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A new vibration control device called a rotational inertia double-tuned mass damper (RIDTMD) is pro-
posed in this paper. The device consists of a tuned mass damper (TMD) in which the typical viscous dam-
per is replaced with a tuned viscous mass damper. The linear model for a single-degree-of-freedom
structure incorporating an RIDTMD, the equations of motion in state-space representations, and the
transfer function of the considered model are derived. The optimum design parameters of the system
subjected to harmonic load are obtained by using a numeric technique, and the performance of the
new device is compared with that of a traditional TMD in terms of frequency response. The strokes of
auxiliary masses are also assessed. Based on the results, it is demonstrated that the RIDTMD is more
effective than a TMD at the same mass ratio, particularly at excitation frequencies near resonance. More-
over, the suppression band is wider and the moving block stroke is nearly identical for both devices.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mitigating the dynamic response of civil engineering and
mechanical structures to earthquakes, wind, and rotating machin-
ery has drawn the interest of many researchers in recent decades.
Several passive, semi-active, and active control devices have been
developed. Among the available devices, a TMD is one of the sim-
plest and most reliable, typically consisting of an auxiliary mass, a
spring, and a viscous damper attached to the structure to be
controlled.

Hermann Frahm proposed the dynamic vibration absorber [1],
later called the TMD, in the 1900s. Since then, several variant
forms of TMDs have been proposed in order to improve perfor-
mance. The Multiple Tuned Mass Damper (MTMD) was proposed
and investigated by Xu and Igusa [2] and subsequently studied
by several researchers [3–10]. In general, MTMDs are more effec-
tive and robust in mitigating the oscillations of structures than a
single TMD.

Another type of TMD is the so-called double tuned mass dam-
per (DTMD) or series tuned mass damper. This damper consists
of one larger mass block (i.e., a larger TMD) and one smaller mass
block (i.e., a smaller TMD) connected in a series. Li and Zhu [11]
conducted research on the performance of a DTMD using a novel
optimum criterion.

The working principle of all types of TMDs consists of transfer-
ring the vibration energy of the primary structure to an auxiliary
mass-spring system (i.e., a TMD) in order to effectively dissipate
the energy into a suitable damper. In the case of a traditional
TMD, that damper is a linear viscous damper. However, other types
of dampers can be used.

More recently, Hwang et al. [12] proposed to control struc-
tural vibrations by means of a rotational inertia viscous damper
(RIVD) utilizing a ball screw amplifying mechanism. The authors
noted that the efficiency of the RIVD heavily depended on the
lead of the ball screw; as the lead decreases, the effectiveness
of the damper significantly increases. Moreover, the apparent
mass of the controlled structure, which also depends on the
lead of the ball screw, is increased due to the installation of
the RIVD.

Ikago et al. [13], based on the concepts of Hwang et al. [12],
developed and studied the tuned viscous mass damper (TVMD),
which is essentially an RIVD in series with a spring. The result-
ing apparent mass-spring arrangement behaves as a supplemen-
tal tuned oscillator that magnifies the deformation of the
damper, thereby improving the performance of the RIVD. It is
important to highlight that both devices, the RIVD and the
TVMD, are two-terminal devices. For this reason they need a
fixed reference to react, unlike the TMD which does not have
that disadvantage.
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Other applications of rotational inertia can be found in the pa-
per by Smith [14] in which, the two-terminal device which trans-
forms rotational inertia in translational inertia is named ‘‘inerter’’.

In view of the features offered by the TVMD and the advantages
of TMD, this paper proposes to replace the viscous damper in a tra-
ditional TMD with a TVMD, resulting in a rotational inertia double
tuned mass damper (RIDTMD). The performance, in terms of the
dynamic magnification factor (DMF) of the RIDTMD, is compared
with a reference TMD on a single-degree-of-freedom (SDOF)
system.
Fig. 2. RIVD incorporating a flywheel. The equivalent axial dashpot is in dashed
line.

Fig. 3. An SDOF system incorporating an RIDTMD.
2. Mathematical models

2.1. TMD model

A schematic representation of a TMD coupled to an SDOF struc-
ture is shown in Fig. 1. The parameters ks, cs, and ms are the stiff-
ness, damping factor and mass of the structure to be controlled,
respectively. Similarly, k0, c0 and m0 are the stiffness, damping fac-
tor and mass of the TMD, respectively. The variables xs and x0 are
the structure and TMD displacements, respectively; whereas f
and €xg denote the external force and support acceleration applied
to the structure. In this paper, the model developed by Den Hartog
[15] is used.

