

Beginning Visual Basic .NET
Database Programming

Denise Gosnell

Matthew Reynolds

Bill Forgey

Wrox Press Ltd.

Beginning Visual Basic .NET
Database Programming

© 2001 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of

brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,

Birmingham, B27 6BH, UK
Printed in the United States

ISBN 1861005555

Trademark Acknowledgements
Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits
Authors Technical Editors
Denise Gosnell Victoria Blackburn
Matthew Reynolds Richard Deeson
Bill Forgey

Author Agent
Technical Reviewers Laura Jones
Beth Breidenbach
PJ Burke Project Administrator
Mike Clark Rob Hesketh
Simon Delamare
Damien Foggon Category Manager
Zach Greenvoss Sarah Drew
Mark Horner
Wendy Lanning Production Manager
Carl Mayes Liz Toy
Dale Onyon
Sumit Pal Production Coordinator
Rachelle Reese Pip Wonson
Sean M Schade
David Schultz Production Assistant
Brian Sherwin Matt Clark
Phillip Sidari
Konstantinos Vlassis Index
David Williams Michael Brinkman
Thearon Willis

Proof Reader
Agnes Wiggers

Technical Architect Cover
Paul Jeffcoat Dawn Chellingworth

About the Authors
Denise Gosnell

Denise Gosnell is a consultant in the Microsoft Consulting Services Public Sector Practice at Microsoft
(dgosnell@microsoft.com). Denise has a unique background in both law and technology and uses her
background to help federal, state, and local governments implement hi-tech solutions.

She received a bachelor's degree in Computer Science – Business (summa cum laude) from Anderson
University and a Doctor of Jurisprudence from Indiana University School of Law in Indianapolis.
Denise is an attorney licensed to practice law in Indiana and is an active member of the Indiana and
Indianapolis Bar Associations. Her legal areas of expertise are intellectual property law and real estate
law. Denise is also a Microsoft Certified Solution Developer.

Denise has worked in the computer industry since 1994 in a variety of roles ranging from Systems
Engineer, Programmer, IS Manager, and Senior Consultant. Denise is also an avid writer, and has co-
authored the following books: MSDE Bible (IDG Books), Professional SQL Server 2000 XML (Wrox Press),
and Professional .NET Framework (Wrox Press).

When Denise isn't working, writing, or studying, she and her husband Jake enjoy traveling around the
globe to interesting places such as Russia, China, and Poland.

To my husband Jake for his patience and understanding this year while I was simultaneously
working on three books with Wrox on most evenings and weekends. To the fine folks at Wrox Press
for making this book a reality.

Matthew Reynolds
After working with Wrox Press on a number of projects since 1999, Matthew is now an in-house author
for Wrox Press writing about and working with virtually all aspects of Microsoft .NET. He's also a
regular contributor to Wrox's ASPToday and C#Today, and Web Services Architect. He lives and works in
North London and can be reached on matthewr@wrox.com.

For Fanjeev Sarin.

Thanks very much to the following in their support and assistance in writing this book: Len,
Edward, Darren, Alex, Jo, Tim, Clare, Martin, Niahm, Tom, Ollie, Amir, Gretchen, Ben,
Brandon, Denise, Rob, Waggy, Mark, Elaine, James, Zoe, Faye and Sarah. And, also thanks to my
new friends at Wrox, which include Charlotte, Laura, Karli, Dom S, Dom L, Ian, Kate, Joy, Pete,
Helen, Vickie, John, Dave, Adam, Craig, Jake, Julian, Rob and Paul.

Bill Forgey
Bill writes: "I began my career in the early 1990's, originally an Electronic Engineering major and, soon
after, the U.S. Navy. I soon found myself in a shut down engineering firm and was too stubborn to take
anything less. My shipmate introduced me to VB 3.0 and Access 2.0 and, for the next few months, I
found myself learning everything I could about VB. I began developing a phonebook program using VB
and MS Access. I would program 12 to 14 hours a day, including all nighters or until my hands got
numb. I read every book I could on VB, many of which were references and how to's. Everything I
wanted to do in VB I was able to, thanks to the language. After four months of steady learning, I landed
a contract position writing VB software to control data acquisition modules – luckily the majority of the
work was with VB and Access. I thought I knew everything after that. I earned a grand a week and soon
forgot about school. For my first three years I worked very hard and put in lots of hours, and I bought
and read even more books. Books like Dan Appleman's Programmer's API, which I didn't understand for
over a year after I bought it. As soon as Wrox books came out I was hooked. My first book was the
Revolutionary Guide to Visual C++. I liked the style as well as the straight forward information not found
anywhere else. As the years have passed, I have found learning new and other types of technology
much easier. I found it just takes time, dedication, and some common sense to succeed in this business.

I am the Technical Lead in my current position, introducing project methodology, new technologies,
standards, and training to development teams. I have spent some time consulting and have been
exposed to technologies such as ASP, Delphi, Pascal, COM, C/C++, SQL, Java, ADO, Visual Basic,
and now .NET. I currently live in Sacramento, California, and can be contacted via e-mail at
bforgey@vbcentral.net."

Thanks goes out to Wrox Press, Paul, Richard, Rob, Laura, these are wonderful people to work
with. Also thanks to the team of technical reviewers.

I'd also like to thank Desiree for being so forgiving for all those late nights and lost moments. I
could never write the words to express my feelings about you.

Introduction

All software is based on the principle of manipulating data. Whether it's the code that runs inside your
VCR to start recording at a specific time, or air traffic control software, code is always working with
data in one form or another.

Today, we find that sophisticated applications store their data in a "database", a central repository of
data overseen by a Database Management System, or DBMS. A DBMS does two things. Firstly, it
handles the storage of the data. Secondly, it provides mechanisms for retrieving data as well as adding,
removing, and changing data. A DBMS endeavors to do this in the most efficient way possible.

Over the years, the DBMS market has grown into a mature sophisticated industry in its own right, offering
products designed for use in large enterprise environments like Oracle 9i or Microsoft SQL Server 2000,
down to products designed for use on the desktop like Microsoft Access. In some cases, you even find that
software packages include their own DBMS software for managing their own proprietary databases.

You'll find in your work as a programmer that applications often require access to data managed by a
DBMS. In fact, you'll most likely find that using a DBMS is the easiest way to store and manipulate your
application's data. However, with a wide variety of vendors to choose from, how can we write
application code that can work with any database our customer cares to choose?

The trick here is to build your application to work with a "data access layer" of some kind. Rather than
writing code that specifically requires a specific DBMS, you write code that talks to the layer. It's then
the layer's responsibility to switch to the "native" calls that the DBMS itself uses. Microsoft calls this
vision "Universal Data Access", or UDA. Microsoft's latest tool for UDA is ADO.NET, a comprehensive
set of objects that work together to make up a data access layer.

Introduction

2

This book is all about building Visual Basic .NET applications that harness the power of ADO.NET. We
will show how to use this technology in a variety of different ways: with desktop applications using
Windows Forms; with Web applications using ASP.NET; and with Web Services.

Who Is This Book For?
This book is for programmers with some basic experience of Visual Basic .NET, who want to begin
programming database applications.

It might be useful if you have some limited experience of Access, although this is not strictly necessary.

Note that this book is not an introduction to Visual Basic .NET. If you are completely new to Visual
Basic .NET, you will probably find Beginning Visual Basic .NET (Wrox Press, ISBN 1861004966) a better
choice to get you off the ground.

Likewise, this book is not aimed at getting experienced VB6 developers up to speed with the changes
between VB6 and Visual Basic .NET. If you fall into this category, try Professional VB.NET (Wrox Press,
ISBN 1861004974) instead.

What Does This Book Cover?
Visual Basic .NET is tightly coupled to very comprehensive and flexible data access technologies, so the
potential range of things that might fall under the title of this book is huge. Rather than trying to cover
too much, we have concentrated on providing a detailed introduction to the following strands:

❑ Basic database design principles.

❑ The SQL Server Desktop Engine.

❑ Querying the database using T-SQL.

❑ Using Visual Studio .NET's Server Explorer to run queries, views, stored procedures, etc.

❑ ADO.NET and the DataSet object.

❑ Reading data into the DataSet, binding it to a control on the user interface, changing data in
the DataSet, and saving those changes back in the underlying database.

❑ XML's role in ADO.NET.

❑ Internet database applications using Web Forms and Web Services.

What Do I Need to Use this Book?
All you'll need is a PC running:

❑ Windows 2000, XP, or NT4 Server.

❑ IIS 5, which comes with Windows 2000 and Windows XP.

Introduction

3

❑ Internet Explorer.

❑ Access XP (or 2000).

❑ Visual Studio .NET Professional edition. (Higher versions of Visual Studio, e.g. the Enterprise
editions, should work fine too. However, at the time of writing, they were unavailable and so
this book was written using the Professional edition.)

❑ SQL Server 2000 Desktop Engine. This comes with Visual Studio .NET.

This book was written before the final release of Visual Studio .NET. If there are any
substantial changes between the instructions given in this book and those required to
work with the final release of Visual Studio .NET, we will provide free updates on the
Wrox online errata service.

Conventions
We've used a number of different styles of text and layout in this book to help differentiate between the different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Try It Outs – How Do They Work?

1. Each step has a number.

2. Follow the steps through.

3. Then read the How It Works section to find out what's going on.

These boxes hold important, not-to-be forgotten, mission-critical details that are
directly relevant to the surrounding text.

Background information, asides, and references appear in text like this.

Bullets appear indented, with each new bullet marked as follows:

❑ Important words are in a bold type font

❑ Words that appear on the screen, or in menus like the File or Window, are in a similar font to
the one you would see on a Windows desktop

❑ Keys that you press on the keyboard, like Ctrl and Enter, are in italics

Code has several fonts. If it's a word that we're talking about in the text, for example, when discussing a
For ... Next loop, it's in this font. If it's a block of code that can be typed as a program and run, then
it's also in a gray box:

Introduction

4

Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 Dim n As Integer
 n = 27

 MessageBox.Show(n)

End Sub

Sometimes we'll see code in a mixture of styles, like this:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 Dim n As Integer
 n = 27

 n = n + 2

 MessageBox.Show(n)

End Sub

In cases like this, the code with a white background is code that we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book, or by e-mail to
feedback@wrox.com. Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox site, http://www.wrox.com/, simply locate the title through our Search facility
or by using one of the title lists. Click on Download in the Code column, or on Download Code on the
book's detail page.

The files that are available for download from our site have been archived using WinZip. When you have saved
the attachments to a folder on your hard drive, you need to extract the files using a de-compression program
such as WinZip or PKUnzip. When you extract the files, the code is usually extracted into chapter folders.
When you start the extraction process, ensure your software (WinZip, PKUnzip, etc.) is set to use folder names.

Introduction

5

Errata
We've made every effort to make sure that there are no errors in the text or in the code. However, no
one is perfect and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
a faulty piece of code, we would be very grateful for feedback. By sending in errata, you may save
another reader hours of frustration and, of course, you will be helping us provide even higher quality
information. Simply e-mail the information to support@wrox.com. Your information will be checked
and, if correct, posted to the errata page for that title, or used in subsequent editions of the book.

To find errata on the web site, go to http://www.wrox.com/ and simply locate the title through our Advanced
Search or title list. Click on the Book Errata link, which is below the cover graphic on the book's detail page.

E-mail Support
If you wish to directly query a problem in the book with an expert who knows the book in detail then
e-mail support@wrox.com, with the title of the book and the last four numbers of the ISBN in the
subject field of the e-mail. A typical e-mail should include the following things:

❑ The title of the book, last four digits of the ISBN, and page number of the problem in the
Subject field

❑ Your name, contact information, and the problem in the body of the message

We won't send you junk mail. We need the details to save your time and ours. When you send an e-mail
message, it will go through the following chain of support:

❑ Customer Support – Your message is delivered to our customer support staff, who are the first
people to read it. They have files on most frequently asked questions and will answer anything
general about the book or the web site immediately.

❑ Editorial – Deeper queries are forwarded to the technical editor responsible for that book.
They have experience with the programming language or particular product, and are able to
answer detailed technical questions on the subject.

❑ The Authors – Finally, in the unlikely event that the editor cannot answer your problem, he or
she will forward the request to the author. We do try to protect the author from any
distractions to their writing; however, we are quite happy to forward specific requests to them.
All Wrox authors help with the support on their books. They will e-mail the customer and the
editor with their response, and again all readers should benefit.

The Wrox Support process can only offer support to issues that are directly pertinent to the content of
our published title. Support for questions that fall outside the scope of normal book support, is provided
via the community lists of our http://p2p.wrox.com/ forum.

Introduction

6

p2p.wrox.com
For author and peer discussion, join the P2P mailing lists. Our unique system provides programmer to
programmer™ contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail
support system. If you post a query to P2P, you can be confident that it is being examined by the many
Wrox authors and other industry experts who are present on our mailing lists. At p2p.wrox.com you
will find a number of different lists that will help you, not only while you read this book, but also as you
develop your own applications. Particularly appropriate to this book are the beginning_vb,
vbbegin_databases, and vb_dotnet lists.

To subscribe to a mailing list just follow these steps:

1. Go to http://p2p.wrox.com/.

2. Choose the appropriate category from the left menu bar.

3. Click on the mailing list you wish to join.

4. Follow the instructions to subscribe and fill in your e-mail address and password.

5. Reply to the confirmation e-mail you receive.

6. Use the subscription manager to join more lists and set your e-mail preferences.

Why This System Offers the Best Support
You can choose to join the mailing lists or you can receive them as a weekly digest. If you don't have the
time, or facility, to receive the mailing list, then you can search our online archives. Junk and spam mails
are deleted, and your own e-mail address is protected by the unique Lyris system. Queries about joining or
leaving lists, and any other general queries about lists, should be sent to listsupport@p2p.wrox.com.

Introduction

7

Introduction

8

Relational Database Design

In this chapter, we'll cover some of the background details for the design and implementation of a
database. The great majority of applications, whether developed with Visual Basic .NET or some other
programming language, involve a database in some capacity, so it is crucial to have a firm
understanding of the principles of good database design. After a brief introduction to databases in
general, the chapter narrows its focus to designing and implementing one specific type of database – the
relational database. Don't worry if you don't understand all the database terms at the moment as, by the
end of the chapter, you will have a good understanding of:

❑ What a database is

❑ How relational databases compare to flat file databases

❑ The advantages of relational databases

❑ How to analyze business needs to identify what information a database should contain

❑ How to identify suitable elements that a database will need to include based on the
requirements of a particular business

❑ How to define keys and relationships

❑ The objectives of data normalization and the advantages it can bring

❑ How to define indexes

❑ Putting it all together to create the physical database

Finally, we review the key points to remember when designing relational databases.

Chapter 1

2

What is a Database?
A database is essentially an electronic means of storing data in an organized manner. Data can be
anything that a business or individual needs to keep track of and that, prior to computers, could have only
been tracked on one or more paper documents. Once stored, data in the database can be retrieved,
processed, and displayed by programs as information to the reader. The actual structure that a database
uses to store data can take one of many different forms, each which offers certain advantages when that
information is to be retrieved or updated. In the next section, we will look at how storing the database in a
flat file structure differs from a relational database structure, and the advantages and disadvantages that
each of those presents.

Flat File versus Relational Databases
Flat files are the most basic form of database – all of the information is stored in a single file. A flat file
includes a field for every item of information that you need to store. While they are easy to create and
can be useful in certain situations, flat files are not very efficient. They can be quite wasteful of storage
space, containing a lot of duplicated information, especially in a complex system where multiple files
hold connected information. This can make information harder to maintain and retrieve. If you have
worked with spreadsheets before, then you have already worked with one of the most common
examples of a flat file database. To further demonstrate how the data in flat files is organized and why
this can be problematic, let's walk through a hypothetical example.

Suppose you use the spreadsheet shown in the table below to track orders placed by your customers:

O
rd

er
 #

O
rd

er
D

at
e

It
em

D
es

cr
ip

ti
o

n Q
u

an
ti

ty

Q
u

an
ti

ty
P

er
 U

n
it

P
ri

ce

C
u

st
om

er
N

am
e

C
u

st
om

er
A

d
d

re
ss

1000 1-Aug-
01

Tofu 1 40 -
100 g
pkgs

23.25 Jane
Doe

123 Somewhere
St., Anytown,
IN 46060 USA

1000 1-Aug-
01

Jack's New
England
Clam
Chowder

1 12 - 12
oz
cans

9.65 Jane
Doe

123 Somewhere
St., Anytown,
IN 46060 USA

1000 1-Aug-
01

Grandma's
Boysenberry
Spread

3 12 - 8
oz jars

25 Jane
Doe

123 Somewhere
St., Anytown,
IN 46060 USA

1001 2-Aug-
01

Uncle Bob's
Organic
Dried Pears

1 12 - 1
lb pkgs

30 John
Smith

345 Anywhere
St., Somewhere,
IN 46001 USA

1001 2-Aug-
01

Tofu 1 40 -
100 g
pkgs

23.25 John
Smith

345 Anywhere
St., Somewhere,
IN 46001 USA

Relational Database Design

3

Notice how this spreadsheet contains order information as well as customer information. Jane Doe, for
example, placed order #1000 for Tofu, Jack's New England Clam Chowder, and Grandma's
Boysenberry Spread. Each of those items is listed on a separate row in the spreadsheet. Further notice
how the Order #, Order Date, as well as Jane Doe's name and address, are listed multiple times for each
item in the order, as indicated by the gray entries above.

We say that the Order #, Order Date, Customer Name, and Customer Address fields contain redundant
information – that is, the same information duplicated in several places. Redundant information causes
a database to be larger than it really needs to be because it contains multiple entries with the same
information. It also causes extra work when recording information about the order in the spreadsheet,
due to the fact that the same information must be typed repeatedly. Unfortunately, typing the
information multiple times greatly increases the likelihood that a mistake will be made – such as the
misspelling of a name or address in one of the order items.

Another problem with flat files is maintenance. What happens, for example, when Jane Doe moves and
you need to update her address in your spreadsheet? Well, in this flat file format, you will have to
update her address multiple times – once for each item she has ever ordered. If she is a really good
customer, that could mean hundreds of changes. If her address were stored in one place only, then that
would be the only place you would have to update it. But that certainly isn't the case in our example
spreadsheet above. In this simple example, you have witnessed first hand some of the most common
problems of flat file databases: data redundancy and excessive maintenance requirements.

Now that we understand what a flat file database is, and are aware of areas where the format can be
problematic, we ready to look at a database type that addresses these shortcomings: the relational
database. In its simplest terms, a relational database can be thought of as a collection of informational
items broken down into different groups interrelated with each other in one or more ways. In database
terms, these groups are often called tables. This concept may sound complicated, but it isn't really that
bad. Let's modify our previous example to demonstrate what it would look like in a relational format –
and then you can see for yourself that the big-picture concept isn't too complicated to understand.

Recall that our flat file spreadsheet contained information about Orders and Customers. Each order
consisted of multiple order items and each order was placed by a single customer. A relational database
storing this information might be split into three separate tables: Customers, Orders, and
OrderItems, depicted in the diagram below:

Customers Orders OrderItems

Customer_Id Order_Id Item_Id

Customer_First_Name Customer_Id Order_Id

Customer_Last_Name Order_Date Item_Description

Customer_Address1 Quantity_Ordered

Customer_City Item_Price

Customer_State Quantity_Per_Unit

Customer_Zip

Customer_Country

Chapter 1

4

The Customers table above contains a single entry for each customer. The Orders table contains a single
entry for each order. And, finally, the OrderItems table contains a single entry for each item in the order,
meaning there can be one or more items per order. Thus, customer information is stored separately from
each order and each item of an order is stored separately from the orders themselves. Notice that the Orders
table contains a Customer_Id that relates to the Customer_Id field in the Customers table. Further
notice that the OrderItems table contains an Order_Id that relates to the Order_Id field in the Orders
table. We will look at this concept of how tables relate together in the Defining Relationships section of this
chapter. For now, just know that this is the mechanism that eliminates data redundancy, a problem we saw in
the flat file format that duplicated customer names and addresses and so on. There is no such duplication in
this relational database. If we want to update Jane Doe's address, for example, we merely have to update the
single entry she has in the Customers table. Better yet, when Jane Doe places her order, we do not have to
type in her address multiple times. If she has already ordered from us before, her details will already be held
by an entry in the Customers table, and we simply have to use the Customer_Id from that existing entry.
If she is a new customer on the other hand, all we need do is add her details once to the Customers table,
where it will remain, ready to be reused should she reorder further items from us.

You may be wondering at this point how we came up with all these items for the above tables, or what exactly
they mean. Don't worry too much about such details, the main thing is that, at this point, you at least have a
grasp of the high level concepts behind the relational database format: that it stores data in logical interrelated
groups and that it eliminates redundant data. As long as this makes sense, we can move on to the details of how
to determine database requirements and how we can then create a relational database from such requirements.

Determining Database Requirements
Before we jump in and start designing a database, we first need to undertake a variety of investigation
and analysis processes to determine the information that needs to be captured. This section explores the
steps that you should take to facilitate this process.

Analyzing our Business Needs
The first step in determining the requirements for a database is a thorough analysis of the needs of the
business or individual for whom the database is intended. Your objective at this stage is to invest the time
to learn the customer's business and fully understand what they wish to accomplish. It can be tempting to
skip this step and jump straight to creating the physical structure of the database. Of course, we are too
wise to succumb to such a poor design strategy. In order to construct a database that truly meets the needs
of the customer, it is critical to have a complete understanding of their objectives beforehand. The physical
structure we then decide on will be heavily influenced by the particular objectives of their business.

Here are some guidelines to follow when completing an analysis:

❑ Analyze any current electronic databases that are to be replaced by the new system. Find out
what works well with the present system and what areas need improvement. Ask questions to
determine key fields (order_date, item_description, etc.) for the database: which ones
are most often used, are any not really used at all, and are any missing. You may find that
certain information isn't actually used and can be omitted from the new database, or that there
is critical information missing that needs to be added.

Relational Database Design

5

❑ Interview one-on-one and in groups to discuss the current procedures with people at every
level of the business that will interact with the database or use the reports that it generates.
Devise questions to find the objectives that they would like to accomplish, the information
that they need to track, any frustrations of the present system, and details of how they
presently work with the database.

❑ Get copies of existing forms and reports – whether paper or electronic – that are used in the data
handling process. After obtaining these paper and electronic copies, make sure that they are
populated with sample data so you can further clarify the type of information that they
represent. From this information, and from talking with the employees, you are ready to start
drafting a high-level "wish list" of the information that needs to be dealt with. This wish list will
later be used to help determine the fields and tables in the database that need to be created.

❑ Carefully analyze existing reports and create drafts on paper of reports that you think will be
needed, based on your fact-finding. Once you have some ideas on paper of the reports that
will be needed, you will start to get an idea of the fields that will be required by the database.
You can't generate a report from data that doesn't exist in the database, right?

❑ Make sure that you do a good job of documenting your analysis, what you learned, from
whom, why it is important, and any other details that you feel may be relevant.

Once you have conducted the interviews, hosted group meetings, and have analyzed the current process
and systems, you should compile a summary of what overall objectives are to be accomplished. As an
example, this summary could look like the following for a typical hypothetical business:

❑ The overall objective of the database is to store information about products on
offer, the company's inventory, outstanding and completed sales, and
customers.

❑ They have several products available for order.

❑ Customers can place orders for one or more products at a time. Typically, an
order is for one to three products, but no order is for more than four products.

❑ Each order will belong to just one customer, although it may include multiple
products.

❑ They want to be able to take customer orders over the phone and enter them
into the database application directly. In order to do this, they need accessible
product information – such as quantity in stock and price – to allow product
availability to be confirmed at the time that the order is placed.

❑ They need to be able to generate various reports from the data to show sales
totals, orders awaiting fulfillment, out of stock products, and grand total orders
for each customer.

❑ They need a way to target customers for special promotions, either by phone
or email.

Chapter 1

6

The summary should be a concise high-level recap of what you need to accomplish. It is essential that you
share your findings with the company that you're doing the analysis for, so they can give feedback on
whether you understand their needs correctly. You should also be able to hand the summary to a total
stranger and they should be able to understand the purpose of the database at an abstract level. This
summary and the detailed data that you compile and refine will then be used to further design the database.

Determining the Information to be Tracked
Now that you have interviewed as many people as possible, studied the current process, and compiled all your
findings, you can review your conclusions so far to determine individual data elements that need to be tracked.
For example, read through your notes and, any time that you see something that you know will have to be
tracked in the database, write it somewhere separately with all the other items that are likely to be required as a
field. Continue this process until you have listed all of the pieces of information that need to be tracked.

When writing down this information, don't worry about any particular order or grouping of the items.
At this stage, simply list anything that you feel is data that should be tracked. Also, list an example
beside each element to show typical values that it might contain. This will come in handy later when
you have to determine the appropriate data type that a particular field will allow. We are still early in
the process and it is important to try to get a solid overall feel for the database's contents – there's no
need to worry about being exact at this point.

From the requirements gathered in previous stages, our list of fields might look something like this:

Product Identifier

(e.g. 12345)

Product Description

(e.g. Tofu)

Product Unit Price

(e.g. $23.25)

Product Quantity on Hand

(e.g. 50)

Product Unit of Measure

(e.g. 40 – 100 g pkgs)

Customer Name

(e.g. Jane A. Doe)

Customer Number

(e.g. 123456)

Customer Address

(e.g. 123 Somewhere St.,
Anytown, IN 46060 USA)

Customer Email

(e.g. jdoe@yahoo.com)

Customer Telephone

(e.g. 317-111-2222)

Product Identifier for Items
Ordered

(e.g. 12345 for Tofu)

Quantity Ordered

(e.g. 3)

Ordered by Customer
Number

(e.g. 123456)

Order Ship Date

(e.g. Aug. 3, 2001)

Order Number

(e.g. 1000)

Order Date

(e.g. Aug. 1, 2001)

Unit Price as Ordered

(e.g. $23.25)

Relational Database Design

7

Notice how the fields are listed in no particular order and that they each contain typical examples in
parentheses. The table includes fields that will allow us to connect information about customers,
products, and sales orders.

In the next section, we look at how to use this sort of list to determine the structure for our database.

Determining the Logical Database Design
After you have determined high-level requirements and objectives for the database, you can begin to
implement the relational database design on paper – a phase commonly termed logical database design.
You need to have a sketch drafted out – a roadmap – detailing how your database is to look before you
actually begin the task of creating it electronically.

Defining Tables (Entities) and Fields (Attributes)
The first step in creating the logical database design is to define your tables and fields. Tables, also
called entities, are logical groupings of related information. Recall that, when we converted our flat file
spreadsheet into tables at the beginning of the chapter, we ended up with the following Customers,
Orders, and OrderItems tables:

Customers Orders OrderItems

Customer_Id Order_Id Item_Id

Customer_First_Name Customer_Id Order_Id

Customer_Last_Name Order_Date Item_Description

Customer_Address1 Quantity_Ordered

Customer_City Item_Price

Customer_State Quantity_Per_Unit

Customer_Zip

Customer_Country

Fields, also called attributes, are the individual data elements within the table – or you could say the attributes
that together describe the entity. You see above that the Customers table contains several individual bits of
information for any customer: Customer_Id, Customer_First_Name, Customer_Last_Name, and so on.
We refer to these as the fields of the Customers table, or equivalently as the attributes that describe the
Customers entity. Either terminology is acceptable, but the terms tables and fields tend to be the terms most
commonly used so we shall use them throughout the remainder of the chapter.

Identifying Tables and Fields
Now that we understand the definition of tables and fields, let's step back and actually walk through the
steps of how you get here – i.e. how to identify tables and fields from the information gathered in the
initial analysis phases.

Chapter 1

8

Looking at the business requirements, we previously determined that the following fields need to be
tracked, shown below in no particular order:

Product Identifier

(e.g. 12345)

Product Description

(e.g. Tofu)

Product Unit Price

(e.g. $23.25)

Product Quantity on Hand

(e.g. 50)

Product Unit of Measure

(e.g. 40 – 100 g pkgs)

Customer Name

(e.g. Jane A. Doe)

Customer Number

(e.g. 123456)

Customer Address

(e.g. 123 Somewhere St.,
Anytown, IN 46060 USA)

Customer Email

(e.g. jdoe@yahoo.com)

Customer Telephone

(e.g. 317-111-2222)

Product Identifier for Items
Ordered

(e.g. 12345 for Tofu)

Quantity Ordered

(e.g. 3)

Ordered by Customer
Number

(e.g. 123456)

Order Ship Date

(e.g. Aug. 3, 2001)

Order Number

(e.g. 1000)

Order Date

(e.g. Aug. 1, 2001)

Unit Price as Ordered

(e.g. $23.25)

What we can do now is take a detailed look at all elements to be covered by the system, and try to break
them down into tables and fields. To do this, take a look over the list and see what could be readily
grouped together into a table – as we now know, a table is a logical grouping of related data. This step is
not an exact science. We can do our best to group the data into suitable tables but, depending on how
many fields you have altogether and how complicated the requirements are, it will almost always take
multiple attempts to get right – at this point in the process, you aren't even expected or likely to get the
tables and fields exactly right. The later steps that we will look at help us to decide on the modifications we
should make to ensure that our database meets the requirements of good design.

So, let's see if we can turn our above example into a set of tables. Scan through all the elements in the
list and see what type of information they each relate to. For example, in scanning the list above, each
element either describes one of: the product, the customer, or the order. In database terms, this step is
called defining the entities. An entity is used to describe a group of related information. After
identifying the entities themselves, you can then create an entity relationship diagram (ERD), which
shows the information describing each entity and the relationship each entity has to the other.

To create an ERD, you simply list each entity name in a separate box, and then list each piece of information
underneath the entity that it corresponds to. You then make comments and draw arrows describing how each
entity relates to each other, such as describing the fact that an order can contain one or more products. Here
is an example of what the ERD looks like from applying these steps to our example:

Relational Database Design

9

Products
Product Identifier
Product Description
Product Unit Price
Product Quantity in Stock
Product Unit of Measure

Customers
Customer Name
Customer Number
Customer Address
Customer Email
Customer Telephone

Orders
Product Identifier for Items Ordered
Quantity Ordered
Ordered by Customer Number
Order Ship Date
Order Number
Order Date
Unit Price as Ordered

An Order can
have one or
more products

An Order can
have only one
Customer

A Customer
can have one
or more
Orders

From the ERD, you can then begin to easily formulate ideas on what tables it looks like the database will need
to contain. Upon analyzing the ERD above, for example, it looks like we will at least need the following tables:

❑ Products – to store information about all the products that our company offers for sale

❑ Customers – to store information for each customer

❑ Orders – to store information about each order

Now that we have some potential tables identified, let's assign fields for each of these tables. What this
really means is that you will translate the pieces of information in the ERD that describe each entity into
a name that will be meaningful in the database.

There are a couple of guidelines that we need to be aware of before we start this process. First, use a new sheet
of paper (or file if you prefer to write on screen) for each potential table, and put each field as you consider it
onto the sheet for the table that it seems to relate to the most. Always try to give fields meaningful names that
concisely describe the kind of information they contain, thus facilitating the task of retrieving information in
your applications later. Say, for example, that you called the customer number field something arbitrary like
field1, and the customer name field2. When you come to retrieve the customer name in your applications
later, you're in danger of having to open database fields at random to try to locate the one containing the
customer name, unless you happen to remember which is which. Even if you do know that field2 is the
customer name, your code will be littered with confusing and unhelpful names, making it much harder to
understand. In many cases, third party developers will use your database in their applications, making the
situation a potential nightmare. Choosing appropriate and descriptive field names is an aspect of good database
design that is all too often neglected, and yet it is something that should never be underestimated.

Here is another essential tip when naming fields: use case appropriately to make the name easier on the eye. For
example, instead of naming a field customername in all lower case, use the alternative form CustomerName.
This mix of upper and lower case is sometimes referred to as "camel case", and it can make identifiers much
easier to read than if just a single case is employed. Spaces are usually not allowed in field names but
underscores can be used to designate spaces. You could use an underscore to separate CustomerName, making
Customer_Name. This standard for separating words in identifiers is followed across multiple database
languages, and either designation (CustomerName or Customer_Name) is equally acceptable.

Chapter 1

10

In the previous example, I used underscores. But from this point onward, I'm going to leave them out. I
have purposely included them so far to show you how each style looks so you can decide which is your
own personal preference. Whichever form you plump for, try to be consistent, using the same standard
throughout your database.

After listing each field under the most appropriate table and giving each a meaningful name, next to
every field give an example of the data that it will contain, the type of data it is (text, date, number, and
so on), and how big you think the field needs to be. If it is a text field, list the number of characters it
must handle. If it is a number field, list the range of values that it may contain. This is where the
example data that you compiled earlier comes in handy. By examining it, you should be able to make
some educated guesses about the type and size of the information fields will contain.

With these rules in mind, let's list each of the fields identified so far under the most appropriate of the
three tables. This will result in something like the following:

PRODUCTS TABLE

Field Example Type of Data Estimated Size of
Data

ProductIdentifier 12345 Numeric Positive number
with no decimals

ProductDescription Tofu Text 25 characters

ProductUnitPrice $23.25 Currency $00.00 to
$10,000.00

ProductQuantityOnHand 50 Numeric 0 to 9,999

ProductUnitOfMeasure 40 – 100 g pkgs Text 25

CUSTOMERS TABLE

Field Example Type of Data Estimated Size of Data

CustomerNumber 123456 Numeric Positive number with no
decimals

CustomerName Jane A. Doe Text 45 characters

CustomerAddress 123 Somewhere
St., Anytown, IN
46060 USA

Text 65 characters

CustomerTelepho
ne

317-111-2222 Text 12 characters

CustomerEmail jdoe@yahoo.com Text 50 characters

Relational Database Design

11

ORDERS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber 1000 Numeric Positive number with
no decimals

OrderDate Aug. 1, 2001 Date Valid date

ProductIdentifier1 12345 Numeric Positive number with
no decimals

PriceItem1 $19.00 Currency $00.00 to $10,000.00

QuantityItem1 2 Numeric 0 to 9,999

ProductIdentifier2 2345 Numeric Positive number with
no decimals

PriceItem2 $8.50 Currency $00.00 to $10,000.00

QuantityItem2 3 Numeric 0 to 9,999

ProductIdentifier3 3456 Numeric Positive number with
no decimals

PriceItem3 $13.00 Currency $00.00 to $10,000.00

QuantityItem3 4 Numeric 0 to 9,999

ProductIdentifier4 4567 Numeric Positive number with
no decimals

PriceItem4 $15.00 Currency $00.00 to $10,000.00

QuantityItem4 5 Numeric 0 to 9,999

CustomerNumber 123456 Numeric Positive number with
no decimals

OrderShipDate Aug. 3, 2001 Date Valid date

Notice how we have listed our fields in the three tables called Products, Customers, and Orders. The
Products table comprises fields that describe the products for sale – and include product description, price,
and so on. In the Customers table, we list fields pertinent to individual customers – and include the
customer name, address, and so on. Lastly, we have listed details pertaining to individual orders in the
Orders table, including the order number, products ordered, customer number, and order ship date. We
allow up to four products to be ordered and have corresponding fields for the price and quantity of each.

It is important to bear in mind that the structure outlined at this point is not yet in the final format, and
you should be aware that we will be modifying it further to conform with the rules of good database
design. For now, the objective is to just make an initial attempt at identifying the tables and fields that
we might need. This gives us a starting point from which we can now move on to apply some database
design rules that further refine what we have at the moment. So, without any further ado, let's identify
the key fields for each of our tables, and see why this is important.

Chapter 1

12

Identifying Keys
Once we have drawn up the above lists of possible tables and fields, the next step in the logical database
design is to identify the primary and foreign keys for each table.

Primary Keys
A primary key (PK) consists of a field or a set of fields that uniquely identify each record in that table.
The primary key is defined by the "primary" field. For example, in the Customers table, the
CustomerNumber is the primary key. The customer number must be unique for every customer, and
an attempt to add a new customer record with an existing number will fail. ProductIdentifier in
the Products table is another example of a primary key, as is the OrderNumber in the Orders table.
Each product in the Products table is uniquely defined by the ProductIdentifier, and every
order must be allocated a unique value to use for the OrderNumber field. Because primary keys must
be unique, they must contain a value (that is, they cannot be empty).

When deciding which field or fields to use as the primary key, try to pick numeric values whenever possible.
This is because the primary key constitutes the main method of access to a record in the table and, as a rule,
numeric keys generally out-perform non-numeric keys. However, text-based keys do work and may be used
when a suitable numeric key isn't available. Text fields can pose problems of uniqueness, such that the customer
name would not make a suitable primary key because many people share the same name. In such cases, you
could make a composite key with a key based on the combination of multiple fields, such as the Name and
Address fields. These two fields, when combined, would then constitute the primary key to uniquely identify
any customer. Such a text-based key would work but is less suitable than a key based on a unique customer
number, because it is possible that two people with the same name could share the same address.

In some cases, you may want to create a primary key that is system generated. A system-generated key is a
key that the database assigns automatically when the record is inserted. You may already be familiar with
what is called an AutoNumber in Access, which is one example of a system-generated key. Continuing with
our example, suppose that you created a system-generated key for the ProductIdentifier field. Then,
when a new product record is added to the database, the ProductIdentifier field gets filled in by the
database automatically. You do not have to write any code in your programs to assign or insert the value in
such a case. With non-system generated keys, on the other hand, you must assign and specifically insert a
value into that key field when inserting a record into that table. When you design the keys for a table in the
physical database, you must specify that a key field is to be system generated or, by default, it will not be.

The most important aspect of assigning keys is to make absolutely sure that the field or fields you pick
for the key will always be unique. This means that you should not choose a field as the key that can
possibly be duplicated in the same table for multiple records. As an example, you would not want to
make the OrderDate the primary key in the Orders table because there could be more than one
order for a given date in the table. If you did have the OrderDate as the primary key, when the second
record with that same date is inserted, a key violation will occur because the new record has an
identifier that has already been used. In such a case, the attempt to add the new record will fail.

Relational Database Design

13

Foreign Keys
A foreign key (FK) is a key comprised of a field or multiple fields that link to the primary key of another
table. A good example of a foreign key is the CustomerNumber in the Orders table. The
CustomerNumber is the primary key in the Customers table but, in the Orders table, it is a foreign key.
Each Order contains a unique OrderNumber as the primary key, but it also contains a CustomerNumber
foreign key to let us reference the details of the customer who placed the order, as contained in the
Customers table. Of course, the CustomerNumber in the Orders table doesn't uniquely identify the
order (the OrderNumber does) – it is just another piece of information about the order that happens to be
the primary key of another table. The ProductIdentifier fields in the Orders table are also foreign
keys, as they refer to the ProductIdentifier primary key of the Products table.

Shown below are our tables as before, but with the primary and foreign keys highlighted. Note that, for
clarification, we've added PK for primary key and FK for foreign key for each field name cell as
appropriate, but these designations won't actually be part of the field name in our database:

PRODUCTS TABLE

Field Example Type of Data Estimated Size of
Data

ProductIdentifier (PK) 12345 Numeric Positive number
with no decimals

ProductDescription Tofu Text 25 characters

ProductUnitPrice $23.25 Currency $00.00 to $10,000.00

ProductQuantityOnHand 50 Numeric 0 to 9,999

ProductUnitOfMeasure 40 – 100 g pkgs Text 25 characters

CUSTOMERS TABLE

Field Example Type of Data Estimated Size of
Data

CustomerNumber (PK) 123456 Numeric Positive number
with no decimals

CustomerName Jane A. Doe Text 45 characters

CustomerAddress 123 Somewhere
St., Anytown, IN
46060 USA

Text 65 characters

CustomerTelephone 317-111-2222 Text 12 characters

CustomerEmail jdoe@yahoo.com Text 50 characters

Chapter 1

14

ORDERS TABLE

Field Example Type of Data Estimated Size of
Data

OrderNumber (PK) 1000 Numeric Positive number
with no decimals

OrderDate Aug. 1, 2001 Date Valid date

ProductIdentifier1 (FK) 12345 Numeric Positive number
with no decimals

PriceItem1 $19.00 Currency $00.00 to
$10,000.00

QuantityItem1 2 Numeric 0 to 9,999

ProductIdentifier2 (FK) 2345 Numeric Positive number
with no decimals

PriceItem2 $8.50 Currency $00.00 to
$10,000.00

QuantityItem2 3 Numeric 0 to 9,999

ProductIdentifier3
(FK)

3456 Numeric Positive number
with no decimals

PriceItem3 $13.00 Currency $00.00 to
$10,000.00

QuantityItem3 4 Numeric 0 to 9,999

ProductIdentifier4
(FK)

4567 Numeric Positive number
with no decimals

PriceItem4 $15.00 Currency $00.00 to
$10,000.00

QuantityItem4 5 Numeric 0 to 9,999

CustomerNumber (FK) 123456 Numeric Positive number
with no decimals

OrderShipDate Aug. 3, 2001 Date Valid date

Now that we have identified the primary and foreign keys for the currently envisaged structure, we can
move on to examine the relationships between each table.

Relational Database Design

15

Defining Relationships
The next step in our logical database design is to define the relationships between the tables. A relationship is
the term used to describe a connection between related tables. Stated another way, it means having shared
fields in different tables that allow records to reference records in other tables. For example, suppose we want
to find the description of a product that a customer ordered. The Orders table doesn't need the full product
description, but simply the ProductIdentifier for each product ordered. We can use these fields
(ProductIdentifier1 is the first product code, ProductIdentifier2 the second, and so on) to pull
out the corresponding product record from the Products table – the entry in that table with the same
ProductIdentifier entry – and so we can retrieve the ProductDescription for any ordered item. In
Chapter 3, we will cover how to use Structured Query Language (SQL) for this very purpose.

Now that we have an understanding of what we mean by the term relationship in this context, we're ready
to look at the three possible types of relationships: One-To-One, One-To-Many, and Many-To-Many.

One-To-One Relationships
A one-to-one relationship indicates that each record in a table may relate to only one record in another
table. For example, suppose that we have three hundred fields for each customer. Further, suppose that
our database doesn't support records with this many fields. One solution would be to break the
customers table into two separate tables, such as Customers and CustomersDetail. Tables with
one-to-one relationships have the same primary key, which serves to link two related records – this field
is sometimes referred to as the join column. In our hypothetical scenario, the tables would link to each
other by both using the unique CustomerNumber field as their primary key. Tables that have such a
one-to-one relationship can be viewed as simply extensions of each other. In practice, true one-to-one
relationships do not actually occur very often. Often, when they are found in a database system, they
are there to get around some limitation of the database such as the one we've just described.

An example of our hypothetical one-to-one relationship is shown here:

Notice how the hypothetical Customers table above joins to the hypothetical CustomersDetail
table by the common CustomerNumber field. This field is the primary key for both tables and the
information contained in each table is, in effect, just an extension of the other.

It is important to note that CustomerNumber is in bold in the tables above as it is the
primary key. Bolding of entries always designates them as the primary key.

Chapter 1

16

One-To-Many Relationships
In a one-to-many relationship, any record in a table can relate to multiple records in a second table. This is
the type of relationship that will exist between the Customers and Orders tables of our example
database setup. A single customer can place many orders, but each order may have only one customer –
we say that the Customers table has a one-to-many relationship with the Orders table (one customer to
many orders). Note that this means that any record in the first table (Customers) can have zero or one
corresponding records in the second table (Orders), though not necessarily more than one. Looked at
from another angle, each customer in the Customers table can place zero, one, or many orders.

An example of this one-to-many relationship from our work-in-progress database structure is shown below:

Notice how the CustomerNumber entry in the Customers table relates directly to multiple
CustomerNumber entries in the Orders table, and that a customer may not have any outstanding orders
in the Orders table, even though they have a record in the Customers table. The symbols above are the
standard typically employed for designating relationships – with the one symbol ("1") next to the
CustomerNumber in the Customers table and the many symbol ("∞") next to the CustomerNumber in
the Orders table. This scenario is a very common example of a one-to-many relationship: we have a
primary key for one table relating to another table where that same key is the foreign key.

Don't get too used to the table structure shown in the figure above. We will change it shortly to better
meet the rules of good database design. The purpose of showing it here is merely as an example of a
one-to-many relationship between database tables.

Many-To-Many Relationships
With a many-to-many relationship, many records in one table can link to many records in the second
table. Many-to-many relationships are resolved by use of a third table, created especially to store the
relationships between records in the other two tables. This table breaks the relationship down into
multiple one-to-many relationships. Without this third table, many-to-many relationships would be
impossible to implement due to restrictions of database systems.

Suppose that you have many users of a system and each user can be assigned to multiple roles. In such a
case, you could say that one user could have many roles and that one role could have many users. How
could you actually accomplish this? It is not possible to just create a users table and a roles table and then
link them together. What you can do, on the other hand, is create a third (intermediate) table to store the
relationships between users and roles. An example of how this can be accomplished is shown below:

Relational Database Design

17

Notice how there is a one-to-many relationship between the Roles and UserRoles tables, as designated
by the one and many symbols. This means that for each role, there can be many users. Further notice how
there is a one-to-many relationship between the Users and UsersRoles tables. This means that each
user can have many roles. You can see how the intermediate table, UserRoles, brings these two tables
together. A good way of thinking of it is that the UsersRoles is a bride table which brings the Roles
and Users tables together. The diagram below shows some sample data to further illustrate this concept:

Notice that in the UsersRoles table, the user jdoe is assigned the RoleIds of 2 and 5. By looking at the RoleId
in the Roles table, you will see that this means he has been assigned to the Edit and View roles. You will also
notice that the same role is contained multiple times in the UsersRoles table: both jdoe and jsmith have
RoleIds of 2 and 5. Thus, by using this intermediate UsersRoles table, we are able to overcome the
limitations of most database platforms and accomplish the same end result as a many-to-many relationship.

Chapter 1

18

Referential Integrity
By defining our table relationships in the physical database (which we discuss later in the chapter), we
are setting ourselves up to take advantage of referential integrity. When enabled for a database,
referential integrity automatically ensures that, whenever data is inserted, updated, or deleted, these
defined relationships remain consistent. For example, the foreign key fields of a new or altered record
can be checked to ensure that there is a matching entry in the table where that field is the primary key,
thus avoid adding records that have invalid references.

With referential integrity in place, you may also take advantage of features known as cascade update
and cascade delete. Cascade update means that, if a key changes in any table, the value in all tables
where that key is present will be updated to reflect the new value. Similarly, with the cascade delete
option enabled, if a record is deleted, all related records in the database will be deleted. By enforcing
referential integrity, you can save yourself a lot of extra coding effort to modify multiple tables any time
that a key value changes or records are deleted that would impact multiple tables.

We have already mentioned that referential integrity is a very important consideration. It is important
to note that there are times, however, when referential integrity and cascading updates or deletes are
problematic. Let's take a look at an example to further illustrate this concept of referential integrity, as
well as to describe the problems that can occur when you do or don't take advantage of it.

Suppose that you have a database containing the table structure that we have designed so far in this
chapter. Further, suppose that the database tables do not have referential integrity enabled. If you
change the ProductIdentifier value of a given product in the Products table, you then would
have to write code to manually change every occurrence of that same ProductIdentifier in every
single place where it is used in the Orders table. If you do not, then the records in the Orders table
will become orphaned. Orphaned records no longer contain the link back to the parent key that they
were based on. To state it another way – the value for ProductIdentifier in the Orders table no
longer exists in the Products table, so the Order record has become an orphan and cannot be joined
back to the Products table because the values no longer match.

Also, depending on the way that your database has been designed, there are situations when enabling
cascading deletes may not be exactly what you want. For example, suppose you need to remove a
customer from the Customers table (maybe they haven't placed an order in the past year and you want
to archive them). If you have cascading deletes enabled and you delete the customer record, then all of the
orders that that customer placed are also deleted. You would be losing valuable sales data in such a case.
Whenever you enable cascade deletes, you should make doubly sure that it will have the effect you desire.

Normalizing the Data
Once your initial efforts have established likely keys and relationships for your tables, the next step in the
logical database design is to normalize the data. Normalization is the process of simplifying the database
design to achieve the optimum structure. The steps in this process are known as normal forms. These normal
forms are a sequence of rules that are applied to progressively simplify a database design. The higher the
normal form of a database, the more efficient its underlying design is. This is because, for a database to be
simplified into third normal form, it must first meet the criteria of the first and second normal forms.

Relational Database Design

19

In the real world, a database is generally said to be of good design if it meets the third normal form. In
fact, there are normal forms beyond the third but, since such forms have little practical use in most real
world situations, we only need concern ourselves with the first three. So, let's jump right in and take a
look at the first three normal forms and start to apply their rules to our work-in-progress example.

First Normal Form

To achieve First Normal Form, we must eliminate any repeating groups.

In First Normal Form, we simplify our database structure to eliminate any repeating groups. In other
words, First Normal Form includes the concept that fields must be "atomic" or a field represents one
type of value for all records. Examples of these repeating groups can be:

❑ A list of multiple values in the same field. An example would be a field containing the single string
"5 – Tofu, 4 – Jack's New England Clam Chowder". The problem here is that it is inefficient to
retrieve individual items from such fields, as the contents have to be laboriously read and split up
(parsed). It wouldn't be easy to examine the different products ordered by a customer. It would be
an even more difficult a task to examine products according to the quantities ordered.

❑ Repeated fields – that is, multiple occurrences of very similar fields to hold similar data
(Product1, Price1, Quantity1, Product2, Price2, Quantity2, for example). Such
fields are problematic for a couple of reasons. Firstly, they could impose a limit on how many
products a customer might order at one time. You would have to modify the database structure
to add additional columns if you wish to change this maximum later. Secondly, you waste space
every time a customer places an order for less than the number of columns you have allocated.
In other words, if you have fields to hold up to five products, and the customer only orders one
product, then space in the database is taken up unnecessarily for the other four empty product
fields. The third problem with repeating fields is that data analysis is much more complicated.
For example, the analysis of sales data would be an awkward task if you had to join to each of
the repeating fields to find the total of what was sold to each customer.

So, now that we know what we're looking for, let's look at our in-progress table structure to see where it
violates first normal form, and make any necessary changes for compliance. The following figures recap
the current table structure:

PRODUCTS TABLE

Field Example Type of Data Estimated Size of Data

ProductIdentifier (PK) 12345 Numeric Positive number with no
decimals

ProductDescription Tofu Text 25 characters

ProductUnitPrice $23.25 Currency $00.00 to $10,000.00

ProductQuantityOnHand 50 Numeric 0 to 9,999

ProductUnitOfMeasure 40 – 100 g pkgs Text 25 characters

Chapter 1

20

CUSTOMERS TABLE

Field Example Type of Data Estimated Size of Data

CustomerNumber (PK) 123456 Numeric Positive number with no
decimals

CustomerName Jane A. Doe Text 45 characters

CustomerAddress 123 Somewhere
St., Anytown, IN
46060 USA

Text 65 characters

CustomerTelephone 317-111-2222 Text 12 characters

CustomerEmail jdoe@yahoo.com Text 50 characters

ORDERS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber (PK) 1000 Numeric Positive number with no
decimals

OrderDate Aug. 1, 2001 Date Valid date

ProductIdentifier1
(FK)

12345 Numeric Positive number with no
decimals

PriceItem1 $19.00 Currency $00.00 to $10,000.00

QuantityItem1 2 Numeric 0 to 9,999

ProductIdentifier2
(FK)

2345 Numeric Positive number with no
decimals

PriceItem2 $8.50 Currency $00.00 to $10,000.00

QuantityItem2 3 Numeric 0 to 9,999

ProductIdentifier3
(FK)

3456 Numeric Positive number with no
decimals

PriceItem3 $13.00 Currency $00.00 to $10,000.00

QuantityItem3 4 Numeric 0 to 9,999

ProductIdentifier4
(FK)

4567 Numeric Positive number with no
decimals

PriceItem4 $15.00 Currency $00.00 to $10,000.00

QuantityItem4 5 Numeric 0 to 9,999

CustomerNumber (FK) 123456 Numeric Positive number with no
decimals

OrderShipDate Aug. 3, 2001 Date Valid date

Relational Database Design

21

Look at the tables and fields above – can you spot any multiple values listed together in a single field?
The Products table doesn't include any – all of its fields contain just a single, discreet data item. Is the
same true for the Customer table though? Well, not really. Notice how one field holds the complete
customer name, including the first name, middle initial, and last name:

CustomerName Jane A. Doe Text 45 characters

If we wanted to analyze the data by last name, for example, such a structure would require us to devise
an algorithm that would reliably split up the string held in this field. This is prone to error and would
certainly have a negative impact on our database performance. It makes sense for us to separate the
CustomerName field out into three separate fields; say CustomerFirstName, CustomerLastName,
and CustomerMiddleName. The same holds true for the CustomerAddress field as well, where we
have the entire customer address in just one field:

CustomerAddress 123 Somewhere
St., Anytown, IN
46060 USA

Text 65 characters

Once again, to achieve a first normal form, we need to break the street address, city, state, zip, and
country values into separate fields as well. After our modifications to the Customers table to eliminate
such multiple data items in a single field, the new structure looks something like this:

CUSTOMERS TABLE

Field Example Type of Data Estimated Size of
Data

CustomerNumber (PK) 123456 Numeric Positive number with
no decimals

CustomerFirstName Jane Text 15 characters

CustomerMiddleName A. Text 15 characters

CustomerLastName Doe Text 25 characters

CustomerAddress 123 Somewhere
St.

Text 30 characters

CustomerCity Anytown Text 20 characters

CustomerState IN Text 2 characters

CustomerZip 46060 Text 9 characters

CustomerCountry USA Text 20 characters

CustomerTelephone 317-111-2222 Text 12 characters

CustomerEmail jdoe@yahoo.com Text 50 characters

Chapter 1

22

Now that we have separated the Name and Address fields so that each data item has its own field, data
will be much easier to retrieve using this revised format. It greatly facilitates such things as retrieving
information about all customers in the state of Indiana for example. Before, you would have been
required to parse the entire address field to search for the state part of the field, and there'd be no
guarantee that that information had even been included for every customer.

The Customers table is, in fact, the only table with fields containing multiple values in the same field.
Now let's look to see whether we have any tables that actually have fields that repeat themselves. We
don't have to look very hard to see that our Orders table has several repeating fields for each product
ordered, namely ProductIdentifier, PriceItem, and QuantityItem, as listed below:

ProductIdentifier1 (FK) 12345 Numeric Positive number with
no decimals

PriceItem1 $19.00 Currency $00.00 to $10,000.00

QuantityItem1 2 Numeric 0 to 9,999

ProductIdentifier2 (FK) 2345 Numeric Positive number with
no decimals

PriceItem2 $8.50 Currency $00.00 to $10,000.00

QuantityItem2 3 Numeric 0 to 9,999

ProductIdentifier3 (FK) 3456 Numeric Positive number with
no decimals

PriceItem3 $13.00 Currency $00.00 to $10,000.00

QuantityItem3 4 Numeric 0 to 9,999

ProductIdentifier4 (FK) 4567 Numeric Positive number with
no decimals

PriceItem4 $15.00 Currency $00.00 to $10,000.00

QuantityItem4 5 Numeric 0 to 9,999

We will run into problems when a customer wants to order more than four products, or when we
analyze sales because we would have to search all four fields to calculate what was ordered. One way
that we can modify our Orders table to comply with First Normal Form is to break up an order into a
separate record for each item of the order, as shown below:

Relational Database Design

23

ORDERS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber (PK) 1000 Numeric Positive number with no
decimals

ProductIdentifier (PK) 12345 Numeric Positive number with no
decimals

OrderDate Aug. 1, 2001 Date Valid date

CustomerNumber (FK) 123456 Numeric Positive number with no
decimals

Price $ 15.00 Currency $00.00 to $10,000.00

Quantity 5 Numeric 0 to 9,999

OrderShipDate Aug. 3, 2001 Date Valid date

Below is a screenshot showing how our database might look after this modification:

Notice that now there are multiple records for each product in a given order. You might think this to be
an inefficient duplication of data – you'd be right, but don't worry because we will address this when we
refine the design to Second Normal Form in a minute. The important thing is that we are no longer
limited to how many products can be included in a given order and, in addition, we could now easily
retrieve the totals for each product ordered. With this format, if an order consists of just one product,
then only one record need be created in the Orders table. On the other hand, if the order consisted of
five separate products, then five records would be created in the Orders table. To allow this and yet
ensure that each record in the Orders table still has a unique primary key, the primary key has to be
changed to a combination of the OrderNumber and ProductIdentifier fields.

With respect to the Products table, we do not need to make any modifications to make it comply with
First Normal Form. None of the fields in the Products table violate the two rules described above. In
other words, none of the fields in the Products table contain multiple values in the same field, nor do
they contain any repeated fields.

At this point, all of our tables comply with First Normal Form – we have eliminated inefficient repeating groups
from the structure, achieving a better design that will make our lives much easier later. So let's move on to
Second Normal Form and see what further changes, if any, we need to make our database structure comply.

Chapter 1

24

Second Normal Form

To achieve Second Normal Form, we make sure that non-key fields depend on all of
the fields in the primary key.

In Second Normal Form, we aim to streamline our design to ensure that every field that is not itself a
key is specific to the entire primary key. Every field in the table should be dependent upon the entire
primary key so that, when new records are added, the same values will not be repeated from record to
record unnecessarily. Let's look at our sample database design to illustrate this issue.

In the First Normal Form step, we modified the Orders table to allow multiple records for every product
ordered (as opposed to having a fixed set of fields for up to four products). To allow this, the
OrderNumber and ProductIdentifier fields became the primary key for the Orders table. While
that satisfied the rule for first normal form, it violates Second Normal Form because the OrderDate,
CustomerNumber, and OrderShipDate fields are not dependent solely on the entire primary key –
that is, the combination of OrderNumber and ProductIdentifier. These fields depend only on the
OrderNumber and are irrespective of the ProductIdentifier field. It should be possible to find
values for the OrderDate, CustomerNumber, and OrderShipDate fields without needing to know the
value of ProductIdentifier of any products that were ordered. The effect of this is that the current
design repeats information (CustomerNumber and OrderShipDate) in multiple records of the Orders
table when, ideally, we should only provide this information once. By duplicating the CustomerNumber
and OrderShipDate multiple times for each item in the order, you open yourself up to the same
maintenance nightmare associated with spreadsheets, as discussed earlier in this chapter. If either of those
fields ever needs to be updated, you would have multiple places to update the information.

So how do we solve this problem and make the database comply with the Second Normal Form? The
answer is that we must create a new table (OrdersProducts) to store multiple products for each
order. Fields specific to the order in general can remain in the Orders table, but the details for each
product of an individual order will be moved into the new OrdersProducts table. Here is how the
modified Orders table and the new OrdersProducts table might look:

ORDERS TABLE

Field Example Type of Data Estimated Size of
Data

OrderNumber (PK) 1000 Numeric Positive number
with no decimals

OrderDate Aug. 1, 2001 Date Valid date

CustomerNumber (FK) 123456 Numeric Positive number
with no decimals

OrderShipDate Aug. 3, 2001 Date Valid date

Relational Database Design

25

ORDERSPRODUCTS TABLE

Field Example Type of Data Estimated Size of
Data

OrderNumber (PK) 1000 Numeric Positive number
with no decimals

ProductIdentifier (PK) 12345 Numeric Positive number
with no decimals

Price $23.25 Currency

Quantity 2 Numeric

Now, all non-primary key fields in the Orders table (OrderDate, CustomerNumber, and OrderShipDate)
depend on the whole key – the OrderNumber – and are not unnecessarily repeated. In addition, all non-key
fields in the OrderProducts table depend on that table's complete primary key, composed of the
OrderNumber and ProductIdentifier. This means that Price and Quantity are information that
describes the situation represented by the whole key – that is, each product of any given order.

Now that all of our tables comply with Second Normal Form, we're ready to learn about the next stage
up: Third Normal Form.

Third Normal Form

To achieve Third Normal Form, we make sure that no fields depend on other non-key fields.

In Third Normal Form, we make sure that no fields depend on other non-key fields. A common
example of this would be a calculated field derived from other fields in the table (such as a TaxPrice
field made from adjusting the Price field). In such a case, if the fields that the calculated field is
dependant upon change, the calculated field would have to be updated too. Updating fields to reflect
changes to fields that they are based on can represent a management nightmare.

Now, our example doesn't in fact contain any fields dependant on other non-key fields. So – just to
illustrate – let's consider a slightly different Orders table that includes a CustomerLastName field to
illustrate a violation of the Third Normal Form:

ORDERS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber (PK) 1000 Numeric

OrderDate Aug. 1, 2001 Date

CustomerNumber (FK) 123456 Numeric Positive numbers with no
decimals

CustomerLastName Doe Text 25 characters

OrderShipDate Aug. 3, 2001 Date

Chapter 1

26

The new CustomerLastName field depends on the CustomerNumber field, which is not the primary
key. As with the calculated field example, this dependency creates a problem because, any time that the
CustomerLastName changes in the Customers table, this field in the Orders table must also be
updated. Not only is there a dependency problem but there is a redundancy problem too, because you are
duplicating information unnecessarily. To solve these kinds of problems, we need to remove such fields
and add them to the appropriate table if it is not already present there. Of course, in this example,
CustomerLastName already exists as a field in the Customers table, so, to comply with Third Normal
Form, all we would need to do is remove the CustomerLastName field from the Orders table.

When to Denormalize
There are times when business objectives (such as database performance) greatly outweigh the benefits
to a database from obeying Third Normal Form. In such cases, it is acceptable to break one or more of
the rules of normalization, thus denormalizing the data. Here are a couple of situations when you might
denormalize your data:

❑ When you can significantly cut down the number of tables that you need to search against to
retrieve needed information, by adding an additional field to a given table.

❑ When a calculated field in a table will allow you to run queries and/or reports much faster and
that particular field is very commonly used.

The most important consideration when deciding whether to denormalize is to analyze risk versus benefit.
For example, if the speed improvement is significant, you may decide that the cost of dealing with
maintaining consistency is worth paying in such a case. However, when in doubt, you should err on the
side of normalization. These normalization rules were designed to help you create good robust database
structures and they should be followed unless you are confident that the benefits far outweigh the risks.

It is important to note that there is no bell that rings to tell you that you have violated one of the rules of
normalization. This means that you have to be careful when designing your databases because the
quality of your data will be affected by the design considerations you make. It is also good to keep in
mind that, when you get some strange results with your data, you should look into whether the
normalization (or lack thereof) is causing the unexpected results. Lastly, don't get frustrated when trying
to master the techniques of normalization versus denormalization. It will take time to learn and you will
make some mistakes in the process, as we all have.

Defining Indexes
The final step in the logical design of our database is to define indexes. Indexes in a database are similar
to indexes in a book – they allow rapid location of required information. Indexes are important to good
database design, because all of the data in the world wouldn't be much good without a means to quickly
retrieve it. The database engine uses indexes to rapidly locate one particular piece of information, but
the database engine doesn't contain indexes unless you explicitly set them up. So, what are the types of
indexes available to us, and when should each be used?

Indexes should be created for fields that are frequently used to retrieve information. Most databases
allow you to define an index that is either unique or non-unique, and clustered or non-clustered. We'll
take a look at what each of these means in more detail.

Relational Database Design

27

Unique indexes are indexes that do not allow duplicate records. Unique indexes are typically used for
the primary keys of a table.

Conversely, non-unique indexes are indexes on fields that do allow duplicate values (typically fields that
need to be indexed for speed, such as foreign keys, but are not the primary key).

With clustered indexes, the data is physically stored in the table in the same order as the clustered
index. This saves the database engine having to look up a location and then access that location in a
second step to retrieve the information, as you would have to do with an index in a book, for example.
There can only be one clustered index per table and it will commonly be defined on the primary key.

There are certain situations where a clustered index will actually perform slowly – for example, when
you make a lot of data inserts. Remember that, with a clustered index, the table records are physically
stored mirroring the order of the index, much like the table of contents at the beginning of a book. Any
time you insert a new record, all of the records after the one being inserted are typically re-written to a
different physical section of the database file and your clustered index file would require a
correspondingly disruptive change. Continuing with the table of contents of a book example, if you
insert several new sections in different parts throughout the book, you would also have to change the
listing at the front of the book to mirror the new order. This shifting around of chunks of information
can adversely impact speed in some cases. However, it is relatively rare to have a high enough volume
of inserts taking place all of the time to seriously impact in this way and, in general, the clustered index
is a fantastic choice for data-retrieval speed. You should define a clustered index on the field that is
most frequently used to retrieve the data in a given table, such as the primary key.

With non-clustered indexes, on the other hand, the database engine will find the location in the index
and then move to that location in the table to retrieve the information. Stated another way, the pages in
the index are just pointers to the pages in the database that contain the database records, just as an
index in a book points to the pages in the book where the topic can be found. You can have more than
one non-clustered index per table. Thus, you most commonly see non-clustered indexes defined for
fields in a table that are frequently used to retrieve data, but which are not that table's primary key.

For example, in our Orders table, we might define a clustered index on the OrderNumber field and a non-
clustered index on the CustomerNumber field. The OrderNumber field is the primary key of the Orders
table and is the likely candidate to be used most frequently to look up order information – so the fastest possible
approach for retrieving an order is to define the OrderNumber as a clustered index. With the OrderNumber,
we will have a list of all of the Orders in numeric order so, if we know the number that we are looking for, it
will speed up the process. The CustomerNumber field is also a field likely to be searched frequently, but not
quite as frequently as the OrderNumber. Since there can only be one clustered index per table (in this case, on
the OrderNumber), but we still need fast retrieval of CustomerNumbers, a non-clustered index is a good
choice for this field. To properly define the other indexes, you will need to take into account the information
that will be retrieved and which fields will be used most frequently to retrieve that information.

Once the indexes for your tables have been identified, we have finally completed the last step in the
database design process.

Chapter 1

28

Testing the Logical Database Design
At the end of the logical database design process, we now have a "roadmap" on paper of what our
database looks like, and we can test the design to make sure it works. You are probably thinking, "How
can I test a logical database design that exists only on paper?" It's not difficult really – we simply walk
through some examples on paper simulating how they would be handled when our database is live. Try
adding a hypothetical customer to the table on paper and see how it looks. Then, have that customer
place an order and write down what that record would look like. Very often, just by walking through a
design on paper in this way, we can discover some essential field that we've overlooked, or some other
requirement that has not been addressed as yet.

Implementing the Physical Database Design
A physical database can now be created electronically to the exact specifications determined by the
completed logical design. By physical database, I refer to the files and their structure as created by the
database software we are using – according to the details we give it and as established during the design
process. In the next chapter, we will be creating a database with Microsoft SQL Server 2000 Desktop Engine.

Create, Test, and Refine
The first step in implementing the physical database is to create it using appropriate software. As we
have followed all of the previous steps and obtained a good design, this step should be pretty
straightforward. You should be able to simply read the requirements outlined on paper by your
database design and create an electronic version that corresponds directly.

Once you have set up all of the required tables, fields, keys, and indexes, you are ready to test your
database with sample data. You can just open each table directly and input data by hand into each field.
It is not necessary to have the user interface for your application up and running before you test the
database design. In fact, it is a good idea to have your database sound before you even begin designing
the user interface. This can help you quickly determine if you have any fields that are too small, or if
any are missing, and such like.

Testing will highlight any refinements necessary, such as increasing field sizes or adding an overlooked field.
This process of create, test, and refine should be repeated on the physical database structure until you are
satisfied that it will meet the business objectives you wish to accomplish. Often, this refinement process will
continue as your user interface is developed. It is often only when creating the user interface that you realize
you are missing some fields or that some field sizes are too small. Additionally, database indexes are often
refined after reports or queries are tested later in the process. Hopefully, as long as you've followed the steps
discussed in this chapter, such changes later in the development cycle will be minimal.

Now that you have learned the basics of building databases on paper, you should consider spending
some time experimenting with normalization and indexes. This will not only give you a feel for
observing and testing the concepts mentioned, but it will also help prepare you for the next chapter
where you will be physically creating the database.

Relational Database Design

29

Summary
Naturally, becoming a master of database design will take some practice. However, we have covered a
lot of concepts in this chapter that should give you quite a head start in becoming an expert. In this
chapter, you have learned about the following concepts:

❑ What a database is and how relational databases compare to flat file databases.

❑ Analyzing business needs to determine the information that a database should contain and
using your analysis to create the initial tables and fields.

❑ Defining keys and relationships for the logical database structure.

❑ Progressively modifying the logical database design to comply with first, second, and third
normal forms.

❑ Determining what indexes are most appropriate for the logical database.

❑ Creating the physical database from the logical design.

Now that you have a good handle on the steps involved in creating databases on paper, we'll move on
to the next chapter where we learn the details about working with SQL Server Desktop Engine to
physically create the database.

Exercises
1. What is the difference between a flat file database and a relational database?

2. What advantages does a relational database offer over a flat-file arrangement?

3. List the steps you would take to determine the database requirements of a customer.

4. What is a primary key? What is a foreign key? What do we mean by relationships?

5. Briefly describe the first three Normal Forms.

6. What are indexes, and what advantages can they bring?

7. What is the difference between the logical and physical database?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 1

30

Microsoft SQL Server 2000
Desktop Engine

This chapter delves into the details of the Microsoft SQL Server 2000 Desktop Engine. After setting the stage by
comparing the Desktop Engine with other editions of SQL Server, we then explore the Desktop Engine in great
detail. We look at why the Desktop Engine is preferable for storing database information to Microsoft Access,
and we run through all the steps necessary for getting it up and running. Specifically, this chapter covers:

❑ The various editions of Microsoft SQL Server 2000 available

❑ How the SQL Server Desktop Engine compares with the other varieties

❑ Why the Desktop Engine is a better choice than Access

❑ How the Desktop Engine bridges the gap between Access and SQL Server

❑ Where to obtain a copy of the Desktop Engine and how to install it

❑ What services are installed along with it

❑ What an Access project file is

❑ How to create a new SQL Server Desktop Engine database from scratch using Access

❑ How to use the Upsizing Wizard to convert an existing Access database to a Desktop Engine
database format

Finally, we summarize what we have learned and leave you with some additional questions to test your
understanding of the Desktop Engine.

The Microsoft SQL Server 2000 Desktop Engine
We use the Microsoft SQL Server Desktop Engine for database development throughout this book.
Before wading too far into this topic, it is worthwhile to first understand what Microsoft SQL Server
2000 is, what different editions of it are available, and how the Desktop Engine we will be using in this
book compares with other editions of SQL Server 2000.

Chapter 2

2

Microsoft SQL Server 2000 Defined
Microsoft SQL Server 2000 is a relational database management system that can be used by individuals
or businesses for storing and managing data. It also offers powerful functionality for data analysis and
reporting. There are actually seven versions of Microsoft SQL Server 2000 to choose from. Two of
these, the Enterprise and Standard Editions, are for deployment on servers in production environments.
The other five versions each have a special purpose and are not licensed for deployment on production
servers. Each of the seven versions of SQL Server are briefly described below:

For more information on SQL Server, please see Beginning SQL Server 2000 Programming by
Wrox Press (ISBN 1861005237).

❑ SQL Server 2000 Enterprise Edition – This is the most comprehensive version of SQL Server
2000 and supports the full set of SQL Server 2000 features. This version is most appropriate
for large organizations that need to manage immense amounts of data quickly and efficiently.

❑ SQL Server 2000 Standard Edition – This version of SQL Server 2000 supports many of the
available features, with the notable exception of those that enable the quick and efficient
management of large amounts of data. Hence, this version is primarily aimed at small to
medium sized organizations that do not have the complex database requirements of larger firms.
SQL Server 2000 Standard Edition is nonetheless an extremely powerful version of SQL Server
and supports Analysis Services (with a few exceptions), Replication, Full-Text Search, Data
Transformation Services, English Query, and other advanced SQL Server features.

❑ SQL Server 2000 Personal Edition – This version of SQL Server 2000 supports basically the
same features as the Standard Edition, with the exception of transactional replication.
Additionally, Analysis Services and Full-Text Search are only available on certain operating
systems with this edition. This version is most appropriate for users who spend some time
disconnected from the network but access SQL Server data on their local machine while
disconnected. A common example would be mobile users – say, a company's sales force who
require access to data while out in the field. This version limits the number of concurrent
database activities that can be running at any one time. This simply means that it isn't
designed to handle a great many users or database activities.

❑ SQL Server 2000 Windows CE Edition – This version of SQL Server 2000 runs on mobile
devices that run under Windows CE. It is a compact edition of SQL Server 2000 and allows
relational databases to be stored and managed on a Windows CE device for later
synchronization with the main database. It also allows users to manage a SQL Server database
remotely over the Internet from their CE device.

❑ SQL Server 2000 Developer Edition – This version of SQL Server 2000 supports all available
features just like the Enterprise Edition, with the proviso that it not be deployed on a
production server. As the name indicates, this version is designed for developers, consultants,
and solution providers while developing and testing SQL applications.

❑ SQL Server 2000 Evaluation Edition – This version is a fully functional version of SQL Server
2000 Enterprise Edition that stops working after 120 days. It allows organizations to evaluate
the full product without charge.

Microsoft SQL Server 2000 Desktop Engine

3

❑ SQL Server 2000 Desktop Engine – This is a redistributable version of the SQL Server
database engine. This means that you can include it in your setup programs for applications
that use SQL Server to store data. The Desktop Engine doesn't include any of the SQL Server
2000 graphical user interface tools, such as SQL Server Enterprise Manager, so other products
(such as Visual Studio .NET Server Explorer, Access, or SQL Server 2000 APIs) must be used
to create and manage databases stored in this version of SQL Server. (Note: This is not the
same version as the SQL Server 7 Desktop Edition. The SQL Server 7 Desktop Edition
became the Personal Edition in SQL Server 2000. The SQL Server 2000 Desktop Engine was
called the Microsoft Data Engine, or MSDE, in SQL Server 7).

Now that we understand a little bit about each version of SQL Server 2000, let's narrow our focus to the
Microsoft SQL Server 2000 Desktop Engine, as used in the remainder of this book. As mentioned in the
feature list above, the SQL Server 2000 Desktop Engine that came with SQL Server 7 was called the
Microsoft Data Engine, or MSDE. Even though the MSDE abbreviation is in fact derived from this
older name, Microsoft Data Engine, it is still widely used today to refer to the latest SQL Server 2000
Desktop Engine version. Thus, you should be aware that both Desktop Engine and MSDE are
acceptable names for referring to the SQL Server 2000 Desktop Engine. In fact, without knowing the
history, you would probably just conclude that MSDE is the abbreviation for Microsoft SQL Server
Desktop Engine anyway. This seemingly appropriate abbreviation is probably the reason why the term
is still accepted despite the product re-naming that occurred in SQL Server 2000.

Why Use Desktop Engine instead of Access?
Now that we've sorted out the origin of the MSDE acronym, let's begin to look at the features that Desktop
Engine offers in a little more detail. MSDE was introduced by Microsoft to bridge the gap between two of its
other database products, namely Access and SQL Server. A large number of applications were built using
Microsoft Access as the database engine, often with a front end created using Access tools. As such applications
increase in popularity, and the number of simultaneous users and/or data volumes hit certain thresholds, they
start outgrowing the capabilities of Access. At that point, many developers find themselves having to modify
code to port the applications to a SQL Server database. This can be a monumental task in many cases and may
require a complete re-write of data access code. The underlying Jet database engine used by Access is very
different from the underlying SQL Server engine. This means that several data types are inconsistent and have
to be modified, certain Jet statements have to be entirely rewritten for SQL, and so on.

So how does Desktop Engine help you overcome this divide between Access and SQL Server to make the
transition easier than before? One big advantage is that Desktop Engine is actually a real version of SQL
Server 2000. It includes the same relational database engine and replication features as the Personal Edition,
except for the full-text search feature, and the graphical database administration tools. Bear in mind, though,
that database sizes in Desktop Engine may not exceed 2 Gigabytes, and database usage is limited to five
concurrent batches, which means that no more than five database tasks can be processed at a given time. For
example, five concurrent batches could occur if five different users are logged in or if an application with a
single open connection processes five tasks concurrently. Thus, Desktop Engine, by design, isn't capable of
handling a large number of users or very extensive databases. Furthermore, Desktop Engine is limited in that
it doesn't support Analysis Services. What this really boils down to is the fact that Desktop Engine is a small-
scale version of SQL Server, one that cannot exceed the 2 GB limitation and that cannot have more than five
concurrent users or transactions hitting the database at once.

Chapter 2

4

Another key benefit of Desktop Engine is its freely distributable format. There is no requirement to pay
a license fee to use Desktop Engine in a standalone environment, and you are free to distribute it with
standalone applications. A free version of SQL Server is not a thing to be laughed at. Desktop Engine
can be packaged with your application's setup program and installed with it on third party computers.
There are some exceptions to this free license, as detailed in the licensing agreement that accompanies
the package. One example is using Desktop Engine as the client to connect to another SQL Server
database; in that scenario it requires a client access license for communicating with the other SQL
Server database under the terms of that agreement.

An additional advantage that Desktop Engine offers many companies is that it can simplify the process of
creating demo CDs of their products. Suppose that you have an enterprise-wide SQL Server-based
application that you want to give to a prospective client on a demo CD. In the past, many companies had to
write an Access version of their application solely to avoid violating the SQL Server licensing agreement for
purposes of the demo CD. In such cases, the data was stored in an Access file that could be freely distributed
with a run-time version of Access. The alternative of including links to trial versions of SQL Server that can
be downloaded is not much better. As a free distribution version of SQL Server, Desktop Engine solves this,
allowing demo CDs to be easily created without having to re-write any code to that end.

You can see why Desktop Engine offers a very serious alternative when you are considering Access for
smaller database requirements. In addition to being a true version of SQL Server (facilitating upgrade to a
production SQL variant later), it has the advantage of being client-server based rather than file-based like
Access. You may already be aware that Access stores all its data in a single file (the .mdb file). Desktop
Engine, on the other hand, is a true client-server application where it is installed on a machine that acts as
the server. This does not mean that Desktop Engine has to be installed on a separate machine, and it is
perfectly happy running on the same machine as the client. What this really means is that, with client-
server based databases, the process on the server looks for the data for you. With Access, on the other
hand, all of the processing for data takes place on the client and can consume valuable client resources.

As a proper version of SQL Server, you don't have to make any modifications to your code (SQL
statements, table structures, etc.) should you later decide to upsize to a full version of SQL Server to
support a larger database size or more concurrent users. All you would have to do is purchase the
higher version of SQL Server and simply import the existing database into the new installation without
modification. Thus, when your application becomes extremely popular and justifies the power of one of
the premium versions of SQL Server, you are all set. This is an incredible advantage. The gap has
finally been closed between Access and SQL Server, thanks to Desktop Engine.

Obtaining and Installing Desktop Engine
In this section, we will look at where you can obtain a copy of Desktop Engine and will then walk
through the steps of installing it.

Please note that, if you are already running another version of SQL Server 2000, you can use that
version instead of Desktop Engine. The code in this book will work on any version of SQL Server 2000,
but we will focus on Desktop Engine as it is the only version of SQL Server that is completely free.

Microsoft SQL Server 2000 Desktop Engine

5

Where to Get a Copy of Desktop Engine
Desktop Engine is available from many sources, including Visual Studio .NET and SQL Server 2000. In
this section, we look at how to install Desktop Engine from the Visual Studio .NET CDs. Check the
installation requirements for Desktop Engine described below to make sure your system can support it.

Installation Requirements
Desktop Engine can be installed on a machine running Microsoft Windows 98, Windows NT 4.0, Windows
ME, or Windows 2000. It is also likely to be supported by Windows XP when released. 64 MB of RAM is the
minimum to run Desktop Engine on Windows 2000, but the other operating systems listed can get away with
just 32 MB. Desktop Engine requires 44 MB of disk space for the database engine software itself.

How to Install Desktop Engine
In this section, I shall lead you through the steps required to install Desktop Engine on your machine.

Step 1 – Insert the Visual Studio .NET Setup CD
Insert the second Visual Studio .NET setup CD. Open Windows Explorer and navigate to the D:\Program
Files\Microsoft.Net\FrameworkSDK\Samples\Setup directory (where D: is the letter
corresponding to your CD drive). Note that you are looking for the InstMSDE.exe file; the precise location
of this file may change to a different CD or directory by the time of final release of Visual Studio .NET.

On some versions of Visual Studio .NET, you may need to use the SQL2000.exe file, rather than
InstMSDE.exe.

Step 2 – Launch the Desktop Engine Setup Program
Next, double-click on the InstMSDE.exe program to launch the setup program. You may be
prompted to update some files on your system before setup can continue. If so, then follow the prompts
on the screen to update your system with the necessary files. This may require that you reboot your
machine and restart the setup program again.

After launching setup, the Windows Installer Program will flash for a few seconds as it initiates the setup
procedure. It will then begin copying files to your system without requiring any further interaction from the user.

Desktop Engine will be installed with the default configuration settings for SQL Server, as specified by
the setup.ini file in the Setup directory. The SQL Server instance that gets installed will be called
MyComputer\NetSDK, where MyComputer is the name of your machine. If you want to modify these
default installation settings (and/or specify additional installation settings), you will need to copy all the
install files to a directory on your hard drive or network so you can modify the setup.ini file in that
directory. When you run the install program from that directory, it will then use whatever configuration
information you specified in the new setup.ini file.

Chapter 2

6

Step 3 - Confirm that the Installation was Successful
The Desktop Engine install process should add a new icon to the Windows Startup menu. To verify that
Desktop Engine installed correctly, go to Start | Programs | Startup and check that the program called
Service Manager now resides there. Placing this program in the Startup menu ensures that, each time
you start your computer, it will run automatically.

Rather than restarting your computer to execute it, click on the Service Manager icon shown in the
Startup menu to run it manually. When you do this, you will notice that a new icon depicting a server
appears in the taskbar System Tray – the set of miniature icons that usually appears next to the clock.
We will examine the workings of Service Manager in more detail later on in the chapter.

Understanding What Was Installed
Now that the installation is complete, let's look at what exactly has been installed. Altogether, three services
get installed with Desktop Engine: SQL Server, SQL Server Agent, and Distributed Transaction Coordinator.
SQL Server Service Manager, which we just started manually, is a utility that allows you to manage each of
these services. We will now look at each of the services and the Service Manager utility in more detail.

SQL Server Service
The SQL Server service is the core of Desktop Engine. In fact, it is the core engine used by all other versions
of SQL Server. It consists of the SQL Server storage engine and the query processor. The storage engine is
responsible for reading and writing all data to and from the database. The query processor is responsible for
receiving and executing SQL statements. There are also a few other components in addition to the storage
engine and query processor, but they are not needed for our purposes so we will not be discussing them.

The SQL Server service must be running for any data to be retrieved, inserted, updated, or deleted from
Desktop Engine. The default installation sets this service to automatically run on the start up of the
computer. When we look at the SQL Server Service Manager in a moment, we will find out how to
manage the SQL Server service.

SQL Server Agent
A second service that gets installed is the SQL Server Agent. This service can schedule jobs and alerts
for your database. If, for instance, you wish to back up your database each night, the SQL Server Agent
lets you schedule a job to automatically perform this task, and reports any problems encountered. While
this service is not always required, in many cases SQL Server Agent can be a very useful tool.

Distributed Transaction Coordinator
The third service installed is the Distributed Transaction Coordinator (DTC or sometimes MSDTC). The
DTC service allows transactions to span more than one computer across a network. We won't be using
the DTC in this book, but will look at transactions in Chapter 10.

Managing the Services with SQL Server Service Manager
As we've already mentioned, the SQL Server Service Manager utility allows you to manage the three
previous services. When it has been initiated, either automatically on start up or manually after installation,
an icon is displayed in the system tray area typically located in the lower right of the screen, as shown here:

Microsoft SQL Server 2000 Desktop Engine

7

In this screenshot, the SQL Server Service Manager Utility icon appears immediately to the left of the clock,
and depicts a server with an inset green arrow, resembling the play symbol of a VCR. Sometimes, the icon
shows a red square, like a stop symbol, denoting the suspension of one of the three services as described later
in this section. If you double-click this icon, the SQL Server Service Manager screen shown next will appear:

This window displays the settings for the selected Server and Services, along with the status of the selected
service. The Server and Services boxes have drop-down lists that allow you to choose from those available.
The Server drop-down, for example, contains all the SQL Server instances that this particular computer is
aware of. The Services drop-down contains choices for selecting one of the three services we've already
learned about: SQL Server Service, SQL Server Agent, and Distributed Transaction Coordinator.

There are also buttons for Start/Continue, Pause, and Stop, which are available or grayed out
according to the current status. In the case depicted above, the Pause and Stop buttons are enabled. If
we wanted to temporarily suspend all database activities, we would simply click the Pause button on
this screen. If we wanted to turn off database activities entirely, we would click the Stop button. To re-
start the service later, we would click the Start/Continue button.

The SQL Server Service shown in the above screen is running on a server called GOZ (yours will be
running on a server with a different name). Note the status bar at the bottom that shows the message
Running - \\GOZ - MSSQLServer, and the green arrow appearing in the circle on the picture of the
server. This green arrow would be replaced by a red square if this service were suspended, and the red
square would also be displayed on the small icon in the system tray.

Further, notice how the indicator to Auto-start service when OS starts is checked, which means that SQL
Server will start whenever the operating system boots up. It is a good idea to have this setting turned on for
the SQL Server Service so that database inserts, updates, deletes, reads, etc. will be allowed without having to
manually start the service every time. Check this value to enable auto-start if it isn't already set.

Chapter 2

8

Now let's take a look at how we can manage the SQL Server Agent using the SQL Server Service
Manager Utility. In the next screenshot, the SQL Server Agent service has been chosen in the Services
drop-down, and the current inactive status of SQL Server Agent is indicated by the red square:

Notice above that we are managing the SQL Server Agent on the server called GOZ, and that the
service is stopped. We could click the Start/Continue button to start the service. Also, notice that the
Auto-start service when OS starts option is not enabled. This is because we don't wish to take
advantage of the scheduled jobs feature at the moment, and thus don't want the service to start up
whenever we switch on our machine. There is no reason to have a service running, and consuming
valuable system resources, if you are not taking advantage of it.

As you can see from these examples, it's a pretty straightforward job to manage the three services that
come with Desktop Engine using the SQL Server Service Manager Utility. Now that we have covered
the basics of setting up Desktop Engine and we are able to start and stop database services, we can
move on to the fun part of working with Desktop Engine databases in Access.

Using Access to Work with Desktop Engine / SQL
Server

Since the Desktop Engine version of SQL Server doesn't come with any user interface tools for managing
databases (such as the SQL Server Enterprise Manager that comes with other versions of SQL Server), you
will have to use Microsoft Access, the Visual Studio .NET Server Explorer, or some other external means
for managing SQL Server databases. The good news is that Microsoft Access 2000, Microsoft Access XP
(2002), and the Visual Studio .NET Server Explorer all provide tight integration with SQL Server
databases. These tools allow you to create and manage new SQL Server databases. They also allow you to
view database views (a type of query) and other database objects associated with a database. In the rest of
this chapter, we will be using Access XP to manage SQL Server databases. Later in the book, we look at
how to use the Visual Studio .NET Server Explorer to perform SQL management.

Microsoft SQL Server 2000 Desktop Engine

9

Access provides upsizing wizards that can convert existing Access databases to any version of SQL
Server. Prior versions of Access did not allow you to manage the table structure, create new databases,
or manage other objects like views. All they allowed you to do was link to existing SQL Server tables to
view, create, delete, or update the data they contained. The new close integration with SQL Server that
Access 2000 and Access XP offer is a huge improvement over these past situations.

Microsoft Access 2000 first introduced the concept of the Microsoft Access project. A Microsoft Access
project is a file that connects to a SQL Server database and can be used to create client-server
applications. The project file (with a .adp extension) does not contain any data, tables, or other such
information. It simply stores details about the SQL Server database that enable Access to retrieve any
required information on demand.

Creating a New Desktop Engine / SQL Server Database
from Microsoft Access

In this section, we will use Access XP (2002) to create a new database with the Products, Customers,
Orders, and OrdersProducts tables that we devised in Chapter 1. To create a new SQL Server
database from Access, we first need to create an empty Access project. We will then create each table in
design view and then open them to add some sample data. Please note that the steps for Access 2000 are
a bit different, as will be indicated briefly in the background text.

Try It Out – Creating a New SQL Server Database from Microsoft Access

1. Open Microsoft Access.

2. Select File | New and the task pane will appear in the right-hand of the screen. Choose Project
(New Data) and click the OK button.

For Access 2000, select File | New and choose Project (New Database) in the dialog box
that appears and click OK. Then work through the steps below. Note that some of the steps will be
slightly different than those described.

Please note that if you are using Access 2000, see Microsoft Knowledge Base Article q269824 for a
potential problem that could generate a database error on this step. A service pack is available to fix this
problem. You can read this article at the following URL:
http://support.microsoft.com/support/kb/articles/Q269/8/ 24.ASP.

3. Name the project SampleDatabase in the File New Database dialog box, and browse to the
location where you want to save the new project. Click the Create button to create the new
project file in the specified location of your hard drive or network.

4. Once the new SampleDatabase project has been created, the Microsoft SQL Server
Database Wizard dialog box will appear, as shown below:

Chapter 2

10

5. The Wizard starts by prompting you for the SQL Server database that will be used, and the
Login ID and Password to use for it. At the bottom, it asks us to specify the name we want to
use for our database in SQL Server. Fill in the information giving the proper SQL Server for
the database. Fill in the Login ID and Password (which will be "sa" and blank, respectively,
unless you changed them earlier). Lastly, enter SampleDatabaseSQL in the database name
box at the bottom. This can be different to the name we previously gave our Access project
file in Step 3 above, as this will be the name of the database itself in SQL Server. After you
have filled in all these fields, click the Next button.

6. The next screen will indicate that the wizard has all of the information it needs in order to
create your database. On that screen, click the Finish button.

7. For a brief moment, we see a progress bar on screen as it creates the new database for us.
Once it completes, the Wizard is finished, leaving us with the empty database, as shown here:

Microsoft SQL Server 2000 Desktop Engine

11

8. Our next step is to create a new table, and we do this by double-clicking the line that says
Create table in Design view.

9. An empty table design will appear on the screen. First, we shall create the Products table.
Recall from Chapter 1 that the Products table has the following structure:

PRODUCTS TABLE

Field Example Type of Data Estimated Size of
Data

ProductIdentifier (PK) 12345 Numeric Positive number
with no decimals

ProductDescription Tofu Text 25 characters

ProductUnitPrice $23.25 Currency $00.00 to
$10,000.00

ProductQuantityOnHand 50 Numeric 0 to 9,999

ProductUnitOfMeasure 40 – 100 g pkgs Text 25 characters

Chapter 2

12

Fill in the fields just as in the screenshot below, making sure not to overlook the Allow Nulls column:

After you have filled in the fields as specified above, take a closer look at the field names, data
types, and sizes that you have just assigned for each. Notice that we have specified the
ProductIdentifier field as an integer. We will be using the ProductIdentifier as the
unique value that identifies each product, which we will assign momentarily. Also notice that
we specified the ProductDescription and ProductUnitOfMeasure as VarChar,
because they are text based fields of variable length up to the maximum specified, depending
on the data that they will hold. The ProductUnitPrice is given as the Money data type,
which is how SQL Server represents currency. The field named ProductQuantityOnHand
is an Int, which will hold any integer value. Also notice that the ProductIdentifier and
ProductDescription fields cannot be Null, as indicated by the absence of a tick in the
Allow Nulls column. The effect of this is to make that field required, so that if a new product
record is added without values given for the ProductIdentifier and
ProductDescription fields, the record will not be added and an error will occur.

10.Not only do we want the ProductIdentifier to be our primary key, but we also want it to
be automatically generated by SQL Server, starting with a value of one and incremented by
one with each new product. So before we set ProductIdentifier as the primary key, we
need to specify that it is an Identity Column, starting with the value one (the Identity Seed)
and is to be incremented by one (the Identity Increment). Select the ProductIdentifier
field and modify the Identity, Identify Seed, and Identity Increment (default values of 1)
attributes that appear in the box underneath the table, as this screenshot shows:

Microsoft SQL Server 2000 Desktop Engine

13

11.Now that we have specified that the ProductIdentifier field is an Identity column to
be automatically generated by SQL Server, we are ready to select it as the Primary Key for
our table. Highlight the row where it says ProductIdentifier, and then select Edit |
Primary Key, as shown below:

Chapter 2

14

Notice how an image of a key appears in the left most column of the ProductIdentifier
field. This is a visual indicator to tell us that the ProductIdentifier field is now the
primary key for the table.

12.We are ready to save the table to the database. To do so, select File | Save. You will be
prompted to specify a name for the table so enter the name Products, and click on OK.

13.After saving your table, close the design view by clicking the cross in the upper right hand
corner of the Products table window. You should now be returned to the database explorer
where the new Products table should appear as the only table currently in the database:

Microsoft SQL Server 2000 Desktop Engine

15

14.We can now repeat this process to create the Customers table. Double-click where it says
Create table in Design view.

15.The logical design for the Customers table that we devised in Chapter 1 is repeated here:

CUSTOMERS TABLE

Field Example Type of Data Estimated Size of Data

CustomerNumber (PK) 123456 Numeric Positive number with
no decimals

CustomerFirstName Jane Text 15 characters

CustomerMiddleName A. Text 15 characters

CustomerLastName Doe Text 25 characters

CustomerAddress 123 Somewhere St. Text 30 characters

CustomerCity Anytown Text 20 characters

CustomerState IN Text 2 characters

CustomerZip 46060 Text 9 characters

CustomerCountry USA Text 20 characters

CustomerTelephone 317-111-2222 Text 12 characters

CustomerEmail jdoe@yahoo.com Text 50 characters

Chapter 2

16

Create the Customers table with the settings shown below:

Notice how the majority of the fields are declared as the varchar data type. That is because
this is the best type to use for variable length text values. However, the CustomerState and
CustomerTelephone fields are the Char type, because they will always contain a fixed
number of characters and in such cases Char is the better option. For example, the
CustomerState field will always contain the two letter state abbreviation for US customers.
Further notice that the CustomerNumber, CustomerFirstName, and CustomerLastName
fields may not be Null, so that when a new customer record is added, the CustomerNumber,
CustomerFirstName, and CustomerLastName fields will have to be specified at least.

16.Repeat the process described in Steps 10 and 11 to set the CustomerNumber as an Identity
field, with the same default values for the Identity Seed and the Identity Increment, and also
then set it as the Primary Key.

17.Select File | Save and save the table with the name Customers before closing it and
returning to the view showing all the tables created so far.

18.Now, repeat the process to create the Orders table. Again start by double-clicking on Create
table in Design view.

19.Recall from Chapter 1 that the logical design of the Orders table is as follows:

Microsoft SQL Server 2000 Desktop Engine

17

ORDERS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber (PK) 1000 Numeric Positive number with
no decimals

OrderDate Aug. 1, 2001 Date Valid date

CustomerNumber (FK) 123456 Numeric Positive number with
no decimals

OrderShipDate Aug. 3, 2001 Date Valid date

Create the Orders table with the settings shown below:

Notice that the OrderDate and OrderShipDate fields are of DateTime type; the SQL
Server type for specifying date values. The OrderNumber and CustomerNumber fields are
both int data types and may not be Null. Thus, when a new record is added,
OrderNumber and CustomerNumber must be provided as a minimum.

20.Again, repeat the process described in Steps 10 and 11 to set the OrderNumber as an Identity
field and also as the Primary Key.

21.Select File | Save and save the Orders table, but don't close the window this time, as we wish
to remain in the design view.

Chapter 2

18

22.Recall from the logical design that the CustomerNumber of the Orders table is a Foreign
Key linked to the CustomerNumber Primary Key of the Customers table. We're now going
to set up the CustomerNumber field as such a Foreign Key. Select View | Relationships from
the drop-down menu, and the following screen should appear:

23.Click the New button and you will notice that it will automatically assume you want to create
a relationship with the Customers table, as shown below:

Microsoft SQL Server 2000 Desktop Engine

19

The option to Check existing data on creation means that the relationship will be verified upon
creation and, if any records do not have proper relationships, an error will be raised. By enforcing
the relationship for replication, the relationship will be maintained if the data is replicated on
another server. If the relationship is enforced for INSERTs and UPDATEs, then any attempt to
insert or update a record that doesn't meet the relationship will cause the insert or update to fail.

24. It has automatically filled in Customers as the Primary key table and Orders as the Foreign key
table, which is just what we want it to do. It isn't being as clever as you might think though, as
basically it just defaults to the first table alphabetically, which will not always be the one you
actually want to use. In such cases, you can specify the appropriate Primary and Foreign Key
tables using drop-down lists. In our case, we're lucky, and all we need to do now is specify which
fields within each table are related to each other, namely the CustomerNumber in the
Customers table to the CustomerNumber in the Orders table, as shown here:

Chapter 2

20

This creates the desired relationship between the two tables that we want. That's all you have
to do in order to create a Foreign Key relationship!

25.While this screen is still open, let's take a quick look at the Indexes/Keys tab to see how it
automatically creates a Clustered Index when you specify a Primary Key for a table. Clustered
Indexes were explained in Chapter 1.

Microsoft SQL Server 2000 Desktop Engine

21

26.Now close the Properties dialog and then the Orders table so that you are returned to the
view of all defined tables. You may be prompted to save your changes to the table, in which
case click Yes.

27.Now, repeat the process one last time to create the OrdersProducts table. As before,
double-click Create table in Design view to begin.

28.Recall from Chapter 1 that the OrdersProducts table is to have the following structure:

Chapter 2

22

ORDERSPRODUCTS TABLE

Field Example Type of Data Estimated Size of Data

OrderNumber (PK) 1000 Numeric Positive number with no
decimals

ProductIdentifier (PK) 12345 Numeric Positive number with no
decimals

Price $23.25 Currency

Quantity 2 Numeric

Create the OrdersProducts table as shown below:

Notice that the OrderNumber and ProductIdentifier both have the int data type and
that the Quantity field is smallint. The smallint data type in SQL Server can hold whole
number values in the range -32,768 to 32,767 and should be used when a given integer field will
not need to exceed that range. Thus, as even the most dedicated customer is highly unlikely to
ever want to order more than 32,767 items of any particular product, smallint is appropriate
for the Quantity field. Also notice that the OrderNumber and ProductIdentifier fields
cannot be Null and therefore must be specified when creating a new record in this table.

Microsoft SQL Server 2000 Desktop Engine

23

29. In this case, we are going to specify that the combination of the OrderNumber and
ProductIdentifier fields make up the Primary Key. It is the combination of both of these
that makes a Unique Record Identifier, thus allowing multiple products for any one order. Note
however that we are NOT going to set them up as identity columns because they are not initially
created by this table, but by the tables that they refer to. The OrderNumber is generated in the
Orders table, while the ProductIdentifier is generated in the Products table. So all we
need to do this time to make the Primary Key for the table is to select both OrderNumber and
ProductIdentifier fields and then choose the Edit | Primary Key option.

30.After doing so, the graphic of the key should appear next to both the OrderNumber and
ProductIdentifier fields.

31. Now select File | Save to save the OrdersProducts table but, again, don't close it straight away.

32.OrderNumber and ProductIdentifier are Primary Keys in this table, but they are
Foreign Keys in the Orders and Products tables. Thus, we need to create Foreign Key
relationships with these tables like we did between the Orders table and the Customers
table. To do so, select View | Relationships and click the New button.

33.Again, it defaults to a relationship with the Customers table, which this time is not what we
want. So, in the Primary key table drop down, select Orders so we can first create our Foreign
Key relationship to the OrderNumber field of the Orders table.

34.Notice how, when you change the Primary Key table to the Orders table and then move to a
different field, the Selected relationship and the Relationship name are automatically
updated, as shown below:

Chapter 2

24

35.Now select OrderNumber for the Primary Key value from the Orders table and
OrderNumber for the Foreign Key value from the OrdersProducts table, as shown below:

Microsoft SQL Server 2000 Desktop Engine

25

36.This creates the relationship with the Orders table, so now we're ready to create the
relationship with the Products table. To do so, click the New button.

37.Now change the Primary key table to show the Products table. Again, when you leave the
field, the Selected relationship and Relationship name are automatically updated. The
OrdersProducts table should still be showing as the Foreign Key table. Now select the
ProductIdentifier in both the Primary Key and Foreign Key drop-down lists. At this point, you
have created the relationship with the Products table too.

38. To see a list of existing relationships on the OrdersProducts table, select the Selected
relationship drop-down at the top of the Relationships dialog to see all those currently defined:

Chapter 2

26

39. Notice that both the relationships we have just created appear in the drop-down list. Close this
window and the OrdersProducts table by clicking on the cross in the top right corner of each
so that you return to the tables view. If you are prompted to save table changes, click Yes.

40.Double-click on the Products table and add some sample data. Remember that the
ProductIdentifier field is generated by SQL Server, so you do not have to fill in this
field yourself. Try adding the record without entering values for the required fields, just to see
what happens. Then add a few valid records and close the datasheet view.

41.Then, open the Customers table and add some new customers. Again, recall that you do not
need to specify the CustomerNumber, as it is automatically generated by SQL Server. Try
adding a record without specifying one of the required fields to see what happens. Then, add a
couple of customers to the table and then close the datasheet view.

