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a b s t r a c t

Gravitational search algorithm (GSA) has been recently presented as a new heuristic search algorithm
with good results in real-valued and binary encoded optimization problems which is categorized in
swarm intelligence optimization techniques. The aim of this article is to show that GSA is able to find
multiple solutions in multimodal problems. Therefore, in this study, a new technique, namely Niche GSA
(NGSA) is introduced for multimodal optimization. NGSA extends the idea of partitioning the main
population (swarm) of masses into smaller sub-swarms and also preserving them by introducing three
strategies: a K-nearest neighbors (K-NN) strategy, an elitism strategy and modification of active
gravitational mass formulation. To evaluate the performance of the proposed algorithm several
experiments are performed. The results are compared with those of state-of-the-art niching algorithms.
The experimental results confirm the efficiency and effectiveness of the NGSA in finding multiple optima
on the set of unconstrained and constrained standard benchmark functions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many practical scientific and engineering problems comprise
objective functions with multimodal behavior that require opti-
mization methods to find more than one solution. A multimodal
problem generally has a number of global optima and several local
optima that might be good alternatives to the global ones. On the
other hand, the local optima could be excellent alternative solu-
tions in many cases. Therefore, it is desirable in many applications
to find the location of all global optima and also other local optima
during a search process [1,2]. At least there are two practical
reasons for finding multiple optima of an optimization problem
[3]. First, by finding multiple optima, the chance of locating the
global optimum may be improved. Second, in a design context,
identifying a diverse set of high-quality solutions (multiple
optima) will give the designer some notion about the nature of
the problem, perhaps, may suggest innovative alternative solu-
tions [3].

Traditional heuristic search algorithms like genetic algorithms
(GAs) converge towards a single solution (this is the so-called
genetic drift phenomenon). GAs perform well in locating a single
optimum but fail to provide multiple solutions [2,4], therefore
they are not suitable for multimodal optimization. GAs often lose
multiple solutions (widely different solutions) due to three effects
[5,6]: selection pressure, selection noise, and operator disruption.
Unfortunately, other types of heuristic algorithms including

standard evolutionary algorithms (e.g. evolutionary programming
(EP), evolutionary strategy (ES), differential evolutionary (DE), GA)
and standard swarm intelligence (SI) techniques (e.g. ant colony
optimization (ACO), particle swarm optimization (PSO)) suffer
from the similar disadvantage.

To overcome this problem, many theoretical and empirical
studies have been realized to find multiple solutions to multi-
modal optimization problems using different types of heuristic
algorithms especially GAs. Optimization methods that are able to
find the location of multiple optima in multimodal problems are
known as niching methods [7]. Niching methods partition the
population in such a way that each group of the main population
focuses on a different possible solution in a single run of a
heuristic search. In other words, these methods try to prevent
the search from premature convergence and hence aim at preser-
ving diversity in the population and promote the maintenance of
stable sub-populations. In the optimization terminology, a niche is
referred to as a peak of the fitness landscape, while a species is
defined as a subpopulation of similar individuals populating a
niche (each subpopulation in the partitioned population).

SI studies the collective behavior of systems composed of many
individuals interacting locally with each other and with their
environment. Swarms inherently use forms of decentralized con-
trol and self-organization to achieve their goals. In SI systems the
agents follow very simple rules, although there is no centralized
control structure dictating how individual agents should behave.
Here, social interactions provide the basis for unguided problem
solving. Gravitational Search Algorithm (GSA) is one of the SI-
based optimization algorithms which introduced by Rashedi et al.
in 2009 based on the metaphor of gravitational interaction
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between masses [8]. GSAs are computational models that emulate
the law of gravity to solve optimization problems. A GSA comprises
a set of mass elements (swarm) and a set of physical inspired
operators. According to the Newtonian gravity and motion the-
ories, the population evolves towards increasingly better regions
of the search space by simulation of gravity and motion laws. The
previous works have revealed the efficiency of the GSA as a global
optimizer in solving various nonlinear continuous benchmark
functions [8] and its binary version (BGSA) [9] in solving binary
encoded problems. Moreover, the results obtained in [10–12]
confirm that GSA is a suitable tool for classifier design, parameter
identification of hydraulic turbine governing system, and synthesis
of thinned scanned concentric ring array antenna, respectively.

Theoretically, GSA belongs to the class of SI-based heuristic
algorithms. Rashedi et al. [8] practically gave a comparative study
between GSA and a small number of well-known swarm algo-
rithms like PSO. The obtained results reveal that GSA has a merit in
the field of optimization. Also, to theoretically highlight the
differences between GSA and other heuristic algorithms some
distinct features of it has been noted by Rashedi et al. [8].

As mentioned above, GSA artificially simulates the Newton theory
that says: every particle in the universe attracts every other particle
and the gravity is a force that pulls together all matters. Based on this
description, masses in GSA tend to converge towards each other,
which in turn means convergence to the global optimum of the
problem at hand. Similar to genetic drift in GAs, we refer to this
phenomenon as gravity drift. Therefore, a simple GSA is unable to
provide multiple solutions in multimodal problems in a single run of
the search. Since introducing the standard GSA, there has not been any
effort for providing a GSA version for handling multimodal problems.
This paper deals with this issue and for this purpose some simple
modifications are applied on the standard GSA to support niching in
multimodal optimization. In other words, our aim is to show that the
standard GSA with a small change is able to effectively handle multi-
modal problems. For simplicity, here we call the proposed algorithm
as Niche GSA (NGSA).

This paper is organized as follows. Section 2 gives us a review
on the related works. Section 3 provides a brief introduction to
GSA. The proposed Niche GSA for multimodal problems is given in
Section 4. The experimental study is illustrated in Section 5, where
the performance of the algorithm will be evaluated on a set of
benchmark functions. Finally, the paper is concluded in Section 6.

2. Background

Achieving a good method for multimodal optimization by
heuristic algorithms will be possible if and only if population
diversity is preserved. For the first time, Cavicchio [13] proposed
his scheme in 1970, namely as preselection, to preserve the
diversity of genetic algorithm. In preselection, each offspring
competes with his parents for survival. The better one wins the
competition and is transferred to the next population. Substituting
the parents by their offspring is the main reason why in this
scheme the diversity is preserved. De Jong in his thesis developed
the preselection to achieve crowding scheme [14] in which for
each offspring, CF (crowding factor) parents are selected at
random and the most similar one to the offspring is chosen to
be replaced. In crowding, similarity is calculated according to a
genotypic measure. It is noted that in ordinary crowding, at each
generation only a portion of current population G (generation
gap), is selected based on a fitness proportionate strategy to
reproduce the next generation.

Both preselection and crowding schemes are unable to find
more than two peaks on multimodal problems due to replacement
error [15,16]. Mahfoud proposed the deterministic crowding

scheme to improve the standard one by reducing the replacement
error by the following modifications [17]: (i) individuals are
selected for reproduction by random selection strategy, (ii) geno-
typic similarity measures are replaced by phenotypic one, (iii) each
offspring is compared only to its parents and replace the nearest
parent if it has a higher fitness value (where in this way offspring
and parents of identical niches compete for survival). Unfortu-
nately, deterministic crowding suffers greatly from genetic drift
just like its standard version [2].

The authors in [18] described an algorithmic and analytical
framework which is applicable to a wide range of crowding
algorithms. As an example they analyzed the probabilistic crowd-
ing niching algorithm. It is shown that in probabilistic crowding,
subpopulations are maintained reliably, and they showed that it is
possible to analyze and predict how this maintenance takes place.

