distribution of the time-series of the underlying states corresponding to a
loose and tight prior setting. The dashed line represents the 95% posterior band around each state.

Figure 11.2 shows the option data and state inference. Time is discretized to be
months. Data on four different options corresponding to different strikes were used.
The top panel plot the time series of relative option prices. The four options differ
in their strike prices. The other two panels show the inference for the states Xt with t
now denoting the month. The marginal distribution of each state is indicated by the
vertical dashed line. Such inference is straightforwardly obtained from our FFBS
draws. The difference between the two plots is the prior on the smoothness of the
state evolution.
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FIGURE 11.3. Time-Series of long-run risk estimated from option prices. Using the posterior dis-
tribution of parameters and the state, we compute the time-series of long-run risk. The median
time-series estimate is presented in the above plot with the dotted line representing the 95% poste-
rior interval at each point. The top time-series plot corresponds to loose prior, whereas the bottom
time-series plot corresponds to the tight prior.

Inference of complex functions of our states and parameters are easily obtained
given the MCMC draws. A quantity of economic interest is the risk-premia. The
risk-premia in Figure 11.3 is clearly counter-cyclical. Higher growth rates imply
lower risk-premia and vice versa. In bad times, the high precautionary savings mo-
tivation is consistent with high risk-premia. The agent feels more risk-averse at a
time when the probability of a wealth loss is high. Clearly, the agent’s demand
for insurance is high and he is willing to pay more for put options in these states.
Likewise, in good states the precautionary savings motive dissipates and the agent’s
risk-premia is low. In these states, the agent is not fearful of a wealth loss and his
willingness to pay for put options to insure his wealth is low. This explains the
counter-cyclical risk-premia pattern that we filter out of the time-series of put op-
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tion prices. For further discussion of model specification and derivatives pricing and
returns see Broadie, Chernov, and Johannes (2007, 2009).

Note that the difficulty in drawing θ also makes sequential estimation via particle
filtering a practically infeasible alternative. While particle filtering might work for
the draw of XT |θ sequential, i.e., a pure state learning case, it is not a straightfor-
ward matter to get joint inference for XT and θ , i.e., a state and parameter learning
case. Liu and West (2001), for instance, who sequentially approximate p(λ |yt) by
a multivariate normal density, is an unreasonable alternative here given the highly
nonlinear nature of θ . Similarly, it would be hard to implement particle filter and
particle learning algorithms (see Section 11.2.2), since the posterior distribution of
XT and θ can not be represented by a small dimensional set of conditional sufficient
statistics. The discretized FFBS scheme seems to be the best available alternative.

11.2.4 Conclusion

Bayesian approaches are natural in the analysis of financial models. It has long
been recognized that Bayesian thinking is relevant to fundamental questions about
risk and uncertainty. Many modern financial moderns have a sequential structure ex-
pressed in terms of dynamics of latent variables. In these models, the basic Bayesian
advantage in coherent assessment of uncertainty is coupled with powerful computa-
tional methods.

In this section we have reviewed two approaches to the Bayesian analysis of se-
quential models and attempted to illustrate ways to apply them to models derived
from financial and economic theory. Particle filtering methods allow us to quickly
and dynamically update our inferences about state and, in some cases, parameters.
The suggested use of FFBS is much slower and more suited when complete joint
inference is needed for a states over a fixed time period and underlying model pa-
rameters. The advantage of this approach is its simplicity and wide applicability
without asking the user to make difficult choices about algorithm details.

11.3 Simulation-based-Estimation in Portfolio Selection

Eric Jacquier and Nicholas G. Polson

In this section we provide a simulation-based approach to optimal portfolio selec-
tion. The basic principles of portfolio selection have been known for a long time (de
Finetti, 1940; Markowitz, 1959). The modern-day challenge is to apply the theory
of flexible return distributions with varying degrees of conditioning information in
large-scale problems. Modeling the returns distribution has a long history. Samuel-
son (1969) consider the i.i.d. case and showed that investors’ allocation should be
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horizon invariant. Merton (1972) describes the dynamic portfolio allocation with
time varying conditioning information and Barberis (2000) provides a Bayesian per-
spective on the problem. From a statistical perspective, the big issue is accounting
for estimation risk (a.k.a. parameter uncertainty) and how this affects the optimal
portfolio rule, see Brandt (2009) for a recent survey.

In this section, we demonstrate how simulation-based approaches can be used to
select optimal portfolios. The Bayesian approach provides a natural perspective on
the problem and entails a decision-theoretic formulation (Berger, 1985) with differ-
ent levels of computational tractability depending on the nature of the investor’s re-
turn distribution beliefs and the horizon of the optimal allocation problem. Bayesian
methods incorporate estimation risk and flexible return distributions ranging from
the independent identically distributed returns, to predictability driven by exogenous
latent state variables, stochastic volatility, or even multiple models. Our approach,
therefore, will be flexible enough to handle complex and realistic returns distribu-
tions together with differing levels of conditioning information.

The investors’ objective is to maximize expected utility. In its simplest form, we
need to calculate maxω Et(U(ω,R)) where the expectation Et is taken with respect
to our current conditioning set Zt of the investors’ beliefs up to time t. The decision
variable ω is a vector of asset weights and R a vector of future returns. There is
often no analytical solution to the problem. A conceptually simple Monte Carlo
approach for finding the optimal decision is as follows: first simulate a set of returns
R(i) ∼ p(R|Zt) for i = 1, . . . ,N. Then, given these draws, we estimate the expected
utility for a decision ω with an ergodic average of the form

Et (U(ω,R)) =
1
N

N

∑
i=1

U(ω,R(i)),

and optimize this MC average of utility over the decision ω . This can be problem-
atic, however, when the utility places weights on the tails of the future return dis-
tribution and will lead to a poor estimate. Later we provide an alternative MCMC
approach that can simultaneously perform the averaging (over Et) incorporating pa-
rameter uncertainty, and the optimizing (over ω) to find the optimal weights. Other
statistical issues that arise in formulating the future distribution of returns include
analyzing assets of different history lengths, see, for example, Stambaugh (1999),
Polson and Tew (2000) and Gramacy and Pantaleo (2009).

A more challenging problem arises when the investor wishes to solve a multi-
period problem. Again the investor will have a set of conditioning variables Zt at
his disposal that will typically include exogenous predictors such as dividend yield,
term premium and current volatility state. To proceed, consider the value function
is defined by

UT (Wt ,Zt) = max
ωs;t≤s≤T

Et [U(WT (ω))|Zt ] ,

where Wt is current wealth. The evolution of terminal wealth now depends on the
sequential portfolio allocation ω = {ωs; t ≤ s ≤ T} with horizon T . The solution
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clearly differs from a sequence of myopic portfolio rules — the difference being the
hedging demand.

The rest of the section is outlined as follows. Section 11.3.1 describes the op-
timal portfolio selection problem as an expected utility optimization problem. We
consider a number of cases including the possibility of Bayesian learning for the
investor. Section 11.3.2 provides a simulation-based MCMC approach to simulta-
neously account for estimation risk and to find the optimal rule. Finally, Section
11.3.3 concludes.

11.3.1 Basic Asset Allocation

Since the foundational work of Samuelson (1969) and Merton (1971), the optimal
portfolio problem has been well studied. First, we review the optimal portfolio rule
in this simple setting of complete information about the parameters of the return
distribution. Then we consider a number of extensions; multivariate, exchangeable
and predictable returns. In the next section we discuss in detail simulation-based
approaches for finding optimal portfolios in the presence of parameter uncertainty.

The original work of Samuelson and Merton shows that if asset returns are i.i.d.,
an investor with power utility who rebalanced optimally should choose the same as-
set allocation regardless of the time horizon. If returns are predictable there will be
an advantage to exploit it. In many cases, investors with a longer horizon will allo-
cate more aggressively to stocks. Jacquier, Kane, and Marcus (2005) show that pa-
rameter uncertainty produces the exact opposite, but much stronger, results. Namely,
on account of parameter uncertainty, the long-term investor will invest much less in
stocks.

The investor who optimally re-balances his portfolio at regular intervals faces a
dynamic programming problem. The use of power utility for sequential investment
problems with Bayesian learning goes back to Bellman and Kalaba (1958). Fergu-
son and Gilstein (1985) and Bruss and Ferguson (2002) provide extensions. In this
case the utility function is given by U(W ) = W 1−γ/(1− γ) with utility defined over
current wealth. The special case of γ = 1 corresponds to log-utility and the Kelly
criterion. Browne and Whitt (1986) discuss Bayesian learning in this context. Bar-
beris (2000) extends this analysis and shows that this leads to horizon effects where,
in particular, people with large time horizons are willing to hold more stocks.

11.3.1.1 Single Period

We start in a univariate one-period setting. This can be generalized in a number of
ways, to a cross-section of returns or to a multivariate set of returns.

The optimal portfolio weight ω can be determined as follows: the investors’
wealth is W = (1−ω)r f +ωR with risky free rate r f and risky return R. The prob-
lem is to choose ω to maximize the expected utility, maxω E(U(ω)). If U is twice
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differentiable, increasing and strictly concave in ω , the optimal allocation is char-
acterized by the first order condition:

E
[
U ′(W )(R− r f )

]
= 0

which yields Cov
[
U ′(W ),R− r f

]
+E [U ′(W )]E

[
R− r f

]
= 0. Stein’s lemma (Berger,

1985) equates the covariance of a function of normal random variables to the un-
derlying covariance times a proportionality constant. If X denotes a normal ran-
dom variable, X ∼ N (μ ,σ2) with mean μ and variance σ2 and g(X) is differen-
tiable such that E|g′(X)| < ∞, then Cov [g(X),X ] = E [g′(X)]σ2. In the bivariate
case for normal random variables (X ,Y ), Stein’s lemma becomes Cov [g(X),Y ] =
E [g′(X)]Cov [X ,Y ]. Applying this identity to the first order condition yields:

ωE
[
U ′′(W )

]
Var(R)+E

[
U ′(W )

]
(E(R)− r f ) = 0.

Hence, the optimal allocation ω� has a simple closed form

ω� =
1
γ

(
μ− r f

σ2

)
,

where μ = E[R] and σ2 = Var(R). The parameter γ is the agent’s global absolute
risk aversion: γ = −E [U ′′(W )]/E [U ′(W )]. This approach can be extended to the
case of stochastic volatility, see Gron, Jorgensen, and Polson (2004).

To illustrate this basic result the average real return for quarterly US data over the
period 1947.2 to 1998.4 shows a return of 8.1%. The average riskless real interest
rate is 0.9% per year. Stocks are volatile with an annualized standard deviation of
15.6% for this period. A reasonable risk-aversion of γ = 4 would then lead to an
allocation of 71% stocks.

The combination of a risk-free asset with any risky asset occur on a straight
line, denoted capital allocation line, in this (mean, standard deviation) space. So the
introduction of a risk-free asset to the investment opportunity set, brings in the tan-
gency portfolio T , with the highest slope, aka Sharpe ratio, the ratio of its expected
premium over the risk-free rate μT −R f by its standard deviation σT . All investors
allocate their wealth along that line according to their attitude to risk.

In an i.i.d. log-normal risky asset Rt ∼ N(μ ,σ2) has T -period log-return given
by $1 is log(1 + RT ) ∼ N(μT,σ2T ). A common choice is power utility of final
wealth, namely U(WT ) = 1

1−γ exp[(1− γ) log(1+RT )]. This can be greatly affected
by estimation risk as illustrated in Jacquier, Kane, and Marcus (2005).

We now consider a number of extensions: the multivariate mean-variance case;
exchangeability in the cross-section and time series dimensions and finally how
allocation rules are affect by return predictability.
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11.3.1.2 Mean-Variance

Mean-variance portfolio theory was pioneered by de Finetti (1940) and Markowitz
(1959, 2006). The basic mean-variance problem for the investor reduces to finding
portfolio weights that solve the quadratic programming problem:

min
ω
ω ′Σω subject to

ω ′ι = 1,
ω ′μ = μP,

where ι is a vector of ones. If asset returns are jointly normal N(μ ,Σ), for computa-
tional convenience our expected utility depends only on its moments. The efficient
frontier, with no short sales constraint, has a long history and is well understood.

We can then identify the mean/variance efficient portfolio,

ωEV =
1

ι ′Σ−1μ
Σ−1μ

with expected return μEV = μ ′Σ−1μ/ι ′Σ−1μ . We can also define the minimum
variance portfolio ωMV (Σ) by ωMV (Σ) = 1

ι ′Σ−1ι Σ
−1ι which has expected return

μMV = ι ′Σ−1μ/ι ′Σ−1ι . The global minimum variance portfolio just depends on the
variance-covariance matrix Σ and so, from a statistical viewpoint, becomes a good
portfolio to study as we change the input Σ .

As discussed in Perold (1988) and Chopra and Ziemba (1993), implementation
of portfolio choice in higher dimensions tends to result in extreme weights on se-
curities. One strategy to approach this issue is to introduce constraints in the op-
timization problem. We introduce upper and lower constraints in the optimization
problem by letting ci(xi) = −∞ if xi < li or xi > ui and consider the problem of
minω 1

2ω
′Σω−ω ′μ−λc(ω) where c(ω) =∑k

i=1 ci(xi). In the indexing problem we
will typically choose ci(xi) = c on li < xi < ui and li = 0 ∀i (reflecting a no short-
sales constraint) and ui = u0 a predetermined constant upper bound. The higher the
level of u0 the more aggressive the portfolio in the sense of the few numbers of secu-
rities held and the higher tracking error of the portfolio. Other choices could depend
on the benchmark index weights or the individual volatilities of the securities. For
the implications of higher-order moments on optimal portfolio rules see Harvey et
al. (2004).

It has long been known that “plug-in” estimates of variance-covariance matrices
can be very noisy estimates of the underlying parameters. Moreover, the optimizer
tends to focus on these estimation errors and can lead to extreme weights. Specifi-
cally, using μEV = μ̂ ′Σ̂−1μ̂/ι ′Σ̂−1μ̂ , where μ̂ and Σ̂ are the MLEs, can lead to poor
performance. Jobson and Korkie (1980) provide a simulation study and illustrate
these effects. There are a number of ways of dealing with this, the most popular
being shrinkage based estimation (Black and Litterman, 1991). One approach is to
use Bayesian estimators derived from prior information (for example, shrinking to-
wards market equilibrium) use the posterior distribution p(μ ,Σ |Zt). Polson and Tew
(2000) argue instead for the use of posterior predictive moments instead of plug-in
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estimates of means and variance-covariances which naturally accounts for parame-
ter uncertainty.

In the cross-section, we can extend the independence assumption by assuming
that the multivariate return distribution is exchangeability. Then its joint distribution
is invariant to permutation. The order of the variables leads to the same joint. There
are two cases, either exchangeable in the cross-section or in the time series. In a one
period setting, if the conditional distribution of the returns R is exchangeable, then
the optimal portfolio rule is ω = 1/N. Hence the diversified equally-weighted rule
is optimal.

One can see this as follows: suppose you invest ωi in ith asset, with ∑ωi = 1.
Then your expected utility of wealth tomorrow of the portfolio ω ·R is

EU(ω ·R) = EU(π(ω) ·X)

for any permutation π , where π(ω)i = ωπ(i) due to exchangeability. Hence

EU(ω ·X) =
1

N!∑π
EU(π(ω) ·X) ≤ EU

(
1

N!∑π
π(ω) ·X

)
(concavity of U)

= EU
(
N−11 ·X) .

So whatever the concave utility, under this exchangeability hypothesis you’re best to
use the 1/N-rule. DeMiguel, Garlappi, and Uppal (2009) provide empirical out-of-
sample performance for this rule and document its surprisingly good performance
against other strategies.

11.3.1.3 Estimation Risk without Predictability

Incorporating parameter uncertainty or estimation risk is important for a number of
reasons. First, it can dramatically affect the optimal holds when the investors’ time
horizon is taken into account. Second, it more realistically models historical returns
data. Maximizing expected utility can be computationally intractable. A strain of
literature concentrates on a function of the first (four at most) moments. We discuss
Harvey et al. (2004) for a Bayesian implementation.

Classical mean variance optimization requires estimates of the mean and variance-
covariance matrix of all assets in the investment universe. Maximum likelihood es-
timates suffer from having poor sampling properties such as mean squared error in
high dimensional problems. An advantage of the Bayesian approach is that it nat-
urally allows for regularization through the choice of prior. Estimation risk is then
seamlessly taken into account and one can also combine market equilibrium infor-
mation with an investors investment views as in the popular Black-Litterman (1991)
model.

To illustrate what happens when you take into account the estimation risk, con-
sider the time series exchangeable case. Here the predictive distribution of returns
is given by
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p(Rt+1|Yt) =
∫

p(Rt+1|μ ,Σ)p(μ ,Σ |Yt)dμdΣ .

Estimation risk is taken account of by marginalizing (integrating) out the uncertainty
in the parameter posterior distribution. The mean-variance approach leads to a fur-
ther simplification and under elliptical distributions such as the multivariate normal
with the posterior mean being the predictive mean.

The Bayesian investor learns the mean and variance via the updating formulas

μt+1 = E
(
Rt+1|Y t)= E

(
μ |Yt) ,

Σt+1 = E
(
Σ |Yt)+Var

(
μ |Yt) .

A portfolios excess return is defined as the rate of return on the portfolio mi-
nus the Treasury bill rate. Polson and Tew (2000) show that with full informa-
tion and a longer time series than assets that a standard non-informative prior

p(μ ,Σ) ≡ |Σ | (m+1)
2 that the predictive variance-covariance is proportional to the

maximum likelihood estimate Σ̂ and so there is no effect of estimation risk.
The differences appear with large assets and with the common situations of miss-

ing data. Gramacy, Lee, and Silva (2009) develop predictive distributions with miss-
ing data and extend the pricing errors to fat-tailed t-errors and regularization penal-
ties tailored to high dimensional problems. The myopic rule obtained by plug-in
these predictive means and covariances ignores the inter-temporal hedging demands
that exist as the investor re-balances his posterior distributions. Campbell and Vi-
ceira (1999) provide a discussion of this and show that in many cases the hedging
demand is negligible.

A popular practitioners’ approach is Black and Litterman (1991) who note that
modifying one element of the vector of means, for which one has better information,
can have an enormous and unwanted impact on all the portfolio weights. They com-
bine investor views and market equilibrium, in the spirit of shrinkage, by shrinking
to equilibrium expected returns.

One nice feature of the Bayesian approach is that one can incorporate individual
views via shrinkage (Black and Litterman, 1991). Specifically, suppose that excess
log-returns have a multivariate normal distribution

(Rt+1|μ ,Σ) ∼ N(μ ,Σ) and (μ |μ̄,λ ) ∼ N(μ ,Λ)

with a corresponding multivariate normal prior. We can use this to place restrictions
on a linear combination (or portfolio) of returns which yields

(Pμ |μ̄,λ ) ∼ N
(
Pμ ,PΛP′)

for a K ×N-matrix P. We can choose Pμ to be equilibrium market weights. Let
Ω = PΛP′. Then Bayes rule gives the updated weights



11.3 Simulation-based-Estimation in Portfolio Selection 403

E (μ |y) =
(
Λ−1 +P′ΩP

)−1 (Λ−1μ̄+P′Ω−1PR
)
,

Var(μ |y) =
(
Λ−1 +P′ΩP

)−1
.

The Ω matrix can be found, for example, by exploiting the use of a factor model.

11.3.1.4 Estimation Risk with Predictability

When predictability is present, it is common to model excess returns using a vector
auto-regression (VAR) of the form

Yt = Bxt +Σ
1
2 εt ,

where Yt contains both the stock return information as its first component and the
remaining components are variables that are thought to be useful for predicting re-
turns. Let β = vec(B), a T × k by 1 vector. We need to be able to simulate from the
joint posterior distribution p(β ,Σ |y). The likelihood function is given by

p(Y |β ,Σ) = (2π)−
T k
2 |Σ |− T

2 exp

(
−1

2

T

∑
t=1

(Yt −Bxt)′Σ−1(Yt −Bxt)

)
.

The prior distribution can either be diffuse or the usual conjugate matrix normal-
inverse Wishart.

Barberis (2000) quantifies the magnitude of estimation risk, parameter learning
and optimal decisions. Various predictability regression models have been proposed
to predict future excess market returns. The basic model is

rt+1 = α+βxt +σεr
t+1,

xt+1 = αx +βxxt +σxεx
t+1,

where rt+1 are monthly returns on the CRSP value-weighted portfolio in excess of
the risk-free rate, and the predictor variable xt is the payout yield, defined as the
time t payouts over the past year divided by the current price. The errors are jointly
standard normal, with Corr(εr

t ,εx
t ) = ρ < 0. Typical estimates are in the range of

−0.7 depending on the sample period. The effect of a negative correlation is that
it is more likely that a drop in the regressor (dividend yield) is associated with a
positive shock to stock returns. This in turn has the effect, since dividend yields are
lower, of inducing a stock return forecast that is lower in the future.

The intuition of the effect of estimation risk is then as follows. Time variation in
expected returns induces mean reversion into returns slowing the growth of cumula-
tive variances of long-horizon returns. This makes equities look less risky. Portfolio
decision makers, therefore, allocate more to stocks even though they face substan-
tial parameter uncertainty. Similar statements can be said about model risk, except
clearly these effects can be greater. Johannes, Korteweg, and Polson (2009) provide
a sequential Bayesian analysis of this portfolio problem including investors updat-
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ing beliefs about model probabilities of a variety of models that also incorporate
stochastic volatility.

Models with multiple predictors have been analyzed in a Bayesian setting by
Avramov (2002), Cremers (2002) and Boudoukh et al. (2007). We also do not im-
pose economic restrictions on the regressions as in Campbell and Thompson (2008).
There is also a large literature has tackled the issue of testing the efficiency of port-
folios. Kandel, McCulloch, and Stambaugh (1995) find the posterior distribution of
the maximum correlation between the tested portfolio tested and any portfolio on
the efficient frontier.

Brandt (2009) provides the following example. The underlying dynamics are
given by a VAR model of the form

(
ln(1+Rt+1)

lnd pt+1

)
= β0 +β1 lnd pt + εt+1, (11.3.1)

where d pt+1 is the dividend-to-price ratio and the errors are assumed to be ho-
moscedastic normals. Brandt finds that solving the optimal portfolio problem at
the median dividend yield leads to the following weights. The optimal allocation
to stocks is 58% for a one-quarter horizon, 66% for a one-year horizon and 96%
for a five-year horizon. At a single-period horizon the allocation to stocks at the
(25,50,75)th quantiles of the dividend-to-price ratio are 23%, 58%, and 87%, re-
spectively.

11.3.1.5 Assessing Model Risk

Model selection can be performed as follows. Let {M j}J
j=1 be a collection of mod-

els and Xt = (X1, . . . ,Xt) a vector of state variables. Consider a factorization of the
posterior distribution of states and models as

p
(
Xt ,θ ,M j|yt)= p

(
Xt ,θ |M j,y

t) p
(
M j|yt) , (11.3.2)

which dissects the inference problems into two components. First, p(Xt ,θ |M j,yt)
solves the parameter and state “estimation” problem conditional on a model. Bayes
theorem implies that the posterior given a model is

p
(
Xt ,θ |M j,y

t)=
p(yt |Xt ,θ ,M j) p(Xt |θ ,M j) p(θ |M j)

p(yt |M j)
,

where p(yt |θ ,Xt ,M j) is the full-information likelihood (conditional on the latent
states), p(Xt |θ ,M j) is the stochastic specification for the dynamics of the latent
variables (e.g., the specifications for the dynamics of V r

t , V x
t , and βt), and p(θ |M j)

is the prior distribution of the parameters in model j. It is important to note that
all of these components are subjective modeling assumptions. Bayesian statistical
inference involves summarizing p(Xt ,θ |M j,yt) in useful ways.
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The second component of (11.3.2) consists of p(M j|yt), or more aptly, compar-
ing p(M j|yt) to p(Mk|yt). This portion of the inference problem is called model
choice or model discrimination. Jeffreys (1961) introduced Bayesian model com-
parison, which weighs the relative strength of one model to another via the posterior
odds ratio of model j to model k :

odds
(
M j vs. Mk|yt)= odds j,k

t =
p(M j|yt)
p(Mk|yt)

=
p(yt |M j)
p(yt |Mk)

p(M j)
p(Mk)

.

The priors odds ratio is p(M j)/p(Mk) and the Bayes factor is the marginal likeli-
hood ratio.

Johannes, Korteweg, and Polson (JKP, 2009) consider an extension of the ba-
sic dividend-yield regression to five model specifications incorporating stochastic
volatility and drifting coefficients:

rt+1 = α+βt xt +σ
√

V r
t εr

t+1, (11.3.3)

xt+1 = αx +βxxt +σx

√
V x

t εx
t+1, (11.3.4)

where V r
t ,V x

t are stochastic volatility factors each with their respective dynamics.
Hence we have a list of models Mi including the benchmark model as well as

1. ‘DC’ (for drifting coefficients) denotes the extension of the standard model with
volatility still constant.

2. ‘SV’ denotes the extension which assumes that volatility is stochastic.
3. ‘SVDC’ denotes the most general specification.

JKP provides an illustration of the evolution of sequential posterior model prob-
abilities as marginal distributions from the full joint distribution p(Xt ,Mi,θi|yt)
where θi are model specify parameters over time.

11.3.2 Optimum Portfolios by MCMC

We now describe an algorithm introduced by Jacquier, Johannes, and Polson (JJP,
2007), which produces the optimum of expected utility, and d∗, without using gra-
dient methods. Consider again the generic problem of an agent solving

max
d

EX [U(X ,d)] ,

where U(X ,d) represents the agent’s utility given a decision d, and X is the ran-
dom variable directly relevant for computing utility. The expectation EX is taken
with respect to the distribution p(X), which is the predictive density of the X after
marginalizing the other parameters and state variables. Draws of p(X) can be made,
either directly or via any of the many MCMC algorithms that appear in the recent
literature. For example in a portfolio problem, X is the vector of future returns on the
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vector of investment opportunities, and the marginalized parameters and state vari-
ables can be means and variances of portfolio returns or an unobserved time varying
covariance matrix. One may want to characterize the optimal decision as a function
of conditioning variables Y . Then one needs to consider p(X |Y ) and the associated
optimal decision rule d∗(Y ). This is the functional optimization framework. For the
portfolio problem, Y , could be a latent variable such as the future volatilities or any
other estimated parameter.

The simulation-based algorithm used exploits desirable properties of MCMC
simulation of p(X), so that the algorithm also produces the optimal decision rule.
Specifically, the method produces the optimal decision d∗ without having to com-
pute a simulated expected utility and its derivatives or implement a gradient method
on that simulated function.

One simply randomizes the decision rule and makes draws that concentrate on
the optimal decision. It is crucial to note that this is consistent with decision theory
within which decision variables are not random, as in Berger (1985), Chamberlain
(2000), and Zellner (2002). The variability in the draws of d in the algorithm is
purely of a computational nature, it represents in no way an econometric or eco-
nomic uncertainty about the decision variable for the agent. In fact JJP show that
the algorithm collapses on the optimal decision as some choice variable increases.

The algorithm proposed can serve to find the global optimal decision d∗, the
optimal functional decision rule d∗(Y ), or the optimal sequential decision (d∗

1 ,d∗
2).

The algorithm constructs draws from a joint distribution on d and J replications
of X , denoted πJ(X̃J ,d). Specifically, the joint density of the parameters and the
decision is defined by

πJ(X̃J ,d) ∝
J

∏
j=1

U(X j,d)p(X j)μ(X ,d), (11.3.5)

where μ(X ,d) is a measure, typically uniform, that will be used to enforce the
needed regularity conditions in the standard utility framework. Typical restrictions
on the portfolio weights d and the predictive density of returns X can be imposed.

JJP first show that the marginal density on the decision variable πJ(d), obtained
by integrating out X̃J from the joint density in (11.3.5) is

πJ(d) = C(d)exp{J lnE(U(θ ,d))}

for an appropriate normalizing constant C(d). Then, πJ(d) collapses on the optimum
decision d∗ = argmaxEX [U(X ,d)] as J becomes large. This happens for practical,
i.e., low enough, values of J. An asymptotically normal limiting result in J under
extra suitable regularity conditions provides a diagnostic for selecting J.

Well known Markov chain Monte Carlo (MCMC) methods can be used to make
draws {(X̃J,(g),d(g)), g = 1, . . . ,G} from πJ(X̃J ,d). Therefore, we draw from the
J +1 conditionals, X j|d and d|X̃J , which can be shown to be
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X j|d ∼U
(
X j,d

)
p
(
X j) for j = 1, . . . ,J, (11.3.6)

d|X1, . . . ,XJ ∼
J

∏
j=1

U
(
X j,d

)
p
(
X j) . (11.3.7)

Note that the draws from X j are tilted away from the predictive density p(X j) to-
ward p(X j)U(X j,d), while, as we will see, the algorithm has d converging to d∗. So
the draws of X j concentrate on the regions of the domain of X j with a higher utility.
So, in the spirit of importance sampling, the algorithm concentrates on “smart” val-
ues of X j. Here the importance function is the utility, which itself tightens around d∗
as the algorithm converges. Sampling the X j’s in a utility-tilted way helps converge
quicker to the relevant region of the decision space using d|X̃J .

This differs from standard expectation-optimization algorithms for two reasons.
First we draw efficiently from p(X |d) as just discussed. In contrast, expectation-
optimization algorithms, at every step of d, draw G samples from X (g) ∼ p(X), the
predictive density of X . Second, they approximate the expected utility EX [U(X ,d)]
by 1

G ∑
G
g=1 U

(
X (g),d

)
, as well as all required derivatives similarly, and an optimiza-

tion step over d is performed typically via a gradient-based method. The process is
repeated until convergence. For functional optimization and sequential problems
this can be computationally intractable.

11.3.2.1 MCMC Algorithm for Maximizing Expected Utility

An agent wants to find the global optimal decision d∗ or study the optimal functional
decision d∗(Y ) for a wide range of values of Y , where Y is a parameter or state
variable of interest. For example, the agent may want to understand the sensitivity
of the portfolio to potential variations in volatility or revisions of expected returns.

The uncertainty of state variable X is described by the conditional predictive
distribution p(X |Y ). This distribution follows from the integration of the other state
variables and parameters not directly relevant to the agent. However, as the agent
wants to study the optimal decision as a function of the state variable or parameter
of interest Y , we do not integrate it out. Specifically, the agent wants to solve

max
d(Y )

EX |Y [U (X ,d)] .

Define the augmented joint distribution

πJ(X̃J ,d,Y ) ∝
J

∏
j=1

U(X j,d)p(X j|Y )μ(d,X ,Y ) (11.3.8)
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for some measure μ(d,X ,Y ), typically a uniform to ensure that the regularity con-
ditions hold true. We drop μ from the rest of the section to lighten the notation.3

We now consider the following MCMC algorithm that simulates from πJ(X̃J ,d,Y ):

X j|d,Y ∝ U
(
X j,d

)
p
(
X j|Y) for j = 1, ...,J, (11.3.9)

d|X̃J ,Y ∝
J

∏
j=1

U
(
X j,d

)
p
(
X j|Y) , (11.3.10)

Y |X̃J ,d ∝ p(X̃J |Y ) =
J

∏
j=1

p(X j|Y ). (11.3.11)

Clearly, upon integrating out Y , the above MCMC set of conditionals reduces
to the conditionals given in (11.3.6), (11.3.7). Hence, the results presented below
specialize to the simple global maximum expected utility problem, using (11.3.6),
(11.3.7), instead of (11.3.9)-(11.3.11). The slice sampler can also be used to draw
efficiently from (11.3.9)-(11.3.11).

For the purpose of functional optimization, one could conceivably use an algo-
rithm based upon (11.3.9) and (11.3.10), for a selected value of Y , repeating the pro-
cedure for a a discrete grid of values of Y . This brute force procedure, while correct,
is not efficient as possibly uninteresting values of Y may be selected. Indeed, the
complete algorithm in (11.3.9), (11.3.10) and (11.3.11) has two advantages. First, it
gives the global optimum d∗ as a by-product. Second, it draws Y more frequently
where it has higher expected utility, as per the conditional in (11.3.11). This is an
efficiency gain in the spirit of importance sampling. Note however that if J gets
extremely large, the algorithm collapses around d∗, as per (11.3.10), hence around
some Y ∗ as can be seen from (11.3.11). It becomes then impractical as a means to
describe the function d∗(Y ). This is however not likely in practice. Take for exam-
ple, an already high J = 200, and Y being an unknown variance. Then (11.3.11) is
akin to a draw from the variance of X given 200 observations. Clearly, it would take
a much higher value of J to collapse Y |X̃J ,d on one value.

Practically, the algorithm produces joint draws d,Y that can be plotted. The opti-
mal function d∗(Y ) can then found with one of the many known kernel-smoothing
techniques. The optimal value d∗ is found by averaging the draws of d as in any
MCMC algorithm.

We now show that the marginal of πJ(d|Y ) collapses on the functional relation-
ship d∗(Y ) as J gets large. First, it follows from (11.3.8) that:

πJ (d|Y ) = C(d)eJ log(EX |y[U(X ,d)]).

In turn, as J → ∞, we have that

3 The families of utilities most always used in financial economics are the power and the exponen-
tial. Both are negative. One remedies this problem by shifting the utility. We proceed in this section
under the assumption that U ≥ 0.
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πJ (d|Y ) −→ d∗ (y) = argmax
d(y)

EX |y [U (X ,d)] .

The problem then is to find an efficient MCMC algorithm to sample this joint dis-
tribution over the space (d,X ,Y ). The Markov Chain produces draws

{
(X̃ ( j,g),d(g),

Y (g)), g = 1, . . . ,G
}

.
In the global optimization problem, we know that maximizing U (d) is equiv-

alent to simulating from the sequence of densities πJ (d) ∝ exp(J logU (d)), as
J becomes large, see Pincus (1968). Simulated annealing uses this result to con-
struct a Markov Chain over d to sample from πJ , see Aarts and Korst (1989) for
example. Unfortunately, a key assumption of simulated annealing is that U (d)
can be exactly evaluated. This is not the case here as U (d) =

∫
U (d,X) p(X)dX

is not analytic. In contrast, our approach relies on the following key result from
evolutionary Monte Carlo: πJ (d) can be viewed as the marginal distribution of

πJ

(
d, X̃J

)
∝∏J

j=1 U(d,X j)p(X j). This suggests that the Markov Chain should op-

erate in the higher dimensional space of
(

d, X̃J
)

. MCMC is then the natural method-

ology to sample these variables. This is why we draw iteratively from p
(

d|X̃J
)

and

p
(

X̃J |d
)

and eventually the simulated d(G) −→ d∗.

Recall that standard simulation draws X from p(X). In contrast, this approach
samples the J random variables, X j|d ∝U(d,X j)p(X j). This is why the approach
will work well for large dimensions, complicated distribution and potentially non-
smooth utility. For example, in the case where the maximizing decision depends
critically on the tail behavior, it will generate more samples from the high-utility
portions of the state space.

A key advantage of this joint optimization and integration approach is that it de-
livers Monte Carlo error bounds in high dimensions. This is due to the fact that using
MCMC sampling can result in fast convergence such as geometric convergence λG

in nearly all cases and polynomial time in some cases. Contrast this approach with
even sophisticated Monte Carlo strategies such as importance sampling that gener-
ates the standard central limit theorem type

√
G convergence. Aldous (1987) and

Polson (1996) discuss why this is insufficient for high dimensional problems and
consider random polynomial time convergence bounds.

11.3.3 Discussion

This section provides a discussion of Bayesian methods in portfolio selection.
Simulation-based methods are particularly suited to solving the integration prob-
lem for estimation risk and the optimization problem to find the portfolio weights.
A major problem for future research are dynamic asset allocation setting in many di-
mensions, see, for example, Brandt et al. (2005). Extending these methods to higher
dimensions is challenging. One alternative avenue for future research is to apply
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Q-Learning techniques to solving the dynamic multi-period problem under uncer-
tainty, see Polson and Sorensen (2009).

11.4 Bayesian Multidimensional Scaling and Its Applications in
Marketing Research

Duncan K.H. Fong

Multidimensional scaling (MDS) refers to a set of multivariate procedures that pro-
vide spatial representations for displaying the structure in various types of empirical
data (proximity, dominance, profile, etc) in one or more latent dimensions. The tech-
nique is widely used in social and behavioral sciences. It has its roots in the mathe-
matical psychology literature (cf. Shepard, 1980), and was originally used to assess
subjects’ judgments and attitudes to various presented stimuli. It has now become
quite popular generically and has extended into areas other than its traditional place
in the behavioral sciences. The topic is also gaining attention in statistics, and it is
covered in many graduate level multivariate statistics textbooks (e.g., Johnson and
Wichern, 2007). Indeed, there is a very wide variety of multivariate visualization
and dimension reduction techniques related to classical MDS (e.g., Diaconis, Goel,
and Holmes, 2008; Chen and Buja, 2009).

The MDS technique has been widely used in marketing research for positioning,
market segmentation, optimal product/service design, etc. (see Carroll and Green,
1997; DeSarbo and Wu, 2001; Lilien and Rangaswamy, 2004). In particular, MDS
procedures that produce joint space maps representing both brands and consumers
are most useful for representing the relationships between the two entities in ex-
amining the underlying structure of preference data (Johnson, 1971; Green, 1975).
Classical MDS procedures for two-way preference data abound in terms of either
unfolding representations, vector representations, or correspondence analysis and
optimal scaling type approaches (e.g., DeSarbo and Rao, 1986; Gifi, 1990; Cox
and Cox, 2001; Borg and Groenen, 2005). In unfolding MDS procedures (e.g.,
ALSCAL; see Takane, Young, and de Leeuw, 1977), both row (e.g., consumer) and
column (e.g., brand) elements of the input data matrix are represented by points
in a reduced dimensional space and the Euclidean distance between these row and
column points are indicative of the dominance relations shared between them in the
data. In a vector MDS procedure (e.g., MDPREF; see Carroll, 1980), one set of en-
tities (either row or column) are represented by vectors emanating from the origin of
the derived joint space while the alternative set of entities are represented by points.
Here, the orthogonal projection of the points onto these vectors in the reduced di-
mensional space renders information on the dominance relationships contained in
the data. Correspondence analysis (e.g., Benzecri, 1992; Shin, Fong, and Kim, 1998)
is an exploratory technique typically used to analyze contingency tables containing
some measure of correspondence between the rows and columns. The graphic re-
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sults from correspondence analysis provide information which is similar in nature
to those produced by principal component analysis techniques. However, unlike the
unfolding or vector model, associations between row and column entities are often
more difficult to assess directly.

There have been a plethora of applications of these types of two-way MDS pro-
cedures in various disciplines. For example, Herche and Swenson (1991) used MD-
PREF to measure classroom performance where vectors represented teaching at-
tributes and faculty was represented by points. In political science, such MDS tech-
niques were used to assess the dimensions of political perception and individual
differences in the importance of each dimension in preferential choice (Matsusaka
and McCarty, 2001). These techniques have also been used to assess citizen atti-
tude toward various public policies and preference for candidates based on poli-
cies (Aragones and Palfrey, 2002). A study in sports and substance abuse (Pan and
Baker, 1998) used MDPREF to investigate student athletes’ perceptions of banned
substances (alcohol, steroids) relative to their selected attributes (drowsiness, hair
loss). The tourism industry has applied MDS programs, such as ALSCAL, to ex-
plore relationships between stimulus points (destinations) to property vectors or
destination attributes (Kim, Guo, and Agrusa, 2005). Research in agriculture has
estimated individual preference functions for food safety attributes in an attempt to
segment consumers on their willingness to pay for safety standards utilizing such
MDS techniques (Baker and Crosbie, 1993). Another study used these techniques
to assess farmers’ goals in relation to the decision being made, and understand the
differences among groups of farmers (Patrick, Blake, and Whitaker, 1983). In the
area of nutrition and food sciences, sensory studies employing these MDS meth-
ods have been used to evaluate and group species of fish and determine preferences
for various product groups (Elmore et al., 1999). See Borg and Groenen (2005) for
a survey of many other applications of such MDS procedures across a number of
different domains of science.

Although MDS is popular in practice, there are a number of limitations associated
with classical MDS procedures: (1) There is generally little basis for determining the
dimensionality of the underlying space for the multidimensional representation of
data. Some commercially available software restricts the analysis to two dimensions,
while other approaches encourage the use of ad-hoc scree plots examining variance
accounted for (VAF) or stress (S) versus the dimensionality; (2) For most proce-
dures, it is possible to obtain point estimates only for parameters of interest which
do not help to assess the stability of the MDS solution; (3) Many procedures require
data preprocessing (row, column, or matrix centering or standardization) to avoid
degenerate or non-informative solutions which can substantially affect the results
obtained; (4) External information (e.g., brand attributes, consumer demographics)
are commonly used in a post-hoc analysis for interpretation purposes only. It is more
desirable to incorporate them directly into the analysis to derive the MDS solution.

Some Bayesian MDS models have recently been proposed to improve upon ex-
isting MDS procedures. DeSarbo et al. (1998) develop a Bayesian MDS model that
estimates spatial market structures from pick-any/J choice data, provides for indi-
vidual level parameters, and allows for correlations among the choice alternatives
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across individuals. DeSarbo, Kim, and Fong (1999) propose a Bayesian formulation
of a vector MDS procedure for the spatial analysis of binary choice data. Oh and
Raftery (2001) provide a Bayesian metric MDS procedure for object configuration
and a simple Bayesian criterion for dimension determination. Lee (2001) has em-
ployed the Bayesian Information Criterion (BIC) to determine the dimensionality of
MDS representation for cognitive process models when similarity measures among
stimuli are available. Martin and Quinn (2002) describe a dynamic Bayesian mea-
surement model of ideal points for all justices serving on the U.S. Supreme Court
from 1953 through 1999. Clinton, Jackman, and Rivers (2004) develop a Bayesian
procedure for estimation and inference for spatial models of roll call voting. Jack-
man (2004) uses a Bayesian model for measuring graduate school applicant quality,
combining the information in the committee members’ ordinal ratings with the in-
formation in applicants’ GRE scores. Gormley and Murphy (2007) analyze Irish
election data using a Bayesian latent space ideal point model where both candidates
and voters had positions in a latent space. Park, DeSarbo, and Liechty (2008) pro-
pose a Bayesian MDS model that combines both the vector model and the ideal point
model in a generalized framework for modeling metric dominance data. Fong et al.
(2010) offer a Bayesian vector MDS model to provide a joint spatial representation
of ordered preference data. Furthermore, their proposed Bayesian procedure allows
external information in the form of an intractable posterior distribution derived from
a related data set to be incorporated as a prior in deriving the spatial representation
of the preference data.

11.4.1 Bayesian Vector MDS Models

Preference data can be in the form of ratings, rankings, pick-any/J, etc. We start
with ratings data and then explain how the Bayesian model can be adapted to handle
other forms of preference data. Let yi j denote the preference rating for consumer i
(i = 1,2, ...,N) pertaining to j ( j = 1,2, ...,J). We assume a vector MDS model for
the data:

yi j = a′ib j + ei j, (11.4.1)

where the T -dimensional latent consumer vector ai and the T -dimensional latent
brand vector b j are assumed to be random and the error terms are independent and
normally distributed, ei j ∼ N(0,σ2). Note that the model in (1) is under-identified.
In particular, one can obtain the identical scalar products by multiplying ai and b j
by a non-singular orthogonal matrix M as a′iM′Mb j = a′ib j. To address the identifi-
cation problem (see Gustafson, 2005), we assume informative proper priors (which
may involve covariates like brand attributes and consumer demographics) for ai and
b j. For example, suppose Aik, k = 1, . . . ,K, is the value of the kth descriptor variable
for consumer i and B jm, m = 1, . . . ,M, is the value of the mth attribute for brand j,
and we let
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a′i =ΘAi + τ i, and b j = PB j +δ j, (11.4.2)

where Ai = (Aik)′, B j = (B jm)′, Θ and P are random coefficient matrices, τ i ∼
N(0,Ξ) and δ j ∼ N(0,Σ) are random error vectors. Proper hyper-priors are then
assumed on σ2,Θ , P, Ξ and Σ (e.g., Brown, Vannucci, and Fearn, 1998). Using the
Bayesian approach one can compute posterior interval as well as point estimates for
various parameters of interest. Also, the probability based criterion, Bayes factor,
can be evaluated to determine the optimal dimension T of the derived joint space
map. Furthermore, variable selection can be performed to identify significant demo-
graphics and attribute variables that affect the consumer and brand vectors.

For ranking data, we introduce latent utilities and latent cutoff points to model
the data (cf. Johnson and Albert, 1999). For each observation yi j, we assume the
existence of a latent utility zi j and latent cutoff points −∞ = γi,0 < γi,1 < γi,2... <
γi,c−1 < γi,c = +∞ such that:

yi j = c when γi,c−1 ≤ Zi j ≤ γi,c, i = 1,2, ...,N, j = 1, ...,J,c = 1,2, ...,C. (11.4.3)

Equation (11.4.1) then becomes:

Zi j = a′ib j + e∗i j, (11.4.4)

where the error terms are independent and e∗i j ∼ N(0,1) is assumed to eradicate
an identification problem. Fong et al. (2010) performed a Bayesian factor analysis
(e.g., Rowe, 2002; Lopes and West, 2004) on a related attribute ratings data set to
develop an informative prior for b j. Specifically, let x j be the K-dimensional (mean
corrected) attribute rating vector for brand j. They assume a Bayesian factor model
with

x j =Λ f
j
+ ε j, (11.4.5)

where ε j ∼N(0,Ψ) independently,Λ is K×T matrix of unobserved factor loadings,
the factors f

j
are independent among themselves as well as independent of the error

terms, and Ψ is the K ×K error variance matrix. The posterior distribution of the
factors, π f ( f

1
, ..., f

J
|X), is used as a prior for (b1, ...,bJ) , or

p(b1, ...,bJ |X) = π f (b1, ..,bJ |X), (11.4.6)

where p(b1, ..,bJ |X) is the derived prior distribution and X is the attribute data ma-
trix. Although the prior distribution in (11.4.6) is a high dimensional integral which
cannot be evaluated in closed form, it is noted in Fong et al. (2010) that the prior
can be expressed in a hierarchical form with the first stage prior p(b1, ..,bJ |Λ ,Ψ ,X)
which is a product of multivariate normal densities, and the second stage prior
p(Λ ,Ψ |X), which can be sampled using MCMC methods. This observation greatly
reduces the computational burden associated with the Bayesian analysis. If demo-
graphic information is available, proper priors as described in Equation (11.4.2) will
be assigned to ai. To complete the prior specification, a vague prior for the individual
level cutoff points in Equation (11.4.3) may be used.
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Finally, for pick-any/J choice data, we introduce correlated latent utility variables
as in DeSarbo, Kim, and Fong (1999) and employ an equation similar to (11.4.4)
to relate the latent utility with the corresponding consumer and brand vectors. Here,
Zi j is specified such that choice j is observed (i.e., yi j = 1) if the Zi j is larger than
a threshold parameter which may vary by individual or can be constant across con-
sumers. Also, the utility error terms are assumed to be correlated for any fixed i,
instead of independent. In addition, for identification purposes, a correlation matrix
may be preferred over a covariance matrix in the specification of the error distri-
bution. If a correlation matrix is assumed, the conventional Wishart prior assump-
tion for the precision matrix will be inappropriate and more extensive calculation
is expected to perform the Bayesian analysis. However, we note that the parameter
expansion technique (e.g., Hobert and Marchev, 2008) can be applied to alleviate
the computational burden in this case.