Microsoft SQL Server 2000 Desktop Engine

27

42.Open the Orders record and fill in some information there too. See what happens when you
try to specify a CustomerNumber that doesn't exist in the Customers table (the Foreign
Key relationship we defined requires this value to exist in the Customers table before it may
be added to the Orders table). Then, add a valid order that links to a CustomerNumber that
does exist in the Customers table.

43. Last of all, open the OrdersProducts table and fill in some sample data. See what happens when you
type in an OrderNumber or ProductIdentifier that do not already exist in their respective main
tables. Recall that we previously defined a Foreign Key relationship which requires that these values
exist in their main tables (Orders and Products) before they may be used in the OrdersProducts
table. Fill in some valid values designating existing OrderNumbers and ProductIdentifiers from
their respective tables. Add the same OrderNumber multiple times with different
ProductIdentifiers (more than one product per order) to verify that this is allowed.

Congratulations! You have now successfully created a new database with four tables in your Desktop
Engine / SQL Server database by using a Microsoft Access project.

Now that we have learned the basics of database design and implemented our basic physical Desktop
Engine database, we can begin working with a more complicated database that will be used for the
majority of this book. We will use the Northwind sample database that comes with Access for this purpose.
It is similar in many ways to the database we've just created, and has similar Products, Customers,
Orders, and OrdersProducts tables. However, the Northwind database is more complex, contains
additional tables, and is designed around the needs of a fictitious retailer called Northwind.

In this next section, we look at how to use the Upsizing Wizard to convert the existing Northwind
Access database into a SQL Server database. During this process, the wizard will automatically create a
new Access project for us to link to the database. Once the Northwind database is converted to SQL
Server, we will then be able to use it for the examples in the rest of this book.

Upsizing an Existing Access Database to SQL Server 2000
Desktop Engine

The Upsizing Wizard of Access 2000 and Access XP allows you to open an existing Access database
and convert it to the equivalent SQL Server database. In this section, we are going to convert the
sample Northwind database from Access to SQL Server. Once the conversion is complete, we will
analyze the report produced to ensure that no errors occurred. We will then take a look at the resulting
project file that allows us to view and manage the newly created SQL Server database.

Note that Access 2000's Upsizing Wizard works differently to the Upsizing Wizard in Access XP
and, if you use the 2000 wizard, you may end up with slight differences in the resulting upsized
database (such as different views, stored procedures, or functions).

Try It Out – Upsizing the Northwind Database from Access to SQL Server

44.Open Microsoft Access XP.

Chapter 2

28

45.Select File | Open and browse to find the Northwind sample database (northwind.mdb)
supplied with Access and click the Open button to open it up. A common location for this
database file is C:\Program Files\Microsoft Office\Samples. This may not
necessarily be its location on your machine if you installed the sample databases somewhere
else. You can search for the file using the Start | Search menu option. If you still cannot find
the Northwind database on your hard drive, then you can re-run Microsoft Access setup and
install the sample databases.

46.Close the Main Switchboard of the Northwind application so that you are left with the
database design view.

47.From the Tools menu, select Database Utilities | Upsizing Wizard, as shown below:

Microsoft SQL Server 2000 Desktop Engine

29

48.The Upsizing Wizard will begin, and the following screen will appear:

49. Select the Create new database option if it isn't already selected and click the Next button so
we can create a brand new SQL Server database from the existing Northwind Access database.

50.Fill in information about the SQL Server (which in our case will be the name of our Desktop
Engine installation) that you want to create the new database on, as shown in the example
below. A list of available servers should be in the drop-down list. In some cases, (local) will be
the correct one if you are creating the database on a version of Desktop Engine on the current
computer. For the User Id and Password, fill in information for a valid SQL Server user with
create database permissions. By default, you can use "sa" (system administrator) with a blank
password. Of course, when you have a database containing sensitive information, you really
need to change these user details to something less obvious.

Below the UserId and Password boxes, specify the name you want use when referring to the
new Northwind database from Desktop Engine. I'm going to call mine NorthwindSQL and, to
keep things simple, it's a good idea if you do the same. Once all necessary information is filled
in, click the Next button.

Please note that, with Access 2000, you may receive an "Overflow" dialog box at this step. The
solution is to apply a patch that can be downloaded from the Microsoft Web Site. There is a
knowledge base article that discusses this issue. You can read this article at the following URL:
http://support.microsoft.com/support/kb/ articles/Q272/3/84.ASP.

Chapter 2

30

51. The next screen prompts you to specify the tables in the existing Northwind database that are to be
included in the new SQL Server database. Click the double right arrow button on the screen so that
all the tables are moved to the list of tables to export, as shown below, and then click the Next button.

Microsoft SQL Server 2000 Desktop Engine

31

52.The next screen allows us to specify which database attributes (that is, fields) we wish to carry
over to the upsized version. In this case, we want to upsize the table structure as well as the
data, and thus should make sure that the following options are checked before clicking Next:

Note that for the table relationships, you have the option to Use DRI or Use triggers. DRI
creates relationships between the tables during the creation of the table. Triggers, on the other
hand, should be selected when you need to support cascading updates and deletes.

For the timestamp option, generally, you should allow the wizard to determine whether a
timestamp should be used. Using a timestamp column in a table makes sure that its timestamp
column is updated with a value that reflects that last time it was updated.

53. The next screen allows us to specify where we want to create the Access project file and what we want
it to be called. This screen gives us the option to link to an existing application or create a new client-
server Access application. We are going to do the latter, which will convert all the database details
from the Access database to the SQL Server version, while leaving the user interface components in
Access. This allows us to create a client-server application with Access as the front-end and SQL
Server as the back-end. You can change the file location to whatever destination on your computer
you wish to place the Access project file, but save it with the name NorthwindSQL.adp.

We could also specify to save the password and user ID so that the user ID and password you
use for connecting will be stored in a connection string that the project uses.

Once this is done, the Finish button becomes enabled, as you can see below. However, we
aren't going to click Finish just yet; instead we're going to click the Next button to see what
other choices are available.

Chapter 2

32

54.The screen shown below is the final one of the wizard. Notice how the Next button is no
longer enabled while the Finish button still is. Here we can decide whether we want to Open
the new ADP file (our new client-server project) once the wizard completes, or whether we
wish to remain in the original Access Northwind file.

We are going to select the option to Open the new ADP file, as we are eager to see what it looks like.

Microsoft SQL Server 2000 Desktop Engine

33

55.After clicking the Finish button, Microsoft Access works its magic and converts our Access
Northwind database to a SQL Server database with a client-server Access front end. You will
see a progress bar as shown below detailing each step as it is taken, and the overall progress of
the upsizing process:

56. Any errors with the upsizing attempt will be displayed in dialog boxes. For example, in this instance,
a syntax error was encountered while copying a particular record into the newly created tables. This
error was caused by attempting to place the text value Qtr into an integer field. The wizard notifies
you of any such error, and continues with the upsizing process once you have clicked OK.

57. Once the upsizing is complete, a summary report will be displayed on the screen. The summary
report gives you a record of the work you did and helps you determine why database objects failed to
update. The first piece of important information in this report is the detailed listing of each table that
was converted, what data type it was converted to, which indexes were converted, etc. An example of
the sort of information described for each table is shown below. Notice how the original Access values
are shown on the left and the SQL Server values they were translated to appear on the right. The
CategoryID, for example, was a Number (Long) in Access but, in SQL Server, it was converted to
the int data type. At the bottom we see that the original CategoryName index was successfully
converted to a CategoryName index in SQL Server. This tells us that the index was and is a Unique
Index on the CategoryName field, which, you may recall from Chapter 1, means that the index is
based on a field that may contain unique values only.

Chapter 2

34

Table: Categories

Microsoft Access SQL Server

Table Name: Categories Categories

Attached Table Name:

Aliasing Query:

Validation Rule:

Timestamp field added to SQL Server table.

Fields Microsoft Access SQL Server

Field Name: CategoryID CategoryID

Data Type: Number (Long) int

Field Name: CategoryName CategoryName

Data Type: Text(15) nvarchar(15)

Field Name: Description Description

Data Type: Memo text

Field Name: Picture Picture

Data Type: OLE Object image

Indexes Microsoft Access SQL Server

Name: CategoryName CategoryName

Fields: CategoryName CategoryName

Type: Unique Unique

58. After all the details for each converted table have been listed, the summary report describes the
queries that were converted. Notice how, in the example below, some of the stored Access Queries
were converted to Views in SQL Server, and some others were converted to Stored Procedures.
Views and Stored Procedures will be explained in more detail in the next two chapters but, for
now, it is enough to know that Views and Stored Procedures in SQL Server are similar in concept
to the Stored Query in Access, and that the report shows the results of the conversion.

Microsoft SQL Server 2000 Desktop Engine

35

Queries
Query Alphabetical List of Products

Upsized using SQL:

CREATE VIEW "Alphabetical List of Products"

AS

SELECT Products.*, Categories.CategoryName AS Expr1001

FROM Categories INNER JOIN Products ON (Categories.CategoryID=Products.CategoryID)

WHERE (((Products.Discontinued)=0))

Query Product Sales for 1997

Upsized using SQL:

CREATE VIEW "Product Sales for 1997"

AS

SELECT Categories.CategoryName, Products.ProductName, sum(convert(money,"Order

Details".UnitPrice*Quantity*(1-Discount)/100)*100) AS ProductSales, 'Qtr ' +

datepart(q,ShippedDate) AS ShippedQuarter

FROM (Categories INNER JOIN Products ON (Categories.CategoryID=Products.CategoryID))

INNER

 JOIN (Orders INNER JOIN "Order Details" ON (Orders.OrderID="Order Details".OrderID)) ON

(Products.ProductID="Order Details".ProductID)

WHERE (((Orders.ShippedDate) Between '1/1/1997' And '12/31/1997'))

GROUP BY Categories.CategoryName, Products.ProductName, 'Qtr ' + datepart(q,ShippedDate)

59.You can print the log file or use the report that is created and saved automatically for you.

Congratulations again! You have now successfully upsized the Northwind database to create a client-server
project, including the table structure of your SQL Server database and an Access project file containing the
user interface elements (forms, and so on) that links the tables to the SQL Server database.

We should have the new Access project open (NorthwindSQL.adp) since, above, we chose the option
to open it after the wizard completed. Take a moment to look around the project and get a feel for the
new structure. You will see that it doesn't look very different to the standalone Access Northwind
database prior to the upsizing process. The biggest difference takes place behind the scenes. The tables
are displayed just like before but now the data in the tables and the tables themselves are physically
located in a Desktop Engine database as opposed to an Access file.

Other Ways of Creating and Managing Desktop
Engine Databases

Since the Desktop Engine edition of SQL Server does not include any SQL Server graphical user
interface management tools (Enterprise Manager, Query Analyzer), you have to use other means to
create and manage SQL Server databases. The exception to this, of course, is if you installed Desktop
Engine from the SQL Server 2000 installation CDs – in which case, you can install SQL Server's
graphical user interface tools like Enterprise Manager.

Chapter 2

36

In this chapter, we have studied one way of creating and managing SQL Server databases, through
Access projects. Another way to create and manage SQL Server databases is using the Server Explorer
that comes with Visual Studio .NET, and we will look at this in more detail in the next chapter. There
are also APIs available that allow you to create and manage SQL Server databases programmatically
through Visual Basic and other such languages. However, we will not be covering the programmatic
creation and management of Desktop Engine databases in this book, as it is a complex and advanced
task suited to experienced database programmers. However, creating database applications using Visual
Basic .NET that read, update, insert, and delete data in SQL Server databases that have already been set
up is well within the scope of this book and will be covered extensively. For the creation and
management of databases, Access or the Visual Studio .NET Server Explorer are adequate for our
purposes, leaving us to concentrate fully on our first forays into the world of database programming.

Summary
In this chapter, we have learned a lot about Microsoft SQL Server 2000 Desktop Engine and how it can
help us overcome the gap between Access databases and their SQL Server equivalents. To begin with,
we examined differences between the Desktop Engine and other editions of Microsoft SQL Server 2000,
before narrowing our focus to explore the Desktop Engine in greater depth. We learned:

❑ That Desktop Engine is a freely distributable version of Microsoft SQL Server 2000.

❑ That Desktop Engine solves the problems previously posed when having to migrate from
Access to SQL Server, since no changes to the database are necessary when you need to
upgrade to a more powerful version of SQL Server.

❑ Where to find a copy of the setup program and how to install it onto your computer.

❑ How to create a new Desktop Engine/SQL Server database from scratch using Microsoft Access.

❑ How to upsize an existing Microsoft Access database to a Desktop Engine database. In the
process, we found out what an Access project file is and how it can create client-server
applications. The project file doesn't store any data or data structures, but contains only links
to the SQL Server database and user interface elements (forms, etc.) for the database.

In Chapter 1, we learned some of the theory behind the design of a database. In this chapter, we have seen how to
put our design into practice by creating a new SQL Server database using Access. In the next chapter, we will find
out how to pass information into and out of SQL Server databases using the Visual Studio .NET Server Explorer.
We will, among other things, explore the SQL language and learn how to run queries and create Views.

Exercises
1. What is Desktop Engine? How does it compare to other versions of Microsoft SQL Server 2000?

2. Why should you use it instead of Access? What problems does it solve?

3. Why is Access a great companion to Desktop Engine/SQL Server?

4. Describe what an Access Project File is and how to go about creating one.

Answers are available at http://p2p.wrox.com/exercises/.

Microsoft SQL Server 2000 Desktop Engine

37

Chapter 2

38

Querying the Database

In this chapter, we will take a look at how to retrieve information from SQL Server Desktop Engine
Databases. We will also learn how to add, update, and delete data that is in the database. In this process,
we will specifically cover the following topics:

❑ How Transact SQL (T-SQL) differs from Microsoft Access Jet in its syntax.

❑ How to retrieve information from Desktop Engine databases using T-SQL.

❑ Creating a View in Server Explorer to run SQL statements.

❑ Selecting and filtering information in the database.

❑ Inserting, updating, and deleting information in the database.

❑ Sorting the data results in a specific order.

❑ Retrieving database information from multiple tables.

❑ How to summarize information in the database meaningfully.

❑ Some complex ways to retrieve the information you need.

After covering these areas, we will summarize what we learned and present you with some questions to
ensure you have fully grasped these concepts.

Querying SQL Server Desktop Engine Databases
Having data stored in a database does not provide much value unless you have an easy way to retrieve
the information when you need it. We query a database to process data to create information that is
meaningful to the user. In this chapter, we will look at how to use the Server Explorer and the Transact
SQL language to manage information in SQL Server Desktop Engine databases.

Chapter 3

2

Transact SQL (T-SQL) Versus Jet SQL
You have most likely already heard the term Structured Query Language, most commonly known as SQL
(pronounced "sequel"). You also probably already know that you can use SQL statements to retrieve data
from databases. There are different dialects of SQL in use depending on the database platform.

For example, all versions of Microsoft SQL Server, including the SQL Server Desktop Engine, utilize the
Transact SQL (T-SQL) language for retrieving and modifying information in the database. Microsoft Access,
on the other hand, employs the language called Jet SQL. Although T-SQL and Jet SQL are alike in many
ways, they are also very different. The need to change from one SQL syntax to another constitutes one of the
primary problem areas that people migrating applications from Access to SQL Server must overcome.

In order to make the transition from one database platform to another as smooth as possible, the American
National Standards Institute (ANSI) has created standards for SQL that aim to ensure that SQL statements
written for one database will run against other databases also following that standard, even if running on a
different platform. There are two different versions of the ANSI Standard: ANSI 89 and ANSI 92. The
ANSI 89 standard was adopted in 1989, and this was consolidated and much improved into a new
standard adopted in 1992, named, perhaps unimaginatively, the ANSI 92 standard. Both of these standards
offer multiple levels of adherence that databases can conform to. Most database vendors that provide some
degree of compliance with the ANSI 92 standards have aimed at Level 1, the lowest compliance level.

Jet SQL, the Access version of SQL, adheres to most of the Level 1 requirements for ANSI 89, but does not
meet the ANSI 92 standard. T-SQL, the SQL Server version of SQL, on the other hand, is fully compliant
with the ANSI 92 Level 1 standard, making SQL Server Desktop Engine a much better choice than Jet for
many professional applications. In addition to supporting the features required by the ANSI 92 standard,
SQL Server also supports many additional features not defined by that standard. This is both a good thing
and a bad thing. Clearly, such features provide enhanced functionality, but in order to run on other database
platforms, those statements will have to be modified. Statements that use syntax that does conform to ANSI
92, on the other hand, will not need modification to run on other ANSI 92 compliant databases.

With this history as the backdrop, let's delve into the details of how to use the T-SQL language to
retrieve and modify information in Desktop Engine databases.

The Basics of T-SQL
The T-SQL language allows you to retrieve, modify, update, and delete data in SQL Server (and therefore
Desktop Engine) databases. It also allows you to sort, filter, summarize, and group information in many
meaningful ways. This section will demonstrate each of these features in more detail. After learning the T-
SQL syntax itself, we will see how to run statements against our upsized NorthwindSQL database.

Selecting Data From the Database
You are probably already aware of the most basic type of SQL statement: the SELECT statement. Use
the SELECT statement to retrieve records from a database. For example, if we want to see all
information in the Products table, we would run the following SQL statement:

SELECT * FROM Products

Querying the Database

3

The asterisk (*) above designates that we want to see all fields in the Products table. If, instead, we
only wanted to find the name of the product, the price, and units that are in stock, the SQL statement
below would accomplish this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products

In this example, the specific fields we want to see are listed, followed by the FROM clause that indicates
which table to retrieve the information from. The SELECT and FROM keywords are capitalized to make
the statement more readable, but it is not a requirement and does not affect the meaning of the code.
You should always consider capitalizing SQL keywords for this reason.

So how do we run this SQL statement and see the results? SQL Server Desktop Engine doesn't have a user
interface, so we have to make use of the graphical interface in Access XP or Visual Studio .NET to run queries.
We will run the queries in Visual Studio .NET, since it is convenient and takes advantage of the single
environment that we'll be using throughout the rest of this book. Visual Studio .NET uses the Server Explorer
tool to let us run SQL statements. Note that Server Explorer can do a lot more than just running T-SQL queries.
We will look at these other options later, but for now we are only concerned with running SQL queries.

Try It Out – Running a Query in Server Explorer

1. Start up Visual Studio .NET.

2. Locate the Server Explorer window. If it is already open, it will be tucked away on the left-hand corner
of the screen near the Toolbox. If not, you may have to open it using View | Server Explorer (or
pressing Ctrl-Alt-S). It should appear similarly to the following screenshot, except of course that the
listings under Data Connections and Servers will reflect those set up on your particular system:

Chapter 3

4

3. Now we want to show the NorthwindSQL database node. It will be found in the tree located
underneath the Servers node, so expand the node labeled with the name of your particular
server (where above there is goz3). This will bring up several new nodes – we're after our
SQL Server, so expand the node labeled SQL Servers. Next, expand the node corresponding
to the name of your Desktop Engine server (GOZ3 in the following screenshot). This brings up
the names of all the SQL databases installed on your machine, as shown below (you may well
have different databases in your tree):

Querying the Database

5

4. We're only interested in the NorthwindSQL database, so expand that node, and then expand
the Tables node that now appears underneath NorthwindSQL, and you should be able to
recognize the database we upsized:

Chapter 3

6

5. We will use the Server Explorer's ability to create views to run our SQL queries. This will be
explained in more detail shortly. For now, right-click on the Views node in Server Explorer
for the NorthwindSQL database. Some options should pop up as shown below:

6. Select the New View option from this menu to create a new view. An Add Table window will
appear prompting you to choose which tables to include in the view. Click the Close button to
ignore this for now, as we shall add the tables that we need manually. We now have the View
designer open, as shown below:

Querying the Database

7

7. Use the SELECT FROM area of the designer to create the SQL statement you wish to run. An
example is shown below:

Chapter 3

8

8. To actually run the SQL statement entered, click the Run Query button on the toolbar (the
button depicting a red exclamation mark). The results of the query will then display in the
Output section of the screen:

Querying the Database

9

How It Works

Server Explorer lets us run SQL statements and display the results by creating a new view. Views are a
new concept that will be explained in greater detail in the next chapter. For now, we just need to know
that a View is a SQL statement that can be saved to a database and treated as a "virtual table". Here we
used the View designer to create and run SQL statements.

After we navigated to the NorthwindSQL node in the Server Explorer, we expanded the nodes to show
the tables that the database contained. After confirming that this was indeed the database that we
upsized, we created an empty View and ran a sample SQL statement. This SQL statement selected the
ProductName, UnitPrice, and UnitsInStock columns from the database, and displayed its results
in the Output section of the screen.

Use the View designer to run the SQL Statements given throughout this chapter to see them in action.
Let's now look at some more examples of SQL statements that access the database.

Chapter 3

10

Filtering Data with WHERE
In the previous example, we selected all records from certain columns in the Products table. What if we
only want to see products that sell for less than $25? When we want to filter data so that only records
meeting certain criteria are retrieved, we can use a WHERE clause in our SQL statement, as shown below:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE UnitPrice < 25

The WHERE clause specifies that the UnitPrice should be less than 25, so that the above SQL
statement will return the specified three columns for all products less than $25. Run this SQL statement
in Server Explorer in the View designer, and you should get results similar to these:

ProductName UnitPrice UnitsInStock

Chai 18 39

Aniseed Syrup 10 13

Chef Anton's Cajun
Seasoning

22 53

Chef Anton's Gumbo Mix 21.35 0

Queso Cabrales 21 22

Konbu 6 24

This is a very simple example of a WHERE clause, so let's now look at some of the more complicated
ways to filter data.

The table below shows some examples of the most commonly used Comparison Operators in WHERE clauses. In
our previous examples, we used the 'less than' (<) operator to return only the products that cost less than $25.
We could just as easily have substituted one of the other comparison operators in its stead. Have a look through
the table now, paying particular attention to the last four entries, and we will then look at them in more detail.

Comparison Operator Description

> Greater than

< Less than.

= Equals.

>= Greater than or equal to.

<= Less than or equal to.

<> Not equal to.

BETWEEN x AND y Matches values that fall between x and y inclusive – that is, both x
and y satisfy the condition.

Querying the Database

11

Comparison Operator Description

LIKE Returns fields that start with, end with, or contain this particular
value. NOT LIKE is also valid, matching anything that does not
correspond to the given pattern.

IN Matches values given in the subsequent parentheses. NOT IN is also
valid and finds a match on anything but the particular values
specified.

IS NULL Column contains a Null value.

You should already understand how to use the greater-than and less-than operators from the previous
example. The other standard comparison operators act as we would expect them to. So, to return all
products that cost $25 exactly, we can replace the less-than sign with the equal sign:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE UnitPrice = 25

Now, the statement returns only the records in the Products table that have a price of exactly $25.
Run this in the View designer if you wish to check how it works.

You could replace the other comparison operators in a similar manner to achieve different filtering
effects, such as to show all products that cost $25 and higher (>=), those that cost $25 and lower (<=),
and those that do not cost $25 (<>). Play around with these in the query window to see the impact of
each variation. Now let's take a look at a few of the other filters which are not so obvious.

BETWEEN

The BETWEEN operator allows you to return all records in the specified range. For example, if you want
to see all products with prices in the range $25-$35, you could use the following SQL statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (UnitPrice BETWEEN 25 AND 35)

Don't forget that this is an inclusive range, so items priced at exactly $25 and $35 will be returned. Here,
we want to find records based on a numeric range – price – but the BETWEEN operator works fine with
alphabetical ranges as well. For example, suppose you want to see all products with names that appear
alphabetically between A and C, inclusive. This can be accomplished with the following statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (ProductName BETWEEN 'A' AND 'C')

Executing this statement will return results containing any product name starting with A and B. But why
have no product names starting with C been returned? This is because of how SQL treats alphabetical
groupings, such that anything that starts with C but is not the letter C itself would be classed as falling after
C. For example, "Camembert Pierrot" would be considered as coming after the letter C alphabetically, and
thus would not be returned by the above SQL statement. If you wanted to specify a BETWEEN range that
would return those product names starting with C, you could use something like the following:

Chapter 3

12

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (ProductName BETWEEN 'A' AND 'D' AND <> 'D')

The above statement should yield results like this:

ProductName UnitPrice UnitsInStock

Alice Mutton 39 0
Aniseed Syrup 10 13
Boston Crab Meat 18.4 123
Camembert Pierrot 34 19
Carnarvon Tigers 62.5 42
Chai 18 39
Chang 30 40
Chartreuse verte 18 69
Chef Anton's Cajun
Seasoning

22 53

Chef Anton's Gumbo Mix 21.35 0
Chocolade 12.75 15
Côte de Blaye 263.5 17

LIKE

The LIKE operator allows you to perform partial string matching to filter records where a particular
field starts with, ends with, or contains a certain set of characters. For example, if you wanted to see all
product names that start with 'G', you could use the following statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE ProductName LIKE 'G%'

Notice the percent sign (%) following the G. If you're used to Access queries, you might expect this to be
a * sign – this is just one of those differences that we touched upon earlier. The percent sign's purpose is
to denote any sequence of characters, so that the database knows to search for all records that have a
product name beginning with G, as shown below:

ProductName UnitPrice UnitsInStock

Geitost 2.5 112
Genen Shouyu 15.5 39
Gnocchi di nonna Alice 38 21
Gorgonzola Telino 12.5 0

Querying the Database

13

ProductName UnitPrice UnitsInStock

Grandma's Boysenberry
Spread

25 115

Gravad lax 26 11
Guaraná Fantástica 4.5 20
Gudbrandsdalsost 36 26
Gula Malacca 19.45 27
Gumbär Gummibärchen 31.23 15
Gustaf's Knäckebröd 21 104

To see a list of all products ending with G, you would put the percent sign before the G, like this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE ProductName LIKE '%G'

This statement returns results something like this:

ProductName UnitPrice UnitsInStock

Chang 30 40
Chef Anton's Cajun
Seasoning

22 53

Nord-Ost Matjeshering 25.89 10

Notice how only those products that end in the letter G are returned. You could specify more than one
letter if you wanted to. For example, you could have just as easily asked to see all of the products that
begin with 'GO', or all the products that end with 'GO'.

The third way of using the LIKE operator returns any records that contain a certain character or
sequence of characters. For example, suppose you want to see all products that have the word BERRY
somewhere in the product name – you could use a SQL statement like this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE ProductName LIKE '%BERRY%'

Notice how in this instance, the percent signs come before and after the letters you want to filter. This lets
the database know that you want to return records that contain the letters berry at any point in the product
name field. As SQL is not case-sensitive, BERRY is treated identically to berry, and so the statement will
match 'Berry', 'Grandma's Boisenberry Spread', 'Northwoods Cranberry Sauce', and so on:

ProductName UnitPrice UnitsInStock

Grandma's Boysenberry
Spread

25 115

Northwoods Cranberry
Sauce

40 6

Chapter 3

14

Serving a similar purpose to the percent sign in LIKE clauses is the underscore character that indicates a
single occurrence of any character. Also, we can indicate one of a set of characters, rather than just any
character, by listing the allowed characters within square brackets:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE ProductName LIKE [cs]ha_

This SQL statement will return products with a name of Chai, Shaz, and so on, but not Chang, because
the underscore will match one and only one character. If the above WHERE clause had the percent sign
in place of the underscore, then Chang would be returned, as well as Chai and Shaz.

IN

You can use the IN comparison operator to provide a specific set of values. For example, if you want to
see all products where the price is exactly $5, $10, or $20, you could use the following:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE UnitPrice IN (5, 10, 20)

Notice how the IN clause is followed by parentheses, and the values you want to retrieve are separated
by commas. In this instance, the filter applies to a numeric value (UnitPrice), so we do not need to
use single quotes. Any products with unit prices matching any of those three values is returned:

ProductName UnitPrice UnitsInStock

Aniseed Syrup 10 13
Sir Rodney's Scones 10 3
Maxilaku 20 10
Longlife Tofu 10 4

Note that you could accomplish the same result with the following SQL statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE UnitPrice = 5 OR UnitPrice = 10 OR UnitPrice = 20

We can filter text fields of a record using the IN clause, although we must remember to use single
quotes around each text value ProductName, For example, suppose we want return any records where
the product name is either 'Alice Mutton' or 'Aniseed Syrup', we could use the IN operator like this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE ProductName IN ('Alice Mutton', 'Aniseed Syrup')

In this instance, the values are surrounded by the single quotes since they correspond to a text field in
the database. This statement will return both the Alice Mutton and Aniseed Syrup product records, as
long as they exist in the database of course. An alternative notation for this statement's WHERE clause
would be: WHERE ProductName='Alice Mutton' OR ProductName= 'Aniseed Syrup'.

Querying the Database

15

IS NULL

There will be times when you specifically want to see when certain fields are explicitly Null. Be aware
that Null is quite different from zero, or an empty string. It is a special value that any type of column may
have, and indicates that no data is stored in that column. If you wanted to see all of the products where the
Price field is Null, you could use a SQL statement containing the IS NULL keyword like this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE UnitPrice IS NULL

Specifying Multiple Filters with AND/OR

We have seen a couple of examples that specify multiple filters in the WHERE clause to limit the records
retrieved using the AND and OR keywords. For example, suppose that you want to see all products where
the price is less than $25 and the UnitsInStock is greater than 10. Such a statement looks like this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (UnitPrice < 25) AND (UnitsInStock > 10)

Notice how the AND keyword is used between the two sets of criteria and how each separate condition is
contained within parentheses. Running this SQL statement should return results similar to these:

ProductName UnitPrice UnitsInStock

Chai 18 39
Aniseed Syrup 10 13
Chef Anton's Cajun
Seasoning

22 53

Queso Cabrales 21 22
Konbu 6 24
Tofu 23.25 35

If instead you wanted to see all products that are less than $25 or have more than 10 in stock, you would
use this statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (UnitPrice < 25) OR (UnitsInStock > 10)

Notice that records are returned if either criterion is met:

ProductName UnitPrice UnitsInStock

Chai 18 39
Chang 30 40
Aniseed Syrup 10 13
Chef Anton's Cajun
Seasoning

22 53

Chapter 3

16

You can specify many criteria to restrict the returned results to exactly what you need. Suppose you
only want to see products priced between $25 and $50, with a ProductName that starts with C, and
that have over 10 units in stock. No problem. You can do that with the following SQL statement:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
WHERE (UnitPrice BETWEEN 25 AND 50)
AND (ProductName LIKE 'C%')
AND (UnitsInStock > 10)

This returns the following records:

ProductName UnitPrice UnitsInStock

Camembert Pierrot 34 19
Chang 30 40

You can see how easy it is to specify multiple filters to achieve the exact results you need for a given
scenario. Now that we've learnt the T-SQL syntax for retrieving data from a database, let's take a look at
how to change distinct records.

Modifying Data with INSERT, UPDATE, and DELETE
T-SQL provides you with the means to insert data into a database, update existing records with new
values, or delete existing records. Let's look at each of these in more detail.

INSERT

The INSERT statement can be used to add new records to a database. Suppose you want to add details of a
new product line to the Products table. The product is called Belgian Waffles, has a price of $5, and is
provided by the Supplier with an ID of 3. Suppose that you do not know the Category ID and other
information yet (and that our database allows Null values for CategoryId and certain other columns
that we don't specify). To add this partial information, you can use the following T-SQL statement:

INSERT INTO Products (ProductName, UnitPrice, SupplierId) VALUES ('Belgian
Waffles', 5, 3)

Let's look at this syntax in more detail. First, there is the INSERT INTO statement followed by the name
of the table to insert the record into. The following parentheses contain the name of the fields that we
have the data for. Next, after the VALUES keyword, are parentheses containing the values for the field
names previously listed, and in the same order. It is critical that the order of the values match with the
order of the field names, otherwise data will be inserted into the wrong fields. Last of all, notice how the
Belgian Waffles value is surrounded by single quotes but the UnitPrice and SupplierId values are
not. This is because the ProductName field is textual and the UnitPrice and SupplierId fields are
numerical. You will need to know the data types of the fields you are inserting data into in order to
know whether quotes are required or not. When inserting a record, be sure to provide values for all
columns unless you know that a column has a default value or that it allows nulls.

Go ahead and run the SQL statement above in the View designer. Note that you will first receive a
dialog box such as the following:

Querying the Database

17

This message box is essentially just a warning that you will not be able save the View if it contains an
INSERT statement. We are not planning on saving this SQL statement anyway, and are simply using the
View designer window to run it, so we can ignore this message. Click the Yes button to continue. A
message box will then appear indicating how many rows the INSERT statement affected (that is, how
many rows were added).

This example inserts a new record into the Products table using information specified in the SQL
statement itself. You might find it useful here to think of the SQL SELECT statement that would retrieve
this new record from the database to verify that it was indeed added.

There is also another way to insert values: by inserting the results of a SELECT statement. This means that
you can use a SELECT statement to retrieve records from one table and insert them into another table.
Let's walk through a quick example. Suppose you have a TempProducts table that gets populated
temporarily with any new Products that your company is going to start carrying. You could use the
following to select all the records it contains, and insert them in the same step into the Products table:

INSERT INTO Products
(SELECT * FROM TempProducts)

Note that the fields do not have to be named identically, they just have to appear in the same order and be
of the same data type. Furthermore, the Products table must already exist for this to work. If you only
wanted to insert certain fields instead of all of them, you could specify those fields individually, like this:

INSERT INTO Products (ProductName, UnitPrice, SupplierId)
(SELECT ProductName, UnitPrice, SupplierId FROM TempProducts)

Chapter 3

18

There is also a way to insert the results of a SELECT into a totally new table altogether. Suppose that for
some reason you wanted to create a temporary copy of the Products table that you could manipulate
without harming the live Products table. The SELECT INTO statement will allow you to create a
brand new table from the results of a select statement. Here's an example that creates a TempProducts
table from all the current records in the Products table:

SELECT * INTO TempProducts FROM Products

Notice that, in this instance, we're using the SELECT INTO statement instead of the INSERT INTO
statement. SELECT INTO is used when you want to create a new table from the returned results, while
INSERT INTO is used when you are inserting records into an existing table.

Now let's move on to see how to update existing records.

UPDATE

The UPDATE statement allows you to update existing records in the database. For example, when we first
added the Belgian Waffles record, we only knew the ProductName, UnitPrice, and SupplierId.
Suppose that we now know the CategoryId, QuantityPerUnit, and UnitsInStock values and want
to update that record in the database. The following statement shows how we might do this:

UPDATE Products
SET CategoryId = 3, QuantityPerUnit = '12 per box', UnitsInStock = 50
WHERE ProductName = 'Belgian Waffles'

The UPDATE key word is followed by the name of the table to update, and the SET statement is followed
by the individual fields to be updated, along with their corresponding values – with each field separated by
commas. Last of all, the WHERE clause specifies which records to update. Don't forget the WHERE clause
when appropriate to limit the records which are to be updated. If the WHERE clause is not supplied, then
all records in the table will be updated with these new values. Of course, there are certain situations where
this is really what you want – such as for a mass update where you need to update the fields of all records.
In general though, the WHERE clause is an essential part of an UPDATE statements, as it is here.

It is also possible to use an UPDATE statement to update records in one table based on information
taken from another table. You can do this using an UPDATE FROM clause, as shown below:

UPDATE Products
SET CategoryId = 3, QuantityPerUnit = '12 per box', UnitsInStock = 50
FROM Products, Categories
WHERE Products.CategoryId = Categories.CategoryId AND
 Products.ProductName = 'Belgian Waffles'

OK, this may not be the best example, but it shows how you can update one table based on certain
criteria for joining multiple tables.

DELETE

In addition to updating data in databases, you can also easily delete data. The DELETE statement allows you to
remove records that you no longer want. For example, suppose that all of the products in the TempProducts
table have been successfully been added to the main Products table. At this point, you are ready to delete all
the records from the TempProducts table. The following SQL statement will accomplish this:

Querying the Database

19

DELETE FROM TempProducts

This will delete all records in the TempProducts table because there is no WHERE clause to limit
affected records. Use caution when running a DELETE statement without a qualifying WHERE clause. It is
a common mistake to forget to include one when you really want to delete a single or few records, with
potentially disastrous results. For example, to delete just the Belgian Waffles record from the
TempProducts table, the SQL statement would be:

DELETE FROM TempProducts WHERE ProductName = 'Belgian Waffles'

Note that when deleting records from a database, it is always best to use the primary key whenever possible,
such as the ProductId or SupplierId fields in this case. You can then be sure that you will only delete
the record you intended, because other fields do not provide a guarantee of uniqueness (for instance, in the
above statement, there could be more than one record with a ProductName field of 'Belgian Waffles').

Beyond The Basics
T-SQL offers a rich set of features for data manipulation and analysis. You have seen several of these
features throughout this chapter already. In this section, we will look at examples of more complicated
ways to retrieve data. T-SQL supports many advanced features beyond those given, but I hope that this
section gives a flavor of what can be accomplished.

Sorting Data with ORDER BY and GROUP BY
If you don't specify a particular order for returned results, they will simply be returned in the order they
appear in the tables. This will quite likely not be the most meaningful order for your purposes.
Fortunately, you can specify how the returned information should be ordered or grouped so that it is
suitable for what you plan to do with it.

ORDER BY

The ORDER BY clause allows you to specify in which order you want results returned. Recall this
example from earlier in the chapter:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products

You might want to sort these results by ProductName to produce an alphabetical listing of Products.
The statement above will return them in no particular order, which isn't great, unless of course our
database is sorted alphabetically on this field. As this is not the case, we have to specify that the results
are to be returned in alphabetical order by ProductName, using the following ORDER BY clause:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
ORDER BY ProductName

Chapter 3

20

The above statement returns the data as shown below:

ProductName UnitPrice UnitsInStock

Alice Mutton 39 0

Aniseed Syrup 10 13

Belgian Waffles 5 0

Boston Crab Meat 18.4 123

Camembert Pierrot 34 19

This uses the default order of ascending, and the statement could have equally been written as:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
ORDER BY ProductName ASC

Here, the ASC keyword (for ascending) is explicitly specified. You can also return the records in reverse
alphabetical order, that is, descending order. Use the DESC keyword as shown:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
ORDER BY ProductName DESC

This will return a list of all the products in reverse alphabetical order:

ProductName UnitPrice UnitsInStock

Zaanse koeken 9.5 36

Wimmers gute Semmelknödel 33.25 22

Vegie-spread 43.9 24

Valkoinen suklaa 16.25 65

Uncle Bob's Organic Dried
Pears

30 15

Tunnbröd 9 61

Note that the order is based on the data type, which will not necessarily be alphanumeric.

You can also specify multiple fields to sort by. For example, suppose you want to sort descending by price (to
see the most expensive first), but that you want to further sort on ProductName alphabetically so that products
with the same price will be listed in alphabetical order. The SQL statement shown below would achieve this:

SELECT ProductName, UnitPrice, UnitsInStock FROM Products
ORDER BY UnitPrice DESC,
ProductName ASC

Querying the Database

21

Notice how the multiple sort fields are separated by commas and each specifies the type of sort to use,
either ascending or descending. The ordering priority follows the order that they appear in the ORDER
BY clause. This statement will return results similar to those shown below:

ProductName UnitPrice UnitsInStock

Côte de Blaye 263.5000 17

Thüringer Rostbratwurst 123.7900 0

Mishi Kobe Niku 97.0000 29

Sir Rodney's Marmalade 81.0000 40

Carnarvon Tigers 62.5000 42

Raclette Courdavault 55.0000 79

Manjimup Dried Apples 53.0000 20

Tarte au sucre 49.3000 17

Ipoh Coffee 46.0000 17

Rössle Sauerkraut 45.6000 26

Schoggi Schokolade 43.9000 49

Vegie-spread 43.9000 24

Notice how the most expensive products are listed first. Take special notice of the last two lines: the
Schoggi Schokolade and Vegie-spread products. They are both the same price: 43.9000, and are thus
then sorted alphabetically so that the Schoggi Schokolade comes first.

GROUP BY

There will be times when you want to summarize information in the database rather than retrieving
individual records. For example, you might want to find the total number of products that you have
available, the total sales on a given day, and so on. You can accomplish this in T-SQL using an
appropriate aggregate function combined with a GROUP BY clause. The table below lists some of the
most common aggregate functions:

Aggregate Function Description

AVG Returns the average

COUNT Returns the total occurrences

MAX Returns the highest value

MIN Returns the lowest value

SUM Returns the mathematical sum

Chapter 3

22

The following statement uses the AVG function to produce the average price of all products in the
Products table:

SELECT AVG(UnitPrice)
FROM Products

Running the above SQL statement in the View designer returns something like 26.5895.

Aggregate functions used as in the example shown above return a single record as the resultset. Thus,
when you want to summarize data in groups, you must use the GROUP BY clause in conjunction with the
aggregate functions. Let's look at an example to make this clearer. If you want to see the average price
by Supplier, you would use the following SQL statement:

SELECT AVG(UnitPrice) AS 'Average Price', SupplierId
FROM Products
GROUP BY SupplierId

The SQL statement above yields results similar to the following:

Average Price SupplierID

10.2842 1

16.4857 2

20 3

46 4

29.5 5

14.9166 6

Notice how the average function (AVG) is given the UnitPrice field and a more meaningful name, a column
alias, of Average Price. You can use column aliases to give any column you wish a more meaningful
name. The second and final item in the SELECT list is the SupplierId, which is also specified in the GROUP
BY clause. Whenever you use an aggregate function in a SQL statement, any item in the SELECT list that isn't
part of the aggregate must be included in the GROUP BY clause. The effect of running the above statement is
that multiple rows will be returned: one record for each supplier that will contain their average product price.

You can add the equivalent of a WHERE clause to a GROUP BY with the HAVING keyword. Hence, we
could modify the above statement to return only details for suppliers whose average price is greater or
equal to $20 as shown:

SELECT AVG(UnitPrice) AS 'Average Price', SupplierId
FROM Products
GROUP BY SupplierId
HAVING AVG(UnitPrice) >= 20

Let's look at some of the other aggregate functions, starting with the COUNT function, which returns the
number of items matching the condition specified, as in this example that returns the number of
products in the Products table:

Querying the Database

23

SELECT COUNT(ProductId)
FROM Products

Running the above SQL statement in our View designer returns a single number indicating how many
relevant records there are.

Let's now see how MIN, MAX, and SUM work. The SQL statement below will return the least price of all
products offered, the greatest price, and the total of all prices:

SELECT MIN(UnitPrice), MAX(UnitPrice), SUM(UnitPrice)
FROM Products

In the View designer, this statement will show three numbers in the Output window representing the
requested information.

Retrieving Data from Multiple Tables using Joins
Up to this point, all of our T-SQL examples have only retrieved information in a single table at a time.
T-SQL is able to select or update information in multiple tables together using table joins. Joins allow us
to set up the table relationships that we discussed in Chapter 1. However, the join operation in SQL is a
very powerful and versatile technique that is hard to do justice in the limited space available in this
chapter. If you require more detailed information than I can provide here, Chapter 8 of Beginning SQL
Programming, also from Wrox Press, covers the issue in more depth.

With an inner join, the records in one table that have a matching record in the other table will be
returned. With an outer join, on the other hand, all of the records from one table are returned even if
they don't have a match with the other table. Let's look at an example of each of these.

Suppose that you want to see a list of all products with the corresponding CompanyName field from the
Suppliers table. The Products table contains the SupplierId, but to get the CompanyName of
the supplier, we need to join to the Suppliers table. We want to use an inner join to make sure that
only records with a match in both tables are returned:

SELECT Products.ProductName, Suppliers.CompanyName FROM Products JOIN Suppliers ON
Products.SupplierId = Suppliers.SupplierId

Notice how the JOIN takes place in the FROM clause. The first table is listed immediately after the FROM
clause and then the table to be joined to is listed after the JOIN clause. Following the table names
comes the ON clause describing how the two tables relate together.

It is worth mentioning that the above syntax uses the ANSI 92 standard. The older syntax, ANSI 89
mentioned earlier, may still be encountered in some systems' existing code. These statements still run
on SQL Server 2000, but Microsoft has plans to stop supporting this outdated syntax in the future. Thus,
it is highly recommended that you only use the ANSI 92 standard as shown above.

Just for your own understanding, however, an example of this older syntax is shown below:

Chapter 3

24

SELECT Products.ProductName, Suppliers.CompanyName
FROM Products, Suppliers
WHERE Products.SupplierId = Suppliers.SupplierId

Notice that the distinction lies in where the joins take place. In the older syntax, the table names are
both listed in the FROM clause but the join itself is in the WHERE clause.

Now for outer joins. There are actually three types of outer join: LEFT OUTER JOIN, RIGHT OUTER
JOIN, and FULL OUTER JOIN. Left and right outer joins return all rows from the table on the left or on
the right of the OUTER JOIN phrase, respectively, even if that table doesn't have a match with the other
table. Here's an example:

SELECT LastName, FirstName, OrderId FROM Employees LEFT OUTER JOIN Orders ON
Employees.EmployeeId = Orders.EmployeeId

The effect of this statement is that all records from the Employees table are listed even if they never
had a sale. Under the older syntax, the above example would look like this:

SELECT LastName, FirstName, OrderId FROM Employees, Orders WHERE
Employees.EmployeeId *= Orders.EmployeeId

A full outer join, in contrast to left and right outer joins, will return all rows from both tables even if
there aren't matches. It has the same syntax as the other joins, except that you specify FULL OUTER
JOIN as part of the statement.

T-SQL can also join a table to itself: the self join. To conduct a self join, you simply list the same table
multiple times but with a different alias using the AS keyword. You can then treat them as though they
were independent and separate tables. The most commonly used example to demonstrate this concept is a
personnel table that contains each EmployeeId with a separate field containing the ID of that employee's
supervisor. Each supervisor is also an employee in the table, so the SupervisorId field links back to the
EmployeeId field. Selecting information from the table with a self join might look something like this:

SELECT Emp1.LastName AS Employee, Emp2.LastName AS Supervisor FROM Employees Emp1
JOIN Employees Emp2 ON Emp1.ManagerId = Emp2.EmployeeId

Notice how the same table, Employees, is listed twice but with the aliases Emp1 and Emp2. The rest of
the SQL statement treats the one table as though they are two separate tables. This statement will return
details for all employees along with the name of their supervisor.

Retrieving Distinct Data
In some cases the data returned will contain duplicate values. Note, please don't confuse this with
duplicate records – we should have none of those if we followed the good design rules discussed earlier
in this book. You can use the DISTINCT keyword to ensure that only unique records are returned.

Let's look at an example where we want to list all the different prices that our products presently have,
without regard to what products they go with. The statement below would return such a list:

SELECT UnitPrice FROM Products ORDER BY UnitPrice

Querying the Database

25

The above statement will produce results similar to the following:

0
0
0
0
0
2.5
4
4
4.5
5
6

You can see the problem with this statement as it stands. Since some products have the same price, such
prices are listed more than once in the results. To return a unique list of possible prices, we just need to
add the DISTINCT keyword like so:

SELECT DISTINCT UnitPrice
FROM Products ORDER BY UnitPrice

After making this change, each price will only appear once in the results list:

0
2.5
4
4.5
5
6

This makes the results much easier to view, since duplicate values are eliminated.

Note that Null fields are not included in any result set produced when the DISTINCT operator is
used in conjunction with an aggregate function.

Using Subqueries
T-SQL allows you to have a query nested within a query: also called a subquery. For example, suppose
that you want to return a list of all ProductNames and the CompanyName for the supplier with the ID
of 3. In the Products table, you have the SupplierId, but not their name. You would traditionally
just join to the Suppliers table in order to get their name, like below:

SELECT ProductName, CompanyName FROM Products JOIN Suppliers ON
Products.SupplierId = Suppliers.SupplierId WHERE Products.SupplierId = 3

The exact same result can be accomplished by using a subquery instead of the JOIN clause:

SELECT ProductName, (Select CompanyName FROM Suppliers WHERE SupplierId = 3) as
CompanyName FROM Products WHERE SupplierId = 3

Chapter 3

26

Notice the subquery that replaces the CompanyName field in the original statement, avoiding the need
to join to the Suppliers table in the FROM clause of the statement. There are times when the joins get
so complicated that a subquery can be used to help accomplish the same result more effectively.

Unions
Another advanced T-SQL feature is the UNION keyword that allows you to combine the results of
multiple SELECT statements into a single result set. The type of fields being selected must correspond
across each SELECT statement, but the field names themselves do not have to be the same.

Let's look at a simple example to show you how this works. Suppose that you have a table called
ProductsArchived as well as the Products table that we've already been using, and that the
ProductsArchived table contains products that are no longer dealt with. The following SQL
statement would bring up any product you are currently offering or have ever offered by using the
UNION operator to combine the results from two separate SELECT statements:

SELECT ProductName FROM ProductsArchived
UNION
SELECT ProductName FROM Products

The UNION operator can only be used when the data types of all fields correspond to each other. In our
example above, the ProductName field in the ProductsArchived table corresponds to the
ProductName in the Products table. Here they are also named the same, but that is not a requirement,
and the example would work if the name in the ProductsArchived table were OldName for instance.

Summary
In this chapter, we learnt a lot about T-SQL and how we can use it to manipulate data in SQL Server
Desktop Engine databases. We learnt the syntax of T-SQL, and how to view the results of SQL statements
by creating a new view in Server Explorer. The following topics were covered in this chapter:

❑ What T-SQL is and how it compares to Access Jet

❑ What ANSI 92 is and the fact that T-SQL is Level 1 compliant

❑ How to retrieve data using SELECT statements

❑ Using Views in Server Explorer to run SQL statements

❑ How to filter results by specifying WHERE criteria

❑ How to add, update, and delete records in the database

❑ Joining multiple tables together using inner and outer joins

❑ A quick look at subqueries and unions

I hope you have gained a good understanding of how to modify and retrieve data in SQL Server Desktop
Engine databases from this chapter. In the next, we will explore the Server Explorer in greater detail.

Querying the Database

27

Exercises
1. How does T-SQL compare and contrast with Access Jet?

2. Describe the purpose of the WHERE clause in a SQL statement.

3. What is the difference between an inner join and an outer join?

4. Describe how to run a SQL Statement from the Visual Studio .NET environment.

5. Suggest a suitable SQL statement for obtaining a list of all products in the Northwind catalog
that are out of stock?

Answers are available at http://p2p.wrox.com/exercises/

Chapter 3

28

Exploring the Server Explorer

In Chapter 3, we learned how to use Server Explorer to run SQL statements against the database. In
this chapter, we will build upon these concepts and delve into the details of the Visual Studio .NET
Server Explorer. This chapter will specifically cover:

❑ What Visual Studio .NET Server Explorer is and what it allows you to manage

❑ How to view existing SQL Server databases using Server Explorer

❑ How to manage and modify existing SQL Server databases using Server Explorer

❑ How to create new SQL Server database objects (tables, views, and stored procedures) with
Server Explorer

❑ How to create database diagrams with Server Explorer

❑ Brief explanations of Data Connections and all Server nodes listed in Server Explorer

❑ How to create new SQL Server databases with Server Explorer

Managing SQL Server Databases Using Server Explorer
In this section, we will delve into the details of using Server Explorer to work with SQL Server
databases. We will explore the NorthwindSQL database that we created in previous chapters and will
also create a new database. After this whirlwind tour, you should start to become familiar with how to
create and manage SQL Server databases using Server Explorer.

The Views Node
Views are virtual tables that allow you to view information in a different way than in the underlying
tables. They are technically just queries that have been saved to the SQL Server Desktop Engine
database and can be accessed with the view name in the same places you would use a table name.

Chapter 4

2

When we upsized the Northwind database to SQL Server Desktop Engine (NorthwindSQL) in Chapter 2, the
Access queries were converted to Views and Stored Procedures on the SQL Server Desktop Engine database,
depending on the purpose they served. Let's look at some examples of what was converted to a View.

Navigate to the NorthwindSQL database in Server Explorer. You should be familiar with this from
Chapter 3. Expand the Views node under NorthwindSQL, as shown below:

Right-click on Ten Most Expensive Products and select Design View from the pop-up menu. The
following view will appear where the ProductName of the TOP 10 most expensive products that are in
the Products table are selected. The ProductNames will be listed in descending (most expensive to
least) order according to their UnitPrice.

SELECT TOP 10 ProductName AS TenMostExpensiveProducts, UnitPrice
FROM dbo.Products
ORDER BY UnitPrice DESC

By having this SQL statement stored in a view, you don't have to keep typing it each time you want to
run it. After it is saved in a View, you can treat it as though it is a table and can issue a SELECT
statement like this against it:

SELECT * FROM [Ten Most Expensive Products]

Notice how the View name [Ten Most Expensive Products] is specified in the FROM clause in
the place where you would normally have a table name. You can put a View name anywhere that you
could also put a table name, since a view is actually a virtual table.

Take a minute to look at some of the other Views in the NorthwindSQL project before continuing on.

The ability to create a virtual table out of your most commonly used SQL statements for easier retrieval
later is a big advantage to using views. Another advantage is they are an easy way to implement row
and column level security. Row level security means restricting the values that a particular user can see
down to the record level. Column level security means restricting which fields they can see.

A common example of a view being used for row level security is the case of an employee being
allowed to see his/her own personal information but not anyone else's:

Exploring the Server Explorer

3

SELECT * FROM Employees WHERE EmployeeId = 15

After creating a view like the one above, you would then give Employee 15 permission to run that view
instead of giving him/her permission to access the whole Employees table. In this sense, you are
restricting the employee to only being able to see his/her own information but not the information of
others. As a practical matter, you would not want to do this for all employees in a large company, as it
could become very unmanageable to maintain views for every employee. This is just meant to show you
a simple example of row level security.

A common example of column level security is not allowing anyone outside the Human Resources
department to see confidential information, such as salary information. Suppose that the Employees
table contains the Salary of each employee along with their name, address, and job title. In this case,
you would want people outside Human Resources to have access to the name and title of each
employee only. Thus, you might create a view with the following SQL Statement:

SELECT LastName, FirstName, Title FROM Employees

If you save this in a View called EmployeeList, you can then give all employees access to this View
instead of to the table containing confidential salary and other such information. You should see very
quickly why views are useful in saving you efforts from re-typing commonly executed queries and from
helping you with row and column level security.

Let's walk through the process of creating a new view from scratch. We are going to create the view just
described above: EmployeeList.

Try It Out – Create a New View

1. Navigate to the Views node in the NorthwindSQL database and right-click on Views. Select
the New View option in the pop-up list as shown below:

2. Close the Add Tables dialog box that appears so that we can add the SQL statement
manually. Create the view with the SQL statement as follows:

SELECT LastName, FirstName, Title FROM Employees

3. Save and close the View and name it EmployeeList when prompted.

Chapter 4

4

4. Now that the View has been created, browse in Server Explorer to see the current list of
Views for the database. Notice how the View you just created (EmployeeList) appears in
the list along with the other Views that already existed previously.

5. Right-click the EmployeeList View and select Retrieve Data from View. Results similar to the
following will appear:

How It Works

First, we created a new View using Server Explorer and named it EmployeeList. The View
implements column level security and selects only the LastName, FirstName, and Title columns
from the Employees table in the database.

SELECT LastName, FirstName, Title FROM Employees

When we retrieved the data using this view, the EmployeeList with LastName, FirstName, and Title
was returned and displayed in the grid. This View works exactly as we designed it. Close the results
window and return to Server Explorer so we can take a look at the Stored Procedures node next.

Exploring the Server Explorer

5

The Stored Procedures Node
Stored Procedures are procedures that are stored in the SQL Server Desktop Engine database. They
allow you to take frequently used T-SQL statements and save them into a procedure for easy re-use.
You can then execute the stored procedure any time you need it. In many ways, a stored procedure is
similar in concept to a Visual Basic procedure. The biggest difference is that stored procedures are
stored in the SQL Server database itself. Stored procedures are also more efficient than passing SQL
statements to the database on the fly, since stored procedures are pre-compiled and thus execute faster.

You are probably wondering how Stored Procedures differ from Views. Views are best for retrieving data:
they are virtual tables that can help make some common retrieval efforts easier or more secure. Stored
Procedures, on the other hand, can be used more like what we think of as procedures: with parameters
being passed in and database actions being taken as a result (inserts, updates, deletes, or selects). Stored
procedures can also include flow-of-control statements, such as IF statements, variable declarations, etc.

A Stored Procedure Example
The NorthwindSQL database contains a stored procedure which was a query in the Access database
prior to the upsizing. Navigate to the Stored Procedures node of the database.

Right-click on the Stored Procedure named "Customers and Suppliers by City" and then select Edit Stored
Procedure to open it in Design Mode. Let's take a look at this in more detail to better understand it.

ALTER PROCEDURE [Customers and Suppliers by City]
AS
SELECT City, CompanyName, ContactName, 'Customers' AS Relationship
FROM Customers UNION SELECT City, CompanyName, ContactName, 'Suppliers'
AS _Suppliers_
FROM Suppliers
ORDER BY City, CompanyName

First you see the ALTER PROCEDURE statement, which is just the T-SQL syntax for creating a new
stored procedure if it doesn't already exist or altering the existing one if it does exist. You will also
sometimes see CREATE PROCEDURE, which simply creates the procedure if a stored procedure with the
specified name does not already exist.

After the ALTER PROCEDURE designation, the SELECT statements retrieve the information from the
various tables, in this case the Customers table and the Suppliers table. The ORDER BY clause
gives the fields to use in sorting the data that is retrieved.

Later, if you want to run this Stored Procedure, you could use a T-SQL statement similar to the following:

EXEC [Customers and Suppliers by City]

The Exec statement is followed by the Stored Procedure name that you want to run. After the stored
procedure name comes the parameters that the procedure expects, if there are any. You don't
necessarily have to specify the parameter names if you're passing in the parameters in the correct order.
However, it is always a good idea to be explicit to be on the safe side. In a moment we will run this
stored procedure using the Server Explorer graphical tool.

Chapter 4

6

Try It Out – Create a New Stored Procedure

6. Navigate to the Stored Procedures node in the NorthwindSQL database and right-click on
Stored Procedures.

7. Select the New Stored Procedure option in the pop-up list. Create a stored procedure with
the T-SQL statements as follows:

CREATE PROCEDURE dbo.SupplierList
 (
 @SupplierId int
)

AS
 SELECT * FROM Suppliers WHERE SupplierId = @SupplierId
 RETURN

8. Save and close the Stored Procedure.

9. From Server Explorer, browse to the Stored Procedures node in the NorthwindSQL database.
Expand the tree so you can see the list of Stored Procedures, as shown below. Notice that the
SupplierList stored procedure we just created is listed along with the other Stored Procedures:

Exploring the Server Explorer

7

10.Right-click on the SupplierList Stored Procedure and a pop-up menu will appear:

11.Select Run Stored Procedure from the list and then you will be prompted to specify the
@SupplierId parameter:

12.Specify a value of 2 for @SupplierId. After clicking OK, the results are displayed in the
Output window. You may need to re-size it in order to see all of the results, as shown below:

Chapter 4

8

How It Works

We created a new stored procedure in the database using Server Explorer. Visual Studio .NET automatically
created the stored procedure for us when we specified to create a new one. After filling in the details of the
stored procedure and saving it, the procedure was created with the name specified in the CREATE
PROCEDURE statement, SupplierList. The stored procedure receives a SupplierId as a parameter:

 (
 @SupplierId int
)

and then selects the Supplier record based on the SupplierId passed in:

 SELECT * FROM Suppliers WHERE SupplierId = @SupplierId

Now, let's have a look at how that stored procedure works in action. We ran the stored procedure and
specified a value of 2 for the SupplierId parameter. This returned the details about Supplier 2 into
the Output window when the stored procedure was run.

Now that we are familiar with the Stored Procedures node in Server Explorer, let's move on to learning
about the Tables node.

The Tables Node
Next, expand the Tables node to see a list of all the tables in the database. Click on Products and
expand it as well and you will notice that it lists all of the fields in that table, as shown below:

Exploring the Server Explorer

9

Next, let's retrieve some data from the Products table. To do so, right-click the Products table in the list.
A pop-up menu will appear like below:

Chapter 4

10

Select the Retrieve Data from Table option in the list and you will be able to see the following results.
You can also retrieve the data and open the table by double-clicking on Products.

Notice how all of the records in the Products table are displayed in a grid on the screen. From this view,
you can edit data and add new data as well. This is very similar to the Access datasheet view.

Now that we have looked at how easy it is to view data in a table, let's look at a table in design mode.
Close this data display window and return to Server Explorer. Navigate to the NorthwindSQL database
again and locate the Tables node. Right-click the Customers table.

Click on the Design Table option in the list to see the Customers table in Design View, as shown below:

Exploring the Server Explorer

11

In this screen, you can modify the table to rename columns, add new columns, etc. Click the X in the
upper right-hand corner of the design window to close it and return to the Server Explorer.

Try It Out – Create a New Table

1. Navigate to the Tables node in the NorthwindSQL database and right-click on Tables.

2. Select the New Table option in the pop-up list.

3. Create a new table with the fields shown below. Note that this is just for demonstration
purposes; it doesn't make a lot of sense to have this as an additional table.

Chapter 4

12

4. Select the ProductId field and set it as the Primary Key by clicking the Primary Key button
on the toolbar.

5. Next to the Set Primary Key icon are icons for Relationships, Manage Indexes and Keys, and
Manage Check Constraints. Clicking any of them brings up the Property Pages window with
multiple tabs:

Exploring the Server Explorer

13

6. Close the table and specify the name ProductsExtended when prompted.

How It Works

Using the Tables node in Server Explorer, we are able to add new tables and modify existing tables. In
this instance, we created a new table called ProductsExtended that contains a few fields for
demonstration purposes only. The graphical table designer allows you to add new fields, specify
primary keys, set table relationships, etc. Upon closing the table, you will be prompted to give the table
a name if it has never been saved before.

Go back to Server Explorer and navigate to this newly created ProductsExtended table in the database. Right-
click on the ProductsExtended table and select Retrieve Data from Table. Fill in a few records for test data.

Chapter 4

14

The Database Diagrams Node
Now that we know how to view and manage tables, views, and stored procedures in Server Explorer,
let's look at a new topic that we haven't covered so far in this book. Database diagrams are visual
representations of the tables and their relationships to each other. Server Explorer allows you to view
existing database diagrams and to create new ones.

Navigate in Server Explorer to the NorthwindSQL Database Diagrams node and right-click on it:

Click the New Diagram option on the pop-up menu, and the Add Table dialog box will appear:

Select all tables in the list and click the Add button. After all tables have been added (are no longer in
the list), click the Close button. The following screen will appear:

Exploring the Server Explorer

15

Notice how it automatically displays the table relationships based on the Primary and Foreign Keys. We did not
have to do anything beyond this in order to make the table relationships automatically appear in the diagram.
The Primary Keys are indicated with the picture of a key. The Foreign Key relationships are represented by the
lines to different tables with the Primary Key in the relationship highlighted with a key on the end of it's line.

Database diagrams are very valuable to keep handy throughout your application development process. They
serve as a quick visual indicator of your table structure and field names. The ability to customize and create
database diagrams containing only the tables you want on a given diagram is extremely useful, especially in
scenarios where you have hundreds of tables in a database and want to create a special view of certain ones.

Next, close the database diagram. You will be prompted to save it. Give it any name you desire, such as
DatabaseDiagram. Note that although we did not look at database diagrams in the chapters dealing
with Access Projects, they can also be created in Access Projects as well.

Chapter 4

16

The Functions Node
SQL Server comes with many built-in functions such as GetDate, RTrim, and many more. You also
have the ability to create user-defined functions and call that function as if it were a built-in function of
SQL Server.

The Functions node in Server Explorer allows you to create your own user-defined functions:

User defined functions have a lot in common with stored procedures as both are just SQL statements
stored on the SQL Server. Both the CREATE function and the CREATE procedure declarations
accept parameters. However, a user-defined function, unlike a stored procedure, can be embedded
within a basic SQL statement, such as below:

SELECT FormatDescription(ProductName) FROM Products

In this instance, the function is called FormatDescription and will be called for each record selected
in the SQL statement. If this code were within a stored procedure, then a loop would have to be created
to call the stored procedure for each record. These topics are beyond the scope of this chapter, but at
least take away the high-level understanding of what a function is and know that you can create new
ones using the Functions Node of Server Explorer

Exploring the Rest of Server Explorer
Now that we have been through each of the nodes available with NorthwindSQL, or any other database
for that matter, we can now move on to look at the other parts of the Server Explorer. In the following
sections, we will work our way back up through the Server Explorer tree, starting with the SQL Server
Databases node and finishing with Data Connections.

SQL Server Databases Node
Collapse the NorthwindSQL database we've been working with and navigate up one level on the node
list. You will notice that the SQL Servers node in the Server Explorer lists all of the SQL Server
databases on that particular server selected and allows you to view and manage them. Recall in Chapter
2 how we used an Access Project to manage our Desktop Engine databases. The SQL Servers node
offers the same functionality as Access Projects plus some additional features. The main advantage to
using Server Explorer instead of Access is that you are in the same integrated development environment
and do not have to open up a separate program (for example Access).

Exploring the Server Explorer

17

The example below shows the SQL Server databases available on a server called Goz3:

SQL Server Instances Node
Next, collapse the databases listed under the server you were just looking at and notice that this level
lists all of the SQL Servers available to you from the Visual Studio .NET environment:

Chapter 4

18

From this level, you can navigate to any of the available SQL Server instances or you can create a new
database. Let's take quick look at how you can create a new database from here.

Creating Databases
To create a new SQL Server database in Server Explorer, select the name of the SQL Server instance
where you want to create the database. Right-click on the server name, as shown below:

Select New Database from the pop-up menu and the Create Database screen will appear:

Exploring the Server Explorer

19

Next, type "Test" for the New Database Name field. You have the option to specify Windows NT
Integrated Security or SQL Server Authentication. Select the SQL Server Authentication option and
then specify the Login Name of sa and leave the password blank (unless you changed the default
password after installation, as you should have).

Upon clicking the OK button, Visual Studio .NET creates the SQL Server database for you and it will
appear in the Server Explorer list as one of the SQL Server databases on our local server. Navigate to
the newly created Test database, as shown below:

Notice how the new Test database did indeed appear in the list of databases for that SQL Server instance.

Chapter 4

20

Servers Node
Collapse the nodes you just expanded to create the new database and go to the level where you see a
list of all of the Servers. If you expand the Servers node, you will see that it contains multiple
servers/services, such as the following:

Displayed under the server name are the SQL Servers and other resources that are available on that
server for use. Most of these are beyond the scope of the book so we will only give a brief definition of
what they do. After that, we will look at Services in a bit more detail.

❑ Crystal Services – allows you to view the Crystal Reports options available for your application.
Examples of what you might use the Crystal Services node in Server Explorer for include
viewing the Crystal Reports available on the server and looking up their location and filename.

❑ Event Logs – allows you to view the Application, Security, and System event logs for the
selected server. There is a lot of valuable information in the event logs. In your applications,
for example, you might want to write some events to log when the application starts and
completes for each user.

❑ Message Queues – allows the Administrator of the local machine to view all messages in the
Public, Private, and System queue categories as well as create new Public and Private queue
categories. Additionally, you can view all message entries. A normal user, however, cannot
access message queues on the server at all.

❑ Performance Counters – allows Administrators of the local machine to view all performance
counters and create new categories and counters. Normal users, however, can only explore the
performance counters (as long as they were not created by the Administrator) but cannot create
any new ones. Performance counters can be used to keep track of how certain features and tasks
are performing and this node allows you to view those that are available or are actually being used.

Services
The Services node in Server Explorer allows you to manage the services available on that particular server. By
service, we are referring to a program with no user interface that runs in the background performing a particular
function. Generally, a service starts automatically when the machine is booted up and runs while the computer
is on. If you are interested in what services are currently running on your computer, go to Start | Settings |
Control Panel | Administrative Tools | Services and you should see something similar to the following:

Exploring the Server Explorer

21

Now, let's look at an example. Recall in Chapter 2 that we learned how to use SQL Server Service
Manager in the taskbar to start and stop the SQL Server, SQL Server Agent, and Distributed
Transaction Coordinator services of SQL Server. The Services node in Server Explorer allows you to do
the same thing: manage those services and many others as well.

Expand the Services node and browse until you see MSSQLSERVER, the name of SQL Server Service,
in the list. Right-click MSSQLSERVER on the list and a similar screen to below will appear:

Chapter 4

22

Notice that there are options for Refresh, Pause, Stop, and Properties. By selecting Pause, the SQL
Server database service will be paused and by selecting Stop, all database activities will be stopped. The
SQL Server Agent and Distributed Transaction Coordinator services also appear alphabetically in the
list and can be managed in a similar way.

The Data Connections Node
The last node in the Server Explorer to mention is the Data Connections node. Collapse all of the
nodes in the list until you see just the highest level, like below:

You can add a data connection to any database that you can connect to. Once a data connection has
been added for a particular database, you can expand the data connection node and view and manage
the database. Data connections can be created for Oracle, SQL Server, and other such types of
databases. However, it is important to note that SQL Server databases can also be managed in Server
Explorer under the Servers node, as we have been looking at earlier in this chapter.

Summary
In this chapter, we explored the Visual Studio .NET Server Explorer in great detail. The Server
Explorer is integrated into the Visual Studio development environment to allow for management of
servers without leaving the environment. It greatly increases developer productivity for this reason. We
specifically covered the following topics:

❑ Viewing existing SQL Server databases using Server Explorer

❑ Modifying existing SQL Server databases using Server Explorer

❑ Creating tables, views, and stored procedures with Server Explorer

❑ Viewing and creating database diagrams with Server Explorer

❑ Creating new SQL Server databases with Server Explorer

❑ A quick look at the nodes within the Servers node

❑ The Data Connections node

Exploring the Server Explorer

23

In this chapter we gained a detailed understanding of how to use Server Explorer to create and manage
databases and their objects (tables, stored procedures, views, etc.) In the next chapter, we will learn how
Visual Basic .NET ties in with database programming.

Exercises
1. Name at least three features that Server Explorer allows you to view and/or manage for a

given server.

2. Describe some of the tasks that you can perform on a SQL Server database using Server
Explorer.

3. Create a stored procedure that accepts a customer Last Name as a parameter and returns a list
of all matching records with that last name.

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 4

24

The User Interface for the
Database

Up to now, we've looked at ways of designing a database and querying the information within it using various
SQL statements and stored procedures. In this chapter, we will now put some of that knowledge to use.

Capable database application designers and builders are invariably considered a great asset to a company
or business, and rightly so. Such people are able to solve a number of problems in situations where users
need to interact with data be it accessed over a LAN, WAN, or the Internet. Once you have acquired the
knowledge to build database systems, there really only remains the know-how to build an interface that
allows users to talk to these systems. There are other aspects of development you need to be aware of, for
instance designing a system geared towards a three-tier architecture, and these will be discussed later.
Banks, stores, and most businesses today all depend on some type of database system for their day-to-day
operations and, without it, they would no longer be able to run efficiently. This is where you as the
developer have a crucial role to play. To be able to tie a user interface, and other related business
components if desired, to a data source is a valuable asset. Think of the last application you used around
your office, perhaps an employee phonebook, customer database, inventory program, or finance program,
and how they all gathered data and presented it to you in a friendly manner. Being able to build these
types of application, that have the potential to make dealing with information so much easier, can bring
great benefits throughout a company, and so it is that such programmers become highly valued assets.

Many companies nowadays employ a person or group solely for the management of existing databases
– the database administrators (DBAs) – and have a separate team of developers whose job it is to build
the applications themselves. Often, however, you as the database developer will be playing both roles,
and so you will need a basic understanding of both tasks. The DBA's responsibilities include:

❑ Knowledge of the structure of the database and how to use and store information in an
efficient manner

❑ The ability to normalize a database, as talked about in the Chapter 1

❑ Insight into the changing demands of the company as it grows and expands – will the database
in its present form be able to handle ten or even a hundred times the amount of information
and remain efficient?

Chapter 5

2

❑ A logical methodology when it comes to the user interface design, so screens are organized in
a way that makes sense to the user – for instance grouping related controls together, such as
customer and address fields

❑ The ability to work closely with the user to design these systems.

This will all help when it comes to developing client-server applications. When we develop databases
we need to consider such things as efficiency, flexibility, handling multiple users, data locking, data
growth, integrity, and performance. The person developing the client-side of the application needs to
worry about how the user interface will look as well as the performance and efficiency of the
application. Having a clear idea of how users will interact with your database system will help in
determining how it should be built. Users will often perform certain procedures in a certain order when
undertaking tasks, and some tasks will be much more common than others. For instance, if you are
designing a stock inventory application, you might want your system to start up with the screen that
allows users to make changes to the inventory, rather than, say, the screen for adding new product lines.

In this chapter, we look at the fundamentals of building a basic user interface to a SQL data source.
We'll also look at some good practices that you should apply when building more sophisticated database
applications. Here are the topics we will cover to this end:

❑ A simple user interface for accessing a database

❑ How to populate a DataGrid

❑ Using Wizards

❑ The code generated behind the scenes

❑ Good practices for general user interface design

The User Interface
So you've learned how to design a database and how to update information in it using suitable SQL
statements. We can't expect our users to open up an administrative database tool and manipulate the
data directly like this, so our next step is to create some way for users to access information. This is the
role of the user interface – to provide a means of communication between the user and the database.

Through the user interface, users may interact with data and manipulate it in order to accomplish
certain tasks such as to view, add, update, or delete details. The user interface and database go hand in
hand, and with the right combination, users are able to handle massive amounts of information without
any particular technical knowledge.

The User Interface for the Database

3

Some type of thought process or methodology is required to come up with a good design for the
interface: we want to create a consistent and appropriate look so that the interface is readily accessible
to those who are to use it. We should be aware of existing business logic when allowing the user to do
things like add or delete information to ensure it's done correctly and to prevent users from
inadvertently manipulating data in a way that could potentially result in irrecoverable losses to the
business. Security and data integrity are important, for they provide the mechanisms to ensure users are
not able to adjust their own bank balances, modify prices themselves, or view or even change other
people's information. We need a way to hide the checks and balances behind the scenes. Most of this
can be accomplished through good design of forms, to build in the capability to call upon, validate, and
protect this information; either through the code behind the forms or by having the forms call another
object. There is also the possibility that a malicious user could bypass these forms entirely, and attempt
to directly access the database, so watertight security is vital. To achieve this, our forms can be made to
access the database with a secret user ID and password, and we can hide our checks and balances
through stored procedures – that is, procedures stored on the database server. These stored procedures
can perform some validation based on what parameters are passed, and only return information when
correct security information has been passed. All this is accomplished through business rules, which
dictate how data will be maintained in the particular scenarios relevant to our business.

Now that we know a little about the issues involved with the user interface, we can move on to look at
how we can build an interface in Visual Basic .NET. The fundamental component of this type of
application is the Windows Form, which can be viewed as an empty canvas waiting to be painted on.
We can place controls on such a form to create a logical look and feel for our interface, and provide a
natural and intuitive way for the user to communicate with our database.

Creating a Simple Database Application
So now we can start the task of creating a very simple database application with a basic Windows Form
user interface. The application will connect to the Customers table in the NorthwindSQL database
using your SQL Server Desktop Engine. (As you may remember, we upsized the sample
Northwind.mdb file from Access to SQL Server 2000 Desktop Engine and named the database
NorthwindSQL.) We will refer to this database throughout this chapter as simply the Northwind
database. Our application will retrieve and display a list of customers in a DataGrid control on a
Windows Form. Once we've finished, you should be able to build similar applications based on different
databases using the techniques I shall introduce. I recommend that you experiment with other tables of
the Northwind database until you feel comfortable with these techniques.

Our finished application will consist of a form that simply displays all information in the customer table
when the user clicks a button, as in the screenshot here:

Chapter 5

4

A Brief Introduction to ADO.NET
Before we can begin creating our application we need to learn about some basic components of
ADO.NET and wizards that our application is to use. We will go into greater detail on ADO.NET in the
next chapter so, for now, we'll learn just enough to get us through this simple database project.

ADO.NET provides us with a way of gathering data and information and presenting it through a user
interface. By using some components, we're able to connect to various data sources and can then build a
user interface that accesses a database.

We need four pieces to build our ADO.NET project:

1. A data source – where the actual data is stored, our database.

2. A Connection object – for connecting us to our database.

3. A DataAdapter object – to provide a mechanism for reading and writing data to the database.

4. A DataSet object – this will contain the table(s) that we will use.

The following figure shows how all these pieces tie together. Firstly, we need a connection to the data source,
provided by a Connection object. The Connection object requires certain information for it to connect to
the data source. The Connection object is called by the DataAdapter object, which handles commands
to select, update, insert, and delete data in the data source. Finally we have a DataSet that contains our
tables and which uses the DataAdapter to populate itself and to update information in the data source.

The User Interface for the Database

5

Basic Data Components

DataAdapter

Data Connection

Data Source

DataSet

Table1

Table2

We will now cover these components in a bit more detail, taking each of the data source, Connection,
DataAdapter and DataSet in turn.

The Data Source
A data source is the term used to describe any collection of information that can provide data to us. It
can take the form of a database, an XML document, a Microsoft Excel spreadsheet, or even a flat text or
binary file. It only takes one or two lines of code for us to change the kind of data source that we
connect to. The Windows environment provides us a shared set of classes for use in our programs to
communicate with these different sources using similar code.

The Data Connection
The first thing we need to connect to a database is the data Connection object. This comes in two
versions – either a SqlConnection or OleDbConnection object. As we are working with the SQL
Server Desktop Engine, we will use the SqlConnection object.

When we create a connection using a SqlConnection object, we need to feed it the following
connection parameters:

❑ Data Source – the name of the server where your data source is located. The data source can
be anywhere, be it on your network or somewhere over the Internet. Usually, you will be
working on your local network and so you need to specify the name of the computer that holds
the data source here. Alternatively, we can give the name localhost or (local) to signify
that we want to use the computer that is actually running the application. This terminology is
used by many Windows applications when it is necessary to identify the current, local computer.

❑ User ID and Password – the authentication details required to communicate with the data
source. The ID and password is set up by the database administrator and helps prevent people
from viewing or modifying the database without permission.

Chapter 5

6

❑ Initial Catalog – this is the name of the database we want to work with – in this case,
NorthwindSQL.

To create a new connection, we declare a new SqlConnection and set the ConnectionString
property using these parameters as shown here:

Dim myConnection As New SqlClient.SqlConnection()
myConnection.ConnectionString = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User
Id=sa;Password=sa;"

Alternatively, we can pass the connection string as a parameter to the SqlConnection as follows:

Dim myConnection As New SqlClient.SqlConnection("Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User
Id=sa;Password=sa;""

Creating a new OleDbConnection object is similar, except that we also need a Provider parameter
to describe the type of data source that we are connecting to. So why don't we need that parameter with
the SqlConnection object? You've got it – because the provider type will always be SQL and, in fact,
if you do try to set the Provider parameter for an SqlConnection object, you will get an error.

Now we can look at the component that requires a data Connection object to be set up in order to
function, namely the DataAdapter.

The DataAdapters
The DataAdapter is the mechanism that sits between the data source and the DataSet. We have two
types of DataAdapters, the SqlDataAdapter, which is used exclusively for SQL Server databases,
and the OleDbDataAdapter, which is used for all other data sources and goes through another layer
called OLE DB. Consequently, by avoiding the need for this extra layer, the SqlDataAdapter
provides much faster access to data. The OleDbDataAdapter can be used to access SQL Server but,
as it then goes through the OLE DB layer, you are well advised to stick with the SqlDataAdapter for
optimum performance if you don't anticipate using anything other than SQL Server. This applies to our
simple database application in this chapter, and so we work strictly with SqlDataAdapter.

The DataAdapter allows selecting, updating, deleting, or inserting data in the data source. These
methods are accomplished through the use of the SelectCommand, UpdateCommand,
InsertCommand, and DeleteCommand properties to set to the database command string required for
that particular operation. Each of these properties is an instance of a Command object, whose job it is to
execute a SQL statement or stored procedure and return a result set. For a SQL database, the Command
object will hold the actual SELECT, UPDATE, INSERT, and DELETE statement required for a given
operation, such as "SELECT * FROM Products" or "DELETE FROM Orders WHERE
CustomerID='ABC'". The Command object also stores connection information so it may connect to the
database to execute the SQL statement that it contains. Note that, in our simplified case, we will only be
working with a SelectCommand as we only need to select information from our database for viewing.

The User Interface for the Database

7

As we are dealing with a SQL database, we will be working with the SqlCommand object (as opposed to
the OleDBCommand object). When we use the DataAdapter Wizards, for each table you work with you
will have a corresponding DataAdapter. When we use the Wizards, the DataAdapters are configured
specifically for the chosen table such that all of the methods for updating and retrieving information point
to that specific table. To re-use the adapter for another table, we have to essentially rebuild the objects that
make up the DataAdapter, which means all of the Command objects. The simpler solution is to assign
one DataAdapter per table, and this helps keep your code nice and clean and easy to maintain. When
you build a DataAdapter, you can specify more than one table if needed. For example, we could create
a DataAdapter that links the Customers table and the Orders table – to enable us to view information
from both tables using a single DataAdapter, without needing any code to link them. This method of
linking multiple tables into a single view doesn't work really well when it comes to updating information,
however, as the DataAdapter Wizard isn't able to properly link tables together to cascade updates or
deletes, reinforcing the case for using one DataAdapter per table.

This diagram shows the basic structure of a DataAdapter:

DataAdapter

Command Objects

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

The DataSet
Finally, a DataSet is a container or collection of tables; it can contain one or more tables and is
maintained in memory. Relationships between tables are also stored here. The tables it holds contain
information such as customer details or product information in the form of records, or rows. A table
may consist of thousands of such rows.
**Please insert 5555_05_39.bmp

Each DataSet can
contain many tables

Each Table can
contain many rows

Rows contain data

Table

Row
Row
Row
Row

Table1

Table2

DataSet

DataSet

Chapter 5

8

One useful illustration is to think of a DataSet as holding details of a book publisher. A technical publisher
might publish books in several categories such as .NET, Java, ASP, and C++. Within each category are
individual books – so that a .NET category could have books such as Professional VB.NET, Beginning
VB.NET, Professional C#, and Introducing .NET. A table could represent each of these categories, and each
book in a category would be represented by a row in the appropriate table. Each row holds details for each
book – for example, title, price, ISBN number, publishing date, and the number of pages.

Each publisher can publish
books for several categories

Each category can contain
several books

Book Details:
Title = Professional VB.NET
Price = $59.99
ISBN = 1861004974
Published = August 2001
Pages = 950

.NET

Professional VB.NET

Beg. VB.NET

Professional C#

Introducing .NET

Wrox Press

.NET

Java

ASP

C++

Publisher Book Catagories

There is no limit to the type of information you can store in a DataSet. Now that we have looked at
the internals of a DataSet, let's take a look at how we can put one to use in an application. The
components shown in the figure below will be demonstrated in our application:

Customer Table Components

SqlDataAdapter

SqlConnection

Northwind
Database

DataSet

Customers

The User Interface for the Database

9

For our program, we will need to create a SqlDataAdapter object to select customer records from the
Northwind database via a SqlConnection object. This connection will be opened only long enough
to complete the SQL SELECT operation. Our DataSet will be populated with data from our customer
table using the SqlDataAdapter object. Linking, or data binding, to a visual component such as the
DataGrid control will then display the DataSet's contents on a Windows Form.

Now we can begin implementing these components in our simple database application. Here's an
overview of the tasks ahead:

❑ Creating a Windows Application

❑ Connecting to a data source

❑ Adding a DataAdapter to our form

❑ Generating a DataSet from the DataAdapter

❑ Adding a DataGrid control to our form

❑ Displaying the contents of a customer table in our DataGrid

We start by creating a new Visual Studio .NET application and then adding a SqlDataAdapter to the
project. We'll also have to create a connection to the NorthwindSQL database for the DataAdapter.
From the SqlDataAdapter we'll create a new DataSet. Once we have a DataSet, we will add a
DataGrid to our form and bind the DataSet to it. Lastly, we'll add a button that fills the DataSet
with customer records and displays it in the DataGrid.

Visual Studio .NET's configuration wizards provide us with an easy way of doing all this. We're just a
point and click away from creating our database application!

Try It Out – Creating a DataAdapter

5. Create a new Visual Basic .NET Windows Application. You can create this project in any
directory. Name the project CustomerApp and click OK.

Chapter 5

10

6. A new form will automatically be generated called Form1. Add a SqlDataAdapter to the
form by double-clicking the SqlDataAdapter component from the Data tab of the Toolbox,
usually found to the left of the Visual Studio screen.

The User Interface for the Database

11

7. Click Next when the welcome page of the DataAdapter Configuration Wizard appears to
bring up the window shown in the following screenshot, prompting for a connection to a
database. If we had created other data connections already, they would be shown in the drop-
down list. Since this is our first time connecting, however, it will be empty and we must create
a new connection by clicking the New Connection... button.

8. Now we are presented with the Data Link Properties window. In the top drop-down list for
selecting the server name, if you can find your computer's name there, then choose it –
otherwise type in localhost or whatever is the server name where the SQL Server containing the
NorthwindSQL database resides. In item two, you choose to either use your current Windows
logon details to authenticate or to enter a different user name and password as used by SQL
Server. You should try selecting the Windows NT Integrated security first as this often works; if
it doesn't, then try a specific username and password as set by the database administrator. In this
case we use a SQL Server ID of sa (for system administrator) with no password. In general, of
course, you would not use a blank password because of security concerns. Item three requires
you to choose an existing database on the server, so type in NorthwindSQL here. Click the Test
Connection button to test your connection if you wish, although you can be fairly sure that the
connection is valid if the correct list of databases appears in item three's drop-down.

Chapter 5

12

9. Click OK to proceed, and then Next to get to the Chose a Query Type window for determining
the access method for the data in the Northwind database. You can use a SQL statement, or new or
existing stored procedures. For the first option you must specify the SQL statement to use. The
second option also asks you to specify a SQL statement but, this time, the wizard will create
corresponding stored procedures rather than plain SQL statements. We will use the first option and
specify a SQL statement to select our records. Click on Use SQL statements, and then click Next.

The User Interface for the Database

13

10.Now we need to enter the SELECT statement for selecting our customer records. Turn back to
Chapter 3 to refresh your memory of SQL commands if you wish. We will be using the Query
Builder to help us build a SQL statement rather than typing in a SQL statement directly. The
builder is similar to the one provided with Microsoft Access and SQL Server. First, we need to
change some options so click the Advanced Options button.

Chapter 5

14

11. This advanced dialog gives us three options. The first option tells us that all of the SQL commands
to insert, update, and delete will be generated based on your SELECT statement.

We will only be viewing data from the database with SELECT statements so unselect the first check
box, which then disables the remaining check boxes. I shall briefly describe the other options now,
should you wish to use them in later applications. Use optimistic concurrency generates UPDATE
and DELETE statements that check to make sure that none of the columns have changed since we
retrieved the original records, to prevent data from being changed by more than one user at the
same time. The Refresh the Dataset option generates a SELECT statement after each UPDATE or
DELETE statement, so that the updated row will also be updated in your DataSet.

12. Click OK when you're finished to return to the previous screen. Now, click the Query Builder button.

You can add as many tables to your query as you want, but we just need the Customers table so double-
click its name; the table should then appear in the window in the background. Now click the Close button.

The User Interface for the Database

15

13.Next, select the columns to display: CustomerID, CompanyName, Address, City, Region, and
PostalCode. As you select columns, the SELECT statement will change accordingly. Once you
have selected all of the columns, right-click anywhere in the Query Builder area to bring up
the context menu, and select Run to show the query results in the area below.

Chapter 5

16

This context menu lets you add additional tables if you want but, for now, we will leave it as is. You can
also specify an alias for each column, which can be useful if the names in the database don't match your
conventions or are not obvious.

As an example, set the Alias of CompanyName to Company and PostalCode to Zip. Notice how the
SQL statement changes from "SELECT CustomerID, CompanyName, Address, City, Region,
PostalCode" to "SELECT CustomerID, CompanyName AS Company, Address, City,
Region, PostalCode AS Zip".

The User Interface for the Database

17

We won't be using the Alias feature so remove any you may have set before continuing. When finished, click OK.

14. Our new SELECT statement should now appear in the dialog. Check that it is correct and click Next.

The last screen provides us with a summary of the wizard's actions. Click the Finish button.

Chapter 5

18

Two components will now be placed under the form in your project: SqlDataAdapter1 and
SqlConnection1.

The User Interface for the Database

19

Building the Data Container
We need to build a data container to hold our results. The data container we shall use will be a DataSet.

Try It Out - Generating a DataSet

1. Generate a DataSet by right-clicking on the SqlDataAdapter1 control and selecting
Generate Dataset.

Chapter 5

20

This context menu provides some other options that you may find useful at some point. Configure
DataAdapter lets you reconfigure the DataSet, taking you through a similar sequence of steps as we
just followed when building our DataAdapter. We can also preview the data in our DataAdapter
with the Preview Data option. If you select this item you will see a screen as shown:

The User Interface for the Database

21

The Data adapters drop-down box shows a list of all DataAdapters in your project. Select
the DataAdapter you want to view the data of, in this case SqlDataAdapter1, and then
click the Fill Dataset button. This will call the Fill method of the DataAdapter and will
show you the results obtained. The Target dataset drop-down lists all DataSets in your
project. If, as in our case, there are none yet, it will show Untyped Dataset as the default
DataSet. This is a sort of temporary DataSet for displaying the results. The Parameters
area shows any parameters required to run the SQL SELECT statement or stored procedure
associated with the selected DataAdapter. Clear Results will clear the results shown if you
wish to regenerate the results or choose another DataAdapter.

2. Going back to the context menu, at the Generate Dataset dialog, select the option to create a
new DataSet and enter the name CustomerDataSet. Check the Add this dataset to the
designer box to indicate that we want the new DataSet object added to the initialization
section of our form, and for it to be instantiated. Whether or not this box is checked, an XML
schema file is generated that defines the structure of the tables within our DataSet. We will
look at XML and its role in ADO.NET in Chapter 12. Click OK when finished:

We should now have a DataSet control on our form called CustomerDataSet1, as well as an
associated XML schema file called CustomerDataSet.xsd. Our form should now contain
the three components shown below:

Chapter 5

22

How It Works

The purpose of these steps was to create a new DataSet object called CustomerDataSet1. Whenever we
reference the DataSet, we will use the name CustomerDataSet1. This is not to be confused with the actual
DataSet name of CustomerDataSet. Also, note that the DataSet is empty until we populate it through the
DataAdapter in code. The wizard generates code to link the DataSet to the XML schema file,
CustomerDataSet.xsd. This XML schema describes the layout of the DataSet, based on the columns that
we selected in the Query Builder. We won't be using the XML features of the DataSet here, so we don't need
to concern ourselves with it yet (Chapter 12 looks at XML in detail). SqlDataAdapter1 contains our SELECT
statement to retrieve data from the Customers table, and it connects to the database using SqlConnection1
– remember that we need both a DataAdapter and Connection object to get data from a database.

Binding Data to Controls
Most of the controls in the Toolbox are bindable, which means that we can assign a column, or sometimes a
group of columns, from a database table to be displayed as their contents. As you move through the rows of a
table, the contents of the chosen column or columns will appear in the control. Other bindable controls include
TextBoxes, Labels, CheckBoxes, ComboBoxes and ListBoxes. Most of these controls work by setting their
DataBindings.Text property to the name of the table column that you want to bind to. According to the
property you're dealing with, you would check the DataBinding properties for a corresponding property to
set – with experience you will learn which controls support which data binding properties. Other controls like
the DataGrid use the DataSource and DataMember properties for binding. DataGrids are capable of
showing the data in all columns of a table, rather than just one. Combo and ListBoxes use a DataSource and
DisplayMember property and work similarly to TextBoxes in that they only show single columns of data.

To populate a ListBox or ComboBox with data taken from a given column, set their DataSource and
DisplayMember properties appropriately. There are two methods for displaying data:

3. As a bound list – this will display a list of items in the control and will be in synch with any
navigation control on the form. The control can also act as a navigation control so that, when
you select a different record to display, all other bound controls change in synch to display the
relevant data of the new record. This is done by setting the DataSource property to a DataSet
object and the DisplayMember property to the column name of the table, as shown here:

The User Interface for the Database

23

4. As a general list – this will display a list of items in the control and will not change to match
any navigation controls. This is achieved by setting DataSource to a DataSet.Table object
and DisplayMember to a column:

You can apply these same methods and properties when using a ComboBox.

To populate the Checked property of a CheckBox, set the DataBindings.Checked property to a
Boolean (True or False) column of the database:

The RadioButton control is a little different to the CheckBox. We really only have one useable
DataBindings property: the Text property. There is also a Checked property, but it's hidden under
the Advanced property. Click on the Advanced property's ellipsis button (…) to bring up the
Advanced Data Binding dialog:

Chapter 5

24

Under the Advanced Data Binding dialog we can set the Checked property. As a matter of fact, we can set
any property in this dialog to a column in a database, as long as that column is of the correct type or
format for that property:

The User Interface for the Database

25

Besides setting these controls by pointing and clicking, we can also bind these controls at runtime,
which would allow us to display different tables or columns in our controls, based on a user's request. In
this way, we can use just one control to display a variety of information, instead of limiting each control
to displaying a single set of data. The following code shows how to bind to a control manually:

TextBox1.DataBindings.Add("Text", CustomerDataSet1, "Customers.Address")

The arguments of the DataBindings.Add method are the DataBinding property of the control we
wish to set (Text in this case). For every property of a control that you want to set, you should check
for a matching DataBinding property. The remaining two parameters are the DataSet
(CustomerDataSet1) and the table name plus column name, separated by a period
(Customers.Address).

An alternative way to call the DataBindings.Add method is to pass in a Binding object:

Dim myBinding As New Binding("Text", CustomerDataSet1, "Customers.Address")
TextBox1.DataBindings.Add(myBinding)

Let's take a look at some other common controls and their data-binding properties for the display of data:

Control Property Example

TextBox Text TextBox1.DataBindings.Add("Text", myDataSet,
"Customers.Address")

Label Text Label1.DataBindings.Add("Text", myDataSet,
"Customers.Address")

Check
Box

Text CheckBox1.DataBindings.Add("Text", myDataSet,
"Products.ProductName")

Checked CheckBox1.DataBindings.Add("Checked", myDataSet,
_ "Products.Discontinued")

Radio
Button

Text RadioButton1.DataBindings.Add("CheckState",
myDataSet, _ "Products.ProductName")

Checked RadioButton1.DataBindings.Add("CheckState",
myDataSet, _ "Products.Discontinued")

ListBox DataSource = myDataSet
DisplayMember = myTable.myColumnName

Combo
Box

Same as ListBox

Data
Grid

Results DataSource = myDataSet
DataMember = myTable

Binding is a great way to display information in controls without having to write any code to do so. As
you navigate through your records, all bound controls are automatically updated. In addition, as you
change the row shown in one control, other bound controls stay in synch.

Chapter 5

26

Bound Controls

TextBoxes display
data from current row

DataGrid
displays all
rows

Select * From
Customers

Row

CurrentRow

Row

Row

Table

DataSet

Northwind
Database

City

All Rows

Address

Try It Out - Adding a Data Bound DataGrid

In this section, I'll take you through the process of adding a bound control to our project.

1. Add a DataGrid from the Windows Forms tab in the Toolbox to Form1 of the
CustomerApp project.

2. Add a Button to the form and change its Name in the Properties window to btnGetData,
and the Text property to Get Data.

The User Interface for the Database

27

3. Set DataGrid1's DataSource property to CustomerDataSet1 and set the DataMember
property to Customers.

How It Works

We have added a DataGrid and button to the form. By setting the DataSource and DataMember
properties, we tell the DataGrid to bind to our DataSet and that we want to show the Customers
table. Once these properties are set, the grid will automatically be bound to the table specified and the
columns will be formatted with the columns from our SQL SELECT statement, as shown below:

Chapter 5

28

Displaying Database Information to the User
One thing our wizards didn't do is add code to actually fill the DataSet with the desired information
from the database. We have to call the Fill method of the DataAdapter to accomplish this. Double-
click on the Get Data button in Visual Studio, and add the following for the click event:

Private Sub btnGetData_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnGetData.Click

 SqlDataAdapter1.Fill(CustomerDataSet1)

End Sub

When we call the Fill method of SqlDataAdapter1, we retrieve data from the data source using a
SQL SELECT statement. The Fill method then populates the DataSet passed as its parameter. As the
DataGrid is bound to the DataSet, when the DataSet is updated, the DataGrid will also be
changed – it is in synch. The data connection will be opened using our Connection object to retrieve
the customer listing, and closed once the operation is complete.

The Fill method returns an integer value that tells you the number of records that were added to the
DataSet, as long as your SQL statement is set up to return rows, that is. This can be useful for error checking.

Dim RecordsAdded As Integer = SqlDataAdapter1.Fill(CustomerDataSet1)

Compiling and Running the Project
We've added all the components to our application, so build and run the project. You will notice there
is no data displayed. Click the Get Data button to fill the DataGrid with a list of customers. Here is
what our finished product should look like:

The User Interface for the Database

29

It's that easy!

So what's going on to make this work?

1. From the user interface – our Windows Form – we click the Get Data button, which calls the
Fill method of the SqlDataAdapter to tell the database that we want some records.

2. Next, the SqlDataAdapter requests a connection to be opened through the
SqlConnection object.

3. The SqlConnection object uses the logon information we provided to open a connection to
the database. Once the connection is opened, a SelectCommand is issued to actually retrieve
the records. As you may remember, this command is created from a SqlCommand object.

4. Once the connection is open and we issue a SELECT command, the results are sent through
the connection.

5. The results are then passed through the SqlDataAdapter.

6. Finally, the SqlDataAdapter populates the DataSet.

Chapter 5

30

Customer Table Components

SqlConnection

Windows From

DataSet

Customers
6.) Returns data

1.) Calls Fill method

SqlDataAdapter

5.) Returns data

2.) Request to open connection/
Issues SELECT command

4.) Returns customer listing

3.) Opens connection

Northwind
Database

Once we have filled our DataSet, the connection is closed and we are free to use the DataSet
however we wish. In the last example, we displayed the data on the user interface by binding the
DataSet to a DataGrid control on our Windows Form.

What's Behind the Curtain?
So what exactly was the code that those wizards created for us? You're probably thinking how neat they
are to create this code but, if something breaks, would we be able to fix it? To solve any such problems,
we need to know how the program works and what is happening behind the scenes.

Let's begin by looking at the code that was generated by the Windows Form Designer – right click on
Form1 and select View Source.

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

The User Interface for the Database

31

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 Friend WithEvents SqlDataAdapter1 As System.Data.SqlClient.SqlDataAdapter
 Friend WithEvents SqlConnection1 As System.Data.SqlClient.SqlConnection
 Friend WithEvents DataGrid1 As System.Windows.Forms.DataGrid
 Friend WithEvents btnGetData As System.Windows.Forms.Button
 Friend WithEvents CustomerDataSet1 As CustomerApp.CustomerDataSet
 Friend WithEvents SqlSelectCommand1 As System.Data.SqlClient.SqlCommand

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.Container

We can see the standard constructor and destructor code here, and then we have declarations for our
DataAdapter, SQLConnection, DataGrid, Button, DataSet, and SqlCommand. These are just
declarations and do not create actual instances just yet. You can trap events created by these objects if
needed, since they are declared with the WithEvents keyword. The Friend keyword signifies that
the declaration is valid anywhere within the same assembly or program, so we can reference these
objects anywhere in our program.

Let's look at the InitializeComponent procedure. Instances of our DataAdapter,
SqlConnection, DataGrid, Button, DataSet, and SqlCommand objects are set up here:

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 Me.SqlDataAdapter1 = New System.Data.SqlClient.SqlDataAdapter()
 Me.SqlConnection1 = New System.Data.SqlClient.SqlConnection()
 Me.DataGrid1 = New System.Windows.Forms.DataGrid()
 Me.btnGetData = New System.Windows.Forms.Button()
 Me.CustomerDataSet1 = New CustomerApp.CustomerDataSet()
 Me.SqlSelectCommand1 = New System.Data.SqlClient.SqlCommand()

To prevent other objects from accessing our controls, we call the BeginInit method on our
DataGrid and DataSet objects:

 CType(Me.DataGrid1, System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.CustomerDataSet1,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.SuspendLayout()

These are called to avoid any access to these components before initialization. Certain controls require
that some properties be initialized before others in order to work properly. By using BeginInit, we
temporarily place our control in a frozen state, preventing any events or validation from occurring. Not
all controls have this requirement so, if you come across a control that doesn't support this method, you
can safely assume that it doesn't need initializing in a particular order like those here do.

Chapter 5

32

In this next block of code, we assign our SELECT statement reference:

 '
 'SqlDataAdapter1
 '
 Me.SqlDataAdapter1.SelectCommand = Me.SqlSelectCommand1

We set the SelectCommand property to our SELECT statement so that, when we later call the
DataAdapter's Fill method, this statement will get executed. In the code below, we assign the table
mappings, table name, and column names:

 Me.SqlDataAdapter1.TableMappings.AddRange(_
 New System.Data.Common.DataTableMapping()
 {New System.Data.Common.DataTableMapping("Table", "Customers",
 New System.Data.Common.DataColumnMapping()
 {New System.Data.Common.DataColumnMapping("CustomerID", "CustomerID"),
 New System.Data.Common.DataColumnMapping("CompanyName",
"CompanyName"),
 New System.Data.Common.DataColumnMapping("Address", "Address"),
 New System.Data.Common.DataColumnMapping("City", "City"),
 New System.Data.Common.DataColumnMapping("Region", "Region"),
 New System.Data.Common.DataColumnMapping("PostalCode",
"PostalCode")})})

By default, when you create a new table, it is simply called Table but, since we're using the Customers
table, it is renamed. We also have our column mappings. We didn't change any of the column names in
the Query Builder so all of the names will be left with their original names. If we had used an alias when
building our SQL statement and used Company for CompanyName, for example, it would be mapped
with the new name provided as the second parameter. This section of code builds the DataSet's
structure in memory. We use the DataAdapter to fill this in-memory object with data.

