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Preface

This book aims to provide a concise but comprehensive account of the essential elements of
statistical inference and theory. It is designed to be used as a text for courses on statistical
theory for students of mathematics or statistics at the advanced undergraduate or Masters
level (UK) or the first-year graduate level (US), or as a reference for researchers in other
fields seeking a concise treatment of the key concepts of and approaches to statistical
inference. It is intended to give a contemporary and accessible account of procedures used
to draw formal inference from data.

The book focusses on a clear presentation of the main concepts and results underly-
ing different frameworks of inference, with particular emphasis on the contrasts among
frequentist, Fisherian and Bayesian approaches. It provides a description of basic mat-
erial on these main approaches to inference, as well as more advanced material on recent
developments in statistical theory, including higher-order likelihood inference, bootstrap
methods, conditional inference and predictive inference. It places particular emphasis on
contemporary computational ideas, such as applied in bootstrap methodology and Markov
chain Monte Carlo techniques of Bayesian inference. Throughout, the text concentrates
on concepts, rather than mathematical detail, but every effort has been made to present
the key theoretical results in as precise and rigorous a manner as possible, consistent with
the overall mathematical level of the book. The book contains numerous extended exam-
ples of application of contrasting inference techniques to real data, as well as selected
historical commentaries. Each chapter concludes with an accessible set of problems and
exercises.

Prerequisites for the book are calculus, linear algebra and some knowledge of basic
probability (including ideas such as conditional probability, transformations of densities
etc., though not measure theory). Some previous familiarity with the objectives of and
main approaches to statistical inference is helpful, but not essential. Key mathematical and
probabilistic ideas are reviewed in the text where appropriate.

The book arose from material used in teaching of statistical inference to students, both
undergraduate and graduate, at the University of Cambridge. We thank the many colleagues
at Cambridge who have contributed to that material, especially David Kendall, Elizabeth
Thompson, Pat Altham, James Norris and Chris Rogers, and to the many students who
have, over many years, contributed hugely by their enthusiastic feedback. Particular thanks
go to Richard Samworth, who provided detailed and valuable comments on the whole



x Preface

text. Errors and inconsistencies that remain, however, are our responsibility, not his. David
Tranah and Diana Gillooly of Cambridge University Press deserve special praise, for their
encouragement over a long period, and for exerting just the right amount of pressure, at just
the right time. But it is our families who deserve the biggest ‘thank you’, and who have
suffered most during completion of the book.
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Introduction

What is statistical inference?

In statistical inference experimental or observational data are modelled as the observed
values of random variables, to provide a framework from which inductive conclusions may
be drawn about the mechanism giving rise to the data.

We wish to analyse observations x = (x1, . . . , xn) by:

1 Regarding x as the observed value of a random variable X = (X1, . . . , Xn) having an
(unknown) probability distribution, conveniently specified by a probability density, or
probability mass function, f (x).

2 Restricting the unknown density to a suitable family or set F . In parametric statistical
inference, f (x) is of known analytic form, but involves a finite number of real unknown
parameters θ = (θ1, . . . , θd ). We specify the region � ⊆ R

d of possible values of θ , the
parameter space. To denote the dependency of f (x) on θ , we write f (x ; θ ) and refer to
this as the model function. Alternatively, the data could be modelled non-parametrically,
a non-parametric model simply being one which does not admit a parametric repre-
sentation. We will be concerned almost entirely in this book with parametric statistical
inference.

The objective that we then assume is that of assessing, on the basis of the observed
data x , some aspect of θ , which for the purpose of the discussion in this paragraph
we take to be the value of a particular component, θi say. In that regard, we identify
three main types of inference: point estimation, confidence set estimation and hypoth-
esis testing. In point estimation, a single value is computed from the data x and used
as an estimate of θi . In confidence set estimation we provide a set of values, which,
it is hoped, has a predetermined high probability of including the true, but unknown,
value of θi . Hypothesis testing sets up specific hypotheses regarding θi and assesses the
plausibility of any such hypothesis by assessing whether or not the data x support that
hypothesis.

Of course, other objectives might be considered, such as: (a) prediction of the value of
some as yet unobserved random variable whose distribution depends on θ , or (b) examination
of the adequacy of the model specified by F and �. These are important problems, but are
not the main focus of the present book, though we will say a little on predictive inference
in Chapter 10.
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How do we approach statistical inference?

Following Efron (1998), we identify three main paradigms of statistical inference: the
Bayesian, Fisherian and frequentist. A key objective of this book is to develop in detail
the essential features of all three schools of thought and to highlight, we hope in an interest-
ing way, the potential conflicts between them. The basic differences that emerge relate to
interpretation of probability and to the objectives of statistical inference. To set the scene,
it is of some value to sketch straight away the main characteristics of the three paradigms.
To do so, it is instructive to look a little at the historical development of the subject.

The Bayesian paradigm goes back to Bayes and Laplace, in the late eighteenth century.
The fundamental idea behind this approach is that the unknown parameter, θ , should itself be
treated as a random variable. Key to the Bayesian viewpoint, therefore, is the specification of
a prior probability distribution on θ , before the data analysis. We will describe in some detail
in Chapter 3 the main approaches to specification of prior distributions, but this can basically
be done either in some objective way, or in a subjective way, which reflects the statistician’s
own prior state of belief. To the Bayesian, inference is the formalisation of how the prior
distribution changes, to the posterior distribution, in the light of the evidence presented by
the available data x , through Bayes’ formula. Central to the Bayesian perspective, therefore,
is a use of probability distributions as expressing opinion.

In the early 1920s, R.A. Fisher put forward an opposing viewpoint, that statistical in-
ference must be based entirely on probabilities with direct experimental interpretation. As
Efron (1998) notes, Fisher’s primary concern was the development of a logic of inductive
inference, which would release the statistician from the a priori assumptions of the Bayesian
school. Central to the Fisherian viewpoint is the repeated sampling principle. This dictates
that the inference we draw from x should be founded on an analysis of how the conclusions
change with variations in the data samples, which would be obtained through hypothetical
repetitions, under exactly the same conditions, of the experiment which generated the data
x in the first place. In a Fisherian approach to inference, a central role is played by the
concept of likelihood, and the associated principle of maximum likelihood. In essence, the
likelihood measures the probability that different values of the parameter θ assign, under
a hypothetical repetition of the experiment, to re-observation of the actual data x . More
formally, the ratio of the likelihood at two different values of θ compares the relative plau-
sibilities of observing the data x under the models defined by the two θ values. A further
fundamental element of Fisher’s viewpoint is that inference, in order to be as relevant as
possible to the data x , must be carried out conditional on everything that is known and
uninformative about θ .

Fisher’s greatest contribution was to provide for the first time an optimality yardstick
for statistical estimation, a description of the optimum that it is possible to do in a given
estimation problem, and the technique of maximum likelihood, which produces estimators
of θ that are close to ideal in terms of that yardstick. As described by Pace and Salvan (1997),
spurred on by Fisher’s introduction of optimality ideas in the 1930s and 1940s, Neyman,
E.S. Pearson and, later, Wald and Lehmann offered the third of the three paradigms, the
frequentist approach. The origins of this approach lay in a detailed mathematical analysis
of some of the fundamental concepts developed by Fisher, in particular likelihood and
sufficiency. With this focus, emphasis shifted from inference as a summary of data, as
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favoured by Fisher, to inferential procedures viewed as decision problems. Key elements
of the frequentist approach are the need for clarity in mathematical formulation, and that
optimum inference procedures should be identified before the observations x are available,
optimality being defined explicitly in terms of the repeated sampling principle.

The plan of the book is as follows. In Chapter 2, we describe the main elements of
the decision theory approach to frequentist inference, where a strict mathematical state-
ment of the inference problem is made, followed by formal identification of the optimal
solution. Chapter 3 develops the key ideas of Bayesian inference, before we consider, in
Chapter 4, central optimality results for hypothesis testing from a frequentist perspective.
There a comparison is made between frequentist and Bayesian approaches to hypothesis
testing. Chapter 5 introduces two special classes of model function of particular importance
to later chapters, exponential families and transformation models. Chapter 6 is concerned
primarily with point estimation of a parameter θ and provides a formal introduction to
a number of key concepts in statistical inference, in particular the notion of sufficiency.
In Chapter 7, we revisit the topic of hypothesis testing, to extend some of the ideas of
Chapter 4 to more complicated settings. In the former chapter we consider also the condi-
tionality ideas that are central to the Fisherian perspective, and highlight conflicts with the
frequentist approach to inference. There we describe also key frequentist optimality ideas in
confidence set estimation. The subject of Chapter 8 is maximum likelihood and associated
inference procedures. The remaining chapters contain more advanced material. In Chapter 9
we present a description of some recent innovations in statistical inference, concentrating
on ideas which draw their inspiration primarily from the Fisherian viewpoint. Chapter 10
provides a discussion of various approaches to predictive inference. Chapter 11, reflecting
the personal interests of one of us (GAY), provides a description of the bootstrap approach
to inference. This approach, made possible by the recent availability of cheap computing
power, offers the prospect of techniques of statistical inference which avoid the need for
awkward mathematical analysis, but retain the key operational properties of methods of
inference studied elsewhere in the book, in particular in relation to the repeated sampling
principle.
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Decision theory

In this chapter we give an account of the main ideas of decision theory. Our motivation for
beginning our account of statistical inference here is simple. As we have noted, decision
theory requires formal specification of all elements of an inference problem, so starting
with a discussion of decision theory allows us to set up notation and basic ideas that run
through the remainder of the book in a formal but easy manner. In later chapters, we will
develop the specific techniques of statistical inference that are central to the three paradigms
of inference. In many cases these techniques can be seen as involving the removal of certain
elements of the decision theory structure, or focus on particular elements of that structure.

Central to decision theory is the notion of a set of decision rules for an inference problem.
Comparison of different decision rules is based on examination of the risk functions of the
rules. The risk function describes the expected loss in use of the rule, under hypothetical
repetition of the sampling experiment giving rise to the data x , as a function of the parameter
of interest. Identification of an optimal rule requires introduction of fundamental principles
for discrimination between rules, in particular the minimax and Bayes principles.

2.1 Formulation

A full description of a statistical decision problem involves the following formal elements:

1 A parameter space �, which will usually be a subset of R
d for some d ≥ 1, so that we

have a vector of d unknown parameters. This represents the set of possible unknown
states of nature. The unknown parameter value θ ∈ � is the quantity we wish to make
inference about.

2 A sample space X , the space in which the data x lie. Typically we have n observations, so
the data, a generic element of the sample space, are of the form x = (x1, . . . , xn) ∈ R

n .
3 A family of probability distributions on the sample space X , indexed by values θ ∈ �,

{Pθ (x), x ∈ X , θ ∈ �}. In nearly all practical cases this will consist of an assumed
parametric family f (x ; θ ), of probability mass functions for x (in the discrete case), or
probability density functions for x (in the continuous case).

4 An action space A. This represents the set of all actions or decisions available to the
experimenter.

Examples of action spaces include the following:

(a) In a hypothesis testing problem, where it is necessary to decide between two hy-
potheses H0 and H1, there are two possible actions corresponding to ‘accept H0’ and
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‘accept H1’. So hereA = {a0, a1}, where a0 represents accepting H0 and a1 represents
accepting H1.

(b) In an estimation problem, where we want to estimate the unknown parameter value θ

by some function of x = (x1, . . . , xn), such as x̄ = 1
n

∑
xi or s2 = 1

n−1

∑
(xi − x̄)2

or x3
1 + 27 sin(

√
x2), etc., we should allow ourselves the possibility of estimating θ

by any point in �. So, in this context we typically have A ≡ �.
(c) However, the scope of decision theory also includes things such as ‘approve Mr Jones’

loan application’ (if you are a bank manager) or ‘raise interest rates by 0.5%’ (if you
are the Bank of England or the Federal Reserve), since both of these can be thought
of as actions whose outcome depends on some unknown state of nature.

5 A loss function L : � × A → R links the action to the unknown parameter. If we take
action a ∈ A when the true state of nature is θ ∈ �, then we incur a loss L(θ, a).

Note that losses can be positive or negative, a negative loss corresponding to a gain.
It is a convention that we formulate the theory in terms of trying to minimise our losses
rather than trying to maximise our gains, but obviously the two come to the same thing.

6 A set D of decision rules. An element d : X → A of D is such that each point x in X is
associated with a specific action d(x) ∈ A.

For example, with hypothesis testing, we might adopt the rule: ‘Accept H0 if x̄ ≤ 5.7,
otherwise accept H1.’ This corresponds to a decision rule,

d(x) =
{

a0 if x̄ ≤ 5.7,
a1 if x̄ > 5.7.

2.2 The risk function

For parameter value θ ∈ �, the risk associated with a decision rule d based on random data
X is defined by

R(θ, d) = Eθ L(θ, d(X ))

=
{∫

X L(θ, d(x)) f (x ; θ ) dx for continuous X ,∑
x∈X L(θ, d(x)) f (x ; θ ) for discrete X .

So, we are treating the observed data x as the realised value of a random variable X with
density or mass function f (x ; θ ), and defining the risk to be the expected loss, the expectation
being with respect to the distribution of X for the particular parameter value θ .

The key notion of decision theory is that different decision rules should be compared by
comparing their risk functions, as functions of θ . Note that we are explicitly invoking the
repeated sampling principle here, the definition of risk involving hypothetical repetitions
of the sampling mechanism that generated x , through the assumed distribution of X .

When a loss function represents the real loss in some practical problem (as opposed to
some artificial loss function being set up in order to make the statistical decision problem
well defined) then it should really be measured in units of ‘utility’ rather than actual money.
For example, the expected return on a UK lottery ticket is less than the £1 cost of the
ticket; if everyone played so as to maximise their expected gain, nobody would ever buy a
lottery ticket! The reason that people still buy lottery tickets, translated into the language of
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statistical decision theory, is that they subjectively evaluate the very small chance of winning,
say, £1 000 000 as worth more than a fixed sum of £1, even though the chance of actually
winning the £1 000 000 is appreciably less than 1/1 000 000. There is a formal theory, known
as utility theory, which asserts that, provided people behave rationally (a considerable
assumption in its own right!), then they will always act as if they were maximising the
expected value of a function known as the utility function. In the lottery example, this
implies that we subjectively evaluate the possibility of a massive prize, such as £1 000 000,
to be worth more than 1 000 000 times as much as the relatively paltry sum of £1. However
in situations involving monetary sums of the same order of magnitude, most people tend to
be risk averse. For example, faced with a choice between:

Offer 1: Receive £10 000 with probability 1;

and

Offer 2: Receive £20 000 with probability 1
2 , otherwise receive £0,

most of us would choose Offer 1. This means that, in utility terms, we consider £20 000 as
worth less than twice as much as £10 000. Either amount seems like a very large sum of
money, and we may not be able to distinguish the two easily in our minds, so that the lack
of risk involved in Offer 1 makes it appealing. Of course, if there was a specific reason why
we really needed £20 000, for example because this was the cost of a necessary medical
operation, we might be more inclined to take the gamble of Offer 2.

Utility theory is a fascinating subject in its own right, but we do not have time to go into
the mathematical details here. Detailed accounts are given by Ferguson (1967) or Berger
(1985), for example. Instead, in most of the problems we will be considering, we will use
various artificial loss functions. A typical example is use of the loss function

L(θ, a) = (θ − a)2,

the squared error loss function, in a point estimation problem. Then the risk R(θ, d) of a
decision rule is just the mean squared error of d(X ) as an estimator of θ , Eθ {d(X ) − θ}2.
In this context, we seek a decision rule d that minimises this mean squared error.

Other commonly used loss functions, in point estimation problems, are

L(θ, a) = |θ − a|,

the absolute error loss function, and

L(θ, a) =
{

0 if |θ − a| ≤ δ,
1 if |θ − a| > δ,

where δ is some prescribed tolerance limit. This latter loss function is useful in a Bayesian
formulation of interval estimation, as we shall discuss in Chapter 3.

In hypothesis testing, where we have two hypotheses H0, H1, identified with subsets of
�, and corresponding action spaceA = {a0, a1} in which action a j corresponds to selecting
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the hypothesis Hj , j = 0, 1, the most familiar loss function is

L(θ, a) =



1 if θ ∈ H0 and a = a1,
1 if θ ∈ H1 and a = a0,
0 otherwise.

In this case the risk is the probability of making a wrong decision:

R(θ, d) =
{

Prθ {d(X ) = a1} if θ ∈ H0,
Prθ {d(X ) = a0} if θ ∈ H1.

In the classical language of hypothesis testing, these two risks are called, respectively, the
type I error and the type II error: see Chapter 4.

2.3 Criteria for a good decision rule

In almost any case of practical interest, there will be no way to find a decision rule d ∈ D
which makes the risk function R(θ, d) uniformly smallest for all values of θ . Instead, it is
necessary to consider a number of criteria, which help to narrow down the class of decision
rules we consider. The notion is to start with a large class of decision rules d, such as the
set of all functions from X to A, and then reduce the number of candidate decision rules by
application of the various criteria, in the hope of being left with some unique best decision
rule for the given inference problem.

2.3.1 Admissibility

Given two decision rules d and d ′, we say that d strictly dominates d ′ if R(θ, d) ≤ R(θ, d ′)
for all values of θ , and R(θ, d) < R(θ, d ′) for at least one value θ .

Given a choice between d and d ′, we would always prefer to use d.
Any decision rule which is strictly dominated by another decision rule (as d ′ is in the

definition) is said to be inadmissible. Correspondingly, if a decision rule d is not strictly
dominated by any other decision rule, then it is admissible.

Admissibility looks like a very weak requirement: it seems obvious that we should always
restrict ourselves to admissible decision rules. Admissibility really represents absence of a
negative attribute, rather than possession of a positive attribute. In practice, it may not be
so easy to decide whether a given decision rule is admissible or not, and there are some
surprising examples of natural-looking estimators which are inadmissible. In Chapter 3,
we consider an example of an inadmissible estimator, Stein’s paradox, which has been
described (Efron, 1992) as ‘the most striking theorem of post-war mathematical statistics’!

2.3.2 Minimax decision rules

The maximum risk of a decision rule d ∈ D is defined by

MR(d) = sup
θ∈�

R(θ, d).
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A decision rule d is minimax if it minimises the maximum risk:

MR(d) ≤ MR(d ′) for all decision rules d ′ ∈ D.

Another way of writing this is to say that d must satisfy

sup
θ

R(θ, d) = inf
d ′∈D

sup
θ∈�

R(θ, d ′). (2.1)

In most of the problems we will encounter, the supremum and infimum are actually attained,
so that we can rewrite (2.1) as

max
θ∈�

R(θ, d) = min
d ′∈D

max
θ∈�

R(θ, d ′).

(Recall that the difference between supθ and maxθ is that the maximum must actually be
attained for some θ ∈ �, whereas a supremum represents a least upper bound that may not
actually be attained for any single value of θ . Similarly for infimum and minimum.)

The minimax principle says we should use a minimax decision rule.
A few comments about minimaxity are appropriate.

(a) The motivation may be roughly stated as follows: we do not know anything about
the true value of θ , therefore we ought to insure ourselves against the worst possible case.
There is also an analogy with game theory. In that context, L(θ, a) represents the penalty
suffered by you (as one player in a game) when you choose the action a and your opponent
(the other player) chooses θ . If this L(θ, a) is also the amount gained by your opponent,
then this is called a two-person zero-sum game. In game theory, the minimax principle is
well established because, in that context, you know that your opponent is trying to choose
θ to maximise your loss. See Ferguson (1967) or Berger (1985) for a detailed exposition of
the connections between statistical decision theory and game theory.

(b) There are a number of situations in which minimaxity may lead to a counterintuitive
result. One situation is when a decision rule d1 is better than d2 for all values of θ except
in a very small neighbourhood of a particular value, θ0 say, where d2 is much better: see
Figure 2.1. In this context one might prefer d1 unless one had particular reason to think that
θ0, or something near it, was the true parameter value. From a slightly broader perspective,
it might seem illogical that the minimax criterion’s preference for d2 is based entirely in its
behaviour in a small region of �, while the rest of the parameter space is ignored.

(c) The minimax procedure may be likened to an arms race in which both sides spend the
maximum sum available on military fortification in order to protect themselves against the
worst possible outcome, of being defeated in a war, an instance of a non-zero-sum game!

(d) Minimax rules may not be unique, and may not be admissible. Figure 2.2 is intended
to illustrate a situation in which d1 and d2 achieve the same minimax risk, but one would
obviously prefer d1 in practice.

2.3.3 Unbiasedness

A decision rule d is said to be unbiased if

Eθ {L(θ ′, d(X ))} ≥ Eθ {L(θ, d(X ))} for all θ, θ ′ ∈ �.
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Recall that in elementary statistical theory, if d(X ) is an estimator for a parameter θ , then
d(X ) is said to be unbiased if Eθd(X ) = θ for all θ . The connection between the two
notions of unbiasedness is as follows. Suppose the loss function is the squared error loss,
L(θ, d) = (θ − d)2. Fix θ and let Eθd(X ) = φ. Then, for d to be an unbiased decision rule,
we require that, for all θ ′,

0 ≤ Eθ {L(θ ′, d(X ))} − Eθ {L(θ, d(X ))} = Eθ {(θ ′ − d(X ))2} − Eθ {(θ − d(X ))2}
= (θ ′)2 − 2θ ′φ + Eθd2(X ) − θ2

+ 2θφ − Eθd2(X )

= (θ ′ − φ)2 − (θ − φ)2.

If φ = θ , then this statement is obviously true. If φ �= θ , then set θ ′ = φ to obtain a contra-
diction.

Thus we see that, if d(X ) is an unbiased estimator in the classical sense, then it is also an
unbiased decision rule, provided the loss is a squared error. However the above argument
also shows that the notion of an unbiased decision rule is much broader: we could have
whole families of unbiased decision rules corresponding to different loss functions.

Nevertheless, the role of unbiasedness in statistical decision theory is ambiguous. Of
the various criteria being considered here, it is the only one that does not depend solely
on the risk function. Often we find that biased estimators perform better than unbiased
ones from the point of view of, say, minimising mean squared error. For this reason, many
modern statisticians consider the whole concept of unbiasedness to be somewhere between
a distraction and a total irrelevance.

2.3.4 Bayes decision rules

Bayes decision rules are based on different assumptions from the other criteria we have
considered, because, in addition to the loss function and the class D of decision rules, we
must specify a prior distribution, which represents our prior knowledge on the value of
the parameter θ , and is represented by a function π (θ ), θ ∈ �. In cases where � contains
an open rectangle in R

d , we would take our prior distribution to be absolutely continuous,
meaning that π (θ ) is taken to be some probability density on �. In the case of a discrete
parameter space, π (θ ) is a probability mass function.

In the continuous case, the Bayes risk of a decision rule d is defined to be

r (π, d) =
∫

θ∈�

R(θ, d)π (θ )dθ.

In the discrete case, the integral in this expression is replaced by a summation over the
possible values of θ . So, the Bayes risk is just average risk, the averaging being with respect
to the weight function π (θ ) implied by our prior distribution.

A decision rule d is said to be a Bayes rule, with respect to a given prior π (·), if it
minimises the Bayes risk, so that

r (π, d) = inf
d ′∈D

r (π, d ′) = mπ , say. (2.2)

The Bayes principle says we should use a Bayes decision rule.
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2.3.5 Some other definitions

Sometimes the Bayes rule is not defined because the infimum in (2.2) is not attained for
any decision rule d. However, in such cases, for any ε > 0 we can find a decision rule dε

for which

r (π, dε) < mπ + ε

and in this case dε is said to be ε-Bayes with respect to the prior distribution π (·).
Finally, a decision rule d is said to be extended Bayes if, for every ε > 0, we have that

d is ε-Bayes with respect to some prior, which need not be the same for different ε. As we
shall see in Theorem 2.2, it is often possible to derive a minimax rule through the property
of being extended Bayes. A particular example of an extended Bayes rule is discussed in
Problem 3.11.

2.4 Randomised decision rules

Suppose we have a collection of I decision rules d1, . . . , dI and an associated set of prob-
ability weights p1, . . . , pI , so that pi ≥ 0 for 1 ≤ i ≤ I , and

∑
i pi = 1.

Define the decision rule d∗ = ∑
i pi di to be the rule ‘select di with probability pi ’. Then

d∗ is a randomised decision rule. We can imagine that we first use some randomisation
mechanism, such as tossing coins or using a computer random number generator, to select,
independently of the observed data x , one of the decision rules d1, . . . , dI , with respective
probabilities p1, . . . , pI . Then, having decided in favour of use of the particular rule di ,
under d∗ we carry out the action di (x).

For a randomised decision rule d∗, the risk function is defined by averaging across possible
risks associated with the component decision rules:

R(θ, d∗) =
I∑

i=1

pi R(θ, di ).

Randomised decision rules may appear to be artificial, but minimax solutions may well be
of this form. It is easy to contruct examples in which d∗ is formed by randomising the rules
d1, . . . , dI but

sup
θ

R(θ, d∗) < sup
θ

R(θ, di ) for each i,

so that d∗ may be a candidate for the minimax procedure, but none of d1, . . . , dI . An example
of a decision problem, where the minimax rule indeed turns out to be a randomised rule, is
presented in Section 2.5.1, and illustrated in Figure 2.9.

2.5 Finite decision problems

A finite decision problem is one in which the parameter space is a finite set: � = {θ1, . . . , θt }
for some finite t , with θ1, . . . , θt specified values. In such cases the notions of admissible,
minimax and Bayes decision rules can be given a geometric interpretation, which leads
to some interesting problems in their own right, and which also serves to motivate some
properties of decision rules in more general problems.
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For a finite decision problem, define the risk set to be a subset S of R
t , in which a generic

point consists of the t-vector (R(θ1, d), . . . , R(θt , d)) associated with a decision rule d. An
important point to note is that we assume in our subsequent discussion that the space of
decision rules D includes all randomised rules.

A set A is said to be convex if whenever x1 ∈ A and x2 ∈ A then λx1 + (1 − λ)x2 ∈ A
for any λ ∈ (0, 1).

Lemma 2.1 The risk set S is a convex set.

Proof Suppose x1 = (R(θ1, d1), . . . , R(θt , d1)) and x2 = (R(θ1, d2), . . . , R(θt , d2)) are
two elements of S, and suppose λ ∈ (0, 1). Form a new randomised decision rule d =
λd1 + (1 − λ)d2. Then for every θ , by definition of the risk of a randomised rule,

R(θ, d) = λR(θ, d1) + (1 − λ)R(θ, d2).

Then we see that λx1 + (1 − λ)x2 is associated with the decision rule d, and hence is itself
a member of S. This proves the result. �

In the case t = 2, it is particularly easy to see what is going on, because we can draw the
risk set as a subset of R

2, with coordinate axes R1 = R(θ1, d), R2 = R(θ2, d). An example
is shown in Figure 2.3.

The extreme points of S (shown by the dots) correspond to non-randomised decision
rules, and points on the lower left-hand boundary (represented by thicker lines) correspond
to the admissible decision rules.

For the example shown in Figure 2.3, the minimax decision rule corresponds to the point
at the lower intersection of S with the line R1 = R2 (the point shown by the cross). Note
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Figure 2.4 Another risk set

that this is a randomised decision rule. However, we shall see below that not all minimax
rules are formed in this way.

In cases where the boundary of the risk set is a smooth curve, as in Figure 2.4, the
properties are similar, except that we now have an infinite number of non-randomised
admissible decision rules and the minimax point is non-randomised.

To find the Bayes rules, suppose we have prior probabilities (π1, π2), where π1 ≥ 0, π2 ≥
0, π1 + π2 = 1, so that π j , for j = 1 or 2, represents the prior probability that θ j is the
true parameter value. For any c, the straight line π1 R1 + π2 R2 = c represents a class of
decision rules with the same Bayes risk. By varying c, we get a family of parallel straight
lines. Of course, if the line π1 R1 + π2 R2 = c does not intersect S, then the Bayes risk c is
unattainable. Then the Bayes risk for the decision problem is c′ if the line π1 R1 + π2 R2 = c′

just hits the set S on its lower left-hand boundary: see Figure 2.5. Provided S is a closed
set, which we shall assume, the Bayes decision rule corresponds to the point at which this
line intersects S.

In many cases of interest, the Bayes rule is unique, and is then automatically both ad-
missible and non-randomised. However, it is possible that the line π1 R1 + π2 R2 = c′ hits
S along a line segment rather than at a single point, as in Figure 2.6. In that case, any
point along the segment identifies a Bayes decision rule with respect to this prior. Also, in
this case the interior points of the segment will identify randomised decision rules, but the
endpoints of the segment also yield Bayes rules, which are non-randomised. Thus we can
always find a Bayes rule which is non-randomised. Also, it is an easy exercise to see that,
provided π1 > 0, π2 > 0, the Bayes rule is admissible.

It can easily happen (see Figure 2.7) that the same decision rule is Bayes with respect to
a whole family of different prior distributions.
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Figure 2.6 Non-uniqueness of Bayes rule

Not all minimax rules satisfy R1 = R2. See Figures 2.8 for several examples. By con-
trast, Figure 2.3 is an example where the minimax rule does satisfy R1 = R2. In Figures
2.8(a) and (b), S lies entirely to the left of the line R1 = R2, so that R1 < R2 for every
point in S, and therefore the minimax rule is simply that which minimises R2. This is the
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Figure 2.7 Bayes with respect to family of priors

Bayes rule for the prior π1 = 0, π2 = 1, and may be attained either at a single point
(Figure 2.8(a)) or along a segment (Figure 2.8(b)). In the latter case, only the left-hand
element of the segment (shown by the cross) corresponds to an admissible rule. Figures
2.8(c) and (d) are the mirror images of Figures 2.8(a) and (b) in which every point of
the risk set satisfies R1 > R2 so that the minimax rule is Bayes for the prior π1 = 1,

π2 = 0.

2.5.1 A story

The Palliser emerald necklace has returned from the cleaners, together with a valueless
imitation which you, as Duchess of Omnium, wear on the less important State occasions.
The tag identifying the imitation has fallen off, and so you have two apparently identical
necklaces in the left- and right-hand drawers of the jewelcase. You consult your Great
Aunt, who inspects them both (left-hand necklace first, and then right-hand necklace),
and then from her long experience pronounces one of them to be the true necklace. But
is she right? You know that her judgement will be infallible if she happens to inspect
the true necklace first and the imitation afterwards, but that if she inspects them in the
other order she will in effect select one of them at random, with equal probabilities 1

2 on
the two possibilities. With a loss of £0 being attributed to a correct decision (choosing
the real necklace), you know that a mistaken one (choosing the imitation) will imply a
loss of £1 million. You will wear the necklace tonight at an important banquet, where
the guest of honour is not only the Head of State of a country with important business
contracts with Omnium, but also an expert on emerald jewellery, certain to be able to spot
an imitation.
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Figure 2.8 Possible forms of risk set

Our data x are your Great Aunt’s judgement. Consider the following exhaustive set of
four non-randomised decision rules based on x :

(d1): accept the left-hand necklace, irrespective of Great Aunt’s judgement;
(d2): accept the right-hand necklace, irrespective of Great Aunt’s judgement;
(d3): accept your Great Aunt’s judgement;
(d4): accept the reverse of your Great Aunt’s judgement.

Code the states of nature ‘left-hand necklace is the true one’ as θ = 1, and ‘right-hand
necklace is the true one’ as θ = 2. We compute the risk functions of the decision rules as
follows:

R1 = R(θ = 1, d1) = 0, R2 = R(θ = 2, d1) = 1;
R1 = R(θ = 1, d2) = 1, R2 = R(θ = 2, d2) = 0;
R1 = R(θ = 1, d3) = 0, R2 = R(θ = 2, d3) = 1

2 ;
R1 = R(θ = 1, d4) = 1, R2 = R(θ = 2, d4) = 1

2 .
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Figure 2.9 Risk set, Palliser necklace

To understand these risks, note that when θ = 1 your Great Aunt chooses correctly, so that
d3 is certain to make the correct choice, while d4 is certain to make the wrong choice. When
θ = 2, Great Aunt chooses incorrectly with probability 1

2 , so our expected loss is 1
2 with

both rules d3 and d4.
The risks associated with these decision rules and the associated risk set are shown in

Figure 2.9. The only admissible rules are d2 and d3, together with randomised rules formed
as convex combinations of d2 and d3.

The minimax rule d∗ is such a randomised rule, of the form d∗ = λd3 + (1 − λ)d2. Then
setting R(θ = 1, d∗) = R(θ = 2, d∗) gives λ = 2

3 .
Suppose that the Duke now returns from hunting and points out that the jewel cleaner will

have placed the true necklace in the left-hand drawer with some probability ψ , which we
know from knowledge of the way the jewelcase was arranged on its return from previous
trips to the cleaners.

The Bayes risk of a rule d is then ψ R(θ = 1, d) + (1 − ψ)R(θ = 2, d). There are three
groups of Bayes rules according to the value of ψ :

(i) If ψ = 1
3 , d2 and d3, together with all convex combinations of the two, give the same

Bayes risk (= 1
3 ) and are Bayes rules. In this case the minimax rule is also a Bayes rule.

(ii) If ψ > 1
3 the unique Bayes rule is d3, with Bayes risk (1 − ψ)/2. This is the situation

with the lines of constant Bayes risk illustrated in Figure 2.9, and makes intuitive
sense. If our prior belief that the true necklace is in the left-hand drawer is strong, then
we attach a high probability to Great Aunt inspecting the necklaces in the order true
necklace first, then imitation, in which circumstances she is certain to identify them
correctly. Then following her judgement is sensible.

(iii) If ψ < 1
3 the unique Bayes rule is d2, with Bayes risk ψ . Now the prior belief is that

the true necklace is unlikely to be in the left-hand drawer, so we are most likely to be



18 Decision theory

in the situation where Great Aunt basically guesses which is the true necklace, and it
is better to go with our prior hunch of the right-hand drawer.

2.6 Finding minimax rules in general

Although the formula R1 = R2 to define the minimax rule is satisfied in situations such as
that shown in Figure 2.3, all four situations illustrated in Figure 2.8. satisfy a more general
formula:

max
θ

R(θ, d) ≤ r (π, d), (2.3)

where π is a prior distribution with respect to which the minimax rule d is Bayes. In the
cases of Figure 2.8(a) and Figure 2.8(b), for example, this is true for the minimax rules, for
the prior π1 = 0, π2 = 1, though we note that in Figure 2.8(a) the unique minimax rule is
Bayes for other priors as well.

These geometric arguments suggest that, in general, a minimax rule is one which
satisfies:

(a) it is Bayes with respect to some prior π (·),
(b) it satisfies (2.3).

A complete classification of minimax decision rules in general problems lies outside the
scope of this text, but the following two theorems give simple sufficient conditions for a
decision rule to be minimax. One generalisation that is needed in passing from the finite to
the infinite case is that the class of Bayes rules must be extended to include sequences of
either Bayes rules, or extended Bayes rules.

Theorem 2.1 If δn is Bayes with respect to prior πn(·), and r (πn, δn) → C as n → ∞, and
if R(θ, δ0) ≤ C for all θ ∈ �, then δ0 is minimax.

Of course this includes the case where δn = δ0 for all n and the Bayes risk of δ0 is exactly C .
To see the infinite-dimensional generalisation of the condition R1 = R2, we make the

following definition.

Definition A decision rule d is an equaliser decision rule if R(θ, d) is the same for every
value of θ .

Theorem 2.2 An equaliser decision rule δ0 which is extended Bayes must be minimax.

Proof of Theorem 2.1 Suppose δ0 satisfies the conditions of the theorem but is not minimax.
Then there must exist some decision rule δ′ for which supθ R(θ, δ′) < C : the inequality
must be strict, because, if the maximum risk of δ′ was the same as that of δ0, that would not
contradict minimaxity of δ0. So there is an ε > 0 for which R(θ, δ′) < C − ε for every θ .
Now, since r (πn, δn) → C , we can find an n for which r (πn, δn) > C − ε/2. But r (πn, δ

′) ≤
C − ε. Therefore, δn cannot be the Bayes rule with respect to πn . This creates a contradiction,
and hence proves the theorem. �

Proof of Theorem 2.2. The proof here is almost the same. If we suppose δ0 is not minimax,
then there exists a δ′ for which supθ R(θ, δ′) < C , where C is the common value of R(θ, δ0).
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So let supθ R(θ, δ′) = C − ε, for some ε > 0. By the extended Bayes property of δ0, we
can find a prior π for which

r (π, δ0) = C < inf
δ

r (π, δ) + ε

2
.

But r (π, δ′) ≤ C − ε, so this gives another contradiction, and hence proves the
theorem. �

2.7 Admissibility of Bayes rules

In Chapter 3 we will present a general result that allows us to characterise the Bayes
decision rule for any given inference problem. An immediate question that then arises
concerns admissibility. In that regard, the rule of thumb is that Bayes rules are nearly
always admissible. We complete this chapter with some specific theorems on this point.
Proofs are left as exercises.

Theorem 2.3 Assume that � = {θ1, . . . , θt } is finite, and that the prior π (·) gives positive
probability to each θi . Then a Bayes rule with respect to π is admissible.

Theorem 2.4 If a Bayes rule is unique, it is admissible.

Theorem 2.5 Let � be a subset of the real line. Assume that the risk functions R(θ, d) are
continuous in θ for all decision rules d. Suppose that for any ε > 0 and any θ the interval
(θ − ε, θ + ε) has positive probability under the prior π (·). Then a Bayes rule with respect
to π is admissible.

2.8 Problems

2.1 Let X be uniformly distributed on [0, θ ], where θ ∈ (0, ∞) is an unknown parameter.
Let the action space be [0, ∞) and the loss function L(θ, d) = (θ − d)2, where d is the
action chosen. Consider the decision rules dµ(x) = µx, µ ≥ 0. For what value of µ is
dµ unbiased? Show that µ = 3/2 is a necessary condition for dµ to be admissible.

2.2 Dashing late into King’s Cross, I discover that Harry Potter must have already boarded
the Hogwart’s Express. I must therefore make my own way on to platform nine and
three-quarters. Unusually, there are two guards on duty, and I will ask one of them for
directions. It is safe to assume that one guard is a Wizard, who will certainly be able to
direct me, and the other a Muggle, who will certainly not. But which is which? Before
choosing one of them to ask for directions to platform nine and three-quarters, I have
just enough time to ask one of them ‘Are you a Wizard?’, and on the basis of their reply
I must make my choice of which guard to ask for directions. I know that a Wizard will
answer this question truthfully, but that a Muggle will, with probability 1/3, answer it
untruthfully.

Failure to catch the Hogwart’s Express results in a loss that I measure as 1000
galleons, there being no loss associated with catching up with Harry on the train.

Write down an exhaustive set of non-randomised decision rules for my problem and,
by drawing the associated risk set, determine my minimax decision rule.
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My prior probability is 2/3 that the guard I ask ‘Are you a Wizard?’ is indeed a
Wizard. What is my Bayes decision rule?

2.3 Each winter evening between Sunday and Thursday, the superintendent of the Chapel
Hill School District has to decide whether to call off the next day’s school because
of snow conditions. If he fails to call off school and there is snow, there are various
possible consequences, including children and teachers failing to show up for school,
the possibility of traffic accidents etc. If he calls off school, then regardless of whether
there actually is snow that day there will have to be a make-up day later in the year.
After weighing up all the possible outcomes he decides that the costs of failing to close
school when there is snow are twice the costs incurred by closing school, so he assigns
two units of loss to the first outcome and one to the second. If he does not call off school
and there is no snow, then of course there is no loss.

Two local radio stations give independent and identically distributed weather fore-
casts. If there is to be snow, each station will forecast this with probability 3/4, but
predict no snow with probability 1/4. If there is to be no snow, each station predicts
snow with probability 1/2.

The superintendent will listen to the two forecasts this evening, and then make his
decision on the basis of the data x , the number of stations forecasting snow.

Write down an exhaustive set of non-randomised decision rules based on x .
Find the superintendent’s admissible decision rules, and his minimax rule. Before

listening to the forecasts, he believes there will be snow with probability 1/2; find the
Bayes rule with respect to this prior.

(Again, include randomised rules in your analysis when determining admissible,
minimax and Bayes rules.)

2.4 An unmanned rocket is being launched in order to place in orbit an important new com-
munications satellite. At the time of launching, a certain crucial electronic component
is either functioning or not functioning. In the control centre there is a warning light that
is not completely reliable. If the crucial component is not functioning, the warning light
goes on with probability 2/3; if the component is functioning, it goes on with probabil-
ity 1/4. At the time of launching, an observer notes whether the warning light is on or
off. It must then be decided immediately whether or not to launch the rocket. There is no
loss associated with launching the rocket with the component functioning, or aborting
the launch when the component is not functioning. However, if the rocket is launched
when the component is not functioning, the satellite will fail to reach the desired orbit.
The Space Shuttle mission required to rescue the satellite and place it in the correct
orbit will cost 10 billion dollars. Delays caused by the decision not to launch when the
component is functioning result, through lost revenue, in a loss of 5 billion dollars.

Suppose that the prior probability that the component is not functioning is ψ = 2/5.
If the warning light does not go on, what is the decision according to the Bayes rule?

For what values of the prior probability ψ is the Bayes decision to launch the rocket,
even if the warning light comes on?

2.5 Bacteria are distributed at random in a fluid, with mean density θ per unit volume, for
some θ ∈ H ⊆ [0, ∞). This means that

Prθ (no bacteria in volume v) = e−θv.
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We remove a sample of volume v from the fluid and test it for the presence or absence
of bacteria. On the basis of this information we have to decide whether there are any
bacteria in the fluid at all. An incorrect decision will result in a loss of 1, a correct
decision in no loss.

(i) Suppose H = [0, ∞). Describe all the non-randomised decision rules for this
problem and calculate their risk functions. Which of these rules are admissible?

(ii) Suppose H = {0, 1}. Identify the risk set

S = {(R(0, d), R(1, d)): d a randomised rule} ⊆ R
2,

where R(θ, d) is the expected loss in applying d under Prθ . Determine the
minimax rule.

(iii) Suppose again that H = [0, ∞).
Determine the Bayes decision rules and Bayes risk for prior

π ({0}) = 1/3,

π (A) = 2/3
∫

A
e−θdθ, A ⊆ (0, ∞).

(So the prior probability that θ = 0 is 1/3, while the prior probability that
θ ∈ A ⊆ (0, ∞) is 2/3

∫
A e−θdθ .)

(iv) If it costs v/24 to test a sample of volume v, what is the optimal volume to test?
What if the cost is 1/6 per unit volume?

2.6 Prove Theorems 2.3, 2.4 and 2.5, concerning admissibility of Bayes rules.
2.7 In the context of a finite decision problem, decide whether each of the following

statements is true, providing a proof or counterexample as appropriate.
(i) The Bayes risk of a minimax rule is never greater than the minimax risk.

(ii) If a Bayes rule is not unique, then it is inadmissible.
2.8 In a Bayes decision problem, a prior distribution π is said to be least favourable if

rπ ≥ rπ ′ , for all prior distributions π ′, where rπ denotes the Bayes risk of the Bayes
rule dπ with respect to π .

Suppose that π is a prior distribution, such that∫
R(θ, dπ )π (θ )dθ = sup

θ

R(θ, dπ ).

Show that (i) dπ is minimax, (ii) π is least favourable.
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Bayesian methods

This chapter develops the key ideas in the Bayesian approach to inference. Fundamental
ideas are described in Section 3.1. The key conceptual point is the way that the prior
distribution on the unknown parameter θ is updated, on observing the realised value of the
data x , to the posterior distribution, via Bayes’ law. Inference about θ is then extracted
from this posterior. In Section 3.2 we revisit decision theory, to provide a characterisation
of the Bayes decision rule in terms of the posterior distribution. The remainder of the
chapter discusses various issues of importance in the implementation of Bayesian ideas.
Key issues that emerge, in particular in realistic data analytic examples, include the question
of choice of prior distribution and computational difficulties in summarising the posterior
distribution. Of particular importance, therefore, in practice are ideas of empirical Bayes
inference (Section 3.5), Monte Carlo techniques for application of Bayesian inference
(Section 3.7) and hierarchical modelling (Section 3.8). Elsewhere in the chapter we pro-
vide discussion of Stein’s paradox and the notion of shrinkage (Section 3.4). Though not
primarily a Bayesian problem, we shall see that the James–Stein estimator may be justified
(Section 3.5.1) as an empirical Bayes procedure, and the concept of shrinkage is central to
practical application of Bayesian thinking. We also provide here a discussion of predictive
inference (Section 3.9) from a Bayesian perspective, as well as a historical description of
the development of the Bayesian paradigm (Section 3.6).

3.1 Fundamental elements

In non-Bayesian, or classical, statistics X is random, with a density or probability mass
function given by f (x ; θ ), but θ is treated as a fixed unknown parameter value.

Instead, in Bayesian statistics X and θ are both regarded as random variables, with joint
density (or probability mass function) given by π (θ ) f (x ; θ ), where π (·) represent the prior
density of θ , and f (·; θ ) is the conditional density of X , given θ .

The posterior density of θ , given observed value X = x , is given by applying Bayes’ law
of conditional probabilities:

π (θ |x) = π (θ ) f (x ; θ )∫
�

π (θ ′) f (x ; θ ′)dθ ′ .

Commonly we write

π (θ |x) ∝ π (θ ) f (x ; θ ),
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where the constant of proportionality is allowed to depend on x but not on θ . This may be
written in words as

posterior ∝ prior × likelihood

since f (x ; θ ), treated as a function of θ for fixed x , is called the likelihood function – for
example, maximum likelihood estimation (which is not a Bayesian procedure) proceeds by
maximising this expression with respect to θ : see Chapter 8.

Example 3.1 Consider a binomial experiment in which X ∼ Bin(n, θ ) for known n and
unknown θ . Suppose the prior density is a Beta density on (0,1),

π (θ ) = θa−1(1 − θ )b−1

B(a, b)
, 0 < θ < 1,

where a > 0, b > 0 and B(·, ·) is the beta function (B(a, b) = �(a)�(b)/�(a + b), where
� is the gamma function, �(t) = ∫ ∞

0 xt−1e−x dx). For the density of X , here interpreted as
a probability mass function, we have

f (x ; θ ) =
(

n

x

)
θ x (1 − θ )n−x .

Ignoring all components of π and f which do not depend on θ , we have

π (θ |x) ∝ θa+x−1(1 − θ )n−x+b−1.

This is also of Beta form, with the parameters a and b replaced by a + x and b + n − x , so
the full posterior density is

π (θ |x) = θa+x−1(1 − θ )n−x+b−1

B(a + x, b + n − x)
.

Recall (or easily verify for yourself!) that for the Beta distribution with parameters a and
b, we have

mean = a

a + b
, variance = ab

(a + b)2(a + b + 1)
.

Thus the mean and variance of the posterior distribution are respectively

a + x

a + b + n

and

(a + x)(b + n − x)

(a + b + n)2(a + b + n + 1)
.

For large n, the influence of a and b will be negligible and we can write

posterior mean ≈ x

n
, posterior variance ≈ x(n − x)

n3
.

In classical statistics, we very often take θ̂ = X/n as our estimator of θ , based on a binomial
observation X . Its variance is θ (1 − θ )/n, but, when we do not know θ , we usually substitute
its estimated value and quote the approximate variance as X (n − X )/n3. (More commonly,
in practice, we use the square root of this quantity, which is called the standard error
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of θ̂ .) This illustrates a very general property of Bayesian statistical procedures. In large
samples, they give answers which are very similar to the answers provided by classical
statistics: the data swamp the information in the prior. For this reason, many statisticians
feel that the distinction between Bayesian and classical methods is not so important in
practice. Nevertheless, in small samples the procedures do lead to different answers, and
the Bayesian solution does depend on the prior adopted, which can be viewed as either
an advantage or a disadvantage, depending on how much you regard the prior density as
representing real prior information and the aim of the investigation.

This example illustrates another important property of some Bayesian procedures: by
adopting a prior density of Beta form we obtained a posterior density that was also a
member of the Beta family, but with different parameters. When this happens, the common
parametric form of the prior and posterior are called a conjugate prior family for the problem.
There is no universal law that says we must use a conjugate prior. Indeed, if it really was the
case that we had genuine prior information about θ , there would be no reason to assume that
it took the form of a Beta distribution. However, the conjugate prior property is often a very
convenient one, because it avoids having to integrate numerically to find the normalising
constant in the posterior density. In non-conjugate cases, where we have to do everything
numerically, this is the hardest computational problem associated with Bayesian inference.
Therefore, in cases where we can find a conjugate family, it is very common to use it.

Example 3.2 Suppose X1, . . . , Xn are independent, identically distributed from the normal
distribution N (θ, σ 2), where the mean θ is unknown and the variance σ 2 is known. Let us
also assume that the prior density for θ is N (µ0, σ

2
0 ), with µ0, σ

2
0 known. We denote by X the

vector (X1, . . . , Xn) and let its observed value be x = (x1, . . . , xn). Ignoring all quantities
that do not depend on θ , the prior × likelihood can be written in the form

π (θ ) f (x ; θ ) ∝ exp

{
− (θ − µ0)2

2σ 2
0

−
n∑

i=1

(xi − θ )2

2σ 2

}
.

Completing the square shows that

(θ − µ0)2

σ 2
0

+
n∑

i=1

(xi − θ )2

σ 2
= θ2

(
1

σ 2
0

+ n

σ 2

)
− 2θ

(
µ0

σ 2
0

+ nx̄

σ 2

)
+ C1

= 1

σ 2
1

(θ − µ1)2 + C2,

where x̄ = ∑
xi/n, and where C1 and C2 denote quantities which do not depend on θ

(though they do depend on x1, . . . , xn), and µ1 and σ 2
1 are defined by

1

σ 2
1

= 1

σ 2
0

+ n

σ 2
, µ1 = σ 2

1

(
µ0

σ 2
0

+ nx̄

σ 2

)
.

Thus we see that

π (θ |x) ∝ exp

{
− 1

2σ 2
1

(θ − µ1)2

}
,

allowing us to observe that the posterior density is the normal density with mean µ1 and
variance σ 2

1 . This, therefore, is another example of a conjugate prior family. Note that as
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n → ∞, σ 2
1 ≈ σ 2

n and hence µ1 ≈ x̄ , so that again the Bayesian estimates of the mean
and variance become indistinguishable from their classical, frequentist counterparts as n
increases.

Example 3.3 Here is an extension of the previous example in which the normal variance
as well as the normal mean is unknown. It is convenient to write τ in place of 1/σ 2 and µ

in place of θ , so that θ = (τ, µ) may be reserved for the two-dimensional pair. Consider the
prior in which τ has a Gamma distribution with parameters α > 0, β > 0 and, conditionally
on τ , µ has distribution N (ν, 1/(kτ )) for some constants k > 0, ν ∈ R. The full prior density
is π (τ, µ) = π (τ )π (µ | τ ), which may be written as

π (τ, µ) = βα

�(α)
τα−1e−βτ · (2π )−1/2(kτ )1/2 exp

{
−kτ

2
(µ − ν)2

}
,

or more simply

π (τ, µ) ∝ τα−1/2 exp

[
−τ

{
β + k

2
(µ − ν)2

}]
.

We have X1, . . . , Xn independent, identically distributed from N (µ, 1/τ ), so the likelihood
is

f (x ; µ, τ ) = (2π )−n/2τ n/2 exp
{
−τ

2

∑
(xi − µ)2

}
.

Thus

π (τ, µ|x) ∝ τα+n/2−1/2 exp

[
−τ

{
β + k

2
(µ − ν)2 + 1

2

∑
(xi − µ)2

}]
.

Complete the square to see that

k(µ − ν)2 +
∑

(xi − µ)2

= (k + n)

(
µ − kν + nx̄

k + n

)2

+ nk

n + k
(x̄ − ν)2 +

∑
(xi − x̄)2.

Hence the posterior satisfies

π (τ, µ | x) ∝ τα′−1/2 exp

[
−τ

{
β ′ + k ′

2
(µ − ν ′)2

}]
,

where

α′ = α + n

2
,

β ′ = β + 1

2

nk

n + k
(x̄ − ν)2 + 1

2

∑
(xi − x̄)2,

k ′ = k + n,

ν ′ = kν + nx̄

k + n
.

Thus the posterior distribution is of the same parametric form as the prior (the above form
of prior is a conjugate family), but with (α, β, k, ν) replaced by (α′, β ′, k ′, ν ′).

Sometimes we are particularly interested in the posterior distribution of µ alone. This
may be simplified if we assume α = m/2 for integer m. Then we may write the prior
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distribution, equivalently to the above, as

τ = W

2β
, µ = ν + Z√

kτ
,

where W and Z are independent random variables with the distributions χ2
m (the chi-squared

distribution on m degrees of freedom) and N (0, 1) respectively. Recalling that Z
√

m/W
has a tm distribution (the t distribution on m degrees of freedom), we see that under the
prior distribution, √

km

2β
(µ − ν) ∼ tm .

For the posterior distribution of µ, we replace m by m ′ = m + n, etc., to obtain√
k ′m ′

2β ′ (µ − ν ′) ∼ tm ′ .

In general, the marginal posterior for a parameter µ of interest is obtained by integrating a
joint posterior of µ and τ with respect to τ :

π (µ | x) =
∫

π (τ, µ | x)dτ.

Example 3.4 ∗ (The asterisk denotes that this is a more advanced section, and optional
reading.) If you are willing to take a few things on trust about multivariate generalisations
of the normal and χ2 distribution, we can do all of the above for multivariate data as well.

With some abuse of notation, the model of Example 3.3 may be presented in the form

τ ∼ Gamma(α, β),

µ|τ ∼ N

(
ν,

1

kτ

)
,

Xi |τ, µ ∼ N

(
µ,

1

τ

)
.

A few definitions follow. A p-dimensional random vector X with mean vector µ and
non-singular covariance matrix � is said to have a multivariate normal distribution if its
p-variate probability density function is

(2π )−p/2|�|−1/2 exp

{
−1

2
(x − µ)T �−1(x − µ)

}
.

We use the notation Np(µ, �) to describe this. The distribution is also defined if � is
singular, but then it is concentrated on some subspace of R

p and does not have a density
in the usual sense. We shall not consider that case here. A result important to much
of applied statistics is that, if X ∼ Np(µ, �) with � non-singular, the quadratic form
(X − µ)T �−1(X − µ) ∼ χ2

p.
The multivariate generalisation of a χ2 random variable is called the Wishart distribution.

A p × p symmetric random matrix D has the Wishart distribution Wp(A, m) if its density
is given by

cp,m |D|(m−p−1)/2

|A|m/2
exp

{
−1

2
tr(D A−1)

}
,
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where tr(A) denotes the trace of the matrix A and cp,m is the constant

cp,m =
[

2mp/2π p(p−1)/4
p∏

j=1

�

(
m + 1 − j

2

)]−1

.

For m integer, this is the distribution of D = ∑m
j=1 Z j Z T

j when Z1, . . . , Zm are independent
Np(0, A). The density is proper provided m > p − 1.

We shall not prove these statements, or even try to establish that the Wishart density is a
valid density function, but they are proved in standard texts on multivariate analysis, such
as Anderson (1984) or Mardia, Kent and Bibby (1979). You do not need to know these
proofs to be able to understand the computations which follow.

Consider the following scheme:

V ∼ Wp(�−1, m),

µ|V ∼ Np(ν, (kV )−1),

Xi |µ, V ∼ Np(µ, V −1) (1 ≤ i ≤ n).

Here X1, . . . , Xn are conditionally independent p-dimensional random vectors, given
(µ, V ), k and m are known positive constants, ν a known vector and � a known posi-
tive definite matrix.

The prior density of θ = (V, µ) is proportional to

|V |(m−p)/2 exp

[
−1

2
tr{V (� + k(µ − ν)(µ − ν)T )}

]
.

In deriving this, we have used the elementary relation tr(AB) = tr(BA) (for any pair of
matrices A and B for which both AB and BA are defined) to write (µ − ν)T V (µ − ν) =
tr{V (µ − ν)(µ − ν)T }.

Multiplying by the joint density of X1, . . . , Xn , the prior × likelihood is proportional to

|V |(m+n−p)/2 exp

[
−1

2
tr

{
V

(
� + k(µ − ν)(µ − ν)T +

∑
i

(xi − µ)(xi − µ)T

)}]
.

However, again we may simplify this by completing a (multivariate) square:

k(µ − ν)(µ − ν)T +
∑

i

(xi − µ)(xi − µ)T

= (k + n)

(
µ − kν + nx̄

k + n

) (
µ − kν + nx̄

k + n

)T

+ nk

k + n
(x̄ − ν)(x̄ − ν)T +

∑
i

(xi − x̄)(xi − x̄)T .

Thus we see that the posterior density of (V, µ) is proportional to

|V |(m ′−p)/2 exp

[
−1

2
tr{V (� ′ + k ′(µ − ν ′)(µ − ν ′)T )}

]
,

which is of the same form as the prior density but with the parameters (m, k, �, ν)
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replaced by

m ′ = m + n,

k ′ = k + n,

� ′ = � + nk

k + n
(x̄ − ν)(x̄ − ν)T +

∑
i

(xi − x̄)(xi − x̄)T ,

ν ′ = kν + nx̄

k + n
.

The joint prior for (V, µ) in this example is sometimes called the normal-inverse Wishart
prior. The final result shows that the joint posterior density is of the same form, but with the
four parameters m, k, � and ν updated as shown. Therefore, the normal-inverse Wishart
prior is a conjugate prior in this case. The example shows that exact Bayesian analysis,
of both the mean and covariance matrix in a multivariate normal problem, is feasible and
elegant.

3.2 The general form of Bayes rules

We now return to our general discussion of how to solve Bayesian decision problems. For
notational convenience, we shall write formulae assuming both X and θ have continuous
densities, though the concepts are exactly the same in the discrete case.

Recall that the risk function of a decision rule d is given by

R(θ, d) =
∫
X

L(θ, d(x)) f (x ; θ )dx

and the Bayes risk of d by

r (π, d) =
∫

�

R(θ, d)π (θ )dθ

=
∫

�

∫
X

L(θ, d(x)) f (x ; θ )π (θ )dxdθ

=
∫

�

∫
X

L(θ, d(x)) f (x)π (θ |x)dxdθ

=
∫
X

f (x)

{∫
�

L(θ, d(x))π (θ |x)dθ

}
dx .

In the third line here, we have written the joint density f (x ; θ )π (θ ) in a different way as
f (x)π (θ |x), where f (x) = ∫

f (x ; θ )π (θ )dθ is the marginal density of X . The change of
order of integration in the fourth line is trivially justified because the integrand is non-
negative.

From the final form of this expression, we can see that, to find the action d(x) specified
by the Bayes rule for any x , it suffices to minimise the expression inside the curly brackets.
In other words, for each x we choose d(x) to minimise∫

�

L(θ, d(x))π (θ |x)dθ,

the expected posterior loss associated with the observed x . This greatly simplifies the
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calculation of the Bayes rule in a particular case. It also illustrates what many people feel is
an intuitively natural property of Bayesian procedures: in order to decide what to do, based
on a particular observed X , it is only necessary to think about the losses that follow from
one value d(X ). There is no need to worry (as would be the case with a minimax procedure)
about all the other values of X that might have occurred, but did not. This property, a
simplified form of the likelihood principle (Chapter 8), illustrates just one of the features
that have propelled many modern statisticians towards Bayesian methods.

We consider a number of specific cases relating to hypothesis testing, as well as point
and interval estimation. Further Bayesian approaches to hypothesis testing are considered
in Section 4.4.

Case 1: Hypothesis testing Consider testing the hypothesis H0 : θ ∈ �0 against the hy-
pothesis H1 : θ ∈ �1 ≡ � \ �0, the complement of �0. Now the action spaceA = {a0, a1},
where a0 denotes ‘accept H0’ and a1 denotes ‘accept H1’. Assume the following form of
loss function:

L(θ, a0) =
{

0 if θ ∈ �0,
1 if θ ∈ �1,

and

L(θ, a1) =
{

1 if θ ∈ �0,
0 if θ ∈ �1.

The Bayes decision rule is: accept H0 if

Pr(θ ∈ �0|x) < Pr(θ ∈ �1|x).

Since Pr(θ ∈ �1|x) = 1 − Pr(θ ∈ �0|x), this is equivalent to accepting H0 if Pr(θ ∈
�0|x) > 1/2. We leave the reader to consider what happens when Pr(θ ∈ �0|x) = 1/2.

Case 2: Point estimation Suppose loss is squared error: L(θ, d) = (θ − d)2. For observed
X = x , the Bayes estimator chooses d = d(x) to minimise∫

�

(θ − d)2π (θ |x)dθ.

Differentiating with respect to d , we find∫
�

(θ − d)π (θ |x)dθ = 0.

Taking into account that the posterior density integrates to 1, this becomes

d =
∫

�

θπ (θ |x)dθ,

the posterior mean of θ . In words, for a squared error loss function, the Bayes estimator is
the mean of the posterior distribution.

Case 3: Point estimation Suppose L(θ, d) = |θ − d|. The Bayes rule will minimise∫ d

−∞
(d − θ )π (θ |x)dθ +

∫ ∞

d
(θ − d)π (θ |x)dθ.
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Differentiating with respect to d , we must have∫ d

−∞
π (θ |x)dθ −

∫ ∞

d
π (θ |x)dθ = 0

or in other words ∫ d

−∞
π (θ |x)dθ =

∫ ∞

d
π (θ |x)dθ = 1

2
.

The Bayes rule is the posterior median of θ .

Case 4: Interval estimation Suppose

L(θ, d) =
{

0 if |θ − d| ≤ δ,
1 if |θ − d| > δ,

for prescribed δ > 0. The expected posterior loss in this case is the posterior probability that
|θ − d| > δ. This can be most easily motivated as a Bayesian version of interval estimation:
we want to find the ‘best’ interval of the form (d − δ, d + δ), of predetermined length 2δ.
‘Best’ here means the interval that maximises the posterior probability that θ is within the
interval specified.

The resulting interval is often called the HPD (for highest posterior density) interval. The
resulting posterior probability that θ ∈ (d − δ, d + δ) is often written 1 − α, by analogy
with the notation used for classical confidence intervals. Of course, the interpretation here
is quite different from that of confidence intervals, where 1 − α is the probability, under
repeated sampling of X , that the (random) confidence interval covers θ whatever the true
value of θ may be. The Bayesian interpretation, as a probability statement about θ , is the
one that many beginners wrongly attribute to a confidence interval!

The formulation given here – first decide δ, then choose the interval to minimise α – is
the one most naturally represented in terms of loss functions and the like, but in practice we
very often go in the opposite direction, that is first specify a suitably small α such as 0.05,
then find the interval of smallest length subject to posterior coverage probability 1 − α. In
the case of a unimodal posterior density (one which achieves its maximum at a unique point,
and decreases monotonically to either side) the solution to both problems is the same, and
is achieved by an interval of the form

{θ : π (θ |x) ≥ c}
for some suitable c, as illustrated in the example shown in Figure 3.1.

Although from this point of view the best Bayesian interval is always of HPD form, in
practice it is not universally used. The reason is that it may be rather difficult to compute in
cases where the posterior density has to be evaluated numerically. Two alternatives are:

(a) the equal-tailed interval, in which the interval is constructed so that Pr{θ > d + δ|x} =
Pr{θ < d − δ|x} = α/2, and

(b) the normal interval (µ − zα/2σ, µ + zα/2σ ), where µ and σ are the posterior mean
and posterior standard deviation and zα is the upper-α point of the standard normal
distribution. This will be a very good approximation to either the equal-tailed or the
HPD interval if the posterior density is of approximately normal shape (which it very
often is in practice).
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Figure 3.1 A unimodal posterior distribution

The second of these possibilities is an example of application of Bayesian asymptotics, the
primary conclusion of which is that the posterior distribution π (θ |x) is, quite generally,
asymptotically normal: see Chapter 9.

In cases where the posterior density is not unimodal, there are two possible strategies.
One is simply to ignore the lack of unimodality and proceed as if the posterior density were
unimodal. The alternative solution, which is more appropriate if the modes are far apart
relative to the scale of the posterior distribution, is to abandon the concept of an ‘HPD
interval’ and instead find an ‘HPD set’, which may be the union of several intervals, as in
the example shown in Figure 3.2.

Example 3.2 (continued) Consider Example 3.2 above, in which X1, . . . , Xn are in-
dependent, identically distributed from N (θ, σ 2), with known σ 2, and θ has a normal
prior distribution. Then we saw that the posterior distribution is also normal of the form
N (µ1, σ

2
1 ), where µ1 (depending on x1, . . . , xn) and σ 2

1 were computed in the example. In
this case the HPD, equal-tailed and normal posterior intervals all coincide and are of the
form

(µ1 − σ1zα/2, µ1 + σ1zα/2).

In the limit as the prior variance σ 2
0 → ∞ (a diffuse or improper prior for θ , which is not

a proper density in the sense of integrating to 1 over the whole range of θ ), we have

µ1 → x̄, σ 2
1 → σ 2

n
,

so the Bayesian interval agrees exactly with the usual, frequentist confidence interval, though
the interpretations of the intervals are completely different. This is therefore another case
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Figure 3.2 A multimodal posterior distribution

in which the Bayesian and classical situations ultimately coincide. In this case, though, the
limit is as the prior variance tends to ∞, not the sample size, though the same limits apply
as n → ∞, provided x̄ and σ 2

n are interpreted as asymptotic expressions, rather than limits
in the strict sense.

Exercise Work out the corresponding procedure for Example 3.3 (normal mean with un-
known variance), to calculate a Bayesian interval estimate for the mean µ. The bound-
ary points in this case are defined by the percentage points of a t distribution; does
there exist a prior for which this coincides with the standard (non-Bayesian) confidence
interval?

3.3 Back to minimax. . .

We now give an example to show how some of the ideas we have developed may be applied
to solve a non-trivial problem in minimax decision theory.

The problem is: find a minimax estimator of θ based on a single observation X ∼ Bin(n, θ )
with n known, under squared error loss L(θ, d) = (θ − d)2.

We know by Theorem 2.2 of Chapter 2 that, if we can find a Bayes (or extended Bayes)
estimator that has constant mean squared error (that is, risk), this will also be a minimax
rule.

We do not know all the possible Bayes estimators for this problem, but we do know a
very large class of them, namely all those that arise from the conjugate prior, a Beta prior
with parameters a > 0, b > 0. For such a prior, the posterior distribution is Beta with the
parameters a and b replaced by a + X , b + n − X . We also know that, with squared error
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loss, the Bayes estimator is the mean of the posterior distribution,

d(X ) = a + X

a + b + n
.

The question therefore arises: is there any estimator in this class which has constant mean
squared error? If there is, then it is necessarily the minimax estimator.