11.4.2 A Marketing Application

Suppose J brands are ranked by N consumers, MDS can be applied to the N × J
data matrix to provide a joint spatial representation of the brands and consumers in
a reduced dimensional space to address various positioning issues. Frequently, in a
survey, respondents are asked to rank brands as well as to rate brand attributes. Thus,
in addition to the preference data set, a related data set on attribute ratings is also ob-
tained. Traditionally, classical factor analysis is used to analyze the attribute ratings
to yield a “perceptual map” where the factor score matrix gives the location of each
brand in the map. The procedure PREFMAP3 then introduces for each respondent
either an ideal brand or a preference vector into the perceptual map in a manner that
ensures maximal correspondence between the input preference ratings (or rankings)
for the brands and the preference relationships among the brands in the resulting
joint space map (cf. Lilien and Rangaswamy, 2004). However, there are two issues
with this approach. One, the uncertainty around the factor score estimates is not
incorporated into the analysis. Two, the method ignores possible contribution from
the preference data set on the estimation of brand locations.

To overcome these two problems as well as other limitations associated with
classical MDS procedures mentioned in the Introduction section, Fong et al. (2010)
offer a Bayesian solution for the analysis of such data sets. They perform a Bayesian
factor analysis on the attribute ratings data and use the posterior distribution of the
factor scores as the prior for brand locations in the joint space map. To illustrate their
methodology, they employ data from a December 2002 survey of consumers, who
have plans to purchase sport utility vehicles (SUVs) within the next 6-12 months.
Considering the top ten luxury SUV brands (Lexus RX300, Acura MDX, BMW
X5, Mercedes Benz M-Class, Cadillac Escalade, Lincoln Navigator, Hummer H2,
Land Rover Discovery, Lexus LX470, and Range Rover) and nine associated at-
tributes (good vehicle for family use, good ride/handling off-road, built rugged and
tough, technically advanced, prestigious, high trade-in value, excellent cargo space,



11.4 Bayesian Multidimensional Scaling and Its Applications in Marketing Research 415

good interior passenger room, and good gas mileage) in that study, they obtain a
three-dimensional solution as shown in Figure 11.4. Here the posterior means of the
distributions for the brand coordinates and consumer vectors are plotted in pair-wise
dimension fashion. (The consumer vectors are normalized to allow better visualiza-
tion of the brand locations.) The three dimensions are labeled as follows. Dimension
1 is a Practicality dimension as it can be characterized as built rugged and tough,
good ride/handling off road, and not a good vehicle for family use; Dimension 2
is a Size dimension as it can be described as excellent cargo space, good interior
passenger room, and poor gas mileage; and Dimension 3 is a Quality dimension
as it is characterized by technically advanced, prestigious, and high trade-in value.
Using the Bayesian results, one can provide answers to various marketing research
questions such as: What are the underlying dimensions that consumers utilize to
form their consideration to buy? What specific competitive brands appear to be most
threatening to a particular brand? How does intended consumer demand vary along
these dimensions?

FIGURE 11.4. The plots of the posterior means of the distributions for the brand coordinates and
consumer vectors.

The Bayesian vector MDS model is shown to outperform several traditional vec-
tor MDS approaches in Fong et al. (2010). To compare with other traditional MDS
procedures, we report in Table 11.1 the Bayesian results as well as those from the
popular ALSCAL unfolding MDS analysis for the luxury SUV data. The same mea-
sure of fit given in Fong et al. (2010) is used:

Fj =
[

1− ∑N
i=1 |yi j − ŷi j|
N(C−1)

]
×100%
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for each brand j where ŷi j is the predicted response. As shown in Table 11.1, the
Bayesian method provides a uniform improvement over all 10 brands in terms of
the fit measure. The overall fit measure for the Bayesian vector MDS procedure is
83% versus 73% for ALSCAL. Furthermore, when ALSCAL is used to analyze the
data, there is a more than 34% increase in the overall mean square errors (MSE).

TABLE 11.1. Measure of fit by brand for the two models.

Brand Bayesian Vector MDS ALSCAL
Land Rover Discovery 82% 78%
Range Rover 84% 81%
BMW X5 80% 69%
Mercedes Benz M-Class 83% 72%
Lincoln Navigator 85% 69%
Lexus LX 470 82% 80%
Lexus RX 300 80% 72%
Acura MDX 83% 67%
Hummer H2 86% 73%
Esscalade/ESV 83% 69%
Overall Fit 83% 73%
Overall MSE 0.96 1.29

11.4.3 Discussion and Future Research

A Bayesian approach to MDS offers a number of advantages over similar classical
MDS procedures. Some of them are: (1) A probability based criterion such as Bayes
factor can be used to determine the number of dimensions of the derived joint space
map; (2) A Bayesian model can provide interval estimates for various parameters of
interest which are useful to assess the stability of the MDS solution; (3) Data pre-
processing is generally not needed to perform a Bayesian analysis; and (4) External
information like statistical results from a related data set can be easily incorporated
as prior input for the current study in a Bayesian analysis.

The Bayesian approach to MDS is promising and various extensions of existing
work are possible. For example, segmentation is an important topic in marketing
and one may want to modify the model in Fong et al. (2010) to perform the task.
As shown in Figure 11.4, consumers (represented by vectors) are not homogeneous
and it is useful to separate them into different groups (segments) for marketing pur-
poses. Thus, if segmentation is one of the research goals, it will be desirable to
obtain group memberships as part of the output (see DeSarbo et al., 2004). It is also
desirable to predict market share for any product at any location on the joint space
map in Figure 11.4. This can be done formally in a Bayesian analysis. To accommo-
date heterogeneity which is an important concept in marketing, one may explore the
possibility of unknown and unequal error variances in (11.4.1). For ranking data,
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in addition to changing the variance assumption for (11.4.4), one may impose an
exchangeable prior on the cutoff points in (11.4.3). Finally, it is desirable to de-
velop multi-mode, multi-way Bayesian models as well as dynamic Bayesian MDS
procedures to analyze various types of data.

Acknowledgments: Dr. Fong’s work was sponsored in part by a research grant from
the Smeal College.



Chapter 12
Bayesian Categorical Data Analysis

Some interesting research challenges for Bayesian inference arise from binary and
categorical data, including more traditional inference problems like contingency ta-
bles with sparse data and case-control studies as well as more recent research fron-
tiers like non-standard link function for binary data regression.

12.1 Good Smoothing

James H. Albert

In the analysis of categorical data, a general problem is the handling of small counts.
In the estimation of a proportion p, samples consisting of all successes or all failures
are problematic. The corresponding proportions of successes, 1 and 0, are clearly
unsatisfactory estimates at the proportion. If p̂ is the sample proportion and n is
the sample size, the standard frequency confidence interval (the Wald interval) of
the form (p̂−1.96SE, p̂ + 1.96SE), where SE =

√
p̂(1− p̂)/n is an unsatisfactory

interval estimate. In the standard test of independence, students are very aware of
the problems with tables with small observed counts (so-called sparse tables) and
software programs routinely will give warnings for the use of the Pearson test of
goodness of fit in these situations.

A simple ad-hoc solution to the small count problem is to simply add small
counts to the data and apply frequentist methods to the adjusted data. In describ-
ing exploratory methods for fraction data, John Tukey in Tukey (1977) recommends
“starting” counts by adding the constant 1/6 as a way of handling “none seen below”
when it is possible to observe these counts. Agresti and Coull (1998) describe the
good performance of the procedure that applies the Wald interval estimate to counts
adjusted by adding two successes and two failures. (This procedure is commonly
used and incorporated in introductory statistics texts such as Moore, 2006.) In the
analysis of contingency tables, one solution to the small count problem is to simply
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add a constant, say 1/2, to each cell of the table before applying standard inferential
methods.

Adding imaginary counts to categorical data essentially corresponds to prior in-
formation incorporated into the analysis. So any discussion about the proper choice
of imaginary counts leads one to naturally to a Bayesian analysis. One of the first
people to think very seriously about the choice of imaginary counts in the smooth-
ing of categorical data was I. J. Good. One goal of this section is to give a historical
perspective on the Bayesian smoothing of tables by discussing Good’s famous 1967
JRSS paper (Good, 1967). The topic of his paper, constructing a Bayesian test of
equiprobability of a multinomial parameter, seems narrow in scope. But this paper
gives a nice view on Good’s approach to categorical data problems and his test-
ing procedure is naturally linked with an appropriate choice of “flattening constant”
in the estimation of a multinomial probability vector. In Section 12.1.2, we apply
Good’s general smoothing strategy for problems of smoothing of a single propor-
tion, a 2 by 2 table, and a general two-way contingency table. For each problem, a
two-stage prior is proposed where a conjugate prior is assigned at the first stage with
unknown parameters, and a vague prior is assigned to the unknown parameters at
the second stage. We illustrate the posterior estimates for a collection of examples
and contrast these Bayesian smoothing estimates with frequentist methods.

In Section 12.1.3, we consider several data mining applications where the goal
is to simultaneously learn about a large number of parameters. There is a challenge
in simultaneously estimating a collection of hitting rates of baseball players due to
the high variability of the rates for players with few opportunities to hit. By fitting
an exchangeable model, one is smoothing the observed hitting rates towards a com-
bined estimate, where the degree of shrinkage depends on the suitability of a model
that assumes equal hitting probabilities. Two graphs are used to judge the suitabil-
ity of this exchangeable model. In sports, there is much interest in the ability of a
player to hit at games played at home relative to his ability to hit at games played
away from home. An odds ratio can be used to measure the association between
hitting and the venue and the problem is to simultaneously estimate the odds ratios
for a collection of players. One is interested in smoothing the observed odds ratios
towards a model that assumes that all players have the same hitting average at home
versus away games.

12.1.1 Good’s 1967 Paper

12.1.1.1 The Testing Problem and Priors

Good (1967) describes a Bayesian testing procedure for multinomial data. Suppose
we observe the vector of counts y = (y1,y2, . . . ,yt) from a multinomial distribution
with sample size n and cell probabilities p = (p1, p2, . . . , pt). One wishes to test the
hypothesis that the probabilities are equiprobable:
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H: p1 = p2 = ... = pt = 1/t

against the alternative hypothesis A that there are some differences in the values of
{p j}. The standard test procedure is the Pearson statistic

X2 =
t

∑
j=1

(y j −n/t)2

(n/t)

which has an asymptotic chi-square distribution with t − 1 degrees of freedom. If
X2

obs is the observed values of X2 and U is the chi-squared(t − 1) random variable,
then one typically makes a decision about H on the basis of the p-value P(U > X2

obs).
The accuracy of the chi-square approximation is questionable for tables with small
counts, so Good wishes to develop an “exact” Bayesian test that is free from the
asymptotic theory and can be used with confidence for all values of t and n.

The Bayes factor against the null hypothesis H is the ratio of the marginal densi-
ties of y under the hypotheses A and H. Under the equiprobable hypothesis H, y is
simply the multinomial distribution with cell probabilities p1 = p2 = · · · = pt = 1

t
and so the marginal density of y is given by

m(y|H) =
n!

∏t
j=1 y j!

(1/t)n.

Under the alternative hypothesis A, suppose p is assigned the proper prior g(p).
Then the marginal density of y under the alternative hypothesis is given by the inte-
gral

m(y|A) =
n!

∏t
j=1 y j!

∫ t

∏
j=1

p
y j
j g(p)d p,

and the Bayes factor against the null hypothesis is given by

BF =
m(y|A)
m(y|H)

= tn
∫ t

∏
j=1

p
y j
j g(p)d p.

Much of Good’s paper is devoted to the construction of a “suitable” prior for
the multinomial probabilities under the general hypothesis A. Here is an outline of
Good’s approach.

1. Good begins with a “sufficiency” postulate that is a modification of an argument
by the philosopher W. E. Johnson. This postulate states that the prior for p is
a linear combination of priors indexed by a parameter κ such that if we knew
values of t, n, y j and κ , then the knowledge of the other multinomial counts
{yk,k �= j} would have no effect on the posterior mean of p j. Equivalently

E(p j|y j, t,n,κ) = E(p j|y, t,n,κ).
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2. Good that shows that this sufficiency postulate leads to a general expression for
the posterior mean of p j: E(p j|y j, t,n,κ) = (y j +k)/(n+tk), where the flattening
constant k depends on the values of t and κ .

3. This expression for the posterior mean can be shown equivalent to the assumption
that p follows a symmetric Dirichlet distribution with parameter k:

g(p|k) =
Γ (tk)
Γ (k)t

t

∏
j=1

pk−1
j .

Let Hk denote the model that assumes p has this Dirichlet(k) distribution. The
model Hk essentially says to adjust the multinomial counts by means of the flat-
tening constant k to estimate the probabilities {p j}. The maximum likelihood
estimate yk/n chooses k = 0, a uniform prior would correspond to k = 1, and a
Jeffreys prior would choose k = 1/2.

4. Good argues that no specific symmetric Dirichlet distribution is adequate and
places a distribution φ(k) on the hyperparameter k resulting in the prior distribu-
tion

g(p) =
∫ ∞

0

Γ (tk)
Γ (k)t

t

∏
j=1

pk−1
j φ(k)dk.

What does Good suggest for the second-stage prior density φ(k)? The traditional
noninformative prior of the formφ(k) = 1/k is inappropriate since the marginal den-
sity will not be defined with the use of an improper prior. Good wishes to use a
proper distribution that approximates the density 1/k, leading to the choice of log-
Cauchy density

φ(k) =
1
πk

λ
λ 2 +{log(k/μ)}2 , k > 0.

This prior density depends on two parameters μ and λ . The parameter μ is the
median and λ is a scale parameter that is connected to the quartiles qL and qU by
the relationship λ = log(qU/μ) = log(μ/qL). In practice, Good recommends that μ
are λ are chosen based on beliefs about the multinomial probability vector p when
the equiprobable assumption is false. A useful parameter to think about is the repeat
rate

ρ =
t

∑
j=1

p2
j .

The mean of ρ for a symmetric Dirichlet density is given by E(ρ) = k+1
tk+1 . Good

recommends specifying values of μ and λ by guessing at values of the quartiles of
the repeat rate ρ . By setting these guesses to (1+qL)/(tqL +1) and (1+qU )/(tqU +
1), one obtains estimates for qL and qU , which can used to get the log Cauchy
parameters μ and λ .
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12.1.1.2 Bayes Factors

Recall the model Hk was the assumption of a Dirichlet symmetric distribution with
parameter k. As k approaches infinity, the model Hk approaches the equiprobable
model H. The Bayes factor in support of Hk over H (or equivalently H∞) is given by

BF(k) =
m(y|A)
m(y|H)

= tn D(y+ k)
D(k)

,

where D(a) = ∏Γ (a j)/Γ (∑a j) is the Dirichlet function evaluated at the vector
a = (a1,a2, . . . ,at). If the smoothing parameter k is assigned a density φ(k) over the
alternative hypothesis A, then the Bayes factor in support of A over H is given by

BF =
∫ ∞

0
BF(k)φ(k)dk.

Good believes it is useful to plot the Bayes factor BF(k) as a function of the
flattening constant k; it is analogous to plotting the likelihood function. One useful
test statistic is the maximum of the Bayes factor over k: BFmax = maxk BF(k).

12.1.1.3 Smoothing Estimates

Although the focus of Good’s paper is on the development of a Bayesian test proce-
dure, this analysis gives different estimates of the flattening or “smoothing” estimate
k. One can estimate k from the “Type-II likelihood” proportional to BF(k); the Type-
II maximum likelihood estimate is given by kmax. Alternatively, when the prior φ(k)
is assigned to k, one can estimate k from its posterior distribution

φ(k|y) ∝ D(y+ k)
D(k)

φ(k), k > 0.

12.1.1.4 An Example

To illustrate Good’s methodology, we consider the counts of new visits to the web-
site http://bayes.bgsu.edu/bcwr recorded during the week March 8 to
March 14, 2009. Are visits more likely to occur during particular days of the week?
Table 12.1 displays the number of hits during each of the seven days and we wish
to test the hypothesis that the probabilities are equiprobable. From a frequentist
perspective, the observed chi-square test statistic is 16.96. The p-value, the proba-
bility that a chi-square(6) exceeds 16.96, is equal to 0.0094, indicating substantial
support to reject the equiprobable model. If we assume that H and A have equal
prior probabilities, and the p-value is interpreted as the posterior probability of H,
then the corresponding approximate Bayes factor (on the log 10 scale) is equal to
log10 BF = − log10(0.0094) = 2.23.
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TABLE 12.1. Counts of the number of new visits to a particular website
during a week in March, 2009.

Sun Mon Tue Wed Thu Fri Sat
14 25 16 11 22 12 6

Figure 12.1 displays values of log10 BF(k) plotted against values of logk. This
is a typical graph where the Bayes factor in support of the hypothesis A is small
for small values of logk, increases until it reaches a maximum value, and then ap-
proaches zero for large logk. The Bayes factor is maximized at logk = 2.05 and
log10 BF(kmax) = 1.06. This implies that the log10 BF(k) is smaller than 1.06 for all
k, indicating that the evidence against the equiprobable hypothesis is much smaller
than implied by the p-value where log10 BF = 2.23. To compute the Bayes factor
BF , one averages values of BF(k) over the prior density φ(k). Suppose we assign k
the standard log Cauchy density — the corresponding density on logk is displayed
in Figure 12.1. The resulting value of the Bayes factor on the log 10 scale is given by
log10 BF = 0.23, indicating modest evidence against the equiprobable assumption.
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FIGURE 12.1. Logarithm of the Bayes factor against the equiprobable hypothesis plotted as a
function of the logarithm of the hyperparameter k. The dotted curve represents the Cauchy prior
on logk.

As a by-product of this testing procedure, we get estimates at the flattening
constant k. The type-II MLE, found by maximizing BF(k) is given by kmax =
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exp(2.05) = 7.8 which corresponds to adding 8 to each of the counts. If one assigns
a standard log Cauchy density to k, the posterior mode is given by E(k|y) = 3.97
which corresponds to adding 4 to each of the observed counts.

12.1.1.5 Bayes/Non-Bayes Compromise Statistics

Good makes a considerable effort to reconcile the Bayesian test statistics with clas-
sical measures of evidence. One interesting approximation relates the Bayes factor
BF(k) with the chi-square statistic X2:

2 logBF(k) ≈ X2 +A(k)+O(n−1/2),

where exp{A(k)} =
[
Γ (tk)2(2π)t−1

]
/
[
Γ (k)2t t(2k−1)tnt−1

]
. Another rule of thumb

(developed from a number of earlier papers) is that the Bayes factor against H will
typically falls within 1/(30P) and 3/(10P), where P is the tail-area probability (the
p-value) for the analogous classical test statistic such as X2. Good makes a con-
jecture that BF(k) has at most one local maximum, and the probability that the
maximum is k = ∞ is approximately equal to 1− ct , where ct is the probability a
chi-square(t) statistic will exceed t.

Good provides many illustrations of the use of his Bayesian statistics for 18 ex-
amples which vary with respect to the number of components t and sample size
n. For each example, the Bayes factor BF(k) is presented for a range of values of
k, and the integrated Bayes factor F is given for a variety of Type-III distributions
φ(k). He also computes p-values for each example using a range of testing statis-
tics. A “reliable” p-value P is computed for each example and he finds the empirical
formula relating P with the integrated Bayes factor BF :

1

6P
√

2πn
< BF <

6

P
√

2πn
.

12.1.1.6 General Features of Good’s Approach

There are general notable aspects of Good’s approach to the sparse multinomial data
problem. First, smoothing a table of counts is directly related to a test of a hypothe-
sized model. One wishes to smooth the observed counts towards fitted counts under
the model and the degree of smoothing depends on the agreement of the data with
the model. Specifically, the optimal choice of flattening constant is a function of the
Bayes factor against the equiprobability hypothesis.

Good makes an effort to relate the Bayesian measures and associated estimates of
the flattening constant with standard frequentist procedures. He wanted to develop
“general all-purpose” methods that make sense and relate to classical methods. The
posterior probability of the equiprobability model is related to the chi-square testing
statistic and associated p-value. The Bayesian methods can suggest new methods
such as the statistic Fmax for measuring deviances from the null hypothesis. This



426 12 Bayesian Categorical Data Analysis

particular statistic is viewed as a “Bayesian/non-Bayesian compromise” since one
uses a frequentist procedure, maximum likelihood, to summarize the marginal like-
lihood from a Bayesian model.

Good was one of the first people to advocate the use of hierarchical priors in
Bayesian inference. He understood that it would be a bit arbitrary to assume a fixed
first-stage prior such as a Dirichlet (k) to represent one’s opinion about the multi-
nomial proportion vector and advocates a distribution placed on k to reflect one’s
uncertainty about this parameter. One achieves a degree of robustness by the use of
this second-stage parameter in that the Bayesian procedures are relatively insensi-
tive to the choices of parameters at the second stage of the prior.

Last, Good discourages the use of noninformative priors and advocates priors that
reflect one’s beliefs about the problem. In the multinomial testing problem, Good
describes the construction of a prior φ(k) that represents one’s opinions about the
flattening constant when the equiprobability assumption is false.

12.1.2 Examples of Good Smoothing

12.1.2.1 Estimating a Proportion

In this simple setting, one observes y from a binomial(n, p) distribution. In the case
where y is observed to be 0 or n, the typical estimate y/n is undesirable and one
wishes to move this estimate away from the boundaries of the parameter. Suppose
one assigns p a beta(a,b) proportional to pa−1(1− p)b−1. It is convenient to repa-
rameterize the shape parameters a and b by the mean η = a/(a+b) and the precision
K = a + b. If these hyperparameters were known, then the smoothed estimate of p
is (y+Kη)/(n+K). What about the common situation where the hyperparameters
are unknown?

TABLE 12.2. Estimates at (η ,K) for all binomial samples for a sample size n = 20.

y 0 1 2 3 4 5 6 7 8 9 10
η̂ 0.12 0.29 0.33 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
K̂ 0.89 1.16 1.23 1.28 1.32 1.35 1.37 1.39 1.40 1.41 1.41
y 11 12 13 14 15 16 17 18 19 20
η̂ 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.67 0.71 0.88
K̂ 1.41 1.40 1.39 1.37 1.35 1.32 1.28 1.23 1.16 0.89

We take η and K independent; the prior mean η is assigned the Jeffreys prior
proportional to η−1/2(1−η)−1/2 and the precision K is assigned the standard log-
Cauchy density used by Good. The posterior density of (logitη , logK) is given by

g(logitη , logK|y) ∝ B(Kη+ y,K(1−η)+n− y)
B(Kη ,K(1−η))

η1/2(1−η)1/2

(1+(logK)2)
.
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If this posterior is summarized by the posterior mode, we obtain estimates for (η ,K)
that are displayed in Table 12.2 for all samples with sample size n = 20. Note that
the estimate of η shrinks the observed proportion y/n towards 0.5. The estimates of
K correspond approximately to “add a half count to the numbers of successes and
failures.”

Suppose we look at “add two successes and two failures” algorithm from a
Bayesian perspective. The strategy is to add these pseudo counts to the data and
apply a standard algorithm to the adjusted data. From a Bayesian perspective, this
strategy is equivalent to assigning the proportion a beta(2, 2) prior and the poste-
rior distribution is beta(y + 2,n− y + 2). Suppose we observe y = 0 successes in a
sample of size n = 10. Then the posterior density of p is beta(2, 12) which can be
summarized by the 90% “equal-tails” interval estimate (0.028, 0.316).

But the choice of adding two successes and two failures to the data is arbitrary.
From a Bayesian perspective, a preferable approach to allow for flexible smoothing
by assigning the beta parameters (K,η) a second-stage distribution. Suppose logK
is assigned a Cauchy density with location log4 and scale 1 — this reflects the belief
that you want to add 4 observations to the data. Then η is assigned a beta prior with
mean 0.5 and precision K0 = 80 — this reflects a strong belief that you want to
split the pseudo counts equally between successes and failures. For the same data
y = 0,n = 10, the posterior median of logK is log1.67, indicating that 1.67 rather
than 4 observations will be added to the data. A straightforward calculation gives a
90% interval estimate of (0.000, 0.336) which is substantially wider than the interval
implied by the “add two successes and two failures” algorithm.

12.1.2.2 Smoothing a 2 by 2 Table

Suppose we observe independent binomial samples y1 distributed binomial(n1, p1),
y2 distributed binomial(n2, p2), and we wish to smooth the counts in the two by
two table (y1,n1 −y1;y2,n2 −y2) in the case where small counts are observed. Sup-
pose p1, p2 are assigned a common beta prior with mean η and precision K, which
essentially adds the “prior counts” (Kη ,K(1−η)) to each row of the table.

We assign the pair (η ,K) a vague prior reflecting little information about the
location of these parameters. The parameters are assumed independent with prior
mean η assigned the Jeffreys prior η−1/2(1−η)−1/2 and K assigned the standard
log Cauchy density. In practice, one can assign logK a general log Cauchy density,
where the location and scale are assessed based on knowledge about the association
in the table.

The posterior estimates of K and η provide the smoothing of the table. The pos-
terior estimate at the proportion p1 can be represented approximately as

p̂1 =
y1

n1

(
1− K̂

n1 + K̂

)
+ η̂

K̂

n1 + K̂
,
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where η̂ is a pooled estimate of the proportion when the table has the independence
structure where p1 = p2, and the estimate K̂ reflects the agreement of the observed
counts with an independence structure. Generally larger estimates of K correspond
to more “independent” tables and more shrinkage of the observed proportion esti-
mate y1/n1 towards an independence estimate.
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FIGURE 12.2. Estimates of the precision parameter K for all two by two tables, plotted as a func-
tion of the log odds ratio estimate of the table.

The posterior estimates of the precision parameter K were computed for all two
by two tables where n1 = n2 = 20. Figure 12.2 displays the estimates K̂ for all tables
as a function of the log odds ratio estimate

log

[
(y1 +0.5)/(n1 − y1 +0.5)
(y2 +0.5)/(n2 − y2 +0.5)

]

in the table. In Figure 12.2, some of the points are labeled with the corresponding
table of counts and the dark points correspond to tables with smooth row and column
margins of (20, 20). To help understand this figure, six points are labeled with the
corresponding two by two table. Generally, we see that the smoothing parameter
K increases as the table moves towards an independence structure. For the table
(20, 0; 0, 20) that is far from independence, the estimate of K is 0.34. In contrast,
the estimate of K is between 3 and 4 for tables close to independence. Also, the
estimate of K depends on the smoothness of the margins (y1 +y2,n1 +n2−y1−y2).
The points where the margins are the smooth values (20,20) are indicated by black
plotting points. For a given independence structure (as measured by the log odds
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ratio estimate), the estimate of K is an increasing function of the smoothness of the
margins.

12.1.2.3 Smoothing a I by J Table

Suppose we observe cell counts {yi j} in a two-way contingency table that are dis-
tributed Poisson with respective means λi j. We are interested in smoothing the
counts towards a hypothesized log-linear model logλi j = xiβ . If one is interested in
smoothing by adding the same pseudo-count to each cell, that would be equivalent to
a uniform log-linear model of the form logλi j = β0. Alternatively, one may be inter-
ested in smoothing counts towards the model of independence logλi j = β0 +ui +v j.

One attractive way of model this smoothing assumes the λi j are independent
Gamma(α,α/μi j), where the prior means {μi j} satisfy the log-linear model logμi j =
xiβ . Assume that α and β are independent with β distributed uniform and α dis-
tributed according to the log Cauchy density with location logμα and scale σα :

φ(α) =
1
πα

(
σα

σ2
α +{log(α/μα)}2

)
, α > 0.

The posterior estimates at the expected counts are given by λ̂i j = (yi j + α̂)/(1 +
α̂/μ̂i j), where μ̂i j and α̂ are respectively posterior estimates at μi j and α . In this
model, α plays the same role as the precision parameter K in the binomial/beta
model; the estimate α̂ can be viewed as the number of pseudo-counts added to each
cell of the table.

To illustrate the use of this smoothing model, Table 12.3 displays a crosstab-
ulation of 72 student teachers who were rated by two supervisors from Bishop,
Fienberg, and Holland (2007). One wishes to smooth the table to remove the one
observed zero in the table. Suppose we apply the hierarchical model assuming the
ratings of the two supervisors are independent. A standard log Cauchy density with
location 0 and scale 1 is applied to the shrinkage parameter α .

TABLE 12.3. Crosstabulation of student teachers rated by two supervisors.

Rating of Supervisor 2
Authoritarian Democratic Permissive

Rating of Authoritarian 17 4 8
Supervisor 1 Democratic 5 12 0

Permissive 10 3 13

In this example, there is a clear pattern of dependence in the table and one would
anticipate only modest shrinkage of the counts towards independence. As expected,
the posterior estimate at α is the small value α̂ = 1.84 and the posterior estimates
of the expected cell counts are displayed in Table 12.4.
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TABLE 12.4. Bayes smoothed estimates at expected counts for student teacher example.

Rating of Supervisor 2
Authoritarian Democratic Permissive

Rating of Authoritarian 16.3 4.8 7.9
Supervisor 1 Democratic 5.5 10.2 1.3

Permissive 10.2 4 11.8

In practice, one can assign a general Cauchy(logμ ,σ ) prior to logα that reflects
prior knowledge about the smoothing parameter. For datasets such as this one that
are not compatible with independence, the posterior estimates will be relatively in-
sensitive to the choice of the hyperparameters logμ and σ .

12.1.3 Smoothing Hitting Rates in Baseball

12.1.3.1 Introduction

In baseball, a variety of batting measures are collected for players. Some of the
measures are helpful in understanding the abilities of the players and other statis-
tics are largely affected by chance variation and are less useful in measuring player
abilities. The jth player gets n j opportunities to bat and one collects the number of
“successes” y j (different definitions of success are given below). If we have N play-
ers, we assume that y1,y2, . . . ,yN are binomial distributed with respective success
probabilities p1, p2, . . . , pN .

In the usual exchangeable model, we assume that the probabilities p1, p2, . . . , pN

are a random sample from a beta distribution with parameters K and η . At the final
stage, η and K are assumed independent; η is assigned the Jeffreys prior propor-
tional to η−1/2(1 − η)−1/2 and K is assigned a log logistic density of the form
g(K) = 1

1+K2 for K > 0.
In the examples presented below, this model is fit to batting statistics for all play-

ers for a particular baseball season. There are substantial differences in the {n j} cor-
responding to the number of opportunities for part-time and regular players, making
it difficult to interpret the success rates {y j/n j}. The posterior estimates of K and η
are helpful in understanding the variation of abilities (the probabilities {p j}) of the
ballplayers. As will be seen below, the ability distributions have different spreads
depending on the definition of success. By using the posterior estimates of K and
η , we get flattened estimates of the batting probabilities — the degree of shrinkage
will be greatest for the part-time players with a limited number of opportunities.

After the model is fit, one desires to look at residuals to detect general patterns of
model misfit and to find particular players who have statistics that vary substantially
from the general smoothing. We will illustrate two definitions of residuals. The pre-
dictive residuals are based on the posterior predictive distribution of the rate y j/n j;
a standardized predictive residual is given by
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r j =
y j/n j − η̂√

1/n j +1/(K̂ +1)
,

where η̂ and K̂ are estimates from the posterior distribution.
A second residual is based on the definition of an outlier model. If the jth ob-

servation is unusual, then one would want to limit the shrinkage of the rate y j/n j

towards the common mean. The beta parameter K controls the degree of shrinkage;
for the “ jth outlier” model that we denote by Mj, we suppose that the precision pa-
rameter for this component is given by CK, where C is a given constant smaller than
1 such as 1/2 or 1/3. Then one can compare the models “ jth observation outlier”
with the “no outlier model” M by use of the Bayes factor BFj = m(y|Mj)/m(y|M).
Following Good, we express BFj using a log10 scale.

In the examples, we illustrate plotting both the predictive residual r j and log10BFj

as a function of the square root of the number of opportunities n j.

12.1.3.2 Batting Averages, Home Run Rates, and In-Play Hit Rates

Batting data were collected for all 487 nonpitchers in the 2008 season. We collect
the number of at-bats (AB), the number of hits (H), and the number of strikeouts
(SO) for all batters.
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FIGURE 12.3. Plot of batting average against square root of at-bats for all nonpitchers in the 2008
baseball season.
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The traditional measure of batting performance is the batting average AV G =
H/AB. Figure 12.3 plots the observed batting average against the square root of the
number of at-bats for all players. Note the high variability of the batting averages
for small values of AB, indicating that the AVG is a relatively poor estimate of
the players’ true batting probability. It is certainly desirable to use an exchangeable
model to get a better estimate at the batting probabilities for all players.

The exchangeable binomial/beta model was fit using a standard logistic prior for
logK. The estimates of the second-stage parameters are K̂ = 379 and η̂ = 0.263.
The shrinkage fraction is given by K̂/(n j + K̂) = 379/(n j +379). For a player with
100 AB, the posterior mean estimate of the batting probability shrinks the observed
AVG 379/(100+379) = 79% towards the common estimate of 0.263. For a regular
player with 500 AB, the Bayesian estimate shrinks the AVG 379/(500 + 379) =
45% towards 0.263. Figure 12.4 displays the posterior mean estimates as a function
of the square root of AB. We see substantial shrinkage, especially for part-time
players with a small number of AB.
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FIGURE 12.4. Plot of posterior mean estimates against square root of at-bats for all nonpitchers in
the 2008 baseball season.

To check if this is a reasonable model, we look at residuals. Figure 12.5 plots
the standardized predictive residuals as a function of

√
AB. Several outlying points

stand out, including Chipper Jones who won the batting crown in 2008 with an
average of 0.364. Also, by fitting a lowess curve, we see an increasing pattern in
the residuals, suggesting that players with more at-bats tend to have higher batting
averages. Figure 12.6 plots the log (base 10) Bayes factors for the “j-out” models;
large values of the Bayes factors correspond to players who have averages that are
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FIGURE 12.5. Plot of standardized predictive residuals against square root of at-bats for all non-
pitchers in the 2008 baseball season.

not consistent with the fitted model. This graph of Bayes factors seems to do a better
job than the predictive residual plot in distinguishing the players that had unusual
batting averages.

One criticism of a batting average is that it is not a good estimate of the batting
ability of a player. Some hits such as a home run clearly reflect the strength of a hit-
ter and are ability-driven. Other types of hits, such as a ground ball hit between two
fielders, seems to be more lucky and is not reflective of the ability or talent of the
hitter. One way of providing support for these comments is to fit this binomial/beta
model to alternative batting rates that may be less or more reflective of batting abil-
ities than a batting average. One alternative measure of batting is the home run rate
HR/(AB− SO) — this is the proportion of home runs out all of the batting plays
where the batter makes contact. Another measure of batting is the “in-play hit rate”
(H −HR)/(AB−SO−HR) — this is the proportion of hits when the batter makes
contact (puts the ball in play) and does not hit a home run. Home run rates are gener-
ally thought to be ability-driven and the in-play hit rates are more driven by chance
variation.

Table 12.5 displays the estimates for (η ,K) when this binomial/beta model is
fit to all batters using these alternative batting rates. The estimate for K for the
home run rates is the small value K̂ = 60.7 indicating there is broad variability in
the ability to hit a home run. The Bayesian estimates at the home run probabilities
perform modest shrinkages of the observed rates {yi/ni} towards the common rate
of 0.0356. For example, the home run rate for a player with 500 opportunities is
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FIGURE 12.6. Plot of log Bayes factors for “j-out” models against square root of at-bats for all
nonpitchers in the 2008 baseball season.

shrunk only 11% towards the overall mean. In contrast, the estimate of K for the
in-play hit rates is K̂ = 586, reflecting that there are small differences in the players’
abilities to get a hit from a pitch that is placed in-play. The corresponding probability
estimates shrink the observed rates strongly towards the common rate of 0.3021.
Even for a player who places 500 balls in play, his probability estimate shrinks the
observed rate 54% towards the common rate.

TABLE 12.5. Estimates at (η ,K) and representative shrinkages for three baseball hitting rates.
Batting average Home run rate In play hit rate

Estimate at η 0.263 0.0356 0.3021
Estimate at K 379 60.7 586
Shrinkage, 100 opportunities 79% 38% 85%
Shrinkage, 500 opportunities 45% 11% 54%

12.1.3.3 Home versus Away Effects

In baseball, there is much interest in how players perform in different situations such
as home and away games, left and right-handed pitchers, and “clutch” situations. Al-
bert and Bennett (2003) describe that there are clear biases in particular situations.
For example, batters tend to hit better against pitchers of the opposite arm. An in-
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teresting question is whether players possess different abilities to perform better in
particular situations.

For the jth player, one observes the numbers of hits s jH and outs f jH for home
games, and the numbers of hits and outs s jA and f jA for away games. Assume that
the hit numbers come from independent binomial distributions with probabilities
p jH and p jA. Define the odds ratio and odds product of the probabilities

α j =
p jH/(1− p jH)
p jA/(1− p jA)

, β j =
p jH

1− p jH
× p jA

1− p jA
.

One is interested in simultaneously estimating the N odds-ratios α1,α2, . . . ,αN cor-
responding to the association patterns in the associated N two by two tables.

Here we focus on estimating the odds ratios for the 195 regular players in the
2008 season who had at least 400 at-bats. Using the approximation described by
Lindley (1964), the observed log odds-ratio

y j = log

(
s jH f jA

f jAs jH

)

is normally distributed with mean θ j = logα j and variance v j = 1/s jH + 1/ f jH +
1/s jA + 1/ f jH . Using the familiar exchangeable model, we assume the two-stage
hierarchical model where θ1,θ2, . . . ,θN are a random sample from a normal distri-
bution with mean μ and variance τ2, and (μ ,τ2) are assigned the prior g(μ ,τ2) =

M
M+τ2 . Here we assign M = 1000, reflecting little knowledge about the value of

τ2. The posterior estimate of μ is μ̂ = 0.0746, indicating that players tend to hit
better at home. The posterior estimate of τ is τ̂ = 0.0769, and applying standard
normal/normal Bayesian calculations, the posterior estimate at the log odds ratio for
the jth player is given by

θ̂ j =
y j/v j + μ̂/τ̂2

1/v j +1/τ̂2 .

Here the shrinkage values (1/τ̂2)/(1/v j + 1/τ̂2) range from 82% to 93%, indicat-
ing substantial shrinkage of the observed log odds-ratios towards a common value.
Out of the 195 Bayesian log odds-ratio estimates, 194 are positive and half of the
estimates fall between 0.058 and 0.090. The conclusion is that all regular players
have approximately the same hitting advantage at home versus away games.

12.1.4 Closing Comments

Observed zeros in a table are problematic and there are many frequentist and
Bayesian approaches for smoothing these counts to remove the observed zeros. The
addition of imaginary counts corresponds to the use of prior information and the
Bayesian approach is a natural way of deciding on the appropriate choice of these
new counts. Good’s strategy consists first of thinking of an appropriate model of
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interest and developing a Bayesian test of the model hypothesis. The choice of opti-
mal flattening constants is related to the Bayesian measure of goodness of fit of the
model. The goal of this section is to review Good’s contribution in the context of
the problem of estimating a multinomial vector and apply Good’s approach to other
categorical data problems.

The use of hierarchical priors are very suitable for these smoothing problems.
Prior information consists of a hypothesized model and the strength of the belief in
this model and one can model this information by a hierarchical prior. The poste-
rior estimates provide good smooths, where the degree of smoothing depends on the
agreement of the data with the hypothesized model. The baseball examples demon-
strate a similar benefit of the use of hierarchical priors for smoothing a collection of
rates or a collection of odds-ratios.

12.2 Bayesian Analysis of Matched Pair Data

Malay Ghosh and Bhramar Mukherjee

In many studies, especially in biomedical applications, data are collected from
matched pairs. For example, in case-control studies, cases may be matched with
controls on the basis of demographic characteristics such as age, gender, ethnicity
or other potential confounders. In other experimental instances, both elements of a
matched pair may refer to the same subject, such as measurements on the left and
right eyes, observations recorded at two time points under a typical pre-post study
design, or responses under two treatments in a crossover experiment. This leads to
data with fine degree of stratification. Often it is possible to summarize the data
within each stratum in the form of a 2×2 table. The landmark paper by Mantel and
Haenszel (1959) considered a series of s 2×2 tables of the following pattern:

Disease
Status Exposed Not Exposed Total
Case n11i n10i n1i

Control n01i n00i n0i

Total e1i e0i Ni

Assuming a common odds ratio θ across strata, the Mantel-Haenszel (MH) estima-
tor of the common odds ratio is

θ̂MH = ∑s
i=1 n11in00i/Ni

∑s
i=1 n01in10i/Ni

.

Homogeneity of the odds ratios across tables is tested by

s

∑
i=1

{n11i −E(n11i|θ̂MH)}2/Var(n11i|θ̂MH),
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which follows an approximate χ2 distribution with s−1 degrees of freedom under
the null hypothesis. The derivation of the variance of the MH estimator posed a
challenge, and was addressed in several subsequent papers (see Breslow, 1996 for
details). Regression models for the analysis of such matched pairs data were intro-
duced later by a number of authors in different contexts. In particular, Breslow et al.
(1978) introduced such models for the analysis of matched case-control data.

This section will consider the analysis of matched pairs data specifically in the
context of item response and case-control problems. This will be the content of the
following subsections.

12.2.1 Item Response Models

Item response models were developed in educational testing to describe how the
probability of a correct answer depends on the subject’s ability and the question’s
level of difficulty. Specifically, the models assume that subject i has a parameter
θi describing that subject’s ability and question j has a parameter α j such that its
negative describes its level of difficulty (i = 1, . . . ,n, j = 1, . . . ,k). The response Xi j

denotes the outcome for the ith subject on the jth question, where Xi j = 1 for a
correct response and 0 for an incorrect response.

Let pi j = P(Xi j = 1). The simplest and most widely quoted model for pi j is the
Rasch model (Rasch, 1961), for which

pi j = exp(θi +α j) [1+ exp(θi +α j)]
−1 . (12.2.1)

This is also referred to as the one-parameter logistic model, since as a function of θi

it has the form of the distribution function of a one-parameter logistic distribution
with location parameter -α j. A related popular model is the probit model, pi j =
Φ(θi +α j), whereΦ is the standard normal cumulative distribution function. These
models are special cases of the generalized linear model

F−1(pi j) = θi +α j

where the link function F−1 is the inverse of an arbitrary continuous distribution
function.

A systematic development of item response theory from the classical point of
view owes much to the pioneering work of Lord (e.g., Lord, 1953), Rasch (1961)
and their colleagues. Among the many noteworthy contributions in the same vein
are Andersen (1970) and Bock and Lieberman (1970).

Bayesian methods originally proposed for item response models were link-
specific. For the Rasch model and its two-parameter extension, relevant work in-
cludes Birnbaum (1969), Owen (1975), Swaminathan and Gifford (1982, 1985),
Leonard and Novick (1985), Mislevy and Bock (1984), Kim et al. (1994), and Tsu-
takawa and various co-authors listed in the references (e.g., Tsutakawa and Lin,
1986). However, these methods are primarily approximate Bayes due to analyti-
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cally intractable posteriors. Albert (1992) conducted a full Bayesian analysis for
the two-parameter probit model, but his parameter augmentation technique applies
only to the probit link. A very general Bayesian approach to handle one-parameter
item response models with arbitrary link functions were due to Ghosh et al. (2000b).
They began with the likelihood:

L(θ ,α)|x) =
n

∏
i=1

k

∏
j=1

[
Fxi j(θi +α j)F̄1−xi j(θi +α j)

]
, (12.2.2)

where F̄ = 1 − F and x = (x11, . . . ,x1k , . . . ,xn1, . . . ,xnk). Define ti = ∑k
j=1 xi j,

i = 1, . . . ,n and y j = ∑n
i=1 xi j, j = 1, . . . ,k. Also, make the one-to-one parameter

transformation ηi = θi +αk (i = 1, . . . ,n), ξ j = α j −αk ( j = 1, . . . ,k−1). Write
η = (η1, . . . ,ηn)′, ξ = (ξ1, . . . ,ξk−1). Then (θ ,α) is one to one with (η ,ξ ,αk) and
the likelihood function given in (12.2.2) can be rewritten as

L(η ,ξ ,αk|x) =
n

∏
i=1

k−1

∏
j=1

[
Fxi j(ηi +ξ j)F̄1−xi j(ηi +ξ j)

] n

∏
i=1

[
Fxik(ηi)F̄1−xik(ηi)

]
,

which is non-identifiable in αk. However, the following theorem provides sufficient
conditions under which the posterior can still be proper.

Theorem 12.1. Suppose (i) 0 < ti < k for all i, (ii) 0 < y j < n for all j, and∫ ∞
−∞ |z|n+k−1dF(z) < ∞. Then, under the prior π(η ,ξ ) ∝ 1, π(η ,ξ |x) is proper.

As an alternative prior, one considers a flat prior for α , but a multivariate t-prior
for θ . The latter can be viewed also as θ |σ2 ∼ N(0,σ2) and σ2 ∼ IG(a,b), where
IG refers to an inverse gamma distribution.

TABLE 12.6. Cell counts for cross-over study comparing treatments for relief of primary
dysmenorrhea.

Treatment A
Treatment B Treatment C Relief No Relief

Relief Relief 8 45

Relief No Relief 4 4

No Relief Relief 7 9

No Relief No Relief 3 6

To illustrate, consider the Bayesian approaches to item response models using
Table 12.6. Frequentist analyses are given in Jones and Kenward (1987) and Agresti
(1993). The data result from a three-period cross-over trial designed to compare
placebo (treatment A) with a low-dose analgesic (treatment B) and high-dose anal-
gesic (treatment C) for relief of primary dysmenorrhea. At the end of each period,
each subject rated the treatment as giving either some relief (1) or no relief (2). Let
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pi j denote the probability of relief for subject i using treatment j ( j = A,B,C). The
treatment effects are estimated for the logit, probit, and log-log links. The interest
focuses specifically on the posterior means and standard deviations of treatment dif-
ferences α j −αk. Results are displayed in Table 12.7 with a variety of choices of
(a,b). The conclusions are fairly insensitive to the choice, and regardless of the prior
one may conclude that treatments B and C are substantially better than placebo, with
only mild evidence that C is better than B.

TABLE 12.7. Bayes treatment comparison estimates (standard errors in parentheses) for logit
model with Table 12.6, using a variety of parameters (a,b) for t priors.