Next, the connection string is made up from the parameters for connecting to the database. These same
properties were set in the Data Link Properties dialog earlier and, consequently, your connection string
may vary slightly from this one:

 '
 'SqlConnection1
 '
 Me.SqlConnection1.ConnectionString = _
 "data source=localhost;initial catalog=NorthwindSQL;persist security
" & _
 "info=False;user id=sa;workstation id=MyWorkstation;packet size=4096"

The data source value specifies the computer where the data is located, the initial catalog
value represents the database we want to communicate with, persist security info states
whether or not sensitive security information should be returned in the connection string, user id and
password give the user account to connect to the database, and, finally, packet size sets the size of
the data blocks for transmissions to and from the database server. This size depends on your network
and the default is 4096 bytes.

The User Interface for the Database

33

The behavior of the DataGrid gets configured next:

 '
 'DataGrid1
 '
 Me.DataGrid1.DataMember = "Customers"
 Me.DataGrid1.DataSource = Me.CustomerDataSet1
 Me.DataGrid1.Location = New System.Drawing.Point(8, 16)
 Me.DataGrid1.Name = "DataGrid1"
 Me.DataGrid1.Size = New System.Drawing.Size(504, 168)
 Me.DataGrid1.TabIndex = 0

Properties of the DataGrid are set to reference the DataSet and the Customers table to show the
results of our query. The Location, Name, Size, and TabIndex properties are assigned at this point
too. Our code now places the button and sets its characteristics:

 '
 'btnGetData
 '
 Me.btnGetData.Location = New System.Drawing.Point(8, 200)
 Me.btnGetData.Name = "btnGetData"
 Me.btnGetData.TabIndex = 1
 Me.btnGetData.Text = "Get Data"

The TabIndex is set to one, indicating that it will be the second tab item. The button Text property sets the
label to show on the button, which is "Get Data" in this case. Properties of our DataSet are then set:

 '
 'CustomerDataSet1
 '
 Me.CustomerDataSet1.DataSetName = "CustomerDataSet"
 Me.CustomerDataSet1.Locale = New System.Globalization.CultureInfo("")

Our DataSet object, which is called CustomerDataSet1, uses the DataSet name of CustomerDataSet.

The Locale property is set to a CultureInfo object. This class holds culture-specific information, such as
language, sublanguage, country/region, and cultural conventions. This class also provides the information to
perform certain tasks, such as formatting dates and numbers, sorting and comparing strings, and determining
character type information. The culture information is based on which country you are in. For example, you
might specify "en-AU" which is English – Australia, "en-GB" which indicates English – United Kingdom,
and "en-US" which is English – United States. There are many other specifiers available for you to use. If
you don't specify a type, then the culture information specific to your computer will be used.

The Namespace property is used when reading and writing an XML document into the DataSet using
the ReadXml, WriteXml, ReadXmlSchema, or WriteXmlSchema methods:

 Me.CustomerDataSet1.Namespace =
"http://www.tempuri.org/CustomerDataSet.xsd"

By default, this points to www.tempuri.org. You can point this to your website or directory to read
the schema. You can also leave this as is and it will work without any problems. Again, we will get onto
XML and its role in ADO.NET in Chapter 12.

Chapter 5

34

The records from the database become available for retrieval when a connection is opened and a SQL
statement is executed, as shown here:

 '
 'SqlSelectCommand1
 '
 Me.SqlSelectCommand1.CommandText = _
 "SELECT CustomerID, CompanyName, Address, City, Region, PostalCode
FROM Customers"
 Me.SqlSelectCommand1.Connection = Me.SqlConnection1

To begin with, a SELECT statement is assigned to the CommandText property and is executed when the
connection opens. The columns shown are the same as the ones that we selected in the Query Builder earlier.
This property can be a SQL statement or the name of a stored procedure. Once we set our SELECT
statement, we assign a connection so that, when the command is executed, it opens the connection specified.

The code for the other controls on the form (the Button and DataGrid) is added to the
Controls.AddRange method. This is used by the Windows Form to track all of the controls that are
on the form. It also exposes the ability for the developer to iterate through the controls collection on a
form. We then call the EndInit methods of the DataGrid and DataSet to let the system know that
we can now access the components.

 '
 'Form1
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(520, 237)
 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.btnGetData,
Me.DataGrid1})
 Me.Name = "Form1"
 Me.Text = "Form1"
 CType(Me.DataGrid1, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.CustomerDataSet1,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.ResumeLayout(False)

 End Sub

#End Region

Finally, let's consolidate the essential pieces of our code to see what we've really done:

Dim CustomerDataSet1 As DataSet

Dim SqlConnection1 As New System.Data.SqlClient.SqlConnection()
SqlConnection1.ConnectionString = "data source=localhost;initial
catalog=NorthwindSQL; " & _
 "persist security info=False;user id=sa;workstation id=
MyWorkstation;packet size=4096"

Dim SqlSelectCommand1 As New System.Data.SqlClient.SqlCommand()
SqlSelectCommand1.CommandText = "SELECT CustomerID, CompanyName, Address," & _
 "City, Region, PostalCode FROM Customers"

The User Interface for the Database

35

SqlSelectCommand1.Connection = SqlConnection1

Dim SqlDataAdapter1 As New System.Data.SqlClient.SqlDataAdapter()
SqlDataAdapter1.SelectCommand = SqlSelectCommand1

CustomerDataSet1 = New DataSet("CustomerDataSet")

DataGrid1.DataMember = "Customers"
DataGrid1.DataSource = CustomerDataSet1

SqlDataAdapter1.Fill(CustomerDataSet1)

To recap:

❑ We created a new connection to the database using a SqlConnection object and by setting
the connection string

❑ We created a SQL SELECT statement to retrieve customer information

❑ We created a SqlCommand object to call our SQL SELECT statement

❑ The command was configured so that, any time that we select records, a connection is opened
by assigning the Connection object to the SqlCommand object

❑ We configured a DataAdapter, SqlDataAdapter1, to return the appropriate records any
time that we call the Fill method

❑ We created a new DataSet to hold our tables

❑ We configured our DataGrid so that it displays the Customers table using the DataSet

❑ We called the Fill method, which filled our table up with customer records and displayed it
in the DataGrid

Adding Additional Tables
We have seen how to display a single table to the user. What if we wanted to display multiple tables?
We can add more tables to view in our DataGrid by adding another SqlDataAdapter. For example,
if we want to view suppliers in our DataGrid, we can add another DataAdapter and use the same
connection to display this information.

Chapter 5

36

Connection to multiple Tables

SqlDataAdapter1

SqlConnection1

Northwind
Database

Customer DataSet

Customers

Suppliers

SqlDataAdapter2

Try It Out - Adding a Second DataAdapter

In this section, I will take you through the steps for adding an additional DataAdapter.

1. In the form design view, add another SqlDataAdapter control to your form from the Data
tab of the Toolbox. You will be guided through the same steps that we followed earlier.

As you will notice, this time an existing data connection is listed from the connection we
created earlier. This will show up as Computername.NorthwindSQL.dbo, where
Computername is the name of the computer that you're connected to. Click the Next button.

2. The Query Type window will be shown next. Choose Use SQL statement, as we did before
and click Next.

3. Now you will be prompted for the SQL statement used to select information from the
Suppliers table. Once again, since we are only going to view records, we will turn off the
option to have the wizard automatically generate insert, update, and delete commands. Click
the Advanced Options button. Uncheck the first checkbox. Click OK when you're done.

4. You should be back at the Generate the SQL Statements screen. Click on the Query Builder
button. Add the Suppliers table and select the following columns: SupplierID, CompanyName,
Address, City, Region, and PostalCode. Click the OK button when completed.

The User Interface for the Database

37

5. Again, we'll be back at the previous window. Review the SQL statement and click Next.

The final dialog will appear. Click Finish. This will add a new DataAdapter called SqlDataAdapter2
below your form.

6. Next we need to update our existing DataSet to hold this second table. Right-click on
SqlDataAdapter2 and select Generate Dataset. The Generate Dataset window will
appear and we can choose to use the existing DataSet or create a new one. We will use the
existing one. Also, there will be a list that shows two tables: the Customer table (our original
one) and now the Suppliers table. The Suppliers table will already be selected so just click
OK. This will add the table to the existing DataSet.

Chapter 5

38

7. Add the following code in the click event of the Get Data button to fill the Supplier table:

Private Sub btnGetData_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnGetData.Click

 SqlDataAdapter1.Fill(CustomerDataSet1)
 SqlDataAdapter2.Fill(CustomerDataSet1)
End Sub

8. Select the DataGrid on the form in form design view. In the Properties window, clear the
DataMember property of DataGrid1. Doing this binds the DataGrid to the DataSet rather
than just one specific table, providing a node tree that the user can click on to navigate
between the available tables.

The User Interface for the Database

39

9. Compile and run the project. Click the Get Data button. Then click the plus symbol to
expand the nodes in the node tree. We should see a Customer and Suppliers link.

If we click on either of the links, we should see the data for each table. To get back to the parent, click
the left arrow in the upper right corner of the grid.

Chapter 5

40

How It Works

We added a new DataAdapter to work with the additional table, but we tied the new table to the
existing DataSet. We also used the existing connection.

In the code above, the connection is opened and closed twice, automatically. It would be more efficient
to open and close our connections once, with code like this:

Private Sub btnGetData_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnGetData.Click

 SqlConnection1.Open()
 SqlDataAdapter1.Fill(CustomerDataSet1)
 SqlDataAdapter2.Fill(CustomerDataSet1)
 SqlConnection1.Close()
End Sub

In this block of code, a connection is opened explicitly by calling the SqlConnection Open method,
which leaves our connection open. The Fill method is called and the connection is closed by a call to
the Close method. Normally, we would want the Fill method to leave the connection in the state that
it found it. In other words, if the connection to the data source is already open, it should leave it open; if
the connection is closed, then it will close it when it is done. We can use the State property to
determine whether our connection is open or closed, as the code below demonstrates:

If SqlConnection1.State <> ConnectionState.Open Then SqlConnection1.Open()
' make database calls
If SqlConnection1.State <> ConnectionState.Closed Then SqlConnection1.Close()

We need to check the state before opening or closing the connection because, if we try to call the Open
method on an open connection, we will receive an error stating that the connection is already open. The
same goes for the Close method. You should always close your connections when you're done with
them to free up any resources that they might be taking up. Be aware though that opening and closing
connections slows an application, and performance can be improved by keeping a connection open for
database calls that occur in close proximity within your program.

The User Interface for the Database

41

Good Form Design
In the above sections, we developed a functional but trivial user interface for a database. Creating
production standard database applications is a much more complex process, however, and requires a
clear and effective design to be properly thought out in order for the finished product to be effective
and to satisfy the end users. In the remainder of this chapter, we examine the aspects of design that you
must consider if you wish to create professional, well-designed forms. These aspects include:

❑ Usability – a consistent and logical flow of controls and menus throughout the program, along
with interactive help if practical and relevant, will make the user interface intuitive and simple to
use. Try to provide plenty of functionality that allows the user to manipulate information
quickly. Make the interface consistent with other frequently-used software interfaces, if possible.

❑ Presentation – aim for an attractive, friendly feel.

❑ Validation – alert the user to any mistakes that they may make by checking data against
certain criteria.

❑ Ability to expand – keep this in mind so that future enhancements will not have to radically
change the look and feel of the user interface.

Usability
Taking these in order, we'll first look at usability. One way to think of a form is as an ATM machine.
The ATM machine is a user interface that allows us to interact with our bank. The ATM is simple,
friendly, and easy to use – with only a very basic understanding, anyone can use it. The same goes for
forms; we should aim to design them so that users can quickly learn how to use them, and quickly
perform common actions. We must make our users feel comfortable with the interface, otherwise they
won't use it all and our efforts will have been wasted. For business applications, we need to make our
customers as happy as possible if we want to keep their attention and retain their business.

If you have captured all of the functionality needed by the user and have made it readily accessible, you
are most of the way there. You need to consult your users to find out which functions they need the most,
and to determine which are "must have" features and which are merely "nice to have". You will find that
users always want the icing on the cake and, if you're not careful, you can get side tracked by attempting to
provide too many additional features, possibly making the coding of the core functionality harder. There's
an old programmers' principle known as the 80:20 rule, which states that 80% of a problem will be solved
by 20% of the final code, and the remaining 80% of your code addresses only the other 20% of the
problem. You especially want to avoid coding awkward functionality if just one or two users will use it;
instead you should concentrate on things that most, if not all, potential users will use.

Microsoft publishes some design standards for interfaces at http://www.microsoft.com/winlogo/default.asp.
You must adhere to these standards if you wish to be able to use the Windows Logo on your software. The
standards encompass such things as particular ways of placing buttons, the standard Windows format for
menus, and the nature of the Help program that your application must incorporate. This keeps your
applications consistent with one another or with other programs adhering to the Microsoft design
standards, and helps users to find their way around any application and make the most of it. Most, but not
all, developers try to follow the Microsoft Windows standard. Users certainly appreciate being able to go
from one application to the next, irrespective of vendor, knowing that certain features will be in the same
place, and it lets your customers quickly get up to speed with new applications.

Chapter 5

42

Useful books for designing Windows user interfaces include "About Face: The Essentials of User
Interface Design" by Alan Cooper, "Developing User Interfaces for Microsoft Windows" by Everett
McKay, or "Microsoft Windows User Experience".

Who Dreams of Forms?

A key principle for user interface development is that, ultimately, the application's users should dictate
how the user interface looks.

In most large companies, software development generally follows this scenario. A development team is
formed, consisting of a project manager and developers, and a representative of the client company.
The team's job is to define, analyze, and document functional specifications for the application. These
specifications will define each business rule – each and every function that the application should
perform when it is finished. The users of the finished application will be asked to describe the
functionality that would most benefit them, in light of the tasks that they currently perform every day.
Prototypes will be built to test the technology being used and, at this point, the design of the user
interface can be started. At regular intervals, the developers and project manager will sit with a number
of end users to discuss the look and feel of the interface. Although the client's representative has final
authority on what functionality should be included, it is the users who will actually use the application
eventually – matching the application against their needs will produce a tool that is successful.

Presentation
The next quality to look at is the actual presentation of the form. If you've ever had to work with
programs that had purple backgrounds, yellow buttons, and green text, then you'll know the value of an
attractive user interface. If you're a commercial developer then presentation is all – its style reflects not
only on you as the developer, but the brand of your whole company.

Validation
Another very useful capability of form controls is their provision of validation mechanisms that are
transparent to the user. Controls can check input against certain criteria and alert the user if any
discrepancy is found. A common use for this type of control is the case where certain fields on a form
are required, such as the customer name and phone number. We can add some validation behind the
form to check that these fields are not left blank, and display a pertinent message to the user if they are.
Validation like this can be invaluable to users new to a system, helping them through a potentially
frustrating process. Validation is covered in Chapter 8.

Ability to Expand
Last of all, there's the issue of making a program easy to expand. To properly understand this concern, I
would like to introduce a couple of design models that you will encounter when building applications. The
application developed in the first part of this chapter used a model where all of the processing takes place on
the user's machine. Consequently, should we enhance or upgrade the application later – perhaps to view a
different table in the database, for instance – then we would have to redistribute the updated software to each
of our users. If we wanted to change the type of data source that we communicate with – for example, to an
Oracle database instead of a SQL Server database – we couldn't do it easily either. To avoid this difficulty, it
is sensible to split the processing up into multiple tiers. There is a detailed discussion of the issue of
application architecture in the next chapter, so I will provide just a brief overview here.

The User Interface for the Database

43

The standard client/server or two-tier model consists of:

❑ A client application that sits on each workstation and contains business logic. Business logic or
rules define the processes that are involved in the particular task that is being performed.

❑ A server component that is used to communicate to the data source.

The standard three-tier model consists of:

❑ A client application that sits on each workstation. Also known as the client tier.

❑ A server component that is used to communicate to the data source. Also known as a data tier.

❑ A middle tier containing components that contain the business logic. These components could
sit on the client or data tiers instead, but it can be beneficial to centralize business logic
processing in the middle tier so that services are not duplicated on each user's machine.

So, for the three-tier model, we split our processing up into smaller components than for the
client/server model. There are also n-tier models where you break your services into even smaller
components, but I shall leave talking about these until the next chapter.

Encapsulating code like this into relatively independent blocks reduces the amount of code that would have
to be updated if part of our application is changed. As our systems grow larger, we may want to expand or
modify some of the business logic of our application. Imagine that we have some validation code on the client
that checks that the user inputs a minimum of eight characters for a password field. If we want to change this
business logic so that only six characters are required, we would have to redistribute the updated client
software to every client machine. If, however, this validation business logic is kept in a server-side
component, we can just update that one piece of code on the server without affecting all of the clients.
However, we would, of course, have to design our application before hand to have this architecture from the
start. Additionally, when changing business logic in objects, we need to be careful that we do not change the
objects' interfaces. It helps to think long-term to avoid maintenance and expansion headaches later on.
Strictly speaking, these issues are application design considerations, but they should be considered when
designing the user interface as both go hand in hand.

Summary
So what have we learned in this chapter? We've seen that, by using the wizards in Visual Studio .NET, we
can easily build our user interface and connect it to a data source to display information. We covered:

❑ The DataSet – how this object can hold tables of information, and how to fill it with data.

❑ The DataAdapter – how it provides us with methods for retrieving data through the use of
Command objects, and methods to populate the tables of a DataSet through its Fill method.

❑ The Connection object – how a SqlConnection object linked us to our Northwind
database. We also looked at the parameters required for such a connection: Data Source,
Initial Catalog, User ID, and Password.

❑ Bindable controls – we learned how to place a DataGrid and other controls onto a form, and
use them to display information from a database by binding a DataSet to them.

Chapter 5

44

❑ How to display a second table in the DataGrid, using one DataSet and one Connection
object – we learned that it's better to open our connection once, do all the work we need, and
then close our connection.

You should now be comfortable with these fundamentals of data access in Visual Basic .NET. We will apply
and expand these techniques in the rest of the book. In the next chapter, we look in detail at ADO.NET.

Questions
1. List the key principles to bear in mind when producing a well-designed form.

2. What are the core objects that we need to build an ADO.NET project?

3. What is a DataSet?

4. What is the relationship between a DataAdapter and Connection object?

5. What does it mean to say a control is "bindable"?

6. What is a significant benefit of separating the business rules from the client and data tiers?

Answers are available at http://p2p.wrox.com/exercises/.

The User Interface for the Database

45

Chapter 5

46

Data Access with ADO.NET

In the last chapter we built a simple database application using some of the more basic ADO.NET
components. This chapter aims to look in greater detail at each of the major components of ADO.NET and
how they work together. We start with a brief look at the history of data access and the evolution of
technology over the years, focusing on the strengths and weaknesses of ADO in its current state. We will
build an ADO.NET application to familiarize you with the concepts discussed. When we're finished, you
should be comfortable enough with ADO.NET to build basic database applications by yourself.

Data access has played a very crucial role in application development through the years, and it can be
helpful to understand a little of its background, such as how and why it evolved. There have been many
promising technologies available over the years and, as developers, we experimented with them all in
the hope that they would neatly address all our business needs for gathering information and managing
data, without which we wouldn't be able to accomplish many common business goals.

Many developers seek a more uniform and robust engine to communicate with their data sources. Many
third party vendors strive to find an engine that will permit them to communicate with multiple data
sources without the need for separate code: the alternative, of maintaining different sets of code for
every data source, can easily become a programmer's worst nightmare.

There are many different technologies available that store and retrieve data, indicated by the huge range of
acronyms in the data access field, such as DAO, RDO, ODBC, OLE DB, and ADO. It can be hard to choose
between the different technologies to determine the best tools for a particular job. Factors to consider include
reliability, overall quality, robustness, how frequently the product is updated to fix problems and improve
performance, and so on. Longevity is an issue when deciding on such products, because you want to use a
solution from a company that is going to be around long enough to provide the support that your application
may require. ADO.NET can make such decisions much easier, as we shall see in this chapter.

Chapter 6

2

Data can come from a variety of sources, including comma separated value (CSV) files, XML, e-mail,
spreadsheets, or one of a range of other text or binary formats. In general, however, you will more
commonly be taking information from a database such as Microsoft Access, SQL Server, Visual Fox Pro,
Oracle, DB2, Sybase, or Informix. At the moment, there is much demand for communication with data
sources across platforms, such as accessing data on a mainframe running under Unix from a workstation
running Windows. A great deal of data is being migrated to newer generation servers that are more robust
and cost effective, so this trend is likely to continue, and there are a lot of companies that want to upgrade
because their existing systems can no longer support the volume of data they now require. Now, of course,
everyone is talking about Internet services and retrieving data through that means – the ultimate
distributed model. How can we do this in a way that avoids having to rewrite our code or buy a new
product whenever our systems get larger? ADO.NET is one product that can help in our quest.

Microsoft has come up with many different technologies through the years to try to tackle some of the
hurdles facing developers concerned with data access. Developers need applications that can share data
between end-points, receive orders for products online, retrieve marketing reports, provide email alerts,
customer listings, and stock reports, and more. These are just some of the problems that a sound data
access system like the new ADO.NET must address.

In this chapter, we will cover the ADO.NET infrastructure in detail to give you a better understanding
of its architecture and components. Specifically, the topics include:

❑ The history of data access

❑ The evolution of ADO.NET

❑ An analysis of the differences between ADO and ADO.NET

❑ The different components that make up the DataSet

❑ How to update the DataSet

❑ ADO.NET namespaces

❑ Data flow in ADO.NET

❑ The .NET data providers

❑ The DataReader class

A Short History of Data Access
Data access methods have been around since Microsoft Access 1.0 and Visual Basic 3.0. Access databases
were made to work very well with Visual Basic, as they still do for simple desktop applications.

The first data model in Visual Basic was called Data Access Objects (DAO), introduced in Visual Basic 3.0. It
could interact with Microsoft Access and other types of databases, although it was optimized for databases
located on your desktop computer. It was easy to work with because it provided simple data access methods
and tools from within the Visual Basic IDE environment, such as the data binding controls. These tools and
the abundance of resources such as books and technical articles meant that you were able to get a database
application up and running in next to no time. The Visual Basic environment came with a data manager that
allowed the creation and management of Access databases and, when you distributed your apps, the setup
utilities allowed for easy selection of any required data access libraries. It also allowed you to write code to
access different data sources using one set of code, as the only thing to change was the type of data source
you wanted to connect to. These data sources were mainly non-relational databases.

Data Access with ADO.NET

3

Non-relational databases are typically flat-files stored as a sequential binary stream. ISAM (Indexed
Sequential Access Method) databases fall into this category and provide a way of managing how a computer
accesses records and files stored on hard disk. The data is stored sequentially and direct access to a specific
record requires use of an index. The structure of these files is pretty complex. Most engines that read this
kind of data are very quick and efficient at accessing records because there are no extra layers to go through,
and they can directly access the data. This has the unfortunate implication that they lack any security
mechanism to protect the data, and anyone can go in and view or edit the information in the database, and
no transaction history is kept of who, what, or when items are changed. Such systems are not designed for
multi-server configurations, where processing can be split up to make the client computer do much of the
data processing work. They are poorly suited to multi-user environments, and don't provide an intrinsic
mechanism for preventing users from stepping on each other's toes by making concurrent alterations.

Data Access Technologies
Briefly, the evolution of modern data access technologies can be summarized as below. Each new
development resolved certain issues with its predecessors, and generally enhanced the tools available to
database developers:

❑ ODBC, Open Database Connectivity, has been the most successful data provider to date. It is
supported by more development languages than any other data access technology. The SQL
Access Group (SAG) was set up in 1989 to define and promote standards to allow developers
to switch data systems, either local or remote, without re-writing their code, and to enable
companies to centralize their databases instead of requiring separate copies to be installed on
each client computer. The group included a number of software and hardware vendors,
chiefly Hewlett-Packard, Digital, Sun, Informix, IBM, Oracle, and Microsoft. In 1990, the
group combined the required features into an Application Programming Interface (API) that
would allow client-server applications to access a variety of different databases, although it
wasn't until 1992 that a standard suitable for commercial software products was published.

Microsoft was the first to commercialize this specification with ODBC 1.0 in the same year. Many
other database vendors have since added Microsoft ODBC support to their products and, today,
there are over 170 different types of ODBC drivers available. Microsoft supplies its ODBC Software
Development Kit (SDK), incorporating a number of tools to aid in the development of drivers that
will fit into Microsoft's ODBC structure. The SDK is also available for non-Windows environments
such as UNIX, OS/2, and Macintosh, although vendors can write their own API that conforms to
SAG standards rather than use Microsoft's SDK. For further information on the internals of ODBC,
read Inside ODBC by Kyle Geiger, published in 1995 by Microsoft Press.

ODBC provides a standard set of API functions that you can use to access a wide range of data
sources. Through the use of a driver manager, it translates the statement requested to the native
syntax, and returns the results to your application. This mechanism provides the developer with a
single set of statements for a range of systems, independent of platform, vendor, database, and
language. However, the ODBC API was complex and unintuitive to work, and there were
inconsistencies in some of the drivers that required custom code be written to cater for those drivers.

In the Windows environment, an ODBC control panel is available to manage ODBC connections.
You can create a connection by giving it a name, and use this name to reference that connection in
your Visual Basic applications or web pages.

Chapter 6

4

❑ DAO, Data Access Objects, introduced in Access 1.0 back in 1992, is a technology built
around the JET engine capable of accessing Microsoft Access databases, external ISAM
databases including Btreive, dBase, Paradox, FoxPro, and ODBC data sources. Visual Basic
3.0 provided support for DAO and the Microsoft JET database engine and, for a while, it was
the most popular method of communicating with Access and ISAM data sources.

Everything has to go through the JET engine, even when accessing other data sources through the
ODBC API. It supports 16-bit operations, making it the primary choice of the time for Windows
3.x's 16-bit environment. DAO provided the capability to access JET and ODBC sources with a
common set of code. However, the syntax wasn't as simple as it could have been, and it was slow
and resource-hungry. In addition, it was designed for desktop applications where the database and
application were both on one machine. JET was optimized for Microsoft Access databases; any
other sources suffered in performance because commands were required to be translated before
being sent to the database server. However, it was widely available and, because it was supplied
with Microsoft Office products, any user with Office could use the technology.

❑ RDO, Remote Data Objects, was introduced with the 32-bit version of VB4 in 1995
specifically to access remote ODBC data sources, such as Microsoft SQL Server and Oracle,
but without the complex syntax of the ODBC API. RDO's object model was based on DAO,
and it included some of the best features of DAO's interface and core functionality, without
the requirement to use the JET Engine. This lead to improved performance over DAO for
non-Access databases. RDO had an intelligent cursor, making for faster data processing.
Compared to DAO, it had better handling for queries and result sets, was faster, and required
less overhead. Much of this performance advantage derives from the fact that RDO
communicates directly with the ODBC API without going through any other layers. It didn't
stay around long however due to the arrival of yet better technologies.

❑ ODBCDirect was introduced with Visual Basic 5.0 in 1997 as an alternative form of DAO that
switches between the JET Engine and RDO. It provided access to the ODBC data sources
directly, bypassing the Microsoft JET Engine. Internally, it uses the RDO engine and, in fact, it's
very much the same as RDO but with DAO object names. Compared to DAO, ODBCDirect
has better performance, better resources, better access to server side functionality, and better
update and query methods. The downside was that it couldn't access non-ODBC sources.

❑ OLE DB, Object Linking and Embedding for Databases, Microsoft's API for universal data
access, allows communication to relational and non-relational data sources including legacy
and mainframe data using a Component Object Model (COM). It was introduced in 1996, and
provides all the capabilities of ODBC but is divided into two components: consumers and
providers. The consumer components use the data, while providers talk to the data and
expose an interface to the consumers. It can handle different types of non-relational data
sources such as e-mail, file systems, graphics, and many other custom data sources. It's the
core of Microsoft's database technology today. Only C++ applications originally had direct
access to OLE DB and the code required to use it can quickly become very convoluted.

Data Access with ADO.NET

5

❑ ADO, ActiveX Data Objects, is a wrapper around OLE DB that was first released in 1996 to
hide the complicated syntax of OLE DB. It has similar features to DAO and RDO and,
although it is designed for minimal network traffic, it has good performance and easy to learn.
ADO provides all the capabilities of OLE DB, which means we can access data stores from
various different vendors. This model was designed towards a tightly coupled connected
architecture, while still allowing for a disconnected setup. Disconnected means data is kept in
memory without any active connection to the database to allow work to be done on the data
without having to rely on a network that might be slow or not be available all the time. It also
allows greater scalability in that server resources are freed up, hence allowing more
connections. Tightly coupled means that the components or objects of a system must be
connected to each other, as opposed to loosely coupled where the components can work
independently of each other and only communicate when needed.

❑ RDS, Remote Data Service, is similar to ADO but was designed to provide OLE DB
technology for web-based applications. It allows data to be manipulated on the web client
without making additional calls – or round trips – to the server, thus freeing up resources from
the server. It is designed more for disconnected data sources than ADO.

❑ ADO.NET, introduced in 2000, is the latest Microsoft ADO and RDS technology. As it is built
in XML, the industry standard which hopes to reshape the way we deal with data, it can be
managed by any application that can read this standard regardless of the platform concerned –
be it Windows, Linux, or Unix – or the language – be it C++, VB, Delphi, or whatever.

The following table provides a recap of each technology's pros and cons:

Technology Pros Cons

ODBC Allows connection to multiple data sources. Initially was hard to work
with the ODBC API.

DAO Optimized for Microsoft Access databases. Readily
accessible with Office products, great for desktop
applications. A reliable and proven technology.

Performance wasn't as great
with non-Microsoft Access
databases. Syntax can get
overly complex at times.

RDO Can access remote data sources such as SQL Server
and Oracle. Using core functionality of DAO, but
quicker and has less overhead than DAO.

Superceded by ADO.

ODBCDirect An alternative mode to DAO to bypass the JET
engine and communicate directly with ODBC.

No access to non-ODBC
data sources.

OLE DB Allows communication with both relational and
non-relational data using COM. Has all the
capabilities of ODBC.

Coding with it is very hard.
Initially only available to
C++ developers.

ADO Provides a wrapper around OLE DB. High
performance and easy to use.

Initially designed for a
connected architecture.

Table continued on following page

Chapter 6

6

Technology Pros Cons

RDS Allows web applications to get to a data source
through OLE DB technology. Similar to ADO.
Designed primarily for a disconnected architecture.

Only available for web
applications.

ADO.NET Designed similarly to ADO and RDS. Built-in
XML support. Simplifies communication
between different environments and languages.

None yet.

ODBC, OLE DB, ADO, and RDS were later brought together in a single package known as the
Microsoft Data Access Components (MDAC) – see http://www.microsoft.com/data/.

Application Architectures
Changes in the architectures underlying applications drove the development of these different data
access technologies. There are three typical application architectures in use today:

❑ Client-Server (2-tier)

❑ 3-Tier

❑ n-Tier

Client-Server
Client-server architecture consists of one or more client applications communicating with another application
or service known as the server. The client and the server can reside on the same computer, or on separate
computers. In the early days of the client-server model, each database application (or client) would access
information from a copy of the database on the same computer, as shown in the figure below. With hundreds
or even thousands of clients, this quickly becomes a big headache to maintain, because any time data is
changed on one computer, other computers won't know about it as each client's database is not in sync. This
model required changes to be collated at some suitable time, often at the end of the business day, and the
updated database would then have to be redistributed to each client machine. There's no easy way to track or
follow up on a customer's activity for the current day, or generate up-to-the-minute reports from one central
system. Reasons such as these underlined the need for a system based on a central database.

Client-Server Architecture
(Workstation acts as Data Server)

Database
Application

Data
Source

Client Workstation

Data Access with ADO.NET

7

This state of affairs improved considerably when data was moved onto its own computer – either a
dedicated server or just one particular client workstation – so that multiple clients could access the same
data source simultaneously. This introduced the issue of concurrent updates, where there is a risk of
conflict if two users attempt to update the same record at once. Locking is one solution that arose in
response – if one person is editing a record, that record is locked so that other users cannot update the
same information until the first has finished. It is still possible to read this data; it just can't be modified.
Despite this, separating and centralizing the data from the client applications was a major step forward.
In the early systems, most of the code to access the data still resided on the client's computer. Also, the
data server was often just a file server with no engine to process commands from clients, meaning that
all the actual work had to be done client-side. This was especially true for non-relational databases.

Common Client - Server Model

Database
Application

Database
Application

Client1

Client2

Clients do all the
processing

Data
Source

Data Server

The diagram above shows how multiple clients access one data server, reading and updating one database
simultaneously. Not all applications will need a centralized database however, and you will have to make that
decision according to the particular application you're developing. If only one or two clients will use an
application, and there is unlikely to be a future requirement to add more users, then a single computer client-
server application may be the simpler and most efficient choice. Many software vendors use this type of
architecture because it's quick and easy to build and maintain databases for such applications as a contact
manager that holds addresses and phone numbers, or an inventory application for a small store. Many of
these smaller applications will use a package such as Microsoft Access because applications can be designed
and built at much lower cost than the same application using Microsoft SQL Server or Oracle. Smaller
database systems usually require less security and are simpler to maintain. Should data become corrupt, you
can very easily restore it because backing up data is just as straightforward. Of course, such applications do
not offer the security required for a publicly distributed database, nor can they match the performance of the
top engines. Which is right for you will only become clear once you have weighed up all the pros and cons.

Chapter 6

8

3-Tier
3-Tier architecture arrived as a consequence of improvements in technology, resulting in more powerful
equipment and operating systems. In a 3-tier system you can move most of the processing off the client's
computer onto dedicated servers. 3-Tier architecture comprises services that reside between the client and
server (on the middle-tier). The middle-tier must be independent of the client and server in order to be
considered a true 3-tier model, although it may reside on the same machine as the server, as in many systems.
Ideally, all business requirements, such as data validation and methods for retrieving data, are moved to the
middle-tier. As much processing as possible is removed from the client machine. Although there is a small
performance penalty involved with this architecture – because we can now no longer directly access our data
source but must instead go through a middle man to process transactions – this architecture enabled servers
such as Microsoft SQL Server, Microsoft Transaction Server (MTS), COM+, and web servers to all run
databases, process transactions, and manage memory much more efficiently than ever before.

In the next illustration, the clients are connected to the middle tier that contains our business logic for
data retrieval. This middle tier would preferably reside on its own server such as an MTS Server, a
COM+ server, or a web server. On the far right is the data-tier where a server manages the database
with an application such as SQL Server.

3-Tier Architecture

Client1

Client2

Data ServerCOM+/MTS/WEB
Server

To sum up, a 3-tier application is divided into three parts, or tiers, namely the client tier, the middle tier,
and the data tier. The client tier consists of a user interface, such as a Windows Form containing menus
and controls. This tier will communicate with the middle tier to retrieve data or perform some action.

The middle tier, sometimes called the business tier, houses the business logic code to carry out the actual
work required by the clients in the form of classes such as Customer, Orders, or Products. Our client
Windows Form, for example, could have a button that shows a message box with a customer's last name
taken from the customer table of the NorthwindSQL database. The business component would contain code
to validate data coming in to or out of our database. The code behind the button on the Windows Form
would simply call the relevant business component in the middle tier, and show the result that it returns.
Placing code in this tier takes it off the client, greatly assisting maintainability. In many cases, we can change
our business rules whenever we want without affecting the client in any way.

The final tier, the data tier, is where our data server, such as Microsoft SQL Server, resides.

Data Access with ADO.NET

9

n-Tier
As we move into the new century, more and more Internet applications are upon us. There is an increased need
for systems based on the disconnected model where we connect to our data source, download the data to the
client, and then close the connection. We maintain a cached set of records locally for manipulating data that
must then be uploaded to the server if changes are made. Not only does this mean that our client has to spend
less time waiting on a potentially slow network or Internet connection, but also that our server has to maintain
less connections, so requiring less resources, and thus is able to support more connections (that is, users).

When we talk about n-tier applications, we mean there could be any number ("n") of tiers. For an
application to fall into an n-tier model, it needs to have one or more business logic components and one
or more business data access components. The business data access components house definitions of
specific tables or fields, methods for extracting information required by a particular application and the
like. The data access component in the case of an n-tiered application is fairly generic and contains
methods and properties designed to work with any application and database.

n-Tier architectures encourage highly distributed systems where we break our services up making them
more scalable and maintainable. This also allows for better disconnected databases. However, as we
break up our services, they tend to become more specialized and geared more towards a particular task.
As a result, we cannot move them around tiers as easily. For example, we might have a data access class
that works with just Oracle, or components that just work in MTS or COM+ environments. Such
objects would be suitable for one task and one task only.

Most companies have moved to a distributed system where products and services are no longer held on just one
server. In the diagram below, clients running some type of database application, such as a stock inventory or a
phonebook program, communicate directly with the web server containing the business logic such as data
validation. The web server in turn talks to an MTS or COM+ server where the business data components reside
in order to manage database transactions. There is a separate database server that performs the actual database
accesses required. These systems can readily communicate with clients across a WAN or Internet.

Clients do
Minimal work Workload

distributed
among servers

Distributed Architecture

Client1

Client 2 Data Server

Web ServerMTS Server

Database Other Clients

WAN or Internet

Database
Application

Database
Application

Chapter 6

10

Current State of ADO
ActiveX Data Objects (ADO), the child of DAO and RDO, has been the most efficient data access
model up to now, and is supported by a wide range of development languages. Many objects were
streamlined or dropped to make a more lightweight model capable of rapid data access in a variety of
architectures, from single to n-tier. It achieves this by being a wrapper for underlying OLE DB calls.

ADO

OLE DB

SQL
Provider

ODBC
Provider

ISAM
Jet

Provider
Files

ADO's Strengths and Weaknesses
ADO has stabilized to the point where it is very reliable and supported worldwide. You can easily apply
the model to Windows and web applications. As it is supported by all Microsoft products, including
Office, anyone with such a product on their system can run ADO applications. It can also be used for
displaying or managing data in web pages.

The following list provides a summary of ADO's main weaknesses:

❑ It's only possible to manage one table or one set of records at a time

❑ There's no intrinsic support for XML, invaluable when communicating between various
environments

❑ We can't easily create relationships between tables on the fly

❑ It was designed primarily with a connected architecture in mind

❑ As communication is based on COM, you are limited to the data types COM supports; a
problem for non-Windows platforms

❑ ADO data types must be translated to their COM counterparts, taking up valuable system
time and resources

❑ COM is known to be problematic when penetrating firewalls

Unfortunately, we do not have the capability of accessing relational, non-relational, or other data sources
in a disconnected manner. We have to write many different applications for each level of data access,
whether it be for the Internet or for different data stores. Because of the different versions of libraries and
sets of code required to access these different technologies, we have a hard time managing our code.

Data Access with ADO.NET

11

This has lead to the situation often referred to as "DLL hell", where applications have to package
multiple library components since one won't provide all the required functionality. Versioning problems
are rife in this scenario, because applications that support ADO require that the correct runtime
libraries are located on the client's computer. Microsoft, being Microsoft, continually updates its
libraries with bug fixes and enhancements and, if one application is only compatible with an older
version, or a new library is shipped with some other software, problems are going to occur unless that
application is rewritten for the new DLL. From the developer's standpoint, several versions have to be
maintained and compiled using different methods just to maintain applications.

Ideally, we need to have all these features in one package that encapsulates key ADO and RDS
functionality and preferably throws in XML support for communication with diverse platforms,
including legacy systems. We also need support for more flexible data types over the Web.

ADO.NET
ADO.NET provides database connectivity between relational and non-relational systems through a
common set of components.

It also enables truly disconnected data access. Client-server applications have traditionally had to
maintain an open connection to the database while running, or provide their own method of caching
data locally, which is impractical for a number of reasons:

❑ Open database connections take up valuable system resources. In most cases, databases can
maintain only a given number of concurrent connections, and the overhead of a large number of
connections detracts from overall application performance. In some cases, however, a constant
connection may be required, and it may not be desirable or practical to close a connection.

❑ Applications that require an open database connection are extremely difficult to scale up, so
that an application that performs acceptably with 100 users may well not do so with 1000.

❑ A model based on connected data can make it difficult and impractical to exchange data
across application and organizational boundaries. If two components need to share the same
data, both have to be connected to the same data source, or a reliable way of passing data
back and forth between components must be implemented.

Because of these reasons, ADO.NET was built for a disconnected architecture. Data is read into a
component (an object to be precise) called a DataSet, which acts as a temporary scratch-pad for data.
The DataSet holds data even when the connection to the data store is broken and is good for as long
as it is in scope. Data in the disconnected DataSet can be manipulated by an application before
reconnecting to the data store to update it with any changes. Changes are made in an optimistic
approach. When connection is reestablished for an update, original versions of data used to populate
the DataSet are compared to the data currently held by the server. If someone else has altered the
same information in the meantime, an error is generated and the operation rejected.

The ADO.NET DataSet uses XML to transfer data. XML is a language that marks up data with
customizable tags in a standard manner that allows independent organizations and applications to
readily understand each other's data. Standards for XML have been developed by the World Wide Web
Consortium (W3C), an independent body established to develop standardized communications
protocols. Rather than having XML support as an add-on, as in old-style ADO, XML is built in to the
DataSet. For more information on ADO.NET and XML, see Chapter 12.

Chapter 6

12

ADO.NET's model bears, not surprisingly, many similarities to that of ADO, so developers conversant
with ADO do not face an insurmountable learning curve before getting up to speed with the new syntax.

ADO still exists in the new environment; backwards compatibility is provided by another layer so
that developers can slowly convert their existing applications. The optimum approach is to continue
to maintain old applications using vanilla ADO, while using ADO.NET for any new applications.

Comparisons to ADO
Apart from its disconnected nature, the other key advantages of ADO.NET over ADO are:

❑ Whereas ADO.NET uses DataSets to hold data, ADO uses the RecordSet object. An ADO
RecordSet represents a single table so, even if you join multiple tables, its view will be of a
single table – it is not possible to work with multiple tables at once. The ADO.NET DataSet,
on the other hand, contains a collection of tables and the relationships between them, so is
able to handle a much more complex data structure.

❑ The ADO.NET DataSet provides both a table-based relational view and an XML-based
hierarchical view, and either can be used interchangeably. See Chapter 12 for more on this.

❑ The ADO RecordSet stores data in binary format, which can be a problem because firewalls
tend to block binary data transfers. XML is a text-based data format, so ADO.NET can
transfer data more easily and reliably through firewalls.

❑ XML also permits an unlimited variety of data types, and incorporates ways to validate that
the correct data types are used. Because ADO uses COM as a transportation mechanism,
performance can be hindered by translation to and from the limited COM data types.

❑ With ADO, there was always the problem of having the correct version of MDAC to access
your data, but ADO.NET supports side-by-side versions of ADO.NET without having to
worry about versioning issues.

ADO.NET Architecture
The main components of ADO.NET are the .NET Data Providers and the DataSet object. By separating
the components that manage the data (Data Providers) from the components that store the data (DataSets),
we allow for a loosely coupled flexible system. These components are able to work quite independently from
each other. The DataSet is able to use to services of the Data Providers to retrieve information. The
providers make connections just long enough to retrieve data for the DataSet, and then close them.

Data Access with ADO.NET

13

Main ADO.NET Components

DataAdapter

Data Connection

Northwind
Data source

DataSet

Table

Table

.NET Data Provider

As you can see above, we have our DataSet, which is made up of tables. There is also the .NET Data
Provider which connects to the database and executes our commands.

The DataSet Object
As mentioned earlier, the DataSet is an in-memory representation of data entirely independent of the
original data source. It is a disconnected data object, so that once it's filled with data, it will work
independently of any other objects and needs no connection to the data source.

Tables Collection

DataTable

DataColumn

DataRow

Constraint

DataTable

DataColumn

DataRow

Constraint

Columns Collection

DataSet

Tables Collection

Rows Collection

Constraints Collection

Relations Collection

DataRelation

Chapter 6

14

The methods and objects that we use are similar to that of the relational database model. The DataSet
is made up of five different types of object: Tables, Rows, Columns, Constraints, and Relations
collections, just as in a database. A DataSet can contain zero or more tables.

Let's look at how to create a new DataSet:

Dim myDataSet As DataSet = New DataSet()
' or
Dim myDataSet As DataSet = New DataSet("MyCustomerDataSet")

We can create a new instance of a DataSet just by calling the New keyword on our DataSet object.
You can pass the name of the DataSet as a parameter if you want. If you don't, the default name of
NewDataSet will be used.

DataSets are "filing cabinets" of information that you can access anytime you need to.

The DataTable Object
A DataSet contains a collection of tables as a DataTableCollection. The DataSet stores a
reference to this object in its Tables property. Each individual memory-resident table is referred to as
a DataTable, and there could be zero or more tables in the collection. DataTables contain rows of
data, and each row is made up from columns.

You can create a new DataTable object as follows:

Dim myCustomerTable As DataTable = New DataTable()

' or by specifying the name for the DataTable
Dim myCustomerTable As DataTable = New DataTable("CustomersTable")

The first line creates a new table without any table name parameter, so that the table name will remain
blank. The second line creates a new table but specifies a new table name of CustomersTable.

You can add a new table to a DataSet by the Add method of the DataSet's Tables property:

Dim myDataSet As DataSet = New DataSet("MyDataSet")
Dim myCustomerTable As DataTable = myDataSet.Tables.Add("CustomersTable")

This code will add a new table called CustomersTable to the new DataSet MyDataSet.

You can add an existing table to a DataSet by passing in a DataTable object:

' Create a new DataSet called MyDataSet.
Dim myDataSet As DataSet = New DataSet("MyDataSet")

' Create a new table called MyDataTable.
Dim myDataTable As DataSet = New DataTable("CustomersTable")

' Add the existing table to the DataSet.
Dim myCustomerTable As DataTable = myDataSet.Tables.Add(myDataTable)

Data Access with ADO.NET

15

If you don't specify a table name when adding a new table to a DataSet, the default name of TableN
will be assigned, where N starts at one and is incremented by one with each use, producing names such
as Table1, Table2, or Table8. It is a good habit to always name your tables yourself, and to choose
more descriptive names than Table1, Table2, and so on. If you try to add a table with the same name
as a table already contained by the DataSet, an exception is generated.

To reference a particular table by name in the DataSet:

Dim myCustomerTable As DataTable = myDataSet.Tables("CustomersTable")

Note that ADO.NET is case-sensitive, so you can define two tables with the same name but different
casing if you want. On the other hand, if each table in the DataSet has a unique name, then table
references become case-insensitive so you can reference the table using any case you want.

You can reference a particular table by its index in the DataSet:

Dim myCustomerTable As DataTable = myDataSet.Tables(0)

With tables in a DataSet the index reference always starts at zero, so this code references the first table. The
first table you add to a DataSet will be index 0, the second table you add will be index 1, and so on. You may
find it better to reference these tables by index rather than their names to help maintainability. Should you
change your table names, any developer who reads the code later will not be confused by a table referred to as
Customers instead of CustomerBilling for example. It may be better to leave comments within the code
that give the table names used. At the same time, using indexes can make your code that much less readable. If
you decide on the table names yourself, be sure to use some sort of standard that will withstand the test of time
and avoid confusion in the future. It all depends on how well the code is maintained and kept up to date, and on
any standards used within your company. You should also apply these concepts to DataSets as well.

To remove a table from a DataSet:

myDataSet.Tables.Remove("CustomersTable")
' or

Dim myCustomerTable as DataTable = myDataSet.Tables("CustomersTable")
myDataSet.Tables.Remove(myCustomerTable)

This removes the table named CustomersTable. We can also remove the table by passing in a
DataTable object. The DataSet.Table property holds a reference to the DataTableCollection
object as mentioned earlier that lists all contained tables. We can maintain this collection by calling the
methods of the object, such as Add and Remove. These are the only two methods for removing a table
from a DataSet – you cannot remove it by index.

The DataColumn Object
Before you can add any rows to a table you must define its schema. This is typically created when you
create a new DataSet by right clicking on the DataAdapter control. The schema defines the
structure of the table and, when first created, a table doesn't have any schema associated with it until
you add columns to the table. A column is represented by a DataColumn object.

Chapter 6

16

You can also call other methods to assign a schema to the table such as the ReadXmlSchema or
ReadXml methods of the DataAdapter.

The DataColumn is the key to creating a schema of a DataTable; by adding columns to a
DataColumn collection we build a schema. Within our table we have a collection of columns called
DataColumnCollection. Each collection item will refer to each column name in our table. We can
access these column names by referring to the Columns property of the DataTable.

To view the entire column names in the DataColumnCollection, iterate through the collection as
you would any other collection:

Dim myDataColumn As DataColumn
For Each myDataColumn in myCustomerTable.Columns
 Console.WriteLine(myDataColumn.ColumnName)
Next

If we have a table with the column names Address, City, State, and Zip, we would have a corresponding
DataColumnCollection of these names. We reference these column names by referencing the
collection, as we would any other collection object.

To reference a column by name, use the DataTable's Columns property specifying the column name:

Dim myColumn As DataColumn
myColumn = myCustomerTable.Columns("Address")

We can also reference the column by index:

Dim myColumn As DataColumn
myColumn = myCustomerTable.Columns(0)

This is a zero-based index again. In general, you will find that most indexes are zero-based because that
is closer to the internal mechanisms used to access such data types.

To add a new column to a table, use the Add method of the table's Columns property:

Dim myDataSet As DataSet = New DataSet()

' Add one new table...
myDataSet.Tables.Add("CustomersTable")

' Reference the new table...
Dim myCustomerTable as DataTable = myDataSet.Tables("CustomersTable")

' Add a address column to the new table.
myCustomerTable.Columns.Add("Address", Type.GetType("System.String"))

You must specify a column name and the type as parameters for the Add method. This type can be any
.NET Framework type since we are not tied to any one type of data source. In this case, we create a
column called Address and specify a data type of String.

Just like the table object, if you don't specify a column name when adding a new column to a table, the
default name of ColumnN will be assigned, where N is incremented by one to give default names
starting with Column1.

Data Access with ADO.NET

17

Primary Keys

Most tables have some type of unique column or combination of columns identifying each row of data,
which is called the primary key. This primary key can be used to quickly and easily identify which row
of data you want to work with. All database engines are optimized to locate a record quickest when the
primary key is given. Primary keys, as unique values for a record, also help enforce data integrity.

You can add a primary key by setting the AllowDBNull property of the DataColumn to False and
the Unique property to True:

Dim myColumn As DataColumn = myCustomerTable.Columns.Add("Address",
Type.GetType("System.String"))
myColumn.AllowDBNull = False
myColumn.Unique = True

Or you can specify the PrimaryKey property of the table object; which accepts an array of one or
more DataColumn objects.

Dim myColumn(1) As DataColumn
myColumn(0) = myCustomerTable.Columns("CustomerID")
myCustomerTable.PrimaryKey = myColumn

In the code above, we declare an array with a size of one and use the ColumnID column as an
identifier. Again, the first array item is referenced by an index of 0 since arrays are zero-based.

If you have a composite key made from multiple fields, you can specify a combination of column names
to use for the primary key in the array passed to the PrimaryKey property:

Dim myColumn(2) As DataColumn
myColumn(0) = myCustomerTable.Columns("CustomerID")
myColumn(1) = myCustomerTable.Columns("PostalCode")
myCustomerTable.PrimaryKey = myColumn

We declare an array with a size representing the total number of columns we need to use for our key – in
this case two. We then assign each array item with the relevant columns of our table, CustomerID and
PostalCode, both of which are required to make the unique primary key for this hypothetical table.

The DataRow Object
The DataRow and DataColumn objects make up the DataTable. Using these objects' properties and methods,
you can view, update, insert, and delete information from the tables. The DataRow represents the actual data in the
table and is contained within a DataRowCollection collection object. Like the DataColumnCollection, we
can access multiple items within the collection using standard collection methods.

Rows are represented by a collection within the table called Rows, so if we wanted to access the first
row of data in a table we could do so as shown below, using a zero-based index:

myCustomerTable.Rows(0)

Chapter 6

18

To view all the items in the DataRow collection, iterate through the collection as follows:

CONST ADDRESS_COLUMN As Integer = 2
Dim myDataRow As DataRow
For Each myDataRow in myCustomerTable.Rows
Console.WriteLine(myDataRow(ADDRESS_COLUMN).ToString())
 Console.WriteLine(myDataRow("Address").ToString())' Alternative method
Next

This will display the contents of the third column index in the table using the constant
ADDRESS_COLUMN. This is another zero-based collection so the first row is zero, the second row one,
and so on. We must use a number that represents the index of the column value we are trying to access,
or we can use the column name or a column object.

Next we will talk about how to update the rows in our tables. It's important to be aware that, since we
are disconnected from the database, changes will not be reflected on the server until we apply them on
the database server using the DataAdapter as described later.

To add a new row to a table, use the NewRow method which creates a new empty DataRow object with
the same schema as the table. Bear in mind that this new row is not associated with the table at all at
this point, it just has the same characteristics. Once you have created a new DataRow object, you can
assign the field values, and add the new object to your table using the Add method of the table's Rows
property, passing in the DataRow object as the parameter.

' Create a new row.
Dim myRow As DataRow
myRow = myCustomerTable.NewRow()

' Set the field values.
myRow("Address") = "100 Elm Street"
myRow("City") = "Sacramento"
myRow("PostalCode") = "95825"

' Add the new row to the collection.
myCustomerTable.Rows.Add(myRow)

Every DataRow has a RowState property indicating the state of that row. State is examined in more detail
in the next section. We can check the state of a row before performing any operations on it to ensure that it
meets any conditions we may have. This line will output the current state of the first row in our table:

Console.WriteLine("My Row State is " &
myCustomerTable.Rows(0).RowState.ToString())

To access an individual column, use the Item property of the DataRow. We can use an index value,
column name, or column object to access the column as shown:

Dim myRowNumber As Integer = 0
Dim myColumnNumber As Integer = 2

myCustomerTable.Rows(myRowNumber).Item(myColumnNumber)
' or...

Data Access with ADO.NET

19

myCustomerTable.Rows(myRowNumber).Item("Address")
' or...
Dim AddressColumn As DataColumn
AddressColumn =
myCustomerTable.Columns("Address")myCustomerTable.Rows(myRowNumber).Item(AddressCo
lumn)

We can also access the column by using the column name as a parameter of the DataRow we are
looking at. This is the preferred method of referencing a row:

Dim myRow as DataRow = myCustomerTable.Rows(0)
MessageBox.Show(myRow("Address"))

Here we are looking at the first row in the table, Rows(0), and assigning it to a DataRow object. Once
we have the DataRow, we can display the contents of the required column by passing in its name,
which here is "Address".

Row States

Row states have an important role to play in determining which rows are to be updated. A row can have
various states. Typically, when you modify a record, the corresponding row is flagged as modified,
allowing you to review changes before actually committing them by calling the table's AcceptChanges
method. This method is available for DataSet, DataTable, and DataRow objects and simply places
each altered object's RowState back to the normal un-edited value. This will commit all the changes
you have made since the last AcceptChanges method was called for the table you're working with.
We can also call this method on an individual row as well as an entire table or DataSet.

Here is a list of the RowState values available:

RowState Value Description

Unchanged Indicates that the row has not changed since AcceptChanges was last called.

Added A new row has been added and AcceptChanges has not yet been called.

Modified The row has been changed and AcceptChanges has not yet been called.

Deleted The row has been deleted and AcceptChanges has not yet been called.

Once a row is Added or Modified and AcceptChanges is called, the RowState property is
returned to the Unchanged state. If a row is marked Deleted then those rows will be deleted when
the table's AcceptChanges method is called.

In the diagram below, when the user modifies the Address column in the DataTable called
myTable, the RowState changes from UnChanged to Modified. The user can continue to modify
other columns and rows and, as they do, the corresponding RowState will change to reflect the action
performed on each row. In Step 3), they click the Save button and thus call the AcceptChanges
method of our DataTable. The RowState value of every row in the table is then checked to see if it is
anything other than UnChanged. When a Modified or Added row is discovered, the RowState is
simply set back to UnChanged. If a Deleted row is found, then it will delete the row (but only locally
in the DataSet) and change RowState back to UnChanged. Note that we are still not connected to
any outside data source, such as SQL Server, and all work here is performed in the client application.

Chapter 6

20

Form contains
updateable DataGrid

Updating Information Locally

User modifies Address column of
the second row for example

Save_Click
myTable.Accept.Changes()

2.) RowState changes
from Unchanged to
Modified in Table

VB.NET FORM

Save

myTable

Row(0)

Row(1)

Row(2)

UnChanged

Modified

RowState of Row(1)

2.)

5.) A modified
row is found

4.) Each Row’s
RowState
is inspected

3.) User clicks Save

1.) Address modified

6.) RowState placed in
UnChanged State

RowState of Row(1)

Modified

UnChanged

7.) Get next row

If we need to modify an existing row, access the row and column and assign the new value:

Dim myRow As DataRow = myCustomerTable.Rows(0)
myRow("Address") = "200 Elm Street"
myCustomerTable.AcceptChanges()

In this example, we access the first row of data (row 0) and update the Address field with new details.
Once this new value is assigned, the RowState changes to Modified. Calling the AcceptChanges
method reverts the RowState property to a value of Unchanged.

Please note that these methods only update the local DataSet tables and are not
reflected on the database server. You must explicitly post your changes to the server
using the Data Adapter.

Data Access with ADO.NET

21

Updating many rows at a time can hinder performance since it causes events to fire at each step. You
can temporarily suspend these events by using the BeginEdit method while you make any necessary
changes and ensure all appropriate or missing data is provided. This also disables any constraints, which
we talk about later, that may be set for the table. When you're finished with your modifications, you
must call the EndEdit method, or the CancelEdit method to undo changes and place the row back
in its normal state. Internally, AcceptChanges calls the EndEdit method itself. By committing
updates all at once at the end, you inhibit any validation checks until all your operations are complete.

Here is an example of using BeginEdit and EndEdit:

' Get the first row.
Dim myFirstRow as DataRow = myCustomerTable.Rows(0)

' Edit the first row.
myFirstRow.BeginEdit()
myFirstRow("PostalCode") = "90210"
myFirstRow.EndEdit()

In this example, we call BeginEdit to suspend the state of the row while we edit assign a new value to
the PostalCode column. Even though we have modified the column, its RowState remains
UnChanged because of the BeginEdit call. It's not until we then call EndEdit that the RowState
for this row is changed to Modified. Of course, even then, until we call AcceptChanges on the
DataSet, or a particular table or row, none of these changes will be committed. The AcceptChanges
call restores the RowState property to UnChanged.

Alternatively, you can omit the explicit EndEdit call, and just call AcceptChanges on the DataSet,
table, or row, which implicitly calls EndEdit on all rows that were placed in edit mode with BeginEdit:

' Get the first row.
Dim myFirstRow as DataRow = myCustomerTable.Rows(0)
' Get the second row.
Dim mySecondRow as DataRow = myCustomerTable.Rows(1)

' Edit the first row.
myFirstRow.BeginEdit()
myFirstRow("PostalCode") = "90210"

' Edit the second row.
mySecondRow.BeginEdit()
mySecondRow("PostalCode") = "90210"

' Save changes for each row modified.
myFirstRow.AcceptChanges()
mySecondRow.AcceptChanges()

' Or

' Save all changes in the table.
myCustomerTable.AcceptChanges()

' Or

' Save changes in all the DataSet.
myDataSet.AcceptChanges()

Chapter 6

22

We can also call CancelEdit on a row to take it out of the BeginEdit state. In the above example, if
we call myFirstRow.CancelUpdate or mySecondRow.CancelUpdate before the AcceptChanges
call, then those rows will not be updated. You must call CancelEdit before any call to EndEdit.

While the DataRow is in this BeginEdit state, all new changes to a row are stored separately to the
original values in what are known as the proposed version and the original version, respectively. When
you call EndEdit, the original values in the database are replaced by the values in the proposed version.
The values contained by these versions can be accessed by passing DataRowVersion.Original or
DataRowVersion.Proposed as parameters to the Item property of the DataRow. This is handy when
you want to validate new information provided by the user before saving in the database.

Dim myFirstRow As DataRow = myCustomerTable.Rows(0)

' Edit the PostalCode of the first row.
myFirstRow.BeginEdit
myFirstRow("PostalCode") = "90210"

' Get the first row.
Dim myRow as DataRow = myCustomerTable.Rows(0)
' Review original and proposed values of the first row.
If myRow.HasVersion(DataRowVersion.Proposed) = True Then
 Console.WriteLine(myRow("PostalCode", DataRowVersion.Original))
 Console.WriteLine(myRow("PostalCode", DataRowVersion.Proposed))
End If

' Save all changes, returns RowState back to normal.
myCustomerTable.AcceptChanges()

If you don't call AcceptChanges or EndEdit, RowState will remain as Modified.

To delete a row in a table, call the Delete method of the DataRowCollection. This will mark the
row for deletion, and is the primary method for deleting rows:

Dim myRow As DataRow = myCustomerTable.Rows(0)
myRow.Delete()

myCustomerTable.AcceptChanges()

This deletes the first row in the table. Once you call Delete, the DataRow's RowState is changed to
Deleted, and you must call the table's AcceptChanges method to actually delete the row and move
up all other rows to fill in the in vacated space.

You can call the RejectChanges method of the DataRow to restore a row that has been marked as
Deleted. Like AcceptChanges, this method is also supported by entire DataSets and DataTables.

Dim myRow As DataRow = myCustomerTable.Rows(0)
myRow.Delete()
myRow.RejectChanges()

In this code snippet, we take a row from our table (the first row) and assign it to a DataRow object
called myRow. We then call the Delete method of the collection, marking the row for deletion. We can
now use the table's RejectChanges method should we decide not to delete the specified row,
assuming that you haven't already called the AcceptChanges method.

Data Access with ADO.NET

23

The Remove method on the other hand removes a row from a table as if it never existed, and takes a
DataRow object as the single argument. Unlike the Delete method, which marks the row for deletion,
Remove actually deletes the row from the DataRowCollection but doesn't affect the database. There
is no need to call AcceptChanges with this method since removal of the record is immediate, and
once you remove a row in this way, the only way to get it back is to refresh the DataSet using the
Fill method (RejectChanges won't work).

Dim myRow As DataRow = myCustomerTable.Rows(2)
myCustomerTable.Rows.Remove(myRow)

In this case, the third row in the table was removed (don't forget that zero-based index!).

The diagram below shows what our table looks like internally. We have rows on the left and a column along the
top for each field name in the table, here Customer, Address, Region, and PostalCode. Each row contains the
data pertaining to a particular record; the first row has Bill, 100 Elm Street, Los Angeles, and 90210:

Now is a good time to quickly recap some of the methods we have discussed:

Method Name Description

AcceptChanges Removes any rows where the RowState is marked as Deleted. Sets any rows
where RowState is Modified or Added to UnChanged. Also calls EndEdit
on any rows that may have been edited with BeginEdit but had no explicit
EndEdit. Applies to DataSet, DataTable, and DataRow objects.

RejectChanges This method calls CancelEdit. Any row that has a RowState of
Modified or Deleted will be changed to UnChanged. If a row has a
RowState of Added then the row will be removed. Can be called after
EndEdit method but before any AcceptChanges method is called.
Applies to DataSet, DataTable, and DataRow objects.

Delete Marks a row for deletion by setting RowState to Deleted. Rows are
deleted when AcceptChanges is next called. Call RejectChanges to
return the RowState to UnChanged. Applies to DataRow objects.

Table continued on following page

Chapter 6

24

Method Name Description

Remove Removes a row from the DataRowCollection. You cannot retrieve the
row without repopulating your table. Doesn't commit changes to the
database during an Update call.

BeginEdit Places a DataRow in edit mode. Suspends any event triggering until
EndEdit is called. Applies only to DataRow objects.

EndEdit Ends the suspended edit mode for a row and resumes event triggering.

CancelEdit Takes a row out of edit mode. Can only be called if EndEdit hasn't yet
been called.

The DataRelation Object
You can relate one column to another column in a separate table through what's known as a
DataRelation. All relations within a DataSet are kept in a DataRelationCollection, which
maintains all child and parent relations.

If we had two tables, a customer table and an order table, and both contain a CustomerID column, we
could relate the two to show the customer's orders along with their other details. The Customer table
would be the parent and the Orders table would be the child. If you cast your mind back to Chapter 1
where normalization was discussed, this arrangement allows several orders per customer, but any order
is uniquely linked to just one particular customer.

Parent
Customers

CustomerID
CompanyName

Address
City

Region
PostalCode

Child
Orders

OrderID
CustomerID
OrderDate

ProductOrdered

Relationships may only be created between matching columns in the parent and child tables, so the
column in each table must contain identical data types – if the parent column is an integer, then the
child column must also be an integer.

Below, we reference two columns: the first column is the CustomerID field in the Customers table; the second
is also called CustomerID but this is in the Orders table. We assign these to a DataColumn object since that is
what a DataRelation object needs to create a relation. The field names don't have to be the same, just as long as
the data types are the same type. Next we create a DataRelation object passing in the parent and child
DataColumn object as properties. We give the DataRelation the name CustomerOrders, and we finally call
Add to add the relationship to the relationship collection of the DataSet.

Dim parentColumn As DataColumn
Dim childColumn As DataColumn

Data Access with ADO.NET

25

' Get DataColumn objects.
parentColumn = myDataSet.Tables("Customers").Columns("CustomerID")
childColumn = myDataSet.Tables("Orders").Columns("CustomerID")

' Create DataRelation.
Dim relCustomerOrders As DataRelation
relCustomerOrders = New DataRelation("CustomersOrders", parentColumn, childColumn)

' Add the relation to the DataSet.
myDataSet.Relations.Add(relCustomerOrders)

Now when we display a particular customer, let's say a customer with a CustomerID of 1001, all
records from the Orders table with a CustomerID of 1001 will show as well. We have essentially
linked the two tables together.

Each Customer

Customer#1001

Has

1 or more
orders

Orders
belonging to

Customer #1001

Customer Orders

Order #2
Shoes

Order #1
Socks

Order #3
Pants

Orders

We can add as many relationships as we want to the DataSet, as they are kept in a collection which
has no size limit.

The Constraints Object
Constraints help to enforce data integrity and specify what action to take when records are updated or deleted. A
table has what's called a ConstraintCollection that can hold two types of constraints, UniqueConstraints
and ForeignKeyConstraints. A customer table usually has a value – the primary key – uniquely identifying
each customer. To ensure this stays unique you assign the field a UniqueConstraint ensuring that any value
given for the column is unique. If you try to assign a non-unique value, an exception will be thrown. You can turn
these constraints on or off by changing the EnforceConstraints property to True or False respectively.
Most constraints are set on the server by the DBA, and are often in stored procedures.

You can cascade changes down to the child from the parent by adding different constraints to the
ConstraintsCollection such as a ForeignKeyConstraint. ForeignKeyConstraints control
what action is taken when a column item is updated or deleted in the parent table, so when a parent row is
deleted for example, you may choose to also delete the child row, or to set the child column value to Null
or some default value, or to generate an exception, depending on your business requirements.

Here is an example of setting up a ForeignKeyConstraint:

Chapter 6

26

Dim myFkey As ForeignKeyConstraint

Dim parentColumn As DataColumn
Dim childColumn As DataColumn

' Set parent and child column variables.
parentColumn = myDataSet.Tables("Customers").Columns("CustomerID")
childColumn = myDataSet.Tables("Orders").Columns("CustomerID")

' Create a new foreign constraint.
myFkey = New ForeignKeyConstraint("CustomerFKConstraint", parentColumn,
childColumn)

' Set Null values when a value is deleted.
myFkey.DeleteRule = Rule.Cascade
myFkey.UpdateRule = Rule.Cascade
myFkey.AcceptRejectRule = AcceptRejectRule.Cascade

' Add the constraint, and set EnforceConstraints to true.
myDataSet.Tables("Customers").Constraints.Add(myFkey)
myDataSet.EnforceConstraints = True

To start with, we declare a ForeignKeyConstraint called myFKey, and a parent and child DataColumn
object. These DataColumns point to the CustomerID column in each table, in this case Customer and
Suppliers. We then instantiate a new ForeignKeyConstraint by passing in a constraint name, and the
parent and child columns. We set up the DeleteRule that specifies how to handle the child table when a
parent row is deleted. Here, we are using Rule.Cascade, the default rule, which means delete all related
rows. We also set the UpdateRule to specify what is to happen in the case of an update to the parent row.
Again, we use Rule.Cascade so that any child rows are updated to match.

Here are the rules available for the DeleteRule and UpdateRule properties of a
ForeignKeyConstraint:

Rule Description

Cascade (Default) Deletes or Updates all child rows that contain the parent column value

SetDefault All child rows that contain the parent column value are set to the default
row value

SetNull All child rows that contain the parent column value are set to Null

None No action is taken with the child rows

The AcceptRejectRule is invoked anytime the AcceptChanges or RejectChanges method of a
DataSet, DataTable, or DataRow is called. There are only two rules for this property,
Rule.Cascade or Rule.None, and the default is Rule.None. Once we set these properties in the
preceding code sample, we add the constraint to the ConstraintCollection of our DataSet.
Finally, we set the EnforceConstraints property to True to enable the constraints.

Data Access with ADO.NET

27

We can also add a UniqueConstraint to the ConstraintCollection to ensure that the primary
key of a column is unique. This is a very similar process to setting the primary key shown earlier.

' Declare a ConstraintCollection.
Dim myCKey As ConstraintCollection

Dim myColumn As DataColumn

' Get the column we want to place a unique constraint on.
myColumn = myDataSet.Tables("Customers").Columns("CustomerID")

' Add the constraint to the constraint collection.
myCKey.Add("MyConstraint", myColumn, True)

' Add the constraint collection to the table's constraint collection.
myDataSet.Tables("Customers").Constraints.Add(mCKey)

This code starts with declarations for a ConstraintCollection and a DataColumn object to hold
the column we want to set the constraint for (in this case the CustomerID column). We use the Add
method of the ConstraintCollection, passing in the name of a constraint, the DataColumn
object, and a Boolean parameter indicating if this is a primary key. We then call the Add method of the
Tables.Constraints property and pass in the ConstraintCollection object.

There are many objects that work together to make up the DataSet object. They all work hand and
hand to build the tables' schema as well as manage the data.

Next we will see how to save changes that are made to a DataSet on the server.

Updating the Database
Once changes are made to a DataSet how do we update those changes back to the database? Earlier we
showed how calling the AcceptChanges method updates only local records and not the database proper.
These methods we use next assume you haven't called AcceptChanges on any of your modified records
before you post changes to the server. We have a couple of methods for updating our database. To update
a DataSet call the Update method of the DataAdapter. This can take a DataSet, DataTables, or
an array of DataRow objects, and examines the RowState property to determine which rows have
changed. Then Insert, Update, or Delete is executed depending on the state of the changed row.

When you call a DataAdapter's Update method, you update your changes on the server. As you can
see from the illustration below, we follow a similar process as with the AcceptChanges method:

Chapter 6

28

Form contains
updateable DataGrid

Updating Information to the Server

User modifies Address column of
the second row for example

DataAdapter

Save_Click
myAdapter.Update(myTable)

2.) RowState changes
from UnChanged to
Modified in Table

If RowState=Deleted
DeleteCommand
and so on...

VB.NET FORM

Save

myTable

Row(0)

Row(1)

Row(2)

Command Objects

UpdateCommand

InsertCommand

DeleteCommand

Data Source

UnChanged

Modified

RowState of Row(1)

2.)

5.) A modified
row is found

6.) Run UpdateCommand
4.) Each Row’s RowState

is inspected

7.) Update Record

3.) User clicks Save

1.) Address modified

In the above diagram, when the user modifies the Address column in the DataTable called myTable,
the RowState changes from UnChanged to Modified. The user can keep modifying other columns and
other rows and, as they do, the RowState will change depending on what they did to the row. When they
click on the Save button, which contains a DataAdapter called myAdapter, the Update method of the
DataAdapter is called and the DataTables object, myTable, is passed as a parameter. The
DataAdapter inspects all the rows of that table to see if any RowState values are anything other than
UnChanged. When the DataAdapter discovers, in this case, a Modified row, the UpdateCommand is
performed with the values of the modified row. The data source gets updated and the next row in the table
is inspected until all the rows have been evaluated. Also note that, as an action is performed on a row, the
RowState is changed back to UnChanged. If the DataAdapter discovers an Added or Deleted
RowState, then it will run the corresponding InsertCommand or DeleteCommand object.

Data Access with ADO.NET

29

We can control which updates are completed first if we need to. By default, the DataAdapter will update
each row depending on its order, one row could be deleted and the row after it added. We can use the
GetChanges method of a DataSet or DataTable to control which updates we want to occur first.
GetChanges returns a DataSet containing changes that match the RowState parameter you specify, thus
allowing us to retrieve only records marked as modified, deleted, or inserted, as the code below shows:

Dim myDataSetChanges As New DataSet()

' Gets all changes.
myDataSetChanges = myCustomerDataSet.GetChanges()

' Get records that have been modified only.
myDataSetChanges = myCustomerDataSet.GetChanges(DataRowState.Modified)

' Get records that have been deleted only.
myDataSetChanges = myCustomerDataSet.GetChanges(DataRowState.Deleted)

' Get records that have been added only.
myDataSetChanges = myCustomerDataSet.GetChanges(DataRowState.Inserted)

' Update changes back to actual database.
myDataAdapter.Update(myDataSetChanges)

Once we have a DataSet with only records that have changed, we call the DataAdapter's Update
method passing in this DataSet as shown above.

This allows you to perform updates where you have referential integrity. Let's say you have a Customer
table and an Address table and the Address table contains the primary key of the customer. You would
want to delete the addresses before the customer otherwise you could experience an error. If we were to
delete the customer first, we would have a record that points to another record that doesn't exist. This
would leave "orphaned" records in the database that referential integrity prohibits.

A related method is the Merge method, which merges one DataSet into another keeping all the
original DataSet's row state information:

' Create a new dataset with only the modified records.
Dim myDataSetChanges As New DataSet()
myDataSetChanges = myCustomerDataSet.GetChanges(DataRowState.Modified)

' Merge the changes back into our local dataset.
myNewDataSet.Merge(myDataSet)

' Commit the changes.
myNewDataSet.AcceptChanges()

When we call the Merge method passing in myDataSet, any records in the DataSet are added to
myNewDataSet that now has the records that were in myDataSet along with the row state information
of each record. This is useful when we get data from an outside source or a source not part of our system
that we want to merge into our current set of data. Once we call the AcceptChanges method of
myNewDataSet, we no longer have a modified RowState and we lose any changes we may have had.

Chapter 6

30

As a final note, you must ensure you have updated your changes back to the database by calling the
Update method of your DataAdapter, otherwise the changes will be lost. This must be done before
the AcceptChanges method is called since AcceptChanges clears any and all row states. The
Update needs the row state information to determine which records need updating.

DataSet Sample
Next, we will expand the customer application created in the last chapter to add the capability to insert,
update, and delete data. As it currently stands, our application provides a read-only view of the
database. This is only a quick sample: we will develop a more complex application in later chapters.

Here is what our final result will look like:

Try It Out – Reconfiguring the DataAdapters

1. Open the project from the previous chapter called CustomerApp.

We need to re-configure the data adapter for our customer table so we can perform Insert,
Update, and Delete commands on the table. Right-click on SqlDataAdpter1 and select
Configure Data Adapter.

Data Access with ADO.NET

31

2. The Data Adapter Configuration Wizard dialog will appear prompting for a connection to a database.
The name of our previous connection should appear which will be listed as Servername.Northwind
SQL.dbo where Servername is the name of your particular computer. If the connection doesn't
appear, create a new connection by clicking on the New Connection button.

Click Next when you're finished.

3. The Use SQL statements option should already be selected. Ensure that it is and click Next.

Chapter 6

32

4. The existing SQL SELECT statement should appear on the next pop up window. As we are now
going to insert, update, and delete records, we want to enable the wizard's automatic generation
of INSERT, UPDATE, and DELETE commands. Click the Advanced Options button.

5. The advanced dialog gives us three options. Select the first check box, which will enable the
rest of the check boxes. We want all of the options selected. Click OK when you're finished.

Data Access with ADO.NET

33

Review the SELECT statement on the next screen and click Next.

6. The last screen to be shown is a review of what will be built, and it should indicate that we are
going to generate INSERT, UPDATE, and DELETE statements. Click the Finish button.

7. Repeat the above steps for the second data adapter, SqlDataAdapter2, so that we will be
able to make changes to the Suppliers table.

Try It Out – Update

8. Add a new button to the form and call it btnUpdateData. Set the Text property to Update. Add
one more button to the form and call it btnShowChanges. Set its Text property to Show Changes.

Chapter 6

34

9. The Update button we added will be used to update any changes we have made to the records in
our DataGrid. The Show Changes button will show us any changes we have made to the data.

Add some code to the click event of the Update button by double-clicking on the button:

Private Sub btnUpdateData_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnUpdateData.Click

 Dim RecordsUpdated As Integer

 If CustomerDataSet1.HasChanges Then

 ' Update any customer table changes.
 RecordsUpdated = SqlDataAdapter1.Update(CustomerDataSet1)
 MessageBox.Show(RecordsUpdated.ToString & " customer record(s)
updated.")

 ' Update any supplier table changes.
 RecordsUpdated = SqlDataAdapter2.Update(CustomerDataSet1)
 MessageBox.Show(RecordsUpdated.ToString & " supplier record(s)
updated.")

 ' Refresh the grid.
 btnGetData_Click(sender, e)
 Else
 MessageBox.Show("There are no changed records to update.")
 End If
End Sub

10. Add some code to the click event of the Show Changes button by double-clicking on the button.

Private Sub btnShowChanges_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnShowChanges.Click

 ' Make sure we have changes to show.
 If CustomerDataSet1.HasChanges = False Then
 MessageBox.Show("There are no changed records to show.")
 Exit Sub
 End If

 ' Create a dataset with all changes.
 Dim myDataSet As New DataSet()
 myDataSet = CustomerDataSet1.GetChanges()

 ' Make sure we have no errors.
 If myDataSet.HasErrors = 0 Then

 ' Show only the changed records.
 DataGrid1.DataSource = Nothing
 DataGrid1.DataSource = myDataSet
 End If

End Sub

Data Access with ADO.NET

35

11.Add some code to re-bind the DataSource to our original DataSet and to expand the rows:

Private Sub btnGetData_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnGetData.Click

 ' If connection isn't open then open it.
 If SqlConnection1.State <> ConnectionState.Open Then SqlConnection1.Open()

 ' Fill our customer table.
 SqlDataAdapter1.Fill(CustomerDataSet1)
 ' Fill our suppliers table.
 SqlDataAdapter2.Fill(CustomerDataSet1)

 ' If connection isn't closed then close it.
 If SqlConnection1.State <> ConnectionState.Closed Then
 SqlConnection1.Close()
 End If

 ' Rebind data source in case its not bound to original dataset.
 DataGrid1.DataSource = Nothing
 DataGrid1.DataSource = CustomerDataSet1

 ' Expand all the child rows.
 DataGrid1.Expand(-1)

End Sub

How It Works

First let's look at the code we added under the Update button. We start by checking to see if the
CustomerDataSet1 DataSet has any changes in any of the tables that it contains and, if there are
any changes, we update the database server by calling the Update method of both DataAdapters. If
there are no changes, then these methods won't be called.

 If CustomerDataSet1.HasChanges Then

 ' Update any customer table changes.
 RecordsUpdated = SqlDataAdapter1.Update(CustomerDataSet1)

We show the number of records updated by passing back the result from the Update method.

 MessageBox.Show(RecordsUpdated.ToString & " customer record(s)
updated.")

The same goes for the supplier table; we call the Update method of SqlDataAdapter2 and display
the number of records as well.

 ' Update any supplier table changes.
 RecordsUpdated = SqlDataAdapter2.Update(CustomerDataSet1)
 MessageBox.Show(RecordsUpdated.ToString & " supplier record(s)
updated.")

Chapter 6

36

Once we update any changes, we refresh the DataGrid by calling the Get Data button's click method:

 ' Refresh the grid.
 btnGetData_Click(sender, e)

Now let's see the code behind the Show Changes button in the btnShowChanges_click event that
shows only changed records:

 ' Make sure we have changes to show.
 If CustomerDataSet1.HasChanges = False Then
 MessageBox.Show("There are no changed records to show.")
 Exit Sub
 End If

 ' Create a dataset with all changes.
 Dim myDataSet As New DataSet()
 myDataSet = CustomerDataSet1.GetChanges()

 ' Make sure we have no errors.
 If myDataSet.HasErrors = 0 Then

 ' Show only the changed records.
 DataGrid1.DataSource = Nothing
 DataGrid1.DataSource = myDataSet

 End If

First we check to see if there are any changes in our DataSet, CustomerDataSet1, and display a message
box to the user indicating that no changes have been made if that is the case. When we show our changed
records in the DataGrid, we are binding it to a DataSet that contains just the changed records. We do this by
calling the GetChanges method of our customer DataSet. This method returns a new DataSet with only
changed records; we then verify that it doesn't contain any errors by checking the HasErrors property. The
HasErrors property can be used for DataRow, DataTable, and DataSet objects, so you are not limited to
just checking errors for whole DataSets. As long as there are no errors, we display the contents of the changed
DataSet, myDataSet, in the DataGrid. We then call the Expand method of DataGrid1 to display any
child rows. Once you view the changed records, you can click the Update button to save the changes to the
database. If you don't click the Update button but instead click the Get Data button, the DataGrid is refreshed
with a new DataSet and, as a result, any changes that you may have made will be lost.

Lastly, we added code in the Get Data button. To view our original DataSet we have to re-assign the
original DataSet, CustomerDataSet1, back to the DataGrid. We first set the DataSource to
Nothing to clear any existing DataSource.

 ' Rebind data source in case its not bound to original dataset
 DataGrid1.DataSource = Nothing
 DataGrid1.DataSource = CustomerDataSet1

We then call the DataGrid's Expand method, using a value of -1 to expand all the child rows. We
can also expand an individual row by passing in a number representing that row.

 ' Expand all the child rows.
 DataGrid1.Expand(-1)

Now that we have added code to actually update our DataGrid information, let's go ahead and try it out.

Data Access with ADO.NET

37

Try It Out – Updating DataGrid Information

1. Compile and run the application using the F5 key.

2. Click the Get Data button.

3. Expand the node if not already expanded so that the Customer and Supplier links show.

4. Select the Customers link and modify the second PostalCode record from 05021 to 05023.

5. Click the navigate back button at the top right of the grid to navigate back to the parent. Click the
Suppliers table and modify the first address record from 49 Gilbert Street to 100 Elm Street.

Chapter 6

38

6. Click the Show Changes button. This will bring you back to the parent node.

7. Expand the parent node and click on the Customers link to show the changes made in the
table. Do the same for the Suppliers link also.

Data Access with ADO.NET

39

8. Once you're finished reviewing the changes, click the Update button. You will get messages
indicating how many records were updated in each table. In this case there was one in each.

How It Works

We clicked the Get Data button to fill our DataSet, CustomerDataSet1, with our table information.
This opens the database connection, retrieves the data, then closes the connection. Once our DataSet
is filled, we are disconnected from the data source.

We then modified a customer record and a supplier record and clicked the Show Changes button to
view all changes for each table. When we clicked the Update button, the Update method was called for
the entire DataSet. The Update method examines the RowState property of the data tables to
determine which records were modified. According to the value of RowState, the DataAdapter calls
an INSERT, UPDATE, or DELETE statement to perform the required action.

The GetChanges method determines all the changes made, which were just the two, and which we can
then store in a local DataSet that we bind to the DataGrid to view the changes. By selecting each
link, Customers or Suppliers, we were able to view the changes in the corresponding table.

As you can see, we can update our records with very little code.

Chapter 6

40

ADO.NET Namespaces
In this next section, we will look at the different namespaces that make up ADO.NET and how they are used.

Namespaces help identify a class or hierarchy. The namespace uses the assembly name as part of its naming
convention. It's a way of referencing many assembly files together by tying the assemblies together.

Anytime you create a new project, System.Data and System.XML are automatically referenced by
the project, automatically giving you access to their underlying classes.

If we examine the properties of the System.Data reference, we can see the assembly's name,
description, location, and version information:

Data Access with ADO.NET

41

Let's take a look at the five commonly used ADO.NET namespaces:

System

Data

OleDb

SqlClient

XML

❑ System – the core namespace that contains the fundamental classes and base classes that
define commonly used value and reference data types, events and event handlers, interfaces,
attributes, and processing exceptions.

❑ System.Data – this consists of classes that make up the ADO.NET architecture. Contains
components to help manage data efficiently along with tools to view and update data.

❑ System.Data.OleDb – consists of classes to allow you to connect to OLE DB providers,
execute commands, and view results.

❑ System.Data.SqlClient – contains classes to be used with a SQL data provider and is
optimized to access SQL Server 7.0 or greater. The SQL Server version of the
System.Data.OleDb namespace.

❑ System.XML – provides classes to support XML based operations. The DataSet uses this
for reading and writing XML data including schema files.

The System.Data Namespace
Underneath the System.Data namespace are five classes that support data management:

System

Data

DataSet

DataTable

DataColoumn

DataRow

DataRelation

The System.Data namespace essentially provides all the tools required for management of our data:
table creation, relation management, data management, and schema information.

When we need to declare a class within the namespace, we simply use the New keyword to create a new
instance of the object:

Chapter 6

42

Dim myDataSet As New DataSet()
Dim myTable As New DataTable()
Dim myColumn As New DataColumn()
Dim myRow As DataRow

We can also declare them with their fully qualified names:

Dim myDataSet As New System.Data.DataSet()
Dim myTable As New System.Data.DataTable()
Dim myColumn As New System.Data.DataColumn()
Dim myRow As System.Data.DataSet

We can set up an alias – an alternative way of referring to an object – for a namespace. This is a handy way to
set up shorthand identifiers for some of the longer names. In a new Windows project, we would use an Import
statement for the System.Data at the top of the module in order to set up the alias MyADO as shown:

Imports MyADO = System.Data
Public Class Form1
 Inherits System.Windows.Forms.Form

Windows Form Designer generated code

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim myDataSet As New MyADO.DataSet()
 Dim myTable As New MyADO.DataTable()
 Dim myColumn As New MyADO.DataColumn()
 Dim myRow As MyADO.DataRow

 End Sub
End Class

The System.Data.OleDb and System.Data.SqlClient Namespaces

System

Data

OleDb

OleDbCommand

OleDbConnection

SqlConnection

OleDbDataAdapter

SqlDataAdapter

OleDbDataReader

SqlDataReader

SqlClient

SqlCommand

Data Access with ADO.NET

43

Chapter 5 introduced us to the Command, Connection, and DataAdapter classes, and we look at
these in more detail shortly. We will also take a look at the DataReader class. Note that there are OLE
DB and SQL versions of each class. Since we are using the SQL Server Desktop Engine in this book, we
can use the SqlClient namespace instead of OleDb since it is much quicker and cuts out much the
overhead of the OLE DB layer.

The System.Xml Namespace

System

XML

XMLDataDocument

ReadXmlSchema

WriteXmlSchema

XmlReader

XmlWriter

Since ADO.NET has built-in XML support, the System.XML namespace is an important namespace to
become familiar with. Amongst other things, this namespace helps to define our table schemas, which – as
you may remember – specify the structure of our tables. There is no need to worry about this namespace
right now; this diagram has been included for completeness here. In Chapter 12, we look at ADO.NET and
XML in further detail, and the classes listed above will be used throughout the final chapters of this book.

Dataflow in ADO.NET
Now that we have discussed the components of ADO.NET, let's see how they complement each other
and how they would flow in a real world application.

The data tier contains the data source, to which the managed provider must connect to retrieve
information and fill our tables with information as requested by the client. The following figure
summarizes the basic components of ADO.NET:

DataSet

Windows/Web App

Table

Table

Middle Tier Data Tier

SQL Server
Provider

OLE DB
Provider

Client Tier

DataSet

Table

Table
XML

XML

Data Provider

Data
Adapter

Data
Adapter

Data
Connection

Data
Connection

Chapter 6

44

This diagram shows how ADO.NET is designed to work with a 3-tier or n-tier architecture. In our client
tier, we use a DataSet that is entirely separate and independent from the middle tier. The client tier
DataSet is a mirror image of the DataSet contained within the middle tier, and they communicate
with each other through XML. The middle tier DataSet communicates with the Data Providers to
select, add, update, or delete information. The Data Providers establish a connection to the data tier
whenever information needs to be managed. Each tier can work quite independently all others.

❑ The data tier is where the data store is located, as a SQL Server or an OLE DB data provider.

❑ Next, we have the middle tier, where the brains of the system are – the business logic. In this tier
resides our DataSet, which gets populated by the Data Providers selecting records as appropriate.
The Data Providers located in the middle tier constitute a business data tier component because they
contain business logic that defines how we communicate with the database, and which is specific to
this solution. The System.Data assembly is used to retrieve the data directly from the database.

❑ Lastly we have the client tier, where the users interface with our system; this is sometimes
referred to as the presentation tier. The client tier could comprise a Windows or web
application that interacts with the system.

.NET Data Providers
The .NET Data Providers consist of a number of classes used to connect to a data source, execute
commands, and return records. They form the data tier. The .NET Data Providers are sometimes called
Managed Providers.

There are two types of .NET Data Providers:

❑ The OLE DB Data Provider – to access any OLE DB provider including ODBC drivers for
Oracle, Microsoft Access, Excel, FoxPro, Paradox, dBase, and any other native ODBC or
OLE DB driver. It uses the System.Data.OleDb namespace.

❑ The SQL Server Data Provider– specific to SQL Server 7.0 and greater. It is faster than the
OLE DB provider because it doesn't have to go through the OLE DB layer – it communicates
directly with SQL Server. It uses the System.Data.SqlClient namespace.

Your application's performance and functional requirements will determine the best provider for your
purposes. The chart below sums up when to choose one over the other:

Use the OLE DB Data Provider when: Use the SQL Server Data Provider when:

Using Microsoft SQL Server 6.5 or earlier Using SQL Server 7.0 or greater

You need to use Oracle Using the Microsoft Data Engine

You need to use Microsoft Access You require the best performance possible and
are only using SQL Server

You need support for OLE DB Provider (use the
SQL Data Provider instead of OLE DB Provider
for SQL Server)

There is no future need for other database types
besides Microsoft SQL Server (SQL Server 7.0
and above)

You need support for any native ODBC drivers

Data Access with ADO.NET

45

To use the OLE DB data provider in your project, you must include the OleDb namespace in your code modules:

Imports System.Data.OleDb

To use the SQL Server data provider in your project, you include the SqlClient namespace in your
code modules:

Imports System.Data.SqlClient

Within each managed provider are four components: the Connection, DataAdapter, Command, and
DataReader objects.

DataAdapter

Command Properties

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

DataReader

Stores commands such
as SELECT, UPDATE,
INSERT, and DELETE

Establishes actual
connection

Requests a
connection, sends out

commands from
DataAdapter. Builds

commands
Command

Connection

.NET Data Provider

SQL or OLE DB
Data Source

If you're using the SQL Server Data Provider, you use the SQLDataAdapter, SqlCommand,
SQLDataReader, and SqlConnection form of these objects. For OLE DB Data providers, use the
OleDbDataAdapter, OleDbCommand, OleDbDataReader, and OleDbConnection objects.

Now, let's next look at each of these objects individually.

The Connection Object

This opens a connection to the data source. You can use either the OleDbConnection or the
SqlConnection object. For the OLE DB provider, you use a Provider, Data Source, User ID,
and Password in the connection string. For the SQL provider, you need the same arguments as for the
OLE DB provider, but omit the Provider type (which is always SQLOLEDB). If the connection string
for a SQL provider does specify a Provider parameter, an exception is generated.

The connection string has several commonly used properties:

Chapter 6

46

Property Default Value Description

Provider (Required) Used with OLE DB provider only.
Specifies the provider to use.

Data Source or Server (Required) The name of the server to connect to, for
example: localhost, MYSERVER.

Initial Catalog or
Database

(Required) The database to connect to, for example:
Northwind, Pubs.

User ID (Required if set) The login account user name.

Password or PWD (Required if set) The password for server logon.

Connect Timeout or
Connection Timeout

15 The length of time (in seconds) to wait for
a connection to the server before
generating an error. Make sure this is
adequate when using particularly slow
networks.

Persist Security Info False Whether or not to return security sensitive
information back as part of the
connection string.

Integrated Security or
Trusted_Connection

False Whether to use a secure connection or
not. Either True, False, or sspi (same
as True). Security Service Provider
Interface (SSPI) is a means of secure
authentication when communicating to a
data source.

The connection must be closed when modifying the ConnectionString property. When you set the
property, the connection string is parsed for errors and an exception is generated if it contains incorrect
syntax or property values. A semicolon must be included between each property to allow the parser to
distinguish between them. You can use single quotes or none around a value to set. Any value left blank
will be ignored. Lastly, for true or false values, you can use 'yes' and 'no' as well as 'true' and 'false'.

The minimum arguments to connect to a data source are Provider (in the case of an OLE DB provider),
Data Source, and Initial Catalog. If a username and password is set on the database, then you will
also need those two pieces of information. Now let's take a look at some sample connection strings.

This one connects to a Microsoft Access database:

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Samples\Northwind.mdb;User
ID=;Password=;"

This one connects to an Oracle database:

"Provider=MSDAORA;Data Source=MyOracleDB;User ID=myID;Password=myPWD;"

Data Access with ADO.NET

47

The next one connects an OleDbConnection object to a SQL Server database. Wherever possible, use
the SQL Data Provider if you know you are using a SQL database which doesn't require the Provider
parameter, although you will come across applications that select a data provider at run time.

"Provider=SQLOLEDB;Data Source=localhost;Initial Catalog=Pubs;Password=;User ID=;"

You can set the time before a connection fails to open by modifying your connection string to include a
timeout value:

Dim myConnString As String = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User ID=sa;" & _
 "Connect Timeout=30;"

The ConnectionTimeout property of the Connection object is used to read the timeout value. This
property is read-only and has a default of 15 seconds:

Timeout = myConnection.ConnectionTimeout

Connection Pooling

Connection pooling is enabled by default, and can provide improved performance of your applications
and servers. When you create a new connection, a pool is created based on the connection string. The
next time you create a connection, if the connection string hasn't changed then the same pool will be
used. If the connection string has changed in anyway, then a new pool will be required.

Consider a short example. The following code creates a new connection pool:

' Connection creates a new pool.
myConnString = "Data Source=localhost;Initial Catalog=NorthwindSQL;User Id=sa;"
myConnection = New SqlConnection(myConnString)
myConnection.Open()

If we then create another connection with the exact same connection string, it will simply be added to
our first pool, thus avoiding the overhead imposed when a connection is set up:

' Connection added to existing pool.
myConnString2 = "Data Source=localhost;Initial Catalog=NorthwindSQL;User Id=sa;"
myConnection2 = New SqlConnection(myConnString2)
myConnection2.Open()

Now let's say we create another connection, but this time we have an Initial Catalog argument of
Pubs instead of NorthwindSQL. This will cause a new pool to be created:

' Connection added to a new pool.
myConnString3 = "Data Source=localhost;Initial Catalog=Pubs;User Id=sa;"
myConnection3 = New SqlConnection(myConnString2)
myConnection3.Open()

Chapter 6

48

The DataAdapter Object

The DataAdapter is the physical means of communication between the data source and the DataSet,
and is either a SqlDataAdapter or an OleDbDataAdapter. If the application wants to retrieve or
update records, it uses properties of the DataAdapter that reference Command objects that contain
SELECT, INSERT, UPDATE, and DELETE commands. It is these referenced Command objects that
communicate directly with the data source to manipulate data according to the user's request.

DataAdapter

Command Properties

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

Rows

Columns

Constraints

Relations

DataSet

DataTable

To Data Source

Command Object

The most useful methods of the DataAdapter are the Fill and Update methods. The Fill method
populates a DataSet or table with the specified information. To fill a DataSet, use the Fill method
of a DataAdapter as in the following lines:

Dim myDataSet As New DataSet()
myAdapter.Fill(myDataSet)

We can also use the DataAdapter's Fill method with a DataTable:

Dim myCustomerTable As New DataTable()
myAdapter.Fill(myCustomerTable)

The Update method, as you may've guessed, serves to update records. Edit any rows in your DataSet,
and call the Update method to persist those changes in the data source:

myAdapter.Update(myDataSet)

Use this method in the following fashion when dealing with a DataTable object:

myAdapter.Update(myTable)

Command Object

The Command object is used to set up SELECT, INSERT, UPDATE, and DELETE commands or stored
procedures for a DataAdapter object. There are two types, OleDbCommand and SqlCommand, and
four subtypes: SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand.

Data Access with ADO.NET

49

This object is used to send commands to a database by way of a connection object.

Dim myConnection As New SqlConnection(myConnString)
Dim myAdapter As New SqlDataAdapter()

Dim mySelectQuery As String = "SELECT Address, City, PostalCode FROM Customers"
myAdapter.SelectCommand = New SqlCommand(mySelectQuery, myConnection)

This sets the SelectCommand property of the adapter to a new SqlCommand object, based on the
SELECT query assembled in mySelectQuery, and using the connection called myConnection.

Setting up an InsertCommand is similar: create a new SqlCommand object with the required INSERT
statement and connection object as parameters, and assign it to the InsertCommand property of a
DataAdapter:

Dim myInsertQuery As String = "INSERT INTO Customers(Address, City, PostalCode) "
& _
 "VALUES (@Address, @City, @PostalCode)"
myAdapter.InsertCommand = New SqlCommand(myInsertQuery, myConnection)

Assigning other commands follows the same pattern. For an UPDATE query, use code like this:

Dim myUpdateQuery As String = "UPDATE Customers SET Address='200 ABC Street', " &
_
 "City='Beverly Hills' WHERE CustomerID='DUMON'"
myAdapter.UpdateCommand = New SqlCommand(myUpdateQuery, myConnection)

Likewise, for a DELETE query, create a new SqlCommand object and assign it to the DeleteCommand
property of an DataAdapter:

Dim myDeleteQuery As String = "DELETE FROM Customers WHERE CustomerID='DUMON'"
myAdapter.DeleteCommand = New SqlCommand(myDeleteQuery, myConnection)

If you create your Command objects manually instead of using the data wizards, the SqlCommandBuilder
class provides an easy way to generate the SQL INSERT, UPDATE, and DELETE commands that the data
wizards automatically produce. This class generates SQL statements to INSERT, UPDATE, and DELETE single
tables based on the SELECT statement provided. Be aware though that, with this approach, you won't have as
much control as if you were to create such commands yourself and the performance isn't the best it could be,
because the class must query the database schema for information such as table column names, size, type,
and key information. The generated statements provide for optimistic concurrency (see Chapter 10) and for
refreshing the DataSet, as provided by the Data Adapter Wizard. This can be really useful if our application
allows the users to design their own SELECT statements, because it gives us the ability to change any related
INSERT, UPDATE, and DELETE commands programmatically. You can only use single tables with your
DataAdapters so, if you're linked to multiple tables, you will get an exception.

Using the SqlCommandBuilder is quite straightforward: just declare a new object and pass in a
DataAdapter:

Dim myBuilder As New SqlCommandBuilder(myAdapter)

' Show the INSERT statement that was generated.
MessageBox.Show(myBuilder.GetInsertCommand.CommandText)

Chapter 6

50

After the above code, you will be able to execute the Update method of your DataAdapter to run the
appropriate INSERT, UPDATE, and DELETE commands as required. These commands are built on the
fly when the Update method is called, so you won't be able to see any of the Command object
properties by inspecting your DataAdapter's contents. To retrieve the commands that will be used
during an update, use the GetInsertCommand, GetUpdateCommand, and GetDeleteCommand
properties of the SqlCommandBuilder object.

We're not limited to just SQL statements when we create our Command object, as we can also call
stored procedures:

Dim mySelectCommand As SqlCommand
mySelectCommand = New SqlCommand("DeleteCustomer", myConnection)

mySelectCommand.CommandType = CommandType.StoredProcedure

Dim myParm As SqlParameter
myParm = mySelectCommand.Parameters.Add("@CustID", SqlDbType.NVarChar, 10)
myParm.Value = "DUMON"

myConnection.Open()

Dim RecordsAffected As Integer = mySelectCommand.ExecuteNoQuery()
myConnection.Close()

We create a new Command object and pass in the name of our stored procedure, which is
DeleteCustomer. Within the DeleteCustomer stored procedure, there would be a SQL statement as
shown below. We have to specify the type of command we want to execute, namely a stored procedure,
using the CommandType.StoredProcedure property value. We then create a new SqlParameter to
contain our parameter name, type, size, and value. We must then open our connection and execute the
stored procedure using the ExecuteNoQuery method of the Command object. ExecuteNoQuery
executes the SQL statement or procedure associated with the Command object and returns the number of
records affected by the operation. When finished, we close the connection.