Fitness sharing which is the most frequently used scheme for
multimodal optimization was first proposed by Goldberg and
Richardson [19]. Fitness sharing aims at effective formulation
and preservation of stable niches. This scheme has been inspired
by nature based on the idea that individuals in a particular niche
should share the existing resources. Fitness sharing leads the
search in unexplored regions of the search space by artificially
decreasing fitness of solutions in crowded areas. According to this
idea, the fitness value of a certain solution is degraded propor-
tional to the existing solutions that are located in its neighbor-
hood. Here, the neighborhood is defined in terms of a distance
measure and specified by the parameter sshare known as niche
radius which is a user defined parameter. To do this, a penalty
method is applied to penalize the solutions positioned in popu-
lated regions. In other words, for each solution, all other solutions
are found in its niche radius and their fitness values are shared
using the sharing function. Performance of fitness sharing scheme
is highly dependent on value of niche radius which is the same for
all peaks. This is the main disadvantage of fitness sharing because
each peak needs its own niche radius while similar niche radius
for all peaks may result in over- or under-discovering of them.

Mating two individuals from different niches may cause to
produce the lethal individuals. The mating restriction scheme was
proposed by Deb and Goldberg [20] to promote the effect of fitness
sharing scheme. Based on this scheme, two individuals are
allowed to mate only if they are within a certain distance of each
other (given by the parameter smating so-called as mating radius).
Mating restriction may avoid the production of lethal individuals
and therefore improve the algorithm performance. Sequential
niching has been proposed by Beasley et al. in which the niches
are discovered sequentially over time [1]. After identifying a niche,
the search space is adapted such that to keep away other solutions
from the region around the recent discovered solutions. This
process is frequently applied in order to focus on unexplored
regions and detect undiscovered niches.

In [21], several strategies of sharing have been reviewed and a
new recombination schemes has been proposed to improve the
efficiency of search algorithm. Finally, the study compares several
sharing methods with other niching techniques such as clearing [22].
Among all niching GAs reviewed in this paper, clearing can be
considered as the best method [21]. A species conservation genetic
algorithm (SCGA) was presented in [3] to evolve parallel subpopula-
tions for multimodal function optimization in which distributed
elitism is used where, the population is divided into several species
according to their similarity. Each of these species is built around a
dominating individual called the species seed. The species seeds
found in each generation are conserved by moving them into the
next generation. The only difference between the simple GA (SGA)
and SCGA is introducing two processes of the selection of seeds
and the conservation of species into the main loop of SGA [3].
The proposed method in [23] combines the ideas of SCGA of
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establishing and conserving a dominating seed for every species with
a topological subpopulations separation as in the multimodal genetic
algorithm (MGA). On the other hand, besides seed preservation,
subpopulations differentiation is performed through the use of the
MGA component to distinguish between basins of attraction. Seed
dynamics are furthermore controlled and both replication and
exploration are concerned [23].

A bi-objective multi-population genetic algorithm (BMPGA) has
been recently introduced in [24] aiming to locate all global and
local optima on a real-valued differentiable multi-modal land-
scape. BMPGA uses two separate complementary fitness objectives
to enhance the overall population diversity and exploration ability
of the algorithm. Using two objectives, individual that are weak in
one of fitness objectives but promising in the other are given a
chance to survive. They used also a multi-population GA and a
clustering scheme to handle multi-modal problems. Clustering is
used to help BMPGA to form the desired number of clusters (sub-
populations) around potential optima and maintain stable species.
In this approach selection is done within the various sub-
populations to carry out local evolution of them such that each
sub-population is evolved toward its optimum. On the other hand,
to prevent extinction of small sub-populations, local elitism is
applied [24].

Niching techniques are not restricted to GA. There are many
types of niching techniques based on other types of heuristic
algorithms like PSO. For example, Brits et al. proposed a version of
PSO, called NichePSO, to handle multimodal problems [7].
NichePSO extends the inherent unimodal nature of the standard
PSO approach by growing multiple sub-swarms from an initial
swarm. In this method, when a possible solution is detected at a
particle′s location, a sub-swarm is created. Then the sub-swarm
exploits the potential solution. In NichePSO, sub-swarm may
merge together, or absorb particles from the main swarm [7].
NichePSO has several parameters that must be specified by user.
Speciation-based PSO (SPSO) uses the idea of species [25]. In this
algorithm a procedure from previous works has been adopted to
determine species and dominant particles in these species. In
sequel, each species forms a sub-swarm that can be run as a PSO to
exploit the search space around its seed (dominant particle in a
species). In this approach, since species are adaptively formed
around different optima, multiple global optima can be found [25]
through iterations. The quality of SPSO depends on the selection of
a niche radius parameter which determines the size of niche or
species.

Fitness-Euclidean distance ratio PSO (FER-PSO) is another
multi-modal algorithm for finding multiple global optima which
was proposed by Li [26]. In this algorithm the concepts of
memory-swarm and explorer-swarm have been used to provide
a robust multi-modal algorithm. The personal best of particles are
used to provide a stable network retaining the best solutions
found so far by the swarm as memory-swarm. On the other hand,
the current positions of the particles are considered as the
explorer-swarm to explore the search space for new solutions. In
FER-PSO instead of a single global best, each particle is attracted by
a fittest and closest neighborhood solution that is identified via
computing its FER value. If the population size is sufficiently large,
FER-PSO is able to locate all global optima. The main noticeable
advantage of FER-PSO is that it does not require specification of
niching parameters [26].

As mentioned before, one of disadvantages of many of niching
algorithms is its dependency on niching parameters. This point
enforces the user to have a prior knowledge about the problem
being optimized, if a high performance results is needed. In order
to tackle the need for niching parameter, Li [27] proposed a
niching algorithm based on PSO. He showed that the lbest PSOs
with ring neighborhood topology are able to find the local and

global optima in a multi modal problem without needing any
niching parameters. He investigates the size of neighborhood (2/3
particles). The experimental results showed that the lbest PSO
algorithms with an overlapping ring topology are able to locate
multiple global optima, given a reasonable large population size,
whereas the lbest PSO algorithms with a non-overlapping ring
topology can be used to locate global as well as local optima,
especially for low dimensional problems.

In another work on niching PSO, a distance-based Locally
Informed Particle Swarm optimizer (LIPS), has been proposed
[28]. LIPS eliminates the need to specify any niching parameter
and enhance the fine search ability of PSO. In this algorithm,
instead of using the global best particle, LIPS uses several local
bests to guide the search of each particle. The experimental results
show that LIPS operate as a stable niching algorithm by using the
information provided by its neighborhoods. In LIPS the neighbor-
hoods are estimated in terms of Euclidean distance.

Recently a neighborhood mutation strategy has been proposed
and integrated with niching differential evolution (DE) algorithms
to solve multimodal optimization problems [29]. In this method,
the mutation is performed within each Euclidean neighborhood.
The experimental results reveal that the neighborhood mutation is
able to maintain the multiple optima found during the evolution
and evolve toward the respective global/local optimum.

Besides the aforementioned methods for multimodal optimiza-
tion, there are many widely adopted niching techniques (based on
GAs or other types of heuristic algorithms), such as Dynamic niche
sharing [5,30], cluster based sharing scheme [16,31–33], dynamic
niche clustering that combines clustering and fitness sharing
[34,35] adaptive sequential niche [36], coevolutionary sharing
[37], crowding clustering approach [2], sharing scheme based on
niche identification techniques [15], dynamic fitness sharing [38]
and so on. A comprehensive survey on niching algorithms and
techniques for multi-modal optimization could be found in [39].