2.2. RIDTMD model

Both the RIVD and the TVMD utilize a ball-screw mechanism
that transforms an axial relative displacement into the rotational
movement of a mass, which is in turn immersed in a viscous fluid
that provides damping to the system [12]. The TVMD also includes
a flywheel in order to increase its rotational moment of inertia and
a secondary spring [13].

In this work, the damping of the RIVD is modeled by means of
an axial dashpot [13] with an equivalent damping factor c2, and
the ball-screw mechanism is replaced with an equivalent pinion-
rack mechanism in which the pinion radius r occupies the same
role as the screw lead. The considered RIVD model, incorporating
a flywheel, is shown in Fig. 2.

The following relation holds for the pinion-rack arrangement
sketched in Fig. 2:

h ¼ 1
r
ðx1 � x2Þ ð1Þ

in which r and h are the radius and the rotation angle of the pinion,
and x1 and x2 are the displacements of each device end.

Fig. 3 shows an RIDTMD (i.e., a TMD using a TVMD) coupled to
an SDOF system in which the moving block mass, the primary and
secondary spring stiffness of the auxiliary system, and the equiva-
lent damping factor of the RIVD are denoted by m1, k1, k2, and c2,
respectively. The pinion, the immersed mass and the flywheel have
Fig. 1. TMD coupled to an SDOF structure.
their own translational masses, which are relatively small and can
therefore be combined into m1.

In the system sketched in Fig. 3, the potential and strain ener-
gies (U and T), the dissipative function ðJÞ, and the incremental
work (dW) obtained when the external forces move through incre-
mental displacements dxi (i = 1, 2, s) are expressed as follows:

U ¼ 1
2

ksx2
s þ

1
2

k1ðx1 � xsÞ2 þ
1
2

k2ðx2 � xsÞ2 ð2Þ

T ¼ 1
2

ms _x2
s þ

1
2

m1 _x2
1 þ

1
2

J _h2 þ 1
2

mr _x2
2 ð3Þ

dW ¼ ðf �ms€xgÞdxs �m1€xgdx1 �mr€xgdx2 ð4Þ

I ¼ _xscsdxs þ ð _x1 � _x2Þðd _x1 � d _x2Þc2 ð5Þ

in which J is the sum of the pinion, immersed mass, and flywheel
rotational moments of inertia; mr is the rack mass (which is ne-
glected in this research); and xi is the displacement in the degree-
of-freedom i (i = 1, 2, s).

From expressions (1–5), and from defining the apparent mass as
m2 = J/r2, the equations of motion are obtained as follows [16]:

ksxs þ cs _xs þ k1ðxs � x1Þ þ k2ðxs � x2Þ þ €xsms ¼ �ms€xg þ f ð6Þ

k1ðx1 � xsÞ þ c2ð _x1 � _x2Þ þm2ð€x1 � €x2Þ þ €x1m1 ¼ �m1€xg ð7Þ

k2ðx2 � xsÞ þ c2ð _x2 � _x1Þ þm2ð€x2 � €x1Þ ¼ 0 ð8Þ

To find the transfer function of the system, the resulting system
of differential equations is represented in state-space [17] as
follows:

_qðtÞ ¼ AqðtÞ þ BuðtÞ ð9Þ

yðtÞ ¼ CqðtÞ ð10Þ



Table 1
Optimum parameters of the TMDs.

l ¼ m0
ms a0 ¼ x0

xs
¼

ffiffiffiffiffiffiffiffi
k0 ms
ks m0

q
f0 ¼ c0

2
ffiffiffiffiffiffiffiffiffi
k0m0

p

0.01 0.9901 0.0609
0.05 0. 9524 0.1336
0.10 0.9091 0.1846
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where q ¼ x _x½ �T is the state vector, in which x ¼ ½ xs x1 x2 �T ; u
is the system input load; y is the system output, i.e., the studied var-
iable; B is the input matrix, which is determined by the applied load
type; C is the output matrix, which depends on the selection of the
studied variable; and A is the state matrix, which is given as
follows:

A ¼
03 I3

�cM�1 bK �cM�1bC
" #

ð11Þ

where 03 and I3 are zero and identity 3 � 3 matrices, respectively,
and cM; bC and bK are the mass, damping and stiffness matrices,
respectively, as defined below.