Recall EX = nθ , EX2 = nθ (1 − θ ) + n2θ2. Writing c = a + b + n, we have

E

{(
a + X

c
− θ

)2
}

= 1

c2
E{(X + a − cθ )2}

= 1

c2
{nθ (1 − θ ) + n2θ2 + 2nθ (a − cθ ) + (a − cθ )2}.

This is a quadratic function of θ , and will be constant if the coefficients of θ and θ2 are 0.
This requires

n + 2na − 2ac = 0, (3.1)

−n + n2 − 2nc + c2 = 0. (3.2)

Equation (3.2) has roots c = n ± √
n, but we need c > n for a proper Bayes rule, so take

c = n + √
n. Then (3.1) gives a = √

n/2 so the final result is that

d(X ) = X + √
n/2

n + √
n

is the minimax decision rule with respect to squared error loss. A prior with respect to which
the Bayes rule is minimax is called a least favourable prior.

Remark Problem 3.4 considers a different loss function, with respect to which the usual
estimator d(X ) = X/n is minimax. It can be shown that this is not a Bayes rule with respect
to any proper prior, but it arises in the limit of the above scheme as a → 0, b → 0, that is
it is extended Bayes.

3.4 Shrinkage and the James–Stein estimator

We now move on to some broader aspects of the interplay between Bayesian methods and
decision theory. Recall from Section 2.7 that, subject to certain restrictions on the prior,
Bayes decision rules are admissible. However, minimax rules may not be admissible, and,
more generally, statistical estimators that are derived from other criteria, such as maximum
likelihood (Chapter 8), may not be admissible. In situations like this, it may be possible to
use Bayesian ideas to improve upon classical estimators, even when they are assessed by
frequentist criteria. The earliest and most famous example of this is Stein’s paradox, which
we now describe.

Example 3.5: Stein’s paradox Let X have a p-dimensional (p ≥ 3) normal distribution
with mean vector µ and known covariance matrix equal to the identity I , meaning that
Xi ∼ N (µi , 1), independently, i = 1, . . . , p.

Consider estimation of µ, with loss function L(µ, d) = ‖µ − d‖2 = ∑p
i=1(µi − di )2

equal to the sum of squared errors.
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If we had just one X ∼ N (µ, 1), p = 1, we would certainly estimateµby X . In the general
case p > 1, if, as we have assumed, the Xi are independent and we use as loss the sum of
squared error losses for the individual components, it seems obvious that the Xi have nothing
to do with one another and that we should therefore use X as the multivariate estimator of
µ. Stein’s paradox is so called because what seems obvious turns out not to be true.

Consider the class of ‘James–Stein estimators’ of the form

da(X ) =
(

1 − a

‖X‖2

)
X,

indexed by a ≥ 0, which (at least if ‖X‖2 > a) shrink X towards 0.
Now X ≡ d0(X ) has risk

R
(
µ, d0(X )

) = E‖µ − X‖2 =
p∑

i=1

E(µi − Xi )
2 =

p∑
i=1

var Xi

= p, irrespective of µ.

Integration by parts shows that, for each i , for suitably behaved real-valued functions h,

E{(Xi − µi )h(X )} = E

{
∂h(X )

∂ Xi

}
.

Verification is left to the reader. This result, known as Stein’s Lemma, enables us to compute
the risk of the estimator da(X ):

R
(
µ, da(X )

) = E‖µ − da(X )‖2

= E‖µ − X‖2 − 2aE

[
X T (X − µ)

‖X‖2

]
+ a2

E

[
1

‖X‖2

]
.

We have

E

[
X T (X − µ)

‖X‖2

]
= E

[
p∑

i=1

Xi (Xi − µi )

� j X2
j

]

=
p∑

i=1

E

[
∂

∂ Xi

{
Xi

� j X2
j

}]

=
p∑

i=1

E

[
� j X2

j − 2X2
i

(� j X2
j )

2

]

= E

[
p − 2

‖X‖2

]
,

so

R
(
µ, da(X )

) = p − [
2a(p − 2) − a2

]
E

(
1

‖X‖2

)
. (3.3)

Remember that here E denotes expectation with respect to the distribution of X for
the given µ. We then note immediately that R(µ, da(X )) < p ≡ R(µ, d0(X )), provided
2a(p − 2) − a2 > 0, that is 0 < a < 2(p − 2). For such a, da(X ) strictly dominates d0(X ),
so that the obvious estimator X is inadmissible!
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Note also that the risk of da(X ) is minimised for a = p − 2. When µ = 0, X T X ∼ X 2
p ,

so that E[1/(‖X‖2)] = 1
p−2 , by a straightforward direct calculation. Hence, when µ = 0,

d p−2(X ) has risk p − [(p − 2)2/(p − 2)] = 2, which is substantially less than the risk of
X if p is large.

This inadmissibility result was first pointed out by Charles Stein in 1956, but then proved
in more detail by James and Stein (1961). Stein (1981) presented a simpler proof, on which
the above analysis is essentially based. At first sight, the result seems incredible: there is no
apparent ‘tying together’ of the losses in different components, yet the obvious estimator, the
sample ‘mean’ X , is not admissible. It is now known that this is a very general phenomenon
when comparing three or more populations – the present setting of normal means with
known common variance is just the simplest case.

There are, however, many well-documented examples which give intuitive justification
for not using the sample mean in practice. The most famous of these concerns an analysis
of baseball batting data, by Efron and Morris (1975): see also Efron and Morris (1977).
Here we consider a more contemporary data analytic example of the James–Stein estimator,
using the same baseball context.

3.4.1 Data example: Home run race, 1998 baseball season

In 1998, American sports fans became gripped by a race between two leading baseball
players, Mark McGwire of St Louis Cardinals and Sammy Sosa of Chicago Cubs, to beat the
record, set by Roger Maris in 1961, for the number of ‘home runs’ hit during a major league
baseball season. Maris’ record of 61 home runs was beaten by McGwire on 8 September,
with Sosa hitting his 62nd home run of the season on 13 September. The two players
finished the season having hit 70 and 66 home runs respectively. McGwire’s new record
for the number of home runs in a single season actually lasted just until 2001, when Barry
Bonds of San Francisco Giants hit 73 home runs in the season. Could the breaking of Maris’
record have been predicted at the beginning of the 1998 season?

Consider the following exercise, based on data obtained from the USAToday baseball
statistical archive website. We examine the batting records in pre-season exhibition matches
for a set of 17 players, including McGwire and Sosa, those who had hit the most home runs in
the previous season, 1997. By considering the proportion of times at bat in those exhibition
matches on which each player hit a home run, we attempt to estimate the proportion of
times at bat that each will score a home run over the actual competitive season. Of course,
to give a precise prediction of the number of home runs over the season we would also need
to know the number of at bats in a season, which cannot be predicted in advance; therefore,
our formal focus is on prediction of the home run strike rate of each player, rather than
prediction of the number of home runs.

The pre-season statistics show the i th player to have achieved Yi home runs, in ni times at
bat: these figures are shown in the second and third columns of Table 3.1. Then assume that
the home runs occur according to a binomial distribution (so that player i has probability
pi of hitting a home run each time at bat, independently of other at bats),

Yi ∼ Bin(ni , pi ), i = 1, . . . , 17.
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Table 3.1 Home run race 1998: James–Stein and maximum likelihood estimators

Yi ni pi AB Xi JSi µi HR ˆH R ˆH Rs

McGwire 7 58 0.138 509 −6.56 −7.12 −6.18 70 61 50
Sosa 9 59 0.103 643 −5.90 −6.71 −7.06 66 98 75
Griffey 4 74 0.089 633 −9.48 −8.95 −8.32 56 34 43
Castilla 7 84 0.071 645 −9.03 −8.67 −9.44 46 54 61
Gonzalez 3 69 0.074 606 −9.56 −9.01 −8.46 45 26 35
Galaragga 6 63 0.079 555 −7.49 −7.71 −7.94 44 53 48
Palmeiro 2 60 0.070 619 −9.32 −8.86 −8.04 43 21 28
Vaughn 10 54 0.066 609 −5.01 −6.15 −7.73 40 113 78
Bonds 2 53 0.067 552 −8.59 −8.40 −7.62 37 21 24
Bagwell 2 60 0.063 540 −9.32 −8.86 −8.23 34 18 24
Piazza 4 66 0.057 561 −8.72 −8.48 −8.84 32 34 38
Thome 3 66 0.068 440 −9.27 −8.83 −8.47 30 20 25
Thomas 2 72 0.050 585 −10.49 −9.59 −9.52 29 16 28
T. Martinez 5 64 0.053 531 −8.03 −8.05 −8.86 28 41 41
Walker 3 42 0.051 454 −6.67 −7.19 −7.24 23 32 24
Burks 2 38 0.042 504 −6.83 −7.29 −7.15 21 27 19
Buhner 6 58 0.062 244 −6.98 −7.38 −8.15 15 25 21

Here pi is the true, full-season strike rate, and Yi/ni is the strike rate in the pre-season.
Table 3.1 shows these values, and the actual number of at bats of each player over the
season, in columns 4 and 5, as collected from full-season statistics. Note that the actual
season involves roughly ten times as many at bats as the pre-season.

At first sight, this problem may not seem to have very much to do with the rather abstract
nature of Stein’s paradox. However, the central issue is the same: we are trying to estimate
many means simultaneously, and Stein’s paradox suggests there may be a better way to do
it than simply estimate each player’s home run probability as p̂i = Yi/ni . We now show
how we can first translate this problem into one where a modified version of the James–
Stein procedure is applicable, and then we demonstrate how this actually improves the
estimates.

Following Efron and Morris (1975), suppose we define Xi = fni (Yi/ni ), i = 1, . . . , 17,
with

fn(y) = n1/2 sin−1(2y − 1).

This is an example of a variance stabilising transformation. Then (Efron and Morris, 1975)
Xi has mean approximately equal to µi = fni (pi ) and unit variance. The values of Xi and
µi are shown in columns 6 and 8 respectively of Table 3.1. We have, in fact, that the Xi are
approximately, independently distributed as

Xi ∼ N (µi , 1), i = 1, . . . , 17.

The specific inference problem we consider is that of estimating the µi from the observed
Xi . To do so, we consider a slight extension of the James–Stein estimator d p−2(X ), by
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which the estimate of µi is

JSi = X̄ + {1 − (p − 3)/V }(Xi − X̄ ),

with V = ∑
(Xi − X̄ )2 and X̄ = ∑

Xi/p, with p = 17 the number of component estima-
tion problems. Properties of this estimator are considered in Problems 3.6 and 3.7. Now, the
individual Xi are shrunk towards their mean X̄ , rather than 0. The intuition behind such an
estimator is that the true µi are likely to be more closely clustered than the raw Xi , which
are subject to substantial random variability arising from the small amount of pre-season
data. It therefore seems sensible to shrink the individual Xi towards the overall mean X̄ , to
obtain a more clustered set of estimates of the µi .

Analogous to the result shown for the simple James–Stein estimator, the risk function
of the James–Stein estimator JS = (JS1, . . . , JSp) is bounded above (Problem 3.6) by the
(constant) risk p of the naive estimator X = (X1, . . . , X p), which estimates µi by Xi , a
direct extrapolation of the i th player’s pre-season strike rate. The components JSi of the
James–Stein estimator are shown in column 7 of Table 3.1.

The total squared error
∑

(Xi − µi )2 of X is 19.68, while the James–Stein estimator has
total squared error

∑
(JSi − µi )2 = 8.07. Further, for 14 of the 17 players JSi is closer to

µi than is Xi . So, the James–Stein estimator has reduced the total squared error by more
than half.

The final columns of Table 3.1 present the hypothetical estimates of the number of home
runs of each player over the season, together with the actual home runs totals HR. (These
estimates are constructed using information on the number of at bats over the full season:
this information is, of course, not known in advance.) The simple estimates ˆH R based on
direct extrapolation include some wild estimates, such as the estimate of 113 home runs
for Mo Vaughn, but even the James–Stein-based estimates ˆH Rs suggest that two players,
Vaughn and Sosa, would beat the Maris record.

The figures in Table 3.1 provide a stark illustration of an important point. The James–
Stein estimator JS achieves a uniformly lower aggregate risk than X , but allows increased
risk in estimation of individual components µi . If we were interested, as with hindsight we
might well have been, in estimation of µi for McGwire alone, then the simple estimator Xi

is preferable over the corresponding component JSi of the James–Stein estimator. Direct
extrapolation from his pre-season batting would have suggested that McGwire would just
have reached Maris’ record of 61 home runs, while the James–Stein procedure estimates
just 50 home runs, further away from McGwire’s actual tally of 70.

3.4.2 Some discussion

Admissibility of d(X ) = X in dimension p = 1 was established by Blyth (1951). A simple,
direct proof is possible: see, for example Casella and Berger (1990: Section 10.4). Admis-
sibility is more awkward to prove in the case p = 2, but was established by Stein (1956).
Berger (1985: Chapter 8) gives the admissibility results a Bayesian interpretation, using the
notion of a generalised Bayes rule. Though the formal definition of a generalised Bayes rule
is mathematically awkward, the rough idea is that of a rule which minimises the expected
posterior loss, obtained from an improper prior. In the estimation problem at hand, any
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admissible estimator is a generalised Bayes rule, and results are available which determine
whether or not a generalised Bayes estimator is admissible. Since X is a generalised Bayes
estimator in any dimension p, these latter results lead immediately to the conclusions that
X is admissible if p = 1 or 2, but not if p ≥ 3.

A point of clarification should be noted here: although the estimator da(X ) defined in
Example 3.5 dominates d0(X ) = X for certain values of a, this does not mean we would
actually want to use the estimator da(X ) in applications. Once the idea is presented, that
we might not want to use X as our estimator, then there are many so-called shrinkage
estimators which potentially improve on X , and the task of deciding which of them to
adopt is an important focus of practical discussion. A key point to note is that the estimator
d p−2(X ) is actually inadmissible: it is strictly dominated by the estimator d p−2

+ (X ), which
replaces the factor (1 − p−2

X T X ) by zero whenever it is negative.
From a modern viewpoint, there are many applications involving the comparison of large

numbers of populations in which ideas related to shrinkage have an important role to play.
Topical applications include the comparison of the success rates of operations in different
hospitals, and the comparison of examination results over many schools (school ‘league
tables’): see, for example, Goldstein and Spiegelhalter (1996). Although such modern ap-
plications seem rather far removed from the original theoretical result discovered by Stein,
there is a sense in which they derive ultimately from it.

3.5 Empirical Bayes

In a standard Bayesian analysis, there will usually be parameters in the prior distribution
that have to be specified.

For example, consider the simple normal model in which X | θ ∼ N (θ, 1) and θ has the
prior distribution θ | τ 2 ∼ N (0, τ 2). If a value is specified for the parameter τ 2 of the prior,
a standard Bayesian analysis can be carried out. Noting that f (x) = ∫

f (x ; θ )π (θ )dθ , it is
readily shown that the marginal distribution of X is N (0, τ 2 + 1), and can therefore be used
to estimate τ 2, in circumstances where a value is not specified.

Empirical Bayes analysis is characterised by the estimation of prior parameter values from
marginal distributions of data. Having estimated the prior parameter values, we proceed as
before, as if these values had been fixed at the beginning.

3.5.1 James–Stein estimator, revisited

In the Stein’s paradox Example 3.5 above, the estimator d p−2(X ) may be viewed as an
empirical Bayes estimator of µ, the Bayes rule with prior parameter values replaced by
estimates constructed from the marginal distribution of the Xi .

Specifically, let Xi | µi be distributed as N (µi , 1), independently, i = 1, . . . , p, and
suppose µ1, . . . , µp are independent, identically distributed N (0, τ 2).

If τ 2 is known, the Bayes estimator δτ (X ), for the given sum of squared errors loss,
of µ = (µ1, . . . , µp)T is the posterior mean δτ (X ) = τ 2

τ 2+1 X , on observing that the poste-

rior distribution of µi is N ( τ 2

τ 2+1 Xi ,
τ 2

τ 2+1 ), independently for i = 1, . . . , p. Straightforward
calculations then show that the Bayes risk of δτ (X ), r (τ, δτ (X )), say, in an obvious notation,
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is given by

r (τ, δτ (X )) =
p∑

i=1

var(µi |Xi ) =
p∑

i=1

τ 2

τ 2 + 1
= pτ 2

τ 2 + 1
.

Marginally the Xi are independent, identically distributed N (0, τ 2 + 1), so that
Xi/

√
τ 2 + 1 ∼ N (0, 1) and marginally ‖X‖2/(τ 2 + 1) ∼ χ2

p. Since we know that
E(1/Z ) = 1/(p − 2) if Z ∼ χ2

p and p ≥ 3, we see that taking the expectation with re-
spect to this marginal distribution of X gives

E

[
1 − (p − 2)

‖X‖2

]
= τ 2

τ 2 + 1
, (3.4)

if p ≥ 3.
In the case when τ 2 is unknown, estimating τ 2/(τ 2 + 1) by 1 − (p − 2)/(‖X‖2) yields

the James–Stein estimator d p−2(X ).
Under our assumed model, the Bayes risk of the James–Stein estimator d p−2(X ) is

r (τ, d p−2(X )) =
∫

R(µ, d p−2(X ))π (µ)dµ

=
∫

Rp

∫
X

[
p − (p − 2)2

‖x‖2

]
f (x |µ)π (µ)dxdµ

=
∫
X

{∫
Rp

[
p − (p − 2)2

‖x‖2

]
π (µ|x)dµ

}
f (x)dx,

where we have used (3.3) and then changed the order of integration. Now, the integrand in
the inner integral is independent of µ, and

∫
π (µ|x)dµ is trivially equal to 1, and therefore

r (τ, d p−2(X )) = p − (p − 2)2
E

(
1

‖X‖2

)
.

Now the expectation is, as in (3.4), with respect to the marginal distribution of X , so that
(3.4) immediately gives

r (τ, d p−2(X )) = p − p − 2

τ 2 + 1
= r (τ, δτ (X )) + 2

τ 2 + 1
.

The second term represents the increase in Bayes risk associated with the need to estimate
τ 2: the increase tends to 0 as τ 2 → ∞.

3.6 Choice of prior distributions

To understand some of the controversies about Bayesian statistics, including various ways
of thinking about the choice of prior distributions, it is helpful to know something more of
the history of the subject.

Bayesian statistics takes its name from an eighteenth-century English clergyman, the
Reverend Thomas Bayes. Bayes died in 1761 but his most famous work, ‘An essay towards
solving a problem in the doctrine of chances’, was published posthumously in the Philo-
sophical Transactions of the Royal Society (Bayes, 1763). The problem considered by Bayes
was, in modern terminology, the problem of estimating θ in a binomial (n, θ ) distribution
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and he worked out what we now call the Bayesian solution, under the assumption that θ

has a uniform prior density on (0,1), equivalent to a = b = 1 in our Beta prior formulation
of Example 3.1. This assumption, sometimes called Bayes’ postulate, is the controversial
assumption in the paper (not Bayes’ Theorem itself, which is just an elementary statement
about conditional probabilities). Some authors have held, though modern scholars dispute
this, that Bayes’ dissatisfaction with this assumption is the reason that he did not publish
his paper during his lifetime. Whether this is correct or not, it is the case that much of the
paper is devoted to justifying this assumption, for which Bayes gave an ingenious physical
argument. However, Bayes’ argument is difficult to generalise to other situations in which
one might want to apply Bayesian statistics.

At the time, Bayes’ paper had very little influence and much of what we now call Bayesian
statistics was developed, independently of Bayes, by the French mathematician Laplace
(resulting in this Théorie Analytique des Probabilités, published in 1812, though the bulk of
the work was done in the 1770s and 1780s). Laplace widely used the ‘principle of insufficient
reason’ to justify uniform prior densities: we do not have any reason to think that one value
of θ is more likely than any other, therefore we should use a uniform prior distribution. One
disadvantage of that argument is that if we apply the principle of insufficient reason to θ2,
say, this results in a different prior from the same principle applied to θ . The argument used
by Bayes was more subtle than that, and did lead to a uniform prior on θ itself rather than
some transformation of θ , but only for a specific physical model.

By the time more-modern theories of statistical inference were being developed, starting
with the work of Francis Galton and Karl Pearson in the late nineteenth century, Bayesian
ideas were under a cloud, and R.A. Fisher, arguably the greatest contributor of all to modern
statistical methods, was vehemently anti-Bayesian throughout his career. (Fisher never held
an academic post in statistics or mathematics, but for many years was Professor of Genetics
in Cambridge, and a Fellow of Gonville and Caius College.) However, the tide began to
swing back towards Bayesian statistics beginning with the publication of Jeffreys’ book
Theory of Probability in 1939. Jeffreys was also a Cambridge professor, most famous for
his contributions to applied mathematics, geophysics and astronomy, but he also thought
deeply about the foundations of scientific inference, and his book, despite its title, is a treatise
on Bayesian methods. Following in the tradition of Laplace, Jeffreys believed that the prior
distribution should be as uninformative as possible, and proposed a general formula, now
known as the Jeffreys prior, for achieving this. However, his arguments did not convince
the sceptics; Fisher, in a review of his book, stated that there was a mistake on page 1 (that
is the use of a Bayesian formulation) and this invalidated the whole book!

One feature of the arguments of Laplace and Jeffreys is that they often result in what we
have termed improper priors. Suppose we use the principle of insufficient reason to argue
in favour of a uniform prior for a parameter θ . When the range of θ is the whole real line
(for instance, if θ is the unknown mean of a normal distribution) then this would lead to a
prior which cannot be normalised to form a proper density. The limit in Example 3.2 above,
where σ 2

0 → ∞, is a case in point. However, in many such cases the posterior density is
still proper, and can be thought of as a limit of posterior densities based on proper priors.
Alternatively, a decision rule of this form is extended Bayes. Most modern Bayesians do not
have a problem with improper prior distributions, though with very complicated problems
there is a danger that an improper prior density will result in an improper posterior density,
and this must of course be avoided!
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While Jeffreys was developing his theory, Neyman and Egon Pearson (son of Karl)
had published their theory of hypothesis testing (Neyman and Pearson, 1933), which also
avoided any reference to Bayesian ideas. (Fisher also disagreed with Neyman’s approach,
but the source of their disagreement is too complicated to summarise in a couple of sentences.
The one thing they agreed on was that Bayesian ideas were no good.) The ideas started by
Neyman and Pearson were taken up in the United States, in particular by Abraham Wald,
whose book Statistical Decision Functions (1950) developed much of the abstract theory
of statistical decisions which we see in this text.

However at about the same time B. de Finetti (in Italy) and L.J. Savage (in the USA) were
developing an alternative approach to Bayesian statistics based on subjective probability. In
the UK, the leading exponent of this approach was D.V. Lindley. According to de Finetti,
Savage and Lindley, the only logically consistent theory of probability, and therefore of
statistics, is one based on personal probability, in which each individual behaves in such
a way as to maximise his/her expected utility according to his/her own judgement of the
probabilities of various outcomes. Thus they rejected not only the whole of classical (non-
Bayesian) statistics, but also the ‘uninformative prior’ approach of Laplace and Jeffreys.
They believed that the only way to choose a prior distribution was subjectively, and they
had no problem with the fact that this would mean different statisticians reaching different
conclusions from the same set of data.

There are many situations where subjective judgement of probability is essential. The
most familiar situation is at a racetrack! When a bookmaker quotes the odds on a horse
race, he is using his subjective judgement, but a bookmaker who did not consistently get
the odds right (or very nearly right) would soon go out of business. American weather
forecasters also make widespread use of subjective probabilities, because their forecasts
always include statements like ‘the chance of rain is 40%’. Although they have all the
modern tools of computer-based weather forecasting to help them, the actual probability
quoted is a subjective judgement by the person making the forecast, and much research has
been done on assessing and improving the skills of forecasters in making these subjectively
based forecasts.

Thus there are many situations where subjective probability methods are highly appro-
priate; the controversial part about the theories of de Finetti and Savage is the assertion that
all probabilistic and statistical statements should be based on subjective probability.

From the perspective of present-day statistics, Bayesian and non-Bayesian methods
happily co-exist most of the time. Some modern theoreticians have taken a strongly pro-
Bayesian approach (see, for example, the introduction to the 1985 second edition of Berger’s
book) but much of the modern interest in Bayesian methods for applied statistics has re-
sulted from more pragmatic considerations: in the very complicated models analysed in
present-day statistics, often involving thousands of observations and hundreds of param-
eters, Bayesian methods can be implemented computationally using devices such as the
Gibbs sampler (see Section 3.7), whereas the calculation of, for instance, a minimax deci-
sion rule, is too complicated to apply in practice. Nevertheless, the arguments are very far
from being resolved. Consider, for example, the problem of estimating a density f (x), when
we have independent, identically distributed observations X1, . . . , Xn from that density, but
where we do not make any parametric assumption, such as normal, gamma, etc. This kind
of problem can be thought of as one with an infinite-dimensional unknown parameter, but in
that case it is a hard problem (conceptually, not just practically) to formulate the kind of prior
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distribution necessary to apply Bayesian methods. Meanwhile, comparisons of different es-
timators by means of a criterion such as mean squared error are relatively straightforward,
and some modern theoreticians have developed ingenious minimax solutions to problems
of this nature, which have no counterpart in the Bayesian literature.

Thus, the main approaches to the selection of prior distributions may be summarised as:

(a) physical reasoning (Bayes) – too restrictive for most practical purposes;
(b) flat or uniform priors, including improper priors (Laplace, Jeffreys) – the most widely

used method in practice, but the theoretical justification for this approach is still a source
of argument;

(c) subjective priors (de Finetti, Savage) – used in certain specific situations such as weather
forecasting (though even there it does not tend to be as part of a formal Bayesian
analysis with likelihoods and posterior distributions) and for certain kinds of business
applications where prior information is very important and it is worthwhile to go to
the trouble of trying to establish (‘elicit’ is the word most commonly used for this) the
client’s true subjective opinions, but hardly used at all for routine statistical analysis;

(d) prior distributions for convenience, for example conjugate priors – in practice these are
very often used just to simplify the calculations.

3.7 Computational techniques

As mentioned previously, one of the main practical advantages of Bayesian methods is
that they may often be applied in very complicated situations where both X and θ are
very high dimensional. In such a situation, the main computational problem is to compute
numerically the normalising constant that is required to make the posterior density a proper
density function.

Direct numerical integration is usually impracticable in more than four or five dimen-
sions. Instead, Monte Carlo methods – in which random numbers are drawn to simulate a
sample from the posterior distribution – have become very widely used. These methods use
computational algorithms known as pseudorandom number generators to obtain streams
of numbers, which look like independent, identically distributed uniform random numbers
over (0,1), and then a variety of transformation techniques to convert these uniform random
numbers to any desired distribution.

3.7.1 Gibbs sampler

One computational technique in common use is the Gibbs sampler. Suppose θ is
d-dimensional: θ = (θ1, . . . , θd ) ∈ � ⊆ R

d . We know that

π (θ |X = x) ∝ π (θ ) f (x ; θ ),

but we have no practical method of computing the normalising constant needed to make this
into a proper density function. So, instead of doing that, we try to generate a pseudorandom
sample of observations from π (·|x), sampling from the distribution of θ , holding x fixed. If
we can do that, then we can easily approximate probabilities of interest (for example what
is Pr{θ1 > 27.15|X = x}?) from the empirical distribution of the simulated sample.
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Start off with an arbitrary initial vector, say θ (0) = (θ (0)
1 , . . . , θ

(0)
d ). Now carry out the

following procedure:

Step 1: Holding θ
(0)
2 , . . . , θ

(0)
d fixed, generate a new value of θ1 conditional on θ2 =

θ
(0)
2 , . . . , θd = θ

(0)
d and of course X = x , to obtain a new value θ

(1)
1 .

Step 2: Generate a new value θ2 = θ
(1)
2 from the conditional distribution given θ1 =

θ
(1)
1 , θ3 = θ

(0)
3 , . . . , θd = θ

(0)
d , X = x .

Step 3: Generate a new value θ3 = θ
(1)
3 from the conditional distribution given θ1 =

θ
(1)
1 , θ2 = θ

(1)
2 , θ4 = θ

(0)
4 , . . . , θd = θ

(0)
d , X = x .

· · ·
Step d: Generate a new value θd = θ

(1)
d from the conditional distribution given θ1 =

θ
(1)
1 , . . . , θd−1 = θ

(1)
d−1, X = x .

This completes one iteration of the Gibbs sampler, and generates a new vector θ (1). Notice
that at each step we only have to simulate from a one-dimensional (conditional) distribution.
We then repeat this process to get θ (2), θ (3), . . . . After many such iterations (usually several
hundred or even several thousand are required) the sampling distribution of θ will approx-
imate the posterior distribution we are trying to calculate, and the Monte Carlo sample can
then be used directly to approximate the probabilities of interest.

This method still requires that we have some efficient way to generate the individual
θ1, . . . , θd values. However, very often we can simplify this problem by using conjugate
priors for them. It is a familiar situation, when Bayesian analysis is applied to very high-
dimensional problems, where we can find conjugate prior families for individual compo-
nents of θ , but where there is no way to find a single conjugate prior family for the entire
vector θ . In problems where we cannot use conjugate priors at all, there are other efficient
methods of generating Monte Carlo samples for a single component of θ , which may then
be used in conjunction with the Gibbs sampler to create samples from the whole vector.

Consecutive observations θ ( j) and θ ( j+1) will not be independent, so if a random sample of
approximately independent observations is required we must sample intermittently from the
simulated sequence. For instance, we might take observations θ (s), θ (s+t), . . . , θ (s+(n−1)t),
for suitable s and large t , as our sample of size n from π (θ | x). An alternative is to repeat
the whole process n times, using n different starting values θ (0), and obtain θ (s) from each
of the n runs of the iterative procedure as our sample of observations, or to carry out n
independent parallel runs from the same starting value.

The Gibbs sampler is an example of a Markov chain Monte Carlo (MCMC) method. The
iterative procedure is simulating a Markov chain which, under suitable regularity conditions,
has equilibrium distribution the posterior distribution π (θ | x).

Suppose that we have simulated a random sample of observations θ [1], θ [2], . . . , θ [n] from
π (θ | x), and that we wish to make inference about one component of θ , say θi . Let θ

[ j]
i

denote the i th component of θ [ j] and let θ
[ j]
−i denote θ [ j] with this i th component deleted,

j = 1, . . . , n.
Inferences about θi may be based on either θ

[1]
i , θ

[2]
i , . . . , θ

[n]
i or θ

[1]
−i , θ

[2]
−i , . . . , θ

[n]
−i . An

estimate of the posterior mean of θi , E(θi | x), for example, might be n−1 ∑n
j=1 θ

[ j]
i . How-

ever, in general, it is more efficient to base inferences on θ
[1]
−i , . . . , θ

[n]
−i . The conditional

density πi (θi | θ−i , x), where θ−i is θ with the i th component deleted, is known (we have
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drawn samples from it at Step i of the iterative procedure) and π (θi | x) may be estimated
by

π̂ (θi | x) = n−1
n∑

j=1

πi
(
θi | θ−i = θ

[ j]
−i , x

)
. (3.5)

This process of obtaining estimates is usually referred to as Rao–Blackwellisation, after the
Rao–Blackwell Theorem (Chapter 6) which is the basis of proof that such estimates are to
be preferred to those based on θ

[1]
i , θ

[2]
i , . . . , θ

[n]
i .

3.7.2 The Metropolis–Hastings sampler

Next to the Gibbs sampler, the most popular method used in Bayesian statistics is the
Metropolis–Hastings sampler, originally developed by Metropolis et al. (1953) for the nu-
merical solution of certain problems in statistical physics, then reformulated and extended,
in language more familiar to statisticians, by Hastings (1970). Very often it is combined
with the Gibbs sampler: in cases where it is not possible to draw a random variable directly
from the conditional distribution of one component of θ given the rest, an alternative ap-
proach is to perform one step of a Metropolis–Hastings sampler on each component in turn,
iterating among the components in the same manner as the Gibbs sampler. However, the
basic idea of the Metropolis–Hastings algorithm works in any number of dimensions, so it
is also possible to update the entire vector θ in a single step. The main practical advantage
of updating one component at a time is in cases where some rescaling is needed to achieve
an efficient sampler, because it is easier to find an optimal scaling in one component at a
time than over all components simultaneously. We consider scaling issues in Section 3.7.6.

In the next two sections, we assume some knowledge of the theory of Markov chains.
However the exposition is at a fairly rudimentary level, and the reader who has not taken
a course in Markov chains should still be able to follow the basic concepts. Although the
Metropolis–Hastings algorithm is usually applied to settings with continuous distributions,
the detailed discussion will be only for discrete distributions; we argue largely by analogy
that the same formulae apply in the continuous case. Tierney (1994) gave a detailed dis-
cussion of continuous-state Markov chains as they are used in the context of Monte Carlo
sampling algorithms.

3.7.3 Metropolis–Hastings algorithm for a discrete state space

Let X = {x1, x2, . . .} be a discrete (countable) state space and let X be a random variable
for which Pr{X = xi } = fi for known { fi } satisfying fi > 0,

∑
i fi = 1. In principle it is

easy to sample from X directly. For example, let U be a pseudorandom variable which is
uniform on [0, 1]; let I be the first index for which

∑I
i=1 fi > U ; set X = xI . In practice

that may not be so easy for two reasons: (i) if fi converges only very slowly to 0, it may take
a lot of searching to find the right I ; (ii) in some cases the fi may only be known up to an
unspecified constant of proportionality and in that case it would be impossible to apply the
direct method without first evaluating the constant of proportionality. As we have already
noted, the latter situation is particularly common in the case of Bayesian statistics, where
exact evaluation of the normalising constant requires summation over a large state space
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(in the discrete case) or integration over a multidimensional space (in the continuous case),
and the whole point of using Markov chain simulation methods is to avoid that calculation.
As we shall see, the Metropolis–Hastings algorithm is readily adapted to the case where
each fi is known only up to a constant of proportionality.

The steps of the algorithm are as follows:

Step 1: Start from an arbitrary X (0). In Bayesian statistics, where X is a parameter of a
model (more usually denoted θ ), the starting value is often taken as the maximum
likelihood estimator (Chapter 8), though this is by no means necessary for the
algorithm to work.

Step 2: Given X (n) = xi , generate a random variable Y = xJ , where the index J is chosen
by Pr{J = j | X (n) = xi } = qi j for some family {qi j } such that

∑
j qi j = 1 for

each i . The family {qi j } is arbitrary except for an irreducibility condition which
we explain below; it is generally chosen for convenience and the ease with which
the random variable J may be generated. The value Y is called a trial value for
the next step of the Markov chain.

Step 3: Define α = min
(

f j q ji

fi qi j
, 1

)
. If α = 1, then set X (n+1) = Y (in this case Y is ac-

cepted). If 0 < α < 1 perform an auxiliary randomisation to accept Y with prob-
ability α (for example, let U be a uniform [0, 1] random variable, independent
of all previous random variables, and accept Y if U < α). If Y is accepted then
X (n+1) = Y ; else X (n+1) = X (n).

Step 4: Replace n by n + 1 and return to Step 2.

The irreducibility condition in Step 2 essentially says that it is possible to get from any
state to any other state in a finite number of steps, with positive probability. For example, a
sufficient condition for that would be qi,i+1 > 0 for all i , qi,i−1 > 0 for all i > 1. However,
subject to that, the choice of {qi j } really is arbitrary, though it can have quite a drastic effect
on the rate of convergence. It is even possible to use a different {qi j } array for each sampling
step n of the process, though this complicates considerably the proofs of convergence.

Note also that Step 3 of the algorithm depends on the individual fi values only through
ratios f j/ fi , so, if a normalising constant is undefined, this does not invalidate the algorithm.

3.7.4 Proof of convergence of Metropolis–Hastings in the discrete case

The process X (n) described in Section 3.7.3 is a discrete state Markov chain; from the
theory of such chains it is known that if a Markov chain with transition probabilities pi j =
Pr{X (n+1) = x j | X (n) = xi } is (a) irreducible, (b) aperiodic and (c) has a stationary measure
{πi } satisfying

∑
i

πi pi j = π j for all j, (3.6)

then the Markov chain converges, that is limn→∞ Pr{X (n) = xi } = πi for all i . In the present
case, irreducibility is guaranteed as a condition on the array {qi j }, and aperiodicity is au-
tomatic from the property that Pr{X (n+1) = X (n)} > 0, so it will suffice to show that (3.6)
holds with πi = fi .
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First note that (3.6) will follow at once if we can verify the simpler condition

πi pi j = π j p ji for all j �= i, (3.7)

which if often called the detailed balance condition. If (3.7) holds, then the Markov chain
is called reversible.

We now show that (3.7) holds for the Metropolis–Hastings sampler, with πi = fi .
In this case, combining the trial selection and the accept/reject step into a single operation,

we have, for all i �= j ,

pi j = qi j min

(
f j q ji

fi qi j
, 1

)
.

There are two cases. If f j q ji ≥ fi qi j then pi j = qi j , p ji = fi qi j/ f j . So fi pi j = fi qi j =
f j p ji . If f j q ji < fi qi j then exactly the same argument holds after switching i and j .
Therefore, in either case, fi pi j = f j p ji . However this is the detailed balance condition we
were trying to show, so convergence of the Markov chain is established.

3.7.5 Metropolis–Hastings algorithm for a continuous state space

As we have already intimated, rigorous proof of the convergence of the Metropolis–Hastings
algorithm is significantly harder in the case of a continuous state space, but the basic
concept is identical, so we content ourselves with describing the method without rigorously
attempting to justify it.

In this case we assume X is a continuous state space, usually a subspace of R
d for

some d. The true density of X is f (x), which may be known only up to a constant of
proportionality. In Bayesian statistics, we usually write θ instead of X ; we know that the
posterior density of θ is proportional to the product of the prior density and likelihood, but the
constant of proportionality is usually intractable except in cases involving a conjugate prior.
As in the discrete case, we require a trial density q(x, y) ≥ 0, which is some probability
density satisfying

∫
X q(x, y)dy = 1 for all x , and an irreducibility condition that we shall

not attempt to make precise, but the basic idea is that, from any starting point X (0) = x , it
should be possible to get arbitrarily close to any other point y, for which f (y) > 0, in a
finite number of steps, with positive probability.

The algorithm mimics Steps 1–4 in the discrete case, as follows:

Step 1: Start from an arbitrary X (0).
Step 2: Given X (n) = x , generate a trial value Y = y from the probability density q(x, y).

Step 3: Define α = min
(

f (y)q(y,x)
f (x)q(x,y) , 1

)
. If α = 1 then set X (n+1) = Y . If 0 < α < 1 per-

form an auxiliary randomisation to accept Y with probability α. If Y is accepted
then X (n+1) = Y ; else X (n+1) = X (n).

Step 4: Replace n by n + 1 and return to Step 2.

In both the discrete and continuous cases, the algorithm continues for a large number of
steps until it is judged to have converged. It is quite common to delete a number of iterations
at the beginning to allow burn-in – that is, a period during which the state probabilities or
probability density are assumed to be settling down to the true { fi } or f (·). For example,
a typical use of the algorithm might treat the first 10 000 iterations as a burn-in sample
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which is discarded, then continue for another 100 000 iterations to provide what is then
treated as a random sample from the desired distribution. Often, it is a subjective decision
(affected as much by available computer time as by formal convergence considerations)
how many iterations are needed for each of these stages, but there are also diagnostics for
convergence, and, in a few cases, rigorous mathematical upper bounds for the number of
iterations required for any desired precision.

In the symmetric case, where q(x, y) = q(y, x) for all x, y, Step 3 of the algorithm

may be simplified to α = min
(

f (y)
f (x) , 1

)
. This was the original form given by Metropolis

et al. (1953); the fact that the same idea would work when q is not symmetric was noted
by Hastings (1970). Thus in principle the Hastings algorithm is more general than the
Metropolis algorithm, though in practice it is very common to use a symmetric q function
as in the original Metropolis procedure.

3.7.6 Scaling

The key quantity that has to be specified in the Metropolis–Hastings algorithm is the trial
density function q(x, y). This is often simplified by writing q(x, y) = 1

h g
( y−x

h

)
for some

density g symmetric about 0 and a scaling constant h; note that in this case we automatically
have q(x, y) = q(y, x). We may take g to be some standard form such as normal or uniform;
the critical issue then becomes how to choose h so that the algorithm converges in reasonable
time. We must not take h to be too large because, in that case, a single trial step will often
lead to a value Y very far from the centre of the distribution, so that the probability of
rejection is very high. However, it can be equally disastrous to choose h too small; in that
case, the algorithm will have a high probability of accepting the trial Y , but it will proceed
with very small steps and therefore take a long time to cover the whole sample space.

In a remarkable result, Roberts, Gelman and Gilks (1997) argued that the correct scaling
constant is one that leads to an overall acceptance rate (average value of α) of about 0.23. To
be fair, the mathematical derivation of this result involves a number of steps that take us rather
far from the original Hastings–Metropolis algorithm, for example assuming the dimension of
the sampling space tends to ∞ and approximating the Markov chain in Langevin diffusion.
Nevertheless, it has been found in practical examples that this rule gives good guidance to
the optimal scaling even in cases not formally covered by their theorem. However, it can be
hard in practice to find h to achieve some predetermined acceptance rate. Gilks et al. (1996)
recommended, as a rule of thumb, trying to achieve an acceptance rate between 15% and
50%, and this seems good enough for most practical purposes.

In the case that Metropolis–Hastings sampling is used to sample from the posterior
distribution of a d-dimensional parameter vector θ , there are still two basic ways of do-
ing it: either the algorithm is applied directly to sampling in R

d , or it could be applied one
component at a time, writing θ (n) = (θ (n)

1 , . . . , θ
(n)
d ) and updating θ

(n)
j , for 1 ≤ j ≤ d, by ap-

plying one step of a Metropolis–Hastings sampler to the conditional distribution of θ j given
θ

(n+1)
1 , . . . , θ

(n+1)
j−1 , θ

(n)
j+1 , . . . , θ

(n)
d . This algorithm (sometimes called Gibbs–Metropolis)

therefore combines the essential features of the Gibbs sampler and the Metropolis–Hastings
sampler. Although it does not appear to be theoretically superior to the direct Metropolis–
Hastings sampler, it does have the practical advantage that the appropriate scaling factors
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h1, . . . , hd can be chosen and optimised separately for each component of θ . Therefore, for
practical purposes, this is often the recommended method.

3.7.7 Further reading

The description here covers only the two best-known forms of Markov chain Monte Carlo
algorithm; there now are many others. For example, in recent years much attention has been
given to variants on the concept of perfect sampling, in which a Markov chain algorithm
is adapted to generate a sample directly from the stationary distribution, without an initial
convergence step. However, this method requires a much more complicated set-up than the
Gibbs sampler or Metropolis algorithm, and it is not clear that it is superior in practice.
There are also many issues that we have not covered regarding convergence diagnostics,
the effects of reparametrisation of θ , etc., that are important in practice. There are by now
a number of excellent books that specialise in these topics, and we refer to them for further
study. Gamerman (1997), Gelman et al. (2003), Gilks et al. (1996) and Robert and Casella
(1999) are recommended.

3.8 Hierarchical modelling

Another way of dealing with the specification of prior parameter values in Bayesian infer-
ence is with a hierarchical specification, in which the prior parameter values are themselves
given a (second-stage) prior.

For example, in the simple normal model considered previously we might specify
X | θ ∼ N (θ, 1), θ | τ 2 ∼ N (0, τ 2) and τ 2 ∼ uniform (0, ∞), another example of an im-
proper, diffuse prior. Inference on θ is based on the marginal posterior of θ , obtained by
integrating out τ 2 from the joint posterior of θ and τ 2:

π (θ | x) =
∫

π (θ, τ 2 | x)dτ 2,

where the joint posterior π (θ, τ 2 | x) ∝ f (x ; θ )π (θ | τ 2)π (τ 2).
Hierarchical modelling is a very effective practical tool and usually yields answers that

are reasonably robust to misspecification of the model. Often, answers from a hierarchical
analysis are quite similar to those obtained from an empirical Bayes analysis. In particular,
when the second-stage prior is relatively flat compared with the first-stage prior and the
density of the observable X , answers from the two approaches are close to one another.
We now give a detailed numerical example of hierarchical modelling. A further example is
given later, in Section 3.10.

3.8.1 Normal empirical Bayes model rewritten as a hierarchical model

Consider, as a model for the baseball example of Section 3.4.1, the hierarchy

Xi | µi ∼ N (µi , 1), i = 1, . . . , p,

µi | θ, τ ∼ N (θ, τ 2), (3.8)

π (θ, τ ) ∝ τ−1−2α∗
e−β∗/τ 2

,

where θ ∈ R, τ ∈ (0, ∞) and where α∗ and β∗ are set to some small positive number
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(we use 0.001). The roles of α∗ and β∗ are explained further below. The first two equations
here are standard as in empirical Bayes analysis, but the third indicates that, rather than
treat θ and τ 2 as constants to be estimated, we are treating them as random parameters with
a prior density π .

Under this model (3.8), the joint density of θ, τ, µ1, . . . , µp, X1, . . . , X p is (ignoring
irrelevant constants)

1

τ p+1+2α∗ exp

[
−1

2

p∑
i=1

{
(Xi − µi )

2 + (µi − θ )2

τ 2

}
− β∗

τ 2

]
. (3.9)

Bayesian analysis proceeds by calculating the joint conditional distribution of
θ, τ, µ1, . . . , µp, given X1, . . . , X p. However, there is no way to calculate (or even to
construct a Monte Carlo sample from) this conditional density directly from the joint den-
sity (3.9) – the normalising constants are too intractable. However, we can characterise the
conditional density of any one of these unknowns given the rest. Specifically:

1 Conditional distribution of µi , given everything else. By completing the square in the
exponent of (3.9), we see that the conditional distribution of µi given Xi , θ, τ is

N
(

θ+τ 2 Xi
1+τ 2 , τ 2

1+τ 2

)
. We generate a random value µi from this distribution, successively

for i = 1, . . . , p.
2 Conditional distribution of θ , given everything else. Completing the square with respect

to θ in the exponent of (3.9), this has the distribution N
(
µ̄, τ 2

p

)
, where µ̄ = 1

p

∑
µi .

Hence we generate a random value of θ from this distribution.
3 Conditional distribution of τ , given everything else. As a function of τ , the density (3.9)

is proportional to τ−p−1−2α∗
e−A/τ 2

, where A = 1
2

∑
(µi − θ )2 + β∗. This is equivalent,

on performing an elementary change of variables, to the statement that 1/τ 2 has the
distribution Gamma

( p
2 + α∗, A

)
. (Here we continue to follow the convention that the

Gamma(α, β) distribution has density ∝ yα−1e−βy, 0 < y < ∞.) Hence we generate Y
from the distribution Gamma

( p
2 + α∗, A

)
, and set τ = 1√

Y
.

The prior distribution described by (3.8) is equivalent to the statement that 1/τ 2 has the
Gamma(α∗, β∗) distribution. If we had genuine prior information about τ (as we could
gain, for example, by the analysis of previous baseball seasons in our baseball example,
Section 3.4.1), we could use this to select suitable informative values of α∗ and β∗. In this
case we choose not to use such information (and, in many situations where similar analyses
might be applied, no such information is available), so the obvious thing to do would be
to set α∗ = β∗ = 0, an uninformative prior. There is a difficulty with this, however: in
hierarchical models, there is often no guarantee that an improper prior leads to a proper
posterior. In this specific example, if the Monte Carlo simulation is run with α∗ = β∗ = 0,
we find that the value of τ eventually collapses to 0 (typically, only after several thousand
iterations). By setting α∗ and β∗ to small positive values, we ensure that the prior density is
proper and therefore so is the posterior. (Note, however, that (3.8) assumes the prior density
of θ to be uniform over the whole real line, which is improper, but this does not appear to
cause the same difficulty.)

The simulation we report here followed steps 1–3 above for 10 000 iterations, storing
every tenth value of θ and τ2 = τ 2

1+τ 2 . (There is no need to store every individual value;
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Figure 3.3 Baseball data example. Time series plot of 1000 values (one value for every tenth iteration)
from the simulated posterior densities of θ and τ2

by taking every tenth, we ensure that successive values of θ and τ2 correspond to nearly
independent draws from the posterior distribution.) Figure 3.3 shows, for the baseball data
of Section 3.4.1, a time series plot of the 1000 stored values; the appearance of the plots
supports our contention that the values are roughly independent and also that there is no
apparent drift in the distribution (which might indicate non-convergence).

We are interested in computing posterior densities of the individual µi . Two methods
immediately come to mind:

1 Store the individual µi values generated by the above simulation (in other words, for
each i ∈ {1, 2, . . . , 17}, store the 1000 values generated at step 1 of every tenth iteration
of the sampler) and construct an estimate of the posterior density of each µi by using a
numerical density estimation procedure, such as the ‘density’ command in S-PLUS;

2 Store only the θ and τ2 values from the simulation. For each such θ and τ2, the conditional
density of each µi , given Xi , θ and τ2, is the N (θ + τ2(Xi − θ ), τ2) density. The estimated
unconditional posterior density of µi is therefore the average of these normal densities
over all the simulated posterior values of θ and τ2.

Method 2 has two advantages. First, it avoids the numerical estimation of a density func-
tion. Second, it is theoretically more efficient – in fact, this is an example of the Rao–
Blackwellisation procedure mentioned in Section 3.7.1.

Figure 3.4 shows the Rao–Blackwellised estimates of the posterior densities of µi (dashed
curves) for each of the 17 baseball players. Also shown for comparison (solid curves) are
the corresponding conditional normal curves, where we estimate θ and τ2 respectively as
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Figure 3.4 Baseball data example. Comparison of posterior densities of µi by the empirical Bayes
method (solid curve) and the fully (hierarchical) Bayes method (dashed curve)

X̄ and 1 + 14/
∑

(Xi − X̄ )2, which are the values corresponding to the empirical Bayes
procedure. Most statisticians consider the fully Bayesian estimates (dashed curves) to be
more reliable characterisations of the uncertainty in µi because they take account of the fact
that θ and τ2 are unknown, whereas the empirical Bayes procedure, having estimated these
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quantities, treats them as if they were known. Nevertheless, in this example there are no
great discrepancies between the empirical Bayes and fully Bayes densities. For comparison,
in each plot we indicate the Xi value by the letter X , and the true µi derived from the entire
season’s performance is denoted by the letter Y .

3.9 Predictive distributions

So far, we have stressed use of the posterior distribution π (θ | x) as a means of making
inference about the parameter θ . We may not be interested directly in that parameter, but
rather in some independent future observation depending on θ . It is possible to obtain the
conditional distribution of the value of a future observation X †, given the data x , from the
posterior π (θ | x).

Suppose that x = (x1, . . . , xn), with the xi independent from f (x ; θ ). Since, given θ , X †

and x are independent and X † has density f (x†; θ ), the posterior joint distribution of X †

and θ is f (x†; θ )π (θ | x). Integrating out θ gives the posterior predictive distribution as

g(X † | x) =
∫

f (X †; θ )π (θ | x)dθ.

If a point prediction of X † is required, we might use the mean, median or other function of
this distribution, depending on our loss function.

In the Bayesian paradigm, predictive inference is therefore, in principle, straightforward,
since the logical statuses of the future observation X † and the parameter θ are the same,
both being random. This contrasts with methods for predictive inference in frequentist
approaches, which are generally more difficult, due to the observation and the parameter
having different status, the former as a random variable, and the latter as a fixed value.
Further aspects of predictive inference, including the frequentist perspective, are discussed
in Chapter 10.

3.9.1 An example involving baseball data

We return to the baseball example of Section 3.4 with two modifications.
If we write mi for the number of at bats in the full season and Zi for the number of home

runs, it seems reasonable to assume Zi ∼ Bin(mi , pi ), where pi is the batter’s success
probability, and then re-cast the problem as one of predicting Zi as opposed to merely
estimating pi . The analyses of Sections 3.4 and 3.8 ignored this distinction, effectively
defining pi = Zi/mi . The predictive approach to be outlined here allows for the additional
randomness in Zi itself that would be present even if the binomial success rate were known
exactly.

The other modification from our preceding analysis is that, instead of applying a trans-
formation and treating the data as normal, we use the binomial distribution directly (for the
pre-season home runs Yi as well as for Zi ). The penalty for this is that we can no longer
use the Gibbs sampler, so instead we apply the Metropolis–Hastings sampler as described
in Section 3.7.5.

As in our earlier analyses, we assume Yi ∼ Bin(ni , pi ), where ni is the number of pre-
season at bats. Write µi = log{pi/(1 − pi )}: this is known as the logit transformation and
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translates the parameter range from (0, 1) for pi to (−∞, ∞) for µi . As in Section 3.8.1,
we assume

µi | θ, τ ∼ N (θ, τ 2),

π (θ, τ ) ∼ τ−1−2α∗
e−β∗/τ 2

,

where α∗, β∗ are positive (we take α∗ = β∗ = 0.001 to get a proper but highly diffuse prior
for τ ).

This defines a hierarchical model in which the individual batters’ success rates are trans-
lated into parameters µi , and θ and τ are hyperparameters. As in Section 3.8.1, the analysis
proceeds by simulation, in which the values of µ1, . . . , µp, θ, τ are successively updated
conditionally on all the other parameters. The updating rules for θ and τ are exactly the same
as earlier, but there is no direct algorithm for sampling µi from its conditional posterior
distribution. To see this, write the conditional density of µi as the product of the densities
of (Yi | µi ) and (µi | θ, τ ):

p(µi | Yi , θ, τ ) ∝ eYi µi

(1 + eµi )ni
exp

{
−1

2

(
µi − θ

τ

)2
}

. (3.10)

The right-hand side of (3.10) cannot be integrated analytically and therefore there is no
direct Gibbs sampler to sample from this distribution.

We therefore proceed by a Metropolis–Hastings update, as follows:

1 Evaluate (3.10) for the current value of µi ; call the answer f0.
2 Define a new trial value µ∗

i , which is sampled uniformly from the interval (µi − δ, µi +
δ); choice of δ will be considered below.

3 Evaluate (3.10) for the new value µ∗
i ; call the answer f1.

4 Let U be an independent random variable, uniform on (0, 1). If U <
f1

f0
accept µ∗

i ;
otherwise reject (in which case the value µi is kept unchanged for this iteration).

This sequence of steps applies for a single value µi at a single iteration; the full algorithm
will do this for each of the batters in turn (i = 1, 2, . . . , p), followed by an update of θ ∼
N (µ̄, τ 2

p ) and then 1
τ 2 ∼ Gamma( p

2 + α∗, 1
2

∑
(µi − θ )2 + β∗) as derived in Section 3.8.1.

For the analysis reported here, 10 000 cycles of this complete sequence were run and
discarded as a warm-up sample; then, 100 000 cycles were run and the values of µ1, . . . , µp

from every tenth cycle were written to a file for subsequent post processing. (The whole
algorithm was programmed in FORTRAN and ran in about 5 seconds on a IBM laptop.)

We still have to choose δ, the step length for the Metropolis update. As noted in Section
3.7.6, the value of δ is often chosen so that there is an acceptance probability between 15%
and 50%. Table 3.2 shows the acceptance rate for five different values of δ. (For brevity, only

Table 3.2 Acceptance rates for the Metropolis
algorithm as a function of the step length δ

δ 0.1 0.5 1 2 10

Acceptance Probability 0.87 0.55 0.35 0.17 0.04
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Figure 3.5 Predictive distribution for the number of home runs scored by each batter, by the hierar-
chical analysis of Section 3.9

the overall acceptance rate is shown, averaged over all 17 batters; however, the acceptance
rates for the individual µi did not differ much from these values. If there were substantial dif-
ferences among the acceptance rates for the individual µi s, we might consider using a differ-
ent δi for each batter.) Based on these results, δ = 1 was selected for the subsequent results.
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We now consider how to calculate predictive distributions. As noted already, the output
of the sampling algorithm is a sample of 10 000 stored values from the posterior distribution
of each µi . For any given µi , the predictive probability that Zi = k is(

mi

k

)
ekµi

(1 + eµi )mi
. (3.11)

The Bayesian predictive probability that Zi = k is therefore the average of (3.11) over the
posterior distribution. In practice, this is calculated by averaging (3.11) over the stored
values of each µi from the Monte Carlo sampling algorithm.

Figure 3.5 shows the p = 17 predictive distributions that are obtained by this procedure.
This is much more informative than a simple table of mean predictions, as in the columns

ˆH R and ˆH Rs of Table 3.1. If we wanted to make a bet about the home run total of a
particular batter or group of batters, we would much prefer to base it on the full predictive
distribution rather than just the mean prediction!

However, it is also worth looking at the mean predictions. For the 17 batters in Table 3.1,
these are, in order: 44, 62, 43, 49, 40, 44, 39, 64, 36, 34, 39, 29, 36, 40, 33, 35, 20. Comparing
these with the actual number of home runs scored, we find that the mean squared prediction
error is 2052, compared with 3201 for the James–Stein estimator ˆH Rs and 9079 for the
simple predictor ˆH R.

In conclusion, this analysis improves on the preceding analyses of this data set by cal-
culating a full predictive distribution for the number of home runs by each batter, but even
when just used to calculate a predictive mean for each batter, improves substantially on
the James–Stein estimator. However, the results for individual batters are not necessarily
better: in particular, the new analysis notably fails to predict McGwire’s actual home run
count. This reinforces a general point about shrinkage methods, that, while they improve the
overall prediction in a group of individuals, they do not necessarily improve the prediction
on any specific individual.

3.10 Data example: Coal-mining disasters

Carlin, Gelfand and Smith (1992) analyse data giving the number of British coal-mining
disasters each year between 1851 and 1962. The data are shown in Figure 3.6(a).

It would appear that there is a ‘changepoint’ in the data around 1890–1895, after which
time the yearly number of disasters tends to be less. Carlin, Gelfand and Smith (1992) analyse
this hypothesis using a three-stage Bayesian hierarchical model and Gibbs sampling to make
inference on the position of the changepoint, k, in the series.

Specifically, we model the observed data X1, X2, . . . , Xm, m = 112, as

Xi ∼ Poisson (µ), i = 1, . . . , k; Xi ∼ Poisson (λ), i = k + 1, . . . , m.

Then k = m would be interpreted as ‘no change’ in the yearly mean number of disasters.
At the second stage of the hierarchical model we place independent priors on k, µ and

λ. We take k uniform on {1, . . . , m}, µ ∼ Gamma (a1, b1) and λ ∼ Gamma (a2, b2), where
the Gamma (a, b) distribution has density ∝ ta−1e−t/b. (Note that this is slightly different
from the parametrisation we used earlier, for example in Example 3.3.)
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Figure 3.6 Coal mining disasters: (a) data series and (b) simulated posterior

At the third stage, we take b1 ∼ inverse Gamma (c1, d1) independent of b2 ∼ inverse
Gamma (c2, d2). (A random variable Z is said to have an inverse Gamma (a, b) distribution
if 1/Z is distributed as Gamma (a, b).) We assume that a1, a2, c1, c2, d1 and d2 are known:
in our analysis, following that of Carlin, Gelfand and Smith (1992), we set a1 = a2 = 0.5,
c1 = c2 = 0, d1 = d2 = 1.

Interest lies specifically in the marginal posterior distribution of k. The parameter vector is
five-dimensional: θ = (µ, λ, b1, b2, k). The conditional distributions required by the Gibbs
sampler are easily checked to be:

µ | X, λ, b1, b2, k ∼ Gamma
(

a1 +
k∑
1

Xi , (k + b−1
1 )−1

)
;

λ | X, µ, b1, b2, k ∼ Gamma
(

a2 +
m∑

k+1

Xi , (m − k + b−1
2 )−1

)
;

b1 | X, µ, λ, b2, k ∼ inverse Gamma
(

a1 + c1, (µ + d−1
1 )−1

)
;

b2 | X, µ, λ, b1, k ∼ inverse Gamma
(

a2 + c2, (λ + d−1
2 )−1

)
and

f (k | X, µ, λ, b1, b2) = L(X ; k, µ, λ)∑
k ′ L(X ; k ′, µ, λ)

,

where

L(X ; k, µ, λ) = exp
{
(λ − µ)k

} (µ

λ

)∑k
1 Xi

.

We initialised the Gibbs sampler by setting θ (0) = (3, 1, 0.5, 0.5, 40). Here k = 40
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corresponds to the year 1890. A series of 200 independent runs from this starting value
was carried out, and the corresponding values θ [1], θ [2], . . . , θ [200] after 100 iterations ob-
tained. Figure 3.6(b) displays the estimate obtained using (3.5) of the marginal posterior
for k | Y .

The posterior mode is at k = 41, the three largest spikes being at k = 39, 40, 41, sug-
gesting strongly that a changepoint occurred between 1889 and 1892.

3.11 Data example: Gene expression data

Microarrays are a biogenetic technology for measuring gene ‘expression levels’, how ac-
tive a particular gene is in the workings of a given cell. Background on microarrays is
given by Efron, Tibshirani, Storey and Tusher (2001). A characteristic of microarray ex-
periments is that they typically provide expression levels for thousands of genes at once,
and therefore pose interesting statistical challenges. The effective analysis of gene ex-
pression data provides a sophisticated, contemporary example of application of Bayesian
inferential ideas. The following data example is adapted from Efron (2003a), using ideas of
Efron (2004).

Our analysis involves data from a microarray experiment concerning stomach cancer,
analysed by Efron (2003a). In the experiment, 2638 genes were analysed on each of 48
microarrays, each microarray using cells from a different cancer patient, 24 with less ag-
gressive disease (Type 1) and the other 24 having more aggressive disease (Type 2). The raw
gene expression data therefore consist of a 2638 × 48 matrix, standardised so that in each
column the 2638 values have mean 0 and variance 1. The purpose of the study is to identify
genes which are more active or less active in Type 2 compared with Type 1 tumours. Table
3.3 shows a small portion of the data.

If we had data on just one gene, gene i , a simple test for a difference between the 24
Type 1 measurements and the 24 Type 2 measurements might be based on a (two-sided)
t-test, and the associated t-statistic value, yi . Our analysis will actually be based on the

Table 3.3 Gene expression data, cancer study

Cancer type

Gene 1 1 . . . 1 1 2 2 . . . 2 2 zi

1 0.03 0.25 0.98 −1.34 −0.43 0.10 −0.71 −0.10 −1.809
2 0.66 0.68 0.23 0.01 −0.04 −0.09 0.82 −0.69 −2.158
3 −0.64 −0.36 −0.56 −0.75 0.18 0.31 −0.18 0.84 0.354
4 −0.02 −0.15 −0.79 −0.01 −0.55 −0.24 −0.02 0.92 −0.020
5 0.71 −0.29 −0.02 −0.39 −0.55 −0.78 −0.44 0.62 0.457
6 0.16 −0.04 −1.14 0.26 −0.90 −0.41 2.21 0.86 1.867
7 0.78 0.24 −1.36 0.19 −1.50 −0.36 1.90 0.80 0.668
8 0.78 0.09 −1.28 0.17 −1.54 −0.28 2.22 1.51 1.012
...

...
...

...
...

...
...

...
...

...
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Figure 3.7 Analysis of z-values for gene expression data

transformed z-values zi defined by

zi = �−1{F46(yi )}, (3.12)

where � denotes the standard normal cumulative distribution function and F46 is the cu-
mulative distribution function of a t-distribution with 46 (= 48 − 2) degrees of freedom.
Values of zi are shown in Table 3.3 for the first few genes in our dataset. The histogram in
Figure 3.7 displays all 2638 z-values.

Considering again just gene i , if there is no difference in expression between Type 1 and
Type 2 tumours we have

zi ∼ N (0, 1), (3.13)

assuming that the assumptions (in particular that of independence between the 48 mea-
surements) underlying the t-test are met. However, we actually have 2638 simultaneous
hypotheses to examine, and care is required in the use of (3.13) in the analysis. Performing
a series of 2638 separate tests based on (3.13), say reporting all those significant at the 5%
level, is inappropriate, and an inference reflecting the multiple hypothesis testing nature of
the problem is required.

The N (0, 1) curve shown in Figure 3.7 is much narrower than the histogram of z-values,
suggesting that some of the genes show different expression in Type 1 and Type 2 tu-
mours. Efron (2003a, 2004) develops simple (empirical) Bayesian ideas, which enable us
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to quantify on a gene-by-gene basis evidence for different expression in the two types of
tumour.

Suppose that the N = 2638 z-values fall into two classes, ‘Interesting’ and ‘Uninterest-
ing’, according to whether the gene is differently expressed or not in the two tumour types.
Let the prior probabilities for the two classes be p0 and p1 = 1 − p0 respectively, with
corresponding prior densities f0(z) and f1(z) for the z-values (3.12). Finally, let f (z) be the
mixture density

f (z) = p0 f0(z) + p1 f1(z).

Since it is constructed from the raw collection of all 2638 z-values, the histogram in

Figure 3.7 can be thought of as estimating f (z). Smoothing the histogram (in fact by fitting
a ‘spline smoother’ to the histogram counts) yields the solid curve f̂ (z) shown in the figure.
This f̂ (z) can be thought of as an empirical Bayes estimate of the mixture density f (z).

Now, according to Bayes’ law the posterior probability of being in the ‘Uninteresting’
class, given z, is

Pr(Uninteresting|z) = p0 f0(z)/ f (z).

Efron (2004) defines the local false discovery rate to be

f dr (z) ≡ f0(z)/ f (z),

an upper bound on the probability of ‘Uninteresting’, given z. The suggestion, therefore,
is to estimate f dr (z) by use of f̂ (z) (for the denominator) and the null N (0, 1) density
(3.13) (for the numerator), and then report as ‘Interesting’ those genes with f dr (zi ) less
than some low threshold value, such as 0.1.

Application of this procedure to the cancer data flags 347 of the 2638 genes as ‘Interest-
ing’. This figure seems high, but Efron (2003a) notes that the cancer study actually started
with over 10 000 genes, most of which were discarded by a rough screening process, so
being left with 347 ‘Interesting’ cases is not implausible.

There is, however, a potential flaw in the analysis, relating to use of the N (0, 1) distribu-
tion as the null density f0(z) in the Bayesian calculation. Efron (2004) comments that, in an
observational study of the kind leading to the gene expression data, the 48 measurements
for each gene cannot reasonably be expected to be independent. The t-statistic cannot,
therefore, reasonably be assumed to have a null distribution which is a t-distribution, so
that our analysis, even though it has taken account of the simultaneous nature of the in-
ference, is likely to have been compromised by use of an inappropriate null density f0(z).
Efron (2004) develops a more sophisticated analysis, appropriate to situations such as that
here. Extending the idea we have used to estimate the mixture density f (z), Efron sug-
gests using the assemblage of z-values near z = 0 to estimate an appropriate null density
f0(z), in effect replacing the N (0, 1) ‘theoretical null distribution’ with an ‘empirical null
distribution’.