Parameters for t Prior
a 0.001 0.010 0.100 1.0 3.0 2.0
b 0.0 0.0 0.0 0.0 5.0 4.0

αB −αA 2.08 2.09 2.11 2.19 2.18 2.16

(0.38) (0.38) (0.38) (0.39) (0.38) (0.38)

αC −αA 2.62 2.64 2.66 2.75 2.74 2.72

(0.42) (0.43) (0.43) (0.43) (0.41) (0.41)

αC −αB 0.54 0.55 0.55 0.56 0.56 0.56

(0.37) (0.38) (0.38) (0.38) (0.38) (0.38)

12.2.2 Bayesian Analysis of Matched Case-Control Data

The frequentist backdrop. The contribution of statisticians to the development of
case-control methodology is perhaps the most important contribution that they have
made to public health and biomedicine. The central theme of a case-control study is
to compare a group of subjects (cases) having the outcome (typically a disease) to
a control group (not having the outcome or disease) with regard to one or more of
the disease’s potential risk factors. The method gained popularity in the 1920s for
studying rare diseases, especially cancer, where following a healthy population or a
cohort over time is impractical. In a case-control set-up, matching is often used for
selecting “comparable” controls to eliminate bias due to confounding factors.

As mentioned in the introduction, while the Mantel-Haenszel (1959) approach
was possibly the first in handling matched data, regression techniques for analyzing
matched case-control data were first developed in Breslow et al. (1978). In the sim-
plest setting, the data consist of s matched sets and there are Mi controls matched
with a case in each matched set or stratum. We denote the i-th matched set by Si,
i = 1, · · · ,s. As before, one assumes a prospective stratified logistic disease inci-
dence model, namely,
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P(D = 1|z,Si) = H(αi +β ′z), (12.2.3)

where H(u) = {1 + exp(−u)}−1 and αi’s are stratum-specific intercept terms. The
stratum parameters αi are eliminated by conditioning on the unordered set of expo-
sures for the cases and controls in each stratum. This is equivalent to conditioning
on the number of cases in each stratum which is a complete sufficient statistic for
the nuisance parameters αi. The generated conditional likelihood is free of the nui-
sance parameters and yields the optimum estimating function (Godambe, 1976) for
estimating β . Assuming, without loss of generality, the first subject in each stratum
is a case and rest of the subjects are controls, the derived conditional likelihood is

Lc(β ) =
s

∏
i=1

exp(β ′zi1)

∑Mi+1
j=1 exp(β ′zi j)

.

The above method is known as conditional logistic regression (CLR).
The classical methods for analyzing data from matched studies suffer from loss

of efficiency when the exposure variable is partially missing. Lipsitz, Parzen, and
Ewell (1998) proposed a pseudo-likelihood method to handle missing exposure vari-
able. Rathouz, Satten, and Carroll (2002) developed a more efficient semiparametric
method of estimation in presence of missing exposure in matched case control stud-
ies. Satten and Kupper (1993), Paik and Sacco (2000), and Satten and Carroll (2000)
addressed the missingness problem from a full likelihood approach assuming a dis-
tribution of the exposure variable in the control population. Recently, McShane et al.
(2001) proposed a conditional score method for estimating bias-corrected estimates
of log odds ratio parameters in matched case control studies.

The above account of the frequentist development of matched case-control analy-
sis is nowhere near complete and is beyond the scope of the current article. Here we
only attempt to review the Bayesian contributions in this field. In spite of the enor-
mously rich literature in the frequentist domain, Bayesian modeling for case-control
studies did not start until the late 1980s. Bayesian analysis of case-control data
seems particularly appealing with the rapid development of Markov chain Monte
Carlo techniques. The possibilities include introduction of random effects, measure-
ment error, missingness, flexibility to incorporate hierarchical structure, and existing
prior information in modeling the relative risk/log odds-ratio parameters.

Altham (1971) is possibly the first Bayesian paper which considered several 2×2
contingency tables with a common odds ratio, though not in the case-control con-
text, and performed a Bayesian test of association based on this common odds ratio.
Later, Zelen and Parker (1986), Nurminen and Mutanen (1987), Marshall (1988) and
Ashby, Hutton, and McGee (1993) considered a Bayesian approach to unmatched
case-control problems involving a single binary exposure. Müller and Roeder (1997)
considered bivariate continuous exposures with measurement error and proposed
an elegant retrospective modeling of case-control data in a semiparametric Bayes
framework. Müller et al. (1999) considered retrospective modeling with any num-
ber of continuous and binary exposures. Seaman and Richardson (2001) extended
the binary exposure model of Zelen and Parker to any number of categorical expo-
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sures. Gustafson, Le, and Vallee (2002) treated the problem of measurement errors
in exposure by allowing both discrete and continuous exposures using a Dirichlet
prior that only places support on the grid of possible exposure values. While all the
above papers except Altham (1971) focused on unmatched data, Diggle, Morris,
and Wakefield (2000) presented a more general regression based Bayesian analysis
for situations when cases are individually matched to the controls. They considered
matched data when exposure of primary interest was defined by the spatial location
of an individual relative to a point or line source of pollution. The classical condi-
tional likelihood was treated as a genuine likelihood for carrying out hierarchical
Bayesian inference.

Ghosh and Chen (2002) developed general Bayesian inferential techniques for
matched case-control problems in the presence of one or more binary exposure
variables. The model considered was more general than that of Zelen and Parker
(1986). Also, unlike Diggle, Morris, and Wakefield (2000), the analysis was based
on an unconditional likelihood rather than a conditional likelihood after elimina-
tion of nuisance parameters. The general Bayesian methodology based on the full
likelihood as proposed by Ghosh and Chen worked beyond the usual logit link.
Their procedure included not only the probit and the complementary log links but
also some new symmetric as well as skewed links. The propriety of posteriors was
proved under a very general class of priors which need not always be proper. Also,
some robust priors such as multivariate t-priors were used. The Bayesian procedure
was implemented via Markov chain Monte Carlo.

To illustrate their general methodology, Ghosh and Chen considered the L.A.
Cancer data as given in Breslow and Day (1980), and studied the effect of gall-
bladder disease on the risk of endometrial cancer as a single exposure variable, and
both gall-bladder disease and hypertension as multiple exposure variables. In the
case of one case and one control, it was demonstrated that the Bayesian procedure
could yield conclusions different from the conditional likelihood regarding associ-
ation between the exposures and the disease. This is because, while the conditional
likelihood ignores all concordant pairs, the Bayesian procedure based on the full
likelihood utilizes these pairs as well.

Recently Sinha et al. (2004, 2005, 2007) have proposed a unified Bayesian frame-
work for matched case-control studies with missing exposure data and a semipara-
metric alternative for modeling varying stratum effects on the exposure distribution.
They considered s, 1 : M matched strata with a disease indicator D, a vector of
completely observed covariate Z and an exposure variable X with possible missing
values. The missingness is assumed to be at random (MAR in the sense of Little and
Rubin (2002)). A prospective model for the disease status is assumed, namely,

P(Di j = 1|Xi j,Zi j,S) = H(β0(Si)+β ′
1Zi j +β2Xi j),

where i j refers the jth individual in the ith stratum, j = 1, · · · ,M+1 and i = 1, · · · ,s.
The distribution of the exposure variable X in a control population is assumed to be
a member of general exponential family, namely
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p(Xi j|Zi j,Si,Di j = 0) = exp[ξi j{θi jXi j −b(θi j)}+ c(ξi j,X)],

where the canonical parameter θi j is modeled in terms of the completely observed
covariate Zi j and stratum specific varying intercept terms, namely θi j = γ0i + γ ′Zi j.
Here γ0i are the nuisance parameters due to stratification. Sinha et al. describe two
important lemmas which are useful to write down the likelihood.

Lemma 12.1. pr(Di j=1|Zi j ,Si)
pr(Di j=0|Zi j ,Si)

= exp
[
β0(Si)+β ′

1Zi j +ξi j{b(θ ∗i j)−b(θi j)}
]
, where

θ ∗i j = θi j +ξ−1
i j β2.

Lemma 12.2. Based on the above two model assumptions, one can derive the dis-
tribution of the exposure variable in the case population as:

p(Xi j|Di j = 1,Zi j,Si) = exp[ξi j{θ ∗i jXi j −b(θ ∗i j)}+ c(Xi j,ξi j)]. (12.2.4)

Using the above two lemmas and assuming data missing at random, the prospec-
tive joint conditional likelihood of the disease status and the exposure variable given
the completely observed covariate, the stratum effect and the conditional event that
there is exactly one case in each stratum can be shown to be proportional to,

s

∏
i=1

P(Di = 1,Di2 = · · ·DiM+1 = 0,{Xi j,Δi j}M+1
j=1 |Si,{Zi j}M+1

j=1 ,
M+1

∑
j=1

Di j = 1)

∝
s

∏
i=1

{
P(Di1 = 1,Di2 = · · · = DiM+1 = 0|{Zi j}M+1

j=1

M+1

∑
j=1

Di j = 1,Si)

×pΔi1(Xi1|Zi1,Di1 = 1,Si)×
M+1

∏
j=2

pΔi j(Xi j|Zi j,Di j = 0,Si)

}

=
s

∏
i=1

{
P(Di1 = 1|Zi1,Si)/P(Di1 = 0|Zi1,Si)

∑M+1
j=1 P(Di j = 1|Zi j,Si)/P(Di j = 0|Zi j,Si)

×pΔi1(Xi1|Zi1,Di1 = 1,Si)×
M+1

∏
j=2

pΔi j(Xi j|Zi j,Di j = 0,Si)

}
.

In the above expression it is assumed that the first observation in each stratum is the
one coming from case population, Δi j is the missing value indicator and takes value
0 if Xi j is missing and 1 otherwise.

The parameters were estimated in a Bayesian framework by using a non-parametric
Dirichlet Process prior on the stratum specific effects γ0i in the distribution of the
exposure variable and parametric priors for all other parameters. Since the number
of these stratum specific parameters grow with the sample size, estimating these
effects from a conditional MLE perspective may lead to the Neyman-Scott phe-
nomenon. The novel feature of the Bayesian semiparametric method is that it can
capture unmeasured stratum heterogeneity in the distribution of the exposure vari-
able in a robust manner. The method is appealing as a unified framework to handle
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missingness, measurement error and misclassification in the exposure variable. The
method may also be extended to take into account the possible association schemes
that may exist in a mixed set of continuous and categorical multiple exposures with
partial missingness (Sinha, Mukherjee, and Ghosh, 2007). The examples and simu-
lation results in these papers indicate that in presence of missingness, if association
among exposures truly exists, one gains efficiency in estimating the relative risk
parameters by modeling the stratum heterogeneity instead of ignoring it.

Sinha et al. (2005) reanalyzed the LA endometrial cancer data. They also rean-
alyzed a dataset related to equine epidemiology earlier analyzed in Kim, Cohen,
and Carroll (2002) where the exposure was continuous. The data consisted of 498
strata with 1 : 1 matching in each stratum. Participating veterinarians were asked
to provide data monthly for one horse treated for colic and one horse that received
emergency treatment for any condition other than colic, between March 1, 1997,
and February 28, 1998. A case of colic was defined as the first horse treated during
a given month for signs of intra-abdominal pain. A control horse was defined as
the next horse that received emergency treatment for any condition other than colic.
Age was considered as a single exposure variable (X) measured on a continuous
scale with one binary covariate (Z) indicating whether the horse experienced recent
diet changes or not. For scaling purposes the authors linearly transformed age so
that X was on the interval [0,1]. Another example provided in Sinha et al. (2005)
involves a matched case-control dataset coming from a low birth weight study con-
ducted by the Baystate Medical Center in Springfield, Massachusetts. The dataset
is discussed in Hosmer and Lemeshow (2000, Section 1.6.2) and is used as an il-
lustrative example of analyzing a matched case-control study in Chapter 7 of their
book. Low birth weight, defined as birth weight less than 2500 grams, is a cause
of concern for a newborn as infant mortality and birth defect rates are very high for
low birth weight babies. The data was matched according to the age of the mother. A
woman’s behavior during pregnancy (smoking habits, diet, prenatal care) can greatly
alter the chances of carrying the baby to term. The goal of the study was to deter-
mine whether these variables were “risk factors” in the clinical population served by
Baystate Medical Center. The matched data contain 29 strata and each stratum has
one case (low birthweight baby) and 3 controls (normal birthweight baby). Figure
12.7 captures the essence of Bayesian non-parametric modeling of finer stratifi-
cation effects that could affect the distribution of the missing exposure. The figure
shows a sample draw from the posterior distribution of the stratum specific nuisance
parameters, that are assumed to follow a Dirichlet Process prior. The flexible semi-
parametric Bayesian procedure adapts itself to the needs of the three examples and
captures unmeasured heterogeneity in stratification effects in a data adaptive way.
Whereas there is no stratification effect in the equine epidemiology example (a), in
graphs labeled (b) and (c), the LA cancer data and the low birthweight data show
substantial variability in the distribution of the stratification effects (Figure 12.7).

Sinha, Mukherjee, and Ghosh (2004) extended the Bayesian semiparametric
methods to a matched case-control setting when there is finer subclassification
within the cases and applied the method to the low birthweight data under a poly-
tomous logistic regression model. They divided the cases into two categories, very
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FIGURE 12.7. Posterior Density of stratum specific nuisance parameters for the Three Examples
discussed in Sinha et al. (2005). The histogram is based on 5,000 generated values from the poste-
rior distribution of stratification parameters whose distribution is governed by a Dirichlet Process
prior. The dashed line corresponds to the density of the base measure of the Dirichlet process prior,
which was normal(0, 10) in all examples.

low (weighing less than 2000 gms) and low (weighing between 2000 to 2500 gms)
and tried to assess the impact of smoking habits of mother on the chance of falling in
the two low birth-weight categories relative to the baseline category (normal birth-
weight, weighing more than 2500 grams). Presence of uterine irritability in mother
and mother’s weight at last menstruation period were considered as relevant covari-
ates. It was noted that smoking mothers had a higher relative risk of having a low
birth weight child when compared to a non-smoking mother. However, the risk of
having a very low birth weight child did not depend on smoking significantly.

For this multi-category analysis with K categories of the disease state, the con-
ditional probabilities of the disease variable given the covariate, exposure and the
stratum are given by,

P(Di j = k|Si,Zi j,Xi j) =
exp{β0k(Si)+β ′

1kZi j +β2kXi j}
1+∑K

r=1 exp{β0r(Si)+β ′
1rZi j +β2rXi j}

for k = 1, · · · ,K.

The binary variable representing smoking status is assumed to follow a Bernoulli
distribution. In their example K = 2. Three analyses were performed, namely
Bayesian Semiparametric (BSP), Parametric Bayes (PB) assuming constant stratum
effect coming from a single distribution and the third one is iid parametric (PBV)
where they assumed all the stratum effects are different and each of the n stratum
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effect parameters γ0i, i = 1, · · · ,n are coming from n independent normal distribu-
tions.

TABLE 12.8. Analysis of low birth weight data with two disease states, using full dataset. BSP
stands for Bayesian semiparametric method whereas PBC and PBV stand for parametric Bayes

methods assuming constant and varying stratum effects respectively.

BSP PB PBV
Logit Parameter Mean SD HPD Interval Mean SD HPD Interval Mean SD HPD Interval

SMOKE 1.42 0.60 (0.33 ,2.72) 1.26 0.56 (0.25 ,2.50) 1.48 0.65 (0.26,2.08)
1 LWT -0.86 1.39 (-3.78 ,1.81) -1.03 1.35 (-3.58 ,1.86) -0.73 1.36 (-3.40,2.01)

UI 0.15 0.67 (-1.27 ,1.46) 0.10 0.67 (-1.19 ,1.52) 0.18 0.67 (-1.14,1.52)
SMOKE 0.37 0.83 (-1.35 ,2.05) 0.23 0.66 (-1.10 ,1.54) 0.38 0.85 (-1.30,2.17)

2 LWT -0.52 1.61 (-3.76 ,2.52) -0.55 1.59 (-3.73 ,2.41) -0.55 1.62 (-3.65,2.79)
UI 1.81 0.83 (0.18 ,3.51) 1.78 0.83 (0.30 ,3.59) 1.81 0.87 (0.27,3.72)

Table 12.8 contains the posterior means, posterior standard deviations and 95%
HPD credible intervals for the parameters of interest under the proposed Bayesian
Semiparametric method (BSP) and the parametric Bayes (PB the PBV) methods as
discussed before. The analysis indicates that smoking of mother is a significant risk
factor for low birth-weight category (category 1) and is not very significant in the
very low birth-weight category (category 2). UI on the other hand shows an oppo-
site association, showing significance in category 2 and almost no significance in
category 1. LWT does not seem to be a significant covariate in any of the categories.
The BSP and the PBV methods are in closer agreement whereas the PB estimates
show some numerical differences. Obviously, without the finer classification into
two weight categories, the fact that smoking is not so significant for category 2 and
UI is appreciably significant for category 2 cannot be concluded from looking at
the overall analysis. The work of Sinha et al. (2004, 2005, 2007) has contributed
to recent advances in Bayesian methodology for matched case-control data with
complex exposure and outcome structures.

12.2.3 Some Equivalence Results in Matched Case-Control Studies

An interesting class of theoretical and foundational issues have recently been studied
for matched pair data that we describe below.

12.2.3.1 Equivalence of Retrospective and Prospective Analysis

Prentice and Pyke (1979) showed that if the disease risk is modeled by logistic re-
gression function, and the subjects are selected into the study irrespective of their
exposure value, prospective and retrospective analysis of the case-control data yield
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the same estimate of the association parameter β . Moreover, the asymptotic standard
errors of the estimate are the same in both the methods. However, the intercept pa-
rameter of the prospective model of the disease risk is not identifiable in a retrospec-
tive likelihood unless we know the disease prevalence in the population. Generally,
the prospective model involves fewer parameters, and hence is easy to implement.
Prentice and Pyke (1979) provided the theoretical validity for prospective analysis
of data collected retrospectively.

Roeder, Carroll, and Lindsay (1996) proved a similar result when exposure vari-
ables are measured with error. They showed that the profile likelihood function of
the association parameter obtained from a retrospective likelihood is the same as
the one obtained through the joint distribution of the disease variable, true exposure
variable, and its error prone surrogate variable. Carroll, Wang, and Wang (1995) ex-
tended Prentice-Pyke type results to situations with missingness and measurement
error in the exposure variable.

Recently, Seaman and Richardson (2004) proved a Bayesian analogue of the
Prentice-Pyke equivalence result. They considered a discrete exposure vector X
with J support points {z1, . . . ,zJ}. Let n0 j and n1 j be the number of cases and con-
trols having the exposure value X = z j, j = 1, · · · ,J. Now if pr(X = z j|D = 0) =
θ j/∑J

j=1 θ j, and odds of disease associated with X = x is exp(β ′x), then the natural
retrospective likelihood for the case-control data is

LMR =
1

∏
d=0

J

∏
j=1

{ θ j exp(dβ ′z j)

∑J
k=1 θk exp(dβ ′zk)

}nd j
.

If one assumes that the data came from a cohort study, then the natural prospective
likelihood is

LMP =
J

∏
j=1

1

∏
d=0

{ αd exp(dβ ′z j)

∑1
k=0αk exp(dβ ′z j)

}nd j
,

where α is the baseline odds of disease when exposure X = 0. These authors proved
a Prentice-Pyke type equivalence result in the Bayesian context for a specific class
of priors.

The equivalence result of Seaman and Richardson (2004) is a significant contri-
bution to the Bayesian literature on case-control studies. An extension of their re-
sults to matched case-control studies involving missingness is due to Ghosh, Zhang,
and Mukherjee (2006). We now present their results.

Suppose there are I strata where each stratum has s cases and t controls in a strat-
ified case-control study. Let Si denote the i-th stratum. Let Di j(= 1 or 0) correspond
to the presence or absence of a disease for the jth individual in ith stratum, and
let xi j denote the vector of discrete exposure variables for the jth observed subject
in the ith stratum. We assume that each xi j can take one of the K possible values
{z1, · · · ,zK}. Suppose now
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P(Di j = 1|Xi j = zk,Si) =
αi exp(β ′zk)

1+αi exp(β ′zk)
,

P(Xi j = zk|Di j = 0,Si) =
γik

∑K
l=1 γil

.

Also, let P(Xi j = zk|Di j = 0,Si) = γik. An application of a formula due to Satten and

Kupper (1993) now yields P(Xi j = zk|Di j = 1,Si) = γik exp(β ′zk)
∑K

l=1 γilexp(β ′zl)
.

Let Δi j denote the missingness indicator for the ith stratum (0 indicating miss-
ingness) with

P(Δi j = 1|Si) = 1−P(Δi j = 0|Si) = ηi.

Let η = (η1, · · · ,ηI)′. With the missing completely at random assumption, ηi does
not depend on the parameters γik, αi or β .

Let yidk =∑s+t
j=1{I[Xi j = zk]I[Di j = d]I[Δi j = 1]}, d = 0,1, i.e, yi0k and yi1k are the

respective numbers of non-diseased and diseased subjects having X = zk in the ith
stratum, and I denotes the usual indicator function. Now, the prospective likelihood
is

LP =
I

∏
i=1

s+t

∏
j=1

[
P(Di j|xi j,Si)

]Δi j
=

I

∏
i=1

1

∏
d=0

K

∏
k=1

[ αd
i exp(dβ ′zk)

∑1
l=0α l

i exp(lβ ′zk)

]yidk
,

and the retrospective likelihood is

LR =
I

∏
i=1

1

∏
d=0

K

∏
k=1

[ γik exp(dβ ′zk)
∑K

l=1 γil exp(dβ ′zl)

]yidk
.

We now have the following equivalence theorem.

Theorem 12.2. Suppose ∑K
k=1 yi1k ≥ 1 and ∑K

k=1 yi0k ≥ 1, for all i = 1, · · · , I. As-
sume mutually independent priors for the αi, γik, η and β , where p(αi) ∝ α−1

i ,
p(γik) ∝ γ−1

ik , while η and β have proper priors π1(η) and π2(β ). Then the poste-
rior distribution of β derived from the prospective likelihood is equivalent to that
from the retrospective likelihood.

However, these results are limited in the sense that they only apply to certain
specific types of prior. The equivalence results for any other type of prior are still
an open question. Another limitation is that the exposure variable is assumed to be
discrete. For continuous exposure Seaman and Richardson recommended catego-
rization which is not an ideal solution.

12.2.3.2 Equivalence between Conditional and Marginal Likelihood for
Analyzing Matched Case-Control Data

The disease risk model (12.2.3) for matched case-control study involves a set of
nuisance parameters αi’s which capture the stratification effect on the disease risk.
A natural way of analyzing matched case-control data is the conditional likelihood
approach, where one considers conditional likelihood of the data conditioned on an
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approximately ancillary statistic for the parameter of interest (see e.g. Godambe,
1976). In a matched case-control study we condition on the complete sufficient
statistic for the nuisance parameters αi, namely, the number of cases in each matched
set. Alternatively, one can work with a marginal likelihood obtained by integrat-
ing the nuisance parameters over a mixing distribution, say G. Rice (2004) showed
that the full conditional likelihood can exactly be recovered via the marginal like-
lihood approach by integrating the nuisance parameter with respect to a particular
mixing distribution G. He derived the necessary and sufficient conditions on the
class of distributions G for the two approaches to agree. The conditions invoke
certain invariance properties of the distribution G and such invariant distributions
are shown to exist under certain mild natural condition on the odds ratios. In the
light of this agreement, in a Bayesian framework, the posterior distribution of the
disease-exposure association parameter, β , of a matched case-control study using an
invariant mixture distribution as a prior on the nuisance parameter and a flat prior on
the association parameter, is proportional to the conditional likelihood. Rice (2008)
extends the equivalence results to multiple covariates. This foundational argument
is an important advance in Bayesian methods for matched pair data that provides
a validation of using informative priors together with conditional likelihood as a
basis of Bayesian inference (as proposed in Diggle, Morris, and Wakefield (2000),
without a formal justification).

12.2.4 Other Work

Giron, Martinez, and Moreno (2003) considered some matched pair models which
in the case control framework correspond to binary response and binary exposure.
These models can accommodate some nuisance parameters. They considered loca-
tion and scale families of distributions. Among other things, they found priors which
provide the same posteriors for the parameters of interest both with full data as well
as data based on individual paired differences.

Rice (2003) considered a matched case-control analysis where a binary exposure
is potentially misclassified. His method can be interpreted in a Bayesian framework
with prior information incorporated on odds ratios, misclassification rates and other
model parameters and is tied to the equivalence theory of Rice (2004). Prescott and
Garthwaite (2005) presented Bayesian methods for analyzing matched case-control
studies in which a binary exposure variable is sometimes measured with error, but
whose correct values have been validated for a random sample of the matched case-
control sets. Three models are considered. Model 1 makes few assumptions other
than randomness and independence between matched sets, while Models 2 and 3 are
logistic models, with Model 3 making additional distributional assumptions about
the variation between matched sets. With Models 1 and 2 the data are examined
in two stages. The first stage analyses data from the validation sample and is easy
to perform; the second stage analyses the main body of data and requires MCMC
methods. All relevant information is transferred between the stages by using the pos-
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terior distributions from the first stage as the prior distributions for the second stage.
With Model 3, a hierarchical structure is used to model the relationship between
the exposure probabilities of the matched sets, which gives the potential to extract
more information from the data. All the methods that are proposed are generalized to
studies in which there is more than one control for each case. The Bayesian methods
and a maximum likelihood method are applied to a data set for which the exposure
of every patient was measured using both an imperfect measure that is subject to
misclassification, and a much better measure whose classifications may be treated
as correct. To test the methods, the latter information was suppressed for all but
a random sample of matched sets. Rice (2006) provided a nice comparison of the
full likelihood based method of Rice (2003) to the two-stage approach presented by
Prescott and Garthwaite (2005). Liu et al. (2009) proposed a Bayesian adjustment
for the misclassification of a binary exposure variable in a matched case-control
study. The method admits a priori knowledge about both the misclassification pa-
rameters and the exposure-disease association. The standard Dirichlet prior distri-
bution for a multinomial model is extended to allow separation of prior assertions
about the exposure-disease association from assertions about other parameters. The
method is applied to a study of occupational risk factors for new-onset adult asthma.

Mukherjee, Liu, and Sinha (2007) again considered matched case-control studies
where there is one control group, but there are multiple disease states with a natu-
ral ordering among themselves. They adopted a cumulative logit or equivalently, a
proportional odds model to account for the ordinal nature of the data. The important
distinction of this model from a stratified dichotomous and polychotomous logis-
tic regression model is that the stratum specific parameters cannot be eliminated in
this model via the conditional likelihood approach. They considered several choices
for handling the stratum-specific nuisance parameters, appealing to the literature
available for handling stratified ordinal response with the proportional odds model,
including a random effects and a Bayes approach. They pointed out difficulties with
some of the standard likelihood-based approaches for the cumulative logit model
when applied to case-control data. A simulation study compared the different ordi-
nal methods with methods ignoring sub-classification of the ordered disease states.
Ahn et al. (2009) illustrated Bayesian analysis of matched case-control data with
multiple disease states using the stereotype regression model.

12.2.5 Conclusion

In this section we have focused on Bayesian modeling of data arising in case-control
studies as well as educational testing data requiring some item response analysis.
The Bayesian paradigm offers a great deal of flexibility to accommodate unusual,
unorthodox data situations and incorporating prior information on risk related pa-
rameters but comes with certain computational challenges. The popularity and use
of these methods is highly dependent on developing user friendly softwares for im-
plementing the analysis.
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Item response theory has been the cornerstone of research in psychometry and
educational statistics. For example, the Educational Testing Service in Princeton,
New Jersey needs a constant evaluation and assessment of questions they put on
different placement tests. If most of the students do very poorly in an exam, then the
items in the exam are generally too difficult, and may not be helpful in assessing the
real ability of students. A similar problem arises if the majority of students are able
to answer all questions correctly. Thus an ideal placement test needs to have a broad
range of questions with varying difficulty levels. Moreover, even if the test is effec-
tive in measuring the students’ abilities, the next concern is whether the individual
items on the test are effective in discriminating among students of different abilities.
The item response models described in this review are quite widely used in assess-
ing the difficulty levels of questions, but two-parameter item response models which
contain “discrimination parameters” in addition to subject and item parameters also
require a comprehensive Bayesian analysis. Swaminathan and Gifford (1985), and
later Patz and Junker (1999a, 1999b) provided a Bayesian analysis for the logistic
model, but a more general hierarchical Bayesian model generalizing Ghosh et al.
(2000a) seems to be a good topic for future research.

There are other issues besides analysis, like that of Bayesian variable selection
(Raftery and Richardson, 1996), sample size determination (De Santis, Perone Paci-
fico, and Sambcini, 2001) both for item response and case-control studies which are
not discussed in this article but are interesting in their own right.

Matched pair studies bear enough promise for further research, both methodolog-
ical and applied. One potential area of research is to extend the methodology when
longitudinal data are available for both cases and controls. Hierarchical Bayesian
modeling, because of its great flexibility, should prove to be a very useful tool for
the analysis of such data. A second important area of research is to adapt the method
for the analysis of stratified survival data. Some work in this regard has been initiated
in a frequentist framework by Prentice and Breslow (1978), but Bayesian inference
for such problems seems to be largely unexplored. For example the methods could
potentially be adapted to bivariate survival models in family based study design (see
Oakes, 1986, 1989; Shih and Chatterjee, 2002).

Finally, genetic case-control study is a new emerging area of research where one
of the objectives is to study the association between a candidate gene and a disease.
In many such instances, the population under study is assumed to be homogeneous
with respect to allele frequencies, but comprises subpopulations that have different
allele frequencies for the candidate gene (see Satten, Flanders, and Yang, 2001). If
these subpopulations also have different disease risks, then an association between
the candidate gene and disease may be incorrectly estimated without properly ac-
counting for population structures. Zhang et al. (2006) present a Bayesian model
averaging approach to handle population stratification. Accounting for population
stratification may also pose some interesting statistical challenges in case-control
studies of disease-gene or disease-gene-environment association and the Bayesian
route remain to be explored.

A Bayesian approach could also be useful to analyze data coming from other de-
signs used in an epidemiologic context (Khoury, Beaty, and Cohen, 1993). Family
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based association studies also lead to the issue of dealing with family specific ran-
dom effects that are very weakly identifiable in the likelihood. Zhang et al. (2009)
consider a Bayesian semiparametric approach to family based genetic association
study which deals with family specific random effects in a non-parametric manner.
Another frequently used design is a nested case-control design (Wacholder, 1996)
where a case control study is nested within a cohort study. This type of study is
useful to reduce the cost and labor involved in collecting the data on all individuals
in the cohort as well as to reduce the computational burden associated with a time-
dependent explanatory variable. Unlike the case-control design this design allows
us to estimate the absolute risk of the disease by knowing the crude disease rate
from the cohort study. Some other study designs along this line are the case cohort
design (Prentice, 1986), proband design (Gail, Pee, and Carroll, 2001) and case-
only design (Armstrong, 2003). In a recent article, Cheng and Chen (2005) propose
Bayesian analysis of case-control studies of genetic association, specifically for as-
sessing gene-environment interaction via case-only design under independence of
genetic and environmental factors. They use informative power prior (Ibrahim and
Chen, 2000) which in their analysis is taken to be the retrospective likelihood based
on historic data raised to a suitable power.

It is important to note that case-control designs are choice-based sampling de-
signs in which the population is stratified on the values of the response variable
itself. Among others, this was noticed in Scott and Wild (1986) who compared in
such cases a maximum likelihood based approach with some other ad hoc methods
of estimation. Breslow and Cain (1988) considered in such cases a two-phase sam-
pling design. In later years, there is a long series of publications on inference for
such designs, but any Bayesian approach to these problems is still lacking, and will
be a worthwhile future undertaking.

12.3 Bayesian Choice of Links and Computation for Binary
Response Data

Ming-Hui Chen, Sungduk Kim, Lynn Kuo, and Wangang Xie

The analysis of binary response data frequently arises in clinical investigations for
chronic disease, including AIDS and cancer. For example, a binary response variable
may be the presence or absence of cancer. In some other occasion, a binary response
variable may be an indicator of the severeness of the disease such as whether the
cancer has spread out around a certain organ. In this type of application, a binary
response is often related to a patient’s health conditions or certain other baseline
characteristics such as age, weight, gender, and so on.

In medical and epidemiologic studies, one of the most commonly used models
for binary response data is the logistic regression model. The logit link in a binary
regression model gives a simple interpretation of the regression parameters, because
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in this case, it allows for a simple representation of the odds ratio, which helps in
the interpretation of the results. Other commonly used links include the probit and
complementary log-log links. However, these popular links do not always provide
the best fit for a given data set. The link could be misspecified, which can yield
substantial bias in the mean response estimates (see Czado and Santner, 1992).

Chen, Dey, and Shao (1999) proposed to use the rate at which the expectation of
a given binary response approaches 1 (or 0) to describe a link. Under this notion, a
link is symmetric if the expectation of a given binary response approaches zero at the
same rate as it approaches one. On the other hand, the link is skewed or asymmetric
if the expectation of a given binary response approaches zero at a different rate
than it approaches one. A skewed link can be further characterized as a positively
skewed link or a negatively skewed link. A link is called positively skewed if the
rate approaching to 1 is faster than the rate approaching to 0 and a link is called
negatively skewed if the rate approaching to 0 is faster than the rate approaching to
1. One popular approach to guard against the misspecification of links is to embed
the symmetric links, such as the logit or probit, into a wide parametric class of links.
Many such parametric classes for binary response data have been proposed in the
literature. Aranda-Ordaz (1981), Guerrero and Johnson (1982), Morgan (1983), and
Whittmore (1983) proposed one-parameter families. Stukel (1988) extended these
links by proposing a class of generalized logistic models. However, Chen, Dey, and
Shao (1999) observed that in the presence of covariates, the Stukel’s model yields
improper posterior distributions for many types of noninformative improper priors,
including the improper uniform prior for the regression coefficients. By using a
latent variable approach of Albert and Chib (1993), Chen, Dey, and Shao (1999)
proposed a class of skewed link models, where the underlying latent variable has a
mixed effects model structure. Kim, Chen, and Dey (2008) proposed a rich class of
symmetric generalized t-links. They showed that the symmetric generalized t-link is
naturally resulted from the symmetric t-link with unknown degrees of freedom via
reparameterization. Although the generalized t-link is essentially equivalent to the
usual t-link in terms of model fitting, the symmetric generalized t-link model allows
us to achieve faster convergence and better mixing of the Gibbs sampling algorithm,
which is used to sample from the posterior distribution, than the t-link model with
unknown degrees of freedom. In addition, Kim, Chen, and Dey (2008) developed a
class of skewed generalized t-links. Most recently, Wang and Dey (2009) proposed
the new generalized extreme value (GEV) link.

The choice of links and the selection of covariates are a crucial part of the anal-
ysis of binary response data. Chen, Dey, and Ibrahim (2004) proposed a Bayesian
model assessment criterion, called weighted L measure, which is constructed from
the posterior predictive distribution of the data, for binary regression, ordinal regres-
sion, multivariate correlated categorical data, and discrete choice data. Kim, Chen,
and Dey (2008) used the Deviance Information Criterion (DIC) (Spiegelhalter et
al., 2002) to guide the choice of links. In this section, we consider a new strategy
to carry out the model assessment. First, we randomly split the data into the testing
cohort and validation cohort. Second, we use the DIC and the marginal likelihood
to guide the choice of links and the selection of covariates in the testing data. Third,
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we use the predictive mean squared error to validate the choice of links and variable
selection in the validation data. Due to the complexity of the skewed generalized t-
link models, the computation of marginal likelihoods is quite challenging. For this,
we develop a version of the Stepping-Stone method proposed by Xie et al. (2009),
which is particularly suitable for Bayesian binary regression models with latent vari-
ables.

The rest of this section is organized as follows. Section 12.3.1 presents binary re-
gression models. In Section 12.3.2, we discuss the prior and posterior distributions
and provide necessary formulas of DIC and marginal likelihoods. The detailed de-
velopment of the Stepping-Stone method and the corresponding MCMC sampling
algorithm are given in Section 12.3.3. Section 12.3.4 is a case study, while Section
12.3.5 concludes.

12.3.1 The Binary Regression Models

Consider a binary response yi, i = 1,2, . . . ,n. Let xi = (xi0,xi1, . . . ,xip)′ be the corre-
sponding (p+1)-dimensional vector of covariates, where xi0 = 1 corresponds to an
intercept, let y = (y1,y2, . . . ,yn)′ be the vector of the observed binary responses, and
let β = (β0,β1, . . . ,βp)

′
be a (p + 1)-dimensional vector of regression coefficients.

We assume that the yi are independent. Then, the binary regression model for [yi|xi]
assumes

f (yi|xi,β ) = {F(x′iβ )}yi{1−F(x′iβ )}1−yi , i = 1,2, . . . ,n, (12.3.1)

where F(·) denotes a cumulative distribution function (cdf) and F−1 is called the
link function. The likelihood function of β is

L(β |X ,y) =
n

∏
i=1

{F(x′iβ )}yi{1−F(x′iβ )}1−yi , (12.3.2)

where X = (x1,x2, . . . ,xn)′ is the n × (p + 1) design matrix. The logistic, pro-
bit, and complementary log-log (C log-log) regression models are special cases
of (12.3.1) by taking F(w) = exp(w)/{1 + exp(w)}, F(w) = Φ(w), and F(w) =
1− exp{−exp(w)}, respectively, where Φ(w) denotes the N(0,1) cdf evaluated at
w.

Using the latent variable approach of Albert and Chib (1993), a binary regression
model (12.3.1) can be described as follows. Let wi be a latent variable such that

yi =

{
1 if wi > 0

0 if wi ≤ 0
and wi = x′iβ + εi, εi ∼ F, (12.3.3)

where F is a cdf. When F is symmetric, i.e., F(w) = 1−F(−w), the binary regres-
sion model defined by (12.3.3) is equivalent to (12.3.1). Chen, Dey, and Shao (1999)
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proposed a class of skewed links. Kim, Chen, and Dey (2008) extended the skewed
link of Chen, Dey, and Shao (1999) to a class of flexible skewed generalized t-links.
Let fgt,ν1,ν2(w) denote the probability density function (pdf) of the generalized t-
distribution introduced by Arellano-Valle and Bolfarine (1995) is given by

fgt,ν1,ν2(w) =
1√
π

Γ
(
ν1+1

2

)
√
ν2 Γ

( ν1
2

) × 1
(

1+ w2

ν2

) ν1+1
2

,

where ν1 is a shape parameter (or degrees of freedom) and ν2 is a scale parameter.
The skewed generalized t-link model takes the form:

yi =

{
1 if wi > 0

0 if wi ≤ 0
and wi = x′iβ +δ{zi −E(z)}+ εi, (12.3.4)

where δ > 0, εi ∼ fgt,ν1,ν2=1, zi ∼ G, where G is the cdf of a skewed distribution,
E(z) =

∫
zdG(z), and zi and εi are independent. We assume 0 ≤ δ ≤ 1 so that the

resulting generalized t-link in (12.3.4) has heavier tails than the Cauchy-link. Notice
that this constraint can be relaxed to δ > 0. In (12.3.4), the parameter ν1 purely
controls the heaviness of the tails of the link and the parameter δ controls the scale
of the link. The skewed generalized t-link model reduces to a symmetric generalized
t-link model when δ = 0 or G is a degenerate distribution at 0. To ensure model
identifiability, we assume that G is known. The following G’s are considered: (i)
G is degenerated at 0, denoted by Δ{0}, i.e., P(zi = 0) = 1; (ii) G is the standard
exponential distribution E with pdf gE (zi) = exp(−zi) if zi > 0 and 0 otherwise,
which gives a positively skewed link; and (iii) G is the negative standard exponential
distribution N E with pdf gN E (zi) = exp(zi) if zi < 0 and 0 otherwise, which leads
to a negatively skewed link. See Kim, Chen, and Dey (2008) for other attractive
properties of the generalized t-link and other choices of G.

Let Fgt,ν1,ν2=1(w) =
∫ w
−∞ fgt,ν1,ν2=1(u)du, which is the cdf of the generalized t-

distribution, and g(z) = dG(z)
dz . Then, the likelihood function of β , δ , and ν1 is given

by

L(β ,δ ,ν1|X ,y) =
n

∏
i=1

{∫ [
Fgt,ν1,ν2=1(x′iβ +δ{zi −E(z)})

]yi

×
[
1−Fgt,ν1,ν2=1(x′iβ +δ{zi −E(z)})

]1−yi
dG(zi)

}
. (12.3.5)

12.3.2 Prior and Posterior Distributions

To carry out Bayesian inference, we need to specify a prior distribution for the
model parameters. For the skewed generalized t-link model, we assume that β , δ
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and ν1 are independent a priori. Thus, the joint prior for (β ,δ ,ν1) is of the form
π(β ,δ ,ν1) = π(β )π(δ )π(ν1). We further assume that β ∼ Np+1(0,τ0Ip+1), π(δ )
is proper, and

π(ν1) = π(ν1|ζ0,γ0) =
1

1−Γ (1|ζ0,γ0)
γζ0

0

Γ (ζ0)
νζ0−1

1 exp(−γ0ν1), ν1 > 1,

i.e., a Gamma(ζ0,γ0) distribution truncated at ν1 > 1, where ζ0 and γ0 are two pre-
specified hyperparameters and

Γ (1|ζ0,γ0) =
∫ 1

0

γζ0
0

Γ (ζ0)
νζ0−1

1 exp(−γ0ν1)dν1.

For the logistic and C log-log regression models, we take β ∼ Np+1(0,τ0Ip+1). In
Section 12.3.4.2, we use τ0 = 10 for π(β ), ζ0 = 1 and γ0 = 2 for π(ν1), and π(δ ) = 1
for 0 < δ < 1, which corresponds to the uniform distribution U(0,1).

We consider the DIC and marginal likelihood criteria to compare the skewed
generalized t-link model, the symmetric generalized t-link model, and logistic and
C log-log regression models. We do not consider the probit model as it is a special
case of the symmetric generalized t-link model with ν1 →∞. Let Do = (y,X) denote
the observed data. Under the logistic regression model or the C log-log regression
model, the posterior distribution of β and the marginal likelihood are given by

π(β |Do) ∝ L(β |X ,y)π(β ) (12.3.6)

and
m(Do) =

∫
L(β |X ,y)π(β )dβ , (12.3.7)

where L(β |X ,y) is defined by (12.3.2). Under the skewed generalized t-link model,
the posterior distribution of (β ,δ ,ν1) and the marginal likelihood are given by

π(β ,δ ,ν1|Do) ∝ L(β ,δ ,ν1|X ,y)π(β )π(δ )π(ν1) (12.3.8)

and
msgt(Do) =

∫
L(β ,δ ,ν1|X ,y)π(β )π(δ )π(ν1)dβdδdν1, (12.3.9)

where L(β ,δ ,ν1|X ,y) is defined by (12.3.5).
Let θ = β or θ = (β ,δ ,ν1). Then, DIC is defined as

DIC = D(θ)+2pD,

where D(θ) = −2logL(θ |X ,y), which is either −2logL(β |X ,y) or −2logL(β ,δ ,
ν1|X ,y), is a deviance function and θ̄ = E(θ |Do) is the posterior mean of θ with
respect to the posterior distribution defined in either (12.3.6) or (12.3.8). In DIC, pD

is the effective number of model parameters, which is calculated as pD = D(θ)−
D(θ), where D(θ) = E[D(θ)|X ,y].
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12.3.3 Computational Development

In this section, we discuss the Stepping-Stone methods and the MCMC sampling
algorithm for computing marginal likelihoods.

12.3.3.1 Stepping-Stone Methods

From (12.3.2), (12.3.5), (12.3.7), and (12.3.9), it is easy to see that it does not
appear possible to evaluate the marginal likelihoods m(Do) and msgt(Do) analyti-
cally. Thus, a Monte Carlo (MC) method is needed to compute these analytically
intractable marginal likelihoods. Several Monte Carlo methods have been devel-
oped in the Bayesian computational literature, including, for example, Newton and
Raftery (1994), Chib (1995), Meng and Wong (1996), Raftery (1996b), Chen and
Shao (1997), and Chib and Jeliazkov (2001). However, these methods may not be
directly applicable or efficient for computing msgt(Do). Thus, we develop an exten-
sion of the MC method independently proposed by Lartillot and Philippe (2006) and
Friel and Pettitt (2008) via the power posterior.

We first discuss how to compute m(Do) given in (12.3.7). Define the kernel of
the power posterior as follows

qb(β ) = Lb(β |X ,y)π(β ). (12.3.10)

Let mb(Do) =
∫

qb(β )dβ . Then, the power posterior is given by

pb(β |Do) =
qb(β )

mb(Do)
.

It is easy to show that mb=1(Do) = m(Do) and mb=0(Do) = 1. Observe that

logm(Do) = log
[mb=1(Do)

mb=0(Do)

]
=
∫ 1

0
Eb[U(β ,b)]db, (12.3.11)

where U(β ,b) = d
db logqb(β ) = logL(β |X ,y) and the expectation is taken with re-

spect to pb(β |Do). Note that an identity similar to (12.3.11) is also established in
Gelman and Meng (1998). Both Lartillot and Philippe (2006) and Friel and Pettitt
(2008) advocated the trapezoidal approximation for computing logm(Do) given in
(12.3.11). Specifically, let b0 = 0 < b1 < b2 < · · · < bK = 1. Then, the trapezoidal
approximation to logm(Do) is given by

logm(Do) ≈
K

∑
k=1

(bk −bk−1)

[
Ebk{U(β ,bk)}+Ebk−1{U(β ,bk−1)}

]

2
.

Let {βk j, j = 1,2, . . . ,J} denote a Markov chain Monte Carlo (MCMC) sample
from pbk(β |Do) for k = 0,1,2, . . . ,K. Then, an Monte Carlo estimate of logm(Do)
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is given by

log m̂(Do) =
1
2

K

∑
k=1

(bk −bk−1)
[1

J

J

∑
j=1

{
U(βk j,bk)+U(βk−1, j,bk−1)

}]
. (12.3.12)

Note that under the logistic and C log-log regression models, it is easy to show
that the power posterior pb(β |Do) is log-concave. Thus, the MCMC samples from
pbk(β |Do) can be easily obtained via the adaptive rejection algorithm of Gilks and
Wild (1992).

In (12.3.12), Lartillot and Philippe (2006) chose bk − bk−1 = 1
K while Friel and

Pettitt (2008) set βk = a4
k , where the ak’s are 11 equally spaced points in the interval

[0,1]. As discussed in Xie et al. (2009), log m̂(Do) is always biased regardless the
MC sample size J. To obtain a more efficient MC estimate of logm(Do), we consider
the Stepping-Stone method (SSM) proposed by Xie et al. (2009). The SSM is based
on the following identity:

m(Do) =
mb=1(Do)
mb=0(Do)

=
K

∏
k=1

mbk(Do)
mbk−1(Do)

.

Let rk =
mbk

(Do)
mbk−1

(Do) . Using the identity given in Chen, Shao, and Ibrahim (2000,

Chapter 5), we have

rk =
∫ qbk(β )

qbk−1(β )
pbk−1(β |Do)dβ .