CREATE PROCEDURE dbo.DeleteCustomer
(

@ReturnValue INT = Null OUTPUT,
@CustID INT

)
AS

DELETE FROM Customers WHERE CustomerID = @CustID
SELECT @ReturnValue = @@ROWCOUNT

The DataReader Object

If you don't need to manipulate or modify records, you can greatly increase performance by using a
DataReader. This is a forward only reader that can only read, not write, data. You're working directly with
a data steam and not in-memory objects as with the DataSet. If you just want a quick display of your data
then the DataReader is the object to use. Since we don't have all the bells and whistles of the DataSet,
that allow it to manipulate records, go backwards, and jump to specific records, we cut out all the associated
overhead, resulting in much improved performance. Internally, the DataAdapter itself uses a
DataReader to populate a DataSet and, as you may expect, there are two types of data reader: the
OleDbDataReader and the SqlDataReader. Unfortunately the DataReader can't bind to a DataGrid
like the DataSet can, so you must manually display any information read from a DataReader.

Data Access with ADO.NET

51

To populate a DataReader, you follow all the same steps of populating a DataSet as far as setting up
your Command objects and connections. Since we don't have the capability to UPDATE, DELETE, or
INSERT data with a DataReader, we don't need a DataAdapter.

To initialize a DataReader object, call the ExecuteReader method of the Command class:

Dim myReader As SqlClient.SqlDataReader = mySelectCommand.ExecuteReader()

The following constructs a DataReader object. The type of reader you create, whether SQL or OLE
DB, will depend on the Command and Connection object you are using:

Dim myConnection As New SqlClient.SqlConnection()
myConnection.ConnectionString = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User Id=sa;"

Dim mySelectQuery As String = "SELECT Address, City FROM Customers"
Dim mySelectCommand As New SqlClient.SqlCommand(mySelectQuery, myConnection)
myConnection.Open()

Dim myReader As SqlDataReader
myReader = mySelectCommand.ExecuteReader()

Use the Item property to get a value for a particular field. Pass the name of the field you want to
retrieve or the index value representing the ordinal position of that field:

Console.WriteLine(myReader.Item("Address"))

To read records, use the Read method of the DataReader to load the next row into the Reader
object. Read returns True as long as there are more records to read. Since a DataReader is a forward
only reader, there are no methods to move backwards through the result set. Initially, the reader is
located just prior to the first record, so you must call Read before you may access any records:

While myReader.Read()
 Console.WriteLine(myReader.Item("Address"))
End While

You can also call the methods GetString, GetInt16, GetDouble, or GetDateTime according to
the specific type of the column in question. We can call GetName to get the name of the field, and
GetType to determine the type of the field. These methods all take a zero-based index as the single
argument so, to access the first field in your result set, you would use index 0. In this example, we
retrieve the first column value, which is taken to be of type String:

CONST CUSTOMERID_COLUMN As Integer = 0

While myReader.Read()
 Console.WriteLine(myReader.GetString(CONST CUSTOMERID_COLUMN))
End While

If you try to display a record that is Null you will get an exception. This isn't difficult to avoid, as in the
next code extract which uses the IsDBNull property to check whether a field is Null. This property
takes a zero-based index representing the ordinal position of the field you want to check.

Chapter 6

52

CONST ADDRESS_COLUMN As Integer = 1

' Always call Read before accessing data.
While myReader.Read()
 If myReader.IsDBNull(ADDRESS_COLUMN) = False Then ' make sure City field is
not Null
 Console.WriteLine(myReader.Item("Address") & ", " & myReader.Item("City"))
 End If
End While

Now let's see how to create a DataReader using the OLE DB data provider:

' Specify a SELECT statement.
Dim mySelectQuery As String = "SELECT Address, City FROM Customers"
' Create a new connection object.
Dim myConnection As New OleDbConnection(myConnString)
' Create a new command object.
Dim myCommand As New OleDbCommand(mySelectQuery, myConnection)
' Open the connection.
myConnection.Open()

' Call ExecuteReader which returns a DataReader object.
Dim myReader As OleDbDataReader
myReader = myCommand.ExecuteReader()

' Always call Read before accessing data.
While myReader.Read()
 Console.WriteLine(myReader.GetString(1) & ", " & myReader.GetString(2))
End While

' Always call Close when done reading.
myReader.Close()

' Close the connection when done with it.
myConnection.Close()

To create a DataReader for the SQL Server data provider, you would only need to change a few declarations:

Dim mySelectQuery As String = "SELECT Address, City FROM Customers"

' Create a new connection object.
Dim myConnection As New SqlConnection(myConnString)

' Create a new command object.
Dim myCommand As New SqlCommand(mySelectQuery, myConnection)

' Open the connection.
myConnection.Open()

' Call ExecuteReader which returns a DataReader object.
Dim myReader As SqlDataReader
myReader = myCommand.ExecuteReader()

' Always call Read before accessing data.
While myReader.Read()

Data Access with ADO.NET

53

 Console.WriteLine((myReader.GetString(1) & ", " & myReader.GetString(2))
End While

' Always call Close when done reading.
myReader.Close()

' Close the connection when done with it.
myConnection.Close()

The Common Model

The common model uses the same set of code for both the OLE DB provider and the SQL Server
provider. Just by changing the initial declarations, we can switch between the two different data
providers while keeping most of the remaining code intact.

Here is how we may use the OLE DB data provider:

Dim myDataSet As DataSet

Dim myConnection1 As New OleDb.OleDbConnection()
myConnection1.ConnectionString = "Provider=SQLOLEDB;Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User Id=sa;"

Dim mySelectCommand1 As New OleDb.OleDbCommand()
mySelectCommand1.CommandText = "SELECT Address, City, Region, PostalCode FROM
Customers"

mySelectCommand1.Connection = myConnection1

Dim myDataAdapter1 As New OleDb.OleDbDataAdapter()
myDataAdapter1.SelectCommand = mySelectCommand1

myDataSet = New DataSet("MyNewDataSet")

myDataAdapter1.Fill(myDataSet)

If we then decide to use the SQL data provider, we only need to change our declarations and
connection string. Everything else, including our method calls, stays the same.

Dim myDataSet As DataSet

Dim myConnection1 As New SqlClient.SqlConnection()
myConnection1.ConnectionString = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User Id=sa;"

Dim mySelectCommand1 As New SqlClient.SqlCommand()
mySelectCommand1.CommandText = "SELECT Address, City, Region, PostalCode FROM
Customers"

mySelectCommand1.Connection = myConnection1

Dim myDataAdapter1 As New SqlClient.SqlDataAdapter()
myDataAdapter1.SelectCommand = mySelectCommand1

myDataSet = New DataSet("MyNewDataSet")

myDataAdapter1.Fill(myDataSet)

Chapter 6

54

ADO.NET's syntax lends itself to easily and painlessly switching our data sources. If our code uses only
a SQL Data Provider, and we wish to add support for other OLE DB providers, the code re-writing
required would be similarly minimal.

We could create a function to determine whether we should use a SQL Data Provider or an OLE DB Data
Provider by checking the connection string to see if it contains the word "Provider", as shown below:

Public Function GetDataSet(ByVal myConnection as String) As DataSet

 ' Convert myConnection to upper case and look for the word PROVIDER.
 Dim UseOleDbProvider As Boolean

 If myConnection.ToUpper.IndexOf("PROVIDER") <> -1 Then UseOleDbProvider = True

 If UseOleDbProvider = False Then ' The word Provider was not found in the
string.
 ' Get DataSet from SqlDataAdapter.
 Else ' The word Provider was found in the string, so use an OLE DB Provider.
 ' Get DataSet from OleDbDataAdapter.
 End If

End Function

Here, we have a Boolean variable, UseOleDbProvider, that, if set to True, indicates that we should use an
OleDbDataAdapter; otherwise, we should use a SqlDataAdapter. The IndexOf method searches the
connection string for the substring "PROVIDER", returning the starting position of where the text was found, or
-1 if it is not found. If it returns something other than -1, then we know the connection string contains a
Provider argument, and is hence suitable for an OleDbDataAdapter. We can then use UseOleDbProvider
to programmatically choose between the SQL Data provider and the OLE DB Data Provider.

When there is a Provider argument, we can further check whether we can use the SQL Data Provider
anyway if the OLE DB provider is SQLOLEDB, as in the highlighted code below:

Public Function GetDataSet(ByVal myConnection as String) As DataSet

 ' Convert myConnection to upper case and look for the word PROVIDER.
 Dim UseOleDbProvider As Boolean

 If myConnection.ToUpper.IndexOf("PROVIDER") <> -1 Then UseOleDbProvider = True

 ' Check to see if we can still use the SQL Data Adapter even though
 ' an OLE DB provider was chosen.
 If UseOleDbProvider = True Then ' We are using an OLE DB provider.
 If myConnection.ToUpper.IndexOf("SQLOLEDB") <> -1 Then UseOleDbProvider =
False
 End If

 If UseOleDbProvider = False Then ' The word Provider was not found in the
string.
 ' Get DataSet from SqlDataAdapter.
 Else ' The word Provider was found in the string so we are using an OLE DB
provider.
 ' Get DataSet from OleDbDataAdapter.
 End If

End Function

Data Access with ADO.NET

55

These are just a couple of ways that you can use the common model to your advantage.

DataReader Sample Project
We are going to create an application to monitor the level of product supplies in stock for the fictional
Northwind company, and display an alert if the quantity of items in stock falls to or below a given
reorder level. This can be set up with a timer to monitor daily, hourly, or even every minute.

In our application, we're going to open the NorthwindSQL database and read a list of products and display a
warning for any products where the quantity in stock falls below a certain level, after checking to make sure
there are none already on order. We shall display product records in a ListView control. The ListView
control is commonly used for displaying information, and produces output similar to that produced by
Windows Explorer when it shows you the files in a directory, along with the details of each file. It is suitable
for our purposes, unlike the DataGrid, because the latter does not support the use of a DataReader.

Try It Out – Building our DataReader

1. Create a new Visual Basic Windows Application using the built in template and name it
ProductSupplyMonitor.

Chapter 6

56

2. Find the ListView control in the Toolbox and place one on Form1, along with a Button as shown:

3. Set the following properties for the ListView and Button controls:

Control Property Value

ListView1 Anchor

BackColor

GridLines

Font

View

Top, Bottom, Left, Right

255,192,128

True

Microsoft Sans Serif, 9pt

Details

Button1 Name

Text

Anchor

btnCheckStock

Check Stock

Bottom, Left

4. In the Properties window for ListView1, select the Columns property ellipsis button to bring
up the ColumnHeader Collection Editor.

Data Access with ADO.NET

57

5. Click on the Add button five times to add five columns to the ListView. We're going to add
columns for ID, Product, InStock, OnOrder, ReorderLevel, and Discontinued.

Chapter 6

58

6. Set the ColumnHeader properties for all five as shown:

Member Text TextAlign Width

ColumnHeader1 ID Left 35

ColumnHeader2 Product Left 185

ColumnHeader3 InStock Center 60

ColumnHeader4 OnOrder Center 60

ColumnHeader5 ReorderLevel Center 90

ColumnHeader6 Discontinued Center 90

When you're finished setting these column properties, click OK.

7. Double-click on the button and add the following code:

Private Sub btnCheckStock_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles
btnCheckStock.Click

 ' Track what row we're adding to the ListView.
 Dim currentRow As Integer

 ' Define the column indexes.
 Const PRODUCTID_COLUMN As Integer = 0
 Const PRODUCTNAME_COLUMN As Integer = 1
 Const UNITS_INSTOCK_COLUMN As Integer = 2
 Const UNITS_ONORDER_COLUMN As Integer = 3
 Const REORDERLEVEL_COLUMN As Integer = 4
 Const DISCONTINUED_COLUMN As Integer = 5

 ' Create a new connection object.
 Dim myConnection As New SqlClient.SqlConnection()
 ' Define the connection string.
 myConnection.ConnectionString = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User
Id=sa;Password=;"

 ' Define the SQL statement.
 Dim mySQLString As String = "SELECT ProductID, ProductName, UnitsInStock,
" & _
 "UnitsOnOrder, ReorderLevel, Discontinued FROM
Products"

 ' Create a new command object.
 Dim mySelectCommand1 As New SqlClient.SqlCommand(mySQLString,
myConnection)
 ' Open the connection.
 mySelectCommand1.Connection.Open()
 ' Assign the product listing to a DataReader.

Data Access with ADO.NET

59

 Dim myReader As SqlClient.SqlDataReader = mySelectCommand1.ExecuteReader()

 ' Clear out existing items in ListView.
 ListView1.Items.Clear()

 ' Read all the rows of data.
 While myReader.Read() = True
 Try
 ' Add items to ListView.
 ListView1.Items.Add(myReader.Item("ProductID"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("ProductName"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("UnitsInStock"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("UnitsOnOrder"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("ReorderLevel"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("Discontinued"))

 ' If items in stock is less than reorder level and...
 ' If there are no units on order and...
 ' The item hasn't been discontinued then... Flag It!
 If myReader.GetInt16(UNITS_INSTOCK_COLUMN) <= _
 myReader.GetInt16(REORDERLEVEL_COLUMN) And _
 myReader.GetInt16(UNITS_ONORDER_COLUMN) = 0 And _
 myReader.GetBoolean(DISCONTINUED_COLUMN) = False Then

 ' Change In Stock Qty to RED.
 ListView1.Items.Item(currentRow).SubItems.Item(_
 UNITS_INSTOCK_COLUMN).ForeColor =
Drawing.Color.White
 ListView1.Items.Item(currentRow).SubItems.Item(_
 UNITS_INSTOCK_COLUMN).BackColor =
Drawing.Color.DarkRed

 End If
 ' Increment current row counter.
 currentRow = currentRow + 1
 Catch
 ' Handle Nulls.
 End Try
 End While
End Sub

8. Compile and run the project, and click the CheckStock button to bring up a display like that
shown below. You may need to make some adjustments to the InStock field of your database
to ensure some items require reordering.

Chapter 6

60

Above is the final result of our project. We can see that the first item, with ID 1, only has five items in stock, below
the reorder level of 10, that there aren't any on order, and that the item hasn't been discontinued. Consequently,
this item is flagged up for reorder. If we look at the second row, we see that, although we are below our reorder
level, there are some already on order, so this item doesn't need to be flagged, nor is the product with ID 5, because
that is discontinued. Item number 6 is also flagged because it is below the reorder level.

The reorder levels are a field in the database like any other, so your interface application would allow
users to adjust this value as appropriate, just as any other column. The stock check program could be
configured to email someone when stock drops below certain thresholds. You can learn about emailing,
services, and other advanced features in Wrox Press's Professional Visual Basic .NET.

How It Works

First, we declared a counter called currentRow to keep track of which row we're currently adding to the
ListView. As each row is added, we increment this counter by one. Notice how we have defined all the
column indexes as constants so we can easily reference them when retrieving column values. For the purposes
of this example, these constants have been placed inside our local procedure, but we would often have them
elsewhere in a module or class that would readily allow us to include them in any other routine as required. The
constants denote the ordinal positions of each column, in sync with the SELECT statement that we will be using:

Private Sub btnCheckStock_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles
btnCheckStock.Click

 ' Track what row we're adding to ListView.
 Dim currentRow As Integer

 ' Define the column indexes from the SELECT statement.
 Const PRODUCTID_COLUMN As Integer = 0
 Const PRODUCTNAME_COLUMN As Integer = 1
 Const UNITS_INSTOCK_COLUMN As Integer = 2
 Const UNITS_ONORDER_COLUMN As Integer = 3
 Const REORDERLEVEL_COLUMN As Integer = 4
 Const DISCONTINUED_COLUMN As Integer = 5

Data Access with ADO.NET

61

Next, we created a new SqlConnection object and assigned a connection string to the ConnectionString
property. This includes the name of the server we are connecting to (here we use localhost, but this may
vary depending on where your SQL Server is situated), the name of the database we want to connect to (the
NorthwindSQL database), and the user ID and password that our SQL Server requires.

 Dim myConnection As New SqlClient.SqlConnection()
 myConnection.ConnectionString = "Data Source=localhost;" & _
 "Initial Catalog=NorthwindSQL;User
Id=sa;Password=;"

Then we built a SELECT command by creating a new SqlCommand object and passing in the SELECT
statement to be used, along with the Connection object. Notice our column constant values are
defined from 0 through 5, representing each column's position in the SELECT statement. When our
records are returned, we will have a total of six columns.

Next we open the connection using the Open method. If any information in the connection string is
incorrect, an exception will occur.

 Dim mySQLString As String = "SELECT ProductID, ProductName, UnitsInStock,
" & _
 "UnitsOnOrder, ReorderLevel, Discontinued FROM
Products"

 Dim mySelectCommand1 As New SqlClient.SqlCommand(mySQLString,
myConnection)

 mySelectCommand1.Connection.Open()

To populate the DataReader, we call the ExecuteReader method of the Command object:

 Dim myReader As SqlClient.SqlDataReader = mySelectCommand1.ExecuteReader()

Since we will be repopulating the ListView every time we need to check the stock levels, we need to make
sure we clear it first with the Items Clear method, otherwise rows will just get stacked on top of rows.

 ' Clear out existing items in ListView.
 ListView1.Items.Clear()

Now we can read each record by calling the Read method of our DataReader. Remember that this method
returns True as long as there are records left to read. To access each field or column, use the DataReader's
Item property, passing in the name of the column to display. The records will be displayed on the
ListView one row at a time. The first item is added to the ListView by calling the Items.Add method to
add it to the first column. Any column on the same row after that must be added by calling the
SubItems.Add method of the Item object for the current row, adding the column as a 'sub-item'.

 ' Read all the rows of data.
 While myReader.Read() = True
 Try
 ' Add items to ListView.
 ListView1.Items.Add(myReader.Item("ProductID"))

Chapter 6

62

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("ProductName"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("UnitsInStock"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("UnitsOnOrder"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("ReorderLevel"))

ListView1.Items.Item(currentRow).SubItems.Add(myReader.Item("Discontinued"))

If any field is Null, an exception is produced, so we place these statements within a Try...Catch block
to resume at the next record and ignore any Null values. In general, though, it is preferable to handle
Nulls using the IsDbNull method of the DataRow object.

Once we have added all the column data for the current row, we check to see if the quantity in stock is
less than or equal to the value of the reorder level column. If it is, we then check to see if there are any
more on order or if the item has been discontinued. If neither of those are the case, then we mark the
InStock column in red so it stands out and warns the user that this particular item is low on stock.

 ' If items in stock is less than reorder level and...
 ' If there are no units on order and...
 ' The item hasnt been discontinued then... Flag It!
 If myReader.GetInt16(UNITS_INSTOCK_COLUMN) <= _
 myReader.GetInt16(REORDERLEVEL_COLUMN) And _
 myReader.GetInt16(UNITS_ONORDER_COLUMN) = 0 And _
 myReader.GetBoolean(DISCONTINUED_COLUMN) = False Then

 ' Change In Stock Qty to RED.
 ListView1.Items.Item(currentRow).SubItems.Item(_
 UNITS_INSTOCK_COLUMN).ForeColor =
Drawing.Color.White
 ListView1.Items.Item(currentRow).SubItems.Item(_
 UNITS_INSTOCK_COLUMN).BackColor =
Drawing.Color.DarkRed

 End If

Finally, we increment our current row counter and restart our While loop.

 ' Increment current row counter.
 currentRow = currentRow + 1
 Catch
 ' Handle Nulls.
 End Try
 End While
End Sub

Data Access with ADO.NET

63

Summary
So what have we learned in this chapter? We've had a little look at the history and evolution of data
access that has led to today's ADO.NET. We compared it with the previous incarnation of ADO, and
learned that ADO.NET is designed with disconnected data access strongly in mind, and we saw how the
disconnected model readily lends itself to working with the Internet. ADO.NET's key feature to enable
this is that the DataSet is a disconnected object held completely in memory. We also looked at
ADO.NET namespaces and the different components that make up the DataSet, before examining
data flow, and building a simple application based on the DataReader object. I hope that you are now
pretty comfortable with ADO.NET, and have a solid foundation on which to grow your understanding
of this important and very useful technology. In the next chapters, we will dissect the DataSet further,
and work through the process for updating data in a data store step by step.

Questions
1. What is a DataSet?

2. What are the two .NET Data Providers (sometimes called Managed Providers)?

3. What are the four components of the .NET Data Providers?

4. What method do you use to fill a DataSet?

5. What is a DataReader and why would we use it?

6. Can you update records with a DataReader?

7. What are the different namespaces used with ADO.NET?

8. What is the means used by ADO.NET to send a SELECT command to the database?

9. What method do you use to retrieve the changes you have made to a DataSet or table?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 6

64

Reading Data into the DataSet

Over the course of the next four chapters, we shall build a Product Management System for the
NorthwindSQL database. The Product Management System is based on what a real-world company
might expect from a database application. In this chapter, we start off by implementing one of the user
interfaces, before moving on to cover how a DataSet can be populated according to the requirements
entered via the user interface. Specifically, we shall:

❑ Introduce the Product Management System

❑ Introduce the four Product Management System chapters and the steps we will undertake in each

❑ Build the Search Screens to allow searching for products and suppliers

❑ Populate the DataSet programmatically instead of with a wizard

❑ Using stored procedures, fill a DataSet with complete tables from the database and then
create relationships between the tables

❑ Write the business logic to dynamically build a SQL statement to fulfill the user's criteria
given on the Search Screen

❑ Fill a DataSet with the results of the SQL query

❑ Verify in the Output window that the data in the DataSet correctly reflects the user criteria
entered on the Search Screen

At the end of this chapter, we recap what we've learned and, to ensure you have a good grasp on these
concepts, present a short quiz before moving on to part two in Chapter 8.

The Product Management System Overview
In this chapter, we commence our Product Management System – a typical example of the sort of
application you may be asked to write in your professional career – and we continue its development in
Chapters 8 through 10. After reading this book and completing the exercises at the end of each chapter,
you should have sufficient knowledge to build such applications unassisted. As your career develops,
you will undoubtedly refine the procedures suggested here, but this sample project will give you a firm
foundation to begin building database applications with Visual Basic .NET.

Chapter 7

2

The Product Management System is based on the NorthwindSQL database used throughout this book.
The basic purpose of the system is to provide a means for Northwind employees to manage the products
they sell. This management includes adding details of new products, updating existing product
information, adding new product suppliers, or updating existing supplier information. The Product
Management System will consist of the three key screens below:

❑ Product Search Screen. Allows for ad-hoc searching of product information. The user can
specify particular criteria to search on. Multiple criteria can be specified, and all matching
records are then displayed in a grid. The user will be able to double-click on a particular
record in the results pane to open the record in View/Edit mode on a separate screen. An
example of the Products Search Screen is shown below with some search results in the grid:

❑ Supplier Search Screen. Allowsfor ad-hoc searching of supplier information. It functions in
the same manner as the Products Search Screen described above. The user can switch from
the Products Search Screen to the Suppliers Search Screen by specifying the search method
option on the form. An example of the Suppliers Search Screen is shown opposite:

Reading Data into the DataSet

3

❑ Add/View/Edit Products Screen. When a Product record in the grid of results returned by the
Products Search Screen is double-clicked, this screen will appear. It shows details of the given
product record and allows the user to modify existing values. There will be a button on this
form to allow for new products to be added. An example of this screen is shown overleaf:

Chapter 7

4

❑ Add/View/Edit Suppliers Screen: When a Supplier record in the grid on the Suppliers Search
Screen is double-clicked, this screen will appear. It functions in the same manner as the
Products Screen described above. An example of this screen is shown opposite:

Reading Data into the DataSet

5

You should now have some idea what we intend to achieve, so let's look at a breakdown of the steps we
will take to build it.

Chapter 7: Part 1 – Retrieving Data from the Database
Later in this chapter, we will build the Search Screen user interface to allow the user to specify criteria
for searching for products or suppliers. We will build two DataSets: one to hold complete tables that
will later be used as code tables and the other to hold the results of the user's search. A significant
portion of this chapter will consist of building the user interface for the Search Screen and coding the
SQL statement that reflects the user's input. Most importantly, however, we will see the DataSet,

described in detail in Chapter 6, put to good use.

At the end of this chapter, we will have implemented code that builds a SQL statement according to the
requirements provided by the user, retrieves matching records into a DataGrid, and outputs the results
to the Output window (so we can verify that it worked properly). In the next chapter, we write the code
to display the contents of the DataGrid on the Search Screen.

Chapter 7

6

Chapter 8: Part 2 – Displaying Data on Screen
Chapter 8 picks up from where we left off to provide the code to display the search results on screen for
the user. We will cover various methods of binding to DataSets that facilitate the display of
information, and create the user interface for the Add/View/Edit Products Screen and the
Add/View/Edit Suppliers Screen. We will also implement the code to open either of these screens to
show full details for records in the DataGrid display when the user double-clicks them.

Chapter 9: Part 3 – Updating the Data in the Database
based on User Input

This chapter focuses on updating data in the database according to any changes made on the
Add/Edit/View screens. We cover how to get changes in a local DataSet back into the underlying
database. Stored procedures will be created and called from the code to actually make the database
updates. We will also add some coding for input validation and basic error handling.

Chapter 10: Part 4 – Handling Update Conflicts and Touring
the Completed Application

Finally, we explore how to handle concurrency conflicts that occur when a record that is being updated
is modified by some other user in the interim. We look at a variety of ways of dealing with this situation.
Most excitingly of all, we recap what we have accomplished over the four chapters and demonstrate our
fully functional Product Management System.

Without further ado, let's get stuck into the details of part one. We should first work through all the
steps involved in building the Search Screens that the user uses to specify what information we need to
pull out into the DataSet.

Creating the User Interface for the Search Screens
Before we delve into creating the user interface for the search screens, it is important to give you some
background on a critical topic – inheritance – that plays a key role in what we will be doing shortly.
Inheritance is a powerful new feature of Visual Basic .NET that provides numerous advantages.
Inheritance allows you to base a new class on an existing class and then make whatever necessary
changes or additions you need in order to customize it. The biggest advantage to using inheritance is
that you can re-use code that you've already written instead of repeating the code for slightly different
variations of the same thing.

The base class is what we call the original class. The subclass (also called child class) is the class that
inherits all of the functionality from the base class. Virtually any class we create can act as a base class
from which other classes can be derived. By adding a single line of code to a class module, you can
inherit all of the functionality from some other class. Here is an example:

Reading Data into the DataSet

7

Public Class clsCustomer
 Inherits clsPerson

In the code example above, the clsCustomer class inherits all functionality from clsPerson, plus
then allows you to add new functionality to expand upon the person class. People sometimes refer to
inheritance as subclassing, although inheritance is typically the more preferred term.

Visual inheritance is a type of inheritance that allows you to inherit both the user interface and other
code aspects from a class. When a class module has user interface elements (such as if it is a form), then,
when you add the Inherits statement as shown above, you inherit the user interface aspects as well.
For example, visual inheritance allows you to define certain user interface elements once and then use
them multiple times across projects. A good example might be to create a form that contains the menus,
logo, size, etc. in the standard manner that your organization wants for each application. Instead of re-
creating these preferences for each form you build, you can simply build these preferences once in a
base form and then inherit from that form in all other forms that you add to your projects.

In our Product Management System, we are going to use visual inheritance to create a base search form
that contains the functionality that both the products and suppliers search forms have in common. Then,
to each subclass (the product search form and supplier search form), we will add the functionality that
makes that particular form unique. The advantage that this provides us with is code re-use. Both forms
have about 75% of the same code in common, and then about 25% that makes them unique. By putting
the 75% they have in common in the base class and then inheriting from that base class, we save a large
amount of duplication. Now that you understand the high level concept of inheritance, let's jump right
into creating the base search form and see this in action.

Creating the Base Search Form Project
In the Product Management System we are building, we can build the base search form based on
functionality common to all searches. We then inherit from the base search form and make the specific
changes that make the products or suppliers search forms unique. In this section, we will create the base
search form. Then, in the next section, we will create separate products and suppliers search forms that
inherit the generic functionality from the base search form.

Try It Out – Creating the Base Search Form

1. Select File | New | Project, and select Visual Basic Projects and then Windows Application.
Browse to the directory where you want to place the new project, such as a directory called
ProdMgmtSystem. Name the project BaseForms and click OK.

2. In the Solution Explorer, select Form1.vb, right-click, and choose Rename. Change the
filename of the form from Form1.vb to BaseSearchForm.vb.

3. Change the project type to Class Library so other forms can inherit from this form. Right-click
on the BaseForms project name in Solution Explorer and select Properties. Change the
Output Type from Windows Application to Class Library and click OK.

4. Double-click on BaseSearchForm.vbin the Solution Explorer to make the form active in the
Design View (Visual Studio's large central window). Alternatively, click on the form in this
central window, making it active. The properties window should now show the full
compliment of available properties for the form.

Chapter 7

8

5. Change the Text property from Form1 to Product / Supplier Search Utility, noting how the
TitleBar of the form changes to reflect the property's new value.

6. Change the (Name) property of the form to BaseSearchForm, and finally enter 800, 600 for
the Size property to enlarge the form to a size sufficient to hold all the controls we shall be
adding. 800 X 600 is the typical screen size that most people have their monitor settings
displaying as a minimum. Making the form size larger than 800 X 600 means that some
portions of the screen will be cut off for many users.

7. Now, let's walk through the process of placing the controls on the form, starting with the
Search Method. Open up the Toolbox normally tucked away on the left hand side of the
screen. Place one Label and one ComboBox on the form and set their properties as follows:

Control (Name) Text Additional Remarks

Label1 lblSearchMethod Please choose
what you would
like to search for:

Re-size the label to display
the entire contents. Move
ComboBox1 immediately
after the label so they are
aligned. Change the
Modifiers property from
Assembly to Family. This will
allow the ComboBox and its
properties to be modified in
inherited child forms.

ComboBox1 cboSearchMethod <blank> Set the DropDownStyle
property to DropDownList.

At this point, we should have something resembling the following:

8. Add a GroupBox control to the form, to contain the controls for selecting the specific search
criteria. Make sure the GroupBox is selected and place seven Labels, six ComboBoxes, and
six TextBoxes on it, as shown in the screenshot below. You may find the quickest way to do
this is to place the first of each control type on the form, select it, then copy, paste, and drag it
to create the remaining controls:

Reading Data into the DataSet

9

9. Name and label the controls in GroupBox1, according to the following table:

Control (Name) Text Additional Remarks

GroupBox1 grpSearch
Criteria

Search
Criteria

Change the Modifiers property to
Family. This will allow this GroupBox
and its properties to be modified in
inherited child forms.

Label1 lblSearch
Criteria

Please
specify
one or
more
search
criteria:

Change the Size property to 256, 23 so
the complete text is shown.

Label2 lblCriteria1 <blank> Change the Size property to 160, 16 so
that it will be big enough to hold all the
text. Also, change the Modifiers property
to Family to allow the Label and its
properties to be modified in inherited
child forms.

Table continued on following page

Chapter 7

10

Control (Name) Text Additional Remarks

Label3 lblCriteria2 <blank> Change Size to 160, 16, and Modifiers
to Family.

Label4 lblCriteria3 <blank> Change Size to 160, 16, and Modifiers
to Family.

Label5 lblCriteria4 <blank> Change Size to 160, 16, and Modifiers
to Family.

Label6 lblCriteria5 <blank> Change Size to 160, 16, and Modifiers
to Family.

Label7 lblCriteria6 <blank> Change Size to 160, 16, and Modifiers
to Family.

ComboBox1 cboCriteria1 <blank> Set the DropDownStyle property to
DropDownList. Change the Modifiers
property to Family to allow the
ComboBox and its properties to be
modified in inherited child forms.

ComboBox2 cboCriteria2 <blank> Set DropDownStyle to DropDownList
and change Modifiers to Family.

ComboBox3 cboCriteria3 <blank> Set DropDownStyle to DropDownList
and change Modifiers to Family.

ComboBox4 cboCriteria4 <blank> Set DropDownStyle to DropDownList
and change Modifiers to Family.

ComboBox5 cboCriteria5 <blank> Set DropDownStyle to DropDownList
and change Modifiers to Family.

ComboBox6 cboCriteria6 <blank> Set DropDownStyle to DropDownList
and change Modifiers to Family.

TextBox1 txtCriteria1 <blank> Change the Size property to 168, 20 so
that it will be large enough for the user's
search criteria. Change the Modifiers
property to Family to allow the TextBox
and its properties to be modified in
inherited child forms.

TextBox2 txtCriteria2 <blank> Change Size to 168, 20 and Modifiers to
Family.

TextBox3 txtCriteria3 <blank> Change Size to 168, 20 and Modifiers to
Family.

TextBox4 txtCriteria4 <blank> Change Size to 168, 20 and Modifiers to
Family.

Reading Data into the DataSet

11

Control (Name) Text Additional Remarks

TextBox5 txtCriteria5 <blank> Change Size to 168, 20 and Modifiers to
Family.

TextBox6 txtCriteria6 <blank> Change Size to 168, 20 and Modifiers to
Family.

After making the above changes, our form should look like this:

10.Place two Buttons and one DataGrid control on the form in the space beneath the Search
Criteria GroupBox, and set the properties of the new controls as follows:

Control Name Text Additional Changes

Button1 btnSearch Search Change the Modifiers property to Family to
allow the Button and its properties to be
modified in inherited child forms.

Button2 btnClear Clear Change Modifiers to Family.

DataGrid1 dgdResults N/A Change Modifiers to Family.

Chapter 7

12

Note that DataGrid controls don't have a Text property. We should now have a form like this:

11. Next, set the tab stop properties so that when the user tabs from one field to the next, it happens
in the proper sequence. From the View menu, select Tab Order. Click the number next to each
of the controls in the search criteria group box in order, beginning with the "Please specify one
or more search criteria" label and continuing from left to right so that the controls are
numbered as shown below. When finished setting the tab order, from the View menu, select Tab
Order to turn off the visual indicator showing where the tab stops are located.

Reading Data into the DataSet

13

12.Always make sure to select File | Save All to save your changes at regular intervals.

13.Now that we have the user interface elements completed on the BaseSearchForm, let's put
the code under the form that all search forms will have in common. To get to the code view,
either double-click on the form or right-click on the form in Solution Explorer and choose
View Code. Place these lines of code directly beneath the Inherits
System.Windows.Forms.Form statement in the code:

 Protected Const PROD = "Products"
 Protected Const SUPP = "Suppliers"
 Protected Const CONN = "user id=sa;password=xxxxx;initial " & _
 "catalog=NorthwindSQL;server=goz3"

 Protected dsData As DataSet
 Protected dsResults As DataSet
 Protected adapterResults As New SqlClient.SqlDataAdapter()

14.Next, add a generic error handling procedure that will be used to display the error message to
the user:

Chapter 7

14

 Sub UnhandledExceptionHandler()

 'display an error to the user
 MsgBox("An error occurred. Error Number: " & Err.Number & _
 " Description: " & Err.Description & " Source: " & Err.Source)

 End Sub

15.Add a procedure to add Products and Suppliers to the SearchMethod ComboBox as
choices.

 Sub AddSearchMethod()

 Try
 'if the form has not been loaded before, then populate the
 'search choices in the drop-down list.
 If cboSearchMethod.Items.Count = 0 Then
 cboSearchMethod.Items.Add(PROD)
 cboSearchMethod.Items.Add(SUPP)
 End If

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

16.Create two procedures that will populate a ComboBox with the search options. Place this code
under the BaseSearchForm:

 Sub AddCharDropDownCriteria(ByVal cboIn As ComboBox)

 Try
 'add these values to the combo box passed in.
 'i.e. to combo boxes searching against character fields
 cboIn.Items.Add("Equals")
 cboIn.Items.Add("Starts With")
 cboIn.Items.Add("Ends With")
 cboIn.Items.Add("Contains")

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

 Sub AddNumericDropDownCriteria(ByVal cboIn As ComboBox)

 Try

Reading Data into the DataSet

15

 'add these values to the combo box passed in.
 'i.e. to combo boxes searching against numeric fields

 cboIn.Items.Add("Equals")
 cboIn.Items.Add("Greater Than")
 cboIn.Items.Add("Less Than")

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

We will later call these procedures from the Search Products and Search Suppliers Forms to
populate the ComboBoxes.

17.Finally, double-click the Clear button on your form and add the following code to the
Click event:

 Private Sub btnClear_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnClear.Click

 'clear the search criteria

 Try

 txtCriteria1.Text = ""
 txtCriteria2.Text = ""
 txtCriteria3.Text = ""
 txtCriteria4.Text = ""
 txtCriteria5.Text = ""
 txtCriteria6.Text = ""

 dgdResults.DataSource = Nothing
 dsResults = Nothing

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

18.This is a good point to save our work again using File| Save All. By regularly saving our
project, we minimize the loss we would suffer in the event of a system crash.

19.Now that the code for our BaseSearchForm is complete, it is time to build (rebuild) the project.
To do so, select Build | Rebuild All. This will compile the project and make sure no compiler
errors exist and will also update the appropriate project files with newer build information.

Chapter 7

16

How It Works

In this section, we created a project for the BaseSearchForm. The project was changed to a Class
Library instead of a Windows Application to designate that it is to be used for inheritance purposes and
not as a Windows Application on its own. We then created the user interface elements for the form that
all search forms will have in common. Likewise, we also added the generic procedures for handling
form errors, populating the search criteria and methods, etc. Since these features are the same regardless
of whether you are searching for a product or a supplier, the base form is the appropriate place to
include them.

First, we added the form constant and variable declarations.

 Protected Const PROD = "Products"
 Protected Const SUPP = "Suppliers"
 Protected Const CONN = "user id=sa;password=xxxxx;initial " & _
 "catalog=NorthwindSQL;server=goz3"

 Protected dsData As DataSet
 Protected dsResults As DataSet
 Protected adapterResults As New SqlClient.SqlDataAdapter()

The first three lines above declare constants for the Products, Suppliers, and the database connection
string. The next three lines of code declare variables for two datasets, which will hold the search results
and code tables and a data adapter that will be used to work with the data sets.

Note in the step above, we set up the connection string constant CONN, and you will need to replace the
username and password with your own, and the server parameter (currently goz3) with the name of your
SQL Server. To find out your Server's name, just open up the SQL Server Service Manager by clicking on
its icon in the System Tray in the task bar, and read the name from the Server drop-down box.

We added a procedure to add Products and Suppliers to the Search Method ComboBoxes to allow the
user to switch between the Products and Suppliers Search Screens. This will be called from each form to
populate the Search Method ComboBox.

 Sub AddSearchMethod()

 Try
 'if the form has not been loaded before, then populate the
 'search choices in the drop-down list.
 If cboSearchMethod.Items.Count = 0 Then
 cboSearchMethod.Items.Add(PROD)
 cboSearchMethod.Items.Add(SUPP)
 End If

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

Reading Data into the DataSet

17

Try…Catch…Finally can be used in your Visual Basic .NET code to catch exceptions. You place the
Try…Catch…Finally block of code around the code where an exception might occur. The Try
statement comes before the block of code, the Catch statement is where you specify the type of errors
to look for or just have a generic error handler for all errors. The above code shows an example of a
generic handler that raises all errors. The optional Finally statement follows the Catch statement and
contains cleanup code that should always execute. It is possible to use multiple Catch statements in our
error handling code. For example, you might want to put a Catch statement for each error that you
want to handle individually and then a generic Catch statement to handle all other errors. Suppose that
you suspect that a "Divide by Zero" error might occur and you want to handle for it. You can use a
Catch statement that reads something like this:

Catch excDivideByZero As System.OverFlowException

and then a generic Catch statement that contains what to do in all other situations. It is also important
to mention that you can have multiple Try…Catch…Finally blocks in a procedure. You simply wrap
the section of code where you want to trap errors with these statements.

Next, we created procedures to populate the Search Criteria ComboBoxes on the Search Screens. The
ComboBoxes in the Product Search Criteria and Supplier Search Criteria GroupBoxes are to be
populated with values such as "Starts With", "Ends With", "Equals", "Contains", "Greater
Than", or "Less Than".

 Sub AddCharDropDownCriteria(ByVal cboIn As ComboBox)

 Try
 'add these values to the combo box passed in.
 'i.e. to combo boxes searching against character fields
 cboIn.Items.Add("Equals")
 cboIn.Items.Add("Starts With")
 cboIn.Items.Add("Ends With")
 cboIn.Items.Add("Contains")

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

The AddCharDropDownCriteria procedure adds the following four items to the ComboBox passed
in: Equals, Starts With, Ends With, and Contains. These options are relevant to ComboBoxes
that will be used to search text fields, while the AddNumericDropDownCriteria method, below, is
suitable for populating ComboBoxes associated with numeric fields. An example of a text field is the
product name and an example of a numeric field is the product ID.

 Sub AddNumericDropDownCriteria(ByVal cboIn As ComboBox)

 Try

 'add these values to the combo box passed in.
 'i.e. to combo boxes searching against numeric fields

Chapter 7

18

 cboIn.Items.Add("Equals")
 cboIn.Items.Add("Greater Than")
 cboIn.Items.Add("Less Than")

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

This will give users great flexibility in determining the precise records to retrieve from the database. For
example, they could look up all products that contain the word "butter" anywhere in the product name
by choosing Contains in the Product Name ComboBox and entering butter in the associated TextBox.

Lastly, we added the code for the Click event for the Clear button. When the user clicks the Clear button
on the form, the criteria in each Textbox should be cleared as well as any records in the DataGrid.

 'clear the search criteria

 Try

 txtCriteria1.Text = ""
 txtCriteria2.Text = ""
 txtCriteria3.Text = ""
 txtCriteria4.Text = ""
 txtCriteria5.Text = ""
 txtCriteria6.Text = ""

 dgdResults.DataSource = Nothing
 dsResults = Nothing

With the base form created, we are now in a position to create the specific Products and Suppliers
Search Screens that will inherit from this common set of functionality. We will then specify the few
items that are different to customize the searches for either products or suppliers. You will soon see how
visual inheritance saves extra coding effort because you do not repeat basically the same code or
controls multiple times just to accomplish something nearly the same on a different form. Instead, you
build from the core functionality and then make the few adjustments necessary for the particular search
form. Let's now see how this works by creating a new project with two forms that inherit from the
BaseSearchForm.

Inheriting from the Base Search Form
Now, we will create a new project for our main Product Management System. After creating the project,
we will add two forms that inherit from the BaseSearchForm we created in the prior section and specify
the Product Search Screen as the startup form. In the next section, we will move on to implementing the
specific functionality that makes the Products Search Screen unique.

Reading Data into the DataSet

19

Try It Out – Creating a New Project and Inheriting from the Base Search Form

20.Select File | New | Project, and select Visual Basic Projects and then Windows Application.
Browse to the same directory where you created the base forms project. Name this project
MainApp and click OK.

21.Add the BaseForms project to the MainApp solution. Right-click the MainApp solution name
in the Solution Explorer. From the pop-up menu, choose Add | Existing Project. On the
dialog box that appears, select the Browse button and navigate to the BaseForms project
directory. Select the BaseForms.vbproj project file and click OK. You should see that the
BaseForms project has been added to the current solution.

22. In the Solution Explorer, right-click on the MainApp project name and select Add | Add
Inherited Form. Alternatively, select Project | Add Inherited Form. Give the inherited form
the name frmSearchProducts.vb as it will serve as the Products Search Screen.

23.The Inheritance Picker dialog box will appear, as shown below. Select the BaseSearchForm
in the list and click OK. This adds the Products Search Screen to the project as a child
inheriting from the BaseSearchForm.

24.Next, add the Suppliers Search Form. In the Solution Explorer, right-click on the MainApp
project name and select Add | Add Inherited Form. In the alternative, select Project | Add
Inherited Form. Give the inherited form the name frmSearchSuppliers.vb.

25.On the Inheritance Picker dialog box, select the BaseSearchForm component and click OK.
This designates that the new form will inherit functionality from the BaseSearchForm.

26.Delete Form1.vb from the MainApp project by right-clicking the file in Solution Explorer, and
selecting Delete.

27.Change the Startup Form for the MainApp project to frmSearchProducts. Select the MainApp
project in Solution Explorer, right-click, and choose Properties from the pop-up menu. On
the dialog box that appears, change the Startup Object field from Form1 to
frmSearchProducts and click OK to accept the change.

Chapter 7

20

28.Save all changes to the solution by using File| Save All. The solution should look like the
following at this point:

How It Works

We created a new project for the main application and then added the BaseForms project to the
MainApp solution, so both the BaseForms and MainApp projects exist in one solution. Using the
Inheritance Picker, we then added two forms to the MainApp project that inherit from the
BaseSearchForm. After adding the two new forms, we deleted the Form1 default form that got added
when the project was created. Next, we assigned the frmSearchProducts form to be the startup project.

These two child forms inherit all of the functionality from the BaseSearchForm. If you double-click on
either of the forms, you will see something like the following:

Reading Data into the DataSet

21

Notice how the frmSearchProduct form shown above looks exactly like the BaseSearchForm we created.
The arrows on each control as shown above designate that the control is inherited from another form
(versus being one added to this form specifically). If you view the code under this form, you will see
these lines of code at the top of the code section:

Public Class frmSearchProducts
 Inherits BaseForms.BaseSearchForm

These lines specifically declare that the frmSearchProducts form is inheriting the functionality of the
BaseForms.BaseSearchForm. This code was automatically created by Visual Basic .NET when the
Inheritance Picker was used to specify which form to inherit from. Recall that we earlier discussed
that such a line of code can be added to any class (form or otherwise) to inherit functionality from
another class.

If you press F5 or select Debug | Start, then the Products Search Form will appear and will look just like
the form above, only it will be in run mode (instead of design mode).

Now that we have the Product and Supplier Search screens inheriting their base functionality from
the BaseSearchForm, we are ready to implement the customizations for each of them that make
them unique.

Chapter 7

22

Implementing the Unique Functionality of the Products
Search Form

In this section, we will customize the Products Search Form by adding a small amount of code that will
implement some of the additional functionality it requires. Other specific features will be added later in
this chapter and in the next chapter.

Try It Out – Creating Specific Code for the Products Search Form

1. Add the following code to the frmSearchProducts.vb code section to allow selection of
the Search Screen (either Products or Suppliers):

 Private Sub cboSearchMethod_SelectedIndexChanged(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) Handles _
 cboSearchMethod.SelectedIndexChanged

 Try

 'if the user wants to search by Suppliers, then open the
 'Suppliers form.
 'otherwise, it will just remain on the Products search as it is
 'now.
 If cboSearchMethod.Text = SUPP Then
 Dim frmSuppliers As New frmSearchSuppliers()
 frmSuppliers.Show()
 End If

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

2. Add the following code:

 Private Sub frmSearchProducts_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Try

 'set the title of the form
 Me.Text = "Product Search Utility"

 'populate the search method drop down list
 AddSearchMethod()

 'set products as the default selected (since this is the
 'Products search form
 cboSearchMethod.Text = PROD

Reading Data into the DataSet

23

 'populate the drop-down lists on the Products Group Box
 'with the proper values
 'Product Id
 AddNumericDropDownCriteria(cbocriteria1)
 'Product Name
 AddCharDropDownCriteria(cbocriteria2)
 'Supplier Company Name
 AddCharDropDownCriteria(cbocriteria3)
 'Category Name
 AddCharDropDownCriteria(cbocriteria4)
 'Unit Price
 AddNumericDropDownCriteria(cbocriteria5)
 'Units In Stock
 AddNumericDropDownCriteria(cbocriteria6)

 'populate the corresponding labels with a
 'descriptive label
 lblcriteria1.Text = "Product Id:"
 lblcriteria2.Text = "Product Name:"
 lblcriteria3.Text = "Supplier Company Name:"
 lblcriteria4.Text = "Category Name:"
 lblcriteria5.Text = "Unit Price:"
 lblcriteria6.Text = "Units In Stock:"

 'assign the proper label to the group box
 grpsearchcriteria.Text = "Products Search Criteria"

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

How It Works

The first code section we added allows the user to switch to the Suppliers Search Screen to perform a
search on suppliers.

 'if the user wants to search by Suppliers, then open the
 'Suppliers form.
 'otherwise, it will just remain on the Products search as it is
 'now.
 If cboSearchMethod.Text = SUPP Then
 Dim frmSuppliers As New frmSearchSuppliers()
 frmSuppliers.Show()
 End If

When the user changes the search method to Suppliers, that code will execute and will create and
display a suppliers form.

Chapter 7

24

When the Products Search Screen loads, several customizations need to take place, such as displaying
the proper labels for each search criteria, populating the search criteria ComboBoxes with the correct
type of criteria options, etc. Next, we added the code to populate the search criteria ComboBoxes with
the appropriate values, such as allowing ProductId (a numeric field) to be searched on Equals,
Greater Than, or Less Than and for ProductName (a character field) to be searched on Equals,
Starts With, Ends With, or Contains.

 'populate the drop-down lists on the Products Group Box
 'with the proper values
 'Product Id
 AddNumericDropDownCriteria(cbocriteria1)
 'Product Name
 AddCharDropDownCriteria(cbocriteria2)
 'Supplier Company Name
 AddCharDropDownCriteria(cbocriteria3)
 'Category Name
 AddCharDropDownCriteria(cbocriteria4)
 'Unit Price
 AddNumericDropDownCriteria(cbocriteria5)
 'Units In Stock
 AddNumericDropDownCriteria(cbocriteria6)

Recall that the AddCharDropDownCriteria and AddNumericDropDownCriteria procedures
were created as part of the code for the base form and we are calling it from here. Can you see why we
put the code for these two routines as part of the base form but we put the calls to it on the Product
Search Screen? It is because the calls to the two procedures will be different for products and suppliers,
as the fields those screens allow you to search for are not the same.

Then we customized the labels on the Products Search Screen as appropriate for products, such as to
allow the user to search by Product Id, Product Name, etc.

 'populate the corresponding labels with a
 'descriptive label
 lblcriteria1.Text = "Product Id:"
 lblcriteria2.Text = "Product Name:"
 lblcriteria3.Text = "Supplier Company Name:"
 lblcriteria4.Text = "Category Name:"
 lblcriteria5.Text = "Unit Price:"
 lblcriteria6.Text = "Units In Stock:"

If you run the project at this point, you will see that the Products Search opens by default and contains
the values in the drop down lists that got populated above. An example of this is shown opposite:

Reading Data into the DataSet

25

You will also be able to select Suppliers as a search method and a Suppliers Search Screen will appear.
However, it does not yet have the values for the ComboBoxes as we haven't implemented them. Let's
do that now, shall we?

Implementing the Unique Functionality of the Suppliers
Search Form

In this section, we will customize the Suppliers Search Form by adding code that will implement some
of the additional functionality that it requires. As with the Products Search Form, other specific features
will be added later in this chapter and in the next chapter.

Try It Out – Creating Specific Code for the Suppliers Search Form

1. The following code should be placed on the frmSearchSuppliers.vb form:

 Private Sub cboSearchMethod_SelectedIndexChanged(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) Handles _
 cboSearchMethod.SelectedIndexChanged

 Try

 'if the user wants to search by Products, then open the Products
 'form. Otherwise, it will just remain on the Suppliers search as
 'it is now.
 If cboSearchMethod.Text = PROD Then
 Dim frmProducts As New frmSearchProducts()
 frmProducts.Show()
 End If

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

End Sub

2. Now, add this section of code so that the appropriate labels and search criteria choices are
displayed for supplier searches:

Chapter 7

26

 Private Sub frmSearchSuppliers_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Try
 'set the title of the form
 Me.Text = "Supplier Search Utility"

 'populate the search method drop down list
 AddSearchMethod()

 'set suppliers as the default selected (since this is the
 'Suppliers search form
 cboSearchMethod.Text = SUPP

 'populate the drop-down lists on the Suppliers Group Box
 'with the proper values
 'Supplier Id
 AddNumericDropDownCriteria(cbocriteria1)
 'Company Name
 AddCharDropDownCriteria(cbocriteria2)
 'Contact Name
 AddCharDropDownCriteria(cbocriteria3)
 'City
 AddCharDropDownCriteria(cbocriteria4)
 'Region (State)
 AddCharDropDownCriteria(cbocriteria5)
 'Postal Code
 AddCharDropDownCriteria(cbocriteria6)

 'populate the corresponding labels with a
 'descriptive label
 lblcriteria1.Text = "Supplier Id:"
 lblcriteria2.Text = "Company Name:"
 lblcriteria3.Text = "Contact Name:"
 lblcriteria4.Text = "City:"
 lblcriteria5.Text = "Region (State):"
 lblcriteria6.Text = "Postal Code:"

 'assign the proper label to the group box
 grpsearchcriteria.Text = "Suppliers Search Criteria"

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

End Sub

Reading Data into the DataSet

27

How It Works

You can see that this code functions in the same manner as the code we placed under the Products
Search Form, but that this one contains the specifics for the Suppliers Search Form. You are hopefully
starting to see, at this point, how to make decisions about what to place under your base form and what
is a customization that goes in the child forms.

If you want to run the project, go ahead and do so. The Product Search Utility still appears first but,
now, when you open the Suppliers Search Utility form, you will see that the ComboBoxes are populated
with values.

Click on the X in the top right corner to close the application and return to the Form Design view. Now
that we have created the basic user interface for the Search Screens, we are ready to move on to learn
about the DataSet. Once we understand how the DataSet works, we can create the code to retrieve
the records from the database that match the criteria provided by the user.

Using the DataSet to Retrieve Data
In chapters 5 and 6, we introduced the DataSet and discussed how a DataSet object represents
an in-memory store of data that retains no connection to the database from which it was populated. We
also saw how to retrieve data into a DataSet by placing a SqlDataAdapter on the form and then
using the Data Adapter Configuration Wizard to configure it. Now, we are going to look at the
DataSet in more detail, including details of the object model as well as how to create a DataSet
programmatically as opposed to with a Wizard.

The DataSet Object
As we saw in the last chapter, DataSets are designed to be disconnected from the data source that
provides their contents, and that a DataSet, by virtue of its in-memory nature, allows rapid
manipulation of data. The DataSet Object Model consists of the following objects:

❑ DataSet – an in-memory store of data

❑ DataTable – an in-memory store of a database table (which doesn't have to come directly
from a single table in the database – it can be based on the results of a SELECT statement
joining multiple tables)

❑ DataRow – allows for management of rows in a DataTable

❑ DataColumn – defines the columns of a DataTable

❑ DataRelation – allows two DataTables to be associated with each other

❑ DataView – creates a view on a subset of the data - covered in greater detail in Chapter 8

The best way to learn about these is to dive right in and see how they can be used in practice in our
Products Management System!

Chapter 7

28

Populating a DataSet from Multiple Tables and Relating Them to Each Other
In this section, we will write code to populate a DataSet that, in later chapters, will be used as a code
table to display certain values in ListBoxes. But don't worry about that detail yet. Instead, concentrate
on understanding how the DataSet works.

Try It Out – Populating a DataSet from Stored Procedures and Adding Relationships

1. Add a class module to the MainApp project. In the Solution Explorer, right-click on the
MainApp project name and select Add | Add Class. Alternatively, select Project | Add Class.
Give the class the name clsDatabase.vb.

2. Open the the clsDatabase class in the project and add these two statements at the top of
the class declaration (prior to the Public Class clsDatabase statement):

Imports System.Data
Imports System.Data.SqlClient

3. Next, we need a generic function that will populate a DataSet with the results of a stored
procedure or SQL statement. Place the following PopulateDataSetTable function into the
clsDatabase class:

 Function PopulateDataSetTable(ByVal strConnection As String, ByVal _
 strTableName As String, ByVal strSQLorStoredProc As String, _
 ByVal blnStoredProcedure As Boolean, _
 ByRef dsDataSet As DataSet) As DataSet

 '**
 'Create a table in the DataSet and fill it with the specified
 'table in the database from calling a stored procedure or
 'executing a SQL statement (depending on whether
 'blnStoredProcedure is true or false; if true - run stored
 'procedure; if false, run SQL statement).
 '**

 Try

 Dim sqlConn As New SqlClient.SqlConnection(strConnection)
 sqlConn.Open()

 Dim adapterProducts As New SqlClient.SqlDataAdapter()

 adapterProducts.TableMappings.Add("Table", strTableName)
 Dim cmdTable As SqlClient.SqlCommand = New _
 SqlClient.SqlCommand(strSQLorStoredProc, _
 sqlConn)

 'run stored procedure or SQL statement accordingly
 If blnStoredProcedure Then
 cmdTable.CommandType = CommandType.StoredProcedure
 Else

Reading Data into the DataSet

29

 cmdTable.CommandType = CommandType.Text
 End If

 adapterProducts.SelectCommand = cmdTable

 'fill the data set with the table information as specified in
 'the stored procedure or from the results of the SQL statement
 adapterProducts.Fill(dsDataSet)

 sqlConn.Close()

 Return dsDataSet

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

4. We are now going to create a generic function that creates a relationship between two tables
in a DataSet. Place the following function, PopulateDataSetRelationship, into the
clsDatabase class.

 Function PopulateDataSetRelationship(ByVal strTable1 As String, ByVal _
 strTable2 As String, ByVal strColumnFromTable1 As String, _
 ByVal strColumnFromTable2 As String, ByVal _
 strRelationshipName As String, ByRef dsDataSet As DataSet) _
 As DataSet

 '**
 'The purpose of this function is to create a relationship between
 'two tables in a dataset.
 '**

 Try

 Dim drRelation As DataRelation
 Dim dcCol1 As DataColumn
 Dim dcCol2 As DataColumn

 dcCol1 = _
 dsDataSet.Tables(strTable1).Columns(strColumnFromTable1)
 dcCol2 = _
 dsDataSet.Tables(strTable2).Columns(strColumnFromTable2)
 drRelation = New System.Data.DataRelation _
 (strRelationshipName, dcCol1, dcCol2)
 dsDataSet.Relations.Add(drRelation)

 Return dsDataSet

 Catch

Chapter 7

30

 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

5. Place the following function LoadCompleteDataSet into the clsDatabase class.

Function LoadCompleteDataSet (ByVal strConnection As String) As DataSet

 '**
 'The purpose of this function is to populate a data set with
 'the local tables from the Products, Suppliers, and Categories
 'tables in the database. This is an example of a data set that
 'uses relations among the tables.
 '**

 Try
 Dim dsData As New DataSet()

 Dim blnRunStoredProc As Boolean = True

 'Create a Products table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Products", _
 "spRetrieveProducts", blnRunStoredProc, dsData)

 'Create a Suppliers table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Suppliers", _
 "spRetrieveSuppliers", blnRunStoredProc, dsData)

 'Create a Categories table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Categories", _
 "spRetrieveCategories", blnRunStoredProc, dsData)

 'Create the relationship between Products and Suppliers tables
 dsData = PopulateDataSetRelationship("Suppliers", "Products", _
 "SupplierId", "SupplierId", "ProductsVsSuppliers", _
 dsData)

 'Create the relationship between Products and Categories tables
 dsData = PopulateDataSetRelationship("Categories", "Products", _
 "CategoryId", "CategoryId", "ProductsVsCategories", _
 dsData)

 WriteCompleteDataSetToOutputWindow(dsData)

 Return dsData

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

Reading Data into the DataSet

31

6. Three stored procedures are used to retrieve the data from the Products, Suppliers, and
Categories tables. Create the stored procedure spRetrieveProducts shown below

using Server Explorer, as described in detail in Chapter 4. In short, navigate to the SQL
Servers node in Server Explorer and expand the tree down until you can select the
NorthwindSQL database. Under the NorthwindSQL database, right-click on the Stored
Procedures node and select New Stored Procedure. Place the code below in the new stored
procedure window that is opened:

CREATE PROCEDURE dbo.spRetrieveProducts
(
@ProductId int = NULL
)
/*
If the ProductId is not present, then return all products. Otherwise, return only
that product.
*/
AS
IF @ProductId IS NULL
 BEGIN
 SELECT * FROM Products
 END
ELSE
 BEGIN
 SELECT * FROM Products WHERE ProductId = @ProductId
 END

RETURN

7. Next, create the stored procedure spRetrieveSuppliers, as shown below:

CREATE PROCEDURE dbo.spRetrieveSuppliers
(
@SupplierId int = NULL
)
/*
If the SupplierId is not present, then return all suppliers. Otherwise, return
only that supplier.
*/
AS
IF @SupplierId IS NULL
 BEGIN
 SELECT * FROM Suppliers
 END
ELSE
 BEGIN
 SELECT * FROM Suppliers WHERE SupplierId = @SupplierId
 END

RETURN

8. Then add the stored procedure spRetrieveCategories, as shown below:

Chapter 7

32

CREATE PROCEDURE dbo.spRetrieveCategories
AS
 select * from categories
 RETURN

9. Next, add this procedure to the clsDatabase class. This procedure gets called from the
LoadCompleteDataSet function created previously and outputs the DataSet information
to the Output window.

 Sub WriteCompleteDataSetToOutputWindow(ByVal dsData As DataSet)
 '**
 'Write data to the output window from the DataSet
 '**

 Try

 Dim oRow As DataRow
 Dim strRecord As String

 'write some data in the Products table to the Output window
 'to show that the data is there.
 For Each oRow In dsData.Tables("Products").Rows
 strRecord = "Product Id: " & oRow("ProductId").ToString()
 strRecord = strRecord & " Product Name: "
 strRecord = strRecord & oRow("ProductName").ToString()
 strRecord = strRecord & " Supplier Id: "
 strRecord = strRecord & oRow("SupplierId").ToString()
 Console.WriteLine(strRecord)

 Next

 'write some data in the Suppliers table to the Output window
 'to show that the data is there.
 For Each oRow In dsData.Tables("Suppliers").Rows
 strRecord = "Supplier Id: " & oRow("SupplierId").ToString()
 strRecord = strRecord & " Company Name: "
 strRecord = strRecord & oRow("CompanyName").ToString()
 strRecord = strRecord & " Contact Name: "
 strRecord = strRecord & oRow("ContactName").ToString()
 Console.WriteLine(strRecord)
 Next

 'write some data in the Categories table to the Output window
 'to show that the data is there.
 For Each oRow In dsData.Tables("Categories").Rows
 strRecord = "Category Id: " & oRow("CategoryId").ToString()
 strRecord = strRecord & " Category Name: "
 strRecord = strRecord & oRow("CategoryName").ToString()
 strRecord = strRecord & " Description: "
 strRecord = strRecord & oRow("Description").ToString()
 Console.WriteLine(strRecord)
 Next

Reading Data into the DataSet

33

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

10.Finally, add the UnhandledExceptionHandler to the clsDatabase class

 Sub UnhandledExceptionHandler()

 'display an error to the user
 MsgBox("An error occurred. Error Number: " & Err.Number & _
 " Description: " & Err.Description & " Source: " & Err.Source)

 End Sub

How It Works

In this section, first we created a new class, clsDatabase.vb, and added the following namespaces:

Imports System.Data
Imports System.Data.SqlClient

The DataSet features we will be using come from these two namespaces. If you do not have these
references in your class module, then some of the code that follows will generate a compiler error when
you try to build your project as they are required to locate certain classes and methods. The first
namespace (System.Data) is for general data access, and the second namespace
(System.Data.SqlClient) is SQL Server specific.

Next we added a generic routine that populates a DataSet with the results of a stored procedure or
SQL statement.

 Dim sqlConn As New SqlClient.SqlConnection(strConnection)

 sqlConn.Open()

 Dim adapterProducts As New SqlClient.SqlDataAdapter()

 adapterProducts.TableMappings.Add("Table", strTableName)

 Dim cmdTable As SqlClient.SqlCommand = New _
 SqlClient.SqlCommand(strSQLorStoredProc, _
 sqlConn)

 'run stored procedure or SQL statement accordingly

 If blnStoredProcedure Then

 cmdTable.CommandType = CommandType.StoredProcedure

 Else

 cmdTable.CommandType = CommandType.Text

 End If

Chapter 7

34

 adapterProducts.SelectCommand = cmdTable

 'fill the data set with the table information as specified in

 'the stored procedure or from the results of the SQL statement

 adapterProducts.Fill(dsDataSet)

In the code snippet from the PopulateDataSetTable function above, notice how a
SqlConnection is declared first, and then opened. Then, a new SqlDataAdapter is declared.
SqlDataAdapter is the class used to fill and update DataSets. Note that OleDbDataAdapter can
also be used, and it works with OLE DB data sources, including SQL Server. SqlDataAdapter on the
other hand only works with SQL Server databases but, in such cases, it outperforms
OleDbDataAdapter.

Next, table mappings are defined for the adapter. The primary purpose of a table mapping is to specify
what the table in the DataSet should be called, regardless of the source it is coming from. The first
parameter to the Add method is the source table and the second is the destination table. The source
table is the table in the data source to retrieve information from while the destination table is the table
in the DataSet that the data goes into. When populating the DataSet from a stored procedure or
SQL statement, simply specifying the default value of "Table" for the source table is sufficient.

 Dim adapterProducts As New SqlClient.SqlDataAdapter()

 adapterProducts.TableMappings.Add("Table", strTableName)
 Dim cmdTable As SqlClient.SqlCommand = New _
 SqlClient.SqlCommand(strSQLorStoredProc, _
 sqlConn)

A Command object is declared next to define the SQL statement or stored procedure to base the
DataSet table on, as well as which database connection to use. The Command object is then associated
with the adapter, which is how the adapter is made aware of from where to retrieve the results.

 'run stored procedure or SQL statement accordingly
 If blnStoredProcedure Then
 cmdTable.CommandType = CommandType.StoredProcedure
 Else
 cmdTable.CommandType = CommandType.Text
 End If

 adapterProducts.SelectCommand = cmdTable

Finally, using the DataAdapter, the DataSet can be populated from the SQL statement or
stored procedure.

 'fill the data set with the table information as specified in
 'the stored procedure or from the results of the SQL statement
 adapterProducts.Fill(dsDataSet)

 sqlConn.Close()

Reading Data into the DataSet

35

After creating the generic function to populate a DataSet, we then created a function called
PopulateDataSetRelationship to relate two tables in a DataSet together. Recall that a DataSet
is an in-memory copy of information. It can contain tables that are totally independent from the source,
once placed in memory. Thus, even though relationships may exist in a database, when you populate
such information into a DataSet, those relationships do not carry over between tables. You can create
relationships between tables in your DataSet so that tables in the in-memory copy relate to each other.

This example makes use of the DataRelation and DataColumn objects. After the DataColumns to
be related are specified (as columns already present in the DataSet), then the DataRelation object
creates the relationship.

 Dim drRelation As DataRelation
 Dim dcCol1 As DataColumn
 Dim dcCol2 As DataColumn

 dcCol1 = _
 dsDataSet.Tables(strTable1).Columns(strColumnFromTable1)
 dcCol2 = _
 dsDataSet.Tables(strTable2).Columns(strColumnFromTable2)
 drRelation = New System.Data.DataRelation _
 (strRelationshipName, dcCol1, dcCol2)
 dsDataSet.Relations.Add(drRelation)

In the above code, dcCol1 is the first table in the DataRelation method's parameters, and dcCol2
is the second. This means that dcCol1 is the parent table, and dcCol2 is the child table. A table is
known as the parent table because it is the one that ensures the uniqueness of the key field on which this
relationship hinges. If you were to reverse the order of these parameters, then you would likely get a
run-time error about non-unique columns.

Now that we have our generic functions in place to populate a DataSet from a stored procedure or
SQL statement, and one to create relationships in a DataSet, we're ready to populate a DataSet with
information from the Products, Suppliers, and Categories tables. We created a
LoadCompleteDataSet function to populate the DataSet that will be used in the application to store
some values to populate the ComboBoxes. We sometimes refer to these as code tables.

Notice how we get to make use of the generic functions we created before to populate the DataSet.
We populate the Products, Suppliers, and Categories tables in the DataSet by calling the
PopulateDataSetTable function and passing the proper parameters, one of them being the stored
procedure to run to retrieve the records.

 'Create a Products table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Products", _
 "spRetrieveProducts", blnRunStoredProc, dsData)

 'Create a Suppliers table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Suppliers", _
 "spRetrieveSuppliers", blnRunStoredProc, dsData)

 'Create a Categories table in the DataSet
 dsData = PopulateDataSetTable(strConnection, "Categories", _
 "spRetrieveCategories", blnRunStoredProc, dsData)

 'Create the relationship between Products and Suppliers tables

Chapter 7

36

 dsData = PopulateDataSetRelationship("Suppliers", "Products", _
 "SupplierId", "SupplierId", "ProductsVsSuppliers", _
 dsData)

 'Create the relationship between Products and Categories tables
 dsData = PopulateDataSetRelationship("Categories", "Products", _
 "CategoryId", "CategoryId", "ProductsVsCategories", _
 dsData)

 WriteCompleteDataSetToOutputWindow(dsData)

Stored procedures should be used to retrieve data whenever possible because they are pre-compiled on
the database server and contain an execution plan which tells SQL Server how to execute them. This
means that they execute faster than a SQL statement being passed on the fly to the database. Thus,
retrieving values to populate our first DataSet was handled using stored procedures instead of a SQL
statement in Visual Basic .NET code.

Later, we will look at an example of when you might need to use a SQL statement in the code instead of
a stored procedure. Such cases occur typically when it would be extremely difficult, if not impossible, to
determine the SQL statement up front such that it could be stored in a stored procedure. In instances
like that, it makes sense to just create the SQL statement in the Visual Basic .NET code and pass the
SQL statement to the database.

After populating the DataSet, we then created the relationships between the tables. Near the end of
the PopulateDataSetTable function is a call to the WriteCompleteDataSetToOutputWindow
procedure. We can comment the call to this out later but, in this chapter, we keep it in to verify that the
DataSet is being correctly populated with the results of the query.

Let's have a quick look at what this procedure accomplishes:

 Dim oRow As DataRow
 Dim strRecord As String

 'write some data in the Products table to the Output window
 'to show that the data is there.
 For Each oRow In dsData.Tables("Products").Rows
 strRecord = "Product Id: " & oRow("ProductId").ToString()
 strRecord = strRecord & " Product Name: "
 strRecord = strRecord & oRow("ProductName").ToString()
 strRecord = strRecord & " Supplier Id: "
 strRecord = strRecord & oRow("SupplierId").ToString()
 Console.WriteLine(strRecord)

 Next

In this case, we used the DataRow object to manipulate the DataSet and output all rows but only
certain columns to the Output window.

Lastly, we added the UnhandledExceptionHandler to the clsDatabase class. This procedure will
handle all unhandled exceptions that get raised in the clsDatabase class. This can be modified to
handle errors in the clsDatabase class in whatever manner you desire.

Reading Data into the DataSet

37

It is very important that you understand what we just did in this section. We populated a DataSet with all
of the records in the Products, Suppliers, and Categories tables and then related them together.

As you know, a DataSet is an in-memory copy of data. This means that it consumes memory based on
the amount of records in your DataSet. The procedures we created in this section can be used in
instances where your recordset is small, but you would never want to populate a DataSet with
thousands of records. We just used this for illustration purposes to show you the concept of a DataSet
and relationships between tables in the DataSet. In practice, you have to make good judgment calls
based on the number of records being returned to determine whether this is really a good idea or not.

Now, let's move on to creating the code that will populate a DataSet from a SQL Statement and then
on to writing the code to bring everything together so that it executes when the user specifies search
criteria and clicks the Search button.

Populating a DataSet From a SQL Statement
Now we are ready to create a generic function that will populate a DataSet by executing a SQL
statement that is passed in. We will then call this function later to have it execute the SQL statement
that gets generated by the search criteria specified by the user.

Try It Out – Populating a DataSet from a Dynamic SQL Statement

1. This code below should be placed under the code for the clsDatabase.vb class:

 Function LoadSearchDataSet(ByVal strConnection As String, ByVal strSQL _
 As String) As DataSet

 '**
 'The purpose of this function is to create and populate a data
 'set based on a SQL statement passed in to the function.
 '**
 Try

 Dim dsData As New DataSet()

 'call the table in the local dataset "results" since the values
 'may be coming from multiple tables.
 Dim strTableName As String = "Results"

 Dim blnRunStoredProc As Boolean = False

 dsData = PopulateDataSetTable(strConnection, strTableName, _
 strSQL, blnRunStoredProc, dsData)

 WriteSampleDataToOutputWindow(dsData)

 'return the data set to the calling procedure
 Return dsData

 Catch
 'error handling goes here
 UnhandledExceptionHandler()

Chapter 7

38

 End Try

 End Function

2. This code should also be placed under the code for the clsDatabase.vb class:

 Sub WriteSampleDataToOutputWindow(ByVal dsdata As DataSet)

 '**
 'Write data to the output window from the DataSet
 '**

 Try

 Dim oRow As DataRow
 Dim oColumn As DataColumn

 Dim strRecord As String

 'write some data in the to the Output window
 'to show that the data is there and that the SQL statement
 'worked.

 For Each oRow In dsdata.Tables("Results").Rows

 strRecord = oRow(0).ToString()
 strRecord = strRecord & " " & oRow(1).ToString()
 strRecord = strRecord & " " & oRow(2).ToString()
 strRecord = strRecord & " " & oRow(3).ToString()
 strRecord = strRecord & " " & oRow(4).ToString()
 Console.WriteLine(strRecord)
 Next

 Catch

 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

How It Works

The LoadSearchDataSet function calls the PopulateDataSetTable function with the parameter
specifying that it is not a stored procedure but, rather, a SQL statement that the DataSet will be
based upon.

 Dim dsData As New DataSet()

 'call the table in the local dataset "results" since the values
 'may be coming from multiple tables.
 Dim strTableName As String = "Results"

Reading Data into the DataSet

39

 Dim blnRunStoredProc As Boolean = False

 dsData = PopulateDataSetTable(strConnection, strTableName, _
 strSQL, blnRunStoredProc, dsData)

After creating the DataSet, a call is made to the WriteSampleDataToOutputWindow procedure.

 WriteSampleDataToOutputWindow(dsData)

This procedure is called to write some sample data to the Output window to verify that the search
results were populated correctly, based on the criteria specified by the user.

 Dim oRow As DataRow
 Dim oColumn As DataColumn

 Dim strRecord As String

 'write some data in the to the Output window
 'to show that the data is there and that the SQL statement
 'worked.

 For Each oRow In dsdata.Tables("Results").Rows

 strRecord = oRow(0).ToString()
 strRecord = strRecord & " " & oRow(1).ToString()
 strRecord = strRecord & " " & oRow(2).ToString()
 strRecord = strRecord & " " & oRow(3).ToString()
 strRecord = strRecord & " " & oRow(4).ToString()
 Console.WriteLine(strRecord)
 Next

This procedure call can be commented out later but, for now, we want to see that our search results are
coming back correctly.

We are now ready to write the code to generate the dynamic SQL statement based on the criteria
specified by the user. In the process, we will modify the search forms so they call all of the code we
created in the past two sections to populate the DataSets.

Building the SQL Statement Based on User Input
In this section, we will write the code to generate a SQL statement dynamically based on the criteria
specified by the user on either of the search forms.

Try It Out – Creating a Dynamic SQL Statement Based on User Input

1. Add the following function to clsDatabase.vb:

 Function PadQuotes(ByVal strIn As String) As String
 '***
'The purpose of this (very short but important) function is to search for
'the occurrence of single quotes within a string and to replace any

Chapter 7

40

'single quotes with two singles quotes in a row, so that, when executing
'the SQL statement, an error will not occur due to the database thinking
'it has reached the end of the field value. In SQL Server and some other
'databases, if you put such a delimiter twice in a row when passing a
'string SQL statement for it to execute (versus a stored procedure where 'this
doesn't apply), it knows that you want to use it once - versus that 'it symbolizes
the end of the value. Example: Grandma's Boysenberry then 'becomes Grandma''s
Boysenberry as the database expects.
'***
 Try

 PadQuotes = strIn.Replace("'", "''")

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

2. Next, add this code to the clsDatabase.vb class. This code will build the WHERE clause of
the SQL statement for our search screens.

 Function BuildSQLWhereClause(ByVal strTableName As String, ByVal _
 strQueryOperator As String, ByVal strSearchValue As String, _
 ByVal blnPriorWhereClause As Boolean, ByVal strWhereClause As _
 String, ByVal blnNumberField As Boolean) As String

'**
'The purpose of this function is to add the parameters passed in to
'the WHERE clause of the SQL Statement.
'**

 Try

 Dim strWhere As String = strWhereClause
 Dim strDelimiter1 As String
 Dim strDelimiter2 As String

 If blnPriorWhereClause = False Then
 strWhere = " WHERE "
 Else
 strWhere = strWhere & " AND "
 End If

 Select Case strQueryOperator
 Case "Equals"
 If blnNumberField Then
 strDelimiter1 = " = "
 strDelimiter2 = ""
 Else
 strDelimiter1 = " = '"

Reading Data into the DataSet

41

 strDelimiter2 = "' "
 End If

 Case "Starts With"
 strDelimiter1 = " LIKE '"
 strDelimiter2 = "%' "

 Case "Ends With"
 strDelimiter1 = " LIKE '%"
 strDelimiter2 = "' "

 Case "Contains"
 strDelimiter1 = " LIKE '%"
 strDelimiter2 = "%'"

 Case "Greater Than"
 strDelimiter1 = " > "
 strDelimiter2 = ""

 Case "Less Than"
 strDelimiter1 = " < "
 strDelimiter2 = ""

 End Select

 'Add the new criteria to the WHERE clause of the SQL Statement.
 'Note that the PadQuotes function is also being called to make
 'sure that if the user has a single quote in their search value,
 'it will put an additional quote so the database doesn't
 'generate an error.

 strWhere = strWhere & strTableName & strDelimiter1 & _
 PadQuotes(strSearchValue) & strDelimiter2

 Return strWhere

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

3. Next, add this function to clsDatabase.vb that will be used to build the SELECT and FROM
Clause of the dynamic SQL statement:

 Function BuildSQLSelectFromClause(ByVal strSearchMethod As String) _
 As String

'**
'The purpose of this function is to create the SELECT FROM clause for
'the SQL statement depending on whether the search is for Products

Chapter 7

42

'or Suppliers.
'**

 Try

 Dim strSelectFrom As String

 Select Case strSearchMethod

 Case "Products"
 'select the products information and the descriptions
 '(Product Name and Category Name) from suppliers and
 'categories table.
 strSelectFrom = "SELECT p.ProductId as ProductId, " & _
 "p.ProductName " & _
 "as ProductName, p.SupplierId as SupplierId," & _
 "s.CompanyName as CompanyName, p.CategoryId " & _
 "as CategoryId, c.CategoryName as CategoryName, " & _
 "p.QuantityPerUnit as QuantityPerUnit, " & _
 "p.UnitPrice as UnitPrice, p.UnitsInStock " & _
 "as UnitsInStock, p.UnitsOnOrder as " & _
 "UnitsOnOrder, p.ReorderLevel as " & _
 "ReorderLevel, p.Discontinued as " & _
 "Discontinued " & _
 "FROM Products p " & _
 "INNER JOIN Suppliers s ON p.SupplierId = " & _
 "s.SupplierId " & _
 "INNER JOIN Categories c on p.CategoryId = " & _
 "c.CategoryId"

 Case "Suppliers"
 'since we don't need to join to multiple tables, we can
 'just select everything from the suppilers table without
 'listing the columns all out specifically.
 strSelectFrom = "SELECT * FROM Suppliers"
 End Select

 Return strSelectFrom

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

4. Save all of your changes to the MainApp solution and close the solution. Next, open the
BaseForms solution. Add the following code to the BaseSearchForm. Don't worry, we'll
explain it momentarily – it isn't as complicated as you might think. Go ahead and add it to the
BaseSearchForm for now:

Reading Data into the DataSet

43

 Delegate Function WhereClauseDelegate(ByVal strFieldName As String, _
 ByVal strMatchCriteria As String, _
 ByVal strFilterCriteria As String, _
 ByVal blnPriorWhere As Boolean, _
 ByVal strWhereCriteria As String, _
 ByVal blnNumberField As Boolean) As String

 Sub CheckSearchCriteria(ByVal strMatchCriteria As String, ByVal _
 strFilterCriteria As String, _
 ByVal strFieldName As String, ByRef strWhereCriteria _
 As String, ByRef blnPriorWhere As Boolean, ByVal _
 blnNumberField As Boolean, ByVal BuildWhere As _
 WhereClauseDelegate)

'***
'If the user filled out both a value for match criteria (Starts With, Ends
'With, etc.) and a criteria to search for in the corresponding textbox,
'then that criteria needs to be added to the WHERE clause of the SQL
'statement.
'
'Using an advanced feature called DELEGATION, this function receives a
'pointer to the clsDatabase.BuildSQLWhereClause method and invokes it with
'the Invoke statement below. Delegation really isn't hard to understand – in
'simplest terms, it allows you to pass a method as a parameter and then
'call that method.
'***

 If strMatchCriteria <> "" And strFilterCriteria <> "" Then
 strWhereCriteria = BuildWhere.Invoke _
 (strFieldName, strMatchCriteria, strFilterCriteria, _
 blnPriorWhere, strWhereCriteria, blnNumberField)
 blnPriorWhere = True
 End If

 End Sub

5. Select Build | Rebuild All and rebuild the BaseForms project. Then, save all of your changes
and close the solution. You can next re-open the MainApp solution.

6. Now, you are ready to add some code to the Search Forms to have them read the criteria that
the user typed in and build the SQL statement accordingly. On frmSearchProducts.vb,
add the following function:

 Function BuildSQLStatement() As String

'***
'The purpose of this function is to build the SQL statement based
'on the criteria specified by the user on the Products form.
'***

 Try

Chapter 7

44

 Dim strSQL As String = ""
 Dim strSelectFromCriteria As String = ""
 Dim strWhereCriteria As String = ""
 Dim blnPriorWhere As Boolean = False
 Dim blnNumericField As Boolean = False
 Dim clsDb As New clsDatabase()

 strSelectFromCriteria = _
 clsDb.BuildSQLSelectFromClause("Products")
 'Check the search criteria and add to the WHERE clause if it was
 'specified. Do this for each set of criteria on the form

 CheckSearchCriteria(cbocriteria1.Text, txtcriteria1.Text, _
 "ProductId", strWhereCriteria, blnPriorWhere, "true", _
 AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria2.Text, txtcriteria2.Text, _
 "ProductName", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria3.Text, txtcriteria3.Text, _
 "CompanyName", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria4.Text, txtcriteria4.Text, _
 "CategoryName", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria5.Text, txtcriteria5.Text, _
 "UnitPrice", strWhereCriteria, blnPriorWhere, _
 "true", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria6.Text, txtcriteria6.Text, _
 "UnitsInStock", strWhereCriteria, blnPriorWhere, _
 "true", AddressOf clsDb.BuildSQLWhereClause)

 'put the SELECT, FROM, and WHERE clauses together into one
 'string
 strSQL = strSelectFromCriteria & strWhereCriteria

 'todo remove this message box after finished testing SQL syntax
 MsgBox("The SQL Statement is: " & strSQL)

 clsDb = Nothing

 Return strSQL

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

Reading Data into the DataSet

45

7. Next, add a BuildSQLStatement function to the frmSearchSuppliers.vb form. This
function contains the specific details for the Suppliers form and is different to that which was
used for the Products form.

 Function BuildSQLStatement() As String

'***
'The purpose of this function is to build the SQL statement based
'on the criteria specified by the user on the Suppliers form.
'***

 Try

 Dim strSQL As String = ""
 Dim strSelectFromCriteria As String = ""
 Dim strWhereCriteria As String = ""
 Dim blnPriorWhere As Boolean = False
 Dim blnNumericField As Boolean = False
 Dim clsDb As New clsDatabase()

 strSelectFromCriteria = _
 clsDb.BuildSQLSelectFromClause("Suppliers")

 'Check the search criteria and add to the WHERE clause if
 'it was specified. Do this for each set of criteria on the
 'form

 CheckSearchCriteria(cbocriteria1.Text, txtcriteria1.Text, _
 "SupplierId", strWhereCriteria, blnPriorWhere, _
 "true", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria2.Text, txtcriteria2.Text, _
 "CompanyName", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria3.Text, txtcriteria3.Text, _
 "ContactName", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria4.Text, txtcriteria4.Text, _
 "City", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria5.Text, txtcriteria5.Text, _
 "Region", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 CheckSearchCriteria(cbocriteria6.Text, txtcriteria6.Text, _
 "PostalCode", strWhereCriteria, blnPriorWhere, _
 "false", AddressOf clsDb.BuildSQLWhereClause)

 'put the SELECT, FROM, and WHERE clauses together into one
 'string

Chapter 7

46

 strSQL = strSelectFromCriteria & strWhereCriteria

 'todo remove this message box after finished testing SQL syntax
 MsgBox("The SQL Statement is: " & strSQL)

 clsDb = Nothing

 Return strSQL

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Function

8. Last of all, add the following code to both the Products and Suppliers forms
(frmSearchProducts.vb and frmSearchSuppliers.vb):

 Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnSearch.Click

 Try

 Dim custCB As SqlClient.SqlCommandBuilder = New _
 SqlClient.SqlCommandBuilder(adapterResults)
 Dim clsdatabase As New clsDatabase()
 Dim strSQL As String = ""

 'Load a data set with the complete Products, Suppliers, and
 'categories tables (to be used later as code tables to display
 'choices in a list, etc.).
 dsData = clsdatabase.LoadCompleteDataSet(CONN)

 'Load a data set with the search results based on the criteria
 'specified by the user on the form.
 strSQL = BuildSQLStatement()
 dsResults = clsdatabase.LoadSearchDataSet(CONN, strSQL)

 Catch
 'error handling goes here
 UnhandledExceptionHandler()
 End Try

 End Sub

Reading Data into the DataSet

47

How It Works

Before building the functions to dynamically generate the SQL statements, we first digressed momentarily
to an important topic that can often be overlooked in database programming: the problem of the single
quote character in strings. This character needs special treatment, and a poorly designed application will
fail if the user attempts to use a string containing a single quote (apostrophe) for a database search query.
This is because SQL uses single quotes to denote the beginning and end of a query string (that is, it's a
string delimiter in SQL) and, if the user uses them within their own input, there is a real risk that the
system will crash throwing an error. In order to use a single quote in a string as an apostrophe, SQL Server
and many other database platforms require you to use two single quotes in a row instead of one. In this
way, they are able to distinguish between a string delimiter and an apostrophe.

Of course, most users of databases are blissfully unaware of the double apostrophe requirement, and so
they should be. However, it's not difficult for us, the application designers, to get around this potential
hitch – by writing a function that you can call to transform any user search strings into this "two quotes
in a row" format. Below is the single line of code that we used to create the PadQuotes function in
clsDatabase:

 PadQuotes = strIn.Replace("'", "''")

You only need to use the PadQuotes function when creating and executing SQL statements from
Visual Basic .NET. If you are passing parameters to stored procedures, as we will see in a later chapter,
you do not need to pad the quotes, since SQL Server handles this for you automatically.

After creating the PadQuotes function, we then created the function to build the WHERE clause of our
dynamic SQL statement. This is the most tricky part of this chapter (but, as you'll see, it's really not that
complicated), where we dynamically built a WHERE clause based on the criteria specified by the user on
the Search Screen.

Let's have a look at the BuildSQLWhereClause function in more detail to see how it works.

 Dim strWhere As String = strWhereClause
 Dim strDelimiter1 As String
 Dim strDelimiter2 As String

 If blnPriorWhereClause = False Then
 strWhere = " WHERE "
 Else
 strWhere = strWhere & " AND "
 End If

If a WHERE clause already exists, then the keyword WHERE does not need to be added again. After
making the check for the prior WHERE clause, we add the following code:

 Select Case strQueryOperator
 Case "Equals"
 If blnNumberField Then
 strDelimiter1 = " = "
 strDelimiter2 = ""
 Else

Chapter 7

48

 strDelimiter1 = " = '"
 strDelimiter2 = "' "
 End If

 Case "Starts With"
 strDelimiter1 = " LIKE '"
 strDelimiter2 = "%' "

Notice how delimiters are assigned depending on the Search Operator being used (Equals, Starts
With, Ends With, Greater Than, etc.). Equals is a special case that can apply to both strings and
numbers, but the others apply to one or the other. Since Equals can apply to both data types but requires
a different syntax for each, we wrap the Equals portion with an If statement that sets the delimiter
accordingly (value wrapped in single quotes for strings and without the single quotes for numbers).

These delimiters will be incorporated into the SQL string at the end of the function to construct a fully
functional SQL statement that meets the required syntax. Notice how the line at the end that assembles
the complete WHERE clause also calls the PadQuotes function:

 strWhere = strWhere & strTableName & strDelimiter1 & _
 PadQuotes(strSearchValue) & strDelimiter2

After creating the function to build the WHERE clause, we then created the function for building the
SELECT and FROM clauses of the SQL statement.

 Dim strSelectFrom As String

 Select Case strSearchMethod

 Case "Products"
 'select the products information and the descriptions
 '(Product Name and Category Name) from suppliers and
 'categories table.
 strSelectFrom = "SELECT p.ProductId as ProductId, " & _
 "p.ProductName " & _
 "as ProductName, p.SupplierId as SupplierId," & _
 "s.CompanyName as CompanyName, p.CategoryId " & _
 "as CategoryId, c.CategoryName as CategoryName, " & _
 "p.QuantityPerUnit as QuantityPerUnit, " & _
 "p.UnitPrice as UnitPrice, p.UnitsInStock " & _
 "as UnitsInStock, p.UnitsOnOrder as " & _
 "UnitsOnOrder, p.ReorderLevel as " & _
 "ReorderLevel, p.Discontinued as " & _
 "Discontinued " & _
 "FROM Products p " & _
 "INNER JOIN Suppliers s ON p.SupplierId = " & _
 "s.SupplierId " & _
 "INNER JOIN Categories c on p.CategoryId = " & _
 "c.CategoryId"

 Case "Suppliers"
 'since we don't need to join to multiple tables, we can
 'just select everything from the suppilers table without

Reading Data into the DataSet

49

 'listing the columns all out specifically.
 strSelectFrom = "SELECT * FROM Suppliers"
 End Select

 Return strSelectFrom

As you can see from above, the BuildSQLSelectFromClause function uses the Visual Basic
Select Case construct to generate the SQL code that pulls data from either the Products or
Suppliers tables depending on the user's request. If the user is searching for products, then the SQL
SELECT FROM statement is generated that extracts data from three tables: Products, Suppliers, and
Categories. The Suppliers and Categories tables are joined to get the required descriptions.

With the Suppliers table, we simply create a SQL statement that selects all rows and columns in the
table, since we don't need to join to other tables like we did with Products. The SQL syntax we use here

should be familiar from Chapter 3 – don't confuse the Visual Basic Select statement with SQL's
SELECT clause however!

Our next step was to open the BaseForms solution and place a Delegate Function and a procedure
on the BaseSearchForm. Let's look at this in greater detail to see exactly how it works. Don't be
intimidated. In a moment you will learn an advanced technique (delegation) and it isn't as difficult to
understand as it first appears.

In the BaseSearchForm, we first declared the WhereClauseDelegate function as a Delegate
Function, as shown below:

 Delegate Function WhereClauseDelegate(ByVal strFieldName As String, _
 ByVal strMatchCriteria As String, _
 ByVal strFilterCriteria As String, _
 ByVal blnPriorWhere As Boolean, _
 ByVal strWhereCriteria As String, _
 ByVal blnNumberField As Boolean) As String

A delegate, in simplest terms, allows you to pass a procedure or function as a parameter into another
procedure or function, which then invokes it. There are times when you would rather pass a procedure
as a parameter to a generic method and invoke it, versus writing the specific code in the method to
invoke it directly. In order for delegation to work, the procedure or function that you are calling must
have the exact same type of parameters in the exact same order (that is, it must have the same signature)
as in the declaration of the delegate (as shown in the example above). Delegation is useful when you
don't want to call the exact same procedure each time – a different action is required – but when those
procedures have the same parameters.

So, in our case, we want to use delegation to invoke the BuildSQLWhereClause function in the
clsDatabase class. The BuildSQLWhereClause function must match with the
WhereClauseDelegate signature in order for this to work. The parameter names do not have to
match exactly, but the order and data types must match. And, indeed, they do have matching
signatures, as you can see below:

 Function BuildSQLWhereClause(ByVal strTableName As String, ByVal _
 strQueryOperator As String, ByVal strSearchValue As String, _

Chapter 7

50

 ByVal blnPriorWhereClause As Boolean, ByVal strWhereClause As _
 String, ByVal blnNumberField As Boolean) As String

As you already know, we could have invoked the BuildSQLWhereClause method directly, as in the
line of code below:

 strWhereCriteria = clsDatabase.BuildSQLWhereClause _
 (strFieldName, strMatchCriteria, strFilterCriteria, _
 blnPriorWhere, strWhereCriteria, blnNumberField)

Instead, we decided to use delegation so that the clsDatabase.BuildSQLWhereClause could be
passed into the CheckSearchCriteria procedure as a parameter. This is useful in our scenario
because we don't have a reference to the clsDatabase class in the BaseForms project. By just passing
the procedure that we want to call as a parameter, we have enough information to invoke it. Notice that
the CheckSearchCriteria procedure below has a parameter being passed in called BuildWhere of
the type WhereClauseDelegate.

 Sub CheckSearchCriteria(ByVal strMatchCriteria As String, ByVal _
 strFilterCriteria As String, _
 ByVal strFieldName As String, ByRef strWhereCriteria _
 As String, ByRef blnPriorWhere As Boolean, ByVal _
 blnNumberField As Boolean, ByVal BuildWhere As _
 WhereClauseDelegate)

BuildWhere must receive a pointer to the address of a procedure or function that matches the same
signature as the delegate declaration. You don't have to know in great detail what we mean by a pointer,
but just understand that it means it will contain a reference to an address in memory where that
procedure or function can be found. We will see in a moment how to designate a pointer to the
BuildSQLWhereClause method that must be passed as a parameter.

Next, the CheckSearchCriteria procedure checks to see if the user filled out both a match criteria
(Starts With, Equals, etc.) and the criteria they want to search for. If they did, then the Delegate
function gets invoked with the Invoke method, which, in our case, will be the
BuildSQLWhereClause method.

 If strMatchCriteria <> "" And strFilterCriteria <> "" Then
 strWhereCriteria = BuildWhere.Invoke _
 (strFieldName, strMatchCriteria, strFilterCriteria, _
 blnPriorWhere, strWhereCriteria, blnNumberField)
 blnPriorWhere = True
 End If

 End Sub

After saving these changes to the BaseForms solution, we then opened up the MainApp and placed code
under the Products and Suppliers search forms to create the BuildSQLStatement functions. If we
take just a snippet from the function used on the Products Search Screen, we can look at how it works
and hence understand the remaining code sections which all follow a similar pattern. In the code below,
the first line declares a new instance of the clsDatabase to allow us to invoke the methods used to
build our SQL clauses. Then, the second line calls the BuildSQLSelectFromClause to build the
SelectFrom part of the SQL statement.

Reading Data into the DataSet

51

 Dim clsDb As New clsDatabase()

 strSelectFromCriteria = _
 clsDb.BuildSQLSelectFromClause("Products")

Finally, here is where our delegation comes in. For each search criteria on the form, we call the
CheckSearchCriteria procedure and pass it all of the parameters it expects, including a pointer to
the clsDb.BuildSQLWhereClause method. Since we already have clsDb declared in this
procedure as a new instance of clsDatabase, all we have to do – to pass a pointer to its
BuildSQLWhereClause method as a parameter – is to place an AddressOf statement before clsDb.
This tells Visual Basic .NET to pass a pointer to the location in memory where that method resides, so
that the Delegate function can then know where to find it.

 'Check the search criteria and add to the WHERE clause if it was
 'specified. Do this for each set of criteria on the form

 CheckSearchCriteria(cbocriteria1.Text, txtcriteria1.Text, _
 "ProductId", strWhereCriteria, blnPriorWhere, "true", _
 AddressOf clsDb.BuildSQLWhereClause)

That's the basic idea of how delegation works. It really isn't as complicated as it might seem on first
glance, is it? Delegation is a powerful feature that can be used in many other ways not even covered
here. The most important concept for you to take away about delegation is that it allows you to pass a
procedure or function as a parameter to another procedure or method that then invokes it.

The last step we took was to add code to the btnSearch Click event that fires when the user clicks
the Search button (on either search form) so that the search executes.

 Dim custCB As SqlClient.SqlCommandBuilder = New _
 SqlClient.SqlCommandBuilder(adapterResults)
 Dim clsdatabase As New clsDatabase()
 Dim strSQL As String = ""

 'Load a data set with the complete Products, Suppliers, and
 'categories tables (to be used later as code tables to display
 'choices in a list, etc.).
 dsData = clsdatabase.LoadCompleteDataSet(CONN)

 'Load a data set with the search results based on the criteria
 'specified by the user on the form.
 strSQL = BuildSQLStatement()
 dsResults = clsdatabase.LoadSearchDataSet(CONN, strSQL)

Notice that, when the user clicks the Search button, the first DataSet is populated to hold the code
tables, then the SQL statement is built dynamically and, lastly, the second DataSet is populated by the
results of the search. This is where it brings together all of the functions and procedures we've been
creating throughout this chapter.

Chapter 7

52

Hopefully, you are wondering why you had to copy the same code twice and place it under both the
Products and Suppliers search forms versus just putting it under the BaseForm (since the code was
identical for both). The reason it was done this way is a result of a design choice that was made early on
– to have the Base Forms in a different project. If we put this Click event code in the BaseSearchForm,
then the clsDatabase class would have needed to be present in that project as well, since we are
creating an instance of it in the code.

Or, alternatively, the Click event could have been added to the base and then the clsDatabase class
referenced from another project in which it resides. Since the clsDatabase resides in the MainApp, it
didn't make sense to put the reference back to the MainApp in the BaseForms project. You may think of
other ways that this duplication could have been avoided. If so, great! This means that you are aware of
the impact of certain design choices and how you should avoid code duplication whenever possible.

Wait a minute! Can you think of a third way that we could have done this? We could have used
delegation in the same way that we did for BuildSQLWhereClause, to have the procedures passed in
as a parameter. Throughout the process of building the Product Management System, you will learn
many different ways to accomplish the same aim, which will provide you with good exposure to several
of the object-oriented concepts new in Visual Basic .NET.

Let's take a quick look at an example so that you can see visually how this works. Suppose you have the
Products Search Utility form open and you specify the following criteria - Product Name Contains
the word berry:

After clicking the Search button on the form, you should then see some results in the Output window
similar to those shown below:

Reading Data into the DataSet

53

By the way, if the Visual Studio Output window isn't visible, bring it up by selecting View | Other
Windows | Output. If you're getting different behavior when you run a query, verify that your project
contains all the code functions required and that they don't contain any errors, and try again.

Next, you should see a message box like the following appear to specify the dynamic SQL statement
that was generated from your code:

You can take this message box line of code out of the BuildSQLStatement functions when you are
comfortable that it is working correctly. Lastly, you should see the results of the search in the Output
window directly beneath that which was shown first:

In other words, in the figure above, the last two records in the Output window are those returned by the
search criteria (Product Names containing the word berry anywhere in them). The other results are from
the prior function that wrote the results of the code tables to the window (as shown a moment ago).

Chapter 7

54

Summary
In this chapter, we have covered a lot of ground and have made some great progress in building our
Product Management System. We have also learned how to build a DataSet based on criteria specified
by the user in the Search Screen. In particular, we covered the following:

❑ An introduction to the Product Management System

❑ A roadmap of the four Product Management System chapters

❑ Designing the Search Screen to allow for ad-hoc searching of Products and Suppliers

❑ How to populate a DataSet programmatically

❑ Using stored procedures to fill a DataSet with complete tables and then creating
relationships between the tables

❑ Dynamically building a SQL statement based on user input

❑ Filling a DataSet with the results of the SQL statement

❑ Verifying the results in the Output window

❑ A quick look at using delegates

We put these new skills to work by creating a DataSet and building a Search Screen that generates the
correct SQL statement according to the user's criteria. In the next chapter, we move on to discover how
we can display data in a DataSet on screen using data binding, as we continue to build the Product
Management System.

Exercises
1. What is a DataSet?

2. Name some DataSet objects and describe what they are used for.

3. Can a DataSet be based on a selection of information from multiple tables – or is it
restricted to just a single table at a time?

4. When should we use stored procedures to retrieve data versus a SQL statement in the code itself?

5. What is the SQL statement that would be assembled when the user asks to see all seafood
products under $10?

6. Why do we need to take special care when handling quotes within user input? Does this apply
with stored procedures too?

7. What is the difference between SqlDataAdapter and OleDbDataAdapter?

Answers are available at http://p2p.wrox.com/exercises/.

Reading Data into the DataSet

55

Chapter 7

56

Data Binding

In this chapter, we pick up where we left off in Chapter 7 to continue the development process of our
Product Management System. During this chapter, we look in detail at how to bind the records in a
DataSet to controls on a Form. We will implement the display of results in the DataGrid at the
bottom of the Search Screen. We will also build the Add/View/Edit Products and Add/View/Edit
Suppliers Screens and implement the logic to open those screens when a particular row in the search
results is selected. The specific topics we will cover include:

❑ Simple and complex data binding

❑ Building the Add/View/Edit Products and Suppliers Screens

❑ Using the ErrorProvider control to validate user input

❑ Using DataViews to filter and sort data in the DataSet

❑ Using the DataReader to return a single record

After the summary of the above concepts, there are the usual questions to consolidate your grasp of
these techniques.