Application of Efron’s procedure for construction of an empirical null distribution to the
cancer data yields the null density shown by the broken line in Figure 3.7. Recalculation
of the local false discovery rate using this empirical null density as f0(z) has the dramatic
effect of leaving none of the 2638 genes with f dr (zi ) < 0.1. The raw histogram of z-values
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consists here entirely of a ‘central peak’ around z = 0 (it certainly does not have the multi-
modal kind of appearance we would normally associate with a mixture distribution), and it
is quite plausible that none of the genes is differentially expressed in the two tumour types.

3.12 Problems

3.1 Let θ be a random variable in (0, ∞) with density

π (θ ) ∝ θγ−1e−βθ ,

where β, γ ∈ (1, ∞). Calculate the mean and mode of θ .
Suppose that X1, . . . , Xn are random variables, which, conditional on θ , are inde-

pendent and each have the Poisson distribution with parameter θ . Find the form of
the posterior density of θ given observed values X1 = x1, . . . , Xn = xn . What is the
posterior mean?

Suppose now that T1, . . . , Tn are random variables, which, conditional on θ , are
independent, each exponentially distributed with parameter θ . What is the mode of
the posterior distribution of θ , given T1 = t1, . . . , Tn = tn?

3.2 Suppose that Y , the number of heads in n tosses of a coin, is binomially distributed
with index n and with parameter θ and that the prior distribution of θ is of Beta form
with density

π (θ ) ∝ θa−1(1 − θ )b−1.

Find the posterior distribution of θ , given Y = y. How would you estimate the prob-
ability that the next observation is a head?

Suppose that prior to any tossing the coin seems to be fair, so that we would take
a = b.

Suppose also that the tossing yields 1 tail and n − 1 heads. How large should n be
in order that we would just give odds of 2 to 1 in favour of a head occurring at the
next toss? Show that for a = b = 1 we obtain n = 4.

3.3 Find the form of the Bayes rule in an estimation problem with loss function

L(θ, d) =
{

a(θ − d) if d ≤ θ ,
b(d − θ ) if d > θ,

where a and b are given positive constants.
3.4 Suppose that X is distributed as a binomial random variable with index n and param-

eter θ . Calculate the Bayes rule (based on the single observation X ) for estimating θ

when the prior distribution is the uniform distribution on [0, 1] and the loss function
is

L(θ, d) = (θ − d)2/{θ (1 − θ )}.
Is the rule you obtain minimax?

3.5 At a critical stage in the development of a new aeroplane, a decision must be taken
to continue or to abandon the project. The financial viability of the project can be
measured by a parameter θ , 0 < θ < 1, the project being profitable if θ > 1

2 . Data x
provide information about θ .
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If θ < 1
2 , the cost to the taxpayer of continuing the project is ( 1

2 − θ ) (in units of
$ billion), whereas if θ > 1

2 it is zero (since the project will be privatised if profitable).
If θ > 1

2 the cost of abandoning the project is (θ − 1
2 ) (due to contractual arrangements

for purchasing the aeroplane from the French), whereas if θ < 1
2 it is zero. Derive the

Bayes decision rule in terms of the posterior mean of θ given x .
The Minister of Aviation has prior density 6θ (1 − θ ) for θ . The Prime Minister has

prior density 4θ3. The prototype aeroplane is subjected to trials, each independently
having probability θ of success, and the data x consist of the total number of trials
required for the first successful result to be obtained. For what values of x will there
be serious ministerial disagreement?

3.6 Consider the following extension of the James–Stein estimator. X has a p-dimensional
normal distribution with mean vector µ and covariance matrix I , the p × p identity
matrix. Consider the estimator

d̄a(X ) = X̄ep +
(

1 − a

V

)
(X − X̄ep),

where X̄ = 1
p

∑p
i=1 Xi , V = ∑p

i=1(Xi − X̄ )2 and ep is the p-dimensional vector
of ones. This modifies the classical James–Stein estimator by shrinking the natural
estimator X towards X̄ep, rather than shrinking it towards 0. Assume the loss function
is still the classical least-squares loss, L(µ, d) = ||µ − d||2. Show that, when p ≥ 3,
the risk function is

R(µ, d̄a(X )) = p − [
2a(p − 3) − a2

]
E

(
1

V

)
.

Hence deduce that the modified James–Stein estimator improves on d(X ) = X when-
ever p ≥ 4, and that the optimal value of a is p − 3.

3.7 Consider the situation in Section 3.5.1, where Xi | µi are independent N (µi , 1)
but with µi ∼ N (θ, τ 2) with θ and τ 2 both unknown. (In the earlier discussion, we
assumed θ = 0.) Compute the Bayes estimator of µi for known θ, τi and calculate
the Bayes risk. Show that, provided p > 3, an unbiased estimator of θ is the sample
mean X̄ , and an unbiased estimator of τ 2/(τ 2 + 1) is 1 − (p − 3)/V , where V =∑

(Xi − X̄ )2. Hence derive the James–Stein estimator with shrinkage to the mean,
as considered in Problem 3.6, as an empirical Bayes estimator.

3.8 Suppose X1, . . . , Xn are independent, identically distributed random variables,
which, given µ, have the normal distribution N (µ, σ 2

0 ), with σ 2
0 known. Suppose

also that the prior distribution of µ is normal with known mean ξ0 and known vari-
ance ν0.

Let Xn+1 be a single future observation from the same distribution which is, given
µ, independent of X1, . . . , Xn . Show that, given (X1, . . . , Xn), Xn+1 is normally
distributed with mean

{
1

σ 2
0 /n

+ 1

ν0

}−1
{

X

σ 2
0 /n

+ ξ0

ν0

}
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and variance

σ 2
0 +

{
1

σ 2
0 /n

+ 1

ν0

}−1

.

3.9 Let X1, . . . , Xn be independent, identically distributed N (µ, σ 2), with both µ and σ 2

unknown. Let X̄ = n−1 ∑n
i=1 Xi , and s2 = (n − 1)−1 ∑n

i=1(Xi − X̄ )2.
Assume the (improper) prior π (µ, σ ) with

π (µ, σ ) ∝ σ−1, (µ, σ ) ∈ R × (0, ∞).

Show that the marginal posterior distribution of n1/2(µ − X̄ )/s is the t distribution
with n − 1 degrees of freedom, and find the marginal posterior distribution of σ .

3.10 Consider a Bayes decision problem with scalar parameter θ . An estimate is required
for φ ≡ φ(θ ), with loss function

L(θ, d) = (d − φ)2.

Find the form of the Bayes estimator of φ.
Let X1, . . . , Xn be independent, identically distributed random variables from the

density θe−θx , x > 0, where θ is an unknown parameter. Let Z denote some hypothet-
ical future value derived from the same distribution, and suppose we wish to estimate
φ(θ ) = Pr(Z > z), for given z.

Suppose we assume a gamma prior, π (θ ) ∝ θα−1e−βθ for θ . Find the posterior
distribution for θ , and show that the Bayes estimator of φ is

φ̂B =
(

β + Sn

β + Sn + z

)α+n

,

where Sn = X1 + · · · + Xn .
3.11 Let the distribution of X , given θ , be normal with mean θ and variance 1. Consider

estimation of θ with squared error loss L(θ, a) = (θ − a)2 and action space A ≡ � ≡
R.

Show that the usual estimate of θ, d(X ) = X , is not a Bayes rule. (Show that if d(X )
were Bayes with respect to a prior distribution π , we should have r (π, d) = 0.)

Show that X is extended Bayes and minimax. (Consider a family of normal priors
for θ . A straightforward proof that X is also admissible is easily constructed.)

3.12 The posterior density of the real parameter θ , given data x , is π (θ | x). Assuming that
π (θ | x) is unimodal, show that if we choose θ1 < θ2 to minimise θ2 − θ1 subject to∫ θ2

θ1

π (θ | x)dθ = 1 − α,

α given, then we have π (θ1 | x) = π (θ2 | x).
3.13 Let X ∼ Bin(n, θ ), and consider a conjugate Beta(a, b) prior distribution for θ , as

in Example 3.1. Show that if we reparametrise from (a, b) to (µ, M), where µ =
a/(a + b) and M = a + b, the marginal distribution of X is of beta-binomial form:

Pr(X = x | µ, M) = �(M)

�(Mµ)�{M(1 − µ)}
(

n

x

)
�(x + Mµ)�{n − x + M(1 − µ)}

�(n + M)
.
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Verify that the marginal expectation and variance of X/n are respectively

E(X/n) = µ,

and

var(X/n) = µ(1 − µ)

n

[
1 + n − 1

M + 1

]
.

Consider a model in which (Xi , θi ), i = 1, . . . , k are a sequence of independent, iden-
tically distributed random variables, for which only the Xi are observable. Suppose
that Xi ∼ Bin(n, θi ) and θi ∼ Beta(µ, M), in terms of the above parametrisation of
the beta distribution. Find appropriate estimates, based on X1, . . . , Xk , of µ and M ,
and an empirical Bayes estimate of the posterior mean of θi .

3.14 Let X1, . . . , Xn be independent, identically distributed N (µ, 1/τ ), and suppose that
independent priors are placed on µ and τ , with µ ∼ N (ξ, κ−1) and τ ∼ Gamma(α, β)
(see the notation of Example 3.3).

Find the form of the joint posterior distribution π (µ, τ | X ), and note that this is
not of standard form. Show that the conditional (posterior) distributions are of simple
forms:

µ | τ, X ∼ N

(
τ

∑n
i=1 Xi + κξ

τn + κ
,

1

τn + κ

)
,

τ | µ, X ∼ Gamma

(
α + n

2
, β +

∑n
i=1(Xi − µ)2

2

)
.

3.15 Suppose X1, . . . , Xn, Z are independent N (µ, τ−1) random variables and the prior
density of (τ, µ) is

π (τ, µ; α, β, k, ν) = βα

�(α)
τα−1e−βτ · (2π )−1/2(kτ )1/2 exp

{
−kτ

2
(µ − ν)2

}

as in Example 3.3. Recall that in Example 3.3 we showed that the posterior density

of (τ, µ), given X1, . . . , Xn , is of the same form with parameters (α, β, k, ν) replaced
by (α′, β ′, k ′, ν ′).

Suppose now that the objective is prediction about Z , conditionally on
X1, . . . , Xn . Show that, if π (τ, µ; α′, β ′, k ′, ν ′) is the posterior density of (τ, µ)
and Z |(τ, µ) ∼ N (µ, τ−1), then the joint posterior density of (τ, Z ) is of the form
π (τ, Z ; α′′, β ′′, k ′′, ν ′′) and state explicitly what are α′′, β ′′, k ′′, ν ′′.

Show that the marginal predictive density of Z , given X1, . . . , Xn , is

(β ′′)α
′′

�(α′′)
·
(

k ′′

2π

)1/2

· �(α′′ + 1
2 ){

β ′′ + 1
2 k ′′(Z − ν ′′)2

}α′′+1/2

and interpret this in terms of the t distribution.

3.16∗ Suppose V ∼ Wp(�−1, m), µ|V ∼ Np(ν, (kV )−1) and, conditionally on (V, µ),
X1, . . . , Xn, Z are independent Np(µ, V −1). If we write the joint prior density of
(V, µ) as π (V, µ; m, k, �, ν) then, as shown in Example 3.4, the joint posterior density
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of (V, µ), given X1, . . . , Xn , is of the form π (V, µ; m ′, k ′, � ′, ν ′), where we gave ex-
plicit formulae for m ′, k ′, � ′, ν ′ as functions of m, k, �, ν.

Suppose, now, the objective is Bayesian prediction of Z , conditional on X1, . . . , Xn .
Show that the joint conditional density of (V, Z ), given X1, . . . , Xn , is also of the form
π (V, Z ; m ′′, k ′′, � ′′, ν ′′), and give explicit expressions for m ′′, k ′′, � ′′, ν ′′.

Calculate the conditional density of Z alone, given X1, . . . , Xn .
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Hypothesis testing

From now on, we consider a variety of specific statistical problems, beginning in this chapter
with a re-examination of the theory of hypothesis testing. The concepts and terminology of
decision theory will always be present in the background, but inevitably, each method that
we consider has developed its own techniques.

In Section 4.1 we introduce the key ideas in the Neyman–Pearson framework for hypoth-
esis testing. The fundamental notion is that of seeking a test which maximises power, the
probability under repeated sampling of correctly rejecting an incorrect hypothesis, subject
to some pre-specified fixed size, the probability of incorrectly rejecting a true hypothesis.
When the hypotheses under test are simple, so that they completely specify the distribution
of X , the Neyman–Pearson Theorem (Section 4.2) gives a simple characterisation of the
optimal test. We shall see in Section 4.3 that this result may be extended to certain composite
(non-simple) hypotheses, when the family of distributions under consideration possesses the
property of monotone likelihood ratio. Other, more elaborate, hypothesis testing problems
require the introduction of further structure, and are considered in Chapter 7. The current
chapter finishes (Section 4.4) with a description of the Bayesian approach to hypothe-
sis testing based on Bayes factors, which may conflict sharply with the Neyman–Pearson
frequentist approach.

4.1 Formulation of the hypothesis testing problem

Throughout we have a parameter space �, and consider hypotheses of the form

H0 : θ ∈ �0 vs. H1 : θ ∈ �1,

where �0 and �1 are two disjoint subsets of �, possibly, but not necessarily, satisfying
�0 ∪ �1 = �.

If a hypothesis consists of a single member of �, for example if �0 = {θ0} for some
θ0 ∈ �, then we say that it is a simple hypothesis. Otherwise it is called composite.

Sometimes hypotheses which at first sight appear to be simple hypotheses are really
composite. This is especially common when we have nuisance parameters. For example,
suppose X1, . . . , Xn are independent, identically distributed N (µ, σ 2), with µ and σ 2 both
unknown, and we want to test H0 : µ = 0. This is a composite hypothesis because � =
{(µ, σ 2) : −∞ < µ < ∞, 0 < σ 2 < ∞}, while �0 = {(µ, σ 2) : µ = 0, 0 < σ 2 < ∞}.
Here σ 2 is a nuisance parameter: it does not enter into the hypothesis we want to test, but
nevertheless we have to take it into account in constructing a test.
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For most problems we adopt the following criterion: fix a small number α (often fixed to
be 0.05, but any value in (0,1) is allowable), and seek a test of size α, so that

Prθ {Reject H0} ≤ α for all θ ∈ �0.

Thus H0 and H1 are treated asymmetrically. Usually H0 is called the null hypothesis and
H1 the alternative hypothesis.

4.1.1 Test functions

The usual way hypothesis testing is formulated in elementary statistics texts is as follows:
choose a test statistic t(X ) (some function of the observed data X ) and a critical region Cα ,
then reject H0 based on X = x if and only if t(x) ∈ Cα . The critical region must be chosen
to satisfy

Prθ {t(X ) ∈ Cα} ≤ α for all θ ∈ �0.

For example, consider the problem in which X = (X1, . . . , Xn) with X1, . . . , Xn indepen-
dent, identically distributed from N (µ, 1) and suppose the problem is to test H0 : µ ≤ 0
against H1 : µ > 0. The standard procedure is to reject H0 if X̄ > zα

√
n, where X̄ is the

mean of X1, . . . , Xn and zα is the upper-α point of the standard normal distribution. Thus
in this case

t(X ) = X̄ , Cα = {t : t > zα

√
n}.

We consider here a slight reformulation of this. Define a test function φ(x) by

φ(x) =
{

1 if t(x) ∈ Cα ,
0 otherwise.

So, whenever we observe φ(X ) = 1, we reject H0, while, if φ(X ) = 0, we accept.
Recall that in our discussion of abstract decision theory, it was necessary sometimes to

adopt a randomised decision rule. The same concept arises in hypothesis testing as well:
sometimes we want to use a randomised test. This may be done by generalising the concept
of a test function to allow φ(x) to take on any value in the interval [0, 1]. Thus having
observed data X and evaluated φ(X ), we use some independent randomisation device to
draw a Bernoulli random number W which takes value 1 with probability φ(X ), and 0
otherwise. We then reject H0 if and only if W = 1. Thus we may interpret φ(x) to be ‘the
probability that H0 is rejected when X = x’. Of course, in cases where φ(x) takes on only
the values 0 and 1, this is identical with the usual formulation.

Example 4.1 Suppose X ∼ Bin(10, θ ) and we want to test H0 : θ ≤ 1
2 against H1 : θ > 1

2 .
The obvious test will be: reject H0 whenever X ≥ kα , where kα is chosen so that Prθ {X ≥
kα} ≤ α when θ = 1

2 . However, if we work out Prθ {X ≥ k} with θ = 1
2 for several k, we

get the answers 0.00098, 0.01074, 0.05469 etc. for k = 10, 9, 8, . . . . So, if α = 0.05, the
test that takes kα = 8 has size 0.054. . ., which is no good, so, for a non-randomised test,
we would have to take kα = 9, which has actual size only 0.01074 and is therefore very
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conservative. We can resolve this problem, and achieve size exactly 0.05, by defining

φ(x) =



1 if x = 9 or 10,
67/75 if x = 8,
0 if x ≤ 7.

In words: if we observe X = 9 or 10 we reject H0, but if we observe X = 8 we flip a
hypothetical coin, which has probability 67/75 of coming down heads, and reject H0 if this
coin does come down heads. In all other cases, we accept H0.

Randomisation looks a very artificial procedure, and it is. If one came across this situation
in the course of some consulting, it would probably be sensible to ask the client if she was
satisfied with a test of size 0.055 instead of one of size 0.05. However the point of the
example is this: there is no test, based on the value of X alone, which achieves size exactly
0.05. Therefore, if we want to construct a theory of hypothesis tests of a given size, we have
to allow the possibility of randomised tests, regardless of whether we would actually want
to use such a test in a practical problem.

4.1.2 Power

Having defined a general randomised test in terms of its test function φ, we now need some
criterion for deciding whether one test is better than another. We do this by introducing the
concept of power.

The power function of a test φ is defined to be

w(θ ) = Prθ {Reject H0} = Eθ {φ(X )},
which is defined for all θ ∈ �. When testing a simple null hypothesis against a simple
alternative hypothesis, the term ‘power’ is often used to signify the probability of rejecting
the null hypothesis when the alternative hypothesis is true.

The idea is this: a good test is one which makes w(θ ) as large as possible on �1, while
satisfying the constraint w(θ ) ≤ α for all θ ∈ �0.

Within this framework, we can consider various classes of problems:

(i) Simple H0 vs. simple H1: here there is an elegant and complete theory, which tells us
exactly how to construct the best test, given by the Neyman–Pearson Theorem.

(ii) Simple H0 vs. composite H1: in this case the obvious approach is to pick out a repre-
sentative value of �1, say θ1, and construct the Neyman–Pearson test of H0 against θ1.
In some cases the test so constructed is the same for every θ1 ∈ �1. When this happens,
the test is called ‘uniformly most powerful’ or UMP. We would obviously like to use
a UMP test if we can find one, but there are many problems for which UMP tests do
not exist, and then the whole problem is harder.

(iii) Composite H0 vs. composite H1: in this case the problem is harder again. It may not be
so easy even to find a test which satisfies the size constraint, because of the requirement
that Eθ {φ(X )} ≤ α for all θ ∈ �0; if �0 contains a nuisance parameter such as σ 2 in the
above N (µ, σ 2) example, we must find a test which satisfies this constraint regardless
of the value of σ 2.
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4.2 The Neyman–Pearson Theorem

Consider the test of a simple null hypothesis H0 : θ = θ0 against a simple alternative
hypothesis H1 : θ = θ1, where θ0 and θ1 are specified. Let the probability density function
or probability mass function of X be f (x ; θ ), specialised to f0(x) = f (x ; θ0) and f1(x) =
f (x ; θ1). Define the likelihood ratio �(x) by

�(x) = f1(x)

f0(x)
.

According to the Neyman–Pearson Theorem, the best test of size α is of the form: reject H0

when �(X ) > kα , where kα is chosen so as to guarantee that the test has size α. However,
we have seen above that this method of constructing the test can fail when X has a discrete
distribution (or, more precisely, when �(X ) has a discrete distribution under H0). In the
following generalised form of the Neyman–Pearson Theorem, we remove this difficulty by
allowing for the possibility of randomised tests.

The (randomised) test with test function φ0 is said to be a likelihood ratio test (LRT for
short) if it is of the form

φ0(x) =




1 if f1(x) > K f0(x),

γ (x) if f1(x) = K f0(x),

0 if f1(x) < K f0(x),

where K ≥ 0 is a constant and γ (x) an arbitrary function satisfying 0 ≤ γ (x) ≤ 1 for all x .

Theorem 4.1 (Neyman–Pearson)

(a) (Optimality). For any K and γ (x), the test φ0 has maximum power among all tests
whose sizes are no greater than the size of φ0.

(b) (Existence). Given α ∈ (0, 1), there exist constants K and γ0 such that the LRT defined
by this K and γ (x) = γ0 for all x has size exactly α.

(c) (Uniqueness). If the test φ has size α, and is of maximum power amongst all possible
tests of size α, then φ is necessarily a likelihood ratio test, except possibly on a set of
values of x which has probability 0 under both H0 and H1.

Proof: assuming absolute continuity

(a) Let φ be any test for which Eθ0φ(X ) ≤ Eθ0φ0(X ). Define U (x) = {φ0(x) −
φ(x)}{ f1(x) − K f0(x)}. When f1(x) − K f0(x) > 0 we have φ0(x) = 1, so U (x) ≥ 0.
When f1(x) − K f0(x) < 0 we have φ0(x) = 0, so U (x) ≥ 0. For f1(x) − K f0(x) = 0,
of course U (x) = 0. Thus U (x) ≥ 0 for all x . Hence

0 ≤
∫

{φ0(x) − φ(x)}{ f1(x) − K f0(x)}dx

=
∫

φ0(x) f1(x)dx −
∫

φ(x) f1(x)dx + K

{∫
φ(x) f0(x)dx −

∫
φ0(x) f0(x)dx

}

= Eθ1φ0(X ) − Eθ1φ(X ) + K
{
Eθ0φ(X ) − Eθ0φ0(X )

}
.
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Figure 4.1 Diagram of the distribution function G(K ), showing the two possibilities

However, the expression in curly brackets is ≤ 0, because of the assumption that the
size of φ is no greater than the size of φ0. Thus∫

φ0(x) f1(x)dx −
∫

φ(x) f1(x)dx ≥ 0,

which establishes that the power of φ cannot be greater than the power of φ0, as claimed.
(b) The probability distribution function G(K ) = Prθ0{�(X ) ≤ K } is non-decreasing as K

increases; it is also right-continuous (so that G(K ) = limy↘K G(y) for each K ). Try to
find a value K0 for which G(K0) = 1 − α. As can be seen from Figure 4.1, there are two
possibilities: (i) such K0 exists, or (ii) we cannot exactly solve the equation G(K0) =
1 − α but we can find a K0 for which G−(K0) = Prθ0{�(X ) < K0} ≤ 1 − α < G(K0).
In Case (i), we are done (set γ0 = 0). In Case (ii), set

γ0 = G(K0) − (1 − α)

G(K0) − G−(K0)
.

Then it is an easy exercise to demonstrate that this test has size exactly α, as required.
(c) Let φ0 be the LRT defined by the constant K and function γ (x), and suppose φ is another

test of the same size α and the same power as φ0. Define U (x) as in (a). Then U (x) ≥ 0
for all x , but, because φ and φ0 have the same size and power,

∫
U (x)dx = 0. So the

function U (x) is non-negative and integrates to 0: hence U (x) = 0 for all x , except
possibly on a set, S say, of values of x , which has probability zero under both H0 and
H1. This in turn means that, except on the set S, φ(x) = φ0(x) or f1(x) = K f0(x), so
that φ(x) has the form of a LRT. This establishes the uniqueness result, and so completes
the proof of the theorem. �

4.3 Uniformly most powerful tests

A uniformly most powerful or UMP test of size α is a test φ0(·) for which

(i) Eθφ0(X ) ≤ α for all θ ∈ �0;
(ii) given any other test φ(·) for which Eθφ(X ) ≤ α for all θ ∈ �0, we have Eθφ0(X ) ≥

Eθφ(X ) for all θ ∈ �1.
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In general, it is asking a very great deal to expect that UMP tests exist – in effect, it is asking
that the Neyman–Pearson test for simple vs. simple hypotheses should be the same for
every pair of simple hypotheses contained within H0 and H1. Nevertheless, for one-sided
testing problems involving just a single parameter, for which � ⊆ R, there is a wide class
of parametric families for which just such a property holds. Such families are said to have
monotone likelihood ratio or MLR. The purpose of this section is to define such families
and to explain exactly why they have the UMP property.

Example 4.2 Suppose X1, . . . , Xn are independent, identically distributed from an expo-
nential distribution with mean θ : f (x ; θ ) = θ−1e−x/θ for 0 < x < ∞, where 0 < θ < ∞.
Consider the following:

Problem 1: Test H0 : θ = θ0 against H1 : θ > θ0.
Problem 2: Test H∗

0 : θ ≤ θ0 against H1 : θ > θ0.

Here θ0 > 0 is a given number. We look at Problem 1 first. Consider the test of θ = θ0

against θ = θ1 for some θ1 > θ0. Since

f (x ; θ ) = 1

θn
exp

{
−1

θ

∑
xi

}
,

we have

f (x ; θ1)

f (x ; θ0)
= exp

{(
1

θ0
− 1

θ1

) ∑
xi

}
.

But 1/θ0 − 1/θ1 > 0 and �(x) is an increasing function of
∑

xi , so the Neyman–Pearson
test will be: reject H0 if

∑
Xi > kα , where kα is chosen so that Prθ0{

∑
Xi > kα} = α.

Since X1 ∼ Gamma(1, 1/θ ), we have by elementary properties of the Gamma distribu-
tion,

∑n
1 Xi ∼ Gamma(n, 1/θ ). Thus we require to find kα such that

1

θn
0 (n − 1)!

∫ ∞

kα

tn−1e−t/θ0 dt = α.

The integral may be evaluated from tables of the incomplete Gamma function, by repeated
integration by parts or (for large n) approximately by the Central Limit Theorem.

However, the point of the example is not to worry too much about the computation of kα ,
but to demonstrate that the optimal test does not depend on which θ1 is chosen, so long as
we do choose θ1 > θ0. In other words, the test is uniformly most powerful for all θ ∈ �1.

To show that the same test is also UMP for problem 2, first note that

Prθ
{∑

Xi > k
}

= Prθ

{∑
Xi

θ
>

k

θ

}

= Prθ

{
Y >

k

θ

}
,

where Y ∼ Gamma(n, 1). This is a non-decreasing function of θ . Therefore, since this test
(φ0(X ) say) has size α under the null hypothesis H0, then it also has size α under the null
hypothesis H∗

0 .
Now let φ(X ) be any other test of size α under H∗

0 . Since H0 is a smaller hypothesis than
H∗

0 , the test φ(X ) must also have size ≤ α under H0. But then, by the Neyman–Pearson
Theorem, Eθ1φ(X ) ≤ Eθ1φ0(X ) for all θ1 > θ0. Thus the test φ0(X ) is UMP.
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4.3.1 Monotone likelihood ratio

The reason that the above example works out so neatly is because the likelihood ratio
for θ = θ0 against θ = θ1 is a monotone function of the statistic t(x) = ∑

xi . Thus the
Neyman–Pearson test is always of the form

φ0(x) =
{

1 if t(x) > kα ,
0 if t(x) ≤ kα ,

regardless of the actual values of θ0 and θ1. We should therefore expect the same argument
to work for any family of densities in which the likelihood ratio is a monotone function of
some statistic t(x). We now make this notion precise.

Definition The family of densities { f (x ; θ ), θ ∈ � ⊆ R} with real scalar parameter θ is
said to be of monotone likelihood ratio (MLR for short) if there exists a function t(x) such
that the likelihood ratio

f (x ; θ2)

f (x ; θ1)

is a non-decreasing function of t(x) whenever θ1 ≤ θ2.

Note that any family for which the likelihood ratio turns out to be non-increasing (rather
than non-decreasing) as a function of t(x) is still MLR: simply replace t(x) by −t(x).

Example 4.3 Consider a simple one-parameter exponential family in which observations
X1, . . . , Xn are independent, identically distributed from the density

f (x ; θ ) = c(θ )h(x)eθτ (x).

The exponential distribution mentioned above is an example of this class (on rewriting θ

in place of 1/θ ), but, as we shall see in Chapter 5, there are many examples of exponential
families that go well beyond the original exponential distribution.

If we redefine X to be the vector (X1, . . . , Xn) rather than just a single observation, then
the density of X becomes

f (x ; θ ) = c(θ )n
∏

i

{h(xi )}eθ
∑

τ (xi )

= c(θ )n
∏

i

{h(xi )}eθ t(x),

where t(x) = ∑
τ (xi ). Then for any θ1 ≤ θ2

f (x ; θ2)

f (x ; θ1)
=

{
c(θ2)

c(θ1)

}n

exp{(θ2 − θ1)t(x)}.

This is non-decreasing in t(x), and so the family is MLR.

Example 4.4 Suppose X1, . . . , Xn are independent, identically distributed from the uni-
form distribution on (0, θ ), where θ > 0 is unknown. The density is

f (x ; θ ) =
{

θ−n if max(x1, . . . , xn) ≤ θ ,
0 if max(x1, . . . , xn) > θ .
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Define t(x) = max(x1, . . . , xn). Then, for 0 < θ1 ≤ θ2,

f (x ; θ2)

f (x ; θ1)
=

{(
θ1
θ2

)n
if 0 ≤ t(x) ≤ θ1,

+∞ if θ1 < t(x) ≤ θ2.

This is again a non-decreasing function of t(x). Note that we do not need to consider cases
for which t(x) > θ2 because this is impossible under either model.

Example 4.5 As an example of a one-parameter family which is not MLR, suppose we
have one observation from the Cauchy density

f (x ; θ ) = 1

π{1 + (x − θ )2} .

Then the likelihood ratio is

f (x ; θ2)

f (x ; θ1)
= 1 + (x − θ1)2

1 + (x − θ2)2
.

It is easily seen that this likelihood ratio is not a monotonic function of x , and it may readily
be deduced that infact it is not a monotonic function of t(x) for any t .

We now state the main result of this section, that, for a one-sided test in a MLR family, an
UMP test exists. For simplicity, we restrict ourselves to absolutely continuous distributions
so as to avoid the complications of randomised tests.

Theorem 4.2 Suppose X has a distribution from a family which is MLR with respect to
a statistic t(X ), and that we wish to test H0 : θ ≤ θ0 against H1 : θ > θ0. Suppose the
distribution function of t(X ) is continuous.

(a) The test

φ0(x) =
{

1 if t(x) > t0,
0 if t(x) ≤ t0

is UMP among all tests of size ≤ Eθ0{φ0(X )}.
(b) Given some α, where 0 < α ≤ 1, there exists some t0 such that the test in (a) has size

exactly α.

Proof:

(i) For any θ1 > θ0, the Neyman–Pearson test of H0 : θ = θ0 against H1 : θ = θ1 is of
the form φ0(x) given in (a), for some t0. The form of this test does not depend on θ1,
so we see at once that the test φ0 is UMP for testing H0 : θ = θ0 against H1 : θ > θ0.

(ii) For any test φ0 of the form given in (a), Eθ {φ0(X )} is a non-decreasing function of θ . To
see this, consider any θ2 < θ1 and suppose Eθ2{φ0(X )} = β. Consider the following
trivial test: φ(x) = β for all x . Thus φ chooses H0 or H1 with probabilities 1 − β

and β regardless of the value of x . Obviously, Eθ1{φ(X )} = β. But the test φ0 is the
Neyman–Pearson test for testing θ2 against θ1, so it must be at least as good as φ.
Therefore, Eθ1{φ0(X )} ≥ β, as required.

(iii) It then follows that, if the test constructed in (i) satisfies Eθ0{φ0(X )} = α, then φ0 is
also of size α under the larger null hypothesis H0 : θ ≤ θ0. Suppose φ is any other
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test of size α under H0. Then Eθ0{φ(X )} ≤ α. So, by the Neyman–Pearson Theorem,
Eθ1{φ(X )} ≤ Eθ1{φ0(X )} for any θ1 > θ0. This proves (a), that φ0 is UMP among all
tests of its size.

(iv) Finally if α is given, we need to show that there exists a t0 such that Prθ0{t(X ) > t0} = α.
But this follows at once from the assumption that the distribution function of t(X ) is
continuous. Thus (b) is proved, and hence the whole theorem. �

Remark

1 What if the MLR property is false? One remedy is to look at locally best tests, defined
by taking θ1 very close to θ0.
Recalling that the Neyman–Pearson test rejects θ0 in favour of θ1 if

f (x ; θ1)

f (x ; θ0)
> K

for some suitable K , or equivalently

log f (x ; θ1) − log f (x ; θ0) > log K ,

a first-order Taylor expansion (for details see Section 8.1.5) allows us to rewrite this
approximately as

(θ1 − θ0)
∂ log f (x ; θ )

∂θ

∣∣∣∣
θ=θ0

> log K ,

which is equivalent to rejecting H0 when the score statistic

S(x ; θ0) = ∂ log f (x ; θ )

∂θ

∣∣∣∣
θ=θ0

is too large. This assumes, of course, that log f (x ; θ ) is indeed differentiable with respect
to θ . As we shall see later in Chapter 8, this is one well-established universal method of
constructing a hypothesis test, but by no means the only one.

2 None of this applies to two-sided tests, such as H0 : θ = θ0 against H1 : θ �= θ0. In this
case, if a distribution has the MLR property, it would still seem natural to base any test
on the statistic t(X ), but there is no UMP test. For a detailed theory of two-sided tests
from a classical point of view, the reader is referred to Chapter 7.

4.4 Bayes factors

In this section we briefly outline a Bayesian approach to hypothesis testing problems, which,
as we shall quickly see, leads in quite different directions from the Neyman–Pearson theory.

4.4.1 Bayes factors for simple hypotheses

Consider first the case of simple H0 vs. simple H1. Suppose the prior probability that Hj is
true is denoted by π j for j = 0, 1, with π0 > 0, π1 > 0, π0 + π1 = 1, and let the respective
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densities of X under H0 and H1 be f0(x) and f1(x), as in Section 4.2. Bayes’ law quickly
leads to

Pr{H0 true |X = x} = π0 f0(x)

π0 f0(x) + π1 f1(x)
.

There is another way to write this, namely

Pr{H0 true |X = x}
Pr{H1 true |X = x} = π0

π1

f0(x)

f1(x)
,

where π0/π1 is the prior odds in favour of H0 over H1, and f0(x)/ f1(x) is called the Bayes
factor. In words,

Posterior Odds = Prior Odds × Bayes Factor.

In a court of law, the prior and posterior odds might represent a juror’s strength of conviction
that the accused person is innocent, respectively before and after hearing the evidence (or a
specific piece of evidence, such as the result of a DNA test). Then the Bayes factor represents
‘the strength of the evidence’.

The first person to use Bayes factors extensively was Jeffreys, in his book Theory of
Probability (first edition 1939). Indeed, the theory of Bayes factors may be regarded as
Jeffreys’ main contribution to the subject of statistics. Following Jeffreys, however, there
were not many new methodological developments until the 1980s. Since then, however,
there has been a great outpouring of research, and this is one of the most active areas of
research in contemporary Bayesian statistics.

Jeffreys gave Table 4.1 to aid in the interpretation of a Bayes factor.

Table 4.1 Interpretation of Bayes factors

Bayes factor B Interpretation

B > 1 Evidence supports H0

1 > B > 10−1/2 Slight evidence against H0

10−1/2 > B > 10−1 Substantial evidence against H0

10−1 > B > 10−3/2 Strong evidence against H0

10−3/2 > B > 10−2 Very strong evidence against H0

10−2 > B Decisive evidence against H0

These interpretations might be considered disputable; for example, in a DNA fingerprint-
ing case, not everyone would agree that a Bayes factor of 0.01 was ‘decisive’ evidence
against the accused! But the point of this discussion is that we can think of the size of the
Bayes factor as a meaningful measure in its own right, without resorting to significance
levels and the like. It is this point of view that represents the real point of departure between
the classical and Bayesian approaches to hypothesis testing.

From the point of view of decision theory, any Bayes rule will take the form: reject H0

if B < k for some constant k, otherwise accept H0. Thus, if we ignore the possible need
for randomised tests, the class of Bayes rules is exactly the same as the class of Neyman–
Pearson rules. This is to be expected, in view of the close correspondence between Bayes
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rules and admissible rules which we saw in Chapter 2. However, the process by which we
decide on the critical value k is fundamentally different.

4.4.2 Bayes factors for composite hypotheses

Suppose now the hypotheses H0 and H1 are composite. In order to calculate Bayes factors,
we now need to know a complete prior distribution for θ . In other words, it is not sufficient
to know the prior probabilities π0 and π1 that H0 and H1 are correct, but we must know
the prior density for θ under each of these two hypotheses. Suppose θ has prior density
g0(θ ), θ ∈ �0 conditionally on H0 being true, and g1(θ ), θ ∈ �1 conditionally on H1 being
true. The Bayes factor in this case is defined as

B =
∫
�0

f (x ; θ )g0(θ )dθ∫
�1

f (x ; θ )g1(θ )dθ
.

In the case of a simple H0 : θ = θ0 and composite H1, such as H1 : θ �= θ0, we may write

B = f (x ; θ0)∫
�1

f (x ; θ )g1(θ )dθ
.

Note that there is nothing that requires the same parametrisation θ for the two hypotheses.
More generally, suppose we have two candidate parametric models M1 and M2 for data
X , and the two models have respective parameter vectors θ1 and θ2. Under prior densities
πi (θi ), i = 1, 2 for the parameter vectors in the two models, the marginal distributions of
X are found as

p(x | Mi )=
∫

f (x ; θi , Mi )πi (θi )dθi , i = 1, 2,

and the Bayes factor is the ratio of these:

B = p(x | M1)

p(x | M2)
.

The interpretation of B is the same as in Jeffreys’ table above, but the actual calculation
depends on the prior densities in a non-trivial way.

Example 4.6 Suppose X1, . . . , Xn are independent, identically distributed from N (θ, σ 2),
with σ 2 known. Consider H0 : θ = 0 against H1 : θ �= 0. Also suppose the prior g1 for θ

under H1 is N (µ, τ 2). We have

B = P1

P2
,

where

P1 = (2πσ 2)−n/2 exp

(
− 1

2σ 2

∑
X2

i

)
,

P2 = (2πσ 2)−n/2
∫ ∞

−∞
exp

{
− 1

2σ 2

∑
(Xi − θ )2

}
· (2πτ 2)−1/2 exp

{
− (θ − µ)2

2τ 2

}
dθ.
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Completing the square as in Example 3.3, we see that∑
(Xi − θ )2 + k(θ − µ)2 = (n + k)(θ − θ̂ )2 + nk

n + k
(X̄ − µ)2 +

∑
(Xi − X̄ )2,

for arbitrary k, where θ̂ = (n X̄ + kµ)/(n + k). Thus

1

σ 2

∑
(Xi − θ )2 + 1

τ 2
(θ − µ)2

= nτ 2 + σ 2

σ 2τ 2
(θ − θ̂ )2 + n

nτ 2 + σ 2
(X̄ − µ)2 + 1

σ 2

∑
(Xi − X̄ )2.

Also ∫ ∞

−∞
exp

{
−nτ 2 + σ 2

2σ 2τ 2
(θ − θ̂ )2

}
dθ =

(
2πσ 2τ 2

nτ 2 + σ 2

)1/2

.

Hence

P2 = (2πσ 2)−n/2

(
σ 2

nτ 2 + σ 2

)1/2

exp

[
−1

2

{
n

nτ 2 + σ 2
(X̄ − µ)2 + 1

σ 2

∑
(Xi − X̄ )2

}]

and so

B =
(

1 + nτ 2

σ 2

)1/2

exp

[
−1

2

{
n X̄2

σ 2
− n

nτ 2 + σ 2
(X̄ − µ)2

}]
.

Defining t = √
n X̄/σ , η = −µ/τ , ρ = σ/(τ

√
n), this may also be written

B =
(

1 + 1

ρ2

)1/2

exp

[
−1

2

{
(t − ρη)2

1 + ρ2
− η2

}]
.

However, the form of this solution illustrates a difficulty with the Bayes factor approach. As
we saw in Chapter 3, many Bayesian solutions to point and interval estimation problems are
approximately the same as classical solutions when the prior is diffuse. Unfortunately this
is not the case here; if we let ρ → 0 (corresponding to the limiting case of an uninformative
prior, τ → ∞), then B → ∞ – in other words, there is overwhelming evidence in support of
H0! One must therefore choose values of η and ρ that represent some reasonable judgement
of where θ is likely to be when H0 is false. There is no way of ducking the issue by recourse
to vague priors.

Jeffreys himself proposed the use of a Cauchy prior for θ , rather than the normal prior
studied here, arguing that this led to actions consistent with the way scientists intuitively
interpret data from conflicting experiments. However, this does not remove the basic diffi-
culty that the answer depends on the arbitrary parameters of the prior distribution. Modern
authors have proposed a number of alternative approaches. For example, it might be reason-
able to use very diffuse or improper priors but for a normalising constant – (1 + 1/ρ2)1/2

in the above example – which is very large or indeterminate. In one development, Smith
and Spiegelhalter (1980) proposed replacing this constant by an arbitrary number c. To
determine c, they proposed conducting a thought experiment, based on a very small number
of observations, for which it would just be possible to discriminate between the two hy-
potheses. They then suggested setting B = 1 for this thought experiment, which determines
c, and hence the Bayes factors for all other experiments of the same structure. Berger and
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Sellke (1987) proposed an alternative approach in which bounds were obtained on the Bayes
factor over a wide class of ‘reasonable’ choices of the prior density g1. In recent years, there
have been many alternative approaches under such names as partial Bayes factors, intrinsic
Bayes factors and fractional Bayes factors. Two valuable recent articles are those by Kass
and Raftery (1995) and Berger and Pericchi (1996).

One method which can provide a rough measure of the evidence in favour of one model
over another without reference to any prior distribution is provided by the Bayesian In-
formation Criterion (BIC). This is based on the result that, for large sample sizes n, an
approximation to −2 log B is given by

�BIC = W − (p2 − p1) log n,

where pi is the number of parameters in model Mi , i = 1, 2, and W is the likelihood ratio
statistic

W = −2 log
supθ1

f (x ; θ1, M1)

supθ2
f (x ; θ2, M2)

.

So a (crude) approximation to the Bayes factor B is given by

B ≈ exp(− 1
2�BIC), (4.1)

which does not depend on the priors on the parameters in the two models.

Example 4.7 Here is another example which illustrates even more strikingly the differ-
ence between the classical significance testing and Bayes factor approaches. Suppose
X ∼ Bin(n, θ ) and consider testing H0 : θ = θ0 against H1 : θ �= θ0. Suppose under H1, θ
is uniformly distributed on (0, 1). Then the Bayes factor on observing X = x is B = P1/P2,
where

P1 =
(

n

x

)
θ x

0 (1 − θ0)n−x ,

P2 =
(

n

x

) ∫ 1

0
θ x (1 − θ )n−x dθ

=
(

n

x

)
�(x + 1)�(n − x + 1)

�(n + 2)

=
(

n

x

)
x!(n − x)!

(n + 1)!
.

Thus

B = (n + 1)!

x!(n − x)!
θ x

0 (1 − θ0)n−x .

For large n and x , it is possible to use Stirling’s approximation (n! ∼ √
2πnn+1/2e−n) to

approximate this exact Bayes factor by

B ≈
{

n

2πθ0(1 − θ0)

}1/2

exp

{
− (x − nθ0)2

2nθ0(1 − θ0)

}
. (4.2)

Suppose for example n = 100, θ0 = 1
2 , x = 60. Then a classical procedure estimates θ̂ =

0.6 with standard error 0.05 under H0, leading to the approximately standard normal test
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statistic z = (0.6 − 0.5)/0.05 = 2, on the basis of which the classical procedure rejects H0

at α = 0.05. However the Bayes factor, as computed using (4.2), is B = 1.09, pointing
to evidence in favour of H0! The BIC approximation to the Bayes factor, as given by
(4.1), is 1.33. The phenomenon of the Bayes factor contradicting the classical test is more
pronounced at larger sample sizes: for example for n = 400, x = 220 we estimate θ̂ =
0.55 with standard error 0.025, so again z = 2, but in this case B = 2.16 (with the BIC
approximation giving 2.70), while with n = 10 000, x = 5100, which again leads to z = 2,
we find B = 10.8, with the BIC approximation 13.5, which Jeffreys would interpret as
‘strong evidence’ in support of H0, even though a classical significance test would again
lead to rejection!

This therefore points to an instance where Bayesian and classical approaches do lead
to sharply conflicting conclusions. They are, however, based on quite different viewpoints
of the problem. The classical significance test is relevant if it really is important to know
whether θ has exactly the value θ0, and no other. For example, if we tossed a supposedly
fair coin 10 000 times, and observed 5100 heads, then we would have strong grounds for
concluding that the coin is biased. It makes no difference whether the true θ is 0.499 or
0.51 or 0.67 or 0.11 . . . all are evidence that there is something wrong with the coin. For
a contrasting situation, suppose a manufacturer introduces a new drug, claiming that it is
equally effective as, but much cheaper than, an existing drug for which it is known that
the probability of no response within a specified time period T is 0.5. If θ = Pr{New drug
shows no response within time period T }, then initially we have no information, other than
the manufacturer’s claim, about the true value of θ . However, if a very large number of
trials resulted in an estimated θ of 0.51, it would seem reasonable to conclude that the
manufacturer’s claim is correct – the difference between 0.51 and 0.50 being unlikely, in
this context, to be of much practical importance. Thus, in this situation, it seems more
reasonable to use the Bayes factor as a measure of the strength of the evidence for or against
the manufacturer’s claim.

Finally we should point out that Bayes factors are not universally accepted, even by
Bayesians. To those who believe that the only rational approach to statistics lies in the full
specification of subjective prior probabilities and utilities, the Bayes factor looks like a way
of avoiding part of the problem. A formal specification of a Bayes decision rule, along the
lines laid out in Chapter 3, cannot depend solely on the Bayes factor.

4.5 Problems

4.1 A random variable X has one of two possible densities:

f (x ; θ ) = θe−θx , x ∈ (0, ∞), θ ∈ {1, 2}.
Consider the family of decision rules

dµ(x) =
{

1 if x ≥ µ,

2 if x < µ,

where µ ∈ [0, ∞]. Calculate the risk function R(θ, dµ) for loss function L(θ, d) =
|θ − d|, and sketch the parametrised curve C = {(R(1, dµ), R(2, dµ)) : µ ∈ [0, ∞]} in
R

2.
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Use the Neyman–Pearson Theorem to show that C corresponds precisely to the set
of admissible decision rules.

For what prior mass function for θ does the minimax rule coincide with the Bayes
rule?

4.2 Let X1, . . . , Xn be independent N (µ, σ 2) random variables, where σ 2 ∈ (0, ∞) is a
known constant and µ ∈ R is unknown. Show that X = (X1, . . . , Xn) has monotone
likelihood ratio. Given α ∈ (0, 1) and µ0 ∈ R, construct a uniformly most powerful test
of size α of H0 : µ ≤ µ0 against H1 : µ > µ0, expressing the critical region in terms
of the standard normal distribution function �(x). Verify directly that (as we already
know from the theory) your test has monotone power function.

Now suppose it is µ that is known and σ 2 unknown. Let σ 2
0 ∈ (0, ∞) be given.

Construct a uniformly most powerful size α test of H0 : σ 2 ≤ σ 2
0 against H1 : σ 2 > σ 2

0 .
4.3 Let X1, . . . , Xn be independent random variables with a common density function

f (x ; θ ) = θe−θx , x ≥ 0,

where θ ∈ (0, ∞) is an unknown parameter. Consider testing the null hypothesis H0 :
θ ≤ 1 against the alternative H1 : θ > 1. Show how to obtain a uniformly most powerful
test of size α.

4.4 Let X1, . . . , Xn have the same joint distribution as in problem 4.3, but assume now we
want to test H0 : θ = 1 against H1 : θ �= 1. Define Sn = X1 + · · · + Xn .

(i) Show that the test which rejects H0 whenever |Sn − n| > zα/2
√

n, where zα/2 is
the upper-α/2 point of the standard normal distribution, has size approximately α

for large n.
(ii) Suppose that the prior distribution for θ , conditionally on H1 being true, has

a Gamma distribution with parameters a and b, so that the prior density is
baθa−1e−bθ /�(a). Show that the Bayes factor for H0 against H1, conditional on
Sn = sn , is

�(a)

�(a + n)

(b + sn)a+ne−sn

ba
.

(iii) Suppose now a = b = 1 and write sn = n + zn
√

n, so that, if zn = ±zα/2, the test
in (i) will be just on the borderline of rejecting H0 at the two-sided significance
level α. Show that, as n → ∞, provided zn → ∞ sufficiently slowly,

B ∼
√

n

2π
e1−z2

n/2.

(iv) Hence show that there exists a sequence {sn, n ≥ 1} such that, for the sequence of
problems with Sn = sn for all n, the null hypothesis H0 is rejected at significance
level α, for all sufficiently large n, whatever the value of α > 0, but the Bayes
factor for H0 against H1 tends to ∞ as n → ∞.

4.5 Let X1, . . . , Xn be an independent sample of size n from the uniform distribution on
(0, θ ). Show that there exists a uniformly most powerful size α test of H0 : θ = θ0

against H1 : θ > θ0, and find its form.
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Let T = max(X1, . . . , Xn). Show that the test

φ(x) =
{

1, if t > θ0 or t ≤ b,

0, if b < t ≤ θ0,

where b = θ0α
1/n , is a uniformly most powerful test of size α for testing H0 against

H ′
1 : θ �= θ0.

(Note that in a ‘more regular’ situation, a UMP test of H0 against H ′
1 does not exist.)
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Special models

Two general classes of models particularly relevant in theory and practice are exponential
families and transformation families. The purpose of this short and fairly technical chapter
is to establish a suitable background on these two classes of model as a preliminary for the
more statistical discussion to follow, in particular in Chapters 7 and 9.

5.1 Exponential families

The class of exponential families contains many well-known examples of parametric statisti-
cal distributions, including, for example, binomial, Poisson, normal, Gamma, Beta, negative
binomial distributions and many more. The families have a number of properties which are
extremely useful when they are used for more advanced testing and estimation procedures.

5.1.1 Definition and elementary examples

Suppose the random variable X depends on a parameter θ through a density f (x ; θ ), of the
form

f (x ; θ ) = c(θ )h(x) exp

{
k∑

i=1

πi (θ )τi (x)

}
, x ∈ X , θ ∈ �, (5.1)

with X not depending on θ . Then the model is said to be an exponential family. Here we
suppose that � ⊆ R

d , so that θ = (θ1, . . . , θd ) say, and note that the concept is defined for
both scalar and vector X , and for discrete as well as continuous X , with f being interpreted
as a probability mass function in the discrete case. The value of k may be reduced if either
τ (x) = (τ1(x), . . . , τk(x)) or π (θ ) = (π1(θ ), . . . , πk(θ )) satisfies a linear constraint, so we
will assume that the representation (5.1) is minimal, in that k is as small as possible.

Example 5.1 The exponential density with mean θ and density function f (x ; θ ) =
θ−1 exp(−x/θ ), 0 < x < ∞, 0 < θ < ∞ is of exponential family form with k = 1.

Example 5.2 The Beta density

f (x ; a, b) = �(a + b)

�(a)�(b)
xa−1(1 − x)b−1, 0 < x < 1, a > 0, b > 0

is of exponential family form with θ = (a, b), if we define τ1(x) = log x, τ2(x) =
log(1 − x).
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Example 5.3 The N (µ, σ 2) density may be written in the form

1√
2πσ 2

exp

{
− µ2

2σ 2

}
· exp

{
xµ

σ 2
− x2

2σ 2

}
.

Writing θ = (µ, σ 2), let τ1(x) = x, τ2(x) = x2, π1(θ ) = µ/σ 2, π2(θ ) = −1/(2σ 2).

Examples which are not of exponential family type include the uniform distribution on [0, θ ],
and the t distribution on θ degrees of freedom. The uniform distribution is excluded because
it violates a key general property of our definition of exponential family distributions, worth
highlighting, that the range of the distribution does not depend on unknown parameters.

5.1.2 Means and variances

First note that for any family f (x ; θ ) which is sufficiently well-behaved for the identity∫
X

f (x ; θ )dx = 1

to be differentiated under the integral sign, we have (the proof is left as an exercise)

Eθ

{
∂ log f (X ; θ )

∂θ j

}
= 0, ∀ j, (5.2)

Eθ

{
∂2 log f (X ; θ )

∂θ j∂θl

}
= −Eθ

{
∂ log f (X ; θ )

∂θ j

∂ log f (X ; θ )

∂θl

}
, ∀ j, l. (5.3)

In the case of an exponential family with d = k, we have

∂ log f (x ; θ )

∂θ j
= ∂

∂θ j
log c(θ ) +

k∑
i=1

∂πi (θ )

∂θ j
τi (x), j = 1, . . . , k.

Applying (5.2) we therefore have

0 = ∂

∂θ j
log c(θ ) +

k∑
i=1

∂πi (θ )

∂θ j
Eθ {τi (X )}, j = 1, . . . , k.

This results in k equations in the k unknowns, E{τi (X )}, i = 1, . . . , k, which may in
principle be solved to find the expected values of each of the τi (X ).

This problem is much easier to solve if πi (θ ) = θi for each i . In that case,

Eθ {τi (X )} = − ∂

∂θi
log c(θ ).

Moreover, a direct extension from (5.3) also shows

Covθ {τi (X ), τ j (X )} = − ∂2

∂θi∂θ j
log c(θ ).

A model with πi (θ ) = θi for each i is said to be in its natural parametrisation. We define
the natural parameter space � by

� = {π ≡ (π1(θ ), . . . , πk(θ )), θ ∈ � such that 0 < J (π ) < ∞} ,
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where

J (π ) =
∫

h(x) exp

{
k∑

i=1

πi (θ )τi (x)

}
dx .

In the case where θ is k-dimensional, we speak of a full exponential family, or a (k, k)
exponential family. If d < k, we refer to a (k, d) exponential family or curved expo-
nential family, noting that our definition requires that {π1(θ ), . . . , πk(θ )} does not be-
long to a v-dimensional linear subspace of R

k with v < k. Think of the case d = 1,

k = 2: {π1(θ ), π2(θ )} describes a curve in the plane as θ varies, rather than a straight
line.

Interest in curved exponential families stems from two features, related to statistical
concepts to be discussed later. In a curved exponential family, the maximum likelihood
estimator is not a sufficient statistic (see Chapter 6), so that there is scope for conditioning,
as a Fisherian stance suggests, on a so-called ancillary statistic: see Chapter 7. Also, it can
be shown that any sufficiently smooth parametric family can be approximated, locally to
the true parameter value, to some suitable order, by a curved exponential family.

5.1.3 The natural statistics and their exact and conditional distributions

Suppose now we have a random sample X1, . . . , Xn from an exponential family with (not
necessarily natural) parameter θ . We write X for the vector (X1, . . . , Xn), with similar
notation for other vectors appearing below.

The density of this X is therefore

c(θ )n

{
n∏

j=1

h(x j )

}
exp

{
k∑

i=1

πi (θ )
n∑

j=1

τi (x j )

}
.

Let us rewrite this in the form

c(θ )n

{
n∏

j=1

h(x j )

}
exp

{
k∑

i=1

πi (θ )ti (x)

}
,

where ti (x) = ∑
j τi (x j ) for each i .

The random variables ti (X ), i = 1, . . . , k are called the natural statistics formed from
the random vector X .

Two important properties of the natural statistics are given by the following results. These
properties make exponential families particularly attractive, as they allow inference about
selected components of the natural parameter, in the absence of knowledge about the other
components: we will develop this idea in Chapter 7.

Lemma 5.1 The joint distribution of t1(X ), . . . , tk(X ) is of exponential family form with
natural parameters π1(θ ), . . . , πk(θ ).

Lemma 5.2 For any S ⊆ {1, 2, . . . , k}, the joint distribution of {ti (X ), i ∈ S} conditionally
on {ti (X ), i /∈ S}, is of exponential family form, with a distribution depending only on
{πi (θ ), i ∈ S}.
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We shall prove these results only for the case when X is discrete. In principle, that ought
to suffice for the continuous case as well, because any continuous random variable can be
approximated arbitrarily closely (in an appropriate sense) by a discrete random variable.
However, the technicalities needed to make that statement precise are somewhat awkward,
so we shall not attempt it here. A more advanced text such as Lehmann (1986) can be
consulted for the full details.

Proof of Lemma 5.1
For any x = (x1, . . . , xn),

Prθ {X = x} = c(θ )n

{
n∏

j=1

h(x j )

}
exp

{
k∑

i=1

πi (θ )ti (x)

}
.

Fix some vector y = (y1, . . . , yk) and let

Ty = {x : t1(x) = y1, . . . , tk(x) = yk}.
Then

Prθ {t1(X ) = y1, . . . , tk(X ) = yk} =
∑
x∈Ty

P{X = x}

= c(θ )n
∑
x∈Ty

{
n∏

j=1

h(x j )

}
exp

{
k∑

i=1

πi (θ )ti (x)

}

= c(θ )nh0(y) exp

{
k∑

i=1

πi (θ )yi

}
,

where

h0(y) =
∑
x∈Ty

{
n∏

j=1

h(x j )

}
.

�

Proof of Lemma 5.2
Write T1, . . . , Tk for t1(X ), . . . , tk(X ). By Lemma 5.1,

Prθ {T1 = y1, . . . , Tk = yk} = c(θ )nh0(y) exp

{
k∑

i=1

πi (θ )yi

}
.

Since the ordering of T1, . . . , Tk is arbitrary, there is no loss of generality in assuming
S = {1, . . . , l} for some l, 1 ≤ l < k. Then

Prθ {T1 = y1, . . . , Tl = yl |Tl+1 = yl+1, . . . , Tk = yk} = Prθ {T1 = y1, . . . , Tk = yk}∑
y′ Prθ

{
T1 = y′

1, . . . , Tk = y′
k

} ,

where the sum in the denominator is taken over all vectors y′ = (y′
1, . . . , y′

k) such that
y′

i = yi for i > l.
This may be rewritten

h0(y) exp
{∑

i πi (θ )yi
}

∑
y′ h0(y′) exp

{∑
i πi (θ )y′

i

} .
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However, terms in the exponent of the form πi (θ )yi , i > l are common to both the numerator
and denominator, and therefore cancel. If we then define

1

c′(θ )
=

∑
y′

h0(y′) exp

{
l∑

i=1

πi (θ )y′
i

}

we find that

Prθ {T1 = y1, . . . , Tl = yl |Tl+1 = yl+1, . . . , Tk = yk} = c′(θ )h0(y) exp

{
l∑

i=1

πi (θ )yi

}
,

which is of the required form. Moreover, this depends on θ only through π1(θ ), . . . , πl(θ ),
as claimed. �

5.1.4 Some additional points

We note here two technical points for use later.
1 Let T = (T1, . . . , Tk) denote the vector of natural statistics. Assume the natural pa-

rameter space � contains an open rectangle in R
k . Then, if φ(T ) is any real function of T

with

Eθφ(T ) = 0 for all θ,

we must have φ(T ) = 0 with probability 1.
To see this, suppose the parameter space is the natural parameter space and write the

condition Eθφ(T ) = 0 in the form∫
Rk

φ(t)h0(t) exp
{∑

θi ti
}

dt = 0 for all θ ∈ �.

The left-hand side is simply the k-dimensional Laplace transform of φ(t)h0(t), evaluated
at (θ1, . . . , θk). By the uniqueness of the inverse of a Laplace transform, which exists in an
open rectangle, φ(t)h0(t) must be 0 almost everywhere. However h0(t) > 0 (at least with
probability 1), so φ(t) = 0 with probability 1.

2 Suppose X is taken from an exponential family in its natural parametrisation

f (x ; θ ) = c(θ )h(x) exp

{
k∑

i=1

θiτi (x)

}
,

and let φ(x) be any bounded function of x . Consider

∫
φ(x)h(x) exp

{
k∑

i=1

θiτi (x)

}
dx .

It can be shown that we may differentiate under the integral sign with respect to θ1, . . . , θk :
see, for example, Lehmann (1986). In fact, not only is the expression differentiable with
respect to θ , it has derivatives of all orders. Now set φ(x) ≡ 1 to see that this property must
be true of 1/c(θ ), and hence c(θ ) itself, provided c(θ ) is bounded away from 0. Then apply
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the same reasoning to

∫
φ(x)c(θ )h(x) exp

{
k∑

i=1

θiτi (x)

}
dx

to see that Eθ {φ(X )} is differentiable of all orders with respect to θ . Note that this does not
require differentiability of φ – for example, it could apply to a test function.

5.2 Transformation families

The basic idea behind a transformation family is that of a group of transformations acting
on the sample space, generating a family of distributions all of the same form, but with
different values of the parameters.

Recall that a group G is a mathematical structure having a binary operation ◦ such
that:

� if g, g′ ∈ G, then g ◦ g′ ∈ G;
� if g, g′, g′′ ∈ G, then (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′);
� G contains an identity element e such that e ◦ g = g ◦ e = g, for each g ∈ G; and
� each g ∈ G possesses an inverse g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

In the present context, we will be concerned with a group G of transformations acting on
the sample space X of a random variable X , and the binary operation will simply be a
composition of functions: we have e(x) = x , (g1 ◦ g2)(x) = g1(g2(x)).

The group elements typically correspond to elements of a parameter space �, so that a
transformation may be written as, say, gθ . The family of densities of gθ (X ), for gθ ∈ G, is
called a (group) transformation family.

Setting x ≈ x ′ if and only if there is a g ∈ G such that x = g(x ′) defines an equivalence
relation, which partitions X into equivalence classes called orbits. These may be labelled
by an index a, say. Two points x and x ′ on the same orbit have the same index, a(x) = a(x ′).
Each x ∈ X belongs to precisely one orbit, and might be represented by a (which identifies
the orbit) and its position on the orbit.

5.2.1 Maximal invariant

We say that the statistic t is invariant to the action of the group G if its value does not
depend on whether x or g(x) was observed, for any g ∈ G: t(x) = t(g(x)). An example is
the index a above.

The statistic t is maximal invariant if every other invariant statistic is a function of it, or
equivalently, t(x) = t(x ′) implies that x ′ = g(x) for some g ∈ G. A maximal invariant can
be thought of (Davison, 2003: Section 5.3) as a reduced version of the data that represent
it as closely as possible, while remaining invariant to the action of G. In some sense,
it is what remains of X once minimal information about the parameter values has been
extracted.
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5.2.2 Equivariant statistics and a maximal invariant

As described, typically there is a one-to-one correspondence between the elements of G
and the parameter space �, and then the action of G on X requires that � itself constitutes
a group, with binary operation ∗ say: we must have gθ ◦ gφ = gθ∗φ . The group action on X
induces a group action on �. If Ḡ denotes this induced group, then associated with each
gθ ∈ G there is a ḡθ ∈ Ḡ, satisfying ḡθ (φ) = θ ∗ φ.

If t is an invariant statistic, the distribution of t(X ) is the same as that of t(g(X )), for all
g. If, as we assume here, the elements of G are identified with parameter values, this means
that the distribution of T does not depend on the parameter and is known in principle. T is
said to be distribution constant.

A statistic S = s(X ) defined on X and taking values in the parameter space � is said to
be equivariant if s(gθ (x)) = ḡθ (s(x)) for all gθ ∈ G and x ∈ X . Often S is chosen to be an
estimator of θ , and it is then called an equivariant estimator.

A key operational point is that an equivariant estimator can be used to construct a maximal
invariant.

Consider t(X ) = g−1
s(X )(X ). This is invariant, since

t(gθ (x)) = g−1
s(gθ (x))(gθ (x)) = g−1

ḡθ (s(x))(gθ (x)) = g−1
θ∗s(x)(gθ (x))

= g−1
s(x){g−1

θ (gθ (x))} = g−1
s(x)(x) = t(x).

If t(x) = t(x ′), then g−1
s(x)(x) = g−1

s(x ′)(x
′), and it follows that x ′ = gs(x ′) ◦ g−1

s(x)(x), which
shows that t(X ) is a maximal invariant.

The statistical importance of a maximal invariant will be illuminated in Chapter 9. In
a transformation family, a maximal invariant plays the role of the ancillary statistic in
the conditional inference on the parameter of interest indicated by a Fisherian approach.
The above direct construction of a maximal invariant from an equivariant estimator fa-
cilitates identification of an appropriate ancillary statistic in the transformation family
context.

5.2.3 An example

An important example is the location-scale model . Let X = η + τε, where ε has a known
density f , and the parameter θ = (η, τ ) ∈ � = R × R+. Define a group action by gθ (x) =
g(η,τ )(x) = η + τ x , so

g(η,τ ) ◦ g(µ,σ )(x) = η + τµ + τσ x = g(η+τµ,τσ )(x).

The set of such transformations is closed with identity g(0,1). It is easy to check that g(η,τ )

has inverse g(−η/τ,τ−1). Hence, G = {g(η,τ ) : (η, τ ) ∈ R × R+} constitutes a group under the
composition of functions operation ◦ defined above.

The action of g(η,τ ) on a random sample X = (X1, . . . , Xn) is g(η,τ )(X ) = η + τ X ,
with η ≡ η1n , where 1n denotes the n × 1 vector of 1s, and X is written as an n × 1
vector.

The induced group action on � is given by ḡ(η,τ )((µ, σ )) ≡ (η, τ ) ∗ (µ, σ ) = (η +
τµ, τσ ).
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The sample mean and standard deviation are equivariant, because with s(X ) = (X̄ , V 1/2),
where V = (n − 1)−1 ∑

(X j − X̄ )2, we have

s(g(η,τ )(X )) =
(

η + τ X ,
{

(n − 1)−1
∑

(η + τ X j − (η + τ X ))2
}1/2

)

=
(

η + τ X̄ ,
{

(n − 1)−1
∑

(η + τ X j − η − τ X̄ )2
}1/2

)
= (

η + τ X̄ , τ V 1/2
)

= ḡ(η,τ )(s(X )).