Using the MCMC sample {βk−1, j, j = 1,2, . . . ,J}, an unbiased estimate of rk is
given by

r̂k =
1
J

J

∑
j=1

qbk(βk−1, j)
qbk−1(βk−1, j)

. (12.3.13)

for k = 1,2, . . . ,K. For the logistic, probit, and C log-log regression models, it can
be shown that pbk−1(β |Do) has heavier tails than pbk(β |Do). Thus, as discussed in
Chen, Shao, and Ibrahim (2000, Chapter 5), the use of the MCMC sample from a
heavier tailed importance sampling density, namely, pbk−1(β |Do), leads to an effi-
cient estimate r̂k of rk. Using (12.3.13), an MC estimate of logm(Do) based on the
SSM is thus given by

log m̂(Do) =
K

∑
k=1

log r̂k =
K

∑
k=1

log
[1

J

J

∑
j=1

qbk(βk−1, j)
qbk−1(βk−1, j)

]
. (12.3.14)

As shown in Xie et al. (2009), the estimate log m̂(Do) given by (12.3.14) based on
the SSM is more efficient than the one given by (12.3.12) based on the trapezoidal
approximation. Xie et al. (2009) proposed to choose bk as the (k/K)th quantile of
the beta distribution, Beta(α,1), with α = 0.3 to improve the efficiency of the SSM
estimate log m̂(Do). Several other desirable properties of the SSM are also discussed
in details in Xie et al. (2009).
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Next, we discuss how to compute the marginal likelihood under the skewed
generalized t-link model. Computing msgt(Do) in (12.3.9) is much more challeng-
ing than m(Do) in (12.3.7). We note that the power posterior similar to (12.3.10)
does not work as it is difficult to sample (β ,δ ,ν1) from the power posterior
pb(β ,δ ,ν1|Do) ∝ Lb(β ,δ ,ν1|X ,y)π(β )π(δ )π(ν1) due to an unknown shape pa-
rameter ν1, an unknown skewness parameter δ , and n analytically intractable in-
tegrals in (12.3.5). To this end, we will construct a novel power posterior via the
introduction of several latent variables. Using a known fact that the generalized
t-distribution can be represented as a gamma mixture of normal distributions, we
introduce a mixing variable λi such that

εi | λi ∼ N(0,1/λi) and λi ∼ Gamma(ν1/2,1/2) for i = 1,2, . . . ,n.

Let λ = (λ1,λ2, . . . ,λn)′, w = (w1,w2, . . . ,wn)′, and z = (z1,z2, . . . ,zn)′. Also let

π(λi|ν1) = ( 1
2 )
ν1/2

Γ ( ν1
2 ) λν1/2−1

i exp
(
−λi

2

)
. Then, the augmented joint posterior distri-

bution of (β ,δ ,ν1,w,λ ,z) based on the observed data Do is given by

π(β ,δ ,ν1,w,λ ,z|Do) ∝
n

∏
i=1

{
[1{yi = 0}1{wi ≤ 0}+1{yi = 1}1{wi > 0}]

× 1√
2π
λ 1/2

i exp
(
− λi

2
[wi −x′iβ −δ{zi −E(z)}]2

)
π(λi|ν1)g(zi)

}

×π(β )π(δ )π(ν1), (12.3.15)

where g(zi) is the density of zi and the indicator function 1{A} is defined as 1{A}=
1 if A is true and 0 otherwise. Now, we construct the kernel of an augmented power
posterior as follows

qb(β ,δ ,ν1,w,λ ,z) =
n

∏
i=1

(
[1{yi = 0}1{wi ≤ 0}+1{yi = 1}1{wi > 0}]

× 1√
2π
λ 1/2

i exp
(
− bλi

2
[wi −x′iβ −δ{zi −E(z)}]2

)
exp

{
− (1−b)c0λi

2
w2

i

}

×π(λi|ν1)g(zi)
)
π(β )π(δ )π(ν1), (12.3.16)

where 0≤ b≤ 1 and 0 < c0 < 1 are constants. Let mb,sgt(Do) denote the normalizing
constant and the corresponding power posterior is thus given by

pb(β ,δ ,ν1,w,λ ,z|Do) =
1

mb,sgt(Do)
qb(β ,δ ,ν1,w,λ ,z). (12.3.17)

We are led to the following theorem.

Theorem 12.3. The augmented power posterior given in (12.3.17) have the follow-
ing properties:

(i) mb=1,sgt(Do) = msgt(Do), where msgt(Do) is given by (12.3.9);
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(ii) mb=0,sgt(Do) =
(

1
2
√

c0

)n
; and

(iii) for 0 ≤ bk−1 < bk and 0 < c0 < 1, pbk−1(β ,δ ,ν1,w,λ ,z|Do) has heavier tails
than pbk(β ,δ ,ν1,w,λ ,z|Do), that is,

lim
||β || or ||w|| or ||λ || or ||z|| → ∞

qbk(β ,δ ,ν1,w,λ ,z)
qbk−1(β ,δ ,ν1,w,λ ,z)

= 0,

where || · || denotes the norm operator of a vector, for example, ||β || =√
β ′β .

The proof of Theorem 12.3 follows from straightforward algebra and, thus,
the detail is omitted for brevity. The results given in Theorem 12.3 shed light
on the computation of the marginal likelihood msgt(Do) via the SSM for the
skewed generalized t-link model. Furthermore, the construction of the augmented
power posterior leads to a convenient implementation of MCMC sampling from
pb(β ,δ ,ν1,w,λ ,z|Do). The detailed description of the MCMC sampling algorithm
is discussed in the next subsection. Let {(βk j,δk j,ν1,k j,wk j,λ k j,zk j), j = 1,2, . . . ,J}
denote an MCMC sample from pbk(β ,δ ,ν1,w,λ ,z|Do) for k = 0,1, . . . ,K −1. Us-
ing the SSM, an MC estimate of logmsgt(Do) is given by

log m̂sgt(Do) =−n log(2
√

c0)+
K

∑
k=1

log
[1

J

J

∑
j=1

n

∏
i=1

exp
{
− (bk −bk−1)λi,k−1, j

2

×
(
[wi,k−1, j −x′iβk−1, j −δk−1, j{zi,k−1, j −E(z)}]2 − c0w2

i,k−1, j

)}]
.

In Section 12.3.4.2, we use J = 50 and c0 = 0.1.

12.3.3.2 Sampling from the Power Posterior

To sample from the power posterior pb(β ,δ ,ν1,w,λ ,z|Do) given in (12.3.17), we
require sampling from the conditional distributions: (i) [wi|β ,δ ,ν1,λi,zi,Do]; (ii)
[zi|β ,δ ,ν1,wi,λi,Do]; (iii) [β ,δ |ν1,w,λ ,z,Do]; and (iv) [ν1,λ |β ,δ ,w, z, Do]. We
briefly discuss how to sample from each of the above conditional posterior distribu-
tions. We discuss the case G = E only, as the MCMC sampling algorithms for other
choices of G are similar. For (i),

wi | β ,δ ,ν1,λi,zi,Do ∼ N

(
b [x′iβ +δ{zi −E(z)}]

b+ c0(1−b)
,

1
λi{b+ c0(1−b)}

)

× [1{yi = 0}1{wi ≤ 0}+1{yi = 1}1{wi > 0}]

for i = 1,2, . . . ,n and for (ii)

zi | β ,δ ,ν1,wi,λi,Do ∼ N

(
bλi{wi −x′iβ +δE(z)}δ −1

bλiδ 2 ,
1

bλiδ 2

)
1{zi > 0}
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for i = 1,2, . . . ,n. Since [wi|β ,δ ,ν1,λi,zi,Do] and [zi|β ,δ ,ν1,wi,λi,Do] are two
truncated normals, sampling wi and zi is straightforward. For (iii), we apply the
collapsed Gibbs technique of Liu (1994) via

[β ,δ |ν1,w,λ ,z,Do] = [β |δ ,ν1,w,λ ,z,Do][δ |ν1,w,λ ,z,Do]. (12.3.18)

That is, we sample δ after collapsing out β . Given δ , ν1, w, λ , z, and Do, we observe
that

β | ν1,w,λ ,δ ,z,Do ∼ Np+1

(
Σ−1
β B,Σ−1

β

)
,

where Σβ = b∑n
i=1λixix′i +(1/τ0)Ip+1 and B = b∑n

i=1λi [wi −δ{zi −E(z)}]xi. Thus,
sampling β is straightforward. In (12.3.18), given ν1, w, λ , z, and Do, we have

δ | ν1,w,λ ,z,Do ∼ N
(
C−1D,C−1/b

)
1{0 < δ < 1},

where

C =
n

∑
i=1
λi{zi −E(z)}2− b

[ n

∑
i=1
λi{zi −E(z)}xi

]′{
b

n

∑
i=1
λixix′i +(1/τ0)Ip+1

}−1

×
[ n

∑
i=1
λi{zi −E(z)}xi

]

and

D =
n

∑
i=1
λiwi{zi −E(z)}− b

[ n

∑
i=1
λi{zi −E(z)}xi

]′{
b

n

∑
i=1
λixix′i +(1/τ0)Ip+1

}−1

×
( n

∑
i=1
λiwixi

)
.

Since [δ | ν1,w,λ ,z,Do] is truncated normal distribution, sampling δ is straight-
forward. For (iv), we again apply the collapsed Gibbs technique of Liu (1994) via

[ν1,λ |β ,δ ,w,z,Do] = [λ |ν1,β ,δ ,w,z,Do][ν1|β ,δ ,w,z,Do]. (12.3.19)

Given ν1, β , δ , wi, zi, and Do, the λi are conditionally independent and

λi | ν1,β ,δ ,wi,zi,Do

∼ Gamma
(ν1 +1

2
,

1+(1−b)c0w2
i +b [wi −x′iβ −δ{zi −E(z)}]2

2

)

for i = 1,2, . . . ,n. In (12.3.19), the conditional posterior density for [ν1|β ,δ ,w,z,Do]
has the form
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π(v1|β ,δ ,w,z,Do)

∝
{Γ ( ν1+1

2

)
Γ
( ν1

2

) }n n

∏
i=1

(
1+(1−b)c0w2

i +b
[
wi −x′iβ −δ{zi −E(z)}]2

)−ν1/2

× νζ0−1
1 exp(−γ0ν1)1(ν1 > 1). (12.3.20)

Therefore, we sample λi from a gamma distribution and use the Metropolis-Hastings
algorithm (Hastings, 1970) to sample ν1 from (12.3.20).

Finally, we note that when b = 0, the power posterior reduces to

πb=0(β ,δ ,ν1,w,λ ,z|Do) =
n

∏
i=1

{
[1{yi = 0}1{wi ≤ 0}+1{yi = 1}1{wi > 0}]

× 1√
2π
λ 1/2

i exp

(
−c0λi

2
w2

i

)
π(λi|ν1)g(zi)

}
π(β )π(δ )π(ν1).

In this special case, we do not need MCMC sampling. Specifically, we let w∗
i =√

λiwi for i = 1,2, . . . ,n and w∗ = (w∗
1,w

∗
2, . . . ,w

∗
n)

′. Then, the power posterior after
the above transformation becomes

πb=0(β ,δ ,ν1,w∗,λ ,z|Do) =
n

∏
i=1

{
[1{yi = 0}1{w∗

i ≤ 0}+1{yi = 1}1{w∗
i > 0}]

× 1√
2π

exp
[
−c0

2
(w∗

i )
2
]
π(λi|ν1)g(zi)

}
π(β )π(δ )π(ν1).

Thus, we can directly generate a random sample from πb=0(β ,δ ,ν1,w∗,λ ,z|Do).

12.3.4 A Case Study

12.3.4.1 The Data

We consider retrospective data from a cohort study of men treated with radical
prostatectomy (n = 1273). The data are a subset of the data published in D’Amico et
al. (2002). The primary endpoint D’Amico et al. (2002) considered was the prostate
specific antigen (PSA) recurrence time. In this dicussion we focus on another aspect
of the data. We use a binary response y defined as an indicator for the event that the
tumor has penetrated the prostate wall (CAP). We consider four prognostic factors
as covariates, PSA, PPB, GLEAS and T2. Here, PPB is the percent positive prostate
biopsies, GLEAS is the biospy Gleason score, and T2 is an indicator for the tumor
being classified as T2 tumor by the 1992 AJCC (American Joint Commission on
Cancer) classification. We consider two alternative codings for PSA, either on the
original scale (PSA), or as natural logarithm (LOGPSA). For these covariates, the
means and standard deviations were 2.114 and 0.603 for LOGPSA, 0.401 and 0.247
for PPB, and 5.997 and 1.123 for GLEAS. There were 492 patients who had clini-
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cal T2 category disease. In addition, 328 patients had the disease extending into or
having penetrated through the prostate capsule.

About 70% of the patients (n = 866) were randomly chosen as a testing cohort,
the remaining 30% of patients (n = 371) formed a validation cohort. For the testing
and validation cohorts we find 26.44% and 26.68%, respectively, with CAP= 1. We
fit the two covariates models (PSA, PPB, GS, T2) and (LogPSA, PPB, GS, T2) with
logistic and C log-log links to the testing data. The AIC values are 846.1 and 853.0
for the logit and C log-log links using covariates (PSA, PPB, GS, T2) and 837.5
and 841.3 for the logit and C log-log links using covariates (LogPSA, PPB, GS,
T2), respectively. According to the AIC criterion, the logit link models outperform
than the C log-log link models. Also, the covariates (LogPSA, PPB, GS, T2) fits the
data better than the covariates (PSA, PPB, GS, T2). Does the symmetric logit link
indeed fit the data better skewed links? Due to the nature of prostate cancer data, it
is expected that a skewed link may be more desirable. The question is: Why is the
fit under the asymmetric C log-log link model much worse than the symmetric logit
model? We examine this issue carefully under Bayesian model comparison criteria
in the subsequent subsections.

12.3.4.2 Model Fitting

For the testing data, we fit the logit and C log-log link models as well as the symmet-
ric and skewed generalized t-link models under each of the covariates models (PSA,
PPB, GS, T2) and (LogPSA, PPB, GS, T2). We computed DICs and the marginal
likelihoods for all models. The results are given in Table 12.9. It shows that (i) the
generalized t-links fit the data much better than the logit and C log-log links under
both covariates models; (ii) the C log-log link fits the data worst; and (iii) the nega-
tively skewed generalized t-link with G = N E fits the data best. When G = Δ{0},
which corresponds to a symmetric link, the symmetric generalized t-link model out-
performs the symmetric logit model. We also observe that both the marginal likeli-
hood and DIC criteria consistently indicate the same best model. We note that the
conclusions we obtained from the testing data is consistent with those obtained by
Kim, Chen, and Dey (2008) using the whole data. We observe that C log-log link
model fits the data poorly. As pointed out by Kim, Chen, and Dey (2008), the pri-
mary reasons for this are that (i) the C log-log link is positively skewed and (ii) the
tails of the link are too light. We also note that under the logit and C log-log links,
the DIC values are almost identical to the corresponding AIC values.

For all DIC’s and marginal likelihoods shown in Table 12.9, we used the moder-
ate priors for β and γ0 specified in Section 12.3.2. Since the dimension of β does
not change across all models considered in Table 12.9, we expect that the marginal
likelihoods will not be too sensitive to the choice of τ0 for π(β ). However, the hy-
perparameters (ζ0,γ0) for π(ν1) are associated only with those generalized t-link
models. Therefore, we conducted a sensitivity analysis on the specification of priors
for both ν1 and β . Instead of τ0 = 10, ζ0 = 1 and γ0 = 2, we considered τ0 = 20,
ζ0 = 1 and γ0 = 1. Under this specification of hyperparameters, the log marginal
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likelihoods are -437.6, -443.0, -436.6, -435.3, and -436.7 for the logit, C log-log,
and generalized t-links with G = Δ{0}, N E , and E , respectively, under the covari-
ates model (PSA, PPB, GS, T2); and -433.4, -436.9, -433.0, -432.5, and -432.9, for
these five links, respectively, under the covariates model (LogPSA, PPB, GS, T2).
Although the values of log marginal likelihoods are different than those in Table
12.9, the negatively skewed generalized t-link with G = N E remains to be the
top model based on the marginal likelihoods criterion. We also considered other
vague priors and the top models still remain the same. Finally, we mention that in
all marginal likelihood computations, we used MCMC sample size of 50,000 and
the Monte Carlo errors were less than 0.05.

TABLE 12.9. DIC values and log marginal likelihoods logm(D0) of two covariates models under
symmetric and skewed links for the testing data.

Covariates Model
Link (PSA, PPB, GS, T2) (LogPSA, PPB, GS, T2)

F G DIC logm(D0) DIC logm(D0)
Logit — 846.1 -436.0 837.5 -431.8
C log-log — 853.0 -441.3 841.4 -435.3
Generalized t Δ{0} 843.7 -434.4 836.1 -431.1
(ν1 random) N E 842.3 -433.5 835.4 -430.4

E 844.6 -434.3 836.8 -430.9

12.3.4.3 Predictive Validation

Let Dnew = (ynew,Xnew) denote the validation data, where ynew = (ynew,1,ynew,2, . . .,
ynew,nnew)′, Xnew = (xnew,1,xnew,2, . . . ,xnew,nnew)′, and xnew,i = (1,xnew,i1, . . . ,xnew,ip)′ is
the (p + 1)-dimensional vector of covariates for i = 1,2, . . . ,nnew. We consider the
predictive mean square error (PMSE). Let znew,i denote the future observation for
the ith subject. Then, the PMSE is defined as follows:

PMSE =
nnew

∑
i=1

E[(znew,i − ynew,i)2|Do]. (12.3.21)

Since E(z2
new,i|Do) = E(znew,i|Do), (12.3.21) reduces to

PMSE =
nnew

∑
i=1

{ynew,i −E(znew,i|D0)}2 +
nnew

∑
i=1

E(znew,i|Do){1−E(znew,i|Do)}.

For the validation data, we computed the PMSEs for the logit, C log-log, gener-
alized t-links under two covariates models (PSA, PPB, GS, T2) and (LogPSA, PPB,
GS, T2). The results are shown in Table 12.10. According to the PMSE criterion,
the best model is the generalized t link with G = N E under the covariates model
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(LogPSA, PPB, GS, T2). However, the difference in PMSEs between the skewed
and symmetric generalized t links is smaller under the covariates model (LogPSA,
PPB, GS, T2) than under the covariates model (PSA, PPB, GS, T2). The results
based on PMSEs are very consistent with those from DICs or the marginal likeli-
hoods, which validates the link and the covariates model selected by the Bayesian
criteria based on the testing data.

TABLE 12.10. PMSEs of two covariates models under symmetric and skewed links for the
validation data.

Covariates Model
Link (PSA, PPB, GS, T2) (LogPSA, PPB, GS, T2)

F G PMSE PMSE
Logit — 115.6 114.8
C log-log — 118.6 116.5
Generalized t Δ{0} 114.8 114.3
(ν1 random) N E 114.4 114.1

E 114.9 114.5

12.3.4.4 Posterior Estimates

Table 12.11 shows the posterior means, the posterior standard deviations and the
95% highest posterior density (HPD) intervals of the parameters for covariate mod-
els (PSA, PPB, GS, T2) and (LogPSA, PPB, GS, T2) under the symmetric gen-
eralized t-link and the skewed generalized t-link with G = N E . Except for the
intercept, the posterior estimates of all regression coefficients are positive, which
implies that the probability of CAP=1 is an increasing function of PSA, PPB, GS,
and T2. Also, all four covariates are highly significant under both links as all 95%
HPD interval estimates do not contain 0. In addition, we notice that the posterior
means of ν1 are approximately 1.4 for all four models considered in Table 12.11.
This result implies that the links with moderate heavy tails fit the data better, which
further explains why the C log-log link fits the data poorly.

12.3.5 Discussion

In this section, we have demonstrated that the choice of the link-function is im-
portant in fitting binary response data and in particular, the direction of a skewed
link plays an important role. Sections 12.3.4.2 and 12.3.4.3 empirically show that
it is also important that the choice of links should be done in conjunction with the
variable slection.
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TABLE 12.11. Posterior estimates under symmetric and skewed generalized t-link models.

Posterior Posterior 95% HPD
Covariates Model Link Variable Mean SD Interval

(PSA, PPB, GS, T2) G = Δ{0} Intercept -0.997 0.194 (-1.366, -0.650)
PSA 0.473 0.160 ( 0.189, 0.795)
PPB 0.550 0.127 ( 0.328, 0.812)
GS 0.301 0.109 ( 0.103, 0.521)
T2 0.233 0.092 ( 0.066, 0.422)
ν1 1.352 0.244 ( 1.001, 1.772)

G = N E Intercept -1.136 0.209 (-1.548, -0.755)
PSA 0.549 0.179 ( 0.230, 0.911)
PPB 0.598 0.137 ( 0.341, 0.859)
GS 0.320 0.114 ( 0.117, 0.560)
T2 0.252 0.096 ( 0.073, 0.446)
δ 0.669 0.247 ( 0.186, 0.999)
ν1 1.370 0.236 ( 1.001, 1.777)

(LogPSA, PPB, GS, T2) G = Δ{0} Intercept -1.037 0.204 (-1.434, -0.674)
LOGPSA 0.439 0.124 ( 0.214, 0.685)
PPB 0.528 0.125 ( 0.297, 0.772)
GS 0.310 0.110 ( 0.111, 0.535)
T2 0.233 0.089 ( 0.065, 0.413)
ν1 1.375 0.248 ( 1.001, 1.794)

G = N E Intercept -1.190 0.227 (-1.643, -0.788)
LOGPSA 0.500 0.137 ( 0.255, 0.777)
PPB 0.584 0.138 ( 0.328, 0.853)
GS 0.341 0.118 ( 0.122, 0.575)
T2 0.265 0.099 ( 0.083, 0.467)
δ 0.623 0.258 ( 0.141, 0.999)
ν1 1.362 0.229 ( 1.002, 1.760)

In Section 12.3.3, for the logistic probit, and complementary log-log regres-
sion models, we develop the SSM method based on the power posterior given in
(12.3.10). The SSM can be extended by using the power posterior given by

qb(β ) = {L(β |X ,y)π(β )}b{π∗(β )}1−b, (12.3.22)

where π∗(β ) is a “working prior.” One key assumption for this working prior is
that it is known in closed form including the normalizing constant. Recently, Lefeb-
vrea, Steele, and Vandal (2010) derived the expression of the J-divergence between
the working prior and the posterior distribution and showed that the J-divergence is
helpful for choosing the working prior that minimizes the error of the MC estimator
of the marginal likelihood. According to Lefebvrea, Steele, and Vandal (2010), a
simple way to choose a working prior is to use the large sample normal approxima-
tion to the posterior. Assume that a normal prior N(β0,Σ0) is specified for π(β ).
Then, using (12.3.2) and following Chen (1985), the joint posterior distribution
(12.3.6) can be approximated by
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β ∼ Np+1

([
Σ̂−1 +Σ−1

0

]−1
(Σ̂−1β̂ +Σ−1

0 β0),
[
Σ̂−1 +Σ−1

0

]−1)
, (12.3.23)

where β̂ is the maximum likelihood estimate of β and

Σ̂ =
{
−∂

2 logL(β |X ,y)
∂β∂β ′

∣∣∣
β=β̂

}−1

.

Since a “good” working prior smooths the gap between π∗(β ) and the posterior
π(β |Do), the use of (12.3.23) as the working prior can ease the computational bur-
den (i.e., a much smaller J needed) and reduce the MC error of the SSM estimate of
the marginal likelihood. In the same spirit, for the skewed generalized t-link model,
an improved version of the working prior used in (12.3.16) can be developed. The
SSM is quite general. This MC method can be used for computing marginal likeli-
hoods not only for the binary regression models but also for many other Bayesian
models such as Bayesian phylogenetic models discussed in Xie et al. (2009).
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Chapter 13
Bayesian Geophysical, Spatial and Temporal
Statistics

Spatio-temporal models give rise to many challenging research frontiers in Bayesian
analysis. One simple reason is that the spatial and/or time series nature of the data
implies complicated dependence structures that require modeling and lead to often
challenging inference problems. The power of the Bayesian approach comes to bear
especially when inference is desired on aspects of the model that are removed from
the data by various levels in the hierarchical model. In this chapter we discuss two
examples of such problems and also review the use of non-informative priors in
spatial models.

13.1 Modeling Spatial Gradients on Response Surfaces

Sudipto Banerjee and Alan E. Gelfand

Spatial data are widely modelled using spatial processes that assume, for a study re-
gion D, a collection of random variables {W (s) : s ∈ D}, where s indexes the points
in D. This set is viewed as a randomly realized surface over D which, in practice, is
only observed at a finite set of locations in S = {s1,s2, ...,sn}. For point referenced
spatial data that are assumed (perhaps after suitable transformation) to be normally
distributed, we employ a Gaussian spatial process to specify the joint distribution for
an arbitrary number of and arbitrary choice of locations in D. This leads to spatial
regression models of the form

Y (s) = x(s)′β̃ (s)+ ε(s), (13.1.1)

where ε(s) iid∼ N(0,τ2), x(s) is a p× 1 vector and includes an intercept, and β̃ (s)
follows a multivariate Gaussian spatial process model. The model in (13.1.1) is re-
ferred to as a spatially varying coefficient model (Gelfand et al., 2004). This locally
linear form is very flexible and offers a likelihood-based alternative to geographi-
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cally weighted regression (GWR, see, e.g., Fotheringham, Brunsdon, and Charlton,
2006). For each explanatory variable, it allows the possibility of a coefficient sur-
face over the study region rather than restriction to a constant coefficient. Instead
of specifying these surfaces parametrically (as in, e.g., Luo and Wahba, 2007) we
model them as realizations from dependent spatial processes.

Writing β̃ (s) = β +w(s), we can rewrite the model in (13.1.1) as

Y (s) = x(s)′β +x(s)′w(s)+ ε(s), (13.1.2)

where β is interpreted as a global (spatially static) coefficient vector and w(s) is a
mean 0 multivariate Gaussian process providing local variation around β . In partic-
ular, the spatially varying intercept in w(s) acts as a familiar spatial random effect
which, along with ε(s) would yield a customary residual at location s. Gelfand et
al. (2003) note that x(s)′w(s)+ ε(s) in (13.1.2) could be viewed as a residual with
the first piece interpreted as a spatial component and the second as a pure error
component.

Statistical inference comprises estimating the response surface x(s)′β̃ (s) or the
components of w(s). Once such an interpolated surface has been obtained, inves-
tigation of rapid change on the surface may be of interest. Estimating mean sur-
face gradients would be relevant in various applications including estimation of
weather surfaces such as for temperature or precipitation, pollution surfaces such
as for ozone or particulate matter, risk surfaces reflecting risk for a particular ad-
verse health outcome. The mean surface provides global or first order description of
the process guiding the data while gradient analysis provides local or second order
analysis to enhance our understanding of the nature of the mean surface. Gradient
analysis is post hoc; if a model choice criterion (e.g., Gelfand and Ghosh, 1998;
Spiegelhalter et al., 2002) selects a model with mean surface as in (13.1.2), then
gradients will be studied for this model.

In practice, spatial data analysis proceeds from response surface displays ob-
tained from surface interpolators yielding contour and image plots. Surface repre-
sentations and contouring methods range from tensor-product interpolators for grid-
ded data to more elaborate adaptive control-lattice or tessellation based interpolators
for scattered data. Mitas and Mitasova (1999) provide a review of several such meth-
ods available in GIS software (e.g., GRASS: http://grass.itc.it/). These
methods are often fast and simple to implement and can reveal topographic features
but are descriptive, lacking formal inference, not accounting for association and un-
certainty in the data. For us, they play a complementary role, creating plots from
the raw data in the pre-modeling stage and providing visual displays of estimated
response or residual surfaces in the post-modeling stage. Such displays can certainly
assist in locating points, or even zones, with high gradients.

This section is largely based upon the theoretical developments in Banerjee,
Gelfand, and Sirmans (2003) and uses an application that has been comprehen-
sively treated by Majumdar et al. (2006). We also look at a nonparametric extension
of this work presented in Guindani and Gelfand (2006). We review a fully infer-
ential framework to examine spatial gradients on the response surface. Since none
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of the components of β̃ (s), hence of x(s)′β̃ (s), are ever observed, inference about
associated gradients is, arguably, most easily implemented within a Bayesian frame-
work. Thus, entire posterior distributions can be proffered for the magnitude of any
particular directional gradient. Furthermore, since, at a given location, for a given
surface, we can identify the direction of maximal gradient and the magnitude of the
gradient in that direction, posteriors for these unknowns can be obtained as well.

In Section 13.1.1 we offer a review of the theory behind directional derivative
processes, while Section 13.1.3 discusses the modeling and inference in a Bayesian
setting. Section 13.1.2 discusses different versions of mean square gradients with
Section 13.1.4 looking at the nonparamteric version. Then, Section 13.1.5 presents
an illustration and Section 13.1.6 concludes the manuscript with some discussion.

13.1.1 Directional Derivative Processes

Derivatives (more generally, linear functionals) of random fields have been dis-
cussed in Adler (1981), Mardia et al. (1996), and Banerjee, Gelfand, and Sirmans
(2003). Let W (s) be a real-valued stationary spatial process with covariance func-
tion Cov{W (s1),W (s2)}= K(s1−s2), where K is a positive definite function onℜd .
Stationarity is not strictly required, but simplifies forms for the induced covariance
function. The process

{
W (s) : s ∈ℜd

}
is L2 (or mean square) continuous at s0 if

lim
s→s0

E (|W (s)−W (s0)|)2 = 0. Under stationarity, we have E (|W (s)−W (s0)|)2 =

2(K(0)−K(s− s0)), hence the process W (s) is mean-square continuous at all sites
s if K is continuous at 0.

The notion of a mean square differentiable process can be formalized using the
analogous definition of total differentiability of a function in ℜd in a non-stochastic
setting. To be precise, we say that W (s) is mean square differentiable at s0 if it
admits a first order linear expansion for any scalar h and any unit vector (direction)
u ∈ℜd ,

W (s0 +hu) = W (s0)+h〈∇W (s0) ,u〉+o(h) (13.1.3)

in the L2 sense as h → 0, where ∇W (s0) is a d ×1 vector called the gradient vector
and 〈·, ·〉 is the usual Euclidean inner-product onℜd . We write ∇′W (s) to denote the
gradient vector as a 1×d row-vector.

Note that, unlike the non-stochastic setting, W (s0) is a random realization at s0.
Also, ∇W (s0) is not a function but a random d-dimensional vector. That is, for any
unit vector u, (13.1.3) is interpreted as

lim
h→0

E

(
W (s0 +hu)−W (s0)

h
−〈∇W (s0) ,u〉

)2

= 0. (13.1.3′)

The linearity in (13.1.3) ensures that mean square differentiable processes are mean
square continuous. A counter example when this condition does not hold is given in
Banerjee and Gelfand (2003).
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Spatial gradients can be developed from finite difference processes. For any par-
ent process W (s) and given direction u and any scale h we have

Wu,h (s) =
W (s+hu)−W (s)

h
. (13.1.4)

Clearly, for a fixed u and h, Wu,h(s) is a well-defined process on ℜd – in fact, with
δ = s− s

′
, its covariance function is given by

C(h)
u (s,s′) =

(2K (δ )−K (δ +hu)−K (δ −hu))
h2 (13.1.5)

whence Var
(
Wu,h (s)

)
= 2(K (0)−K (hu))/h2. The directional derivative process

or directional gradient process is defined as DuW (s) = limh→0 Wu,h(s) when this
mean-square limit exists. Indeed, when the parent process is mean-square differen-
tiable, i.e. (13.1.3′) holds for every s0, then it immediately follows that, for each u,
DuW (s) exists and equals 〈∇W (s) ,u〉 exists with equality again in the L2 sense. In
fact, under stationarity of the parent process, whenever the second-order partial and
mixed derivatives of K exist and are continuous, DuW (s) is a well-defined process
whose covariance function is obtained from the limit of (13.1.5) as h → 0, yielding

Cu(s,s′) = −u
′
HK(δ )u, (13.1.6)

where HK(δ ) = ((∂ 2K(δ )/∂δi∂δ j)) is the d ×d Hessian matrix of K(δ ).
More generally, collecting a finite set of m directions inℜd into the d×m matrix

U = [u1, . . . ,um], we can write the collection of directional derivatives as the m×1
vector, DUW (s) = (Du1W (s), . . . ,DumW (s))′, so that DUW (s) = U ′∇W (s). In par-
ticular, setting m = d and taking U as the d×d identity matrix (i.e., taking the canon-
ical basis, {e1, . . .ed}, as our directions), we have DIW (s) = ∇W (s) which gives
a representation of ∇W (s) in terms of the partial derivatives of the components

of W (s). Explicitly, ∇W (s) =
(
∂W (s)
∂ s1

, . . . , ∂W (s)
∂ sd

)′
, where s = ∑d

i=1 siei, so si’s are

the coordinates of s with respect to the canonical basis, and DUW (s) = U ′DIW (s).
Thus, the derivative process in a set of arbitrary directions is a linear transforma-
tion of the partial derivatives in the canonical directions. Inference about arbitrary
directional derivatives can be built from this relationship and, in fact, only d direc-
tional derivatives are needed to learn about all directional derivatives. For instance,
in say two dimensional space, we only need work with North and East directional
derivatives processes in order to study directional derivatives in arbitrary directions.

Note that the linearity of DuW (s) immediately reveals that D−uW (s)=−DuW (s).
Furthermore, applying the Cauchy-Schwarz inequality to the directional derivative,
for every unit vector u, we obtain

|DuW (s) |2 = |〈∇W (s),u〉|2 ≤ ‖∇W (s)‖2 =
d

∑
i=1

D2
ei

W (s).
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Hence, ∑d
i=1 D2

ei
W (s) is the maximum over all directions of DuW (s). At location s,

it is achieved in the direction ∇W (s)/‖∇W (s)‖.
Formally, finite difference processes require less assumption for their existence.

To compute differences we need not worry about formalizing a degree of smooth-
ness for the realized spatial surface. However, issues of numerical stability can arise
if h is too small. In practice, the nature of the data collection and the scientific ques-
tions of interest would often determine the choice of directional finite difference
processes vs. directional derivative processes. In particular, in applications involv-
ing spatial data, scale is usually a critical question (e.g., in environmental, ecolog-
ical or demographic settings). Infinitesimal local rates of change may be of less
interest than finite differences at the scale of a map of inter-point distances. On the
other hand, gradients are of fundamental importance in geometry and physics and
researchers in the physical sciences (e.g., geophysics, meteorology, oceanography)
often formulate relationships in terms of gradients. Data arising from such phenom-
ena may require inference through derivative processes.

13.1.2 Mean Surface Gradients

From (13.1.2), we obtain the mean surface as

μ(s) = E[Y (s) |β ,w(s)] = x(s)′β̃ (s) = x(s)′β +x(s)′w(s),

where β = (β1, . . . ,βp)′ and w(s) = (w1(s), . . . ,wp(s))′. Consider the setting where
x1(s) ≡ 1 and xl(s)’s are each differentiable functions of s for l = 2, . . . , p. This
would immediately be the case in customary trend surface specifications. Also, in
our application (Section 13.1.5), each xl(s) = ‖s − s∗l ‖ is the Euclidean distance
between s and a fixed location of interest, s∗l . We offer further discussion of this
point below.

Applying the ∇ operator to the mean surface, and keeping in mind that x1(s) ≡ 1
is a constant, yields

∇μ(s) =
p

∑
l=2

∇xl(s)βl +
p

∑
l=1

∇{xl(s)wl(s)}

=
p

∑
l=2

∇xl(s)βl +
p

∑
l=2

wl(s)∇xl(s)+
p

∑
l=1

xl(s)∇wl(s). (13.1.7)

Following the discussion in Section 13.1.1, it is immediate from (13.1.2) that for
any direction u,

Duμ(s) = u′∇μ(s) =
p

∑
l=2

Duxl(s)βl +
p

∑
l=2

wl(s)Duxl(s)+
p

∑
l=1

xl(s)Duwl(s).
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Note that Duμ(s) is itself a stochastic process whose realizations will be determined
by the set of parent processes wl(s)’s as well as their corresponding gradient pro-
cesses ∇wl(s)’s.

Evidently, smoothness of response surface realizations will be required to ensure
the general existence of directional derivatives. While the smoothness of xl(s)’s is
determined from its assumed functional form, care is needed in addressing the ex-
istence of ∇wl(s). Fortunately, smoothness of spatial process realizations can be
secured through proper specification of the covariance function. Choice of covari-
ance function to provide almost sure continuity of process realizations has been
discussed by Kent (1989). For our purpose we will require mean square differentia-
bility (Stein, 1999; Banerjee, Gelfand, and Sirmans, 2003). which is ensured by the
existence of a second derivative at the origin for the covariance function, as (13.1.5)
reveals. In particular the Matérn family of correlation functions is given by

ρ(s1,s2;φ ,ν) =
1

2ν−1Γ (ν)
(‖s1 − s2‖φ)νKν(‖s1 − s2‖;φ); φ > 0, ν > 0,

where Kν(·;φ) is a modified Bessel function of the second type (e.g., Stein, 1999).
The parameter ν controls the smoothness of the realized surface: ν ∈ [m,m + 1)
ensures that the process is m times mean square differentiable, but not m+1 times.
So, we require ν ≥ 1.

It is worth pointing out that in many instances we will have certain predictors that
do not change continuously over space. For instance, if xl(s) denoted crime-rate, it
would be a tiled surface. Note that such variables are differentiable almost every-
where (a.e.) over the region, i.e., Duxl(s) exists and, in fact, equals 0 a.e. Another
example could be “dummy variables” that are spatially referenced with respect to
areal units or regions. These often appear in (13.1.2) ∑r βrI(s ∈ Br) where Br is the
rth region and I is an indicator function. So, for such a regressor, the contribution to
the gradient in (13.1.7) is 0. To clarify, certain types of regressors provide explana-
tion for the mean surface but will appear only partially or not at all in the gradient
analysis.

Finally, note that in some applications our outcome or response Y (s) is on a
different scale from the original quantity of interest. For instance, in our illustration
in Section 13.1.5, Y (s) is the log land value at location s. So, if we consider Duμ(s)
we are obtaining gradients for the mean log land value surface. Instead, we might
wish to consider gradients for the mean on a transformed scale (e.g., the original
scale), that is, Dug(μ(s)) where say g(·) = exp(·). Then, a simple application of the
chain rule yields

Dug(μ(s)) =
{

d
dμ

g(μ(s))
}

Duμ(s).

Note that DuE(g(Y (s))) is not accessible here: a new model for g(Y (s)) is required
and different spatial processes would need to be introduced.
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13.1.3 Posterior Inference for Gradients

13.1.3.1 Estimating Spatially Varying Regression Models

In order to provide the model specification in (13.1.2), we need to propose a
multivariate spatial process model for w(s). Multivariate spatial processes, are
completely characterized by their mean and a cross-covariance (matrix) function,
Cw(s1,s2;θ) = Cov{w(s1),w(s2)}. Valid constructions using convolutions of ker-
nels or correlation functions are possible (Ver Hoef and Barry, 1998; Gaspari and
Cohn, 1999). An attractive, easily interpretable and flexible approach develops ver-
sions of the linear model of coregionalization (LMC) as in, e.g., Grzebyk and Wack-
ernagel (1994), Wackernagel (2003), Schmidt and Gelfand (2003), Gelfand et al.
(2004), and Reich and Fuentes (2007).

Specifically, we set w(s) = Av(s) where the components of v(s), {vl(s), l =
1,2, ...p} are independent spatial processes defined on D, with mean 0 and vari-
ance 1. Furthermore, we assume that vl(s) has an isotropic correlation function
ρ(·,φl), l = 1,2, ...p. Thus, v(s) has a diagonal cross-covariance matrix, Cv(‖s1 −
s2‖) with lth diagonal element as ρl(‖s1 − s2‖;φl). The resultant cross-covariance
function, Cw(s1,s2) = Cov{w(s1),w(s2)}, is a p× p matrix whose (i, j)th entry is
given by ∑p

k=1 aikak jρ(·,φk). Note that w(s) is a multivariate isotropic process and
var{w(s)} = AA′. Therefore, without loss of generality, we may work with a lower
triangular (Cholesky) form for A = {ai j}. Parameters in the model include the global
β vector, the lower triangular elements of A, the φl’s and τ2 which we collect into
θ .

Now, with observations Y = (Y (s1, . . . ,Y (sn))′ at locations si, i = 1, . . . ,n, let w =
(w(s1), . . . ,w(sn))

′ be the np×1 column vector of a coefficient process realization.
The resulting covariance matrix for w is of the form:

Σw = ÃD̃(φ)Ã′,

where Ã = A⊗ In×n and D̃(φ) is block diagonal with lth diagonal being the n× n
matrix R((φl)) whose (i, j)th element is given by ρl(‖si − s j‖;φl) with δ i j = si − s j.
This corresponds to a Matérn correlation function with ν = 3/2.

Marginalizing over the random effects w is helpful, leaving us to run the much
lower dimensional MCMC algorithm for θ . Let X ′ = (x(s1), . . . ,x(sn)) be the p×n
matrix and let X̃ be an n× np block diagonal matrix with its ith block entry given
by x(si)′, i = 1, . . . ,n. Then the marginal likelihood is:

[Y |θ ] ∝ |ΣY (θ)|− 1
2 exp

{− 1
2 (Y−Xβ )ΣY(θ)−1 (Y−Xβ )

}
, (13.1.8)

where ΣY(θ) = X̃ΣwX̃ ′ + τ2I is np×np.
Customary prior specifications include flat priors for the βl’s, inverse gamma

IG(aτ2 ,bτ2) prior for τ2, gamma G(al ,bl) priors (mean = al/bl) for each of the
decay parameters φl , while those for the entries in the lower-triangular matrix A
were induced from an inverted Wishart prior on AA′ (also see Gelfand et al., 2004).
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We note that the joint full conditional distribution for β is multivariate normal. For
the rest of the parameters in θ , the full conditional distributions are non-standard,
updated using a Metropolis-Hastings algorithm.

The posterior distribution of the spatial realization over the over observed loca-
tions is given by

[w |Y] =
∫

[w |θ ,Y][θ |Y], (13.1.9)

where [w | θ ,y] is the full-conditional distribution of w and easily seen to be mul-
tivariate normal. The integral in (13.1.9) can be computed using composition sam-
pling. Once the posterior samples {θ (t)}T

t=1 have been obtained (post-burn-in), we
draw w(t) ∼ [w |θ (t),Y] for t = 1, . . . ,T . The resulting set {w(t)}T

t=1 constitutes the
desired posterior sample. For an unobserved location, say s0, we can recover the
posterior distribution of w(s0) as

[w(s0) |Y] =
∫

[w(s0) | ,w,θ ][w |θ ,Y][θ |Y]. (13.1.10)

Since [w(s0) | ,w,θ ] is again Gaussian, we compute (13.1.10) easily by sampling
w(s0)(t) ∼ [∇w(s0) |w(t),θ (t)] for t = 1, . . . ,T .

13.1.3.2 Estimation of Mean Surface Gradients

Turning to gradients, we seek, for various locations and various directions, gradients
for the wl(s)’s although the primary interest rests upon gradients for the μ(s) surface
– as in (13.1.7). Note that directional derivatives do not exist for the Y (s) surface
since the ε(s) surface is not even continuous, let alone differentiable.

Let ∇′w(s) = (∇′w1(s), . . . ,∇′wp(s)) denote the 1 × pd vector comprising p
blocks of the 1× d gradient vectors written as ∇′w j(s)’s. When w(s) is stationary,
the p(d +1)×1 vector z(s) = (w(s)′,∇′w(s))′ is a stationary multivariate Gaussian
process with cross-covariance matrix Cz(δ )
(

Cov{w(s),w(s+δ )} Cov{w(s),∇w(s+δ )}
Cov{∇w(s),w(s+δ )} Cov{∇w(s),∇w(s+δ )}

)
=
(

Cw(δ ) −∇′Cw(δ )
∇Cw(δ ) −HCw(δ )

)
.

Here Cw(δ ) is the p× p cross-covariance matrix of w(s), ∇′Cw(δ ) is the p× pd
block matrix whose (i, j)th block is the 1×d matrix obtained by applying ∇′ to the
(i, j)th element of Cw(δ ), ∇Cw(δ ) is its transpose, and HCw(δ ) is the pd× pd block
matrix whose (i, j)th block is the d×d Hessian of the (i, j)th element of Cw(δ ). The
above expression for Cz(δ ) is easily derived from the cross-covariance expressions
for the corresponding finite difference process and letting h → 0.

The cross-covariance matrix ensures the validity of the joint distribution p(w,
∇w(s) |θ). In fact, in our setting it is Gaussian. This is convenient for implementing
predictive inference on not only the gradient of each element of w(s) at arbitrary
points, say s0, but also for functions thereof, including the direction of the maximal
gradient (∇wl(s0)/||∇wl(s0)||) and the size of the maximal gradient (||∇wl(s0)||)
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for l = 1, . . . , p. All such inference can proceed in posterior predictive fashion by
computing

[∇w(s0) |Y] =
∫

[∇w(s0) |w,θ ][w |θ ,Y][θ |Y]. (13.1.11)

Again, composition sampling easily delivers samples from [∇w(s0) | Y]. Since
[∇w(s0) | ,w,θ ] is again Gaussian, we compute (13.1.11) easily by sampling

∇w(s0)(t) ∼ [∇w(s0) |w(t),θ (t) for t = 1, . . . ,T .

Finally, once we have obtained posterior samples of ∇w(s0)(t), we can directly ob-
tain the posterior samples of ∇μ(s), and hence of Duμ(s) for any direction u, using
(13.1.7).

13.1.4 Gradients under Spatial Dirichlet Processes

Here, we digress to briefly discuss a nonparametric extension of the foregoing devel-
opment discussed in Guindani and Gelfand (2006). In some cases, both the Gaussian
and stationarity assumptions will be viewed as inappropriate. Recently, Gelfand,
Kottas, and MacEachern (2005) have proposed a spatial Dirichlet process (SDP)
mixture model which adopts the distribution of a stochastic process as its base mea-
sure. This is assumed to be stationary and Gaussian; nevertheless the resulting pro-
cess is nonstationary and the joint finite dimensional distributions are not normal.
The use of the SDP specification to model the distribution of the spatial component
in a spatial random effect model leads to a fully Bayesian semi-parametric approach
that, for fitting purposes, relies on well-known results and algorithms developed for
Dirichlet process (DP) mixing.

We first consider conditions under which the random surfaces sampled from a
SDP are smooth. As might be expected, such conditions are related to the behavior
of the base spatial process. We also consider the gradient processes associated with
those random surfaces, obtaining induced distribution theory. In particular, we show
that the directional finite difference and derivative processes are themselves samples
from a SDP, whose base measure is the distribution of the corresponding gradient
for the original base stochastic process.