Simple Versus Complex Data Binding
Data binding is the process of binding a control to a DataSet so that the control has ready access to
the data in the DataSet. This technique is generally employed to display the data on screen using a
particular control.

Simple data binding is when just a single value in a DataSet is bound to an item such as a property of
a control or form. Any property of a component can be bound to any value in a DataSet. This type of
simple data binding is also called Property Binding. An example of this would be binding the Text
property of a TextBox to the ProductName column of the Products table in the DataSet.

Chapter 8

2

Complex data binding allows you to bind more than one data element and typically more than one
record in a DataSet to a control on the form. Some common examples of controls that support
complex data binding include: DataGrid, ComboBox, ListBox, and ErrorProvider controls.

To further illustrate both simple and complex binding concepts, let's now modify our Product
Management System to bind several different on-screen controls to our DataSets.

Binding the Results to the DataGrid
In Chapter 7, we created two DataSets: dsData to hold the Products, Suppliers, and
Categories tables and dsResults to hold the results produced by the search requested by the user.
You may recall that we displayed the data from the two DataSets in the Output window to
demonstrate that they were indeed populated, but we did not display any data on the form itself.

The main objective of the Search Screen in the Product Management System is to display information
that matches the user's search criteria. We shall use the form's DataGrid as the primary means to
display these results, and we will implement that code in a moment. However, to fully demonstrate the
hierarchical DataGrid control, I would like to digress momentarily and make it bind to dsData
instead, which contains complete information from the three tables mentioned. After showing you how
the hierarchical DataGrid works by populating it with data from dsData, we will then get back on
track and make it display the search results data contained in dsResults.

Try It Out – Binding Data to a DataGrid

1. Open the MainApp solution for the Product Management System that you created in Chapter 7.

2. Double-click on the frmSearchProducts.vb file in the Solution Explorer to open in
Design View.

3. Scroll to the end of the btnSearch_Click event and add the highlighted line of code as
shown below:

 'Load a data set with the search results based on the criteria
 'specified by the user on the form.
 strSQL = BuildSQLStatement()
 dsResults = clsdatabase.LoadSearchDataSet(CONN, strSQL)

 dgdResults.DataSource = dsData

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

4. Run the program by selecting Debug | Start (or simply pressing the F5 key). The Products Search
Screen should then appear. Leave the search criteria fields blank. The search criteria values are not
important at this point because, for now, we're not going to display any search results but rather the
contents of the dsData DataSet. Go ahead and click the Search button.

Data Binding

3

5. When the Search button is clicked, we see almost the same thing as previously: a messagebox
appears showing the SQL query that is to be performed, and some data comes up in the
Output window. But, most importantly, we now have some data appearing in the DataGrid
as a result of the line of code we just added. But – wait – there isn't any data there. All that we
do see is a plus sign (+) in the left portion of the DataGrid.

6. Click the plus sign to expand the hierarchy of the DataGrid, and a screen like this will appear:

7. Click on one of the table names listed to view the data contained in within it. If you choose
the Products link from the list, you would see something like this:

8. To navigate back to the table list, click the left (back) arrow button that you can see in the
DataGrid's top right corner. Play about with it for a few minutes to get a good feel of how
it works.

Chapter 8

4

How It Works

As this example should demonstrate, it is really quite easy to bind a DataSet to a DataGrid – all it
requires is to set the DataSource property of the DataGrid to the name of the DataSet containing
the information you wish to display:

 dgdResults.DataSource = dsData

As dgdResults is the name of your DataGrid, this line binds the DataGrid to the DataSet called
dsData.

As a hierarchical control, the DataGrid supports complex binding and can display data from multiple
fields, records, and tables. A hierarchical DataGrid allows you to display results from multiple tables
contained in the same DataSet. You can then navigate through the DataSet hierarchy graphically
and view the records contained in each table in the DataSet. Furthermore, when table relationships
exist in the DataSet, the hierarchical DataGrid allows you to expand a given record and then see the
records that relate to it. Let's take a moment to see how this works.

For starters, navigate back to the top level where you see the list of the three tables: Products,
Suppliers, and Categories. Then, select Suppliers from the list to see all of the records in the Suppliers
table in the DataSet. Notice how there is a plus sign next to each record in the Suppliers list. This
designates that there is a relationship to each of those records that exists with another table in the
DataSet. Expand the first record by clicking on the plus sign. It should look like:

Next, click on the ProductsVsSuppliers link that was displayed upon expanding the record. You will
then see a list of all products with the SupplierID of 1, as shown here:

Did the name ProductsVsSuppliers sound familiar to you? Recall in Chapter 7 when we created the
dsData DataSet and then created table relationships between the tables? That is where this table
relationship is coming from. If we hadn't gone through the steps of relating the tables in the DataSet,
then the relationship wouldn't appear under each Suppliers record.

Data Binding

5

I hope this little experiment has given you a pretty good feel for how a hierarchical DataGrid works
and how powerful it can be.

Displaying the Search Results in the DataGrid
Now, we are going to get back on track and have the DataGrid display the results of the search itself.
You will be amazed at how easy this task is.

At this point, you may wish to comment out the lines that display the messagebox if you don't want to
see the SQL statements any more. These lines, you may remember, were inserted at the end of the
BuildSQLStatement function in the frmSearchProducts.vb and frmSearchSuppliers.vb
forms. Simply place a single quote (') at the front of this line to comment it out. You could, of course,
delete it entirely, but there's no harm in leaving it there – it saves a little time if you should need it
again, say when upgrading the system at a later date. If you wish, you can do the same for the
statements in the LoadCompleteDataSet and LoadSearchDataSet functions that that call the
Output functions to write data to the Output window. These functions can be found in the
clsDatabase.vb module. Feel free to leave any of these debug lines intact if you prefer, until you're
happy with how the program works. Of course, you'd never leave such code in a production
application!

Try It Out – Binding Search Results to a DataGrid

9. Return to the frmSearchProducts.vb [Design] view of the form and double click on the form
to open up the code window. Note, since we are using visual inheritance, if you double-click
on the Search button, it will think you want to create another instance of the
btnSearch_Click event, which is not what we want. Thus, just open the code window by
double-clicking on the form itself or by selecting the file in Solution Explorer and choosing
View Code. Modify the line added to the btnSearch_Click event in Step 3 of the Try It
Out above to the following:

 dgdResults.DataSource = dsResults

10.Next, go to the frmSearchSuppliers.vb [Design] view of the form and double-click
somewhere on the form to open up the code window for the suppliers search form. Add the
line of code at the same spot in this btnSearch_Click event as you did on the Products
search screen. Recall that we have two different click events – one for each search form.

11.Run the program with Debug | Start to see the effect of this change. The Product Search
Utility opens by default. Provide some dummy search criteria, such as all products with a Unit
Price of Less Than $50, and click that Search button!

Again you will see the plus sign (+) indicating that the tree of data contained in the DataGrid
can be expanded. Clicking on the plus sign expands it to reveal a link to the Results table in
the DataSet. Click the Results link to see the data returned by your search, all nicely
formatted inside the DataGrid, as shown here:

Chapter 8

6

12.Stop the application and add the following two lines of code immediately beneath the line in
the btnSearch_Click events for both the Products and Suppliers Search forms that we just
modified above:

 dgdResults.Expand(-1)
 dgdResults.NavigateTo(0, "Results")

13.Run the application again to verify that the results should appear in the DataGrid pane
immediately.

14.Try searching for some products and check that the records displayed match your criteria. As
an example, suppose you want to buy something with berries in it. To do this, you can search
for all products that contain the word "berry" and are less than $50 in price. Running such a
search will return the following results:

Data Binding

7

The two products that meet those criteria (containing the word berry and costing less than $50) are
listed in the DataGrid: Grandma's Boysenberry Spread and Northwoods Cranberry Sauce. Run a
couple of similar searches for suppliers too.

How It Works

All we've done here is to modify the DataSource property of the DataGrid so that it now binds to
the dsResults DataSet rather than the dsData one.

 dgdResults.DataSource = dsResults

We then modified the code so that the results would appear straight away, without the user having to
use their mouse to navigate down through the hierarchy.

 dgdResults.Expand(-1)
 dgdResults.NavigateTo(0, "Results")

The DataGrid's Expand method with an argument of -1 opens the DataGrid so that all table names
in the DataSet are displayed, which in this case showed just the Results table. We then used the
NavigateTo method to go to the first record of the Results table. When we now run a search, the
results appeared in the DataGrid pane without having to click the mouse.

Chapter 8

8

The Finishing Touches
By default, the DataGrid control allows you to edit the data that it displays by clicking on an item and
entering a new value. Go ahead and try this out – notice however that the underlying database entries
are not changed even though at first this may appear to be the case. Therefore, we want to disable this
feature, as we are going to create separate forms for letting users edit data.

Also, another improvement we can implement at this point is to avoid trying to bind to the DataSet if
the search returned no results. Instead we can return an error if this is attempted.

Try It Out – Form Enhancements

1. Close the Product Management System application and return to Visual Studio's design
environment. Close the MainApp solution to completely close the solution. Open the
BaseForms solution alone (independently of the MainApp solution).

2. From the BaseSearchForm.vb [Design] view, click once on the results DataGrid to select it,
and then modify its ReadOnly property to True using the Properties window to the right of
the main window.

3. Save your changes to the BaseForms solution and close it. You can now re-open the MainApp
solution where we will make the next changes.

4. Modify your code from the last Try It Out on both the Product and Supplier Search forms to
incorporate the If...Else statement as shown here:

If dsResults.Tables("Results").Rows.Count > 0 Then
 dgdResults.DataSource = dsResults
 dgdResults.Expand(-1)
 dgdResults.NavigateTo(0, "Results")
Else
 MsgBox("There were no records matching your search criteria.")
End If

5. Run a search that will not return any records and verify that this works for both the Products
and Suppliers searches. For example, try searching for a Product with a ProductId that
equals 5000. If your database doesn't have that ProductId, then you will get results like
shown opposite:

Data Binding

9

6. Next, run a search that returns results. You will again see that the results are displayed in the
DataGrid, as in similar examples shown previously.

Congratulations! Your DataGrid displays the results matching the user's request neatly and accessibly,
thanks to complex data binding.

How It Works

The first thing we did was to select the DataGrid in the BaseSearch Form and modify its ReadOnly
property to True. We did this to prevent users from modifying any data that appears in the grid.

We made our first change on the BaseSearchForm so that all forms that inherit from it will have this
property set already.

The reason for opening up the BaseForms solution alone is because, whenever making changes to
base forms that are contained in another project, it is safest to perform the changes independently of
the other project that uses those forms. With beta releases of Visual Studio .NET, changing the
BaseSearchForm from within the MainApp resulted in Visual Studio locking up while it tried to
follow all of the inheritance changes and resolve what had happened.

Then we wrapped the data binding code we had just added a few moments ago inside an If statement,
so that it only attempts to display data if there is indeed any data in the results DataSet.

If dsResults.Tables("Results").Rows.Count > 0 Then
 dgdResults.DataSource = dsResults
 dgdResults.Expand(-1)
 dgdResults.NavigateTo(0, "Results")
Else
 MsgBox("There were no records matching your search criteria.")
End If

Chapter 8

10

If there was no data to be displayed, a Messagebox containing an error message would appear to let the
reader know.

Here are a couple of enhancements you should try to make on your own. First, you could implement
the functionality to add an Order By clause to order by ProductId if it is a Product Search, or
SupplierId if it is a Supplier Search. Currently, the records are being returned in which ever order
the database gives them back in (which is usually in the order of the Primary Key, but not necessarily).
It would be nice to be sure that the records will always be displayed in a particular sequence.

You might also like to implement the code that it takes to require at least one search criteria before the
search will run. The way it works right now, if the user clicks the Search button without specifying any
search criteria, it will return all of the records in the database (i.e. there is no WHERE clause).

Now let's move on to the next stage and create the other screens required by the Product Management
System. In doing so, we shall see simple data binding in action, and get further practice with complex
data binding.

Creating the Base Add/View/Edit Form
We will again use visual inheritance and this time create a base Add/View/Edit form. In this section, we
will create the form in our BaseForms solution. We will later inherit the common functionality from this
base form and create a separate Add/View/Edit Products Screen and an Add/View/Edit Suppliers
Screen that users must go to when they wish to change the data in the database tables in any way.

Try It Out – Creating the Base Add/View/Edit Form

1. Close the MainApp solution if it is presently open.

2. Open the BaseForms solution that contains just the BaseSearchForm at the present.

3. Add a new form to the project by selecting Project | Add Windows Form. Give the form a
name of BaseDataForm.vb and click Open.

4. Double-click on BaseDataForm.vbin the Solution Explorer to make the form active in Design
View. Alternatively, click on the form in this central window, making it active. The Properties
window should now show the full compliment of available properties for the form.

5. Change the Text property from BaseDataForm to Product Management System, noting how
the TitleBar of the form changes to reflect the property's new value.

6. Ensure that the (Name) property of the form is set to BaseDataForm and, finally, enter 800,
600 for the Size property. As we learned in Chapter 7, 800 X 600 is the typical screen size
that most people have for their monitor settings as a minimum.

7. Now, let's walk through the process of placing the controls on the form, starting with the
Labels and TextBoxes. Place twelve Labels and twelve TextBoxes on the form and set their
properties as follows:

Data Binding

11

Control (Name) Text Additional Remarks

Label1 lblField1 Change the Size property to 128, 23 so the
complete text is shown. Change the Modifiers
property from Assembly to Family to allow
this Label and its properties to be modified in
inherited child forms.

Label2 lblField2 Change Size to 128, 23 and Modifiers to
Family.

Label3 lblField3 Change Size to 128, 23 and Modifiers to
Family.

Label4 lblField4 Change Size to 128, 23 and Modifiers to
Family.

Label5 lblField5 Change Size to 128, 23 and Modifiers to
Family.

Label6 lblField6 Change Size to 128, 23 and Modifiers to
Family.

Label7 lblField7 Change Size to 128, 23 and Modifiers to
Family.

Label8 lblField8 Change Size to 128, 23 and Modifiers to
Family.

Label9 lblField9 Change Size to 128, 23 and Modifiers to
Family.

Label10 lblField10 Change Size to 128, 23 and Modifiers to
Family.

Label11 lblField11 Change Size to 128, 23 and Modifiers to
Family.

Label12 lblField12 Change Size to 128, 23 and Modifiers to
Family.

TextBox1 txtField1 <blank> Change the Size property to 136, 20 so that it
will be large enough to display the data.
Change the Modifiers property from Assembly
to Family so this TextBox and its properties to
be modified in inherited child forms.

TextBox2 txtField2 <blank> Change the Size property to 216, 20. This field
needs more room than the others as it will display
either the ProductName or the CompanyName
(depending on whether it is being used for
Products or Suppliers). Change the Modifiers
property from Assembly to Family.

Table continued on following page

Chapter 8

12

Control (Name) Text Additional Remarks

TextBox3 txtField3 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox4 txtField4 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox5 txtField5 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox6 txtField6 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox7 txtField7 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox8 txtField8 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox9 txtField9 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox10 txtField10 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox11 txtField11 <blank> Change Size to 136, 20 and Modifiers to
Family.

TextBox12 txtField12 <blank> Change Size to 136, 20 and Modifiers to
Family.

After making the above changes, our form should look like this:

Data Binding

13

8. Now we need to add the Buttons for navigating through the records, adding records, saving
changes, etc. Place five Buttons on the form and set their properties as follows:

Control (Name) Text Additional Remarks

Button1 btnPrevious Previous
Record

Change the Size property to 144, 23 so the
button text will be displayed without
wrapping.

Button2 btnNext Next
Record

Change Size to 144, 23.

Button3 btnAdd Add New
Record

Change Size to 144, 23. Change the
Modifiers property from Assembly to
Family so this Button can be modified in the
child forms that inherit from this base form.

Button4 btnDelete Delete
Current
Record

Change Size to 144, 23.

Button5 btnSave Save All
Changes

Change Size to 144, 23. Change Modifiers
to Family.

Chapter 8

14

After adding the Buttons and setting the above properties, the form looks like the following:

In this chapter we are only going to be looking at the Previous Record and Next Record
Buttons. The others are going to be coded for in the next chapter.

9. Next, set the tab stop properties so that, when the user tabs from one field to the next, it
happens in the proper sequence. See if you can remember how to do this from what you
learned in Chapter 7. After you finish setting the tab stops, they should look like this:

Data Binding

15

10.Select File | Save All to save all of your changes to the BaseForms solution thus far.

11.Now that we have the user interface elements completed on the base data form, let's put the
code under the form that all data forms will have in common. To get to the code view, either
double-click on the BaseDataForm or right-click on the form in Solution Explorer and choose
View Code. Place these lines of code directly beneath the Inherits
System.Windows.Forms.Form statement in the code:

 Protected Const PROD = "Products"
 Protected Const SUPP = "Suppliers"
 Protected Const CONN = "user id=sa;password=xxxxx;initial " & _
 "catalog=NorthwindSQL;server=goz3"

 Protected dsSearchResults As DataSet
 Protected dsCodeTables As DataSet
 Protected intCurrentRec As Integer
 Protected myBindingManagerBase As BindingManagerBase

12.Add the generic error handler to the form:

Chapter 8

16

 Sub UnhandledExceptionHandler()

 'Display an error to the user.
 MsgBox("An error occurred. Error Number: " & Err.Number & _
 " Description: " & Err.Description & " Source: " & Err.Source)

 End Sub

13.Next, add a procedure that will be used to assign the values of the DataSet on the Search
form to the local variables on the Data form:

 Sub AssignDataSet(ByVal dsResults As DataSet, ByVal dsData As DataSet, _
 ByVal intCurrRow As Integer)
 Try

 'Assign the data sets and current row values passed into the
 'local variables.
 dsSearchResults = dsResults
 dsCodeTables = dsData
 intCurrentRec = intCurrRow

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

14.Create the navigation procedures on the BaseDataForm:

 Sub MoveNext()
 Try
 'Increment the Position property value by one.
 myBindingManagerBase.Position += 1

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Sub MovePrevious()
 Try

 'Decrement the Position property value by one.
 myBindingManagerBase.Position -= 1

 Catch
 'Handle errors.
 UnhandledExceptionHandler()

Data Binding

17

 End Try

 End Sub

 Sub MoveFirst()
 Try

 'Go to the first item in the list.
 myBindingManagerBase.Position = 0

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Sub MoveLast()
 Try

 'Go to the last row in the list.
 myBindingManagerBase.Position = myBindingManagerBase.Count - 1

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

15. Create the events that will be fired when the user clicks the Next or Previous buttons on the form:

 Private Sub btnNext_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnNext.Click
 Try

 'Run the MoveNext procedure to move to the next record.
 MoveNext()

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Private Sub btnPrevious_Click(ByVal sender As System.Object, ByVal e _
 As System.EventArgs) Handles btnPrevious.Click
 Try

Chapter 8

18

 'Run the MovePrevious procedure to move to the previous record.
 MovePrevious()

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

16.Add two generic procedures called ReplaceControl and EnableDisable:

 Sub ReplaceControl(ByVal ctlControl1 As Control, ByVal ctlControl2 As _
 Control)

 'The purpose of this procedure is to replace one control at the
 'location of another control. Control 2 is the new control that you
 'want to replace Control 1. This is useful in instances such as
 'visual inheritance where you have a base form and need to slightly
 'customize it for only a few fields.

 Try

 Dim ptLocation As Point
 Dim szSize As Size

 'Place Control 2 in the exact location where Control 1 exists.
 ptLocation = ctlControl1.Location
 szSize = ctlControl1.Size
 ctlControl2.Location = ptLocation
 ctlControl2.Size = szSize
 ctlControl2.TabIndex = ctlControl1.TabIndex

 'Disable Control 1 since it is being replaced by Control 2.
 EnableDisable(ctlControl1, False)

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Sub EnableDisable(ByVal ctlControl As Control, ByVal blnEnable As _
 Boolean)

 Try

 'Hide/disable fields or enable/make them visible based on
 'the parameters passed in.
 If blnEnable Then

Data Binding

19

 ctlControl.Visible = True
 ctlControl.Enabled = True
 Else
 ctlControl.Visible = False
 ctlControl.Enabled = False
 End If

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

17.This is a good point to save your work again using File | Save All.

18.Now that the code for our base data form is complete, it is time to rebuild the project. To do
so, select Build | Rebuild All. This will compile the project and make sure no compiler errors
exist, and will also update the appropriate project files with newer build information.

19.Close the BaseForms solution and open the MainApp solution, which we will be using
momentarily.

How It Works

In this section, we created a Base Data Form. We created the user interface elements for the form that
all Add/View/Edit forms will have in common.

Again, we started by placing the form constant and variable declarations:

 Protected Const PROD = "Products"
 Protected Const SUPP = "Suppliers"
 Protected Const CONN = "user id=sa;password=xxxxx;initial " & _
 "catalog=NorthwindSQL;server=goz3"

 Protected dsSearchResults As DataSet
 Protected dsCodeTables As DataSet
 Protected intCurrentRec As Integer
 Protected myBindingManagerBase As BindingManagerBase

and then the generic error handler. Make sure to change the connection string constant so that it
includes your username, password, and server.

Next, we added the class (form) variable declarations:

 dsSearchResults = dsResults
 dsCodeTables = dsData
 intCurrentRec = intCurrRow

Chapter 8

20

❑ dsSearchResults holds a local copy of the Search Results DataSet

❑ dsCodeTables holds a local copy of the DataSet containing the complete three tables

❑ The intCurrentRec integer will store the position of the selected record on the Search Screen

Next, we added the procedures to move to the next position in the DataSet using the
BindingManager, which associates a position with a DataSet. The myBindingManagerBase object
will allow us to manipulate the local DataSets, such as moving to the next and previous records.

 Sub MoveNext()
 Try
 'Increment the Position property value by one.
 myBindingManagerBase.Position += 1

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

Similar code blocks were added to also allow us to move to the previous, first, and last records of the
DataSet.

Then, we coded the Click events of the Next Record and Previous Record Buttons to allow us to
move through the DataSet.

 Private Sub btnNext_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnNext.Click
 Try

 'Run the MoveNext procedure to move to the next record.
 MoveNext()

In this case, the MoveNext procedure is called when the Next Record Button is clicked to enable us to
move on by one record. In the case with the Previous Record Button, the MovePrevious procedure is
called to move in the opposite direction.

Next, we added two procedures that are used to replace one control with another in the same location
on the form. The ReplaceControl procedure is used to replace one control with another at the same
place, which is useful when you need to customize a base form slightly for your new form:

 Dim ptLocation As Point
 Dim szSize As Size

 'Place Control 2 in the exact location where Control 1 exists.
 ptLocation = ctlControl1.Location
 szSize = ctlControl1.Size
 ctlControl2.Location = ptLocation

Data Binding

21

 ctlControl2.Size = szSize
 ctlControl2.TabIndex = ctlControl1.TabIndex

 'Disable Control 1 since it is being replaced by Control 2.
 EnableDisable(ctlControl1, False)

In order to disable the control being used, the EnableDisable procedure is called. This procedure
hides or shows controls depending on which parameters are met in the current conditions:

 'Hide/disable fields or enable/make them visible based on
 'the parameters passed in.
 If blnEnable Then
 ctlControl.Visible = True
 ctlControl.Enabled = True
 Else
 ctlControl.Visible = False
 ctlControl.Enabled = False
 End If

In this procedure, whether a control is enabled or not is linked to whether it is visible. In other words, if
its Visible property is True then so is its Enabled property.

We will later use this to customize the form for Add/View/Edit Products so that two of the controls
displayed will actually be ComboBoxes instead of the TextBoxes that are on the base data form. There
will be more on this later; we just add these two procedures to the BaseDataForm for now. Since these
features are the same regardless of whether you are managing Product or Supplier records, the base
form is the appropriate place to include them.

With the base form created, we are now ready to create the specific Products and Suppliers
Add/View/Edit screens that will inherit from this common set of functionality. We will then specify the
few items that are different to customize each respective screen. This will build upon the visual
inheritance principles that you learned in Chapter 7 and hopefully crystallize the concept in your mind.

Inheriting From the Base Data Form
We will add two forms to our MainApp project that inherit from the base data form we just created in
the previous section. After adding the two new forms, we will move on to implementing the specific
functionality that makes the Add/View/Edit Products screen unique.

Try It Out – Inheriting from the Base Data Form

1. In the Solution Explorer, right-click on the MainApp project name and select Add | Add
Inherited Form. Alternatively, select Project | Add Inherited Form. Give the inherited form
the name frmManageProducts.vb.

2. The Inheritance Picker dialog box will appear. Select the BaseDataForm in the list and click
OK. This adds the Add/View/Edit Products Screen to the project as a child inheriting from
the BaseDataForm.

Chapter 8

22

3. Repeat these steps to add the Add/View/Edit Products Screen, giving it a name
frmManageSuppliers.vb when prompted. This is a good chance to practice the step yourself
to make sure you know how to do it. If necessary, refer back to steps 1 and 2 above.

4. Save all of your changes.

You may encounter an error message after selecting BaseDataForm and clicking OK. This seems
to be a bug which causes Visual Studio .NET to close. If you look in your MainApp folder, you
should find that frmManageProducts.vb / frmManageSuppliers.vb has actually been
created. In this case, you need to open your MainApp project, right-click on the MainApp project
name in Solution Explorer, and choose Add Existing Item. When you are given a list of items to
choose from, click on the form you want to add (frmManageProducts.vb /
frmManageSuppliers.vb) and then OK. This should add the form to your project.

How It Works

Like in Chapter 7, we used the Inheritance Picker to add two forms to the MainApp project that
inherit from the BaseDataForm. The two child forms inherit all of the functionality from the
BaseDataForm. If you double-click on either form to bring them up in Design View, you will see that
they look identical to the BaseDataForm created in the prior section, only with the arrows indicating
the controls that are inherited.

Now that we have the Add/View/Edit Products and Suppliers screens inheriting from the base
functionality of the BaseDataForm, we are ready to implement the customizations for each of them that
make them unique.

Implementing the Unique Functionality of the
Add/View/Edit Products Form

In this section, we will customize the Add/View/Edit Products Form by adding a small amount of code
that will implement some of the additional functionality that it requires. Other specific features will be
added later.

Try It Out – Creating Specific Code for the Add/View/Edit Products Form

1. Open the code window for frmManageProducts.vb and place the following code at the
top directly underneath the Inherits BaseForms.BaseDataForm statement.

 Dim cboField3 As New ComboBox()
 Dim cboField4 As New ComboBox()
 Dim chkField10 As New CheckBox()

2. Next, add the SetControls procedure below:

 Sub SetControls()

 Try

Data Binding

23

 'This procedure makes minor changes to customize the base
 'form to meet the specific needs of the Add/View/Update
 'Products form.

 'Assign the title to the form.
 Me.Text = "Add/View/Edit Products"

 'Assign the labels for the fields.
 lblField1.Text = "Product Id:"
 lblField2.Text = "Product Name:"
 lblField3.Text = "Supplier Id:"
 lblField4.Text = "Category Id:"
 lblField5.Text = "Quantity Per Unit:"
 lblField6.Text = "Unit Price:"
 lblField7.Text = "Units In Stock:"
 lblField8.Text = "Units On Order:"
 lblField9.Text = "Reorder Level:"
 lblField10.Text = "Discontinued:"

 'Hide/disable the labels and textboxes for fields 11 and 12
 'since we only need 10 fields on the Products Add/View/Update
 'form.
 EnableDisable(lblfield11, False)
 EnableDisable(txtfield11, False)
 EnableDisable(lblfield12, False)
 EnableDisable(txtfield12, False)

 'Field3 is the Supplier Id field and should be a combobox
 'instead of the default textbox. Put a combobox in the
 'exact location as the textbox and disable the textbox.
 ReplaceControl(txtfield3, cboField3)

 'Field4 is the Category Id field and should be a combobox
 'instead of the default textbox. Put a combobox in the
 'exact location as the textbox and disable the textbox.

 ReplaceControl(txtfield4, cboField4)

 'Field10 is the Discontinued indicator and should be a checkbox
 'instead of the default textbox. Put a checkbox in the exact
 'location as the textbox and disable the textbox.
 ReplaceControl(txtfield10, chkField10)

 'Add the 3 new fields to the form controls so they will be
 'displayed.
 Me.Controls.Add(cboField3)
 Me.Controls.Add(cboField4)
 Me.Controls.Add(chkField10)

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()

Chapter 8

24

 End Try

 End Sub

3. Now we are ready to put in the heart of the code that kicks everything off when the form
loads. Note that this code still will not run after adding it because we have not specified when
to open this form yet. That will be coming in the next section. For now, add this code to the
frmManageProducts.vb form.

 Sub frmManageProducts_Load(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles MyBase.Load

 Try

 'Customize the form to the specific needs of the Products
 'Add/View/Edit screen.
 SetControls()

 Dim oRow As DataRow

 'Loop through the CodeTables DataSet and populate the choices
 'in the SupplierId drop-down.
 For Each oRow In dsCodeTables.Tables("Suppliers").Rows
 cboField3.Items.Add(oRow("SupplierId").ToString())
 Next

 'Loop through the CodeTables DataSet and populate the choices
 'in the CategoryId drop-down.
 For Each oRow In dsCodeTables.Tables("Categories").Rows
 cboField4.Items.Add(oRow("CategoryId").ToString())
 Next

 'Bind each input field on the form to the corresponding item in
 'the search results dataset.
 txtfield1.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ProductId"))
 txtField2.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ProductName"))
 cboField3.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.SupplierId"))
 cboField4.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.CategoryId"))
 txtfield5.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.QuantityPerUnit"))
 txtField6.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.UnitPrice"))
 txtField7.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.UnitsInStock"))
 txtField8.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.unitsonorder"))
 txtField9.DataBindings.Add(New Binding("Text", _

Data Binding

25

 dsSearchResults, "results.ReorderLevel"))
 chkField10.DataBindings.Add(New Binding("Checked", _
 dsSearchResults, "results.Discontinued"))

 'Set the ProductId to readonly since it is the key and should
 'not be changed.
 txtfield1.ReadOnly = True

 'Use the binding manager to manipulate the records in the
 'DataSet such as moving around the DataSet. In this case we're
 'setting the position to the selected record from the Search
 'Screen.
 myBindingManagerBase = BindingContext(dsSearchResults, _
 "Results")
 myBindingManagerBase.Position = intCurrentRec

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

How It Works

First, we added three control declarations (two ComboBoxes and a CheckBox) that will be used on the
form instead of three of the TextBoxes that the base form contains.

 Dim cboField3 As New ComboBox()
 Dim cboField4 As New ComboBox()
 Dim chkField10 As New CheckBox()

We created a SetControls procedure that will customize the specific user interface elements for the
Add/View/Edit Products form. For example, it will change the labels to indicate which Products
fields are being displayed, as shown in the code snippet here:

 'Assign the labels for the fields.
 lblField1.Text = "Product Id:"
 lblField2.Text = "Product Name:"
 lblField3.Text = "Supplier Id:"
 lblField4.Text = "Category Id:"

SetControls will replace three TextBoxes that were on the base data form with ComboBoxes and a
CheckBox instead. The base data form contains twelve TextBoxes and twelve Labels, but the
Add/View/Edit Products screen only needs ten controls. Of the ten data input controls that it uses, only
seven need to be TextBoxes. Two others need to be ComboBoxes to store the SupplierId and
CategoryId, and the last one needs to be a CheckBox to display the Discontinued indicator.

 'Field3 is the Supplier Id field and should be a combobox
 'instead of the default textbox. Put a combobox in the

Chapter 8

26

 'exact location as the textbox and disable the textbox.
 ReplaceControl(txtfield3, cboField3)

 'Field4 is the Category Id field and should be a combobox
 'instead of the default textbox. Put a combobox in the
 'exact location as the textbox and disable the textbox.

 ReplaceControl(txtfield4, cboField4)

 'Field10 is the Discontinued indicator and should be a checkbox
 'instead of the default textbox. Put a checkbox in the exact
 'location as the textbox and disable the textbox.
 ReplaceControl(txtfield10, chkField10)

 'Add the 3 new fields to the form controls so they will be
 'displayed.
 Me.Controls.Add(cboField3)
 Me.Controls.Add(cboField4)
 Me.Controls.Add(chkField10)

The reason why we created the base data form with twelve Labels and twelve TextBoxes is because that
would require the least amount of code changes to customize the Products and Suppliers derivatives.
The Add/View/Edit Suppliers form, as we will see momentarily, uses all twelve TextBoxes and thus
requires fewer changes than the Products form.

Last of all, we added the frmManageProducts_Load event that gets called when the form loads to
call the SetControls procedure. Also, it populates the ComboBoxes and binds the controls on the
form to the appropriate fields in the DataSet. Let's look at how the ComboBoxes and data bindings
work in more detail.

Using a DataRow variable, we loop through each record in the Suppliers table in the dsData code table
DataSet and populate all SupplierIds that exist in the database in the SupplierId ComboBox:

 Dim oRow As DataRow

 'Loop through the CodeTables DataSet and populate the choices
 'in the SupplierId drop-down.
 For Each oRow In dsCodeTables.Tables("Suppliers").Rows
 cboField3.Items.Add(oRow("SupplierId").ToString())
 Next

What this means is that when a user edits the SupplierId info for a given record, they will be able to
assign it a value of any available Supplier in the database. Do not confuse this with the fact that, in a
moment, we will bind the ComboBox to a field in the other DataSet so that the current value is
displayed and it will be updated when it changes.

The same concept applies to the code for populating the CategoryId ComboBox. Each CategoryId
in the dsData code table DataSet will be placed in the CategoryId ComboBox so the user will
have the entire selection of Categories to choose from.

Data Binding

27

Next is a very important section to understand. This is where the data binding between some of the
controls and the DataSet takes place. For each data entry field, we add a data binding that maps the
property of the control on the form to a column in the dsSearchResults DataSet. For example,
notice that we bind the ProductId in the dsSearchResults DataSet to the Text property of the
txtfield1 control (which is used for the ProductId). Thus, any time the Text property of that
control changes, it is updated in the DataSet automatically.

 'Bind each input field on the form to the corresponding item in
 'the search results dataset.
 txtfield1.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ProductId"))
 txtField2.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ProductName"))
 cboField3.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.SupplierId"))
 cboField4.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.CategoryId"))

This is an example of simple binding – we are binding a control to a just one element of a DataSet.
The remaining code in this section follows a very similar pattern to bind each control on the form to the
respective field in the DataSet. Notice that each field is bound to the Text property of each control
with the exception of the final chkDiscontinued control. In that case, we bind to the Checked
property, so that the CheckBox's ticked status will be set instead of its Text property:

 chkField10.DataBindings.Add(New Binding("Checked", _
 dsSearchResults, "results.Discontinued"))

Next, we assign the ProductId field to ReadOnly so that it can't be changed:

 'Set the ProductId to readonly since it is the key and should
 'not be changed.
 txtfield1.ReadOnly = True

The last part of code to go in the Load event is to navigate to the selected record.

 'Use the binding manager to manipulate the records in the
 'DataSet such as moving around the DataSet. In this case we're
 'setting the position to the selected record from the Search
 'Screen.
 myBindingManagerBase = BindingContext(dsSearchResults, _
 "Results")
 myBindingManagerBase.Position = intCurrentRec

What this does is to move to the record in the DataSet that was selected on the Search Screen. Since
the controls are bound to the DataSet, the effect on the screen is that the selected record will become
the current record when the form opens.

Now that we've completed some customizations for the Add/View/Edit Products Screen, let's make the
appropriate adjustments to the Add/View/Edit Suppliers Screen.

Chapter 8

28

Implementing the Unique Functionality of the
Add/View/Edit Suppliers Form

Let's jump right in to assigning the specifics to the Add/View/Edit Suppliers Form.

Try It Out – Creating Specific Code for the Add/View/Edit Suppliers Form

1. Open the code window for frmManageSuppliers.vb and add the following procedure:

 Sub SetControls()

 Try

 'This procedure makes minor changes to customize the base
 'form to meet the specific needs of the Add/View/Update
 'Suppliers form.

 'Assign the title to the form.
 Me.Text = "Add/View/Edit Suppliers"

 lblField1.Text = "Supplier Id:"
 lblField2.Text = "Company Name:"
 lblField3.Text = "Contact Name:"
 lblField4.Text = "Contact Title:"
 lblField5.Text = "Address:"
 lblField6.Text = "City:"
 lblField7.Text = "Region (State):"
 lblField8.Text = "Postal Code:"
 lblField9.Text = "Country:"
 lblField10.Text = "Phone:"
 lblField11.Text = "Fax:"
 lblField12.Text = "Home Page:"

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

2. Next, add the code for the frmManageSuppliers_Load event:

 Private Sub frmManageSuppliers_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Try

 'Customize the form to the specific needs of the Suppliers
 'Add/View/Update screen.
 SetControls()

Data Binding

29

 'Bind each input field on the form to the corresponding item in
 'the search results dataset.
 txtfield1.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.SupplierId"))
 txtField2.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.CompanyName"))
 txtfield3.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ContactName"))
 txtfield4.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.ContactTitle"))
 txtfield5.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.Address"))
 txtfield6.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.City"))
 txtfield7.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.Region"))
 txtfield8.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.PostalCode"))
 txtfield9.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.Country"))
 txtfield10.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.Phone"))
 txtfield11.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.Fax"))
 txtfield12.DataBindings.Add(New Binding("Text", _
 dsSearchResults, "results.HomePage"))

 'Set the supplier id to read only so the user cannot edit it
 'since it is the key.
 txtfield1.ReadOnly = True

 'Use the binding manager to manipulate the records in the
 'DataSet such as moving around the DataSet. In this case we're
 'setting the position to the selected record from the Search
 'Screen.
 myBindingManagerBase = BindingContext(dsSearchResults, _
 "Results")
 myBindingManagerBase.Position = intCurrentRec

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

How It Works

As with the Products form, the SetControls procedure customizes the Add/View/Edit Suppliers form
so that the appropriate labels are displayed, etc. The frmManageSuppliers_Load event then calls
SetControls to customize the user interface accordingly, and then binds the DataSet columns to the
appropriate TextBoxes on the form. The SupplierId field is set to ReadOnly and the Binding
Manager Base is set to the current position. Since these concepts were explained in greater detail in
the previous section, we do not need explain them again here.

Chapter 8

30

Making the DataSets Accessible
Now we are ready to implement the code to open the forms with the selected record as the current record.

Next, we will add code to the DoubleClick event of the DataGrid for both Add/View/Edit Products
and Suppliers forms so that, when the user double-clicks on a record in the grid, the Add/View/Edit
Products or Add/View/Edit Suppliers screen appear as appropriate.

Try It Out – The Double-Click Event of the DataGrid

1. Let's start with making the appropriate changes to the frmSearchProducts.vb file. Insert
the following code to accomplish this task:

 Private Sub dgdResults_DoubleClick(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles dgdResults.DoubleClick

 Try

 'Use the BindingManagerBase to determine the current position of
 'the selected record.
 Dim bmGrid As BindingManagerBase
 bmGrid = BindingContext(dsResults, "Results")

 'Load Add/View/Update Suppliers screen.
 Dim frmProducts As New frmManageProducts()
 frmProducts.AssignDataSet(dsResults, dsData, _
 bmGrid.Position)
 frmProducts.Show()

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

2. Next, let's make the appropriate change to the frmSearchSuppliers.vb file so that it will
open the Add/View/Edit Suppliers form when a result is double-clicked in the DataGrid.
Insert the following code to accomplish this task:

 Private Sub dgdResults_DoubleClick(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles dgdResults.DoubleClick

 Try

 'Use the BindingManagerBase to determine the current position of
 'the selected record.
 Dim bmGrid As BindingManagerBase
 bmGrid = BindingContext(dsResults, "Results")

 'Load Add/View/Update Suppliers screen.

Data Binding

31

 Dim frmSuppliers As New frmManageSuppliers()
 frmSuppliers.AssignDataSet(dsResults, dsData, _
 bmGrid.Position)
 frmSuppliers.Show()

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

How It Works

First of all, notice that we declare a BindingManagerBase object to bind to the dsResults
DataSet.

 Dim bmGrid As BindingManagerBase
 bmGrid = BindingContext(dsResults, "Results")

The BindingManagerBase class allows us to manage the synchronization of controls that are bound to the
same data source. Imagine that we have a TextBox which is bound to the FirstName column in a Customers
table, and a second TextBox which is bound to the LastName column. We need the two TextBoxes to be
synchronized so that, when the user moves through customers' names, the LastName TextBox always shows
the last name that corresponds with the first name displayed in the FirstName TextBox.

In our code here, we are using the BindingManagerBase object to determine the current position in
a DataSet, by using its Position property:

 Dim frmProducts As New frmManageProducts()
 frmProducts.AssignDataSet(dsResults, dsData, _
 bmGrid.Position)
 frmProducts.Show()

We can increment or decrement this property to move forwards or backwards through the DataSet. In
this case, we use this property in the call to the AssignDataSet method of the product form, and will
use a similar approach when we implement the code for the Suppliers Screen.

We then pass the position of the selected record to the Add/View/Edit Products form, which is then be
opened. Recall that the AssignDataSet method was created as part of the BaseDataForm.

Ready to Roll
Now that we have all the code to open the Add/View/Edit Products and Suppliers screens with the
selected record, make sure to save your work and then we can test and see how well it works. Select
Debug | Start to compile and run the program. Choose the Products option and specify a valid search
criteria that will return some products – for example, Product Id Less Than 5. Then, in the results
DataGrid, double-click on one the left-hand column beside one of the product rows, as shown:

Chapter 8

32

The Add/View/Edit Products screen should appear with the selected record shown as the current
record. Clicking on the Previous Record and Next Record buttons navigates forward and back through
the records returned by the search. An example of what the screen looks like is shown below:

Next, let's repeat these steps to prove that the Suppliers form also works correctly. Close the
Add/View/Edit Products form by clicking the X in the upper right hand corner. From the Product
Search Utility, select Suppliers as the Search Method from the ComboBox. The Supplier Search Utility
should then appear. Again, specify some search criteria to return some records – for example, Supplier
Id Less Than 5.

Data Binding

33

Then, double-click on the left-hand column beside one of the records and verify that the Add/View/Edit
Suppliers form opens with that selected record. Also, use the Previous Record and Next Record
Buttons to navigate through the results. An example of what this form might look like is shown overleaf

Chapter 8

34

Validating User Input
Now that we have our Add/View/Edit Products and Suppliers screens set up, let's investigate how we
can validate user input using a complex binding technique. The ErrorProvider control can be bound
to a DataSet to check for certain errors in the data entered by the user, and will give the user a
suitable visual indicator in the event of a data entry error.

For instance, we may have some textboxes that are required fields, that is, the user cannot leave them
blank. When such an error occurs, we can display a warning on screen – in the form of an Alert Icon –
that informs the user of their mistake and allows them to address it. The final effect will look like this:

Validating a user's input like this is extremely useful because it makes using your application a lot less
frustrating for the user. It can also help you to avoid writing a lot of code to deal with the many
potential formats that users might input their data in.

Data Binding

35

In this section, we will see how the ErrorProvider control can validate user input and display alert
icons when the user tries to enter faulty values into a control. We shall implement this capability for
numeric fields and fields that must be entered for the frmManageProducts form and
frmManageSuppliers forms to demonstrate how it works.

Try It Out – Incorporating the ErrorProvider Control in our Application

1. Close the MainApp solution and open the BaseForms solution.

2. Drag and drop an ErrorProvider control from the Visual Studio Toolbox onto the
BaseDataForm form. This should result in the ErrorProvider1 control appearing in the
Component Tray – the separate pane that appears at the bottom of the Designer, as shown below.

Controls that do not appear on the form at run time – like ErrorProvider controls (and Timer
controls, for instance) – appear in this tray, rather than taking up space in the actual form
Designer. The ErrorProvider control is invisible initially when the form appears in a running
application, and only becomes visible if triggered by the user's input being incorrect.

3. Change the Modifiers property of the ErrorProvider1 control from Assembly to Family.
This will allow us to change its properties in the child forms.

4. Add the following two procedures to the BaseDataForm:

 Sub ValidateNumeric(ByVal ctlControl As Control)

 Try

Chapter 8

36

 If Not IsNumeric(ctlControl.Text) Then
 'Set the error.
 ErrorProvider1.SetError(ctlControl, "Please enter a " & _
 "numeric value.")
 Else
 'Clear the error.
 ErrorProvider1.SetError(ctlControl, "")
 End If

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Sub ValidateNotBlank(ByVal ctlControl As Control)

 Try

 If ctlControl.Text = "" Then
 'Set the error.
 ErrorProvider1.SetError(ctlControl, _
 "Please enter a value for this required field.")
 Else
 'Clear the error.
 ErrorProvider1.SetError(ctlControl, "")
 End If

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

 End Sub

5. Save all changes to the BaseForms solution and recompile it. After it recompiles, then close
the solution. Next, open the MainApp solution.

6. Place the following Validating event in the code for frmManageProducts:

 Private Sub txtProductName_Validating(ByVal sender As Object, ByVal e _
 As System.ComponentModel.CancelEventArgs) Handles _
 txtField2.Validating

 Try
 ValidateNotBlank(txtField2)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

Data Binding

37

7. We can follow a similar procedure to add Validating events for the txtUnitPrice,
txtUnitsInStock, txtUnitsOnOrder, and txtReorderLevel numeric fields, as below.
This code should be placed in the code section of the frmManageProducts form.

 Private Sub txtUnitPrice_Validating(ByVal sender As Object, ByVal e As _
 System.ComponentModel.CancelEventArgs) Handles _
 txtField6.Validating

 Try
 ValidateNumeric(txtField6)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Private Sub txtUnitsInStock_Validating(ByVal sender As Object, ByVal e _
 As System.ComponentModel.CancelEventArgs) Handles _
 txtField7.Validating

 Try
 ValidateNumeric(txtField7)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Private Sub txtUnitsOnOrder_Validating(ByVal sender As Object, ByVal _
 e As System.ComponentModel.CancelEventArgs) Handles _
 txtField8.Validating

 Try
 ValidateNumeric(txtField8)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

 Private Sub txtReorderLevel_Validating(ByVal sender As Object, ByVal _
 e As System.ComponentModel.CancelEventArgs) Handles _
 txtField9.Validating

 Try
 ValidateNumeric(txtField9)
 Catch

Chapter 8

38

 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

8. Next, add the following Validating event under the frmManageSuppliers form:

 Private Sub txtCompanyName_Validating(ByVal sender As Object, ByVal e _
 As System.ComponentModel.CancelEventArgs) Handles _
 txtField2.Validating

 Try
 ValidateNotBlank(txtField2)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

9. Now we're ready to fire up our application and test out our new idiot-proofed fields. Run the
project and do a Products search that will produce some results. Double-click on one of the
results in the grid to bring up the Add/View/Edit Products screen. Then, tab to the Product
Name field of the record that appears and delete the value that is there. When you now leave
the Product Name field, say by tabbing to another field, an alert icon appears. If you move
your mouse over the alert icon, a tooltip explaining the error appears as shown here:

Data Binding

39

10.Try changing the numeric values to text values for the four numeric fields Unit Price, Units in
Stock, Units on Order, and Reorder Level to verify that the expected alert icon appears
corresponding to the Validating event we added for those controls.

How It Works

That's how easy it is to use the ErrorProvider control in conjunction with the Validating Event to
check for invalid entries for a control.

To begin with we added an ErrorProvider to our BaseDataForm so its capabilities would be
inherited by all child forms.

Next we created two generic validation controls that will be called from the inherited forms to conduct
the validations. These procedures were added to ensure that only numeric values could be added and
that the field wasn't left blank. ValidateNumeric and ValidateNotBlank are called by the
Validating event of the Product and Suppliers Forms to test the values being inputted into the
required fields.

We use the Validating event of a control to check for errors in the user input, and set an
ErrorProvider error if we encounter something invalid. We started by creating code to validate the
ProductName field. This is a required field and cannot be left blank. We then coded for the other
required fields on the Products Form, and CompanyName on the Suppliers Form (the only required field
there), with similar code blocks.

 Private Sub txtProductName_Validating(ByVal sender As Object, ByVal e _
 As System.ComponentModel.CancelEventArgs) Handles _
 txtField2.Validating

 Try
 ValidateNotBlank(txtField2)
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

The first line calls the ValidateNotBlank procedure to see if the txtField2.Text property is
blank and, if so, that procedure calls the ErrorProvider1 SetError method with an appropriate
error message for the alert icon to display. The parameters passed to the SetError method comprise
this error message, preceded by the name of the control that the message applies to.

If, however, the user has entered correct data, then the error is cleared so that no alert icon will be
displayed.

Notice how the event procedure is declared as txtProductName_Validating even though it
handles the txtField2.Validating event. We can name the procedure for the event whatever we
want, so as to make it more meaningful. In our case, it makes sense to give the event procedure a
different name since txtField2 doesn't tell us which field is being validated.

Chapter 8

40

We could even have multiple event procedures that all fire when the same event (such as
txtField2.Validating) occurs.

The Validating Event is fired when the focus moves away from a control (such as when you tab to
another control). In previous versions of Visual Basic, it was hard to code a validating event that
occurred before the control's Click event. Visual Basic .NET makes this easy.

Other Data Considerations
So far, we have looked at the basics of binding to DataSets using complex and simple binding
methods. There are some other scenarios that are more involved than those we have looked at so far.
For example, DataViews can be created on a DataSet to filter and sort data in meaningful ways.
Secondly, the use of the DataReader class may often be preferable to DataSets due to the
performance advantages that come from keeping just a single row in memory at a time. We will look at
these more sophisticated techniques briefly in this section.

Using DataViews to Filter and Sort Data
DataViews provide a customized view of a DataSet. You can use DataViews to sort, search, and
filter a DataSet. For example, suppose you want to show two different versions of the data in a
DataSet, such as showing each employee only the suppliers they deal with. With a DataView, you
can bind to an existing DataSet and then specify additional criteria to filter or sort on.

Let's look at a simple example of filtering our Search DataSet that is populated with the results of a
search according to the user's criteria.

Try It Out – DataViews

1. Place a new Button on the frmSearchProducts form. Double-click on the Button and place
the following code in its Click event.

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles Button1.Click

 'Create a new DataView and filter it based on the RowFilter
 'criteria.
 Dim dvView As New DataView()
 With dvView
 .Table = dsResults.Tables("results")
 .AllowDelete = True
 .AllowEdit = True
 .AllowNew = True
 .RowFilter = "SupplierId = '2'"
 .Sort = "ProductName ASC"
 End With

 'Display the results in the filtered view in the DataGrid.
 dgdResults.DataSource = dvView

 End Sub

Data Binding

41

2. Let's see this in action. Run the project and perform a search on all products with a
ProductId less than 5:

3. After the results are displayed in the grid, click on Button1 and run the filter. The data
displayed in the DataGrid is then filtered according to the DataView such that only one
record is displayed – the one where SupplierId is 2.

Chapter 8

42

How It Works

Notice how a new DataView is declared and bound to the Results DataSet.

 Dim dvView As New DataView()
 With dvView
 .Table = dsResults.Tables("results")

Next, the RowFilter property is set to filter the DataSet to only include the SupplierId that
equals 2.

 .RowFilter = "SupplierId = '2'"

Other properties are also set, such as to allow deletions and to sort the view according to the
alphabetical order (or more accurately, ASCII order) of the ProductName field.

 .AllowDelete = True
 .AllowEdit = True
 .AllowNew = True
 .Sort = "ProductName ASC"

The last line in the event sets the DataGrid's DataSource property to make the grid display the data
specified by the DataView.

 dgdResults.DataSource = dvView

This is just one example of when to use DataViews. Another is for security reasons: when you want to
restrict what records in a DataSet a given person can see. Take, for instance, the issue of salary. You
may only want the employee to be able to see his salary and no one else's. The Human Resources
representative, on the other hand, may need to see the salary records of all of the employees he/she
represents. The owner, of course, would want access to every employee's salary. There could be one
DataSet in an application that gets filtered in a number of different ways, like this, to display only
certain records that the user has permission to view.

Another practical application of a DataView might be when you have one DataSet in memory that
handles a larger set of information. You may need to filter the information for a quick analysis to meet a
certain set of criteria. Instead of making a trip back to the database to retrieve the specific records you
want, it is sometimes better to just do a quick filter on a DataSet you already have to get the records
you need.

Besides using RowFilter, you can also specify a RowSetFilter property to specify what types of
records should be included in the DataView. For example, this property can be set so that only added
records appear in the DataView, or it can be set so that only original values are included in the
DataView. This gives you an additional level of filtering of the DataSet since, not only can you apply
the RowFilter property, but you can also apply the RowSetFilter property to further refine which
rows are included.

Finally, while there are some controls that exist for data binding in Web Applications (that is, on Web

Data Binding

43

Forms), such Web Forms controls do not have the sophisticated features we have seen so far. For
example, you can use a DataGrid in Web Forms to display data. The data must be based on a
DataView created on an underlying DataSet. The reason it must be based on a DataView is because
a DataSet can contain multiple tables and the Web Form can only display one table at a time. Thus,
you create a DataView based on some information in the DataSet and bind the DataGrid control to
the DataSet.

See how easy it is to create a DataView and filter and sort data in a variety of ways? You can be as
creative as you like, and can devise DataViews for a number of helpful purposes, such as the ones
suggested above. Now, though, let's move on to the last topic of the chapter.

Using the DataReader to Retrieve Single Rows
You can use the DataReader class to retrieve a read-only, forward-only set of data from a database.
The DataReader can offer a significant increase in performance in an application because only a
single record is ever in memory at a time. This might be a good option when you are returning very
large amounts of data that may approach or even exceed available system resources. In general, you
should always aim to use a DataReader when possible. It is faster than the DataSet because it is not
retained in memory. Also, it is important to note that the DataSet actually goes through the
DataReader to create its results. So you should be able to quickly see why the DataSet is slower and
uses more resources. Not only does the DataSet have an extra layer to go through, but it stores all of
the records locally in memory.

When performance is a big consideration, you should opt to use the DataReader if possible. You
should always use the DataReader when you do not need an in-memory copy of the data. For
example, if all you need to do is retrieve some records and take immediate action on them, use a
DataReader. There is no reason to use the overhead of a DataSet to keep them in memory.

However, the DataReader has some limitations. It cannot bind to Windows Forms controls like we
have been doing throughout this chapter. When using the DataReader, your code has to request,
handle, and deal with each record individually (displaying it on screen, writing it to a file, and so on).

As we said earlier, the data in a DataReader is read-only and cannot be manipulated interactively, which
is much more limited than the hierarchical DataGrid we have in our Product Management System.

Let's look at some sample code that does use a DataReader.

Try It Out – Using the DataReader

1. Place a new Button on the Search form, and add the following code to
frmSearchProducts.vb for the Button's Click event:

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles Button2.Click

 Dim strConnection As String = "user id=sa;password=pwd;initial " & _
 "catalog=NorthwindSQL;server=goz3"

 Dim strSQL As String = "SELECT * FROM Products"

Chapter 8

44

 Dim sqlConn As New SqlClient.SqlConnection(strConnection)
 sqlConn.Open()

 Dim myCommand As New SqlClient.SqlCommand(strSQL, sqlConn)
 myCommand.CommandType = CommandType.Text
 Dim myReader As SqlClient.SqlDataReader = myCommand.ExecuteReader()

 Do While myReader.Read
 Console.WriteLine("Product Id: " & myReader.GetInt32(0) & _
 vbTab & "Product Name: " & myReader.GetString(1))
 Loop

 myReader.Close()
 sqlConn.Close()

 End Sub

2. Run the project and click on the Button to see all of the records from the Products table
displayed in the Output window.

How It Works

The first part of the above code sets a connection string that includes all required information to
connect to our SQL server database.

 Dim strConnection As String = "user id=sa;password=pwd;initial " & _
 "catalog=NorthwindSQL;server=goz3"

You will need to modify this line to work on your server.

The string defined in the next line specifies the SQL statement that we will use to choose records from
our database that will populate our DataReader.

Data Binding

45

 Dim strSQL As String = "SELECT * FROM Products"

Then, we open a new SQLConnection using the connection string.

 Dim sqlConn As New SqlClient.SqlConnection(strConnection)
 sqlConn.Open()

The myCommand data command is created by passing it the statement and connection strings. We can
then use myCommand to cause the DataReader to execute the SQL statement that we want – in this
case, to select all records from the Products table.

 Dim myCommand As New SqlClient.SqlCommand(strSQL, sqlConn)
 myCommand.CommandType = CommandType.Text
 Dim myReader As SqlClient.SqlDataReader = myCommand.ExecuteReader()

However, as we learned previously, the DataReader retrieves the records one at a time in a forward-
only and read-only format.

The last part of code retrieves each record in the DataReader one at a time and writes the Product Id
and Product Name to the Output window using the Console.WriteLine method:

 Do While myReader.Read
 Console.WriteLine("Product Id: " & myReader.GetInt32(0) & _
 vbTab & "Product Name: " & myReader.GetString(1))
 Loop

Notice the use of the GetInt32 and GetString methods of the DataReader object. These methods
can be used because we know the data types of the underlying data fields. By explicitly using the typed
accessor methods in this way, we reduce the amount of type conversion that is required when retrieving
the data.

Last of all, we have the line that closes the DataReader.

 myReader.Close()

It is very important to note that a DataReader is open until you close the connection with such a line
of code (or the object gets destroyed and thus the connection is closed at some point during garbage
collection).

You can modify this simple example for your own purposes, but this should give you an idea of how to
a DataReader can be used to rapidly retrieve forward-only, read-only data. The most important idea
to take away from this section is that you should use a DataReader whenever possible, and especially
when an in-memory copy of data is not required.

Chapter 8

46

Summary
In this chapter we've covered some crucial data binding concepts as we further developed our Product
Management System. We bound our search results to the DataGrid and added the functionality to
allow the user to open a specific record in the results list on the Add/View/Edit Products or Suppliers
screens. We specifically learned about:

❑ Complex data binding to bind controls to more than one element in a DataSet

❑ Simple data binding to bind to the property of a control to a single element in a DataSet

❑ Creating the Base Data Form for our Product Management System

❑ Creating the Add/View/Edit Products and Suppliers Screens that inherit functionality from
the Base Data Form

❑ Customizing the Add/View/Edit Screens for their specific needs

❑ Validating user input using the ErrorProvider Control

❑ Filtering and sorting data using DataViews

❑ Returning records using the DataReader

You should have a pretty good understanding of how to implement complex and simple data binding
and should also have working Search Screens. In the next chapter, we will continue with the
development of our application and begin implementing functionality to allow the user to update data
from the Add/View/Edit Products and Suppliers screens.

Exercises
3. What is the difference between complex data binding and simple data binding? Where does

property binding fit in?

4. Briefly describe the ErrorProvider control and what it can allow you to accomplish.

5. What is the purpose of a DataView?

6. Briefly describe the DataReader and when it can be used. Can you bind a DataReader to
controls on a form such as a DataGrid? When should you use a DataReader versus a
DataSet?

Answers are available at http://p2p.wrox.com/exercises/.

Data Binding

47

Chapter 8

48

Updating the DataSet and
Handling Errors

In this chapter, we continue developing our Product Management System where we left off in the
previous chapter. We will focus on updating data in the DataSet and then on the underlying database
based on changes made by the user. More specifically, we will learn about:

❑ Updating a DataSet based on user input

❑ Allowing the user to add, edit, and delete data in the DataSet on the Add/Edit/View
Products and Suppliers screens

❑ Creating a second dataset that contains all changes made by invoking the GetChanges
method

❑ Checking for errors in the changed dataset by checking the HasErrors property

❑ Saving the changes in the DataSet back to the database using Stored Procedures

❑ Accepting or rejecting the changes made based on whether the updates were successful

❑ Handling any errors that occur

Updating the Local Version of the DataSet
We now know to update local DataSet that the DataSet is an in-memory copy of data that is not
connected to the database from which its contents have come. Thus, if you modify the contents of a
DataSet you are not actually updating the data in the underlying data store unless you take additional
steps. We will start the latest round of changes to our Product Management System by adding code to
enable changes to be made to the local DataSet. Then, we will implement the mechanism that saves
all the changes back to the original data source when the user clicks the Save All button.

Chapter 9

2

Modifying the Add/View/Edit Products and Suppliers
Screens to Update the Local DataSet

In this section, we will modify frmManageProducts.vb and frmManageSuppliers.vb to enable
the updating and deleting of data in the local DataSet.

Adding a New Record to the Local DataSet
Let's start with writing the code to add a new record to the local DataSet on both the Add/View/Edit
Products and Add/View/Edit Suppliers forms.

Try It Out – Adding a New Record to the DataSet for the Products Screen

1. First, add this code to the Click event of the btnAdd Button on the frmManageProducts form:

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnAdd.Click

 Try

 'Use the NewRow to create a DataRow in the DataSet.
 Dim myRow As DataRow
 myRow = dsSearchResults.Tables("results").NewRow()
 myRow("ProductId") = "0"
 myRow("ProductName") = ""
 myRow("SupplierId") = "0"
 myRow("CategoryId") = "0"
 myRow("QuantityPerUnit") = ""
 myRow("UnitPrice") = "0"
 myRow("UnitsInStock") = "0"
 myRow("UnitsOnOrder") = "0"
 myRow("ReorderLevel") = "0"
 myRow("Discontinued") = "false"

 'Add the row with default values.
 dsSearchResults.Tables("results").Rows.Add(myRow)

 'Move to the newly added row so the user can fill in the new
 'information.
 MoveLast()

 'Make sure the frmManageProducts form stays on top.
 frmManageProducts.ActiveForm.TopMost = True

 'Set focus to the ProductName field on the form.
 txtField2.Focus()

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

Updating the DataSet and Handling Errors

3

2. Next, we will add similar code to the Click event of the btnAdd Button on the
frmManageSuppliers form:

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnAdd.Click

Try

 'Use the NewRow to create a DataRow in the DataSet.
 Dim myRow As DataRow
 myRow = dsSearchResults.Tables("results").NewRow()
 myRow("SupplierId") = 0
 myRow("CompanyName") = ""
 myRow("ContactName") = ""
 myRow("ContactTitle") = ""
 myRow("Address") = ""
 myRow("City") = ""
 myRow("Region") = ""
 myRow("PostalCode") = ""
 myRow("Country") = ""
 myRow("Phone") = ""
 myRow("Fax") = ""
 myRow("HomePage") = ""

 'Add the row with default values.
 dsSearchResults.Tables("results").Rows.Add(myRow)

 'Move to the newly added row so the user can fill in the new
 'information.
 MoveLast()

 'Make sure the frmManageSuppliers form stays on top.
 frmManageSuppliers.ActiveForm.TopMost = True

 'Set focus to the CompanyName field on the form.
 txtField2.Focus()

Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
End Try

How It Works

The code segments first declare a new DataRow. The new DataRow is created using the NewRow method
and then populated with default values (such as 0 for ProductId, Null for ProductName, etc.).

 Dim myRow As DataRow
 myRow = dsSearchResults.Tables("results").NewRow()
 myRow("SupplierId") = 0
 myRow("CompanyName") = ""
 myRow("ContactName") = ""
 myRow("ContactTitle") = ""
 myRow("Address") = ""
 myRow("City") = ""
 myRow("Region") = ""
 myRow("PostalCode") = ""

Chapter 9

4

 myRow("Country") = ""
 myRow("Phone") = ""
 myRow("Fax") = ""
 myRow("HomePage") = ""

Next, the code adds that new row to the DataSet with default values by using the Add method:

 dsSearchResults.Tables("results").Rows.Add(myRow)

It then moves to that newly added row by calling the MoveLast method:

 MoveLast()

We finally set the focus to the ProductName or CustomerName field ready for the user to start filling
in the details.

 txtField2.Focus()

The main difference between the first set of code and the second is that the default values for the
Products are different for Suppliers.

Deleting a Record in the Local DataSet
Next, let's move on to adding the code to delete the record in the local DataSet when the user clicks
the Delete Button on either form.

Try It Out – Adding Code to Delete Records in the Local DataSet

1. Save all changes to the MainApp solution and then close it. Next, open the BaseForms
solution. The Delete event is the same for both Products and Suppliers, so we are going to
add it to the base form. Place the following code under the Click event for the Delete Button
on the BaseDataForm.vb:

Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnDelete.Click

Try

 'Delete the current row from the DataSet.
 Dim oRow As DataRow
 Dim oTable As DataTable
 Dim intResponse As Integer

 intResponse = MsgBox("Are you sure you want to delete the " & _
 "current record from the DataSet?", _
 MsgBoxStyle.YesNo, "Confirm Delete")

 'If they confirm they want to delete, then go ahead and remove
 'the record from the DataSet. Reminder that this still doesn't
 'delete it from the database. That occurs under the SaveAll
 'when all changes in the DataSet are updated in the database.
 If intResponse = vbYes Then

Updating the DataSet and Handling Errors

5

 oTable = dsSearchResults.Tables("results")
 oRow = oTable.Rows(myBindingManagerBase.Position)
 If Not oRow.RowState = DataRowState.Deleted Then _
 oRow.Delete()

 'Make sure the frmManageXXX form stays on top.
 Me.ActiveForm.TopMost = True

 MovePrevious()
 End If

 Catch
 'Handle errors.
 UnhandledExceptionHandler()
 End Try

End Sub

2. After you complete the changes above in the BaseDataForm, save the solution and rebuild
the project by selecting Build | Rebuild All. Then you can close the BaseForms solution and
return to the MainApp solution.

3. At this point, go ahead and run your project and conduct a search based on Products. Double-
click on a record in the results grid to open the Add/View/Edit Products screen.

Chapter 9

6

4. Make changes to data and click the Next
Record Button.

5. Move back and you will see that your
changes are still in the local DataSet.
Also, navigate to a record and click the
Delete button.

You should see it disappear from the navigation.

6. Furthermore, when you click the Add New
Record button, you should find that you are
moved to a new record with blank values.

Updating the DataSet and Handling Errors

7

How It Works

The purpose of this code is to delete the current record from the local DataSet when the user clicks
the Delete Button on either the Add/View/Edit Products or Suppliers forms. Before deleting the record,
the user is prompted to confirm the deletion.

 intResponse = MsgBox("Are you sure you want to delete the " & _
 "current record from the DataSet?", _
 MsgBoxStyle.YesNo, "Confirm Delete")

If they respond Yes, then the Delete method for the DataRow is called to delete the record from the
DataSet.

 If intResponse = vbYes Then

 oTable = dsSearchResults.Tables("results")

 oRow = oTable.Rows(myBindingManagerBase.Position)

 If Not oRow.RowState = DataRowState.Deleted Then _
 oRow.Delete()

Recall that by deleting the record from the DataSet, the record still hasn't been deleted in the
underlying database. Changes in the DataSet only get changed in the local in-memory copy of the
data. We will later write the code to update the changes in the database itself.

Modifying an Existing Record in the Local DataSet
In order to modify an existing record in the local DataSet, there is no extra code that you have to
implement. By having the simple binding to each control property (set up in Chapter 8), this happens
automatically. In other words, if you navigate through the Add/View/Edit Products screen changing
data, when you move back to the record, it will still have your changed value in that local copy. It has
not been updated in the database, at that point, however.

Let's take a look at an example of this in action.

Try It Out – Modifying Records in the Local DataSet

1. Open the Suppliers Search Utility and run a search for all Suppliers with a Supplier Id Less
Than 5. Double-click on one of the records in the list (Supplier Id 1 if you have it in your
results) so that the Add/View/Edit Suppliers screen is shown with the selected record active, as
shown below:

Chapter 9

8

2. Take note of the current value for Company Name and Home Page. In the example above,
the original value for the Company Name is Exotic Liquids and the Home Page is empty.
Let's change the Company Name value to Exotic Liquids 2 and add a Home Page of
www.somewhere.com. After making these changes, move to the next record by clicking the
Next Record Button. Move to the previous record, and you should be back on the record you
changed. Notice how the values contain the changes you just made:

Updating the DataSet and Handling Errors

9

3. Close the Add/View/Edit Suppliers form and return to the Supplier Search Utility. You will
even see that the record was updated in the DataGrid, as shown below:

Chapter 9

10

How It Works

The reason the value is updated here in the DataGrid is because the same DataGrid that you
modified on the prior form is also being displayed on the Search Utility. However, if you click the
Search Button to run your search again, you will notice that you lose the changes you made. Why is
that the case? It is because you made the changes in the DataSet but those changes were not saved to
the database. When you click the Search Button, the records are retrieved from the database again.

Before moving on to the next section, play around some more with adding and deleting records in the
DataSet as well as modifying their values to see how the code we've added to this point works. Try
different variations so you can see that the DataSet is indeed being updated but, as soon as you refresh
the DataSet, the values are lost. Then, when you're comfortable with the way it works, move on to the
next section where we actually save the changes in the DataSet back to the database.

Saving the Changes to the Database
Now that you have the local DataSets on each form updating correctly, it's time to move on to the
more complex part, saving the changes back to the database.

Before delving into the specific code to implement this for our Product Management System, let's first
discuss the basic steps involved in saving the changes in a DataSet back to the database. First, you
typically invoke the GetChanges method to create a second DataSet that contains only the records
that have changed. An example is shown below:

 dsChangedDataSet = dsdata.GetChanges()

It is much easier to work with the smaller subset for updating the data in the underlying database than it
is when working with the full DataSet.

Second, you check for errors in the second DataSet by examining its HasErrors property, which
indicates if anything in that DataSet contains errors. After handling the errors appropriately, you can
invoke the Merge method to merge the changes from the second DataSet into the first, if your
scenario dictates this to be necessary.

Then, you call the Update method of the SQLDataAdapter, passing the DataSet as an argument.
The Update method actually updates the underlying table in the database with any changes (adds,
inserts, or deletes).

 myDataAdapter.Update(dsChangedDataSet,"Products")

When an application calls the Update method, the SQLDataAdapter examines the RowState
property, and executes the required Insert, Update, or Delete statements against the database.

If the Insert, Update, or Delete statements have not been specified, then the Update method will
generate an exception. To avoid this problem, you can explicitly set the SQL statements for the
SQLDataAdapter, as shown below.

Updating the DataSet and Handling Errors

11

 myDataAdapter.SelectCommand = "SELECT * FROM Products"

 myDataAdapter.UpdateCommand = "UPDATE Products SET " & _
 "ProductName = 'Test' WHERE ProductId = 1"

 myDataAdapter.InsertCommand = "INSERT INTO Products " & _
 "(ProductName,CategoryId) VALUES ('Test', 1) "

 myDataAdapter.DeleteCommand = "DELETE FROM Products " & _
 " WHERE ProductId = 1"

The above lines of code would need to appear prior to the call to the Update method. Alternatively,
you can create a SqlCommandBuilder object (which we looked at in Chapter 6) to have it
automatically generate SQL statements for you. The SqlCommandBuilder object will only work with
single-table updates (in other words, where Visual Basic .NET can determine the SQL statement for
you). Here is an example:

 Dim objCommandBuilder As New SQLCommandBuilder(myDataAdapter)
 myDataAdapter.DeleteCommand = _
 objCommandBuilder.GetDeleteCommand()
 myDataAdapter.UpdateCommand = _
 objCommandBuilder.GetUpdateCommand()
 myDataAdapter.InsertCommand = _
 objCommandBuilder.GetInsertCommand()

If the updates were successful, you can invoke the AcceptChanges method on the DataSet and,
alternatively, if they were not successful, you can invoke the RejectChanges method on the
DataSet. These two methods only affect the local DataSet and not the data in the actual database.

Using the Update method, AcceptChanges and RejectChanges follow the principles of
transactions. A transaction is a process that must either complete successfully or fail totally. We
would not want the update process to finish half way through, for instance. Transactions are
covered in more detail in the next chapter.

The above is the typical process flow for saving changes in a DataSet back to the database. However,
there are some exceptions when all of these steps will not work. One example is when your DataSet
was originally populated into a single table from the results of a SELECT statement joining multiple
tables together. In such a case, you cannot invoke the Update method of the SQLDataAdapter object
because it doesn't know which underlying table you want to update. Thus, you have to manually update
the records in the database while looping through the changed DataSet.

If you recall, this is exactly the type of scenario we have with our Product Management System. The
search results are based on a SQL statement that selects the records from multiple tables to make a
single table in the DataSet called Results. Thus, instead of being able to easily update the database
with changes in the DataSet just by invoking the Update method, we have to write our own looping
code to perform the database changes. Let's get started and see exactly how that works.

Handling Changed Records
For starters, we need to handle existing records in the DataSet that have been modified.

Chapter 9

12

Try It Out – Saving Changed Records in the DataSet to the Database

1. Place the following code under the frmManageProducts.vb form.

Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnSave.Click

 Try

 MoveFirst()

 Dim clsDb As New clsDatabase()

 clsDb.ProcessUpdates(CONN, PROD, dsSearchResults)

 clsDb = Nothing

 MsgBox("Save Completed. If no other messages appeared " & _
 "indicating any errors, then all changes were successful.")

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try
End Sub

2. Place this nearly identical code under the frmManageSuppliers.vb form:

Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnSave.Click

 Try

 MoveFirst()

 Dim clsDb As New clsDatabase()

 clsDb.ProcessUpdates(CONN, SUPP, dsSearchResults)

 clsDb = Nothing

 MsgBox("Save Completed. If no other messages appeared " & _
 "indicating any errors, then all changes were successful.")

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try
End Sub

3. Place the code for the ProcessUpdates method in clsDatabase.

Sub ProcessUpdates(ByVal strConnection As String, ByVal strUpdateTable _
 As String, ByRef dsdata As DataSet)

Updating the DataSet and Handling Errors

13

'**
'The purpose of this procedure is to call the database updates for
'Products or Suppliers based on the changes in the dataset.
'The strUpdateTable variable passed in should be either "Products" or
'"Suppliers" for the value and depending on the value of it, the
'appropriate database updates will be called. This is a
'generic routine to keep code duplication to a minimum.
'**

 Try

 'Handle any changed records.
 If dsdata.HasChanges(DataRowState.Modified) Then
 Dim dsChangedDataSet As DataSet
 dsChangedDataSet = dsdata.GetChanges(DataRowState.Modified)

 If dsChangedDataSet.HasErrors Then
 HandleDataSetErrors(dsChangedDataSet)
 Else
 'Update the changes in the database.
 If strUpdateTable = "Products" Then
 UpdateProductsInDb(strConnection, dsChangedDataSet)
 ElseIf strUpdateTable = "Suppliers" Then
 UpdateSuppliersInDb(strConnection, dsChangedDataSet)
 End If

 End If

 End If
 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try
 End Sub

4. Add the following procedure to the clsDatabase:

Sub HandleDataSetErrors(ByVal dsChanged As DataSet)

 Try

 'Invoke the geterrors method to return an array of DataRow
 'objects with errors.

 Dim ErrorRows() As DataRow
 Dim oRow As DataRow

 ErrorRows = GetAllErrors(dsChanged)

 'On each DataRow, examine the RowError property.
 Dim i As Integer
 Dim strError As String

 strError = "The following errors occurred - "

 For i = 0 To ErrorRows.GetUpperBound(0)
 strError = strError & " Row Error: " & _

Chapter 9

14

 ErrorRows(i).RowError()
 Next
 Err.Raise(-5000, , strError)

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

5. Then add the GetAllErrors function after the previous method:

Function GetAllErrors(ByVal rsChanges As DataSet) As DataRow()

 Try

 Dim rowsInError() As DataRow
 Dim myTable As DataTable
 Dim i As Integer
 Dim myCol As DataColumn

 For Each myTable In rsChanges.Tables
 ' See if the table has errors. If not, skip it.
 If myTable.HasErrors Then
 ' Get an array of all rows with errors.
 rowsInError = myTable.GetErrors()
 End If
 Next

 Return rowsInError

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Function

6. Create that UpdateProductsInDb procedure now, in clsDatabase:

Sub UpdateProductsInDb(ByVal strConnection As String, ByVal _
 dsChangedDataSet As DataSet)

 '**
 'The purpose of this function is to update data in the Products
 'table based on information in a DataSet that changed.
 '**
 Try

 Dim oRow As DataRow
 Dim smallintDiscontinued As Int16
 Dim intRowsAffected As Integer

 For Each oRow In dsChangedDataSet.Tables("Results").Rows

Updating the DataSet and Handling Errors

15

 smallintDiscontinued = oRow("Discontinued")
 'Format to the format that SQL Server expects.
 'The equivalent to Boolean in SQL Server is BIT.
 'A Bit can have 1 for True or 0 for False.
 'A Boolean in VB can have -1 for True or 0 for False.
 If smallintDiscontinued = vbYes Then
 smallintDiscontinued = -1
 End If

 Dim cmdCommand As New SqlClient.SqlCommand()

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 smallintDiscontinued, True)
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spUpdateProducts", cmdCommand)

 Next

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

7. Add this procedure to clsDatabase.

Sub AddProductsInsertUpdateParameters(ByRef cmdCommand As _
 SqlClient.SqlCommand, ByVal oRow As DataRow, ByVal _
 smallintdiscontinued As Int16, ByVal blnAddProductId As _
 Boolean)

 'The purpose of this procedure is to add the parameters to the
 'command object that will be passed to the stored procedure for
 'Updating OR Inserting Products.

 Try

 Dim sqlparm As New SqlClient.SqlParameter()

 'If updating a record, then will need to specify the ProductId.
 'If inserting, then one will not have been assigned yet (and
 'thus the insert stored procedure doesn't expect it as a '
 'parameter).
 If blnAddProductId Then
 sqlparm = cmdCommand.Parameters.Add("@ProductId", _
 SqlDbType.Int)
 sqlparm.Value = oRow("ProductId")
 End If
 sqlparm = cmdCommand.Parameters.Add("@ProductName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = oRow("ProductName")
 sqlparm = cmdCommand.Parameters.Add("@SupplierId", _
 SqlDbType.Int)
 sqlparm.Value = oRow("SupplierId")
 sqlparm = cmdCommand.Parameters.Add("@CategoryId", _

Chapter 9

16

 SqlDbType.Int)
 sqlparm.Value = oRow("CategoryId")
 sqlparm = cmdCommand.Parameters.Add("@QuantityPerUnit", _
 SqlDbType.NVarChar, 20)
 sqlparm.Value = oRow("QuantityPerUnit")
 sqlparm = cmdCommand.Parameters.Add("@UnitPrice", _
 SqlDbType.Money)
 sqlparm.Value = oRow("UnitPrice")
 sqlparm = cmdCommand.Parameters.Add("@UnitsInStock", _
 SqlDbType.SmallInt)
 sqlparm.Value = oRow("UnitsInStock")
 sqlparm = cmdCommand.Parameters.Add("@UnitsOnOrder", _
 SqlDbType.SmallInt)
 sqlparm.Value = oRow("UnitsOnOrder")
 sqlparm = cmdCommand.Parameters.Add("@ReorderLevel", _
 SqlDbType.SmallInt)
 sqlparm.Value = oRow("ReorderLevel")
 sqlparm = cmdCommand.Parameters.Add("@Discontinued", _
 SqlDbType.Bit)
 sqlparm.Value = smallintdiscontinued

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

8. Place the ExecuteSPWithParameters function in clsDatabase along with the others
we've added so far.

Function ExecuteSPWithParameters(ByVal strConnection As String, ByVal _
 strSPName As String, ByVal cmdCommand As SqlCommand) As Integer

 'The purpose of this function is to execute a stored procedure with
 'parameters as passed in with the command object. The number of
 'rows affected is returned.

 Try

 Dim intRowsAffected As Integer
 Dim sqlConn As New SqlClient.SqlConnection(strConnection)
 sqlConn.Open()
 Dim cmdParms As SqlClient.SqlCommand = cmdCommand

 cmdParms.Connection = sqlConn
 cmdParms.CommandType = CommandType.StoredProcedure
 cmdParms.CommandText = strSPName

 'execute the stored procedure
 intRowsAffected = cmdParms.ExecuteNonQuery()
 sqlConn.Close()

 Return intRowsAffected

 Catch
 'Error handling goes here.

Updating the DataSet and Handling Errors

17

 UnhandledExceptionHandler()
 End Try

End Function

9. Next, create the spUpdateProducts stored procedure on the NorthwindSQL database,
using Visual Studio .NET Server Explorer.

CREATE PROCEDURE dbo.spUpdateProducts
 (
 @ProductId int,
 @ProductName nvarchar(40),
 @SupplierId int,
 @CategoryId int,
 @QuantityPerUnit nvarchar(20),
 @UnitPrice money,
 @UnitsInStock smallint,
 @UnitsOnOrder smallint,
 @ReorderLevel smallint,
 @Discontinued bit
)
AS
UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder,
 ReorderLevel = @ReorderLevel,
 Discontinued = @Discontinued
 WHERE ProductId = @ProductId
 RETURN

10.Now that we've completed the code for updating Products in the database, let's move on to
Suppliers. Add the UpdateSuppliersInDb procedure to clsDatabase.

Sub UpdateSuppliersInDb(ByVal strConnection As String, ByVal _
 dsChangedDataSet As DataSet)

 '**
 'The purpose of this function is to update data in the Suppliers
 'table based on information in a DataSet that changed.
 '**
 Try

 Dim oRow As DataRow
 Dim intRowsAffected As Integer

 For Each oRow In dsChangedDataSet.Tables("Results").Rows

 Dim cmdCommand As New SqlClient.SqlCommand()

 AddSuppliersInsertUpdateParameters(cmdCommand, oRow, _
 True)
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spUpdateSuppliers", cmdCommand)

 Next

Chapter 9

18

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

11.Add the AddSuppliersInsertUpdateParameters procedure to clsDatabase.

Sub AddSuppliersInsertUpdateParameters(ByRef cmdCommand As _
 SqlClient.SqlCommand, ByVal oRow As DataRow, ByVal _
 blnAddSupplierId As Boolean)

 'The purpose of this procedure is to add the parameters to the
 'command object that will be passed to the stored procedure for
 'updating or inserting Suppliers.

 Try

 Dim sqlparm As New SqlClient.SqlParameter()

 'If updating a record, then will need to specify the SupplierId.
 'If inserting, then one will not have been assigned yet (and
 'thus the insert stored procedure doesn't expect it as a
 'parameter).
 If blnAddSupplierId Then
 sqlparm = cmdCommand.Parameters.Add("@SupplierId", _
 SqlDbType.Int)
 sqlparm.Value = oRow("SupplierId")
 End If
 sqlparm = cmdCommand.Parameters.Add("@CompanyName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = oRow("CompanyName")
 sqlparm = cmdCommand.Parameters.Add("@ContactName", _
 SqlDbType.NVarChar, 30)
 sqlparm.Value = oRow("ContactName")
 sqlparm = cmdCommand.Parameters.Add("@ContactTitle", _
 SqlDbType.NVarChar, 30)
 sqlparm.Value = oRow("ContactTitle")
 sqlparm = cmdCommand.Parameters.Add("@Address", _
 SqlDbType.NVarChar, 60)
 sqlparm.Value = oRow("Address")
 sqlparm = cmdCommand.Parameters.Add("@City", _
 SqlDbType.NVarChar, 15)
 sqlparm.Value = oRow("City")
 sqlparm = cmdCommand.Parameters.Add("@Region", _
 SqlDbType.NVarChar, 15)
 sqlparm.Value = oRow("Region")
 sqlparm = cmdCommand.Parameters.Add("@PostalCode", _
 SqlDbType.NVarChar, 10)
 sqlparm.Value = oRow("PostalCode")
 sqlparm = cmdCommand.Parameters.Add("@Country", _
 SqlDbType.NVarChar, 15)
 sqlparm.Value = oRow("Country")
 sqlparm = cmdCommand.Parameters.Add("@Phone", _
 SqlDbType.NVarChar, 24)

Updating the DataSet and Handling Errors

19

 sqlparm.Value = oRow("Phone")
 sqlparm = cmdCommand.Parameters.Add("@Fax", _
 SqlDbType.NVarChar, 24)
 sqlparm.Value = oRow("Fax")
 sqlparm = cmdCommand.Parameters.Add("@HomePage", _
 SqlDbType.NText)
 sqlparm.Value = oRow("HomePage")

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

12.Next, create the spUpdateSuppliers stored procedure on the database.

CREATE PROCEDURE dbo.spUpdateSuppliers
 (
 @SupplierId int,
 @CompanyName nvarchar(40),
 @ContactName nvarchar(30),
 @ContactTitle nvarchar(30),
 @Address nvarchar(60),
 @City nvarchar(15),
 @Region nvarchar(15),
 @PostalCode nvarchar(10),
 @Country nvarchar(15),
 @Phone nvarchar(24),
 @Fax nvarchar(24),
 @HomePage ntext
)
AS
 UPDATE Suppliers Set CompanyName = @CompanyName,
 ContactName = @ContactName,
 ContactTitle = @ContactTitle,
 Address = @Address,
 City = @City,
 Region = @Region,
 PostalCode = @PostalCode,
 Country = @Country,
 Phone = @Phone,
 Fax = @Fax,
 HomePage = @HomePage
WHERE SupplierId = @SupplierId
 RETURN

How It Works

We added a lot of code in this section. Don't get too overwhelmed – a lot of it is either repeated for the
Products and Suppliers or is very similar. Recall that we first added the code to the btnSave_Click
event to both the frmManageProducts and frmManageSuppliers forms. It creates an instance of
the clsDatabase class and then calls the ProcessUpdates method to handle all of the changes in
the DataSet.

Chapter 9

20

 Dim clsDb As New clsDatabase()
 clsDb.ProcessUpdates(CONN, PROD, dsSearchResults)
 clsDb = Nothing
 MsgBox("Save Completed. If no other messages appeared " & _
 "indicating any errors, then all changes were successful.")

The only difference in the two events is that the SUPP constant is passed as a parameter to
ProcessUpdates instead of the PROD constant. This lets ProcessUpdates know whether the data
to be updated applies to Products or Suppliers. This is another example of code that we could have
made totally generic and placed on the base form since it is almost exactly the same for both child
forms. However, since this references the clsDatabase.vb class module that isn't present in that base
forms project, we duplicated it here instead of adding the clsDatabase to the base forms project or
referencing it from that project. You may have other ideas on how we could have avoided this
duplication; there are multiple ways that we could have done this.

Next, we added the ProcessUpdates method within which the DataSet is analyzed to see if it has
any changes. ProcessUpdates method acts as the processor for calling the appropriate methods to
update data in the database.

 'Handle any changed records.
 If dsdata.HasChanges(DataRowState.Modified) Then
 Dim dsChangedDataSet As DataSet
 dsChangedDataSet = dsdata.GetChanges(DataRowState.Modified)

The first line of code above checks the HasChanges property of the DataSet with the optional
parameter DataRowState.Modified to determine if any changed records exist in the DataSet. If they
do, then the GetChanges method is invoked to fill a new DataSet with only the records that changed.

 If dsChangedDataSet.HasErrors Then
 HandleDataSetErrors(dsChangedDataSet)
 Else
 'Update the changes in the database.
 If strUpdateTable = "Products" Then
 UpdateProductsInDb(strConnection, dsChangedDataSet)
 ElseIf strUpdateTable = "Suppliers" Then
 UpdateSuppliersInDb(strConnection, dsChangedDataSet)
 End If

The next section in the above code then checks to make sure that the DataSet doesn't contain any
errors and proceeds with calling the Update procedures (depending on whether Products or
Suppliers are being updated). For now, this method will only handle any changed records. We will
modify it later in this chapter to handle deleted and inserted records too.

Next, we created a generic procedure in clsDatabase, called HandleDataSetErrors, which will
loop through a DataSet and raise any errors that it encounters. The GetAllErrors method is
invoked to return any DataRow objects with errors in an array.

 Dim ErrorRows() As DataRow
 Dim oRow As DataRow

 ErrorRows = GetAllErrors(dsChanged)

Updating the DataSet and Handling Errors

21

 'On each DataRow, examine the RowError property.
 Dim i As Integer
 Dim strError As String

 strError = "The following errors occurred - "

Notice that an error number, -5000, is raised when the DataSet has errors. That number can be
replaced with any appropriate error number and is just for demonstration purposes:

 For i = 0 To ErrorRows.GetUpperBound(0)
 strError = strError & " Row Error: " & _
 ErrorRows(i).RowError()
 Next
 Err.Raise(-5000, , strError)

We then added the GetAllErrors function, which is called from HandleDataSetErrors, as shown
above. This function checks each table in the DataSet to see if it has errors. If any errors are
encountered, they are loaded into an array of DataRows.

 For Each myTable In rsChanges.Tables
 'See if the table has errors. If not, skip it.
 If myTable.HasErrors Then
 'Get an array of all rows with errors.
 rowsInError = myTable.GetErrors()
 End If
 Next

 Return rowsInError

The ProcessUpdates method created previously calls an UpdateProductsInDb procedure to take
care of updating any changed product records. The UpdateProductsInDb and
UpdateSuppliersInDb procedures both take care of calling the appropriate procedures to add the
parameters that are to be passed to their respective stored procedures. Notice in the below snippet taken
from UpdateProductsInDb that, for each row in the DataSet, the parameters are added to the
Command object and then the stored procedure is executed:

 For Each oRow In dsChangedDataSet.Tables("Results").Rows

 smallintDiscontinued = oRow("Discontinued")
 'Format to the format that SQL Server expects.
 'The equivalent to Boolean in SQL Server is BIT.
 'A Bit can have 1 for True or 0 for False.
 'A Boolean in VB can have -1 for True or 0 for False.
 If smallintDiscontinued = vbYes Then
 smallintDiscontinued = -1
 End If

 Dim cmdCommand As New SqlClient.SqlCommand()

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 smallintDiscontinued, True)
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spUpdateProducts", cmdCommand)

 Next

Chapter 9

22

Further notice that we have to re-format the Discontinued value before passing it to the database.
The value in Visual Basic .NET for a Boolean is different from than which SQL Server expects. A
True in Visual Basic .NET is -1 while, in SQL Server, a bit (which is the equivalent to Boolean)
value of True is +1.

Before the stored procedure can be run to actually update the changes to the Products / Suppliers
records in the database, we must first add the parameters to the Command object to pass to SQL Server
to tell it which records to update. We will place the code to add these parameters in a procedure called
AddProductsInsertUpdateParameters or AddProductsInsertUpdateParameters. The
Parameters.Add method is being used to assign the parameters that the stored procedure expects to
the corresponding values that came from the local DataSet. If we are adding a record, the record will
not have a ProductId / SupplierId as one won't have been assigned yet. In this case, the stored
procedure doesn't expect it for a parameter:

 If blnAddProductId Then
 sqlparm = cmdCommand.Parameters.Add("@ProductId", _
 SqlDbType.Int)
 sqlparm.Value = oRow("ProductId")
 End If

If a record is being inserted, then the ProductId / SupplierId needs to be specified with the rest of
the parameters, as can be seen from the code snippet below:

 sqlparm = cmdCommand.Parameters.Add("@ProductName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = oRow("ProductName")
 sqlparm = cmdCommand.Parameters.Add("@SupplierId", _
 SqlDbType.Int)
 sqlparm.Value = oRow("SupplierId")

Recall from earlier that we are handling the updates manually instead of just calling the Update
method of the DataSet. That is because the Results table in our DataSet is based on more than
one underlying table. It is for this reason that we loop through each record in the DataSet that
contains the changes and execute the stored procedure to handle the update for that record.

Next, we added the ExecuteSPWithParameters function to clsDatabase. This is a generic
function that will execute a stored procedure – with the parameters as passed with the Command object
– and will return the number of rows affected. We will be able to call this function in multiple places:

 Dim intRowsAffected As Integer
 Dim sqlConn As New SqlClient.SqlConnection(strConnection)
 sqlConn.Open()
 Dim cmdParms As SqlClient.SqlCommand = cmdCommand

 cmdParms.Connection = sqlConn
 cmdParms.CommandType = CommandType.StoredProcedure
 cmdParms.CommandText = strSPName

 'Execute the stored procedure.
 intRowsAffected = cmdParms.ExecuteNonQuery()
 sqlConn.Close()

 Return intRowsAffected

Updating the DataSet and Handling Errors

23

Finally, we added the spUpdateProducts and spUpdateSuppliers stored procedures to the
NorthwindSQL database. These stored procedures accept all of the values in the Products or Suppliers
table as parameters and then update the record for that ProductId or SupplierId with all of the
values passed in:

CREATE PROCEDURE dbo.spUpdateProducts
 (
 @ProductId int,
 @ProductName nvarchar(40),
 @SupplierId int,
 @CategoryId int,
 @QuantityPerUnit nvarchar(20),
 @UnitPrice money,
 @UnitsInStock smallint,
 @UnitsOnOrder smallint,
 @ReorderLevel smallint,
 @Discontinued bit
)
AS
UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder,
 ReorderLevel = @ReorderLevel,
 Discontinued = @Discontinued
 WHERE ProductId = @ProductId
 RETURN

That's it! We can now save changed records in the DataSet to the database. You may be asking,
though, "What happens if two users try to update the same record at the same time?" In the next
chapter we will cover how to handle concurrency conflicts that can occur when one user tries to change
a record that another user has more recently changed.

Handling Deleted Records
Now that we have added the code to our in-progress application to handle records that have changed,
let's move on to handling records that have been deleted from the local DataSet.

Try It Out – Removing Deleted Records in the DataSet from the Database

1. Add the following code in the ProcessUpdates procedure of clsDatabase immediately
after the section for handling changed records and just above the Catch statement, as shown
below:

 End If

 'Handle any deleted records.
 If dsdata.HasChanges(DataRowState.Deleted) Then
 Dim dsDeletedDataSet As DataSet
 dsDeletedDataSet = dsdata.GetChanges(DataRowState.Deleted)

 If dsDeletedDataSet.HasErrors Then
 HandleDataSetErrors(dsDeletedDataSet)
 Else

Chapter 9

24

 DeleteRecordsInDb(strConnection, dsDeletedDataSet, _
 strUpdateTable)
 End If
 End If

 Catch
 'Error handling goes here.

2. Next, add the DeleteRecordsInDb procedure to clsDatabase.

Sub DeleteRecordsInDb(ByVal strConnection As String, ByVal _
 dsDeletedDataSet As DataSet, ByVal strTableName As String)

 '**
 'The purpose of this function is to delete data in the Products
 'table based on information in a DataSet that was deleted.
 '**
 Try

 Dim oRow As DataRow
 Dim intRowsAffected As Integer

 For Each oRow In dsDeletedDataSet.Tables("Results").Rows

 Dim cmdCommand As New SqlClient.SqlCommand()

 'Reject changes so it will allow access to the ProductId.
 oRow.RejectChanges()

 If strTableName = "Products" Then
 AddDeleteParameters(cmdCommand, "@ProductId", _
 oRow("ProductId"))
 intRowsAffected = _
 ExecuteSPWithParameters(strConnection, _
 "spDeleteProducts", cmdCommand)
 Else
 AddDeleteParameters(cmdCommand, "@SupplierId", _
 oRow("SupplierId"))
 intRowsAffected = _
 ExecuteSPWithParameters(strConnection, _
 "spDeleteSuppliers", cmdCommand)
 End If

 'Turn around and delete it again.
 oRow.Delete()
 Next

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

3. Place the AddDeleteParameters procedure in clsDatabase as well.

Updating the DataSet and Handling Errors

25

Sub AddDeleteParameters(ByRef cmdCommand As SqlClient.SqlCommand, _
 ByVal strVarName As String, ByVal intId As Integer)

 'The purpose of this procedure is to add the parameters to the
 'command object that will be passed to the stored procedure for
 'deleting Products or Suppliers. strVarname should be passed in as
 'the name of the parameter (e.g. @ProductId or @SupplierId) and
 'intId should be the unique ID to designate which record gets
 'deleted (e.g. ProductId or SupplierId).

 Try

 Dim sqlparm As New SqlClient.SqlParameter()

 sqlparm = cmdCommand.Parameters.Add(strVarName, SqlDbType.Int)
 sqlparm.Value = intId

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

4. Create the spDeleteProducts stored procedure in the NorthwindSQL database to delete
the specified product record.

CREATE PROCEDURE dbo.spDeleteProducts
 (
 @ProductId int
)
AS
 DELETE FROM Products where ProductId = @ProductId
 RETURN

5. Create the spDeleteSuppliers stored procedure to delete the specified supplier record.

CREATE PROCEDURE dbo.spDeleteSuppliers
 (
 @SupplierId int
)
AS
 DELETE FROM Suppliers where SupplierId = @SupplierId
 RETURN

How It Works
Recall that the user clicking the Save Button kicks off the ProcessUpdates method. We added code to the
ProcessUpdates method to have it check for and handle any records that were deleted from the
DataSet. If any deleted records exist, then a new DataSet containing only the deleted records is created.

 If dsdata.HasChanges(DataRowState.Deleted) Then
 Dim dsDeletedDataSet As DataSet
 dsDeletedDataSet = dsdata.GetChanges(DataRowState.Deleted)

Chapter 9

26

 If dsDeletedDataSet.HasErrors Then
 HandleDataSetErrors(dsDeletedDataSet)
 Else

The DeleteRecordsInDb procedure is then called to actually delete those records from the database,
assuming no errors are contained in the DataSet.

 DeleteRecordsInDb(strConnection, dsDeletedDataSet, _
 strUpdateTable)
 End If
 End If

Then, we added the DeleteRecordsInDb procedure to clsDatabase. This procedure will call the
appropriate procedures to add the parameters to the Command object and then execute the appropriate
stored procedure depending on whether the delete is for Products or Suppliers. This function receives a
DataSet as a parameter that contains records that should be deleted from the database.

 For Each oRow In dsDeletedDataSet.Tables("Results").Rows

 Dim cmdCommand As New SqlClient.SqlCommand()

 'Reject changes so it will allow access to the ProductId.
 oRow.RejectChanges()

 If strTableName = "Products" Then
 AddDeleteParameters(cmdCommand, "@ProductId", _
 oRow("ProductId"))
 intRowsAffected = _
 ExecuteSPWithParameters(strConnection, _
 "spDeleteProducts", cmdCommand)
 Else
 AddDeleteParameters(cmdCommand, "@SupplierId", _
 oRow("SupplierId"))
 intRowsAffected = _
 ExecuteSPWithParameters(strConnection, _
 "spDeleteSuppliers", cmdCommand)
 End If

 'Turn around and delete it again.
 oRow.Delete()
 Next

Notice in the code snippet above how it loops through each record and issues a delete statement against
the database (by calling the delete stored procedure).

Further, note that a call to RejectChanges is made before the SQL statement and then the row is
deleted again, two lines later. You are probably wondering – if it was deleted already, why we rejected
the changes and then immediately deleted the record again. The reason is because, if you don't do it this
way, you will receive an error when you try to create the strSQL statement saying that the item does
not exist in the collection. So, by temporarily rejecting changes so the dynamic SQL statement can be
built, and then immediately deleting it from the DataSet again, we overcome this issue.

Updating the DataSet and Handling Errors

27

We also added the AddDeleteParameters procedure to clsDatabase. It will add a single
parameter to the Command object, which, in the case of both of our stored procedures, will be their
respective Id's (ProductId or SupplierId). The name of the parameter is passed in using
strVarname, and intId designates which record gets deleted using the unique ProductId or
SupplierId.

 Dim sqlparm As New SqlClient.SqlParameter()

 sqlparm = cmdCommand.Parameters.Add(strVarName, SqlDbType.Int)
 sqlparm.Value = intId

Finally, we created the stored procedures necessary to delete the specified record in either the Products
or Suppliers table. The code below shows how the ProductId is used to specify which record is to be
deleted from the Products table.

CREATE PROCEDURE dbo.spDeleteProducts
 (
 @ProductId int
)
AS
 DELETE FROM Products where ProductId = @ProductId
 RETURN

The stored procedure for the Suppliers table works in exactly the same way as that given above for the
Products table, with the obvious changes so that it refers to Suppliers.

Handling Added Records
Now that we've handled updating existing records or deleting them, it's time to implement the code to
add new records to the database.