A maximal invariant is A = g−1
s(X )(X ), and the parameter corresponding to g−1

s(X ) is
(−X̄/V 1/2, V −1/2). Hence a maximal invariant is the vector of residuals

A = (X − X̄ )/V 1/2 =
(

X1 − X̄

V 1/2
, . . . ,

Xn − X̄

V 1/2

)T

,

called the configuration. It is easily checked directly that the distribution of A does not
depend on θ . Any function of A is also invariant. The orbits are determined by differ-
ent values a of the statistic A, and X has a unique representation as X = gs(X )(A) =
X̄ + V 1/2 A.

5.3 Problems

5.1 Prove that random samples from the following distributions form (m, m) exponential
families with either m = 1 or m = 2: Poisson, binomial, geometric, Gamma (index
known), Gamma (index unknown). Identify the natural statistics and the natural param-
eters in each case. What are the distributions of the natural statistics?

The negative binomial distribution with both parameters unknown provides an ex-
ample of a model that is not of exponential family form. Why?

(If Y has a Gamma distribution of known index k, its density function is of the form

fY (y; λ) = λk yk−1e−λy

�(k)
.

The gamma distribution with index unknown has both k and λ unknown.)
5.2 Let Y1, . . . , Yn be independent, identically distributed N (µ, µ2). Show that this model

is an example of a curved exponential family.
5.3 Find the general form of a conjugate prior density for θ in a Bayesian analysis of the

one-parameter exponential family density

f (x ; θ ) = c(θ )h(x) exp{θ t(x)}, x ∈ R.

5.4 Verify that the family of gamma distributions of known index constitutes a transforma-
tion model under the action of the group of scale transformations. (This provides an
example of a family of distributions which constitutes both an exponential family, and
a transformation family. Are there any others?)
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5.5 The maximum likelihood estimator θ̂ (x) of a parameter θ maximises the likelihood
function L(θ ) = f (x ; θ ) with respect to θ . Verify that maximum likelihood estimators
are equivariant with respect to the group of one-to-one transformations. (Maximum
likelihood estimation is the subject of Chapter 8.)

5.6 Verify directly that in the location-scale model the configuration has a distribution
which does not depend on the parameters.
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Sufficiency and completeness

This chapter is concerned primarily with point estimation of a parameter θ . For many para-
metric problems, including in particular problems with exponential families, it is possible
to summarise all the information about θ contained in a random variable X by a function
T = T (X ), which is called a sufficient statistic. The implication is that any reasonable esti-
mator of θ will be a function of T (X ). However, there are many possible sufficient statistics –
we would like to use the one which summarises the information as efficiently as possible.
This is called the minimal sufficient statistic, which is essentially unique. Completeness is
a technical property of a sufficient statistic. A sufficient statistic, which is also complete,
must be minimal sufficient (the Lehmann–Scheffé Theorem). Another feature of a com-
plete sufficient statistic T is that, if some function of T is an unbiased estimator of θ , then it
must be the unique unbiased estimator which is a function of a sufficient statistic. The final
section of the chapter demonstrates that, when the loss function is convex (including, in
particular, the case of squared error loss function), there is a best unbiased estimator, which
is a function of the sufficient statistic, and that, if the sufficient statistic is also complete,
this estimator is unique. In the case of squared error loss this is equivalent to the celebrated
Rao–Blackwell Theorem on the existence of minimum variance unbiased estimators.

6.1 Definitions and elementary properties

6.1.1 Likelihood

Suppose X is a random variable with density (or probability mass function) f (x ; θ ) de-
pending on a finite-dimensional parameter θ ∈ �.

The function Lx (θ ) = f (x ; θ ), viewed as a function of θ for fixed x , is called the likelihood
function of the parameter θ based on observed data X = x .

The function

�x (θ1, θ2) = f (x ; θ1)

f (x ; θ2)

is the likelihood ratio for one parameter value θ = θ1 relative to another θ = θ2.

Lemma 6.1 Let t(x) denote some function of x. Then the following are equivalent:

(i) There exist functions h(x) and g(t ; θ ) such that

f (x ; θ ) = h(x)g(t(x); θ ). (6.1)



6.1 Definitions and elementary properties 91

(ii) For any pair x, x ′ such that t(x) = t(x ′),

�x (θ1, θ2) = �x ′ (θ1, θ2) for all θ1, θ2. (6.2)

Proof That (i) implies (ii) is obvious.
Conversely, suppose (ii) holds. Fix some reference value θ0. For any θ ,

f (x ; θ )

f (x ; θ0)
= �x (θ, θ0) = g∗(t(x), θ, θ0) say.

Then

f (x ; θ ) = f (x ; θ0)g∗(t(x), θ, θ0).

Then write h(x) = f (x ; θ0) and g(t ; θ ) = g∗(t, θ, θ0) to get (i). �

6.1.2 Sufficiency

The statistic T = T (X ) is sufficient for θ if the distribution of X , conditional on T (X ) = t ,
is independent of θ .

Note that T (X ) and θ may both be vectors, not necessarily of the same dimension.
Two criteria for sufficiency are:

(a) Factorisation Theorem T (X ) is sufficient for θ if and only if (6.1) holds.
(b) Likelihood Ratio Criterion T (X ) is sufficient for θ if and only if (6.2) holds.

Criterion (a) is straightforward to prove, at least in the discrete case. (In the continuous
case, measure-theoretic conditions are required to define the conditional distribution of X
given T (X ) = t). If T (X ) is a sufficient statistic, the conditional distribution of X given T
is free of θ :

fX |T (x |t) ≡ fX,T (x, t ; θ )/ fT (t ; θ ) (6.3)

is free of θ . But T is a function t(X ) of X , so the joint density of X and T in the numerator
of (6.3) is zero except where T = t(X ), so the numerator is just fX (x ; θ ). A factorisation of
the form (6.1) then holds with g the density of T and h the conditional density of X given
T . Conversely, if (6.1) holds, we can find the density of T at t by integrating (6.1) over
x for which t(x) = t . In the discrete case, this involves summing over those x for which
t(x) = t . This gives the density of T of the form fT (t ; θ ) = g(t ; θ )

∑
h(x), and therefore

the conditional density of X given T is of the form

fX (x ; θ )

fT (t ; θ )
= g(t(x); θ )h(x)

g(t ; θ )
∑

h(x)
= h(x)∑

h(x)
,

free of θ , so that T is sufficient.
Criterion (b) follows at once from Lemma 6.1.

6.1.3 Minimal sufficiency

As defined so far, sufficiency is too broad a concept, because a sufficient statistic may still
contain superfluous information.
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For example, if T is sufficient, so is (T, T ∗), where T ∗ is any other function of X .
As another example, suppose X is a single observation from N (0, θ ). Here X is sufficient,

but so is |X | – the sign of X is irrelevant to any inference about θ . This shows that it is not
merely a matter of finding the sufficient statistic of the smallest dimension – here X and
|X | are both of dimension 1, but |X | summarises the information more efficiently than X .

A sufficient statistic T is minimal sufficient if it is a function of every other sufficient
statistic.

The immediate obvious questions are: does a minimal sufficient statistic exist, and is it
unique?

In a strict sense the answer to the uniqueness question is no, because, if T is minimal
sufficient, so is 2T or 42 − T or any other injective (one-to-one) function of T . However, if
we allow that two statistics are equivalent if they are injective functions of each other, then
the minimal sufficient statistic is unique.

Lemma 6.2 If T and S are minimal sufficient statistics, then there exist injective functions
g1 and g2 such that T = g1(S) and S = g2(T ).

Proof The definition of minimal sufficiency implies that there must exist some functions
g1 and g2 such that T = g1(S), S = g2(T ). The task is to prove that g1 and g2 are injective
on the ranges of S and T respectively.

Suppose x and x ′ are such that g1(S(x)) = g1(S(x ′)). Then T (x) = T (x ′) so S(x) =
g2(T (x)) = g2(T (x ′)) = S(x ′). This proves that g1 is injective, and the same argument
works for g2. This completes the proof. �

Now we give a condition for determining whether a sufficient statistic T is minimal suffi-
cient.

Theorem 6.1 A necessary and sufficient condition for a statistic T (X ) to be minimal suf-
ficient is that

T (x) = T (x ′) if and only if �x (θ1, θ2) = �x ′ (θ1, θ2) for all θ1, θ2. (6.4)

Proof

(i) Suppose T satisfies (6.4) and S is sufficient. If T is not a function of S, then there
must exist two values x, x ′ for which S(x) = S(x ′) but T (x) �= T (x ′). By (6.2) ap-
plied to S, �x (θ1, θ2) = �x ′ (θ1, θ2) for all θ1 and θ2. But (6.4) then implies that
T (x) = T (x ′), a contradiction. Therefore T is a function of S. But S was any suf-
ficient statistic, that is T is a function of every sufficient statistic, so T is minimal
sufficient.

(ii) Suppose T is minimal sufficient. We must show (6.4).
Suppose first that x, x ′ are such that T (x) = T (x ′). Then �x (θ1, θ2) = �x ′ (θ1, θ2) by
(6.2) and the fact that T is sufficient. This proves one direction of the implication
in (6.4).

Conversely suppose x ′ and x ′′ are such that �x ′ (θ1, θ2) = �x ′′ (θ1, θ2) for all θ1 and
θ2, but T (x ′) �= T (x ′′). Define a new statistic S by S(x) = T (x) except for those x
where T (x) = T (x ′′), where we set S(x) = T (x ′). To see that S is sufficient, by (6.2),
we must show that, whenever x and x∗ are such that S(x) = S(x∗), then �x = �x∗ .
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There is no problem if T (x) = T (x∗), so we need only consider the case when S(x) =
S(x∗) but T (x) �= T (x∗). However this can only happen if one of T (x) or T (x∗) is
equal to T (x ′) and the other to T (x ′′). Suppose T (x) = T (x ′) and T (x∗) = T (x ′′).
In that case �x = �x ′ (sufficiency of T ), �x∗ = �x ′′ (sufficiency of T ), �x ′ = �x ′′

(by assumption). But then �x = �x∗ , as required. Therefore S is sufficient. But S
is a function of T , and T is minimal sufficient, therefore S must also be minimal
sufficient and the relationship that takes T into S is injective. But, if the map is injective,
then S(x ′) = S(x ′′) implies T (x ′) = T (x ′′). This contradiction establishes the reverse
implication in (6.4), and completes the proof of the theorem. �

Remark The representation (6.4) also establishes the following equivalence relation: x ≡
x ′ if and only if x and x ′ define the same likelihood ratio. This partitions the sample space X
into equivalence classes, and T (x) may be any function which assigns a unique value to each
equivalence class. In particular, this shows the existence of a minimal sufficient statistic. A
completely rigorous proof of this statement requires some measure-theoretic technicalities,
but these were established in a classical paper by Lehmann and Scheffé (1950) for the case
of probability densities defined with respect to a single dominating measure on a finite-
dimensional Euclidean space. Without such conditions, there are counterexamples to the
existence of minimal sufficient statistics.

6.1.4 Examples

Example 6.1 Consider X1, . . . , Xn independent, identically distributed from N (µ, σ 2).
Then

f (x ; µ, σ 2) = (2πσ 2)−n/2 exp

{
−

∑
x2

i

2σ 2
+ µ

∑
xi

σ 2
− nµ2

2σ 2

}
.

Thus

f (x ; µ1, σ
2
1 )

f (x ; µ2, σ
2
2 )

= b(µ1, σ
2
1 , µ2, σ

2
2 ) exp

{∑
x2

i

(
1

2σ 2
2

− 1

2σ 2
1

)
+

∑
xi

(
µ1

σ 2
1

− µ2

σ 2
2

)}
.

(6.5)
We show that the minimal sufficient statistic is T (x) = (

∑
xi ,

∑
x2

i ), or equivalently
(x̄,

∑
(xi − x̄)2), using the necessary and sufficient condition (6.4).

Suppose first that x = (x1, . . . , xn) and x ′ = (x ′
1, . . . , x ′

n) are two samples for which
T (x) = T (x ′). Then, writing θ1 = (µ1, σ

2
1 ), θ2 = (µ2, σ

2
2 ), we have, immediately from

(6.5), that �x (θ1, θ2) = �x ′ (θ1, θ2) for all θ1, θ2.
Verification of (6.4) is completed by confirming the reverse implication, which we do

by showing that T (x) �= T (x ′) implies that there are some θ1, θ2 for which �x (θ1, θ2) �=
�x ′ (θ1, θ2).

Suppose that (
∑

xi ,
∑

x2
i ) �= (

∑
x ′

i ,
∑

(x ′
i )

2). Then again, we can certainly find a pair
(α, β) for which

α
∑

xi + β
∑

x2
i �= α

∑
x ′

i + β
∑

(x ′
i )

2.
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Choose θ1 = (µ1, σ
2
1 ) and θ2 = (µ2, σ

2
2 ) such that(
µ1

σ 2
1

− µ2

σ 2
2

)
= α,(

1

2σ 2
2

− 1

2σ 2
1

)
= β.

Then, by (6.5), �x (θ1, θ2) �= �x ′ (θ1, θ2) for this (θ1, θ2). We have now verifed both impli-
cations in (6.4), and therefore that T (x) is minimal sufficient.

If σ 2 is known, then x̄ is minimal sufficient for µ.
If µ is known, then

∑
(xi − µ)2 is minimal sufficient for σ 2. In particular, in our earlier

example with n = 1, µ = 0, we have that X2
1 is minimal sufficient, which is equivalent to

|X1|, that is this cannot be reduced any further.

Example 6.2 The reasoning in Example 6.1 is not specific to the normal distribution but ap-
plies whenever we have a full exponential family. Specifically, if we have an exponential fam-
ily in its natural parametrisation with natural statistics (T1, . . . , Tk) = (t1(X ), . . . , tk(X )),

f (x ; θ ) = c(θ )h(x) exp

{
k∑

i=1

θi ti (x)

}
,

then (T1, . . . , Tk) is sufficient for θ by the factorisation theorem. If, in addition, � contains
an open rectangle in R

k , then T is minimal sufficient – this follows by the same argument
as just given for the normal distribution.

A further property is that, if S ⊆ {1, . . . , k} and {θi , i ∈ S} are known, then {Ti , i /∈ S}
are sufficient for {θi , i /∈ S}. We proved in Lemma 5.2 of Chapter 5 that the conditional
distribution of {Ti , i ∈ S} given {Ti , i /∈ S} does not depend on {θi , i /∈ S}. A simple
adaptation of the proof shows that the conditional distribution of X given {Ti , i /∈ S} does
not depend on {θi , i /∈ S}.

6.2 Completeness

A sufficient statistic T (X ) is complete if for any real function g,

Eθ {g(T )} = 0 for all θ

implies

Prθ {g(T ) = 0} = 1 for all θ.

This definition has a number of consequences. For instance, if there exists an unbiased
estimator of a scalar parameter θ , which is a function of a complete sufficient statistic T ,
then it is the unique such estimator (except possibly on a set of measure 0). This follows be-
cause, if, for instance, g1(T ) and g2(T ) are two such estimators, then Eθ {g1(T ) − g2(T )} =
θ − θ = 0, so g1(T ) = g2(T ) with probability 1.

Lemma 6.3 If T = (T1, . . . , Tk) is the natural statistic for a full exponential family
in its natural parametrisation, and if � contains an open rectangle in R

k , then T is
complete.
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Proof This follows from the first of the technical results given in Section 5.1.4. �

Example 6.3 Suppose the density of the statistic T satisfies

f (t ; θ ) =
{

h(t)c(θ ) if 0 ≤ t ≤ θ ,
0 if t > θ,

(6.6)

with h(t) �= 0. For example, the uniform density is of this form. If X1, . . . , Xn are indepen-
dent, identically distributed from the uniform density on (0, θ ), then T = max{X1, . . . , Xn}
is sufficient for θ (proof of this: use the factorisation theorem) and has density ntn−1θ−n, 0 <

t < θ .
If (6.6) holds and g is any function of T , we have

Eθ {g(T )} = c(θ )
∫ θ

0
h(t)g(t)dt.

If this is ≡ 0, then
∫ θ

0 h(t)g(t)dt = 0 for all θ . Differentiating with respect to θ , h(θ )g(θ ) =
0. But we assumed h was not 0, therefore g must be with probability 1.

This is an example of a non-exponential family for which a complete sufficient statistic
exists. It shows, for instance, that (n + 1)T/n, which we can easily check to be an unbiased
estimator of θ , is the unique unbiased estimator which is a function of T . Without com-
pleteness, we might speculate whether there was some complicated nonlinear function of
T which gave a better unbiased estimator, but completeness shows that this is impossible.

6.3 The Lehmann–Scheffé Theorem

Theorem 6.2 Suppose X has density f (x ; θ ) and T (X ) is sufficient and complete for θ .
Then T is minimal sufficient.

Proof We know from the Remark following Theorem 6.1 that there exists a minimal
sufficient statistic. By Lemma 6.2 this is unique up to one-to-one transformations, so call
this S. Then S = g1(T ) for some function g1.

Define g2(S) = E{T |S}. This does not depend on θ , because S is sufficient. Now consider

g(T ) = T − g2(S) = T − g2(g1(T )).

By the iterated expectation formula,

Eθ {g(T )} = Eθ {T } − Eθ {E(T |S)} = Eθ {T } − Eθ {T } = 0.

So, by completeness of T , g2(S) = T with probability 1. But then S is a function of T , and
T is a function of S – by the argument of Lemma 6.2 both functions must be injective, and
so T and S are equivalent. In other words, T is also minimal sufficient. �

6.4 Estimation with convex loss functions

Jensen’s inequality is a well-known result that is proved in elementary analysis texts.
It states that, if g : R → R is a convex function (so that g(λx1 + (1 − λ)x2) ≤ λg(x1) +
(1 − λ)g(x2) for all x1, x2 and 0 < λ < 1) and X is a real-valued random variable, then
E{g(X )} ≥ g{E(X )}.
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Theorem 6.3 Suppose we want to estimate a real-valued parameter θ with an estimator
d(X ) say. Suppose the loss function L(θ, d) is a convex function of d for each θ . Let d1(X )
be an unbiased estimator for θ and suppose T is a sufficient statistic. Then the estimator

χ (T ) = E{d1(X )|T }
is also unbiased and is at least as good as d1.

Note that the definition of χ (T ) does not depend on θ , because T is sufficient.

Proof That χ (T ) is unbiased follows from the iterated expectation formula,

Eθχ (T ) = Eθ {E(d1(X )|T )} = Eθd1(X ) = θ.

For the risk function, we have

R(θ, d1) = Eθ {L(θ, d1(X ))}
= Eθ [E{L(θ, d1(X ))|T }]
≥ Eθ {L(θ, χ(T ))} (Jensen)

= R(θ, χ).

This is true for all θ , hence χ is as good as d1, as claimed. This completes the proof of the
theorem. �

Remark 1 The inequality above will be strict unless L is a linear function of d, or the
conditional distribution of d1(X ) given T is degenerate. In all other cases, χ (T ) strictly
dominates d1(X ).

Remark 2 If T is also complete, then χ (T ) is the unique unbiased estimator minimising
the risk.

Remark 3 If L(θ, d) = (θ − d)2, then this is the Rao–Blackwell Theorem. In this case
the risk of an unbiased estimator is just its variance, so the theorem asserts that there is a
unique minimum variance unbiased estimator which is a function of the complete sufficient
statistic. However, it is still possible that there are biased estimators which achieve a smaller
mean squared error: the example of a minimax estimator of the parameter of a binomial
distribution given in Chapter 3 is one such, and Stein’s paradox example is another.

6.5 Problems

6.1 Let X1, . . . , Xn be independent, identically distributed N (µ, µ2) random variables.
Find a minimal sufficient statistic for µ and show that it is not complete.

6.2 Find a minimal sufficient statistic for θ based on an independent sample of size n from
each of the following distributions:

(i) the gamma distribution with density

f (x ; α, β) = βαxα−1e−βx


(α)
, x > 0,

with θ = (α, β);
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(ii) the uniform distribution on (θ − 1, θ + 1);
(iii) the Cauchy distribution with density

f (x ; a, b) = b

π{(x − a)2 + b2} , x ∈ R,

with θ = (a, b).

6.3 Independent factory-produced items are packed in boxes each containing k items. The
probability that an item is in working order is θ, 0 < θ < 1. A sample of n boxes are
chosen for testing, and Xi , the number of working items in the i th box, is noted. Thus
X1, . . . , Xn are a sample from a binomial distribution, Bin(k, θ ), with index k and
parameter θ . It is required to estimate the probability, θ k , that all items in a box are in
working order. Find the minimum variance unbiased estimator, justifying your answer.

6.4 A married man who frequently talks on his mobile is well known to have conversa-
tions the lengths of which are independent, identically distributed random variables,
distributed as exponential with mean 1/λ. His wife has long been irritated by his be-
haviour and knows, from infinitely many observations, the exact value of λ. In an
argument with her husband, the woman produces t1, . . . , tn , the times of n telephone
conversations, to prove how excessive her husband is. He suspects that she has ran-
domly chosen the observations, conditional on their all being longer than the expected
length of conversation. Assuming he is right in his suspicion, the husband wants to use
the data he has been given to infer the value of λ. What is the minimal sufficient statistic
he should use? Is it complete? Find the maximum likelihood estimator for λ.
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Two-sided tests and conditional inference

This chapter is concerned with two separate but interrelated themes. The first has to do with
extending the discussion of Chapter 4 to more complicated hypothesis testing problems,
and the second is concerned with conditional inference.

We will consider first testing two-sided hypotheses of the form H0 : θ ∈ [θ1, θ2] (with
θ1 < θ2) or H0 : θ = θ0 where, in each case, the alternative H1 includes all θ not part of H0.
For such problems we cannot expect to find a uniformly most powerful test in the sense of
Chapter 4. However, by introducing an additional concept of unbiasedness (Section 7.1), we
are able to define a family of uniformly most powerful unbiased, or UMPU, tests. In general,
characterising UMPU tests for two-sided problems is a much harder task than characterising
UMP tests for one-sided hypotheses, but for one specific but important example, that of a
one-parameter exponential family, we are able to find UMPU tests. The details of this are
the subject of Section 7.1.2.

The extension to multiparameter exponential families involves the notion of conditional
tests, discussed in Section 7.2. In some situations, a statistical problem may be greatly
simplified by working not with the unconditional distribution of a test statistic, but the con-
ditional distribution given some other statistic. We discuss two situations where conditional
tests naturally arise, one when there are ancillary statistics, and the other where conditional
procedures are used to construct similar tests. The basic idea behind an ancillary statis-
tic is that of a quantity with distribution not depending on the parameter of interest. The
Fisherian paradigm then argues that relevance to the data at hand demands conditioning
on the observed value of this statistic. The notion behind similarity is that of eliminat-
ing dependence on nuisance parameters. Having introduced the general concepts, we then
specialise to the case of a multiparameter exponential family in which one particular pa-
rameter is of interest, while the remaining k − 1 are regarded as nuisance parameters. This
method is also relevant in testing hypotheses about some linear combination of the natural
parameters of an exponential family. In Section 7.3 we discuss confidence sets. A particular
focus of the discussion is the notion of a duality between hypothesis tests and confidence
sets. Based on data x , we may construct a confidence set of coverage level 1 − α for a
parameter θ of interest as the set of values θ0 which would be accepted in an appropriate
hypothesis test of H0 : θ = θ0 against H1 : θ �= θ0 based on x . Good confidence sets may
then be related directly to optimal hypothesis tests, as considered in the current chapter and
Chapter 4.
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7.1 Two-sided hypotheses and two-sided tests

We consider a general situation with a one-dimensional parameter θ ∈ � ⊆ R. We are
particularly interested in the case when the null hypothesis is H0 : θ ∈ �0, where �0

is either the interval [θ1, θ2] for some θ1 < θ2, or else the single point �0 = {θ0}, and
�1 = R \ �0.

In this situation, we cannot in general expect to find a UMP test, even for nice fami-
lies, such as the monotone likelihood ratio (Section 4.3.1) or exponential family models
(Section 5.1), etc. The reason is obvious: if we construct a Neyman–Pearson test of say
θ = θ0 against θ = θ1 for some θ1 �= θ0, the test takes quite a different form when θ1 > θ0

from when θ1 < θ0. We simply cannot expect one test to be most powerful in both cases
simultaneously.

However, if we have an exponential family with natural statistic T = t(X ), or a family
with MLR with respect to t(X ), we might still expect tests of the form

φ(x) =



1 if t(x) > t2 or t(x) < t1,
γ (x) if t(x) = t2 or t(x) = t1,
0 if t1 < t(x) < t2,

where t1 < t2 and 0 ≤ γ (x) ≤ 1, to have good properties. Such tests are called two-sided
tests and much of our purpose here is to investigate when two-sided tests are optimal in
some sense.

7.1.1 Unbiased tests

Definition A test φ of H0 : θ ∈ �0 against H1 : θ ∈ �1 is called unbiased of size α if

sup
θ∈�0

Eθ {φ(X )} ≤ α

and

Eθ {φ(X )} ≥ α for all θ ∈ �1.

An unbiased test captures the natural idea that the probability of rejecting H0 should be
higher when H0 is false than when it is true.

Definition A test which is uniformly most powerful amongst the class of all unbiased tests
is called uniformly most powerful unbiased, abbreviated UMPU.

The idea is illustrated by Figure 7.1, for the case H0 : θ = θ0 against H1 : θ �= θ0. (In the
figure, θ0 = 0.) The optimal UMP tests for the alternatives H1 : θ > θ0 and H1 : θ < θ0

each fails miserably to be unbiased, but there is a two-sided test whose power function is
given by the dotted curve, and we may hope that such a test will be UMPU.

The requirement that a test be unbiased is one way of resolving the obvious conflict
between the two sides of a two-sided alternative hypothesis. We shall use it in the remainder
of this chapter as a criterion by which to assess two-sided tests. Nevertheless the objections
to unbiasedness that we have noted in earlier chapters are still present – unbiasedness is not
by itself an optimality criterion and, for any particular decision problem, there is no reason
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why the optimal decision procedure should turn out to be unbiased. The principal role of
unbiasedness is to restrict the class of possible decision procedures and hence to make the
problem of determining an optimal procedure more manageable than would otherwise be
the case.

7.1.2 UMPU tests for one-parameter exponential families

We shall not attempt to give general conditions for a two-sided test to be UMPU. However,
in one particularly important special case, that of a one-parameter exponential family, we
can do this, and the details of that are given here.

Consider an exponential family for a random variable X , which may as in previous
examples be a vector of independent, identically distributed observations, with real-valued
parameter θ ∈ R and density of form

f (x ; θ ) = c(θ )h(x)eθ t(x),

where T = t(X ) is a real-valued natural statistic.
As we saw in Lemma 5.1 of Chapter 5, this implies that T also has an exponential family

distribution, with density of form

fT (t ; θ ) = c(θ )hT (t)eθ t .

We shall assume that T is a continuous random variable with hT (t) > 0 on the open set
which defines the range of T . By restricting ourselves to families of this form we avoid
the need for randomised tests and make it easy to prove the existence and uniqueness of
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two-sided tests, though in a more general version of the theory such assumptions are not
required: see, for example Ferguson (1967).

We consider initially the case

�0 = [θ1, θ2], �1 = (−∞, θ1) ∪ (θ2, ∞),

where θ1 < θ2.

Theorem 7.1 Let φ be any test function. Then there exists a unique two-sided test φ′ which
is a function of T such that

Eθ j φ
′(X ) = Eθ j φ(X ), j = 1, 2.

Moreover,

Eθφ
′(X ) − Eθφ(X )

{≤ 0 for θ1 < θ < θ2,
≥ 0 for θ < θ1 or θ > θ2.

(7.1)

Corollary For any α > 0, there exists a UMPU test of size α, which is of two-sided form
in T .

Proof of Corollary (assuming Theorem 7.1) Consider the trivial test φ(x) = α for all x . This
has power α for all θ , so, by Theorem 7.1, there exists a unique two-sided test φ′ for which

Eθ {φ′(X )}



= α if θ = θ1 or θ = θ2,
≤ α if θ1 < θ < θ2,
≥ α if θ < θ1 or θ > θ2.

Now suppose φ is any unbiased test of size α. By the second result of Section 5.1.4, the power
function of φ is a continuous function of θ , so we must have Eθ {φ(X )} = α when θ = θ1

or θ2. By Theorem 7.1, (7.1) holds for this φ and our two-sided test φ′. This establishes that
φ′ is UMP within the class of unbiased tests, which is what is required. �

We now turn to the proof of Theorem 7.1 itself. First we note two preliminary results.

Lemma 7.1 (the generalised Neyman–Pearson Theorem) Consider the test

φ′(x) =



1 if f0(x) > k1 f1(x) + · · · + km fm(x),
γ (x) if f0(x) = k1 f1(x) + · · · + km fm(x),
0 if f0(x) < k1 f1(x) + · · · + km fm(x),

where f0, . . . , fm are m + 1 possible densities for the random variable X, k1, . . . , km are
arbitrary constants (positive or negative) and 0 ≤ γ (x) ≤ 1.

Then φ′ maximises
∫

φ(x) f0(x)dx among all tests φ for which
∫

φ(x) f j (x)dx = α j for
j = 1, . . . , m, where α1, . . . , αm are prescribed constants.

The proof is omitted, being an elementary extension of the ordinary Neyman–Pearson
Theorem from Chapter 4.

Lemma 7.2 Let θa < θb < θc and consider the set

S(K1, K2) = {x ∈ R : K1eθa x + K2eθc x > eθb x }.
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Then:

(i) For any K1 > 0, K2 > 0, the set S(K1, K2) is either the whole of R or else a union of
two intervals of the form (−∞, x1) ∪ (x2, ∞) for some x1, x2 such that −∞ < x1 <

x2 < ∞.
(ii) Given x1, x2, there exists K1 > 0, K2 > 0 such that S(K1, K2) = (−∞, x1) ∪ (x2, ∞).

Proof

(i) Let g(x) = K1 exp{(θa − θb)x} + K2 exp{(θc − θb)x} − 1. Then g is a convex function,
and g → +∞ as x → ±∞. Thus g has no zeros or two (see Figure 7.2). Of course, in
the latter case the two zeros may coincide (so that there is a multiple root of g(x) = 0),
but then the set {x : g(x) ≥ 0} is the whole of R.

Thus the set {x : g(x) > 0} consists either of the whole of R or of two semi-infinite
intervals, as claimed.

(ii) Fix x1, x2 and suppose −∞ < x1 < x2 < ∞. To make S(K1, K2) have the required
form, we need to solve the equations

K1eθa x j + K2eθc x j = eθb x j , j = 1, 2.

This is a pair of simultaneous linear equations for K1, K2, which we may solve directly
to obtain

K1 = exp(θbx1 + θcx1)

exp(θa x1 + θcx1)
· exp{θc(x2 − x1)} − exp{θb(x2 − x1)}

exp{θc(x2 − x1)} − exp{θa(x2 − x1)} > 0,

and similarly for K2. This completes the proof. �

Remark The cases x1 = −∞ or x2 = ∞ are also covered by the result if we allow K1 or
K2 to be 0; x1 = −∞ corresponds to K1 = 0 and x2 = ∞ corresponds to K2 = 0.

Proof of Theorem 7.1∗ First we prove the existence of a two-sided test φ′, depending on the
natural statistic T = t(X ), for which Eθ {φ′(X )} = Eθ {φ(X )} when θ = θ1 or θ2. We also
write α j for Eθ j {φ(X )}, j = 1, 2.



7.1 Two-sided hypotheses and two-sided tests 103

Let φw denote a one-sided test of the form

φw (x) =
{

1 if t(x) ≤ tw ,
0 if t(x) > tw ,

where tw is chosen so that Eθ1{φw (X )} = w . Because we have assumed that T has a positive
density, it is easy to check that tw is uniquely determined by w and that the map w → tw is
continuous.

Next consider the two-sided test

φ′
w (x) = φw (x) + 1 − φ1−α1+w (x),

where 0 ≤ w ≤ α1. We see at once that

Eθ1{φ′
w (X )} = α1.

Consider w = 0. Then φ′
w is a Neyman–Pearson test for H0 : θ = θ1 against H1 : θ = θ2,

and so maximises the power at θ2 among all tests of fixed size. Therefore,

Eθ2{φ′
0(X )} ≥ α2.

Now consider w = α1. In this case 1 − φ′
w is a Neyman–Pearson test for θ1 against θ2, so

φ′
w itself minimises the power at θ2 for fixed size at θ1. Thus

Eθ2{φ′
α1

(X )} ≤ α2.

But Eθ2{φ′
w (X )} is a continuous and strictly decreasing function of w , so there must be a

unique w for which Eθ2{φ′
w (X )} = α2. This proves the existence of a (unique) two-sided

test, which achieves the desired power at θ1 and θ2. Henceforth we drop the suffix w and
denote the test as φ′.

We must now show (7.1). Suppose first θ < θ1. Applying Lemma 7.2 with (θa, θb, θc) =
(θ, θ1, θ2), we find that there exist K1 > 0, K2 > 0 such that φ′(t) = 1 corresponds to

K1eθ t + K2eθ2t > eθ1t .

Rewrite this inequality in the form

c(θ )h(x)eθ t(x) > k1c(θ1)h(x)eθ1t(x) + k2c(θ2)h(x)eθ2t(x),

where

k1 = c(θ )

K1c(θ1)
, k2 = − K2c(θ )

K1c(θ2)
.

Thus our test φ′ rejects H0 whenever

f (X ; θ ) > k1 f (X ; θ1) + k2 f (X ; θ2).

However, we have seen from Lemma 7.1 that such a test maximises the power at θ among
all tests of fixed size at θ1 and θ2, in other words,

Eθ {φ′(X )} ≥ Eθ {φ(X )}.
A mirror-image argument applies when θ > θ2.
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For θ1 < θ < θ2, Lemma 7.2 applied with (θa, θb, θc) = (θ1, θ, θ2) shows that the test φ′

is equivalent to rejecting H0 when

f (X ; θ ) < k1 f (X ; θ1) + k2 f (X ; θ2)

for suitable k1 and k2, that is with Lemma 7.1 applied to 1 − φ′, we see that φ′ minimises
the probability of rejecting H0 at this θ , or in other words

Eθ {φ′(X )} ≤ Eθ {φ(X )}.
We have now proved (7.1), and hence the whole of Theorem 7.1. �

7.1.3 Testing a point null hypothesis

Now consider the case H0 : θ = θ0 against H1 : θ �= θ0 for a given value of θ0. By analogy
with the case just discussed, letting θ2 − θ1 → 0, there exists a two-sided test φ′ for which

Eθ0{φ′(X )} = α,
d

dθ
Eθ {φ′(X )}

∣∣∣∣
θ=θ0

= 0. (7.2)

Such a test is in fact UMPU, but we shall not prove this directly.

Example 7.1 Suppose X1, . . . , Xn are independent, identically distributed N (θ, 1). Then
the minimal sufficient statistic T = X̄ has the N (θ, 1/n) distribution. Consider the test

φ(x) =
{

1 if x̄ < t1 or x̄ > t2,
0 if t1 ≤ x̄ ≤ t2.

Then w(θ ) = Eθ {φ(X )} is given by

w(θ ) = �(
√

n(t1 − θ )) + 1 − �(
√

n(t2 − θ )),

where � is the standard normal distribution function.
Suppose first �0 = [θ1, θ2] for some θ1 < θ2. We must solve

�(
√

n(t1 − θ j )) + 1 − �(
√

n(t2 − θ j )) = α, j = 1, 2. (7.3)

Suppose θ̄ = (θ1 + θ2)/2, d = (θ2 − θ1)/2 and consider t1, t2 of the form t1 = θ̄ − c, t2 =
θ̄ + c. It can quickly be checked that (7.3) is satisfied provided

�(
√

n(d − c)) + 1 − �(
√

n(d + c)) = α. (7.4)

However, with c = 0 the left-hand side of (7.4) is 1, and as c → ∞ the left-hand side of
(7.4) tends to 0. It is a continuous (indeed, strictly decreasing) function of c, so there exists
a unique value of c for which (7.4) is satisfied, given any α ∈ (0, 1). The precise value of c
must be determined numerically.

Now suppose �0 = {θ0} for some given value of θ0. In this case, from (7.2) we must
satisfy

�(
√

n(t1 − θ0)) + 1 − �(
√

n(t2 − θ0)) = α, (7.5)

−√
n�′(

√
n(t1 − θ0)) + √

n�′(
√

n(t2 − θ0)) = 0. (7.6)
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The obvious try is t1 = θ0 − zα/2/
√

n, t2 = θ0 + zα/2/
√

n, where, as before, zα/2 is the
upper-α/2 point of the standard normal distribution, �(zα/2) = 1 − α/2. We leave it to the
reader to verify that this choice of t1 and t2 does indeed satisfy (7.5) and (7.6), so that this
is the UMPU test in this instance.

7.1.4 Some general remarks

The key to showing that two-sided tests are UMPU lies within Lemmas 7.1 and 7.2:
Lemma 7.2 shows that two-sided tests satisfy the generalised Neyman–Pearson criterion,
and Lemma 7.1 is then used to show that such a test is optimal in the sense of maximising
the probability of rejecting H0 for any θ /∈ �0, and minimising it for θ ∈ �0. Clearly one
might hope to use the same reasoning in other situations where one would like to show that
a two-sided test is UMPU. Just as MLR families form a natural class of distributions for
which one-sided tests are UMP, so there is a general class of distributions, the so-called
Pólya type 3 distributions, for which two-sided tests are UMPU. We shall not attempt to
provide any details of this, merely noting that the methodology of Lemma 7.2 is in principle
applicable to other families besides the one-parameter exponential family considered here.

7.2 Conditional inference, ancillarity and similar tests

Consider the following hypothetical situation. An experiment is conducted to measure the
carbon monoxide level in the exhaust of a car. A sample of exhaust gas is collected, and is
taken along to the laboratory for analysis. Inside the laboratory are two machines, one of
which is expensive and very accurate, the other an older model which is much less accurate.
We will use the accurate machine if we can, but this may be out of service or already in use
for another analysis. We do not have time to wait for this machine to become available, so
if we cannot use the more accurate machine we use the other one instead (which is always
available). Before arriving at the laboratory we have no idea whether the accurate machine
will be available, but we do know that the probability that it is available is 1

2 (independently
from one visit to the next).

This situation may be formalised as follows: we observe (δ, X ), where δ (=1 or 2)
represents the machine used and X the subsequent observation. The distributions are Pr{δ =
1} = Pr{δ = 2} = 1

2 and, given δ, X ∼ N (θ, σ 2
δ ), where θ is unknown and σ1, σ2 are known,

with σ1 < σ2. We want to test H0 : θ ≤ θ0 against H1 : θ > θ0. Consider the following tests:

Procedure 1 Reject H0 if X > c, where c is chosen so that the test has prescribed size α,

Pr(X > c) = Pr(X > c | δ = 1)Pr(δ = 1) + Pr(X > c | δ = 2)Pr(δ = 2) = α,

which requires

1

2

{
1 − �

(
c − θ0

σ1

)}
+ 1

2

{
1 − �

(
c − θ0

σ2

)}
= α.

Procedure 2 Reject H0 if X > zασδ + θ0.

Thus Procedure 1 sets a single critical level c, regardless of which machine is used, while
Procedure 2 determines its critical level solely on the standard deviation for the machine
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Figure 7.3 Power functions of tests for normal mixture problem

that was actually used, without taking the other machine into account at all. Procedure 2
is called a conditional test because it conditions on the observed value of δ. Note that the
distribution of δ itself does not depend in any way on the unknown parameter θ , so we are
not losing any information by doing this.

Intuitively, one might expect Procedure 2 to be more reasonable, because it makes sense
to use all the information available and one part of that information is which machine was
used. However, if we compare the two in terms of power, our main criterion for comparing
tests up until now, it is not so clear-cut. Figure 7.3 shows the power curves of the two tests in
the case σ1 = 1, σ2 = 3, α = 0.05, for which zα = 1.6449 and it is determined numerically
that c = 3.8457 + θ0. When the difference in means, θ1 − θ0, is small, Procedure 2 is much
more powerful, but for larger values when θ1 > θ0 + 4.9, Procedure 1 is better.

At first sight this might seem counterintuitive, but a closer look shows what is going
on. Let us compute α j = Prθ0{X > c|δ = j} – we find α1 = 0.00006, α2 = 0.09994 (so
that the overall size is (α1 + α2)/2 = 0.05). For large θ1 − θ0, this extra power when δ = 2
is decisive in allowing Procedure 1 to perform better than Procedure 2. But is this really
sensible? Consider the following scenario.

Smith and Jones are two statisticians. Smith works for the environmental health depart-
ment of Cambridge City Council and Jones is retained as a consultant by a large haulage
firm, which operates in the Cambridge area. Smith carries out a test of the exhaust fumes
emitted by one of the lorries belonging to the haulage firm. On this particular day he has
to use machine 2 and the observation is X = θ0 + 4.0, where θ0 is the permitted standard.
It has been agreed in advance that all statistical tests will be carried out at the 5% level and
therefore, following Procedure 1 above, he reports that the company is in violation of the
standard.
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The company is naturally not satisfied with this conclusion and therefore sends the results
to Jones for comment. The information available to Jones is that a test was conducted on a
machine for which the standard deviation of all measurements is 3 units, that the observed
measurement exceeded the standard by 4 units, and that therefore the null hypothesis (that
the lorry is meeting the standard) is rejected at the 5% level. Jones calculates that the critical
level should be θ0 + 3z.05 = θ0 + 3 × 1.645 = θ0 + 4.935 and therefore queries why the
null hypothesis was rejected.

The query is referred back to Smith who now describes the details of the test, including
the existence of the other machine and Smith’s preference for Procedure 1 over Procedure 2
on the grounds that Procedure 1 is of higher power when |θ1 − θ0| is large. This however is
all news to Jones, who was not previously aware that the other machine even existed.

The question facing Jones now is: should she revise her opinion on the basis of the
new information provided by Smith? She does not see why she should. There is no new
information about either the sample that was collected or the way that it was analysed. All
that is new is that there was another machine which might have been used for the test, but
which in the event was unavailable. Jones cannot see why this is relevant. Indeed, given
the knowledge that there are two machines and that the probability of a false positive test
(when the company is complying with the standard) is much higher using machine 2 than
machine 1, she might be inclined to query the circumstances under which machine 2 was
chosen to test her company’s sample. She therefore advises the company to challenge the
test in court.

The conclusion we can draw from this discussion is that, while maximising power is a
well-established principle for choosing among statistical tests, there are occasions when it
can lead to conclusions that appear to contradict common sense. We now develop some
general principles underlying this discussion.

Suppose the minimal sufficient statistic T can be partitioned as T = (S, C), where the
distribution of C does not depend on the unknown parameter θ . Then C is called an ancillary
statistic, and S is sometimes called conditionally sufficient (given C). In the above example,
S = X and C = δ.

We have argued that inference about θ should be based on the conditional distribution
of S given C , and this is an instance of a general principle known as the conditionality
principle.

A more general definition of ancillarity arises in the case of nuisance parameters. We
consider situations in which θ = (ψ, λ), where ψ is a parameter (scalar or vector) of interest
to us, and λ is a nuisance parameter. For example, if we have a random sample from
N (µ, σ 2), with µ and σ both unknown, and we want to test some hypothesis about µ, then
we would identify µ with ψ and σ with λ. We assume that the parameter space � consists
of all possible combinations of (ψ, λ) in their respective spaces, so that � = � × �, where
ψ ∈ � and λ ∈ �.

Definition Suppose the minimal sufficient statistic T is partitioned as T = (S, C) where:

(a) the distribution of C depends on λ but not on ψ ,
(b) the conditional distribution of S given C = c depends on ψ but not on λ, for each c.

Then C is an ancillary statistic for ψ , and S is conditionally sufficient for ψ given C.
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We can now formulate a principle appropriate to this case.

Conditionality principle (nuisance parameter case) Inference about ψ should be based
on the conditional distribution of S given C.

There are other definitions of ancillarity. For example, some authors do not insist that an
ancillary statistic should be part of a minimal sufficient statistic, but the above definition
is the one most widely agreed upon historically. In Chapter 9, we will follow the modern
convention of taking the term ancillary to mean a distribution constant statistic, which,
together with the maximum likelihood estimator, discussed in Chapter 8, constitutes a
minimal sufficient statistic.

In Chapter 6 we discussed the concept of sufficient statistics at some length. For any
given problem the sufficient statistic is not unique, but we saw that it is possible to define a
minimal sufficient statistic, which is unique up to one-to-one transformations. It turns out
that ancillary statistics are not unique either. It would be appealing to define an analogous
concept of a maximal ancillary statistic. We would like sufficient statistics to be as small
as possible so as to eliminate all the irrelevant information. In contrast, we would like
ancillary statistics to be as large as possible so that we are taking into account all the relevant
conditioning variables. There are some examples where a maximal ancillary statistic exists.

Example 7.2 Consider a location-scale family: X1, . . . , Xn are independent, identically
distributed with common density σ−1 f0((x − µ)/σ )), where µ and σ are unknown lo-
cation and scale constants and f0 is a known density. Let X (1) ≤ X (2) ≤ . . . ≤ X (n)

denote the order statistics of the sample. Suppose there is no further reduction of
the problem by sufficiency, so that (X (1), . . . , X (n)) is the minimal sufficient statistic.
The (n − 2)-dimensional vector C = {(X (3) − X (1))/(X (2) − X (1)), (X (4) − X (1))/(X (2) −
X (1)), . . . , (X (n) − X (1))/(X (2) − X (1))} has a distribution independent of µ and σ and so
is an ancillary statistic. Moreover, it can be shown that this ancillary statistic cannot be
expanded in any way and that any other ancillary statistic can be mapped into this, that is it
is a maximal ancillary statistic. In a remarkable paper, Fisher (1934) showed how to perform
exact conditional inference for µ and σ given C , for any n and any distribution f0. Note
that the normal distribution is excluded from this discussion, or is a trivial special case of
it, because in that case there is a two-dimensional minimal sufficient statistic and hence no
possibility of simplifying the problem by conditioning. However, the Cauchy distribution,
for instance, is an example of a problem for which the minimal sufficient statistic is the set
of order statistics.

In other cases, however, maximal ancillary statistics do not exist. It is quite possible that
two ancillary statistics C1 and C2 exist, but the combined statistic (C1, C2) is not ancillary.
There is nothing the least bit pathological about this: it simply reflects the fact that the
marginal distributions of two random variables do not determine their joint distribution.
In this case, however, there is no uniquely specified course of action. Adoption of the
conditionality principle implies that conditioning on either one of C1 or C2 would be superior
to conditioning on neither, but it still leaves us with at least two plausible procedures and
no indication of which is preferable. Some further ideas on this point are presented in
Problem 9.16. In general, identifying an appropriate ancillary statistic in the first place
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may be more challenging than the issue of choosing between competing ancillaries. As we
shall see in Chapter 9, much of modern statistical theory is based on notions of inference
which respect the conditionality principle without requiring explicit specification of the
conditioning ancillary.

7.2.1 Discussion

The need for a conditionality principle highlights a weakness in the emphasis on the power
of tests, which is characteristic of the Neyman–Pearson theory, and, more generally, in the
emphasis on the risk function, which is central to non-Bayesian decision theory. If one uses
power as the sole criterion for deciding between two tests, then in our example concerning
laboratory testing there are at least some circumstances where one would prefer to use
Procedure 1, but this may not be sensible for other reasons. The historical disagreement
between Fisher and Neyman (recall our brief discussion of this in Chapter 3) centred on
Fisher’s opinion that the Neyman–Pearson theory did not take adequate account of the
need for conditional tests in this kind of situation. Another point of view might be to
adopt a Bayesian approach. As we saw in Chapter 3, Bayesian procedures always try to
minimise the expected loss based on the observed data and do not take account of other
experiments that might have been conducted but were not. Thus in the situation with two
machines discussed above, a Bayesian procedure would always act conditionally on which
machine was actually used, so the kind of conflict that we saw between the two statisticians
would not arise. However, Fisher did not accept Bayesian methods, because of the seeming
arbitrariness of choosing the prior distribution, and so this would not have resolved the
difficulty for him.

Fisher’s own solution to this dilemma was ultimately to create a further theory of statistical
inference, which he called fiducial theory. In certain cases – one of them being the location-
scale problem mentioned above, in which it is possible to find an (n − 2)-dimensional
maximal ancillary statistic – this theory leads to a very precise and clear-cut solution.
However, in other cases the justification for fiducial inference is much less clear-cut, and as a
result there are few modern scholars who adhere to this point of view. Although many modern
statisticians support the principles of the Fisherian approach (including, in particular, the
principle of conditionality), there is no universal agreement about how best to implement it.

7.2.2 A more complicated example

The following example, although more artificial than the preceding discussion, illustrates a
situation in which failure to observe the Conditionality Principle may lead to a seemingly
absurd conclusion.

Let X1, . . . , Xn be independent, identically distributed with a uniform distribution on
(θ − 1

2 , θ + 1
2 ), where θ is an unknown real parameter. Let W1 = min(X1, . . . , Xn), W2 =

max(X1, . . . , Xn). The joint density of (X1, . . . , Xn) is 1 when θ − 1
2 ≤ W1 ≤ W2 ≤ θ + 1

2
and 0 otherwise. This is a function of (W1, W2), so (W1, W2) is a sufficient statistic. It is
in fact the minimal sufficient statistic. It is not complete because if, for example, we let
c = E{W2 − W1} (in fact c = n−1

n+1 , but the exact value of c is not important, merely the fact
that it does not depend on θ ), then T = W2 − W1 − c is an example of a statistic which is
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2.3.5 Some other definitions

Sometimes the Bayes rule is not defined because the infimum in (2.2) is not attained for
any decision rule d. However, in such cases, for any ε > 0 we can find a decision rule dε

for which

r (π, dε) < mπ + ε

and in this case dε is said to be ε-Bayes with respect to the prior distribution π (·).
Finally, a decision rule d is said to be extended Bayes if, for every ε > 0, we have that

d is ε-Bayes with respect to some prior, which need not be the same for different ε. As we
shall see in Theorem 2.2, it is often possible to derive a minimax rule through the property
of being extended Bayes. A particular example of an extended Bayes rule is discussed in
Problem 3.11.

2.4 Randomised decision rules

Suppose we have a collection of I decision rules d1, . . . , dI and an associated set of prob-
ability weights p1, . . . , pI , so that pi ≥ 0 for 1 ≤ i ≤ I , and

∑
i pi = 1.

Define the decision rule d∗ = ∑
i pi di to be the rule ‘select di with probability pi ’. Then

d∗ is a randomised decision rule. We can imagine that we first use some randomisation
mechanism, such as tossing coins or using a computer random number generator, to select,
independently of the observed data x , one of the decision rules d1, . . . , dI , with respective
probabilities p1, . . . , pI . Then, having decided in favour of use of the particular rule di ,
under d∗ we carry out the action di (x).

For a randomised decision rule d∗, the risk function is defined by averaging across possible
risks associated with the component decision rules:

R(θ, d∗) =
I∑

i=1

pi R(θ, di ).

Randomised decision rules may appear to be artificial, but minimax solutions may well be
of this form. It is easy to contruct examples in which d∗ is formed by randomising the rules
d1, . . . , dI but

sup
θ

R(θ, d∗) < sup
θ

R(θ, di ) for each i,

so that d∗ may be a candidate for the minimax procedure, but none of d1, . . . , dI . An example
of a decision problem, where the minimax rule indeed turns out to be a randomised rule, is
presented in Section 2.5.1, and illustrated in Figure 2.9.

2.5 Finite decision problems

A finite decision problem is one in which the parameter space is a finite set: � = {θ1, . . . , θt }
for some finite t , with θ1, . . . , θt specified values. In such cases the notions of admissible,
minimax and Bayes decision rules can be given a geometric interpretation, which leads
to some interesting problems in their own right, and which also serves to motivate some
properties of decision rules in more general problems.
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a function of the minimal sufficient statistic, which satisfies E{T } = 0, but for which it is
obviously not the case that T = 0 with probability 1.

It is readily verified that the joint density of (W1, W2), evaluated at (w1, w2), is

n(n − 1)(w2 − w1)n−2, θ − 1

2
≤ w1 ≤ w2 ≤ θ + 1

2
.

Define Y1 = 1
2 (W1 + W2) − θ, Y2 = (W2 − W1). Note that, if the observed value of Y2

is close to 1, θ is very precisely determined, under the assumed model, as necessarily
being close to 1

2 (W1 + W2). However, if Y2 is close to 0, θ could reasonably be any value
between 1

2 (W1 + W2) − 1 and 1
2 (W1 + W2) + 1. Intuitively, therefore, it seems appropriate

to condition the inference on the observed value of Y2, to ensure relevance of any probability
calculation to the data at hand. This simple discussion therefore carries force as illustrating
in a quantitative way the argument for adoption of the Conditionality Principle: whether
a large or small value of Y2 is observed is an outcome not in itself informative about θ ,
but affecting the precision which we can achieve in the inference. But, in fact, from the
perspective of hypothesis testing, failure to condition can lead to illogical conclusions, as
we now demonstrate.

The transformation from (W1, W2) to (Y1, Y2) has Jacobian 1, so the joint density of
(Y1, Y2) is

fY1,Y2 (y1, y2) = n(n − 1)yn−2
2

over the region for which fY1,Y2 (y1, y2) > 0, but we have to be careful to define that region
accurately: it is {(y1, y2) : 0 < y2 < 1, |y1| < 1

2 (1 − y2)} or equivalently {(y1, y2) : |y1| <
1
2 , 0 < y2 < 1 − 2|y1|}. Integrating out to obtain the marginal densities of Y1 and Y2, we
find

fY1 (y1) = n(1 − 2|y1|)n−1, |y1| <
1

2
,

fY2 (y2) = n(n − 1)yn−2
2 (1 − y2), 0 < y2 < 1.

Dividing the last expression into the joint density of (Y1, Y2), we also obtain the conditional
density of Y1 given Y2:

fY1|Y2=y2 (y1) = 1

1 − y2
, |y1| <

1

2
(1 − y2).

In other words, given Y2 = y2, the conditional distribution of Y1 is uniform on (− 1
2 (1 − y2),

1
2 (1 − y2)).

Suppose we want a size α test of the hypothesis H0 : θ = θ0 against H1 : θ �= θ0 for
some given value θ0. The statistic Y1 is a function of the minimal sufficient statistic, and its
distribution does not depend on the parameter, so it looks as though a reasonable test would
be of the form

Reject H0 if |Y1| > kn,α,

where kn,α is chosen so that the size of the test is α. Based on the marginal density of Y1, it
is easily seen that this is

kn,α = 1

2
(1 − α1/n).
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However, if we follow the Conditionality Principle with T = (W1, W2), S = W1 +
W2, C = W2 − W1, we see that the test should be based on the conditional distribution
of Y1 given Y2. This leads us to the test criterion

Reject H0 if |Y1| >
1 − α

2
(1 − Y2).

Thus we have two plausible test procedures, one based on the marginal distribution of Y1,
the other on the conditional distribution of Y1 given Y2. Which one is better?

The distinction between the two procedures is most clearly seen in the situation where
the observed values of Y1 and Y2 satisfy

1

2
(1 − Y2) < |Y1| < kn,α.

In this case the second inequality implies that the unconditional test will accept H0, but the
first inequality is incompatible with the known constraints on (Y1, Y2) when H0 is true. In
other words, in this situation we can be certain that H0 is false, yet the unconditional test is
still telling us to accept H0! This seemingly absurd conclusion is easily avoided if we adopt
the conditional test.

7.2.3 Similar tests

Sometimes part (b) of the general definition of an ancillary statistic holds, but not part (a). In
such cases, there may still be reason to construct a test based on the conditional distribution
of S given C . The reason is that such a test will then be similar.

Definition Suppose θ = (ψ, λ) and the parameter space is of the form � = � × �, as in
the definition of an ancillary statistic. Suppose we wish to test the null hypothesis H0 : ψ =
ψ0 against the alternative H1 : ψ �= ψ0, with λ treated as a nuisance parameter. Suppose
φ(x), x ∈ X is a test of size α for which

Eψ0,λ{φ(X )} = α for all λ ∈ �.

Then φ is called a similar test of size α.

More generally, if the parameter space is θ ∈ � and the null hypothesis is of the form
θ ∈ �0, where �0 is a subset of �, then a similar test is one for which Eθ {φ(X )} = α on
the boundary of �0.

By analogy with UMPU tests, if a test is uniformly most powerful among the class of all
similar tests, we call it UMP similar.

The concept of similar tests has something in common with that of unbiased tests. In
particular, if the power function is continuous in θ (a property which, as we have seen, holds
automatically for exponential families), then any unbiased test of size α must have power
exactly α on the boundary between �0 and �1, that is such a test must be similar. In such
cases, if we can find a UMP similar test, and if this test turns out also to be unbiased, then
it is necessarily UMPU.

Moreover, in many cases where part (b) of the definition of an ancillary statistic holds,
but not part (a), we can demonstrate that a test, which is UMP among all tests based on the
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conditional distribution of S given C , is UMP amongst all similar tests. In particular, this
statement will be valid when C is a complete sufficient statistic for λ.

The upshot of this discussion is that there are many cases when a test which is UMP
(one-sided) or UMPU (two-sided), based on the conditional distribution of S given C , is in
fact UMP similar or UMPU among the class of all tests.

Thus we have seen two quite distinct arguments for conditioning. In the first, when the
conditioning statistic is ancillary, we have seen that the failure to condition may lead to
paradoxical situations in which two analysts may form completely different viewpoints of
the same data, though we also saw that the application of this principle may run counter to
the strict Neyman–Pearson viewpoint of maximising power. The second point of view is
based on power, and shows that under certain circumstances a conditional test may satisfy
the conditions needed to be UMP similar or UMPU.

7.2.4 Multiparameter exponential families

We shall now see that the general ideas we have discussed have particular application in the
case of multiparameter exponential families.

Consider a full exponential family model in its natural parametrisation,

f (x ; θ ) = c(θ )h(x) exp

(
k∑

i=1

ti (x)θi

)
,

where x represents the value of a data vector X and ti (X ), i = 1, . . . , k are the natural
statistics. We also write Ti in place of ti (X ).

Suppose our main interest is in one particular parameter, which we may without loss
of generality take to be θ1. Consider the test H0 : θ1 ≤ θ∗

1 against H1 : θ1 > θ∗
1 , where θ∗

1

is prescribed. Take S = T1 and C = (T2, . . . , Tk). Then by Lemma 5.2 of Chapter 5, the
conditional distribution of S given C is also of exponential family form and does not depend
on θ2, . . . , θk . Therefore, C is sufficient for λ = (θ2, . . . , θk) and since it is also complete
(from the general property that the natural statistics are complete sufficient statistics for
exponential families) the arguments concerning similar tests in Section 7.2.3 suggest that
we ought to construct tests for θ1 based on the conditional distribution of S given C .

In fact such tests do turn out to be UMPU, though we shall not attempt to fill in the details
of this: the somewhat intricate argument is given by Ferguson (1967). Finally, it sometimes
(though not always) turns out that C is an ancillary statistic for θ1, and, when this happens,
there is a far stronger argument based on the conditionality principle that says we ought to
condition on C .

In cases where the distribution of T1 is continuous, the optimal one-sided test will then
be of the following form. Suppose we observe T1 = t1, . . . , Tk = tk . Then we reject H0 if
and only if t1 > t∗

1 , where t∗
1 is calculated from

Prθ∗
1
{T1 > t∗

1 |T2 = t2, . . . , Tk = tk} = α.

It can be shown that this test is UMPU of size α.
In similar fashion, if we want to construct a two-sided test of H0 : θ∗

1 ≤ θ1 ≤ θ∗∗
1 against

the alternative, H1 : θ1 < θ∗
1 or θ1 > θ∗∗

1 , where θ∗
1 < θ∗∗

1 are given, we can proceed by
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defining the conditional power function of a test φ based on T1 as

wθ1 (φ; t2, . . . , tk) = Eθ1{φ(T1)|T2 = t2, . . . , Tk = tk}.
Note that it is a consequence of our previous discussion that this quantity depends only on
θ1 and not on θ2, . . . , θk .

We can then consider a two-sided conditional test of the form

φ′(t1) =
{

1 if t1 < t∗
1 or t1 > t∗∗

1 ,
0 if t∗

1 ≤ t1 ≤ t∗∗
1 ,

where t∗
1 and t∗∗

1 are chosen such that

wθ1 (φ′; t2, . . . , tk) = α when θ1 = θ∗
1 or θ1 = θ∗∗

1 . (7.7)

If the hypotheses are of the form H0 : θ1 = θ∗
1 against H1 : θ1 �= θ∗

1 , then the test is of the
same form but with (7.7) replaced by

wθ∗
1
(φ′; t2, . . . , tk) = α,

d

dθ1

{
wθ1 (φ′; t2, . . . , tk)

}∣∣∣∣
θ1=θ∗

1

= 0.

It can be shown that these tests are also UMPU of size α.

7.2.5 Combinations of parameters

Consider the same set-up as in Section 7.2.4, but suppose now we are interested in testing a
hypothesis about

∑
i ciθi , where c1, . . . , ck are given constants and without loss of generality

c1 �= 0.
Let ψ1 = ∑

i ciθi , ψi = θi for i = 2, . . . , k. Then θ1 = (ψ1 − ∑k
2 ciψi )/c1. We may

write

∑
i

θi ti =
(

ψ1 −
k∑

i=2

ciψi

)
t1
c1

+
k∑

i=2

ψi ti

= ψ1
t1
c1

+
k∑

i=2

ψi

(
ti − ci t1

c1

)
,

which shows that, under a reparametrisation, the model is also of exponential family form
in ψ1, . . . , ψk with natural statistics

T1

c1
,

{
Ti − ci T1

c1
, i = 2, . . . , k

}
.

Thus we can apply the same tests as in Section 7.2.4 under this reparametrisation of the
model.

Example 7.3 Suppose X and Y are independent Poisson random variables with means λ

and µ respectively, and we want to test H0 : λ ≤ µ against H1 : λ > µ.
The joint probability mass function is

f (x, y) = e−(λ+µ) ex log λ+y log µ

x!y!
,
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which is of exponential family form with natural parameters (log λ, log µ). We identify
(T1, T2, θ1, θ2) with (X, Y, log λ, log µ) and consider c1 = 1, c2 = −1, ψ1 = c1θ1 + c2θ2 =
log(λ/µ) so that the desired test becomes H0 : ψ1 ≤ 0 against H1 : ψ1 > 0. Thus in
this case inference about ψ1 should be based on the conditional distribution of T1 given
T2 − c2T1/c1 = T1 + T2. According to theory, such a test will be UMP similar and indeed
UMPU.

It is now an easy matter to check that

Pr{T1 = t1, T2 = t2} = λt1µt2 e−λ−µ

t1!t2!
,

Pr{T1 + T2 = t1 + t2} = (λ + µ)t1+t2 e−λ−µ

(t1 + t2)!
,

and so

Pr{T1 = t1|T1 + T2 = t1 + t2} =
(

t1 + t2
t1

) (
λ

λ + µ

)t1 (
µ

λ + µ

)t2

,

which is Bin(t1 + t2, p), where p = eψ1/(1 + eψ1 ). This confirms (as we already knew from
the general theory) that the conditional distribution of T1 depends only on ψ1, and allows
us to reformulate the testing problem in terms of H0 : p ≤ 1

2 against H1 : p > 1
2 .

Note that, in contrast to what has been assumed throughout the rest of the chapter, in this
case the distribution is discrete and therefore it may be necessary to consider randomised
tests, but this point has no effect on the general principles concerning the desirability of a
conditional test.

Note that if we adopt the slightly different parametrisation (ψ1, λ + µ) in this example,
then the conditionality principle also implies that the appropriate test for inference about
ψ1 should condition on T1 + T2. We have that T1 + T2 has a Poisson distribution with mean
λ + µ, which does not depend on ψ1, so that T1 + T2 is ancillary for ψ1.

7.3 Confidence sets

7.3.1 Construction of confidence intervals via pivotal quantities

As in previous discussion, we assume a finite parameter model in which the distribution of
a random variable X depends on a parameter θ . At least for the beginning of our discussion,
it will be convenient to assume that θ is a scalar.

Definition A random function T (X, θ ) is said to be pivotal, or a pivotal quantity, if it is a
function of both X and θ whose distribution does not depend on θ .

More generally, the term pivot is often used to denote a general random function of X and
θ , with distribution which may depend on θ . We will use this terminology extensively in
Chapter 11.

Suppose we are given α ∈ (0, 1) and a pivotal quantity T (X, θ ). Then we can find con-
stants c1 and c2 such that

Prθ {c1 ≤ T (X, θ ) ≤ c2} = 1 − α for all θ. (7.8)
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Provided T (X, θ ) is of a reasonably manageable functional form, we can rewrite this rela-
tionship in the form

Prθ {L(X ) ≤ θ ≤ U (X )} = 1 − α for all θ, (7.9)

where L(X ) and U (X ) are functions of X alone. We then say that [L(X ), U (X )] is a (1 − α)-
level or 100(1 − α)% confidence interval for θ .

In more complicated cases, and especially when we extend the discussion to allow θ to
be multidimensional, (7.8) may not invert to an interval, but if for fixed X we define

S(X ) = {θ : c1 ≤ T (X, θ ) ≤ c2}
then (7.9) is replaced by

Prθ {S(X ) � θ} = 1 − α for all θ,

and in this case S(X ) is a (1 − α)-level confidence set for θ .

Example 7.4 Let X1, . . . , Xn be independent, identically distributed N (θ, σ 2), where θ and
σ 2 are both unknown but our interest is in θ (so already we are making a slight extension
of the above framework, by allowing the nuisance parameter σ 2).

Defining X̄ = ∑
Xi/n, s2

X = ∑
(Xi − X̄ )2/(n − 1) to be the usual sample mean and

variance, we have
√

n(X̄ − θ )

sX
∼ tn−1.

So T = √
n(X̄ − θ )/sX is pivotal. Usually we define c1 = −c2, where Pr{T > c2} = α/2,

calculated from tables of the tn−1 distribution, and hence

Prθ

{
−c2 ≤

√
n(X̄ − θ )

sX
≤ c2

}
= 1 − α. (7.10)

However we can invert (7.10) to write

Prθ

{
X̄ − c2sX√

n
≤ θ ≤ X̄ + c2sX√

n

}
= 1 − α,

so that [X̄ − c2sX/
√

n, X̄ + c2sX/
√

n] is the desired confidence interval.

Example 7.5 Suppose X1, . . . , Xn are independent, identically distributed from the uni-
form distribution on (0, θ ) for unknown θ > 0.