3. Gravitational search algorithm

To make a proper background, the GSA [8] is briefly explained.
In GSA, agents are considered as objects and their performance is
measured by their masses. All these objects attract each other by a
gravity force, and this force causes a movement of all objects
globally towards the objects with heavier masses. The heavy
masses correspond to good solutions of the problem. Inspired by
physics, each mass (agent) has four specifications: its position, its
inertial mass, its active gravitational mass, and its passive gravita-
tional mass. Inertial mass,Mi, is a measure of an object′s resistance
to changing its state of motion when a force is applied. An object
with large inertial mass changes its motion more slowly, and an
object with small inertial mass does rapidly. Active gravitational
mass,Ma, is a measure of the strength of the gravitational field due
to a particular object. Gravitational field of an object with a small
active gravitational mass is weaker than an object with a large
active gravitational mass. Passive gravitational mass, Mp, is a
measure of the strength of an object′s interaction with the
gravitational field. Within the same gravitational field, an object
with a smaller passive gravitational mass experiences a smaller
force than an object with a larger passive gravitational mass.

In GSA the position of the mass corresponds to a solution of the
problem, and its gravitational and inertial masses are determined
using a fitness function. By lapse of time, masses are attracted by
the heaviest mass. This mass will present an optimum solution in
the search space. The GSA could be considered as an isolated
system of masses. It is like a small artificial world of masses
obeying the Newtonian laws of gravitation and motion [8].
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Now, consider a system with N agents (masses), the position of
the ith agent is defined by:

Xi ¼ ðx1i ;…; xdi ;…; xni Þ f or i¼ 1;2;…;N ð1Þ
where xdi presents the position of ith agent in the dth dimension
and n is the dimension of search space. At time “t”, the force acting
on mass “i” from mass “j” is defined as:

FdijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ
RijðtÞþε

ðxdj ðtÞ�xdi ðtÞÞ ð2Þ

where Maj is the active gravitational mass related to agent j, Mpi is
the passive gravitational mass of agent i, GðtÞ is gravitational
constant at time t, ε is a small constant, and RijðtÞ is the Euclidian
distance between two agents i and j. The total force that acts on
agent i in a dimension d is a randomly weighted sum of dth
component of the forces exerted from Kbest agents:

Fdi ðtÞ ¼ ΣjAkbest;ja irandjF
d
ijðtÞ ð3Þ

where randj is a random number in the interval [0,1] and Kbest is
the set of first K agents with the best fitness value and biggest
mass. Kbest is a function of time, which is initialized to K0 at the
beginning and decreased with time.

By the law of motion, the acceleration of the agent i at time t,
and in direction d, adi ðtÞ, is given as follows:

adi ðtÞ ¼
Fdi ðtÞ
MiiðtÞ

ð4Þ

where Mii is the inertial mass of ith agent. The next velocity of an
agent is considered as a fraction of its current velocity added to its
acceleration. Therefore, its velocity and its position could be
calculated as follows:

vdi ðtþ1Þ ¼ randi � vdi ðtÞþadi ðtÞ ð5Þ

xdi ðtþ1Þ ¼ xdi ðtÞþvdi ðtþ1Þ ð6Þ
where randi is an uniform random variable in the interval [0,1].
The gravitational constant, G, is initialized at the beginning and
will be reduced with time to control the search accuracy.

Gravitational and inertia masses are simply calculated by the
fitness evaluation. A heavier mass means a more efficient agent.
This means that better agents have higher attractions and walk
more slowly. Assuming the equality of the gravitational and inertia
mass (Eq. (7)), the values of masses are calculated using the map of
fitness. The gravitational and inertial masses are updated by the
following equations [8]:

Mai ¼Mpi ¼Mii ¼Mi; i¼ 1;2;…;N ð7Þ

qiðtÞ ¼
f itiðtÞ�worstðtÞ
bestðtÞ�worstðtÞ ð8Þ

MiðtÞ ¼
qiðtÞ

∑
N

j ¼ 1
qjðtÞ

ð9Þ

where f itiðtÞ represents the fitness value of the agent i at t, and,
worstðtÞ and bestðtÞ are defined as follows (for a maximization
problem):

worstðtÞ ¼ min
jA f1;::;Ng

f itjðtÞ ð10Þ

bestðtÞ ¼ max
jA f1;::;Ng

f itjðtÞ ð11Þ

The principle of GSA is shown in Fig. 1.

4. The proposed algorithm (NGSA)

Before introducing the proposed niche algorithm, it should be
noticed that a multimodal GSA has to be able to tackle three issues
including: (i) how to divide the swarm (population) into sub-
swarms, (ii) how to preserve these sub-swarms and consequently
to avoid the gravitational drift, and (iii) how to connect them to
the existing optima within the fitness landscape (i.e. exploit the
optimal solutions). In the proposed NGSA, in order to divide the
swarm into sub-swarms a K-nearest neighbors (K-NN) strategy is
proposed, that is, only the K-NN of each agent are allowed to apply
the gravity force to agent to attract it. Also, a modification on the
calculation of the active mass is suggested so that the active mass
of each agent does not remain constant for all masses within an
iteration of the algorithm. In other words, the active gravitational
mass of an agent is changed according to its distance with other
masses. On the other hand, to avoid extinction of sub-swarms an
elitism strategy is applied while the local implementation of GSA
in a sub-swarm provides suitable exploitation ability for fine
tuning of a sub-swarm on the existing optimum around it.

In NGSA the main structure and properties of GSA are preserved.
However, to give the ability of handling the multimodal problems to
GSA, we apply some modification on GSA inspired by fitness
sharing and restricted mating in GAs. In fact, the ideas behind
GAs are not applicable to the GSA. Therefore, it is necessary to adapt
them to be useful in GSA. It is noted that the proposed algorithm is
able to form niches and eliminate gravity drift. Before introducing
the proposed algorithm let us consider FðXÞ a typical multimodal
n-dimensional real-valued function including m-maxima which
should be found. X ¼ ðx1; x2;…; xnÞ, XASDRn, S is a bounded set
on Rn and F : S-R. According to the above definition, different steps
of the proposed NGSA are as follows:

Step 1 (Initialization): Generate randomly the initial swarm of
N masses (agents) and set t ¼ 0. Each agent represents

Evaluate the fitness for each agent

Update the G, kbest, best and worst of 
the population.

No

Generate initial population

Calculate M , F and a for each agent

Return best solution

Yes

Meeting end of 
criterion?