For convenience, the following parameters are introduced:

l1 ¼
m1

ms
; l2 ¼

m2

ms
; l21 ¼

m2

m1
¼ l2

l1
; a1 ¼

x1

xs
; a2 ¼

x2

xs
;

fs ¼
cs

2xsms
; f2 ¼

c2

2x2m2
;

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

q
; x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

q
; x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

q
The matrices cM; bC and bK can then be written as follows:

cM ¼ ms

1 0 0
0 l1 þ l2 �l2

0 �l2 l2

264
375 ð12Þ

bC ¼ ms

2fsxs 0 0
0 2l2f2x2 �2l2f2x2

0 �2l2f2x2 2l2f2x2

264
375 ð13Þ

bK ¼ ms

x2
s ð1þ l1a2

1 þ l2a2
2Þ �l1x2

s a2
1 �l2x2

s a2
2

�l1x2
s a2

1 l1x2
s a2

1 0
�l2x2

s a2
2 0 �l2x2

s a2
2

264
375 ð14Þ

If an external dynamic force is applied to the structure (e.g.,
wind load or unbalanced rotating machinery), then B is given by
expression (15) and u = f. If support acceleration is employed as
an input (e.g., seismic load), then B is given by (16) and u ¼ €xg .

Bf ¼

03�1

cM�1

1
0
0

264
375

26664
37775 ð15Þ

B€xg ¼

03�1

�cM�1

ms

m1

0

264
375

26664
37775 ð16Þ

Based on the above definitions, and taking into account that the
system is linear and time-invariant, the generic transfer function
(TF) and the frequency-response function in displacement are gi-
ven, respectively, by the following expressions [17]:

HðsÞ ¼ YðsÞ
UðsÞ ¼ CðsI6 � AÞ�1B ð17Þ

HðjxÞ ¼ HðsÞjs¼jx ð18Þ

in which s is the Laplace variable, x is the circular frequency,
j ¼

ffiffiffiffiffiffiffi
�1
p

, I6 is a 6 � 6 identity matrix, Y(s) is the Laplace transform
of the system output, and U(s) is the Laplace transform of the sys-
tem input.

In this research, the following TFs are used:
HsðsÞ ¼ ½1 0 0 0 0 0 �ðsI6 � AÞ�1Bf ð19Þ

H1sðsÞ ¼ �1 1 0 0 0 0½ �ðsI6 � AÞ�1Bf ð20Þ

H2sðsÞ ¼ �1 0 1 0 0 0½ �ðsI6 � AÞ�1Bf ð21Þ

To study the dynamic response of an RIDTMD, three main engi-
neering parameters were selected. Specifically, two traditional re-
sponses of TMD-controlled structures are considered: structural
displacement and auxiliary mass stroke. Moreover, because an
RIDTMD is a two-degree-of-freedom device, two strokes must be
studied.

If the output variable is the displacement of the structure (i.e.,
y = xs), then the TF is given by (19). In a similar way, if the output
variable is the stroke of the moving block (i.e., y = x1 � xs), then the
TF is given by (20), and if the output variable is the stroke of the
rack (i.e., y = x2 � xs), then the TF is given by (21).

Of course, many other TFs can be proposed for study. However,
the study of structural displacement and auxiliary mass stroke is
very common in existing literature. The structural displacement
is the factor that designers strive to reduce in order to extend
the structure’s life. Additionally, the auxiliary mass stroke is also
important because the required space for the installation of the
control device is dependent on it.

For convenience, the dynamic magnification factor (DMF),
which provides a dimensionless assessment of the dynamic re-
sponse of the structure, is defined as follows:

DMF ¼ kskHsðjxÞk ð22Þ
3. Optimization

To conduct a meaningful comparative assessment between the
TMD and the RIDTMD, and because their performances are
strongly dependent on the design parameters, an optimization pro-
cedure is required in each case

3.1. TMD optimization

The optimal parameters k0 and c0 that minimize the peak of the
frequency-response function in displacement of the structure un-
der harmonic force load are found by using Warburton’s formulae
[18] for mass ratios (l = m0/ms) of 1%, 5% and 10%. The optimal
parameters are shown in Table 1 in a normalized form.