A complete sufficient statistic is T = max{X1, . . . , Xn} and we calculate

Prθ

{
T

θ
≤ y

}
= Prθ {X1 ≤ yθ, . . . , Xn ≤ yθ} = yn,

for any y ∈ [0, 1]. Thus T/θ is pivotal.
Given α, let c1 < c2 be in [0, 1] such that cn

2 − cn
1 = 1 − α. Then the interval[

T

c2
,

T

c1

]

is a (1 − α)-level confidence interval for θ .
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For example, one choice is to take c2 = 1, c1 = α1/n . We then have that [T, T α−1/n] is
a suitable confidence interval.

The main difficulty with building an entire theory around pivotal quantities is that for many
problems no pivotal quantity exists. This prompts us to seek more general constructions.

7.3.2 A general construction

For each X , we require to find a set S(X ) such that

Prθ {θ ∈ S(X )} = 1 − α for all θ ∈ �,

where α ∈ (0, 1) is given.
Suppose, for each θ0 ∈ �, we can find a non-randomised test φθ0 (X ) of exact size α for

testing H0 : θ = θ0 against H1 : θ �= θ0. Let A(θ0) denote the corresponding acceptance
region, so that

A(θ0) = {X : φθ0 (X ) = 0}.
Thus

Prθ {X ∈ A(θ )} = 1 − α for all θ ∈ �.

Now define, for each X ∈ X ,

S(X ) = {θ : X ∈ A(θ )}.
Then it evidently follows that

Prθ {θ ∈ S(X )} = 1 − α for all θ ∈ �.

Thus S(X ) fulfils the criteria to be a valid (1 − α)-level confidence set for θ .
Conversely, if we are given a family of (1 − α)-level confidence sets {S(X ), X ∈ X }, we

may construct a family of tests of size α by defining acceptance regions by

A(θ ) = {X : θ ∈ S(X )}.
Thus there is a one-to-one correspondence between confidence sets of a given level and
hypothesis tests of the corresponding size.

In cases where there are nuisance parameters, there is a good argument for using similar
tests, because in this case the coverage level of the confidence set for the parameter of
interest will not depend on the true values of the nuisance parameters.

7.3.3 Criteria for good confidence sets

Just as we have a number of criteria for deciding what are good tests of hypotheses, so we
can construct corresponding criteria for deciding between different families of confidence
sets of a given level.

(a) Nesting
One desirable property is that if S1(X ) and S2(X ) are two confidence sets corresponding
to levels 1 − α1 and 1 − α2 respectively, and α1 < α2, then we would expect S2 ⊆ S1.
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For instance, we would expect a 95% confidence interval to be contained within a 99%
confidence interval for the same problem.

The corresponding criterion on test regions is that, if A1(θ0) and A2(θ0) are acceptance
regions of H0 : θ = θ0 of sizes α1 and α2 respectively, then A2(θ0) ⊆ A1(θ0); that is, if we
reject the null hypothesis at one size, then we will reject it at any larger size.

(b) Minimisation of error
Among all (1 − α)-level confidence sets {S(X ), X ∈ X }, we should like to choose one for
which Prθ0{θ ∈ S(X )} is small when θ �= θ0. This, of course, corresponds to choosing a test
which has high power when θ �= θ0.

One motivation for doing this in the context of confidence sets is as follows. Suppose the
confidence set is a confidence interval for a one-dimensional parameter θ . Then the length
of the interval is

L =
∫ ∞

−∞
I {θ ∈ S(X )}dθ,

where I {·} is the indicator function. Then

Eθ0{L} =
∫ ∞

−∞
Prθ0{θ ∈ S(X )}dθ.

Thus, if we can minimise Prθ0{θ ∈ S(X )} uniformly for θ �= θ0, then this is equivalent to
minimising the expected length of the confidence interval. In the more general case, where
a confidence interval is replaced by a confidence set, the expected length of the interval is
replaced by the expected measure of the set.

One thing we can try to do is to find UMP tests – for example, when a family has the MLR
property (Chapter 4), it is possible to find UMP one-sided tests. However, one-sided tests
lead to one-sided confidence intervals (that is, in (7.9), either L(X ) = −∞ or U (X ) = +∞),
which is sometimes what is required, but usually not.

The alternative is to construct two-sided intervals from two-sided tests. In this case, we
saw that the concept of unbiasedness was useful in restricting the class of tests considered,
and in that case we can often find UMPU tests.

In the confidence set context, we make the following definition.

Definition A family of confidence sets {S(X ), X ∈ X } is unbiased if Prθ0{θ ∈ S(X )} is
maximised with respect to θ when θ = θ0, for each θ0.

If we can find a UMPU test, and invert this to obtain an unbiased confidence set, then this test
will minimise the expected measure of the confidence set among all unbiased confidence
sets of a given level.

7.4 Problems

7.1 Let X1, . . . , Xn be an independent sample from a normal distribution with mean 0
and variance σ 2. Explain in as much detail as you can how to construct a UMPU test
of H0 : σ = σ0 against H1 : σ �= σ0.

7.2 Let X1, . . . , Xn be an independent sample from N (µ, µ2). Let T1 = X̄ and T2 =√
(1/n)

∑
X2

i . Show that Z = T1/T2 is ancillary. Explain why the Conditionality
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Principle would lead to inference aboutµbeing drawn from the conditional distribution
of T2 given Z . Find the form of this conditional distribution.

7.3 Let Y1, Y2 be independent Poisson random variables, with means (1 − ψ)λ and ψλ

respectively, with λ known.
Explain why the Conditionality Principle leads to inference about ψ being drawn

from the conditional distribution of Y2, given Y1 + Y2. What is this conditional distri-
bution?

Suppose now that λ is unknown. How would you test H0 : ψ = ψ0 against H1 :
ψ �= ψ0?

7.4 Suppose X is normally distributed as N (θ, 1) or N (θ, 4), depending on whether the
outcome, Y , of tossing a fair coin is heads (y = 1) or tails (y = 0). It is desired to
test H0 : θ = −1 against H1 : θ = 1. Show that the most powerful (unconditional)
size α = 0.05 test is the test with rejection region given by x ≥ 0.598 if y = 1 and
x ≥ 2.392 if y = 0.

Suppose instead that we condition on the outcome of the coin toss in construction of
the tests. Verify that, given y = 1, the resulting most powerful size α = 0.05 test would
reject if x ≥ 0.645, while, given y = 0, the rejection region would be x ≥ 2.290.

7.5 A local councillor suspects that traffic conditions have become more hazardous in Am-
bridge than in Borchester, so she records the numbers A and B of accidents occurring
in each place in the course of a month. Assuming that A and B are independent Poisson
random variables with parameters λ and µ, it is desired to construct an unbiased test
of size 1

16 of H0 : λ ≥ µ against H1 : λ < µ.
Show that A + B is distributed as Poisson with parameter λ + µ, and that condi-

tional on A + B = n, A ∼ Bin(n, p), where p = λ/(λ + µ).
Show that, if X ∼ Bin(n, p), then the UMPU size α test of H0 : p ≥ 1/2 against

H1 : p < 1/2 has test function of the form

φ(k, n) =



1 if 0 ≤ k < κn(α),
γn(α) if k = κn(α),
0 if κn(α) < k ≤ n,

where κn(α) and γn(α) are chosen so that E1/2φ(X, n) = α.
Show that the test of the original hypotheses defined by choosing H1 with probability

φ(A, A + B) is unbiased with size α. Can you verify from first principles that the test
is in fact UMPU?

Carry out the test when A = 5 and B = 2, and also when A = 3 and B = 0.
7.6 A Bayesian friend of the local councillor of Problem 7.5 has independent exponential

priors on λ and µ, each of mean 1. Compute the posterior probability that λ ≥ µ in
the two cases, A = 2, B = 5 and A = 0, B = 3.

7.7 Let X ∼ Bin(m, p) and Y ∼ Bin(n, q), with X and Y independent. Show that, as p
and q range over [0, 1], the joint distributions of X and Y form an exponential family.
Show further that, if p = q , then

Pr(X = x | X + Y = x + y) =
(

m

x

)(
n

y

)/(
m + n

x + y

)
.
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Hence find the form of a UMPU test of the null hypothesis H0 : p ≤ q against H1 :
p > q.

In an experiment to test the efficacy of a new drug for treatment of stomach ulcers,
five patients are given the new drug and six patients are given a control drug. Of the
patients given the new drug, four report an improvement in their condition, while
only one of the patients given the control drug reports improvement. Do these data
suggest, at level α = 0.1, that patients receiving the new drug are more likely to report
improvement than patients receiving the control drug? (This is the hypergeometric
distribution and the test presented here is conventionally referred to as Fisher’s exact
test for a 2 × 2 table.)

7.8 Let X1, . . . , Xn be independent, exponential random variables of mean θ . Show that
Y = 2

∑n
i=1 Xi/θ is a pivotal quantity, and construct a (1 − α)-level confidence in-

terval for θ .
7.9 Let X ∼ N (µ, 1) and Y ∼ N (ν, 1) be independent, and suppose we wish to construct a

confidence interval for θ = µ/ν. Show that (X − θY )/(1 + θ2)1/2 is a pivotal quantity,
and that the confidence set obtained from it could consist of the whole real line, a single
interval or two disjoint intervals. Is the confidence set ever empty?

7.10 It is generally believed that long-life light bulbs last no more than twice as long on
average as standard light bulbs. In an experiment, the lifetimes X of a standard bulb
and Y of a long-life bulb are recorded, as X = 1, Y = 5. Modelling the lifetimes as
exponential random variables, of means λ and µ respectively, construct: (i) a test of
size α = 0.05 of the hypothesis λ > 1

2µ, (ii) a 95% confidence interval for λ/µ.
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Likelihood theory

This chapter is concerned with one of the central principles of modern statistics – that of
maximum likelihood.

Some definitions and basic properties of maximum likelihood estimators are given in
Section 8.1. The basic idea is that the maximum likelihood estimator θ̂ is the value of
θ , which maximises the likelihood function L(θ ). In regular cases this is given by solv-
ing the likelihood equation(s) formed by setting the first-order derivative(s) of log L
to 0.

We establish in Section 8.2 the Cramér–Rao Lower Bound (CRLB), which gives a lower
bound on the variance of an unbiased estimator under very general conditions. Under certain
circumstances the CRLB is attained exactly – there is an interesting connection with the
theory of exponential families here – though in general the CRLB is only an approximate
guide to what is attainable in practice.

After some preliminaries about convergence of random variables in Section 8.3, we
establish in Section 8.4 the consistency, asymptotic normality and asymptotic efficiency of
a maximum likelihood estimator under quite general (regular family) conditions. Detailed
proofs are given only for certain one-dimensional cases, though the basic results apply in
any dimension. These results are at the centre of much modern theory based on maximum
likelihood estimation.

Section 8.5 describes a methodology for conducting tests of hypotheses using maximum
likelihood estimates, including Wilks’ Theorem concerning the asymptotic χ2 distribution of
the log-likelihood ratio test statistic. Section 8.6 considers in greater depth multiparameter
problems and introduces the notion of a profile likelihood for a parameter of interest, in the
presence of nuisance parameters.

8.1 Definitions and basic properties

8.1.1 Maximum likelihood estimator

Suppose data x are the observed value of a random variable X from a parametric family
of densities or mass functions, X ∼ f (x ; θ ), where in general θ is multidimensional, θ =
(θ1, . . . , θd ) ∈ � ⊆ R

d for some d ≥ 1. We allow X to be multidimensional as well, and
in particular we will consider in detail the case when X = (X1, . . . , Xn), an independent,
identically distributed sample from some parametric model. After observing x , the likelihood
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function is defined by

L(θ ) ≡ L(θ ; x) = f (x ; θ ),

viewed as a function of θ for the fixed x . The maximum likelihood estimate (MLE) θ̂ (x) is
defined to be the value of θ which maximises L(θ ).

Usually we work with the log-likelihood

l(θ ) ≡ l(θ ; x) = log L(θ ).

To stress that it is constructed from a sample of size n we may write the log-likelihood as
ln(θ ), and write the MLE correspondingly as θ̂n . A key component of the current chapter is
the study of the properties of the log-likelihood considered as a random variable

l(θ ; X ) = log f (X ; θ ),

and also of the MLE as a random variable, θ̂ (X ), which is usually referred to as the maximum
likelihood estimator.

In most cases l is differentiable and θ̂ is obtained by solving the likelihood equation

l ′(θ ) = 0, (8.1)

or in the multiparameter case when θ = (θ1, . . . , θd ) ∈ R
d ,

∇θ l(θ ; x) = 0, (8.2)

where ∇θ = (∂/∂θ1, . . . , ∂/∂θd )T .
A number of questions immediately arise:

(i) Do the likelihood equations (8.1) or (8.2) have a solution?
(ii) If so, is the solution unique?

(iii) Is it a local maximum? To answer this we need to check second derivatives.
(iv) Is it a global maximum?

Each of the questions (i)–(iv) may have a negative answer, though we shall be concentrating
on so-called regular problems for which the maximum likelihood estimator is indeed given
by a local maximum of the log-likelihood function.

8.1.2 Examples

Example 8.1 Consider X1, . . . , Xn independent, identically distributed from N (µ, τ ), with
µ and τ both unknown. Then

L(µ, τ ) = (2πτ )−n/2 exp

{
−1

2

∑
i

(Xi − µ)2

τ

}
.

It is an easy exercise to check that

µ̂ = X̄ ,

(
= 1

n

∑
Xi

)
,

τ̂ = 1

n

∑
(Xi − X̄ )2.

The answers to questions (i)–(iv) above are all yes in this instance.
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Note that τ̂ is not the usual sample variance, for which the denominator is n − 1 rather
than n. The MLE is biased, because E{̂τ } = (n − 1)τ/n. For many problems it turns out
that the MLE is biased though it is asymptotically unbiased and efficient (see Section 8.4
below).

Example 8.2 Consider X1, . . . , Xn , independent, identically distributed from the uniform
distribution on (0, θ ], where θ is the unknown parameter. The likelihood function is

L(θ ) = 1

θn
I {X1 ≤ θ, . . . , Xn ≤ θ}, (8.3)

where I (·) is the indicator function. Equation (8.3) is strictly decreasing in θ over the range
for which it is non-zero, which is for θ ≥ max{X1, . . . , Xn}. Therefore the MLE in this case
is θ̂ = max{X1, . . . , Xn}, which is also the complete sufficient statistic for this problem. So
in this case the MLE is not given by solving the likelihood equation.

Example 8.3 Suppose X1, X2 are independent, identically distributed from the Cauchy
density

f (x ; θ ) = 1

π{1 + (x − θ )2} , −∞ < x < ∞.

The likelihood equation is

(X1 − θ )

1 + (X1 − θ )2
+ (X2 − θ )

1 + (X2 − θ )2
= 0. (8.4)

The following statements are left as an exercise for the reader:

(a) If |X1 − X2| ≤ 2 then there is a unique solution to (8.4) given by θ̂ = (X1 + X2)/2 and
this maximises the likelihood function.

(b) If |X1 − X2| > 2 then there are three solutions to (8.4), where (X1 + X2)/2 is a local
minimum of the likelihood function and there are two local maxima given as the (real,
distinct) solutions of the equation

1 + (X1 − θ )(X2 − θ ) = 0.

The difficulties created by this example remain present in larger sample sizes: the probability
that there exist multiple maxima is positive for all sample sizes n, and does not tend to 0 as
n → ∞.

8.1.3 Score function and information

Recall from Chapter 5 that we define the score function by

u(θ ; x) = ∇θ l(θ ; x).

In terms of the score function, the likelihood equation may be written

u(θ̂ ; x) = 0.

To study the score function as a random variable we will write

U (θ ) = u(θ ; X ),

and write the components of U (θ ) as U (θ ) = (U1(θ ), . . . , Ud (θ ))T .
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We have already seen, in Chapter 5, that for regular problems for which the order of
differentiation with respect to θ and integration over the sample space can be reversed, we
have

Eθ {U (θ )} = 0. (8.5)

Also, the argument used in Chapter 5 further allows us to calculate the covariances between
the components of the score function. We have

covθ {Ur (θ ), Us(θ )}
= Eθ

{
∂l(θ ; X )

∂θr

∂l(θ ; X )

∂θs

}

= Eθ

{
−∂2l(θ ; X )

∂θr∂θs

}
.

More compactly, the covariance matrix of U is

covθ {U (θ )} = Eθ {−∇θ∇T
θ l}.

This matrix is called the expected information matrix for θ , or, more usually, the Fisher
information matrix, and will be denoted by i(θ ). The Hessian matrix −∇θ∇T

θ l of second-
order partial derivatives of l is called the observed information matrix, and is denoted by
j(θ ). Note that i(θ ) = Eθ { j(θ )}.

8.1.4 Some discussion

1 The definitions above are expressed in terms of arbitrary random variables X . Often
the components X j are mutually independent, in which case both the log-likelihood and
the score function are sums of contributions

l(θ ; x) =
n∑

j=1

l(θ ; x j ),

u(θ ; x) =
n∑

j=1

∇θ l(θ ; x j ) =
n∑

j=1

u(θ ; x j ),

say, and where l(θ ; x j ) is found from the density of X j .
Quite generally, even for dependent random variables, if X ( j) = (X1, . . . , X j ), we may

write

l(θ ; x) =
n∑

j=1

lX j |X ( j−1) (θ ; x j | x( j−1)),

the j th term being computed from the conditional density of X j given X ( j−1).
2 Although maximum likelihood estimators are widely used because of their good sam-

pling properties, they are also consistent with a broader principle known as the likelihood
principle.

In statistical inference, the objective is to draw conclusions about the underlying distri-
bution of a random variable X , on the basis of its observed value x . In a parametric model,
this means drawing inference about the unknown value of the parameter θ . The likelihood
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function L(θ ) measures how likely different values of θ are to be the true value. It may then
be argued that the general problem of inference for θ is solved by simply examining the
likelihood function. The likelihood principle is a formal expression of this idea.

Suppose we have an observation x from a model { f (·; θ ), θ ∈ �}, and an observation y
from another model {g(·; θ ), θ ∈ �}, with the parameter θ having the same meaning in both
models. Let L(θ ) and L̃(θ ) be the likelihood functions for θ for the two models. Then, if
given values x and y, L(θ ) = C L̃(θ ) for all θ , where C is a constant, then according to the
likelihood principle identical conclusions regarding θ should be drawn from x and y. Under
this principle, quantities that depend on the sampling distribution of a statistic, which is in
general not a function of the likelihood function alone, are irrelevant for statistical inference.
Thus, the likelihood principle can be regarded as giving further justification for the use of
maximum likelihood estimators, though, to the extent that L and L̃ may be based on different
sampling models and therefore have different sampling properties, it also stands somewhat
in conflict with the repeated sampling principle as a justification for using one estimator
over another.

8.1.5 Some mathematical reminders

We provide here some reminders of definitions and results used later in this chapter and in
Chapter 9.

The Taylor expansion for a function f (x) of a single real variable about x = a is given by

f (x) = f (a) + f (1)(a)(x − a) + 1

2!
f (2)(a)(x − a)2 + · · · + 1

n!
f (n)(a)(x − a)n + Rn,

where

f (l)(a) = dl f (x)

dxl

∣∣∣∣
x=a

,

and the remainder Rn is of the form

1

(n + 1)!
f (n+1)(c)(x − a)n+1,

for some c ∈ [a, x].
The Taylor expansion is generalised to a function of several variables in a straightforward

manner. For example, the expansion of f (x, y) about x = a and y = b is given by

f (x, y) = f (a, b) + fx (a, b)(x − a) + fy(a, b)(y − b)

+ 1

2!
{ fxx (a, b)(x − a)2 + 2 fxy(a, b)(x − a)(y − b) + fyy(a, b)(y − b)2} + · · ·,

where

fx (a, b) = ∂ f

∂x

∣∣∣∣
x=a,y=b

,

fxy(a, b) = ∂2 f

∂x∂y

∣∣∣∣
x=a,y=b

,

and similarly for the other terms.
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The sign function sgn is defined by

sgn(x) =



1, if x > 0,

0, if x = 0,

−1, if x < 0.

Suppose we partition a matrix A so that A =
[

A11 A12

A21 A22

]
, with A−1 correspondingly

written A−1 =
[

A11 A12

A21 A22

]
. If A11 and A22 are non-singular, let

A11.2 = A11 − A12 A−1
22 A21,

and

A22.1 = A22 − A21 A−1
11 A12.

Then

A11 = A−1
11.2, A22 = A−1

22.1, A12 = −A−1
11 A12 A22,

A21 = −A−1
22 A21 A11.

8.2 The Cramér–Rao Lower Bound

Let W (X ) be any estimator of θ and let m(θ ) = Eθ {W (X )}. For the purpose of this section
we shall restrict ourselves to scalar θ , though analogous results are available for vector θ .
Define

Y = W (X ), Z = ∂

∂θ
log f (X ; θ ).

The elementary inequality that the correlation between any two random variables lies be-
tween −1 and 1, −1 ≤ corr(Y, Z ) ≤ 1, leads to

{cov(Y, Z )}2 ≤ var(Y ) var(Z ). (8.6)

Now we have

cov(Y, Z ) =
∫

w(x)

{
∂

∂θ
log f (x ; θ )

}
f (x ; θ )dx

= ∂

∂θ

{∫
w(x) f (x ; θ )dx

}
(8.7)

= m ′(θ ).

Note that the second line here requires that we interchange the order of integration with
respect to x and differentiation with respect to θ , and the validity of this step is an as-
sumption of the calculation. It is valid for most regular problems, but there are counter-
examples!
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We also have by (8.5), again under assumptions about the validity of interchanging
integration and differentiation,

var(Z ) = E

{(
∂ log f (X ; θ )

∂θ

)2
}

= E

{
−∂2 log f (X ; θ )

∂θ2

}
= i(θ ). (8.8)

Putting (8.6)–(8.8) together,

var{W (X )} ≥ {m ′(θ )}2

i(θ )
. (8.9)

Equation (8.9) is known as the Cramér–Rao Lower Bound, or CRLB for short. In particular,
if W (X ) is an unbiased estimator of θ , so that m(θ ) = θ , it reduces to the simpler form

var{W (X )} ≥ 1

i(θ )
. (8.10)

Thus any unbiased estimator which achieves the lower bound in (8.10) is immediately seen
to be a MVUE, a minimum variance unbiased estimator. However, there is no guarantee that
any estimator exists which achieves this lower bound exactly, a point to which we return
momentarily.

In cases where X = (X1, . . . , Xn), where X1, . . . , Xn are independent, identically dis-
tributed from some density f (·; θ ), we write fn for the density of X , in for the Fisher
information and note that because

log fn(X ; θ ) =
n∑

i=1

log f (Xi ; θ ),

(8.8) leads at once to

in(θ ) = ni1(θ ).

Example 8.4 Suppose X1, . . . , Xn are independent, identically distributed from an
exponential distribution with mean θ , so that the common density is f (x ; θ ) =
θ−1 exp(−x/θ ), 0 < x < ∞, 0 < θ < ∞. Let Sn = X1 + · · · + Xn denote the complete
sufficient statistic. Then the log-likelihood based on sample size n is

ln(θ ) = −n log θ − Sn

θ
,

l ′n(θ ) = −n

θ
+ Sn

θ2
,

l ′′n (θ ) = n

θ2
− 2

Sn

θ3
.

It then follows that the likelihood equation has a unique solution when

θ̂ = Sn

n
.

We also check that

Eθ

{(
∂ log fn(X ; θ )

∂θ

)2
}

= 1

θ4
var(Sn) = n

θ2
,
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and

Eθ

{
−∂2 log fn(X ; θ )

∂θ2

}
= − n

θ2
+ 2

θ3
E(Sn) = n

θ2
,

which verifies directly in this instance that the two definitions of in(θ ) lead to the same
thing, while

var(θ̂ ) = var

(
Sn

n

)
= θ2

n

so that the CRLB is attained in this example. Note, however, that, if we had parametrised
the problem in terms of 1/θ instead of θ , writing the density as f (x ; θ ) = θe−θx , x > 0,
then the CRLB would not be attained by the MLE – this statement is left as an exercise for
the reader.

Example 8.4 naturally raises the question of when it is possible for the CRLB to be an
equality rather than an inequality. Let W (X ) be an unbiased estimator of θ . We can argue as
follows. The inequality in (8.6) is an equality if and only if corr(Y, Z ) = ±1, and this can
only occur if Y and Z are proportional to one another (as functions of X for each θ ). Thus

∂

∂θ
log f (X ; θ ) = a(θ )(W (X ) − θ )

for some function a(θ ), and on performing an indefinite integration,

log f (X ; θ ) = A(θ )W (X ) + B(θ ) + C(X )

for some functions A, B and C . Thus the distribution must be of exponential family form
with natural statistic W (X ), parametrised so that E{W (X )} = θ . Note that this is different
from the natural parametrisation referred to throughout Chapters 5–7.

While there have been many occasions when we have used exponential family models
as convenient examples, this is the first time we have indicated that some property of a
problem requires that the model be of exponential family form.

8.3 Convergence of sequences of random variables

In this section we review some basic properties of convergence of random variables, includ-
ing a technical result (Slutsky’s Lemma), which is particularly useful in proving theorems
about convergence of MLEs.

Recall the three modes of convergence for a sequence of random variables {Yn, n ≥ 1}:
A sequence of random variables {Y1, Y2, . . .} is said to converge in probability to a ∈ R

if, given ε > 0 and δ > 0, there exists an n0 ≡ n0(δ, ε) such that, for all n > n0,

Pr(|Yn − a| > ε) < δ.

We write Yn
p−→ a.

A sequence of random variables {Y1, Y2, . . .} is said to converge almost surely to a ∈ R

if, given ε > 0 and δ > 0, there exists an n0 ≡ n0(δ, ε) such that

Pr(|Yn − a| > ε for some n > n0) < δ.

We write Yn
a.s−→ a.
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A sequence of random variables converges in distribution if there exists a distribution
function F such that

lim
n→∞ Pr(Yn ≤ y) = F(y),

for all y that are continuity points of the limiting distribution F . If F is the distribution

function of the random variable Y , we write Yn
d−→ Y .

Let X1, X2, . . . , Xn be independent, identically distributed random variables with finite
mean µ.

The strong law of large numbers (SLLN) says that the sequence of random variables
Yn = n−1(X1 + · · · + Xn) converges almost surely to µ, if and only if E|Xi | is finite.

We shall also make use of the weak law of large numbers (WLLN), which says that, if

the Xi have finite variance, Yn
p−→ µ.

The Central Limit Theorem (CLT) says that, under the condition that the Xi are of finite
variance σ 2, then a suitably standardised version of Yn , Zn = √

n(Yn − µ)/σ , converges in
distribution to a random variable Z having the standard normal distribution N (0, 1).

A very useful result is Slutsky’s Theorem, which states that, if Yn
d−→ Y and Zn

p−→ c,

where c is a finite constant, then, if g is a continuous function, g(Yn, Zn)
d−→ g(Y, c). In

particular: (i) Yn + Zn
d−→ Y + c, (ii) Yn Zn

d−→ cY , (iii) Yn/Zn
d−→ Y/c, if c �= 0.

Remark A trivial extension (which we shall use later) is that, if Yn
d−→ Y, Zn

p−→
c, Wn

p−→ d , then Yn Zn Wn
d−→ cdY . Finally there are multivariate extensions: if {Yn}

is a sequence of random row vectors converging in distribution to a random vector Y and if
Zn is a sequence of random matrices converging to a fixed matrix C (in the sense that each
entry of Zn converges in probability to the corresponding entry of C), then Yn Zn converges
in distribution to Y C .

8.4 Asymptotic properties of maximum likelihood estimators

Although, as we have seen, maximum likelihood estimators have some nice properties in
small samples, it is really for their large sample properties that they are popular, so we turn
now to this topic.

For all the discussion which follows we require some regularity conditions on the family,
though the exact conditions required differ from one result to the next – for example,
consistency (Section 8.4.1) holds under weaker conditions than asymptotic normality and
efficiency (Section 8.4.2). At a minimum the latter properties require that the MLE is given
by the solution of the likelihood equation and that the conditions required for the CRLB are
satisfied. These requirements exclude, for instance, Example 8.2 of Section 8.1 – for that
example the asymptotic distribution of θ̂n can be calculated exactly but is not normal: see
Problem 8.5.

Also, throughout our discussion we shall assume θ is one-dimensional but this is purely
for simplicity of presentation – virtually all the results extend to the case of multidimensional
θ and at various points we shall indicate the form of the extension.
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8.4.1 Consistency

Let θ̂n denote an estimator of a parameter θ based on a sample of size n. We say that

θ̂n is weakly consistent if θ̂n
p−→ θ and strongly consistent if θ̂n

a.s−→ θ . Where the word
‘consistent’ is used without qualification, it is usually understood to mean weakly consistent.

Suppose f (x ; θ ) is a family of probability densities or probability mass functions and let
θ0 denote the true value of the parameter θ . For any θ �= θ0 we have by Jensen’s inequality
(recall Section 6.4)

Eθ0

{
log

f (X ; θ )

f (X ; θ0)

}
≤ log Eθ0

{
f (X ; θ )

f (X ; θ0)

}
= 0, (8.11)

since, for example, in the case of continuous X ,

Eθ0

{
f (X ; θ )

f (X ; θ0)

}
=

∫
X

{
f (x ; θ )

f (x ; θ0)

}
f (x ; θ0)dx =

∫
X

f (x ; θ )dx = 1

with an analogous argument in the case of discrete X . Moreover, the inequality in (8.11) is
strict unless f (X ; θ )/ f (X ; θ0) = 1 (almost everywhere), as a function of X .

Fix δ > 0 and let

µ1 = Eθ0

{
log

f (X ; θ0 − δ)

f (X ; θ0)

}
< 0, µ2 = Eθ0

{
log

f (X ; θ0 + δ)

f (X ; θ0)

}
< 0.

By the SLLN,

ln(θ0 − δ) − ln(θ0)

n
a.s−→ µ1

and so, with probability 1, ln(θ0 − δ) < ln(θ0), for all n sufficiently large. Similarly, with
probability 1, ln(θ0 + δ) < ln(θ0), for all n sufficiently large. Hence, for all n sufficiently
large, there exists an estimator θ̂n which maximises the log-likelihood on (θ0 − δ, θ0 + δ)
for any δ > 0 – in this sense, the MLE is a strongly consistent estimator.

Note that this is a very general argument which does not require differentiability of the
log-likelihood. For example, in the case of Example 8.2 of Section 8.1, the MLE is strongly
consistent even though it is not found by solving the likelihood equation. If one assumes,
however, that ln(θ ) is differentiable for θ in some neighbourhood of θ0, then the above
argument shows that there is a local maximum of the likelihood function, which is given by
solving the likelihood equations and which is then a consistent estimator. This argument still
says nothing about the uniqueness of such an estimator but an obvious consequence is that, if
it can be shown by other means that with probability 1 the solution of the likelihood equations
is unique for all sufficiently large n, then the solution defines a strongly consistent MLE.

8.4.2 The asymptotic distribution of the maximum likelihood estimator

Now we shall assume that the log-likelihood function ln(θ ) is twice continuously differen-
tiable on a neighbourhood of θ0. By the arguments just given in Section 8.4.1, there exists
a sequence of local maxima θ̂n such that l ′n(θ̂n) = 0 and such that θ̂n

a.s−→ θ0 – we do not
make any assumption at this point about the uniqueness of θ̂n though it does turn out that
the MLE is unique on any sufficiently small neighbourhood of θ0.
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A Taylor expansion tells us that

−l ′n(θ0) = l ′n(θ̂n) − l ′n(θ0) = (θ̂n − θ0)l ′′n (θ∗
n ),

where θ∗
n lies between θ0 and θ̂n . Thus

θ̂n − θ0 = − l ′n(θ0)

l ′′n (θ∗
n )

.

Let us now write

√
ni1(θ0)(θ̂n − θ0) = l ′n(θ0)√

ni1(θ0)
· l ′′n (θ0)

l ′′n (θ∗
n )

·
{
− l ′′n (θ0)

ni1(θ0)

}−1

.

If we can show that

l ′n(θ0)√
ni1(θ0)

d−→ N (0, 1), (8.12)

l ′′n (θ0)

l ′′n (θ∗
n )

p−→ 1, (8.13)

− l ′′n (θ0)

ni1(θ0)
p−→ 1, (8.14)

then, by the slightly extended form of the Slutsky Lemma given at the end of Section 8.3,
it will follow that √

ni1(θ0)(θ̂n − θ0)
d−→ N (0, 1). (8.15)

However, (8.12) is a consequence of the Central Limit Theorem applied to∑
(∂/∂θ ) log f (X ; θ ) (each component of which has mean 0 and variance i1(θ ), by (5.1)

and (8.8)) and (8.14) follows from the law of large numbers (in this case the WLLN suffices)
also using (8.8). To show (8.13), one condition (sufficient, but not necessary) is to assume
that ∣∣∣∣∂3 log f (x ; θ )

∂θ3

∣∣∣∣ ≤ g(x)

uniformly for θ in some neighbourhood of θ0, where Eθ0{g(X )} < ∞. In that case∣∣∣∣ l ′′n (θ∗
n ) − l ′′n (θ0)

n

∣∣∣∣ ≤ |θ∗
n − θ0| ·

∑n
i=1 g(Xi )

n
. (8.16)

The second factor tends to a constant by the WLLN applied to {g(Xi ), i ≥ 1}, while the
first tends to 0 in probability by the consistency of θ̂n and the obvious fact that |θ∗

n − θ0| <

|θ̂n − θ0|.
Thus the left-hand side of (8.16) tends in probability to 0 and it follows that

l ′′n (θ∗
n )

l ′′n (θ0)
− 1 = l ′′n (θ∗

n ) − l ′′n (θ0)

n
·
{

l ′′n (θ0)

n

}−1

, (8.17)

where the first factor tends in probability to 0 and the second to −1/ i1(θ0). Hence the
expression in (8.17) tends in probability to 0, which establishes (8.13), and hence the result
(8.15).
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8.4.3 Discussion

1 In more informal language, (8.15) says that θ̂n is approximately normally distributed
with mean θ0 and variance 1/(ni1(θ0)). The latter is of course the CRLB – thus, even
though we cannot guarantee that the CRLB is achieved by any estimator for finite n,
we have shown that it is asymptotically achieved by the maximum likelihood estima-
tor as n → ∞. In this sense, the MLE is asymptotically efficient. We have therefore es-
tablished the three fundamental properties which are primarily responsible for the great
popularity of the maximum likelihood method in practical statistics: consistency, asymp-
totic normality and asymptotic efficiency. These properties are valid under quite weak
conditions, but the conditions (on differentiability of the log-likelihood, validity of the
CRLB etc.) are not trivial and there exist interesting and complicated non-regular prob-
lems, where some or all of these properties do not hold, of which the uniform distribution
with unknown endpoint (Example 8.2 of Section 8.1) is one of the best-known examples.
Dependent data problems, random processes etc. provide other examples of non-regular
problems.

2 Most of what we have said is valid for multiparameter problems as well. For each θ =
(θ1, . . . , θd ) ∈ R

d define −i jk(θ ) for 1 ≤ j, k ≤ d by either of the equivalent expressions
in (5.3) and let i1(θ ) be the Fisher information matrix with ( j, k) entry i jk(θ ). Then the
multidimensional analogue of (8.15) states that, when θ0 is the true value of θ , a consistent
sequence of local maximum likelihood estimators {θ̂n, n ≥ 1} exists such that

√
n(θ̂n − θ0)

converges in distribution to a multivariate normal vector with mean 0 and covariance matrix
i1(θ0)−1. It is part of the assumption that i1(θ0) is invertible.

Note that, as before, i1(θ ) denotes the Fisher information matrix based on a single ob-
servation. The Fisher information matrix based on an independent sample of size n is
in(θ ) ≡ ni1(θ ), and will be abbreviated to i(θ ) where convenient, as in Section 8.1.3.

3 In practice, in all but very simple problems the maximum likelihood estimators
must be found numerically and there exist many computer packages to do this. Most of
them use some form of Newton or quasi-Newton optimisation. In order to calculate con-
fidence intervals and tests of hypotheses, we need to know or estimate i1(θ0) as well,
and there are two approaches to this (both of which assume that i1(θ ) is continuous
at θ0).

(a) Sometimes, it will be analytically possible to calculate the theoretical Fisher information
matrix i1(θ ): to estimate i1(θ0), this would usually be evaluated at θ = θ̂n .

(b) A second approach makes use of the observed information matrix defined in Sec-
tion 8.1.3, the matrix of second-order derivatives of −ln(θ ), again evaluated at θ = θ̂n ,
if θ0 is unspecified.

At first sight it may seem that it would be preferable to use the theoretical Fisher information
matrix, if it were easy to calculate, but in fact an extensive body of theory and practice
suggests that in most cases the inverse of the observed information matrix gives a better
approximation to the true covariance matrix of the estimators, and this is therefore the
preferred method in most applications. An especially important reference here is Efron and
Hinkley (1978).



132 Likelihood theory

8.5 Likelihood ratio tests and Wilks’ Theorem

In this section we consider hypothesis testing within the framework of likelihood methods.
It is possible to use the results of Section 8.4.2, on the asymptotic distribution of maximum
likelihood estimators, directly to construct tests of hypotheses about the parameters, but
this is often not the most convenient or the most accurate procedure to adopt. Instead,
for certain types of hypotheses, there is a very direct and straightforward method based
on likelihood ratio tests. The distribution of a likelihood ratio test statistic, when the null
hypothesis is true, can in rare cases be computed exactly, but in most cases one has to resort
to asymptotic theory. Wilks’ Theorem is a general result giving this asymptotic distribution.
The result involves arguments similar to those in Section 8.4.2, however, and in particular
the regularity conditions needed are essentially the same.

Consider a multiparameter problem in which θ = (θ1, . . . , θd ) ∈ � forming an open
subset of R

d and suppose we want to test a hypothesis of the form

H0 : θ1 = θ0
1 , . . . , θm = θ0

m (8.18)

against the alternative H1 in which θ1, . . . , θd are unrestricted. Here 1 ≤ m ≤ d and
θ0

1 , . . . , θ0
m are known prescribed values. With suitable reparametrisation and reordering

of the components, many hypotheses can be expressed in this way. In particular, if � rep-
resents the full model and we are interested in knowing whether the model can be reduced
to some (d − m)-dimensional subspace of �, then it is quite generally possible to express
this by means of a null hypothesis of the form of (8.18).

Letting L(θ ) denote the likelihood function and �0 the subset of � satisfying the con-
straints (8.18), we write

L0 = sup{L(θ ) : θ ∈ �0}, L1 = sup{L(θ ) : θ ∈ �}, (8.19)

and define the likelihood ratio statistic

Tn = 2 log

(
L1

L0

)
,

where the notation indicates dependence on the sample size n. Note that, if we have the
wherewithal to calculate maximum likelihood estimates, then there is hardly any additional
difficulty in calculating likelihood ratio statistics as well, since the maximisations in (8.19)
involve simply calculating the maximum likelihood estimates within the respective models.

The key result is now as follows:

Wilks’ Theorem Suppose the model satisfies the same regularity conditions as are needed
for the asymptotic properties of maximum likelihood estimators in Section 8.4.2 – in partic-
ular, we require that L(θ ) be at least twice continuously differentiable in all its components
in some neighbourhood of the true value of θ , and that the Fisher information matrix be
well-defined and invertible. Suppose H0 is true. Then, as n → ∞,

Tn
d−→ χ2

m .

Proof in the case d = m = 1. So θ is a scalar and we may write H0 : θ = θ0 against
H1 : θ unrestricted, for some prescribed θ0.
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In this case we have, by taking a Taylor expansion about the maximum likelihood estimate
θ̂n ,

Tn = 2
{
ln(θ̂n) − ln(θ0)

}
= 2(θ̂n − θ0)l ′n(θ̂n) − (θ̂n − θ0)2l ′′n (θ †

n ),

where θ
†
n is some other value of θ which lies between θ0 and θ̂n .

However l ′n(θ̂n) = 0 by definition, so we quickly see that

Tn = ni1(θ0)(θ̂n − θ0)2 · l ′′n (θ †
n )

l ′′n (θ0)
· l ′′n (θ0)

{−ni1(θ0)}
= T (1)

n · T (2)
n · T (3)

n say.

However T (1)
n is asymptotically the square of a standard normal random variable, and

hence distributed as χ2
1 , while T (2)

n and T (3)
n both tend to 1 in probability, by the same

arguments as used in Section 8.4.2. Slutsky’s Lemma then establishes the required
result. �

Discussion
1 The proof for general d and m uses similar methodology, involving Taylor expansion

about the true value of θ followed by arguments based on the (multidimensional) Central
Limit Theorem and laws of large numbers.

2 An alternative to this approach is to use the asymptotic distribution of the maximum
likelihood estimator directly.

Consider just the one-parameter case for simplicity. Assume that (8.15) holds and suppose
î1 is a consistent estimator of i1(θ0). Usually we use either the Fisher information evaluated
at θ̂n , or else the observed information, as in the discussion of Section 8.4.3. Provided
î1/ i1(θ0)

p−→ 1, a further application of Slutsky’s Lemma gives√
nî1(θ̂n − θ0)

d−→ N (0, 1).

An approximate size α test of H0 : θ = θ0 against H1 : θ �= θ0 is then: reject H0 if√
nî1|θ̂n − θ0| > zα/2, where, as previously, zβ denotes the upper-β point of the standard

normal distribution.
Once again, the extension to the multiparameter case is essentially straightforward: some

details are given in Section 8.6 below. This procedure of using the asymptotic distribution
of the MLE to construct a test is sometimes called Wald’s test.

There is yet a third procedure, which is essentially the locally most powerful test men-
tioned briefly in Chapter 4. This test is based on the value of U (θ0), the score function whose
asymptotic distribution follows directly from the Central Limit Theorem. We have, under
H0, that U (θ0) is asymptotically normally distributed, with mean 0 and variance ni1(θ0).
The score test is based on referring U (θ0)/

√
nî1 to the standard normal distribution, with,

as before, î1 a consistent estimator of i1(θ0). Again, the extension to the multiparameter
case is straightforward: see Section 8.6.

3 For a scalar θ , a test of H0 : θ = θ0 may be based on

r (θ0) = sgn(θ̂ − θ0)
√

Tn,

the signed root likelihood ratio statistic.
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It may be shown that r
d−→ N (0, 1), so again a test may be carried out by referring r (θ0)

to the standard normal distribution.
Also, i(θ̂ )1/2(θ̂ − θ ) is asymptotically N (0, 1), so that an approximate 100(1 − α)%

confidence interval for θ is

θ̂ ∓ i(θ̂ )−1/2�−1(1 − α/2),

in terms of the N (0, 1) distribution function �.
4 Finally it should be mentioned that in recent years a number of improvements to the

likelihood ratio procedure have been suggested, generally designed to ensure improved
agreement between asymptotic and exact distributions. Chapter 9 gives a review of such
procedures. Many of these tests implicitly involve conditioning on exactly or approximately
ancillary statistics, so indirectly calling on arguments of the kind given in Section 7.2.

8.6 More on multiparameter problems

Consider again the multiparameter problem in which θ = (θ1, . . . , θd ) ∈ �, an open subset
of R

d .

8.6.1 No nuisance parameter case

Suppose first that there are no nuisance parameters and that we are interested in testing
H0 : θ = θ0. There are many ways of testing H0. We describe three tests, as outlined above
for the case of scalar θ :

1 the likelihood ratio test based on the statistic

w(θ0) ≡ Tn = 2{ln(θ̂ ) − ln(θ0)},

2 the score test based on the statistic

ws(θ0) = U (θ0)T i−1(θ0)U (θ0), (8.20)

3 the Wald test based on the statistic

ww (θ0) = (θ̂ − θ0)T i(θ0)(θ̂ − θ0). (8.21)

In each case the asymptotic null distribution of the statistic is χ2
d . Further, in ws(θ0) and

ww (θ0), i(θ0) can be replaced by a consistent estimator: if i(θ ) is continuous at θ0, any of
i(θ̂ ), j(θ̂ ), j(θ0), i(θ∗) or j(θ∗), where θ∗ is a consistent estimator of θ and j(θ ) is the
observed information matrix, may be used.

Confidence regions at level 1 − α may be formed approximately as, for example,

{θ : w(θ ) ≤ χ2
d,α},

where χ2
d,α is the upper α point of the relevant chi-squared distribution χ2

d .
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8.6.2 Nuisance parameter case: profile likelihood

Typically, interest lies in inference for a subparameter or parameter function ψ = ψ(θ ).
The profile likelihood Lp(ψ) for ψ is defined by

Lp(ψ) = sup
{θ :ψ(θ )=ψ}

L(θ ),

so that the supremum of L(θ ) is taken over all θ that are consistent with the given value of
ψ .

The profile log-likelihood is lp = log Lp. Again, it may be written as lnp if it is to be
stressed that it is based on a sample of size n.

Often ψ is a component of a given partition θ = (ψ, χ) of θ into sub-vectors ψ and χ

of dimension m and d − m respectively, and we may then write

Lp(ψ) = L(ψ, χ̂ψ ),

where χ̂ψ denotes the maximum likelihood estimate of χ for a given value of ψ . We
assume this is the case from now on, and denote the maximum likelihood estimator of θ by
θ̂ = (ψ̂, χ̂ ).

The profile likelihood Lp(ψ) can, to a considerable extent, be thought of and used as
if it were a genuine likelihood. In particular, the maximum profile likelihood estimate of
ψ equals ψ̂ . Further, the profile log-likelihood ratio statistic 2{lp(ψ̂) − lp(ψ0)} equals the
log-likelihood ratio statistic for H0 : ψ = ψ0,

2{lp(ψ̂) − lp(ψ0)} ≡ 2{l(ψ̂, χ̂ ) − l(ψ0, χ̂0)},
where l ≡ ln is the log-likelihood and we have written χ̂0 for χ̂ψ0 . The asymptotic null
distribution of the profile log-likelihood ratio statistic is therefore given by Wilks’ Theorem
of Section 8.5.

Patefield (1977) gave the important result that the inverse of the observed profile in-
formation equals the ψ component of the full observed inverse information evaluated at
(ψ, χ̂ψ ),

j−1
p (ψ) = jψψ (ψ, χ̂ψ ).

Here jp denotes observed profile information, that is minus the matrix of second-order
derivatives of lp, and jψψ is the ψψ-block of the inverse of the full observed information
j , obtained by partitioning j(θ ) and its inverse as

j(θ ) =
[

jψψ (ψ, χ) jψχ (ψ, χ)
jχψ (ψ, χ) jχχ (ψ, χ)

]
,

j−1(θ ) =
[

jψψ (ψ, χ) jψχ (ψ, χ)
jχψ (ψ, χ) jχχ (ψ, χ)

]
,

corresponding to the partitioning of θ .
For scalar ψ , this result follows on differentiating lp(ψ) = l(ψ, χ̂ψ ) twice with respect

to ψ . Let lψ and lχ denote the partial derivatives of l(ψ, χ) with respect to ψ , χ respec-
tively. The profile score is lψ (ψ, χ̂ψ ), on using the chain rule to differentiate lp(ψ) with
respect to ψ , noting that lχ (ψ, χ̂ψ ) = 0. The second derivative is, following the notation,
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lψψ (ψ, χ̂ψ ) + lψχ (ψ, χ̂ψ ) ∂
∂ψ

χ̂ψ . Now use the result that

∂χ̂ψ/∂ψ = − jψχ (ψ, χ̂ψ ) j−1
χχ (ψ, χ̂ψ ).

This latter formula follows by differentiating the likelihood equation lχ (ψ, χ̂ψ ) = 0 with
respect to ψ . This gives

lχψ (ψ, χ̂ψ ) + lχχ (ψ, χ̂ψ )
∂

∂ψ
χ̂ψ = 0,

from which

∂

∂ψ
χ̂ψ = −(lχχ (ψ, χ̂ψ ))−1lχψ (ψ, χ̂ψ ).

It follows that

jp(ψ) = −(lψψ − lψχ (lχχ )−1lχψ ),

where all the derivatives are evaluated at (ψ, χ̂ψ ). Then, using the formulae for the inverse of
a partitioned matrix, as given in Section 8.1.5, the result is proved. The vector case follows
similarly.

When ψ is scalar, this implies that the curvature of the profile log-likelihood is directly
related to the precision of ψ̂ . We have seen that a key property of the log-likelihood l(θ ) when
there are no nuisance parameters is that the observed information j(θ̂ ) can be used as an
estimate of the inverse asymptotic covariance matrix of θ̂ , which is actually i(θ ). The above
result shows that the corresponding function computed from the profile log-likelihood,

jp(ψ̂) = −[∇ψ∇T
ψ lp(ψ)]ψ=ψ̂

determines an estimate of the inverse asymptotic covariance matrix for ψ̂ .

8.6.3 Further test statistics

For testing H0 : ψ = ψ0, in the presence of a nuisance parameter χ , the forms of the score
statistic (8.20) and the Wald statistic (8.21) corresponding to the profile log-likelihood ratio
statistic are obtained by partitioning the maximum likelihood estimate, the score vector
U (θ ) ≡ l ′n(θ ), the information matrix i(θ ) and its inverse in the way considered in the
previous section:

U (θ ) =
(

Uψ (ψ, χ)

Uχ (ψ, χ)

)
,

i(θ ) =
[

iψψ (ψ, χ) iψχ (ψ, χ)
iχψ (ψ, χ) iχχ (ψ, χ)

]
,

i−1(θ ) =
[

iψψ (ψ, χ) iψχ (ψ, χ)
iχψ (ψ, χ) iχχ (ψ, χ)

]
.

Because of the asymptotic normality of U (θ ), we have that Uψ (ψ0, χ0) is asymptotically
normal with zero mean and inverse covariance matrix iψψ (ψ0, χ0), under the true θ0 =
(ψ0, χ0). Replacing χ0 by χ̂0 we obtain a version of the score statistic (8.20) for testing
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H0 : ψ = ψ0:

wsp(ψ0) = Uψ (ψ0, χ̂0)T iψψ (ψ0, χ̂0)Uψ (ψ0, χ̂0). (8.22)

This test has the advantage, over the likelihood ratio statistic for example, that χ has to be
estimated only under H0.

Similarly, ψ̂ is asymptotically normally distributed with mean ψ0 and covariance matrix
iψψ (ψ0, χ0), which can be replaced by iψψ (ψ0, χ̂0), yielding a version of the Wald test
statistic (8.21) for this nuisance parameter case:

wwp(ψ0) = (ψ̂ − ψ0)T [iψψ (ψ0, χ̂0)]−1(ψ̂ − ψ0). (8.23)

Both wsp(ψ0) and wwp(ψ0) have asymptotically a chi-squared distribution with m degrees
of freedom.

The three test procedures – the likelihood ratio test, Wald’s test and the score test – are
all asymptotically equivalent, as can easily be checked (at least in the one-parameter case)
by Taylor expansion of the log-likelihood. In practice, when the three tests are evaluated
numerically, they often lead to substantially different answers. There is no clear-cut theory
to establish which procedure is best, but there is a substantial body of literature pointing
towards the conclusion that, of the three, the likelihood ratio procedure has the best agree-
ment between the true and asymptotic distributions. Cox and Hinkley (1974) surveyed the
literature on this field up to the time that book was published; a much more up-to-date but
also much more advanced treatment is Barndorff-Nielsen and Cox (1994).

8.7 Problems

8.1 Let X = (X1, . . . , Xn) be a random sample of size n ≥ 3 from the exponential distri-
bution of mean 1/θ . Find a sufficient statistic T (X ) for θ and write down its density.
Obtain the maximum likelihood estimator θ̂n based on the sample of size n for θ and
show that it is biased, but that a multiple of it is not.

Calculate the Cramér–Rao Lower Bound for the variance of an unbiased estimator,
and explain why you would not expect the bound to be attained in this example.
Confirm this by calculating the variance of your unbiased estimator and comment on
its behaviour as n → ∞.

8.2 You are given a coin, which you are going to test for fairness. Let the probability of a
head be p, and consider testing H0 : p = 1/2 against H1 : p > 1/2.

(i) You toss the coin 12 times and observe nine heads, three tails. Do you reject H0

in a test of size α = 0.05?
(ii) You toss the coin until you observe the third head, and note that this occurs on the

12th toss. Do you reject H0 in a test of size α = 0.05?

In (i), the number of heads has a binomial distribution, while in (ii) the number of
tosses performed has a negative binomial distribution. What is the likelihood function
for p in the two cases? The likelihood principle would demand that identical inference
about p would be drawn in the two cases. Comment.
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8.3 Consider the (exponential) family of distributions on (0, ∞) with densities

f (x ; θ ) ∝ exp(−θxa),

θ > 0, where a > 1 is fixed. Find the normalising constant for the density, and calcu-
late the maximum likelihood estimator θ̂n based on an independent sample of size n
from this distribution. What is the asymptotic distribution of the maximum likelihood
estimator?

8.4 The family of densities

f (x ; θ ) = 2

π

eθx cos(θπ/2)

cosh(x)
, x ∈ R,

constitutes an exponential family. Find the maximum likelihood estimator of θ based
on an independent sample of size n, and compute the Fisher information.

8.5 Let X1, . . . , Xn be independent and uniformly distributed on (0, θ ), θ > 0. Find the
maximum likelihood estimator θ̂n of θ , its expectation, and its variance. Is it consistent?
What is the asymptotic distribution of {E(θ̂n) − θ̂n}/

√
var{θ̂n}?

8.6 Let X1, . . . , Xn be independent and identically distributed with density of the form
ρe−ρx , x ≥ 0. Find the forms of the Wald, score and likelihood ratio statistics for
testing the hypothesis H0 : ρ = ρ0 against the unrestricted alternative H1 : ρ > 0,
and verify their asymptotic equivalence.

8.7 Suppose that x1, x2, . . . , xn are fixed real numbers such that

�xk = 0, �x2
k = n.

Let Y1, Y2, . . . , Yn be independent random variables such that Yk is normally dis-
tributed with mean α + βxk and variance V .

(a) Suppose first that the variance V is known to be 1, but that α and β are unknown
parameters. It is desired to test the null hypothesis H0 : (α, β) = (0, 0) against the
unrestricted alternative. Let L̂ be the likelihood of the observations Y1, Y2, . . . , Yn

when (α, β) takes the value (α̂, β̂) of the maximum likelihood estimator; and let
L0 be the likelihood under the null hypothesis H0. Prove that, under the null
hypothesis, the exact distribution of 2 log(L̂/L0) is the χ2 distribution with 2
degrees of freedom.

(b) Suppose now that V is not known. Explain how Wilks’ asymptotic likelihood ratio
test would be used to test (α, β, V ) = (0, 0, 1) against an unrestricted alternative.
How would you test (α, β) = (0, 0), with V as nuisance parameter?

8.8 Let Y1, . . . , Yn be independent and identically distributed N (µ, σ 2), and let the param-
eter of interest be µ, with σ 2 unknown. Obtain the form of the profile log-likelihood for
µ, and show how to construct a confidence interval of approximate coverage 1 − α

from the profile log-likelihood. How would you construct a confidence interval of
exact coverage 1 − α?

8.9 Let Y1, . . . , Yn be independent, identically distributed with joint density f (y; θ ), with
θ a scalar parameter.
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Suppose a one-to-one differentiable transformation is made from θ to φ = φ(θ ).
What is the relationship between the Fisher information i(φ) about φ contained in the
sample and i(θ ), the Fisher information about θ?

In Bayesian inference for θ , it was suggested by Jeffreys that a uniform prior should
be assumed for that function φ of θ for which the Fisher information i(φ) is constant.
By considering the relationship between the prior density of θ and that of φ, show that
the suggestion leads to a prior density for θ itself which is proportional to i(θ )1/2.

Let X be a single observation from a binomial(k, θ ) distribution. What is the Jeffreys’
prior for θ?

8.10 A random sample of size n is taken from the normal distribution N (µ, 1). Show that the
maximum likelihood estimator µ̂n of µ is the minimum variance unbiased estimate,
and find its distribution and variance.

Now define a second estimator Tn by

Tn =
{

µ̂n when |µ̂n| ≥ n−1/4,
1
2 µ̂n when |µ̂n| < n−1/4.

Compare the asymptotic distributions of Tn and µ̂n , (a) when µ = 0, (b) when µ > 0.
Compare the mean squared errors of µ̂n and Tn for finite n, numerically if appropriate.
Is Tn a sensible estimator in practice?

(This is an example of asymptotic superefficiency. Asymptotically, Tn outperforms
the minimum variance unbiased estimator at the point of superefficiency µ = 0, but
for fixed n does much worse than µ̂n for values close to µ = 0. This is a general
feature of an asymptotically superefficient estimator of a one-dimensional parameter.)

8.11 Let X1, . . . , Xn be independent and distributed as N (µ, 1); let Yi = |Xi |, i =
1, . . . , n, and θ = |µ|. Show that the log-likelihood function for θ , given the data
Yi = yi , i = 1, . . . , n, may be written, ignoring an additive constant, as

l(θ ) = −1

2
�i (y2

i + θ2) + �i log(eθyi + e−θyi ),

and that in the neighbourhood of θ = 0

l(θ ) = l(0) + 1

2
θ2(�i y2

i − n) − 1

12
θ4�i y4

i + O(θ6).

Deduce that the equation for maximising l(θ ) has a solution θ̂n , where:

(a) if �i y2
i ≤ n, θ̂n = 0;

(b) if �i y2
i > n, θ̂2

n = 3(�i y2
i − n)/�i y4

i .

Hence show that, if θ = 0, the asymptotic distribution of θ̂2
n

√
n is the positive half of

N (0, 2), together with an atom of probability (p = 1
2 ) at 0. What is the asymptotic

distribution of θ̂n in the case θ �= 0?
(In the case θ = 0, the true parameter value lies on the boundary of the parameter

space, so the conventional asymptotic normality asymptotics do not hold.)
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Higher-order theory

In Chapter 8, we sketched the asymptotic theory of likelihood inference. It is our primary
purpose in this chapter to describe refinements to that asymptotic theory, our discussion
having two main origins. One motivation is to improve on the first-order limit results of
Chapter 8, so as to obtain approximations whose asymptotic accuracy is higher by one
or two orders. The other is the Fisherian proposition that inferences on the parameter of
interest should be obtained by conditioning on an ancillary statistic, rather than from the
original model. We introduce also in this chapter some rather more advanced ideas of
statistical theory, which provide important underpinning of statistical methods applied in
many contexts.

Some mathematical preliminaries are described in Section 9.1, most notably the notion
of an asymptotic expansion. The concept of parameter orthogonality, and its consequences
for inference, are discussed in Section 9.2. Section 9.3 describes ways of dealing with a
nuisance parameter, through the notions of marginal likelihood and conditional likelihood.
Parametrisation invariance (Section 9.4) provides an important means of discrimination
between different inferential procedures. Two particularly important forms of asymptotic
expansion, Edgeworth expansion and saddlepoint expansion, are described in Section 9.5
and Section 9.6 respectively. The Laplace approximation method for approximation of
integrals is described briefly in Section 9.7. The remainder of the chapter is concerned
more with inferential procedures. Section 9.8 presents a highlight of modern likelihood-
based inference: the so-called p∗ approximation to the conditional density of a maximum
likelihood estimator, given an ancillary statistic. This formula leads to adjusted forms of
the signed root likelihood ratio statistic, relevant to inference on a scalar parameter of
interest and distributed as N (0, 1) to a high degree of accuracy. Conditional inference to
eliminate nuisance parameters in exponential families, as discussed already in Section 7.2.4,
is considered further in Section 9.9. A striking means of improving the χ2 approximation
to the distribution of the likelihood ratio statistic, Bartlett correction, is considered in
Section 9.10, while Section 9.11 defines a modified profile likelihood, constructed to behave
more like a genuine likelihood function than the profile likelihood introduced in Section 8.6.
The chapter concludes in Section 9.12 with a brief review of the asymptotic theory of
Bayesian inference.
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9.1 Preliminaries

9.1.1 Mann–Wald notation

In asymptotic theory, the so-called Mann–Wald or ‘o and O’ notation is useful, to de-
scribe the order of magnitude of specified quantities. For two sequences of positive
constants (an), (bn), we write an = o(bn) when limn→∞(an/bn) = 0, and an = O(bn)
when lim supn→∞(an/bn) = K < ∞. For sequences of random variables {Yn}, we write

Yn = op(an) if Yn/an
p−→ 0 as n → ∞ and Yn = Op(an) when Yn/an is bounded in prob-

ability as n → ∞, that is given ε > 0 there exist k > 0 and n0 such that, for all n > n0,

Pr(|Yn/an |< k) > 1 − ε.

In particular, Yn = c + op(1) means that Yn
p−→ c.

To illustrate the use of the notation, key results from Chapter 8 may be described in
terms of this notation as follows. We suppose for simplicity the case of inference for a
scalar parameter θ , with no nuisance parameter: extensions to the multivariate case and
to cases involving nuisance parameters involve only notational complication. We have√

i(θ )(θ̂ − θ ) = Z + Op(n−1/2), where Z is N (0, 1). Similarly, the likelihood ratio statistic
w(θ ) = 2{l(θ̂ ) − l(θ )} = W + Op(n−1/2), where W is χ2

1 . For testing the hypothesis H0 :
θ = θ0, the three test statistics, likelihood ratio, Wald and score, differ by Op(n−1/2). When
considering the distribution functions, if we let r (θ ) = sgn(θ̂ − θ )w(θ )1/2 be the signed
root likelihood ratio statistic we have Pr(r ≤ r0) = �(r0) + O(n−1/2), while Pr(w ≤ w0) =
G(w0) + O(n−1), where G(·) is the distribution function of χ2

1 . These results are easily
verified by careful accounting, in the analysis given in Chapter 8 of the orders of magnitude
of various terms in expansions. The key to this is to note that the score function U (θ ) and
the Fisher information i(θ ) refer to the whole vector X of dimension n, and that as n → ∞,
subject to suitable regularity,

U (θ ) = Op(n1/2),

i(θ ) = O(n),

θ̂ − θ = Op(n−1/2).

Actually, it is necessary that these quantities are precisely of these stated orders for the
results of Chapter 8 to hold.

9.1.2 Moments and cumulants

The moment generating function of a scalar random variable X is defined by MX (t) =
E{exp(t X )} whenever this expectation exists. Note that MX (0) = 1, and that the moment
generating function is defined in some interval containing 0. If MX (t) exists for t in an open
interval around 0, then all the moments µ′

r = EXr exist, and we have the Taylor expansion

MX (t) = 1 + µ′
1t + µ′

2
t2

2!
+ · · · + µ′

r

tr

r !
+ O(tr+1),

as t → 0.
The cumulant generating function K X (t) is defined by K X (t) = log{MX (t)}, defined on

the same interval as MX (t). Provided MX (t) exists in an open interval around 0, the Taylor
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series expansion

K X (t) = κ1t + κ2
t2

2!
+ · · · + κr

tr

r !
+ O(tr+1),

as t → 0, defines the r th cumulant κr .
The r th cumulant κr can be expressed in terms of the r th and lower-order moments by

equating coefficients in the expansions of exp{K X (t)} and MX (t). We have, in particular,
κ1 = E(X ) = µ′

1 and κ2 = var(X ) = µ′
2 − µ′2

1 . The third and fourth cumulants are called
the skewness and kurtosis respectively. For the normal distribution, all cumulants of third
and higher order are 0.

Note that, for a, b ∈ R, Ka X+b(t) = bt + K X (at), so that, if κ̃r is the r th cumulant of
aX + b, then κ̃1 = aκ1 + b, κ̃r = arκr , r ≥ 2. Also, if X1, . . . , Xn are independent and
identically distributed random variables with cumulant generating function K X (t), and
Sn = X1 + . . . + Xn , then KSn (t) = nK X (t).

Extension of these notions to multivariate X involves no conceptual complication: see
Pace and Salvan (1997: Chapter 3).

9.1.3 Asymptotic expansions

Various technical tools are of importance in the development of statistical theory. Key meth-
ods, which we describe in subsequent sections, used to obtain higher-order approximations
to densities and distribution functions are Edgeworth expansion, saddlepoint approxima-
tion and Laplace’s method. Here we consider first two important general ideas, those of
asymptotic expansion and stochastic asymptotic expansion.

Asymptotic expansions typically arise in the following way. We are interested in a sequence
of functions { fn(x)}, indexed by n, and write

fn(x) = γ0(x)b0,n + γ1(x)b1,n + γ2(x)b2,n + · · · + γk(x)bk,n + o(bk,n),

as n → ∞, where {br,n}k
r=0 is a sequence, such as {1, n−1/2, n−1, . . . , n−k/2} or

{1, n−1, n−2, . . . , n−k}. An essential condition is that br+1,n = o(br,n) as n → ∞, for each
r = 0, 1, . . . , k − 1.

Often the function of interest fn(x) will be the exact density or distribution function of a
statistic based on a sample of size n at a fixed x , and γ0(x) will be some simple first-order
approximation, such as the normal density or distribution function. One important feature
of asymptotic expansions is that they are not in general convergent series for fn(x) for any
fixed x : taking successively more terms, letting k → ∞ for fixed n, will not necessarily
improve the approximation to fn(x).

We will concentrate here on asymptotic expansions for densities, but describe some of
the key formulae in distribution function estimation.

For a sequence of random variables {Yn}, a stochastic asymptotic expansion is expressed
as

Yn = X0b0,n + X1b1,n + · · · + Xkbk,n + op(bk,n),

where {bk,n} is a given set of sequences and {X0, X1, . . .} are random variables having
distributions not depending on n.
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There are several examples of the use of stochastic asymptotic expansions in the literature,
but they are not as well defined as asymptotic expansions, as there is usually considerable
arbitrariness in the choice of the coefficient random variables {X0, X1, . . .}, and it is often
convenient to use instead of X0, X1, . . . random variables for which only the asymptotic
distribution is free of n. A simple application of stochastic asymptotic expansion is the
proof of asymptotic normality of the maximum likelihood estimator, as sketched in Chapter
8: we have √

i(θ )(θ̂ − θ ) =
{

U (θ )√
i(θ )

}
+ Op(n−1/2),

in terms of the score U (θ ) and Fisher information i(θ ). The quantity U (θ )/
√

i(θ ) plays the
role of X0. By the CLT we can write

U (θ )√
i(θ )

= X0 + Op(n−1/2),

where X0 is N (0, 1).

9.2 Parameter orthogonality

We work now with a multidimensional parameter θ . As we saw in Chapter 8, typically
θ may be partitioned as θ = (ψ, χ), where ψ is the parameter of interest and χ is a nui-
sance parameter. When making inference about ψ , we may seek to minimise the effect
of our lack of knowledge about the nuisance parameter using the notion of parameter
orthogonality.