Try It Out – Saving Added Records in the DataSet to the Database

1. Add the code below to the end of the ProcessUpdates procedure in clsDatabase above
the Catch statement.

 'Handle any new records.
 If dsdata.HasChanges(DataRowState.Added) Then
 Dim dsAddedDataSet As DataSet
 dsAddedDataSet = dsdata.GetChanges(DataRowState.Added)

 If dsAddedDataSet.HasErrors Then
 HandleDataSetErrors(dsAddedDataSet)
 Else
 'Update the database with the new records.
 If strUpdateTable = "Products" Then
 InsertProductsInDb(strConnection, dsAddedDataSet)
 ElseIf strUpdateTable = "Suppliers" Then
 InsertSuppliersInDb(strConnection, dsAddedDataSet)
 End If

 'If the dsAddedDataSet was changed in the InsertXXXXInDb
 'method (because a new ProductId or SupplierId was

Chapter 9

28

 'auto-generated by the database), then will need to
 'update the Id for each record that was added.
 If dsAddedDataSet.HasChanges Then
 Dim dsChangedAddedDataSet As DataSet
 dsChangedAddedDataSet = _
 dsAddedDataSet.GetChanges(DataRowState.Added)

 'merge the dsChangedAddedDataSet with the
 'dsSearchResults
 dsdata.Merge(dsChangedAddedDataSet.GetChanges)
 dsdata.AcceptChanges()

 'Get rid of the duplicates that got created on merge
 'because the primary key wasn't set yet (i.e. delete
 'the records that have a ProductId = 0 that are now
 'in duplicate of the ones with the newly assigned
 'ProductId.
 Dim oRow As DataRow
 For Each oRow In dsdata.Tables("results").Rows
 If strUpdateTable = "Products" Then
 If oRow("ProductId") = 0 Then
 oRow.Delete()
 End If
 ElseIf strUpdateTable = "Suppliers" Then
 If oRow("SupplierId") = 0 Then
 oRow.Delete()
 End If
 End If

 Next

 End If
 End If

 End If

2. Add the InsertProductsInDb procedure to clsDatabase.

Sub InsertProductsInDb(ByVal strConnection As String, ByVal _
 dsInsertedDataSet As DataSet)

 '**
 'The purpose of this function is to insert data into the Products
 'table based on information in a DataSet that changed.
 '**
 Try

 Dim oRow As DataRow
 Dim intRowsAffected As Integer
 Dim SmallIntDiscontinued As Int16

 For Each oRow In dsInsertedDataSet.Tables("Results").Rows

 Dim cmdCommand As New SqlClient.SqlCommand()

 SmallIntDiscontinued = oRow("Discontinued")

Updating the DataSet and Handling Errors

29

 'Format to the format that SQL Server expects.
 'The equivalent to Boolean in SQL Server is BIT.
 'A bit can have 1 for True or 0 for False.
 'A boolean in VB can have -1 for True or 0 for False.
 If SmallIntDiscontinued = vbYes Then
 SmallIntDiscontinued = -1
 End If

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 SmallIntDiscontinued, False)
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spInsertProducts", cmdCommand)

 cmdCommand.Parameters.Clear()

 'Now need to retrieve the ProductId that was auto-generated
 'by the database and include it in our DataSet.
 AddProductNameParameters(cmdCommand, oRow("ProductName"))
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spGetProductIdByProductName", cmdCommand)

 'Retrieve the ProductId from the value returned by the
 'stored procedure and put it into our DataSet.
 oRow("ProductId") = _
 cmdCommand.Parameters.Item("@ProductId").Value

 Next

 Catch
 'Rrror handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

3. Add the spInsertProducts stored procedure to the database.

CREATE PROCEDURE dbo.spInsertProducts
 (
 @ProductName nvarchar(40),
 @SupplierId int,
 @CategoryId int,
 @QuantityPerUnit nvarchar(20),
 @UnitPrice money,
 @UnitsInStock smallint,
 @UnitsOnOrder smallint,
 @ReorderLevel smallint,
 @Discontinued bit
)
AS
INSERT INTO Products (ProductName, SupplierId, CategoryId,
 QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
 ReorderLevel, Discontinued)
VALUES (@ProductName, @SupplierId, @CategoryId,
 @QuantityPerUnit, @UnitPrice, @UnitsInStock, @UnitsOnOrder,
 @ReorderLevel, @Discontinued)
RETURN

Chapter 9

30

4. Next, add the AddProductNameParameters procedure to clsDatabase.

Sub AddProductNameParameters(ByRef cmdCommand As sqlclient.SqlCommand, _
 ByVal strProductName As String)

 'The purpose of this procedure is to add the parameters to the
 'command object that will be passed to the stored procedure for
 'retrieving the ProductId that was just assigned.

 Try

 Dim sqlparm As New SqlClient.SqlParameter()

 sqlparm = cmdCommand.Parameters.Add("@ProductName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = strProductName

 sqlparm = cmdCommand.Parameters.Add("@ProductId", SqlDbType.Int)
 sqlparm.Direction = ParameterDirection.Output

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

5. On the SQL Server database, add the spGetProductIdByProductName stored procedure.

CREATE PROCEDURE dbo.spGetProductIdByProductName
 (
 @ProductName nvarchar(40),
 @ProductId int OUTPUT
)
AS
 SELECT @ProductId = ProductId
 FROM Products
 WHERE ProductName = @ProductName
 RETURN

6. Next, add the procedure to handle Supplier updates, called InsertSuppliersInDb, to
clsDatabase:

Sub InsertSuppliersInDb(ByVal strConnection As String, ByVal _
 dsInsertedDataSet As DataSet)

 '**
 'The purpose of this function is to insert data into the Suppliers
 'table based on information in a DataSet that changed.
 '**
 Try

 Dim oRow As DataRow
 Dim intRowsAffected As Integer

Updating the DataSet and Handling Errors

31

 For Each oRow In dsInsertedDataSet.Tables("Results").Rows

 Dim cmdCommand As New SqlClient.SqlCommand()

 AddSuppliersInsertUpdateParameters(cmdCommand, oRow, _
 False)
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spInsertSuppliers", cmdCommand)

 cmdCommand.Parameters.Clear()

 'Now need to retrieve the SupplierId that was auto-generated
 'by the database and include it in our DataSet.
 AddSupplierCompanyNameParameters(cmdCommand, _
 oRow("CompanyName"))
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spGetSupplierIdByCompanyName", cmdCommand)

 'Retrieve the SupplierId from the value returned by the
 'stored procedure and put it into our DataSet.
 oRow("SupplierId") = _
 cmdCommand.Parameters.Item("@SupplierId").Value

 Next

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

7. Add the following stored procedure to the database - spInsertSuppliers.

CREATE PROCEDURE dbo.spInsertSuppliers
 (
 @CompanyName nvarchar(40),
 @ContactName nvarchar(30),
 @ContactTitle nvarchar(30),
 @Address nvarchar(60),
 @City nvarchar(15),
 @Region nvarchar(15),
 @PostalCode nvarchar(10),
 @Country nvarchar(15),
 @Phone nvarchar(24),
 @Fax nvarchar(24),
 @HomePage ntext
)
AS
 INSERT INTO Suppliers (CompanyName, ContactName, ContactTitle,
 Address, City, Region, PostalCode, Country,
 Phone, Fax, HomePage)
VALUES (@CompanyName, @ContactName, @ContactTitle,
 @Address, @City, @Region, @PostalCode, @Country,
 @Phone, @Fax, @HomePage)
 RETURN

Chapter 9

32

8. In the clsDatabase class, add a procedure, AddSupplierCompanyNameParameters, as
shown below:

Sub AddSupplierCompanyNameParameters(ByRef cmdCommand As _
 sqlclient.SqlCommand, ByVal strCompanyName As String)

 'The purpose of this procedure is to add the parameters to the
 'command object that will be passed to the stored procedure for
 'retrieving the SupplierId that was just assigned.

 Try

 Dim sqlparm As New SqlClient.SqlParameter()

 sqlparm = cmdCommand.Parameters.Add("@CompanyName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = strCompanyName

 sqlparm = cmdCommand.Parameters.Add("@SupplierId", _
 SqlDbType.Int)
 sqlparm.Direction = ParameterDirection.Output

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

End Sub

9. Next, add spGetSupplierIdByCompanyName as shown below:

CREATE PROCEDURE dbo.spGetSupplierIdByCompanyName
 (
 @CompanyName nvarchar(40),
 @SupplierId int OUTPUT
)
AS
 SELECT @SupplierId = SupplierId
 FROM Suppliers
 WHERE CompanyName = @CompanyName
RETURN

10.At the bottom of the ProcessUpdates procedure, add this code. It should immediately
follow the code for adding new records in the step above and be immediately above the
Catch statement:

 dsData.AcceptChanges()

11.Then, in the Catch statement, add this line of code underneath the line of code for the
generic error handler:

 dsData.RejectChanges()

Updating the DataSet and Handling Errors

33

How It Works

We added code to the end of ProcessUpdates to create a new DataSet containing only the
added records:

 'Handle any new records.
 If dsdata.HasChanges(DataRowState.Added) Then
 Dim dsAddedDataSet As DataSet
 dsAddedDataSet = dsdata.GetChanges(DataRowState.Added)

 If dsAddedDataSet.HasErrors Then
 HandleDataSetErrors(dsAddedDataSet)
 Else
 'Update the database with the new records.
 If strUpdateTable = "Products" Then
 InsertProductsInDb(strConnection, dsAddedDataSet)
 ElseIf strUpdateTable = "Suppliers" Then
 InsertSuppliersInDb(strConnection, dsAddedDataSet)
 End If

 'If the dsAddedDataSet was changed in the InsertXXXXInDb
 'method (because a new ProductId or SupplierId was
 'auto-generated by the database), then will need to
 'update the Id for each record that was added.
 If dsAddedDataSet.HasChanges Then
 Dim dsChangedAddedDataSet As DataSet
 dsChangedAddedDataSet = _
 dsAddedDataSet.GetChanges(DataRowState.Added)

It then merges the changes made to populate the ProductIds (that got auto-assigned) back with the
other local DataSet:

 'Merge the dsChangedAddedDataSet with the
 'dsSearchResults.
 dsdata.Merge(dsChangedAddedDataSet.GetChanges)
 dsdata.AcceptChanges()

Due to the fact that the original record that was added had a ProductId of 0 (since one had not yet
been assigned), the merge created a duplicate of the same record. Thus, we need to manually loop
through the dataset and delete any rows that have a ProductId equal to zero:

 'Get rid of the duplicates that got created on merge
 'because the primary key wasn't set yet (i.e. delete
 'the records that have a ProductId = 0 that are now
 'in duplicate of the ones with the newly assigned
 'ProductId.
 Dim oRow As DataRow
 For Each oRow In dsdata.Tables("results").Rows
 If strUpdateTable = "Products" Then
 If oRow("ProductId") = 0 Then
 oRow.Delete()
 End If
 ElseIf strUpdateTable = "Suppliers" Then
 If oRow("SupplierId") = 0 Then
 oRow.Delete()
 End If
 End If

Chapter 9

34

We then call the InsertProductsInDb procedure to actually handle the inserts. It will loop through
each added record, add the parameters, and execute the stored procedure to actually add the record to
the database.

This function is a little more complicated than the two previous ones. It accepts a DataSet just like the
other two containing records that are to be added to the database. However, it also contains code for
retrieving the ProductId from the database that got auto-assigned. The ProductId field is the key in
the Products table and is set to be auto-generated by SQL Server. Thus, when we issued the Insert
statements, notice that the ProductId is blank. We therefore need to select the record that was just
added to find out what ProductId was assigned. We can then update our local DataSet on the screen
with the newly generated ProductId. An example of the code that does these tasks is shown below:

 'Now need to retrieve the ProductId that was auto-generated
 'by the database and include it in our DataSet.
 AddProductNameParameters(cmdCommand, oRow("ProductName"))
 intRowsAffected = ExecuteSPWithParameters(strConnection, _
 "spGetProductIdByProductName", cmdCommand)

 'Retrieve the ProductId from the value returned by the
 'stored procedure and put it into our DataSet.
 oRow("ProductId") = _
 cmdCommand.Parameters.Item("@ProductId").Value

Note that the InsertSuppliersInDb procedure follows a similar pattern in looking up the
SupplierId after the new Supplier record was added.

We created two stored procedures for the Products table and two for the Suppliers table. The
InsertProducts stored procedure will add a new product record to the database:

INSERT INTO Products (ProductName, SupplierId, CategoryId,
 QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
 ReorderLevel, Discontinued)
VALUES (@ProductName, @SupplierId, @CategoryId,
 @QuantityPerUnit, @UnitPrice, @UnitsInStock, @UnitsOnOrder,
 @ReorderLevel, @Discontinued)

The GetProductIdByProductName stored procedure will look up the ProductId based on a
ProductName:

 SELECT @ProductId = ProductId
 FROM Products
 WHERE ProductName = @ProductName

The two stored procedures for the Suppliers table work in the same way but
GetSupplierIdByCompanyName will actually look up the SupplierId based on a CompanyName
passed in.

Next, we added the AddProductNameParameters procedure to clsDatabase. This procedure will
add the appropriate parameters to the Command object that will be later be used to retrieve the
ProductId that was just assigned to the newly added record.

Updating the DataSet and Handling Errors

35

 Dim sqlparm As New SqlClient.SqlParameter()

 sqlparm = cmdCommand.Parameters.Add("@ProductName", _
 SqlDbType.NVarChar, 40)
 sqlparm.Value = strProductName

 sqlparm = cmdCommand.Parameters.Add("@ProductId", SqlDbType.Int)
 sqlparm.Direction = ParameterDirection.Output

One parameter added is an input parameter (ProductName) and the other one is an output parameter
(ProductId). Similarly, AddSupplierCompanyNameParameters handles adding parameters to the
Command object for retrieving the SupplierId by CompanyName.

At the end of ProcessUpdates procedure, we added the line of code to call the AcceptChanges
method of the dataset.

 dsData.AcceptChanges()

This line of code will accept changes in the DataSet so they will no longer keep being generated as
changes. In other words, now that these changes have been saved to the database, the changes should
be accepted in the DataSet so they will no longer be flagged as added, updated, or deleted. The
AcceptChanges method resets all of the local trackers so that it is as though you are starting afresh
without having made any changes. You can think of AcceptChanges as officially committing the
changes to the DataSet (but not the underlying database).

Lastly, we added the RejectChanges method of the dataset to the Catch statement.

 dsData.RejectChanges()

This will reject all changes in the DataSet since an error occurred. This does not have any impact on
the database, but simply puts the DataSet into a state where the added, inserted, and deleted records
are still flagged as such.

Congratulations – you have now completed the code for saving your changes in the DataSet to the
database. Let's test out the Add/View/Edit Products and Add/View/Edit Suppliers screens for adding,
deleting, and updating items in the database.

Testing the New Capabilities of Our Forms
First, let's try running the same test we ran at the beginning of this chapter to see how the work we have
done changes the result. Recall at the beginning how we ran a search, opened a record up on the
Add/View/Edit Suppliers screen, edited some values, and then discovered that the changes were lost
after re-running the search. That was because we had only changed the local DataSet and had not
saved the changes back to the database.

Try running that same test again. See if your changes are indeed saved to the database and if, when you
re-run the search, the new values appear. As an example, open the Supplier record and change the
Company Name from Exotic Liquids to Exotic Liquids New. Also add a website called
www.somewhere.com. Click the Save All Changes Button and see what happens.

Chapter 9

36

You should receive a message box like the one shown above indicating that your save completed
successfully. Close this window and return to the Search screen. Re-run your search again and see if,
this time, your changes were saved to the database.

Next, let's try adding a new record. We want to see if the new record gets added to the database and if the
new SupplierId is displayed on the form. Let's look at this in more detail so you can see what is going
on. Run the search again with Supplier Id Less Than 5. You should get results similar to the following:

Double-click to open the first record so it will open in the Add/View/Edit Suppliers screen. Now, you
are ready to click the Add New Record Button and add a new Supplier to the DataSet. A blank record
should appear with all fields blank except for the Supplier Id with a default value of 0. Fill in the
information on the form such as in the example overleaf:

Updating the DataSet and Handling Errors

37

It's time to actually commit these changes to the underlying database. Click the Save All Changes
Button and see what happens. If all goes well, you should see the dialog box indicating that all changes
were successful. You should also see that the record you added is now populated on the screen with a
Supplier Id, as shown in the example overleaf:

Chapter 9

38

Next, click the Delete Button and confirm that you want to delete this record from the DataSet. Then,
click the Save All Changes Button to save this change to the database. Run a search on the Search
screen including property criteria that would otherwise return that record to confirm that this record
was indeed deleted from the database.

Play around with adding, updating, and deleting until you are comfortable with how it works. Try
changing multiple records and then click Save All Changes and see if it updates all of them
correctly. Congratulations! You just successfully updated the database based on changes made by the
user on the screen!

Summary
In this chapter, we extended our Product Management System to include the functionality to modify
data on the Add/Edit/View Products and Suppliers screens. The user can work with the local copy,
make changes to the DataSet and then, when completed, the changes are saved back to the database
(upon clicking the Save All Changes Button). We specifically accomplished the following:

❑ Functionality on the Add/Edit/View Products and Suppliers screens to allow users to add,
edit, and delete data in the DataSet

❑ Using the GetChanges method to create a second DataSet that contains all changes made

Updating the DataSet and Handling Errors

39

❑ Using the HasErrors property of the changed DataSet to check for errors

❑ Calling stored procedures to save the changed data in the DataSet back to the database

❑ Providing error handling to handle any errors that may occur

❑ Accepting or rejecting the changes made based on whether the updates were successful

In this chapter we covered some of the more complicated concepts of DataSets. Hopefully, you now
have a good grasp on how to work with DataSets and to ultimately update the data back in the
database. In the next chapter, we will handle conflict resolution, finish our Product Management
System, and take a whirlwind tour of the completed application.

Exercises
1. What is the purpose of the GetChanges method of a dataset?

2. Why could we not use the SQLDataAdapter to update the data in our Product Management
System to make it easier?

3. What does the Merge method do?

4. What do the AcceptChanges and RejectChanges do?

5. What is the purpose of Try…Catch…End Try?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 9

40

Conflict Resolution

In this chapter, we will finish up the Product Management System by implementing code to handle
update conflicts that can occur when more than one person tries to update the same information at the
same time. We will show when update conflicts can occur and how to handle them in your code. We
will also look at other types of problems that can occur when updating data in a database, and how to
use transactions to help resolve these problems. At the end of the chapter, we will then take a complete
tour of the finished Product Management System that we've created. More specifically, we will cover:

❑ How update conflicts can occur

❑ What optimistic and pessimistic concurrency are

❑ Ways of implementing optimistic concurrency in general and with DataSets (the "Version
Number" or "Timestamp" method and the "Saving All Values" method)

❑ What transactions are and how they work

❑ How a transaction's Commit and Rollback methods compare to the AcceptChanges and
RejectChanges methods of the DataSet

❑ A complete tour of the Product Management System

As usual, we will end with a summary and some questions.

Handling Data Update Conflicts
Update conflicts can occur when one user attempts to update a record that another user has updated
more recently. For example, in the disconnected world of data, suppose two different users have the
same record in memory in their local DataSet. When one user changes the record, the other user still
has the original (now outdated) copy in their local copy. When that second user then attempts to make
an update, they could overwrite what the first user already changed.

Let's look at an example to demonstrate this concept. Suppose John Doe and Jane Smith are both using
the Product Management System on two different computers. Further, suppose that John brings up the
details for Boston Crab Meat on his Products Add/View/Update screen:

Chapter 10

2

Product Name Unit Price Units in Stock Units on Order Reorder Level

Boston Crab Meat 18.40 123 0 30

When Jane opens her Products Add/View/Update screen, suppose she also sees the same information:

Product Name Unit Price Units in Stock Units on Order Reorder Level

Boston Crab Meat 18.40 123 0 30

John, who still has the Boston Crab Meat record on his screen, changes the Units in Stock to 120. He
then saves this change to the database:

Product Name Unit Price Units in Stock Units on Order Reorder Level

Boston Crab Meat 18.40 120 0 30

Jane, still having the original record on her screen, changes the Units in Stock on her screen from the
original 123 to 122, as shown below.

Product Name Unit Price Units in Stock Units on Order Reorder Level

Boston Crab Meat 18.40 122 0 30

When she presses the Save button, what will happen? Her value of 122 could overwrite John's recently
updated value of 120. If our application doesn't handle update conflicts, you can have multiple users
changing each other's data without them realizing it. Ideally, the application needs some way of
notifying Jane that the record has changed since she last opened it so she can determine whether to
continue with the save or not. In a more sophisticated application, she should also be provided with the
values that have changed and how they compare to her values. She can then take action to update or
cancel her changes based on this new information.

Note that it wouldn't matter which field for the Boston Crab Meat product Jane was trying to update
(Units in Stock or some other field), she should still be made aware that a change to the record has
occurred since she last opened the record. This is a good idea is because the information another user
changed could have an impact on whether she proceeds with her update. Even if the change was made
to a different field, if Jane were to continue without realizing a change had been made, the field would
be set back to the value Jane originally had for that field.

Handling update conflicts is a key consideration that should be part of your design decision from the
beginning. In enterprise applications with hundreds or thousands of users simultaneously updating
information, it would be extremely damaging to have users overwriting each other in a haphazard way.
Work done could be lost and a lot of unnecessary confusion could be caused.

The simple examples in this section should convey the idea of update conflicts. Now that you
understand what update conflicts actually are, let's look at some ways for dealing with them.

Conflict Resolution

3

Handling Update Conflicts with Optimistic or Pessimistic
Concurrency

In general, there are three ways to deal with updates in a database:

❑ With last update wins, no effort is made to compare updates made in the database with the
original record. Under this scenario, both John Doe and Jane Smith's updates would succeed.
John's update would be made and then Jane's update would be made, despite the fact that
they overwrite each other. There may be certain situations when this method is appropriate;
for example, you want the last change to be the one that gets updated in the database. A
specific example of this would be if you were storing stock ticker information in a database
with multiple people updating the information constantly. In this situation, the last person to
update the information is the one you want and you don't care about the fact that someone
else may have just updated it a moment before.

❑ With pessimistic concurrency, a record is unavailable to other users while another user has it
in edit mode. Until the user updates that record in the database, none of the other users can
change it. It is locked while one user has it in edit mode. Using this method, the moment one
user goes into edit mode, all other users are locked out of editing the record until the original
user finishes.

❑ With optimistic concurrency, on the other hand, a record is unavailable to other users only for
the short time that the data is actually being updated in the database. In other words, locks
occur only in the moment during which the database is actually being accessed. The data is
available any time between the start of the editing and when the attempt is made to update the
database. The ideal case for the John Doe and Jane Smith example described earlier would be
optimistic concurrency. John Doe updates the record but Jane Smith still has the old data on
her screen. When she tries to save her changes to the database, she is notified that the record
has changed since she started editing her copy of the data.

The ADO.NET data architecture, with the DataSet and DataReader, is based upon disconnected
data and therefore employs either the last update wins or optimistic concurrency models. The
pessimistic concurrency model is not applicable unless you write your own pessimistic locking logic.
The DataSet, as you are aware, does not maintain a connection to the database but simply contains an
in memory copy of the data. Updates are made to the local in-memory copy and then those updates can
be made in the database itself.

With the DataReader, you can retrieve a forward-only stream of data or can issue SQL statements or
stored procedures to update data in the database. If the DataReader is used in an application to
display data on the screen, then multiple users can have that information on their screens. If one of
them then updates the record and saves the record back to the database, the other user will have an
outdated record and not even be aware of it.

Due to the disconnected nature of both these update scenarios, it is possible that multiple users may
overwrite each other's changes. Thus, you need to implement logic to handle the situations when the
conflict arises. Alternatively (although usually not recommended), you could rely on the last update
wins method and just let both changes be made to the database even though one person had just
overwritten someone else's changes.

In the next section, we will look at the recommended approach: optimistic concurrency.

Chapter 10

4

Implementing Optimistic Concurrency with DataSets
With optimistic concurrency, you have to write business logic to detect and handle situations when one
user tries to save changes to a record that another user has already changed in the meantime. There are
a couple of different ways to write business logic to determine when this happens.

Version Number or Timestamp Method
The first method for handling update conflicts is to use the Version Number or Timestamp method. For
this approach to work, the table in the database you are updating must contain a version number or
date/time field for when the record was last updated. The way that this approach works is as follows:

❑ The version or date/time value is saved on the client machine (either in a DataSet or a
variable) when the record is initially retrieved.

❑ When the update is made, the record only gets updated in the database if the version or
date/time values match identically.

❑ If they do not match, then you know that the record has changed in the meantime.

Under this approach, you must keep track of the original value for the version or last updated date/time
value. When you are ready to update the database, you can compare against this original value to see if
changes have been made more recently. If a conflict does occur, you should notify the user and ask how
they want to proceed.

In enterprise applications, it is recommended that you implement a more sophisticated way of notifying
users of the exact details of the conflict, such as a comparison of each field showing the value they
entered versus the more current one in the database. They should be able to specify field by field which
values to overwrite and which ones to preserve. The level of sophistication necessary just depends on
the nature of the application. No matter how large or small the application, it is definitely a good idea to
implement the basics of handling update conflicts, as we will be implementing for the Product
Management System.

Without further hesitation, let's move on to seeing this method in action. The first thing we need to do is
add the LastUpdated date/time field to be used later in our comparison methods.

Try It Out – Adding LastUpdated to NorthwindSQL

1. Navigate to the SQL Server NorthwindSQL database using Server Explorer. Expand the
Tables node underneath the database and highlight the Products table. Right-click and select
Design Table from the pop-up menu.

Conflict Resolution

5

2. Scroll down to the end of the Products table in Design View and add a new column called
LastUpdated with a data type of Date/Time.

3. Close the Design View and save the changes to the Products table. Repeat these steps to add
the LastUpdated column to the Suppliers table.

4. Right-click on the Views node and select New View. A window will open with a list of tables
to add to your view. Just click on Close and you will be able to enter SQL statements into the
view window.

5. Copy the following line of code over those already given in the view window:

UPDATE Products SET LastUpdated = GETDATE()

Right-click on the window and select Run.

Chapter 10

6

6. Now repeat with this line of code:

UPDATE Suppliers SET LastUpdated = GETDATE()

When you run these SQL statements, you will first receive a notice that they will not be able
to be saved as views, which is fine. We are just using a view to run an interactive SQL
statement and do not plan to save it. Click OK and a MessageBox will appear telling you how
many rows were affected.

How It Works

First, we modified the Products and Suppliers tables in the database to include a LastUpdated column
that is a Date/Time data type. This is the column that stores the value of when the record was last
updated. It will be used in our comparisons to see if another user has updated the record more recently.

After adding the new field to both tables, we then populated them with default values set to the current
system date/time. We populated the LastUpdated fields in both tables to give a starting point for all
future comparisons. These values will be used as the baseline going forward.

Next, we will add the code to the Product Management System to handle the update conflicts. Lastly,
we will adjust the stored procedures that have been created in Chapters 7 and 9.

Try It Out – Modifying the Product Management System to Handle Update Conflicts

1. Add a HandleUpdateConflicts procedure to clsDatabase, as shown below:

Sub HandleUpdateConflicts(ByVal strconnection As String, _
 ByVal strTableName As String, ByVal strName As _
 String, ByVal orow As DataRow, optional ByVal _
 smallintdiscontinued As Int16 = 0)

 'This procedure is used to handle update conflicts for Products
 'and Suppliers, based on whether "Products" or "Suppliers" is
 'passed in as the table name. The smallintdiscontinued field is
 'used with Products and is thus optional since Suppliers will not
 'make use of the field.

 Try

 Dim intResponse As Integer
 Dim intRowsAffected As Integer

 intResponse = MsgBox("Another user has changed this " & _
 "record (" & strName & ") " & _
 "since you last changed it. Do you want to " & _
 "overwrite their changes?", MsgBoxStyle.YesNo, _
 "WARNING: Update Conflict")

 If intResponse = vbYes Then
 'Go ahead and issue the update statement without

Conflict Resolution

7

 'requiring the exact match based on the original values.
 'Just update it based on the Id (Product Id or Supplier Id)
 'alone so their changes will overwrite the ones made by
 'someone else.
 Dim cmdCommand As New SqlClient.SqlCommand()
 If strTableName = "Products" Then
 AddProductsInsertUpdateParameters(cmdCommand, orow, _
 smallintdiscontinued, False, True)
 intRowsAffected = ExecuteSPWithParameters(strconnection, _
 "spUpdateProducts", cmdCommand)
 ElseIf strTableName = "Suppliers" Then
 AddSuppliersInsertUpdateParameters(cmdCommand, orow, _
 False, True)
 intRowsAffected = ExecuteSPWithParameters(strconnection, _
 "spUpdateSuppliers", cmdCommand)
 End If

 MsgBox(intRowsAffected & " record was updated " & _
 "successfully to overwrite the other " & _
 "record.", , "Update Conflict Handled")

 ElseIf intResponse = vbNo Then
 'Let the user know their changes were not saved to the
 'database since they clicked no. But go ahead and tell
 'them how to see the current data.
 MsgBox("Your changes were not saved to the database. " & _
 "To see the " & _
 "updated values as changed by another user, " & _
 "please close the Add/View/Edit Products screen and " & _
 "re-run your search again to see the new " & _
 "values.", MsgBoxStyle.OKOnly, "Changes Not Made")
 End If

 Catch
 'Error handling goes here.
 UnhandledExceptionHandler()
 End Try

 End Sub

2. Modify the AddProductsInsertUpdateParameters procedure declaration line in
clsDatabase and add the additional parameter at the end of the procedure above the
Catch statement:

 Sub AddProductsInsertUpdateParameters(ByRef cmdCommand As _
 SqlClient.SqlCommand, ByVal oRow As DataRow, ByVal _
 smallintdiscontinued As Int16, ByVal blnAddLastUpdated As _
 Boolean, ByVal blnAddProductId As Boolean)

...

Chapter 10

8

 'Only add the LastUpdated parameter if checking for conflicts
 '(which applies when doing updates versus inserts). When
 'specified, this parameter will ensure that the record will be
 'updated only if it hasn't changed.
 'If unspecified, the record will be updated even if there was
 'an update conflict (such as a user has chosen to overwrite the
 'other changes).
 'Note that this parameter isn't used for inserts, and in such
 'cases we will not be checking for updates anyway (i.e.
 'blnAddLastUpdated will be false) so this parameter will not be
 'added.
 If blnAddLastUpdated Then
 sqlparm = cmdCommand.Parameters.Add("@LastUpdated", _
 SqlDbType.DateTime)
 sqlparm.Value = oRow("LastUpdated")
 End If

3. Modify the AddSuppliersInsertUpdateParameters procedure declaration in
clsDatabase and add the additional parameter at the end of the procedure above the
Catch statement.

 Sub AddSuppliersInsertUpdateParameters(ByRef cmdCommand As _
 SqlClient.SqlCommand, ByVal oRow As DataRow, _
 ByVal blnAddLastUpdated As Boolean, ByVal _
 blnAddSupplierId As Boolean)

...

 'Only add the LastUpdated parameter if checking for conflicts
 '(which applies when doing updates versus inserts). When
 'specified, this parameter will ensure that the record will be
 'updated only if it hasn't changed.
 'If unspecified, the record will be updated even if there was
 'an update conflict (such as a user has chosen to overwrite the
 'other changes).
 'Note that this parameter isn't used for inserts, and in such
 'cases we will not be checking for updates anyway (i.e.
 'blnAddLastUpdated will be false) so this parameter will not be
 'added.
 If blnAddLastUpdated Then
 sqlparm = cmdCommand.Parameters.Add("@LastUpdated", _
 SqlDbType.DateTime)
 sqlparm.Value = oRow("LastUpdated")
 End If

4. Modify the call to AddProductsInsertUpdateParameters that is in the
UpdateProductsInDb procedure in clsDatabase with the parameters shown below.

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 smallintDiscontinued, True, True)

Conflict Resolution

9

5. Add the following lines of code to the end of the UpdateProductsInDb procedure in
clsDatabase directly above the Next statement near the end of the procedure:

 'If the record was not updated, then there was most likely a
 'change made to that same record by another user
 'already...thus, handle the update conflict by letting the
 'user know that the record has changed.
 If intRowsAffected = 0 Then
 HandleUpdateConflicts(strConnection, _
 "Products", oRow("ProductName"), _
 oRow, smallintDiscontinued)
 End If

6. Modify the call to AddProductsInsertUpdateParameters that is in the
InsertProductsInDb procedure in clsDatabase with the parameters shown below:

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 SmallIntDiscontinued, False, False)

7. Modify the call to AddSuppliersInsertUpdateParameters that is in the
UpdateSuppliersInDb procedure in clsDatabase with the parameters shown below.

 AddSuppliersInsertUpdateParameters(cmdCommand, oRow, True, True)

8. Add the following lines of code to the end of the UpdateSuppliersInDb procedure in
clsDatabase directly above the Next statement near the end of the procedure:

 'If the record was not updated, then there was most likely a
 'change made to that same record by another user
 'already...thus, handle the update conflict by letting the
 'user know that the record has changed.
 If intRowsAffected = 0 Then
 HandleUpdateConflicts(strConnection, _
 "Suppliers", oRow("CompanyName"), _
 oRow)
 End If

9. Modify the call to AddSuppliersInsertUpdateParameters that is in the
InsertSuppliersInDb procedure in clsDatabase with the parameters shown below.

 AddSuppliersInsertUpdateParameters(cmdCommand, oRow, False, False)

10.Modify the BuildSQLSelectFromClause procedure in clsDatabase to include the
LastUpdated column as shown below:

 "as UnitsInStock, p.UnitsOnOrder as " & _
 "UnitsOnOrder, p.ReorderLevel as " & _
 "ReorderLevel, p.Discontinued as " & _
 "Discontinued, p.LastUpdated as LastUpdated " & _
 "FROM Products p " & _

Chapter 10

10

How It Works

With the database tables modified and populated with the LastUpdated data, we then created the
main procedure to handle the conflicts, called HandleUpdateConflicts. Let's look at this more
carefully. First, notice that the smallintdiscontinued parameter being passed in to the procedure
is set to optional.

Sub HandleUpdateConflicts(ByVal strconnection As String, _
 ByVal strTableName As String, ByVal strName As _
 String, ByVal orow As DataRow, optional ByVal _
 smallintdiscontinued As Int16 = 0)

The reason it is optional is it only applies to handling update conflicts for Products (not Suppliers).
When handling conflicts for Suppliers, this value will not be passed in to the procedure. When
specifying an optional parameter, you must also designate a default value for that parameter if it is
not passed in to the procedure.

Next, we declare the procedure and some local variables that will be used to store the user's response
and number of rows updated.

 Dim intResponse As Integer
 Dim intRowsAffected As Integer

The next line of code displays a MessageBox to the user and prompts to see if they want to overwrite the
changes the other user made. The user's response to this question is stored in the intResponse variable.

 intResponse = MsgBox("Another user has changed this " & _
 "record (" & strName & ") " & _
 "since you last changed it. Do you want to " & _
 "overwrite their changes?", MsgBoxStyle.YesNo, _
 "WARNING: Update Conflict")

If they answered Yes (they want to overwrite), the database will be updated. Different procedures are
called depending on whether the update is for Products or Suppliers. The first procedure called is the
one to add the parameters to the Command object that will be passed in to the stored procedure. Notice
how, in this instance, the LastUpdated Boolean parameter is set to False in the call to
AddProductsInsertUpdateParameters.

 If strTableName = "Products" Then
 AddProductsInsertUpdateParameters(cmdCommand, orow, _
 smallintdiscontinued, False, True)

This indicates to that procedure to leave the last updated parameter off. This signals to the stored
procedure that the database can be updated without worrying whether the record has been modified or
not. The line that follows then executes the stored procedure to make the changes to the database.

 intRowsAffected = ExecuteSPWithParameters(strconnection, _
 "spUpdateProducts", cmdCommand)

Conflict Resolution

11

The same thing occurs for the Suppliers table if the update were to occur there instead of on the
Products table, as can be seen here:

 ElseIf strTableName = "Suppliers" Then
 AddSuppliersInsertUpdateParameters(cmdCommand, orow, _
 False, True)
 intRowsAffected = ExecuteSPWithParameters(strconnection, _
 "spUpdateSuppliers", cmdCommand)
 End If

After the stored procedure runs, a message then gets displayed to the user indicating how many rows
were successfully updated in the database in response to the update conflict.

 MsgBox(intRowsAffected & " record was updated " & _
 "successfully to overwrite the other " & _
 "record.", , "Update Conflict Handled")

If the user responds No to the update conflict overwrite question, then they are simply notified that their
change was not saved to the database.

 MsgBox("Your changes were not saved to the database. " & _
 "To see the " & _
 "updated values as changed by another user, " & _
 "please close the Add/View/Edit Products screen and " & _
 "re-run your search again to see the new " & _
 "values.", MsgBoxStyle.OKOnly, "Changes Not Made")

After creating the HandleUpdateConflicts procedure, we then moved on to making the changes in
the clsDatabase class module to make use of this new procedure. First, the
AddProductsInsertUpdateParameters procedure was modified. A new parameter was added to
the procedure declaration to pass in the blnAddLastUpdated Boolean to the procedure.

 smallintdiscontinued As Int16, ByVal blnAddLastUpdated As _
 Boolean, ByVal blnAddProductId As Boolean)

Next, the procedure was modified to check the Boolean to see whether to add the LastUpdated
parameter to the Command object.

 If blnAddLastUpdated Then
 sqlparm = cmdCommand.Parameters.Add("@LastUpdated", _
 SqlDbType.DateTime)
 sqlparm.Value = oRow("LastUpdated")
 End If

Recall that the Command object gets passed to the stored procedure and includes the parameters that the
stored procedure expects. If we are checking for update conflicts (that is, if blnAddLastUpdated is
True), then this parameter needs to be added to the Command object. Similar modifications were made
to the AddSuppliersInsertUpdateParameters to include this additional parameter.

Chapter 10

12

Then, two changes were made to the UpdateProductsInDb procedure. The first change was to add
the additional parameter to the call to AddProductsInsertUpdateParameters, as shown below:

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 smallintDiscontinued, True, True)

The parameter is set to True so that UpdateConflicts will be checked for when running the stored
procedure against the database.

Then, we added the lines of code to actually call the new HandleUpdateConflicts procedure. If, as
a result of the database update, zero records were updated, then we're assuming that another user has
changed the record in the meantime.

 If intRowsAffected = 0 Then
 HandleUpdateConflicts(strConnection, _
 "Products", oRow("ProductName"), _
 oRow, smallintDiscontinued)
 End If

We also had to change the call to AddProductsInsertUpdateParameters in the
InsertProductsInDb procedure, as shown below:

 AddProductsInsertUpdateParameters(cmdCommand, oRow, _
 SmallIntDiscontinued, False, False)

In this instance, the blnLastUpdated value is set to False to indicate that we do not need to check
for update conflicts. The reason we do not need to check for update conflicts on an insert is because the
record has never been added before and thus no other user could have ever changed it. Similar changes
to those above were then made to the appropriate Suppliers procedures.

Finally, the BuildSQLSelectFromClause procedure was modified to select the LastUpdated
parameter when retrieving values to populate the DataSet.

 "Discontinued, p.LastUpdated as LastUpdated " & _

This value will be displayed in the DataGrid as well and will be used later to check the original value
to see if any changes have indeed been made to the record.

Now that we have modified all of the procedures in clsDatabase, we need to do the same with the
stored procedures.

Try It Out – Modifying the Stored Procedures

1. Modify the spUpdateProducts stored procedure in the SQL Server database as shown below.
To modify the stored procedure, open the current spUpdateProducts stored procedure in
Server Explorer and paste the statement shown below over the current code. When you save the
changes to the stored procedure, it will be altered to include the new structure.

Conflict Resolution

13

@ReorderLevel smallint,
@Discontinued bit,
@LastUpdated datetime = NULL

)
AS
/*
If LastUpdated is NULL then they want to update the record despite an update
conflict, etc. Otherwise, the record will be updated ONLY if the LastUpdated value
is the same in the database as it is in their local version (i.e. that no one
updated it in the meantime).
*/
IF @LastUpdated IS NULL
 BEGIN
 UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder, ReorderLevel
 = @ReorderLevel, Discontinued = @Discontinued, LastUpdated
 = GetDate()
 WHERE ProductId = @ProductId
 END
ELSE
 BEGIN

UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder, ReorderLevel
 = @ReorderLevel, Discontinued = @Discontinued, LastUpdated
 = GetDate()
 WHERE ProductId = @ProductId AND LastUpdated = @LastUpdated
 END

RETURN

2. Modify the spInsertProducts stored procedure as shown below:

AS
INSERT INTO Products (ProductName, SupplierId, CategoryId,

 QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
 ReorderLevel, Discontinued, LastUpdated)
 VALUES (@ProductName, @SupplierId, @CategoryId,
 @QuantityPerUnit, @UnitPrice, @UnitsInStock, @UnitsOnOrder,
 @ReorderLevel, @Discontinued, GetDate())

RETURN

3. Modify the spUpdateSuppliers stored procedure as shown below:

@Fax nvarchar(24),
@HomePage ntext,
@LastUpdated datetime = NULL

)
AS

Chapter 10

14

/*
If LastUpdated is NULL then they want to update the record despite an update
conflict, etc. Otherwise, the record will be updated ONLY if the LastUpdated value
is the same in the database as it is in their local version (i.e. that no one
updated it in the meantime).
*/
IF @LastUpdated IS NULL
 BEGIN

UPDATE Suppliers Set CompanyName = @CompanyName, ContactName =
 @ContactName, ContactTitle = @ContactTitle, Address =
 @Address, City = @City, Region = @Region,
 PostalCode = @PostalCode, Country = @Country, Phone =
 @Phone, Fax = @Fax, HomePage = @HomePage, LastUpdated =
 GetDate()
 WHERE SupplierId = @SupplierId
 END
ELSE
 BEGIN

UPDATE Suppliers Set CompanyName = @CompanyName, ContactName =
 @ContactName, ContactTitle = @ContactTitle, Address =
 @Address, City = @City, Region = @Region,
 PostalCode = @PostalCode, Country = @Country, Phone =
 @Phone, Fax = @Fax, HomePage = @HomePage, LastUpdated =
 GetDate()
 WHERE SupplierId = @SupplierId AND LastUpdated = @LastUpdated
 END

RETURN

4. Modify the spInsertSuppliers stored procedure as shown below:

AS
INSERT INTO Suppliers (CompanyName, ContactName, ContactTitle,

 Address, City, Region, PostalCode, Country,
 Phone, Fax, HomePage, LastUpdated)
 VALUES (@CompanyName, @ContactName, @ContactTitle,
 @Address, @City, @Region, @PostalCode, @Country,
 @Phone, @Fax, @HomePage, GetDate())

RETURN

How It Works

After updating all of the appropriate procedures in the clsDatabase class, our last step was to update
the four stored procedures: spUpdateProducts, spInsertProducts, spUpdateSuppliers, and
spInsertSuppliers. The Update stored procedures are the most complicated, so let's look at them
first.

The first change we made to the spUpdateProducts stored procedure was to add a parameter being
passed in called @LastUpdated. This parameter then gets used in an IF…ELSE statement to determine
which UPDATE statement to run against the database.

@LastUpdated datetime = NULL

Conflict Resolution

15

If the @LastUpdated value is NULL, then the statement should simply update the record without
regards to whether it has changed or not and re-assign the LastUpdated column to the current system
date/time.

IF @LastUpdated IS NULL
 BEGIN
 UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder, ReorderLevel
 = @ReorderLevel, Discontinued = @Discontinued, LastUpdated
 = GetDate()
 WHERE ProductId = @ProductId
 END

If, on the other hand, the @LastUpdated parameter is NOT NULL, then that means that the statement
will check the LastUpdated column as part of the WHERE criteria. It will only update the record if the
LastUpdated value matches with the original value (i.e. that no other user has changed it since the
record was originally retrieved for this user).

ELSE
 BEGIN

UPDATE Products set ProductName = @ProductName, SupplierId =
 @SupplierId, CategoryId = @CategoryId, QuantityPerUnit =
 @QuantityPerUnit, UnitPrice = @UnitPrice, UnitsInStock =
 @UnitsInStock, UnitsOnOrder = @UnitsOnOrder, ReorderLevel
 = @ReorderLevel, Discontinued = @Discontinued, LastUpdated
 = GetDate()
 WHERE ProductId = @ProductId AND LastUpdated = @LastUpdated
 END

RETURN

The changes to spInsertProducts stored procedure are much more simple than to the
spUpdateProducts stored procedure. We just had to add the LastUpdated column to the insert
statement so that, when new records are added to the database, the current system date/time is
populated in the LastUpdated column.

ALTER PROCEDURE dbo.spInsertProducts
INSERT INTO Products (ProductName, SupplierId, CategoryId,

 QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
 ReorderLevel, Discontinued, LastUpdated)
 VALUES (@ProductName, @SupplierId, @CategoryId,
 @QuantityPerUnit, @UnitPrice, @UnitsInStock, @UnitsOnOrder,
 @ReorderLevel, @Discontinued, GetDate())

RETURN

The same concepts as discussed above for the Products stored procedures apply to the Suppliers stored
procedures so we will not discuss them here.

Chapter 10

16

That's it. We've now added all of the necessary changes to the Product Management System to handle
basic checking for update conflicts. As previously mentioned, the needs of your application may very
well dictate more sophisticated handling of update conflicts. This is just the simplest example to get you
started. The approach shown above does not do anything sophisticated in terms of showing you the
exact values modified by the other user that are in conflict with the changes.

Furthermore, this approach makes an assumption, for the sake of demonstrating the concept in the
simplest way possible, which may not always be true. It assumes that, if 0 records were updated, then there
must have been an update conflict. Actually, there could have been 0 records updated for other reasons as
well, such as a database error (for example, database no longer available, record no longer exists that
you're trying to update, etc.). As a challenge, modify the program so that the only time the program thinks
an update conflict occurred is in instances where one really did occur. Hint: you could add an extra call to
the database to compare LastUpdated values. Now that you've gone through the whole process of
creating the Product Management System, you should be able to figure out how to do this.

The example demonstrated here could have just as easily been modified to use a record Version
Number field in the database instead of a LastUpdated date/time field. The exact same concept
applies either way, but the LastUpdated field is actually more useful because it indicates the exact
date/time that the record was most recently changed.

One thing that should definitely have been brought home to you by all this is that it was a lot of
effort to change the application and database to deal with conflicts at this late stage. In a real-
world project, as opposed to a tutorial like this, you would probably build in a LastUpdated
column at the very beginning.

Now that you have a good idea of how the Version or Timestamp method of handling update conflicts
works, let's move on to learning about the Saving All Values approach.

The Saving All Values Method
In the previous section, we looked at the Version Number or Timestamp method of optimistic
concurrency in great detail. We implemented the logic for the Product Management System to handle
update conflicts using this method. Before moving on, let's briefly mention another possible way that
you can handle update conflicts in your code, using the Saving All Values method to see if the record
has changed. We will look at some code examples to demonstrate how this works, but will not
implement this functionality in the Product Management System.

Under the Saving All Values method, you simply update the record only if all previous values still
match. In other words, the DataSet keeps both versions of the record, the original value and the
modified value. To save all values, you keep a copy of the original values before any edits are made to
the data. You then use those original values as criteria in the WHERE clause of the UPDATE statement. If
all of the original values in the DataSet match with what is currently in the database, then you know
that no other user has modified it. You can then safely update the database with the new changes. If all
of the values do not match, then you know that someone else has changed the information and that you
need to notify the current user of the conflict.

There are two big changes in how this method differs from the first. The first major change is that you
have to keep track of all of the original values instead of just the LastUpdated date/time field.

Conflict Resolution

17

One way to do this is with the DataRowVersion attribute of the DataSet. The DataRowVersion
attribute can be used to retrieve the original field values before any changes were made to the
DataSet. These values will be stored in the local variables and then used later in the UPDATE
statement to ensure that we have an exact match before updating a record. The following example
shows how you can use the DataRowVersion attribute:

 'Retrieve all of the original values prior to the user changes.
 'This will be used in the WHERE clause of the UPDATE statement
 'to only update the record if no other user has updated the
 'record in the meantime.

 oColumn = dsChanges.Tables("Results").Columns("ProductName")
 strProductName = padQuotes(oRow(oColumn, _
 DataRowVersion.Original))
 oColumn = dsChanges.Tables("Results").Columns("SupplierId")
 intSupplierId = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("CategoryId")
 intCategoryId = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("QuantityPerUnit")
 strQuantityPerUnit = padQuotes(oRow(oColumn, _
 DataRowVersion.Original))
 oColumn = dsChanges.Tables("Results").Columns("UnitPrice")
 decUnitPrice = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("UnitsInStock")
 intUnitsInStock = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("UnitsOnOrder")
 intUnitsOnOrder = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("ReorderLevel")
 intReorderLevel = oRow(oColumn, DataRowVersion.Original)
 oColumn = dsChanges.Tables("Results").Columns("Discontinued")
 intDiscontinued = oRow(oColumn, DataRowVersion.Original)

Notice how the values are retrieved from each column, one by one, using the
DataRowVersion.Original property.

The next big change is to modify the stored procedure to accept the additional parameters and add those
parameters to the WHERE clause to only update the record if all values are still the same. Before the stored
procedure is called, you would have to modify the procedure that adds the parameters to the Command
object to add parameters for all of the original values you have to pass in. You would then modify the
stored procedure itself to accept these additional parameters and then make use of those parameters in the
WHERE clause. We don't even have to look at the rest of these previously mentioned changes for you to see
why this method takes more work than the Version Number or Timestamp method. You can see very
quickly how much more coding effort is required to implement this approach.

This approach is very similar in concept to the Version Number or Timestamp approach, but in this
scenario you must keep track of all of the original values and then check them against the database to
determine whether a change has occurred. Recall with the Version Number or Timestamp method, you
only have to store a single value: the Version Number or the Date/Time of when the record was last
updated. For this reason, the Version Number or Timestamp method is more efficient and easier to
implement than the Save All Values approach. Once a conflict is detected, you handle it in the same
way regardless of which approach you are using. You will still have to implement the code to prompt
the user as to how they want to proceed.

Chapter 10

18

Transactions
In addition to update conflicts, updating the database can be problematic for other reasons. Problems
arise if a user attempts to insert invalid data into a field, or into a database that is not presently online,
etc. These issues are not update conflicts but are types of general errors.

Transactions can be used to handle many of these types of problems. A transaction is a sequence of
tasks in which, if any one of the individual tasks fails, the whole sequence fails and the state of the
system is returned to its state before the transaction began. The transaction can only succeed if every
individual task succeeds, in which case the transaction is committed.

This concept is very important for database applications. Imagine the situation where a user changes
100 records in his/her local DataSet and then hits the Save button. Now image that the update
process crashes halfway through, after saving only 50 records to the underlying database. The user
might be aware of the error, but might not know exactly how many records were saved before the error
occurred. This nasty situation can be avoided by making the update process into a transaction. If an
error now occurs midway through updating the 100 records, then the whole process is classed as having
failed and the 50 updates that have been saved are undone or rolled back, that is, the 50 updated
records are returned to their original values before the transaction began. The user can be notified that
the update failed, and can be safe in the knowledge that the database is exactly as it was before the
transaction began, as if the transaction had never even been started.

Transactions in Database Applications
In this section, we will look at the steps involved with creating a database transaction and then some
sample code to demonstrate the concept.

A summary of the steps performed in order to take advantage of transactions is:

❑ Create a local Transaction object and call the BeginTransaction method of the
Connection object.

❑ Run the set of SQL statements.

❑ Call the Commit method of the Transaction object if everything succeeded, or call the
Rollback method to cancel the transaction if errors occurred. You place the Commit at the
end of the function and the Rollback in the error handler.

Let's take a look at a simple code example of how this works.

Try It Out – Transactions in Database Applications

1. Place a new Button on the Products Search screen with the following code in the button's
Click event:

 Private Sub Button1_Click(ByVal sender As System.Object, & _
 ByVal e As System.EventArgs) Handles Button1.Click

 DemonstrateTransaction(CONN)

 End Sub

Conflict Resolution

19

2. Next, add the DemonstrateTransaction procedure to the form as well:

 Sub DemonstrateTransaction(ByVal strConnection As String)
 '**
 'The purpose of this function is to demonstrate how a transaction
 'works.
 '**
 Dim strSQL As String
 Dim myConnection As New SqlClient.SqlConnection(strConnection)
 Dim myCommand As New SqlClient.SqlCommand(strSQL, myConnection)
 myCommand.Connection.Open()
 Dim myTrans As SqlClient.SqlTransaction = _
 myConnection.BeginTransaction()

 Try

 strSQL = "INSERT INTO Suppliers (ProductId, ProductName) " & _
 "Values(10000, 'Test') "
 myCommand.CommandText = strSQL
 myCommand.ExecuteNonQuery()

 strSQL = "INSERT INTO Suppliers (ProductId, ProductName) " & _
 "Values(10000, 'Test Duplicate') "
 myCommand.CommandText = strSQL
 myCommand.ExecuteNonQuery()

 'If no errors have occurred, then commit all of the changes to
 'the database.
 myTrans.Commit()

 Catch

 'If any errors occur, then rollback the transaction.
 myTrans.Rollback()
 MsgBox("An error occurred with one of the database " & _
 "updates. None of the changes were saved to the " & _
 "database.")

 Finally
 'Close the database connection.
 myConnection.Close()

 End Try
 End Sub

3. Run the Product Management System and click on the button just added to verify that you do
indeed receive the error about the records not being updated. A MessageBox like the
following should appear:

Chapter 10

20

4. Also, run a search against the database to verify that neither record was added to the database.

How It Works

To begin with we added a new button to call our new procedure, DemonstrateTransaction, when
it was clicked.

DemonstrateTransaction (CONN)

We then added the DemonstrateTransaction procedure. Notice how two INSERT statements are
executed, with the second one trying to insert the same ProductId value into the database (which will
generate a primary key violation because that primary key value already exists).

 strSQL = "INSERT INTO Suppliers (ProductId, ProductName) " & _
 "Values(10000, 'Test') "
 myCommand.CommandText = strSQL
 myCommand.ExecuteNonQuery()

 strSQL = "INSERT INTO Suppliers (ProductId, ProductName) " & _
 "Values(10000, 'Test Duplicate') "
 myCommand.CommandText = strSQL
 myCommand.ExecuteNonQuery()

Inline error handling is used to rollback the changes if an error occurs (myTrans.Rollback()). If an
error does not occur, then the changes are committed to the database with the Commit method of the
transaction object (myTrans.Commit()). Either way, the Finally statement will close the connection
to the database.

The DataSet object's AcceptChanges and RejectChanges methods act like the
Transaction object's Commit and Rollback methods. However, remember that
with DataSets you are working with a local in-memory copy of the data. Any
changes to the DataSet will not impact upon the data in the database until you issue
separate commands to actually update the database.

A detailed description of transactions is beyond the scope of this book. If you want more information
on transactions, please look at Professional VB.NET (ISBN: 1861004974) by Wrox Press.

Product Management System Tour
It's now time to take that whirlwind tour of the Product Management System that you've been waiting
for. In Chapters 7 to 10 we've implemented a lot of code to make our new system work. Let's give it a
spin and see how it all looks together.

Running a Complex Products Search
Run the Product Management System and you will see the following screen:

Conflict Resolution

21

Fill in search criteria to search for all products that contain the word "berry" and which have a Unit
Price of less than 50. Then click on the Search button:

Notice how the results are displayed in the DataGrid with two rows meeting the search criteria. Resize
the data in the grid so you can see the ProductName. Double-click on the Grandma's Boysenberry
Spread row.

Modifying Records Returned in the Search
The Add/View/Edit Products screen will appear, with Grandma's Boysenberry Spread as the current
record as that is the one we selected:

Chapter 10

22

Change the Units In Stock value to 115 and click Save All Changes. Notice how the save succeeds.
The ProductName (Grandma's Boysenberry Spread) contains an apostrophe and, if we had not
implemented the PadQuotes function correctly, then the Save All Changes code would have failed.

Adding a New Record
After you've saved your changes to the Grandma's Boysenberry Spread entry, click the Add New
Record button. The following screen will appear with empty or 0 valued fields:

Conflict Resolution

23

Fill in some information for your new product; here are some examples:

After filling in data for your new product, click the Save All Changes button. Navigate to the record
you just added and you will notice that the Product Id for your new product is now populated with a
number instead of the 0:

Recall that we implemented code to retrieve the system assigned ProductId after the record is
inserted into the database. We also added it to our local DataSet.

Chapter 10

24

Generate an Update Conflict
Next, try running two different instances of the Product Management System side-by-side to generate an
update conflict.

Try It Out – Generate an Update Conflict

1. Open the bin folder found in your MainApp folder. Double-click on the executable file
(MainApp application file with a .exe file type) twice to open two instances of the program.
This will allow you to generate an update conflict and see how it is handled.

2. Run the same search on both instances, for example Product Name Contains Tea.

3. Open up the Add/View/Edit screen for the first record, Chai Tea and change Units in Stock to
20 on one instance. Save the changes to the database by clicking Save All Changes.

4. Change the same field on the other instance (which, at this time, still has the original values)
to 25 and attempt to save it to the database. What happens? You should receive a notification
that an update conflict has occurred and a prompt to either cancel or overwrite.

Congratulations! You have successfully implemented the Product Management System.

It'll be a useful learning experience for you to play around with the Product Management System. Run a
variety of searches to see how the results are filtered depending on the criteria you specify. Open search
windows and modify records, add new records, or delete records. Try typing invalid values in fields to
see the alert icons powered by the ErrorProvider control.

Summary
In this chapter we have learned about how to deal with conflicts and errors that occur when you update
data in the database. We have covered update conflicts and other database errors and how to handle
them using optimistic concurrency approaches or by aggregating the data actions into transactions. We
specifically covered these concepts:

❑ Update conflicts can occur when multiple persons try to update the same information at the
same time

❑ How optimistic concurrency differs from pessimistic concurrency

❑ DataSets use the optimistic concurrency approach for handling update conflicts due to the
disconnected nature of the data

Conflict Resolution

25

❑ How to implement optimistic concurrency with the Saving All Values method

❑ What transactions are and how they can help deal with database errors that occur on inserts,
updates, and deletes

❑ The Transaction object's Commit and Rollback affect the database but the DataSet's
AcceptChanges and RejectChanges only affect the local in-memory cache

❑ A whirlwind tour of the Product Management System

In this chapter, we have successfully completed the Product Management System that we started
building in Chapter 7. We were able to apply database programming concepts to a realistic application
that is typical of what you may be expected to create as a developer. In the next chapter, we will learn
about web-based applications and ASP.NET.

Exercises
1. What is an update conflict?

2. What is the advantage of using optimistic concurrency to handle update conflicts versus the
Last Update Wins method?

3. What is a transaction and when do you use one?

4. How do the Transaction object's Commit and Rollback methods differ from the
DataSet's AcceptChanges and RejectChanges methods?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 10

26

ASP.NET

Way back in the mists of recent history, there was a time when Microsoft wasn't particularly interested
in the Internet. In fact, for a while it looked like they were going to have nothing to do with the thing.
But then certain strategists realized the importance that the Internet was likely to have, and managed to
turn the company on a dime to start churning out Web and Internet tools.

One technology that sprung out of this was Active Server Pages or ASP. This was, in this author's
humble opinion, one of the best products ever to come out of Microsoft. Strangely, because Microsoft
strategy was in a state of flux, it was released without much fanfare yet became as popular as it is today
simply because developers loved it.

Essentially, ASP allows developers to write software that the user can access through a Web browser
rather than a separate program installed on their computer. Thanks to the nature of the Web, it
allows developers to write server-specific, Microsoft platform code on the server, but as the
application is "operated" through HTML, it's available to users on virtually any platform. Although
this was, and is, possible without Microsoft technology, ASP supported the cut down version of
Visual Basic called VBScript and coupled with very powerful and easy to use database access objects
such as ADO, this made it possible for developers familiar with Visual Basic to build extremely
powerful applications very quickly.

With the advent of .NET comes Active Server Pages .NET, or ASP.NET. This technology takes the best
of ASP and enhances it to not only provide all of the power of .NET through the Framework classes, but
also to incorporate the powerful control-centric paradigm for building applications that we've seen on
the desktop. What this means is that if we want to put a button on a Web page for the user to click, we
can use the Toolbox to draw a button just as we would with a Windows Form. For this reason, the
technology used to construct user interfaces in ASP.NET is known as "Web Forms".

In this chapter, we're going to take a look at ASP.NET and Web Forms. We'll show you how to build
basic Web pages as we create a small application that lets customers and salespeople check stock levels
and prices over the Web. We then move on to take a look at how we can build a more complex
application that lets us change data.

Chapter 11

2

An Introduction
Visual Studio .NET has some great tools for developers of ASP.NET sites. However, to use these tools
you'll need a Web server either on your local computer or on your network so you can run the pages.

By default, the FrontPage Server Extensions 2000 are installed on your local machine along with the
rest of the .NET Framework, providing that you have Internet Information Services installed before you
install the Framework. This software allows a Web site editing tool (like FrontPage or Visual Studio
.NET) to connect to the server in order to upload pages or, alternatively, download existing pages for
editing. In this chapter and the next, I'll assume that your computer does have the FrontPage Server
Extensions 2000 correctly installed and enabled on your computer of choice.

In this chapter, we use the term localhost to refer to your own desktop computer. This is an Internet-
specific term that means, basically, "the local computer". It is used to refer to the computer that is
running the current application or web page itself.

Let's create an ASP.NET project now.

Try It Out – Creating the Project

1. Open Visual Studio .NET and create a new Visual Basic – ASP.NET Web Application project.

2. Set the name of the project to MyWebSite and make sure that the Location is set as
http://localhost/

Notice the line under the Location box saying Project will be created at
http://localhost/MyWebSite. This is important as we'll need to refer to this later, so keep it in mind.

3. Click the OK button to create your new project.

ASP.NET

3

How It Works

At this point, Visual Studio .NET would have created your new project. The Solution Explorer, as with
any other type of application, shows the files that make up the project.

At this stage you can safely ignore most of these files. Right now, we're only concerned with the Web
Form files, with an .aspx extension. These are the Web equivalent of Windows Forms.

Let's start off our first Web Form by adding a button that will do something when clicked.

Try It Out – Adding a Button to a Page

1. Right-click WebForm1 in the Solution Explorer and select View Designer to open it in Design
view. Note the buttons at the bottom of the editor that tell us whether we are in Design or
HTML view, and provide a quick way to switch from one mode to the other.

2. Using the Web Forms tab of the Toolbox, drag a Button control onto the page.

3. Open the Properties window as you would normally, and change the Button control's Text
property to Press Me. Change the ID property to btnPressMe. Notice that Web Form
controls do not have a Name property, but instead have an ID property. This is because
Dynamic HTML (DHTML), a technology heavily used by ASP.NET, assumes that control
names are referenced through a property called ID.

Chapter 11

4

4. Double-click on the Button control. This will create a mouse click event handler, as you might
expect, that we shall use to prove to the user that something has happened by changing the
button text. Place the following code inside the Click handler:

 Private Sub btnPressMe_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Handles btnPressMe.Click

 ' Set the text...
 btnPressMe.Text = "Oh, that tickles!"

 End Sub

5. Run the project. An instance of Internet Explorer will pop up and display our button.

6. Now, press the button. You'll see this:

How It Works

You can see that the .NET approach to building forms for the Web is very similar to the approach when
building forms for the desktop. We create a page, we add controls and we wire up events.

When the project is run, Internet Explorer is run, given the URL of the Web application, namely
http://localhost/MyWebSite/WebForm1.aspx.

ASP.NET

5

You can see that this URL is built up from the details that we specified for our project earlier to create
the full location of the project, including the server name (localhost), and of course the name of the form
that we're using.

Suppliers and Products
As this book is all about working with databases, we'll delve into how we can present information taken
from a database on an ASP.NET page. In this section, we'll produce a page that displays a list of
suppliers. The user can select a supplier from the list to see all the products that that supplier deals with.

ASP.NET makes heavy use of data binding, but the way it works in ASP.NET can be a little tricky to
understand. Take care to follow the instructions given carefully.

Try It Out – Showing a List of Suppliers

1. Using Solution Explorer, right-click on Global.asax and select View Code. At the top of the
class definition, add the following:

Public Class Global
 Inherits System.Web.HttpApplication

 ' Constants
 Public Const DbString As String = _
 "integrated security=sspi;initial catalog=NorthwindSQL;data source=chimaera"

Remember to change this database connection string to whatever works for your SQL set up.

2. Go back to the Solution Explorer, right click on the MyWebSite project and select Add | Add
Web Form. Call it Suppliers.

3. When the Designer appears, make sure you're in Design view, and add a new DataList
control from the Toolbox to the form.

4. Change the ID property of the new control to lstSuppliers. As I mentioned before, data
binding in Web Forms is a fairly odd process. The DataList control isn't capable of
presenting the data by itself, so we need to place the control into a special mode that lets us
add other controls to present the data.

Right-click on the DataList control and select Edit Template | Item Templates. The control
is now in a mode where we can add controls to present each item.

Chapter 11

6

5. Drag a HyperLink control from the Toolbox onto the box in the DataList labelled
ItemTemplate:

From this point on, to select the HyperLink control, use the drop-down at the top of the
Properties window rather than trying to click on the control in the Designer. This will
make your life far less frustrating!

Of the four areas in the editor, we're only interested in ItemTemplate. We can use
AlternatingItemTemplate to display "every other item", which is useful on occasions where we
want each line in the list to have an alternate background color. Although we're not going to
use the selection or editing features here, SelectedItemTemplate is used when the item is
selected and EditItemTemplate is used when the item is being edited.

6. Select the HyperLink control now. Change its ID property to lnkSupplier.

We now want to bind the
row that we're working
with to the Text property
of the HyperLink control.
Find the DataBindings
property, which appears at
the top of the Properties
window in brackets. Click
the ellipsis ("…") button to
its right to make the
window shown below
appear. Select Text from
the left-hand list, check
Custom binding
expression, and enter the
code shown:

ASP.NET

7

7. Click OK when you're happy you've entered the correct code. The displayed text of our
HyperLinks is now bound to the CompanyName column of our data source. Later, we will be
setting up URL links for these controls also, but for starters we'll just bind the Text property.

8. Next, we need to actually connect to the database and extract the list of suppliers. Double-
click on the background of the form. This will open the Load event handler. Add this code:

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Retreive the suppliers
 Dim command As New SqlCommand("SELECT * FROM SUPPLIERS", connection)
 Dim reader As SqlDataReader = command.ExecuteReader()

 ' Bind the DataList to the SqlDataReader
 lstSuppliers.DataSource = reader
 lstSuppliers.DataBind()

 ' Close the SqlDataReader and release the SqlCommand object
 reader.Close()
 command.Dispose()

 ' Close the database connection
 connection.Close()

 End Sub

9. Before we are ready to run the project, we need to add the following line to the beginning of
Suppliers.aspx.vb, right at the top immediately preceding the Page_Load event:

Imports System.Data.SqlClient

10.Right click on
Suppliers.aspx in the
Solution Explorer, and
choose Set As Start
Page. We're now ready
to roll - choose Debug |
Start, or press F5. You
should see a list of
suppliers displayed in
your browser:

Chapter 11

8

How It Works

First, we'll look at how we retrieved the supplier list. Then we'll take a look at how that list was displayed.

All ASP.NET projects can take advantage of Global.asax. This is a page that references a class called
Global by default, and derives from c. This namespace defines events that we can catch and respond
to, for example when the application is started (the first time that a page is requested after the server is
rebooted) or whenever a user requests a page from the site. In our application, we've placed our
connection string in the Global.asax page, and we can use that string constant from anywhere within
our project to specify where our database can be found.

Public Class Global
 Inherits System.Web.HttpApplication

 ' Constants
 Public Const DbString As String = _
 "integrated security=sspi;initial catalog=NorthwindSQL;data source=chimaera"

When Suppliers.aspx is loaded, the Page_Load event is fired. Suppliers.aspx.vb defines a
class called Suppliers that is associated with the .aspx page by the process known as "code behind".
By default, Visual Studio creates all new Web Form pages in this way, deriving the associated classes
from System.Web.UI.Page. Event-handling code that we write is placed in this class, and we can
also add our own methods and properties. In our case, we use the code behind to extract data from a
database. Notice how we're using the DbString constant defined in Global.aspx.

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

Don't forget that almost everything happens on the server. When the page is requested, the
Suppliers.aspx and Suppliers.aspx.vb files are both complied and executed on the
server with the ultimate goal of generating HTML that can be sent down to the client.

There are two important things to note here. Firstly, with ASP.NET, data binding is always read-only,
which means that we can use a DataReader instead of a DataSet.

 ' Retreive the suppliers
 Dim command As New SqlCommand("select * from suppliers", connection)
 Dim reader As SqlDataReader = command.ExecuteReader()

As described in Chapter 6, this provides fast, read-only, forward-only movement through the
underlying data.

This type of database access is sometimes called a "fire hose" cursor, because you can quickly reel more
out, but it's not really possible to go backwards. The DataReader consumes less memory and performs
faster than a DataSet at the cost of the advanced movement and manipulation features supported by
the DataSet. When creating ASP.NET applications, you will probably find that in the vast majority of
cases you won't need these features anyway.

ASP.NET

9

The other important thing to notice is that Web Form controls do not automatically data bind when the
DataSource property is set, unlike Windows Forms. You must explicitly call the DataBind method
when you want the control to bind.

 ' Bind the DataList to the SqlDataReader
 lstSuppliers.DataSource = reader
 lstSuppliers.DataBind()

Looking back at the DataList control, what happens is that for every data item in the source specified
in the binding, new instances of any controls placed in the ItemTemplate area are created. In our case,
these controls are HyperLink controls, the DataBindings property of which determines how data
should be extracted from the current item to be bound and displayed on the control.

It's the DataBinder.Eval call that we set up in the lnkSupplier DataBindings dialog that performs
the actual magic to associate the text of each HyperLink with the name of each supplier as it is pulled
out of the database. The Eval method ("eval" being short for "evalulate") is a general purpose method
used in data binding for extracting data from other objects. It's a shared method of the
System.Web.UI.DataBinder object.

Let's have a closer look at that call now:

DataBinder.Eval (Container.DataItem, "CompanyName")

The first argument binds the HyperLink's Text property to the DataItem property of the
HyperLink's container, which in this case is automatically set by ASP.NET to be our DataList. The
second argument gives the name of a column, CompanyName, in the table that the control knows we're
binding to.

Now we shall move on to enhance this code so that the user can click on a supplier to show the
products they supply.

Try It Out – Binding URLs for the HyperLink Controls

1. Open Suppliers.aspx in Design view again. The DataList may be showing the text
Databound several times, in which case you will need to right-click on it, and select Edit
Template | Item Templates to make the lnkSupplier HyperLink control visible.

2. Select lnkSupplier from the drop down list at the top of the Properties window. Open the
lnkSupplier DataBindings dialog again by clicking on the ellipsis button of the DataBindings
property. Click on NavigateUrl in the Bindable Properties pane, check Custom binding
expression and add the expression shown:

Chapter 11

10

3. Click OK.

4. Now select DOCUMENT from the drop down list at the top of the Properties window, and set
the pageLayout property to FlowLayout. The DOCUMENT object refers to a DHTML object
that's always present when we're working through the page. It provides access to the Web
page itself.

Notice how the dots disappear from the form in Design view. Don't worry too much about
what this means right now, as we will look at the differences between GridLayout and
FlowLayout later in the chapter.

5. We shall display the product list for a supplier in a DataGrid. Make sure your cursor is to
the right of the DataList and press Return. Drag a DataGrid from the Toolbox and place it
underneath the DataList. Set its ID property to grdProducts.

ASP.NET

11

6. With the DataGrid selected, click on the Auto Format link in the Properties window.

7. When you click Auto Format, a dialog should appear offering a selection of predefined
formats that you can apply to the DataGrid. Choose a format that you like - I've gone for
Professional 3.

Chapter 11

12

8. Double-click on the background of the form and add the highlighted code to the Page_Load event:

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Retreive the suppliers
 Dim command As New SqlCommand("SELECT * FROM SUPPLIERS", _
 connection)
 Dim reader As SqlDataReader = command.ExecuteReader()

 ' Bind the DataList to the SqlDataReader
 lstSuppliers.DataSource = reader
 lstSuppliers.DataBind()

 ' Close the SqlDataReader and release the SqlCommand object
 reader.Close()
 command.Dispose()

 Dim supplierId As Integer = 0
 ' If a supplier is selected...
 If Not Request.Params("id") Is Nothing Then

 ' ...Then get its ID
 supplierId = CInt(Request.Params("id"))

 ' Load their product details
 Dim productsCommand As New SqlCommand(_
 "SELECT * FROM PRODUCTS WHERE SUPPLIERID=" & _
 supplierId, connection)
 Dim productsReader As SqlDataReader = _
 productsCommand.ExecuteReader()

 ' Bind the new SqlDataReader to the DataGrid
 grdProducts.DataSource = productsReader
 grdProducts.DataBind()

 ' Close the SqlDataReader and release the SqlCommand object
 productsReader.Close()
 productsCommand.Dispose()

 End If

 ' Close the database connection
 connection.Close()

 End Sub

9. Now run the project. When you click on a supplier, the products that supplier deals with
should show up in the DataGrid.

ASP.NET

13

How It Works

When the browser makes a request to the server, it must supply all necessary information for the server
to accurately determine what the user wants. This information can be sent encoded in the URL for a
requested page. For example, if we type the following URL into our browser:

http://localhost/MyWebSite/Suppliers.aspx

the server will return the list of suppliers. However, this URL:

http://localhost/MyWebSite/Suppliers.aspx?id=29

means the server should return the list of suppliers along with the products for the supplier with ID 29.

This process is called "passing parameters" to a page, and in this instance we've expressed the
parameters as "query string variables". The query string is the term used to denote the portion of the
URL following the question mark, which contains a list of name-value pairs. The name of every
parameter is separated from its value by an equals sign. In this case, we have a variable called id and a
value of 29. A query string can contain further parameters, each introduced by the ampersand
character, as in this example:

http://www.wrox.com/Books/Books.asp?section=11_3&order=title

When we come to build the page we use the Request property of System.Web.UI.Page objects that
serves the same purpose as the Request variable in old-style ASP. It returns an object of type
System.Web.HttpRequest that is automatically populated with all the details supplied by the
browser when the page request is made. In the code for the Page_Load event, we checked the Params
property of HttpRequest to see if an id parameter had been supplied:

 ' If a supplier is selected...
 If Not Request.Params("id") Is Nothing Then

If such a parameter is present, we extract it, not forgetting to convert it to an integer because all query
string parameters are, as you may have guessed, passed in the form of a string. We can then use it in our
SQL statement:

Chapter 11

14

 ' ...Then get its ID
 supplierId = CInt(Request.Params("id"))

 ' Load their product details
 Dim productsCommand As New SqlCommand(_
 "SELECT * FROM PRODUCTS WHERE SUPPLIERID=" & _
 supplierId, connection)
 Dim productsReader As SqlDataReader = _
 productsCommand.ExecuteReader()

So where does the URL, such as http://localhost/MyWebSite/Suppliers.aspx?id=29, come from? It is
produced by the binding we set for the NavigateUrl property of the lnkSupplier HyperLink,
which specifies the destination URL to use when the HyperLink is clicked. Recall that we gave the
following expression as the custom binding for that property:

Request.ServerVariables("script_name") & "?id=" & DataBinder.Eval(Container.DataItem, _
 "SupplierID")

This expression looks in the Request property of the page for a collection called ServerVariables,
and extracts an item called script_name, that contains the name and path of the current .aspx file.
We then just tack on the query string indicator followed by the variable name and an equals sign
("?id="). Lastly we have to append the ID of the supplier, which we do using DataBinder.Eval one
more time.

Grid Layout vs. Flow Layout
Before we move on, now is a good time to look in some detail at what is meant by "grid layout" and
"flow layout". The principle behind grid layout is to provide absolute control over where page elements
are to be placed. In theory, this method gives you pixel perfect placement of where controls are to
appear, and what the user sees in their browser will reflect exactly what you see in the Design view of
your page.

In practice however, the Web does not lend itself to such precise specification of a page's layout.
Imagine you have a list of ten items, and underneath it you want to show a grid of data. You can do this
using grid layout, by providing precise coordinates for where you want the DataGrid to appear. That
will work fine, but what if the list grows to twenty items? You would have to move the DataGrid
accordingly otherwise it will overwrite the end of the list.

There's another crucial weakness with grid layout. Support for absolute positioning is very variable
depending on the browser in use. In fact, you can only expect it to work 100% reliably when your users
view your site using modern versions (version 5.0 and up) of Internet Explorer and Windows. Should
they use a non-Microsoft browser or platform, or even some earlier IE version, you're risking your page
being rendered at best haphazardly, and at worst completely illegibly.

The idea of flow layout is that controls are rendered on a page as and when they are defined. For
example, in the above example, the browser would start by drawing the list at the top of the page, and
when complete, would draw the grid underneath. Now, it no longer matters how many items that list
contains, because the rendering will automatically cater for lists of any length. You lose precise control
over the position of your controls, but your pages are more robust, and more compliant with older IE
browsers and browsers from other vendors.

ASP.NET

15

An Inventory Web Application
Now let's move on to create a practical ASP.NET business application that allows a salesperson, or
customer, to search for products with a given name. We'll present a list of those products together with
the current stock level and price.

Try It Out – Creating an Inventory Web Application

1. Create a new Web Form by right clicking on MyWebSite in the Solution Explorer and
selecting Add Web Form. Give it the name PriceCheck.

2. Make sure you're in Design view, and select DOCUMENT from the drop down in the
Properties window. Change the pageLayout property to FlowLayout. Again, you'll notice the
dots disappear from the form.

3. From the Toolbox, drag and drop a Label control onto the middle of the Designer. You'll
notice that it snaps to the top-left hand corner of the page. This is because flow layout starts in
the top-left and works its way down the page to the bottom right similarly to a word
processing document.

4. Set the Text property of the Label to Enter a product name: including the final colon.

5. Now, click on the Designer and make sure the cursor appears to the right of the Label control.
The cursor indicates where the next control will be placed, but we want to add the next
control underneath the Label and not to its right. Hold down Shift and press Return. This will
make the cursor drop to the line immediately below the Label. (What's actually happening
here is that the editor is adding a
 tag at the end of the label control. BR is sort for
"break" as in "line break" in HTML.)

6. Drag and drop a TextBox control from the Toolbox, noticing that it appears where the cursor
was previously:

7. Change the ID property of the TextBox control to txtSearchFor, and set its Text property to
Louisiana.

8. Click on the background of the form when done. The cursor should be flashing to the right of
the TextBox. Press the space bar once, and drag a Button control onto the form:

Chapter 11

16

9. Set the Text property of the button to Go! and its ID property to btnSearch. Again, click on
the background of the form.

10.Press Return but, this time, do not hold down Shift. Note how this has the effect of moving the
cursor down two lines, rather than before when the cursor was positioned immediately below
the Label control. This is known as a "paragraph" break and is achieved by Visual Studio
adding a <P> tag to the page. Paragraph breaks always insert a blank line between itself and
the line above.

11.Drag and drop a DataGrid control onto the form. Set its ID property to grdProducts, and
again use the Auto Format link to choose an appearance to your taste.

That's all we need to do as far as designing the page is concerned. The trick when you're working in
"flow" mode is to get the cursor to the position where you want the next control. With experience, you
will learn to master this technique, and you'll find that using the Designer becomes a lot easier.

Searching for Products
To perform the product search, all we need to do is wire up the Go! Button.

Try It Out – Adding a Click Event Handler in ASP.NET

1. Double-click on the Go! Button in the Designer, and add the code below for the Button's
Click handler. Don't forget that we use the constant we defined on the Global class to get
the database string for the connection.

 Private Sub btnSearch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSearch.Click

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Retreive the items...
 Dim sql As String = _

ASP.NET

17

 "SELECT productname, unitprice, unitsinstock FROM products " & _
 "WHERE productname LIKE '%" & Me.txtSearchFor.Text & "%'"
 Dim command As New SqlCommand(sql, connection)
 Dim reader As SqlDataReader = command.ExecuteReader()

 ' Bind the DataGrid to the SqlDataReader
 grdProducts.DataSource = reader
 grdProducts.DataBind()

 ' Close the SqlDataReader and release the SqlCommand object
 reader.Close()
 command.Dispose()

 ' Close the database connection
 connection.Close()

 End Sub

2. The page code has to import the System.Data.SqlClient namespace, so add the
following to the top of the PriceCheck.aspx.vb file, as the very first line:

Imports System.Data.SqlClient

3. Right-click on PriceCheck.aspx in the Solution Explorer and select Set as Start Page. Now,
run the project and click Go!. You should see this:

How It Works

What we're doing here is similar to the code we developed earlier in the chapter, retrieving data from
an SqlCommand object by using a SqlDataReader:

Chapter 11

18

 Dim sql As String = _
 "SELECT productname, unitprice, unitsinstock FROM products " & _
 "WHERE productname LIKE '%" & Me.txtSearchFor.Text & "%'"
 Dim command As New SqlCommand(sql, connection)
 Dim reader As SqlDataReader = command.ExecuteReader()

and binding a display control (here we use the DataGrid) to that reader.

 grdProducts.DataSource = reader
 grdProducts.DataBind()

As can be seen, our SQL string contains a LIKE operator (this was explained in Chapter 3 if you need
to refresh your memory).

However, although we do indeed see the results we want, they could be presented more attractively,
and there are several ways for improving the presentation of data within a DataGrid. We look at these
in the next section.

Improving Presentation of the DataGrid
By default, when given data to bind to, the DataGrid will give each of its columns the column name
given by the data source for that column. This is why our columns are headed productname, unitprice
and unitsinstock rather than having more descriptive and readable titles like Product Name, Unit Price
and Units in Stock. We can provide such names quite easily.

As an alternative to the method you're about to see, you could add "aliases" to the
columns in the SQL string itself. However, we are not going to go into this here as this
section is designed to show you how you can control the appearance of the grid.

Try It Out – Naming DataGrid Columns

1. Open PriceCheck.aspx in Design view, and select
the DataGrid control. In the Properties window, click
the link next to Auto Format entitled Property Builder.

ASP.NET

19

2. Select the Columns tab in the navigation bar running down the length of the left hand side of
the dialog. Uncheck the Create columns automatically at run time box. This tells the
DataGrid control that we're going to tell it what columns should be on the grid, rather than
expecting it to infer the results.

3. From the Available columns pane, select Bound Column and click the right-arrow button that
appears next to that pane. This should enable the Header Text and Data Field boxes. Enter
Product Name and productname respectively.

4. Click OK, and run the project.
Now just the Product Name
column appears in the
DataGrid control:

Chapter 11

20

How It Works

Rather than telling the DataGrid to work out the columns for itself, thus displaying all available
columns, we've specifically given it just a single column. We also specified a name for that column,
Product Name, along with the name of the column in the data source that it should bind to,
productname.

Adding a Unit Price Column
Let's look now at how to add a Unit Price column. Ideally, we would show the price as currency and we
can do this by applying a format string to the column.

Try It Out – Adding a Currency Column

1. Open the Property Builder for the DataGrid control one more time. Change to the Columns
view as before and add a new Bound Column. Set the Header text to Unit Price and the Data Field
to unitprice. Insert {0:c} in the Data formatting expression box. This isn't just an extravagant two-
way smiley: it also tells ASP.NET that this column is a currency, as explained later.

2. Click OK and run the project. You should see the following:

ASP.NET

21

How It Works

The neat part here is the format string. The formatting codes it contains are universal throughout the
Framework for converting values to strings. Here we used {0:c}, which means:

❑ Take the first (at index position 0) value that can be formatted from the corresponding data
field, and render it as currency according to the current locale settings on the server. On this
computer, the British Pound (£) is the local currency.

You can apply any valid formatting you want to a column. Follow the same formatting guidelines that
apply to String.Format. String formatting is a relatively involved topic, so if you need more
information, look up System.String in MSDN and find the Format method.

Adding an InStock Column
For our InStock column, rather than giving the actual number of items in stock, we want to say simply
"Yes" or "No". There's no particular reason why our customers need to know exactly how many items
are in stock, and in fact we could put ourselves at a competitive disadvantage if we advertised our
current stock levels for all the world to see.

To create a column that displays "Yes" or "No" based on the value returned from the database requires
us to create a method that will return "Yes" or "No" when given a quantity, and to then be able to call
that method from a column.

Try It Out – Calling a Method from a Column

1. Open the code editor for PriceCheck.aspx.vb by right-clicking on PriceCheck.aspx in
Solution Explorer and selecting View Code. Add the IsInStock method, which returns a Boolean
indicating whether an item is in stock according to the stock level passed in as its argument.

 ' IsInStock - given a quantity, is the item in stock...
 Public Function IsInStock(ByVal quantity As Integer) As Boolean
 If quantity > 0 Then

Chapter 11

22

 Return True
 Else
 Return False
 End If
 End Function

2. We also need functions to return a string representing the stock status of a product. Insert
these two versions of GetInStockString into PriceCheck.aspx.vb, the first takes an
integer, and the other takes a Boolean:

 ' GetInStockString - get a string indicating the status...
 Public Function GetInStockString(ByVal quantity As Integer) As String
 Return GetInStockString(IsInStock(quantity))
 End Function

 Public Function GetInStockString(ByVal inStock As Boolean) As String
 If inStock = True Then
 Return "Yes"
 Else
 Return "No"
 End If
 End Function

3. Open the Property Builder for the DataGrid control (go to the Properties window in the
Design View), and select the Columns pane. From the Available Columns list, select
Template Column, and click the right-arrow button to the right of the list. Set the Header
Text for the column to In Stock:

ASP.NET

23

4. If you click OK, you'll see a new column in the DataGrid. You'll notice that the In Stock
column doesn't say Databound. This is because we haven't defined what should appear in the
column, only that something should appear. As were about to see, we need to add new, data
bound controls to this column.

5. Right-click on the DataGrid and select Edit Template | Columns[2] In Stock. This will open
a template editor very similar to the one we used back when we were displaying in a
DataList control. Drag and drop a Label control from the Toolbox onto the ItemTemplate
area as shown:

6. Change the ID property of the Label to lblInStock. Find the DataBindings property towards
the top of the listed properties, and click the ellipsis button. Making sure that Text is selected
in the left-hand list, check Custom binding expression, and enter the following expression in
the box:

CType(Page, PriceCheck).GetInStockString(Container.DataItem("unitsinstock"))

Click the OK button to save the binding.

Chapter 11

24

7. Now, set PriceCheck.aspx as the project's start page by right-clicking on PriceCheck.aspx
in the Solution Explorer, and choosing Set As Start Page.

8. Run the project. Try different values in the product name field, and click on the Go! button.
You should find that the stock status is correctly reported.

How It Works

Up to this point, we've exclusively dealt with default DataGrid behavior for the display of information
from a database. Here we've added a couple of new methods to the class in the code behind
PriceCheck.aspx to apply a little custom formating to a field, converting it to either Yes or No.

The first method, IsInStock, returns a Boolean value when given a quantity:

 If quantity > 0 Then
 Return True
 Else
 Return False
 End If

The second method, GetInStockString, takes that Boolean value and turns it into a string:

 ' GetInStockString - get a string indicating the status...
 Public Function GetInStockString (ByVal quantity As Integer) As String
 Return GetInStockString(IsInStock (quantity))
 End Function

 Public Function GetInStockString(ByVal inStock As Boolean) As String
 If inStock = True Then
 Return "Yes"
 Else
 Return "No"
 End If
 End Function

ASP.NET

25

Template columns of DataGrids are a very powerful feature that lets us fully control the presentation
of columns in a grid, and in this case we use such a column to call our GetInStockString method.
Look again at that line we added as the custom binding expression for the DataGrid:

CType(Page, PriceCheck).GetInStockString(Container.DataItem("unitsinstock"))

We're using the Page property that returns a System.Web.UI.Page object. We cast that to a
PriceCheck object using the CType function to access methods that we've placed in the inherited
class, such as the GetInStockString method. We use Container.DataItem (remember that here,
the container is the DataGrid itself) to access the unitsinstock column, and send the value
returned to GetInStockString to be converted to either Yes or No.

Paging
An age-old problem that faces web developers is that of presenting a single data source over multiple
pages. Imagine you have 500 products that you need to display. Is it best to display a single page with
all 500, or ten pages showing 50 products each? Usually, the latter is best as it makes the finished
product more approachable to the user, and because a huge quantity of data isn't being sent all at once.
It's much more suited to the low bandwidth world of the Internet.

Old style ASP lacked a simple way of presenting data in pages, which lead to a ridiculous position
where virtually anyone representing tables of data using ASP had to roll their own code to allow the
data to be presented in pages. However, ASP.NET has this functionality built-in, making the developer's
life much easier. So, let's try adding paging capability to our DataGrid control.

Try It Out – Adding Paging

1. Make sure that PriceCheck.aspx is open in Design view, and go to the Property Builder
for the DataGrid, but this time select Paging from the options down the right hand side.
Then check Allow Paging and set Page size to 10 rows.

2. Make sure the options in the lower page navigation section are set as in the following
screenshot, in particular the Mode drop down should be set to Page numbers:

Chapter 11

26

Click OK.

3. If you look at the DataGrid control on the designer, you'll notice that it now shows exactly
ten rows and that a set of page navigation buttons has appeared at the bottom.

4. Make these changes to btnSearch_Click in PriceCheck.aspx.vb:

 Private Sub btnSearch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSearch.Click
 BindData()
 End Sub

 Private Sub BindData()

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Retreive the items...
 Dim sql As String = _
 "SELECT productname, unitprice, unitsinstock FROM products " & _
 "WHERE productname LIKE '%" & Me.txtSearchFor.Text & "%'"
 Dim command As New SqlCommand(sql, connection)

 Dim dataset As New DataSet()
 Dim adapter As New SqlDataAdapter(command)

ASP.NET

27

 adapter.Fill(dataset)
 adapter.Dispose()

 ' Bind the DataGrid to the SqlDataReader
 grdProducts.DataSource = dataset.Tables(0)
 grdProducts.DataBind()

 ' Release the SqlCommand object
 command.Dispose()

 ' Close the database connection
 connection.Close()

 End Sub

5. Using the drop-downs at the top of the central code pane, select grdProducts from the left-hand
drop down. From the right-hand drop down, select PageIndexChanged, and add this code:

 Private Sub grdProducts_PageIndexChanged(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
 Handles grdProducts.PageIndexChanged

 ' Set the current page
 grdProducts.CurrentPageIndex = e.NewPageIndex

 ' Rebind to the grid
 BindData()

 End Sub

6. Run the project and enter a search term
that will return a lot of products, for
example just the letter e. You can now
use the numbered links at the bottom of
the DataGrid control to move through
the data.

Chapter 11

28

How It Works

Paging won't work with a DataReader object because it requires a control that allows both forward
and backward movement through the data. We need to swap our DataReader for a DataAdapter.

 Dim dataset As New DataSet()
 Dim adapter As New SqlDataAdapter(command)
 adapter.Fill(dataset)
 adapter.Dispose()

However, there's another issue we must address. When the user navigates to another page of our data,
we need to rebind the DataSet to its new contents. We can do this if we move the code from the
btnSearch_Click event handler to a separate method called BindData. We can then call the
BindData method from both the button's Click event, and the DataGrid's index changed event.

When a particular numbered link is clicked, the DataGrid doesn't display the new information
automatically. Instead, it fires the PageIndexChanged event to let us handle the display ourselves.
The code in that event updates the CurrentPageIndex property and re-selects and rebinds the data.

 ' Set the current page
 grdProducts.CurrentPageIndex = e.NewPageIndex

 ' Rebind to the grid
 BindData()

What's important here is that the BindData method actually gets all of the data from the server on
each call, which means that if you have 500 rows but only want to display ten, each time you make the
call you're actually getting 490 more rows than you need to.

 Dim sql As String = _
 "SELECT productname, unitprice, unitsinstock FROM products " & _
 "WHERE productname LIKE '%" & Me.txtSearchFor.Text & "%'"

(The DataGrid control simply reads the rows its needs from the Rows collection on the table that it's
bound to.)

Using this paging method is very quick to develop, but not a great solution if you're really worried
about scalability. (On an intranet site with a few dozen users, or on a small Web site, it's fine providing
that the underlying query isn't horrendously complex.) If you are worried about performance, you
might want to look into caching – see Beginning ASP.NET using VB.NET by Wrox (ISBN 1861005040) –
or developing your own paging code that gets just the data you need.

Updating With Web Forms
So far, we've used Web Forms to create a read-only view of a database. Web Forms are equally capable
at creating new data and making changes to existing data. In this section, we'll put together an
application to edit customer details over the Web.

ASP.NET

29

Looking up Customers
In the first part of this exercise, we'll build a basic page to edit the name of a company given a customer
ID. We're not going to use data binding in this example for the sake of simplicity.

A crucial point in ASP.NET is that we're working in a disconnected environment unlike with Windows
Forms where, if the user clicks a button, we can instantly respond and modify the UI (user interface) as
appropriate. With Web Forms, the UI has to be constructed from scratch each time a change is made.
We call this "stateless" because the application is unable to keep track of its own "state". For example, in
a Windows Forms application if we click a button marked "Next" to view the "next" customer, we need
to actually understand what the current customer is, this is stored in the application state. On the Web,
because we have no state, we don't know what the "next" customer is because we have no state telling
us what the "current" customer is. For this reason, every time we ask a Web application to do
something, we have to provide all the state it needs to make the request. If we want the "next" customer,
we have to tell it what the "current" customer is when we make the request.

The issue is that as .NET developers we're used to storing state information in member variables.
However, each time a request is made, a new instance of the class is created. So, if we store state in member
variables, they're cleared every time the user makes a request for an updated copy of the page.

Fortunately, ASP.NET provides a way to store the values within controls from click to click: it's called
view state, and controls automatically preserve it to an extent. Again, this isn't application state, only the
state that applies to the page is stored. This means that if the user types "Hello" into a text box, .NET
knows that when it updates the page it should add "Hello" to that text box again. That's how the
TextBox for the customer ID managed to keep its Text property value intact even though we were
clicking buttons on the form.

One way to solve this problem, and the method we're going use, is to create a control on the page
expressly so we can use that control's "view state persistence" to retain values that we want to keep from
page to page. We will keep this control visible so that we can see its value changing, but in real world
applications you'd usually make it invisible to avoid cluttering the page.

Those of you who have put together HTML forms in the past will recognize this technique – it's
conceptually similar to storing information in HIDDEN elements on a page.

So let's create our basic form for changing the company name for a particular customer.

Try It Out – Editing a Database Field

1. Right-click on MyWebSite in Solution Explorer, and choose Add | Add Web Form. Call the
new form EditCustomer, and add two Buttons, four Labels and two TextBoxes as shown:

Chapter 11

30

2. Two of the labels are used for describing each TextBox, and their Text property should be
set as above. Also, make sure the label that above contains [lblProblem] is nice and wide, at
least as wide as the company name TextBox. Then set properties for the controls as shown in
the table below:

Control Propert
y

Value

First TextBox control ID

Text

txtCustomerId

FRANR

First Button control ID

Text

btnLookupCustomer

Lookup Customer

Label control marked
[lblProblem]

ID

Text

Width

lblProblem

(Blank string)

379px

Label control marked
[lblEditingId]

ID

Text

lblEditingId

(Blank string)

Second TextBox
control

ID

Text

txtCompanyName

(Blank string)

Second Button control ID

Text

Visible

btnSaveChanges

Save Changes

False

3. Double-click on the Look Up Customer button to create a new Click event handler, which
will contain just one line of code:

 Private Sub btnLookupCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookupCustomer.Click
 BindData(txtCustomerId.Text)
 End Sub

4. Add this method to the EditCustomer.aspx.vb file also:

 ' BindData - bind the data to the controls...
 Public Sub BindData(ByVal customerId As String)

 ' Set Label Text
 lblEditingId.Text = customerId

 ' Get the customer
 Dim customerDataset As DataSet = GetCustomer(customerId)

ASP.NET

31

 ' If the customer was found...
 If customerDataset.Tables(0).Rows.Count > 0 Then

 ' ...Reset the Label Text
 lblProblem.Text = ""
 btnSaveChanges.Visible = True

 ' Update the controls
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 txtCompanyName.Text = customer("companyname")

 Else

 ' ...Otherwise set an error message
 lblProblem.Text = "The customer ID '" & customerId & _
 "' does not exist"
 btnSaveChanges.Visible = False

 ' Update the controls
 txtCompanyName.Text = ""

 End If

 End Sub

5. Follow it with two versions of the GetCustomer method. (The reason why we have two
versions of this method will become apparent.)

 Public Function GetCustomer(ByVal customerId As String) As DataSet

 ' Call the other version of this method
 Dim adapter As SqlDataAdapter
 Dim customer As DataSet = GetCustomer(customerId, adapter)

 ' Dispose of the adapter
 adapter.Dispose()

 ' Return customer details
 Return customer

 End Function

 Public Function GetCustomer(ByVal customerId As String, _
 ByRef adapter As SqlDataAdapter) As DataSet

 ' Connect to the database
 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Set up the SQL command object

Chapter 11

32

 Dim command As New SqlCommand("SELECT customerid, companyname, " & _
 "contactname, contacttitle, address, city, " & _
 "region, postalcode, country, phone, fax " & _
 "FROM customers WHERE customerid='" & customerId & "'", _
 connection)

 ' Retreive the data
 adapter = New SqlDataAdapter(command)

 ' Add a command builder
 Dim builder As New SqlCommandBuilder(adapter)

 ' Fill the dataset
 Dim customer As New DataSet()
 adapter.Fill(customer)

 ' Disconnect
 connection.Close()

 ' Return customer details
 Return customer

 End Function

6. We must also import the System.Data.SqlClient namespace, so add the following line to
the very top of EditCustomer.aspx.vb:

Imports System.Data.SqlClient

7. In Solution Explorer, right-click EditCustomer.aspx and select Set As Start Page, and run
the project. Leaving the default of FRANR in the customer ID TextBox, click the Look Up
Customer button. The customer ID isn't case-sensitive, but it must be an exact match.

ASP.NET

33

8. Change FRANR to SMURF, or some other customer ID that doesn't exist. Click the Look Up
Customer button and you'll see a message saying that the customer ID does not exist:

How It Works

When the Look Up Customer button is pressed, the BindData method is called to find the customer in
the database and updates the various form controls.

 Private Sub btnLookupCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookupCustomer.Click
 BindData(txtCustomerId.Text)
 End Sub

The first thing the method does is set the Text property of lblEditingId, which keeps track of
which customer is being edited for when Save Changes is clicked.

 lblEditingId.Text = customerId

When the Look Up Customer button is clicked, we go back to the server to tell it that the button has
been clicked.

 Dim customerDataset As DataSet = GetCustomer(customerId)

We also pass the text in the text box back to the server. The event handling code on the server then
stores the customer ID in the label control. All of this is crunched into a big block of HTML that's sent
to the browser and displayed.

If you're wondering why we couldn't use the Text property of txtCustomerId, it's because if the user
changed the value in this field and clicked Save Changes, we'd effectively end up saving the changes
destined for the customer we originally specified over the top of the new customer that we've ended up
specifying. These controls, that keep track of what we're doing and would normally be hidden in a
production application, must be immutable by the user, that is, they may only be changed
programmatically.

Chapter 11

34

Once we've set the value, we call GetCustomer. We'll take a deeper look at this in a moment, but in
essence, this method returns a DataSet containing the given customer.

After we've retrieved the DataSet, we look to see if it has any rows. If it does, we update the controls
and show the Save Changes button:

 ' If the customer was found...
 If customerDataset.Tables(0).Rows.Count > 0 Then

 ' ...Reset the Label Text
 lblProblem.Text = ""
 btnSaveChanges.Visible = True

 ' Update the controls
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 txtCompanyName.Text = customer("companyname")

If, on the other hand, it doesn't contain any rows, we display a message by setting the Text property of
lblProblem, and hide the Save Changes button:

 Else

 ' ...Otherwise set an error message
 lblProblem.Text = "The customer ID '" & customerId & _
 "' does not exist"
 btnSaveChanges.Visible = False

 ' Update the controls
 txtCompanyName.Text = ""

 End If

Ultimately, we want to update the data in the DataSet that was retrieved by the GetCustomer call.
It's for this reason that we have a GetCustomer method that returns the SqlDataAdapter that
retrieved the data. When Save Changes is clicked, we want to call the Update method of the adapter
to commit the changes.

The first version of GetCustomer really just calls the other version of the method to retrieve the actual
DataSet:

 Dim adapter As SqlDataAdapter
 Dim customer As DataSet = GetCustomer(customerId, adapter)

However, it does free up the adapter that is returned with a Dispose call:

 adapter.Dispose()

The details of the customer in question are returned as a DataSet.

ASP.NET

35

 Return customer

The second version is fairly conventional in the way it accesses the requested data. We create an
adapter from a SQL command string:

 Dim connection As New SqlConnection(Global.DbString)
 connection.Open()

 ' Set up the SQL command object
 Dim command As New SqlCommand("SELECT customerid, companyname, " & _
 "contactname, contacttitle, address, city, " & _
 "region, postalcode, country, phone, fax " & _
 "FROM customers WHERE customerid='" & customerId & "'", _
 connection)

 ' Retreive the data
 adapter = New SqlDataAdapter(command)

 ' Add a command builder
 Dim builder As New SqlCommandBuilder(adapter)

and use it to fill a DataSet.

 ' Fill the dataset
 Dim customer As New DataSet()
 adapter.Fill(customer)

We need to have a SqlDataAdapter around to save the changes back to the database, which is what
we're about to do now.

Saving Changes
Now that our application can display information that the user requests, we shall move on and add code
to allow the user to make changes.

Try It Out – Saving Changes

1. Open EditCustomer.aspx in Design view, and double-click the Save Changes button.
Add this code for the event handler:

 Private Sub btnSaveChanges_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSaveChanges.Click

 ' Reload the customer
 Dim adapter As SqlDataAdapter
 Dim customerDataset As DataSet = GetCustomer(lblEditingId.Text, adapter)
 If customerDataset.Tables(0).Rows.Count = 0 Then
 adapter.Dispose()
 Return
 End If

Chapter 11

36

 ' Update the DataGrid
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 customer("companyname") = txtCompanyName.Text

 ' Update the DataAdapter
 adapter.Update(customerDataset)

 ' Inform the user
 lblProblem.Text = "Your changes have been saved"

 End Sub

2. Run the project again. Click the Look Up Customer button, change the company name and
click Save Changes. You'll notice that the value in the database has changed:

How It Works

In this case, we've used the other version of GetCustomer to both retrieve the DataSet and retrieve
the SqlDataAdapter that was used to populate the DataSet in the first place.