Update velocity and position

Fig. 1. General principle of GSA.
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a candidate solution and is considered as a real-valued vector
Xi, 8 iAf1;2;…;Ng, where Xi s are decision variables to be
optimized. The initial values of masses′ components are
selected over the predefined decision space S at random using
a uniform distribution as follows:

xjið0Þ ¼ xj;minþUijð0;1Þ:ðxj;max�xj;minÞ; 8 iAf1;2; :::;Ng; 8 jAf1;2; :::;ng
ð12Þ

where xj;max and xj;min denote upper and lower bounds of jth
component of decision space, respectively and Uijð0;1Þ is a random
number in the range [0,1] generated by uniform distribution.
Step 2 (Fitness evaluation): Calculate fitness value of each mass
XiðtÞ, 8 iAf1;2; :::;Ng of the population by computing the
objective function at point XiðtÞ, f itiðtÞ.
Step3 (Computation of active gravitational mass): Maintaining
diversity is a vital factor for supporting multimodal optimiza-
tion. Therefore, we propose that only the K-nearest neighbors
of each agent are able to apply the gravity force to agent to
attract it. However, the main difficulty is how one could
determine the best number of neighbors. In fact, constructing
a robust and effective multimodal GSA is possible only if the
masses in the same niche interact with each other by using
gravitational force. A simple way is to define a parameter that is
referred to as impact radius, simpact, similar to mating radius in
multimodal GAs. However, this makes the algorithm to be
problem dependent such that for achieving good results the
user shall select the best value for the impact radius. It is noted
here that the value simpact should be selected according to the
number of problem′s maxima (niches) and also their distance.
Therefore, this is a problem dependent parameter. A large value
of simpact may lose some niches and a small value of simpact may
produce some virtual and non-maxima solutions.
Kennedy has proposed several topologies for describing neigh-
borhood for particles in PSO such as ring, wheels, stars, and
random edge [40]. Here, we describe the neighborhood accord-
ing to a distance in decision space. In other words, those
neighbors of each agent that have the smaller distance to that
agent based on Euclidian distance are considered as its neigh-
bors. To find K-NN of agent i (KNNi), distance of all agents to i is
calculated and the agents are sorted according to the distance
values. Then, the K agents that have the smaller distance to i
are selected as neighbors of agent i.
To realize multimodal optimization and prevent gravity drift,
we consider the active gravitational mass as a vector containing
N elements such that each element corresponds to a mass of
the system. In other words, each component determines the
effect of the agent to attract another agent of the swarm. In
view of this, the active gravitational mass of each agent is
presented as a real-valued vector Maj ¼ ½maj1;maj2;…;majN�,
8 jAf1;2;…;Ng where maji is the gravitational mass of agent j
that acts on agent i to attract it which is calculated as:

majiðtÞ ¼
f itjðtÞ�worstiðtÞ
bestiðtÞ�worstiðtÞ if agent j AKNNi

0 otherwise

(
ð13Þ

where f itjðtÞ represents the fitness value of the agent j at t, and,
worstiðtÞ and bestiðtÞ are defined as follows (for a maximization
problem):

worstiðtÞ ¼ min
lAKNNi

f itlðtÞ ð14Þ

bestiðtÞ ¼ max
lAKNNi

f itlðtÞ ð15Þ

In other words, worstiðtÞ and bestiðtÞ are defined on the
neighborhood of agent i at t. In this way, we can control the

effect of agent j on agent i according to their distance and quality
of agents in the neighborhood of agent i (KNNi).
Although, we try to design NGSA to be independent of impact
radius, selecting the size of neighborhood (the number of
neighbors), K , still remains a critical problem which should be
discussed. A small value of K leads the algorithm to produce
many virtual (non-existing) niches and a large value leads the
algorithm to lose some existing niches. To overcome this
problem, we adaptively define parameter K as follows:

KðtÞ ¼ Round Ki�ðKi�Kf Þ:
t
T

� �
N

� �
ð16Þ

where Ki and Kf are two constants that determine the number
of neighbors at the beginning and the end of the search,
respectively. When there is no prior knowledge about the
number of niches and their distances, in our opinion, the best
solution is to initialize K with a small value at the beginning.
This will allow the niches to form and then we grow the
neighborhood radius by increasing the number of neighbors by
time. This will find the most possible niches of the problem at
hand by merging the near virtual niches to a real niche
(0oKioKf o1).
Step 4 (Calculation of acceleration, velocity and position): At
time t, the force acting on mass i from mass j is defined as:

FdijðtÞ ¼ GðtÞMpiðtÞ �majiðtÞ
RijðtÞþε

ðxdj ðtÞ�xdi ðtÞÞ ð17Þ

The total force that acts on agent i in the dimension d is
computed as follows:

Fdi ðtÞ ¼ ∑
ja i

randjF
d
ijðtÞ ð18Þ

However, the acceleration of agent i and its next velocity in the
dimension d are computed according to Eqs. (4), and (5),
respectively. It should be noted that we consider Mpi ¼Mii,
8 iAf1;2; :::;Ng.
After calculating the velocity, the next position of each agent,
x0i

dðtÞ, could be computed according to (19). After that, the
fitness value of solutions X′iðtÞ, 8 iAf1;2; :::;Ng are calculated
and then the next position is updated according to Eq. (20)) (for
a maximization problem) which is similar to elitism strategy in
the EAs, for each agent the new position will be accepted if it
provides a solution with higher quality.

x0i
dðtÞ ¼ xdi ðtÞþvdi ðtþ1Þ ð19Þ

Xiðtþ1Þ ¼
X′iðtÞ if fitðX′iÞZ fitðXiÞ
XiðtÞ otherwise

(
ð20Þ

If we do not consider the elitism strategy, when K is large, it
may cause some masses which are in the scope of a small niche
to be attracted by high quality masses of large niches. This
causes the algorithm to miss some niches.
Step 5: t ¼ tþ1, Steps 3–5 are repeated until the stopping
criterion is satisfied.
The main difference between canonical GSA and the proposed

NGSA are summerized as follows. The Κ�ΝΝ strategy (Eqs. (13)–(16))
is used for computing active gravitational mass. This strategy prevents
the problem of gravitational drift. The elitism strategy (Eq. (20))
is used for updating the position of agents; this is effective in the
preserving the sub-swarms. By these changes we have added two
parameters Ki and Kf to the algorithm instead of parameter K in the
canonical GSA.
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5. Experimental results

To evaluate the performance of the proposed NGSA, it is
applied on several widely used multi-modal benchmark functions
of different characteristics, such as deceptiveness, multiple evenly
and unevenly spaced global optima, and multiple global optima in
the presence of multiple local optima. These functions have been
recently used in [27]. The experiments are carried out by following
three aims. First, we try to understand the behavior of the
proposed NGSA by some experiments on a few number of test
functions. Second, a comparative study is done to assess the
effectiveness of the NGSA in locating multiple global optima and
finally to show the effectiveness of NGSA in finding both global
and local optima in test functions. Thus, the performance of NGSA
is compared to those of state-of-the-art algorithms including r2-
PSO [27], r3-PSO [27], r2PSO-lhc [27], r3PSO-lhc [27], SPSO [25],
FER-PSO [26], NichePSO [7], deterministic Crowding [17], and
sequential niche [1], and the results are reported in the following.