A frequent approach for specifying random distributions is the Dirichlet pro-
cess (DP) (Ferguson, 1973, 1974). In particular, given the space Θ (equipped with
a σ -field B), let DP(νG0) denote the DP, where ν > 0 is a scalar (precision pa-
rameter) and G0 a specified base distribution defined on (Θ ,B). A random dis-
tribution function on (Θ ,B) arising from DP(νG0) is almost surely discrete and
admits the representation ∑∞j=1 p j δθ∗j , where δz denotes a point mass at z, p1 = q1,

p j = q j∏ j−1
r=1(1− qr), j = 2,3, . . ., with {qr, r = 1,2,...} i.i.d. from Beta(1,ν) and

independently {θ ∗j , j = 1,2,...} i.i.d. from G0 (Sethuraman, 1994). In this notation



476 13 Bayesian Geophysical, Spatial and Temporal Statistics

θ ∗j is assumed to be scalar or perhaps vector valued, the latter case leading to a
multivariate DP.

To model WD = {W (s) : s ∈ D}, following Gelfand, Kottas, and MacEachern
(2005), one can conceptually extend θ ∗j to a realization of a random field by replac-
ing it with θ ∗j,D = {θ ∗j (s) : s ∈ D}. For instance, G0 might be a stationary GP with
each θ ∗j,D being a realization from G0, i.e., a surface over D. The resulting random
distribution, G, for WD is denoted by ∑∞j=1 p jδθ ∗

j,D
and the construction will be re-

ferred to as a spatial Dirichlet process model. Henceforth, WD|G ≡ {W (s), s ∈ D|G}
denotes a field whose distribution is a given realization of G.

We say that WD is mean square continuous at a point s0 if E[W (s)2|G] < ∞
and E[(W (s) −W (s0))2|G] → 0 as ||s − s0|| → 0 with probability one. Again,
to investigate the mean square continuity of samples from a SDP, we can limit
the study to random surfaces drawn according to a G in S. One point is criti-
cal here. If we marginalize with respect to the unknown G, mean square continu-
ity of WD follows easily from mean square continuity of the base process, since
E[(W (s)−W (s0))2] = EG0 [(θ

∗
1 (s)−θ ∗1 (s0))2]. However, we are interested in WD|G,

the realized surface. Since E[(W (s)−W (s0))2] = E
{

E
[
(W (s)−W (s0))2|G]}, we

might expect that mean square continuity of the base measure implies mean square
continuity of WD|G. But, since L2 convergence does not imply a.s. convergence, for
a given G, mean square continuity of the base measure is not enough to claim mean
square continuity of the samples WD from G. This is not totally unexpected, since
any G is a discrete probability measure with probability one, and therefore we ex-
pect its smoothness properties to depend on the smoothness of the θ ∗j,D, j = 1,2, . . .
which define the support of the realized G. In fact, we can show that if G0 is a
separable process a.s. continuous on a compact K ⊂ D, then, any random field WD

sampled from a SDP is mean square continuous on K (see Guindani and Gelfand,
2006).

We turn to mean square differentiability of a process arising from a SDP. For any
given G, unit vector u and scalar h > 0, we consider the finite differences Wu,h(s)
and, as in Section 13.1.1, define the directional derivative DuW (s) as the L2 limit of
the finite difference process with respect to G, i.e.

lim
h→0

E
[(

Wu,h(s)−DuW (s)
)2 |G

]
= 0, (13.1.12)

if the limit exists. If DuW (s) exists for all s ∈ D, then we will denote the directional
derivative process by DuWD. In particular, as above, if DuW (s) is a linear function
of u, we say that WD|G is mean square differentiable.

Again, if we marginalize with respect to the unknown G, the differentiability of
WD follows immediately from that of the base measure. However, given G, mean
square differentiability of the base measure is not enough to conclude about mean
square differentiability of WD|G. In fact, the latter relies on the analytical properties
of the surfaces specifying the realized support of G, similar to our mean square
continuity result above.
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Some associated distribution theory. Let WD be a random field sampled from a
SDP(νG0) and Wu,h(s) be the associated directional finite difference process. Then
it is easy to prove that Wu,h(s) also is a sample from a SDP with same precision
parameter ν and with base measure the distribution of the finite difference process
θ ∗u,h(s), say Gu,h

0 . Therefore, the necessary distribution theory for the directional
finite difference process is obtained from the general theory of the SDP.

Now consider the directional derivative process DuW (s) and suppose that G0

admits a directional derivative process for each u. Let G′
0,u denote the distribution

of the process Duθ ∗(s). Then, we can show that DuW (s) is a sample from a SDP
with smooth parameter ν and base measure G′

0,u. In symbols, DuW (s)|G′
u ∼ G′

u and
G′

u ∼ SDP(νG′
0,u).

In particular, if G0 is mean square differentiable, then DuW (s) = u′∇W (s), where
∇W (s) is a vector valued process, whose distribution is a realization from a SDP,
defined for all Borel sets A as

P(∇W (s) ∈ A) =
∞

∑
j=1

p j δ∇θ∗j (s)
(A),

according to Sethuraman’s representation. Here, ∇θ∗j (s) = (De1θ ∗(s), . . . ,Dedθ
∗(s))

is the vector of directional derivatives of G0 with respect to an orthonormal basis set
of directions (e1, . . . ,ed). As in Section 13.1.1, if the base measure is mean square
differentiable, it is possible to study the behavior of DuW (s)|G′

u in arbitrary direc-
tions by means of an orthonormal basis.

13.1.5 Illustration

We illustrate the above modeling in the context of urban land value gradients. There
is a considerable theory and literature in urban land economics which focuses on
the structure of land values with particular emphasis on gradients. See Majumdar et
al. (2006) for a more comprehensive treatment of this application.

Olcott’s Land Values Blue Book of Chicago, which has been published annually
since the early 1900s, provides an oft-analyzed spatiotemporal data set of urban land
values. We illustrate with the Olcott data for the year 1990. For each year, we take
p = 4 in the model in (13.1.2), introducing distance-based regressors in addition to
an intercept. We define x2(s) to be the distance from the Central Business District
(CBD), x3(s) for distance from Midway airport, and x3(s) to be the distance from
a Secondary Employment Center (SEC). Employment centers were identified using
data obtained from the Northern Illinois Planning Commission (NIPC). NIPC re-
ports the level of employment per one-half mile by one-half miles square (a quarter
section) for the Chicago PMSA. Areas within the Chicago area were identified as
employment centers if the total employment within a one mile radius of a quarter
section was greater than 16,000. Within the employment sub-centers identified, we
arbitrarily selected one of these employment sub-centers for our analysis.
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Our models were fitted using a Markov chain Monte Carlo algorithm. We as-
sumed flat priors for the βl’s (the global regression parameters) and an inverse-
gamma IG(2,1) prior for the variance τ2. For the parameters in the four dimensional
spatial-process, we assumed weakly informative gamma priors for the four correla-
tion decay parameters (scaled to have a mean range of about half of the maximum
distance), while an inverted-Wishart IW (4,0.01I4) prior (with four degrees of free-
dom, and diagonal means = 100) for AA′ induces the prior on A. Convergence was
diagnosed by monitoring mixing of two parallel chains with over-dispersed starting
values. With Gaussian likelihoods and weakly informative priors, convergence was
diagnosed within 2000 iterations, with a further 1000 iterates retained from each
chain as posterior samples.

In the interest of simple model comparison, we also fitted a version of (13.1.2)
with only a spatially varying intercept (i.e., a usual spatial random effect), that is
with constant coefficients for the distance-based regressors. We used the posterior
predictive model selection criterion of Gelfand and Ghosh (1998). Letting G denote
the goodness of fit term, P the penalty term and D the criterion value, for 1990, for
the simpler model G = .189, P = .511 and D = .700 while for the spatially varying
coefficient model, G = .157, P = .521, and D = .678. So, the full model is preferred
and hence, below we present posterior inference under this model including the
gradient analysis.

TABLE 13.1. Posterior estimates of model parameters for Olcott data: 1990.

Parameters Percentiles 1990
50% (2.50%, 97.50%)

β0 5.675 (5.346, 5.813)
β1 -1.947 (-2.117,-1.806)
β2 1.371 (1.106, 1.508)
β3 1.241 (1.174, 1.533)

φ0 ×103 0.539 (0.273, 0.869)
φ1 ×103 0.451 (0.112, 0.792)
φ2 ×103 0.626 (0.238, 0.900)
φ3 ×103 0.466 (0.183, 0.846)
τ2 0.779 (0.533, 1.317)
T00 0.413 (0.271, 0.513)
T11 0.814 (0.606, 0.991)
T22 1.321 (0.574, 1.896)
T33 0.973 (0.763, 1.089)

T01/
√

(T00 ∗T11) -0.412 (-0.495,-0.163)
T02/

√
(T00 ∗T22) -0.126 (-0.173, 0.151)

T03/
√

(T00 ∗T33) -0.176 (-0.364, 0.004)
T12/

√
(T11 ∗T22) 0.047 (-0.242, 0.121)

T13/
√

(T11 ∗T33) 0.025 (-0.190, 0.152)
T23/

√
(T22 ∗T33) -0.360 (-0.529, 0.005)

The posterior inference for 1990 are summarized in Table 13.1. The four global
regression parameters reveal a negative impact on land value for the distance from
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the CBD (land-value decreases for locations distant from the CBD), while an oppo-
site effect (land value increasing with distance) is seen for the other two distances.
The result related to Midway is not surprising when one considers that the sample
is dominated by residential land values. Close proximity to areas of congestions and
significant noise, such as Midway, leads to lower land values. At first, the positive
effect on land values at greater distances from SEC seems counterintuitive until one
considers the location of this employment sub-center. Its location is to the southeast
of the CBD and approximately 1.6 km to the west of the shore of Lake Michigan.
The positive parameter could reflect the proximity to the CBD, but as the analysis
will show, it is more likely attributed to a lake effect found in this region.

Also shown are estimates of the correlation decay parameters, the measurement
error τ2 and the spatial variance-covariance parameters as appearing in the matrix
AA′ = T (with the covariances converted to correlations). The relatively large contri-
butions of T00 through T33 toward the variability justifies a rather rich spatial model
for the data. Also, the tendency toward negative correlation between the intercept
and the regression parameters (with some being significantly so) is expected.

Figure 13.1 displays the coefficient process surface for 1990. This is an image
plot with overlaid contour lines indicating the levels. The rather rich distribution of
contours seems to justify the use of the spatially varying coefficients. Figure 13.2
displays the posterior mean of the mean surface for 1990. In general, we find from
the mean land value price surface that the surface’s maximum value corresponds
to the location of the CBD and that land prices fall as one moves further from the
lake in both time periods. However, the results do not support the idea of a con-
stant gradient over the entire urban area in either time period. In fact, the gradient’s
magnitude varies not only with location but also depends on the direction from the
center of the city for which it is evaluated. The gradient is also found to be steepest
close to the CBD and then flattens in all directions as distance increases.

The mean surface in Figure 13.2 suggests several directions to examine. The
putative location of the CBD is at the intersection of the 447902.14038 Easting and
4636874.42216367 Northing near Lake Michigan and is at the conjunction of the
four rays in the figure. The four rays denote the four directions in which we travel
to understand gradient behavior. These directions arevindicated in the figures as
NLk (Northern Lake vicinity), NW (Northwest of the CBD), SW (Southwest of the
CBD), and SLk (Southern Lake vicinity). In Table 13.2 we examine several points
at different distances (indicated as 0.5, 1.5, 3.0, and 6.0) from the CBD in kilometer
units. For each ray, two fundamental directional gradients are evaluated: (i) as one
moves away from the CBD along the ray, and (ii) the direction normal or orthogonal
to the ray. Note that moving towards the CBD along a ray would be the negative of
that evaluated in (i).

A closer look at Table 13.2 for the directional gradients evaluated at points along
the different rays reveals that a strong gradient exists in all directions from the CBD;
the gradient is steepest close to the CBD and tends to diminish as distance increases.
Indeed, if we imagine an arc passing through the 0.5km points, the directional gradi-
ents are significantly negative and quite similar in magnitude. This slope, however,
steadily decreases in significance when the arc is extended to pass through the 1.5,
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FIGURE 13.1. The coefficient process surfaces for 1990. Clockwise from top left: the intercept
process β0(s), the CBD distance coefficient process β1(s), the Area1 distance coefficient process
β2(s) and the Midway distance coefficient process β3(s).

3.0, and 6.0 km points. For example, significant gradients along the NW and SW
rays are seen only until the 1.5 km points. No significant gradients are seen in the
orthogonal directions to the NW and SW rays.

To further illuminate the inferential ability of our approach, two locations antic-
ipated to reveal differential gradient behavior were chosen. These are a Secondary
Employment Center (SEC) and a Secondary Population Center (SPC). Employ-
ment and population centers are important parts of the urban geography. The ag-
glomeration economies associated with employment centers, as well as the clus-
tering of individuals to benefit from neighborhood amenities, should lead to in-
teresting land-value gradient patterns. The SEC is located at 450040.902 Easting,
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FIGURE 13.2. Posterior mean surface and locations for directional gradient analysis in the 1990
Olcott data.

TABLE 13.2. Directional derivative gradients at different directions related to 1990 data.

Points Away from CBD Orthogonal to direction away from CBD
Percentiles 50 2.5 97.50 Percentiles 50 2.5 97.50

NW0.5 -2.457 (-4.166,-0.776) 0.255 (-1.296, 1.670)
NW1.5 -2.165 (-3.818,-0.094) 0.110 (-1.386, 1.452)
NW3.0 -1.366 (-3.179, 0.440) 0.135 (-1.387, 1.539)
NW6.0 -1.221 (-3.008, 0.292) 0.208 (-1.284, 1.510)
SW.5 -2.307 (-3.851,-0.796) -0.183 (-1.584, 1.166)

SW1.5 -2.078 (-3.536,-0.381) -0.081 (-1.592, 1.663)
SW3.0 -0.492 (-1.939, 0.836) 1.033 (-0.492, 2.311)
SW6.0 -1.217 (-2.836, 0.063) 0.502 (-1.106, 1.996)
NLk.5 -2.212 (-3.974,-0.587) 0.324 (-1.305, 2.073)

NLk1.5 0.088 (-1.906, 1.603) -1.333 (-3.046, 0.560)
NLk3.0 0.034 (-1.415, 1.280) -0.967 (-2.738, 0.802)
NLk6.0 -1.044 (-2.371, 0.723) -1.057 (-2.502, 0.302)
SLk.5 -2.493 (-4.197,-0.868) 0.036 (-1.631, 1.653)
SLk1.5 -0.170 (-1.951, 1.025) -2.248 (-4.212,-0.524)
SLk3.0 -0.054 (-1.467, 1.657) -2.586 (-3.902,-0.633)
SLk6.0 -0.150 (-1.632, 1.332) -2.084 (-3.665,-0.754)
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4626786.843 Northing and was used in part of the analysis above. The SPC is lo-
cated at 441062.526 Easting, 4633147.015 Northing. Both are labelled in Figure
13.2. For each point, we obtained posterior distributions of the angle of the maxi-
mal gradient relative to the line from the point to the CBD as well as the posterior
distribution of the difference between the maximal gradient and the gradient in the
direction away from the CBD. These plots are shown in Figures 13.3 and 13.4.
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FIGURE 13.3. Density of angle between ray of maximum gradient and CBD in degrees and the
absolute difference between values of maximal gradient and directional gradient from CBD for
SPC in the Olcott data. See text for details.

Since these two points are rather far from the CBD, simple contour analysis or
other descriptive methods are inadequate for formal evaluation of the above geo-
metric quantities. However, using our sampling-based methods we find that SPC
has maximal gradient direction not significantly different from the direction away
from the CBD (contains 0). On the other hand, SEC, being in the southeast along the
lake has a much more significant difference between the maximal gradient direction
and the direction from the CBD. In support, Table 13.2 showed that the gradient
quickly becomes flat along a ray moving south along the lake away from the CBD,
while the gradient orthogonal to this direction stays significant. Thus, the gradient
is larger in a westerly direction (90◦), i.e., perpendicular to the lake. However, Fig-
ure 13.4 shows that the direction of maximal gradient is expected to be roughly
southwest (45◦) from the lake.
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FIGURE 13.4. Density of angle between ray of maximum gradient and CBD in degrees and the
absolute difference between values of maximal gradient and directional gradient from CBD for
SEC. See text for details.

13.1.6 Concluding Remarks

Based upon our earlier work in Banerjee, Gelfand, and Sirmans (2003) and Majum-
dar et al. (2006), we have discussed a general theoretical approach, including full
distribution theory, to examine gradients associated with spatially varying coeffi-
cient models. The theory is built through dependent spatial coefficient and intercept
surfaces and yields a resulting mean surface. Gradients at arbitrary locations in arbi-
trary directions can be studied for each of these surfaces. Furthermore, the distribu-
tion of quantities that are functions of gradients, such as the direction of maximum
gradient and the magnitude of the maximum gradient, can also be obtained. Our
Bayesian framework enables this full range of inference. We illustrated with a study
of land value gradients but this framework encompasses other potential applications
where gradient analysis of the mean surface would be of interest, e.g., weather and
pollution data modeling.

While our focus here have been on directional rates of change at points, local
assessments of spatial surfaces are not restricted to points, but are often desired for
curves and boundaries. For instance, environmental scientists are interested in ascer-
taining whether natural boundaries (e.g., mountains, forest edges, etc.) represent a
zone of rapid change in weather and ecologists are interested in determining curves
that delineate differing zones of species abundance. The above objectives require
the notion of gradients and, in particular, assigning gradients to curves (curvilinear
gradients) in order to identify curves that track a path through the region where the
surface is rapidly changing. Such boundaries are commonly referred to as difference
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boundaries or wombling boundaries, named after Womble (1951), who discussed
their importance in understanding scientific phenomena (also see Fagan, Fortin, and
Soykan, 2003). Recently, Banerjee and Gelfand (2006) formulated a Bayesian in-
ferential framework for point-referenced curvilinear gradients or boundary analysis,
a conceptually harder problem due to the lack of definitive candidate boundaries.
Spatial process models help in estimating not only response surfaces, but resid-
ual surfaces after covariate and systematic trends have been accounted. Depending
upon the scientific application, boundary analysis may be desirable on either. While
Banerjee and Gelfand (2006) discussed only mean surfaces with spatially varying
intercepts, their framework can be extended, fairly straightforwardly, to spatially
varying regression models such as (13.1.1).

Acknowledgments: This work was carried out in the “Geostatistics” working group
at the Statistics and Applied Mathematical Sciences Institute (SAMSI) in Research
Triangle Park as a part of its “Program on Space-time Analysis for Environmen-
tal Mapping, Epidemiology and Climate Change”. The work of the authors was
partially supported by SAMSI and by National Institutes of Health (NIH) grant 1-
R01-CA95995.

13.2 Non-Gaussian Hierarchical Generalized Linear
Geostatistical Model Selection

Xia Wang, Dipak K. Dey, and Sudipto Banerjee

With the emergence of Geographical Information Systems (GIS), scientists and pol-
icy makers encounter spatially referenced data sets in a wide array of scientific
disciplines. Very often, such data will be referenced over a fixed set of locations
or points referenced by a coordinate system (latitude-longitude, Easting-Northing
etc.). These are called point referenced or geostatistical data. Statistical theory and
methods to model and analyze such data depend upon these configurations. The last
decade has seen enormous developments in such modeling; see, for example, the
books by Cressie (1993), Chilés and Delfiner (1999), Stein (1999), Møller (2003),
Schabenberger and Gotway (2004), Banerjee, Carlin, and Gelfand (2004) and refer-
ences therein for a variety of methods and applications.

The key ingredient in modeling geostatistical datasets is a spatial process. Spa-
tial process models are widely used for inference in applied areas such as meteo-
rology, environmental monitoring, ecological systems, forestry, econometrics and
public health. Such models presume, for a region of study D, a collection of ran-
dom variables Y (s) where s indexes the locations in D. The set {Y (s) : s ∈ D} can
be viewed as a randomly realized surface over the region. In practice, this surface
is only observed at a finite set of locations say s1,s2, ...,sn. Inferential interest typi-
cally resides in estimation of the parameters of the spatial process model as well as
in spatial interpolation or prediction (kriging) of the process over the entire domain.
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Most of the existing methods on spatial process models have focused upon mod-
eling continuous outcomes that can be reasonably treated as partial realizations of a
Gaussian process or some transformation thereof. Heagerty and Lele (1998) consid-
ered a composite likelihood approach to binary spatial regression. A classic paper
by Diggle, Tawn, and Moyeed (1998) discussed the use of spatial process mod-
els for non-Gaussian data within the framework of generalized linear models. They
proposed incorporating the spatial process in the mean of the link function. Un-
like in spatial process models for Gaussian outcomes, where proximity of locations
would imply high spatial associations between the observations themselves, now
we would expect the means to be more spatially associated for proximate locations.
With non-Gaussian links, this association between the means does not translate to
association between the outcomes. As an example, recently Finley, Banerjee, and
McRoberts (2008) explored logistic regression models with spatially varying in-
tercepts to classify forest attributes. The outcome variable was a binary process
Y (s) = 1 or Y (s) = 0. Spatial association was induced by the logistic link on the
probability P(Y (s) = 1). A probit link would of course lead to a similar interpre-
tation. In related work, Fahrmeir and Lang (2001) and Kneib and Fahrmeir (2006)
considered semiparametric regression with splines and Markov random fields to
model spatial effects.

A key question that has hitherto received scant attention is the appropriateness
of the link function in such models. In the latent variable approach, a link function
on probability P(Y (s)) = 1, in fact, discretizes an unobservable continuous process
u(s), which is in turn specified from a distribution arising out of the chosen link
function. The outcomes of Y (s) = 1 or Y (s) = 0 is actually induced by setting a
threshold point within the distribution. For example, a probit link function assumes a
normally distributed hidden continuous process and Y (s) = 1 when u(s) > 0, Y (s) =
0 when u(s) ≤ 0, where u(s) is the latent process and without loss of generality 0 is
the threshold value.

The underlying process inducing the binary response Y (s) may not always be
symmetric as suggested by the logistic or probit links. In particular, Chen, Dey, and
Shao (1999) suggested that when the underlying process has a very skewed distribu-
tion or, when the probability of a given binary response approaches 0 at a different
rate than it approaches 1, the symmetric links, such as the logit or probit are inap-
propriate. With the high correlation among the spatial data points, overdispersion
is inevitable. This overdispersion can be modeled by either the link function or the
covariance structure within the data. The classical logit link assumes that the la-
tent variable follows a symmetric logit distribution. Any other variation in the data
might be absorbed into the assumed variance structure. This, however, may not be
appropriate as the latent variable itself may follow a very skewed distribution. If the
assumed covariance cannot incorporate these variances, wrongly assuming a logit
model will likely result in an inferior fit for the data.

Thus, an essential question is now to allow flexibility in deciding the underly-
ing process of Y (s) when modeling spatial data. A very rich family which provides
us with this flexibility, as discussed in detail in Section 13.2.2, is the generalized
extreme value (GEV) distribution (Wang and Dey, 2009). With a free shape param-
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eter, this family embeds a wide range of skewed processes and gives us an especially
helpful tools to model extreme events discretized as binary response.

In the following discussion, we explore, both from a theoretical and computa-
tional standpoint, the possibility of more choices of the link functions, including
the commonly used probit link, the complementary log-log link (Cloglog), and the
new generalized extreme value (GEV) link. We further study how the different link
models affect inference.

13.2.1 A Review on the Generalized Linear Geostatistical Model

Trans-Gaussian kriging (Cressie, 1993) has been one practical way to cope the non-
Gaussian problem in geostatistical applications. Diggle, Tawn, and Moyeed (1998)
originally proposed the generalized linear geostatistics model (GLGM), whose phi-
losophy they claimed is “analogous to the embedding of the Gaussian linear model
for mutually independent data within the framework of the generalized linear model
...” (Diggle, Tawn, and Moyeed, 1998). Diggle and Ribeiro Jr. (2007) also indicated
that the root of the GLGM lies in the generalized linear model (GLM) (Nelder and
Wedderburn, 1972; McCullagh and Nelder, 1989).

Under the framework of the GLM, continuous and discrete data are treated with
a unified methodology for regression analysis. The generalized linear mixed model
(GLMM), an important extension to the GLM, introduces unobservable random ef-
fects into the linear predictor. In particular, it specifies the systematic component
in the GLM specification as ηi = ∑βixi j + wi, where w = (w1, . . . ,wn) is from a
zero-mean multivariate distribution. The GLMM not only provides a way to model
the over-dispersion in the data, it can also easily incorporate various dependence
structures among observations based on different practical contexts, such as its ap-
plication in longitudinal studies. Details on this line of models and examples can be
further found in Breslow and Clayton (1993).

Diggle, Tawn, and Moyeed (1998) presented the GLGM as a natural extension of
the mixed model by assuming the random effects w(s) = (w(s1), . . . ,w(sn)) as the
underlying Gaussian signal process at each of the sample locations si, i = 1, . . . ,n.
Particularly, the GLGM model is specified as follows:

(a) w(s) = (w(s1), . . . ,w(sn))′ follows an n-dimensional Gaussian distribution with
E[w(s)] = 0 and covariance matrix Σ = cov[w(si),w(s j)]. The covariance matrix Σ
is a function of σ2 and φ , where σ2 represents the spatial process variance and φ
is the range parameter that reflects the rate at which spatial association decreases
as one considers observations farther apart. For example, Σ = σ2H(φ), where H is
a correlation matrix with Hi j = ρ(si − s j;φ) and ρ is a valid isotropic correlation
function on R2 indexed by a parameter (or parameters) φ . See Banerjee, Carlin, and
Gelfand (2004, Chapter 2) for various covariance structures;
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(b) The response y(si)’s are conditionally independent given the w(si)’s. The condi-
tional density of Y(s) |w(s) is specified by the values of the conditional expectations
μ(si) = E{y(si)|w(si)} as f{Y(s)|w(s)}=∏n

i=1 f{y(si);μ(si)}, where i = 1, . . . ,n;

(c) F−1{μ(si)} = xi(si)′β +w(si), for some known link function F−1, explanatory
variables xi(si) and parameters β .

When y(si) is a Bernoulli random variable with p(si) = P{y(si) = 1} (note
p(si) = μ(si) = E{y(si) |w(si)}), the GLGM is

F−1(p(si)) = x(si)′β +w(si). (13.2.1)

The function F−1(p(si)) = log{p(si)/(1− p(si))} gives the logit link, which is
a symmetric link for Bernoulli model. The logit link has been the default model
used in most of current research on GLGMs for the binary response data. Alterna-
tive link functions have been suggested even starting from the discussion in Dig-
gle, Tawn, and Moyeed (1998, p. 339). In the development page of the R software
for the GLGM binary model, a possible development of another symmetric link,
the probit link model, is also mentioned. The probit link model is achieved by
setting F−1{p(si)} = Φ−1{p(si)}, where Φ−1 is the inverse cumulative distribu-
tion function of N(0,1) distribution. The asymmetric Cloglog link is specified as
F−1{p(si)} = − log{− log(1− p(si))}. With the variation in the data, a more flex-
ible link function may be necessary in a GLGM model. We consider in this section
the GEV link as F−1{p(si)}= GEV−1(1− p(si);μ = 0,σ = 1,ξ ), where GEV−1(·)
is the inverse cumulative distribution function at 1− p(si) of a GEV distribution
with a location parameter μ = 0, scale parameter σ = 1, and shape parameter ξ to
be decided in the model. The GEV link has been recently introduced by Wang and
Dey (2009). It includes the complementary log-log as a special case and it approxi-
mates a symmetric link with certain parameter values. We discuss this family of link
functions in greater detail in next section.

13.2.2 Generalized Extreme Value Link Model

The generalized extreme value distribution is a family of continuous probability
distributions developed within the extreme value theory to combine the Gumbel,
Fréchet and Weibull families. It has a cumulative distribution function as follows:

G(x) = exp

[
−
{

1+ξ
(x−μ)
σ

}− 1
ξ

+

]
, (13.2.2)

where μ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, ξ ∈ R is the
shape parameter and x+ = max(x,0). A more detailed discussion on the extreme
value distributions can be found in Coles (2001) and Smith (2003). Its advantage
as a link function arises from the fact that the shape parameter ξ in model (13.2.2)
purely controls the tail behavior of the distribution. When ξ→ 0, it gives the Gumbel
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distribution with G(x) = exp [−exp{−(x − μ)/σ}], which is the least positively
skewed distribution in the GEV class when ξ is non-negative.

In (13.2.1), assume the link function derived from the GEV distribution. Then

p(si) = P{y(si) = 1} = 1− exp

{
(1−ξx(si)′β )

− 1
ξ

+

}
= 1−GEV (−x(si)′β ; ξ ),

(13.2.3)
where GEV (x;ξ ) represents the cumulative probability at x for the GEV distribution
with μ = 0, σ = 1, and an unknown shape parameter ξ .
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FIGURE 13.5. Cumulative distribution function plots of the GEV link with ξ = −0.5,0,0.5 from
the right to the left.

Wang and Dey (2009) have shown that the GEV link model specified in (13.2.3)
is negatively skewed for ξ < log2− 1, and positively skewed for ξ > log2− 1.
The skewness varies with different shape parameters and a much wider range of
skewness can be fitted compared to the commonly used Cloglog link. Figure 13.5
shows the response curves with ξ equal to −0.5, 0, and 0.5. The solid line is the
response curve corresponding to the Cloglog link for ξ → 0. The link is negatively
skewed with ξ equal to −0.5 (dashed line) and positively skewed with ξ equal to 0.5
(dotted line). Wang and Dey (2009) further show that the GEV links provide much
more flexible and improved skewed link regression models than the existing skewed
links for independent binary response data, especially when there exists extreme
difference between the number of 0’s and 1’s for which the response curve would
be extremely skewed.
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A symmetric link can be approximated by the class of the GEV links as a special
case. For example, by matching the first 3 moments, the standard normal distri-
bution can be well approximated by the GEV distribution with μ ≈−0.35579,σ ≈
0.99903, and ξ ≈−0.27760. Figure 13.6 shows the quantile plots between the GEV
model and the probit model. The plot is approximately a straight line between 0.02
and 0.98 quantiles. The discrepancy lies mainly in the tail area.
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FIGURE 13.6. Plot of GEV quantiles with μ ≈−0.35579,σ ≈ 0.99903, and ξ ≈−0.27760 against
probit quantiles for probabilities between 0.001 and 0.999. The solid line is the quantile plot, and
the dotted line is the 45◦ reference line.

13.2.3 Prior and Posterior Distributions for the GLGM Model
under Different Links

Let Dobs = (n,y,x) denote the observed data. Then from (13.2.1), the likelihood
function for the GLGM model is given by

L(β ,σ2,φ ,w,ξ |Dobs,w)

=
n

∏
i=1

[g−1(x(si)′β +w(si))]y(si)[1−g−1(x(si)′β +w(si))]1−y(si),

where g−1 is the inverse of the link function.
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The priors for β ,w,σ2, and φ are specified hierarchically as follows. Normal
priors with large variances are assumed for the linear regression parameters, that
is, β j ∼ N(0,c0), where j = 1, . . . , p and N(0,c0) is a normal distribution with
mean 0 and variance c0. The prior for the spatial random effect w is p(w |σ2,φ) ∼
MV N(0,Σ), where MV N(0,Σ) is a multivariate normal distribution with a mean
vector 0 and a variance-covariance matrix Σ . We assume the covariance structure
of Σ is exponential, that is, the covariance function C(di j) = σ2 exp(−di j/φ) when
i �= j, and C(di j) = σ2 when i = j with di j denoting the distance between loca-
tions si and s j, i, j = 1, · · · ,n. We further assume that the signal variance σ2 follows
an inverse-gamma distribution given φ , that is p(σ2|φ) ∼ IG(a = a0,b = b0) and
p(φ) = p(φ |d0)∝ exp(−d0φ). The GEV link has an additional shape parameter ξ .
We assume that p(ξ ) is proper and further assume that p(ξ ) ∝ N(0,σ2

ξ ), to allow a
large flexibility for ξ .

For logit, probit and Cloglog links, the joint posterior distribution of (β ,w,σ2,φ)
based on Dobs is given by

p(β ,σ2,φ ,w|Dobs) ∝
n

∏
i=1

[g−1{xiβ +w(si)}]y(si)[1−g−1{xiβ +w(si)}]{1−y(si)}

× exp{−β ′β/(2c0)}|Σ |− 1
2 exp(−w′Σ−1w/2)(σ2)−(a0+1)

× exp
{−1/(σ2b0)

}
exp(−d0φ) .

For the GEV link, the joint posterior distribution of (β ,w,σ2,φ ,ξ ) based on the
observed data Dobs is given by

p(β ,σ2,φ ,ξ ,w|Dobs)

∝
n

∏
i=1

(1−GEV [−{x(si)′β +w(si)};ξ ])y(si)(GEV [−{xiβ +w(si)};ξ ]){1−y(si)}

× exp{−β ′β/(2c0)}|Σ |− 1
2 exp

(−w′Σ−1w/2
)
(σ2)−(a0+1) exp

{−1/(σ2b0)
}

× exp(−d0φ)exp
(
−ξ 2/σ2

ξ

)
.

In Section 13.2.4 we show the flexibility of the GEV model when the true underlying
regression model is known with a simulated data. We also compare different link
models using a real data set in Section 13.2.5. In these studies, we choose c0 = 1000,
a0 = 2, b0 = 1, d0 = 5 and σ2

ξ = 100.

13.2.4 A Simulated Data Example

In this example we consider a complementary log-log regression simulation. Our
primary aims are to (a) show the possible bias in the mean response estimates with
link mis-specification and (b) test the flexibility of the GEV link models. We perform
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a comprehensive Bayesian analysis for a given simulated dataset and evaluate the
model comparison using the Deviance Information Criterion (DIC) measure.

First, we generate a realization of the Gaussian process w = (w(s1), . . . ,w(sn))′
at equally spaced 15 grids within a unit square with n = 225, μ = 0, σ2 = 1,
and exponential correlation function with φ = 0.1 (See Figure 13.7). Then, we
independently generate x(si) ∼ N(0,1), i = 1,2, . . . ,n = 225. A simulated dataset
with 225 independent Bernoulli response variables, y(si)’s, is then drawn with
p(si) = 1− exp[−exp{x(si)′β + wi(si)}], where x(si)′β = β1 + xiβ2, β1 = 0 and
β2 = 4. The simulated dataset is in fact from a GLGM model with the Cloglog link
function. The resulting dataset contains 94 0’s and 131 1’s for the response variable
in simulation. We fit the datasets with the symmetric logit, Cloglog and GEV links.
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FIGURE 13.7. A simulation of the binomial GLGM model with complementary log-log link. The
numbers are the values of Bernoulli random variable corresponding to locations at the center of
each grid square. The gray scale represents the value of the underlying Gaussian process at each
location.

Table 13.3 presents the posterior estimates from the simulated data. The simu-
lated GEV model yields estimates of the regression coefficient β = (β1,β2) that are
almost identical to the true complementary log-log regression model. However, the
symmetric logit model presents several problems. In particular, the mean estimates
of β are significantly different from the true value of β with the true values of β
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not being included in the 95% interval. The variations in the estimates of β and the
variance parameter are relatively larger compared to those in the GEV model.

TABLE 13.3. Posterior estimates under different link models for the simulated data.

Parameter Model Mean Standard Deviation 95% Interval
β1 = 0 Logit 1.441 0.337 (0.833, 2.161)

Cloglog 0.391 0.205 (-0.027, 0.771)
GEV 0.135 0.311 (-0.535, 0.641)

β2 = 4 Logit 6.724 1.050 (5.021, 9.120)
Cloglog 5.101 0.694 (3.879, 6.588)
GEV 4.852 0.892 (3.604, 6.932)

σ2 = 1 Logit 1.122 0.129 (0.891, 1.404)
Cloglog 1.311 0.121 (0.923, 1.394)
GEV 0.880 0.094 (0.710, 1.083)

ξ = 0 GEV 0.139 0.248 (-0.234, 0.708)

The DIC value for the GEV model (99.47) is very close to that of the Cloglog
model (98.01) and both the GEV model and the Cloglog model provide better fit
than the logit model (DIC=101.20) based on the DIC measure. This result is consis-
tent with the fact that the Cloglog model is a special case of the GEV model and the
simulated data is in fact based on a GEV regression model with ξ = 0.

13.2.5 Analysis of Celastrus Orbiculatus Data

The data were collected from 603 locations in Connecticut with presence or ab-
sence of species Celastrus Orbiculatus, along with some environmental predictors.
The outcome variable Y (s) is a presence-absence binary indicator (0 for absence)
for Celastrus Orbiculatus at location s. Figure 13.8 shows the map of the outcome
variable at 603 locations, where the solid dot represents the presence of the species
and the circle represents the absence of the species at a location. Out of the 603
observations, there are 251 observations with Y (s) equal to 1 and 352 observations
equal to 0. There are three predictors with multiple nominal categories: habitat class
(representing the current state of the habitat) of four different types, land use and
land cover (LULC) types (Land use/cover history of the location; e.g., always for-
est, formerly pasture now forest, etc.) at five levels, a year 1970 category number
(LULC at one point in the past: 1970; e.g., forest, pasture, residential, etc.) with six
levels. In addition we have an ordinal covariate, canopy closure percentage (percent
of the sky that is blocked by “canopy” of leaves of trees), a binary predictor for
heavily managed points (0 if “no”; “heavy management” implies active landscaping
or lawn mowing) and a continuous variable measuring the distance from the forest
edge in the logarithm scale. A location under mature forest would have close to
100% canopy closure while a forest edge would have closer to 25% with four levels
in increasing order.
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FIGURE 13.8. Celastrus Orbiculatus presence or absence Data. The solid dot represents the pres-
ence of the species and the circle represents the absence of the species at a location.

The initial runs using the built-in function binom.krige.bayes in the geoR-
glm package (Christensen and Ribeiro Jr., 2002) in R have shown strong spatial
correlation within the data. We then carry out Bayesian analysis as specified in Sec-
tion 13.2.3. Table 13.5 shows the 0.025, 0.5, and 0.975 quantile of the parameter
estimation and the DIC measure. Based on the DIC measure, the GEV link and the
Cloglog models give a better fit than the symmetric probit and logit link models.
The shape parameter ξ is significantly positive. To have a rough look at how the
fitted values compared with the observed pattern in the response variable, we plot
surfaces of the presence of Celastrus Orbiculatus versus the fitted probabilities from
the four spatial regression models (Figure 13.9).

TABLE 13.4. Cross-classification of Celastrus Orbiculatus presence and the habitat classes (HC).

HC=1 HC=2 HC=3 HC=4
Not present (Y(s) = 0) 48 147 10 147

Present (Y(s) = 1) 82 71 3 95

We observe some difference in the parameter estimation between the GEV model
and the other three models, not only in the magnitude but in the statistical signifi-
cance. Table 13.4 is the cross-classification of the Habitat Class and the Presence.
In the regression model, HabitatClass=1 is used as the reference. The table shows
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that the probability of observing the species at the Habitat Class 1, which is 0.63,
is higher than those at other three habitat classes, which are 0.33, 0.23, and 0.39
for habitat classes 2, 3, and 4, respectively. The p-value for the Chi-square test of
independence between presence and habitat class is less than 0.0001. Thus, the data
show that there is a significant correlation between the presence of the species and
the habitat class. In the logit, probit and even the Cloglog model, this association
is mostly detected as insignificant, while the GEV link model estimates the ef-
fect as all negatively significant. Similar results are observed for LULCChange=2,
cat1970=3, and cat1970=5, where the significance of the estimated parameters dif-
fers between the GEV model and the other three models.

TABLE 13.5. Model comparison under logit, probit, Cloglog, and GEV links for the GLGM
models.

Logit Probit Cloglog GEV
Variables 0.50 0.025 0.975 0.50 0.025 0.975 0.50 0.025 0.975 0.50 0.025 0.975
Intercept -2.38 -3.44 -1.53 -1.43 -1.88 -0.84 -1.84 -2.43 -1.19 -6.13 -7.08 -5.35
HabitatClass
2 -0.60 -1.40 0.12 -0.30 -0.66 0.13 -0.32 -0.79 0.05 -2.28 -2.88 -1.56
3 -0.58 -2.10 0.87 -0.35 -1.29 0.53 -0.71 -1.93 0.55 -8.01 -10.60 -4.78
4 -0.37 -1.01 0.37 -0.34 -0.64 -0.04 -0.19 -0.53 0.30 -0.85 -1.63 -0.22
LULCChange
2 0.84 -0.07 2.06 0.65 -0.12 1.32 0.66 -0.35 1.31 3.46 2.20 4.90
3 1.50 0.67 2.43 0.95 0.41 1.48 1.00 0.22 1.52 3.18 1.78 3.98
4 1.71 1.02 2.57 1.05 0.48 1.50 1.30 0.67 1.70 3.92 3.19 5.02
5 2.85 1.79 4.17 1.99 1.18 2.60 1.96 1.24 2.71 4.46 3.19 5.78
cat1970
2 -15.37 -41.32 -0.22 -7.26 -14.24 -1.69 -38.24 -57.21 -29.44 -32.67 -56.86 -17.27
3 -0.28 -1.18 0.59 0.03 -0.42 0.45 -0.35 -1.02 0.14 -2.15 -4.72 -0.14
4 0.99 0.00 1.81 0.44 0.10 0.85 0.16 -0.32 0.68 0.90 0.14 1.62
5 -0.53 -1.31 0.13 -0.34 -0.73 0.07 -0.87 -1.28 -0.48 -2.61 -4.34 -1.22
6 1.30 0.60 2.20 0.91 0.44 1.25 0.65 0.15 1.13 1.17 0.13 2.26
CanopyClosure 0.51 0.17 0.94 0.36 0.12 0.47 0.31 0.11 0.55 0.97 0.68 1.21
HeavilyManagedPts -2.52 -4.21 -1.30 -1.29 -1.88 -0.64 -2.45 -3.80 -1.30 -10.77 -18.30 -6.65
LogEdgeDistance -0.83 -1.11 -0.55 -0.53 -0.68 -0.37 -0.57 -0.77 -0.38 -0.47 -0.73 -0.24
σ 2 1.03 0.71 1.35 0.80 0.57 1.61 0.91 0.62 1.40 1.89 1.30 2.27
φ 0.13 0.09 0.16 0.11 0.08 0.22 0.14 0.09 0.22 0.09 0.07 0.11
ξ - - - - - - - - - 2.18 1.58 2.46
DIC 679.89 — — 676.05 — — 675.841 — — 673.51 — —
p 19.56 — — 26.81 — — 19.10 — — 7.74 — —

Besides the difference in the mean estimates of the parameter, we also notice that
there are some non-trivial differences in the estimation for the variance parameter
σ2 and the range parameter φ . The estimation of higher σ2 and lower φ in the GEV
link model implies higher spatial variance and a lower spatial range (hence weaker
spatial association) compared to the estimation by other link models. For example,
the effect range at the posterior median for the GEV model is 0.27, while it is 0.39
for the logit link.

To test the predictive power of the four different link models, we randomly di-
vide the data into training and hold-out parts, with 10% locations (which gives 68
observations) as the hold-out data points. For prediction at the holdout locations,
the goal is to generate samples from the conditional distribution of (w(s),w(s�))
given Y, where w(s) and w(s�) are the spatial random variables at the training and
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FIGURE 13.9. The surfaces of the observed presence and the fitted probability of Celastrus Orbic-
ulatus.
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hold-out locations, respectively. As suggested in Diggle and Ribeiro Jr. (2007), this
can be achieved by drawing a random sample from the multivariate Gaussian dis-
tribution [w(s�)|Y,β ,w(s),σ2,φ ] where β ,w(s),σ2, and φ are the values generated
from previous MCMC samples based on the training data. Since w(s�)|w(s) is inde-
pendent of Y and β , it is then equivalent to sample from the following multivariate
Gaussian distribution

[w(s∗)|w(s)] ∼ MV N
(
Σ21Σ−1

11 w(s),Σ22 −Σ21Σ−1
11 Σ12

)
, (13.2.4)

where Σ11 = Var(w(s)), Σ12 = Σ21 = Cov(w(s),w(s�)), and Σ22 = Var(w(s�)). The
deviance (D̂) for the hold-out data part is then calculated as

D̂ =
1

NM

N

∑
i=1

M

∑
j=1

D(β (i),σ2(i),φ (i),w(s�)(i, j)), (13.2.5)

where β (i),σ2(i), φ (i) are the ith MCMC sampling from the training data and
w(s�)(i, j) is the jth simulated spatial random variables w(s�) generated at the hold-
out locations by (13.2.4) using the parameters σ2(i), φ (i) in the ith MCMC sampling
for the training data. We set M = 1000 and N = 25000.

Table 13.6 shows the result. Although the DIC measure for the training data still
indicates that the GEV model gives the best fit, the GEV model has the largest pre-
dictive deviance for the hold-out data. By closely looking at the data, we notice that
large deviance is caused by the almost opposite fitted probability compared to the
observed response at some locations. For example, Celastrus Orbiculatus were not
observed at three locations but the GEV model predicted the probability of presence
is very close to 1. The other three models also have a high fitted probability in these
three locations but the fitted value is not very close to 1. The GEV model does not
show advantage in predictive inference in the Celastrus Orbiculatus data.

TABLE 13.6. Model comparison under different links for the GLGM model: posterior deviance.

Logit Probit Cloglog GEV
DIC (training) 629.40 624.92 608.31 604.60
Posterior Deviance (holdout) 81.96 104.99 101.69 124.25

13.2.6 Discussion

This section introduces a new flexible skewed link model for analyzing spatial bi-
nary response data with covariates. The GEV link model provides great flexibility
in fitting skewness in the response curve. We show that bias in the mean response
estimates may result from the misspecification of the link functions in the GLGM
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model. We investigate the application of the flexible GEV link models in spatial data
scenario. Though we have seen that the choice of link models affects not only the
estimation of the linear parameter but also that of the spatial parameters, it needs
further study on how these two components interact in statistical inference.

As discussed in Reich, Hodges, and Zadnik (2006), introducing additional pa-
rameters, like the shape parameter ξ in the link function discussed here, may raise
identifiability concerns. It needs further investigation on the conditions for identify-
ing the parameters in the GEV model.

Acknowledgments: The authors wish to thank Jenica Allen and Dr. John A. Silander,
Jr. for providing the data. Dr. Banerjee’s work was partially sponsored by NSF-
DMS-0706870 grant.

13.3 Objective Bayesian Analysis for Gaussian Random Fields

Victor De Oliveira

Gaussian random fields are useful mathematical tools for modeling spatially varying
phenomena and are often the default model of choice (possibly after a transforma-
tion of the data). Their use has become standard in diverse areas of science such as
epidemiology, geography, geology, and hydrology, where collection and analysis of
spatial data are increasingly common tasks.

The Bayesian approach for the analysis of geostatistical data using Gaussian ran-
dom fields was pioneered by Kitanidis (1986), Le and Zidek (1992) and Handcock
and Stein (1993), while later developments include De Oliveira, Kedem, and Short
(1997) and Ecker and Gelfand (1997). These works specify prior distributions for
the model parameters using a combination of intuition and ad-hoc methods, but no
systematic study was undertaken. But specification of prior distributions for these
models is a somewhat challenging task. First, it is difficult to carry out subjective
elicitation of these prior distributions, either because of lack of prior information or
difficulties in interpreting some of the parameters. For instance, the so-called ‘range
parameters’ have units of distance, so any sensible prior for this parameter must take
into account the dimensions of the region under study. Second, it is often the case
that little or no information is available about parameters controlling the ‘smooth-
ness’ of the random field. Finally, naive specification of the prior distribution may
give rise to improper posterior distributions.