9.2.1 Definition

Suppose that θ is partitioned into components θ = (θ1, . . . , θd1 ; θd1+1, . . . , θd ) = (θ(1), θ(2)).
Suppose that the Fisher information matrix i(θ ) ≡ [irs(θ )] has irs(θ ) = 0 for all r =
1, . . . , d1, s = d1 + 1, . . . , d , for all θ ∈ �, so that i(θ ) is block diagonal. We then say
that θ(1) is orthogonal to θ(2).

9.2.2 An immediate consequence

Orthogonality implies that the corresponding components of the score U (θ ) are uncorre-
lated, since U (θ ) has covariance matrix i(θ ).

9.2.3 The case d1 = 1

Suppose we have θ = (ψ, χ1, . . . , χq ), with ψ the parameter of interest and χ1, . . . , χq ,
q = d − 1, nuisance parameters. Then it is always possible to find an interest-respecting
reparametrisation under which the parameter of interest ψ and the nuisance parameters
are orthogonal, that is we can find λ1, . . . , λq as functions of (ψ, χ1, . . . , χq ) such that ψ

is orthogonal to (λ1, . . . , λq ). We discuss obtaining such a reparametrisation for the case
q = 1, though the same argument applies for q > 1.
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Let l̃ and ĩ be the log-likelihood and information matrix in terms of (ψ, χ) and write
χ = χ (ψ, λ). Then

l(ψ, λ) = l̃{ψ, χ(ψ, λ)}
and

∂2l

∂ψ∂λ
= ∂2l̃

∂ψ∂χ

∂χ

∂λ
+ ∂2l̃

∂χ2

∂χ

∂λ

∂χ

∂ψ
+ ∂ l̃

∂χ

∂2χ

∂ψ∂λ
,

on differentiating twice using the chain rule.
Now take expectations. The final term vanishes and orthogonality of ψ and λ then requires

∂χ

∂λ

(
ĩψχ + ĩχχ

∂χ

∂ψ

)
= 0.

Assuming that ∂χ

∂λ
is non-zero, this is equivalent to

ĩχχ

∂χ

∂ψ
+ ĩψχ = 0. (9.1)

This partial differential equation determines the dependence of λ on ψ and χ , and is
solvable in general. However, the dependence is not determined uniquely and there remains
considerable arbitrariness in the choice of λ.

9.2.4 An example

Let (Y1, Y2) be independent, exponentially distributed with means (χ, ψχ). Then q = 1
and equation (9.1) becomes

2χ−2 ∂χ

∂ψ
= −(ψχ )−1,

the solution of which is χ = g(λ)/ψ1/2, where g(λ) is an arbitrary function of λ. A con-
venient choice is g(λ) ≡ λ, so that in the orthogonal parametrisation the means are λ/ψ1/2

and λψ1/2.

9.2.5 The case d1 > 1

When dim(ψ) > 1 there is no guarantee that a λ may be found so that ψ and λ are orthogonal.
If, for example, there were two components ψ1 and ψ2 for which it was required to satisfy

(9.1), there would in general be no guarantee that the values of ∂χr/∂ψ1 and ∂χr/∂ψ2 so
obtained would satisfy the compatibility condition

∂2χr

∂ψ1∂ψ2
= ∂2χr

∂ψ2∂ψ1
.

9.2.6 Further remarks

For a fixed value ψ0 of ψ it is possible to determine λ so that iψλ(ψ0, λ) = 0 identically in λ.
If λ is orthogonal to ψ , then any one-to-one smooth function of ψ is orthogonal to any

one-to-one smooth function of λ.
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9.2.7 Effects of parameter orthogonality

Assume that it is possible to make the parameter of interest ψ and the nuisance parameter,
now denoted by λ, orthogonal. We have seen that this is always possible if ψ is one-
dimensional. Any transformation from, say, (ψ, χ) to (ψ, λ) necessary to achieve this leaves
the profile log-likelihood unchanged: see Problem 9.6.

Now the matrices i(ψ, λ) and i−1(ψ, λ) are block diagonal. Therefore, ψ̂ and λ̂ are
asymptotically independent and the asymptotic variance of ψ̂ where λ is unknown is the
same as that where λ is known. A related property is that λ̂ψ , the MLE of λ for specified ψ ,
varies only slowly in ψ in the neighbourhood of ψ̂ , and that there is a corresponding slow
variation of ψ̂λ with λ. More precisely, if ψ − ψ̂ = Op(n−1/2), then λ̂ψ − λ̂ = Op(n−1).
For a non-orthogonal nuisance parameter χ , we would have χ̂ψ − χ̂ = Op(n−1/2).

We sketch a proof of this result for the case where both the parameter of interest and the
nuisance parameter are scalar. If ψ − ψ̂ = Op(n−1/2), χ − χ̂ = Op(n−1/2), we have

l(ψ, χ)

= l(ψ̂, χ̂ ) − 1
2

{
ĵψψ (ψ − ψ̂)2 + 2 ĵψχ (ψ − ψ̂)(χ − χ̂ ) + ĵχχ (χ − χ̂ )2

} + Op(n−1/2),

where, for instance, ĵψψ denotes the ψψ-block of the observed information evaluated at
(ψ̂, χ̂ ). Recalling that χ̂ψ maximises l(ψ, χ) for fixed ψ , it then follows that

χ̂ψ − χ̂ = − ĵψχ

ĵχχ

(ψ − ψ̂) + Op(n−1)

= −iψχ

iχχ

(ψ − ψ̂) + Op(n−1).

Then, because ψ − ψ̂ = Op(n−1/2), χ̂ψ − χ̂ = Op(n−1/2) unless iψχ = 0, the orthogonal
case, when the difference is Op(n−1).

Note also that, so far as asymptotic theory is concerned, we can have χ̂ψ = χ̂ indepen-
dently of ψ only if χ and ψ are orthogonal. In this special case we can write lp(ψ) = l(ψ, χ̂ ).
In the general orthogonal case, lp(ψ) = l(ψ, χ̂ ) + op(1), so that a first-order theory could
use l∗p (ψ) = l(ψ, χ̂ ) instead of l(ψ, χ̂ψ ).

9.3 Pseudo-likelihoods

As we have discussed, typically we consider a model parametrised by a parameter θ which
may be written as θ = (ψ, λ), where ψ is the parameter of interest and λ is a nuisance
parameter, not necessarily orthogonal. In order to draw inferences about the parameter of
interest, we must deal with the nuisance parameter.

Ideally, we would like to construct a likelihood function for ψ alone. The simplest
method for doing so is to construct a likelihood function based on a statistic T such that
the distribution of T depends only on ψ . In this case, we may form a genuine likelihood
function for ψ based on the density function of T ; this is called a marginal likelihood, since
it is based on the marginal distribution of T .

Another approach is available whenever there exists a statistic S such that the conditional
distribution of the data X given S = s depends only on ψ . In this case, we may form a
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likelihood function for ψ based on the conditional density function of X given S = s; this
is called a conditional likelihood function. The drawback of this approach is that we discard
the part of the likelihood function based on the marginal distribution of S, which may
contain information about ψ .

Conditional and marginal likelihoods are particular instances of pseudo-likelihood func-
tions. The term pseudo-likelihood is used to indicate any function of the data which depends
only on the parameter of interest and which behaves, in some respects, as if it were a genuine
likelihood (so that the score has zero null expectation, the maximum likelihood estimator
has an asymptotic normal distribution etc.).

Formally, suppose that there exists a statistic T such that the density of the data X may
be written as

fX (x ; ψ, λ) = fT (t ; ψ) fX |T (x |t ; ψ, λ).

Inference can be based on the marginal distribution of T , which does not depend on λ. The
marginal likelihood function based on t is given by

L(ψ ; t) = fT (t ; ψ).

The drawback of this approach is that we lose the information about ψ contained in the
conditional density of X given T . It may, of course, also be difficult to find such a statistic
T .

To define formally a conditional log-likelihood, suppose that there exists a statistic S
such that

fX (x ; ψ, λ) = fX |S(x |s; ψ) fS(s; ψ, λ).

The statistic S is sufficient in the model with ψ held fixed. A conditional likelihood function
for ψ may be based on fX |S(x |s; ψ), which does not depend on λ. The conditional log-
likelihood function may be calculated as

l(ψ ; x | s) = l(θ ) − l(θ ; s),

where l(θ ; s) denotes the log-likelihood function based on the marginal distribution of S
and l(θ ) is the log-likelihood based on the full data X . Note that we make two assumptions
here about S. The first is that S is not sufficient in the general model with parameters (ψ, λ),
for, if it was, the conditional likelihood would not depend on either ψ or λ. The other is that
S, the sufficient statistic when ψ is fixed, is the same for all ψ ; S does not depend on ψ .

Note that factorisations of the kind that we have assumed in the definitions of conditional
and marginal likelihoods arise essentially only in exponential families and transformation
families. Outside these cases more general notions of pseudo-likelihood must be found.

9.4 Parametrisation invariance

Note that the score u(θ ; x) and the Fisher information i(θ ) depend, not only on the value
of the parameter θ , but also on the parametrisation. If we change from θ to ψ = ψ(θ ) by
a smooth one-to-one transformation, with inverse θ = θ (ψ), and calculate the score and
information in terms of ψ , then different values will be obtained.
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Write l (θ ), u(θ ), i (θ ) and l (ψ), u(ψ), i (ψ) for the log-likelihood, score and Fisher information
in the θ - and ψ-parametrisation, respectively. Then

l (ψ)(ψ) = l (θ ){θ (ψ)},

and, for a = 1, . . . , d,

u(ψ)
a (ψ ; x) = ∂l (θ ){θ (ψ); x}

∂ψa

=
d∑

r=1

∂l (θ ){θ (ψ); x}
∂θr

∂θr

∂ψa

=
d∑

r=1

u(θ )
r {θ (ψ); x} ∂θr

∂ψa
,

or

u(ψ)(ψ ; x) =
[

∂θ

∂ψ

]T

u(θ ){θ (ψ); x},

where ∂θ/∂ψ is the Jacobian of the transformation from θ to ψ , with (r, a) element ∂θr/∂ψa .
Similarly,

i (ψ)
ab (ψ) =

d∑
r=1

d∑
s=1

∂θr

∂ψa

∂θs

∂ψb
i (θ )
rs {θ (ψ)},

or

i (ψ)(ψ) =
[

∂θ

∂ψ

]T

i (θ ){θ (ψ)}
[

∂θ

∂ψ

]
.

The principle of parametrisation invariance is a valuable basis for choosing between differ-
ent inferential procedures. Invariance requires that the conclusions of a statistical analysis be
unchanged by reformulation in terms of ψ , for any reasonably smooth one-to-one function
of θ .

Formally, if θ and ψ are two alternative parametrisations for the model function in
question and π (·) : X → A, with A denoting as before some action space, is an inference
procedure, and Cθ and Cψ are the conclusions that π (·) leads to, expressed in the two
parametrisations, then the same conclusion Cψ should be reached by both application of
π (·) in the ψ parametrisation and translation into the ψ parametrisation of the conclusion
Cθ .

Consider, for example, the exponential distribution with density ρe−ρx . It would for
many purposes be reasonable to take the mean 1/ρ or, say, log ρ as the parameter of
interest. Parametrisation invariance would require, for example, the same conclusions to be
reached by: (i) formulation in terms of ρ, application of a method of analysis and drawing
conclusions about ρ; (ii) formulation in terms of 1/ρ, application of a method of analysis,
drawing conclusions about 1/ρ, then taking the reciprocal.

A particular use of the principle of parametrisation invariance is to decide between differ-
ent test procedures. For example, of the three test procedures based on likelihood quantities
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that we have described, the likelihood ratio test and the score test are parametrisation in-
variant, while the Wald test is not.

9.5 Edgeworth expansion

In this section and in Section 9.6 we assume, for simplicity, the case of univariate, continuous
random variables. Extensions to the multivariate and discrete cases are straightforward and
are summarised, for example, by Severini (2000: Chapter 2).

Let X1, X2, . . . , Xn be independent, identically distributed random variables with cumu-
lant generating function K X (t) and cumulants κr . Let Sn = ∑n

1 Xi , S∗
n = (Sn − nµ)/

√
nσ ,

where µ ≡ κ1 = EX1, σ
2 ≡ κ2 = varX1. Define the r th standardised cumulant by ρr =

κr/κ
r/2
2 .

The Edgeworth expansion for the density of the standardised sample mean S∗
n can be

expressed as:

fS∗
n
(x) = φ(x)

{
1 + ρ3

6
√

n
H3(x) + 1

n

[
ρ4 H4(x)

24
+ ρ2

3 H6(x)

72

]}
+ O(n−3/2). (9.2)

Here φ(x) is the standard normal density and Hr (x) is the r th-degree Hermite polynomial
defined, say, by

Hr (x) = (−1)r drφ(x)

dxr

/
φ(x)

= (−1)rφ(r )(x)/φ(x).

We have H3(x) = x3 − 3x , H4(x) = x4 − 6x2 + 3 and H6(x) = x6 − 15x4 + 45x2 − 15.
The asymptotic expansion (9.2) holds uniformly for x ∈ R.

The leading term in the Edgeworth expansion is the standard normal density, as is appro-
priate from CLT. The remaining terms may be considered as higher-order correction terms.
The n−1/2 term is an adjustment for the main effect of the skewness of the true density, via
the standardised skewness ρ3, and the n−1 term is a simultaneous adjustment for skewness
and kurtosis. If the density of X1 is symmetric, ρ3 = 0 and a normal approximation to the
density of S∗

n is accurate to order n−1, rather than the usual n−1/2 for ρ3 
= 0. The accuracy
of the Edgeworth approximation, say

fS∗
n
(x)

.= φ(x)

{
1 + ρ3

6
√

n
H3(x) + 1

n

[
ρ4 H4(x)

24
+ ρ2

3 H6(x)

72

]}
,

will depend on the value of x . In particular, Edgeworth approximations tend to be poor, and
may even be negative, in the tails of the distribution, as |x | increases.

Integrating the Edgeworth expansion (9.2) term by term (which requires a non-trivial
justification), using the properties of the Hermite polynomials, we obtain an expansion for
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the distribution function of S∗
n :

FS∗
n
(x) = �(x) − φ(x)

{
ρ3

6
√

n
H2(x) + ρ4

24n
H3(x) + ρ2

3

72n
H5(x)

}
+ O(n−3/2).

Also, if Tn is a sufficiently smooth function of S∗
n , then a formal Edgeworth expansion can

be obtained for the density of Tn . Further details and references are given by Severini (2000:
Chapter 2).

When studying the coverage probability of confidence intervals, for example, it is often
convenient to be able to determine x as xα say, so that FS∗

n
(xα) = α, to the order considered

in the Edgeworth approximation to the distribution function of S∗
n . The solution is known

as the Cornish–Fisher expansion and the formula is

xα = zα + 1

6
√

n
(z2

α − 1)ρ3 + 1

24n
(z3

α − 3zα)ρ4 − 1

36n
(2z3

α − 5zα)ρ2
3 + O(n−3/2),

where �(zα) = α.

The derivation of the Edgeworth expansion stems from the result that the density of a
random variable can be obtained by inversion of its characteristic function. A form of this
inversion result useful for our discussion here is that the density for X̄ , the mean of a set of
independent, identically distributed random variables X1, . . . , Xn , can be obtained as

f X̄ (x̄) = n

2π i

∫ τ+i∞

τ−i∞
exp

[
n{K (φ) − φ x̄}]dφ, (9.3)

where K is the cumulant generating function of X , and τ is any point in the open inter-
val around 0 in which the moment generating function M exists. For details, see Feller
(1971: Chapter 16). In essence, the Edgeworth expansion (9.2) is obtained by expanding
the cumulant generating function in a Taylor series around 0, exponentiating and inverting
term by term. Details are given in Barndorff-Nielsen and Cox (1989: Chapter 4): see also
Problem 9.7.

9.6 Saddlepoint expansion

The saddlepoint expansion for the density of Sn is

fSn (s) = 1√
2π

1

{nK ′′
X (φ̂)}1/2

× exp{nK X (φ̂) − φ̂s}{1 + O(n−1)}, (9.4)

where φ̂ ≡ φ̂(s) satisfies nK ′
X (φ̂) = s. Though we would be interested primarily in applying

the expansion in the so-called moderate deviation region of the form |s − nµ| ≤ cn1/2, for
fixed c, it is actually valid in a large deviation region of the form |s − nµ| ≤ bn, for fixed
b, and in some cases even for all s.

A detailed analysis shows that the O(n−1) term is actually (3ρ̂4 − 5ρ̂2
3 )/(24n), where ρ̂ j ≡

ρ̂ j (φ̂) = K ( j)
X (φ̂)/{K ′′

X (φ̂)} j/2 is the j th standardised derivative of the cumulant generating
function for X1 evaluated at φ̂.
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A simple change of variable in (9.4) gives a saddlepoint expansion for the density of
X̄n = Sn/n:

f X̄n
(x) = (2π )−1/2{n/K ′′

X (φ̂)}1/2 × exp
{
n[K X (φ̂) − φ̂x]

}(
1 + O(n−1)

)
, (9.5)

where K ′
X (φ̂) = x . This expansion is valid for x in a large deviation region |x − µ| ≤ b,

for fixed b.
The saddlepoint expansion is quite different in form from the Edgeworth expansion. In

order to use the former to approximate f X̄n
(x) with either the leading term, or the leading

term plus n−1 correction, it is necessary to know the whole cumulant generating function,
not just the first four cumulants. It is also necessary to solve the equation K ′

X (φ̂) = x for each
value of x . The leading term in (9.5) is not the normal (or any other) density; in fact it will not
usually integrate to 1, although it can be renormalised to do so. The saddlepoint expansion is
an asymptotic expansion in powers of n−1, rather than n−1/2, as in the Edgeworth expansion.
This suggests that the main correction for skewness has been absorbed by the leading term,
which is in fact the case.

Observe that, crucially, the saddlepoint expansion is stated with a relative error, while
the Edgeworth expansion is stated with an absolute error.

The approximation obtained from the leading term of (9.5), ignoring the O(n−1) correc-
tion term, is generally very accurate. In particular, the saddlepoint approximation tends to
be much more accurate than an Edgeworth approximation in the tails of the distribution. In
distributions that differ from the normal density in terms of asymmetry, such as the Gamma
distribution, the saddlepoint approximation is extremely accurate throughout the range of
x . It is customary to use as an approximation to f X̄n

(x) a renormalised version of (9.5):

f X̄n
(x)

.= cn{n/K ′′
X (φ̂)}1/2 exp

[
n{K X (φ̂) − φ̂x}], (9.6)

where cn is determined, usually numerically, so that the right-hand side of (9.6) integrates
to 1. If the O(n−1) correction term is constant in x , (9.6) will be exact. For scalar ran-
dom variables this happens only in the case of the normal, Gamma and inverse Gaussian
distributions. The latter will be considered in Chapter 11. In general, the n−1 correction
term {3ρ̂4(φ̂) − 5ρ̂2

3 (φ̂)}/24 varies only slowly with x and the relative error in the renor-
malised approximation (9.6) is O(n−3/2), but only for x in a moderate deviation region
|x − µ| ≤ cn−1/2, for fixed c.

The saddlepoint approximation is usually derived by one of two methods. The first
(Daniels, 1954) uses the inversion formula (9.3) and contour integration, choosing the
contour of integration to pass through the saddlepoint of the integrand on the line of steepest
descent. We sketch instead a more statistical derivation, as described by Barndorff-Nielsen
and Cox (1979).

We associate with the density f (x) for X1 an exponential family density f (x ; φ) defined
by

f (x ; φ) = exp{xφ − K X (φ)} f (x),

where K X is the cumulant generating function of X1, under f (x). Then it is straightforward
to check that the sum Sn = X1 + · · · + Xn has associated density

fSn (s; φ) = exp{sφ − nK X (φ)} fSn (s)



9.6 Saddlepoint expansion 151

from which

fSn (s) = exp{nK X (φ) − sφ} fSn (s; φ). (9.7)

Now use the Edgeworth expansion to obtain an approximation to the density fSn (s; φ),
remembering that cumulants all must refer to cumulants computed under the tilted density
f (x ; φ). Since φ is arbitrary, it is chosen so that the Edgeworth expansion for the tilted
density is evaluated at its mean, where the n−1/2 term in the expansion is zero. This value
is defined by nK ′

X (φ̂) = s and (9.7) becomes

fSn (s)
.= exp{nK X (φ̂) − φ̂s}{2πnK ′′

X (φ̂)}−1/2, (9.8)

which is the approximation deriving from (9.4). The factor {2πnK ′′
X (φ̂)}−1/2 comes from

the normal density evaluated at its mean.
A case of special interest is when f (x) is itself in the exponential family, f (x ; θ ) =

exp{xθ − c(θ ) − h(x)}. Then, since K X (t) = c(θ + t) − c(θ ), it follows that φ̂ = θ̂ − θ ,
where θ̂ is the MLE based on s = x1 + · · · + xn . Then (9.8) is

fSn (s; θ )
.= exp

[
n{c(θ̂ ) − c(θ )} − (θ̂ − θ )s

]{2πnc′′(θ̂ )}−1/2,

which can be expressed as

c exp{l(θ ) − l(θ̂ )}| j(θ̂ )|−1/2, (9.9)

where l(θ ) is the log-likelihood function based on (x1, . . . , xn), or s, and j(θ̂ ) is the observed
information. Since θ̂ = θ̂ (s) is a one-to-one function of s, with Jacobian | j(θ̂ )|, (9.9) can
be used to obtain an approximation to the density of θ̂

fθ̂ (θ̂ ; θ )
.= c exp{l(θ ) − l(θ̂ )}| j(θ̂ )|1/2. (9.10)

This latter approximation is a particular example of the p∗ formula, considered in Sec-
tion 9.8.

It is not easy to integrate the right-hand side of the saddlepoint approximation (9.4) to
obtain an approximation to the distribution function of Sn: see Lugannani and Rice (1980).
The Lugannani–Rice approximation is

FSn (s)
.= �(rs) + φ(rs)

( 1

rs
− 1

vs

)
,

where

rs = sgn(φ̂)
√

2n{φ̂K ′
X (φ̂) − K X (φ̂)},

vs = φ̂

√
nK ′′

X (φ̂),

and φ̂ ≡ φ̂(s) is the saddlepoint satisfying nK ′
X (φ̂) = s. The error is O(n−1), uniformly in

s, and the expansion can be expressed in the asymptotically equivalent form

FSn (s) = �(r∗
s ){1 + O(n−1)},
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with

r∗
s = rs − 1

rs
log

rs

vs
.

The O(n−1) relative error holds in the large deviation region of s, and is actually of order
O(n−3/2) in the moderate deviation region.

9.7 Laplace approximation of integrals

Suppose g : R → R is a smooth function, and that we wish to evaluate the integral

gn =
∫ b

a
e−ng(y)dy.

The main contribution to the integral, for large n, will come from values of y near the
minimum of g(y), which may occur at a or b, or in the interior of the interval (a, b).
Assume that g(y) is minimised at ỹ ∈ (a, b) and that g′(ỹ) = 0, g′′(ỹ) > 0. The other cases
may be treated in a similar manner. For a useful summary of Laplace approximation see
Barndorff-Nielsen and Cox (1989: Chapter 3).

Then, using Taylor expansion, we can write

gn =
∫ b

a
e−n{g(ỹ)+ 1

2 (ỹ−y)2g′′(ỹ)+··· }dy

.= e−ng(ỹ)
∫ b

a
e− n

2 (ỹ−y)2g′′(ỹ)dy

.= e−ng(ỹ)

√
2π

ng′′(ỹ)

∫ ∞

−∞
φ

(
y − ỹ;

1

ng′′(ỹ)

)
dy,

where φ(y − µ; σ 2) is the density of N (µ, σ 2). Since φ integrates to 1,

gn
.= e−ng(ỹ)

√
2π

ng′′(ỹ)
. (9.11)

A more detailed analysis gives

gn = e−ng(ỹ)

√
2π

ng′′(ỹ)

{
1 + 5ρ̃2

3 − 3ρ̃4

24n
+ O(n−2)

}
,

where

ρ̃3 = g(3)(ỹ)/{g′′(ỹ)}3/2,

ρ̃4 = g(4)(ỹ)/{g′′(ỹ)}2.

A similar analysis gives

∫ b

a
h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)

√
2π

ng′′(ỹ)
{1 + O(n−1)}. (9.12)
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A further refinement of the method, which allows g(y) to depend weakly on n, gives∫ b

a
e−n{g(y)− 1

n log h(y)}dy

=
∫ b

a
e−nqn (y)dy, say,

= e−ng(y∗)h(y∗)

√
2π

nq ′′
n (y∗)

{1 + (5ρ∗2
3 − 3ρ∗

4 )/(24n) + O(n−2)}, (9.13)

where

q ′
n(y∗) = 0, ρ∗

j = q ( j)
n (y∗)/{q ′′

n (y∗)} j/2.

The Laplace approximations are particularly useful in Bayesian inference: see Section 9.12.

9.8 The p∗ formula

9.8.1 Introduction

The log-likelihood is, except possibly for a term not depending on the parameter, a function
of a sufficient statistic s and parameter θ . If the dimensions of s and θ are equal, the
maximum likelihood estimator θ̂ is usually a one-to-one function of s and then θ̂ is minimal
sufficient if and only if s is minimal sufficient. We can then take the log-likelihood as l(θ ; θ̂ ),
it being the same as if the data consisted solely of θ̂ or s.

If s = (t, a), where t has the dimension of θ and a is ancillary, then we can generally
write the log-likelihood as l(θ ; θ̂ , a). Recall the convention introduced in Chapter 7 that the
minimal sufficient statistic based in data x can be re-expressed, by a one-to-one smooth
transformation, as (θ̂ , a), where a is ancillary, so that we can write the log-likelihood l(θ ; x)
as l(θ ; θ̂ , a). Similarly, we can write the observed information j(θ ) ≡ j(θ ; x) = j(θ ; θ̂ , a).

Under a transformation model, the maximal invariant statistic serves as the ancillary. In
a full (m, m) exponential model the MLE is minimal sufficient and no ancillary is called
for.

Example 9.1 We consider first the location model, which is the simplest example of a
transformation model, the general theory of which was described in Chapter 5. We have
X1, . . . , Xn independent random variables with

X j = θ + ε j , j = 1, . . . , n,

where ε1, . . . , εn are independent random variables each having the known density function
exp{g(·)}. The log-likelihood is given by

l(θ ) =
∑

g(x j − θ ).

Let a = (a1, . . . , an), where a j = x j − θ̂ : it is readily shown that a is ancillary. We may
write x j = a j + θ̂ , so that the log-likelihood may be written

l(θ ; θ̂ , a) =
∑

g(a j + θ̂ − θ ).
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Example 9.2 As a further example, let X1, . . . , Xn be an independent sample from a full
(m, m) exponential density

exp{xT θ − k(θ ) + D(x)}.
The log-likelihood is, ignoring an additive constant,

l(θ ) =
∑

xT
j θ − nk(θ ).

Since θ̂ satisfies the likelihood equation∑
x j − nk ′(θ ) = 0,

the log-likelihood may be written

l(θ ; θ̂ ) = nk ′(θ̂ )T θ − nk(θ ).

9.8.2 Approximate ancillaries

Outside full exponential family and transformation models it is often difficult to construct
an appropriate ancillary a such that (θ̂ , a) is minimal sufficient, and it is usually necessary
to work with notions of approximate ancillarity. A statistic a is, broadly speaking, approx-
imately ancillary if its asymptotic distribution does not depend on the parameter. Useful
approximate ancillaries can often be constructed from signed log-likelihood ratios or from
score statistics.

Severini (2000: Section 6.6) gives a summary of techniques for construction of approx-
imate ancillaries. One particularly important approximate ancillary is the Efron–Hinkley
ancillary (Efron and Hinkley, 1978). Consider the case of a scalar parameter θ and let, as
before, i and j be the expected and observed information and let lθ = ∂l

∂θ
, lθθ = ∂2l

∂θ2 etc.
Use the notation ν2,1 = E(lθθ lθ ; θ ), ν2,2 = E(lθθ lθθ ; θ ), ν2 = E(lθθ ; θ ). Define

γ = i−1(ν2,2 − ν2
2 − i−1ν2

2,1)1/2,

and use circumflex to denote evaluation at θ̂ . Then the Efron–Hinkley ancillary is defined
by

a = (̂i γ̂ )−1( ĵ − î).

A particularly powerful result, which we will not prove but which amplifies comments made
in Chapter 8 about the use of observed rather than Fisher information being preferable, is
the following. For a location model with θ as the location parameter, if î and ĵ denote
respectively the Fisher and observed information evaluated at θ̂ ,

var (θ̂ | a) − ĵ−1

var (θ̂ | a) − î−1
= Op(n−1/2),

where a denotes the Efron–Hinkley ancillary: ĵ−1 provides a more accurate estimate of the
conditional variance of θ̂ given a.

A simple example of construction of this ancillary is provided by the exponential hy-
perbola. Under this model, (X1, Y1), . . . , (Xn, Yn) denote independent pairs of independent
exponential random variables, such that each X j has mean 1/θ and each Y j has mean θ .
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The minimal sufficent statistic for the model may be written as (θ̂ , a), where θ̂ = (ȳ/x̄)1/2 is
the MLE and a = (x̄ ȳ)1/2 is an (exact) ancillary. Simple calculations show that the Efron–
Hinkley ancillary is

√
2n(ȳ/θ̂ − 1) =

√
2n{(x̄ ȳ)1/2 − 1},

which is in fact also exactly ancillary.

9.8.3 The key formula

A striking result due to Barndorff-Nielsen (1983) is that the conditional density function
f (θ̂ ; θ | a) for the MLE θ̂ given an ancillary statistic a is, in wide generality, exactly or
approximately equal to

p∗(θ̂ ; θ | a) = c(θ, a)| j(θ̂ )|1/2 exp{l(θ ) − l(θ̂ )}, (9.14)

that is

f (θ̂ ; θ | a)
.= p∗(θ̂ ; θ | a).

In (9.14), c(θ, a) is a normalising constant, determined, usually numerically, so that the
integral of p∗ with respect to θ̂ , for fixed a, equals 1.

Equation (9.14) gives the exact conditional distribution of the MLE for a considerable
range of models. In particular, this is the case for virtually all transformation models, for
which c(θ, a) is independent of θ . The location-scale model provides a prototypical example,
with the configuration statistic as the ancillary. Among models for which (9.14) is exact,
but which is not a transformation model, is the inverse Gaussian distribution. Under many
of these models the norming constant c equals (2π )−d/2 exactly, d = dim(θ ). In general,
c = c(θ, a) = (2π )−d/2c̄, where c̄ = 1 + O(n−1). Outside the realm of exactness cases,
(9.14) is quite generally accurate to relative error of order O(n−1):

f (θ̂ ; θ | a) = p∗(θ̂ ; θ | a)
(
1 + O(n−1)

)
,

for any fixed θ̂ . For θ̂ of the form θ̂ = θ + Op(n−1/2), which, in practice, is the situation
we are primarily interested in, the approximation achieves higher accuracy, the relative
error in fact being of order O(n−3/2). Severini (2000: Section 6.5) provides an account of
definitions of approximate ancillarity, which are strong enough for the relative error to be
of order O(n−1) for values of the argument θ̂ of this latter form without a being exactly
ancillary.

Comparing (9.10) with (9.14), we see that the p∗ formula is equivalent to the saddlepoint
approximation in exponential families, with θ the natural parameter.

9.8.4 The adjusted signed root likelihood ratio, r∗

Integration of the p∗ formula in the case of scalar θ to obtain an approximation to
the distribution function of the MLE is intricate: a very clear description is given by
Barndorff-Nielsen (1990). Write

rt ≡ rt (θ ) = sgn(t − θ )
√

2(l(t ; t, a) − l(θ ; t, a)),
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and let

vt ≡ vt (θ ) = j(t ; t, a)−1/2{l;θ̂ (t ; t, a) − l;θ̂ (θ ; t, a)},

in terms of the so-called sample space derivative l;θ̂ defined by

l;θ̂ (θ ; θ̂ , a) = ∂

∂θ̂
l(θ ; θ̂ , a),

and with j the observed information. Then

Prθ (θ̂ ≤ t | a) = �{r∗
t (θ )}{1 + O(n−3/2)},

where r∗
t (θ ) = rt + r−1

t log{vt/rt }, for t = θ + O(n−1/2).
The random quantity r∗(θ ) corresponding to r∗

t (θ ) is an approximate pivot, conditional
on the ancillary, in the sense that its distribution is close to normal. We may view r∗(θ ) as
an adjusted form (the ‘r∗ statistic’) of the signed root likelihood ratio statistic

r (θ ) = sgn(θ̂ − θ ) [2{l(θ̂ ; θ̂ , a) − l(θ ; θ̂ , a)}]1/2

which improves the accuracy of the normal approximation.
To define r∗(θ ) formally,

r∗(θ ) = r (θ ) + r (θ )−1 log{v(θ )/r (θ )},

where

v(θ ) = ĵ−1/2{l;θ̂ (θ̂ ; θ̂ , a) − l;θ̂ (θ ; θ̂ , a)}, (9.15)

with ĵ denoting evaluation of the observed information at θ̂ .
We have that r∗(θ ) is distributed as N (0, 1) to (relative) error of order O(n−3/2):

Prθ {r∗(θ ) ≤ t | a} = �(t){1 + O(n−3/2)},

for t = O(1).
The limits of an approximate (1 − 2α) confidence interval for θ may be found as those

θ such that �{r∗(θ )} = α, 1 − α.
The above is expressed in terms of a one-parameter model. Versions of the adjusted signed

root likelihood ratio statistic r∗(θ ) relevant to inference about a scalar parameter of interest in
the presence of a nuisance parameter are more complicated. To present just the key formula,
suppose that the model depends on a multidimensional parameter θ = (ψ, λ), with ψ a scalar
parameter of interest, with λ nuisance. Then the N (0, 1) approximation to the distribution of
the signed root likelihood ratio statistic rp = sgn(ψ̂ − ψ) [2{lp(ψ̂) − lp(ψ)}]1/2 is improved
by analytically adjusted versions of the form

ra(ψ) = rp(ψ) + rp(ψ)−1 log(vp(ψ)/rp(ψ)),

that are distributed as N (0, 1), conditionally on a (and hence unconditionally), to error of
order O(n−3/2). (We adopt the notation ra(ψ) in preference to r∗(ψ) to avoid notational
conflict in Chapter 10).
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Now the statistic vp is defined (Barndorff-Nielsen, 1986) by

vp(ψ) =
∣∣∣∣ l;θ̂ (θ̂ ) − l;θ̂ (ψ, λ̂ψ )

lψ ;θ̂ (ψ, λ̂ψ )

∣∣∣∣ /{| jψψ (ψ, λ̂ψ )|1/2| j(θ̂ )|1/2}. (9.16)

Here, as previously, the log-likelihood function has been written as l(θ ; θ̂ , a), with (θ̂ , a)
minimal sufficient and a ancillary, λ̂ψ denotes the MLE of λ for given ψ , and

l;θ̂ (θ ) ≡ l;θ̂ (θ ; θ̂ , a) = ∂

∂θ̂
l(θ ; θ̂ , a), lψ ;θ̂ (θ ) ≡ lψ ;θ̂ (θ ; θ̂ , a) = ∂2

∂ψ∂θ̂
l(θ ; θ̂ , a).

Again, j denotes the observed information matrix and jψψ denotes its (ψ, ψ) component.
A key drawback to use of ra(ψ) (the same comment is true of r∗(θ )) is the need to

calculate sample space derivatives, which necessitates explicit specification of the ancillary
a. We have commented that this is difficult in general, outside full exponential family and
transformation models. Several methods of approximation to ra(ψ) which avoid this by
approximating to the sample space derivatives have been developed. A computationally
attractive approximation based on orthogonal parameters is described by DiCiccio and
Martin (1993): recall that in the case we are assuming here of a scalar parameter of interest
it is always possible to find a parametrisation in which the interest parameter ψ and the
nuisance parameters λ are orthogonal. The DiCiccio and Martin (1993) approximation
replaces vp(ψ) by

ṽp(ψ) = lψ (ψ, λ̂ψ )
| jλλ(ψ, λ̂ψ )|1/2iψψ (θ̂ )1/2

| j(θ̂ )|1/2iψψ (ψ, λ̂ψ )1/2
, (9.17)

with the usual partitioning of the observed information j and the Fisher information i ,
and with lψ denoting, as before, the derivative of the log-likelihood l with respect to the
parameter of interest. The corresponding adjusted version of the signed root likelihood ratio
statistic,

r̃a(ψ) = rp(ψ) + rp(ψ)−1 log(ṽp(ψ)/rp(ψ)),

is distributed as N (0, 1) to error of order O(n−1), rather than order O(n−3/2) for ra(θ ). A
further point should be noted, that ra is parametrisation invariant, with respect to interest-
respecting reparametrisation, while r̃a depends on the orthogonal parametrisation adopted.
Other approximations to ra, due to various authors and with the same property of being
distributed as N (0, 1) to error of order O(n−1), are detailed by Severini (2000: Chapter 7).

9.8.5 An example: Normal distribution with known coefficient of variation

Let X1, . . . , Xn denote independent normally distributed random variables each with mean
θ and standard deviation rθ , where θ > 0 and the coefficient of variation r is known;
for simplicity take r = 1. This distribution is widely assumed in many biological and
agricultural problems. The minimal sufficient statistic for the model may be written (θ̂ , a),
where

a = √
n

(
∑

x2
j )

1/2∑
x j
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is easily seen to be an exactly ancillary statistic and

θ̂ = (
∑

x2
j )

1/2

√
n

2|a|
(1 + 4a2)1/2 + sgn(a)

is the maximum likelihood estimator of θ . Assume that a > 0, which occurs with probability
rapidly approaching 1 as n → ∞.

The log-likelihood function may be written

l(θ ; θ̂ , a) = − n

2θ2

[
q2θ̂2 − 2qθ θ̂

a

] − n log θ,

where

q = (1 + 4a2)1/2 + 1

2a
.

It follows that

p∗(θ̂ ; θ | a) =
√

nc̄√
(2π )

(
θ̂

θ

)n−1
1

θ
(1 + q2)1/2

× exp
{ − n

2

[q2

θ2
(θ̂2 − θ2) − 2q

aθ
(θ̂ − θ )

]}
.

This expression may be rewritten as

p∗(θ̂ ; θ | a) =
√

nc̄√
(2π )

exp
{n

2
(q − 1/a)2

}
(1 + q2)1/2

(
θ̂

θ

)n−1
1

θ

× exp
{ − n

2
q2(θ̂/θ − 1/(aq))2

}
.

It may be shown that the exact conditional density of θ̂ given a is of the form

p(θ̂ ; θ | a) = b(a)

(
θ̂

θ

)n−1
1

θ
exp

{ − n

2
q2(θ̂/θ − 1/(aq))2}, (9.18)

where b(a) is a normalising constant depending on a. Hence, the conditional density approx-
imation is exact for this model. An N (0, 1) approximation to the conditional distribution of
r∗(θ ) is not exact, but highly accurate, as we shall see when we consider this model further
in Chapter 11.

9.8.6 The score function

We now consider the application of the p∗ formula to the score function U (θ ). Given an
ancillary a, the MLE θ̂ and the score function will in general be in one-to-one correspondence
for a region of values of θ̂ around the true parameter value θ , and this region will carry all
the probability mass, except for an asymptotically negligible amount. The Jacobian of the
transformation from θ̂ to the vector of derivatives lr of the log-likelihood, lr ≡ ∂

∂θr
l(θ ; θ̂ , a),

the components of the score function, is the matrix l; = [lr ;s] of second-order log-likelihood
derivatives

lr ;s = lr ;s(θ ; θ̂ , a) = ∂

∂θr

∂

∂θ̂s
l(θ ; θ̂ , a).
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From (9.14) an approximation of high accuracy to the conditional distribution of the score
vector given a is provided by

p(u; θ | a)
.= p∗(u; θ | a),

where

p∗(u; θ | a) = c(θ, a)| ĵ |1/2|l; |−1el−̂l .

As an example of calculation of the derivatives required by this approximation, and as used
also, for example, in (9.16), consider the location model. We saw previously that

l(θ ; θ̂ , a) =
∑

g(a j + θ̂ − θ ).

Then

l; ≡ lθ ;θ̂ = −
∑

g′′(a j + θ̂ − θ ).

Note than an Edgeworth or saddlepoint approximation to the marginal distribution of U is
easy to obtain in the case when U is a sum of independent, identically distributed variates.

9.9 Conditional inference in exponential families

A particularly important inference problem to which ideas of this chapter apply concerns
inference about the natural parameter of an exponential family model.

Suppose that X1, . . . , Xn are independent, identically distributed from the exponential
family density

f (x ; ψ, λ) = exp{ψτ1(x) + λτ2(x) − d(ψ, λ) − Q(x)},
where we will suppose for simplicity that the parameter of interest ψ and the nuisance
parameter λ are both scalar.

The natural statistics are T = n−1 ∑
τ1(xi ) and S = n−1 ∑

τ2(xi ). We know from the
general properties of exponential families (Chapter 5) that the conditional distribution of
X = (X1, . . . , Xn) given S = s depends only on ψ , so that inference about ψ may be
derived from a conditional likelihood, given s.

The log-likelihood based on the full data x1, . . . , xn is

nψ t + nλs − nd(ψ, λ),

ignoring terms not involving ψ and λ, and the conditional log-likelihood function is the
full log-likelihood minus the log-likelihood function based on the marginal distribution of
S. We consider an approximation to the marginal distribution of S, based on a saddlepoint
approximation to the density of S, evaluated at its observed value s.

The cumulant generating function of τ2(Xi ) is given by

K (z) = d(ψ, λ + z) − d(ψ, λ).

Write dλ(ψ, λ) = ∂
∂λ

d(ψ, λ) and dλλ(ψ, λ) = ∂2

∂λ2 d(ψ, λ). The saddlepoint equation is then
given by

dλ(ψ, λ + ẑ) = s.
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With s the observed value of S, the likelihood equation for the model with ψ held fixed is

ns − ndλ(ψ, λ̂ψ ) = 0,

so that λ + ẑ = λ̂ψ , where λ̂ψ denotes the maximum likelihood estimator of λ for fixed ψ .
Applying the saddlepoint approximation, ignoring constants, we therefore approximate the
marginal likelihood function based on S as

|dλλ(ψ, λ̂ψ )|−1/2 exp{n[d(ψ, λ̂ψ ) − d(ψ, λ) − (̂λψ − λ)s]};
the resulting approximation to the conditional log-likelihood function is given by

nψ t + nλ̂T
ψs − nd(ψ, λ̂ψ ) + 1

2
log |dλλ(ψ, λ̂ψ )|

≡ l(ψ, λ̂ψ ) + 1

2
log |dλλ(ψ, λ̂ψ )|.

The form of this conditional log-likelihood indicates that, instead of just using the profile
log-likelihood of ψ , an adjustment term should be added. This notion is developed in detail
in Section 9.11 below.

9.10 Bartlett correction

The first-order χ2 approximation to the distribution of the likelihood ratio statistic w(ψ)
can be expressed as

Prθ {w(ψ) ≤ ω◦} = Pr{χ2
q ≤ ω◦}{1 + O(n−1)},

where q is the dimension of ψ and the full parameter vector is θ = (ψ, λ), with λ nuisance.
The χ2 approximation has relative error of order O(n−1).

In the case of independent, identically distributed sampling, it can be shown that

Eθw(ψ) = q{1 + b(θ )/n + O(n−2)},
and so Eθw ′(ψ) = q{1 + O(n−2)}, where w ′ = w/{1 + b(θ )/n}.

This adjustment procedure, of replacing w by w ′, is known as Bartlett correction. In
spite of its simplicity, this device yields remarkably good results under continuous models,
the reason being that division by {1 + b(θ )/n} adjusts, in fact, not only the mean but
simultaneously all the cumulants – and hence the whole distribution – of w towards those
of χ2

q . It can be shown that

Prθ {w ′(ψ) ≤ ω◦} = Pr{χ2
q ≤ ω◦}{1 + O(n−2)}.

In practice, because of the (possible) presence of an unknown nuisance parameter λ, b(θ )
may be unknown. If b(θ ) is replaced by b(ψ, λ̂ψ ), the above result still holds, even to O(n−2).
An explicit expression for b(θ ) is given by Barndorff-Nielsen and Cox (1994: Chapter 6).

Note that the effect of the Bartlett correction is due to the special character of the likelihood
ratio statistic, and the same device applied to, for instance, the score test does not have a
similar effect. Also, under discrete models this type of adjustment does not generally lead
to an improved χ2 approximation.
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9.11 Modified profile likelihood

We noted in Section 8.6 that the profile likelihood Lp(ψ) for a parameter of interest ψ can
largely be thought of as if it were a genuine likelihood. However, this amounts to behaving as
if the nuisance parameter χ over which the maximisation has been carried out were known.
Inference on ψ based on treating Lp(ψ) as a proper likelihood may therefore be grossly
misleading if the data contain insufficient information about χ , as is likely to happen, for
instance, if the dimension of χ is large. Modified profile likelihood is intended as a remedy
for this type of problem.

The modified profile likelihood L̃p(ψ) for a parameter of interest ψ , with nuisance
parameter χ , due to Barndorff-Nielsen (1983), is defined by

L̃p(ψ) = M(ψ)Lp(ψ), (9.19)

where M is a modifying factor

M(ψ) =
∣∣∣∣ ∂χ̂

∂χ̂ψ

∣∣∣∣ | ĵψ |−1/2.

Here | · | denotes the absolute value of a matrix determinant, and ∂χ̂/∂χ̂ψ is the matrix of
partial derivatives of χ̂ with respect to χ̂ψ , where χ̂ is considered as a function of (ψ̂, χ̂ψ , a).
Also, ĵψ = jχχ (ψ, χ̂ψ ), the observed information on χ assuming ψ is known. An instructive
example to look at to grasp the notation is the case of X1, . . . , Xn independent, identically
distributed N (µ, σ 2). Here we see that σ̂ 2

µ = 1
n

∑
(X j − µ)2 = σ̂ 2 + (µ̂ − µ)2.

The modified profile likelihood L̃p is, like Lp, parametrisation invariant. An alternative
expression for the modifying factor M is

M(ψ) = |lχ ;χ̂ (ψ, χ̂ψ ; ψ̂, χ̂ , a)|−1 × | jχχ (ψ, χ̂ψ ; ψ̂, χ̂ , a)|1/2. (9.20)

Identity (9.20) follows from the likelihood equation for χ̂ψ :

lχ (ψ, χ̂ψ (ψ̂, χ̂ , a); ψ̂, χ̂ , a) = 0.

Differentiation with respect to χ̂ yields

lχχ (ψ, χ̂ψ ; ψ̂, χ̂ , a)
∂χ̂ψ

∂χ̂
+ lχ ;χ̂ (ψ, χ̂ψ ; ψ̂, χ̂ , a) = 0,

from which (9.20) follows.
Asymptotically, L̃p and Lp are equivalent to first order. A justification for using L̃p rather

than Lp is that (9.19) arises as a higher-order approximation to a marginal likelihood for ψ

when such a marginal likelihood function is available, and to a conditional likelihood for
ψ when this is available.

Specifically, suppose that the density f (ψ̂, χ̂ ; ψ, χ | a) factorises, either as

f (ψ̂, χ̂ ; ψ, χ | a) = f (ψ̂ ; ψ | a) f (χ̂ ; ψ, χ | ψ̂, a) (9.21)

or as

f (ψ̂, χ̂ ; ψ, χ | a) = f (χ̂ ; ψ, χ | a) f (ψ̂ ; ψ | χ̂ , a). (9.22)

In the case (9.21), (9.19) can be obtained as an approximation (using the p∗ formula) to
the marginal likelihood for ψ based on ψ̂ and conditional on a, that is to the likelihood
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for ψ determined by f (ψ̂ ; ψ | a). Similarly, under (9.22) the same expression (9.19) is
obtained as an approximation to the conditional likelihood for ψ given χ̂ and a, that is
to the likelihood for ψ obtained from f (ψ̂ ; ψ | χ̂ , a). Proofs of both results are given by
Barndorff-Nielsen and Cox (1994: Chapter 8).

Sometimes the joint conditional distribution of ψ̂ and χ̂ψ may be factorised as

f (ψ̂, χ̂ψ ; ψ, χ | a) = f (χ̂ψ ; ψ, χ | a) f (ψ̂ ; ψ | χ̂ψ , a),

while (9.22) does not hold. In this case, (9.19) may be obtained as an approximation to
f (ψ̂ ; ψ | χ̂ψ , a), considered as a pseudo-likelihood for ψ .

Note that, if χ̂ψ does not depend on ψ ,

χ̂ψ ≡ χ̂ , (9.23)

then

L̃p(ψ) = | ĵψ |−1/2Lp(ψ). (9.24)

In the case that ψ and χ are orthogonal, which is a weaker assumption than (9.23), we have
that (9.23) holds to order O(n−1), as does (9.24).

The version of modified profile likelihood defined by (9.24) was first presented by Cox and
Reid (1987). It is easy to construct and seems to give reasonable results in applications. It is
easier to compute than (9.19), but is not invariant with respect to one-to-one transformations
of χ , which leave the parameter of interest fixed. A simple Bayesian motivation for (9.24)
may be given. Let ψ and the nuisance parameter χ be orthogonal, and let the prior density
of ψ and χ be π (ψ, χ). Then the posterior density of ψ is proportional to∫

exp{l(ψ, χ)}π (ψ, χ)dχ. (9.25)

We consider this at a fixed value of ψ . As a function of χ , l(ψ, χ) achieves its maximum
at χ = χ̂ψ . Expanding about this point using Laplace’s method, as given by (9.12), shows
that (9.25) is approximately

(2π )dχ /2π (ψ, χ̂ψ ) exp{l(ψ, χ̂ψ )}/| ĵψ |1/2,

with dχ denoting the dimension of χ . Now argue as follows. As ψ varies in the range of
interest, within O(n−1/2) of ψ̂ , χ̂ψ varies by Op(n−1), by orthogonality, and therefore so
too does the term involving the prior density. Because of its dependence on ψ , the factor
involving the determinant varies by O(n−1/2), while the part depending on the likelihood
is O(1). Therefore, ignoring an error of order O(n−1), inference about ψ can be based on
an effective log-likelihood of

l(ψ, χ̂ψ ) − 1

2
log | ĵψ |,

as given by (9.24).
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9.12 Bayesian asymptotics

In Chapter 3, we discussed Monte Carlo techniques for simulating from a posterior distri-
bution, or for evaluation of a posterior expectation of interest. In many circumstances, it
will be adequate to have easily computed analytic approximations to these.

In this section we review briefly the asymptotic theory of Bayesian inference. The results
provide demonstration of the application of asymptotic approximations discussed earlier,
in particular Laplace approximations. Key references in such use of Laplace approxima-
tion in Bayesian asymptotics include Tierney and Kadane (1986) and Tierney, Kass and
Kadane (1989).

The key result is that the posterior distribution given data x is asymptotically normal.
Write

πn(θ | x) = f (x ; θ )π (θ )/
∫

f (x ; θ )π (θ )dθ

for the posterior density. Denote by θ̂ the MLE.
For θ in a neighbourhood of θ̂ we have, by Taylor expansion,

log

{
f (x ; θ )

f (x ; θ̂ )

}
.= − 1

2 (θ − θ̂ )T j(θ̂ )(θ − θ̂ ).

Provided the likelihood dominates the prior, we can approximate π (θ ) in a neighbourhood
of θ̂ by π (θ̂ ). Then we have

f (x ; θ )π (θ )
.= f (x ; θ̂ )π (θ̂ ) exp{− 1

2 (θ − θ̂ )T j(θ̂ )(θ − θ̂ )},

so that, to first order,

πn(θ | x) ∼ N
(
θ̂ , j−1(θ̂ )

)
.

A more natural approximation to the posterior distribution when the likelihood does not
dominate the prior is obtained if we expand about the posterior mode θ̂π , which maximises
f (x ; θ )π (θ ). An analysis similar to the above then gives

πn(θ | x) ∼ N
(
θ̂π , j−1

π (θ̂π )
)
,

where jπ is minus the matrix of second derivatives of log f (x ; θ )π (θ ).
A more accurate approximation to the posterior is provided by the following. We have

πn(θ | x) = f (x ; θ )π (θ )/
∫

f (x ; θ )π (θ )dθ

.= c exp{l(θ ; x)}π (θ )

exp{l(θ̂ ; x)}| j(θ̂ )|−1/2π (θ̂ )
,

by Laplace approximation of the denominator. We can rewrite as

πn(θ | x)
.= c| j(θ̂ )|1/2 exp{l(θ ) − l(θ̂ )} × {π (θ )/π (θ̂ )};

note the similarity to the density approximation (9.14) for θ̂ .
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Finally, we consider use of the Laplace approximation to approximate to the posterior
expectation of a function g(θ ) of interest,

E{g(θ ) | x} =
∫

g(θ )enl̄n (θ )π (θ )dθ∫
enl̄n (θ )π (θ )dθ

,

where l̄n = n−1 ∑n
i=1 log f (xi ; θ ) is the average log-likelihood function. Recall that such

expectations arise as the solutions to Bayes decision problems. It turns out to be more
effective to rewrite the integrals as

E{g(θ ) | x} =
∫

en{l̄n (θ )+q(θ )/n}dθ∫
en{l̄n (θ )+p(θ )/n}dθ

and to use the version (9.13) of the Laplace approximation. Applying this to the numerator
and denominator gives

E{g(θ ) | x} .= enl̄n (θ∗)+q(θ∗)

enl̄n (θ̃ )+p(θ̃ )
× {−nl̄ ′′n (θ̃ ) − p′′(θ̃ )}1/2

{−nl̄ ′′n (θ∗) − q ′′(θ∗)}1/2

{1 + O(n−1)}
{1 + O(n−1)} ,

where θ∗ maximises nl̄n(θ ) + log g(θ ) + log π (θ ) and θ̃ maximises nl̄n(θ ) + log π (θ ). Fur-
ther detailed analysis shows that the relative error is, in fact, O(n−2). If the integrals are
approximated in their unmodified form the result is not as accurate.

9.13 Problems

9.1 Suppose that (y1, . . . , yn) are generated by a stationary first-order Gaussian autore-
gression with correlation parameter ρ, mean µ and innovation variance τ . That is,
Y1 ∼ N (µ, τ/(1 − ρ2)) and, for j = 2, . . . , n,

Y j = µ + ρ(Y j−1 − µ) + ε j ,

where (ε1, . . . , εn) are independent, identically distributed N (0, τ ).
Find the log-likelihood function. Show that, if µ is known to be zero, the log-

likelihood has (3, 2) exponential family form, and find the natural statistics.
9.2 Let Y1, . . . , Yn be independent Poisson (θ ). Find the score function and the expected

and observed information.
Consider the new parametrisation ψ = ψ(θ ) = e−θ . Compute the score function

and the expected and observed information in the ψ-parametrisation.
9.3 Show that, if the parameters ψ and χ are orthogonal, any one-to-one smooth function

of ψ is orthogonal to any one-to-one smooth function of χ .
9.4 Suppose that Y is distributed according to a density of the form

p(y; θ ) = exp{s(y)T c(θ ) − k(θ ) + D(y)}.

Suppose that θ may be written θ = (ψ, λ), where ψ denotes the parameter of in-
terest, possibly vector valued, and that c(θ ) = (c1(ψ), c2(θ ))T , for functions c1, c2,
where c1(·) is a one-to-one function of ψ . Then, writing s(y) = (s1(y), s2(y))T , the
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log-likelihood function is of the form

l(ψ, λ) = s1(y)T c1(ψ) + s2(y)T c2(θ ) − k(θ ).

Let φ be the complementary mean parameter given by

φ ≡ φ(θ ) = E{s2(Y ); θ}.
Show that ψ and φ are orthogonal parameters.

Let Y have a Gamma distribution with shape parameter ψ and scale parameter φ,
and density

f (y; ψ, φ) = φ−ψ yψ−1 exp(−y/φ)/�(ψ).

Show that ψφ is orthogonal to ψ .
9.5 Let Y1, . . . , Yn be independent random variables such that Y j has a Poisson distribution

with mean exp{λ + ψx j }, where x1, . . . , xn are known constants.
Show that the conditional distribution of Y1, . . . , Yn given S = ∑

Y j does not
depend on λ. Find the conditional log-likelihood function for ψ , and verify that it is
equivalent to the profile log-likelihood.

9.6 Verify that in general the likelihood ratio and score tests are invariant under a
reparametrisation ψ = ψ(θ ), but that the Wald test is not.

Write θ = (θ1, θ2), where θ1 is the parameter of interest. Suppose ψ = ψ(θ ) =
(ψ1, ψ2) is an interest respecting transformation, with ψ1 ≡ ψ1(θ ) = θ1. Show that
the profile log-likelihood is invariant under this reparametrisation.

9.7 Verify that the r th degree Hermite polynomial Hr satisfies the identity∫ ∞

−∞
ety Hr (y)φ(y)dy = tr e

1
2 t2

.

Verify that the moment generating function of S∗
n has the expansion

MS∗
n
(t) = exp

{
KS∗

n
(t)

}
= e

1
2 t2

exp

{
1

6
√

n
ρ3t3 + 1

24n
ρ4t4 + O(n−3/2)

}

= e
1
2 t2

{
1 + ρ3

6
√

n
t3 + ρ4

24n
t4 + ρ2

3

72n
t6 + O(n−3/2)

}
.

On using the above identity, this latter expansion may be written

MS∗
n
(t) =

∫ ∞

−∞
ety

{
1 + 1

6
√

n
ρ3 H3(y)

+ 1

24n
ρ4 H4(y) + 1

72n
ρ2

3 H6(y) + O(n−3/2)

}
φ(y)dy.

Compare with the definition

MS∗
n
(t) =

∫ ∞

−∞
ety fS∗

n
(y)dy,

to provide a heuristic justification for the Edgeworth expansion.
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9.8 Let Y1, . . . , Yn be independent, identically distributed N (µ, σ 2). Obtain the saddle-
point approximation to the density of Sn = ∑n

i=1 Yi , and comment on its exactness.
9.9 Let Y1, . . . , Yn be independent, identically distributed exponential random variables

with density function f (y) = e−y . Obtain the saddlepoint approximation to the den-
sity of Sn = ∑n

i=1 Yi , and show that it matches the exact density except for the
normalising constant.

9.10 Let Y1, . . . , Yn be independent, identically distributed exponential random variables
of mean µ. Verify that the p∗ formula for the density of µ̂ is exact.

9.11 Let y1, . . . , yn be independent realisations of a continuous random variable Y with
density belonging to a location-scale family,

p(y; µ, σ ) = 1

σ
p0

(
y − µ

σ

)
,

(y − µ)/σ ∈ X , µ ∈ R, σ > 0. Assume that the maximum likelihood estimate (µ̂, σ̂ )
of (µ, σ ) based on y = (y1, . . . , yn) exists and is finite and that p0 is suitably differ-
entiable. Define the sample configuration a by

a =
(

y1 − µ̂

σ̂
, . . . ,

yn − µ̂

σ̂

)
.

Show that the p∗ formula for the conditional density of (µ̂, σ̂ ) given a is

p∗(µ̂, σ̂ ; µ, σ | a) = c(µ, σ, a)
σ̂ n−2

σ n

n∏
i=1

p0

(
σ̂

σ
ai + µ̂ − µ

σ

)
,

and is exact.
9.12 Let Y1, . . . , Yn be independent, identically distributed N (µ, σ 2), and suppose the

parameter of interest is the variance σ 2.
Obtain the form of the profile log-likelihood. Show that the profile score has an

expectation which is non-zero.
Find the modified profile log-likelihood for σ 2 and examine the expectation of the

modified profile score.
9.13 Let Y1, . . . , Yn be independent exponential random variables, such that Y j has mean

λ exp(ψx j ), where x1, . . . , xn are known scalar constants and ψ and λ are unknown
parameters.

In this model the maximum likelihood estimators are not sufficient and an ancillary
statistic is needed. Let

a j = log Y j − log λ̂ − ψ̂x j ,

j = 1, . . . , n. Show that a = (a1, . . . , an) is ancillary.
Find the form of the profile log-likelihood function and that of the modified profile

log-likelihood function for ψ .
9.14 Let Y1, . . . , Yn be independent, identically distributed N (µ, σ 2) and consider testing

H0 : µ = µ0. Show that the likelihood ratio statistic for testing H0 may be expressed
as

w = n log{1 + t2/(n − 1)},
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where t is the usual Student’s t statistic.
Show directly that

Ew = 1 + 3

2n
+ O(n−2)

in this case, so that the Bartlett correction factor b ≡ 3/2.
Examine numerically the adequacy of the χ2

1 approximation to w and to w ′ =
w/(1 + 3/2n).

9.15 Let (X1, Y1), . . . , (Xn, Yn) be independent pairs of independently normally distributed
random variables such that, for each j , X j and Y j each have mean µ j and variance
σ 2.

Find the maximum likelihood estimator of σ 2 and show that it is not consistent.
Find the form of the modified profile log-likelihood function for σ 2 and examine

the estimator of σ 2 obtained by its maximisation.
Let S = ∑n

i=1(Xi − Yi )2. What is the distribution of S? Find the form of the
marginal log-likelihood for σ 2 obtained from S and compare it with the modified
profile likelihood.

(This is the ‘Neyman–Scott problem’, which typifies situations with large num-
bers of nuisance parameters. Note, however, that the model falls outside the general
framework that we have been considering, in that the dimension of the parameter
(µ1, . . . , µn, σ

2) depends on the sample size, and tends to ∞ as n → ∞.)
9.16 Consider a multinomial distribution with four cells, the probabilities for which are

π1(θ ) = 1

6
(1 − θ ), π2(θ ) = 1

6
(1 + θ ),

π3(θ ) = 1

6
(2 − θ ), π4(θ ) = 1

6
(2 + θ ),

where θ is unknown, |θ | < 1.
What is the minimal sufficient statistic? Show that A′ = (N1 + N2, N3 + N4) and

A′′ = (N1 + N4, N2 + N3) are both ancillary.
If A is ancillary, we may write

fX (x ; θ ) = fX |A(x | a; θ ) f A(a).

The conditional expected information for θ given A = a is

i A(θ | a) = Eθ

{−∂2 log fX |A(X | a, θ )

∂θ2

∣∣∣∣A = a

}

= Eθ

{−∂2 log fX (X ; θ )

∂θ2

∣∣∣∣A = a

}
.

If we take expectations over the distribution of A:

E{i A(θ | A)} = i(θ ).

With two ancillaries competing,

E{i A′ (θ | A′)} = E{i A′′ (θ | A′′)},
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so that expected conditional information is no basis for choice between them.
Suggest why, to discriminate between them, A′ might be considered preferable to
A′′ if

var {i A′ (θ | A′)} > var {i A′′ (θ | A′′)}.
Show that in the current multinomial example A′ is preferable to A′′ in these
terms.
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Predictive inference

The focus of our discussion so far has been inference for the unknown parameter of the
probability distribution assumed to have generated the sample data. Sometimes, interest
lies instead in assessing the values of future, unobserved values from the same probability
distribution, typically the next observation. We saw in Section 3.9 that in a Bayesian ap-
proach such prediction is easily accommodated, since there all unknowns are regarded as
random variables, so that the distinction between an unknown constant (parameter) and a
future observation (random variable) disappears. However, a variety of other approaches to
prediction have been proposed.

The prediction problem is as follows. The data x are the observed value of a random
variable X with density f (x ; θ ), and we wish to predict the value of a random variable Z ,
which, conditionally on X = x , has distribution function G(z | x ; θ ), depending on θ .

As a simple case, we might have X formed from independent and identically distributed
random variables X1, . . . , Xn , and Z is a further, independent, observation from the same
distribution. A more complicated example is that of time series prediction, where the ob-
servations are correlated and prediction of a future value depends directly on the observed
value as well as on any unknown parameters that have to be estimated. Example 10.2 is a
simple case of time series prediction.

Apart from the fully Bayesian approach of Section 3.9, it is possible to identify at least
five approaches to predictive inference, which we classify as (a) exact methods, (b) decision
theory approaches, (c) methods based on predictive likelihood, (d) asymptotic approaches,
(e) bootstrap methods. In this chapter we provide brief outlines of each of these methods.

Book-length treatments of predictive inference are due to Aitchison and Dunsmore (1975)
and Geisser (1993). Both focus primarily on the Bayesian approach.

10.1 Exact methods

By an exact method, we mean that, for any α ∈ (0, 1), we can construct a ‘prediction set’
Sα(X1, . . . , Xn) such that Pr{Z ∈ Sα(X1, . . . , Xn); θ} = 1 − α for any value of the unknown
parameter θ . Typically, if Z is a scalar, then Sα will be an interval, but in principle we can
allow more general sets.

Cox (1975) and Barndorff-Nielsen and Cox (1996) described two general approaches for
constructing an exact prediction set. The first idea, due to Guttman (1970), uses similar tests.
Suppose X ∼ f (x ; θ ), Z ∼ g(z; θ∗), where we do not initially assume θ∗ = θ . Suppose
we can find a similar test of size α for the hypothesis H0 : θ∗ = θ . Such a test would lead
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to an acceptance region Aα such that

Pr{(X1, . . . , Xn, Z ) ∈ Aα; θ∗ = θ} = 1 − α for all θ. (10.1)

For given X1, . . . , Xn , define Sα(X1, . . . , Xn) to be the set of all values of Z for which

(X1, . . . , Xn, Z ) ∈ Aα . Because of (10.1), this has exact coverage probability 1 − α, what-
ever the true value of θ .

A second method uses pivotal statistics. Suppose T = T (X1, . . . , Xn, Z ) is pivotal, that
is the distribution of T does not depend on θ . Suppose Rα is a set such that Pr{T ∈ Rα} =
1 − α. Then, for given X1, . . . , Xn , the set S = {Z : T (X1, . . . , Xn, Z ) ∈ Rα} defines a
100(1 − α)% prediction set for Z .

Example 10.1 Suppose for instance that we wish to predict a new observation Z from
N (µ, σ 2), with known variance σ 2 but unknown mean µ, on the basis of a set X1, . . . , Xn of
independent identically distributed observations, with mean X̄ , from the same distribution.
Then

(Z − X̄ )/{σ
√

1 + 1/n}
is pivotal, being distributed as N (0, 1), and can be used to construct a prediction interval
for Z : details are worked out in Problem 10.1.