5.1. Multi-modal benchmark functions

NGSA is applied on a number of multi-modal functions (Table 1)
where, the aim is to discover peaks by considering two cases;
(i) finding all global maxima, and (ii) finding both local and global
maxima. Functions F1–F5 were firstly introduced by Goldberg and
Richardson to evaluate their fitness sharing approach [19] and there-
after they were used by other researches such as Beasley et al. to test
their sequential niching algorithm [1], Mahfoud to examine Niching
GAs [41], and Brits et al. for evaluation of NichePSO [7]. Also, other
functions have been used by many researches to test and compare
their methods for solving multi-modal problems. The locations of all
optima of these functions are known. This fact makes them ideal for

evaluating the performance of heuristic search algorithms for dis-
covering niches in multi-modal domains. Due to this characteristic,
one can compare the final distribution of solutions obtained by the
algorithm with the ideal population distribution. The functions F1–F4
are one-dimensional and are defined over the interval [0,1]. Each of F1
and F2 has five maxima at 0.1, 0.3, 0.5, 0.7, and 0.9. For F3 and F4, their
maxima are located at 0.08, 0.25, 0.45, 0.68, and 0.93. As depicted
in Fig. 2, F5 is a two-dimensional function containing four maxima
which are located at (3.0, 2.0), (�3.87, �3.28), (3.58, �1.85), and
(�2.81, 3.13) [7]. F6–F8 are one dimensional functions with unbalance
distribution of maxima location. These functions are deceptive and
difficult because the existing local optima can misguide the population
to move away from the true global optimum [27]. For example in F6
the global optima is located at x¼20 that has only 1/4 of the initial
solutions in its scope. Besides this, the locations of both maximum
points of F6 are in the outskirt of the scope of the solutions. Function F9
is a modification of Six-Hump Camel Back function that was intro-
duced by Tamson. This function is used by Quing [2] and Li [27] as a
benchmark. This function has 2 global optima and two local optima.

Function F10 has 25 evenly spaced maxima of unequal heights
with one being equal to the global maximum. If the goal of
optimization is to find all global and local optima then this
function can be used to test the ability of the algorithm to locate
all 25 maxima. The functions F11 and F12 can be solved in
a different dimension. Fig.2 illustrates these functions in a
2-dimensional space. In this scenario, F11 has 760 local maxima
and 18 global maxima [27]. For the n-dimensional inverted
Shubert function, there are n� 3n global maxima unevenly dis-
tributed. These global peaks are divided into 3n groups, with each
group having n global peaks that are close to each other. Function
F12 in a 2-dimensional case has 36 optima with similar values but
unevenly spaced. For more details regarding these functions, the
readers are referred to [27]. In our experiments all 12 functions are

Table 1
Test functions used in the experiments.

Name Test function Range Number of Global peaks Number of all peaks

Equal maxima F1ðxÞ ¼ sin 6ð5πxÞ 0rxr1 5 5

Decreasing maxima F2ðxÞ ¼ e�2 log ð2Þ� x�0:1
0:8ð Þ2 sin 6ð5πxÞ 0rxr1 1 5

Unevenmaxima F3ðxÞ ¼ sin 6ð5πðx3
4�0:05ÞÞ 0rxr1 5 5

Uneven decreasing maxima F4ðxÞ ¼ e�2 log ð2Þ� x�0:08
0:854ð Þ2 sin 6ð5πðx3

4�0:05ÞÞ 0rxr1 1 5

Himmelblau′s function F5ðx1; x2Þ ¼ 200�ðx21þx2�11Þ2�ðx1þx22�7Þ2 �6ox1 ; x2o6 4 4

Two-peak trap
F6ðxÞ ¼

160
15 15�xð Þ for 0rxr15

200
5 x�15ð Þ for 15rxr20

(
0rxr20 1 2

Central two-peak trap

F7ðxÞ ¼

160
10 x for 0rxr10

160
5 15�xð Þ for 10rxr15

200
5 ðx�15Þ for 15rxr20

8>><
>>:

0rxr20 1 2

Five-uneven-peak-trap

F8ðxÞ ¼

80 2:5�xð Þ for 0:0rxr2:5
64 x�2:5ð Þ for 2:5rxr5:0
64 7:5�xð Þ for 5:0rxr7:5
28 x�7:5ð Þ for 7:5rxr12:5
28 17:5�xð Þ for 12:5rxr17:5
32 x�17:5ð Þ for 17:5rxr22:5
32 27:5�xð Þ for 22:5rxr27:5
80 x�27:5ð Þ for 27:5rxr30

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0rxr30 2 5

Six-Hump Camel Back F9ðx1; x2Þ ¼�4 4�2:1x21þ
x41
3

� �
x21þx1x2þ �4þ4x22

� 	
x22

h i �1:9rx1r1:9
�1:1rx2r1:1

2 4

Shekel′s foxholes F10ðx1 ; x2Þ ¼ 500� 1
0:002þ∑24

i ¼ 0
1

1þ iþ x1�aðiÞð Þ6 þ x2�b ið Þð Þ6

where a ið Þ ¼ 16 imod5ð Þ�2ð Þ; and b ið Þ ¼ 16 ⌊ i=5
� 	

⌋�2
� 	

�65:536rx1; x2r65:535 1 25

Inverted Shubert function F11ðxÞ ¼ �∏n
i ¼ 1∑

5
j ¼ 1j� cos jþ1ð Þxiþ j½ � �10rxir10 n� 3n a

Inverted Vincent function F12ðxÞ ¼ 1
n∑

n
i ¼ 1 sin 10� log xið Þð Þ 0:25rxir10 6n 6n

*For inverted Shubert with n¼2, there are 760 local peaks [27].
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used to evaluate the ability of the proposed NGSA in finding the
global solutions and functions F1 to F10 are used to find all optima
including global and local ones.

5.2. Performance criteria

The results obtained by NGSA are compared with those avail-
able in the literature. The comparison is made in terms of the
successful discovering rate of all actual niches of the problem
during the evolution. In other words, a run is considered as a
success if the algorithm could correctly find all possible peaks of
the problem. A peak is considered detected if an agent approaches
%99 of its peak value. The results are averaged over many
independent runs (e.g. 30 or 50) and the average discovering rate
(ADR) are reported for NGSA. Also, we count the number of fitness
evaluations in finding all peaks and report its average value over
independent runs as a performance criterion.

In addition, we define another performance measure to eval-
uate the exploitation ability of the proposed NGSA algorithm.
Consider the function to be optimized containing m niches in an
n-dimensional space, i.e. Si ¼ ðs1i ; s2i ;…; sni Þ, i¼ 1;2;…;m and the
algorithm could discover the final solutions

_
Si ¼ ð_s1i ;_s

2
i ;…;_sni Þ,

i¼ 1;2;…;m. In this case, we define an error criterion for a

successful run as:

ζ¼ 1
m

∑
m

i ¼ 1
∑
n

j ¼ 1
ðsji�

_sjiÞ2
 !1=2

ð21Þ

ζ is calculated in the last iteration and are averaged over successful
runs of many independent runs (e.g. 30 or 50) of the algorithm.
Here, the smaller values of ζ means the better performance of the
algorithm.

5.3. Preliminary results

We applied the NGSA on the maximization multi-modal func-
tions shown in Table 1 with the aim of finding all maxima
including local and global maxima. In all cases, the maximum
iteration T is considered to be 120. Based on our experiments,
Ki and Kf in Eq. (16) are set to 0.08 and 0.16, respectively.
We evaluated the effect of population size in this stage. In this
regard, we ran the experiments using several values for N such as
20, 35, 50, and 75. In NGSA (Like GSA [8]), GðtÞ is set using Eq. (22),
where G0 is set to 0:1� Df and α is set to 8, where Df is the domain

Fig. 2. Some benchmark functions (a) F5, (b) F8, (c) F9, (d) F10, (e) F11 and (f) F12.
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of the function to be optimized.

GðtÞ ¼ G0e�αðt=TÞ ð22Þ

To have a better clarity, the results obtained by NGSA with
different population numbers for each function are averaged over
independent runs. The discovering rate (DR) of each run in the last
iteration is recorded and averaged (ADR) over 30 independent
runs. The obtained ADR for functions F1 to F5 are given in Table 2.

As shown by Table 1, the proposed algorithm is able to detect
all actual maxima when N¼75. Also, the results obtained by N¼50
are satisfactory. Experimental results show that for all functions,
better results are obtained for NGSA with a bigger population size.