3.2. RIDTMD optimization

In this case, the same structural mass to auxiliary mass ratios l1

of 1%, 5% and 10% and the apparent mass to auxiliary mass ratios
l21 of 1%, 5%, 10%, 15%, 20%, 25% and 30% are considered. Note that
the mass ratio of the RIDTMD (i.e., l1) has the same practical
meaning as the mass ratio of the traditional TMD (i.e., l) because
both denote the relative mass added to the structure due the
installation of the control device. Conversely, l21 can be adjusted
without altering the device weight; for instance, it can be modified
by varying the fly-wheel radius.



Table 3
Optimum secondary tuning ratios (a2).

l1 l21

1% 5% 10% 15% 20% 25% 30%

1% 4.796 1.892 1.008* 0.966 0.900 0.938 0.892
5% 6.914 2.966 1.039* 1.089 1.042 0.992 0.949

10% 7.887 3.379 1.064 1.077* 1.091 1.032 1.041

* Cases in which the structure has the lowest response.

Table 4
Optimum damping ratios (f2).

l1 l21

1% 5% 10% 15% 20% 25% 30%

1% 2.398 0.881 0.446⁄ 0.621 0.593 0.853 0.863
5% 2.849 1.207 0.241⁄ 0.392 0.470 0.516 0.527

10% 3.411 1.959 0.200 0.303⁄ 0.415 0.456 0.560

* Cases in which the structure has the lowest response.

Fig. 4. R vs l21 for TMDs and RIDTMDs with the same l = l1.
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The design parameters to be optimized are k1, k2 and c2. The
optimization problem is then stated as follows:

minimize fJ0g
½k1 k2 c2� 0 < k1 6 k1m ;0 < k2 6 k2m

subject to 0 6 c2 6 c2m ;x 2 X

ð23Þ

in which k1m ; k2m and C2m are constants, and J0 is the cost function
defined as follows:

J0 ¼
max
x 2 X

kHsðjxÞk ð24Þ

where X denotes the range of possible exciting frequency x.
The optimization problems are solved by using a sequential

quadratic programming algorithm [19].
The optimized parameters are shown in Tables 2–4 in normal-

ized form. Bold font cells refer to the cases in which the structure
under an RIDTMD has the lowest response. Note that, in such cases,
the primary subsystem (k1, m1) is tuned slightly below the natural
frequency of the structure, whereas the secondary subsystem
(k2, m2) is tuned slightly above the natural frequency of the struc-
ture. It can also be seen that a1 and a2 approach one when l1 ap-
proaches zero.

Table 4 shows that, for some smaller apparent mass to auxiliary
mass ratios l21, the optimum damping ratio is greater than one
(i.e., an over-critically damped case). Accordingly, the secondary
subsystem does not oscillate and the RIDTMD behaves similar to
a TMD. It is important to note that the minimum of J0 occurs when
the damping ratio is minimal.

4. Performance assessment

4.1. Effect of apparent mass to auxiliary mass ratio l21

To compare the effectiveness of the RIDTMD with respect to
that of the TMD, the performance index R is defined as follows:

R ¼

max
x 2 X

DMFðRÞðjxÞ

max
x 2 X

DMFðTÞðjxÞ
ð25Þ

in which DMF(R)(jx) is the DMF of the structure which is controlled
with an optimum RIDTMD (Section 3.2), and DMF(T)(jx) is the DMF
of the structure which is controlled with an optimum TMD
(Section 3.1).

The dependence of R on l21 for systems provided with a TMD
and an RIDTMD with the same mass ratios l1 and l are displayed
in Fig. 4. It is observed that the RIDTMD outperforms the TMD by
approximately 20% in terms of performance index R. It is important
to highlight that, in order to achieve the peak magnitude of the
optimal RIDTMD with a 5% mass ratio l1, a traditional TMD would
need a mass ratio l of 7.9%, resulting in a 58% increase in m0.
Although the RIDTMD outperforms the TMD for all the studied val-
ues of l21, R displays the minimum values for l21 between 10% and
15%.
Table 2
Optimum main tuning ratios (a1).

l1 l21

1% 5% 10% 15% 20% 25% 30%

1% 0.933 0.946 0.939* 0.911 0.893 0.866 0.852
5% 0.849 0.860 0.925* 0.889 0.848 0.817 0.788

10% 0.757 0.715 0.873 0.867* 0.822 0.785 0.742

* Cases in which the structure has the lowest response.
It should be noted that, if a disk-shaped flywheel with radius 2r
is used, then the mass of the flywheel is 0.5l21m1. Consequently,
the assumption that the mass of the flywheel can be part of, and
therefore be lumped into, m1 is true. Moreover, for the optimized
value of l21 = 10% the flywheel mass is much less than m1 (only
the 5% of m1), as compared to the improvement in performance.