Example 10.2 (Barndorff-Nielsen and Cox, 1996) Suppose X1, . . . , Xn+1 are from a
first-order autoregressive process

X1 ∼ N

(
µ,

σ 2

1 − ρ2

)
, (10.2)

Xi+1 = µ + ρ(Xi − µ) + εi+1,

where |ρ| < 1 and ε2, ε3, . . . are independent (of each other and of X1) with distribution

N (0, σ 2). It is readily verified that, provided (10.2) is satisfied, then Xi ∼ N
(
µ, σ 2

1−ρ2

)
for all i ≥ 1; for this reason (10.2) is called the stationary distribution of the process. The
problem considered here is to predict the value of Xn+1 given observations X1, . . . , Xn .
Specifically, we consider the case where µ is unknown and ρ and σ 2 are known.

We first calculate the maximum likelihood estimator (MLE) of µ. The likelihood function
for µ is derived by writing the joint density of X1, . . . , Xn in the form

f (X1)
n−1∏
i=1

f (Xi+1 | Xi ) = (2πσ 2)−n/2(1 − ρ2)1/2 ×

exp

[
−1

2

{
(1 − ρ2)(X1 − µ)2 +

n−1∑
i=1

(Xi+1 − ρXi − (1 − ρ)µ)2

}]
. (10.3)

The MLE µ̂ minimises

(1 − ρ2)(X1 − µ)2 +
n−1∑
i=1

{Xi+1 − ρXi − (1 − ρ)µ}2



10.1 Exact methods 171

and is therefore given by

µ̂ = X1 + (1 − ρ)(X2 + . . . + Xn−1) + Xn

n − nρ + 2ρ
.

It follows that E(µ̂) = µ and hence that

T = Xn+1 − ρXn − (1 − ρ)µ̂

has a normal distribution with mean 0 and a variance that also does not depend on µ; in
other words, T is a pivotal quantity.

To calculate the variance of T , write

µ̂ − µ = (1 + ρ)(X1 − µ) + ∑n−1
i=1 εi+1

n − nρ + 2ρ
,

T = εn+1 − 1 − ρ

n − nρ + 2ρ
{(1 + ρ)(X1 − µ) +

n−1∑
i=1

εi+1},

which is a sum of independent random variables, so

var(T ) = σ 2

{
1 +

(
1 − ρ

n − nρ + 2ρ

)2 (
1 + ρ

1 − ρ
+ n − 1

)}

= σ 2r2
n (ρ) say.

With probability 1 − α, we have |T | < zα/2σrn(ρ) (recall that, for arbitrary β, zβ is the so-
lution of �(zβ) = 1 − β, � being the standard normal distribution function) and, therefore,
an exact 100(1 − α)% prediction interval for Xn+1 is given by(

ρXn + (1 − ρ)µ̂ − zα/2σrn(ρ), ρXn + (1 − ρ)µ̂ + zα/2σrn(ρ)
)
. (10.4)

As with the case of a simple normal problem (Example 10.1), the more practical problem
is one in which ρ and σ 2 are also unknown. They may be estimated (along with µ) by
jointly maximising the likelihood (10.3) with respect to all three unknown parameters;
the solution of this is left as an exercise. In that case, a reasonable approximation to a
100(1 − α)% prediction interval would be to substitute the maximum likelihood estimators
ρ̂ and σ̂ into (10.4). However, for similar reasons to those for Example 10.1 (see also
Problem 10.1), such an approximation will not give an exact interval. In this case, we are
not aware of any procedure that gives exact coverage probability 1 − α, but asymptotic
methods (Section 10.4) are a potential alternative approach.

Example 10.3 (Barndorff-Nielsen and Cox, 1996) This concerns a different viewpoint of
empirical Bayes analysis (Chapter 3) formulated as a prediction problem.

Suppose Z1, . . . , Zn are independent N (µ, σ 2) and, conditionally on (Z1, . . . , Zn),
X1, . . . , Xn are independent with Xi ∼ N (Zi , τ

2). We observe X1, . . . , Xn and would like
to predict Z1. This differs from the formulation of Chapter 3 in that the means of X1, . . . , Xn

are random variables with a known distribution, as opposed to simply being unknown pa-
rameters µ1, . . . , µn . In this case, admissibility results, such as the James–Stein paradox,
no longer apply, but there is an analogous result, that the estimation of a particular mean
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Z1 should depend not only on X1 but on the entire sample X1, . . . , Xn through some pro-
cess of ‘shrinking towards the mean’ (see equation (10.5) below). The specific formulation
considered here assumes σ 2 and τ 2 are known but the overall mean µ is unknown.

In this case the obvious estimator of µ (which is also the MLE) is µ̂ = X̄ = n−1 ∑n
i=1 Xi ,

so it is natural to consider pivotal statistics of the form

Tλ = Z1 − λX1 − (1 − λ)X̄ , (10.5)

where 0 ≤ λ ≤ 1, λ = 1 being the limiting case of no shrinkage.
We can directly calculate the value of λ, say λ∗, that minimises the variance of Tλ;

we then use Tλ∗ directly to compute an exact prediction interval for Z1. Details are in
Problem 10.3.

10.2 Decision theory approaches

The discussion so far has focussed on procedures for constructing a prediction interval
or a prediction set that guarantees a specified coverage probability. However, it stands to
reason that this cannot be the only criterion for comparing two predictive procedures. For
example, there may be two different ways of constructing a prediction interval, both having
exactly the desired coverage probability, but the first of which always results in a shorter
interval than the second. In this case it seems obvious that we would prefer the first method,
but our discussion so far does not incorporate this as a criterion.

An alternative viewpoint is to define a loss function between the true and predicted
probability densities, and apply the standard concepts of decision theory that we have
discussed in Chapter 3. Suppose we are trying to estimate g(z; θ ), the density of a random
variable we are trying to predict, based on an observation X from a density f (x ; θ ) that
depends on the same parameter θ . Typically X will be a random sample (X1, . . . , Xn) from
the same density g, so f (x ; θ ) = ∏n

i=1 g(xi ; θ ), but it is not necessary that X1, . . . , Xn, Z
all have the same density, so long as they all depend on the same θ .

Suppose, then, we are considering a density g̃(z|x) as an estimate of the true density
g(z; θ ). A common measure of discrepancy between g and g̃ is the Kullback–Leibler diver-
gence:

L(g, g̃) =
∫

log

{
g(z; θ )

g̃(z|x)

}
g(z; θ )dz. (10.6)

Elementary application of Jensen’s inequality shows

L(g, g̃) ≥ 0 (10.7)

with equality only if g̃ = g. Thus if we know θ we should always set g̃ = g, which is a
natural property for a loss function to have, though there are many other reasons why (10.6)
is considered a good measure of discrepancy.

If we are comparing two predictors g̃1 and g̃2, according to (10.6) we would prefer g̃1 if
L(g, g̃1) < L(g, g̃2), or in other words if∫

log

{
g̃1(z|x)

g̃2(z|x)

}
g(z; θ )dz > 0. (10.8)
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However, (10.8) depends on both x and θ . To convert (10.8) from a comparison of loss
functions to a comparison of risk functions, we integrate with respect to x :

∫ ∫
log

{
g̃1(z|x)

g̃2(z|x)

}
g(z; θ )dz f (x ; θ )dx > 0. (10.9)

If, further, θ has a prior density π (θ ), we may integrate (10.9) with respect to π (θ )dθ : g̃1

has smaller Bayes risk than g̃2 if

∫ ∫ ∫
log

{
g̃1(z|x)

g̃2(z|x)

}
g(z; θ )dz f (x ; θ )dxπ (θ )dθ > 0. (10.10)

However, if we rewrite f (x ; θ )π (θ ) = f (x)π (x |θ ), where f (x) = ∫
f (x ; θ )π (θ )dθ is the

marginal density and π (θ |x) is the posterior density of θ given x , then an interchange of
the order of integration in (10.10) leads to

∫ ∫
log

{
g̃1(z|x)

g̃2(z|x)

}
ĝ(z|x)dz f (x)dx > 0, (10.11)

where ĝ(z|x) = ∫
g(z; θ )π (θ |x)dθ is the Bayesian predictive density of Z as defined in

Section 3.9. Note that we are using ĝ specifically to denote a Bayesian predictive density
(depending on some prior π which is not explicitly represented in the notation), whereas
g̃ refers to a general method of constructing an estimate of the density g. However, a
comparison of (10.11) with (10.7) shows that (10.11) is always satisfied if g̃1(z|x) = ĝ(z|x).
In other words, if our decision criterion is Bayes risk with respect to prior π (θ ), then the
optimal predictive density is always the Bayesian predictive density with respect to the
same π (θ ). Of course this could have been anticipated from the very general properties
of Bayesian decision procedures given in Chapter 3, but much of the interest in this topic
is that Bayesian predictive densities often have desirable properties even when evaluated
from a non-Bayesian perspective. In particular, the point of Aitchison’s (1975) paper was
to point out that with g̃1 = ĝ and g̃2 lying in a wide class of natural alternatives, (10.9) is
often satisfied for all θ , a much stronger result than the integrated form (10.10).

Aitchison compared two approaches: if g̃2(z|x) = g(z; θ̃ ), where θ̃ = θ̃ (x) is some point
estimate of θ given x , then g̃2 is called an ‘estimative density’. This is to be compared with
the ‘predictive density’ g̃1 = ĝ. An example where (10.9) holds is given next.

Example 10.4 Suppose g is the Gamma(α, θ) density with known shape parameter α:

g(z; θ ) = θαzα−1e−θ z

�(α)
. (10.12)

We may assume X1, . . . , Xn are independent from the same density, but, since
∑

Xi is
sufficient for θ , it is equivalent to define X = ∑

Xi , in which case the density of X is

f (x ; θ ) = θ k xk−1e−θx

�(k)
, (10.13)

where k = αn.
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The obvious ‘estimative’ approach is to set θ̃ = k
x , the maximum likelihood estimator,

which leads to

g̃2(z|x) = kαzα−1

xα�(α)
e−kz/x . (10.14)

For the ‘predictive’ approach, we assume θ has a Gamma prior with parameters (a, b). The
posterior is then of the same form with parameters (A, B), where A = a + k, B = b + x .
Subsequently we assume b = 0, which leads to the predictive density

g̃1(z|x) =
∫

θαzα−1e−θ z

�(α)
· x Aθ A−1e−xθ

�(A)
dθ

= �(A + α)

�(A)�(α)

zα−1x A

(z + x)α+A
. (10.15)

From (10.14) and (10.15) we have

log

{
g̃1(z|x)

g̃2(z|x)

}
= log

{
�(A + α)

�(A)

}
− α log k + k

z

x

− (α + A) log
(

1 + z

x

)
. (10.16)

To evaluate (10.9) based on (10.16), we must integrate with respect to both z and x , using
(10.12) and (10.13). As a side calculation, if Z ∼ Gamma(α, θ), we have

E(Zr ) = θ−r�(α + r )

�(α)

and on differentiating both sides with respect to r and setting r = 0,

E(log Z ) = − log θ + ψ(α),

where ψ(t) = d
dt {log �(t)} is known as the digamma function. Since we also have X + Z ∼

Gamma(k + α, θ) we calculate

E

(
Z

X

)
= α

k − 1
,

E

{
log

(
1 + Z

X

)}
= E {log (X + Z )} − E {log (X )}
= ψ(α + k) − ψ(k).

Hence the left-hand side of (10.9) becomes

log

{
�(A + α)

�(A)

}
− α log k + kα

k − 1
− (α + A){ψ(α + k) − ψ(k)}. (10.17)

Aitchison gave a simple but non-rigorous argument why (10.17) is positive for all A, α, k
but this is in any case confirmed by numerical experience. He also developed an example
based on the multivariate normal distribution for which a similar result holds, that is that
a suitable class of Bayesian predictive densities outperforms the estimative density when
assessed by Kullback–Leibler distance to the true g(z; θ ). Those two cases are apparently
the only known examples when a strict ordering holds for any sample size n; however, it is
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widely suspected that the same result holds in practice for a much wider class of distributions.
Harris (1989) developed an alternative approach related to the bootstrap (Chapter 11) and
showed that this also improves asymptotically on the estimative approach in the case of
exponential families; this approach is described further in Section 10.5. In a very broadly
based asymptotic approach, Komaki (1996) derived a general construction for improving
estimative approaches by means of a shift in a direction orthogonal to the model. He also
defined general conditions under which this shift is achieved by a Bayesian predictive
density. Unfortunately a full presentation of this approach lies well beyond the scope of the
present discussion.

10.3 Methods based on predictive likelihood

The name ‘predictive likelihood’ was apparently first introduced by Hinkley (1979), though
parallel ideas had been presented in an earlier paper by Lauritzen (1974), and there are
precedents in much earlier work of Karl Pearson and R.A. Fisher. Other contributors in-
clude Mathiasen (1979), Butler (1986, 1989) and Davison (1986), and the whole topic was
reviewed by Bjørnstad (1990), who identified 14 different versions of predictive likelihood,
though adding that many of them are very similar. On the other hand, the concept has been
criticised on the grounds that frequentist coverage probabilities of predictive likelihood-
based prediction intervals or prediction sets do not necessarily improve on those of more
naive procedures; we briefly discuss that aspect at the end of this section.

We do not attempt to review all the different methods, but concentrate on some of the
leading developments in roughly chronological order.

10.3.1 Basic definitions

Suppose we have past data X from a density f (x ; θ ) defined by a finite-dimensional
parameter θ , and we are interested in predicting some as yet unobserved random vari-
able Z , whose distribution depends on θ and possibly also on X . A common situa-
tion, but by no means the only one to which these concepts have been applied, is that
X = (X1, . . . , Xn), Z = (Xn+1, . . . , Xn+m), where X1, . . . , Xn+m are independent and
identically distributed from some parametric family of density functions with parameter
θ . In general we assume there is a joint density fX,Z (x, z; θ ).

If θ has a prior density π (θ ), the Bayesian predictive density (Section 3.9) for a value
Z = z given X = x is defined by

ĝ(z|x) =
∫

fX,Z (x, z; θ )π (θ )dθ∫
fX (x ; θ )π (θ )dθ

=
∫

fZ |X (z|x ; θ )π (θ |x)dθ. (10.18)

Just as the ordinary likelihood may be viewed as an attempt to define the information in θ

without requiring a prior density, so the predictive likelihood for Z may be viewed as an
attempt to provide alternatives to (10.18) without specifying a prior π (θ ). To distinguish
predictive likelihood from its Bayesian relatives, we shall use the symbol L(z|x). If z
is regarded as the quantity of interest then θ is a nuisance parameter, and all predictive
likelihood approaches may be viewed as attempts to remove θ from the conditional density
of Z given X .
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Bjørnstad (1990) remarked that, although there are many definitions of predictive
likelihood, they all reduce to one of three main operations to eliminate θ : integration,
maximisation or conditioning. The simplest is the ‘profile predictive likelihood’

L(z|x) = sup
θ

fX,Z (x, z; θ )

introduced by Mathiasen (1979). This differs from the ‘estimative’ approach of Section 10.2
in that θ is chosen to maximise the joint density of (X, Z ) instead of X alone; nevertheless
it suffers from a similar objection, that it does not adequately allow for the uncertainty in θ

when defining predictive inference for Z .
Lauritzen (1974) and Hinkley (1979) defined an alternative approach by exploiting the

properties of sufficient statistics. A simple version (Hinkley’s Definition 1) applies when X
and Z are independent. Suppose R, S, T are minimal sufficient statistics for θ based on
(Y, Z ), Y, Z respectively. An immediate consequence is that the conditional distribution of
Z given T does not depend on θ ; therefore, to define a predictive likelihood for Z , it suffices
to do so for T . Because X and Z are independent, it follows that R = r (S, T ) is a function
of S and T ; Hinkley assumed this is invertible, that is that T is determined by knowledge
of R and S. Then Hinkley’s definition of the predictive likelihood for T = t given S = s is

LT (t |s) = fS|R(s|r (s, t)), (10.19)

that is the conditional density of S given R. It follows that the predictive likelihood for
Z = z is

L Z (z|s) = LT (t(z)|s) · fZ |T (z|t(z)).

Example 10.5 Suppose Y = (X1, . . . , Xn), Z = (Xn+1, . . . , Xn+m), where X1, . . . , Xn+m

are independent Bernoulli random variables with Pr{Xi = 1} = 1 − Pr{Xi = 0} = θ for all
i . Then S = ∑n

i=1 Xi , T = ∑n+m
i=n+1 Xi , R = S + T and the conditional distribution of S

given R is hypergeometric:

Pr{S = s|R = s + t} =
(n

s

)(m
t

)
(n+m

s+t

) (10.20)

wherever 0 ≤ s ≤ n, 0 ≤ t ≤ m. Thus (10.20), interpreted as a function of t for given s, is
the predictive likelihood for T given S.

In more complicated situations, including ones where X and Z are dependent, Hinkley
proposed the following (Definition 2):

Suppose R is minimal sufficient for (X, Z ), S is minimal sufficient for X and let T be
a function of (Z , S) such that: (i) R is determined by S and T , (ii) a minimal sufficient
reduction of Z is determined by (S, T ). Assume T is determined uniquely by (R, S). Then
the predictive likelihood of T is again defined by (10.19) and the predictive likelihood of
Z is given by

L Z (z|s) = LT (t(z, s)|s) · fZ |(S,T )(z|s, t(z, s)).

Example 10.6 Suppose Y = (X1, . . . , Xn), Z = Xn+1, where X1, . . . , Xn+1 are in-
dependent from the uniform distribution on (0, θ ) for some unknown θ > 0.
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Let M j = max{X1, . . . , X j }. Then R = Mn+1, S = Mn , but Z is not necessarily deter-
mined by knowledge of R and S; therefore, Definition 1 does not apply. Hinkley defined

T =
{

0 if Xn+1 ≤ S,
Xn+1 if Xn+1 > S.

The conditions of Definition 2 are now satisfied. When t = 0, the joint density of (S, T ),
evaluated at (s, t), is nsn−1θ−n · sθ−1 (the first factor is the marginal density of S and the
second is the conditional probability that Xn+1 < S given S = s). When t > s, the joint
density is nsn−1θ−n · θ−1 on s < t < θ . The marginal density of R is (n + 1)rnθ−n−1.
Therefore, the predictive likelihood for T is

LT (t |s) =



n
n+1 if t = 0, r = s,

nsn−1

(n+1)tn if t = r > s,

and the predictive likelihood for Z is

L Z (z|s) =



n
(n+1)s if 0 ≤ z ≤ s,

nsn−1

(n+1)zn if z > s.

10.3.2 Butler’s predictive likelihood

Butler (1986) argued that Hinkley’s predictive likelihood is too restrictive to be applied to
a wide range of problems and proposed the following ‘conditional’ approach.

Suppose (X, Z ) is transformed to (R, U ), where R is minimal sufficient and the compo-
nents of U are locally orthogonal (to each other and to R). This is equivalent to assuming
K T K = I and K T J = 0, where K = ∂u

∂(x,z) and J = ∂r
∂(x,z) are matrices of first-order partial

derivatives. Then the Jacobian of the transformation from (x, z) to (r, u) has the form∣∣∣∣ ∂(r, u)

∂(x, z)

∣∣∣∣ =
∣∣∣∣ J

K

∣∣∣∣ =
∣∣∣∣
(

J
K

) (
J T K T

)∣∣∣∣
1/2

=
∣∣∣∣ J J T J K T

K J T K K T

∣∣∣∣
1/2

= |J J T |1/2

and hence the likelihood is rewritten

fX,Z (x, z; θ )dxdz = fX,Z (x, z; θ )

fR(r ; θ )
|J J T |−1/2du · fR(r ; θ )dr. (10.21)

Butler defined the predictive likelihood as

L(z|x) = fX,Z (x, z; θ )

fR(r ; θ )|J J T |1/2
(10.22)

noting that this is ‘the largest portion of (10.21) which may be used to infer z without a
prior distribution for θ ’.

Under the conditions where Hinkley’s Definition 1 holds, Butler remarked that (10.22) is
the same as Hinkley’s predictive likelihood except for the |J J T |1/2 factor. For other cases,
including those where X and Z are dependent, Butler suggested that (10.22) is a simpler
and more widely applicable approach than Hinkley’s Definition 2.
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10.3.3 Approximate predictive likelihood

The predictive likelihoods defined so far all suffer from one objection: they require the
existence of a minimal sufficient statistic for (X, Z ), and are only effective when this
represents a genuine reduction of the data; for instance, if R was simply the vector of
ordered values of X and Z , (10.22) would be meaningless. For situations in which no non-
trivial minimal sufficient statistic exists, various approximations to predictive likelihood
were suggested by Leonard (1982), Davison (1986) and Butler (1989). We follow Davison’s
development here, which has the virtue of being defined for a general parametric family
without any specification of sufficient or ancillary statistics.

The basis of Davison’s formula is an approximation to the Bayesian predictive density
(10.18). Suppose θ is p-dimensional and fX (x ; θ )π (θ ) has a unique maximum with respect
to θ at θ = θ∗. We assume that − log{ fX (x ; θ )π (θ )} is at least twice continuously differen-
tiable in a neighbourhood of θ = θ∗ and let I (θ∗) denote the matrix of second-order partial
derivatives, evaluated at θ = θ∗. Then a multidimensional version of Laplace’s integral
formula (Section 9.7) shows that∫

fX (x ; θ )π (θ )dθ = (2π )p/2 fX (x ; θ∗)π (θ∗)|I (θ∗)|−1/2
{
1 + Op(n−1)

}
. (10.23)

Note that, if the contribution of π (θ ) is ignored, θ∗ is the maximum likelihood estimator of
θ , and I (θ∗) is the observed information matrix.

Davison applied (10.23) to both the numerator and the denominator of (10.18) to deduce
the approximation

ĝ(z|x) = fX,Z (x, z; θ∗(z))π (θ∗(z))|I (θ∗)|1/2

fX (x ; θ∗)π (θ∗)|J (θ∗(z))|1/2

{
1 + Op(n−1)

}
, (10.24)

where θ∗(z) is the value of θ that maximises fX,Z (x, z; θ )π (θ ), and J (θ∗(z)) is the corre-
sponding matrix of second-order derivatives of − log{ fX,Z (x, z; θ )π (θ )} at θ = θ∗(z). In
many cases, Davison pointed out, the approximation error is actually Op(n−2) rather than
Op(n−1) – this happens, essentially, because the leading error terms to Op(n−1) cancel in
the numerator and denominator. The approximation (10.24) is similar to the approximation
to posterior densities defined by Tierney and Kadane (1986), though Tierney and Kadane
did not apply their method to the calculation of predictive densities.

In cases where π is not specified, Davison proposed (10.24) (omitting the π (·) terms
and the Op(n−1) errors) as an ‘approximate predictive likelihood’. This is equivalent to
approximating a Bayesian predictive density under a flat prior.

The appearance of Jacobian terms in the numerator and denominator of (10.24) is rem-
iniscent of the p∗ formula for the distribution of the MLE (Section 9.8), so there are clear
connections with conditional inference. On the other hand, there is no direct justification
for a uniform prior; for example, the formula (10.24) (with π omitted) is not invariant
with respect to transformations of the parameter. This is because, if ψ is a non-linear 1–1
transformation of θ , a uniform prior for θ does not transform into a uniform prior for ψ .
In this respect, the approximate predictive likelihood suffers from the same objection as
has often been voiced against the Bayesian predictive likelihood, namely, that there is no
clear-cut basis for assigning a prior density and assuming a uniform prior does not resolve
this difficulty.
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10.3.4 Objections to predictive likelihood

Cox (1986) argued that prediction intervals constructed from predictive likelihood would
need to be ‘calibrated’ to ensure accurate frequentist coverage probabilities. Hall, Peng and
Tajvidi (1999) took this objection further, commenting that predictive likelihood methods
‘do not adequately allow for the effects of curvature with respect to the parameter when used
to construct prediction intervals and prediction limits. Therefore, they cannot be expected
to correct for the dominant term in an expansion of coverage error of a prediction interval.’
To counter these objections they proposed a bootstrap approach, which we describe in
Section 10.5. On the other hand, Butler (1989, 1990) argued that conditional forms of
calibration (conditioning on an exact ancillary statistic if one is available, or otherwise on
an approximate ancillary) are more appropriate than unconditional calibration.

10.4 Asymptotic methods

Asymptotic methods for prediction have been developed by a number of authors but in
particular Cox (1975) and Barndorff-Nielsen and Cox (1994, 1996). The central idea is as
follows. Suppose we have some statistic T (a function of X1, . . . , Xn and Z ) for which
Pr{T ≤ t} = G(t ; θ ). If G is independent of θ then T is pivotal and construction of a
prediction interval with exact coverage probability follows as in Section 10.1. In most
problems, however, no exact pivotal exists. In that case a natural approach is to estimate
G(t ; θ ) in some way, which we write as G̃(t). We proceed as if G̃ was the pivotal distribution
of T . For given α, define t̃α to satisfy G̃(t̃α) = α. Then the relationship {T ≤ t̃α} (regarded
as a statement about Z , for given X1, . . . , Xn) defines an approximate 100α% prediction
interval for Z . In regular cases, the true coverage probability is of the form α + c

n + o
(

1
n

)
,

where c can in principle be explicitly calculated. Defining α1 = α − c
n and assuming some

reasonable amount of continuity, the set {T ≤ tα1} has coverage probability α + o
(

1
n

)
. Thus,

by adjusting the nominal coverage probability from α to α1, we may correct for the coverage
probability bias.

In this section we focus primarily on the α-quantile of the predictive distribution, and
resulting one-sided prediction sets with coverage probability α. To translate the results into
the more familiar setting of two-sided prediction intervals with coverage probability 1 − α

(Section 10.1), the usual procedure is to estimate two quantiles of the predictive distribution,
corresponding to probabilities α

2 and 1 − α
2 , and to define the difference between the two

quantiles as a prediction interval.
If the predictive distribution is normal, the correction from α to α1 may be given an

alternative interpretation, as follows. In this case tα is typically of the form A + Bzα , where
A is the predictive mean of Z , B is the predictive standard deviation and zα is the α-quantile
of the standard normal distribution. Replacing α by α1 = α − c

n is equivalent to replacing
zα by zα + ε where, to first order,

α − c

n
= �(zα + ε) = α + εφ(zα).

Thus ε = − c
nφ(zα ) and hence zα1 = zα

(
1 − c

nzαφ(zα )

)
. The correction thus amounts to re-

placing the predictive standard deviation B by B
(

1 − c
nzαφ(zα )

)
or, what is equivalent to the
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same order of approximation, replacing the predictive variance B2 by B2
(

1 − 2c
nzαφ(zα )

)
. In

general there is no guarantee that c
zαφ(zα ) is independent of α, but in some cases it is, and,

then, this interpretation is particularly appealing. Problem 10.5 provides an example.
In some cases it may be possible to partition the parameter vector, say θ = (µ, ψ), so

that, when ψ is known, T is exactly pivotal (in other words, the distribution of T depends on
ψ but not on µ). Each of the Examples 10.1–10.3 is of this form. In that case, the argument
may be simplified by performing the asymptotic calculation with respect to ψ alone, instead
of the whole of θ . See Example 10.7 below.

Another issue is that in cases of genuine stochastic dependence (for example, prediction
in a time series), the conditional distribution of T given X = (X1, . . . , Xn) may itself
depend on X ; thus, we should replace G(t ; θ ) by G(t ; x, θ ), where x is the numerical value
of the conditioning variable X . To simplify the notation, we do not indicate the possible
dependence on x , but the following arguments (as far as (10.28)) essentially continue to
hold in that case.

There are various approaches to constructing an estimator G̃(t). An obvious approach
is to substitute an estimator θ̃ for θ ; possibly, but not necessarily, the maximum likelihood
estimator. Thus G̃(t) = G(t ; θ̃ ). This is the estimative approach defined in Section 10.2. An
alternative method is Bayesian: G̃(t) = ∫

G(t ; θ )π (θ |X )dθ , where π (θ |X ) is the posterior
distribution of θ given X1, . . . , Xn . In this case the constant c depends on the prior density
π (θ ). Sometimes it is possible to choose π so that c = 0. In this case π is called a matching
prior (Datta et al., 2000). The implication is that, if we perform Bayesian prediction with
a matching prior, the resulting prediction interval has coverage probability very close to
the nominal value. However, even in the absence of a matching prior, asymptotic calcula-
tions and/or simulations often show that the Bayesian prediction interval is superior to the
estimative approach.

Full details of the asymptotic calculations use second-order asymptotics (Chapter 9),
which lie beyond the scope of the present discussion. In cases where there is a closed-
form formula for G̃(t) however, it is often possible to calculate the needed asymp-
totic terms directly, and we concentrate on that case here. The argument follows Smith
(1997, 1999) and extends an earlier argument of Cox (1975), Barndorff-Nielsen and
Cox (1996).

Our approach to asymptotics is ‘formal’: we make extensive use of the Central Limit
Theorem and Taylor expansions, keeping track of the orders of magnitudes of the various
terms involved, but not attempting to prove rigorously that the remainder terms are of the
orders stated. We also assume that asymptotic expressions may be differentiated term by
term without rigorously justifying the interchange of limit and derivative.

Recall that G̃(t̃α) = G(tα; θ ) = α. For brevity we write tα in place of tα(θ ) and let primes
denote derivatives with respect to t , for example G ′(t ; θ ) = ∂

∂t {G(t ; θ )}.
Suppose G̃(t) allows a stochastic asymptotic expansion

G̃(t) = G(t ; θ ) + R√
n

+ S

n
+ . . . ,

where R = R(t, θ ) and S = S(t, θ ) are random functions of both t and θ . This kind of
expansion typically holds with maximum likelihood estimators, Bayesian estimators, etc.
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Also, since the principal error term is of Op

(
1√
n

)
, it follows at once that t̃α − tα = Op

(
1√
n

)
.

Then

0 = G̃(t̃α) − G(tα; θ )

= G̃(t̃α) − G̃(tα) + G̃(tα) − G(tα; θ )

= (t̃α − tα)G̃ ′(tα) + 1

2
(t̃α − tα)2G̃ ′′(tα) + R(tα, θ )√

n
+ S(tα, θ )

n
+ op

(
1

n

)

= (t̃α − tα)

{
G ′(tα; θ ) + R′(tα, θ )√

n

}
+ 1

2
(t̃α − tα)2G ′′(tα; θ )

+ R(tα, θ )√
n

+ S(tα, θ )

n
+ op

(
1

n

)
. (10.25)

A first-order approximation (retaining only terms of Op

(
1√
n

)
) shows that

t̃α − tα = − R(tα, θ )√
nG ′(tα, θ )

+ Op

(
1

n

)
. (10.26)

Substituting from (10.26) back into (10.25) and collecting up the Op
(

1
n

)
terms, we get

t̃α − tα = − R√
nG ′ + 1

n

(
R R′

G ′2 − R2G ′′

2G ′3 − S

G ′

)
+ op

(
1

n

)
. (10.27)

Now write G(t̃α; θ ) − G(tα; θ ) = (t̃α − tα)G ′ + 1
2 (t̃α − tα)2G ′′ + . . . taking further Taylor

expansion based on (10.27), to deduce

G(t̃α; θ ) − G(tα; θ ) = − R√
n

+ 1

n

(
R R′

G ′ − S

)
+ . . . .

Finally, on taking expectations in this last expression,

Pr{T ≤ t̃α} − α = − 1√
n

E(R) + 1

n
E

(
R R′

G ′ − S

)
+ . . . . (10.28)

Typically E(R) is of O
(

1√
n

)
or smaller, so that the leading term in (10.28) is c

n for some

constant c, as previously indicated.
In the case that Pr{T ≤ t |X = x} = G(t ; x, θ ) depending on x , each of the expressions

R, R′, S and G ′ will also depend on x , but this does not change the essential form of the
result; in all cases, the expectation in (10.28) is taken jointly with respect to X and Z .

Example 10.7 Suppose X1, . . . , Xn, Z are independent N (µ, σ 2), where µ and σ 2 are
both unknown. Recall from our earlier example 10.1 that, if σ 2 is known, then T =√

n
n+1 (Z − X̄ ) is a pivotal statistic with distribution N (0, σ 2), and write θ = σ−1. Then

G(t ; θ ) = �(tθ ), where � is the standard normal distribution function. If we define tα so that
G(tα; θ ) = α, then we will have tα = zα/θ , where zα is the α-quantile of the standard normal
distribution.

The usual estimator of σ 2 is s2 = 1
n−1

∑n
i=1(Xi − X̄ )2, for which (n − 1) s2

σ 2 ∼ χ2
n−1.

Thus we suggest the estimator θ̃ = s−1 and consequently t̃α = zα/θ̃ . The next step is to
calculate the approximate mean and variance of θ̃ .
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If W ∼ χ2
ν , then W has mean ν and variance 2ν, so we may write W = ν

(
1 +

√
2
ν
ξ
)

,

where ξ has mean 0 and variance 1. By the Taylor expansion (1 + x)−1/2 = 1 − 1
2 x +

3
8 x2 + . . . as x → 0, we have W −1/2 = ν−1/2

(
1 − 1√

2ν
ξ + 3

4ν
ξ 2 + . . .

)
and hence

E(W −1/2) = ν−1/2

(
1 + 3

4ν
+ . . .

)
.

By a similar Taylor expansion or else the exact result E(W −1) = 1
ν−2 for ν > 2, we also

have

E(W −1) = ν−1

(
1 + 2

ν
+ . . .

)
.

Applying these results to the case W = (n − 1) s2

σ 2 , where ν = n − 1, and replacing ν by n,
where it does not change the asymptotic expressions, we have θ̃ = θν1/2W −1/2, and hence

E(θ̃ − θ ) ≈ 3θ

4n
, (10.29)

E{(θ̃ − θ )2} ≈ θ2

2n
. (10.30)

Recalling G(t ; θ ) = �(tθ ), let G̃(t) = �(t θ̃ ), so

G̃(t) − G(t ; θ ) = �(t θ̃ ) − �(tθ )

≈
{

t(θ̃ − θ ) − 1

2
t3θ (θ̃ − θ )2

}
φ(tθ ),

where φ(x) = (2π )−1/2e−x2/2 is the standard normal density and we use the relation φ′(x) =
−xφ(x).

We apply the expansion (10.28), where we write n−1/2 R = t(θ̃ − θ )φ(tθ ), n−1S =
− 1

2 t3θ (θ̃ − θ )2φ(tθ ), and hence also n−1/2 R′ = (1 − t2θ2)(θ̃ − θ )φ(tθ ). Combining these
with G ′ = θφ(tθ ) and applying (10.29), (10.30), we have

−n−1/2
E(R) ≈ −3tθφ(tθ )

4n
,

n−1
E

(
R R′

G ′

)
≈ tθ (1 − t2θ2)φ(tθ )

2n
,

−n−1
E(S) ≈ t3θ3φ(tθ )

4n
.

All of these expressions are evaluated at t = tα = zα

θ
, so, by (10.28), the final result is

Pr

{
T ≤ zα

θ̃

}
= α − zα(1 + z2

α)φ(zα)

4n
+ o

(
1

n

)
. (10.31)

Equation (10.31) shows that the prediction interval defined by {T ≤ t̃θ} has true coverage
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probability approximately α + c
n , where c = − 1

4 tθ (1 + t2θ2)φ(tθ ). In practice we would
replace c by an estimate c̃, calculated by substituting θ̃ for θ .

Problem 10.4 provides an alternative interpretation of this result, showing that the result is
(to the stated order of approximation) equivalent to the exact result obtained in Problem 10.1.
Although in this case the asymptotic calculation is not needed to provide an accurate
prediction interval, the example has been given here to provide an illustration of a very
general approach.

10.5 Bootstrap methods

Bootstrap methods in statistics are described in detail in Chapter 11. The present section,
however, describes some simple forms of (parametric) bootstrap applied to prediction, and
can be read independently of Chapter 11.

Harris (1989) considered the following method to improve on a simple ‘estimative’
approach to prediction. Suppose g(z; θ ) is the probability density function (or, in the case
of discrete random variables, the probability mass function) of Z given parameter θ . We
assume Z is independent of observed data X . Suppose also we have an estimate of θ ,
denoted θ̂ . In most cases this will be the maximum likelihood estimator, though the theory
is not dependent on that particular choice of θ̂ . The estimative approach uses g(z; θ̂ ) as a
predictive density for Z . If the distribution function of θ̂ were known as a function of the
true θ , say H (t ; θ ) = Pr{θ̂ ≤ t ; θ}, then we could improve on this by

g∗(z; θ ) =
∫

g(z; t)d H (t ; θ ). (10.32)

The notation in (10.32) is intended to allow for both discrete and continuous cases. If θ̂ is
continuous with density h(·; θ ), then d H (t ; θ ) may be replaced by h(t ; θ )dt . Alternatively,
if θ̂ is discrete and Pr{θ̂ = t} = h(t ; θ ), then the right side of (10.32) may be replaced by∑

t g(z; t)h(t ; θ ).
There are two potential difficulties with (10.32). The first is that H (t ; θ ) may not be

readily available. Harris’ paper was confined to the case of exponential families, for which,
in many cases, H (t ; θ ) is computable analytically. However, even if this were not the case,
it would be possible to approximate (10.32) by simulation. The more fundamental difficulty
is that θ is unknown. Harris suggested resolving this problem by replacing θ by θ̂ in (10.32),
leading to the predictive density

ĝ(z|x) =
∫

g(z; t)d H (t ; θ̂ (x)). (10.33)

This is different from either the estimative or the (Bayesian) predictive approach; since it
effectively replaces H (t ; θ ) in (10.32) by an estimate constructed from the sample, Harris
called it a parametric bootstrap approach.

Example 10.8 Suppose X1, . . . , Xn, Z are independent from a Poisson distribution with
common mean θ . The MLE is θ̂ = X̄ ; since n X̄ has a Poisson distribution with mean nθ ,



184 Predictive inference

the distribution of θ̂ is

Pr{θ̂ = t} = e−nθ (nθ )nt

(nt)!
, t = 0,

1

n
,

2

n
, . . .

Therefore, (10.33) in this case becomes

ĝ(z|x) =
∞∑

nt=0

e−t t z

z!
· e−nx̄ (nx̄)nt

(nt)!
. (10.34)

In discussion of this approach, Harris compared (10.33) with both estimative and Bayesian
approaches. Arguing from Aitchison’s (1975) point of view of using Kullback–Leibler
distance as a measure of fit, he showed for the Poisson case that (10.34) is superior to the
estimative approach for all large n, and he gave a general argument to show that the same
asymptotic result essentially holds for all exponential families.

An alternative approach given by Hall, Peng and Tajvidi (1999) aims explicitly to reduce
the coverage probability bias in prediction intervals or more general prediction sets. This is
related to the approach of Section 10.4, where we showed that the true coverage probability
of a prediction set of nominal coverage probability α is typically of the form α + c

n + o
(

1
n

)
,

where n is the sample size (of X ) and c is some non-zero constant. The emphasis in Section
10.4 was on removing the c

n term by means of an analytic correction; in contrast, the idea
behind bootstrap approaches is to achieve the same thing through simulation.

Suppose, once again, we are interested in predicting a random variable Z with density
g(z; θ ) based on some independent sample X = (X1, . . . , Xn) from a density f (x ; θ ). Hall
et al. defined ∇ f to be the vector of first-order derivatives of f with respect to θ . They also
defined θ̂ and θ̂z to be the MLEs of θ based on X and (X, Z = z) respectively, and defined
matrices Ĵ (θ ), Ĵz(θ ) to be

Ĵ (θ ) =
n∑

i=1

∇ f (Xi ; θ )∇ f (Xi ; θ )T

f (Xi ; θ )2
, Ĵz(θ ) = J (θ ) + ∇g(z; θ )∇g(z; θ )T

g(z; θ )2
. (10.35)

They then defined

ĝ(z|x) = g(z; θ̂z)| Ĵ (θ̂ )|1/2| Ĵz(θ̂z)|−1/2∫
g(z; θ̂z)| Ĵ (θ̂ )|1/2| Ĵz(θ̂z)|−1/2dz

. (10.36)

Equation (10.36) is similar to Davison’s approximate predictive likelihood but with two dif-
ferences, (i) the matrices Ĵ (θ ) and Ĵz(θ ) have been used in place of the observed information
matrices in Davison’s definition, (ii) the predictive likelihood has been normalised so that
it integrates to 1. Hall, Peng and Tajvidi implied that (10.36) would improve on Davison’s
predictive likelihood, but not enough to provide adequate correction for the coverage prob-
ability bias.

To this end, they defined prediction sets for Z by the constructions

Ŝpr α = {z; ĝ(z|x) > ĉpr α},
Ŝα = {z; g(z; θ̂ ) > ĉα},
Sα = {z; g(z; θ ) > cα},
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where ĉpr α, ĉα and cα are defined so that∫
Ŝpr α

ĝ(z|x)dz =
∫

Ŝα

g(z; θ̂ )dz =
∫

Sα

g(z; θ )dz = α.

Thus Sα could be regarded as an ideal prediction set, constructed under the assumption that
θ is known and having exact coverage probability α, while Ŝα and Ŝpr α are approximations
based on the estimative density and (10.36) respectively. Hall, Peng and Tajvidi argued that

Pr{Z ∈ Ŝα} = α + c1

n
+ o

(
1

n

)
, Pr{Z ∈ Ŝpr α} = α + c2

n
+ o

(
1

n

)
,

with rather complicated expressions for c1 and c2; however their main point was that both
c1 and c2 are functions of the second-order derivatives of f with respect to θ and therefore
neither construction compensates for the ‘curvature’ in f with respect to θ ; moreover, the
alternative forms of (10.36) (such as leaving out the normalisation, or using Davison’s form
of Ĵ and Ĵz in place of (10.35)) may change the value of c2 but will not eliminate this term.
Thus, in this sense, the approximate predictive likelihood and its relatives do not adequately
correct the coverage probability bias of the naı̈ve prediction interval.

As an alternative approach, they suggested the following. After computing θ̂ , draw a
synthetic sample X∗ = (X∗

1, . . . , X∗
n) and Z∗ from the densities f (·; θ̂ ) and g(·; θ̂ ). Using

these data, compute the corresponding estimator θ̂∗ and hence the prediction sets Ŝ∗
β and

Ŝ∗
pr β for several values of β near α. Repeating this experiment many times, estimate the

empirical coverage probabilities

p̂(β) = Pr{Z∗ ∈ Ŝ∗
β |X}, p̂pr(β) = Pr{Z∗ ∈ Ŝ∗

pr β |X}. (10.37)

These values are conditional on X in the sense that they depend on θ̂ , which is a function
of X . By interpolating among the βs, the idea is to find estimates β̂α , β̂pr α such that the
conditional probabilities in (10.37) are as close as possible to α. Then the regions Ŝβ̂α

and
Ŝpr β̂pr α

are bootstrap-calibrated prediction sets for which they argued that the coverage
probabilities are of the form α + O(n−2).

Thus, either version of the bootstrap method may be considered a computationally inten-
sive, but conceptually straightforward, means of obtaining prediction sets whose coverage
probability is correct with an error of O(n−2). In practice, Hall et al. suggested, the addi-
tional optimisations required for the approximate predictive likelihood method make the
calculations too computationally intensive in this case, but, since the bootstrap recalibration
appears to apply equally well to the naı̈ve estimative method, prediction sets of the form of
Ŝβ̂α

may be the most practical approach.

10.6 Conclusions and recommendations

The focus of this chapter has really been on alternatives to the direct Bayesian approach
of Section 3.9. The Bayesian approach is very popular among practitioners because of its
conceptual simplicity combined with ease of computation by Markov chain Monte Carlo
methods. However its properties, when assessed from other points of view than that of
Bayesian decision theory, remain uncertain. We have focussed here on two alternative
criteria, one based on decision theory and the other on the exact or asymptotic coverage
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probabilities of prediction sets. Apart from Bayesian methods and the naive or estimative
approach, alternative ways of constructing prediction sets include exact methods based on
pivotals (Section 10.1), predictive likelihood (Section 10.3), analytic methods for correcting
the coverage probability bias (Section 10.4) and bootstrap methods (Section 10.5). At the
present time, bootstrap methods appear to be the most direct approach to obtaining prediction
sets of asymptotically correct coverage probability, but there remains ample scope for further
exploration of all of these methods.

10.7 Problems

10.1 Let Z1, . . . , Zn be independent, identically distributed N (µ, σ 2) random variables,
with σ 2 known. Suppose that it is required to construct a prediction interval
I1−α ≡ I1−α(Z1, . . . , Zn) for a future, independent random variable Z0 with the same
N (µ, σ 2) distribution, such that

Pr(Z0 ∈ I1−α) = 1 − α,

with the probability here being calculated from the joint distribution of
Z0, Z1, . . . , Zn . Let

I1−α(Z1, . . . , Zn; σ 2) =
[

Z̄n + zα/2σ
√

1 + 1/n, Z̄n − zα/2σ
√

1 + 1/n
]
,

where Z̄n = n−1 ∑n
i=1 Zi , and �(zβ) = β, with � the distribution function of N (0, 1).

Show that Pr{Z0 ∈ I1−α(Z1, . . . , Zn; σ 2)} = 1 − α.

Now suppose that σ 2 is unknown. Let σ̂ 2 = (n − 1)−1 ∑n
i=1(Zi − Z̄n)2. By con-

sidering the distribution of (Z0 − Z̄n)/(̂σ
√

n+1
n−1 ), show that

Pr{Z0 ∈ I1−α(Z1, . . . , Zn; σ̂ 2)} < 1 − α.

(So, if σ 2 is known, a prediction interval of exactly the desired property is easily
constructed. However, in the case where σ 2 is unknown, substitution of the maximum
likelihood estimator reduces coverage.)

Show how to construct an interval I1−γ (Z1, . . . , Zn; σ̂ 2) with

Pr{Z0 ∈ I1−γ (Z1, . . . , Zn; σ̂ 2)} = 1 − α.

(So, we can recalibrate the nominal coverage, from 1 − α to 1 − γ , to allow for
estimation of the variance σ 2, leaving a prediction interval of exactly the desired
property.)

10.2 Suppose X1, . . . , Xn, Z are independent exponentially distributed with mean µ. We
assume X1, . . . , Xn are observed and we would like to calculate a prediction interval
for Z . Show that Z

X̄
is a pivotal quantity and find its distribution. Hence calculate an

exact 100(1 − α)% prediction interval for Z , as a function of X̄ .
10.3 Following the notation of Example 10.3, consider Tλ = Z1 − λX1 − (1 − λ)X̄ ,

where 0 ≤ λ ≤ 1.
Show that

var(Tλ) = n − 1

n
(1 − λ)2σ 2 +

(
λ2 + 1 − λ2

n

)
τ 2.
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Hence find λ∗, the value of λ that minimises the variance of Tλ, and for any α ∈ (0, 1)
construct an exact 100(1 − α)% prediction interval for Z1 based on X1, . . . , Xn .

10.4 Let us return to Example 3.3 from Chapter 3, where we set prior parameters α =
β = k = ν = 0. Example 3.3 showed how to derive the posterior distribution of
(τ, µ), given X = (X1, . . . , Xn), and Problem 3.15 showed how to extend this to the
predictive distribution of a new Z ∼ N (µ, τ−1), given X . Let us call the resulting
predictive density g̃1(z|x), where x is the numerical value of X .

A competing candidate for g̃ is the estimative density g̃2(z|x), obtained by sub-
stituting sample estimates µ̃ = X̄ = 1

n

∑n
1 Xi and τ̃−1 = s2 = 1

n−1

∑n
1(Xi − X̄ )2 in

the true normal density for Z , which we denote g(z; µ, τ ).
Show that g̃1 is closer to g than is g̃2, where the measure of closeness is the

Kullback–Leibler distance.
10.5∗ Now consider Example 3.4 from Chapter 3, where (V, µ) have a prior distribution de-

fined by parameters m = k = � = ν = 0. Suppose we have X1, . . . , Xn, Z indepen-
dent Np(µ, V −1) and wish to predict Z given X1, . . . , Xn . Two choices here are: (i)
the predictive Bayesian density g̃1 that you calculated in Problem 3.16, (ii) the estima-
tive density g̃2 obtained by substituting X̄ for µ and S = 1

n−1

∑
(Xi − X̄ )(Xi − X̄ )T

for V −1. Show that g̃1 is superior to g̃2 when evaluated by Kullback–Leibler distance.

Remark: This result is due to Aitchison. Problem 10.4 represents the easier case
when p = 1. The result depends on certain properties of the Wishart distribution
that depend on the definitions in Example 3.4, but also use the following that you
may quote without proof: (i) if D = ∑m

j=1(Z j − Z̄ )(Z j − Z̄ )T , where Z1, . . . , Zm

are independent Np(0, A) and Z̄ = 1
m

∑m
j=1 Z j , then D and Z̄ are independent and

D ∼ Wp(A, m − 1); (ii) if D ∼ Wp(A, m), then E{D−1} = A−1/(m − p − 1).
10.6 Suppose T ′ has a student’s t distribution with ν degrees of freedom. Show that for

large ν,

Pr{T ′ ≤ z} = �(z) − 1

4ν
(z + z3)φ(z) + o

(
1

ν

)
.

Hence show that the result (10.31) is equivalent to the statement that, within an error
of op

(
1
n

)
, the distribution of T θ̃ is tn (or tn−1).

Use this result to show that the asymptotic solution derived from (10.31) is equiv-
alent to the exact result obtained in the last part of Problem 10.1.

10.7 Suppose Z = (Z1, . . . , Zn) are independent N (µ, σ 2) and, conditionally on Z ,
{Xi j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are independent, Xi j |Zi ∼ N (Zi , τ

2). This extends
Problem 10.3 in the sense that, when m > 1, there are additional degrees of free-
dom within each subgroup that make it possible to estimate τ 2 and σ 2, and hence
to solve the prediction problem when all three of µ, σ 2 and τ 2 are unknown. This
model is also known as the (one-way) random effects analysis of variance model. As
in Example 10.3 and Problem 10.3, we assume the objective is to predict a speci-
fied component of Z , which without loss of generality we take to be Z1. Note that,
if τ 2 is known, by sufficiency all predictions will be based on X̄i = 1

m

∑
j Xi j for

i = 1, . . . , n. This is the same as Example 10.3 except that var(X̄i ) = τ 2

m = τ 2
m , say,

instead of τ 2. All asymptotic calculations will be as n → ∞ for fixed m.
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(i) Consider first the case where µ, σ 2 and τ 2 are all known. In this case, no Xi j

for i ≥ 2 contributes any information about Z1, so the prediction is based on the
conditional distribution of Z1 given X̄1.

The following result is standard from the theory of the bivariate normal distribu-
tion. Suppose (X, Z ) is bivariate normal with means (µX , µZ ), variances (σ 2

X , σ 2
Z )

and correlation ρ. Then the conditional distribution of Z given X = x is normal
with mean µZ + ρ σZ

σX
(x − µX ) and variance σ 2

Z (1 − ρ2).
Assuming this, show that an exact one-sided prediction interval with coverage

probability α may be defined as(
−∞,

σ 2

σ 2 + τ 2
m

X̄1 + τ 2
m

σ 2 + τ 2
m

µ + στm√
σ 2 + τ 2

m

zα

)
.

(ii) Now suppose µ is unknown but σ 2, τ 2 are known. Define

G(t ; x, µ) = Pr{Z1 ≤ t |X̄1 = x ; µ}

= �

{√
σ 2 + τ 2

m

στm

(
t − σ 2

σ 2 + τ 2
m

x − τ 2
m

σ 2 + τ 2
m

µ

)}

= �(At + Bx + Cµ) say,

where A =
√

σ 2+τ 2
m

στm
, B = − σ

τm

√
σ 2+τ 2

m

, C = − τm

σ
√

σ 2+τ 2
m

are all known constants.

Let G̃(t ; x) = �(At + Bx + C X̄ ), where X̄ = 1
mn

∑
i

∑
j Xi j . If we ignored the

distinction between X̄ and µ, the one-sided interval

Z ≤ zα − Bx − C X̄

A
(10.38)

would have coverage probability α.
Use equation (10.31) to show that the true coverage probability of (10.38) is of

the form

α + c

n
+ o

(
1

n

)
,

where c = − 1
2

τ 2
m

σ 2 zαφ(zα).
(iii) According to the theory of Section 10.4, if we define α1 = α − c

n , the interval

Z ≤ zα1 − Bx − C X̄

A

has coverage probability α + o
(

1
n

)
.

Show that this is asymptotically equivalent to the method of Problem 10.3, with
error o

(
1
n

)
.

(iv) Finally, we consider the case where all three of µ, σ 2, τ 2 are unknown. We
again estimate µ by X̄ , τ 2

m by τ̃ 2
m = 1

nm(m−1)

∑
i (
∑

j Xi j − X̄i )2, σ 2 by σ̃ 2 =
1

n−1

∑
i (X̄i − X̄ )2 − τ̃ 2

m . Under this procedure there is a slight possibility that
σ̃ 2 < 0, but the probability of that is negligible when n is large, and we ignore it.

Note that X̄ , n(m − 1) τ̃ 2
m

τ 2
m

and (n − 1) σ̃ 2+τ̃ 2
m

σ 2+τ 2
m

are independent random variables with
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respective distributions N
(
µ,

σ 2+τ 2
m

n

)
, χ2

n(m−1) and χ2
n−1. The constants A, B, C

of part (ii) are now unknown but may be estimated by replacing σ 2, τ 2
m by σ̃ 2, τ̃ 2

m ;
the resulting estimates will be denoted Ã, B̃, C̃ . The approximate one-sided pre-
diction interval given by (10.38) may thus be amended to

Z ≤ zα − B̃x − C̃ X̄

Ã
. (10.39)

Show that the interval (10.39) has approximate coverage probability α + c
n as

n → ∞ for fixed m, and show how to calculate c.
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Bootstrap methods

Since its introduction by Efron (1979), the bootstrap has become a method of choice for
empirical assessment of errors and related quantities in a vast range of problems of statistical
estimation. It offers highly accurate inference in many settings. Together with Markov chain
Monte Carlo methods, which are now routinely applied in Bayesian analysis of complex
statistical models, bootstrap methods stand among the most significant methodological
developments in statistics of the late twentieth century.

Bootstrap methodology encompasses a whole body of ideas, but principal among them
are: (1) the substitution principle, of replacement in frequentist inference of an unknown
probability distribution F by an estimate F̃ constructed from the sample data; and (2)
replacement of analytic calculation, which may be intractable or just awkward, by Monte
Carlo simulation from F̃ .

In the most straightforward formulations of bootstrapping, F̃ has a simple form. In non-
parametric inference, F̃ is the empirical distribution function F̂ of an observed random
sample Y = {Y1, . . . , Yn}, the distribution which places an equal probability mass, 1/n, on
each observed data point Yi . Monte Carlo simulation from F̂ then amounts to independent
sampling, with replacement, from {Y1, . . . , Yn}. In a parametric context, a parametric model
F(y; η) with a parameter η of fixed dimension is replaced by its maximum likelihood
estimate F(y; η̂). In both cases, the frequentist inference is performed treating F̃ as if it
were the true distribution underlying the data sample Y . So, for example, the variance of a
statistic T (Y ) under sampling from F is estimated by its variance under sampling from F̃ ,
or the bias of T (Y ) as an estimator of a population quantity θ (F) is estimated by the bias
under sampling from F̃ of T (Y ) as an estimator of θ (F̃).

The range of applications of bootstrap methods is enormous, and so extensive is the
literature on the topic that even book-length treatments such as Davison and Hinkley (1997),
Shao and Tu (1995), Efron and Tibshirani (1993) or Hall (1992) treat only certain aspects.
A recent review is given by Davison et al. (2003). In this chapter we provide a brief,
general overview of the bootstrap, focussing on the key conceptual ideas. Since we have
been concerned predominantly in the rest of the book with procedures of statistical inference
operating under the assumption of a specified parametric model, we will concentrate mainly
on parametric forms of bootstrap. Of key interest is analysis of how the levels of accuracy
obtained by bootstrapping compare with those provided by more sophisticated analytic
constructions, such as those considered in Chapter 9. As we shall see, in the development
of bootstrap methodology primary emphasis has been placed on the frequentist desire for
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accurate repeated sampling properties, but there are important connections to the Fisherian
ideas that we have also considered in detail.

Section 11.1 describes a general framework for an inference problem concerning an
unknown scalar parameter of interest, and presents an illustration of how common para-
metric and non-parametric inference procedures may be placed within that framework.
In Section 11.2 we elucidate the conceptual basis of the bootstrap, through the notion
of ‘prepivoting’, due to Beran (1987, 1988) We detail the operation of simple forms of
bootstrapping from that perspective, and describe, from this same perspective, how better
bootstrap procedures can be obtained, for both parametric and non-parametric problems,
by simple modifications. A series of numerical illustrations are presented in Section 11.3
and Section 11.4. Finally, in Section 11.5, we consider bootstrapping from a Fisherian
perspective.

11.1 An inference problem

Suppose that Y = {Y1, . . . , Yn} is a random sample from an unknown underlying distribution
F , and let η(F) be an R

d -valued functional of F . We suppose that inference is required for a
scalar quantity θ = g{η(F)} ≡ θ (F), for a suitably smooth injective function g : R

d → R.
In a parametric setting, we consider a parametric family of distributions indexed by the
d-dimensional parameter η, and typically we will have η = (θ, ξ ), so that inference is
required for the scalar interest parameter θ , in the presence of the nuisance parameter ξ . In
a non-parametric framework, inference is required for the quantity θ (F), which might be,
for example, the variance of F .

Let u(Y, θ ) be a pivot, a function of the data sample Y and the unknown parameter θ ,
such that a confidence set of nominal coverage 1 − α for θ is

I(Y ) ≡ I1−α(Y ) = {ψ : u(Y, ψ) ≤ 1 − α}. (11.1)

We have that, under repeated sampling of Y from the underlying distribution F , the random
set I(Y ) contains the true θ a proportion approximately equal to 1 − α of the time:

Prθ {θ ∈ I(Y )} ≈ 1 − α.

We define the coverage error of the confidence set I(Y ) to be

Prθ {θ ∈ I(Y )} − (1 − α).

As a very simple example, suppose that Y1, . . . , Yn are independent, identically distributed
N (θ, 1). Then Ȳ = n−1 ∑n

i=1 Yi is distributed as N (θ, 1/n), so a confidence set of exact
coverage 1 − α is obtained from (11.1) using the pivot

u(Y, ψ) = �{√n(Ȳ − ψ)},
in terms of the distribution function �(·) of N (0, 1).

Typically, u(Y, ψ) will be monotonic in ψ , so that the confidence set is a semi-infinite
interval of the form (θ̂l(Y ), ∞) or (−∞, θ̂u(Y )), say. We will speak of u(Y, θ ) as a ‘con-
fidence set root’. A notational point is of importance here. In our development, we will
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denote by θ the true parameter value, with ψ denoting a generic point in the parameter
space, a ‘candidate value’ for inclusion in the confidence set.

If two-sided inference is required, an ‘equi-tailed’ two-sided confidence set J1−α(Y ) of
nominal coverage 1 − α may be obtained by taking the set difference of two one-sided sets
of the form (11.1) as

J1−α(Y ) = I1−α/2(Y )\Iα/2(Y ). (11.2)

As noted by Hall (1992: Chapter 3), coverage properties under repeated sampling of two-
sided confidence sets of the form (11.2) are rather different from those of one-sided sets
of the form (11.1). Typically, even if the coverage error of the interval (11.1) is of order
O(n−1/2) in the sample size, the two-sided set (11.2) has coverage error of order O(n−1).
We note that results we describe later relating to reduction of the order of magnitude of
the coverage error by different bootstrap schemes refer specifically to confidence sets of
the form (11.1): the coverage properties of two-sided sets are rather more subtle. In any
case, as noted by Efron (2003b), a two-sided confidence set might come very close to the
desired coverage 1 − α in a very lopsided fashion, failing, say, to cover the true parameter
value much more than α/2 on the left and much less than α/2 on the right. The purpose
of a two-sided confidence interval should be accurate inference in both directions, and a
detailed discussion of the properties of one-sided confidence sets is more relevant.

We now provide two examples, the first parametric and the second relating to non-
parametric inference about θ .

Example 11.1 Signed root likelihood ratio statistic
Suppose, as above, that it may be assumed that Y has probability density fY (y; η) belonging
to a specified parametric family, depending on an unknown parameter η.

Assume first of all that η is in fact scalar, so that there is no nuisance parameter and
θ ≡ η. We saw in Chapter 8 that inference about θ may be based on the likelihood ratio
statistic w(θ ) = 2{l(θ̂ ) − l(θ )}, with l(θ ) = log fY (y; θ ) the log-likelihood and θ̂ the maxi-
mum likelihood estimator of θ . As θ is scalar, inference is conveniently based on the signed
root likelihood ratio statistic, r (θ ) = sgn(θ̂ − θ )w(θ )1/2, which is distributed as N (0, 1) to
error of order O(n−1/2). Therefore a confidence set of nominal coverage 1 − α for θ is
{ψ : u(Y, ψ) ≤ 1 − α}, with

u(Y, ψ) = �{r (ψ)}.
It is easily seen that u(Y, ψ) is monotonic decreasing in ψ , so that the confidence set is of the
form (θ̂l , ∞), where the lower confidence limit θ̂l is obtained by solving �{r (ψ)} = 1 − α.
The coverage error of the confidence set is of order O(n−1/2), but can perhaps be reduced
by bootstrapping.

More typically, we will have η = (θ, ξ ), with nuisance parameter ξ . Now, as de-
scribed in Chapter 8, inference about θ may be based on the profile log-likelihood
lp(θ ) = l(θ, ξ̂θ ), and the associated likelihood ratio statistic wp(θ ) = 2{lp(θ̂ ) − lp(θ )}, with
l(θ, ξ ) = log fY (y; θ, ξ ) the log-likelihood, η̂ = (θ̂ , ξ̂ ) the overall maximum likelihood es-
timator of η and ξ̂θ the constrained maximum likelihood estimator of ξ , for fixed θ . The
corresponding signed root likelihood ratio statistic is rp(θ ) = sgn(θ̂ − θ )wp(θ )1/2. Again,
we have that rp is distributed as N (0, 1) to error of order O(n−1/2), and therefore, following
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the same approach as in the no-nuisance-parameter case, a confidence set of nominal cov-
erage 1 − α for θ is {ψ : u(Y, ψ) ≤ 1 − α}, now with

u(Y, ψ) = �{rp(ψ)}.

The coverage error of the confidence set is again of order O(n−1/2).
We saw in Chapter 9 how the error associated with the N (0, 1) approximation may be

reduced to order O(n−3/2) by analytically adjusted versions of rp of the form

ra = rp + r−1
p log(vp/rp),

that are distributed as N (0, 1) to error of order O(n−3/2). Here the statistic vp depends on
specification of an ancillary statistic, and is defined by (9.16).

The DiCiccio and Martin (1993) approximation to vp(θ ) based on orthogonal parameters
is defined by (9.17). This is used in our numerical illustrations of Section 11.4.

Alternative forms of confidence set root u(Y, θ ) may be based on other forms of asymp-
totically N (0, 1) pivot, such as Wald and score statistics.

Example 11.2 Studentised parameter estimate
Suppose now that we are unable, or unwilling, to specify any parametric form for the
underlying distribution F(η), but that we have available a non-parametric estimator θ̂ of θ ,
of finite variance, asymptotically normally distributed and with estimated variance σ̂ 2. A
simple special case relates to the mean θ of F , which may be estimated by the sample mean
θ̂ = Ȳ = n−1 ∑n

i=1 Yi , which has variance which may be estimated by σ̂ 2 = n−1s2, where
s2 = n−1 ∑n

i=1(Yi − Ȳ )2 is the (biased) sample variance. A non-parametric confidence set
of nominal coverage 1 − α may be defined as above by

u(Y, ψ) = �{(θ̂ − ψ)/σ̂ }.

Again, the confidence set is of one-sided form (θ̂l , ∞), with u(Y, θ̂l) = 1 − α. Typically,
coverage error is again O(n−1/2).

A general strategy for construction of an appropriate initial confidence set root u(Y, θ ) is as
follows: see Beran (1987). Let sn(θ ) ≡ sn(Y, θ ) be a pivot, such as

√
n(θ̂ − θ ). Let Hn(·; F)

denote the distribution function of sn(θ ): Hn(x ; F) = Pr{sn(Y, θ ) ≤ x | F}. Suppose further
that asymptotically sn(Y, θ ) has distribution function H (·; F). We know from Chapter 8,
for example, that

√
n(θ̂ − θ ) is quite generally asymptotically distributed as N (0, 1/ i1(θ )),

in terms of the Fisher information i1(θ ), and in many circumstances the finite sample
distribution Hn(·; F) will also be known. Let F̂n be a consistent estimate of F , in the
sense that d(F̂n, F) converges to zero in probability, where d is a metric on an appropriate
family of distribution functions. In a parametric situation, for instance, F̂n would be the fitted
distribution, obtained by maximum likelihood. Then, let Ĥ = H (·; F̂n) and Ĥn = Hn(·; F̂n).
Possible confidence set roots are given by

u(Y, ψ) = Ĥ{sn(ψ)}, (11.3)

and

u(Y, ψ) = Ĥn{sn(ψ)}. (11.4)
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Example 11.3 Mean of normal distribution
Let Y1, . . . , Yn be a random sample of size n from the normal distribution N (µ, σ 2), with
both µ and σ 2 unknown, and suppose inference is required for µ. We have seen that the
maximum likelihood estimators are µ̂ = Ȳ = n−1 ∑n

i=1 Yi and σ̂ 2 = n−1 ∑n
i=1(Yi − Ȳ )2

respectively.
The exact and asymptotic distributions of sn(µ) = √

n(µ̂ − µ) are identical, N (0, σ 2).
Therefore, Hn(x) ≡ H (x) = �(x/σ ), so that Ĥn(x) ≡ Ĥ (x) = �(x/σ̂ ) and (11.3) and
(11.4) both yield the confidence set root

u(Y, ψ) = �

{√
n(µ̂ − ψ)

σ̂

}
. (11.5)

Of course, in this example inference would more naturally be made using the distributional
result that

√
n − 1(µ̂ − µ)

σ̂
∼ tn−1,

the t-distribution on n − 1 degrees of freedom, so that a more appropriate confidence set
root is

u(Y, ψ) = T

{√
n − 1(µ̂ − ψ)

σ̂

}
, (11.6)

where T denotes the distribution function of tn−1. Confidence sets constructed from the
confidence set root (11.6) have exactly the desired coverage level, while use of (11.5)
results in coverage error of order O(n−1/2).

11.2 The prepivoting perspective

From the prepivoting perspective (Beran, 1987, 1988) the bootstrap may be viewed simply
as a device by which we attempt to transform the confidence set root U = u(Y, θ ) into a
Uniform(0, 1) random variable.