As mentioned before, all masses in an artificial system tend to
converge towards each other. According to our idea, NGSA try
to localize the convergence and divide the population into
sub-swarms such that each one converges to a niche. The main
problem in case of small population size is when around a specific
niche there are not enough masses in the randomized initializa-
tion. In this case, the algorithm is not able to provide a sub-swarm
around the corresponding niche. Therefore, the niche is missed.
For example, NGSA with N¼20 is not able to discover all niches of
function F1 in %20 of runs.

To get a robust performance in finding all optima using NGSA,
we have two solutions. One is to select sufficient number of
masses (population size) where it leads the algorithm to discover
all optima by producing sufficient sub-swarms, each one around a
niche. Another way is to try uniformly distributing the initial
population over the search landscape. In order to do that, we
partition the search space into equal interval and then randomly
distribute the masses through the partitions. In the next sub-
section we examine this issue.

5.4. NGSA with partition based initialization

In this manner, at the beginning the search space is determi-
nistically partitioned into equal size intervals (areas). Thus, we
take the same approach as proposed in [42] to partition the search
landscape. Next, we randomly put the masses throughout the
intervals. In this case, we set all parameters like the previous stage
and repeat the experiments. The results obtained are illustrated in
Table 3.

These results show that the algorithm could successfully dis-
cover all niches (including local and global) of the benchmark
functions F1 to F5, independently of the population size. We also
calculated the results in the case of N¼20, T¼120, for functions F1
to F5 based on error ζ. For this, the algorithm is run 30 times and ζ
is computed in the last iteration and recorded for each run, and
then averaged over independent runs. The results are summarized
and reported in Table 4. In this table the best results obtained
during 30 runs of the algorithm are also reported.

Figs. 3 and 4 show how the NGSAworks and depict its ability in
finding and preserving all peaks of the fitness landscape. Fig. 3
shows the fitness landscape for the one-dimensional function F4 in
four iterations: t¼1, 10, 20, and 30 where N, T, Ki and Kf are set to
20, 40, 0.08, and 0.16, respectively. As this figure shows just in 30
iterations the population find all peaks. In this figure, the sings
“þ”, “*” and “○”stand for position Xi, position X′i and the peaks
which are detected by the algorithm. Fig. 3b shows that the
algorithm could find a close solution to all 5 maxima (both local
and global) at iteration 10 and it completely converges to their
final values at iteration 30.

As Fig. 4 shows, we have 4 sub-swarms for function F5 at
iteration t¼1 in which each sub-swarm is depicted by a specific
sign. With the lapse of time, each sub-swarm will converge to the
nearest niche or peak of the fitness landscape. However, it can be
seen from Fig. 4b that some masses may move between different
sub-swarms. In other words, there are interactions between
species in the swarm and it is possible that a mass escapes from
the scope of one niche and can be attracted by another niche.
However, as Fig. 4d shows, the proposed NGSA finds all optima
and converge to them at t¼100.

5.5. Sensitivity to parameter K

It is obvious that the performance of the NGSA highly depends
on how the active gravitational mass is calculated. Based on
Eq. (13), computing the active gravitational mass is affected by
the number of neighbors, K , which is defined by Eq. (16). To see
why K must be varied with time (Eq. (16)), we performed some
experiments with K as a constant according to

K ¼ RoundðK0NÞ ð22Þ
where K0 takes different values in the interval [0.1, 0.3].

The setup of these experiments such as population size,
maximum iteration, etc. is the same as Sections 4 and 5.The
results are computed in terms of the number of discovered niches

Table 2
%ADR obtained by the NGSA with different population size, and random initializa-
tion to find all global and local maxima.

Function N¼75 N¼50 N¼35 N¼20

F1 100 100 93 80
F2 100 100 96 73
F3 100 100 86 73
F4 100 96 90 66
F5 100 100 96 76

Table 3
%ADR obtained by the NGSA with different population size and partition based
initialization to find all global and local maxima.

Function N¼75 N¼50 N¼35 N¼20

F1 100 100 100 100
F2 100 100 100 100
F3 100 100 100 100
F4 100 100 100 100
F5 100 100 100 100

Table 4
The average error ζ obtained by the NGSA with N¼20, T¼120 and partition based initialization.

Function Average ζ Best result

S1 S2 S3 S4 S5

F1 1.62e�573.47e�5 0.1000 0.3000 0.5000 0.7000 0.9000
F2 0.00171.66e�4 0.1000 0.2999 0.4998 0.7000 0.8979
F3 0.001275.04e�4 0.0797 0.2466 0.4506 0.6814 0.9339
F4 2.37e�473.38e�4 0.0797 0.2463 0.4495 0.6790 0.9302
F5 0.057070.0262 (3.0001, 2.0008) (�3.7800, �3.2841) (3.5829, �1.8514) (�2.8130, 3.1377) –

S. Yazdani et al. / Swarm and Evolutionary Computation 14 (2014) 1–148



by the algorithm, which are averaged over 30 independent runs
for functions F1 to F5. The results are presented by Fig. 5. As this
figure shows, the small values of K0 increase the number of

discovered niches and generate virtual niches. On the other hands,
large values of K0 make the algorithm to lose some actual niches
(peaks of the fitness landscape). Also, the number of maxima, m,

Fig. 3. Niching behavior induced by proposed NGSA on F4 at iterations (a) t¼1 (b) t¼10 (c) t¼20 (d) t¼30.

Fig. 4. Niching behavior induced by the proposed NGSA on F5 at iterations (a) t¼1 (b) t¼3 (c) t¼30 (d) t¼100.
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plays an important role on selecting K0. This fact is inferred by
Fig. 5 for functions F1–F4 which have 5 maxima in contrast to
function F5 containing 4 maxima.

We can conclude that K is a problem dependent parameter which
plays an important role on the performance of the algorithm and it is
dependent on the number of niches of the problem. Referring to Eq.
(16), we start the search with a small value of K (Ki), which is linearly
increased with time to Kf at the end of the search process. This can
tackle the lack of knowledge about the actual number of niches and
allows us to follow the search with a prediction of the number of
niches. We found that to achieve good results for all functions, the
suitable values for Ki and Kf are 0:8=m and 0:95=m, respectively. If we
know the niche radius, r, based on our experiments, the suitable
values for Ki and Kf are 1:6r=Df and 1:9r=Df , respectively.

To investigate why K should be varied with time (Eq. (16)), we
performed an experiment on the F10. For better clarification, the
fitness landscape and the position of masses for F10 are presented
for several iterations in Fig. 6. As Fig. 6a illustrates at t¼1 when the
size of K is 3, the algorithm finds many virtual peaks. With the
lapse of time and with the increase of K the number of virtual
niches are reduced and many of them are merged together so that
they converge towards the actual peaks of the fitness landscape.
Fig. 6d shows that the NGSA find all peaks of the function by
creating and preserving sub-swarms around each niche.

5.6. Comparative study

The comparison is categorized in two groups. The first one
shows a comparative study to assess the effectiveness of the NGSA
in locating multiple global optima where the performance of NGSA
is compared to those of state-of-the-art algorithms including r2-
PSO [27], r3-PSO [27], r2PSO-lhc [27], r3PSO-lhc [27], SPSO [25],
and FER-PSO [26] that have been already reported by Li in [27].
The second one shows the effectiveness of NGSA in finding both
global and local optima in test functions. NGSA is applied on the
first 10 functions and the results obtained for F1 to F5 are
compared with those obtained by NichePSO [7], deterministic
Crowding [17], and sequential niche [1] that have been reported by
Brits et al. in [7].