 Dim adapter As SqlDataAdapter
 Dim customerDataset As DataSet = GetCustomer(lblEditingId.Text, adapter)

Notice how we use the customer ID stored in the Text property of lblEditingId, which we know
hasn't been changed since the Lookup Customer button was pressed.

The upshot? Whenever the Save Changes button is pressed, the value in the Text property of
txtCompanyName is extracted and put into the DataRow. This marks the DataRow as needing to be updated.

 ' Update the DataGrid
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 customer("companyname") = txtCompanyName.Text

When Update is called, the changes are automatically saved.

 ' Update the DataAdapter
 adapter.Update(customerDataset)

Finally, we informed the user that their changes were saved successfully:

 lblProblem.Text = "Your changes have been saved"

ASP.NET

37

Adding Other Fields
To consolidate what we've learnt up to now, in this section I shall quickly demonstrate how we could
expand the application to show the other fields from the database. This was omitted earlier to keep the
application simple, but I'd like to show how ASP.NET can let you rapidly add extra functionality to an
existing web application.

Try It Out – Adding the Other Fields

1. Open EditCustomer.aspx in Design mode. Add two new Labels, and two new
TextBoxes as below:

2. Change the properties of the new controls we have just added as listed in the following table:

Control Property Value

First TextBox control ID

Text

Width

txtContactName

(blank)

379px

First Label control ID

Text

lblContactName

Lookup Customer

Second TextBox control ID

Text

Width

txtPhone

(blank)

379px

Second Label control ID

Text

lblPhone

Phone:

3. There's quite a neat way to align multiple controls in Visual Studio .NET. First, click and drag
a rubber band around all the text fields in question. You may need to right-click on the
Toolbar and select Dialog Editor if it is not already visible. With all the TextBox controls
selected, click the Align Lefts button, as highlighted here:

Chapter 11

38

4. Repeat for the label controls until they are all neatly arranged.

5. Open the EditCustomer.aspx.vb code page. Find the BindData method and add this code:

 ' BindData - bind the data to the controls...
 Public Sub BindData(ByVal customerId As String)

 ' Set...
 lblEditingId.Text = customerId

 ' Get the customer...
 Dim customerDataset As DataSet = GetCustomer(customerId)

 ' Did we get anything?
 If customerDataset.Tables(0).Rows.Count > 0 Then

 ' Reset the text...
 lblProblem.Text = ""
 btnSaveChanges.Visible = True

 ' Update the controls...
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 txtCompanyName.Text = customer("companyname")
 txtContactName.Text = customer("contactname")
 txtPhone.Text = customer("phone")

 Else

 ' Set some problem text...
 lblProblem.Text = "The customer '" & customerId & "' does not exist"
 btnSaveChanges.Visible = False

 ' Update the controls...
 txtCompanyName.Text = ""
 txtContactName.Text = ""
 txtPhone.Text = ""

 End If

 End Sub

6. Now, add this code to btnSaveChanges_Click:

 Private Sub btnSaveChanges_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSaveChanges.Click

 ' Reload the customer...
 Dim adapter As SqlDataAdapter

ASP.NET

39

 Dim customerDataset As DataSet = GetCustomer(lblEditingId.Text, adapter)
 If customerDataset.Tables(0).Rows.Count = 0 Then
 adapter.Dispose()
 Return
 End If

 ' Update...
 Dim customer As DataRow = customerDataset.Tables(0).Rows(0)
 customer("companyname") = txtCompanyName.Text
 customer("contactname") = txtContactName.Text
 customer("phone") = txtPhone.Text

 ' Update...
 adapter.Update(customerDataset)

 ' Tell the user...
 lblProblem.Text = "Your changes have been saved"

 End Sub

7. Run the project. You will now be able to make changes to any of the fields of a customer record:

How It Works

All we have done here is add some further fields to our web page. Now when we look up the customer,
we retrieve the contact name and telephone number of that company. This was done by adding the
following lines to our BindData method:

Chapter 11

40

 txtContactName.Text = customer("contactname")
 txtPhone.Text = customer("phone")

We are also able to make changes to these fields and save them as we added the following two lines to
the Click event of our Save Changes button:

 customer("contactname") = txtContactName.Text
 customer("phone") = txtPhone.Text

Validating Data
The last thing we're going to look at in this chapter is data validation with ASP.NET. There are many
situations in programming where validation is required, and web programming is no different. For
example, you may have an application where the user must enter details for a customer record. You
would want to ensure that a name is entered, and that the telephone number contains only digits for
instance. If your applications don't provide some sort of built-in validation, if a user should enter
incorrect details for some reason, they are liable to crash the application, or at best be presented with an
unintelligible and ugly system error message.

In the next section, we shall add a validation control that checks to make sure that the user has entered
a customer ID when they click the Look Up Customer button.

Try It Out – Checking a Field has been Supplied

1. Open EditCustomer.aspx in Design view. Drag a RequiredFieldValidator control from
the Toolbox onto the form next to the Look Up Customer button:

2. With the new control selected, change the ErrorMessage property to Required and set the
ControlToValidate property in the Properties window to txtCustomerId.

ASP.NET

41

3. Run the project. Clear the TextBox and click the button. You should see an error message appear:

How It Works

When the server is required to do something with an ASP.NET page, it examines any validation
controls on that page and checks that their validation rules have been satisfied. In our example, we
added a RequiredFieldValidator to our web page. What this does is make the Customer ID
TextBox a required field, or in other words, it cannot be left blank. If a Customer ID isn't entered into
the TextBox, Required appears showing that there is an error with the data that has been entered.

Depending on the browser's capabilities, this doesn't necessarily involve a round-trip to the server. If
you're using Internet Explorer 5 or above, you'll notice that the message appears the instant the button
is pressed.

If you're building a Web site, you want as many visitors as possible, but you want as little traffic as
possible. What this means is if you have 1,000 visitors to your Web site each day, you want those 1,000
visitors to make the optimum number of requests of the site. The word "optimum" is important here.
Each Web request, in effect, costs you money, not in terms of "usage fees", but in terms of infrastructure
cost. Say you have a site that processes four million requests per day. It stands to reason that this server
will need to be more powerful and probably require more labor to manage than a site that only gets fifty
requests a day. In computing, "more powerful" typically leads to "more expensive", and that's where
optimization fits in.

In the above example, when we first visit the page, we have one request. When we click "Lookup
Customer", we have another request. When we click "Save Changes", we have yet one more. That's
three in total. Now imagine that the user doesn't enter anything into the Customer ID field and clicks
the button. Another request could (but actually isn't; more later) be made where the server sends back a
message that says, "Customer ID required". At a worst case, this could lead to a 25% increase in the
number of requests, and all for no advantage.

What JavaScript and Dynamic HTML (DHTML) do is allow us to do some of the processing on the client
side. That's precisely what's happening here. The validation control is putting some JavaScript code in the
page that says, "When the button is clicked, if the Customer ID field is empty, show the message." This
happens without a round-trip to the server. In other words, we don't make this wasted request.

ASP.NET uses information passed in with the page request to determine whether or not the browser
supports this kind of JavaScript code. If it does, the code is inserted and the page is optimized, all
without you as the developer needing to understand what it does. If the browser does not (as is the case
with "older" browsers; Microsoft refer to these as "down level" browsers), the old-school "re-request-the-
page-and-insert-the-message" approach is used automatically.

Chapter 11

42

The validation controls available in Windows Forms work in a different way, but follow a similar principle.
By adding validation controls to Windows Forms, we're using the same technique of saying something like,
"Make sure that TextBox has a value." Because we're guaranteed that code can always run on the desktop,
there isn't this concept of choosing between using JavaScript or re-processing the page.

Further Validation Controls
Including the RequiredFieldValidator that we've just met, ASP.NET provides five validation
controls as standard. I'll briefly introduce you to the other four, but space doesn't permit showing how
each works. If you'd like to know more about the validation controls, or ASP.NET in general, check out
Beginning ASP.NET using VB.NET from Wrox Press.

RangeValidator

This control tests to see if a value is within a given numeric range. You provide upper and lower limits
in the MaximumValue and MinimumValue properties.

CompareValidator

This control tests to see if a value fits a given expression. You provide the operator through the
Operator property ("equal", "less than", and so on) and the type of value to compare is set by
the Type property.

RegularExpressionValidator

This control tests to see if a value fits a given regular expression. For example, a telephone number field
may need to only accept numbers in the form XXX-XXX-XXXX. You provide the regular expression
that the value must match in the ValidationExpression property.

CustomValidator

We'll look in slightly more detail at the CustomValidator control, which uses a script function to test
a given expression. It gives you maximum flexibility because you can customize the script function to
do exactly what you want, but it always requires a round trip to the server. To use this type of control,
you need to add a function to the .aspx page HTML code, which you can do by selecting HTML view
in the Designer. The method has to be enclosed within <SCRIPT> tags, and must take the same
parameters as the MyServerValidation function shown below. If the value tested meets the
requirements of the script function then the IsValid member of the supplied
ServerValidateEventArgs object is set to True.

<script runat=server language="vb">

 Sub MyServerValidation(ByVal source As Object, _
 ByVal args As ServerValidateEventArgs)

 Try
 Dim i As Integer = Int32.Parse(args.Value);
 If i Mod 2 = 0 Then
 args.IsValid = True;
 Else
 args.IsValid = False;
 End If

ASP.NET

43

 Catch
 args.IsValid = False;
 End Try

 End Sub

</script>

Summary
In this chapter, we took a look at how ASP.NET can be used to present data over the Web. Pretty
quickly we were able to build powerful applications that extracted information from the NorthwindSQL
database and presented it to the user.

Initially we looked at creating an ASP.NET project and building a basic Web Form. Then we went on to
use the DataList control and saw how we could add controls (in particular, a HyperLink control) to
the ItemTemplate area of that control. As the list was rendered, new link controls were automatically
added for each value of the bound field.

We discussed the difference between grid layout and flow layout and learned that flow layout, although
harder to use, usually gives the best results, especially when you need to support older or non-Microsoft
browsers. We then wrote an application to perform a product search, presenting the results in a
DataGrid control. We also covered ASP.NET's built-in DataGrid paging features and added a form
to our project to allow us to edit the data and save the changes.

Finally, we went over how to validate any data that was entered in our form and the different validation
methods available in Visual Basic .NET

Exercises
1. What is the Global.asax file used for and how do we make use of it?

2. Why doesn't the Web lend itself to control placement using Grid Layout?

3. Why doesn't the DataReader support paging?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 11

44

ADO.NET and XML

In this chapter, we're going to be introducing the concept of Extensible Markup Language, or XML. For
a while now, XML has been touted as an important technology for the storage and exchange of data
and, with the advent of .NET, powerful XML functionality can be available to our application with
minimal work.

In this chapter, we'll be looking at the essential nature of XML and see a few of the basic tools that are
provided by .NET and ADO.NET for the creation and manipulation of XML data.

What is XML?
XML was invented as a technology for overcoming the problems involved in the relatively common
activity of exchanging data between applications. However, XML is increasingly being used as a data
storage and transport mechanism.

XML is one of those curious technologies that, while it seems scary to a newcomer, the principles are
actually very easy to grasp. (Building an end-to-end solution using XML throughout can get a little
tricky, however!) The classes available to us in the .NET Framework provide ways to read, write, and
explore XML-formatted data very easily.

Despite its name, XML is probably best thought of not as a "language", but rather as a set of rules for
defining markup languages. In order for applications to exchange data, the data has to be "marked up"
in some way. This marking up allows an application receiving the data to make sense of it and use it in a
useful manner. For example, if I give you a bit of data like this:

Disraeli

…how do we know what that data is? However, if I give you a little more information about the data,
like this:

My Dog's Name: Disraeli

Chapter 12

2

…then, using common sense, we can all understand what that bit of data represents. In the latter case,
I've "marked up" the data. By using the English language, English-speaking readers at least can use the
set of common sense rules that we all carry around in our heads to determine what I'm trying to say.
XML is a "meta language" or, in other words, is self-describing – it gives the data and the rules to follow
to determine what the data is.

As we said, XML is not a language but rather a set of standards and rules for creating your own markup
languages. One of these rules is that XML documents must be well-formed. There are over a hundred
rules for creating a well-formed XML document, but here are the three basic ones (luckily, the other
ones are things you're unlikely to do anyway and so aren't of much importance):

❑ Every document must have exactly one top-level element.

❑ Elements must be closed in the reverse order that they were opened, that is, you can't do this:

<ElementOne>Data<ElementTwo>MoreData</ElementOne></ElementTwo>

…because ElementOne is closed before ElementTwo is closed.

❑ Case sensitivity is important. MyElement is not the same as mYeLEMENT.

A Sample XML Document
XML is a fairly curious
language because it seems a
little "off planet" in concept
until you actually start looking
at some. Here is an XML
document viewed in IE:

ADO.NET and XML

3

Those of you who have seen HTML code will notice that the XML files look very similar. That's
because they both share a common ancestor. Standard Generalized Markup Language, or SGML, was
the inspiration for both.

XML files work on the concept of tags and elements. A tag can either be a "start tag" or an "end tag" (or
"both" – sometimes start and end tags are combined, but we'll see this later). Here's an example of a
start tag:

<ShipCity>

…and here's an example of an end tag:

</ShipCity>

You can see that both kinds of tags start with a less-than sign and end with a greater-than sign. This is
how tags are delimited. The name of the tag appears between these two signs, and, in this example, the
name of the tag is ShipCity. The difference between a start tag and an end tag is that, on an end tag,
the name is prefixed with a forward-slash character.

Together, a start tag and an end tag make an element. The text between the two tags is the data that
belongs to the tag. For example:

<ShipCity>Albuquerque</ShipCity>

In this case, we have an element called ShipCity; the value of that element is Albuquerque.

Here are the elements that make up order 11077 as shown in our XML document:

❑ <OrderID>11077</OrderID>

❑ <CustomerID>RATTC</CustomerID>

❑ <EmployeeID>1</EmployeeID>

❑ <OrderDate>1998-05-06T00:00:00.0000000+01:00</OrderDate>

❑ <RequiredDate>1998-06-03T00:00:00.0000000+01:00</RequiredDate>

❑ <ShipVia>2</ShipVia>

❑ <Freight>8.53</Freight>

❑ <ShipName>Rattlesnake Canyon Grocery</ShipName>

❑ <ShipAddress>2817 Milton Dr.</ShipAddress>

❑ <ShipCity>Albuquerque</ShipCity>

❑ <ShipRegion>NM</ShipRegion>

❑ <ShipPostalCode>87110</ShipPostalCode>

❑ <ShipCountry>USA</ShipCountry>

Chapter 12

4

Now life starts to get interesting. Elements can contain other elements. In this case, we have a start tag
called Order and an end tag called Order.

<Order>
 <OrderID>11077</OrderID>
 <CustomerID>RATTC</CustomerID>
 <EmployeeID>1</EmployeeID>
 <OrderDate>1998-05-06T00:00:00.0000000+01:00</OrderDate>
 <RequiredDate>1998-06-03T00:00:00.0000000+01:00</RequiredDate>
 <ShipVia>2</ShipVia>
 <Freight>8.53</Freight>
 <ShipName>Rattlesnake Canyon Grocery</ShipName>
 <ShipAddress>2817 Milton Dr.</ShipAddress>
 <ShipCity>Albuquerque</ShipCity>
 <ShipRegion>NM</ShipRegion>
 <ShipPostalCode>87110</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
</Order>

Notice how the data that's contained within the Order element is a bunch of other elements. XML is
hierarchical in nature, which means that the Order element contains a set of thirteen child elements,
and each of those thirteen child elements represents one column from one particular row. The upshot of
this is that if we have an Order element, we can drill down into its child elements to learn everything
about the Order that we could possibly need to know.

If you look further into the document, you'll notice that each of the two Order elements is contained
within a master Orders element. (I've omitted some elements here for clarity.)

<Orders>
 <Order>
 …
 </Order>
 <Order>
 …
 </Order>
</Orders>

Again, this means that, if we have an Orders element, we can assume that we have a list of orders
contained within. We also know that each order is encapsulated in its own element called Order.

As we stated earlier, every XML document must have exactly one top-level element, called the root
element. In this case, we do indeed have only one top-level element: Orders. If we omitted this
element, the file would not be well-formed. For example, here's the same document again but without
the single top-level element:

<Order>
 …
</Order>
<Order>
 …
</Order>

In this case, the document has two top-level elements. Under the rules of XML, this document is not
well-formed – therefore it cannot be used.

ADO.NET and XML

5

Attributes
There is another way of introducing data into an XML file, although it's mainly used for "metadata", or
data about the data. In this chapter, we're not going to concern ourselves with attributes, but here's a
little information so you're aware of them. Take our OrderID element. If we wanted to indicate that
this element was an ID column, we might add an IsId attribute that looks like this:

<OrderID IsId="True">11077</OrderID>

Attributes have the form of a parameter="value" pair, and sit within the opening tag of an element.
We can have as many attributes as we like, and store any data that we like in them:

<OrderID IsId="True" AnotherAttribute="92384">11077</OrderID>

That's the basis behind XML. At this level, XML is mostly common sense and, I'm confident, pretty
easy to understand. Because of this, what we'll do next is build the app that produces this output. This

will bring the potentially fuzzy points of our discussion so far into sharp focus.Creating an
XML Document

In this chapter, we're going to be looking at an application that's capable of exporting the orders defined
in the system to XML documents.

Try It Out – Creating the Project

1. Using Visual Studio .NET, create a new Visual Basic | Windows Application project and call it
Order Export.

Chapter 12

6

2. When the Designer for Form1 appears, drag on a DataGrid control and a couple of Buttons, like this:

3. Change the properties for the controls in the Properties window, as shown below:

Control Property Value

Form1 Text

StartPosition

Northwind Order Export

CenterScreen

DataGrid Name

Anchor

dgdOrders

Top, Bottom, Left, Right

Button1 Name

Text

btnConnect

Connect

Button2 Name

Text

btnSave

Save

4. Using the toolbox, draw on a new SaveFileDialog control. Change its Name property to dlgSaveFile.

That's the basic design of the form finished. Now we just need to add some business logic functionality.

Saving DataSets as XML
As ADO.NET has built-in support for XML – it uses XML as its internal data format – this gives us
great flexibility in using ADO.NET to access various types of data. In this next section, we are going to
look at how we can save DataSets as XML documents.

Try It Out – Saving an Order
1. Right-click on Form1 in Solution Explorer and click on View Code. Add this constant to the top

of the class definition.

ADO.NET and XML

7

Public Class Form1
 Inherits System.Windows.Forms.Form

 ' Constants...
 Public Const DbString = _
 "integrated security=sspi;initial catalog=NorthwindSQL;data source=chimaera"

Remember, you must change the name of the server defined in DbString to whatever you
actually use!

2. Again in the code editor, add this member:

Public Class Form1
 Inherits System.Windows.Forms.Form

 ' Members...
 Private _dataset As DataSet

 ' Constants...
 Public Const DbString = _
 "integrated security=sspi;initial catalog=NorthwindSQL;data source=chimaera"

3. Add these namespace import declarations:

Imports System.IO
Imports System.Xml
Imports System.Data.SqlClient

Public Class Form1
 Inherits System.Windows.Forms.Form

4. Flip back to the Designer and double-click on the Connect button. When the new Click event
handler appears, add this code:

 Private Sub btnConnect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnConnect.Click

 ' Connect to the database...
 Dim connection As New sqlconnection(DbString)
 connection.Open()

 ' Create a new dataset
 Dim newDataset As New DataSet("Orders")

 ' Create a new table to hold the orders in...
 Dim ordersTable As New DataTable("Order")
 newDataset.Tables.Add(ordersTable)

 ' Load the last two orders from the database...
 Dim command As New SqlCommand("SELECT TOP 2 OrderID, CustomerID, " & _
 "EmployeeID, OrderDate, RequiredDate, ShippedDate, " & _

Chapter 12

8

 "ShipVia, Freight, ShipName, ShipAddress, ShipCity, " & _
 "ShipRegion, ShipPostalCode, ShipCountry FROM Orders " & _
 "ORDER BY OrderID DESC", connection)

 ' Fill the dataset...
 Dim adapter As New SqlDataAdapter(command)
 adapter.Fill(ordersTable)

 ' Set the dataset property...
 Me.DataSet = newDataset

 ' Close the database...
 connection.Close()

 End Sub

5. Before you can run the project you'll need to add this property. This will provide a way for us to
set up the data binding on the DataGrid when we need to display the data.

 ' DataSet property...
 Public Property DataSet() As DataSet
 Get
 Return _dataset
 End Get
 Set(ByVal Value As DataSet)

 ' Save it...
 _dataset = Value

 ' Bind...
 dgdOrders.DataSource = _dataset
 dgdOrders.DataMember = _dataset.Tables(0).TableName

 End Set
 End Property

6. Run the project and click the Connect button. You'll see something like this:

How It Works

Let's briefly walk through the code. Take your time – it's important that you get a good feel for what is
going on.

ADO.NET and XML

9

When we come into the function, the first thing we do is open the database connection using the
DbString constant that we previously defined.

 Private Sub btnConnect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnConnect.Click

 ' Connect to the database...
 Dim connection As New sqlconnection(DbString)
 connection.Open()

Once we have that, we create a new DataSet. We provide a name of Orders to this DataSet and the
motivation for doing this will become apparent when we export the DataSet to an XML file.

 ' Create a new dataset
 Dim newDataset As New DataSet("Orders")

Next, we create a new table within the DataSet called Order. Ultimately, in this example we want to
create a set of linked tables within the DataSet and this is by far the easiest way of doing this. (For
more information on this, see Chapter 7.)

 ' Create a new table to hold the orders in...
 Dim ordersTable As New DataTable("Order")
 newDataset.Tables.Add(ordersTable)

Next we create a command. We've embedded SQL code into this rather than using a stored procedure.
This isn't absolute best practice, but I've done it here to expedite the creation of this sample. We've seen
plenty of code that selects out from a stored procedure previously in the book, and we'll be seeing it
again in the next two chapters.

 ' Load the last two orders from the database...
 Dim command As New SqlCommand("SELECT TOP 2 OrderID, CustomerID, " & _
 "EmployeeID, OrderDate, RequiredDate, ShippedDate, " & _
 "ShipVia, Freight, ShipName, ShipAddress, ShipCity, " & _
 "ShipRegion, ShipPostalCode, ShipCountry FROM Orders " & _
 "ORDER BY OrderID DESC", connection)

Once we've done that we create a new SqlDataAdapter object and get it to fill the new DataSet.

 ' Fill the dataset...
 Dim adapter As New SqlDataAdapter(command)
 adapter.Fill(ordersTable)

As the last step, we set our own DataSet property to the value of the new DataSet. This has the effect
of binding the new DataSet to the DataGrid control so that we can see the results.

 ' Set the dataset property...
 Me.DataSet = newDataset

 ' Close the database...
 connection.Close()

 End Sub

Chapter 12

10

Saving DataSets as XML
Our application can now get hold of orders from the database and display them on a form. What we
have to do now is save them as XML.

Try It Out – Saving DataSets as XML
1. If the program is running, close it.

2. Open the Designer for Form1. Double-click on the Save button to create a new Click event
handler. Add this code:

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ' Do we have a dataset?
 If Not DataSet Is Nothing Then

 ' Ask for a filename...
 dlgSaveFile.Filter = _
 "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgSaveFile.ShowDialog() = DialogResult.OK Then

 ' Save the dataset...
 DataSet.WriteXml(dlgSaveFile.FileName)

 End If

 Else
 MsgBox ("You must connect to the database.")
 End If

 End Sub

3. Run the project and click the Connect button. Then, click the Save button. You'll be prompted
for a filename. Provide a filename somewhere on your local disk and click Save.

4. Next, using Windows Explorer, find the file and double-click it. It will open in Internet Explorer
and you'll be able to see the contents.

ADO.NET and XML

11

How It Works

What we have been given is a file containing an XML document that contains two orders. These two
orders match, as you can see, the orders as they appear in the DataGrid control.

Producing an XML file from a DataSet is very easy. Once we know the name of the file that we want
to save the DataSet to, we just call WriteXml.

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ' Do we have a dataset?
 If Not DataSet Is Nothing Then

Chapter 12

12

 ' Ask for a filename...
 dlgSaveFile.Filter = _
 "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgSaveFile.ShowDialog() = DialogResult.OK Then

 ' Save the dataset...
 DataSet.WriteXml(dlgSaveFile.FileName)

 End If

 Else
 MsgBox ("You must connect to the database.")
 End If

 End Sub

You can see that the names of each of the thirteen elements that make up the order match those defined
in the database. You'll notice that ShippedDate is omitted from the list. That's because it has a Null
value in the database and Null values are omitted from the XML.

Now let's look at why XML is such a useful tool for saving and transferring data.

Loading and Saving XML Data
Now that we know how to save a DataSet as XML, let's try and load the same XML file from disk and
use it to populate the DataGrid control.

Try It Out – Loading XML Files
1. If the project is running, close it.

2. Using the Designer for Form1, draw on a new Button control. Set its Name property to btnLoad,
Text property to Load and Anchor property to Top, Right.

ADO.NET and XML

13

3. Again, using the Designer, draw on a new OpenFileDialog control. Change its Name property to
dlgOpenFile.

4. Double-click on the Load button and add this code to the new Click event handler.

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

 ' Load...
 newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception
 MsgBox (ex.Message)
 End Try

 End If

 End Sub

5. Run the project and click the Load button. (There's no need to click the Connect button.) Find
the .xml file you saved before and click Open. The orders will be shown.

How It Works

With ADO.NET, Microsoft has tried to create a thick layer of abstraction between the database and the
actual data.

Chapter 12

14

Abtraction means "hiding the inner workings of" so, in this case, what ADO.NET is doing is
managing all the hard work of saving a DataSet to an XML file.

Because of this abstraction, XML-formatted data stored in a file is treated is in a similar way to the
relational data stored in the database itself. So, we can load data from an XML file and it looks and
"feels" the same as it does when we draw it from a database using the System.Data.SqlClient
namespace.

Looking at the code, we can see that loading the data is no more complex than saving it:

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

 ' Load...
 newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End If

 End Sub

What we have done is wrapped the ReadXml call in a Try…Catch. That's because we can't guarantee
the user will select a valid XML file containing a DataSet that can be loaded. Apart from anything
else, the user might select any file he or she chooses rather than a valid XML file that can be loaded into
a DataSet. Now, let's take a look at how we can guarantee that the file we load always contains orders.

Schemas
One issue with XML is that, as we said before, it's a set of rules for defining markup languages. It is
extensible – we can define our own elements. However, this also means that we need some way of
understanding everyone else's elements, which can look completely different to our own. So we need to
be able to define rules for XML documents that help them become as self-describing as possible. We
need rules which let anyone reading the XML document understand that, for instance, "This XML file
contains a list of orders as used by the NorthwindSQL database". Schemas provide a mechanism for
defining rules that XML documents must adhere to, and which help everyone understand what the data
held in an XML document actually is.

ADO.NET and XML

15

A schema defines how different elements can be put together to make a document of a certain type.
This is done by using rules; in our XML document, we know the following rules apply:

❑ Our top-level element is called Orders.

❑ Our Orders element contains any number of Order elements, from zero to "infinity".

❑ Our Order element contains exactly thirteen elements, namely these and in the given order:
OrderID, CustomerID, EmployeeID, OrderDate, RequiredDate, ShippedDate (if
not Null), ShipVia, Freight, ShipName, ShipAddress, ShipCity, ShipRegion,
ShipPostalCode, ShipCountry.

If we provide a schema that defines this structure along with our XML document, everyone will be able
to understand the data contained within our document.

As we know, XML is a really useful technology for application integration and what a schema does is
allow you to answer the question, "Does this XML file that a business partner gave me contain a list of
orders specified in the manner that I am expecting?" If the answer is "Yes", the application can use the
data and do something useful. If "No", the application can do something to tell the business partner that
something is wrong with the file.

Schemas are a great way of making sure that, once you have a document, you can be confident that the
document fits in with your business rules. Imagine you set up a piece of software that receives XML
documents through e-mail or some other mechanism (we will look at a situation like this in the Case
Study). Each of these documents contains an order from your customers, but you will need those
documents to follow certain rules if your application is to be able to use them. For example, the
document must contain a customer ID, a delivery address, and each line in the order must specify a
product ID, a quantity, and a unit price.

Before you start processing an XML document, it's important to ask whether the document is valid, that is,
whether it complies with the structure defined in your schema. We'll look at this concept in more detail later.

For now, the best way to understand schemas is to generate one, so let's do that now.

Try It Out – Generating a Schema
1. If the project is running, close it.

2. Open the code editor for Form1. Add this property:

 ' SchemaFilename - returns the file used to store a schema...
 Public ReadOnly Property SchemaFilename() As String
 Get

 ' Get the app folder...
 Dim fileInfo As New FileInfo(Application.ExecutablePath)
 Dim folderName As String = fileInfo.DirectoryName

 ' Return the name...
 Return folderName & "\OrdersSchema.xml"

 End Get
 End Property

Chapter 12

16

3. Again using the code editor, find the definition for btnConnect_Click. Add this line just after
you set the DataSet property:

...

 ' Set the dataset property...
 Me.DataSet = newDataset

 ' Save the schema...
 newDataset.WriteXmlSchema(SchemaFilename)

 ' Close the database...
 connection.Close()

 End Sub

4. Run the project and click the Connect button. The two orders will be displayed as normal.

5. Find the folder where Visual Studio .NET creates the Order_Export.exe file. This will
normally be in the bin folder directly beneath the folder in which you created the project.

6. Double-click on the OrdersSchema.xml file. You'll see this:

ADO.NET and XML

17

How It Works

Creating the schema is no problem – the DataSet does it for us based on its understanding of the
tables that it contains. We do this by calling WriteXmlSchema.

We're not going to learn about schemas in great detail as, by and large, it's easier to get .NET to
generate them for us and use them. This, of course, doesn't apply if we've been given a schema to work
to by a partner organization. We're only going to provide a brief overview of schemas here but XML is
such an important language that you really will benefit from gaining a comprehensive understanding of
it. A good place to start is by looking at Beginning XML (Wrox Press, ISBN 1861005598).

The first line of the file tells us that we're looking at an XML document, which also tells us that schemas
are actually XML documents in their own right.

<?xml version="1.0" standalone="yes"?>

The next line defines the top-level element for an XML schema, xsd:schema. You'll notice that there
are several attributes in this element:

<xsd:schema id="Orders" targetNamespace="" xmlns=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-
com:xml-msdata">

The next element is the xsd:element. This is the first rule we define. In this case, we use the name
attribute to define the rule, "The first element in the file will be called Orders." We can now see how
the file is becoming self-describing:

 <xsd:element name="Orders" msdata:IsDataSet="true" msdata:Locale="en-GB">

The next element is xsd:complextype. This tells us that the Orders element contains other elements:

 <xsd:complexType>

This is followed by xsd:choice. These elements are used to add additional rules to the element that
we're working with. In this case, we've said the maxOccurs is unbounded, meaning that there's no
limit to the number of elements that Orders can contain:

 <xsd:choice maxOccurs="unbounded">

Then we have an xsd:element. This creates the rule that "Orders contain Order elements."

 <xsd:element name="Order">

Again, we can use xsd:complexType to beef this up to "Orders contain an unbounded number of
Order elements."

 <xsd:complexType>

Chapter 12

18

xsd:sequence is then used to say that Order elements contain the following set of elements, in order.

 <xsd:sequence>

Then we have the block of elements, each one representing a column in the Orders table. The
attributes on each xsd:element tag tell us the name of the column, the type of the column, and the
minimum times that each one will occur:

 <xsd:element name="OrderID" type="xsd:int" minOccurs="0" />
 <xsd:element name="CustomerID" type="xsd:string" minOccurs="0" />
 <xsd:element name="EmployeeID" type="xsd:int" minOccurs="0" />

You'll notice that we appear to have omitted an end tag for each of the fourteen elements. That's
because, if we end a start tag with a forward-slash, we're telling whoever is reading the XML not to
expect an end tag as the element contains no data. This is a useful tool for saving space when writing
XML files.

Finally, we close all of the elements that we have opened in reverse order:

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Again, at this introductory level, the way an XML schema file is constructed is common sense and, like
we said, it's usually easier to get .NET to create the schemas for us.

Let's look in more detail at why we need schemas.

Checking the Validity of a Document
Earlier in this chapter, we learned that an XML file must be well-formed. (We know that a document is
well-formed because .NET will never load a document that isn't.) This is only half the battle because we
need to know whether the data contained within fits the format that we require. If the data fits the
format, we say that it is valid. Since we can use XML schemas to define rules, it follows that we are able
to use XML schemas to determine the validity of an XML file.

Try It Out – Creating a DataSet from a Schema
1. If the project is running, close it.

2. Using the code editor for Form1, find the btnLoad_Click method. Add the highlighted line
and comment out the ReadXml call, like this:

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

ADO.NET and XML

19

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

 ' Load the schema...
 newDataset.ReadXmlSchema(SchemaFilename)

 ' Load...
 ' newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End If

 End Sub

3. Run the project. Click the Load button and open the XML file you saved earlier. You should see this:

How It Works

What I'm trying to demonstrate here is that the schema file contains everything that the DataSet needs
in order to generate the table and columns within that table, into which data can be loaded. Calling the
ReadXmlSchema method to load the schema, but not calling ReadXml to read the actual data, creates
a blank table with all the correct columns but no data.

The principle now is that, when we load the XML file using ReadXml, if the columns as they are
defined in the XML file do not match the columns as defined in the schema, we can assume that the file
is not valid and therefore we shouldn't try to process the data contained within it.

Chapter 12

20

Checking Validity
Let's try that now.

Try It Out – Checking Validity
1. If the project is running, close it.

2. Using the code editor, find the btnLoad_Click method again. Take the comment out
before ReadXml.

...

 ' Load the schema...
 newDataset.ReadXmlSchema(SchemaFilename)

 ' Load...
 newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End If

 End Sub

3. Run the project and click Load. You should see the data as normal.

4. Find the XML file that we created previously and make a copy of it.

5. Now, open up a copy of Windows Notepad and open the copy of the XML file. Visual Studio
.NET contains an XML editor if you'd prefer to use that. Change the name of the Orders start
tag to MyOrderList and make the same change to the matching end tag. (I have shortened the
file below for brevity.)

<?xml version="1.0" standalone="yes"?>
<MyOrdersList>
 <Order>

ADO.NET and XML

21

 <OrderID>11077</OrderID>
 <CustomerID>RATTC</CustomerID>

...

 <ShipCountry>France</ShipCountry>
 </Order>
</MyOrdersList>

6. To use the schema validation classes in Visual Basic .NET, we need to add a reference to the
System.Xml.dll assembly as this contains the classes that we need for schema validation. To
do this, stop the application from running and then, using Solution Explorer, right-click on the
Order Export project and select Add Reference. This will open the Add Reference dialog box.

7. Using the list on the .NET tab. find the System.Xml.dll assembly. Select it, then click the Select
button, and then OK.

8. Next, open the code editor for Form1. Find the namespace import declarations at the top of the
code listing and add this new one:

Imports System.IO
Imports System.Xml
Imports System.Xml.Schema
Imports System.Data.SqlClient

Chapter 12

22

9. We need to make some changes to the btnLoad_Click implementation. Remove the
ReadXmlSchema call and add this new code:

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

 ' Load the schema...
 newDataset.ReadXmlSchema(SchemaFilename)

 ' Create a validating reader...
 Dim reader As New XmlTextReader(dlgOpenFile.FileName)
 Dim validatingReader As New XmlValidatingReader(reader)

 ' Load our DataSet's schema into the reader...
 validatingReader.Schemas.Add(Nothing, SchemaFilename)

 ' Walk through the document element by element...
 Do While True
 If validatingReader.Read() = False Then Exit Do
 Loop

 ' Close...
 reader.Close()
 validatingReader.Close()

 ' Load the document...
 newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception

 ' What type of exception did we get?
 If ex.GetType Is GetType(XmlSchemaException) Then
 MsgBox ("The XML file is not valid: " & ex.Message)
 Else
 MsgBox("A general exception occured: " & ex.Message)
 End If

 End Try

 End If

 End Sub

10. Now run the project. Click the Load button and open the copy of the XML file, the one that you
changed. You should see a message similar to this:

ADO.NET and XML

23

11. Click OK and press the Load button again. Open the original XML file and you should see the
orders loaded as normal.

How It Works

By changing the copied file, we created a new XML document that didn't fit the rules as defined in the
schema. The schema defined a rule that said, "The first element you come across will be called
Orders" but, in the file, the first element is called MyOrdersList. The validation properly discovered
the error and told us about it.

Because reading and validating an XML file takes longer and requires more resources than just reading
it, by default the .NET classes that work with XML won't validate against a schema unless we
specifically tell them to. To do this, we have to open the file manually using a
System.Xml.XmlTextReader object. This class allows us to walk through the document piece-by-
piece. We'll show exactly how this works in a little while.

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

 ' Load the schema...
 newDataset.ReadXmlSchema(SchemaFilename)

 ' Create a validating reader...
 Dim reader As New XmlTextReader(dialogOpenFile.FileName)

Once we have a reader, we create a System.Xml.XmlValidatingReader object. This type of
object has the intelligence to determine if the XML file confirms to a schema that we give it.

 Dim validatingReader As New XmlValidatingReader(reader)

When the object is first created, it has no knowledge of any schemas, so we give it one:

Chapter 12

24

 ' Load our DataSet's schema into the reader...
 validatingReader.Schemas.Add(Nothing, SchemaFilename)

This is just half the battle though. We have to walk through the document element by element until
something goes wrong. We use the Read method to walk though each node in the document and this
method will return False when we reach the end. If something does go wrong, an exception will be
thrown and, seeing as we're inside a Try…Catch, we'll know about this later on.

 ' Walk through the document element by element...
 Do While True
 If validatingReader.Read() = False Then Exit Do
 Loop

Once we've walked through the file we need to close both readers:

 ' Close...
 reader.Close()
 validatingReader.Close()

Once we get to this point, we're guaranteed that the document is valid so we can load it into the
DataSet and set the DataSet property to display it on the DataGrid:

 ' Load the document...
 newDataset.ReadXml(dlgOpenFile.FileName)

 ' If we got here, we can load it...
 Me.DataSet = newDataset

So, what happens if an exception has been thrown? Well, we're going to get one of two possible types of
exception: either a file can't be opened or something else goes wrong; or something specifically related
to the validation happens. We can retrieve the System.Type object associated with the exception and
choose what to do in each case.

 Catch ex As Exception
 ' What type of exception did we get?
 If ex.GetType Is GetType(XmlSchemaException) Then
 MsgBox("The XML file is not valid: " & ex.Message)
 Else
 MsgBox("A general exception occured: " & ex.Message)
 End If

 End Try

 End If

 End Sub

ADO.NET and XML

25

Relational Data
At this point we know how to load and save XML data directly using the DataSet. We also know how
to generate schemas and how to use those schemas for validation. However, at this point, we've only
seen what happens when we have a single table. As we've already seen in earlier chapters, the
DataGrid control is capable of letting us navigate around different tables pretty easily.

In this section we'll extend what we have so that, when we have an order shown in the DataGrid, we
can drill down to see the lines that make up that order.

Try It Out – Relating the "Order Details" Table
1. If the project is running, close it.

2. Using the code editor, find the code for Form1. Make these changes to btnConnect_Click.

 Private Sub btnConnect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnConnect.Click

 ' Connect to the database...
 Dim connection As New sqlconnection(DbString)
 connection.Open()

 ' Create a new dataset
 Dim newDataset As New DataSet("Orders")

 ' Create a new table to hold the orders in...
 Dim ordersTable As New DataTable("Order")
 newDataset.Tables.Add(ordersTable)

 ' Load the last two orders from the database...
 Dim command As New SqlCommand("SELECT TOP 2 OrderID, CustomerID, " & _
 "EmployeeID, OrderDate, RequiredDate, ShippedDate, " & _
 "ShipVia, Freight, ShipName, ShipAddress, ShipCity, " & _
 "ShipRegion, ShipPostalCode, ShipCountry FROM Orders " & _
 "ORDER BY OrderID DESC", connection)

 ' Fill the dataset...
 Dim adapter As New SqlDataAdapter(command)
 adapter.Fill(ordersTable)

 ' Create a new table to hold the order details on...
 Dim detailsTable As New DataTable("Detail")
 newDataset.Tables.Add(detailsTable)

 ' Form a SQL string so that we only get the details that are
 ' included in the first table...
 Dim sql As String, row As DataRow
 For Each row In ordersTable.Rows

 ' Create a sql snippet...
 If sql <> "" Then sql &= " or "

Chapter 12

26

 sql &= "OrderID=" & row("orderid")

 Next

 ' Do we need to bother?
 If sql <> "" Then

 ' Create a new command...
 sql = "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount " & _
 "FROM [Order Details] WHERE " & sql
 Dim detailsCommand As New SqlCommand(sql, connection)

 ' Fill the new table...
 Dim detailsAdapter As New SqlDataAdapter(detailsCommand)
 detailsAdapter.Fill(detailsTable)

 ' Create the new relationship...
 newDataset.Relations.Add("Details", _
 ordersTable.Columns("OrderID"), detailsTable.Columns("OrderID"))

 End If

 ' Set the dataset property...
 Me.DataSet = newDataset

 ' Save the schema...
 newDataset.WriteXmlSchema(SchemaFilename)

 ' Close the database...
 connection.Close()

 End Sub

3. Run the project and click Connect. You'll be able to use the "plus" buttons to show the Details link.

4. If you click on one of the Details links, you'll be able to see the related data.

ADO.NET and XML

27

How It Works

None of that should be too new to you, as I'm sure you're comfortable with linking tables with
DataRelation objects in this way. (See Chapter 7 for more details.)

It's worth taking a quick look at a portion of the code that we added. When we load a list of orders from
the database into ordersTable, we need to load corresponding details in detailsTable. The way
we do this is by looping through all the rows in ordersTable and creating a SQL snippet.

 ' Form a SQL string so that we only get the details that are
 ' included in the first table...
 Dim sql As String, row As DataRow
 For Each row In ordersTable.Rows

 ' Create a sql snippet...
 If sql <> "" Then sql &= " or "
 sql &= "OrderID=" & row("orderid")

 Next

Once we've been through that loop, our sql variable will be set to:

OrderID=11077 or OrderID=11076

We can combine this with the larger SQL statement to get this:

SELECT OrderID, ProductID, UnitPrice, Quantity, Discount FROM [Order Details]
 WHERE OrderID=11077 OR OrderID=11076

…and that's precisely what we do next.

 ' Do we need to bother?
 If sql <> "" Then

 ' Create a new command...
 sql = "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount " & _
 "FROM [Order Details] WHERE " & sql
 Dim detailsCommand As New SqlCommand(sql, connection)

Chapter 12

28

Once we have the command, we can populate the detailsTable DataTable object as normal:

 ' Fill the new table...
 Dim detailsAdapter As New SqlDataAdapter(detailsCommand)
 detailsAdapter.Fill(detailsTable)

Finally, we create a relationship so that DataGrid knows how to present the data:

 ' Create the new relationship...
 newDataset.Relations.Add("Details", _
 ordersTable.Columns("OrderID"), detailsTable.Columns("OrderID"))

 End If

Now that we've proven we can load relational data, we need to look at what effect this has on our code
to write the XML file.

Saving the DataSet
Saving the data isn't even worth a "Try It Out…How It Works"! Run the project, click Connect, and
then click Save. Save the file with a different name to the one you used before.

Now find the file in Windows Explorer and open it. I've omitted quite a bit of XML here for brevity.

<Orders>
 <Order>
 <OrderID>11077</OrderID>
 <CustomerID>RATTC</CustomerID>
 <EmployeeID>1</EmployeeID>
 <OrderDate>1998-05-06T00:00:00.0000000+01:00</OrderDate>
 <RequiredDate>1998-06-03T00:00:00.0000000+01:00</RequiredDate>
 <ShipVia>2</ShipVia>
 <Freight>8.53</Freight>
 <ShipName>Rattlesnake Canyon Grocery</ShipName>
 <ShipAddress>2817 Milton Dr.</ShipAddress>
 <ShipCity>Albuquerque</ShipCity>
 <ShipRegion>NM</ShipRegion>
 <ShipPostalCode>87110</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 </Order>
 <Order>
 …
 </Order>
 <Detail>
 …
 </Detail>
 <Detail>
 …
 </Detail>
 <Detail>

ADO.NET and XML

29

 …
 </Detail>
 <Detail>
 <OrderID>11077</OrderID>
 <ProductID>2</ProductID>
 <UnitPrice>19</UnitPrice>
 <Quantity>24</Quantity>
 <Discount>0.2</Discount>
 </Detail>
 …
</Orders>

First of all, what's important here is noticing that we don't need to change the code that saves the
DataSet as an XML file, even though we've changed the structure of the DataSet.

What's also important is that there's no physical link in the XML file between details and orders. It
would make sense that the three Detail elements associated with order 11077 actually appeared
within the Order element for 11077.

But, for now, just bear in mind that we've changed the structure of the DataSet, yet the data can still
be written out as XML without any changes.

Loading the DataSet Again
OK, so when we clicked the Connect button, we made a call to DataSet.WriteXmlSchema and
created a new schema. This schema contains the details for the Detail elements and also contains
details of the relationship between Order and Detail elements.

If you open the OrdersSchema.xml file again, towards the bottom you'll find this:

<xsd:element name="Detail">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="OrderID" type="xsd:int" minOccurs="0" />

 <xsd:element name="ProductID" type="xsd:int" minOccurs="0" />

 <xsd:element name="UnitPrice" type="xsd:decimal" minOccurs="0" />

 <xsd:element name="Quantity" type="xsd:short" minOccurs="0" />

 <xsd:element name="Discount" type="xsd:float" minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Again, nothing complex there, we're just defining an element called Detail and specifying the five
elements that it contains. Notice that Detail and Order appear as sibling elements in the document –
they're at the same level. They'll appear as siblings to each other in the final XML document too.

Chapter 12

30

Beneath, you'll see this:

<xsd:unique name="Constraint1">
 <xsd:selector xpath=".//Order" />
 <xsd:field xpath="OrderID" />
</xsd:unique>

This block is used to create a constraint, specifically one called Constraint1 that's used to specify that
the OrderID element contained within the Order element is unique.

Finally, you'll see this:

<xsd:keyref name="Details" refer="Constraint1">
 <xsd:selector xpath=".//Detail" />
 <xsd:field xpath="OrderID" />
</xsd:keyref>

What this tells us is that we have a relationship called Details that links Constraint1 to the
OrderID element within Detail elements. By definition, Constraint1 refers to the OrderID
element within Order elements and therefore we know that the OrderID in Order links to the
OrderID in Detail.

Now, run the project and click Connect and then Load. You'll see this:

The trick here is that we've continued to use ReadXmlSchema as soon as the new DataSet is created.
(I've omitted code here for brevity.)

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' Display the dialog...
 dlgOpenFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgOpenFile.ShowDialog() = DialogResult.OK Then

 ' Try and load...
 Try

 ' Create a new dataset...
 Dim newDataset As New DataSet()

ADO.NET and XML

31

 ' Load the schema...
 newDataset.ReadXmlSchema(SchemaFilename)

 ' Create a validating reader...
 …

 ' If we got here, we can load it...
 Me.DataSet = newDataset

 Catch ex As Exception
 …
 End Try

 End If

 End Sub

Because the schema contains details on the relationship between Orders and Order Details, when the data is
loaded from XML, the relationship "sticks" and the DataGrid is able to present the information properly.

Remember, because we've created a new OrdersSchema.xml file, you won't be able
to load the old XML files that don't contain Detail elements.

XmlDataDocument
The last important class that we need to look at with respect to using XML with DataSets is
System.Xml.XmlDataDocument.

XmlDataDocument "wraps" a DataSet but maintains a continuous connection between the document
and the Dataset. This means that changes to the XML document are instantly reflected in the
DataSet and changes to the DataSet are instantly reflected in the XML document.

In this section, we'll take a look at a couple of ways in which this object can be used.

Changing the XML Changes the DataSet
For this exercise, we'll imagine that we've been given an XML document that contains an order from a
customer. However, we'll say that we've recently made some changes to our product portfolio and we're
going to substitute some product IDs with other product IDs. What we'll do is go through the XML
document element by element and do a search and replace.

In order to get this example working, you're going to have to look at the data stored in your copy of
NorthwindSQL. We need to find a product ID.

Chapter 12

32

Try It Out – Finding a Product ID
1. Run the project and click either the Connect or Load button to get some data.

2. Of the two orders you have, choose one. (I've chosen one with the least amount of detail rows
associated with it.) Expand the details.

3. Look through the details and choose a product ID that appears in the details list. I've chosen 14
but, as I say, you'll need to choose one that appears in your list.

4. Note down the product ID. You'll need it in a moment.

Making Changes
Now that you have a product ID, you can start writing code!

Try It Out – Changing Data in an XmlDataDocument
1. If the project is running, close it.

2. Using Solution Explorer, right click on the Order Export project and select Add | Add Class. Call
the new class DataReplace.

3. When the code editor for DataReplace is opened, add this code:

Public Class DataReplace

 ' Members...
 Public ElementName As String
 Public LookFor As String
 Public ReplaceWith As String

End Class

4. Again, using Solution Explorer, create a new class called DataReplaceCollection. Add
this code:

Public Class DataReplaceCollection
 Inherits CollectionBase

ADO.NET and XML

33

 ' Add - add an item...
 Public Sub Add(ByVal replace As DataReplace)
 list.Add(replace)
 End Sub

End Class

5. Next, open the code editor for Form1. Add this member:

Public Class Form1
 Inherits System.Windows.Forms.Form

 ' Members...
 Private _dataset As DataSet
 Private _document As XmlDataDocument

6. Find the DataSet property and add this code:

 ' DataSet property...
 Public Property DataSet() As DataSet
 Get
 Return _dataset
 End Get
 Set(ByVal Value As DataSet)

 ' Save it...
 _dataset = Value

 ' Bind...
 datagridOrders.DataSource = _dataset
 datagridOrders.DataMember = _dataset.Tables(0).TableName

 ' Create the document...
 _document = New XmlDataDocument(_dataset)

 End Set
 End Property

7. Next, add this property:

 ' Document property...
 Public ReadOnly Property Document() As XmlDataDocument
 Get
 Return _document
 End Get
 End Property

8. Now open the Designer for Form1. Draw on a new Button control. Change its Name property to
btnReplace, Text property to Replace and Anchor property to Top, Right.

Chapter 12

34

9. Double-click on the Replace button to create a new Click event handler. Add this code:

 Private Sub btnReplace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnReplace.Click

 ' Create a collection...
 Dim replaceCollection As New DataReplaceCollection()

 ' What do we want to replace?
 Dim replace As New DataReplace()
 replace.ElementName = "ProductID"
 replace.LookFor = 14
 replace.ReplaceWith = 999
 replaceCollection.Add(replace)

 ' Do the replace...
 ReplaceData(replaceCollection)

 End Sub

10. In the above code sample, remember to replace this line:

 replace.LookFor = 14

…with whatever product ID you noted down before.

11. Then, add this method:

 Public Sub ReplaceData(ByVal replaceCollection As DataReplaceCollection)

 ' Turn off checking...
 Dim enforce As Boolean = DataSet.EnforceConstraints
 DataSet.EnforceConstraints = False

 ' Run the replace...
 DoReplace(replaceCollection, Document.FirstChild)

 ' Reset checking...
 DataSet.EnforceConstraints = enforce

 End Sub

ADO.NET and XML

35

12. Finally, add these two methods:

 Protected Sub DoReplace(ByVal replaceCollection As DataReplaceCollection, _
 ByVal node As XmlNode)
 DoReplace(replaceCollection, node, 0)
 End Sub

 Protected Sub DoReplace(ByVal replaceCollection As DataReplaceCollection, _
 ByVal node As XmlNode)

 ' Go through the siblings...
 Do While Not node Is Nothing

 ' Do we have an element?
 If node.NodeType = XmlNodeType.Element Then

 ' Go through each one...
 Dim replace As DataReplace
 For Each replace In replaceCollection

 ' Does name match?
 If replace.ElementName = node.Name Then

 ' Compare node is the first child...
 Dim compareNode As XmlNode = node.FirstChild

 ' Compare the values...
 If compareNode.Value = replace.LookFor Then
 compareNode.Value = replace.ReplaceWith
 End If

 ' Quit...
 Exit For

 End If

 Next

 ' Walk down to the children...
 DoReplace(replaceCollection, node.FirstChild)

 End If

 ' Next...
 node = node.NextSibling()

 Loop

 End Sub

13. Run the project. Either click the Connect button to get data direct from the database or the Load
button if you'd prefer to get the data from the file. (It doesn't matter which.)

Chapter 12

36

14. Show the details for whichever order contains the product ID that you want to replace.

15. Click the Replace button. 14 will change to 999.

How It Works

System.Data.DataSet and System.Xml.XmlDataDocument work hand-in-hand. That's why we
create a new XmlDataDocument whenever we set the DataSet property.

 ' DataSet property...
 Public Property DataSet() As DataSet
 Get
 Return _dataset
 End Get
 Set(ByVal Value As DataSet)

 ' Save it...
 _dataset = Value

 ' Bind...
 datagridOrders.DataSource = _dataset
 datagridOrders.DataMember = _dataset.Tables(0).TableName

 ' Create the document...
 _document = New XmlDataDocument(_dataset)

 End Set
 End Property

ADO.NET and XML

37

Basically, when we want to replace data, we can take one of two approaches. We could walk through
each row of each table defined in the DataSet looking for columns with a particular name, comparing
and changing values where necessary. I've used a similar approach but I'm walking through an XML
document rather than a DataSet. Both techniques are equal, but what's important to see is that, as
changes are made to the XML document, that change is instantly reflected in the DataSet. This is
known as synchronization.

We've created a pretty flexible search and replace function here. We can provide a set of
DataReplace objects to the ReplaceData method through a collection, so it can perform either a
single search and replace in one call, or it can perform many. This would be useful if you maintained a
list of substituted products. You can load the list, create DataReplace objects for each, and pass the
collection to ReplaceData.

There are a number of ways that we can walk through an XML document, all of which work on a
similar principle. Here we've gone with a fairly manual approach and built a pretty cool recursive
function that lets us go through the entire document with just one call made from within
ReplaceData.

When ReplaceData is called, we can only make changes to the underlying DataSet if the DataSet's
EnforceConstraints property is set to False. When the function is called, we store the current
value for this property and change it to False.

 Public Sub ReplaceData(ByVal replaceCollection As DataReplaceCollection)

 ' Turn off checking...
 Dim enforce As Boolean = DataSet.EnforceConstraints
 DataSet.EnforceConstraints = False

Once we've done that, we call the protected DoReplace method, passing in the collection and the first
"node" of the document. (More on nodes in a moment.)

 ' Run the replace...
 DoReplace(replaceCollection, Document.FirstChild)

Finally, we reset EnforceConstraints to whatever it was when we came in. This is good
programming practice. If we need to change a property that some other part of the code or the caller
him/herself might be dependent on, we should set it back to whatever it was when we're finished.

 ' Reset checking...
 DataSet.EnforceConstraints = enforce

 End Sub

Nodes
XML documents work on the concept of nodes where each node is a "piece" of the document. A piece
could be a start tag, an end tag, some data contained within two tags, or spaces and carriage returns that
appear outside of the tags. (This latter part is known as whitespace.) What we want to do is start at the
first node and walk through the entire document until we've seen all of them.

Chapter 12

38

Walking through an XML document can be a little
confusing, as you tend to end up jumping around all
over the place. This diagram shows the jumps that
happen between nodes.

<Orders>

<Order>

<OrderID>

11077

</OrderID>

<CustomerID>

RATTC

</CustomerID>

...and so on...

</Order>

<Order>

...and so on...

1

2

3

6

4

5

7

10
11

8

9

The first node we come to is the start tag for the top-level element: <Orders>. To walk through a
document you have go through all of the child nodes of the node you're on, then, once you've
exhausted the child nodes, you move to the next sibling along from you. Then the process repeats so
you move to the sibling's first child, and so on and so forth. Eventually you will have traversed the
entire document. To understand this, follow the jumps on the diagram in order.

That's what we're doing with our DoReplace method. We are given a System.Xml.XmlNode object
that represents our current position. In the first instance, this will be the start tag of the top-level
element. We'll see how this method is recursively called as we walk through the document.

Protected Sub DoReplace(ByVal replaceCollection As DataReplaceCollection, _
 ByVal node As XmlNode)

What we do next is set up a loop that goes through the siblings. This has the effect of looking at the
node that we were given through the node parameter first.

 ' Go through the siblings...
 Do While Not node Is Nothing

Straight away we look at the type of node that we have. If this is an XmlNodeType.Element, it's the
start tag of an element. If we have an element, we go through each of the DataReplace objects
comparing the values, looking for one whose ElementName property matches the Name property of
the node. (And in our case we're looking for ProductID.)

ADO.NET and XML

39

 ' Do we have an element?
 If node.NodeType = XmlNodeType.Element Then

 ' Go through each one...
 Dim replace As DataReplace
 For Each replace In replaceCollection

 ' Does name match?
 If replace.ElementName = node.Name Then

Once we find that, we need to get hold of the first child of the node. In all cases, this will be a piece of
text and we can compare the Value property of this child node to the LookFor property of the
DataReplace object and, if need be, affect a change.

 ' Compare node is the first child...
 Dim compareNode As XmlNode = node.FirstChild

 ' Compare the values...
 If compareNode.Value = replace.LookFor Then
 compareNode.Value = replace.ReplaceWith
 End If

 ' Quit...
 Exit For

 End If

 Next

Once we've looked at the node, the rules about how we walk through a document dictate that we have
to turn our attention to the child nodes. We call into the same function (recursion) but, this time, we pass
the child node in as the node parameter. This has the slightly heady effect of running through the same
function but this time we're looking at a different position on the tree. (This is one of the jumps that we
saw in the diagram above.)

 ' Walk down to the children...
 DoReplace(replaceCollection, node.FirstChild)

 End If

Once we've gone through all of the children (and we would have effectively gone through all of the
children's children and the children's children's children), we can move on to the sibling next to the one
we've looked at.

 ' Next...
 node = node.NextSibling()

 Loop

 End Sub

Chapter 12

40

Basically, the important part is the bit of code that sets the value in the node object. Here it is again:

 ' Go through each one...
 Dim replace As DataReplace
 For Each replace In replaceCollection

 ' Does name match?
 If replace.ElementName = node.Name Then

 ' Compare node is the first child...
 Dim compareNode As XmlNode = node.FirstChild

 ' Compare the values...
 If compareNode.Value = replace.LookFor Then
 compareNode.Value = replace.ReplaceWith
 End If

 ' Quit...
 Exit For

 End If

 Next

Because the DataSet and XmlDataDocument are so closely tied, each XmlNode object that the
XmlDataDocument object knows about is automatically linked to a particular column in a particular
row in a particular table in the DataSet. Changing the Value property of the node automatically
updates its counterpart in DataSet.

Changing the DataSet Changes the XML
So we've seen changes work one way. Let's see if we can make changes to the DataSet update the
XML document.

To do this, we'll need to create a way of displaying the contents of the XmlDataDocument object from
within our own code. We'll create a separate form containing a single list box control and add a method
that will let us update the view whenever we suspect that the data in the DataSet has changed.

Try It Out – Changing DataSet Data
1. If the project is running, close it.

2. Using Solution Explorer, right click on the Order Export project and select Add | Add Windows
Form. Call the new form XmlDocumentView.

3. Paint on a new ListBox control. Set its Name property to lstNodes, IntegralHeight property to
False and Anchor property to Top, Bottom, Left, Right.

ADO.NET and XML

41

4. Open the code editor for the form. Add this namespace import declaration:

Imports System.Xml

Public Class XmlDocumentView
 Inherits System.Windows.Forms.Form

5. Next, add a new member to the class:

Public Class XmlDocumentView
 Inherits System.Windows.Forms.Form

 ' Members...
 Private _document As XmlDataDocument

6. Next, add this property:

 ' Document - document property...
 Public Property Document() As XmlDataDocument
 Get
 Return _document
 End Get
 Set(ByVal Value As XmlDataDocument)
 _document = Value
 UpdateView()
 End Set
 End Property

7. Finally, add these two methods:

 ' UpdateView - update the view...
 Public Sub UpdateView()

 ' Clear the list...
 lstNodes.Items.Clear()

 ' Do we have a document?
 If Not Document Is Nothing Then

Chapter 12

42

 ' Start adding items...
 DoUpdateView(Document.FirstChild, 0)

 End If

 End Sub

 ' DoUpdateView - go through adding nodes...
 Protected Sub DoUpdateView(ByVal node As XmlNode, ByVal level As Integer)

 ' Go through the nodes...
 Do While Not node Is Nothing

 ' Create a new string...
 Dim nodeString As String = ""
 Dim n As Integer
 For n = 0 To level - 1
 nodeString &= " "
 Next
 nodeString &= node.NodeType.ToString() & ":"
 If node.Value = "" Then
 nodeString &= node.Name
 Else
 nodeString &= node.Value
 End If

 ' Add it...
 lstNodes.Items.Add(nodeString)

 ' Do the children...
 DoUpdateView(node.FirstChild, level + 1)

 ' Next...
 node = node.NextSibling

 Loop

 End Sub

8. That's all we need to do in order to create a form that lets us view the current contents of an
XmlDataDocument object.

9. Open the code editor for Form1. Add this member:

Public Class Form1
 Inherits System.Windows.Forms.Form

 ' Members...
 Private _dataset As DataSet
 Private _document As XmlDataDocument
 Private _documentView As XmlDocumentView

ADO.NET and XML

43

10. Flip over to the Designer for Form1 and double-click on the form background. This will create a
new Load event handler. Add this code:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Show the view...
 _documentView = New XmlDocumentView()
 _documentView.Show()

 End Sub

11. Find the DataSet property. Add this code:

...

 ' Create the document...
 _document = New XmlDataDocument(_dataset)

 ' Update the view...
 _documentView.Document = _document

 End Set
 End Property

12. Using the drop-down list in the top-left hand corner of the editor window, select dgdOrders.
From the right-hand list select CurrentCellChanged.

13. When the new event handler has been created, add this code:

 Private Sub dgdOrders_CurrentCellChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles dgOrders.CurrentCellChanged
 _documentView.UpdateView()
 End Sub

14. Again, using the drop-down list, select (Overrides) from the left-hand list and select OnClosed
from the right-hand list. Add this code:

 Protected Overrides Sub OnClosed(ByVal e As System.EventArgs)
 _documentView.Close()
 _documentView = Nothing
 End Sub

15. Run the project. The new view window will appear. Click Load or Connect to load up the
document and you'll notice that the list in the view window becomes populated with data.

Chapter 12

44

16. You can see here that I've selected the value contained within the CustomerID element for
order 11077. Using the DataGrid, change this value to DIZZY.

17. When you click outside of the cell or press Return, the changes will be made to the DataSet and
the CurrentCellChanged event will be fired. You'll also notice that the XML document has
also been updated.

How It Works

So we've proved now that not only do changes to the XmlDataDocument object affect the DataSet,
but also that the opposite is true.

It's worth looking at how we built up the view, as it's another example of how we can use recursion to
walk through the nodes that make up the document. In fact, because we can see the results, it may make
the process clearer if it's still a little foggy.

Again, when DoUpdateView is called, we pass in the node that represents the starting position. At first,
this will be the start tag for the top-level element.

ADO.NET and XML

45

 ' DoUpdateView - go through adding nodes...
 Protected Sub DoUpdateView(ByVal node As XmlNode, ByVal level As Integer)

 ' Go through the nodes...
 Do While Not node Is Nothing

For each one, we want to make up a string and add it to the ListBox. Depending on the level, we want
to indent the string so on the first level there is no indentation, on the second level there's some
indentation, on the third there's a little more, and so on. The level that we're working at will be passed
in through the level parameter.

 ' Create a new string...
 Dim nodeString As String = ""
 Dim n As Integer
 For n = 0 To level - 1
 nodeString &= " "
 Next

Once we've added an indent to a string, we can render the type that the node is. We then tack on either
the name of the element or, if we have one, the current value.

 nodeString &= node.NodeType.ToString() & ":"
 If node.Value = "" Then
 nodeString &= node.Name
 Else
 nodeString &= node.Value
 End If

Then we can add the string to the ListBox:

 ' Add it...
 lstNodes.Items.Add(nodeString)

As before, as soon as we've done one element we need to call into the function again to do the children.
We pass an incremented version of level into the function, and this lets us adjust the indentation.

 ' Do the children...
 DoUpdateView(node.FirstChild, level + 1)

After we've walked through the children, we can move onto the next sibling.

 ' Next...
 node = node.NextSibling

 Loop

 End Sub

Chapter 12

46

OK, so that's how the view is put together, and you can see that it follows the structure of the document
as we see it displayed in Internet Explorer. (Using this method the end tags aren't displayed, but this is
no big deal!) But, have we really proven that the objects are being synchronized, or are we showing that
some funny business is going on?

If we look at the DataSet property, we can see that it's at that point that we set the Document
property on our XmlDocumentView object.

 ' DataSet property...

 Public Property DataSet() As DataSet

 Get

 Return _dataset
 End Get

 Set(ByVal Value As DataSet)

 ' Save it...

 _dataset = Value

 ' Bind...

 datagridOrders.DataSource = _dataset
 datagridOrders.DataMember = _dataset.Tables(0).TableName

 ' Create the document...

 _document = New XmlDataDocument(_dataset)

 ' Update the view...

 _documentView.Document = _document

 End Set

 End Property

This is the only time this happens, and the only time that the DataSet property is set is after we've
pressed the Connect or Load buttons.

When the current cell is changed on the DataGrid, we run this code:

 Private Sub datagridOrders_CurrentCellChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles datagridOrders.CurrentCellChanged

 _documentView.UpdateView()
 End Sub

We know that this code just goes through the document that's stored in the DataSet public member on
XmlDocumentView. As this isn't changing, the only reasonable conclusion that we can come to is that
the DataSet is indeed updating the XmlDataDocument.

ADO.NET and XML

47

Simplifying Data Manipulation with Typed DataSets
Before we finish this chapter, we'll take a very quick look at how schemas let us define typed DataSets.

Typed DataSets can provide a more intuitive mechanism for the manipulation of data. A typed
DataSet is bound to an XML Schema Definition (XSD) file. Schemas provide very rigorous definitions
for the types of particular objects. In conjunction with the typed DataSet, they can allow access to the
tables and columns of a DataSet using meaningful names. This not only improves the readability of
your code, but also enables Visual Studio .NET's IntelliSense feature to make context-sensitive
suggestions as you type in code.

You can think of this as a way to early bind to your DataSet, as opposed to the late binding that
occurs with non-typed DataSets. Early binding is the ability to make Visual Basic .NET aware of the
exact type of an object at design time, whereas late binding means the type of object will not be known
until the code actually runs. With early binding, you have advantages such as IntelliSense and
compilation checking that tell you whether certain features you are trying to use are actually supported.

Try It Out – Creating Typed DataSets From Existing Schemas

1. Generating a typed DataSet directly from an XSD schema is a very straightforward task. For
example, save the following schema as ProductsDataSet.xsd somewhere on your computer:

<?xml version="1.0" encoding="utf-8" ?>
<xsd:schema id="ProductsDataSet"
targetNamespace="http://tempuri.org/ProductsDataSet.xsd"
elementFormDefault="qualified" xmlns="http://tempuri.org/ProductsDataSet.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="ProductsDataSet">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ProductId" minOccurs="1" type="xsd:integer" />
 <xsd:element name="ProductName" minOccurs="1" type="xsd:string" />
 <xsd:element name="SupplierId" minOccurs="0" type="xsd:integer" />
 <xsd:element name="CategoryId" minOccurs="0" type="xsd:integer" />
 <xsd:element name="QuantityPerUnit" minOccurs="0" type="xsd:string" />
 <xsd:element name="UnitPrice" minOccurs="0" type="xsd:decimal" />
 <xsd:element name="UnitsInStock" minOccurs="0" type="xsd:integer" />
 <xsd:element name="UnitsOnOrder" minOccurs="0" type="xsd:integer" />
 <xsd:element name="ReorderLevel" minOccurs="0" type="xsd:integer" />
 <xsd:element name="Discontinued" minOccurs="0" type="xsd:byte" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

2. In Visual Studio .NET, we can use this file to generate a typed DataSet, based on the type
information it details. Start a completely new Windows Application project for this quick
example. Then select Project | Add Existing Item.

3. In the Add Existing Item dialog box, browse to find the ProductsDataSet.xsd schema
and open it.

Chapter 12

48

4. In the Solution Explorer, double click on the entry for the XML schema you just added. You
will see a screen something like that shown below:

5. Notice how Visual Studio .NET takes the XSD schema and renders it visually on screen. If
you want to see the file in its original XML format, just click on the XML tab at the bottom.

6. Select Schema from the menu and then choose Generate DataSet.

7. Click the Show All Files button in Solution Explorer to make all files visible.

8. If you expand the ProductsDataSet.xsd branch by clicking on the plus symbol to the left of
the schema name, you will see a ProductsDataSet.vb and a ProductsDataSet.xsx file. If you
open the code in ProductsDataSet.vb, you will see that it contains Visual Basic .NET code
defining each element in the schema. ProductsDataSet.xsx is a file used by Visual Studio to
determine information about how to display the schema in the designer.

9. Let's now demonstrate that, by adding in this schema, we have enabled Intellisense. Double-
click on Form1 in the Designer and type the following lines into the Form1_Load event:

ADO.NET and XML

49

 Dim dsTypedDataSet As New ProductsDataSet()
 dsTypedDataSet.ProductsDataSet.ProductNameColumn

10.You should see that Intellisense is now enabled and you can directly select the column names
from the schema. You will find this much simpler and less error prone to work with than
having to remember column names unaided:

How It Works

By adding an existing XSD schema to our project, we can automatically generate a typed DataSet
from the schema.

Using a typed DataSet provides a number of advantages. It provides you with a specification up front
about how the DataSet should look. It also gives the advantage of IntelliSense, which suggests possible
alternatives when typing a line of code. Your code also becomes more readable because you can use the
column names in the DataSet inherently.

Summary
In this chapter, we initially saw a brief rundown of what XML is and learned that, at a basic level, it's
based on common sense and is not particularly tricky to understand. We then took a look at how we can
get the System.Data.DataSet class to generate an XML document with a single call to WriteXml.
We dissected this document to learn more about how a document is made up of tags and elements. Next
we saw how we could load that same file back into a DataSet.

Then we turned our attention to schemas, which are a way of defining the rules of a given document's
construction – for example, "you'll see this element, followed by n occurrences of this element, etc." We
saw how we could create a schema using WriteXmlSchema and how we could validate a given XML
document against a schema to determine its validity.

Chapter 12

50

Next, we examined the System.Xml.XmlDataDocument class. This is a useful class that allows
manipulation of the same basic data either through a DataSet object or through the
XmlDataDocument itself.

Finally, we took a very quick look at typed DataSets.

That brings us to the end of our discussion on the basics of how ADO.NET can expose XML data to us
and how we can manipulate that data. In the next chapter, we'll learn how Web Services work and, in
Chapter 14, we'll see how XML can make an alternate data source for data in a similar way to the
technique we've seen here. In the Case Study, we'll learn more about how different applications can
share XML data.

Exercises
1. What is XML?

2. How can we get a DataSet to generate an XML document?

3. What's a schema?

4. How do we make sure that an XML file we receive is valid?

5. What's so useful about XmlDataDocument?

Answers are available at http://p2p.wrox.com/exercises/.

ADO.NET and XML

51

Chapter 12

52

Web Services

Since .NET was first announced, Microsoft developers have been telling us all that the next big thing
in Internet development will be the Web Service, especially since the release of .NET has made
building Web Services a fairly trivial activity. In this chapter, we'll see how to build and use Web
Services in our applications.

Traditionally, web sites are used by people. If I want to know the price of a book offered by a particular
e-commerce site, I'll go to the site and find the book and see its price. If I want to compare their price
with that of other vendors, I can visit a few other sites and do a manual comparison, or perhaps go to a
site that compares values from a selection of sites for me.

A Web Service, on the other hand, is like a web site designed solely to be accessed by computers. To
take the same example, our book vendor can enhance their web site to provide certain tools that
computers can call over the Internet. Such a tool is known as a Web Service and, just like the objects
you've already seen, Web Services expose "methods". In this case, we might have methods such as
GetPriceForBook and OrderBook. Methods don't have to return a value, but all the ones we look at
in this chapter do.

The main reason why Web Services are now a viable idea is the popularity of the Internet. Integrating
computer systems is traditionally a complex and expensive affair. Without the Internet, if two
companies want to link their computers, they would have to set up some kind of link just for the
purpose. However, all the companies now have to do is connect to the Internet and use that for the
exchange of data between their computers. Connectivity is much more straightforward, and integration
of applications has been reduced to a software development issue.

However, it's still complex and expensive, and that's where Web Services come in. We all know how
easy it is to build a web site. Thanks to the tools all platforms offer today, building complex web-based
applications for everything from shopping to banking is now easy. The Web Service is the vehicle we
can use to make integrating computer systems just as easy.

Chapter 13

2

Imagine we want to provide a service that allows visitors to our site to tap in an ISBN and be presented
with a list of the prices offered by a hundred different vendors. In an ideal world, each vendor would
offer a Web Service exposing a method called GetPriceForBook, that takes an ISBN and returns a
floating-point number representing the price. By the end of this chapter, you will be able to put together
such a service in a single afternoon.

Now imagine we're trying to do that with conventional Internet tools. One way would be to perform
"screen scrapes", where our application downloads each vendor's web page, and searches it to locate the
price. The problem here is that not only will each vendor's page layout be quite different, and thus
require custom code to extract the price, but the vendors may change the layout of the page we need at
any time. This immediately breaks our screen scraping code, and we have to rewrite it to match the
vendor's new site. Alternatively, we could negotiate with the vendor to obtain direct access to their
computer system, but again we'd have to do custom integration work. Either way, you're looking at
more than an afternoon's work!

In this chapter we'll see how to build a Web Service for our Northwind project to allow our customers
to check the status of their orders over the Web. We'll also create a client application that uses this Web
Service, and look at how to find other Web Services using UDDI (Universal Description, Discovery and
Integration) and Web Service brokerages.

If you are interested in finding out more about the business benefits of Web Services, check out the
Web Services Architect site at http://www.webservicesarchitect.com/

Building a Web Service
As we're going to go to the trouble of building a Web Service, we might as well build one that satisfies a
real-world business need. With the Northwind company, one thing that our customers may appreciate is
to be able to check the status of their orders using the Web.

Providing this feature online brings major advantages for both parties. The company cuts down on the
"Where is my order?" sort of enquiries as the customer can now find the information they need
themselves. Customers, on the other hand, are reassured because they can check the status of the order
24 hours a day, seven days a week. Of course, this would be possible with traditional Web techniques –
it's not the exclusive preserve of Web Services. However, a Web Service offers the advantage that we
can easily access this remote functionality from as many of our own intranet, Internet, server, or desktop
applications as we need.

Designing Our Web Service
To design our Web Service, we must first decide precisely what functionality to offer our customers. We
want to provide a way for our customers to check the status of their orders, including what products the
order contained, whether it has been shipped yet and, if so, when and how it was shipped.

One thing to note is that we can add more functionality to the Web Service later on – we're not fixed by
the decisions we make today, although we want to ensure any updates are 'backwards compatible' with
the older version to avoid inconveniencing our existing users. This means we can roll out a fairly
limited service today, and roll out improved or enhanced functionality at a later date based on feedback
from the users.

Web Services

3

A Web Service is in essence just a set of methods that can be called over the Internet. If we knew what
our order number was and wanted the shipping date, we might create a method that looked like this:

Function GetShippingDateForOrder(ByVal orderId As Integer) As Date

If that method were to be implemented on an object installed on our local computer, we'd have no
problem understanding what was going on. We pass in an order ID, the object looks up the shipping
details, and returns the date to the caller. In principle, a Web Service works exactly the same, except
that the code is now hosted on a web server that exposes it to requests originating over the Internet.

When a call is carried out on a local computer, both .NET and COM components use various
proprietary tricks to make the call happen. Due to their cross-platform nature however, Web Service
calls use a combination of open standards. As you probably know, web servers use HTTP, the
Hypertext Transfer Protocol, to receive and respond to requests. This protocol can transfer either plain
text or binary files. For example, the HTML that makes up Web pages is transmitted as plain text,
whereas images, executable files, and so on are transmitted as binary files.

Web Services are based on the exchange of SOAP (Simple Object Access Protocol) documents.
SOAP documents follow XML formatting, meaning that they are plain text and can be readily
exchanged over HTTP.

Whenever a call is made to a Web Service, the request is wrapped up as a SOAP message and sent over
the Internet to the web server. The web server has a mechanism that takes the request and passes it to
the software that powers the Web Service. The software then prepares the response, wraps it up as
another SOAP message, and returns it to the client that made the call, again via the web server.

Web Services are not a proprietary Microsoft innovation. All the major platform vendors are releasing
Web Service implementations based on a combination of HTTP and SOAP. Because the underlying
standard followed on every platform is the same, a Web Service running on a UNIX computer can be
accessed by a machine using Windows 2000, and vice versa. This is great for us because it means that,
even though we're developing our system on the Windows platform, our customers will be able to
access them regardless of which particular computer and operating system they may be using.

Try It Out – Building a Web Service

1. We can use a wizard to create a Web Service project for us. Open Visual Studio .NET and
select New | Project from the menu.

2. From the Templates list on the right, select ASP.NET Web Service. Enter the name of the
project as NorthwindWebService, and click OK:

Chapter 13

4

Try not to enter spaces or other odd characters into the project name because the name will
form part of the URL that's used to access the Web Service. As URLs are restricted as to the
characters that they may contain, Visual Studio .NET replaces any non-alphanumeric
characters or spaces with underscores. This can make your Web Service URL appear quite
different to what you intended.

If you can, use your local computer as the server required in the Location box. (Remember that
localhost refers to the computer you're working on.) This will make following the exercises
later a little easier.

A dialog will appear telling you that the new project is being created. It disappears as soon as
the project has been successfully created.

3. If you look at Solution Explorer, you'll notice a number of new files that have been created.
You may need to select View | Solution Explorer from the menu if it's not already visible:

Web Services

5

The file we're particularly interested in here is the Service1.asmx file. This is the default
Web Services file that gets created for us, and that will contain our Web Service's main code.

4. Right-click Service1.asmx and select View Code, which opens the Service1.asmx.vb
code file.

5. You'll notice three lines commented out. Remove the comments to produce:

6. Run the project by selecting Debug | Start from the menu, or hitting F5. Our
Service1.asmx file should be set as the Start Page by default, so Internet Explorer should
appear showing something like this:

What we see here is a list of the methods that Service1.asmx exposes. At the moment, there is
only one: HelloWorld, the method that we un-commented in step 5.

Below the method listing are messages about changing the default namespace. You can ignore
this for now, as we revisit the "namespace" issue later in the chapter.

7. Now click on HelloWorld, taking us to a page for testing the method:

Chapter 13

6

Beneath the Invoke button, you'll notice some notes about SOAP, HTTP GET, and HTTP
POST. You can safely ignore these for the time being.

8. Now, click the Invoke button and a new Internet Explorer window will appear containing the
XML document as shown:

How It Works

Back in Chapter 11, when we looked at ASP.NET, one subject that came up was that of "code behind".
When an application uses code behind, each page on the web server is associated with a code file
containing the classes for building that page.

In normal ASP.NET projects, pages have the .aspx extension, but in an ASP.NET Web Service
project, the extension is .asmx. ASMX comes from the term "Active Service Method", with the "X" a
remnant from the days when ASP.NET was called "ASP+". The X in fact represents a plus-sign rotated
through 45 degrees.

Web Services

7

Like .aspx pages, .asmx pages actually comprise two files. One (Service1.asmx) is used for the
pages that power the Web Service. The other (Service1.asmx.vb) is the code behind page
specifying the actual methods for the Web Service. Unlike ASP.NET, you don't tend to do anything
with the "in-front" page – everything is done in the code behind page.

The Service1.asmx.vb ASMX page contains this code:

Imports System.Web.Services

' Windows Form Designer generated code region

Public Class Service1
 Inherits System.Web.Services.WebService

 ' WEB SERVICE EXAMPLE
 ' The HelloWorld() example service returns the string Hello World.
 ' To build, uncomment the following lines then save and build the project.
 ' To test this web service, ensure that the .asmx file is the start page
 ' and press F5.
 '
 <WebMethod()> Public Function HelloWorld() As String
 HelloWorld = "Hello World"
 End Function

End Class

You can see that the class is inherited from System.Web.Services.WebService. This is the class
that automatically creates the user interface we saw in Internet Explorer that allowed us to invoke the
HelloWorld method.

When we add methods to this class that we want to be made available over the Web, we have to add a
WebMethod attribute, as shown below for our HelloWorld method:

 <WebMethod()> Public Function HelloWorld() As String

When we first run the project, we navigate to this URL:

http://localhost/NorthwindWebService/Service1.asmx

When the page request is sent to IIS, the .asmx extension tells IIS to pass it on to ASP.NET for
processing. ASP.NET looks at the page to determine the .vb file that contains the code that powers the
Web Service. In our case, it is the file that contains the Service1 class we're currently working with.

At this point, Service1 must create a page to present details of the Web Service it represents. It
knows that we haven't asked to actually run the Web Service at this point, so it looks through the
class for all methods that have the WebMethod attribute set, and renders them on the page as the list
of available methods:

Chapter 13

8

When we click HelloWorld, the .asmx page is again requested and IIS passes the request to ASP.NET
for processing. This time, the URL used will be:

http://localhost/NorthwindWebService/Service1.asmx?op=HelloWorld

The op parameter at the end of the URL tells Service1 to provide further details of the HelloWorld
method. This it duly does, along with a button labeled Invoke. If our method had parameters, a form
would also be produced for us to enter the values to use as parameters when we test the method.

The Invoke button brings up a new browser window with this URL:

http://localhost/NorthwindWebService/Service1.asmx/HelloWorld?

Web Services

9

This URL tells the Web Service to actually execute the HelloWorld method and package the
return value as a SOAP document to be returned to the caller – in this case, us. The returned
document contains only a single entry, which is the string that the HelloWorld implementation of
Service1 produced.

 <?xml version="1.0" encoding="utf-8" ?>
 <string xmlns="http://tempuri.org/">Hello World</string>

If we were using the Web Service in a real-world situation, we wouldn't really use the web interface
we've seen in the last few screen shots. This interface is really only provided to test a Web Service. Later
in the chapter, we look at how to use a Web Service from within our own applications.

Finding the Code
In Chapter 11, we mentioned how Visual Studio .NET will always create ASP.NET project files on
the web server, rather than allowing us to nominate a folder on our local computer or file server.
That's the case with Web Services too so, if we don't want to lose our work, we need to be able to
find the files and copy them to a safer location, that is a location on our own network where we will
be able to find them later.

In the vast majority of cases, your files will be contained in a subdirectory off the "IIS root" folder,
typically c:\inetpub\wwwroot. So, as our project is called NorthwindWebService, our project files
will be in a folder with a name similar to c:\inetpub\wwwroot\NorthwindWebService.

SOAP Namespaces
If you look at the first page that comes up when you run the project, you'll see a number of warnings
about namespaces. These are there because we need to make sure that when our SOAP documents are
passed around, the names and identifiers they use don't conflict with those in anyone else's documents.
Namespaces provide a way for us to do this.

Using our own namespace makes the names used in our documents unique, and allows other people to
use them and to uniquely identify responses from our Web Service with no danger of conflict with
similar names used by their own systems. For example, we've already seen that our HelloWorld
method returns a string back to the caller and that that string appears like this:

 <string xmlns="http://tempuri.org/">Hello World</string>

The xmlns attribute tells the caller the namespace that that particular instance of string belongs to.
In this case, the namespace is http://tempuri.org/, the default namespace Microsoft provide, and
that we should replace with our own when we wish to deploy the service in a real-world environment.

Try It Out – Changing the Default Namespace

1. To change the default namespace, all we have to do is add an attribute to our class.

2. View the Service1.asmx.vb code. Add this WebService attribute to the class definition:

Chapter 13

10

<WebService(Namespace:="http://wrox.com/1861005555/")> Public Class Service1
 Inherits System.Web.Services.WebService

 ' WEB SERVICE EXAMPLE
 ' The HelloWorld() example service returns the string Hello World.
 ' To build, uncomment the following lines then save and build the project.
 ' To test this web service, ensure that the .asmx file is the start page
 ' and press F5.
 '
 <WebMethod()> Public Function HelloWorld() As String
 HelloWorld = "Hello World"
 End Function

End Class

3. Run the project. You'll notice that the warning message no longer appears on the first page.

4. If you click HelloWorld, and then the Invoke button when it appears, we'll get our new
namespace given for the string element.

 <?xml version="1.0" encoding="utf-8" ?>
 <string xmlns="http://wrox.com/1861005555/">Hello World</string>

How It Works

We can use almost anything we like for the namespace. All we have to do is make sure it is unique so
that everything that uses it will also be unique.

<WebService(Namespace:="http://wrox.com/1861005555/")> Public Class Service1

In this case, the wrox.com domain appended with the ISBN number of this book has been used because
I can be fairly sure that it won't have been used by anyone else in this form.

Returning Shipping Details for an Order
Now let's have a go at building a Web Service with a practical use: to return an object that describes the
status of an order, such as when it was placed, whether or not it's been shipped and, if so, what method
it was shipped by. For this new service, we need a new .asmx file.

Try It Out – Creating a New ASMX File

1. In Solution Explorer, right-click the NorthwindWebService project and select Add | Add Web
Service.

2. When the dialog appears, enter OrderQuery for the name, and click OK.

Web Services

11

3. If we run the project, Service1.asmx will still be the page automatically loaded into
Internet Explorer. We need to change the current start page, so right-click on
OrderQuery.asmx in Solution Explorer, and select Set As Start Page.

4. Next let's change the default namespace. Right-click OrderQuery.asmx again, but this time
select View Code. Add a WebService attribute to the class definition:

<WebService(Namespace:="http://wrox.com/1861005555")> Public Class OrderQuery
 Inherits System.Web.Services.WebService

End Class

That's all it takes: our new Web Service is set up and ready for us to add the code. We'll come back to
this later, after addressing a couple of other important issues.

Returning Shipping Details
When our Web Service wants to return details to the caller, it's a good idea to pass back as much
information as possible. Even though we can talk to a Web Service as if it were an object installed on
the local machine, any calls we make are subject to the various problems that affect data moving over
the Internet, so we want to get the job done with as few round trips as possible. Having one or two extra
pieces of information on our client is not going to present any real problems, unlike the case where our
client can't get the one or two pieces it does need due to network difficulties.

Luckily for us, we can return complex data structures from a Web Service method, so we're not limited
to simple strings, numbers, and so on.

Chapter 13

12

If we take a look at the Northwind Orders table, you'll notice there are quite a number of columns
related to the shipping of the order, in particular:

❑ ShippedDate – indicates the date the order was shipped. If the value in this column is Null,
then the order has not yet been shipped.

❑ ShipVia – references an ID in the Shippers table indicting the shipping company used.

❑ ShipName and various Ship address fields – indicates the company and address that the
order was shipped to or will be shipped to.

If we want to find out if our order has been shipped, it's likely we'll want confirmation of the other
details too. So instead of building a method that returns just the date, we'll build a method that returns
all of that information in one hit.

The more object-oriented among you might be tempted to code several methods, such as
HasOrderShipped, GetOrderShippedDate, and GetOrderShipmentAddress, each one
returning just the one piece of information required in a particular situation. We're working with the
less-than-reliable Web however, and those three round trips could potentially add a large impediment to
our application's performance. That's why it would generally be preferable to do the whole job in one
go.

Luckily for us, returning a set of information from a Web Service method is no more involved than
returning just a single value. All we have to do is build a class with public properties for each value we
want to return, so we could create a class called ShippingDetailsResult that exposes properties
such as:

❑ HasBeenShipped As Boolean

❑ ShippedDate As Date

❑ ShippingMethod As String

❑ ShippedToName As String

❑ …and so on.

Whatever we want our Web Service to return, there is the possibility that the request cannot be
completed for some reason. Most often this will be because of a security problem – we'll discuss these in
a moment. What we need is a common way to report problems. To follow good object oriented design
practices, we shall do this by building a separate class that our ShippingDetailsResult class can
then inherit from. We'll call this class WebServiceResult and it will have two properties:

❑ RequestOk As Boolean – set True if the request was OK, False if not.

❑ RequestProblem As String – a string describing the problem if one occurred, e.g. "Not
allowed" or "Order not found".

Try It Out – Building the Result Class

1. To create the new class, right-click on the NorthwindWebService project in Solution Explorer
and select Add | Add Class. Enter WebServiceResult as the class's name:

Web Services

13

2. As we said, this class is going to have two properties. Add this code:

Public Class WebServiceResult

 ' members...
 Public RequestOk As Boolean
 Public RequestProblem As String

End Class

3. Now we can create the class that will actually be returned when we ask for the shipping
details. In Solution Explorer, right-click the NorthwindWebService project again and select
Add | Add Class. Give it the name ShippingDetailsResult.

4. This class needs to inherit from WebServiceResult and add various members to carry the
order details over. Add this code to ShippingDetailsResult:

Public Class ShippingDetailsResult
 Inherits WebServiceResult

 ' members...
 Public HasBeenShipped As Boolean

 Public ShippedDate As Date
 Public ShippingMethod As String

 Public ShippedToName As String
 Public ShippedToAddress As String

Chapter 13

14

 Public ShippedToCity As String
 Public ShippedToRegion As String
 Public ShippedToPostalCode As String
 Public ShippedToCountry As String

End Class

When we come to build our method to return the shipping details, it will be responsible for creating an
instance of the ShippingDetailsResult object and populating its properties. After the object has
been populated, ASP.NET sends it back to the caller to use as it wishes.

Security Considerations
There are important security considerations that Web Service developers must address to avoid
headaches later on. The nature of the Web Services beast is that our methods are publicly available, so
we have to take steps to prevent unauthorized people accessing sensitive information.

In our case, we especially don't want competitors to be able to steal our customer database by supplying
random order IDs to our Web Service. There's nothing to stop a competitor building a little utility that
continually calls GetShippingDetails with every order ID from 1 to 1,000,000. If the order ID is valid,
the shipping address is returned, which is likely to be our customer's business address, thus giving our
competitors a list of all our customers and their addresses.

A good technique for securing our service is to require a username and password pair to be supplied
with the GetShippingDetails call. We can then check that the user making the request is indeed
responsible for that order. However, building such a scheme is non-trivial and has several implications:
for starters, we have to maintain a system that allows customers to register, issues them with forgotten
passwords, and so on.

The GetShippingDetails Method
What we need to do now is build and test GetShippingDetails. This will involve a stored procedure that
queries the database to find the shipping information and the code required to process the results.

Try It Out – Creating a Stored Procedure

1. We'll use Visual Studio .NET's built-in database administration features to add the stored
procedure. Select View | Server Explorer from the menu and navigate down to the
NorthwindSQL database under your database server. The screenshot shows my own server,
called "chimaera":

Web Services

15

2. Right-click on the Stored Procedures object and select New Stored Procedure. A code
window opens into which you should enter the SQL statement required.

3. Enter this code into the window, overwriting any text that Visual Studio .NET has added
automatically:

Create Procedure GetShippingDetails
 (
 @orderId int
)
As
 SELECT OrderID, PostalCode, ShippedDate, ShipVia, ShipName,
 ShipAddress, ShipCity, ShipRegion, ShipPostalCode, ShipCountry
 FROM Orders
 INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID
 WHERE OrderID=@orderId
 RETURN

4. Select File | Save StoredProcedure1 from the menu. This will create the new stored
procedure. If you expand the Stored Procedures node in Server Explorer, you should see the
new GetShippingDetails stored procedure:

Chapter 13

16

5. Right-click on the GetShippingDetails stored procedure in Server Explorer and select Run
Stored Procedure. You'll be prompted for the order ID. Enter 10248 and click OK.

6. The Output window will appear containing the single row corresponding to the order ID supplied.
If you can't see the Output window, select View | Other Windows | Output from the menu:

How It Works

You can see that the second column from the order ID returns the postal code of the customer. That's
thanks to the INNER JOIN clause in the stored procedure. If PostalCode is the same as
ShipPostalCode, that is because the customer's delivery address is the same as their business address.

For this customer to see the details of the order, they must provide the Web Service with both an order
ID of 10248 and a postal code of 51100. With our somewhat rudimentary security scheme, if a postal
code of 51100 is not entered, or if an order ID not linked to that address is provided, we return an error
message, rather than the order details.

Web Services

17

Building the GetShippingDetails Method
Now that we have the stored procedure, we can build the method.

Try It Out – Building a Web Method

1. Open Visual Studio .NET again, and locate the OrderQuery class in the code behind
OrderQuery.asmx.

2. This method needs access to the various classes that provide SQL Server connectivity. At the
top of OrderQuery.asmx.vb, add the line highlighted below:

Imports System.Data.SqlClient
Imports System.Web.Services

3. Next, add the GetShippingDetails method to OrderQuery:

 <WebMethod()> Public Function GetShippingDetails(ByVal orderId As Integer, _
 ByVal customerZip As String) As ShippingDetailsResult

 ' Create a new object...
 Dim results As New ShippingDetailsResult()

 ' Be optimistic...
 results.RequestOk = True

 ' Establish a database connection...
 Dim connection As SqlConnection
 Dim reader As SqlDataReader
 Try
 connection = Connect()

 ' Create a command that will query the value we want...
 Dim command As New SqlCommand("GetShippingDetails", connection)
 command.CommandType = CommandType.StoredProcedure

 ' Add a parameter for the order id...
 Dim param As SqlParameter = command.Parameters.Add("@orderId", _
 SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = orderId

 ' Execute it...
 reader = command.ExecuteReader()
 If reader.Read() = True Then

 ' Did the ZIP code match?
 If CStr(reader("ShipPostalCode")).ToLower = _
 customerZip.ToLower Then

 ' Did the order ship?

Chapter 13

18

 If Not reader.IsDBNull(reader.GetOrdinal("ShippedDate")) Then

 ' It has been shipped...
 results.HasBeenShipped = True
 results.ShippedDate = reader("ShippedDate")

 Else

 ' The order has not shipped...
 results.HasBeenShipped = False

 End If

 ' We can populate the other data regardless...
 results.ShippedToName = reader("ShipName")
 results.ShippedToAddress = reader("ShipAddress")
 results.ShippedToCity = reader("ShipCity")
 If Not reader.IsDBNull(reader.GetOrdinal("ShipRegion")) _
 Then results.ShippedToRegion = reader("ShipRegion")
 results.ShippedToPostalCode = reader("ShipPostalCode")
 results.ShippedToCountry = reader("ShipCountry")

 Else

 ' The ZIP code didn't match...
 results.RequestOk = False
 results.RequestProblem = _
 "The ZIP code was invalid for this order."

 End If

 Else

 ' The order number was not found...
 results.RequestOk = False
 results.RequestProblem = "Order number '" & orderId & _
 "' was not found."

 End If

 Catch e As Exception

 ' Report that an exception occurred...
 ReportException(e, results)

 Finally
 If Not connection Is Nothing Then connection.Close()
 If Not reader Is Nothing Then reader.Close()

 End Try

 ' Return it...
 Return results

 End Function

Web Services

19

4. You may have spotted that call to the Connect method that opens the connection to our
database. Placing it in a separate method like this makes it easier when we add new methods
later. However, it needs a database connection string. We'll define this as a constant at the top
of OrderQuery:

<WebService(Namespace:="http://wrox.com/1861005555")> Public Class OrderQuery
 Inherits System.Web.Services.WebService

 ' Constants...
 Protected Const DbString As String = "Integrated Security=SSPI;Data
Source=CHIMAERA;Initial Catalog=NorthwindSQL"

Notice that I've hard-coded in the database server name as CHIMAERA and the database name
itself as NorthwindSQL. I've also used the SQL Server/MSDE integrated security provider.
You'll need to change this string to suit your setup.

5. Now we can add the method to establish the database connection:

 ' Connect - connect to the database...
 Protected Function Connect() As SqlConnection

 ' create a new connection object...
 Dim connection As New SqlConnection(DbString)
 connection.Open()

 ' return the connection...
 Return connection

 End Function

6. You'll notice that towards the end of the method we call a function called
ReportException. This method is quite simple, and tells the user about any errors that
occur when the code runs. Add this code to OrderQuery:

 ' ReportException - report an exception when they occur...
 Protected Sub ReportException(ByVal e As Exception, _
 ByRef result As ShippingDetailsResult)

 ' flag as failed and store the text...
 result.RequestOk = False
 result.RequestProblem = e.Message

 End Sub

We'll see later in the chapter how we can report exceptions to the system administrator. But for now,
we'll just pass the exception back to the person using the Web Service.

How It Works

Let's run through the GetShippingDetails method. Firstly, we create a new
ShippingDetailsResult object and we 'optimistically' set the RequestOk flag to True. If anything
goes wrong, we change this to False.

Chapter 13

20

 <WebMethod()> Public Function GetShippingDetails(ByVal orderId As Integer, _
 ByVal customerZip As String) As ShippingDetailsResult

 ' Create a new object
 Dim results As New ShippingDetailsResult()

 ' Be optimistic
 results.RequestOk = True

Once we have the object we can establish a database connection using our Connect method, placed
inside a Try...Catch block. If anything goes wrong during our database interaction, an exception will
be thrown that we can catch and act upon:

 ' Establish a database connection
 Dim connection As SqlConnection
 Dim reader As SqlDataReader
 Try
 connection = Connect()

To run the stored procedure, we need a System.Data.SqlClient.SqlCommand object. We pass
this the name of the stored procedure, and the SqlConnection object:

 ' Create a command that will query the value we want...
 Dim command As New SqlCommand("GetShippingDetails", connection)
 command.CommandType = CommandType.StoredProcedure

To call the stored procedure, we need to create a parameter that references the @orderId parameter
on the stored procedure. We give this the value passed into GetShippingDetails as the orderId
parameter:

 ' add a parameter for the order id...
 Dim param As SqlParameter = command.Parameters.Add("@orderId", _
 SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = orderId

Once we've configured the stored procedure, we execute it and move to the first row in the result set. If
there is no row to read, the order ID supplied was invalid:

 ' execute it...
 reader = command.ExecuteReader()
 If reader.Read() = True Then

If there is a row to read, our first job is to look at the postal code we were passed. We use a case-
insensitive comparison:

 ' did the ZIP code match?
 If CStr(reader("ShipPostalCode")).ToLower = _
 customerZip.ToLower Then

Web Services

21

If our ShippedDate column is Null, the order hasn't shipped yet. If not, then we can set the
appropriate fields in our ShippingDetailsResult object.

 ' Did the order ship?
 If Not reader.IsDBNull(reader.GetOrdinal("ShippedDate")) Then

 ' It has been shipped...
 results.HasBeenShipped = True
 results.ShippedDate = reader("ShippedDate")

 Else

 ' The order has not shipped...
 results.HasBeenShipped = False

 End If

Whether the order has been shipped or not, we populate the rest of the data. As ShipRegion can be
Null, we test for this and don't add it to the results if it is:

 ' Populate the other data regardless...
 results.ShippedToName = reader("ShipName")
 results.ShippedToAddress = reader("ShipAddress")
 results.ShippedToCity = reader("ShipCity")
 If Not reader.IsDBNull(reader.GetOrdinal("ShipRegion")) _
 Then results.ShippedToRegion = reader("ShipRegion")
 results.ShippedToPostalCode = reader("ShipPostalCode")
 results.ShippedToCountry = reader("ShipCountry")

Now we look at the Else case when the postal code didn't match. If this is the case, we set the
ResultOk property to false and tell the caller what happened:

 Else

 ' The ZIP code didn't match...
 results.RequestOk = False
 results.RequestProblem = _
 "The ZIP code supplied does not match this order."

 End If

Next comes the Else case to handle when a row could not be read, implying that order ID doesn't
exist. We set RequestOk to False, and return a descriptive message:

 Else

 ' the order number was not found...
 results.RequestOk = False
 results.RequestProblem = "Order number '" & orderId & _
 "' was not found."

 End If

Chapter 13

22

If an exception occurs, we need to pass it to our ReportException method. This method will
automatically set RequestOk to False and pass the exception details back to the caller:

 Catch e As Exception

 ' report that an exception occurred...
 ReportException(e, results)

Irrespective of whether or not the method itself works, we need to make sure we close the
SqlConnection and SqlDataReader object, if we managed to create them. By doing this in the
Finally block of the Try...Catch, we guarantee that it will run:

 Finally
 If Not connection Is Nothing Then connection.Close()
 If Not reader Is Nothing Then reader.Close()

 End Try

Lastly, we return the results object:

 ' return it...
 Return results

 End Function

Our Web Service is now all built, and all that remains is to make sure it works.