The underlying notion is that, if U were exactly distributed as Uniform(0, 1), the
confidence set would have coverage exactly equal to 1 − α: Prη(θ ∈ I) = Prη{u(Y, θ ) ≤
1 − α} = Pr{Un(0, 1) ≤ 1 − α} = 1 − α. But U is typically not uniformly distributed, so
the coverage error of I is non-zero: Prη(θ ∈ I) − (1 − α) 	= 0.

By bootstrapping, we hope to produce a new confidence set root u1 so that the associated
confidence set {ψ : u1(Y, ψ) ≤ 1 − α} has lower coverage error for θ . The error properties
of different bootstrap schemes can be assessed by measuring how close to uniformity is the
distribution of U1 = u1(Y, θ ).

In the conventional bootstrap approach, the distribution function G(x ; ψ) of u(Y, ψ) is
estimated by

Ĝ(x) = Pr∗{u(Y ∗, θ̂ ) ≤ x}, (11.7)

where θ̂ denotes the estimator of θ (non-parametric or maximum likelihood, depending
on the framework) constructed from the data sample Y , and we define the conventional
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prepivoted root by

û1(Y, ψ) = Ĝ{u(Y, ψ)},
for each candidate parameter value ψ .

In a parametric problem, Pr∗ denotes the probability under the drawing of bootstrap
samples Y ∗ from the fitted maximum likelihood model fY (y; η̂).

In the non-parametric setting, Pr∗ denotes the probability under the drawing of boot-
strap samples Y ∗ from the empirical distribution function F̂ : recall that such a sam-
ple is obtained by independently sampling, with replacement, from {Y1, . . . , Yn}. Note
that in this case we can write down the bootstrap distribution explicitly. Let ur1...rn =
u(Y1, . . . , Y1, . . . , Yn, . . . Yn, ψ) denote the value of the pivot obtained from a dataset
consisting of r1 copies of Y1, r2 copies of Y2, . . . , rn copies of Yn , r1 + . . . + rn = n.
Then

Pr∗{u(Y ∗, ψ) = ur1...rn } = n!

r1! . . . rn!
(
1

n
)n.

In practice, in both contexts, the prepivoting will in general be carried out by performing
a Monte Carlo simulation, involving the drawing of an actual series of, say, R bootstrap
samples, rather than analytically: the ease of doing so, instead of carrying out a mathematical
calculation, represents a considerable part of the appeal of the bootstrap! A rule of thumb
would suggest taking R to be of the order of a few thousands.

The basic idea here is that if the bootstrap estimated the sampling distribution exactly, so
that Ĝ was the true (continuous) distribution function G of u(Y, θ ), then û1(Y, θ ) would be
exactly Uniform(0, 1) in distribution, as a consequence of the so-called ‘probability integral
transform’: if Z is a random variable with continuous distribution function H (·), then H (Z )
is distributed as Uniform(0, 1). Therefore the confidence set {ψ : û1(Y, ψ) ≤ 1 − α} would
have exactly the desired coverage. Use of Ĝ in place of G incurs an error, though in general
the error associated with û1(Y, ψ) is smaller in magnitude than that obtained from u(Y, ψ):
see, for example, DiCiccio et al. (2001), Lee and Young (2004).

Consider the nuisance parameter case of Example 11.1 above. Conventional bootstrap-
ping amounts to replacing the asymptotic N (0, 1) distribution of rp by its distribution
when the true parameter value is η̂ = (θ̂ , ξ̂ ). The bootstrap confidence set is of the form
(θ̂∗

l , ∞), where rp(θ̂∗
l ) = ĉ1−α , with ĉ1−α denoting the 1 − α quantile of rp(θ̂ ) under sam-

pling from the specified model with parameter value (θ̂ , ξ̂ ). In general, this reduces the
order of the coverage error of the confidence set to O(n−1). That the conventional boot-
strap approximates the true distribution of rp to error of order O(n−1) was established by
DiCiccio and Romano (1995).

In Example 11.2, prepivoting by the same technique amounts to replacing the asymptotic
N (0, 1) distribution of (θ̂ − θ )/σ̂ by the distribution of (θ̂∗ − θ̂ )/σ̂ ∗, with θ̂∗ and σ̂ ∗ denoting
the estimator and its standard error estimator respectively for a bootstrap sample obtained by
uniform resampling from {Y1, . . . , Yn}, and θ̂ , fixed under the bootstrap sampling, denoting
the value of the estimator for the actual data sample Y . The confidence set is again of the
form (θ̂∗

l , ∞), where û1(Y, θ̂∗
l ) = 1 − α. In general, the bootstrapping again reduces the

order of the coverage error to O(n−1).
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In Example 11.3, it is a simple exercise to verify that prepivoting the confidence set
root (11.5) produces the root (11.6), so that the bootstrapping produces confidence sets of
exactly the desired coverage.

Conventional bootstrapping of the kind outlined above enjoys an appealing simplicity. A
well-specified empirical sampling model is used in place of the unknown underlying distri-
bution F(η), either F̂ in the non-parametric context, or F (̂η ) in the parametric framework.
Yet, the results can be spectacular, as the following illustration demonstrates.

Illustration 11.1 We consider bootstrap inference for a normal distribution with known
coefficient of variation, as considered in Section 9.5.2. This distribution is widely used in
many agricultural and biological applications. We have Y1, . . . , Yn independent, identically
distributed N (θ, θ2). For this model, the signed root likelihood ratio statistic is, in terms of
the maximum likelihood estimator θ̂ , given by

r (θ ) = sgn(θ̂ − θ )n1/2[q2{(θ̂/θ )2 − 1} − 2(q/a)(θ̂/θ − 1) − 2 log(θ̂/θ )]1/2, (11.8)

with q = {(1 + 4a2)1/2 + 1}/(2a), in terms of the ancillary statistic a =
n1/2(

∑
Y 2

i )1/2/
∑

Yi . It is easily seen that r (θ ) is exactly pivotal: the distribution
does not depend on the parameter value θ . Thus, the parametric bootstrap procedure based
on the fitted parametric N (θ̂ , θ̂2) model will estimate the sampling distribution of r (θ )
exactly, and therefore produce confidence sets of zero coverage error, ignoring any error
that arises from use of a finite Monte Carlo simulation.

In general, the bootstrap approach will not completely eliminate error. This is likely to
be especially true in non-parametric applications and in parametric situations involving
nuisance parameters.

Recently, considerable attention has focussed on modifications of the basic bootstrap
approach outlined above, which are aimed at reducing the levels of error remaining after
prepivoting.

A basic device by which we may, in principle, obtain better bootstrap inference is to
change the distribution from which bootstrap samples are drawn. Specifically, instead of
using a single distribution F̃ as the basis for prepivoting, we utilise a family of models,
explicitly constrained to depend on the candidate value ψ of the parameter of interest.

Constrained bootstrap procedures of this kind encompass a variety of statistical meth-
ods and are closely related in the non-parametric setting to empirical and other forms of
non-parametric likelihood (Owen, 1988; DiCiccio and Romano, 1990) Besides the inference
problem of confidence set construction (and the associated hypothesis testing problem) con-
sidered here, applications of weighted bootstrap ideas are numerous, and include variance
stabilisation, non-parametric curve estimation, non-parametric sensitivity analysis etc.: see
Hall and Presnell (1999a,b,c).

In detail, in our prepivoting formulation of bootstrapping, we replace û1(Y, ψ) by the
constrained or weighted prepivoted root

ũ1(Y, ψ) = G̃{u(Y, ψ); ψ},
with

G̃(x ; ψ) = Pr†{u(Y †, ψ) ≤ x}. (11.9)
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Now, in the parametric setting, Pr† denotes the probability under the drawing of bootstrap
samples Y † from a constrained fitted model F (̂ηψ ), which depends on the candidate value
ψ . Focussing on a formulation of the inference problem in which η = (θ, ξ ), the particular
proposal of DiCiccio et al. (2001) is to take η̂ψ = (ψ, ξ̂ψ ), in which the nuisance parameter
is replaced by its constrained maximum likelihood estimator for any specified value of
the interest parameter. It turns out that this proposal succeeds quite generally (Lee and
Young, 2004) in reducing the error of the confidence set: compared with use of the original
confidence set root u, the conventionally prepivoted root û1 reduces error by a factor of
order O(n−1/2), while constrained prepivoting to obtain ũ1 reduces error by a factor of order
O(n−1). A natural alternative in which η̂ψ = (ψ, ξ̂ ), so that the nuisance parameter is fixed
at its overall maximum likelihood value, typically only reduces error by order O(n−1/2). In
the no-nuisance-parameter case of Illustration 11.1, we have η̂ψ = ψ .

In a non-parametric problem, Pr† denotes the probability under the drawing of bootstrap
samples Y † from the distribution F̂p, which places probability mass pi on Yi , where p ≡
p(ψ) = (p1, . . . , pn) is chosen to minimise (say) the Kullback–Leibler distance

−n−1
n∑

i=1

log(npi )

between F̂p and F̂ , subject to θ (F̂p) = ψ . Thus, in this context, constrained prepivoting
replaces sampling from {Y1, . . . , Yn} with equal probabilities 1/n on each Yi , by sampling
with unequal probabilities pi .

Illustration 11.2 A second illustration concerns inference for the inverse Gaussian distri-
bution, I G(θ, λ). This distribution, first obtained by the physicist Schrödinger, is related to
the distribution of the random time at which the trajectory of a Brownian motion reaches a
preassigned positive level for the first time, and has important applications in mathematical
finance. Specifically, the I G(ν2/σ 2, a2/σ 2) density describes the density of the first hitting
time of level a of a Brownian motion (see Feller, 1971: Chapter 10) with drift ν and diffusion
constant σ 2, starting at 0.

Let Y = {Y1, . . . , Yn} be a random sample from the I G(θ, λ) distribution with density

fY (y; θ, λ) =
√

λe
√

θλ√
2πy3

e−(θy+λ/y)/2,

and suppose that λ is known, so that again there is no nuisance parameter. We have
√

λ/θ̂ =
Ȳ , and

r (θ ) = n1/2λ1/4θ̂−1/4(θ̂ 1/2 − θ1/2).

Recall that in this situation an adjusted version ra(θ ) of the signed root statistic r (θ ) is given
by

ra(θ ) = r (θ ) + log{v(θ )/r (θ )}/r (θ ),

where v(θ ) is defined by (9.15).



198 Bootstrap methods

Table 11.1 Coverages (%) of confidence sets for parameter θ of inverse
Gaussian distribution I G(θ, λ), λ known, sample size n = 10

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(r ) 0.5 1.4 3.0 6.6 89.0 94.8 97.6 99.1
�(ra) 0.8 2.2 4.4 9.2 91.6 96.2 98.3 99.4
MLE bootstrap 1.1 2.7 5.4 10.4 89.7 94.8 97.4 99.0
Constrained bootstrap 1.0 2.4 4.9 9.9 90.0 95.0 97.5 99.0

It is easily verified that in the current inverse Gaussian case we have

v(θ ) = 1

2
n1/2λ1/4θ̂−3/4(θ̂ − θ ).

Notice that in a situation such as this, with no nuisance parameter, confidence sets based on
the constrained prepivoted root ũ1(Y, ψ) will, again modulo simulation error, have exactly
the nominal desired coverage.

We conducted a small simulation to compare the coverage properties of confidence sets
derived from the confidence set roots u(Y, ψ) = �{r (ψ)}, u(Y, ψ) = �{ra(ψ)}, and the
two prepivoted confidence set roots û1(Y, ψ) = Ĝ[�{r (ψ)}] (conventional MLE bootstrap-
ping), and ũ1(Y, ψ) = G̃[�{r (ψ)}; ψ] (constrained bootstrapping). Table 11.1 compares
actual and nominal coverages provided by the four constructions, based on 100 000 simu-
lated datasets Y . All bootstrap confidence sets were based on R = 4999 bootstrap samples,
λ is assumed known equal to 1.0, the true θ = 1.0, and the sample size is n = 10. The results
demonstrate very clearly that poor levels of accuracy obtained by normal approximation to
the distribution of r for small coverage levels can be improved by the analytic adjustment ra.
The coverage accuracy of confidence sets derived by conventional bootstrapping competes
with that obtained from ra, but, as expected, coverage figures for the constrained bootstrap
approach are very close to the desired values.

A number of remarks are in order.

Remark 1 We note that, by contrast with the conventional bootstrap approach, in principle
at least, a different fitted distribution is required by constrained bootstrapping for each
candidate parameter value ψ . In the context of Example 11.1, for instance, the confidence
set is {ψ : rp(ψ) ≤ c1−α(ψ, ξ̂ψ )}, where now c1−α(ψ, ξ̂ψ ) denotes the 1 − α quantile of
the sampling distribution of rp(ψ) when the true parameter value is (ψ, ξ̂ψ ), so that a
different bootstrap quantile is applied for each candidate ψ , rather than the single quantile
c1−α(θ̂ , ξ̂ ).

Remark 2 However, computational shortcuts, which reduce the demands of weighted boot-
strapping, are possible. These include the use of stochastic search procedures, which allow
construction of the confidence set without a costly simulation at each candidate parameter
value, such as the Robbins–Monro procedure (Garthwaite and Buckland, 1992; Carpen-
ter, 1999) and, in the non-parametric case, approximation to the probability weights p(ψ)
(Davison and Hinkley, 1997), rather than explicit evaluation for each ψ .
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The Robbins–Monro procedure operates as follows. Suppose we seek the value, ψ̄ say,
of a quantity ψ such that p(ψ̄) = 1 − α, where p(ψ) denotes the probability of some event.
We suppose that p(ψ) decreases as ψ increases, as will be the case for our applications of
interest. Here, p(ψ) is either the conventional bootstrap confidence set root û1(Y, ψ), or the
constrained bootstrap confidence set root ũ1(Y, ψ). In the former case, the event in question
is the event that the (conventional) bootstrap sample Y ∗ has u(Y ∗, θ̂ ) ≤ u(Y, ψ), while, in the
latter case, the event is that the (constrained) bootstrap sample Y † has u(Y †, ψ) ≤ u(Y, ψ).
The idea is to perform a sequence of trials, at each of a sequence of values of ψ , in our
application a trial corresponding to generation of a single bootstrap sample. If the j th
ψ value is ψ j then,

ψ j+1 =
{

ψ j + cα/j if the event occurs,

ψ j − c(1 − α)/j otherwise.

Here c > 0 is some specified constant, and we note that the modification to the current ψ

value gets smaller as the sequence of trials progresses. Also,

E(ψ j+1) = p(ψ j )(ψ j + cα/j) + {1 − p(ψ j )}(ψ j − c(1 − α)/j)

= ψ j + c{p(ψ j ) − (1 − α)}.
If ψ j > ψ̄ , we have p(ψ j ) < 1 − α, so that the new ψ value is expected to be smaller than
ψ j (a move in the right direction), while, if ψ j < ψ̄ , then ψ j+1 is expected to be larger (also
a move in the right direction). Strategies for implementation, in particular the choice of the
constant c, are suggested by Garthwaite and Buckland (1992). Initialisation can utilise, in
our context, the confidence limit provided by the initial (non-bootstrapped) root u(Y, ψ). It
is quite practical to determine a confidence limit by the Robbins–Monro procedure using
a series of a few thousand trials, that is a few thousand bootstrap samples, as we have
suggested is appropriate.

Remark 3 The theoretical effects of weighted bootstrapping in the nonparametric con-
text are analysed for various classes of problem, including those involving robust estima-
tors and regression estimation, as well as the smooth function model of Hall (1992), by
Lee and Young (2003). The basic striking conclusion is as indicated above: if u(Y, θ ) is
uniform to order O(n− j/2),

Pr{u(Y, θ ) ≤ u} = u + O(n− j/2),

then, quite generally, û1(Y, θ ) is uniform to order O(n−( j+1)/2), while ũ1(Y, θ ) is uniform to
the higher order O(n−( j+2)/2). The result holds for confidence set roots of the kind described
in Example 11.2, as well as more complicated roots. An example is the widely used bootstrap
percentile method confidence set root

u(Y, ψ) = Pr∗{θ̂ (Y ∗) > ψ}, (11.10)

where Y ∗ denotes a bootstrap sample drawn from the empirical distribution function F̂
of the data sample Y and Pr∗ denotes probability under the drawing of such samples. We
observe that u(Y, ψ) is monotonically decreasing in ψ , so that the confidence set I is of
the form (θ̂l , ∞), where it is easily seen that θ̂l ≡ θ̂l(Y ) is the α quantile of θ̂ (Y ∗) under
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the drawing of bootstrap samples Y ∗. As we have noted, in practice the confidence limit θ̂l

is approximated by Monte Carlo simulation, the probability in (11.10) being estimated by
the drawing of an actual series of R bootstrap samples. Notice that prepivoting with this
confidence set root then involves a nested, or iterated, bootstrap calculation. For instance,
Ĝ, as given by (11.7), is approximated by the drawing of, say, S bootstrap samples Y ∗: for
each of these R (second-level) bootstrap samples must be drawn to approximate u(Y ∗, θ̂ ).
A similar procedure is required in approximating G̃, (11.9).

The basic assumption made by Lee and Young (2003) is that the root u(Y, θ ) admits an
asymptotic expansion of the form

u(Y, θ ) = �(T ) + φ(T ){n−1/2r1(Z̄ , T ) + n−1r2(Z̄ , T ) + · · · }, (11.11)

where T = (θ̂ − θ )/σ̂ is the studentised parameter estimate, asymptotically standard
normal, as in Example 11.2 above, and where the precise specification of Z̄ =
n−1 ∑n

i=1 zi (Y, F) and polynomials r1, r2 depend on the class of problem being consid-
ered. The basic result then holds under mild conditions on the choice of probability weights
pi . In particular, the conclusions hold for a whole class of distance measures, which gen-
eralise the Kullback–Leibler distance (Baggerly, 1998; Corcoran, 1998). The choice of
distance measure is therefore largely irrelevant to the theoretical conclusion, allowing the
use of well-developed algorithms (Owen, 2001) for construction of weighted bootstrap dis-
tributions F̂p, as well as use of simple tilted forms of the empirical distribution function F̂ ,
as described, for example, by DiCiccio and Romano (1990).

Lee and Young (2003) also consider the effects of successively iterating the prepivoting.
They demonstrate that iterated weighted prepivoting accelerates the rate of convergence
to zero of the bootstrap error, compared with the effect of iteration of the conventional
bootstrap (Hall and Martin, 1988; Martin, 1990).

The same conclusions hold for testing. When testing a point null hypothesis H0 : θ = θ0,
a one-sided test of nominal size α rejects H0 if u(Y, θ0) ≤ α. If u(Y, θ0) were exactly
Uniform(0, 1), the null rejection probability would be exactly α. To increase accuracy,
weighted bootstrapping applied with θ = θ0 reduces error by O(n−1). Now, of course,
constrained bootstrapping need only be carried out at the single parameter value θ0, so
computational complications over conventional bootstrapping are reduced.

Remark 4 DiCiccio et al. (2001) show that in the parametric context, and for the specific
case u(Y, ψ) = �{rp(ψ)}, the coverage error of the confidence set is reduced by constrained
prepivoting to O(n−3/2). This same order of error as that obtained from the analytic adjust-
ment ra to the signed root statistic rp is achieved without any need for analytic calculation,
or specification of the ancillary required by ra. A fuller theoretical analysis for confidence
sets based on a general, asymptotically N (0, 1), pivot T (Y, θ ) shows this basic conclu-
sion, of reduction of the coverage error from O(n−β/2) for the initial confidence set root to
O(n−(β+1)/2) by conventional bootstrapping, and order O(n−(β+2)/2) by constrained boot-
strapping, to hold in considerable generality. See Lee and Young (2004).

Remark 5 To emphasise the conclusions reached from Illustrations 11.1 and 11.2 above,
we note that, in the parametric context and in the absence of any nuisance parameter,
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confidence sets based on the constrained prepivoted root ũ1(Y, ψ) will always have ex-
actly the desired coverage 1 − α, ignoring any error that results from a finite Monte Carlo
simulation. The conventional bootstrap approach, based on û1(Y, ψ), will only yield ex-
act inference if the initial root u(Y, ψ) is exactly pivotal. There seems, therefore, strong
arguments in favour of general adoption of constrained bootstrap schemes.

11.3 Data example: Bioequivalence

The following application of the non-parametric bootstrap is described by Efron and
Tibshirani (1993), whose analysis we extend.

A drug company has applied each of three hormone supplement medicinal patches to
eight patients suffering from a hormone deficiency. One of the three is ‘Approved’, having
received approval from the US Food and Drug Administration (FDA). Another is a ‘Placebo’
containing no hormone. The third is ‘New’, being manufactured at a new facility, but
otherwise intended to be identical to ‘Approved’. The three wearings occur in random order
for each patient and the blood level of the hormone is measured after each patch wearing:
results are given in Table 11.2. The FDA requires proof of bioequivalence before approving
sale of the product manufactured at the new facility.

Technically, let x be the difference between Approved and Placebo measurements on the
same patient and let z be the difference between New and Approved:

x = Approved − Placebo, z = New − Approved.

Let µ and ν be the expectations of x and z and let

ρ = ν/µ.

The FDA criterion for bioequivalence is that the new facility matches the old facility within
20% of the amount of hormone the old drug adds to the placebo blood levels, |ρ| ≤ 0.2.

For the given data

(x̄, z̄) = (6342, −452) = (µ̂, ν̂),

giving a non-parametric estimate of the ratio ρ as

ρ̂ = ν̂/µ̂ = −0.071.

Table 11.2 Bioequivalence data

Subject Placebo Approved New x z

1 9243 17649 16449 8406 −1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 −2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 −1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 −638
8 18806 29044 26325 10238 −2719



202 Bootstrap methods

What about possible bias in this estimate? A simple bootstrap estimate of bias may be
constructed as

E
∗{ρ̂(Y ∗)} − ρ̂(Y ),

where Y denotes the observed data, consisting of the eight pairs (x, z), and E
∗ denotes expec-

tation under the drawing of bootstrap samples Y ∗ from the empirical distribution function
F̂ of the observed data. In practice, this expectation is approximated by R−1 ∑R

i=1 ρ̂(Y ∗
i ),

where Y ∗
1 , . . . , Y ∗

R denote an actual series of R bootstrap samples obtained by Monte Carlo
simulation from F̂ . Now, for bias estimation the rule of thumb is that R of order of a few
hundreds is adequate.

For the data in Table 11.2, a bootstrap bias estimator constructed from R = 500 bootstrap
samples gave the value 0.008, suggesting that bias is not a problem in this situation. Given
the small sample size, we might however expect the estimator ρ̂ to be highly variable,
and again simple bootstrapping can provide an estimate of this variability. The bootstrap
estimator of the variance of the ratio estimator ρ̂ is

var∗{ρ̂(Y ∗)},
the variance under sampling of bootstrap samples from F̂ . Again, a Monte Carlo approx-
imation is R−1 ∑R

i=1(ρ̂(Y ∗
i ) − ρ̄∗)2, where ρ̄∗ = R−1 ∑R

i=1 ρ̂(Y ∗
i ), with sensible R of the

order of a few hundreds. For our data and R = 500, a variance estimator of 0.010 was
obtained, so we estimate the standard error of ρ̂ to be 0.100.

The large estimate of standard error casts doubt on the bioequivalence requirement being
satisfied. A crude confidence interval of nominal coverage 90% for ρ, the so-called ‘standard
interval’ based on normal approximation to the distribution of ρ̂, is

ρ̂ ± 1.96 × estimated standard error,

here (−0.267, 0.125), based on our standard error estimate.
In fact, in formal terms the explicit FDA bioequivalence requirement is that a 90% equi-

tailed confidence interval of the form (11.2) for ρ lie within the range (−0.2, 0.2). We use the
percentile method to construct a nominal 90% confidence interval for ρ, using confidence
set root u(Y, ψ) = Pr∗{ρ̂(Y ∗) > ψ}.

Figure 11.1 illustrates u(Y, ψ) as a function of ψ , based on R = 9999 bootstrap samples,
for the data under study. The nominal 90% confidence interval (11.2) is (−0.211, 0.115),
suggesting that the bioequivalence criterion is violated.

But is this interval to be trusted? The accuracy, under repeated sampling from the under-
lying population, of the chosen confidence interval procedure is an important part of the
way the FDA decision making operates, and we must therefore be concerned at the accuracy
of our percentile method interval. Figure 11.1 shows also the confidence sets obtained from
the prepivoted confidence set roots û1(Y, ψ) and ũ1(Y, ψ): in the construction of these sets
the distribution functions Ĝ, as given by (11.7), and G̃, as given by (11.9), were also each
constructed from S = 9999 bootstrap samples of the relevant conventional or weighted
type. Conventional prepivoting yields a much wider confidence interval, (−0.219, 0.306),
suggesting clear violation of the criterion, but weighted prepivoting yields the confidence
set (−0.199, 0.124), not much different from the raw percentile interval. The conclusion is
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Figure 11.1 Two-sided confidence sets obtained from roots u(Y, ψ), û1(Y, ψ) and ũ1(Y, ψ) for bio-
equivalence data

clear: we are uncertain whether the requirement is met, but the confidence set of greatest the-
oretical asymptotic accuracy suggests it just might be. Further investigation is appropriate.

11.4 Further numerical illustrations

Illustration 11.3 Exponential regression
Consider an exponential regression model in which T1, . . . , Tn are independent, exponen-
tially distributed lifetimes, with means of the form E(Ti ) = exp(β + ξ zi ), with known
covariates z1, . . . , zn . Suppose that inference is required for the mean lifetime for covariate
value z0. Let the parameter of interest therefore be θ = β + ξ z0, with nuisance parameter
ξ . The signed root likelihood ratio statistic is

rp(θ ) = sgn(θ̂ − θ )[2n{(θ − θ̂ ) + (̂ξθ − ξ̂ )c̄ + n−1 exp(−θ )
n∑

i=1

Ti exp(−ξ̂θci ) − 1}]1/2,

where ci = zi − z0, i = 1, . . . , n and c̄ = n−1 ∑
ci .

In this case, the calculations leading to the adjusted version ra of rp are readily performed.
However, it is easily verified that rp is exactly pivotal. To see this, substitute Ti = exp(θ +
ξci )Yi , where the Yi are independently, exponentially distributed with mean 1, and observe
that the signed root statistic may be expressed as a (complicated) function of Y1, . . . , Yn ,
and so has a distribution which does not depend on (θ, ξ ). Therefore, even conventional
bootstrapping yields the true sampling distribution, modulo simulation error. There is no
need for constrained bootstrapping in this problem.

For numerical illustration, we consider data extracted from Example 6.3.2 of
Lawless (1982), as analysed by DiCiccio et al. (2001). The n = 5 responses Ti are 156,
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Table 11.3 Coverages (%) of confidence sets for mean θ = exp(β + ξ z0) at
z0 = log10(50 000) in exponential regression example, estimated from
100 000 data sets of size n = 5 and using R = 4999 bootstrap replicates

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 1.7 4.1 7.8 14.6 93.7 97.1 98.7 99.5
�(ra) 1.0 2.6 5.0 10.1 90.0 95.0 97.5 99.0
Bootstrap 1.0 2.6 5.0 10.0 90.0 95.1 97.5 99.0

108, 143, 65 and 1, survival times in weeks of patients suffering from leukaemia, and the
corresponding covariate values are 2.88, 4.02, 3.85, 5.0 and 5.0, the base-10 logarithms of
initial white blood cell count. We take z0 = log10(50 000) � 4.7. For these data, θ̂ = 3.913
and ξ̂ = −0.838.

We compare the coverage properties of confidence sets derived from �(rp), �(ra) and
bootstrapping for n = 5, in an exponential regression model with these parameter values
and the fixed covariate values. Table 11.3 compares actual and nominal coverages provided
by the three constructions, based on 100 000 simulated datasets. Coverages based on normal
approximation to rp are quite inaccurate, but normal approximation to ra provides much
more accurate inference, while bootstrap confidence sets (each based on R = 4999 bootstrap
samples) also display coverages very close to nominal levels.

Other cases where it is easily verified that rp is exactly pivotal, and therefore conventional
bootstrapping of rp will provide exact inference, include inference for the error variance
in a normal-theory linear regression model, and the related Neyman–Scott problem, as
described by Barndorff–Nielsen and Cox (1994: Example 4.2).

Illustration 11.4 Normal distributions with common mean
We consider now the problem of parametric inference for the mean, based on a series of in-
dependent normal samples with the same mean but different variances. Initially we consider
a version of the Behrens–Fisher problem in which we observe Yi j , i = 1, 2, j = 1, . . . , ni ,
independent N (θ, σ 2

i ). The common mean θ is the parameter of interest, with orthogonal
nuisance parameter ξ = (σ1, σ2). Formally, this model is a (4,3) exponential family model.
In such a model, the adjusted signed root statistic ra is intractable, though readily com-
puted approximations are available, such as the approximation r̃a detailed at (9.17): see also
Skovgaard (1996), Severini (2000: Chapter 7); Barndorff-Nielsen and Chamberlin (1994).

We compare coverages of confidence sets derived from �(rp), �(r̃a), the conventional
bootstrap, which bootstraps at the overall maximum likelihood estimator (θ̂ , ξ̂ ), and the
constrained bootstrap, which uses bootstrapping at the constrained maximum likelihood
estimator (θ, ξ̂θ ), for 50 000 datasets from this model, with parameter values θ = 0, σ 2

1 = 1,

σ 2
2 = 20 and sample sizes n1 = n2 = 5. All bootstrap confidence sets are based on R =

1999 bootstrap samples. Also considered are the corresponding coverages obtained from
�(W ) and �(S) and their conventional and constrained bootstrap versions, where W and S
are Wald and score statistics respectively, defined as the signed square roots of the statistics
(8.23) and (8.22) respectively.
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Table 11.4 Coverages (%) of confidence intervals for Behrens–Fisher example,
estimated from 50 000 data sets with bootstrap size R = 1999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 1.6 3.7 6.5 11.9 88.0 93.5 96.4 98.4
MLE bootstrap 0.9 2.3 4.8 10.1 90.1 95.3 97.8 99.2
Constrained MLE bootstrap 0.8 2.3 4.8 10.0 90.1 95.3 97.9 99.2

�(r̃a) 0.9 2.5 5.2 10.6 89.5 94.9 97.6 99.1

�(W ) 5.2 8.0 11.3 16.5 83.5 88.9 92.2 94.8
MLE bootstrap 0.8 2.3 4.7 10.1 90.1 95.2 97.8 99.2
Constrained MLE bootstrap 0.8 2.2 4.6 10.0 90.2 95.4 97.9 99.3

�(S) 0.1 1.4 4.7 11.6 88.6 95.5 98.7 99.9
MLE bootstrap 1.1 2.4 5.0 10.0 90.1 95.2 97.7 99.0
Constrained MLE bootstrap 0.9 2.4 5.0 10.1 90.0 95.2 97.7 99.1

The coverage figures shown in Table 11.4 confirm that the simple bootstrap approach
improves over asymptotic inference based on any of the statistics rp, S, or W . Conventional
bootstrapping yields very accurate inference for all three statistics: there are no discernible
gains from using the constrained bootstrap. Overall, bootstrapping is very competitive in
terms of accuracy when compared with r̃a.

In the above situation, the nuisance parameter is two dimensional. As a more chal-
lenging case, we consider extending the above analysis to inference on the common
mean, set equal to 0, of six normal distributions, with unequal variances (σ 2

1 , . . . , σ 2
6 ),

set equal to (1.32, 1.93, 2.22, 2.19, 1.95, 0.11). These figures are the variances of data re-
lating to measurements of strengths of six samples of cotton yarn, given in Example Q
of Cox and Snell (1981). The inference is based on an independent sample of size 5 from
each population. Table 11.5 provides figures corresponding to those in Table 11.4 for this
regime. Now the bootstrap approach is clearly more accurate than the approach based on
r̃a, and it might be argued that now it is possible to discern advantages to the constrained
bootstrap approach compared with the conventional bootstrap. Again, the constrained boot-
strap works well when applied to the Wald and score statistics, casting some doubt on the
practical significance of arguments of DiCiccio et al. (2001).

Illustration 11.5 Variance component model
As a further parametric illustration of a practically important inference problem,
we consider the one-way random effects model considered by Skovgaard (1996) and
DiCiccio et al. (2001). Here we have

Yi j = θ + αi + ei j , i = 1, . . . , m; j = 1, . . . , ni ,

where the αi s and the ei j s are all independent normal random variables of mean 0 and
variances σ 2

α and σ 2
e respectively. Inference is required for θ , both other parameters being

treated as nuisance. If the group sizes n1, . . . , nm are not all equal the maximum likelihood
estimators do not have closed-form expressions, and must be found iteratively. More im-
portantly, ancillary statistics are not available to determine the analytic adjustment vp(ψ)
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Table 11.5 Coverages (%) of confidence intervals for normal mean example,
estimated from 50 000 data sets with bootstrap size R = 1999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 3.0 5.7 9.3 15.1 85.3 91.2 94.6 97.2
MLE bootstrap 1.1 2.7 5.2 10.2 90.3 95.0 97.5 98.9
Constrained MLE bootstrap 0.9 2.5 5.1 10.1 90.4 95.2 97.6 99.0

�(r̃a) 1.5 3.4 6.4 11.9 88.7 93.9 96.7 98.5

�(W ) 6.7 9.6 13.3 18.7 82.0 87.3 90.8 93.6
MLE bootstrap 1.1 2.7 5.3 10.2 90.2 95.0 97.4 98.9
Constrained MLE bootstrap 0.9 2.4 5.0 9.9 90.5 95.3 97.6 99.1

�(S) 0.6 2.1 5.1 10.9 89.6 95.2 98.0 99.5
MLE bootstrap 1.2 2.7 5.2 10.1 90.4 95.1 97.4 98.8
Constrained MLE bootstrap 1.1 2.5 5.2 10.2 90.3 95.1 97.5 99.0

Table 11.6 Coverages (%) of confidence intervals for random effects example,
estimated from 50 000 data sets with bootstrap size R = 1999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 1.5 3.4 6.5 11.9 88.2 93.6 96.6 98.5
MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1
Constrained MLE bootstrap 1.0 2.5 5.1 10.1 90.0 95.0 97.6 99.1

�(r̃a) 0.6 1.8 4.1 8.9 91.1 95.9 98.1 99.3
MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1
Constrained MLE bootstrap 1.0 2.5 5.1 10.1 90.0 95.0 97.6 99.1

�(W ) 0.5 2.0 5.1 10.9 89.2 94.9 98.0 99.5
MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1
Constrained MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

�(S) 0.4 2.0 5.1 10.9 89.2 95.0 98.0 99.5
MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1
Constrained MLE bootstrap 1.0 2.5 5.0 10.1 90.0 95.0 97.6 99.1

to the signed root likelihood ratio statistic rp(ψ), so again approximate forms such as r̃a(ψ)
must be used.

We performed a simulation analogous to that described in Illustration 11.4 for the case
m = 10, ni = i , σα = 1, σe = 0.04. Coverage figures obtained for the various confidence
set constructions are given in Table 11.6, again as derived from a series of 50 000 simula-
tions, with bootstrap confidence sets being based on R = 1999 bootstrap samples. Included
in the study in this case are coverage figures obtained by applying both conventional and
constrained prepivoting to the initial confidence set root u(Y, ψ) = �{r̃a(ψ)}: normal ap-
proximation to the distribution of r̃a itself yields poor coverage accuracy, and it is worthwhile
considering prepivoting the confidence set root constructed from r̃a. The effectiveness of
bootstrapping is again apparent.
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In summary, it is our general experience that analytic approaches based on ra are typically
highly accurate when the dimensionality of the nuisance parameter is small and ra itself is
readily constructed, as in, say, a full exponential family model, where no ancillary statistic
is required. In such circumstances, the argument for bootstrapping then rests primarily on
maintaining accuracy, while avoiding cumbersome analytic derivations. In more compli-
cated settings, in particular when the nuisance parameter is high dimensional or analytic
adjustments ra must be approximated, the bootstrap approach is typically preferable in
terms of both ease of implementation and accuracy. In all the parametric examples we have
studied, it is striking that conventional bootstrapping already produces very accurate infer-
ence. Though constrained bootstrapping is advantageous from a theoretical perspective, in
practice the gains over conventional bootstrapping may be slight or non-existent. Neverthe-
less, there is little risk of impaired repeated sampling performance relative to conventional
bootstrapping, and implementation is straightforward.

In the non-parametric context, the situation is less clear-cut. In particular, it is unclear
whether the theoretical benefits of weighted bootstrapping over conventional bootstrapping
are realisable in any particular situation, or whether weighted bootstrapping might actually
reduce finite sample accuracy, as our next illustration demonstrates. The primary difficulty
that arises in the non-parametric context is that of choosing the re-weighting scheme most
appropriately, a problem that does not arise in the parametric setting.

Illustration 11.6 Non-parametric inference for variance
We consider non-parametric inference for the variance θ = 0.363 of a folded standard
normal distribution |N (0, 1)|, for sample size n = 50.

From 20 000 datasets, we compared the coverage properties of confidence sets based
on u(Y, ψ) = �{(θ̂ − ψ)/σ̂ }, with θ̂ the sample variance and σ̂ 2 an estimate of its
asymptotic variance, and its conventional and weighted prepivoted forms û1(Y, ψ) and
ũ1(Y, ψ). Table 11.7 displays the coverages of the three intervals. Weighted bootstrap-
ping here utilised the exponentially tilted distribution involving empirical influence values
described by Davison and Hinkley (1997): see also DiCiccio and Romano (1990). Results
for this, computationally simple, weighting procedure are very similar to those obtained
from other, computationally less attractive, choices of construction of weighted bootstrap
distribution.

Confidence sets based on u(Y, ψ) are quite inaccurate, and substantial improvements
are given by both conventional and weighted bootstrapping. Which of these is best

Table 11.7 Coverages (%) of bootstrap confidence sets for the variance θ when F is
the folded standard normal distribution, estimated from 20 000 data sets of size
n = 50 and using R = 4999 bootstrap replicates; the root taken is
u(Y, ψ) = �{(θ̂ − ψ)/σ̂ } with θ̂ sample variance

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

u(Y, ψ) 10.0 13.4 17.2 23.0 95.1 98.3 99.4 99.9
û1(Y, ψ) 3.1 5.4 8.5 14.1 91.6 96.5 98.6 99.6
ũ1(Y, ψ) 6.0 8.7 12.1 17.2 90.7 95.9 98.1 99.4
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Figure 11.2 Prepivoting operation of the bootstrap, non-parametric inference for the variance of
|N (0, 1)|

depends, however, on the required coverage level. Similar conclusions are seen in other
non-parametric examples: see Example 3 of Davison et al. (2003) and the examples given
by Lee and Young (2003).

Graphical illustration of the prepivoting operation of the bootstrap is provided in Fig-
ure 11.2, which shows the distribution functions, as estimated from the 20 000 datasets, of
u(Y, θ ), û1(Y, θ ) and ũ1(Y, θ ), with θ the true parameter value. The distribution of u(Y, θ )
is distinctly not Un(0, 1), while both bootstrap schemes yield prepivoted roots which are
close to uniform, except in the lower tail. There, the distribution function of the conven-
tional prepivoted root is closer to uniform than that of the weighted prepivoted root. The
coverage figures shown in Table 11.7 may, in principle, be read directly off the graph of the
distribution functions of the three confidence set roots.

11.5 Conditional inference and the bootstrap

Our analysis so far is intended to demonstrate that, in both parametric and non-parametric
settings, bootstrapping can yield highly accurate inference for a parameter of interest, when
judged in terms of repeated sampling properties under the assumed model F(y; η). There is,
however, another consideration which should be taken into account in our analysis, relating
to the Fisherian proposition that inference about a parameter θ should, in a parametric con-
text, be based not on the original specified model F(y; η), but instead on the derived model
obtained by conditioning on an ancillary statistic. (Notions of ancillarity and conditioning
in a non-parametric problem are much more difficult). Recall that the motivation is that
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the hypothetical repetitions, which are the basis of the inference in a frequentist analysis,
should be as relevant as possible to the (unique) data being analysed, so that we should
condition on aspects of the data that are uninformative about θ . Likelihood-based analytic
approaches, such as those based on ra, are explicitly designed to have conditional valid-
ity, given an ancillary statistic, as well as yielding improved distributional approximation.
Bootstrap procedures, on the other hand, involve unconditional simulation from some em-
pirical model, F̃ . Yet, as we shall demonstrate, this unconditional approach realises, to a
considerable extent, the goal of appropriate conditioning. There is, however, some evidence
that bootstrap approaches are less accurate than analytic approaches when judged from this
conditional, Fisherian, perspective, rather than from a purely frequentist viewpoint.

A central notion here is the idea of stability. In general, a statistical procedure is stable if
it respects the principle of conditioning relative to any reasonable ancillary statistic, without
requiring specification of the ancillary: see Barndorff-Nielsen and Cox (1994: Chapter 8).
A statistic T is stable if its conditional distribution, given an arbitrary ancillary statistic a,
and its unconditional distribution are approximately the same. Formally, the distribution
of a statistic T is stable to first order if an asymptotic approximation to the conditional
distribution of T given an arbitrary ancillary statistic a does not depend on a, to first order,
that is ignoring terms of order O(n−1/2). T is stable to second order if an asymptotic
expansion of the conditional distribution of T given a does not depend on a, neglecting
terms of the higher order O(n−1).

For example, in a one-parameter problem, it may be shown that the normalised maximum
likelihood estimator T = √

i(θ )(θ̂ − θ ) is stable only to first order, as, in general, is the case
for the score statistic. By contrast, the signed root likelihood ratio statistic r (θ ) is stable to
second order, as is the maximum likelihood estimator normalised by observed information
To =

√
j(θ̂ )(θ̂ − θ ). Similar results hold in the case of a vector parameter.

Illustration 11.1 (continued) Figure 11.3 shows the conditional density functions of three
statistics, for samples of size n = 10 from the normal distribution N (θ, θ2), for two val-
ues of the conditioning ancillary, a = 1, 1.5. Case (a) refers to the maximum likelihood
estimator normalised by the Fisher information i(θ ), while cases (b) and (c) refer to the
maximum likelihood estimator normalised by observed information and the signed root like-
lihood ratio statistic respectively. The stability of the latter two statistics is clear from the
figure.

Inference based on a statistic with a distribution that is stable is particularly appealing, since
the goals of conditioning on an ancillary statistic can be achieved using an unconditional
procedure, such as bootstrapping! The key point here is that conclusions do not depend on the
ancillary statistic used, and indeed precise specification of the ancillary is not required. So,
bootstrapping a stable statistic is attractive from a Fisherian, as well as repeated sampling,
perspective, in providing good approximation to a conditional analysis that may be awkward
to carry out. One approach to conditional parametric bootstrapping in certain situations is
through Metropolis–Hastings algorithms (Brazzale, 2000), but unconditional bootstrapping
generally has to be used, for instance in circumstances where an appropriate ancillary is
unavailable.

It is beyond the scope of this book to provide a rigorous analysis of the stability properties
of bootstrapping. Instead, we make some general comments and consider some examples.
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Figure 11.3 Stability of three statistics, normal distribution N (θ, θ2)

If we consider a statistic T stable to second order, such as the signed root likelihood ratio,
the unconditional and conditional distributions of T differ by O(n−1). Appropriate boot-
strapping, in particular use of the constrained bootstrap approach which has been the focus of
this chapter, is specifically designed to approximate the unconditional distribution of T to er-
ror of order O(n−1) at worst, and therefore approximates the conditional distribution which is
appropriate for inference from a Fisherian perspective to this same level of error, O(n−1). As
we can see from our examples, this is often quite satisfactory, though in order of magnitude
terms the conditional accuracy is less than the O(n−3/2) accuracy of analytic procedures,
such as ra, which are specifically constructed to have such levels of conditional validity.



11.5 Conditional inference and the bootstrap 211

Illustration 11.1 (continued) Suppose that in our example of a normal distribution
with known coefficient of variation we have n = 10, and θ̂ = 3/2 is observed, with
observed ancillary a = 1. Consider testing the hypothesis H0 : θ = θ0 = 1, against the
alternative that θ is larger, so that evidence against H0 is provided by large val-
ues of θ̂ . To do so, we might calculate the signed root of the likelihood ratio statis-
tic, r (θ0) = 2.904, by (11.8). Then a test of H0 is carried out, in a Fisherian ap-
proach to significance testing, by computing the significance probability Prθ0{r (θ0) ≥
2.904} ≡ Prθ0 (θ̂ ≥ 3/2): this turns out (parametric bootstrap!) to be 0.001222. By con-
trast, normal approximation to the distribution of r (θ0) gives a significance probability
of 0.001840 and normal approximation to the distribution of the adjusted signed root
statistic ra(θ0) a value of 0.001252. But, the conditionality principle implies that the ap-
propriate inference should actually be based on the conditional significance probability
Prθ0{r (θ0) ≥ 2.904|a = 1}. We know, from (9.18), the exact conditional density, given a, of
θ̂ and numerical integration of this gives an exact conditional significance probability of
0.001247. We see that the use of ra provides a better approximation to the exact conditional
significance probability than the unconditional bootstrap inference (which of course gives
the answer 0.001222), though for any practical purpose the latter gives a quite satisfactory
approximation.

A more complete picture is provided by Figure 11.4, where we compare the true condi-
tional significance probabilities for testing the null hypothesis θ = θ0, with approximate
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levels obtained from �(ra) and by unconditional bootstrap estimation of the distribution
of r , for a range of values of θ0. We consider also use of the bootstrap to estimate the
(unconditional) distribution of the maximum likelihood estimator normalised by observed
information. In this context, significance values obtained from �(r ) are quite inaccurate, as
are those obtained by normal approximation to the distribution of the maximum likelihood
estimator. The figure plots the relative error of each approximation, defined as the approx-
imation minus the true conditional significance probability, expressed as a proportion of
the true probability. Each bootstrap figure is based on R = 10 000 000 bootstrap samples.
The conditional accuracy of the approximation obtained by unconditional bootstrapping
of the distribution of r is impressive, though less than that obtained from normal approx-
imation to the distribution of the analytic adjustment ra, which gives excellent levels of
conditional accuracy. This and similar examples favour applying the bootstrap to the signed
root statistic r , rather than other statistics stable to second order. For reference, the vertical
line shown in the figure corresponds to an exact conditional significance level of 1%. A
similar picture is seen for other conditioning values of the ancillary a.

Illustration 11.7 Weibull distribution
We consider analysis of a dataset of size n = 20, discussed by Keating, Glaser and Ketchum
(1990), concerning the time to failure, in hours, of pressure vessels subjected to a constant
fixed pressure. The failure times are 274, 1661, 1787, 28.5, 236, 970, 1.7, 828, 0.75, 20.8,
458, 1278, 871, 290, 776, 363, 54.9, 126, 1311, 175. We suppose that T1, . . . , Tn are
independent, identically distributed observations from the Weibull density

f (t ; ν, λ) = λν(λt)ν−1 exp{−(λt)ν} :

since the case ν = 1 reduces to an exponential distribution, it is natural to consider inference
for the shape parameter ν.

If we set Yi = log(Ti ), we have that Y1, . . . , Yn are independent, identically distributed
from the extreme value distribution EV (µ, θ), with density

f (y; µ, θ) = 1

θ
exp

{
y − µ

θ
− e(y−µ)/θ

}
,

where µ = − log λ, θ = ν−1. The extreme value distribution is an example of a location-
scale model, and we compare exact conditional inference for θ , as described by Pace and
Salvan (1997: Chapter 7), with the results of bootstrapping. In this example, the adjusted
signed root statistic ra is easily constructed: the ancillary statistic is the configuration a =
(a1, . . . , an), where ai = (Yi − µ̂)/θ̂ . The form of ra(θ ) is given by Pace and Salvan (1997:
Example 11.7).

An exact equi-tailed 90% conditional confidence interval for θ is (1.088, 2.081). The
location-scale model structure of the inference problem ensures that the signed root likeli-
hood ratio statistic rp(θ ) is exactly pivotal, so that the conventional bootstrap estimates the
true (unconditional) distribution exactly. Though we make inference for θ in the presence of
the nuisance parameter µ, there is no need to consider the constrained bootstrap approach,
which is identical to the conventional bootstrap in this case.

The 90% confidence intervals obtained from the pivots �{rp(θ )} and �{ra(θ )} are respec-
tively (1.041, 1.950) and (1.086, 2.077), confirming the conditional accuracy of the adjusted
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Figure 11.5 Relative errors of approximations of conditional significance values, exponential regres-
sion example

signed root statistic ra(θ ). Using R = 4999 bootstrap samples the confidence interval ob-
tained from the bootstrap confidence set root û1{�(rp(θ ))} was calculated as (1.085, 2.077).

The impressive agreement of the bootstrap interval with the exact confidence set is even
more striking in an analysis of the first n = 10 observations in the data sample. The exact
90% conditional interval is then (1.440, 3.702), with normal approximation to the unadjusted
and adjusted signed root statistics yielding the intervals (1.326, 3.217) and (1.437, 3.685)
respectively, the latter now less accurate than the interval obtained by bootstrapping rp,
which was obtained as (1.440, 3.698).

Illustration 11.3 (continued) For the exponential regression example, exact conditional
inference is described in Section 6.3.2 of Lawless (1982). This example displays the same
essential features as the Weibull example, Illustration 11.7. The adjusted signed root statistic
ra(θ ) is readily constructed, the unadjusted statistic rp(θ ) is exactly pivotal, so that the
conventional bootstrap again estimates the true (unconditional) distribution exactly, and the
exact inference is awkward, requiring numerical integration.

Based on the same five observations as considered previously, Figure 11.5 provides
graphical comparison between exact conditional significance levels, given (exact) ancillary
statistics log Ti − θ̂ − ξ̂ci , i = 1, . . . , n, for testing the null hypothesis H0 : θ = θ0, with
approximate levels obtained from �(ra) and by bootstrapping the distribution of rp. Now
we consider testing H0 against the alternative that θ is smaller, so that evidence against
H0 is provided by small values of θ̂ . Results are shown for a range of θ0 of the form
θ0 = θ̂ + δ. Also shown are results obtained by bootstrapping the distribution of ra. Again,
the figure plots the relative error of each approximation, for a range of values of δ, and each
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bootstrap figure is based on R = 10 000 000 bootstrap samples. The conditional accuracy of
the approximation obtained by unconditional bootstrapping of the distribution of rp is less
than that obtained from normal approximation to the distribution of the analytic adjustment
ra. However, bootstrapping the distribution of ra gives excellent conditional accuracy, to
very small significance levels. Once more, for reference the vertical line shown in the figure
corresponds to an exact conditional significance level of 1%.

The circumstantial evidence provided by our three examples suggests that bootstrapping
applied to a statistic that is stable to second order, in particular the signed root likelihood
ratio statistic, yields a quite satisfactory approximation to the conclusions of the conditional
inference required by the Fisherian proposition, while avoiding the awkward calculations
demanded by exact conditional inference. These exact calculations generally require numer-
ical integration, which will be multidimensional in more complex examples. Bootstrapping
typically incurs, as predicted by theory, some slight loss of conditional accuracy compared
with more analytically sophisticated likelihood-based proposals, such as inference based
on normal approximation to the adjusted signed root likelihood ratio statistic ra. However,
we might argue that in our examples the loss of accuracy is practically insignificant, and
the bootstrap approach avoids the need for explicit specification of the ancillary statistic,
and the sometimes cumbersome analytic calculations.

In all of our examples, the conventional bootstrap provides the exact unconditional distri-
bution of the signed root statistic rp: this is true quite generally in location-scale, regression-
scale models etc. In other cases, such as the curved exponential family context, the question
of whether the constrained bootstrap approach is advantageous then arises. We have seen
that the constrained bootstrap is more accurate for estimating the unconditional distribu-
tion, but the situation for estimation of the relevant conditional distribution is less clear. An
important point, however, is that the choice between the two bootstrap approaches (con-
ventional and constrained) need not be viewed as any more cumbersome than the choice
between different approximations r̃a to the adjusted signed root statistic ra that is typically
required in such cases. Also, in this situation either bootstrap method, applied to a statistic
stable to second order, approximates the conditional distribution relevant to the Fisherian
proposition to the same level of error, O(n−1), as does any r̃a.

11.6 Problems

11.1 Let x1, x2, . . . , xn , with ordered values x(1) < x(2) < . . . < x(n), be an independent,
identically distributed sample from an unknown distribution F . Let θ̂ (X1, . . . , Xn)
be a statistic. A non-parametric bootstrap estimate of the standard deviation of θ̂ is
the standard deviation of θ̂ (X∗) under the drawing of bootstrap samples X∗ from the
empirical distribution of the observed data sample. Recall that such a bootstrap sample
is obtained by independently sampling, with replacement, from {x1, . . . , xn}.

Suppose that n = 2m − 1 and that θ̂ is X (m), the middle-order statistic. By showing
that the bootstrap distribution is concentrated on the observed data points and obtaining
an expression for the probability under the drawing of bootstrap samples of θ̂∗ ≡ θ̂ (X∗)
being equal to x(k), show that in this case the bootstrap estimate of standard deviation
can be calculated theoretically, without simulation.
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11.2 Given a dataset of n distinct values, show that the number of distinct bootstrap samples
obtained by the non-parametric bootstrap scheme, as described in Problem 11.1, is(

2n − 1

n

)
.

11.3 Let X1, X2, . . . , Xn be independent, identically distributed from a uniform distribution
on (0, θ ). What is the maximum likelihood estimator θ̂ of θ? What is the asymptotic
distribution of n(θ − θ̂ )/θ? Let θ̂∗ denote the value of θ̂ computed from a bootstrap
sample obtained by sampling with replacement from the data. By considering

Pr∗
{

n(θ̂ − θ̂∗)

θ̂
= 0

}
,

show that the non-parametric bootstrap fails to estimate the distribution of n(θ − θ̂ )/θ
consistently.

11.4 Let X1, . . . , Xn be an independent, identically distributed sample from a distribution
F . Suppose the parameter of interest is the square of the mean of F , θ = µ2, and let
θ be estimated by θ̂ = X̄2, where X̄ = n−1 ∑n

i=1 Xi is the sample mean.
Show that θ̂ is biased as an estimator of θ , and derive an explicit expression for

the non-parametric bootstrap estimator, bB O OT (θ̂ ) ≡ E
∗{θ̂ (X∗)} − θ̂ , of the bias of θ̂ ,

where X∗ denotes a generic bootstrap sample obtained by independently sampling
with replacement from {X1, . . . , Xn}, and the expectation is taken with respect to the
drawing of such samples.

A bias-corrected estimator θ̂1 is defined by

θ̂1 = θ̂ − bB O OT (θ̂ ). (11.12)

Find the form of θ̂1 and compare its bias with that of θ̂ .
The bias-correction is iterated to produce a sequence of estimators θ̂1, θ̂2, . . ., with

θ̂ j = θ̂ j−1 − bB O OT (θ̂ j−1),

where bBO OT (θ̂ j−1) ≡ E
∗{θ̂ j−1(X∗)} − θ̂ is a bootstrap estimator of the bias of θ̂ j−1.

Show that θ̂ j = X̄2 − (n − 1)−1(1 − n− j )̂σ 2, where σ̂ 2 = n−1 ∑n
i=1(Xi − X̄ )2, and

that as j → ∞, we have θ̂ j → θ̂∞, where θ̂∞ is unbiased for θ .
11.5 Suppose that in Problem 11.4 bootstrapping is done instead parametrically. Compare

the form of the bias-corrected estimator (11.12) with the minimum variance unbiased
estimator of θ in the cases of: (i) the normal distribution N (µ, 1); (ii) the exponential
distribution of mean µ.

11.6 Show that in Problem 11.4, the bootstrap estimator of bias, bBO OT (θ̂ ), is biased as an
estimator of the true bias of θ̂ .

Let θ̂i be the value of the estimator θ̂ (X1, . . . , Xi−1, Xi+1, . . . , Xn) computed from
the sample of size n − 1 obtained by deleting Xi from the full sample, and let θ̂· =
n−1 ∑n

i=1 θ̂i . The jackknife estimator of the bias of θ̂ is

bJ = (n − 1)(θ̂· − θ̂ ).

Derive the jackknife estimator in the case θ̂ = X̄2, and show that, as an estimator of
the true bias of θ̂ , it is unbiased.
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11.7 Let Y = {Y1, . . . , Yn} be an independent, identically distributed sample from
N (µ, σ 2), and let µ̂ and σ̂ 2 denote the maximum likelihood estimators of µ and
σ 2.

What is the asymptotic distribution of sn(σ 2) = √
n(̂σ 2 − σ 2)? Show that this

asymptotic distribution leads to a confidence set root (11.3) of the form

u(Y, ψ) = �

{√
n/2

(
1 − ψ

σ̂ 2

)}
.

What is the exact (finite sample) distribution of sn(σ 2)? Show that the confidence set
root (11.4) is of the form

u(Y, ψ) = G
{
n(2 − ψ/σ̂ 2)

}
,

where G is the distribution function of the chi-squared distribution with n − 1 degrees
of freedom.

Show that, for both initial confidence set roots, the (conventional) bootstrap confi-
dence set root is of the form

û1(Y, ψ) = G(nσ̂ 2/ψ),

and that the corresponding bootstrap confidence set has exactly the desired coverage.
Confirm that this is true also for the constrained bootstrap.

11.8 Let Y1, . . . , Yn be independent inverse Gaussian observations each with probability
density function

f (y; φ, γ ) =
√

φ√
2π

e
√

φγ y−3/2 exp{−1

2
(φy−1 + γ y)}.

Take the parameter of interest as φ, with γ as nuisance parameter.
Show that the profile log-likelihood function for φ is of the form

lp(φ) = n

2
(log φ − φφ̂−1),

and find the forms of the signed root likelihood ratio statistic, rp(φ), and of the adjusted
signed root likelihood ratio statistic ra(φ).

Using the distributional result that nφφ̂−1 is distributed as chi-squared with n − 1
degrees of freedom, examine numerically the accuracy of the standard normal approx-
imation to the distributions of rp(φ) and ra(φ), for a range of sample sizes n.

Perform a numerical study to examine the coverage accuracy of confidence sets
obtained by using the conventional and constrained bootstrap confidence set roots
û1(Y, ψ) and ũ1(Y, ψ) obtained from the initial confidence set root u(Y, ψ) =
�{rp(ψ)}.

11.9 The Weibull distribution considered in Illustration 11.7 can be extended to include
regressor variables. The most commonly used model is one in which the density
function of lifetime T , given regressor variables z, is of the form

f (t ; z, ν) = ν

α(z)

(
t

α(z)

)ν−1

exp

[
−

(
t

α(z)

)ν]
. (11.13)
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Then the density function of Y = log T , given z, is of extreme value form

f (y; z, σ ) = 1

σ
exp

[
y − µ(z)

σ
− exp

{
y − µ(z)

σ

}]
,

where µ(z) = log α(z).
Consider the case µ(z) = α + βz. Let α̂, β̂ and σ̂ denote the maximum likelihood

estimators from a random sample y1, . . . , yn corresponding to fixed covariate values
z1, . . . , zn .

Obtain the joint probability density function of W1 = (̂α − α)/σ̂ , W2 = (β̂ − β)/σ̂
and W3 = σ̂ /σ , given the ancillary statistics ai = (yi − α̂ − β̂zi )/σ̂ . Verify that w1

can be integrated out of this density analytically, to give the joint probability density
function of W2 and W3, given a, as

k(a, z)wn−2
3 exp

(
w3

n∑
i=1

ai

) / (
n∑

i=1

eai w3+zi w2w3

)n

.

Discuss how a (conditional) confidence interval for σ may be obtained from the
marginal distribution of W3. [Note that evaluation of this confidence interval will
require a double numerical integration.]

Consider again the leukaemia survival data considered in Illustration 11.3. Mod-
elling the survival times as in (11.13), construct an exact 90% conditional confidence
interval for ν. Compare the exact confidence set with that obtained by unconditional
bootstrapping of an appropriate statistic. Was the assumption of an exponential dis-
tribution used in Illustration 11.3 justified?
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p∗ formula, 153

density of MLE, 155
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sample space derivative, 156
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no nuisance parameter, 156
with nuisance parameter, 156, 193

ancillary statistic, see conditional inference
asymptotic expansion, 142
autoregressive process, 170

Bartlett correction, 160
Bayesian inference, 2, 22

asymptotics, 163–164
Bayes decision theory, 10, 28–32
Bayes factor, 73

Bayesian information criterion, and, 77
composite hypotheses, 75
interpretation, of, 74
simple hypotheses, 74
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Gibbs sampler, 42
Metropolis–Hastings sampler, 44, 53

empirical Bayes, 38, 171
hierarchical modelling, 48, 53
normal distribution, of, 24–28, 75
posterior distribution, 2, 22
predictive distribution, 52
prior distribution, 2, 10, 22, 39–42

conjugate, 24
improper, 31
Jeffreys prior, 40, 139
least favourable, 33
subjective, 41
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Behrens–Fisher problem, 204
bootstrap, 3, 183, 190

constrained, 196
conventional, 194
iterated prepivoting, 200
Monte Carlo simulation, 190

percentile method, 199, 202
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Central Limit Theorem, 128
completeness, see sufficiency
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Efron–Hinkley ancillary, 154
maximal ancillary, 108
no nuisance parameter, 107
nuisance parameter case, 107
specification, 153, 157, 200

conditionality principle, 107
stability, 209

confidence set estimation, 1, 114, 191
confidence set root, 191
coverage error, 191
criteria, for, 116–117
general construction, for, 116
likelihood, based on, 134
pivotal quantity, via, 114–116

convergence
almost sure, 127
in distribution, 128
in probability, 127

Cornish–Fisher expansion, 149
Cramér-Rao Lower Bound, 126

exponential family, and, 127
cumulant generating function, 141

cumulants, 142

data example
baseball, 35, 48, 52
bioequivalence, 201
coal-mining disasters, 55
gene expression, 57
leukaemia survival, 204, 213

decision theory, 3, 4
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Bayes principle, 4, 10
decision rule, 4–5
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finite decision problem, 11–18
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distribution constant statistic, 87, 108

Edgeworth expansion, 148
empirical distribution function, 190
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conditional likelihood, in, 160
Cramér–Rao Lower Bound, and, 127
curved exponential family, 83
full exponential family, 83
hypothesis testing, multiparameter case,

112–114
natural parameter space, 83
natural parametrisation, 82
natural statistics, 83

properties, of, 83–86
uniformly most powerful unbiased test, in

one-parameter, 100–105
exponential regression, 203, 213

fiducial theory, 109
Fisher information, see likelihood
Fisherian inference, 2–3, 140, 191, 208
frequentist inference, 2–3

hypothesis testing, 1, 65, 98
alternative hypothesis, 66
composite hypothesis, 65
likelihood ratio test, 68
locally best test, 73
monotone likelihood ratio family,

70–73
multiparameter exponential family, in,

112–114
Neyman-Pearson Theorem, 68–69
null hypothesis, 66
one-parameter exponential family, in,

100–105
power, 67
randomised test, 66
similar test, 111, 169

uniformly most powerful, 111

simple hypothesis, 65
test function, 66
two-sided hypotheses, 99
two-sided test, 99
unbiased test, 99

uniformly most powerful, 99
uniformly most powerful test, 69

invariant statistic, 86
inverse Gaussian distribution, 197

James–Stein estimator, 55
Bayes risk, of, 39
empirical Bayes interpretation, of, 39
risk, of, 34

Jeffreys prior, see Bayesian inference, prior
distribution

Jensen’s inequality, 95

Kullback–Leibler distance, 172, 197, 200

Laplace approximation, 152
law of large numbers

strong, 128
weak, 128

Lehmann–Scheffé Theorem, 95
likelihood, 2, 23, 90, 121

conditional likelihood, 146, 161
Fisher information, 123, 131, 143
log-likelihood, 121
marginal likelihood, 145, 161
observed information, 123, 131
profile likelihood, 135, 192

modified, 160, 161
pseudo-likelihood, 146, 162
score function, 122, 143

likelihood principle, 29, 124
likelihood ratio, 68, 90
likelihood ratio test, see maximum likelihood,

tests
location-scale model, 87, 108, 155, 212

configuration, 88
exact conditional inference, in, 108

Lugannani–Rice approximation, 151

Mann–Wald notation, see O and o notation
Markov chain Monte Carlo, 43
maximal invariant statistic, 86

ancillary, as, 153
maximum likelihood, 2, 120

estimator
asymptotic efficiency, 131
asymptotic normality, 129
consistency, 129
density, of, 151
distribution function, of, 156

likelihood equation, 121
tests, 132
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likelihood ratio test, 132, 134, 160
score test, 73, 133, 134, 137
signed root likelihood ratio, 133, 156, 192
Wald test, 133, 134, 137
Wilks’ Theorem, 132

minimum variance unbiased estimator, 96
model function, 1
modified profile likelihood, see likelihood,

profile
moment generating function, 141

moments, 141
monotone likelihood ratio, 71
Monte Carlo methods, 42, 190

natural parametrisation, see exponential family
natural statistics, see exponential family
Neyman–Pearson Theorem, see hypothesis

testing
normal distribution, known coefficient of

variation, 157, 196, 209, 211
nuisance parameter, 65, 107, 135, 136, 143,

145

observed information, see likelihood

parameter, 1, 4
parameter orthogonality, 143–145, 157
parameter space, 4
parametrisation invariance, 146–148, 157
pivot, 114, 191, 193
pivotal quantity, 114, 170
point estimation, 1, 90
posterior distribution, see Bayesian inference
predictive inference, 1, 169

asymptotic methods, 179
Bayesian, 52
bootstrap methods, 183
decision theory approaches, 172
estimative density, 173
exact methods, 169

predictive density, 173
predictive likelihood, 175

approximate, 178
conditional, 177

prior distribution, see Bayesian inference
probability integral transform, 195
profile likelihood, see likelihood

Rao–Blackwell Theorem, 96
repeated sampling principle, 2–3, 191

saddlepoint expansion, 149
sample space, 4
sample space derivative, see p∗ formula
score test, see maximum likelihood, tests
shrinkage, 33, 172
signed root likelihood ratio, see maximum

likelihood, tests
adjusted, see r∗ statistic

Slutsky’s Theorem, 128
Stein’s paradox, 7, 33
stochastic asymptotic expansion, 142
stochastic search procedures, 198–199
sufficiency, 2, 91

complete sufficient statistic, 94
factorisation theorem, 91
likelihood ratio criterion, 91
minimal sufficient statistic, 92–93
sufficient statistic, 91

transformation family, 86, 155
location-scale example, 87
maximal invariant statistic, in, 86

variance component model, 205

Wald test, see maximum likelihood, tests
Weibull distribution, 212
Wilk’s Theorem, see maximum likelihood,

tests
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