Case 1. Finding global maxima.

The obtained results for F1 to F12 with regard to ADR are
summarized in Table 5. The results for NGSA are averaged over 50
independent runs. In this case, all settings are the same as
reported in [27]. The only difference is for functions F6 to F9 that
we used the population size of 100 while in [27] the population
size of 50 was used. To make the comparisons meaningful, in
NGSA we decreased the maximum number of iterations for these
functions to have the same evaluations number as stopping
criterion. The population sizes for NGSA are reported in Table 5.

Table 5 states ADR as the percentage of the performance
consistency of the tested niching algorithms. Performance consis-
tency reflects the algorithm′s ability to consistently locate all solu-
tions for each of the optimization problems [7]. Table 5 shows that all
comparative algorithms are not able to sufficiently preserve solution
sets. Overall, the worst results belongs to SPSO, it generally per-
formed worse than the average whereas the best results are for the
proposed NGSA. It is worth noticing that the results obtained by
r3PSO and r3PSO-lhc are very close to those of NGSA. The NGSA find
and locate all global solutions for all cases except for three cases
including F8, F11(3D) and F12(1D) where in these cases the ADR values
are 94%, 94% and 92%, respectively. It is worthwhile mentioning that
for F12(1D), although NGSA could not provide ADR¼100%, it per-
forms better than other comparative algorithms except r2PSO which
it results in ADR¼94%. In total, the average of ADR over all tested
functions is 98.46% which is better than all other comparative
algorithms. The closest algorithm to NGSA, is r3PSO which provide
the average value of 96% under the same conditions.

Table 6 presents the average numbers of fitness function
evaluations required for niching algorithms to converge to all
global maxima. These results are connected to the results pre-
sented in Table 5. Based on the results given in Table 6 we can
compare the computational cost of each of the comparative
algorithms in terms of the number of evaluations of fitness
functions required to converge to all solution sets. For the values
reported in Table 6, in the format μ7s, (μ¼mean and s¼standard
deviation), the following conclusion can be summarized:

� NGSA required fewer evaluations on functions F1, F3, F6, F7, F8,
F11(2D), F11(3D) and F12(1D) whereas SPSO provided fewer
evaluations on functions F2, F4, and F5, r2PSO-lhc required
fewer evaluations on function F9, and r3PSO provide fewer
evaluations on function F10.� Overall, the proposed NGSA required the least number of
fitness function evaluations to converge to all solution sets.

� SPSO required more fitness function evaluations than the other
considered algorithms.

� Among r2PSO, r3PSO, r2PSO-lhc and r3PSO-lhc, it is r3PSO
which needs the least number of fitness evaluations to con-
verge and it is the closest algorithm to the proposed NGSA.

� The NGSA required 2067 (average on all functions) fitness
evaluations over all cases whereas the closest algorithms to it,
r3PSO, required 13068 (average on all functions) evaluations
number which is 6 times greater than that of NGSA.

Tables 5 and 6 illustrate that with the trade-off between
accuracy and computational cost, the NGSA is quite better than
comparative algorithms. Considering only the ADR measure, the
results obtained by the proposed NGSA in all cases are comparable
with r3PSO and r3PSO-lhc algorithms and in some cases are better
than others.

Case 2. Finding global and local maxima.

Brits et al. have compared their algorithm NichePSO [7] with
deterministic Crowding [17], sequential niche [1]. The results

Fig. 5. The effect of number of neighbors on the performance of the algorithm in
terms of average number of discovered niches for functions F1 to F5. The
experiments setup is N¼20, T¼120 and partition based initialization. K0 is
constant during each run. The results are averaged over 30 independent runs.
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Fig. 6. The niching behavior induced by proposed NGSA on F10 at iterations (a) t¼1 (b) t¼3 (c) t¼30 (d) t¼80. In this figure the sings “þ” and “O”stand for position Xi and
the peaks found out by the algorithm. The experiments setup is N¼500, T¼100 and partition based initialization.

Table 5
Comparison of NGSA, r2PSO, r3PSO, r2PSO-lhc, r3PSO-lhc, FER-PSO, and SPSO in case of finding all global maxima in terms of %ADR for Functions F1 to F12. The results for
r2PSO, r3PSO, r2PSO-lhc, r3PSO-lhc, FER-PSO, and SPSO have been already reported in [27]. The results are averaged over 50 independent runs of algorithm.

Function N ki kf NGSA (%) r2PSO (%) r3PSO (%) r2PSO-lhc (%) r3PSO-lhc (%) FER-PSO (%) SPSO (%)

F1 50 0.08 0.16 100 100 100 100 100 100 100
F2 50 0.2 0.4 100 98 100 100 100 100 100
F3 50 0.08 0.16 100 98 98 100 100 100 100
F4 50 0.2 0.4 100 100 100 100 100 100 100
F5 50 0.08 0.16 100 92 74 100 98 98 100
F6 100 0.2 0.4 100 98 100 94 78 88 24
F7 100 0.3 0.5 100 100 96 98 88 100 22
F8 100 0.2 0.3 94 100 96 96 96 98 40
F9 100 0.15 0.4 100 100 100 100 100 100 100
F10 500 0.01 0.04 100 100 100 72 78 100 50
F11(2D) 250 0.03 0.09 100 90 98 98 100 56 49
F11(3D) 500 0.02 0.07 94 4 100 4 92 0 0
F12(1D) 100 0.02 0.03 92 94 86 92 90 88 84
Average 98.46 90.31 96.00 88.77 93.85 86.77 66.85

Table 6
Average number of fitness function evaluations required to converge for each niching algorithm for results presented in Table 5. The results for r2PSO, r3PSO, r2PSO-lhc,
r3PSO-lhc, FER-PSO, and SPSO have been already reported in [27]. The results are averaged over 50 independent runs of algorithm.

Function NGSA r2PSO r3PSO r2PSO-lhc r3PSO-lhc FER-PSO SPSO

F1 263789 376730 443751 396751 447752 384729 355730
F2 3007107 212071999 141711 143714 144713 170712 12779
F3 334781 243071994 244071994 456733 6237273 371731 343723
F4 316776 175717 160720 178718 162716 189720 144713
F5 16327330 787072891 2140075467 14907138 738073347 507071945 1250745
F6 4777409 346077197 26207874 739073348 2320075834 1440074535 7720075859
F7 2437108 296071520 534072764 434072229 1310074588 21107227 7830075856
F8 6947853 9787186 465072784 471072783 673073088 266071992 6330076773
F9 10327892 619724 684730 618730 6507725 965753 653732
F10 416471768 43607559 35107453 2970076277 2480075738 34707336 4280076968
F11(2D) 536971930 5590072676 3910071648 3780071480 324007581 9490071261 6160074463
F11(3D) 991372187 1990007830 7400072343 19800071789 8130075849 20000070 20000070
F12(1D) 21347430 831073371 1540074906 960073824 1470074344 1300074601 1700075192
Average 2067.00 22196.77 13068.31 22678.54 15818.15 25976.08 41774.77
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reported on functions F1 to F5 in the case of finding all maxima
(local and global). We used the setup of Sections 4 and 5 for NGSA
the same as that of Brits et al. [7] (for example the population size
is 20). Tables 7 and 8 summarize the performance of the niching
algorithms. The results obtained by the proposed NGSA in all cases
are comparable with NichePSO, Sequential Niche and Determinis-
tic Crowding, and in some cases are better than them.