Berger, De Oliveira, and Sansó (2001) provided an extensive discussion on the-
oretical issues involved in the Bayesian analysis of Gaussian random fields, and
initiated the work on objective (default) Bayesian methods for the analysis of these
models. They studied in detail the case when the correlation function depends on a
single parameter, this being a ‘range parameter’. For this model Berger, De Oliveira,
and Sansó (2001) derived Jeffreys and reference prior distributions, the main proper-
ties of the resulting posterior distributions, and uncovered several interesting and un-
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usual behaviors. First, it was shown that previously used naive priors yield improper
posteriors, and the same holds for the commonly often prescribed independence Jef-
freys prior when the random field has a constant term in the mean function. This is
mainly due to an unusual behavior of the integrated likelihood of correlation param-
eters. Second, it was found that the up to then ‘standard’ reference prior algorithm,
proposed by Berger and Bernardo (1992a) and obtained by asymptotic marginal-
ization, agrees with the independence Jeffreys prior so it also yields an improper
posterior. Finally, they derived a reference prior obtained by exact marginalization
and showed that it always yields a proper posterior distribution. An additional desir-
able property of this reference prior is that, in spite of being improper, it can be used
for correlation function selection among models with the same mean structure. Ex-
tensions of this initial work and applications to related models include Paulo (2005),
De Oliveira (2007, 2010), Ferreira and De Oliveira (2007), De Oliveira and Song
(2008) and Ren, Sun, and He (2009).

This section provides a review of the main results obtained in the last decade on
objective (default) Bayesian methods for the analysis of spatial data using Gaussian
random fields. The section ends with a discussion on the success (or lack of) these
models and some relevant open problems.

13.3.1 Gaussian Random Field Models

Consider a phenomenon that varies spatially continuously over a region D ⊂ R
l ,

with l ∈ N. It is assumed that this variation is modeled by a Gaussian random field
{Y (s) : s ∈ D} with

E{Y (s)} =
p

∑
j=1
β j f j(s) and cov{Y (s),Y (u)} = σ2

y K(s,u),

where f1(s), . . . , fp(s) are known location-dependent covariates, β = (β1, . . . ,βp)′ ∈
R

p are unknown regression parameters, σ2
y = var{Y (s)}> 0 unknown and K(s,u) is

a correlation function in R
l . For this class of models spatial association is specified

marginally through correlation functions, where the most commonly used models
are isotropic correlation functions, meaning that K(s,u) = K(d), with d = ||s−u||
(the Euclidean distance between s and u). Numerous isotropic correlation functions
have been proposed in the literature (see Cressie (1993) for listings of the most
common models). We consider here as an illustrative example the Matérn family of
isotropic correlation functions given by

K(d) =
1

2θ2−1Γ (θ2)

(
d
θ1

)θ2

Kθ2

(
d
θ1

)
; θ1 > 0, θ2 > 0, (13.3.1)

where Γ (·) is the gamma function and Kθ2(·) is the modified Bessel function of the
second type and order θ2. For this family (and many others), θ1 controls (mainly)
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how fast the correlation decays with distance (the so-called range parameter), which
has units of distance, and θ2 controls geometric properties of the random field, such
as mean square differentiability (the so-called smoothness or roughness parameter),
which is unitless.

The data Y = (Y1, . . . ,Yn)′ consist of possibly noisy measurements of the random
field taken at known sampling locations s1, . . . ,sn ∈ D , where

Yi = Y (si)+ εi, i = 1, . . . ,n,

{εi}n
i=1

iid∼ N(0,σ2
ε ) represent measurement errors independently distributed of the

random field Y (·), and σ2
ε ≥ 0 (the so-called nugget parameter). In this case we have

E{Yi} =
p

∑
j=1
β j f j(s) and cov{Yi,Yj} = σ2

y K(si,s j)+σ2
ε 1(si = s j).

In the discussions that follow β and σ2
y are always assumed unknown, but some of

the covariance parameters θ1, θ2 and σ2
ε would be assumed known. We will have,

possibly after a reparametrization of the covariance parameters, that

E{Y} = Xβ and var{Y} = σ2Σθ ,

where (X)i j = f j(si) is a known n× p design matrix of rank p and Σθ is an n× n
positive definite matrix for any θ ∈Θ ⊂ R

q, q ∈ N. What σ2, θ and Σθ are in any
particular case will depend on the parametrization that is used. We review some
univariate (q = 1) cases in Sections 13.3.3–13.3.6, and consider some multivariate
(q > 1) cases in Section 13.3.7. Then the likelihood function of the model parame-
ters η = (β ,σ2,θ) ∈Ω = R

p × (0,∞)×Θ based on the observed data y is given by

L(η ;y) ∝ (σ2)−
n
2 |Σθ |−

1
2 exp

{
− 1

2σ2 (y−Xβ )′Σ−1
θ (y−Xβ )

}
. (13.3.2)

13.3.2 Integrated Likelihoods

Similarly to what is often done for Bayesian analysis of ordinary linear models, a
sensible class of (improper) prior distributions for η is given by the family

π(η) ∝
π(θ)
(σ2)a , η ∈Ω , (13.3.3)

where a ∈R is a hyper-parameter and π(θ) is the ‘marginal’ prior of θ with support
Θ . Priors of this form, with a = 1, were first proposed by Kitanidis (1986) and
Handcock and Stein (1993), but with little guidance on how to select π(θ). The
relevance of this class of priors will become apparent since several Jeffreys and
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reference priors belong to this class. An obvious choice, used by may authors, is to
set a = 1 and π(θ) = 1Θ (θ), but the use of this prior yields improper posteriors in
some cases.

From Bayes theorem follows that the posterior distribution of η is proper if and
only if 0 <

∫
Ω L(η ;y)π(η)dη <∞. A standard calculation with the above likelihood

and prior shows that
∫

Rp×(0,∞)
L(η ;y)π(η)dβdσ2 = LI(θ ;y)π(θ),

with
LI(θ ;y) ∝ |Σ−1

θ | 1
2 |X ′Σ−1

θ X |− 1
2 (S2
θ )−( n−p

2 +a−1),

where S2
θ = (y−X β̂ θ )′Σ−1

θ (y−X β̂ θ ), β̂ θ = (X ′Σ−1
θ X)−1X ′Σ−1

θ y, and LI(θ ;y) is
called the integrated likelihood of θ . Then, the posterior distribution of η is proper
if and only if

0 <
∫
Θ

LI(θ ;y)π(θ)dθ < ∞,

so to determine propriety of posterior distributions based on priors (13.3.3) is nec-
essary to determine the behavior of the integrated likelihood LI(θ ;y) and ‘marginal’
prior π(θ) onΘ .

13.3.3 Reference Priors

The reference prior algorithm is (arguably) the most successful general method to
derive default priors. The basic idea is to find a prior that conveys minimal infor-
mation about the quantity of interest (in an entropy distance sense) relative to that
provided by the data. Use of such prior would then make the data dominant for
posterior inference. The computation of reference priors depends, in general, on the
entertained model and a classification of the parameters according to their inferential
importance; see Bernardo (1979) and Berger and Bernardo (1992a) for the motiva-
tion and initial developments of the algorithm, and Bernardo (2005) and Berger,
Bernardo, and Sun (2009) for recent theoretical developments. A reference prior for
the model with general isotropic correlation function having all three parameters
θ1,θ2 and σ2

ε unknown can be computed (see Section 13.3.7), but its behavior and
properties of the resulting posterior are so far unknown.

In this section reference priors for the parameters of model (13.3.2) are reviewed
in some cases in which θ is univariate, which would be denoted by ϑ . It will be
assumed that (σ2,ϑ) is the parameter of interest and β is the nuisance parameter.
For that we use the two-step reference prior algorithm that uses exact marginal-
ization, as described in Berger, De Oliveira, and Sansó (2001). The first step is
to factor the joint prior distribution as πR(η) = πR(β | σ2,ϑ)πR(σ2,ϑ) and use
πR(β | σ2,ϑ) ∝ 1, since this is the conditional Jeffreys-rule (or reference) prior for



13.3 Objective Bayesian Analysis for Gaussian Random Fields 501

β for model (13.3.2) when (σ2,ϑ) is known. Second, πR(σ2,ϑ) is computed using
the Jeffreys-rule algorithm based on the ‘marginal model’ provided by the integrated
likelihood of (σ2,ϑ)

LI(σ2,ϑ ;z) =
∫

Rp
L(β ,σ2,ϑ ;z)πR(β | σ2,ϑ)dβ

∝ (σ2)−
n−p

2 |Σϑ |−
1
2 |X ′Σ−1

ϑ X |− 1
2 exp

{
− S2

ϑ
2σ2

}
. (13.3.4)

Theorem 13.1 (Berger, De Oliveira, and Sansó, 2001, Theorem 2). For the model
with sampling distribution (13.3.2) and θ = ϑ univariate the reference prior distri-
bution, πR(β ,σ2, ϑ), is of the form (13.3.3) with

a = 1 and πR(ϑ) ∝
{

tr[W 2
ϑ ]− 1

n− p
(tr[Wϑ ])2

} 1
2

, (13.3.5)

where Wϑ = ( ∂
∂θ Σϑ )Qϑ and Qϑ = Σ−1

ϑ −Σ−1
ϑ X(X ′Σ−1

ϑ X)−1X ′Σ−1
ϑ ; ∂

∂ϑ Σϑ denotes
the matrix obtained by differentiating Σϑ element-wise.

Remark 13.1. A bit of calculation shows that the right hand side of (13.3.5) is pro-
portional to the sample standard deviation of the positive eigenvalues of Wϑ . In some
special cases (such as Case B below) it is possible to find explicit expressions for
these eigenvalues, which would provide great analytical and computational simpli-
fications. Unfortunately such explicit expressions are not in general available.

Remark 13.2. Prior (13.3.5) is quite general since the nature and interpretation of ϑ
is immaterial for its computation. On the other hand, determining the behavior and
properties of the resulting posterior would very much depend on what the actual
parameter ϑ represents, so these tasks need to be undertaken on a case-by-case
basis.

We now review some special cases that been previously studied in some detail.

Case A (Berger, De Oliveira, and Sansó, 2001). Consider the covariance parame-
trization where σ2 = σ2

y and ϑ = θ1 are unknown, and θ2 and σ2
ε = 0 are known

(the data contain no measurement error), so (Σϑ )i j = K(si,s j). In this case, Σϑ → In

as ϑ → 0 and Σϑ → 11′ (a singular matrix) as ϑ →∞, where 1 is the vector of ones.
As a result of the latter the behavior of the reference prior and integrated likelihood
depend on whether or not 1 is a column of X .1 We assume throughout this article,
unless stated otherwise, that this condition holds as this is the case in most practical
problems.

In this case (as well as in Case B considered later) the integrated likelihood of ϑ
may have quite unusual behaviors: depending on the value of the hyper-parameter
a and whether or not 1 is a column of X , LI(ϑ ;y) may converge to zero, a positive

1 More generally, it depends on whether or not 1 belongs to C (X), the column space of X , but little
is gained by considering this extra generality.
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constant or infinity, as ϑ goes to infinity. In particular, when a = 1 and 1 is a column
of X , LI(ϑ ;y) is bounded between two positive constants regardless of the sample
size. As a consequence, the use of some naive priors results in improper posteriors.

Proposition 13.1 (Berger, De Oliveira, and Sansó, 2001, Theorem 1). Consider
model (13.3.2) where Case A holds. Under some assumptions met by most spatial
correlation functions, any of the following naive priors yield an improper posterior
for (β ,σ2,ϑ): (i) π(β ,σ2,ϑ) ∝ 1; (ii) prior (13.3.3) with a = 1 and π(ϑ) not
integrable either at 0 or ∞ (a special case being π(ϑ) = 1); and (iii) prior (13.3.3)
with a ∈ R and π(ϑ) not integrable at 0 (a special case being π(ϑ) = ϑ−1).

Proposition 13.2 (Berger, De Oliveira, and Sansó, 2001, Theorem 4). Consider
model (13.3.2) where Case A holds. Under some assumptions met by most spatial
correlation functions we have: (i) the reference prior (13.3.5) yields a proper pos-
terior for (β ,σ2,ϑ); and (ii) πR(ϑ) in (13.3.5) is integrable on (0,∞).

Remark 13.3. In spite of the myriad of available correlation functions available in
the literature, a unified analysis is possible by using Taylor series expansion of the
correlation function. Using such an expansion in Case A shows that, under mild
conditions, Σϑ can be written as

Σϑ = 11′ +ν(ϑ)D+w(ϑ)D∗ +R(ϑ),

where ν(ϑ) > 0, w(ϑ) and R(ϑ) are differentiable, D symmetric and nonsingular
and D∗ not depending on ϑ , and as ϑ→∞, ν(ϑ) = o(1), w(ϑ) = o(ν(ϑ)), w′(ϑ) =
o(ν ′(ϑ)), ||R(ϑ)||∞ = o(w(ϑ)), and ||R′(ϑ)||∞ = o(w′(ϑ)). For instance, for the
Matérn family in (13.3.1) with θ2 > 1 and non-integer, ν(ϑ) = 1/ϑ 2 and w(ϑ) =
1/ϑ 2θ2 . As it turns out, the behavior at infinity of LI(ϑ ;y) and πR(ϑ) are determined
by the functions ν(ϑ) and w(ϑ).

Remark 13.4. From results in Berger, De Oliveira, and Sansó (2001) follows that
the reference marginal posterior of ϑ is heavy-tailed, but how much so depends on
the correlation function that is used. For instance, for members of the Matérn family
(13.3.1) with θ2 > 1 and non-integer, πR(ϑ | y) has a first moment if and only if
θ2 > 3/2. Existence of other moments will similarly depend on the value of θ2.

Case B (De Oliveira, 2007). Consider the covariance parametrization where σ2 =
σ2
ε and ϑ = σ2

y /σ2
ε (the so-called signal-to-noise ratio) are unknown, and θ1 and θ2

are known, so Σϑ = In +ϑH, with (H)i j = K(si,s j) known. As in Case A, the inte-
grated likelihood of ϑ has the unusual behavior mentioned above, and hence any of
the priors listed in Proposition 13.1 also yield an improper posterior for (β ,σ2,ϑ).
But unlike Case A, the behavior of the reference prior and resulting posterior do not
depend on whether or not 1 is a column of X .

For the following results, let L be a full-rank n×(n− p) matrix satisfying L′X = 0
and L′L = In−p, and for a square matrix A, let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) be the
ordered eigenvalues of A.

Proposition 13.3 (De Oliveira, 2007, Theorem 1). Consider model (13.3.2) where
Case B holds. Then the reference prior of (β ,σ2,ϑ) is of the form (13.3.3)
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a = 1 and πR(ϑ)∝
( n−p

∑
j=1

{ λ j(L′HL)
1+ϑλ j(L′HL)

}2− 1
n− p

[ n−p

∑
j=1

{ λ j(L′HL)
1+ϑλ j(L′HL)

}]2) 1
2
.

(13.3.6)

The following result provides the main properties of the above reference prior and
those of its corresponding reference posterior.

Proposition 13.4 (De Oliveira, 2007, Proposition 2, Corollary 1). Suppose that
{λ j(L′HL)}n−p

j=1 are not all equal. Then, (i) the ‘marginal’ reference prior of ϑ
given in (13.3.6) is a continuous function on [0,∞); (ii) The reference prior yields
a proper posterior for (β ,σ2,ϑ); (iii) πR(ϑ) is strictly decreasing on [0,∞); (iv)
πR(ϑ) = O

(
ϑ−2

)
as ϑ → ∞, so it is integrable on (0,∞), but πR(ϑ | y) does

not have moments of any order k ≥ 1; and (v) the marginal reference posterior
πR(σ2 | y) has a finite moment of order k ≥ 1 if n ≥ p+2k +1.

13.3.4 Jeffreys Priors

Probably the most commonly used default prior is the Jeffreys-rule prior, which is
given by π(η) ∝ (det[I(η)])

1
2 , where I(η) is the Fisher information matrix with

(i, j) entry

[I(η)]i j = E

{(
∂
∂ηi

log(L(η ;Y))
)(

∂
∂η j

log(L(η ;Y))
) ∣∣∣ η

}
.

As for reference priors, Jeffreys-rule priors for the model with general isotropic cor-
relation function having all three parameters θ1,θ2 and σ2

ε unknown can be com-
puted, but its behavior and properties are unknown. In this section we also consider
model (13.3.2) in some cases in which θ = ϑ is univariate.

The Jeffreys-rule prior has several attractive features, such as invariance to one-
to-one reparametrizations and restrictions of the parameter space, but it also has
some not so attractive features. One of these is the poor frequentist properties that
have been noticed in multi-parameter models. This section derives two versions of
Jeffreys prior, the Jeffreys-rule prior and the independence Jeffreys prior, where the
latter (intended to ameliorate the aforementioned unattractive feature) is obtained by
assuming that β and (σ2,ϑ) are ‘independent’ a priori and computing each marginal
prior using Jeffreys-rule when the other parameter is assumed known.

Theorem 13.2 (Berger, De Oliveira, and Sansó, 2001, Theorem 5). For the model
with sampling distribution (13.3.2) and θ = ϑ univariate the independence Jeffreys
prior and the Jeffreys-rule prior, to be denoted by πJ1(β ,σ2,ϑ) and πJ2(β ,σ2,ϑ),
respectively, are of the form (13.3.3) with, respectively,

a = 1 and πJ1(ϑ) ∝
{

tr[U2
ϑ ]− 1

n
(tr[Uϑ ])2

} 1
2

, (13.3.7)
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and
a = 1+

p
2

and πJ2(ϑ) ∝ |X ′Σ−1
ϑ X | 1

2 πJ1(ϑ), (13.3.8)

where Uϑ = ( ∂
∂ϑ Σϑ )Σ−1

ϑ .

Case A. As for the reference prior, the behavior of Jeffreys priors and posteriors in
this model depend on whether or not 1 is a column of X , and we continue assuming
this condition holds unless stated otherwise.

Proposition 13.5 (Berger, De Oliveira, and Sansó, 2001, Theorems 6 and 7).
Consider model (13.3.2) where Case A holds. Under some assumptions met by most
spatial correlation functions we have (i) the independence Jeffreys prior yields an
improper posterior for (β ,σ2,ϑ) (although it yields a proper posterior when 1 is
not a column of X); (ii) πJ1(ϑ) in (13.3.7) is not integrable on (0,∞); (iii) The
Jeffreys-rule prior yields a proper posterior for (β ,σ2,ϑ) (regardless of whether or
not 1 is a column of X); and (iv) πJ2(ϑ) in (13.3.8) is integrable on (0,∞).

This case provides one of the few known examples in which posterior impropri-
ety results when using the independence Jeffreys prior. Although the Jeffreys-rule
prior does result in a proper posterior, its use is not advisable due to the poor fre-
quentist properties of Bayesian inferences based on this prior, and the lack of valid-
ity of the use of Bayes factors for correlation function selection; see Section 13.3.6
for further comments.

Case B.

Proposition 13.6 (De Oliveira, 2007, Theorem 2). Consider model (13.3.2) where
Case B holds. Then the independence Jeffreys prior and Jeffreys-rule prior of
(β ,σ2,ϑ) are of the form (13.3.3) with, respectively,

a = 1 and πJ1(ϑ) ∝
( n

∑
i=1

{ λi(H)
1+ϑλi(H)

}2 − 1
n

[ n

∑
i=1

{ λi(H)
1+ϑλi(H)

}]2) 1
2
,

and

a = 1+
p
2

and πJ2(ϑ) ∝
[∏n−p

j=1{1+ϑλ j(L′HL)}
∏n

i=1{1+ϑλi(H)}
] 1

2 πJ1(ϑ).

Proposition 13.7 (De Oliveira, 2007, Proposition 3). Suppose that {λi(H)}n
i=1 are

not all equal. Then, the marginal independence Jeffreys and Jeffreys-rule priors of ϑ
given above are continuous functions on [0,∞) satisfying: (i) πJ1(ϑ) and πJ2(ϑ) are
strictly decreasing on [0,∞); and (ii) πJ1(ϑ) = O

(
ϑ−2

)
and πJ2(ϑ) = O

(
ϑ−(2+ p

2 ))
as ϑ → ∞.

Corollary 13.1 (De Oliveira, 2007, Corollary 2). (i) The marginal independence
Jeffreys prior πJ1(ϑ) and joint independence Jeffreys posterior πJ1(η | y) are both
proper. (ii) The marginal independence Jeffreys posterior πJ1(ϑ | y) does not have
moments of any order k ≥ 1. (iii) The marginal independence Jeffreys posterior
πJ1(σ2 | y) has a finite moment of order k ≥ 1 if n ≥ p+2k +1.
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Corollary 13.2 (De Oliveira, 2007, Corollary 3). (i) The marginal Jeffreys-rule
prior πJ2(ϑ) and joint Jeffreys-rule posterior πJ2(η | y) are both proper. (ii) The
marginal Jeffreys-rule posterior πJ2(ϑ | y) has a finite moment of order k if k <
1 + p

2 . (iii) The marginal Jeffreys-rule posterior πJ2(σ2 | y) has a finite moment of
order k if n ≥ p+2k +1.

Remark 13.5. It is worth noting the quite different behaviors of the independence
Jeffreys prior in the previous two cases: it yields an improper posterior for the model
parameters in Case A, while it yields a proper posterior in Case B.

13.3.5 Other Spatial Models

The methods described above to compute default priors can also be applied to other
Gaussian spatial models called Gaussian Markov random fields. In these the region
D is partitioned into subregions (or sites as they are also called) indexed by integers
1,2, . . . ,n, linked together according to a neighborhood system, {Ni : i = 1, . . . ,n},
where Ni denotes the collection of subregions that are neighbors of subregion i. An
emblematic example commonly used in applications is the neighborhood system
defined in terms of geographic adjacency

Ni = { j : subregions i and j share a boundary}, i = 1, . . . ,n,

but other examples are also possible that include neighborhood systems defined
based on distance from the centroids of subregions or similarity of an auxiliary vari-
able; see Cressie (1993) and Rue and Held (2005) for treatments of these models.

For each subregion it is observed the variable of interest, Yi, which is often (but
not always) an aggregate or average over the subregion i, and a set of p explanatory
variables, xi = (xi1, . . . ,xip)′. For this class of models spatial association is speci-
fied conditionally through the set of full conditional distributions, which amounts
to specifying the precision matrix of the data (rather than the covariance matrix).
Here we describe the so-called conditional autoregressive (CAR) model whose full
conditional distributions satisfy a form of autoregression given by

(Yi | Y(i)) ∼ N
(

x′iβ +
n

∑
j=1

ci j(θ)(Yj −x′jβ ),σ2
i

)
, i = 1, . . . ,n, (13.3.9)

where Y(i) = {Yj : j �= i}, β = (β1, . . . ,βp)′ ∈ R
p are unknown regression pa-

rameters, and σ2
i > 0 and ci j(θ) ≥ 0 are covariance parameters, with cii(θ) = 0

for all i. A commonly used model results by assuming σ2
1 = . . . = σ2

n = σ2 and
ci j(θ) = ϑwi j, where ϑ is an unknown scalar and W = (wi j) is a known “weight”
(“neighborhood”) matrix that is nonnegative, symmetric and satisfies that wi j > 0 if
and only if sites i and j are neighbors. For the set of full conditional distributions
(13.3.9) to determine a well defined joint distribution for Y, the spatial parameter
ϑ must belong to (λ−1

n (W ),λ−1
1 (W )) (where λn(W ) < 0 < λ1(W )). As before, let
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η = (β ,σ2,ϑ) ∈Ω = R
p × (0,∞)× (λ−1

n (W ),λ−1
1 (W )) denote the model parame-

ters. In this case Y follows model (13.3.2) where

X = (x1 · · ·xn)′ and Σϑ = (In −ϑW )−1,

so Theorems 2 and 5 in Berger, De Oliveira, and Sansó (2001) also hold for this
model. Other (slightly) more general models can be reduced to the above one by an
appropriate scaling of the data; see De Oliveira (2010) for details. In what follows
we state the Jeffreys priors and their properties as well as properties of the resulting
posteriors.

Theorem 13.3 (De Oliveira, 2010, Theorem 1). Consider the CAR model deter-
mined by (13.3.9). Then the independence Jeffreys prior and the Jeffreys-rule prior
of η , to be denoted by πJ1(η) and πJ2(η), are of the form (13.3.3) with, respectively,

a = 1 and πJ1(ϑ) ∝

{
n

∑
i=1

( λi(W )
1−ϑλi(W )

)2 − 1
n

[ n

∑
i=1

λi(W )
1−ϑλi(W )

]2
} 1

2

,

and

a = 1+
p
2

and πJ2(ϑ) ∝
( p

∏
j=1

(1−ϑλ j(X ′
oWXo))

) 1
2 πJ1(ϑ),

where Xo = XV T
1
2 , with V orthogonal and T diagonal being the components of the

spectral decomposition of X ′X (= V TV ′).

In what follows let C (X) denote the column space of X , and u1 and un be the
normalized eigenvectors of W corresponding to, respectively, λ1(W ) and λn(W ).

Proposition 13.8 (De Oliveira, 2010, Corollaries 1 and 2). Consider the CAR
model determined by (13.3.9). (i) The marginal independence Jeffreys prior πJ1(ϑ)
is unbounded and not integrable. (ii) The joint independence Jeffreys posterior
πJ1(η | y) is proper when neither u1 nor un are in C (X), while it is improper
when either u1 or un are in C (X). (iii) The marginal Jeffreys-rule prior πJ2(ϑ) is
unbounded. Also, it is integrable when both u1 and un are in C (X), while it is not
integrable when either u1 or un is not in C (X). (iv) The joint Jeffreys-rule posterior
πJ2(η | y) is always proper.

Remark 13.6. Although propriety of the joint independence Jeffreys posterior is
not always guaranteed, it is unlikely to encounter situations where either u1 or un

belong to C (X), so πJ1(η | y) would likely be proper in practice.

As mentioned before, a reference prior distribution for η can also be computed,
which is given by (13.3.5), but a more explicit expression and knowledge about
properties of the resulting posterior are so far lacking. On the other hand Ferreira
and De Oliveira (2007) derived, for a different Gaussian Markov random field model
with constant mean, explicit expressions for Jeffreys and reference priors as well as
the properties of the corresponding posterior distributions. Similar analysis are also
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possible for other spatial and non-spatial Gaussian models; see van der Linde (2000)
and De Oliveira and Song (2008) for examples.

13.3.6 Further Properties

In this section some additional properties of inferences based on reference and Jef-
freys priors are reviewed.

Frequentist properties. Frequentist properties are often proposed as a way to eval-
uate and compare Bayesian inferences based on default priors. The most common
of these properties is the frequentist coverage of equal-tailed 100(1−α)% Bayesian
credible intervals of the parameters of interest, in this case (σ2,ϑ). Some limited
simulation experiments reported in Berger, De Oliveira, and Sansó (2001), Paulo
(2005) and De Oliveira (2007) suggest that frequentist properties of Bayesian in-
ferences based on the reference prior are moderately good, and similar to Bayesian
inferences based on the independence Jeffreys prior, when the latter yields a proper
posterior. On the other hand, frequentist properties of Bayesian inferences based
on the Jeffreys-rule prior tend to be inferior than the above two, and inadequate
in situations where the mean function is not constant or the spatial association is
strong. These frequentist properties were also found to hold for other classes of spa-
tial models, where Bayesian inferences based on these default priors were superior
than those based on maximum likelihood; see De Oliveira (2010) and De Oliveira
and Song (2008) for examples.

Correlation function selection. A myriad of spatial correlation function have been
proposed in the literature. In practice little or no subject-based information is avail-
able to guide this choice, and the selection of correlation function is often arbitrary,
so methods for model selection in this context are important.

One of the good properties of Bayesian inference based on the reference prior is
that Bayes factors can be used for correlation function selection between models that
share a common mean function. Typically, model selection based on Bayes factors
is precluded when using improper priors, but an important exception was studied by
Berger, Pericchi, and Varshavsky (1998). When the models that are compared have
the same mean structure, the model considered here fits this special situation when
(a) priors of all models are of the form (13.3.3) with a = 1; and (b) the ‘marginals’
π(ϑ) of all models are proper.

The reference prior in Case A satisfies (a) and (b), as long as the mean function
includes a constant term (i.e. when 1 is a column of X), while the reference prior
in Case B always satisfies (a) and (b). In addition, the independence Jeffreys prior
in Case B also satisfies (a) and (b). In all these cases Bayes factors computed from
these priors can be used for correlation function selection. On the other hand, neither
the independence Jeffreys prior in Case A nor the Jeffreys-rule prior in Cases A and
B enjoy this desirable property, so Bayes factors computed from these priors can not
be used for correlation function selection.
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Sensitivity to design. The reference and Jeffreys priors described before depend on
several features of the selected design, such as sampling size, sampling locations
and regression matrix. Nevertheless, numerical explorations in De Oliveira (2007,
2010) suggest that sensitivity of the priors to these features is in general mild, except
in one instance: the Jeffreys-rule prior displays substantial sensitivity to changes in
the regression matrix X .

13.3.7 Multi-Parameter Cases

Working with models where θ = (θ1, . . . ,θ1) is considered univariate requires fixing
some of its components, which may be a serious limitation when modeling some
datasets. Extending the framework considered in Berger, De Oliveira, and Sansó
(2001), Paulo (2005) considered the general case of θ multivariate. He derived ex-
pressions for the reference prior of η , when (σ2,θ) is the parameter of interest and
β is the nuisance parameter, the Jeffreys-rule prior and the independence Jeffreys
prior, when β and (σ2,θ) are assumed ‘independent’ a priori.

Proposition 13.9 (Paulo, 2005, Propositions 2.1 and 2.2). Consider the model with
sampling distribution (13.3.2). (i) The reference prior of η is of the form (13.3.3)
with a = 1 and πR(θ) ∝ (det[IR(θ)])

1
2 , where IR(θ) is the (q+1)× (q+1) matrix

IR(θ) =

⎛
⎜⎜⎜⎜⎜⎝

n− p tr[W (1)
θ ] tr[W (2)

θ ] · · · tr[W (q)
θ ]

tr[(W (1)
θ )2] tr[W (1)

θ W (2)
θ ] · · · tr[W (1)

θ W (q)
θ ]

. . . · · · ...

symmetric tr[(W (q)
θ )2]

⎞
⎟⎟⎟⎟⎟⎠

, (13.3.10)

with W ( j)
θ = ( ∂

∂θ j
Σθ )Qθ and Qθ = Σ−1

θ −Σ−1
θ X(X ′Σ−1

θ X)−1X ′Σ−1
θ , j = 1, . . . ,q.

(ii) The independence Jeffreys and Jeffreys-rule priors are of the form (13.3.3) with,
respectively

a = 1 and πJ1(θ) ∝ (det[IJ(θ)])
1
2 ,

and
a = 1+

p
2

and πJ2(θ) ∝ |X ′Σ−1
θ X | 1

2 πJ1(θ),

where IJ(θ) is similar to the matrix in (13.3.10), but with the 1-1 entry equal to n
and the other entries obtained by replacing Qθ with Σ−1

θ .

As in the univariate case, the above formulas are quite general, but determining
the behavior and properties of LI(θ ;y) and π(θ) in this general setting does not
appear possible at the moment. Analytical progress is possible though in some cases
that we now review.
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13.3.7.1 The Separable Correlation Case

An important class of multi-parameter correlation functions that is often used in
the design and analysis of computer experiments is the so-called separable. Before
describing it, we introduce some needed notation. Suppose that l ≥ 2 and that spatial
locations are written as s = (s1, . . . ,sr), with r ≤ l, sk ⊂ R

lk and ∑r
k=1 lk = l. Also,

let S = {s1, . . . ,sn} be the sampling design. Paulo (2005) studied the properties of
the above default priors and their corresponding posterior distributions under the
following assumptions:

Assumption A1. Separability of the correlation function:

K(s,u) =
r

∏
k=1

Kk(sk,uk;θk),

where Kk(sk,uk;θk) is an isotropic correlation function in R
lk and θk > 0 is a range

parameter, k = 1, . . . ,r.

Assumption A2. Cartesian product of the sampling design:

S = S1 ×S2 ×·· ·×Sr,

where Sk = {s1,k, . . . ,snk,k} ⊂ R
lk , #Sk = nk and #S =∏r

k=1 nk (= n).

Assumption A3. p = 1 (so there is only one regression parameter) and

X = X1 ⊗X2 ⊗·· ·⊗Xr,

where Xk has dimension nk ×1, k = 1, . . . ,r.

The above assumptions allow both the regression matrix and the covariance ma-
trix of the data to be written as Kronecker products of simpler matrices, which in
turn induces a form of partial separability2 of LI(θ ;y). In addition, πR(θ), πJ1(θ)
and πJ2(θ) given above can be bounded above by a product of r univariate func-
tions, with the kth function depending only on θk. The behavior at infinity of these r
univariate functions is determined under some added assumptions (A4–A8 in Paulo
(2005)) which together with the first three assumptions determine the central result
for this class of models.

Theorem 13.4 (Paulo, 2005, Theorem 3.6). Consider the model with sampling
distribution (13.3.2) and prior (13.3.3) with π(θ) equal to πR(θ), πJ1(θ) or πJ2(θ)
given above. Then under assumptions A 1–A 8 the posterior distribution of θ is
proper provided a > 1/2. It then follows that the reference and both Jeffreys priors
always yield proper posterior distributions.

Remark 13.7. The above result indicates sharp differences in posterior propriety be-
havior between this multivariate case and the univariate cases discussed in Sections

2 This means that this function can be written as a product of r univariate functions, with the kth
factor depending only on θk, times a multivariate function (say f (θ)).
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13.3.3 and 13.3.4, which are mainly due to the differences in the behavior of the
integrated likelihood at infinity. Consider the practically common situation of a ran-
dom field with constant mean and using prior (13.3.3) with a = 1. For the univariate
case, LI(θ ;y) is bounded away from zero everywhere, regardless of the sample size,
so π(θ) = 1 yields an improper posterior. On the other hand, for the above multi-
variate model it can be shown from the results in Paulo (2005) that LI(θ ;y) goes
to zero as any θk → ∞, k = 1, . . . ,r. Also, depending on l and for nk large enough,
π(θ) = 1 yields an proper posterior distribution. Paulo (2005) claimed that the uni-
variate cases discussed in Sections 13.3.3 and 13.3.4 are somewhat exceptional, and
that in general “good” posterior behavior is to be expected for multivariate cases.
But this is not quite so, as will be seen in the next section.

13.3.7.2 An Isotropic Multivariate Case

Recently Ren, Sun, and He (2009) generalized the results in Berger, De Oliveira, and
Sansó (2001) and De Oliveira (2007) by considering models with isotropic corre-
lation functions having both the range and nugget parameters unknown (in a sense
combining Cases A and B considered before). Using a notation slightly different
to that of Section 13.3.1, consider the model where σ2 = σ2

y , θ1 and θ2 = σ2
ε /σ2

y
(the noise-to-signal ratio) are unknown, and the smoothness/roughness parameter is
known, so Σθ = Hθ1 + θ2In, with (Hθ1)i j = K(si,s j). For this case Ren, Sun, and
He (2009) computed the Jeffreys-rule prior, several versions of independence Jef-
freys priors and two reference priors obtained by exact marginalization, the second
obtained by exact marginalization over both β and σ2. In addition, they also com-
puted several versions of reference priors obtained by asymptotic marginalization
and found each of these agree with some version of independence Jeffreys prior
(six different default priors in total). As before, all these different priors are of the
form (13.3.3). They determined whether each of these priors yields a proper or im-
proper posterior distribution and found that, under some technical conditions met by
most correlation functions, the Jeffreys-rule prior and the reference prior obtained
by exact marginalization are the only ones that always yield a proper posterior dis-
tribution. The following summarizes their key results.

Theorem 13.5 (Ren, Sun, and He, 2009). Consider the model with sampling distri-
bution (13.3.2) for the case described above. (i) The reference prior of (β ,σ2,θ1,θ2)
assuming (σ2,θ1,θ2) is the parameter of interest and β is the nuisance parame-

ter is of the form (13.3.3), with a = 1 and πR(θ1,θ2) ∝ (det[IR(θ1,θ2)])
1
2 , where

IR(θ1,θ2) is given by (13.3.10) with q = 2, ∂
∂θ1
Σθ = d

dθ1
Hθ1 and ∂

∂θ2
Σθ = In.

(ii) The independence Jeffreys and Jeffreys-rule priors are of the form (13.3.3)
with, respectively, a = 1 and πJ1(θ1,θ2) ∝ (det[IJ(θ1,θ2)])

1
2 , and a = 1 + p

2 and

πJ2(θ1,θ2) ∝ |X ′Σ−1
θ X | 1

2 πJ1(θ1,θ2), where IJ(θ1,θ2) is similar to the matrix in
(13.3.10), but with the 1-1 entry equal to n and the other entries obtained by re-
placing Qθ with Σ−1

θ . (iii) Under some assumptions met by most spatial corre-
lation functions, the Jeffreys-rule prior always yields a proper posterior. On the
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other hand, the independence Jeffreys prior yields a proper posterior if and only if
1 /∈ C (X). (iv) Under some assumptions met by most spatial correlation functions
the reference prior always yields a proper posterior. Also, the marginal reference
prior πR(θ1,θ2) is proper when 1 ∈ C (X).

Remark 13.8. It is worth noting that, in terms of propriety of posterior distributions,
the results obtained for this multivariate isotropic case are all in agreement with
those obtained for the univariate case by Berger, De Oliveira, and Sansó (2001), but
disagree somewhat with those in Theorem 13.5 for the multivariate separable case.
These differences can be attributed mainly to the different behaviors of LI(θ ;y) at
infinity, which in turn are due to the different structures of the correlation function,
isotropic or separable.

13.3.8 Discussion and Some Open Problems

Objective Bayesian methods for Gaussian random fields are still in the infancy stage,
partly due to the limited current understanding of the likelihood behavior in these
models. Also, the application of objective Bayesian methods in real dataset has been
almost absent so far, so their practical value is still to be seen. The latter is mainly
due to computational complexity since evaluation of reference priors, such as those
in (13.3.5) and (13.3.10), is computationally quite expensive.

A point worth noting is that prediction/interpolation is often the main goal in
the analysis of spatial datasets. The parameters, on the other hand, have only sec-
ondary importance and their classification (needed in the reference prior algorithm)
is done more for operational rather than real reasons. A brief proposal on how to deal
with situation where prediction is the main goal was given by Berger and Bernardo
(1992a), and Kuboki (1998) proposed a more concrete approach. How to apply these
methods in the current context and whether the same or different priors will result is
still to be seen. Some relevant open problems in this area are: (i) Efficient approx-
imation and computation of Jeffreys and reference priors; (ii) Understanding the
behavior of Jeffreys and reference priors for ‘smoothness/roughness’ parameters;
(iii) Understanding the behavior of Jeffreys and reference priors for the parameters
of general isotropic correlation functions having all parameters (range, smoothness
and nugget) unknown; and (iv) Development of objective Bayesian methods for
complex hierarchical models that use Gaussian random fields as building blocks.

Acknowledgments: I warmly thank Jim Berger for having introduced default pri-
ors to me, and wish him the best for his 60th anniversary. This work was partially
supported by the US National Science Foundation Grant DMS-0719508.



Chapter 14
Posterior Simulation and Monte Carlo Methods

A beauty of the Bayesian approach is the principled nature of inference. There is a
gold standard of how to proceed, and the basic principle is easily explained. How-
ever, the actual implementation often gives rise to many challenges. One of the
challenges that remains an important research frontier of Bayesian inference is the
problem of numerically evaluating the desired posterior summaries. In this chapter
we review some related specific research problems.

14.1 Importance Sampling Methods for Bayesian Discrimination
between Embedded Models

Jean-Michel Marin and Christian P. Robert

The contribution of Jim Berger to the better understanding of Bayesian testing is
fundamental and wide-ranging, from establishing the fundamental difficulties with
p-values in Berger and Sellke (1987) to formalizing the intrinsic Bayes factors in
Berger and Pericchi (1996a), to solving the difficulty with improper priors in Berger,
Pericchi, and Varshavsky (1998), and beyond! While our contribution in this area
is obviously much more limited, we aim at presenting here the most standard ap-
proaches to the approximation of Bayes factors.

The Bayes factor indeed is a fundamental procedure that stands at the core of
the Bayesian theory of testing hypotheses, at least in the approach advocated by
both Jeffreys (1961) and by Jaynes (2003). Note that Robert, Chopin, and Rousseau
(2009) provide a reassessment of the crucial role of Jeffreys (1961) in setting a for-
mal framework for Bayesian testing as well as for regular inference. Given an hy-
pothesis H0 : θ ∈Θ0 on the parameter θ ∈Θ of a statistical model, with observation
y and density f (y|θ), under a compatible prior of the form

π(Θ0)π0(θ)+π(Θ c
0 )π1(θ),

M.-H. Chen et al. (eds.), Frontiers of Statistical Decision Making 513
and Bayesian Analysis, DOI 10.1007/978-1-4419-6944-6 14,
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the Bayes factor is defined as the posterior odds to prior odds ratio, namely

B01(y) =
π(Θ0|y)
π(Θ c

0 |y)
/
π(Θ0)
π(Θ c

0 )
=
∫
Θ0

f (y|θ)π0(θ)dθ
/∫

Θ c
0

f (y|θ)π1(θ)dθ .

Model choice can be considered from a similar perspective, since, under the Bayesian
paradigm (see, e.g., Robert, 2001), the comparison of models

Mi : y ∼ fi(y|θi), θi ∼ πi(θi), θi ∈Θi, i ∈ I,

where the family I can be finite or infinite, leads to posterior probabilities of the
models under comparison such that

P(M = Mi|y) ∝ pi

∫
Θi

fi(y|θi)πi(θi)dθi,

where pi = P(M = Mi) is the prior probability of model Mi.
In this short survey, we consider some of the most common Monte Carlo solu-

tions used to approximate a generic Bayes factor or its fundamental component, the
evidence

mi =
∫
Θi

πi(θi) fi(y|θi)dθi,

aka the marginal likelihood. Longer entries can be found in Carlin and Chib (1995),
Chen, Shao, and Ibrahim (2000), Robert and Casella (2004), or Friel and Pettitt
(2008). Note that we only briefly mention here trans-dimensional methods issued
from the revolutionary paper of Green (1995), since our goal is to demonstrate that
within-model simulation methods allow for the computation of Bayes factors and
thus avoids the additional complexity involved in trans-dimensional methods. While
amenable to an importance sampling technique of sorts, the alternative approach
of nested sampling (Skilling, 2006) is discussed in Chopin and Robert (2007) and
Robert and Wraith (2009).

14.1.1 The Pima Indian Benchmark Model

In order to compare the performances of all methods presented in this survey, we
chose to evaluate the corresponding estimates of the Bayes factor in the setting of a
single variable selection for a probit model and to repeat the estimation in a Monte
Carlo experiment to empirically assess the variability of those estimates.

We recall that a probit model can be represented as a natural latent variable model
in that, if we consider a sample z1, . . . ,zn of n independent latent variables associated
with a standard regression model, i.e. such that zi|θ ∼ N

(
xT

i θ ,1
)
, where the xi’s

are p-dimensional covariates and θ is the vector of regression coefficients, then
y1, . . . ,yn such that

yi = Izi>0
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is a probit sample. Indeed, given θ , the yi’s are independent Bernoulli random vari-
ables with P(yi = 1|θ) =Φ

(
xT

i θ
)
, where Φ is the standard normal cumulative dis-

tribution function.
The choice of a reference prior distribution for the probit model is open to de-

bate, but the connection with the latent regression model induced Marin and Robert
(2007) to suggest a g-prior model, θ ∼ N

(
0p,n(XTX)−1

)
, with n as the g factor and

X as the regressor matrix. The corresponding posterior distribution is then associ-
ated with the density

π(θ |y,X)∝
n

∏
i=1

{
1−Φ (xT

i θ
)}1−yiΦ

(
xT

i θ
)yi ×exp

{−θT(XTX)θ/2n
}

, (14.1.1)

where y = (y1, . . . ,yn). In the completed model, i.e. when including the latent vari-
ables z = (z1, . . . ,zn) into the model, the yi’s are deterministic functions of the zi’s
and the so-called completed likelihood is

f (y,z|θ) = (2π)−n/2 exp

(
−

n

∑
i=1

(
zi −xT

i θ
)2

/2

)
n

∏
i=1

(Iyi=0Izi≤0 + Iyi=1Izi>0) .

The derived conditional distributions

zi|yi,θ ∼
{

N+
(
xT

i θ ,1,0
)

if yi = 1,
N−

(
xT

i θ ,1,0
)

if yi = 0,
(14.1.2)

are of interest for constructing a Gibbs sampler on the completed model, where
N+

(
xT

i θ ,1,0
)

denotes the Gaussian distribution with mean xT
i θ and variance 1 that

is left-truncated at 0, while N−
(
xT

i θ ,1,0
)

denotes the symmetrical normal distribu-
tion that is right-truncated at 0. The corresponding full conditional on the parameters
is given by

θ |y,z ∼ N

(
n

n+1
(XTX)−1XTz,

n
n+1

(XTX)−1
)

. (14.1.3)

Indeed, since direct simulation from the posterior distribution of θ is intractable,
Albert and Chib (1993) suggest implementing a Gibbs sampler based on the above
set of full conditionals. More precisely, given the current value of θ , one cycle of
the Gibbs algorithm produces a new value for z as simulated from the conditional
distribution (14.1.2), which, when substituted into (14.1.3), produces a new value for
θ . Although it does not impact the long-term properties of the sampler, the starting
value of θ may be taken as the maximum likelihood estimate to avoid burning steps
in the Gibbs sampler.

Given this probit model, the dataset we consider covers a population of women
who were at least 21 years old, of Pima Indian heritage and living near Phoenix,
Arizona. These women were tested for diabetes according to World Health Organi-
zation (WHO) criteria. The data were collected by the US National Institute of Dia-
betes and Digestive and Kidney Diseases, and is available with the basic R package
(R Development Core Team, 2008). This dataset, used as a benchmark for super-
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vised learning methods, contains information about 332 women with the following
variables:

– glu: plasma glucose concentration in an oral glucose tolerance test;
– bp: diastolic blood pressure (mm Hg);
– ped: diabetes pedigree function;
– type: Yes or No, for diabetic according to WHO criteria.