4.2. Structure response in frequency domain

It is important to show the performances of both optimum de-
vices (RIDTMD and TMD) in terms of DMF (see Eq. (22)) for fre-
quencies around resonance.

The Suppression Band (SB) is defined as the frequency range in
which the structure controlled by the device (either TMD or RID-
TMD) outperforms an uncontrolled structure. Fig. 5 shows the
SBs of both devices. Note that there are undesirable zones where
both a TMD-controlled and uncontrolled structure outperforms
an RIDTMD. These undesirable zones can be defined approximately
for frequency relations below 0.9 and over 1.1. However, this is not
an actual disadvantage of RIDTMD because such undesirable zones
can be avoided with a proper tuning of the device.

The DMF s of the systems provided with an RIDTMD and a TMD
in the frequency ratio range of 0.5–1.5 and mass ratios l = l1 of 5%
are displayed in Fig. 5. It is noted that the structure provided with
an RIDTMD has a considerably smaller DMF (approx. 20% smaller
peaks) and wider SB (approx. 40% wider) than the structure pro-
vided with a TMD. The latter is because the frequency-response
curve of the RIDTMD is flatter than that of the TMD.



Fig. 5. Dynamic Magnification Factor of the controlled and non controlled
structure.

Table 5
Assessment of the strokes.

l1, l Jb Jr

0.01 (l21 = 10%) 1.01 1.53
0.05 (l21 = 10%) 0.97 2.27
0.10 (l21 = 15%) 0.99 1.93
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4.3. Device strokes

Because shorter strokes are desirable from a practical point of
view, in this subsection the TMD and RIDTMD strokes are assessed
by means of the following indicators (see Eqs. (20), (21)):

Jb ¼

max
x 2 X

kH1sðjxÞk

max
x 2 X

kH0sðjxÞk
ð26Þ

Jr ¼

max
x 2 X

kH2sðjxÞk

max
x 2 X

kH0sðjxÞk
ð27Þ

in which H0s(jx) is the frequency-response function in the displace-
ments of the auxiliary mass of the TMD.

Considering the mass ratios l and l1 of 1%, 5% and 10%, the re-
sults of the stroke assessments are presented in Table 5. It is ob-
served that both the TMD and RIDTMD have nearly identical
peak strokes. Conversely, the stroke of the rack is considerably lar-
ger than that of the auxiliary mass; however, this fact does not in-
duce problems in practical applications because of the relatively
small volume of the rack.

5. Conclusions

This paper proposed a device for vibration control (RIDTMD) in
which the viscous linear damper of a traditional TMD is replaced
with a TVMD. The advantages of the RIDTMD with respect to a tra-
ditional TMD are displayed in terms of DMF on SDOF systems un-
der harmonic excitation.

The most important findings are listed below:

� The frequency-response curve of the RIDTMD is flatter than that
of the TMD. Consequently, the peak of the DMF of the structure
provided with an RIDTMD is approximately 20% lower and the
SB is 40% wider than that of the structure provided with a
TMD, with both having identical mass ratios and nearly identi-
cal auxiliary mass strokes.
� The apparent mass to auxiliary mass ratio l21 of the RIDTMD

plays a relevant role in the RIDTMD performance setting. The
highest effectiveness is achieved for l21 at approximately 10%
for a typical mass ratio l1 (e.g., 1–5%).
� For the optimum l21, the mass of the rotational inertia is signif-

icantly small compared to the TMD mass. Then, with a quite
simple addition to the traditional TMD, a significant improve-
ment in performance is obtained.
� In general, the value of l21 that minimizes the response of the

structure also minimizes the optimum damping ratio f2.

The device proposed in this paper (RIDTMD) could also be used
in multi-degree-of-freedom (MDOF) structures. If the excitation
and the structure are such that one mode of the structure is sub-
stantially more participating than the others, and the RIDTMD is
properly tuned, one can expect to obtain similar results to the
SDOF structural case. However, further study must be conducted
in order to assess the performance of an RIDTMD in MDOF struc-
tures with many participating modes.
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