The results given in Table 7 show that all considered algorithms
are not able to sufficiently preserve solution sets. Overall, the
worst results belong to Sequential Niche, whereas the best ones
are for the proposed NGSA with regards to ADR. It is worth
noticing that the results obtained by Niche PSO are close to those
of NGSA. NGSA could find and locate all solutions including local
and global peaks for all functions reported in Table 7. On the other
hand, Table 8 reveals that NGSA required fewer evaluations on the
functions F1, to F5, with respect to other comparative algorithms.
Tables 7 and 8 illustrate that the NGSA is better than the
comparative algorithms in terms of ADR and computational cost.

Also the results obtained for functions F6 to F10 are given in
Table 9. For these functions we used the same setup of Case 1 for
NGSA. As it is shown by Table 9, the NGSA locate all global and
local peaks in F6, F7 and F10. Also it is able to locate all peaks of F8
and F9 with a rate of 94% and 98%. Overall, considering functions F1
to F10 the NGSA locate and preserve all peaks of functions with
99.2%. Furthermore, the results obtained in Table 9 show that the
average ζ is in an acceptable range for a multimodal algorithm.

5.7. Performance comparison using constrained multimodal
benchmark functions

In order to evaluate the performance of NGSA in finding global
optima in complex constrained fitness landscapes we used 3 con-
strained multimodal benchmark functions F13, F14 and F15 as
described in Table 10. The functions F13 and F14 proposed in [43],
called cRastrigin and cGriewank, are constrained multimodal pro-
blems by applying equality constraints into Rastrigin and Griewank

basic multimodal benchmark functions, respectively. For F13 we used
two-dimensional version of cRastrigin in experiments in which there
are 2 feasible maxima in the domain approximately at (�4.5, 4.5),
(4.5, �4.5). In the case of F13 the initial population is constructed
with the procedure described in [43]. For F13 the parameters of NGSA
are set as N¼300, T¼200, ki¼0.003, and kf¼0.006.

The function F14 has rugged fitness landscape with 4 global
maxima approximately at (�512, 512), (512, �512), (512, 512) and
(�512, �512). Each member of the initial population is con-
structed according to the procedure described in [43]. For this
function, the parameter values of NGSA are chosen as N¼200,
T¼100, ki¼0.003, and kf¼0.006.

The function F15 is a constrained multimodal function which
proposed by Deb and Saha in [44] called CMMP (n, G, L) with n
variable, I constraints, G global and L local minimum points. The
values I¼1, n¼2, G¼1 and L¼3 are used in our experiments to
evaluate the performance of NGSA in finding a global optimum at
(�3, 3) in presence of 3 local optima in a constrained multimodal
fitness landscape. The coefficients a1, a2, b1, b2 are set to �0.1417,
0.4, 0.2 and �0.6 respectively and c¼2 is considered in experi-
ments. The parameters of NGSA for F15 are set to N¼200, T¼100,
ki¼0.015, kf¼0.045.

For handling constraint in the search process we used the
repair approach in all methods in which once an unfeasible
solution is generated, the initialization procedure of each function
is used to replace the generated solution to a feasible one.

The performance of NGSA is compared with local best PSO
variants [27] and deterministic crowding algorithms as powerful
PSO based and GA based multimodal optimization methods. The
experimental results (averaged over 50 independent runs) are
shown in Table 11. The results confirm the effectiveness and
efficiency of NGSA in finding accurate global optima in constrained
multimodal fitness landscapes.

6. Conclusions

In recent years, various heuristic optimization algorithms have
been developed. GSA is a new heuristic search algorithm that is
constructed based on the laws of gravity and motion. The GSA
algorithm uses the theory of Newtonian physics and its searcher
agents are the collection of masses. In this paper, a version of GSA
called NGSA was introduced for multi-modal optimization. In
order to evaluate our algorithm, we tested it on a set of various
standard benchmark functions. NGSA has been compared with a
number of well-known alternative approaches. In the proposed
NGSA, in order to divide the swarm into sub-swarms, a K-nearest
neighbors (K-NN) strategy is proposed where only the K-NNs of
each agent are allowed to apply the gravity force to agent to attract
it. A modification on the calculation of the active gravitational
mass is suggested so that the active gravitational mass of each
agent does not remain constant for all masses within an iteration

Table 7
Comparison of NGSA, NichePSO, Sequential Niche and Deterministic Crowding
algorithms in terms of %ADR for Functions F1 to F5. The results for NichePSO,
Sequential Niche, and Deterministic Crowding have been reported in [7]. The
results are averaged over 30 independent runs of algorithm.

Function ki kf NGSA
(%)

Niche
PSO (%)

Sequential
Niche (%)

Deterministic
Crowding (%)

Average
(%)

F1 0.08 0.16 100 100 100 100 100
F2 0.08 0.16 100 93 83 93 92.25
F3 0.08 0.16 100 100 100 90 97.50
F4 0.08 0.16 100 93 93 90 94.00
F5 0.08 0.16 100 100 86 90 94.00
Average 100 97.20 92.40 92.60 –

Table 8
Average number of fitness function evaluations required to converge for each
niching algorithm for functions F1 to F5. The results for NichePSO, Sequential Niche,
and Deterministic Crowding have been already reported in [7]. The results are
averaged over 30 independent runs of algorithm.

Function NGSA Niche PSO Sequential
Niche

Deterministic
Crowding

Average

F1 17867204 23727109 41027577 1464774612 5726
F2 18927561 29347475 35057463 1305272507 5345
F3 17527273 24047195 41417554 1393073284 5556
F4 18067307 28207517 34647287 1392972996 5504
F5 20337201 21517200 34237402 1429673408 5475
Average 1853 2536 3727 13970 –

Table 9
Results of NGSA in terms of %ADR and the number of fitness evaluations required to
converge for each niching algorithm for Functions F6 to F10. The results are averaged
over 50 independent runs of algorithm.

Function N ki kf ADR
(%)

Average ζ Number of fintness
evaluation

F6 100 0.10 0.35 100 4.27e�474.18e�4 5427386
F7 100 0.20 0.45 100 7.44e�676.01e�6 3217118
F8 100 0.10 0.25 94 2.19e�371.37e�2 9667765
F9 100 0.05 0.35 98 1.50e�373.33e�2 11227353
F10 500 0.01 0.03 100 9.66e�471.18e�3 618672133
Average 98.4 1.02e�3 1827.40
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of the algorithm. Moreover, to avoid extinction of sub-swarm we
applied elitism while the local implementation of GSA in a sub-
swarm provides suitable exploitation ability for fine tuning of a
sub-swarm on the existing optimum around it. The results
obtained by NGSA have been compared with state-of-the-art
algorithms in this field. The results showed that the NGSA is a
proper niche algorithm in finding both global optima and local
optima. The results suggest that the proposed approach which is
inspired by the law of gravity has a merit in the field of multi-
modal optimization. However, much work has to be done to
establish how well NGSA performs against other complex cases
problems such as what given in [45] as the future research. Here,
we used the concepts of K-NN and elitism to avoid the effect of
niche radius. For wide acceptability of the algorithm and also
applicability in engineering domains for black box optimization
problems, an empirical rule should be suggested for parameter K;
this makes the algorithm robust and independent of the specific
problem. This also can be considered as scope for future study.
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