For this dataset, the goal is to explain the diabetes variable type by using the ex-
planatory variables glu, bp and ped. The following table is an illustration of a
classical (maximum likelihood) analysis of this dataset, obtained using the R glm()
function with the probit link:

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1347 -0.9217 -0.6963 0.9959 2.3235
Coefficients:

Estimate Std. Error z value Pr(>|z|)
glu 0.012616 0.002406 5.244 1.57e-07 ***
bp -0.029050 0.004094 -7.096 1.28e-12 ***
ped 0.350301 0.208806 1.678 0.0934 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’

0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for binomial family
taken to be 1)

Null deviance: 460.25 on 332 degrees of freedom
Residual deviance: 386.73 on 329 degrees of freedom
AIC: 392.73
Number of Fisher Scoring iterations: 4

This analysis sheds some doubt on the relevance of the covariate ped in the model
and we can reproduce the study from a Bayesian perspective, computing the Bayes
factor B01 opposing the probit model only based on the covariates glu and bp
(model 0) to the probit model based on the covariates glu, bp, and ped (model 1).
This is equivalent to testing the hypothesis H0 : θ3 = 0 since the models are nested,
where θ3 is the parameter of the probit model associated with covariate ped. (Note
that there is no intercept in either model.) If we denote by X0 the 332× 2 matrix
containing the values of glu and bp for the 332 individuals and by X1 the 332×3
matrix containing the values of the covariates glu, bp, and ped, the Bayes factor
B01 is given by



14.1 Importance Sampling Methods for Bayesian Discrimination 517

B01 = (2π)1/2n1/2 |(XT
0 X0)|−1/2

|(XT
1 X1)|−1/2

×
∫
R2∏n

i=1{1−Φ ((X0)i,·θ)}1−yiΦ ((X0)i,·θ)yi exp
{−θT(XT

0 X0)θ/2n
}

dθ∫
R3∏n

i=1{1−Φ (X1)i,·θ)}1−yiΦ (X1)i,·θ)yi exp
{−θT(XT

1 X1)θ/2n
}

dθ

=
EN2(02,n(XT

0 X0)−1)
[
∏n

i=1{1−Φ ((X0)i,·θ)}1−yiΦ ((X0)i,·θ)yi
]

EN3(03,n(XT
1 X1)−1) [∏

n
i=1{1−Φ ((X1)i,·θ)}1−yiΦ ((X1)i,·θ)yi ]

(14.1.4)

using the shortcut notation that Ai,· is the ith line of the matrix A.

14.1.2 The Basic Monte Carlo Solution

As already shown above, when testing for a null hypothesis (or a model) H0 : θ ∈Θ0

against the alternative hypothesis (or the alternative model) H1 : θ ∈Θ1, the Bayes
factor is defined by

B01(y) =
∫
Θ0

f (y|θ0)π0(θ0)dθ0

/∫
Θ1

f (y|θ1)π1(θ1)dθ1.

We assume in this survey that the prior distributions under both the null and the
alternative hypotheses are proper, as, typically, they should be. (In the case of com-
mon nuisance parameters, a common improper prior measure can be used on those,
see Berger, Pericchi, and Varshavsky (1998), and Marin and Robert (2007). This
obviously complicates the computational aspect, as some methods like crude Monte
Carlo cannot be used at all, while others are more prone to suffer from infinite vari-
ance.) In that setting, the most elementary approximation to B01(y) consists in using
a ratio of two standard Monte Carlo approximations based on simulations from the
corresponding priors. Indeed, for i = 0,1:

∫
Θi

f (y|θ)πi(θ)dθ = Eπi [ f (y|θ)] .

If θ0,1, . . . ,θ0,n0 and θ1,1, . . . ,θ1,n1 are two independent samples generated from the
prior distributions π0 and π1, respectively, then

n−1
0 ∑n0

j=1 f (y|θ0, j)

n−1
1 ∑n1

j=1 f (y|θ1, j)
(14.1.5)

is a strongly consistent estimator of B01(y).
In most cases, sampling from the prior distribution corresponding to either hy-

pothesis is straightforward and fast. Therefore, the above estimator is extremely
easy to derive as a brute-force evaluation of the Bayes factor. However, if any of the
posterior distributions is quite different from the corresponding prior distribution—
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and it should be for vague priors—the Monte Carlo evaluation of the corresponding
evidence is highly inefficient since the sample will be overwhelmingly producing
negligible values of f (y|θi, j). In addition, if f 2(y|θ) is not integrable against π0 or
π1, the resulting estimation has an infinite variance. Since importance sampling usu-
ally requires an equivalent computation effort, with a potentially highly efficiency
reward, crude Monte Carlo approaches of this type are usually disregarded.

Figure 14.1 and Table 14.1 summarize the results based on 100 replications of
Monte Carlo approximations of B01(y), using equation (14.1.5) with n0 = n1 =
20,000 simulations. As predicted, the variability of the estimator is very high, when
compared with the other estimates studied in this survey. (Obviously, the method
is asymptotically unbiased and, the functions being square integrable in (14.1.4),
with a finite variance. A massive simulation effort would obviously lead to a precise
estimate of the Bayes factor.)

2
3

4
5

FIGURE 14.1. Pima Indian dataset: boxplot of 100 Monte Carlo estimates of B01(y) based on
simulations from the prior distributions, for 2×104 simulations.

14.1.3 Usual Importance Sampling Approximations

Defining two importance distributions with densities ϖ0 and ϖ1, with the same sup-
ports as π0 and π1, respectively, we have:
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B01(y) = Eϖ0

[
f (y|θ)π0(θ)

/
ϖ0(θ)

]/
Eϖ1

[
f (y|θ)π1(θ)

/
ϖ1(θ)

]
.

Therefore, given two independent samples generated from distributions ϖ0 and ϖ1,
θ0,1, . . . ,θ0,n0 and θ1,1, . . . ,θ1,n1 , respectively, the corresponding importance sam-
pling estimate of B01(y) is

n−1
0 ∑n0

j=1 f0(x|θ0, j)π0(θ0, j)/ϖ0(θ0, j)

n−1
1 ∑n1

j=1 f1(x|θ1, jπ1(θ1, j)/ϖ1(θ1, j)
. (14.1.6)

Compared with the standard Monte Carlo approximation above, this approach of-
fers the advantage of opening the choice of the representation (14.1.6) in that it is
possible to pick importance distributions ϖ0 and ϖ1 that lead to a significant re-
duction in the variance of the importance sampling estimate. This implies choosing
importance functions that provide as good as possible approximations to the cor-
responding posterior distributions. Maximum likelihood asymptotic distributions or
kernel approximations based on a sample generated from the posterior are natu-
ral candidates in this setting, even though the approximation grows harder as the
dimension increases.

Monte Carlo Importance sampling

2
3

4
5

FIGURE 14.2. Pima Indian dataset: boxplots of 100 Monte Carlo and importance sampling esti-
mates of B01(y), based on simulations from the prior distributions, for 2×104 simulations.

For the Pima Indian benchmark, we propose for instance to use as importance
distributions, Gaussian distributions with means equal to the maximum likelihood
(ML) estimates and covariance matrices equal to the estimated covariance matrices
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of the ML estimates, both of which are provided by the R glm() function. While, in
general, those Gaussian distributions provide crude approximations to the posterior
distributions, the specific case of the probit model will show this is an exceptionally
good approximation to the posterior, since this leads to the best solution among all
those compared here. The results, obtained over 100 replications of the methodology
with n0 = n1 = 20,000 are summarized in Figure 14.2 and Table 14.1. They are
clearly excellent, while requiring the same computing time as the original simulation
from the prior.

14.1.4 Bridge Sampling Methodology

The original version of the bridge sampling approximation to the Bayes factor (Gel-
man and Meng, 1998; Chen, Shao, and Ibrahim, 2000) relies on the assumption that
the parameters of both models under comparison belong to the same space:Θ0 =Θ1.
In that case, for likelihood functions f0 and f1 under respectively models M0 and
M1, the bridge representation of the Bayes factor is

B01(y) =

∫
Θ0

f0(y|θ)π0(θ)dθ∫
Θ1

f1(y|θ)π1(θ)dθ
= Eπ1

[
f0(y|θ)π0(θ)
f1(y|θ)π1(θ)

∣∣∣∣y
]
. (14.1.7)

Given a sample from the posterior distribution of θ under model M1, θ1,1, . . . ,θ1,N ∼
π1(θ |y), a first bridge sampling approximation to B01(y) is

N−1
N

∑
j=1

f0(y|θ1, j)π0(θ1, j)
f1(y|θ1, j)π1(θ1, j)

.

From a practical perspective, for the above bridge sampling approximation to be of
any use, the constraint on the common parameter space for both models goes further
in that, not only must both models have the same complexity, but they must also be
parameterized on a common ground, i.e. in terms of some specific moments of the
sampling model, so that parameters under both models have a common meaning.
Otherwise, the resulting bridge sampling estimator will have very poor convergence
properties, possibly with infinite variance.

Equation (14.1.7) is nothing but a very special case of the general representation
(Torrie and Valleau, 1977).

B01(y) = Eϕ [ f0(y|θ)π0(θ)/ϕ(θ)]
/

Eϕ [ f1(y|θ)π1(θ)/ϕ(θ)],

which holds for any density ϕ with a sufficiently large support and which only re-
quires a single sample θ1, . . . ,θN generated from ϕ to produce an importance sam-
pling estimate of the ratio of the marginal likelihoods. Apart from using the same
importance function ϕ for both integrals, this method is therefore a special case of
importance sampling.
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Another extension of this bridge sampling approach is based on the general rep-
resentation

B01(y) =
∫

f0(y|θ)π0(θ)α(θ)π1(θ |y)dθ
/∫

f1(y|θ)π1(θ)α(θ)π0(θ |y)dθ

≈ n1
−1∑n1

j=1 f0(y|θ1, j)π0(θ1, j)α(θ1, j)

n0
−1∑n0

j=1 f1(y|θ0, j)π1(θ0, j)α(θ0, j)
,

where θ0,1, . . . ,θ0,n0 and θ1,1, . . . ,θ1,n1 are two independent samples coming from
the posterior distributions π0(θ |y) and π1(θ |y), respectively. That applies for any
positive function α as long as the upper integral exists. Some choices of α lead
to very poor performances of the method in connection with the harmonic mean
approach (see Section 14.1.5), but there exists a quasi-optimal solution, as provided
by Gelman and Meng (1998):

α�(y) ∝
1

n0π0(θ |y)+n1π1(θ |y) .

This optimum cannot be used per se, since it requires the normalizing constants
of both π0(θ |y) and π1(θ |y). As suggested by Gelman and Meng (1998), an ap-
proximate version uses iterative versions of α�, based on iterated approximations
to the Bayes factor. Note that this solution recycles simulations from both poste-
riors, which is quite appropriate since one model is selected via the Bayes factor,
instead of using an importance weighted sample common to both approximations.
We will see below an alternative representation of the bridge factor that bypasses
this difficulty (if difficulty there is!).

Those derivations are, however, restricted to the case where both models have the
same complexity and thus they do not apply to embedded models, whenΘ0 ⊂Θ1 in
such a way that θ1 = (θ ,ψ), i.e., when the submodel corresponds to a specific value
ψ0 of ψ: f0(y|θ) = f (y|θ ,ψ0).

The extension of the most advanced bridge sampling strategies to such cases
requires the introduction of a pseudo-posterior density, ω(ψ|θ ,y), on the parameter
that does not appear in the embedded model, in order to reconstitute the equivalence
between both parameter spaces. Indeed, if we augment π0(θ |y) with ω(ψ|θ ,y), we
obtain a joint distribution with density π0(θ |y)×ω(ψ|θ ,y) onΘ1. The Bayes factor
can then be expressed as

B01(y) =

∫
Θ1

f (y|θ ,ψ0)π0(θ)α(θ ,ψ)π1(θ ,ψ|y)dθω(ψ|θ ,y)dψ∫
Θ1

f (y|θ ,ψ)π1(θ ,ψ)α(θ ,ψ)π0(θ |y)×ω(ψ|θ ,y)dθ dψ
, (14.1.8)

for all functions α(θ ,ψ), because it is clearly independent from the choice of both
α(θ ,ψ) and ω(ψ|θ ,y). Obviously, the performances of the approximation

(n1)−1∑n1
j=1 f (y|θ1, j,ψ0)π0(θ1, j)ω(ψ1, j|θ1, j,y)α(θ1, j,ψ1, j)

(n0)−1∑n0
j=1 f (y|θ0, j,ψ0, j)π1(θ0, j,ψ0, j)α(θ0, j,ψ0, j)

,
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where (θ0,1,ψ0,1), . . . ,(θ0,n0 ,ψ0,n0) and (θ1,1,ψ1,1), . . . ,(θ1,n1 ,ψ1,n1) are two inde-
pendent samples generated from distributions π0(θ |y)×ω(ψ|θ ,y) and π1(θ ,ψ|y),
respectively, do depend on this completion by the pseudo-posterior as well as on the
function α(θ ,ψ). Chen, Shao, and Ibrahim (2000) establish that the asymptotically
optimal choice for ω(ψ|θ ,y) is the obvious one, namely

ω(ψ|θ ,y) = π1(ψ|θ ,y),

which most often is unavailable in closed form (especially when considering that
the normalizing constant of ω(ψ|θ ,y) is required in (14.1.8)). However, in latent
variable models, approximations of the conditional posteriors often are available, as
detailed in Section 14.1.6.

While this extension of the basic bridge sampling approximation is paramount
for handling embedded models, its implementation suffers from the dependence on
this pseudo-posterior. In addition, this technical device brings the extended bridge
methodology close to the cross-model alternatives of Carlin and Chib (1995) and
Green (1995), in that both those approaches rely on completing distributions, either
locally (Green 1995) or globally (Carlin and Chib, 1995), to link both models under
comparison in a bijective relation. The density ω(ψ|θ0,y) is then a pseudo-posterior
distribution in Chib and Carlin’s (1995) sense, and it can be used as Green’s (1995)
proposal in the reversible jump MCMC step to move (or not) from model M0 to
model M1. While using cross-model solutions to compare only two models does
seem superfluous, given that the randomness in picking the model at each step of
the simulation is not as useful as in the setting of comparing a large number or an
infinity of models, the average acceptance probability for moving from model M0

to model M1 is related to the Bayes factor since

Eπ0×ω
[

f (y|θ ,ψ)π1(θ ,ψ)
f (y|θ ,ψ0)π0(θ)ω(ψ|θ ,y)

]
= B01(y)

even though the average

Eπ0×ω
[

min

{
1,

f (y|θ ,ψ)π1(θ ,ψ)
f (y|θ ,ψ0)π0(θ)ω(ψ|θ ,y)

}]

does not provide a closed form solution.
For the Pima Indian benchmark, we use as pseudo-posterior density ω(θ3|θ1,θ2,

y), the conditional Gaussian density deduced from the asymptotic Gaussian dis-
tribution on (θ1,θ2,θ3) already used in the importance sampling solution, with
mean equal to the ML estimate of (θ1,θ2,θ3) and with covariance matrix equal
to the estimated covariance matrix of the ML estimate. The quasi-optimal solution
α� in the bridge sampling estimate is replaced with the inverse of an average be-
tween the asymptotic Gaussian distribution in model M1 and the product of the
asymptotic Gaussian distribution in model M0 times the above ω(θ3|θ1,θ2,y). This
obviously is a suboptimal choice, but it offers the advantage of providing a non-
iterative solution. The results, obtained over 100 replications of the methodology
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with n0 = n1 = 20,000 are summarized in Figure 14.3 and Table 14.1. The left-
hand graph shows that this choice of bridge sampling estimator produces a solu-
tion whose variation is quite close to the (excellent) importance sampling solution,
a considerable improvement upon the initial Monte Carlo estimator. However, the
right-hand-side graph shows that the importance sampling solution remains far su-
perior, especially when accounting for the computing time. (In this example, run-
ning 20,000 iterations of the Gibbs sampler for the models with both two and three
variables takes approximately 32 seconds.)
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FIGURE 14.3. Pima Indian dataset: (left) boxplots of 100 importance sampling, bridge sampling
and Monte Carlo estimates of B01(y), based on simulations from the prior distributions, for 2×
104 simulations; (right) same comparison for the importance sampling versus bridge sampling
estimates only.

14.1.5 Harmonic Mean Approximations

While using the generic harmonic mean approximation to the marginal likelihood is
often fraught with danger (Neal, 1994), the representation (Gelfand and Dey, 1994)
(k = 0,1)

Eπk

[
ϕk(θ)

πk(θ) fk(y|θ)

∣∣∣∣y
]

=
∫ ϕk(θ)
πk(θ) fk(y|θ)

πk(θ) fk(y|θ)
mk(y)

dθ =
1

mk(y)
(14.1.9)
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holds, no matter what the density ϕk(θ) is—provided ϕk(θ) = 0 when πk(θ) fk(y|θ)
= 0—. This representation is remarkable in that it allows for a direct processing of
Monte Carlo or MCMC output from the posterior distribution πk(θ |y). As with im-
portance sampling approximations, the variability of the corresponding estimator
of B01(y) will be small if the distributions ϕk(θ) (k = 0,1) are close to the cor-
responding posterior distributions. However, as opposed to usual importance sam-
pling constraints, the density ϕk(θ) must have lighter—rather than fatter—tails than
πk(θ) fk(y|θ) for the approximation of the marginal mk(y)

{
1
N

N

∑
j=1

ϕk(θk, j)
πk(θk, j) fk(y|θk, j)

}−1

to enjoy finite variance. For instance, using ϕk(θ) = πk(θ) as in the original har-
monic mean approximation (Newton and Raftery, 1994) will most usually result in
an infinite variance estimator, as discussed by Neal (1994). On the opposite, using
ϕk’s with constrained supports derived from a Monte Carlo sample, like the convex
hull of the simulations corresponding to the 10% or to the 25% HPD regions—that
again is easily derived from the simulations—is both completely appropriate and
implementable (Robert and Wraith, 2009).

Bridge Harmonic mean IS

2
.8

3
.0

3
.2

3
.4

Harmonic mean Importance sampling

3
.1

0
2

3
.1

0
4

3
.1

0
6

3
.1

0
8

3
.1

1
0

3
.1

1
2

3
.1

1
4

3
.1

1
6

FIGURE 14.4. Pima Indian dataset: (left) boxplots of 100 bridge sampling, harmonic mean and
importance sampling estimates of B01(y), based on simulations from the prior distributions, for
2×104 simulations; (right) same comparison for the harmonic mean versus importance sampling
estimates only.
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However, for the Pima Indian benchmark, we propose to use instead as our dis-
tributions ϕk(θ) the very same distributions as those used in the above importance
sampling approximations, that is, Gaussian distributions with means equal to the
ML estimates and covariance matrices equal to the estimated covariance matrices of
the ML estimates. The results, obtained over 100 replications of the methodology
with N = 20,000 simulations for each approximation of mk(y) (k = 0,1) are sum-
marized in Figure 14.4 and Table 14.1. They show a very clear proximity between
both importance solutions in this special case and a corresponding domination of the
bridge sampling estimator, even though the importance sampling estimate is much
faster to compute. This remark must be toned down by considering that the comput-
ing time due to the Gibbs sampler should not necessarily be taken into account into
the comparison, since samples are generated under both models.

14.1.6 Exploiting Functional Equalities

Chib’s (1995) method for approximating a marginal (likelihood) is a direct applica-
tion of Bayes’ theorem: given y ∼ fk(y|θ) and θ ∼ πk(θ), we have that

mk =
fk(y|θ)πk(θ)
πk(θ |y) ,

for all θ ’s (since both the lhs and the rhs of this equation are constant in θ ). There-
fore, if an arbitrary value of θ , say θ ∗k , is selected and if a good approximation to
πk(θ |y) can be constructed, denoted π̂(θ |y), Chib’s (1995) approximation to the
evidence is

mk =
fk(y|θ ∗k )πk(θ ∗k )
π̂k(θ ∗k |y)

. (14.1.10)

In a general setting, π̂(θ |y) may be the Gaussian approximation based on the MLE,
already used in the importance sampling, bridge sampling and harmonic mean solu-
tions, but this is unlikely to be accurate in a general framework. A second solution
is to use a nonparametric approximation based on a preliminary MCMC sample,
even though the accuracy may also suffer in large dimensions. In the special setting
of latent variables models (like mixtures of distributions but also like probit mod-
els), Chib’s (1995) approximation is particularly attractive as there exists a natural
approximation to πk(θ |y), based on the Rao–Blackwell (Gelfand and Smith, 1990)
estimate

π̂k(θ ∗k |y) =
1
T

T

∑
t=1
πk(θ ∗k |y,z(t)

k ),

where the z(t)
k ’s are the latent variables simulated by the MCMC sampler. The es-

timate π̂k(θ ∗k |y) is a parametric unbiased approximation of πk(θ ∗k |y) that converges
with rate O(

√
T ). This Rao–Blackwell approximation obviously requires the full
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conditional density πk(θ ∗k |y,z) to be available in closed form (constant included)
but, as already explained, this is the case for the probit model.

Figure 14.5 and Table 14.1 summarize the results obtained for 100 replications of
Chib’s approximations of B01(y) with T = 20,000 simulations for each approxima-
tion of mk(y) (k = 0,1). While Chib’s method is usually very reliable and dominates
importance sampling, the incredibly good approximation provided by the asymp-
totic Gaussian distribution implies that, in this particular case, Chib’s method is
dominated by both the importance sampling and the harmonic mean estimates.
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FIGURE 14.5. Pima Indian dataset: boxplots of 100 Chib’s, harmonic mean and importance esti-
mates of B01(y), based on simulations from the prior distributions, for 2×104 simulations.

TABLE 14.1. Pima Indian dataset: Performances of the various approximation methods used in
this survey.

Monte Importance Bridge Harmonic Chib’s
Carlo sampling sampling mean approximation

Median 3.277 3.108 3.087 3.107 3.104
Standard deviation 0.7987 0.0017 0.1357 0.0025 0.0195
Duration in seconds 7 7 71 70 64
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14.1.7 Conclusion

In this short evaluation of the most common estimations to the Bayes factor, we
have found that a particular importance sampling and its symmetric harmonic mean
counterpart are both very efficient in the case of the probit model. The bridge sam-
pling estimate is much less efficient in this example, due to the approximation error
resulting from the pseudo-posterior. In most settings, the bridge sampling is actu-
ally doing better than the equivalent importance sampler Robert and Wraith (2009),
while Chib’s method is much more generic than the four alternatives. The recom-
mendation resulting from the short experiment above is therefore to look for handy
approximations to the posterior distribution, whenever available, but to fall back on
Chib’s method as a backup solution providing a reference or better.

Acknowledgments: J.-M. Marin and C.P. Robert are supported by the 2009–2012
grant ANR-09-BLAN-0218 “Big’MC”.

14.2 Bayesian Computation and the Linear Model

Matthew J. Heaton and James G. Scott

The linear model is a venerable topic, and one that may even seem passé in light
of the past decade’s revolution in applied Bayesian nonparametric modeling. Yet
despite its apparent simplicity, the linear model remains as important as ever to the
practice of modern Bayesian statistics, for at least three reasons.

First, many data sets are simply too high-dimensional to be modeled using the
slickest, newest methods. Computers run out of memory; Markov chains fail to con-
verge; priors become prohibitively difficult to elicit or choose in a default way. Al-
ready this is a problem with data that arises in genetics and SNP association studies.
Yet these data sets are small compared to those concerning Internet traffic that, for
example, Google or Microsoft encounter every day. When a linear model is all that
can be fit, it should be fit using the best available statistical and computational tools.

Second, many practitioners will fit a linear model to their data as a first pass, and
will never make, or never be able to publish, a second pass. Indeed, many decisions
in public health and policy are made using the results of a linear regression, with
choices of great consequence coming down to the question of whether a particular
term is “significant.” Echoing the above: when a linear model is all that will be fit,
it should be fit using the best available statistical and computational tools.

Finally, some nonparametric, nonlinear models can be recast as parametric, lin-
ear ones. For example, many kernel-regression problems correspond to expanding a
function as a linear combination of basis elements given by the orthonormal eigen-
functions of an integral operator. Similarly, methods based on wavelets, splines,
Fourier polynomials, and many other “dictionaries” of basis functions can be treated
as little more than linear regression, and yet are capable of fitting highly nonlinear
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functions. A hypothetical Bayesian who knew only how to fit “Y = Xβ + error”
could still handle a vast array of problems, simply by being clever about the choice
of X .

Complicating matters is the fact that Bayesian linear modeling can generate many
potential summaries for a high-dimensional data set, and that each summary corre-
sponds, in some sense, to a different inferential goal. These summaries can include
posterior means or medians of regression coefficients, variable-inclusion probabili-
ties, and the posterior probabilities of models themselves (where a model is a spe-
cific combination of coefficients being identically zero). Section 14.2.3, for exam-
ple, considers a data set where ozone-concentration levels around Los Angeles are
regressed upon 65 possible atmospheric predictors. One could ask at least three dif-
ferent, scientifically relevant, questions concerning this data:

1. Which subset of atmospheric variables best accounts for observed variation
in past ozone levels? This question can, in principle, be answered by finding the
model with the highest posterior probability, given the data and prior assump-
tions.

2. Which subset of atmospheric variables should be used to predict future
ozone levels? It is known that model-averaged predictions are generally best,
but this is unsatisfactory if one must choose a single model to use for prediction.
In orthogonal and nested-model settings, the best model to use for prediction is
the median probability model (Barbieri and Berger, 2004). But in general, it is
unknown whether there exists a single best model to use for prediction.

3. What numbers should be used to yield the best estimate of the marginal
effect of each variable on ozone levels? Here, as above, the model-averaged
estimates of the coefficients are generally best.

As this list suggests, different methodological approaches may work better for
different questions. This paper seeks to reach a complementary understanding of dif-
ferent computational strategies. Indeed, we find that no single computational strat-
egy works best for all of these problems—a fact that is both interesting and surpris-
ing, given that all strategies are, fundamentally, trying to reconstruct the same joint
distribution over data, models, and parameters. In light of this fact, it is important to
understand each strategy’s strengths and weaknesses.

Our approach differs from existing review papers on Bayesian linear models in
two main ways:

1. We focus less on well-established material regarding traditional MCMC, and
more on recent innovations involving stochastic search and adaptive MCMC.

2. We provide a computational and methodological overview of “pure shrinkage”
solutions, which have been the subject of a recent surge in research activ-
ity. An example of a pure-shrinkage solution is to place exchangeable double-
exponential priors on the regression coefficients, a tactic which often goes by the
name of “the Bayesian LASSO” (Park and Casella, 2008).

Additionally, we also review some recent developments about shrinkage and vari-
able selection that are not explicitly computational in nature. We include these re-
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sults in an attempt to give a current picture of the “state of the art” for Bayesian
linear modeling.

14.2.1 Bayesian Linear Models

14.2.1.1 Notation

Given a vector Y of n responses and an n× p design matrix X , suppose we wish
to select a subset of k predictors, zeroing out the remaining p− k coefficients. This
yields a sparse linear model of the form

Yi = α+Xi j1β j1 + . . .+Xi jkβ jk + εi , (14.2.1)

for some { j1, . . . , jk} ⊂ {1, . . . , p}, where εi
iid∼ N(0,φ−1).

We follow the convention of treating the intercept α differently, since all models
will include this term. Let H0 denote the null model with only an intercept, and
let HF denote the full model with all covariates included. The full model thus has
parameter vector θ ′ = (α,β ′), β ′ = (β1, . . . ,βp)′.

Each model Hγ is indexed by a binary vector γ of length p indicating a set of
kγ ≤ p nonzero regression coefficients βγ :

γi =
{

0 if βi = 0
1 if βi �= 0 .

In Bayesian model selection, γ itself is a random variable that takes values in
the discrete space {0,1}p, which has 2p members. Inference relies upon the prior
probability of each model, p(Hγ), along with the marginal likelihood of the data
under each model:

f (Y | Hγ) =
∫

f (Y | θγ ,φ)π(θγ ,φ)dθγdφ , (14.2.2)

where π(θγ ,φ) is the prior for model-specific parameters. These together define, up
to a constant, the posterior probability of a model:

p(Hγ | Y) ∝ p(Hγ) f (Y | Hγ). (14.2.3)

Let Xγ denote the columns of the full design matrix X given by the nonzero
elements of γ , and let X∗

γ denote the concatenation (1 Xγ), where 1 is a column
of ones corresponding to the intercept α . For simplicity, assume that all covariates
have been centered so that 1 and Xγ are orthogonal. Also assume that the common
choice π(α) = 1 is made for the parameter α in each model (see Berger, Pericchi,
and Varshavsky (1998) for a justification of this choice of prior).



530 14 Posterior Simulation and Monte Carlo Methods

Often all models will have small posterior probability, in which case more useful
summaries of the posterior distribution are quantities such as the posterior inclusion
probabilities of the individual variables:

wi = Pr(γi �= 0 | Y) =∑
γ

1γi=1 · p(Hγ | Y). (14.2.4)

These quantities also define the median-probability model, which is the model that
includes those covariates having posterior inclusion probability of at least 1/2 (Bar-
bieri and Berger, 2004).

14.2.1.2 Choosing Priors for Variable Selection

An extensive body of literature confronts the difficulties of Bayesian model choice
in the face of weak prior information. These difficulties arise due to the obvious
dependence of the marginal likelihoods in (14.2.2) upon the choice of priors for
model-specific parameters. In general one cannot use improper priors on these pa-
rameters, since this leaves the resulting Bayes factors defined only up to an arbitrary
multiplicative constant.

One class of methods for dealing with this issue involves training a noninfor-
mative prior using some function of the data, and then using the remaining data to
compute Bayes factors under the induced family of prior distributions. This class
includes the fractional Bayes factors of O’Hagan (1995) and the intrinsic Bayes fac-
tors of Berger and Pericchi (1996a). An extensive discussion can be found in Berger
and Pericchi (2001). Another promising recent method due to Ray et al. (2007)
known as PBIC offers a default specification in terms of the principal components
of the observed information matrix, and seems to offer an interesting alternative to
the well known Bayesian information criterion (Schwarz, 1978), which can also be
used to compute a set of pseudo-marginal likelihoods.

Other authors have sidestepped this problem by defining default proper priors
that are appropriate for model selection and that explicitly aim to minimize the effect
of the prior. One such example is the g-prior and its robust variants, where

(βγ | g,φ) ∼ N

{
0,

g
φ

(Xt
γXγ )−1

}
,

and where g is either chosen outright, given a prior, or estimated by marginal maxi-
mum likelihood.

The existence of simple expressions for marginal likelihoods has made the use of
g-priors very popular. They can also be defended on foundational Bayesian grounds,
since they automatically adjust the predictive distribution of a model to account for
observed co-linearities in the variables (precisely the kind of behavior one would
expect from a carefully done subjective elicitation).

Additionally, some recent authors have overcome one of the major problems of g-
priors—namely, a type of unsettling behavior known as the “information paradox,”
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a phenomenon that was noted by Jeffreys (1961) in the context of testing normal
means. It turns out that robustifying the g-prior by giving it heavier-than-normal
tails seems to solve this problem. Moreover, it does so in a way that does not make
marginal likelihoods all that much more difficult to compute. Key references here
are Zellner and Siow (1980), Zellner (1986), George and Foster (2000), and Liang
et al. (2008). Another overview of g-type priors can be found in the appendix of
Scott and Berger (2008).

What of the prior probabilities for models themselves? One might reasonably
consider a set of subjective prior model probabilities in smaller problems. But the
complexity of such an elicitation means that default methods must be developed as
a practical matter for high-dimensional problems, or when the appearance of ob-
jectivity is important. In such cases, there seems to be wide agreement surrounding
the use of so-called “variable selection priors,” where the the p-dimensional vector
γ is assumed to arise as a sequence of exchangeable Bernoulli trials with common
success probability w.

In such cases, we find it natural to think of specifying prior model probabilities
as an opportunity to apportion mass across model space in a way that solves the
implicit problem of multiple hypothesis testing posed by variable selection. The key
intuition when using these priors is to let the data estimate w. This yields an au-
tomatic penalty for multiple testing, in that the introduction of spurious covariates
will cause the posterior mass of w to concentrate near 0, making it harder for all
variables to overcome the increasingly strong prior belief in their irrelevance (Scott
and Berger, 2006). George and Foster (2000) propose estimating w by empirical-
Bayes methods, but they note that this can prove computationally overwhelming
in large problems with nonorthogonal design. Cui and George (2008) consider the
fully Bayesian specification, whereby w is marginalized away before computing the
posterior probability of a model. Finally, Scott and Berger (2008) offer some theoret-
ical and numerical comparisons of the empirical-Bayes and fully Bayes approaches.
They show that the fully Bayes solution offers an automatic improvement over em-
pirical Bayes, in that it can avoid a particular form of degeneracy that arises when
the empirical-Bayes solution collapses to the boundary of the parameter space.

14.2.2 Algorithms for Variable Selection and Shrinkage

14.2.2.1 Traditional MCMC

Computational algorithms for variable selection took flight beginning with the
seminal work of George and McCulloch (1993) and followed by, among others,
Geweke (1996), Clyde, Desimone, and Parmigiani (1996), and George and McCul-
loch (1997). These algorithms construct a Markov chain to simulate a sequence
γ(1),γ(2), . . . ,γ(T ) such that

γ(t) D→ p(Hγ | Y)
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as t → ∞. The majority of these algorithms assume conjugate prior distributions to
implement a Gibbs sampler (Gelfand and Smith, 1990) over the model space, since
these allow marginal likelihoods to be computed in closed form. Several algorithms,
however, allow non-conjugate priors to be used by employing Metropolis proposals
(see, e.g., Madigan and York, 1995). In all cases, the inclusion probabilities (14.2.4)
are estimated using the simulated γ sequence, with,

ŵi =
1
T

T

∑
t=1

1
γ(t)i =1

. (14.2.5)

An eloquent overview of these methods is given in Clyde and George (2004).
Due to their intuitive construction and ease of implementation, MCMC techniques
for variable selection surged in popularity during the 1990s and at the turn of the
century.

In recent years, however, variable-selection techniques based upon traditional
Markov-chain algorithms have come under scrutiny for a few reasons. First, for
large p, the posterior distribution p(Hγ | Y) is highly multimodal, and there are
no trustworthy diagnostics that can effectively recognize a lack of Markov-chain
convergence in such complex situations. The usual “rules of thumb” for MCMC,
as we shall see on the examples later in the paper, can lead one badly astray when
assessing convergence.

Second, many years of testing and implementation of such algorithms have
shown that for a finite (and computationally practical) run time T , the chain often
completely misses large modes in the model space. This potentially renders (14.2.5)
a poor estimator of wi; see Scott and Carvalho (2008) for particularly stark example
of this kind, along with the examples in subsequent sections. For many researchers
that have studied this issue, it is very difficult to understand how a procedure can
correctly estimate marginal distributions when it misses such large, obvious modes
of the joint distribution. Even now, despite years of research on computational ap-
proaches for variable selection, it is simply not known whether the estimated inclu-
sion probabilities that arise from MCMC on large problems are even approximately
correct.

Third, it is very unlikely that the Markov chain will visit any model frequently
enough to allow model probabilities to be estimated by frequency of occurrence in
the Monte Carlo sample. In fact, in large problems, it will almost always be the case
that all models (even the best one) will have posterior probabilities significantly
smaller than 1/T , which is the smallest nonzero model probability that can arise
from an MCMC of length T .

14.2.2.2 Stochastic Search Algorithms for Variable Selection

For these and other reasons, some researchers have become skeptical of “vanilla”
MCMC, and the popularity of these techniques as an active research area has dwin-
dled. These older techniques have, however, paved the way for the emergence of
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newer stochastic-search (SS) algorithms, which focus on rapidly discovering mod-
els with high posterior probability. These algorithms use the information from pre-
viously visited models, such as estimated inclusion probabilities, to guide the search
over the model space.

MCMC can, of course, be viewed as a form of stochastic search. But the SS
algorithms discussed here pay little, if any, attention to the goal of converging to
the posterior distribution p(Hγ | Y). Rather, SS algorithms focus on finding the
models with the highest posterior probability. Their output is simply a list of models
visited, together with a score for each one—typically an un-normalized posterior
probability. There is no sense which the estimated inclusion probabilities “converge”
to the true ones, unless all of the models are eventually enumerated.

A simple SS algorithm proposed by Berger and Molina (2005), for example, uses
online estimates of posterior model and inclusion probabilities to orient the search.

Let p(t)(Hγ | Y) and w(t)
i be the estimates of p(Hγ | Y) and wi at the tth iteration of

the SS algorithm, respectively. At iteration t, the algorithm proceeds by:

1. Resampling one of the t − 1 previously sampled models in proportion to their
estimated probabilities p(t)(Hγ | Y), and setting this to be the current model.

2. Flipping a coin to decide whether to add or delete a variable to the current model.

3. Adding [removing] variable i with probability (w(t)
i + ε)/(1−w(t)

i + ε) [or (1−
w(t)

i + ε)/(w(t)
i + ε) in the case of a deletion], where ε > 0 is small and bounds

w(t)
i away from 0 or 1.

Berger and Molina (2005) suggest updating p(t)(Hγ | Y) via a path-based estimate
of the Bayes factors between models. Certainly the algorithm cannot explore all 2p

models, but the hope is that a majority of visited models will have high posterior
probability.

Many stochastic-search algorithms have this general flavor. The key ingredient
to visiting good models seems to be to use the inclusion probabilities to guide the
search—an approach that also works in far more general classes of models and
features. For example, Scott and Carvalho (2008) propose a SS algorithm called
FINCS (feature-inclusion stochastic search). This algorithm, which builds upon the
insight of Berger and Molina (2005) regarding the importance of the inclusion prob-
abilities, interweaves local moves (adding or deleting a variable from γ(t)), resam-
pling moves (selection from among one of γ(1), . . . ,γ(t−1)), and global moves that
attempt to avoid getting stuck in local modes in model space. Their application of
the algorithm is to Gaussian graphical models, but the approach is in principle quite
straightforward to use in linear models, as well.

A SS algorithm of a slightly different nature was proposed by Hans, Dobra, and
West (2007), and is known as shotgun stochastic search (SSS). Hans, Dobra, and
West (2007) consider constructing a neighborhood of models around γ(t) denoted

by ∂γ(t) = {γ(t)
+ ,γ(t)

0 ,γ(t)
− }, where γ(t)

+ ,γ(t)
0 ,γ(t)

− is the set of all models which add,
replace, or remove one element from γ(t), respectively. Each model in ∂γ(t) is given
a “score” (e.g., AIC, BIC, or a posterior probability), and a set S (t) is adapted to
contain the B highest scoring models of {∂γ(t),S (t−1)} such that S (T ) contains
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the B best models after T iterations. To iterate the algorithm, γ(t+1) is sampled from
∂γ(t) proportional to the assigned scores. (Obviously, the SSS algorithm is compu-
tationally demanding and works best in a parallel computing environment, which it
was designed to exploit.)

Clyde, Ghosh, and Littman, M. (2009), astutely observe that for models with
tractable marginal likelihoods, resampling a model provides no additional informa-
tion for estimating posterior model probabilities. They go on to develop a Bayesian
adaptive sampling (BAS) algorithm which samples without replacement from the
2p models. This too is accomplished by sampling models one variable at a time in a
manner that is guided by the estimated inclusion probabilities. If S (t) is the set of
sampled models, then the estimated inclusion probability for the ith variable is given
by

ŵ(t)
i =

∑γ∈S (t) p(Y | Hγ )γi

∑γ∈S (t) p(Y | Hγ )
, (14.2.6)

and ŵ(t)
i → wi as t → 2p because S (t) becomes the set of all 2p models. Sampling

without replacement is ensured by subtracting the mass of model γ(t) from the total
mass of π(γ | Y).

14.2.2.3 Adaptive MCMC Algorithms for Variable Selection

Similar to SS algorithms, the key idea of adaptive MCMC (AMCMC) is to inform
and adapt the proposal distribution of a Metropolis-Hastings algorithm using past
draws. Specifically, if X (1:t) = {X (i) : i = 1 . . . , t} is the set of realizations of the
Markov chain X (t) up to time up time t, then AMCMC would adapt the proposal dis-
tribution q(X (t), ·;ψ(t)) iteratively by adapting the parameter vector ψ(t) = f (X (1:t))
for some function f .

As a simple example, suppose that the proposal density is given by q(X (t), ·;ψ(t))
= N(·;X (t),σ (t)). Then an AMCMC algorithm could adapt ψ(t) = σ (t) iteratively
via the update equation ψ(t) =

√
Var(X (1:t)). While this is a simple example, it

illustrates the appeal of AMCMC in that the tuning of the proposal distribution is
done automatically.

Because AMCMC algorithms use all past states X (1:t) to construct the pro-
posal distribution (i.e., estimate ψ(t)), the resulting algorithms no longer satisfy
the Markov property: the past and future are no longer conditionally independent,
given the present. Nevertheless, due to the recent theoretical work of, for example,
Haario, Saksman, and Tamminen (2001), Atchadé and Rosenthal (2005), Andrieu
and Moulines (2006), Andrieu and Atchadé (2007), Roberts and Rosenthal (2007),
and Atchadé et al. (2009), simple and intuitive conditions have been established
which, if met, guarantee that an AMCMC algorithm will converge to the desired
posterior distribution. Using these conditions, practically useful algorithms have
emerged for a variety of models and situations. These include Haario, Saksman,
and Tamminen (2001, 2005), Roberts and Rosenthal (2009), Pasarica and Gelman
(2010), and Craiu, Rosenthal, and Yang (2009).
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Recently, some AMCMC methods for variable selection have begun to emerge.
One of the first was proposed by Nott and Kohn (2005), who made clever use of the
fact that Pr(γi = 1 | γ iC ,Y) = E(γi | γ iC ,Y), where γ iC = {γ j ∈ γ : j �= i}. Specifically,
Nott and Kohn (2005) adaptively estimate γ̄(t) = t−1∑i γ(i) and Γ(t) = Cov(γ | Y) at
each step of the AMCMC algorithm. They do so using the best linear unbiased
estimator of E(γi | γ iC ,Y),

Ê(γi | γ iC ,Y) = γ̄i +Γ
(t)
i,iC

[
Γ(t)

iC ,iC

]−1
(γ iC − γ̄ iC), (14.2.7)

as a proposal distribution in the MCMC algorithm, where Γ(t)
i,iC

is the ith row of Γ(t)

with the ith column removed, and Γ(t)
iC ,iC

is Γ(t) with the ith row and column removed.
Using (14.2.7) as a proposal distribution, variables with a high conditional inclusion
probabilities are frequently added to the model.

The algorithm of Nott and Kohn (2005) uses conjugate prior distributions such
that the coefficients and error precision can be integrated out, allowing a closed-
form expression for f (Y | Hγ ). An alternative AMCMC algorithm proposed by Ji
and Schmidler (2009) use a point-mass mixture prior for the coefficients, e.g.

p(βi) = (1−w)δ0(βi)+wN(βi;0,s2
i ) , (14.2.8)

where δ0(·) is the Dirac measure at 0 and s2
i is a known prior variance. Ji and Schmi-

dler (2009) then consider adapting proposal distributions of the form,

q(β (t)
i , ·;ψ(t)) = λq0(·; ψ̃)+(1−λ )

[
(1−ω(t))δ0(·)+ω(t)N(·; β̂ (t)

i , Σ̂ (t)
i )

]
,

(14.2.9)
where 0 < λ < 1 is fixed and known, and q0(·; ψ̃) is fixed (non-adaptive) to ensure
that the bounded convergence condition in Theorem 13 of Roberts and Rosenthal
(2007) is satisfied. Ji and Schmidler (2009) then use the stochastic approximation
algorithm of Robbins and Monro (1951) to develop an adaptive scheme for ω(t),

β̂ (t)
j , and Σ̂ (t) which minimizes the Kullback-Leibler (KL)-divergence between the

target distribution π(β j | Y) and the proposal distribution (14.2.9).
One potential limitation of this algorithm is that it depends upon being able to

write an exchangeable joint prior for the regression coefficients in a given model,
where βi ∼ w · p(βi)+(1−w) ·δ0 as in (14.2.8). This restriction excludes the possi-
bility of using g-like priors, since these cannot be expressed using an exchangeable
model for each coefficient. Since there are strong (non-computational) reasons to
prefer g-like priors for variable selection in situations with non-orthogonal designs,
this limitation may be a significant one.
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14.2.2.4 Shrinkage-based Alternatives

All of the models discussed so far place nonzero probability mass upon the hypoth-
esis that each coefficient βi is zero. As we have seen, this results in a combinatorial
explosion in the number of discrete models that must be considered, leading to a
very difficult problem in stochastic computation.

Recently, many researchers have become interested in an alternative approach
based upon “pure shrinkage” priors, which do not place positive probability at zero.
There is, of course, an established tradition of evaluating such priors on foundational
Bayesian grounds (see, e.g., Pericchi and Smith, 1992). Yet much of the more recent
activity has arisen as a Bayesian rejoinder to the neo-classical literature on penalized
least squares, which offers a very different perspective on variable selection. Indeed,
many well-studied priors are enjoying newfound prosperity in their second careers
as “penalty functions,” which yield solutions that can be interpreted as posterior
modes.

These priors are often in the family of multivariate scale mixtures of normals,
which is very general and has many nice analytical properties:

(Y | β ,σ2) ∼ N(Xβ ,σ2I)
(β j | λ j,τ,σ2) ∼ N(0,λ 2

j τ2σ2)
λ j ∼ g(λ j)
τ ∼ h(τ) .

The λ j’s are known as the “local” shrinkage parameters, while τ is known as the
“global” shrinkage parameter.

The following list is by no means comprehensive, but gives a sense of the strong
level of activity in this area:

1. The horseshoe prior of Carvalho, Polson, and Scott (2008) assumes a half-
Cauchy prior on the local scales, λ j ∼ C+(0,1), which is equivalent to an F(1,1)
prior on the local variances λ 2

j . Polson and Scott (2009) generalize this prior to
a wider class of hypergeometric–beta mixtures, while Scott (2009) proposes two
methods for fitting models in this family: one based on importance sampling, and
an alternative MCMC algorithm that involves a slice-sampling step for the local
shrinkage parameters.

2. The Student-t prior is defined by an inverse-gamma mixing density, λ 2
j ∼

IG(ξ/2,ξτ2/2). Tipping (2001) uses this model for sparsity by finding poste-
rior modes under the assumption that ξ → 0.

3. The double-exponential prior uses an exponential mixing density: p(λ 2
j | τ2) ∝

exp{λ 2
j /2τ2}. The standard Markov-chain Monte Carlo algorithm for working

with this model is from Carlin and Polson (1991b), and uses the fact that the local
variance parameters are conditionally inverse-Gaussian, given the data and other
parameters. More recently, Park and Casella (2008) and Hans (2008) have revi-
talized interest in this prior as a Bayesian alternative to the LASSO (Tibshirani,
1996).
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4. The normal–Jeffreys prior has been studied by Figueiredo (2003) and Bae and
Mallick (2004). This improper prior is induced by placing Jeffreys’ prior upon
each variance term, p(λ 2

j ) ∝ 1/λ 2
j , leading to p(β j) ∝ |β j|−1 independently.

5. The normal–exponential–gamma family of priors proposed by Griffin and Brown
(2005) is also based upon the exponential mixing density, but uses a Ga(c,d2)
density rather than an inverse-gamma for the global scale term τ . The two hyper-
parameters allow control over tail weight (c) and scale (d). This leads to

p(λ 2
j ) =

c
d2

(
1+

λ 2
j

d2

)−(c−1)

.

Clearly, options abound. A discussion of some general principles to help guide
this choice can be found in Carvalho, Polson, and Scott (2008), who compare many
of the above possibilities at great length. Their conclusion is that, in order to be
appropriate for sparse problems, the prior for λ j should have positive density at
zero, and should decay no faster than λ−2

j . (These same guidelines also apply to the
prior on τ .)

To be sure, pure-shrinkage solutions can never provide a truly sparse solution, in
the sense that they will never allocate positive posterior probability at zero. Nonethe-
less, there is a growing body of empirical evidence to suggest that it is possible to
use pure-shrinkage priors to get estimates and predictions very close to those that
arise under Bayesian model averaging. This is an active and fast-moving area of
research, and the exciting possibility of “BMA mimicry” using shrinkage priors is
just one of many open problems here.

14.2.3 Examples

In this section, the approaches described above are evaluated on three examples: a
very simple, simulated orthogonal problem; a data set on the long-term economic
growth rates of 88 countries; and a data set of daily maximum ozone measure-
ments near Los Angeles. We address four questions that are relevant to compar-
ing MCMC and stochastic search/adaptive sampling, the two general classes of
variable-selection algorithms that have been considered here:

1. Does either class of methods systematically find better models?
2. Do the classes systematically differ in their estimates of inclusion probabilities?
3. Does either class yield better out-of-sample performance?
4. How do pure-shrinkage solutions compare to full-blown model averaging?
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14.2.3.1 Orthogonal Simulation Study

Our first experiment is designed to test the algorithms in a situation where the
model space is too large to enumerate, but where everything else remains as simple
as possible. Hence we construct an orthogonal problem with no unknown hyper-
parameters, where all true inclusion probabilities are known exactly, and where the
identity of the top model is known.

Specifically, we let

Yi
iid∼ N(μiγi,σ2) (14.2.10)

for i = 1, . . . ,n. Here γi is either 1 or 0, designating signal or noise. We chose n = 50
and σ2 = 1, and we assume that the nonzero means follow μi ∼ N(0,1), and that
Pr(γi = 1) = 0.5 independently for all i. Even though the full model space has 250

members and is too big to enumerate, the structure of the problem allows inclusion
probabilities to be computed exactly. The marginal likelihood of the data under a
model configuration γ is

f (Y | Hγ ) =∏
i

N(Yi | 0,1+ γi) ,

where N(x | m,v) is the normal p.d.f. with mean m and variance v evaluated at x.
Meanwhile, under this simple design, the true inclusion probabilities are

wi =
N(Yi | 0,2)

N(Yi | 0,1)+N(Yi | 0,2)
, (14.2.11)

and the highest posterior probability model is the median probability model.
We actually simulated three data sets under (14.2.10) with low, medium, and high

signal-to-noise (STN) ratios. The low-STN data set takes μi = i for i = 1, . . . ,5; the
medium STN data set takes μi = i/2 for i = 1, . . . ,10; and the high STN data set
takes μi = i/5 for i = 1, . . . ,25. (All other means are set to zero.)

TABLE 14.2. Sum of absolute error in inclusion probabilities for orthogonal simulation study.

Data SSVS FINCS AMCMC
Low Density 0.284 12.213 0.384

Medium Density 0.221 10.135 0.394
High Density 0.208 8.391 0.372

For each simulated data set, we attempted to reconstruct the posterior distribution
for γ using the stochastic-search algorithm of Berger and Molina (2005) (FINCS),
the AMCMC algorithm of Nott and Kohn (2005), and the SSVS algorithm of George
and McCulloch (1993). Each MCMC was run for T = 5000 iterations after discard-
ing an initial 500 iterations for burn-in, while FINCS was run for 250,000 iterations.
(These numbers mean that each algorithm evaluated the same number of marginal
likelihoods, making the comparison a fair one.) Table 14.2 displays the sum of ab-
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solute errors for inclusion probabilities SAEw = ∑i |wi − ŵi| for the three data sets,
and Figure 14.6 displays corresponding boxplots of log f (Y | γ) of the top visited
models.

FIGURE 14.6. log f (Y | Hγ ) of the explored models using FINCS, SSVS, and AMCMC for the
low, medium, and high STN data sets.

Additionally, the full set of inclusion probabilities for the medium STN experi-
ment can be found in Table 14.3. The table is a bit dense but repays close inspection,
since together with Figure 14.6 it tells a very interesting story. On the one hand, the
FINCS algorithm is quite poor at estimating inclusion probabilities compared to
AMCMC or SSVS, even on this simple orthogonal problem. In particular, it seems
to overestimate wi for “good” variables, and to underestimate wi for “bad” variables.
(This was also true for the low- and high-STN data sets, though these tables are
omitted.) This systematic bias is interesting but perhaps not too surprising: FINCS
is not concerned with exploring all models, nor with re-constructing any marginal
distributions.

Meanwhile, both SSVS and AMCMC get the inclusion probabilities essentially
correct. Yet paradoxically, the explored models under FINCS have a higher marginal
likelihood than those found under either AMCMC or FINCS. Indeed, FINCS finds
dozens of models that are better than the single best one discovered by either SSVS
or AMCMC. This fact is much harder to understand: how is it that, at least in this
case, both MCMC methods are able to reconstruct the correct marginal distributions
while missing large pockets of probability in the joint distribution from which all
these marginals are derived?
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TABLE 14.3. True inclusion probabilities for the 50 simulated coefficients in the medium
signal-to-noise-ratio configuration, along with estimates arising from three algorithms: stochastic
search using inclusion probabilities (FINCS), Gibbs sampling over models (SSVS), and adaptive
Markov-chain Monte Carlo (AMCMC). The results are rounded to two decimal places and are

ordered by the absolute value of the observation Yi.

Rank Y True wi FINCS SSVS AMCMC
1 5.98 1.00 1.00 1.00 1.00
2 4.94 1.00 1.00 1.00 1.00
3 4.30 1.00 1.00 1.00 1.00
4 3.80 0.99 1.00 0.99 0.99
5 3.38 0.97 1.00 0.97 0.97
6 3.10 0.95 1.00 0.94 0.95
7 2.75 0.90 0.99 0.90 0.90
8 -2.71 0.89 0.99 0.89 0.89
9 -2.14 0.74 0.95 0.75 0.74

10 -1.87 0.65 0.92 0.65 0.66
11 1.67 0.59 0.86 0.59 0.59
12 -1.63 0.58 0.75 0.57 0.58
13 -1.60 0.57 0.74 0.57 0.58
14 1.57 0.56 0.75 0.55 0.55
15 -1.55 0.55 0.69 0.55 0.55
16 1.44 0.52 0.55 0.52 0.53
17 1.42 0.52 0.69 0.51 0.52
18 -1.29 0.48 0.36 0.48 0.49
19 1.28 0.48 0.70 0.48 0.49
20 1.26 0.48 0.49 0.48 0.48
21 1.23 0.47 0.31 0.46 0.48
22 -1.23 0.47 0.43 0.46 0.48
23 1.13 0.45 0.22 0.44 0.44
24 1.03 0.43 0.14 0.42 0.42
25 -0.85 0.40 0.18 0.40 0.39
26 0.74 0.38 0.09 0.39 0.36
27 0.71 0.38 0.08 0.38 0.36
28 -0.69 0.37 0.08 0.38 0.37
29 -0.66 0.37 0.08 0.37 0.37
30 0.65 0.37 0.07 0.36 0.36
31 0.61 0.36 0.09 0.36 0.35
32 0.59 0.36 0.08 0.37 0.35
33 0.58 0.36 0.07 0.35 0.34
34 0.57 0.36 0.08 0.36 0.35
35 -0.55 0.36 0.16 0.35 0.35
36 0.50 0.36 0.06 0.36 0.35
37 -0.50 0.36 0.08 0.36 0.37
38 -0.46 0.35 0.07 0.34 0.35
39 0.42 0.35 0.10 0.36 0.34
40 -0.36 0.34 0.07 0.35 0.33
41 -0.33 0.34 0.06 0.34 0.34
42 0.26 0.34 0.06 0.33 0.32
43 0.22 0.34 0.07 0.34 0.33
44 -0.21 0.34 0.06 0.33 0.32
45 0.19 0.34 0.06 0.34 0.32
46 -0.18 0.34 0.07 0.33 0.32
47 -0.14 0.34 0.06 0.34 0.34
48 -0.07 0.33 0.06 0.34 0.31
49 0.02 0.33 0.05 0.33 0.33
50 -0.01 0.33 0.06 0.33 0.32
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14.2.3.2 GDP Growth Data

FIGURE 14.7. Log marginal likelihoods of models discovered by the three algorithms on the GDP
growth example.

We next ran a similar experiment on a real data set that was collected in an
attempt to understand the determinants of long-term economic growth. Here Y is
annualized GDP growth since 1960 for 88 countries, and X represents a battery of
67 possible socio-economic, political, and geographical predictors of growth. This
data set has been previously analyzed by Fernandez, Ley, and Steel (2001), Sala-
i Martin, Doppelhofer, and Miller (2004), and Ley and Steel (2007). We assume
g-priors for the coefficients; unlike in the orthogonal problem, the true inclusion
probabilities are unknown.

Surprisingly, a very different pattern emerged. Before, SSVS and AMCMC
agreed (both with each other and with the truth), while FINCS disagreed despite vis-
iting better models. On this problem, however, FINCS and AMCMC tend to agree
with each other—though not perfectly—while SSVS disagrees with both of them.
As Table 14.4 shows, this disagreement can be stark. For example, SSVS estimates
the inclusion probability of the East Asian dummy variable to be 50%, while neither
of the other methods estimate this probability to be larger than 4%.

Given a sufficient burn-in period, both SSVS and AMCMC are fairly stable from
run to run. (The burn period tends to be quite long for AMCMC, but not untenably
so.) This creates the illusion that each has independently converged to the posterior
distribution. Yet at least one of them certainly has not, and it is impossible to know
which one it is using existing tools.
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TABLE 14.4. Estimated inclusion probabilities for the top 50 (out of 67) variables in the GDP
growth data set. Results are given for SSVS, FINCS, and AMCMC. AMCMC was replicated

three times to ensure stability, with results displayed for all three runs.

Variable SSVS FINCS AMCMC 1 AMCMC 2 AMCMC 3
Investment Price 0.98 1.00 1.00 1.00 1.00
GDP in 1960 (log) 0.97 1.00 1.00 1.00 1.00
Primary Schooling in 1960 0.94 0.99 1.00 1.00 1.00
Fraction Confucian 0.73 1.00 1.00 1.00 0.99
Fraction GDP in Mining 0.72 1.00 0.99 0.99 0.99
Public Investment Share 0.64 0.99 0.98 0.98 0.98
African Dummy 0.55 1.00 0.96 0.97 0.98
Fraction Buddhist 0.52 0.93 0.94 0.96 0.95
East Asian Dummy 0.50 0.02 0.04 0.03 0.03
Fraction Speaking Foreign Language 0.48 0.85 0.83 0.81 0.84
Life Expectancy in 1960 0.47 0.51 0.59 0.56 0.56
Fraction Muslim 0.43 0.12 0.16 0.14 0.13
Fraction of Tropical Area 0.41 0.13 0.13 0.16 0.12
Latin American Dummy 0.41 1.00 0.96 0.96 0.98
Population Density Coastal in 1960s 0.39 0.09 0.11 0.12 0.10
Population Density 1960 0.37 0.05 0.03 0.03 0.03
Real Exchange Rate Distortions 0.34 0.07 0.07 0.06 0.05
Nominal Gov. GDP Share 1960s 0.33 0.10 0.09 0.09 0.07
Gov. Consumption Share 1960s 0.31 0.30 0.24 0.35 0.29
Real Gov. GDP Share in 1960s 0.30 0.54 0.54 0.42 0.52
Revolutions and Coups 0.28 0.40 0.26 0.29 0.31
Fraction Catholic 0.27 0.07 0.04 0.05 0.04
Openess measure 1965-74 0.27 0.10 0.07 0.08 0.06
Fertility in 1960s 0.25 0.14 0.09 0.07 0.09
Hydrocarbon Deposits in 1993 0.24 0.04 0.02 0.03 0.02
Fraction Hindus 0.24 0.04 0.05 0.04 0.04
European Dummy 0.22 0.03 0.04 0.03 0.02
Ethnolinguistic Fractionalization 0.21 0.02 0.01 0.01 0.02
Outward Orientation 0.20 0.17 0.08 0.07 0.09
Fraction Protestants 0.20 0.02 0.01 0.01 0.01
Spanish Colony 0.02 0.03 0.03 0.03 0.02
Fraction Population In Tropics 0.20 0.06 0.05 0.04 0.04
Political Rights 0.20 0.02 0.01 0.01 0.01
Civil Liberties 0.20 0.04 0.02 0.02 0.02
Years Open 1950-94 0.20 0.02 0.01 0.01 0.01
Primary Exports 1970 0.20 0.05 0.03 0.03 0.03
Fraction Population Over 65 0.19 0.03 0.03 0.03 0.02
Colony Dummy 0.17 0.02 0.01 0.01 0.01
Air Distance to Big Cities 0.17 0.02 0.01 0.01 0.01
Higher Education 1960 0.17 0.02 0.01 0.01 0.01
Education Spending Share, 1960s 0.17 0.05 0.02 0.02 0.02
Socialist Dummy 0.17 0.06 0.02 0.03 0.03
Malaria Prevalence in 1960s 0.17 0.05 0.03 0.03 0.03
Capitalism 0.16 0.04 0.02 0.02 0.02
Population in 1960 0.16 0.03 0.01 0.01 0.01
Absolute Latitude 0.16 0.02 0.01 0.01 0.01
Fraction Land Near Navigable Water 0.16 0.03 0.01 0.02 0.01
Fraction Population Less than 15 0.16 0.03 0.01 0.01 0.01
British Colony Dummy 0.16 0.03 0.01 0.01 0.01
Landlocked Country Dummy 0.14 0.02 0.01 0.01 0.01
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A final fact worth noting is that, as before, SSVS fails to visit many high-
probability models (Figure 14.7). Indeed, the cumulative posterior probability of
all models discovered by SSVS is only 0.6% that of the top 10,000 models visited
by FINCS.

14.2.3.3 Ozone Data and Out-of-Sample Performance

The ozone data set consists of n = 178 daily measurements of the maximum ozone
concentration near Los Angeles. This data set has become a standard benchmark in
the regression literature, and has been recently analyzed by, among others, Casella
and Moreno (2005), Berger and Molina (2005), and Liang et al. (2008). For this
study, 10 atmospheric predictor variables are considered (see Casella and Moreno
(2005) for a description), along with all squared terms and all 45 second-order inter-
actions. This yields p = 65 potential variables that could be included in the model.
Enumerating all 265 models is impossible—to store all of the binary vectors on a
computer would require 300 million terabytes of memory.

For this study, we performed 100 different “train–test” splits of the data set: a
random sample of 134 data points were used the fit the model, with the remaining
44 used to compare out of sample predictive performance. The test subjects were:
the AMCMC algorithm of Nott and Kohn (2005), the SSVS algorithm of George and
McCulloch (1993), the BAS algorithm of Clyde, Ghosh, and Littman, M. (2009), the
horseshoe (HS) method of Carvalho, Polson, and Scott (2008), the Bayesian lasso,
and the classical lasso. Zellner’s g-prior was used with g = n for the AMCMC, BAS,
and SSVS algorithms.

Figure 14.8 displays box plots of the sum of predictive squared errors for the 100
repetitions,

SPSE = ∑
i∈V

(Yi − Ŷi)2,

where V is set of indices of the 44 data points in the test data set, and Ŷi is one of
either the model-averaged estimate of Yi when using AMCMC, BAS, and SSVS; the
posterior predictive mean when using the Bayesian lasso and the horseshoe; or the
posterior predictive mode when using the lasso.

Each of the methods performed very similarly in terms of prediction, with median
SPSE’s of 833.99 for AMCMC, 794.50 for SSVS, 847.27 for BAS, 837.51 for the
Bayesian lasso, 821.56 for the HS, and 898.58 for the classical lasso. Clearly the
between-sample variation is much larger than the between-method variation.

While the methods were similar at predicting, however, they differed greatly in
average model size. Adaptive MCMC, with an average model size of 6.46, found
the most parsimonious models; SSVS, with an average model size of 16.18, found
the most complex models. Bayesian adaptive sampling and the classical lasso were
intermediate, yielding average model sizes of 11.56 and 11.84, respectively. Thus,
while each method is performing similarly in terms of SPSE, the models being cho-
sen are quite different. It is particularly difficult to explain why this is the case for
AMCMC and SSVS, since both algorithms are theoretically converging to the same
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FIGURE 14.8. Box plots of sum of predictive squared errors for ozone cross-validation study.

posterior distribution. Also noteworthy is that the pure-shrinkage solutions are com-
petitive with Bayesian model-averaging in terms of out-of-sample predictions. It is
not at all clear, however, how one would select a model or construct a measure of
variable importance under pure-shrinkage priors. Sparse solutions based on the pos-
terior mode are clearly dubious from a Bayesian point of view; except for the very
rare case of a true “0–1” loss function, there is no deeper justification for choosing
any point in R p with zero posterior probability, beyond a simple desire to induce
sparsity.
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14.2.4 Final Remarks

Where do these results leave those interested in fitting a Bayesian linear model? We
cannot, unfortunately, give an unqualified recommendation for any algorithm. We
can only point to specific areas in which they fail.

First, it is clear that if one’s goal is to find models with high posterior probabil-
ity, then stochastic search is preferred to either AMCMC or SSVS. This message
emerges again and again from our simulation studies, and from those of other au-
thors: MCMC in γ space simply misses too many good models.

Second, as a general matter, it remains unclear how one should compute poste-
rior inclusion probabilities. It is true that Gibbs and AMCMC are able to reconstruct
these probabilities in orthogonal settings. But no one knows whether this fidelity
of reconstruction holds in high-dimensional, nonorthogonal problems. The exper-
iment involving GDP-growth data suggests that it may not. Perhaps the best we
can hope for at present is to estimate a set of conditional inclusion probabilities—
conditioning, of course, on the set of models actually visited, and working hard to
ensure that this set is a good one.

14.3 MCMC for Constrained Parameter and Sample Spaces

Merrill W. Liechty, John C. Liechty, and Peter Müller

Due to computational concerns, Bayesian methods are often used with models con-
sisting of sampling distributions, priors, and hyperpriors of well-known distributions
with known normalizing constants. In these cases the constants are trivial to find by
simply recognizing the kernel of the density function when the distributions are
conjugate.

The typical Bayesian analysis can be describe as above. However, even in these
cases, sometimes the distributions of interest are truncated over a region that de-
pends on (hyper-) parameters in the next level of the model. The normalization
constant then becomes a function of these hyperparameters, and evaluation of the
posterior distribution requires the evaluation of this normalization constant. This can
severely impact the efficiency of Markov chain Monte Carlo methods (MCMC). In
some instances, the dimension over which the normalizing constant is defined may
be small enough that the researcher can use numerical integration at each step in
the MCMC to evaluate the required normalization constant. These numerical meth-
ods can be quite computationally expensive, and although they may be feasible for
small dimensions, as the dimension increases, they quickly become prohibitively
expensive.

Consider as a classic example the positive definiteness constraint for a random
covariance matrix θ , with a hyperprior, p(θ |η) ∝ g(θ |η) I{θ ∈ A }, where A de-
notes the set of positive definite matrices and g(·) denotes an (unconstrained) prob-
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ability distribution for θ . The constraint introduces a new normalization constant,
1/g(A |η). The complete conditional posterior distribution for η includes the nor-
malization constant 1/g(A |η) that might require an analytically intractable inte-
gral. The same problem arises when there is a constraint on the sampling model
p(y|θ).

There are several approaches that have been proposed to address this problem
through specific applications. Yet few general methods are available. These include
Chen and Schmeiser (1993) who propose the hit-and-run sampler as a generic poste-
rior simulation method that is particularly suitable for constrained parameter spaces.
See Chen, Shao, and Ibrahim (2000) for a review. Chib and Greenberg (1998) and
McCulloch, Polson, and Rossi (2000) use a random walk Metropolis sampler to
accommodate a constrained parameter space.

An alternative approach is the use of auxiliary variables, proposed by Møller et
al. (2006), who introduce an auxiliary variable that has a well chosen distribution.
When sampled jointly with the constrained parameter of interest, exact inference
is achieved. Another method is approximate Bayesian computation (ABC), pro-
posed in Marjoram et al. (2003) and Reeves and Pettitt (2005). This approach draws
from the prior and posterior, respectively, and use these as a basis for generation of
“data” from the model which leads to the acceptance/rejection of the proposed pa-
rameters. Gourieroux, Monfort, and Renault (1993) propose similar techniques for
econometrics applications. Several exact and approximate approaches to drawing
MCMC samples from distributions with intractable normalizing constants-referred
to as “doubly intractable” are explored by Murray (2007). These approaches extend
the work of Marjoram et al. (2003) and Møller et al. (2006).

In Liechty, Liechty, and Müller (2009), we propose the shadow prior construc-
tion as a practical approach to implement posterior inference for problems with
constrained parameter or sample spaces. The shadow prior is used to simplify com-
putation by strategically inserting an additional level in the hierarchical structure of
the model. The purpose of this is to move the constraints on a particular parameter
to a level of the hierarchy where it can be dealt with more easily. Introducing the
shadow prior into a model also introduces additional complexity, as well as a slight
departure from the original model. However, in our experience these limitations are
more than compensated by the great savings both in computation time and in the
implementation effort. We have found no substantive difference in the reported in-
ference due to the approximation that is introduced under the shadow prior. Thus,
the shadow prior can be a quick and easy fix to a difficult problem.

This section briefly reviews the shadow prior construction and its merits and
limitations. For a more in depth development, with more examples, and further
guidance on making implementation worthwhile see Liechty, Liechty, and Müller
(2009). In Section 14.3.1 we introduce the proposed mechanism. In Section 14.3.2
we show how the shadow prior is used in the example of the correlation matrix.
Section 14.3.3 describes the results of a simulation study where we investigate the
nature of the implied approximation. In Section 14.3.4 we give specific guidelines
for implementation of the shadow prior in general. Section 14.3.5 concludes with a
final discussion.
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14.3.1 The Shadow Prior

We illustrate the usefulness of the shadow prior by considering a generic Bayesian
model with truncation in the sampling distribution and/or the prior.

p(y|θ) ∝ g(y|θ)I{y ∈ A } =
g(y|θ)

g(A |θ)
I{y ∈ A }, (14.3.1)

p(θ |η) ∝ g(θ |η) I{θ ∈ B} =
g(θ |η)
g(B|η)

I{θ ∈ B}, (14.3.2)

p(η).

Here we generically use g(·) for an unconstrained probability model. the trunca-
tion in (14.3.1) could be, for example, a monotonicity constraint for a time series
y = (y1, . . . ,yT ). A truncation in (14.3.2) could be, for example, a positive defi-
niteness constraint for a covariance matrix. The constraints in the sampling model
and/or prior cause computational complications when posterior inference requires
the evaluation of the normalizing constants g(A |θ) and g(B|η). These probabili-
ties can be analytically intractable, depending on the form of the restrictions A and
B.

The computational problems arising from the truncation can be side stepped
by introducing shadow priors. Consider first the case of a constraint in the sam-
pling model. The idea of the shadow prior construction is to insert an additional
layer p(δ |θ) in the hierarchical model, between levels (14.3.1) and (14.3.2), and to
change p(y|θ) to p(y|δ ), so that y is dependent on a new intermediate parameter δ
and y and θ are conditionally independent given δ . Let θ = (θ1, . . . ,θd) denote a
d−dimensional parameter vector. In many cases a multivariate normal shadow prior
δi ∼ N(θi,ν2), i = 1, . . . ,d, independently, can be used, replacing (14.3.1) by

p(y|δ ) =
g(y|δ )

g(A |δ )
I{y ∈ A },

p(δ |θ) =∏N(δi; θi,ν2),

and unchanged prior p(θ |η) and hyperprior p(η). Here N(x; m,s2) denotes a nor-
mally distributed random variable x with mean m and variance s2. This leaves the
conditional posterior for θ free of the analytically intractable normalization con-
stant. Of course the shadow prior does not entirely remove the effects of the trunca-
tion; now the truncation shows up in updating δ . In many significant problems the
shadow prior can be set up in a manner such that the truncation minimally affects
the conditional posterior of δ , as will be seen in the examples that follow. This is of
particular interest when p(θ) has a complicated structure or θ is high dimensional.
The idea behind the shadow prior is for δ to ‘shadow’ y. The user defined variance
ν2 of the shadow prior acts as a tuning parameter. In particular, the shadow prior
is useful when there are highly efficient algorithms for posterior inference, if the
constraint were removed. Examples are non-parametric regression with wavelet pri-
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ors (see, for example, Vidakovic, 1998) or normal dynamic linear models (West and
Harrison, 1997), with constraints on the sample space. (See Liechty, Liechty, and
Müller (2009) for details on implementation of the shadow prior in normal dynamic
linear models.)

The case of truncation in the prior, i.e., a constraint to B in (14.3.2), is handled
similarly, replacing (14.3.2) by

p(θ |δ ) =
q(θ |δ )
q(B|δ )

I{θ ∈ B} and p(δ |η)

with the shadow prior q(θ |δ ). For example, for a d-dimensional parameter vector
the shadow prior might be q(θ |δ ) =∏N(θi; δi,ν2). The constraint moves from the
prior indexed by η to the new shadow prior, facilitating posterior updating of η .

Whether the constraint is on the sampling model or the prior, using the shadow
prior does not remove the computational challenge of the constraint, it only moves
it to the conditional posterior distribution p(δ | . . .), and the problem now arises in
updating δ . See Liechty, Liechty, and Müller (2009) for discussion of some sig-
nificant problems where this tradeoff is worthwhile. These include problems with
complicated prior structures for θ , for example, if θ = (θ1, . . . ,θn) and the prior on
θ is a mixture model and η are the parameters of the mixture. Another scenario
where shadow priors simplify posterior simulation are problems with a high dimen-
sional parameter θ . Assume θ = (θ1, . . . ,θd) is a d-dimensional parameter vector
with prior p(θ |η) ∝ g(θ |η)I{θ ∈ B}, subject to a constraint θ ∈ B, resulting in
a normalization constant g(B|η) =

∫
B g(θ |η)dθ . Adding a shadow prior we can

assume independence, q(θ |δ ) =∏q(θi|δi), and δ ∼ g(δ |η). Posterior inference in
the augmented model requires d univariate integrations, one for each δi, instead of
the d-dimensional integration to evaluate g(B|η).

In summary, the shadow prior mechanism replaces a constraint in the sampling
model or prior by an additional level in the hierarchical model. The constraint is
moved from the sampling model or prior to this additional level. Inference under
the augmented model approximates inference under the original model. With a well
chosen shadow prior the extent of the approximation can be kept minimal and the
augmented model can be set up to greatly simplify posterior inference. Using the
shadow prior involves several implementation decisions. Foremost is how closely
the shadow follows the truncated component of the hierarchical model. The “tight-
ness” of the shadow prior parameter is modulated by specifying the variance of the
distribution of the shadow prior. We have only so far implemented the shadow prior
in the form of the normal distribution, with the tightness formalized by the variance
parameter ν2. Other distributions can also be used. Larger values of ν2 reduce the
posterior correlation of δ and θ and lead to faster-mixing Markov chains, the trade
off is a greater departure from the original model. Smaller values of ν2 improve the
approximation to the original model at the cost of slower-mixing chains. Choice of
tightness is problem specific. In the next section and in Section 14.3.3 we investi-
gate implications of different values for ν2. We find that if ν2 is set small enough, in
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practice the constraint on δ can be ignored, essentially removing the computational
difficulty of the constraint.

14.3.2 Example: Modeling Correlation Matrices

A very good example of the usefulness of the shadow prior are priors for correlation
matrices. For example, in Liechty, Liechty, and Müller (2004) we propose, among
other models, a model for a correlation matrix R = [ri j] assuming independent nor-
mal priors for ri j, i < j, subject to R being positive definite. Let B denote the set of
positive definite correlation matrices. We assume

p(R|μ ,σ2) =
∏i< j exp

{−1/(2σ2)(ri j −μ)2
}

∫
R∈B∏i< j exp

{−1/(2σ2)(ri j −μ)2
}

dri j
I{R ∈ B}. (14.3.3)

Hyperpriors μ ∼ N(0,τ2), and σ2 ∼ IG(α = shape,β = scale) with known τ2,
α , and β complete the model. The indicator function in (14.3.3) guarantees posi-
tive definiteness of the correlation matrix and induces dependence of the ri j’s. The
truncation region B is a very convoluted subspace of the d-dimensional hypercube
[−1,1]d (see Molenberghs and Rousseeuw (1994) for more details of the shape of
this region). The normalization constant of interest depends directly on μ and σ2.
To find this constant analytically is not feasible. This causes a serious problem be-
cause it is needed to sample from the full conditional distributions for the ri j’s, μ ,
and σ2.

Model (14.3.3) is exactly the setup of (14.3.2) with θ = R and η = (μ ,σ2). Using
the shadow prior here works very nicely by placing δi j’s between the ri j’s and μ ,
replacing (14.3.3) by

p(R|δ ) ∝∏N(ri j; δi j,ν2) I(R ∈ B) and p(δ |μ ,σ2) =∏N(δi j; μ ,σ2) for i < j.
(14.3.4)

In the resulting model δi j does not inherit the positive definiteness constraint from
the correlation coefficients ri j, greatly simplifying the complete conditional poste-
rior distribution of (μ ,σ2).

To further illustrate the issue at hand, consider again the full conditional density
for μ in (14.3.3). The hyperparameter μ is hopelessly entangled in the normalizing
constant of the prior:

C−1(μ ,σ2) =
∫

R∈B
∏
i< j

exp
{−1/(2σ2)(ri j −μ)2}dri j. (14.3.5)

Without the shadow prior we must use a Metropolis-Hastings step to update μ . As
a proposal density we could use, for example, the normal distribution that results
if I{R ∈ B} is removed from (14.3.3). The acceptance probability can be written,
using μ∗ to denote the proposal, as
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α = min
{

1,C(μ∗,σ2)/C(μ ,σ2)
}

. (14.3.6)

We avoid evaluation of the normalizing constant C by using (14.3.4) to insert
shadow parameters δi j’s into the model hierarchy between the ri j’s and the prior
moments (μ ,σ2). The full conditional densities for μ and σ2 become

p(μ | . . .) ∝∏
i< j

exp
{−1/(2σ2)(δi j −μ)2}exp

{−1/(2τ2)(μ)2}

and

p(σ | . . .) ∝∏
i< j

exp
{−1/(2σ2)(δi j −μ)2}(1/σ2)α−1

exp(−β/σ2),

and are now conjugate normal and gamma distributions, respectively. The full
conditional density for δi j is similar to the full conditional for μ in the origi-
nal model (14.3.3), requiring a Metropolis-Hastings step. But there are two im-
portant differences. First, the value of ν2 can be set to any value deemed suit-
able. As ν2 approaches zero, the ratio in (14.3.6), now with C(δ ,ν2) replacing
C(μ ,σ2), approaches one. So it is reasonable to set ν2 to a small number and as-
sume C(δ ∗,ν2)/C(δ ,ν2) = 1. The intuition behind doing this is that the full con-
ditional density of R essentially lies inside the constrained space B, which allows
the unconstrained normalizing constant to be a reasonably good approximation of
the constrained normalizing constant. Second, the dependence of the normalizing
constant on μ is dispersed between the many δi j’s, making the impact of the nor-
malizing constant less than it would be without the shadow prior.

There are a few drawbacks to using the shadow prior. For instance, the choice
of ν2 can strongly influence the mixing properties of the Markov chain. In this
particular example, the chain may mix very slowly for very small ν2 since the ri j’s
and δi j’s are so closely related. Also, inference under the augmented model with the
shadow prior is an approximation of inference under the original model.

14.3.3 Simulation Study

To further investigate the impact of the model augmentation with the shadow prior
we performed a simulation study. Using a common correlation matrix, we generated
500 samples from an eight dimensional multivariate normal distribution. We then
implemented posterior inference using the shadow prior version of (14.3.3) using
different values of ν2.

The first question is about the impact of choosing very small ν2. We expect that
the mixing properties of the MCMC algorithm would suffer. This however was not
the case for this example. Examination of autocorrelation and the marginal posterior
density of the parameters shows us that there are no mixing issues (see Liechty,
Liechty, and Müller (2009) for relevant figures and further discussion).
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The appropriate choice of ν2 is case dependent. A researcher should carry
out some preliminary investigation to see how the ratio of normalizing constants
changes with each value of ν2. In this example, for each value of ν2 we calculated
the mean of the estimated ratio of normalizing constants C(δ ∗,ν2)/C(δ ,ν2). From
Figure 14.9, we see that as ν2 becomes small, the average ratio approaches 1.0 and
the variance of this ratio approaches zero. This suggests that for small values of ν2

we can assume C(δ ∗,ν2)/C(δ ,ν2) = 1. This greatly simplifies posterior inference.
For ν2 < 0.01 we can entirely avoid evaluation of the normalization constant C(·).
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FIGURE 14.9. Correlation matrix model (14.3.3). The figure plots the ratio of normalizing con-
stants C(δ ∗,ν2)/C(δ ,ν2) for d = 8 dimensional covariance matrices and varying values for ν2.
The left panel shows the average of computed normalizing constants. The right panels plots the
empirical variance of the same ratios. As ν2 becomes small the average ratio becomes one and the
variance of this ratio approaches zero. For ν2 < 0.001 we can assume C(δ ∗,ν2)/C(δ ,ν2) = 1.

14.3.4 Classes of Models Suitable for Shadow Prior Augmentations

There are several classes of problems where shadow priors could greatly simplify
posterior inference. Here we give guidance on how to implement the shadow prior
in these classes. The models include constraints on y or θ as indicated.

Constraint on y and high-dimensional parameter θ . The shadow prior mecha-
nism is attractive for problems with constraints in the sampling model when the prior
would be conjugate in the corresponding unconstrained model. The use of shadow
priors can become particularly advantageous when the unconstrained model would
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allow highly efficient posterior inference for a high dimensional parameter vector
θ . This case arises, for example, in wavelet regression. The constraint could be, for
example, a monotonicity constraint on y. The shadow prior replaces the model with
p(y|δ ) I{y ∈ A }, p(δ |θ) =∏d

i=1 N(δi; θi,ν) and prior p(θ) (possibly still indexed
by hyperparameters η). In the augmented model the conditional posterior p(θ |δ )
allows us to exploit all the advantages of posterior inference in the unconstrained
model. Updating the δ j parameters involves the evaluation of a normalization con-
stant (in the sampling model). But now the multivariate problem is reduced to many
univariate problems.

Constraints on y induce posterior dependence. A special case of the previously
described class arises when a constraint in the sampling model induces posterior
dependence in a model that would otherwise imply a posteriori independent param-
eters.

Constraints on θ hinder efficient posterior simulation. Consider for example a
normal dynamic linear model (West and Harrison, 1997) with a constraint on the
state vector θ . The constraint prevents the use of the highly efficient forward filter-
ing and backward smoothing (FFBS) algorithm for posterior inference. Replacing
the original prior by an augmented model with a shadow prior mitigates the prob-
lem. Using sufficiently small ν2 we can ignore the additional normalization constant
introduced by the constraint and proceed with the FFBS algorithm as in the uncon-
strained model.

Other examples in this class are wavelet regression models with constraints on
the mean function and in general conjugate models with an additional constraint on
a multivariate parameter θ .

Constraints on θ hinder efficient posterior simulation for η . This was the case
of the example in Section 14.3.2. The constraint to positive definite matrices B
greatly complicated the complete conditional posterior for η = (μ ,σ). The use of
an additional shadow prior in the hierarchical model separates the hyperprior from
the constraint on R and allowed efficient posterior simulation. Even more simplifi-
cation is achieved when ν2 is chosen sufficiently small to ignore the normalization
constants when updating δi j.

Similar simplifications are possible for mixture models p(θ |η) with constraints
on θ . The use of a shadow prior removes the constraint that hinders the use of effi-
cient posterior simulation schemes based on latent indicators to replace the mixture.

14.3.5 Conclusion

The proposed shadow prior mechanism addresses the computational challenge that
arises from the evaluation of normalization constants in constrained data and/or pa-
rameter problems. The augmentation of the model with the proposed shadow prior
trades off computational difficulties against a minor approximation and possibly
slower mixing of the resulting MCMC simulation.
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The main advantages of the shadow prior mechanism is that it empowers in-
vestigators to freely use constraints that are suggested by the scientific problem of
interest. Many applications allow the specification of meaningful constraints that
could greatly improve the relevance of statistical inference, but are usually avoided
for the sake of computational simplicity.

Some limitations remain. The construction of shadow prior augmentations is not
automated. It typically requires some preliminary investigation to assure an accept-
able level of approximation. Also posterior simulation has to be closely watched to
identify possible convergence issues due to slowly mixing Markov chains.

In summary, the shadow prior mechanism offers a potentially powerful new tool
to researchers, but requires some expert judgment for proper implementation and
interpretation.
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Badache, A. and Gonçalves, A. (2006). The ErbB2 signaling network as a target for
breast cancer therapy. Journal of Mammary Gland Biology and Neoplasia 11,
13–25.

Bae, K. and Mallick, B.K. (2004). Gene selection using a two-level hierarchical
Bayesian model. Bioinformatics 20, 3423–30.

Baker, G.A. and Crosbie, P.J. (1993). Measuring food safety preferences: Identi-
fying consumer segments. Research in Agriculture & Applied Economics 18,
277–287.

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical Models and Anal-
ysis for Spatial Data. Boca Raton, FL: Chapman & Hall / CRC Press.

Banerjee, S. and Gelfand, A.E. (2003). On smoothness properties of spatial pro-
cesses. Journal of Multivariate Analysis 84, 85–100.

Banerjee, S. and Gelfand, A.E. (2006). Bayesian wombling: Curvilinear gradient
assessment under spatial process models. Journal of the American Statistical
Association, 101, 1487–1501.

Banerjee, S., Gelfand, A.E., and Sirmans, C.F. (2003). Directional rates of change
under spatial process models. Journal of the American Statistical Association
98, 946–954.

Banfield, J.D. and Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian
clustering. Biometrics 49, 803–821.

Banks, H.T., Karr, A.F., Nguyen, H.K., and Samuels Jr., J.R. (2008). Sensitivity
to noise variance in a social network dynamics model. Quarterly of Applied
Mathematics 66, 233–247.



558 References

Baranchik, A.J. (1964). Multiple regression and estimation of the mean of a multi-
variate normal distribution. Technical Report No. 51, Department of Statistics,
Stanford University.

Barberis, N. (2000). Investing for the long run when returns are predictable. Journal
of Finance 55, 225–264.

Barbieri, M.M. and Berger, J.O. (2004). Optimal predictive model selection. Annals
of Statistics 32, 870–897.

Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D.M., and Jordan, M.I.
(2003). Matching words and pictures. Journal of Machine Learning Research 3,
1107–1135.

Barron, A.R., Rissanen, J., and Yu, B. (1998). The minimum description length
principle in coding and modelling. IEEE Transaction on Information Theory 44,
2743–2760.

Barron, A.R., Schervish, M.J., and Wasserman, L. (1999). The consistency of pos-
terior distributions in nonparametric problems. Annals of Statistics 27, 536–561.

Basu, S. (1995). Ranges of posterior probability over a distribution band. Journal of
Statistical Planning and Inference 44 149–166.

Basu, S. (1996). Local sensitivity, functional derivatives and nonlinear posterior
quantities. Statist. Statistics & Decisions 14, 405–418.

Basu, S. (1999). Posterior sensitivity to the sampling distribution and the prior: More
than one observation. Annals of the Institute of Statistical Mathematics 51, 499–
513.

Bates, D. (2005). Fitting linear models in R using the lme4 package. R News 5,
27–30.

Battese, G.E., Harter, R.M., and Fuller, W.A. (1988). An error-components model
for prediction of county crop areas using survey and satellite data. Journal of the
American Statistical Association 83, 28–36.

Baudry, J.P., Raftery, A.E., Celeux, G., Lo, K., and Gottardo, R. (2008). Combining
mixture components for clustering. Technical Report 540, Department of Statis-
tics, University of Washington.

Bayarri, M.J. and Berger, J.O. (2000). P values for composite null models. Journal
of the American Statistical Association 95 1127–1142.

Bayarri, M.J., Berger, J.O., Molina, G., Rouphail, N.M., and Sacks, J. (2004). As-
sessing uncertainties in traffic simulation: A key component in model calibration
and validation. Transportation Research Record 1876, 32–40.

Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C.H.,
and Tu, J. (2005). A framework for validation of computer models. Technical
Report 162, National Institute of Statistical Sciences.

Bayarri, M.J., Berger, J.O., Cafeo, J.A., Garcia-Donato, G., Liu, F., Palomo, J.,
Parthasarathy, R.J., Paulo, R., Sacks, J., and Walsh, D. (2007a). Computer model
validation with functional output. Annals of Statistics 35, 1874–1906.

Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin,
C.H., and Tu, J. (2007b). A framework for validation of computer models. Tech-
nometrics 49, 138–154.



References 559

Bayarri, M.J., Berger, J.O., Calder, E., Dalbey, K., Lunagomez, S., Patra, A.K., Pit-
man, E.B., Spiller, E.T., and Wolpert, R.L. (2009a). Using Statistical and Com-
puter Models to Quantify Volcanic Hazards. Technometrics, 51, 402–413.

Bayarri, M.J., Berger, J.O., Kennedy, M.C., Kottas, A., Paulo, R., Sacks, J., Cafeo,
J.A., Lin, C.H., and Tu, J. (2009b). Predicting vehicle crashworthiness: Vali-
dation of computer models for functional and hierarchical data. Journal of the
American Statistical Association 104, 929–943.

Bayarri, M.J. and Castellanos, M. (2007). Bayesian checking of the second levels
of hierar- chical models. Statistical Science 22, 322–342.

Bayarri, M.J. and Morales, J. (2003). Bayesian measures of surprise for outlier de-
tection. Journal of Statistical Planning and Inference 111, 3–22.

Bayes, C.L. and Branco, M.D. (2007). Bayesian inference for the skewness param-
eter of the scalar skew-normal distribution. Brazilian Journal of Probability and
Statistics 21, 141–163.

Bellinger, F.P., He, Q., Bellinger, M., Lin, Y., Raman, A.V., White, L.R., and Berry,
M. (2008). Association of selenoprotein P with Alzheimers pathology in human
cortex. Journal of Alzheimers Disease 15, 465–472.

Bellman, R. and Kalaba, R. (1958). On communication processes involving learning
and random duration. IRE National Convention Record 4, 16–20.

Ben-Dor, A. and Yakhini, Z. (1999). Clustering gene expression patterns. In Pro-
ceedings of the Third Annual International Conference on Computational Molec-
ular Biology. Lyon, France: ACM Press, PP. 33–42.

Benzecri, J.P. (1992). Correspondence Analysis Handbook. New York: Marcel
Dekker.

Berg, J. and Lassig, M. (2004). Local graph alignment and motif search in biological
networks. Proceedings of the National Academy of Sciences of the United States
of America 101, 14689–14694.

Berg, J. and Lassig, M. (2006). Cross-species analysis of biological networks by
Bayesian alignment. Proceedings of the National Academy of Sciences of the
United States of America 103, 10967–10972.

Berger, J.O. (1975). Minimax estimation of location vectors for a wide class of
densities. Annals of Statistics 3, 1318–1328.

Berger, J.O. (1976). Admissible minimax estimation of multivariate normal mean
with arbitrary quadratic loss. Annals of Statistics 4, 223–226.

Berger, J.O. (1980). A robust generalized Bayes estimator and confidence region for
a multivariate normal mean. Annals of Statistics 8, 716–761.

Berger, J.O. (1984). The robust Bayesian viewpoint (with Discussion). In Robust-
ness of Bayesian Analysis (Ed. J.B. Kadane). Amsterdam: North-Holland, pp.
63–144.

Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. Second Edi-
tion. New York: Springer.

Berger, J.O. (1990). Robust bayesian analysis: Sensitivity to the prior. Journal of
Statistical Planning and Inference 25, 303–328.

Berger, J.O. (1994). An overview of robust bayesian analysis. Test 3, 5–58.



560 References

Berger, J.O. (2006). The case for objective Bayesian analysis (with Discussion).
Bayesian Analysis 1, 385–402.

Berger, J.O. and Bernardo, J.M. (1989). Estimating a product of means: Bayesian
analysis with reference priors. Journal of the American Statistical Association
84, 200–207.

Berger, J.O. and Bernardo, J.M. (1992a). On the development of reference priors
(with Discussion). In Bayesian Statistics 4 (Eds. J.M. Bernado, J.O. Berger, A.P.
Dawid, and A.F.M. Smith). Oxford: Oxford University Press, pp. 35–60.

Berger, J.O. and Bernardo, J.M. (1992b). Ordered group reference priors with ap-
plication to the multinomial. Biometrika 25, 25–37.

Berger, J.O. and Bernardo, J.M. (1992c). Reference priors in a variance components
problem. In Bayesian Inference in Statistics and Econometrics (Eds. P.K. Goel
and N.S. Iyengar). New York: Springer, pp. 177–194.

Berger, J.O., Bernardo, J.M., and Mendoza, M. (1989). On priors that maximize ex-
pected information. In Recent Developments in Statistics and Their Applications
(J. Klein and J.C. Lee). Seoul: Freedom Academy Publishing, pp. 1–20.

Berger, J.O., Bernardo, J.M., and Sun, D. (2009). The formal definition of reference
priors. Annals of Statistics 37, 905–938.

Berger, J.O., Bock, M.E., Brown, L., Casella , G., and Gleser, L. (1977). Minimax
estimation of a normal mean vector for arbitrary quadratic loss and unknown
covariance matrix. Annals of Statistics 5, 763–771.

Berger, J.O. and Delampady, M. (1987). Testing precise hypotheses (with Discus-
sion). Statistical Science 2, 317–352.

Berger, J.O., De Oliveira, V., and Sansó, B. (2001). Objective Bayesian analysis
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Rougier, J. (2008b). Efficient emulators for multivariate deterministic functions.

Journal of Computational and Graphical Statistics 17, 827–843.
Rowe, D. (2002). Multivariate Bayesian Statistics: Models for Source Separation

and Signal Unmixing. Boca Raton, FL: Chapman & Hall / CRC Press.



602 References

Roy, A., Bhaumik, D.K., Aryal, S., and Gibbons, R.D. (2007). Sample size deter-
mination for hierarchical longitudinal designs with differential attrition rates.
Biometrics 63, 699–707.

Rubin, D.B. (1978). Multiple imputation in sample surveys: A phenomenological
Bayesian approach to nonresponse (with Discussion). Proceedings of the Amer-
ican Statistical Association, Survey Research Methods Section, 20–34.

Rubin, D.B. (1996). Multiple imputation after 18+ years. Journal of the American
Statistical Association 91, 473–489.

Rubin, H. and Sethuraman, H. (1965). Bayes risk efficiency. Sankhyā, Series A,
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