Try It Out – Testing the Service

1. Run the project. You'll see a list of methods as before, but this time GetShippingDetails will
be displayed:

2. Click GetShippingDetails. You'll be presented with a form that allows you to enter the
parameters for the method call. Enter 10248 for the order ID and 51100 for the ZIP code and
click the Invoke button:

Web Services

23

3. As normal, a new window will appear containing the results that the method would return to
the client. Here's the XML that you should see:

 <?xml version="1.0" encoding="utf-8" ?>
- <ShippingDetailsResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://wrox.com/1861005555">
 <RequestOk>true</RequestOk>
 <RequestProblem xsi:nil="true" />
 <HasBeenShipped>true</HasBeenShipped>
 <ShippedDate>1996-07-16T00:00:00.0000000+01:00</ShippedDate>
 <ShippingMethod xsi:nil="true" />
 <ShippedToName>Vins et alcools Chevalier</ShippedToName>
 <ShippedToAddress>59 rue de l'Abbaye</ShippedToAddress>
 <ShippedToCity>Reims</ShippedToCity>
 <ShippedToRegion xsi:nil="true" />
 <ShippedToPostalCode>51100</ShippedToPostalCode>
 <ShippedToCountry>France</ShippedToCountry>
 </ShippingDetailsResult>

I've highlighted the RequestOk and HasBeenShipped entries that indicate that the request was
processed without problem, and that the order has been shipped.

4. Now, close the results window and change the postal code to something invalid:

5. You'll now see that an error has been produced:

Chapter 13

24

 <?xml version="1.0" encoding="utf-8" ?>
- <ShippingDetailsResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://wrox.com/1861005555">
 <RequestOk>false</RequestOk>
 <RequestProblem>The ZIP code was invalid for this order.</RequestProblem>
 <HasBeenShipped>false</HasBeenShipped>
 <ShippedDate>0001-01-01T00:00:00.0000000-00:00</ShippedDate>
 <ShippingMethod xsi:nil="true" />
 <ShippedToName xsi:nil="true" />
 <ShippedToAddress xsi:nil="true" />
 <ShippedToCity xsi:nil="true" />
 <ShippedToRegion xsi:nil="true" />
 <ShippedToPostalCode xsi:nil="true" />
 <ShippedToCountry xsi:nil="true" />
 </ShippingDetailsResult>

This proves that our simple security scheme works. Unless the order ID and customer postal code
match, the details are not returned. Note the xsi:nil attribute that indicates that a field doesn't have a
value. Simliar to SQL's Null value, it just means that there's no data for that entry. There's no such
thing as a Null date, however. Hence, even though we provided no value, an arbitary date value still
appears in the results.

6. Close the results window again, but this time enter an invalid order ID:

7. Again, an error will be returned:

 <?xml version="1.0" encoding="utf-8" ?>
- <ShippingDetailsResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://wrox.com/1861005555">
 <RequestOk>false</RequestOk>
 <RequestProblem>Order number '1' was not found.</RequestProblem>
 <HasBeenShipped>false</HasBeenShipped>
 <ShippedDate>0001-01-01T00:00:00.0000000-00:00</ShippedDate>
 <ShippingMethod xsi:nil="true" />
 <ShippedToName xsi:nil="true" />
 <ShippedToAddress xsi:nil="true" />
 <ShippedToCity xsi:nil="true" />
 <ShippedToRegion xsi:nil="true" />
 <ShippedToPostalCode xsi:nil="true" />
 <ShippedToCountry xsi:nil="true" />
 </ShippingDetailsResult>

Web Services

25

8. To test that the exception handling works, we'll need to create an exception. One way to do
this is to alter the code so that it no longer works. Stop your Web Service, open
OrderQuery.asmx.vb, and change the name of the stored procedure:

 ' create a command that will query the value we want...
 Dim command As New SqlCommand("DontGetShippingDetails", connection)
 command.CommandType = CommandType.StoredProcedure

9. Run the project again. Enter anything you like this time and an exception will be reported:

 <?xml version="1.0" encoding="utf-8" ?>
- <ShippingDetailsResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://wrox.com/1861005555">
 <RequestOk>false</RequestOk>
 <RequestProblem>Could not find stored procedure
'DontGetShippingDetails'.</RequestProblem>
 <HasBeenShipped>false</HasBeenShipped>
 <ShippedDate>0001-01-01T00:00:00.0000000-00:00</ShippedDate>
 <ShippingMethod xsi:nil="true" />
 <ShippedToName xsi:nil="true" />
 <ShippedToAddress xsi:nil="true" />
 <ShippedToCity xsi:nil="true" />
 <ShippedToRegion xsi:nil="true" />
 <ShippedToPostalCode xsi:nil="true" />
 <ShippedToCountry xsi:nil="true" />
 </ShippingDetailsResult>

At this point, we've fully tested the service and we can be fairly confident that it works as intended in all
cases. All that remains now is to build a client application to use this Web Service.

Before you go on, remember to change the name of the stored procedure in
OrderQuery.GetShippingDetails back to GetShippingDetails otherwise none of the
remaining examples in this chapter will work.

Consuming a Web Service
Now that we've built our service and have managed to test it using the web interface in our browser, we
can build a custom client to use or, more properly, consume it.

We could create a desktop application that lets our customers check the status of their orders. They
simply enter an order number and their postal code, and the application displays the order details.
Conceptually, there's no advantage to doing this over just having a form on our web site that customers
can use to view their details, with no Web Service to be seen. So, in a way, if we were to offer our Web
Service exclusively through a client application of our own, it would be a step backwards, as our
customer now has to download that application, install it, and learn how to use it. Navigating to a
traditional web page in their browser would be far easier.

Chapter 13

26

The true power of Web Services, however, comes from the ease with which they can be integrated with
an existing system. Say, for example, that our customer uses software they've written themselves for
tracking stock. The application might show a list of all outstanding orders placed with their suppliers.

Our client could customize that software to automatically consume our Web Service and display live
information about the status of outstanding orders. Once set up, there's no need to check our web site
for that data – it is now seamlessly integrated into the existing package.

Unfortunately, it's not appropriate to show an example of how our Web Service could be integrated into
an existing application, so in this exercise we'll build a dedicated client application to display the details
of an order by using the Web Service. The principles behind the consuming process are the same
irrespective of the final application. In a production situation, we would call this a "reference
implementation", and it would be a good idea to make the source code available as a download too. It
would help developers consume the Web Service from their own code with a minimum of hassle and, in
this situation, hassle equates to phone calls and e-mails pestering you for help!

Try It Out – Building a Client Application

1. Open Visual Studio .NET and select File | New | Project from the menu. Select Windows
Application from the Templates pane, and enter Northwind Order Status as the project title:

2. Once the project has been created, open the Form Designer and lay out some controls so that
you have something that looks like this:

Web Services

27

Working from left to right, and top to bottom, name your controls as follows:

❑ txtOrderId – also set the Text property to 10248.

❑ txtZip – set the Text property to 51100.

❑ btnLookup

❑ chkHasBeenShipped – set the Text property to Has been shipped.

❑ txtShipDate

❑ txtName

❑ txtAddress

❑ txtCity

❑ txtRegion

❑ txtPostalCode

❑ txtCountry

I've used a group box to improve the aesthetics of the form, but you don't need to.

That's all there is to the form design. Before we wire up the code behind btnLookup, let's look at how
to connect to our Web Service.

Try It Out – Adding a Web Reference
To use the Web Service, we need to add a "Web reference" to our project. This is simply a matter of
pointing Visual Studio at the web server and selecting one of the Web Services hosted by the server.

1. Right-click on the Northwind Order Status projectin Solution Explorer and click Add Web
Reference. This will open the Add Web Reference dialog:

Chapter 13

28

You can safely ignore the UDDI icons on the right hand side. We'll be talking about UDDI a
bit later, but for now it's not important.

2. Near the bottom of the left hand pane is an entry marked Web References on Local Web
Server. If you created your project on your local computer, click this.

If you didn't, you're going to need to manually enter the URL. In the Address box at the top,
enter the URL below, replacing machinename for your computer's name:

http://machinename/default.vsdisco

Click the little green arrow at the right of the Address box to load the references.

3. By default, the web server's root directory contains a file with a .vsdisco extension.
"disco" is short for "discovery" and this file details the Web Services hosted on that
computer. It should now appear in the left hand pane as shown opposite:

Web Services

29

It is an XML file that lists the "reference groups", roughly analogous to our Visual Studio
.NET projects. In the right-hand pane are listed the reference groups themselves. These
groups contain the actual Web Services themselves.

4. Click the NorthwindWebService link in the right-hand pane to see the Web Services that the
reference group contains:

Chapter 13

30

Note that our old "Hello, world!" service is still defined in Service1.asmx.

5. The one we're after is OrderQuery.asmx, so click the View Contract link below that entry:

The XML that appears in the left-hand pane is the WSDL file that describes our Web Service.
WSDL stands for "Web Services Description Language" and it is a standard way of describing
how to talk to a Web Service. It details all the methods that the service supports, the
parameters each takes, and what each returns. It also describes any complex types that are
used, and in our case we have a single complex type: ShippingDetailsResult.

6. Click the Add Reference button at the bottom of the window. In Solution Explorer you'll see
an entry for localhost:

Web Services

31

7. Before we finish, we can rename localhost to something more meaningful. Right-click on it
within Solution Explorer, select Rename, and change the name to Northwind. Note that the
name shown in Solution Explorer bears no relation to the URL used to access the Web
service. Although we've changed this to Northwind, internally it still points to localhost.

How It Works

Once we have the WSDL document corresponding to a Web Service, we can consume it. In this
particular case, we used the point-and-click interface that form part of the .NET discovery features to
find the WSDL document for the particular Web Service we want.

The alternative is to be given a WSDL file direct. Usually, we'd expect someone to send us an e-mail
containing a URL that points to their WSDL file but, as we'll see later in the chapter, we can use
directories to find WSDL files that interest us.

Try It Out – Using the Web Reference

1. To use the web reference, we need to create a handler for the Click event of the Lookup button.

2. Double-click on the Lookup button on the Form Designer. This will bring up the code for the
form, and automatically create a handler for the Click event.

3. Add this code:

 Private Sub btnLookup_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookup.Click

 ' clear the old details...
 chkHasBeenShipped.Checked = False
 txtShipDate.Text = ""
 txtName.Text = ""
 txtAddress.Text = ""
 txtCity.Text = ""
 txtRegion.Text = ""
 txtPostalCode.Text = ""
 txtCountry.Text = ""

 ' to connect to the Web service, just create an instance of the
 ' object based on the reference that we added...
 Dim service As New Northwind.OrderQuery()

 ' now, we can just call methods on it...
 Dim result As Northwind.ShippingDetailsResult
 Try
 result = service.GetShippingDetails(txtOrderId.Text, txtZip.Text)
 Catch ex As Exception
 MsgBox("The Web service returned an error: " & ex.Message)
 End Try

 ' that's it! now we just use the object...

Chapter 13

32

 If result.RequestOk = True Then

 ' set up the details...
 If result.HasBeenShipped = True Then
 chkHasBeenShipped.Checked = True
 txtShipDate.Text = result.ShippedDate.ToString
 End If

 ' set up the address details...
 txtName.Text = result.ShippedToName
 txtAddress.Text = result.ShippedToAddress
 txtCity.Text = result.ShippedToCity
 txtRegion.Text = result.ShippedToRegion
 txtPostalCode.Text = result.ShippedToPostalCode
 txtCountry.Text = result.ShippedToCountry

 Else

 ' report the problem...
 MsgBox("Order status could not be determined: " & _
 result.RequestProblem)

 End If

 End Sub

4. Run the project. The form will appear and the Order ID and Postal code boxes will already
be filled in. Click Lookup. You should see this:

How It Works

Let's step through the code behind the Lookup button line by line.

The first thing we do is reset the details on the form. This means that if the order hasn't been shipped,
or the Web Service cannot be found or returns an error, our form won't return invalid information:

Web Services

33

 Private Sub btnLookup_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookup.Click

 ' clear the old details...
 chkHasBeenShipped.Checked = False
 txtShipDate.Text = ""
 txtName.Text = ""
 txtAddress.Text = ""
 txtCity.Text = ""
 txtRegion.Text = ""
 txtPostalCode.Text = ""
 txtCountry.Text = ""

The next thing we do is to create an object that connects to the Web Service:

 ' to connect to the Web service, just create an instance of the
 ' object based on the reference that we added...
 Dim service As New Northwind.OrderQuery()

Look back at the web references in Solution Explorer. Remember how we renamed localhost to
Northwind? That allows us to create an instance of an object called Northwind.OrderQuery, rather
than localhost.OrderQuery.

Visual Studio .NET is responsible for generating the code behind this object and there's no need to
worry about what it's doing at this level. Suffice to say that we have a class that knows how to
communicate with the Web Service.

Once we have a class that can connect to the service, we call the GetShippingDetails method. As
you know, this returns a ShippingDetailsResult object:

 ' now, we can just call methods on it...
 Dim result As Northwind.ShippingDetailsResult
 Try
 result = service.GetShippingDetails(txtOrderId.Text, txtZip.Text)
 Catch ex As Exception
 MsgBox("The Web service returned an error: " & ex.Message)
 End Try

It's a good idea to wrap Web Service calls in a Try...Catch exception handler to trap the many
things that can go wrong when calling a Web Service. If something does go wrong, result will be
Nothing. Such events could include the Web Service itself not being available, problems with the local
computer's Internet access, or unannounced changes to the parameters required by the Web Service. It
won't catch internal errors to the Web Service, such as database errors, as these should be dealt with by
the Web Service itself. Web Service owners should strive to ensure that developers don't have to rework
their own code if you add new methods or change its functionality. This can be quite a challenge, but it
is very important to avoid putting off your customers.

So, if result isn't Nothing, we know that a valid set of results were returned from the server. If
RequestOk is True, we know that some results were returned, rather than an error message, and thus
we can update the details on the form:

Chapter 13

34

 ' that's it! now we just use the object...
 If result.RequestOk = True Then

 ' set up the details...
 If result.HasBeenShipped = True Then
 chkHasBeenShipped.Checked = True
 txtShipDate.Text = result.ShippedDate.ToString
 End If

 ' set up the address details...
 txtName.Text = result.ShippedToName
 txtAddress.Text = result.ShippedToAddress
 txtCity.Text = result.ShippedToCity
 txtRegion.Text = result.ShippedToRegion
 txtPostalCode.Text = result.ShippedToPostalCode
 txtCountry.Text = result.ShippedToCountry

If ResultOk is False on the other hand, we need to report the error to the user:

 Else

 ' report the problem...
 MsgBox("Order status could not be determined: " & _
 result.RequestProblem)

 End If

 End Sub

So what happens when the Click event actually fires? When we first create the
Northwind.OrderQuery object, no information is actually sent over the Internet at all. Instead,
preparations are performed for later calls to the method.

When the GetShippingResults method is called, the request is wrapped up as a SOAP message
containing the name of the method and the parameters for the order ID and postal code. The Visual
Studio .NET-generated OrderQuery object automatically does this for us. This same object then sends
the message out over accross Internet to the target Web Service.

IIS on the computer hosting the Web Service receives the request and, thanks to the .asmx extension
within the URL, knows it has to pass it to ASP.NET. ASP.NET interprets the request, and fires up the
OrderQuery object we built that powers the Web Service. The GetShippingResults method is
called that creates a new ShippingDetailsResult object and populates it appropriately.

When we return from this method, it's down to ASP.NET to prepare a SOAP-formatted response
describing the data contained within ShippingDetailsResult in XML form. The Visual Studio
.NET-generated OrderQuery object on the client receives the message and recreates an actual instance
of a ShippingDetailsResult object from the SOAP Response. One important thing to note is that
the ShippingDetailsResult object is not the same as that on the server. Both are auto-generated by
Visual Studio .NET, however, the client-side version simply makes the public properties and fields of
the object available to the client. If the server ShippingDetailsResult object contains some clever
functionality, we could not apply that functionality on the client.

Web Services

35

If you require the rich functionality of your server objects to be made available to client applications, you
need to use the technique of "remoting". See Professional VB.NET (Wrox Press, ISBN 1861004974).

So we end up, after the call, with a ShippingDetailsResult object on the client. We can then use
its public properties just as we did on the server.

Testing More Eventualities
Let's take a look now at some more ways in which the service can be used. Start up the client again,
keep the Order ID set to 10248, but change the Postal code to make it incorrect. Click Lookup, and you
should be presented with a message like this:

Now, try entering an Order ID that doesn't exist, like 1:

Chapter 13

36

Finally, let's prove that we can look up other orders from the database, and check that if the order hasn't
yet been shipped, Has been shipped remains unchecked. Enter an Order ID of 11019 and a Postal code
of 1010:

Error Logging
So how do we know if something's going wrong with our Web Service? We can either take the reactive
approach and wait for someone to tell us it's stopped working, or we can be proactive and deliberately
seek out and correct any problems.

Server applications like SQL Server and Exchange typically don't have a user interface – or, rather,
their UI allows for administration tasks but is not one that sits on the desktop running continuously. Our
Web Service may have a web interface for testing, but it doesn't run all the time.

When server applications want to report their status they traditionally do so using the "event log". A
system administrator can then examine this event log for errors.

Writing to the Event Log is traditionally a non-trivial activity, but .NET has made it extremely easy.
What we'll do now is set up our Web Service so that it reports any problems that occur in the event log.

Logging Problems
Our Web Service already has a method called ReportException that's called internally whenever an
exception occurs. In the normal course of business, we don't need to report trivial problems, like an
invalid order ID being entered, or a mismatched ZIP code, but we will need to watch for exceptions.
For example, if our database server dies for some reason, whenever we try and connect we'll get an
exception. If we report that exception in the event log, an administrator will see the problem and fix it.

Web Services

37

Try It Out – Writing Exceptions to the Event Log

1. Open Visual Studio .NET and load the NorthwindWebService project from the web server.
(Refer back to Chapter 11 for details on how to do this.)

2. We need to reference the System.Diagnostics and System.Text namespaces. Add the
following directives to the top of the OrderQuery.asmx.vb code page:

Imports System.Data.SqlClient
Imports System.Web.Services
Imports System.Diagnostics
Imports System.Text

3. Add another constant to the OrderQuery class:

<WebService(Namespace:="http://wrox.com/1861005555")> Public Class OrderQuery
 Inherits System.Web.Services.WebService

 ' constants...
 Protected Const DbString As String = "Integrated Security=SSPI;" & _
 "Data Source=CHIMAERA;Initial Catalog=Northwind"
 Protected Const EventSourceName As String = "NorthwindWebService"

4. Now, locate the ReportException method. Add this code:

 ' ReportException - report an exception when they occur...
 Protected Sub ReportException(ByVal e As Exception, _
 ByRef result As ShippingDetailsResult)

 ' flag as failed and store the text...
 result.RequestOk = False
 result.RequestProblem = e.Message

 ' before we can write to the log, we need to
 ' create an event source...
 Try
 EventLog.CreateEventSource(EventSourceName, "Application")
 Catch
 End Try

 ' create the message...
 Dim message As New StringBuilder("An exception has occured." & _
 ControlChars.CrLf)
 message.Append("Source: " & e.Source & ControlChars.CrLf)
 message.Append("Message: " & e.Message & ControlChars.CrLf)
 message.Append("Stack trace: " & e.StackTrace & ControlChars.CrLf)

 ' now, create a new event log object...
 Dim log As New EventLog()
 log.Source = EventSourceName
 log.WriteEntry(message.ToString, EventLogEntryType.Error, 1000)

 End Sub

Chapter 13

38

5. To test the new functionality, we need to create an exception. An easy way to do this is to stop
the database server. On the system tray next to the clock you should see the Desktop Engine
Service Manager icon. Double-click on it, make sure the correct server name and the
MSSQLServer service are selected, and click Stop:

6. Now, run the project and run the GetShippingDetails method as normal. There will be a
delay while the SQL connection times out but, eventually, you'll receive an error message:

7. Let's now take a look at the event log. Click the Start button and select Settings | Control
Panel | Administrative Tools | Computer Management. Expand the object tree until you see
the Application event log:

8. In the right-hand pane, you'll see a bunch of messages. You'll see one marked Error in the
Type column, with NorthwindWebService specified in the Source column:

Web Services

39

9. Double-click the error and a window will appear with a Description box containing details of the
exception. This should be enough for a system administrator or developer to rectify the problem:

An exception has occured.
Source: SQL Server Managed Provider
Message: SQL Server does not exist or access denied.
Stack trace: at System.Data.SqlClient.SqlConnection.Open()
 at NorthwindWebService.OrderQuery.Connect() in
c:\inetpub\wwwroot\NorthwindWebService\OrderQuery.asmx.vb:line 131
 at NorthwindWebService.OrderQuery.GetShippingDetails(Int32 orderId, String customerZip)
in c:\inetpub\wwwroot\NorthwindWebService\OrderQuery.asmx.vb:line 54

How It Works

The event log implementation in .NET provides a really easy way for us to add messages to the event
log. Before .NET, doing this in Visual Basic or C++ was a fairly painful process.

To write a message, we first set the event source that will appear in the Source column of the event
viewer. The System.Diagnostics.EventLog.CreateEventSource method does this for us:

 ' ReportException - report an exception when they occur...
 Protected Sub ReportException(ByVal e As Exception, _
 ByRef result As ShippingDetailsResult)

 ' flag as failed and store the text...
 result.RequestOk = False
 result.RequestProblem = e.Message

 ' before we can write to the log, we need to
 ' create an event source...
 Try
 EventLog.CreateEventSource(EventSourceName, "Application")
 Catch
 End Try

We wrap CreateEventSource up in a Try...Catch block to catch an exception if the source
already exists.

The method called Exists can test if a source exists, but if the user clears the event log, it will
incorrectly say that the source does not exist, resulting in an error.

Once we have the source, we need to format the message. We use properties on the
System.Exception object in conjunction with a System.Text.StringBuilder:

Chapter 13

40

 ' create the message...
 Dim message As New StringBuilder("An exception has occured." & _
 ControlChars.CrLf)
 message.Append("Source: " & e.Source & ControlChars.CrLf)
 message.Append("Message: " & e.Message & ControlChars.CrLf)
 message.Append("Stack trace: " & e.StackTrace & ControlChars.CrLf)

Finally, we create a new System.Diagnostics.EventLog object and have it write our message to
the event log:

 ' now, create a new event log object...
 Dim log As New EventLog()
 log.Source = EventSourceName
 log.WriteEntry(message.ToString, EventLogEntryType.Error, 1000)

 End Sub

With this functionality in place, if anything goes wrong with our Web Service after it's been made
public, we will be alerted of any errors that occur so we may fix them.

Debugging SOAP
If you're doing a lot of work with Web Services, you'll eventually run into the situation where the
service you're trying to use doesn't work exactly as intended. To find out more of what's going on, it can
be useful to watch the SOAP envelopes as they pass between client and server.

There is a handy utility called "proxyTrace" that allows us to do this, and we shall have a look at this
now. It's available as freeware from http://www.pocketsoap.com/, under the proxyTrace link.
Download it now, and save it somewhere easy to find.

Try It Out – Watching SOAP Envelopes

1. Start proxyTrace. It will prompt you for a port. The default is 8080. If you've already got a
proxy server installed on your computer, you'll have to choose another port. Most of you will
have port 8080 available, so just click OK.

2. The proxyTrace application won't have much to say at the moment, but we'll need to set up
our client to use the proxy server. Open the Northwind Order Status application, open Form1
in Design view, and double-click the Lookup button.

Web Services

41

We need to set up the proxy server after we create the Northwind.OrderQuery object.
Add this code to the Click event handler:

 ' to connect to the Web service, just create an instance of the
 ' object based on the reference that we added...
 Dim service As New Northwind.OrderQuery()

 ' create a connection to a proxy server...
 service.Proxy = New System.Net.WebProxy("localhost", 8080)

 ' now, we can just call methods on it...
 Dim result As Northwind.ShippingDetailsResult
 Try
 result = service.GetShippingDetails(txtOrderId.Text, txtZip.Text)
 Catch ex As Exception
 MsgBox("The Web service returned an error: " & ex.Message)
 End Try

The last parameter to the WebProxy constructor is the port. If you weren't able to use port
8080, remember to change this to the port number you actually used.

3. Now, run the client. Click the Lookup button and the application should work as normal.
However, the left-hand pane of proxyTrace should looks like this:

If you click 127.0.0.1, the right-hand pane will display both the SOAP Request and the SOAP
Response, the top entry being the Request and the bottom entry the Response.

You find a slew of data under VsDebuggingCausalityData. You can safely ignore this and, if you scroll
down to the bottom of the top entry, you'll find the XML that constitutes the SOAP document sent to
the server requesting the web method:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetShippingDetails xmlns="http://wrox.com/1861005555">
 <orderId>10248</orderId>
 <customerZip>51100</customerZip>
 </GetShippingDetails>
 </soap:Body>
</soap:Envelope>

I've highlighted in gray the request to GetShippingDetails. You can see the parameters that we've
passed through.

Chapter 13

42

The response entry clearly shows us what was returned to the client:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetShippingDetailsResponse xmlns="http://wrox.com/1861005555">
 <GetShippingDetailsResult>
 <RequestOk>true</RequestOk>
 <RequestProblem xsi:nil="true" />
 <HasBeenShipped>true</HasBeenShipped>
 <ShippedDate>1996-07-16T00:00:00.0000000+01:00</ShippedDate>
 <ShippingMethod xsi:nil="true" />
 <ShippedToName>Vins et alcools Chevalier</ShippedToName>
 <ShippedToAddress>59 rue de l'Abbaye</ShippedToAddress>
 <ShippedToCity>Reims</ShippedToCity>
 <ShippedToRegion xsi:nil="true" />
 <ShippedToPostalCode>51100</ShippedToPostalCode>
 <ShippedToCountry>France</ShippedToCountry>
 </GetShippingDetailsResult>
 </GetShippingDetailsResponse>
 </soap:Body>
</soap:Envelope>

Again, I've highlighted the important parts in gray. This XML will be used to populate our
ShippingDetailsResult object on the client.

One thing to watch when using proxyTrace is that, if you send another request, another entry might not
appear in the list on the left. Whenever a request is made, the connection remains open for a short time.
(This makes communication more efficient.)

If you don't see the new request, but connected is shown in the Status column, you'll have to select
another request in the list and then reselect the original one. Unfortunately, you can't just click on the
blank area of the list to select nothing and then flip back again so, if you only have one request, close
and restart proxyTrace.

How It Works

proxyTrace acts as a proxy server, intercepting and examining requests for web resources before
forwarding them on to the server. Most proxy servers let you examine the data that they handle and
that, of course, is the sole purpose of proxyTrace.

It is useful for situations when you're getting errors from a Web Service as you can determine whether
or not the service is returning the expected response. If the Web Service does appear to be working
properly, you know that the problem must lie in the client-side code.

In my experience, I've found the tool extremely useful for capturing errors returned from the Web
Service. .NET doesn't properly trap SOAP Fault messages from some Web Service implementations,
and comes up with some fairly cryptic messages, like this one:

Web Services

43

If you get an error similar to this when calling a web method, crack out proxyTrace and look at the
response packet. You might find something like this:

<SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>Client Error</faultstring>
 <faultactor>lcTk##SBA-CSOAPBusinessArea-SOAP</faultactor>
 <detail>
 <e:details xmlns:e="http://tempuri.org/">
 <message>ERR: Schema for that business area and process
 are missing</message>
 <errorcode>57126</errorcode>
 </e:details>
 </detail>
</SOAP-ENV:Fault>

If you get an error like this and can't figure out how to fix it, try contacting the Web Service
owner for advice.

Directory Services
Although it's likely that, in time, you'll want to build your own Web Services, there are a growing
selection of Web Services supplied by third-party sources for us to use.

The question remains, however, of how to find these Web Services once companies have made
them available.

In the next two sections, we'll take a look at how to use two kinds of directory services to find Web
Services, namely UDDI and brokerages.

UDDI
UDDI, for Universal Description, Discovery, and Integration, is a type of directory geared towards
business process integration. They are mainly used if you are looking for a business partner that
provides some specific task, and who publishes a Web Service for that task.

Chapter 13

44

The UDDI initiative was jointly launched by Microsoft, IBM, and Ariba in May 2001. Although all
three organizations were to maintain sites that would allow searching and administration of a single
directory, after a little over a month Ariba announced that Microsoft and IBM would be responsible for
managing the directory. It's also expected that by the time this book is published, Hewlett-Packard will
have another site. All of these sites synchronize their data so that it won't matter which of the two or
more sites are used to query UDDI.

The ultimate goal of UDDI is to bring business partners together. Once they've done this, the
companies can either interact in the usual way, that is through e-mails and phone calls, or they can use
the directory to obtain the WSDL documents that describe the Web Service that each offers.

Let's take a look now at how a book distributor looking for potential new publishers might go about it.
We'll also see how that publisher could find the Web Service that will allows orders to be placed
automatically.

Although we're going to look at the case of a Web Service for distributors to place
orders, the service doesn't really exist. This is a hypothetical scenario for
demonstration purposes.

Remember, the WSDL document is all you need to consume a Web Service, by following the same
steps we took for the NorthwindWebService service.

Try It Out – Finding a Business Partner with UDDI

1. Microsoft and IBM each manage two directories. One is a live site that provides working
business information and the other is a test site for testing how UDDI actually works. I've
registered a sample set of services on the Microsoft UDDI test site. Open a web browser and
go to http://test.uddi.microsoft.com/.

2. To find a business partner, you must either know their name, or know something about their
business. In this hypothetical case, we're looking for book publishers. Standard Industry
Classifications (SIC) codes can do this and, as long as you know the SIC code, tools on the site can
find everyone in the specified category. Luckily, I happen to know that book publishing comes
under Manufacturing | Printing and Publishing | Books and that the code we want is 2730.

Click the Advanced Search link on the UDDI page, and enter the following:

3. Click the arrow button next to the drop down to bring up a list of businesses:

Web Services

45

4. Click on Wrox Press. This will bring up the company listing. Half way down the page you'll
find an entry marked Services. This is a list of the services that the company offers. These
aren't limited to Web Services, and can include traditional services offered by the company:

5. Click BookBuyer. This will bring up a list of bindings, which are particular to Web Services,
and you'll find a single binding on this page that points to a WSDL file:

6. Right-click on the URL of the WSDL file to bring up the context menu, and select Copy
Shortcut.

7. Open Visual Studio .NET and select New Visual Basic project | Windows Application. Call it
BookBuyer. The name doesn't matter too much because we'll throw it away after having used
it to demonstrate the principles here.

8. Right-click on the BookBuyer project in Solution Explorer and select Add Web Reference.

9. Right-click the URL box at the top and select Paste. Click the green arrow. This will
download the WSDL file from the Wrox site ready for use:

Chapter 13

46

As the Web Service described by the WSDL file doesn't in reality exist, we'll stop our discussion here.
Hopefully, though, you now understand how UDDI works. We use the tools supplied to find a business
partner in the directory and, ultimately, a URL (a "binding") for their Web Service.

Had this been a real, existing Web Service, we'd just need to click the Add Reference button to get
Visual Studio .NET to create the classes that consume the service. With those new classes in place, we
could then start using the service straight away.

Web Service Brokerages
With UDDI, we saw an example of a Web Service directory that can help us find commercial business
partners that expose Web Services as part of their line of business. This is just half the market. Over the
coming months, we can expect to see companies deploy Web Services that add useful functionality to
our applications. This is, after all, the central premise of Web Services – "software as services".

Microsoft's push into this area was initially dubbed Hailstorm, but is now known as ".NET My
Services". This describes a set of common, fundamental services that web sites and desktop applications
are likely to want to use. My Services will include the "Passport" concept and other central Internet-
based services such as a diary, a file storage facility, and so on. At the time of writing, however, My
Services is still very much hype, so we're not going to dwell on it here.

Another way to sift through the hundreds of Web Services coming on to the market is through a Web
Service brokerage, such as Salcentral (http://www.salcentral.com/) or Grand Central
(http://www.grandcentral.com/).

Web Services

47

SMS Messaging
In this last section, we're going to use Salcentral to find a Web Service that we can call from our existing
client application. Specifically, we're going to use their SMSMessaging Web Service. This Web Service
can send a text message via SMS, the Short Message Service, to a handheld unit such as a compatible
cell phone.

Without a suitable Web Service, this is a particularly tricky proposition that can entail physically
connecting a cell phone to your computer and controlling it through the serial port, or integrating with a
third-party SMS provider with none of the simplicity offered by a Web Service.

In many parts of the world, including Europe and Australia, SMS messaging is big business and a
surprisingly popular way of communicating despite the cost – sending a message typically costs the
sender between 10 and 20 cents per message. European phones support sending of SMS messages direct
from the handset, whereas North American phones generally do not. Because of the inability of most
North American phones to originate messages, SMS messaging is far less common here. However, it is a
useful tool for communicating with your customers and employees when they're not physically in front
of a connected computer.

Salcentral's SMS service is not a free service, but it has a free trial whereby you can send 20 messages
for free while you're developing your application.

Wrox Press Ltd. in no way endorses Salcentral or its SMS Web Service and cannot accept any
liability for loss or damage sustained as a result of using it.

Registering for the Service
First of all, we have to register with Salcentral and sign up for their SMS Web Service, by following the
instructions at http://www.salcentral.com/x/smsreg.asp. Make sure you note down the "Username" and
"passkey" that you receive at the end of the process as they are needed when building your application.

Once we've registered for the service, we're ready to build our Windows application to access it.

Try It Out – Building the Project

1. Select New Visual Basic project | Windows Application. Call it SMS, and click OK.

2. When the Form Designer appears, change the Text property to SMS Messaging.

Lay out controls on the form as shown here:

Chapter 13

48

❑ The TextBox controls (from top to bottom) need to have their Name property set thus:

❑ txtPhoneNumber

❑ txtMessage – this control also needs its Multiline property set to True

❑ txtSenderId

❑ txtSendPasskey

The Label control marked (chars) needs to have its Name property set to lblChars. Call the
CheckBox chkUseProxy and set its Checked property to True. Also the button needs to be
called btnSendMessage.

3. There is a limit to the number of characters that can be sent through to the service, so we want
to keep the user informed of how much space is left for the message. The maximum length of
the message is 120 characters and this includes the length of the sender ID, the word "from", and
two spaces. Double-click on the txtMessage control and add the method call highlighted
below to the event handler, followed by the UpdateCharacterCount method itself:

 Private Sub txtMessage_TextChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles txtMessage.TextChanged
 UpdateCharacterCount()
 End Sub

 Private Sub UpdateCharacterCount()

 ' add the number of chars...
 Dim numChars As Integer = " from ".Length
 numChars += txtMessage.Text.Length
 numChars += txtSenderId.Text.Length

 ' report the length...
 lblChars.Text = numChars & " characters"
 If numChars > 120 Then

Web Services

49

 lblChars.ForeColor = Color.Red
 Else
 lblChars.ForeColor = SystemColors.ControlText
 End If

 End Sub

4. Flip back to the Form Designer and double-click on the txtSenderId box. Add this code to the
new event handler:

 Private Sub txtSenderId_TextChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles txtSenderId.TextChanged
 UpdateCharacterCount()
 End Sub

Referencing the Web Service
Now that we've built the basic form, we are ready to add a reference to the SMS service on Salcentral's site.

Try It Out – Adding a Web Reference

1. Open your browser and go back to the http://www.salcentral.com/wrox/smsreg.asp page. On
this page you'll find a link to the WSDL file describing the Web Service. It will look
something like this:

http://sal006.salnetwork.com:83/lucin/SMSMessaging/Process.xml

2. Select the entire URL with your mouse, and choose Edit | Copy from the menu.

3. Go back to Visual Studio . NET, right-click on the SMS project in Solution Explorer, and
select Add Web Reference.

4. In the Address bar at the top, paste in the URL copied from Salcentral. Click the green arrow
button. The WSDL file will be loaded and displayed in the left pane:

Chapter 13

50

5. Click the Add Reference button to add a reference to the service to our project.

6. The new reference will appear as com.salnetwork.sal006 or something similar. Right-click on
this and select Rename. Change the name to SMSService and press Return:

Sending Messages
With the reference added, Visual Studio .NET has automatically created a class to access the service,
and all we have to do is create an instance of the class and call the SendMessage method.

Web Services

51

Try It Out – Calling a Web Method

1. Open Form1 in Design view, and double-click on the Send Message button to create a new
Click handler. Add this code:

 Private Sub btnSendMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSendMessage.Click

 ' create a new message box...
 Dim smsService As New SMSService.SMSMessagingprocessService()

 ' make sure the message goes through proxytrace...
 If chkUseProxy.Checked = True Then
 smsService.Proxy = New System.Net.WebProxy("localhost", 8080)
 End If

 ' send the message...
 Try

 ' did we do it?
 Dim result As Boolean = smsService.SendMessage(_
 txtPhoneNumber.Text, txtMessage.Text, _
 txtSenderId.Text, txtSendPasskey.Text)
 If result = True Then
 MsgBox("The message was sent to " & txtPhoneNumber.Text & ".")
 Else
 MsgBox("The message could not be sent.")
 End If

 Catch ex As Exception

 ' we got an exception...
 MsgBox("An exception occured. " & ex.Message)

 End Try

 End Sub

2. Open proxyTrace and tell it to connect to port 8080. (We covered proxyTrace earlier, so if
you need a refresher go back a few pages.)

3. Run the project. Phone numbers have to be entered in international format. If necessary, this
means you must drop the first zero of the number, and add a plus sign followed by the
international dialing code for that country, for instance:

❑ For the US, numbers are prefixed with 1, so 06025551234 is +16025551234.

❑ For the UK, the dialing code is 44, so 07790123456 becomes +447790123456.

Enter any message you like, but remember to set the sender ID and passkey fields to whatever
you were given at the end of the registration process:

Chapter 13

52

4. Click the Send Message button. If you see a message confirming that everything went OK,
then great! If you didn't, you should get a message describing the problem.

How It Works

We've already seen how to create a connection to a Web Service just by creating a class, and here we
use the same technique again:

 Private Sub btnSendMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSendMessage.Click

 ' Create a new message box
 Dim smsService As New SMSService.SMSMessagingprocessService()

This time, however, we've added a check box to the form that allows us to control whether or not to use
proxyTrace:

 ' Send the message via proxyTrace
 If chkUseProxy.Checked = True Then
 smsService.Proxy = New System.Net.WebProxy("localhost", 8080)
 End If

When we come to send the message, we simply extract the values from the four TextBoxes and pass
them through to SendMessage:

 ' Send the message
 Try

 ' Did we do it?
 Dim result As Boolean = smsService.SendMessage(_
 txtPhoneNumber.Text, txtMessage.Text, _
 txtSenderId.Text, txtSendPasskey.Text)
 If result = True Then

Web Services

53

 MsgBox("The message was sent to " & txtPhoneNumber.Text & ".")
 Else
 MsgBox("The message could not be sent.")
 End If

Everything is wrapped in a Try...Catch block, which helps us if something goes wrong. The "The
message could not be sent" call is really redundant as, if the message could not be sent, an exception
would be thrown so this will never actually be called.

If an exception is thrown, we need to tinker with it a little to get the actual exception that was raised by
the server. The layer of code between us and the Web Service will raise its own exception if something
goes wrong, so we need to iterate through the InnerException property up to the last one. This will
be the actual exception raised on the server. We didn't concern ourselves with this before as it was
unlikely to happen, but here it's very real possibility and must be catered for:

 Catch ex As Exception

 ' We want the exception thrown by the service, not the .NET layer
 Do While Not ex.InnerException Is Nothing
 ex = ex.InnerException
 Loop

When we have the exception, we report it to the user.

 ' Report the exception
 MsgBox("An exception occured. " & ex.Message)

 End Try

 End Sub

I hope that this section has shown you just how easy it is to find new Web Services and add some pretty
cool functionality to your applications. All we had to do was use the Add Web Reference dialog, create
an object, and call a method. Kid's stuff!

Summary
We started off this chapter by taking a look at what a Web Service is, and we likened a Web Service to a
web site designed to be accessed by a computer rather than a person.

We then looked at how to build a Web Service, creating one as an example that would allow customers
to view their own orders placed with the Northwind system. We devised and implemented a basic
security system, and finally tested the service.

With our service created, we built a reference client implementation, using Visual Studio .NET's tools to
automatically generate classes to consume the Web Service. After illustrating how simple this is, we
looked at a debug tool to view the SOAP messages traveling between client and server and added
extended error reporting to the service itself. To finish off, we looked at a number of ways of finding
new Web Services.

Chapter 13

54

Exercises
1. What does SOAP stand for?

2. How much harder is it to use complex types with a Web Service, as opposed to the simple
types like Integer and String?

3. How can we find new Web Services that fulfill our business needs?

4. Why must we implement some form of security scheme on our services?

5. If you encounter unexpected problems when consuming a Web Service, what is a good first
step to resolve the problem?

6. How do we consume a Web Service from a .NET project?

Answers are available at http://p2p.wrox.com/exercises/.

Web Services

55

Chapter 13

56

Disconnected Data

With.NET, Microsoft is trying to answer their critics and make deployment of Windows desktop
applications far easier. Eventually, we'll get to a point where we can build an application for the local
area network (LAN), deploy it "on demand" from a central Web server, and let .NET worry about
installation and security hassles. There is a natural extension to this paradigm – we can use .NET to
build an application that works identically whether it's running on the LAN or running from an
employee's DSL or cable modem connection.

This last line is specifically what we are going to look at in this chapter. Through this chapter, we are
going to build an application that accesses a database either locally or by using a Web Service.
Specifically, we are going to:

❑ Look at how and why we would want to use disconnected data

❑ Build a basic application to directly retrieve data

❑ Add functionality to our application to allow us to retrieve the data both directly and remotely

❑ Add the code to allow us to change any data and save the changes to the database

Disconnected Data Access
With the invention of the intranet, it finally became possible for an organization's computer systems to
be made available without installing complex applications at many remote locations. As most modern
organizations are powered by their applications, the intranet made it possible for employees to
"unchain" themselves from their desk and start working from home, or access the same rich productivity
tools from customer sites, hotel rooms, and Internet cafés.

However, there is a problem with intranet technologies – you're forced to use a Web browser in order
to use an intranet. Although Web browser technology has come along in leaps and bounds in recent
years, the user interface that you can build with a Web browser is harder to develop and use than a
traditional Visual Basic application.

Chapter 14

2

Without using an intranet, the only way to make your organization's applications available outside of
the LAN is to physically install it wherever you're working. This, in the world before .NET, was
difficult, mainly because the choices Microsoft made with the architecture of their component solutions
had the effect that installing applications was difficult. With DLL version conflicts and COM component
problems, deploying applications in this way has always been complex. This explains part of the
motivation for moving towards using intranet applications on the LAN rather than a standalone
application. The deployment problems go away because all the user needs to do is point his or her
browser at a URL to access the application.

Deploying applications with .NET is now so easy that, in theory, if you want to get your organization's
desktop applications working on your home machine, all you have to do is follow a link on the web
page and the application will be installed first time. Likewise, deployment and maintenance of
applications within the organization becomes far easier too.

There is, however, one small caveat with this. Companies that care about security will separate their
local network from the Internet by use of a firewall. This firewall lets employees send e-mail, browse the
Web, and so on, but will not let intruders gain access to private company resources. Typically, your
application's database will be "behind" the firewall, that is, accessible to employees but inaccessible to
anyone outside of the LAN.

But, what happens when we put our application outside of the firewall? We won't be able to get at our data!

What we need to do is provide an alternative way for our application to get its data. In effect, we want
to move away from the method of retrieving data whereby we are directly connected to the data. We
want to start using a technique that allows the same application to get its data from a variety of different
sources without changing the client code.

In this chapter, we'll build a client application that can automatically detect whether it has a direct
connection to the database or not. If a direct connection cannot be made, it will get its data by
connecting to a Web Service. If it can, it will connect directly and use the various classes in the
System.Data.SqlClient namespace as we've already seen.

A Data Access Layer
In this application, we're going to build a data "provider". Rather than going directly through classes in
the System.Data.SqlClient namespace, as we have been doing so far, we're going to access data
through this provider. This provider will have the intelligence to know whether it should be drawing
data directly from the database or through a Web Service.

We'll do this by inserting a layer between the application calls that require database access and the
database itself. This layer will either connect directly to the database (through the SqlClient objects
like we have been doing), or indirectly through a Web Service. This Web Service will then act as a
proxy for the application's instructions, passing them on to the database in the usual way.

Disconnected Data

3

Database Server

Database Package

Inside LANThe database package
provides the application
with the data it needs in
order to function properly.

The application uses an
“access layer” to connect
to the database package
when running on the LAN

Outside LAN

The Internet

Web Service

Web Server

If the same application
is running remotely, the
access layer connects
to the Web Service to
get the data it needs

Application

Access Layer
Application

Access Layer

User

Remote User
Fi

re
w

al
l

Fi
re

w
al

l

What this means is that we can build one application that works both inside and outside of the LAN. If the
layer can make a direct connection to the database of choice, then it will work in "direct" mode. If the
layer cannot connect directly, it will connect to a Web Service instead. We'll call this the "remote" mode.

Building the Application
In this chapter, we'll build a single desktop application for editing product information on the
NorthwindSQL database. This application will use a data provider class to determine whether a direct
or remote connection is required.

The first thing that we should do is to build the basic Product Editor application. This is a simple
application to demonstrate the principle behind an application that can consume data from the provider
that we'll build a little while later.

Try It Out – Building the Application

1. Open Visual Studio .NET and select File | New | Project from the menu. Create a new Visual
Basic Windows Application project and call it Product Editor.

Chapter 14

4

2. The Form designer for Form1 will automatically open. Layout a DataGrid, Label, TextBox,
and Button control as shown here:

3. Change the properties of the controls like so:

❑ Form1 - Text property to Northwind Product Editor

❑ Label (Label1) - Text property to "Product ID:"

❑ DataGrid - Name property to dgdProducts, and Anchor property to Top, Bottom,
Left, Right

❑ TextBox - Name property to txtProductId and Text property to "1"

❑ Button - Name property to btnLoad, and Text property to "Load"

4. Using the Toolbox, paint on a StatusBar control. This kind of control automatically docks
itself to the bottom of the form, so you might have to increase its height (with the Size
property) to make it visible. Set its ShowPanels property to True.

5. Find the Panels property of the StatusBar control. Select it and an ellipsis ("…") button should
appear. Click this to open the Collection Editor.

6. Press the Add button to add a new panel. Change these properties:

❑ Name - change to pnlStatus

❑ Text - change to Ready

❑ AutoSize - change to Spring. This will cause the panel to adjust itself so that it is
constantly just a little bigger than the size of the text contained within.

7. Press the Add button again to add another panel. Change these properties:

❑ Name - change to pnlConnection

Disconnected Data

5

❑ Text - change this to Not connected

❑ AutoSize - change to Contents

8. After pressing OK, you should now see this:

We're using the StatusBar control to indicate to the users of the application whether or not they are
connected to the intranet and, if they are connected, whether they are connected directly or remotely.

9. Using Solution Explorer, open the code editor for Form1 by right-clicking on it and selecting
View Code.

10.Add this property (we haven't shown the Windows Form Designer generated code here –
don't delete it):

Public Class Form1
Inherits System.Windows.Forms.Form

 ' StatusText property...
Public Property StatusText() As String
 Get
 Return pnlStatus.Text
 End Get
 Set(ByVal Value As String)

 ' Put something default if we use blank...
 If Value = "" Then
 pnlStatus.Text = "Ready"
 Else
 pnlStatus.Text = Value
 End If

 End Set
End Property

End Class

Chapter 14

6

11.Next, add these two methods:

 ' SetProcessText...
Public Sub SetProcessText(ByVal message As String)
 StatusText = message
 Me.Cursor = Cursors.WaitCursor
End Sub

 ' ResetProcessText...
Public Sub ResetProcessText()
 StatusText = ""
 Me.Cursor = Cursors.Default
End Sub

How It Works

In the last two steps, we've added code to control the way the status bar is updated. Firstly, we added a
property, StatusText, that abstracts the Text property of pnlStatus.

Get

 Return pnlStatus.Text

End Get

If the Status property is set to a blank string, the text on the bar is set to Ready.

 If Value = "" Then
 pnlStatus.Text = "Ready"
 Else
 pnlStatus.Text = Value
 End If

Secondly, we added two methods to our form, SetProcessText and ResetProcessText. When
the application is running, it periodically needs to "do something". If the task may take a while, the
application will call these methods in order to set the text on the panel and also change the mouse
cursor used by the form to an hourglass cursor and back to an arrow.

Public Sub SetProcessText(ByVal message As String)
 StatusText = message
 Me.Cursor = Cursors.WaitCursor
End Sub

Public Sub ResetProcessText()
 StatusText = ""
 Me.Cursor = Cursors.Default
End Sub

That will do for the basic form layout. Let's look now at how we can retrieve information from the
database.

Disconnected Data

7

Retrieving Products
We're going to encapsulate all of the database functionality in a separate class library. The first step
in achieving this goal is to put together a stored procedure that can return the product information to
the caller.

Try It Out – Creating the Stored Procedure

1. To build the stored procedure, we'll use the Server Explorer in the usual way. If it is not
already visible, open the Server Explorer by selecting View | Server Explorer from the menu.

2. We'll prefix the names of the stored procedures that we build as part of this exercise with the
word "Provider". This will help us keep them separate from other stored procedures that
may already be in the database.

3. Using the Server Explorer, drill down until you find the Stored Procedures node of the
NorthwindSQL database. (In this screenshot, my server is called chimaera. Your machine will
have a different name.)

4. Right-click on the Stored Procedures node and select New Stored Procedure. Add this code
in place of the existing code:

CREATE PROCEDURE dbo.ProviderGetProductDetails
(
 @productId INT
)
AS

Chapter 14

8

SELECT ProductID, ProductName, SupplierID, CategoryID,
 QuantityPerUnit, UnitPrice, UnitsInStock,
 UnitsOnOrder, ReorderLevel, Discontinued
 FROM Products WHERE ProductID=@productId

5. Press Ctrl+S to commit the stored procedure to the database.

6. To test the stored procedure, right-click on the code editor and select Run Stored Procedure.
When prompted, enter 1 for the product ID:

7. After pressing OK, the Output window should appear and the details of the product with a
ProductID of 1 should be displayed:

How It Works

What we've done here is put together a simple stored procedure that returns all rows from the
Products table when given a particular ProductID.

SELECT ProductID, ProductName, SupplierID, CategoryID,
 QuantityPerUnit, UnitPrice, UnitsInStock,
 UnitsOnOrder, ReorderLevel, Discontinued
 FROM Products WHERE ProductID=@productId

Disconnected Data

9

In our application, the user will be expected to enter a Product ID and then click the Load button. We'll
build this functionality in a moment but, when this happens, the ProviderGetProductDetails
stored procedure that we've just built will be executed and the results returned.

The "Provider" Class
As we mentioned before, we're going to build a separate class library, called Northwind Provider, which
our application will use to get data from the database. This library will be accessed through shared
methods and properties on a class called Provider.

The Provider object will eventually have the intelligence to determine whether or not it needs to use
a direct or remote connection. However, in the next few sections, we're going to manually tell it what it
should be connecting to.

Architecturally speaking, we're going to build an abstract class that contains the various methods that
the application will need: GetProductDetails, GetAllSuppliers, SetProductDetails, and so
on. We'll then create two classes derived from this abstract class that actually know how to get the data
that they've been asked for – one for direct connections and one for remote connections.

An abstract class is one that objects cannot be instantiated from directly. Instead, we have to create
instances of a derived class, which inherits from the abstract class. Objects can then be instantiated
from these derived classes.

The first thing we need to do is create the new project that will contain the class library.

Try It Out – Creating the "Northwind Provider" Class Library

1. Using Solution Explorer, right-click on the Product Editor solution right at the top and select
Add | New Project.

2. Make sure that a Visual Basic Class Library is selected as the project type and enter the name
as Northwind Provider.

3. We want a better name for the class than Class1. Right-click on Class1 in the Solution
Explorer, select Rename, and call it Provider. Then click on the View Code button and add
this enumeration to Provider:

Public Class Provider

' Enumerations...
Public Enum ConnectionModes As Integer
 NotConnected = 0
 Direct = 1
 Remote = 2
End Enum

End Class

4. Now add these members:

Chapter 14

10

Public Class Provider

' Enumerations...
Public Enum ConnectionModes As Integer
 NotConnected = 0
 Direct = 1
 Remote = 2
End Enum

 ' Members...
Private Shared _connectionMode As Provider.ConnectionModes = _
 ConnectionModes.NotConnected

' Remember to change the data source to your server name!
Public Shared DbString As String = _
"Integrated Security=SSPI;Initial Catalog=NorthwindSQL;Data Source=CHIMAERA"

' Web Service...
Public Shared ServiceUrl As String = _
 "http://localhost/NorthwindProviderService/ProviderService.asmx"
Public Shared Proxy As System.NET.WebProxy

End Class

Remember! You'll need to change the Data Source member of the connection string
from CHIMAERA (my computer) to whatever your computer is called.

5. Right-click on Northwind Provider and select Add | Add Class. Call the class
ProviderConnection. Add this code, including the MustInherit keyword to the first line.
This means that we cannot create instances of ProviderConnection classes directly.
Instead, we have to derive from this class and create new instances of the derived classes.

Public MustInherit Class ProviderConnection

' Get the details for a product...
Public MustOverride Function GetProductDetails(ByVal _
 productId As Long) As DataSet

End Class

6. Create another new class to Northwind Provider called DirectConnection. Add this code:

Imports System.Data.SqlClient

Public Class DirectConnection
 Inherits ProviderConnection

' Return the details for a product...
Public Overrides Function GetProductDetails(ByVal productId As Long) _

Disconnected Data

11

 As System.Data.DataSet

End Function

End Class

How It Works

As you've probably guessed, GetProductDetails will run the stored procedure that we wrote a
while ago and will return a DataSet, containing product information, back to the caller. How we get to
that method illustrates most of the magic that we're discussing in this chapter!

The MustInherit keyword in the ProviderConnection class means that the
ProviderConnection class can never be instantiated directly – it is an abstract class.

Public MustInherit Class ProviderConnection

In other words, it is impossible to create a ProviderConnection object based directly on that class.
Instead, objects are instantiated through the DirectConnection subclass. This subclass will provide
the functionality to call GetProductDetails when directly connected to the SQL Server Desktop
Engine. Shortly, we will implement a second subclass of ProviderConnection called
RemoteConnection. This subclass will handle the calling of GetProductDetails when using the
Web Service to bypass the intranet's firewall.

Why do we have these two subclasses? Well, when other parts of the application want to call
GetProductDetails, they need to get hold of a ProviderConnection object. By making
ProviderConnection an abstract class, we can pass the caller either a DirectConnection object or
a RemoteConnection object and the caller doesn't need to worry about which it is getting. Both types of
object will behave in the same way, as far as the caller is concerned; their interfaces will be the same.

The MustOverride keyword in the GetProductDetails function means that the function must be
overridden when used in derived classes.

Public MustOverride Function GetProductDetails(ByVal _
 productId As Long) As DataSet

The GetProductsDetails function is going to be called by our derived classes,
DirectConnection and RemoteConnection. As such, each of these classes must have a version of
this function which overrides this one.

We'll stop the discussion of this step now and move on to implementing the ConnectionMode and
Connection properties so that we can actually start getting some data back to prove the concept. We'll
come back and explain what we've done here in more detail in a short while.

The ConnectionMode and Connection Properties
What we'll do next is build a shared Connection property on the Provider class that will return
either DirectConnection or RemoteConnection. As this property is shared, it can be called from
anywhere within the code (or its subsequent extensions or revisions).

Chapter 14

12

Try It Out – Building the ConnectionMode and Connection Properties

1. The first thing we have to do is go back to the members of the Provider class and add this
new member:

 ' Members...
 Private Shared _connectionMode As Provider.ConnectionModes = _
 ConnectionModes.NotConnected
 Private Shared _connection As ProviderConnection

2. Next, add this shared property:

 ' ConnectionMode - what mode are we in?
Public Shared Property ConnectionMode() As Provider.ConnectionModes
 Get

 ' Return the connection mode that we've been given...
 Return _connectionMode

 End Get
 Set(ByVal Value As Provider.ConnectionModes)

 ' Set the connection mode...
 _connectionMode = Value

 ' Reset the connection...
 _connection = Nothing

 End Set
End Property

3. Then, add this shared property:

 ' Connection - do we have a connection object?
Public Shared Property Connection() As ProviderConnection
 Get

 ' Do we have a connection?
 If _connection Is Nothing Then

 ' Pick a mode...
 Select Case ConnectionMode

 Case ConnectionModes.Direct
 _connection = New DirectConnection()

 Case Else
 Throw New Exception("Connection mode not supported.")

 End Select

Disconnected Data

13

 End If

 ' Return what we have...
 Return _connection

 End Get
 Set(ByVal Value As ProviderConnection)
 _connection = Value
 End Set
End Property

How It Works

The Connection property can be used whenever access to the database is required.

The first time this property is requested, _connection will be Nothing. When this happens, the
ConnectionMode property is used to determine what kind of connection is being made.

If _connection Is Nothing Then

 ' Pick a mode...
 Select Case ConnectionMode

 Case ConnectionModes.Direct
 _connection = New DirectConnection()

At this point, we only support Direct, so we create a new DirectConnection object and store that
in _connection, whereupon it's returned to the caller.

This technique is called Just In Time (JIT) instantiation. It's a useful technique for keeping the resource
footprint of your application small. The Connection object is only created the instant that it is needed
and not before. Notice as well that, on subsequent calls, _connection will not be Nothing and
therefore another object will not need to be created. This makes the call to the Connection property
faster as it has less to do.

Returning Data
Implementing GetProductDetails is simply a matter of calling the stored procedure. However, to
make life easier for us later on, we're going to build a number of protected methods that provide easy
access to DataSet and SqlDataAdapter objects.

Try It Out – Returning Data

1. Add these two methods to DirectConnection:

 ' GetProductDetails - return the details for a product...
Public Overrides Function GetProductDetails(ByVal productId As Long) _
 As System.Data.DataSet
End Function

Chapter 14

14

 ' GetDataSet - run a stored procedure and get the results...
Protected Function GetDataSet(ByVal storedProcName As String, _
 ByVal dataSetName As String, ByVal paramName As String, _
 ByVal paramValue As Integer) As DataSet

 ' Create a connection to the database...
 Dim connection As New SqlConnection(Provider.DbString)
 connection.Open()

 ' Get the data adapter...
 Dim adapter As SqlDataAdapter
 adapter = GetDataAdapter(connection, storedProcName, paramName, paramValue)

 ' Create the dataset...
 Dim dataset As New DataSet(dataSetName)
 adapter.Fill(dataset)

 ' Close...
 connection.Close()

 ' Return the dataset...
 Return dataset

End Function

 ' GetDataAdapter - get the data adapter for the supplied stored proc...
Protected Function GetDataAdapter(ByVal connection As SqlConnection, _
 ByVal storedProcName As String, ByVal paramName As String, _
 ByVal paramValue As Integer) As SqlDataAdapter

 ' Create the command...
 Dim command As New SqlCommand(storedProcName, connection)
 command.CommandType = CommandType.StoredProcedure

 ' Add the parameter...
 Dim param As SqlParameter = _
 command.Parameters.Add(paramName, SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = paramValue

 ' Create an adapter from that...
 Return New SqlDataAdapter(command)

End Function

2. Next, add this code to GetProductDetails in the DirectConnection class:

 ' GetProductDetails - return the details for a product...
Public Overrides Function GetProductDetails(ByVal productId As Long) _
 As System.Data.DataSet

Disconnected Data

15

 ' Return the data...
 Return GetDataSet("ProviderGetProductDetails", _
 "Products", "@productId", productId)

End Function

Because we can't call GetProductDetails yet, we're going to hold off the explanation for a moment.
We'll quickly go through the next stage and then go through all this in detail.

Try It Out – Calling GetProductDetails

1. In order to access the functionality of the objects in the class library, we have to add a
reference to the Northwind Provider project. Using Solution Explorer, right-click on the
Product Editor project and select Add Reference.

2. Select the Projects tab on the Add Reference dialog, click on the Northwind Provider project,
and then on Select. Click OK when you've finished.

3. Open the code editor for Form1. At the very top of the class definition, add this namespace
import directive:

Imports Northwind_Provider

4. From the Class Name drop-down list on the code editor window, select (Overrides). From the
Method Name list, select OnLoad. Add this code to the event handler, and the associated property.

 Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)
 ConnectionMode = Provider.ConnectionModes.Direct
 End Sub

 ' ConnectionMode property...
Public Property ConnectionMode() As Provider.ConnectionModes
 Get
 Return Provider.ConnectionMode
 End Get
 Set(ByVal Value As Provider.ConnectionModes)

 ' Set the mode...
 Provider.ConnectionMode = Value

 ' Update the display...
 pnlConnection.Text = Provider.Connection.ToString

 End Set
End Property

5. We need to add a member to Form1 that can be used to hold the product DataSet that we
get back from the provider and another member that can keep track of the ProductID. Add
these members to the top of the class:

Chapter 14

16

Public Class Form1
Inherits System.Windows.Forms.Form

 ' Members...
Public ProductDataSet As DataSet
Private _productId As Integer

6. Flip back to the Form Designer for Form1. Double-click on the Load button to create a new
Click event handler. Add this code and associated ProductId property:

 Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ' What productid do we want?
 Dim newProductId As Integer
 Try
 newProductId = CType(txtProductId.Text, Integer)
 Catch
 End Try

 ' Set it...
 If newProductId <> 0 Then
 ProductId = newProductId
 Else
 MsgBox("You must enter a valid product ID.")
 End If

End Sub

 Public Property ProductId() As Integer
 Get
 Return _productId
 End Get
 Set(ByVal Value As Integer)

 ' Set the id...
 _productId = Value

 ' Get the data...
 SetProcessText("Loading product information from " & _
 Provider.Connection.ToString & ". Please wait...")
 ProductDataSet = Provider.Connection.GetProductDetails(_productId)
 ResetProcessText()

 ' Get the datagrid binding...
 dgdProducts.DataSource = ProductDataSet
 dgdProducts.DataMember = ProductDataSet.Tables(0).TableName

 End Set
End Property

Disconnected Data

17

7. Run the project and click the Load button. You should see this:

How It Works

The first thing that we do in the form is set its ConnectionMode property to Direct:

 Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)
 ConnectionMode = Provider.ConnectionModes.Direct
 End Sub

This property in turn calls the shared ConnectionMode property of the
Northwind_Provider.Provider class. After this call has been made, we then ask for the
Connection property mainly because we want to get hold of its name to update the status bar:

 ' ConnectionMode property...
Public Property ConnectionMode() As Provider.ConnectionModes
 Get
 Return Provider.ConnectionMode
 End Get
 Set(ByVal Value As Provider.ConnectionModes)

 ' set the mode...
 Provider.ConnectionMode = Value

 ' update the display...
 pnlConnection.Text = Provider.Connection.ToString

 End Set
End Property

The first time Connection is requested from Northwind_Provider.Provider, a new
DirectConnection object is created and passed back to the caller. The ToString method returns
the name of the object, which we can see displayed on the status bar.

Chapter 14

18

When the Load button is clicked, we go through a few hoops to make sure we've actually been given a
valid integer value. If we have one, we pass it through to the ProductId property. The first thing this
does is set the internal _productId member:

 Public Property ProductId() As Integer
 Get
 Return _productId
 End Get
 Set(ByVal Value As Integer)

 ' set the id...
 _productId = Value

Once the member has been set, the Provider.Connection property is called again and the
DirectConnection object is returned once more. Remember, we're actually getting a
ProviderConnection object back that supports all of the methods we want but is nicely abstracted
away from the implementation. Whether we have a DirectConnection or a RemoteConnection
object, we don't need to know anything about the underlying process of actually getting the data. This is
sometimes known by the term "polymorphism". Later, we'll actually be given a RemoteConnection
object back and we won't have to change this code at all.

Once we have an object based on ProviderConnection, we call GetProductDetails. This
returns a DataSet back to us, and we set up the binding on the DataGrid control so that the results
are displayed:

 ' get the data...
 SetProcessText("Loading product information from " & _
 Provider.Connection.ToString & ". Please wait...")
 ProductDataSet = Provider.Connection.GetProductDetails(_productId)
 ResetProcessText()

 ' set the datagrid binding...
 dgdProducts.DataSource = ProductDataSet
 dgdProducts.DataMember = ProductDataSet.Tables(0).TableName

 End Set
End Property

The text we display using the SetProcessText method appears on the status bar when data is loaded.
However, the load process can be pretty fast, so you may not notice it appear.

The GetProductDetails method itself uses our GetDataSet helper method to quickly access and
return a DataSet object.

 ' GetProductDetails - return the details for a product...
Public Overrides Function GetProductDetails(ByVal productId As Long) _
 As System.Data.DataSet

 ' return the data...
 Return GetDataSet("ProviderGetProductDetails", "Products", _
 "@productId", productId)

End Function

Disconnected Data

19

Calling GetDataSet is simply a matter of providing the name of the stored procedure, the name of the
table that the stored procedure is based on (we'll use this later), and the parameter name and value, in
this case @productId and whatever value was entered into the TextBox on the form. Our
implementation of GetDataSet only supports a single stored procedure parameter; in order to call a
stored procedure that has more than one parameter, you'll need to create an alternative version of the
method with the additional parameters defined.

In turn, GetDataSet opens a connection to the database and calls the other internal helper function,
GetDataAdapter.

 ' GetDataSet - run a stored procedure and get the results...
Protected Function GetDataSet(ByVal storedProcName As String, _
 ByVal dataSetName As String, ByVal paramName As String, _
 ByVal paramValue As Integer) As DataSet

 ' create a connection to the database...
 Dim connection As New SqlConnection(Provider.DbString)
 connection.Open()

 ' get the data adapter...
 Dim adapter As SqlDataAdapter
 adapter = _
 GetDataAdapter(connection, storedProcName, paramName, paramValue)

Separating GetDataSet and GetDataAdapter out in this way will make updating the database much
easier, as we'll see later.

Once we have the adapter, we fill and return the DataSet as usual:

 ' create the dataset...
 Dim dataset As New DataSet(dataSetName)
 adapter.Fill(dataset)

 ' close...
 connection.Close()

 ' return the dataset...
 Return dataset

End Function

To round off this discussion, we'll look at GetDataAdapter. All this method has to do is create a
SqlCommand, add a parameter to it, and create a new SqlDataAdapter:

 ' GetDataAdapter - get the data adapter for the supplied stored proc...
Protected Function GetDataAdapter(ByVal connection As SqlConnection, _
 ByVal storedProcName As String, ByVal paramName As String, _
 ByVal paramValue As Integer) As SqlDataAdapter

 ' create the command...

Chapter 14

20

 Dim command As New SqlCommand(storedProcName, connection)
 command.CommandType = CommandType.StoredProcedure

 ' add the parameter...
 Dim param As SqlParameter = _
 command.Parameters.Add(paramName, SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = paramValue

 ' create an adapter from that...
 Return New SqlDataAdapter(command)

End Function

Now that we know how to get information back when we have a direct connection to the database, we'll
take a look at how to get information back if we have a connection to the Web Service.

Overriding the ToString Method
Before we move on, let's clean up one tiny aspect of our application's look and feel.

At the moment, the status bar text doesn't say anything useful like "Direct" or "Remote". Instead, it says
"Northwind_Provider.DirectConnection" which isn't very eloquent.

Try It Out – Overriding the ToString Method

1. Open the code editor for DirectConnection. Add this code to the class:

 ' ToString - provider better text...
Public Overrides Function ToString() As String
 Return "Direct"
End Function

2. Run the project. The status bar should now be a little more pleasing:

How It Works

All classes in .NET ultimately inherit from System.Object. This provides a few methods that all
objects must support. In particular, this class defines a method called ToString that returns a string
representation of the object.

Disconnected Data

21

By default, ToString returns the full name of the class, which is why before we saw
Northwind_Provider.DirectConnection on the status bar. By overriding it as we've done in this way, we
see Direct instead.

Public Overrides Function ToString() As String
 Return "Direct"

Remote Connections
Our motivation for building our database provider functionality in a separate class library should be
becoming apparent now. We have created a set of classes that know how to get the information directly
from a database connection. In theory, we should be able to create a Web Service and use the self-same
DirectConnection object that we will have created to pass information back to the caller.

In a remote connection scenario, when our client application asks for the Provider.Connection
property, it will get back a RemoteConnection object. As this object is based on the abstract
ProviderConnection class, it will support all of the same methods that DirectConnection
does. When a method on RemoteConnection is called, it will connect to the Web Service,
whereupon the Web Service will ask for the Provider.Connection property from its local
installation of the class library.

This local class library will be configured to always return a DirectConnection object. The Web
Service will call the same method asked for on the RemoteConnection object and will return the data
to the caller. All of this should happen without the user knowing what's happening, or the developer
having to change any of the client code.

The first stage in this part of the process is to create the Web Service.

Try It Out – Creating the Web Service

1. Before we create the Web Service, we need to find out where the assembly containing the
Northwind Provider project has been created. Using Solution Explorer, right-click on the
Northwind Provider project and select Properties.

2. In the left-hand list, select Configuration Properties and then select Build. The Output path
entry will tell you where the .dll file containing the assembly has been created. Make a note
of the path to this folder.

It might be the case that your output path simply reads bin\. In this case, to get the
path to the solution, click the ellipsis button at the end of the Output path box. This
will bring you into the bin folder and you should be able to work your way backwards
through the folders in order to determine the path to this folder.

Chapter 14

22

3. To create the Web Service, start another instance of Visual Studio. It will make life easier to
have two copies of the environment side by side.

4. Select File | New | Project from the menu. Create a new Visual Basic ASP.NET Web Service
application and call it NorthwindProviderService:

Disconnected Data

23

5. When the project has been created, right-click on Service1.asmx in Solution Explorer and
choose Rename. Call the file ProviderService.asmx instead. Right-click on it once more and
select Set As Start Page.

6. Right-click on the NorthwindProviderService project and select Add Reference.

7. When the Add Reference window appears, click the Browse button. Navigate to the folder
containing the .dll file that the Northwind Provider assembly has been created in. You noted
the path to this folder down earlier. Find the Northwind Provider.dll and add a reference to
the project.

8. Open the code editor for ProviderService.asmx by right-clicking on it in Solution Explorer
and selecting View Code.

9. Add this namespace import directive to the top of the code listing and rename the class to
ProviderService:

Imports System.Web.Services
Imports Northwind_Provider

Public Class ProviderService
Inherits System.Web.Services.WebService

Chapter 14

24

10.We need to add a namespace declaration to the service. If we don't do this, we can run into
problems when and if we make the Web Service publicly available. Add this attribute to the
ProviderService class definition:

<WebService(Namespace:="http://www.wrox.com/1861005555/")> _
Public Class ProviderService
Inherits System.Web.Services.WebService

11. Find the constructor for the ProviderService class. You might have to expand out the Windows
Form Designer generated code region by clicking the little gray plus sign. Add this code:

 Public Sub New()
 MyBase.New()

 'This call is required by the Web Services Designer.
 InitializeComponent()

 ' check we have the correct connection type...
 If Provider.ConnectionMode <> Provider.ConnectionModes.Direct Then
 Provider.ConnectionMode = Provider.ConnectionModes.Direct
 End If

End Sub

12.Add this method after the block of Designer generated code:

 ' GetProductDetails - make a call into the connection...
<WebMethod()> _
Public Function GetProductDetails(ByVal productId As Integer) As DataSet
 Return Provider.Connection.GetProductDetails(productId)
End Function

13.Run the project. As usual, you'll be given a list of the methods that the service supports:

Disconnected Data

25

14.Click the GetProductDetails link to view the invocation form for the method. Enter the
productId parameter as 1 and click Invoke.

15.What you'll get back is a large lump of XML. This is the XML representation of the DataSet
that we asked for, and it should look familiar to you after our work in the previous chapters.

How It Works

What's important here is that the way we've called GetProductDetails in the Web Service method
is virtually identical to the way that we've called it in the client application. Here's the way that it was
called in the Web Service:

Chapter 14

26

Return Provider.Connection.GetProductDetails(productId)

and here's the way it was called in the client application:

ProductDataSet = Provider.Connection.GetProductDetails(_productId)

The great news for us with all this is that we have to do literally nothing to get all of this working.
.NET's Web Service implementation handles most of the stress involved in wrapping up a DataSet
and passing it over the network, almost without us having to do anything.

Of course, all we've done is proven that we can build a Web Service that can consume the same objects
that the client can. Now we have to prove that the client works in both the direct and remote connection
modes.

Using the Remote Connection Mode
This part of the project will involve changing our class library so that it contains a reference to the Web
Service and contains a new class called RemoteConnection. This will allow us to connect to the Web
Service to get the remote data.

Try It Out – Updating the Class Library

1. We've finished with the Web Service for a while, so flip back to the Visual Studio .NET
instance that contains the class library and client projects.

2. Firstly, we need to add a reference to the Web Service. Right-click on the Northwind Provider
project in Solution Explorer and select Add Web Reference.

3. Click on the Web References on Local Web Server link in the bottom of the left-hand pane.

4. When the list of reference groups installed on the computer appears in the right-hand pane,
find and click on
http://localhost/NorthwindProviderService/NorthwindProviderService.disco.

5. Next, click View Contract to load the WDSL file for the service. When the WSDL file has
loaded into the left-hand pane, click Add Reference.

6. The new reference will be added to Solution Explorer. Right-click it and select Rename.
Change its name to NorthwindService.

Disconnected Data

27

7. Next, add a new class to the Northwind Provider project called RemoteConnection. Make
the class derive from ProviderConnection like this:

Public Class RemoteConnection
 Inherits ProviderConnection

End Class

8. Ideally, we need to override ToString just like we did on DirectConnection. Add
this method:

Public Overrides Function ToString() As String
 Return "Remote"
End Function

9. Add this method to RemoteConnection:

 ' GetService - return a service object...
Protected Function GetService() As NorthwindService.ProviderService

 ' Create an instance of the service...
 Dim service As New NorthwindService.ProviderService()

 ' Set the url...
 service.Url = Provider.ServiceUrl

 ' Set the proxy...
 service.Proxy = Provider.Proxy

 ' Return the service...
 Return service

End Function

Chapter 14

28

10.Finally, add this method:

 ' GetProductDetails - call the service's version of this...
Public Overrides Function GetProductDetails(ByVal productId As Long) _
 As System.Data.DataSet

 ' Get the service...
 Dim service As NorthwindService.ProviderService = GetService()

 ' Call the remote method...
 Return service.GetProductDetails(productId)

End Function

How It Works

What we've done here is created a "sister" class to DirectConnection that also inherits from
ProviderConnection. The ultimate goal is to be able to have an object in our application call the
same GetProductDetails and not actually care whether DirectConnection is going directly to
the database, or whether RemoteConnection is going through a Web Service.

The GetService method on RemoteConnection simply returns a new
NorthwindService.ProviderService object that's configured to talk to the Web Service. This
remote service also contains a GetProductDetails method, which ultimately talks to a
DirectConnection object on the server to go and get the data. The data is returned from the service
as a DataSet and we pass the data back to the caller. We will look at these methods in more detail at
the end of the next section after we try running our application with a remote connection.

Creating RemoteConnection
At this point, we can create DirectConnection objects but not RemoteConnection objects

Open the code editor for Provider and make this change to the Connection property:

 ' Pick a mode...
 Select Case ConnectionMode

 Case ConnectionModes.Direct
 _connection = New DirectConnection()
 Case ConnectionModes.Remote
 _connection = New RemoteConnection()

 Case Else
 Throw New Exception("Connection mode not supported.")

What this small change will do is make it possible for us to make RemoteConnection objects as well
as DirectConnection objects, depending on the value stored in ConnectionMode. If we're
"Direct", the property will return a DirectConnection. If we're "Remote", the property will return a
RemoteConnection. Through RemoteConnection, we'll be able to gain access to the Web Service.

Disconnected Data

29

A Slight Change to the Client
Although I promised you that we wouldn't have to make changes to the client in order to get it working
in remote mode, that was a white lie. We do have to change the Load event handler of Form1 and tell it
to change the Provider.ConnectionMode property.

Try It Out – Testing the Client

1. Open the code editor for Form1 and find the Load event handler. Make this change:

 Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)
 ConnectionMode = Provider.ConnectionModes.Remote
 End Sub

2. Run the project. If you click the Load button now, the Web Service will be used instead of the
direct connection. (Notice that the connection type on the status bar is now shown as Remote.)

How It Works

With the Provider.ConnectionMode shared property set to Remote, any requests for the
Provider.Connection shared property will return a RemoteConnection object, not a
DirectConnection object.

When we call GetProductDetails, we'll be calling the method on the RemoteConnection object.
The first thing this does is to call the GetService method to get hold of a
NorthwindService.ProviderService object. (Visual Studio created this class automatically when
we added the Web reference to the project.)

 ' GetProductDetails - call the service's version of this...
Public Overrides Function GetProductDetails(ByVal productId As Long) _
 As System.Data.DataSet

 ' Get the service...
 Dim service As NorthwindService.ProviderService = GetService()

Chapter 14

30

Once it has the service, it calls the remote method, which, as we've seen, in turn causes the Web Service
to call GetProductDetails on its installation of a DirectConnection object.

 ' Call the remote method...
 Return service.GetProductDetails(productId)

End Function

Although we looked at Web Services in quite some detail in Chapter 13, we assumed that the proxy
object would always contain the URL that we wanted to use for the service. In this instance, we're going
to provide a mechanism that allows us to change the service URL. We don't need to do this for our
application; it's just an illustration of a useful technique. For example, if we have an application that's
used throughout the world, we might choose to geographically distribute our Web Service. Each client
could be configured to connect to its "nearest", or "most accessible" one. By changing the value of one
shared member in our application, we can redirect all traffic to a different Web Service.

The Provider class has shared members called ServiceUrl and Proxy that look like this:

 ' Web Service...
Public Shared ServiceUrl As String = _
 "http://localhost/NorthwindProviderService/ProviderService.asmx"
Public Shared Proxy As System.NET.WebProxy

By changing the value of ServiceUrl, we can direct all Web Service calls away from the URL that's
hard-coded into the class library and to a different URL. (For this to work, the Web Service
implementations at both URLs must be the same.) Our GetService method first creates an instance of
a class that can talk to the Web Service, and then changes its URL property to whatever is specified in
the shared Provider.ServiceUrl property:

 ' GetService - return a service object...
Protected Function GetService() As NorthwindService.ProviderService

 ' Create an instance of the service...
 Dim service As New NorthwindService.ProviderService()

 ' Set the url...
 service.Url = Provider.ServiceUrl

For good measure, we also configure GetService so that, if a System.NET.WebProxy object is
stored in the shared Provider.Proxy property, the service will use that proxy. Remember that, in
Chapter 13, we used "proxyTrace" to watch the SOAP messages passing between client and server.

 ' Set the proxy...
 service.Proxy = Provider.Proxy

Once that's done, we can return the object:

 ' Return the service...
 Return service

Disconnected Data

31

Switching Modes
Now that we can use both direct and remote connections, let's change our client application so that the
user can choose which one he/she prefers to use.

In the real world, the user wouldn't typically be able to configure these settings. We're going to allow
the user (us) to do it here so that we can test both of the modes easily. In the following section, we'll see
how the application can determine for itself which is the best connection type to use.

Try It Out – Switching Modes

1. If the Product Editor program is running, close it.

2. Open the Form Designer for Form1. Add a CheckBox control to the top right-hand side of the
form with its Text property set to "Use Service", Name to chkUseService and Anchor to
Top, Right.

3. Open the code editor for Form1 and find the ConnectionMode property. Make these changes:

 ' Update the display...
 pnlConnection.Text = Provider.Connection.ToString

 ' Update the check boxes...
 If Provider.ConnectionMode = Provider.ConnectionModes.Direct Then
 chkUseService.Checked = False
 Else
 chkUseService.Checked = True
 End If

 End Set
End Property

Chapter 14

32

4. From the top-left drop-down list on the code editor, select chkUseService. From the right-
hand list, select CheckedChanged. Add this code to the new event handler:

 Private Sub chkUseService_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles chkUseService.CheckedChanged

 ' Are we checked?
 If chkUseService.Checked = True Then
 ConnectionMode = Provider.ConnectionModes.Remote
 Else
 ConnectionMode = Provider.ConnectionModes.Direct
 End If

End Sub

5. Now run the application, you should find that you can use the Use Service CheckBox to flip
between direct and remote connections.

How It Works

All we've done is wired up the CheckBox so that it will flip-flop the Form1.ConnectionMode mode
property between Direct and Remote. This property also contains various calls to update the display,
which is how we're updating the status bar.

We change the text on the status bar by watching for changes to the ConnectionMode property and
setting the Text property of pnlConnection.

 ' Update the display...
 pnlConnection.Text = Provider.Connection.ToString

' Update the check boxes...
If Provider.ConnectionMode = Provider.ConnectionModes.Direct Then

chkUseService.Checked = False
Else

chkUseService.Checked = True
End If

In the CheckedChanged event, the state of the CheckBox is evaluated and the ConnectionMode is
determined. In this case, if the CheckBox is checked (True) then a Remote connection is used:

 If chkUseService.Checked = True Then
 ConnectionMode = Provider.ConnectionModes.Remote
 Else
 ConnectionMode = Provider.ConnectionModes.Direct
 End If

Automatically Detecting the Connection Type
Detecting the connection type is simply a matter of going through the ProviderConnection objects in
preferred order and asking if they can connect.

Disconnected Data

33

Try It Out – Automatically Detecting the Connection Type

1. Open the code editor for Provider. Add this enumeration and member to the top of the
class definition:

' Enumerations...
Public Enum ConnectionModes As Integer
 NotConnected = 0
 Direct = 1
 Remote = 2
End Enum

Public Enum PreferredConnectionModes As Integer
 Unknown = 0
 Direct = 1
 Remote = 2
 NoneAvailable = -1
End Enum

'Members
Private Shared _connectionMode As Provider.ConnectionModes = _
 ConnectionModes.NotConnected
Private Shared _connection As ProviderConnection
Private Shared _preferredConnectionMode As Provider.PreferredConnectionModes

2. Open the code editor for ProviderConnection and add this code:

Public MustInherit Class ProviderConnection

' GetProductDetails - get the details for a product...
Public MustOverride Function GetProductDetails(ByVal productId As Long) _
 As DataSet

 ' CanConnect - can we connect using these settings?
Public MustOverride Function CanConnect() As Boolean

End Class

3. Then, open the code editor for DirectConnection and add this code:

 ' CanConnect - try and make a connection...
Public Overrides Function CanConnect() As Boolean

 ' Try and connect to the database...
 Try

 ' Open a connection...
 Dim connection As New SqlConnection(Provider.DbString)
 connection.Open()

Chapter 14

34

 ' We did it!
 connection.Close()
 Return True

 Catch
 Return False
 End Try

End Function

Using an exception handler in this way is quite unusual – usually when we get an exception we do
something with it. Instead, what we're doing here is saying, "If we can't connect to the database directly,
return False." In our application, not being able to connect to a database isn't a critical issue because we
can fail but still get our data from somewhere else. In most applications, it is critically important to be
able to connect. So, here, we're not using the exception handler to "handle an exception" in a traditional
sense, but rather we're using it to signal that a direct connection could not be made.

4. Open the code editor for RemoteConnection and add this code:

 Public Overrides Function CanConnect() As Boolean
 Return True
 End Function

5. Next, go back to the code editor for Provider and add this property:

 ' PreferredConnectionMode - try and make connections...
Public Shared Property PreferredConnectionMode() As PreferredConnectionModes
 Get

 ' Have we tried to look it up?
 If _preferredConnectionMode = PreferredConnectionModes.Unknown Then

 ' Try a database connection first...
 Dim testConnection As ProviderConnection = New DirectConnection()
 If testConnection.CanConnect = True Then

 ' We want direct!
 _preferredConnectionMode = PreferredConnectionModes.Direct

 Else

 ' Try the Web connection...
 testConnection = New RemoteConnection()
 If testConnection.CanConnect = True Then

 ' We want remote!
 _preferredConnectionMode = _
 PreferredConnectionModes.Remote

 Else

Disconnected Data

35

 ' There's nothing we can do...
 _preferredConnectionMode = _
 PreferredConnectionModes.NoneAvailable

 End If

 End If

 End If

 ' Return it...
 Return _preferredConnectionMode

 End Get
 Set(ByVal Value As PreferredConnectionModes)
 _preferredConnectionMode = Value
 End Set
End Property

6. Also on Provider, add this method:

 ' CanConnect - can we connect to anything?
Public Shared Function CanConnect() As Boolean

 ' What's our preferredconnectionmode?
 If PreferredConnectionMode <> PreferredConnectionModes.NoneAvailable Then
 Return True
 Else
 Return False
 End If

End Function

7. To round off the changes to the class library, find the ConnectionMode property and make
these changes to the Get part. (I've omitted the Set part for clarity.)

 ' ConnectionMode - what mode are we in?
Public Shared Property ConnectionMode() As Provider.ConnectionModes
 Get

 ' Do we have a connection mode set?
 If _connectionMode = ConnectionModes.NotConnected Then

 ' Do we have a preferred connection mode?
 Select Case PreferredConnectionMode
 Case PreferredConnectionModes.Direct
 _connectionMode = ConnectionModes.Direct
 Case PreferredConnectionModes.Remote
 _connectionMode = ConnectionModes.Remote

Chapter 14

36

 End Select

 End If

 ' Return the connection mode that we've been given...
 Return _connectionMode

 End Get

8. Now that we've changed everything we need to change about the class library, open the code
editor for Form1 and find the OnLoad method. Make these changes:

 Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)

 ' Can we connect?
 If Provider.CanConnect = False Then

 ' Tell the user and quit...
 MsgBox("A connection cannot be made to the database.")
 Application.Exit()

 Else

 ' Update the display...
 ConnectionMode = Provider.ConnectionMode

 End If

End Sub

9. Run the project and you should see now see that the application defaults to a direct
connection. That's because the database is running and we can make a direct connection to it.

10.Close the application.

11.However, if we stop the database service the application should default to a remote
connection. Find the Service Manager. This will either be an icon like this in your task bar:

Disconnected Data

37

…or you'll have to run it by selecting Start | Programs | SQL Server Desktop Engine |
Service Manager. Either way, open the Service Manager and click the "stop" button.

12.Run the project again and the application should fail to connect to the database server (it will
take a moment for the connection to timeout, so the application won't appear immediately). It
will fall-over and default to a remote connection.

How It Works

The PreferredConnectionMode shared property on Provider has the intelligence to go through
the available connection types in preferred order asking each one if it can connect. The first thing it
does, though, is check to make sure that it hasn't been through this step before. As testing the different
connections takes a while, we only ever want to do this once in the life of the application.

 Get

 ' Have we tried to look it up?
 If _preferredConnectionMode = PreferredConnectionModes.Unknown Then

If we've never tried to do this before (_preferredConnectionMode will be Unknown), we try and
connect to the database, as this is the most preferred connection type.

 ' Try a database connection first...
 Dim testConnection As ProviderConnection = New DirectConnection()

Chapter 14

38

The DirectConnection.CanConnect method itself will try and connect to the database specified
using the shared Provider.DbString property, as we've already seen. If the connection can be
made, we set the preferred mode to Direct.

 If testConnection.CanConnect = True Then

 ' We want direct!
 _preferredConnectionMode = PreferredConnectionModes.Direct

If, however, CanConnect returns False we can assume that the connection is not available and so we
try the same trick with RemoteConnection.

 Else

 ' Try the Web connection...
 testConnection = New RemoteConnection()
 If testConnection.CanConnect = True Then

 ' We want remote!
 _preferredConnectionMode = _
 PreferredConnectionModes.Remote

If this too fails, we indicate that we don't have any connections that we can use:

 Else

 ' There's nothing we can do...
 _preferredConnectionMode = _
 PreferredConnectionModes.NoneAvailable

 End If

 End If

 End If

Finally, we return whatever value _preferredConnectionMode is set to.

 ' Return it...
 Return _preferredConnectionMode

 End Get
 Set(ByVal Value As PreferredConnectionModes)
 …
 End Set

CanConnect examines the PreferredConnectionMode property and, seeing as this is the first
method we call on Provider from within Form1, will trigger the above algorithm to try and find a
connection type.

Disconnected Data

39

 ' What's our preferredconnectionmode?
 If PreferredConnectionMode <> PreferredConnectionModes.NoneAvailable Then
 Return True
 Else
 Return False
 End If

We can see here how CanConnect is called from within Form1.OnLoad. If the connection cannot be
made, we display a message box and quit the application. Otherwise, we call the
Form1.ConnectionMode property, which has the side effect of updating the display.

 ' Can we connect?
 If Provider.CanConnect = False Then

 ' Tell the user and quit...
 MsgBox("A connection cannot be made to the database.")
 Application.Exit()

 Else

 ' Update the display...
 ConnectionMode = Provider.ConnectionMode

 End If

The upshot of all of this is that DirectConnection.CanConnect is called first. If this succeeds,
PreferredConnectionMode is set to Direct. If it fails, RemoteConnection.CanConnect is
called. Right now, we have this configured to always succeed (that is, "Return True") so we'll always
have a connection of some sort available.

Exception Handling
There's a chance that whenever we call a method on either of the DirectConnection or
RemoteConnection objects that something could go wrong. We need to neatly handle any exceptions
that may occur so in this section we will be adding any exception handlers necessary.

Try It Out – Adding Exception Handling

1. Open the code editor for Form1. Add this method:

 ' HandleException...
Public Function HandleException(ByVal message As String, _
 ByVal e As Exception)

 ' Drill down...
 Do While Not e.InnerException Is Nothing
 e = e.InnerException
 Loop

 ' Create a message...

Chapter 14

40

 Dim builder As New System.Text.StringBuilder(message)
 builder.Append(ControlChars.CrLf)
 builder.Append(ControlChars.CrLf)
 builder.Append("An exception has occured:")
 builder.Append(ControlChars.CrLf)
 builder.Append(e.Message)
 builder.Append(ControlChars.CrLf)
 builder.Append(e.StackTrace)
 builder.Append(ControlChars.CrLf)
 builder.Append(ControlChars.CrLf)
 If Not Provider.Connection Is Nothing Then
 builder.Append("Connection in use: " & _
 Provider.Connection.ToString & " (" & _
 Provider.Connection.GetType.FullName & ")")
 Else
 builder.Append("A database connection cannot be established.")
 End If
 MsgBox(builder.ToString, MsgBoxStyle.Exclamation)

End Function

2. Next, find the ProductId property and add this Try…Catch block.

 Public Property ProductId() As Integer
 Get
 Return _productId
 End Get
 Set(ByVal Value As Integer)

 ' Set the id...
 _productId = Value

 ' Get the data...
 SetProcessText("Loading product information from " & _
 Provider.Connection.ToString & ". Please wait...")
 Try
 ProductDataSet = _
 Provider.Connection.GetProductDetails(_productId)
 Catch e As Exception
 HandleException(_
 "The product information could not be loaded.", e)
 End Try
 ResetProcessText()

 ' Set the datagrid binding...
 dgdProducts.DataSource = ProductDataSet
 If Not ProductDataSet Is Nothing Then
 dgdProducts.DataMember = ProductDataSet.Tables(0).TableName
 End If

 End Set
End Property

Disconnected Data

41

How It Works

Right now, nothing will throw an exception so you won't be able to see the message box. However, had
something gone wrong, you would have seen something like this. (In this case, I've stopped the database
server after the program has started and then clicked the Load button.)

One thing to note, this kind of message is going to be of virtually no use in a real world application.
What you want to do is present some logical, helpful message to the user that will let them resolve the
problem, or tell them that they can't. Our illustration here is just to show an example of exception
handling without going too deeply into the problem.

When an exception is reported, it's often the case that the Exception object we get back actually
contains another exception object, or they can be "nested". (This is particularly true when working with
Web Services.) To find the original exception, the one where it all started to go wrong, we have to loop
through the InnerException property on the Exception object itself. Each time we do this, we go
further up the nested exceptions until eventually we find the "top-level" exception. This top-level
exception is the one we want to tell the user about.

 ' Drill down...
 Do While Not e.InnerException Is Nothing
 e = e.InnerException
 Loop

The remainder of HandleException puts together a string to display a message box, as we've
just seen.

So why did we have to change the ProductId property? Well, working with a Web Service is often a
tricky thing to do. Firstly, they're often somewhere else on the Internet and may be inaccessible for any
one of a thousand reasons. Secondly, they're owned by someone else meaning that they can be changed
without you knowing about it. If you imagine working with another team in your own organization, in a
properly managed programming environment, one team shouldn't be able to break something you're
using without you knowing about it. This doesn't necessarily hold for Web Services.

What we have to do is wrap the call to GetProductDetails in an exception handler. If, for some
reason, we can't get the data back, we display a message to let the user know what's going on.

Chapter 14

42

' Get the data...
SetProcessText("Loading product information from " & _
Provider.Connection.ToString & ". Please wait...")

 Try
 ProductDataSet = _
 Provider.Connection.GetProductDetails(_productId)
 Catch e As Exception
 HandleException(_
 "The product information could not be loaded.", e)
 End Try

ResetProcessText()

Changing Data
So far we've managed to prove that we can get information from both the direct and remote
connections. We've yet to prove that we can make changes to the data in either mode.

The user can change any information he/she wants simply by making edits in the DataGrid control.
As edits are made, the underlying DataSet object will be updated to reflect the new changes. All we
have to do then is somehow pass the modified DataSet object back to the database, either directly or
through the Web Service.

For simplicity's sake, any concurrency issues have been ignored in this chapter. For more
information on concurrency, see Chapter 10.

One aspect of the UI for our application that's not very intuitive is the SupplierID column. At the
moment, in order to change these values the user has to remember the entire list of suppliers and their
associated IDs. A better way of doing this is to present a list of suppliers for the user to choose from.

In the first part of this next section, we'll look at presenting a list of suppliers to the user. The user will
then be able to select a new supplier from the list. In the following section, we'll look at how to save
changes to the database.

Before you go any further, remember to restart your SQL Server service otherwise you won't be able to
get any data for your application.

Choosing Suppliers
In order to choose suppliers, we need to do three things: one, make a list of suppliers available to the
client; two, present the list of suppliers; three, update the supplier when the user makes a change.

Building the "ProviderGetSuppliers" Stored Procedure
The first thing we'll do is to build a stored procedure that returns the entire list of suppliers.

Disconnected Data

43

Try It Out– Building "ProviderGetSuppliers"

1. Using the Server Explorer, create a new stored procedure with the following SQL code:

CREATE PROCEDURE dbo.ProviderGetSuppliers
AS
SELECT SupplierID, CompanyName, ContactName, ContactTitle,
 Address, City, Region, PostalCode, Country, Phone, Fax, HomePage
 FROM Suppliers ORDER BY CompanyName

2. Select File | Save Stored Procedure from the menu.

3. If you test the stored procedure, you should see a list of suppliers appear in the Output window.

Calling "ProviderGetSuppliers"
Both DirectConnection and RemoteConnection now need to be able to call this new
stored procedure.

To let the user choose the supplier, we're going to pop up a separate form containing a list of
suppliers. We're not specifically going to tie this form into suppliers; it will work with lists of anything
that we choose.

Try It Out – Calling "ProviderGetSuppliers"

1. Open the code editor for ProviderConnection. Add this code:

Public MustInherit Class ProviderConnection

' GetProductDetails - get the details for a product...
Public MustOverride Function GetProductDetails(ByVal productId As Long) _
 As DataSet

' CanConnect - can we connect using these settings?
Public MustOverride Function CanConnect() As Boolean

 ' GetSuppliers - get the entire supplier list...
Public MustOverride Function GetSuppliers() As DataSet

End Class

2. Next, open the code editor for DirectConnection and add this code:

 ' GetSuppliers - return a list of suppliers...
Public Overrides Function GetSuppliers() As System.Data.DataSet
 Return GetDataSet("ProviderGetSuppliers", "Suppliers")
End Function

Chapter 14

44

3. At the moment, GetDataSet needs the name and value for a parameter to pass through to
the stored procedure. There isn't one in this case, so we need to create an alternate,
overloaded version of GetDataSet. Add this method to DirectConnection:

 ' GetDataSet - alternate version...
Protected Function GetDataSet(ByVal storedProcName, ByVal dataSetName) _
 As DataSet
 Return GetDataSet(storedProcName, dataSetName, "", 0)
End Function

4. When GetDataSet calls GetDataAdapter, GetDataAdapter will expect to receive a
parameter, so what we need to do is change this method so that we don't have to supply a
parameter, or rather if we don't, the method will gracefully handle the eventuality. Find the
GetDataAdapter method and make this change:

 ' Create the command...
 Dim command As New SqlCommand(storedProcName, connection)
 command.CommandType = CommandType.StoredProcedure

 ' Do we have a parameter?
 If paramName <> "" Then

 ' Add the parameter...
 Dim param As SqlParameter = _
 command.Parameters.Add(paramName, SqlDbType.Int)
 param.Direction = ParameterDirection.Input
 param.Value = paramValue

 End If

 ' Create an adapter from that...
 Return New SqlDataAdapter(command)

5. Before we can run the project, we need to add a dummy implementation to
RemoteConnection, otherwise we'll get a compilation error. We'll worry about
implementing this properly in a moment, so for now open the code editor for
RemoteConnection and add this code:

 Public Overrides Function GetSuppliers() As System.Data.DataSet

End Function

6. In the client, we'll need a form that we can display a list of suppliers in. Create a new form
called Lookup. Set the SizeGripStyle property of the form to Hide.

7. Paint these controls onto the form and set their properties as follows:

Disconnected Data

45

❑ Button1: Name to btnOk, DialogResult to OK, Anchor to Bottom, Right and Text to OK.

❑ Button2: Name to btnCancel, DialogResult to Cancel, Anchor to Bottom, Right and Text to
Cancel.

❑ DataGrid: Name to dgdLookup, ReadOnly to True, Anchor to Top, Bottom, Left, Right

8. Open the code editor for Lookup and add this private member and property:

Public Class Lookup
Inherits System.Windows.Forms.Form

 ' Members...
Private _dataSet As DataSet

' DataSet property...
Public Property DataSet() As DataSet
 Get
 Return _dataSet
 End Get
 Set(ByVal Value As DataSet)

 ' Store the dataset...
 _dataSet = Value

 ' Update the data grid...
 dgdLookup.DataSource = _dataSet
 dgdLookup.DataMember = _dataSet.Tables(0).TableName

 End Set
End Property

End Class

9. Now we can turn our attention to displaying the Lookup form. Open the Form Designer for
Form1 and add this button. Change the Name of the button to btnLookupSupplier and its
Text to Lookup Supplier:

Chapter 14

46

10. Double-click on the button to create a new Click handler. Add this code to the new event handler:

 Private Sub btnLookupSupplier_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookupSupplier.Click

 ' Get a list of suppliers back...
 Dim dataSetSuppliers As DataSet
 SetProcessText("Loading list of suppliers from " & _
 Provider.Connection.ToString & ". Please wait...")
 Try
 dataSetSuppliers = Provider.Connection.GetSuppliers
 Catch ex As Exception
 HandleException("The supplier list could not be retrieved.", ex)
 End Try
 ResetProcessText()

 ' Did we get one?
 If Not dataSetSuppliers Is Nothing Then

 ' Create the form...
 Dim lookup As New Lookup()
 lookup.DataSet = dataSetSuppliers

 ' Show the dialog...
 If lookup.ShowDialog(Me) = DialogResult.OK Then

 End If

 End If

End Sub

11.Run the project and click the Lookup Supplier button. You should see this:

Disconnected Data

47

How It Works

The GetSuppliers method calls the ProviderGetSuppliers stored procedure in the database:

 Return GetDataSet("ProviderGetSuppliers", "Suppliers")

That returns a list of suppliers in alphabetical order:

SELECT SupplierID, CompanyName, ContactName, ContactTitle,
 Address, City, Region, PostalCode, Country, Phone, Fax, HomePage
 FROM Suppliers ORDER BY CompanyName

We then pass this list over to the new Lookup form through the DataSet property where it updates the
DataGrid control in the usual way. When we set the DataSet property of Lookup, what we do is
bind the first table in the DataSet to the DataGrid control on the form.

' DataSet property...
Public Property DataSet() As DataSet

Get
Return _dataSet

End Get
Set(ByVal Value As DataSet)

' Store the dataset...

 _dataSet = Value

 ' Update the data grid...
 dgdLookup.DataSource = _dataSet
 dgdLookup.DataMember = _dataSet.Tables(0).TableName

End Set
End Property

Chapter 14

48

Finally, we added a new button Click event to call the GetSuppliers method:

 Dim dataSetSuppliers As DataSet
 SetProcessText("Loading list of suppliers from " & _
 Provider.Connection.ToString & ". Please wait...")
 Try
 dataSetSuppliers = Provider.Connection.GetSuppliers

and list the suppliers on the DataGrid on the Lookup form:

 Dim lookup As New Lookup()
 lookup.DataSet = dataSetSuppliers

Changing the Selected Supplier
Although we've proven we can get a list of suppliers back, the Lookup form can show the suppliers, but
doesn't let us select new suppliers. In addition, we need to highlight the currently selected supplier
when the form first appears. Now, let's look at how we can resolve this.

Try It Out – Changing the Selected Supplier

1. If the program is running, close it.

2. Open the code editor for Lookup. Add this member that will hold the ID of the currently
selected item. (Remember, the form is not specifically tied to displaying lists of suppliers,
hence the name _lookupId rather than _supplierId.

 ' Members...
Private _dataSet As DataSet
 Private _lookupId As Integer

3. Next, add this property:

 Public Property LookupId() As Integer
 Get
 Return _lookupId
 End Get
 Set(ByVal Value As Integer)

 ' Store the id...
 _lookupId = Value

 ' Find the selected item in the list...
 Dim row As DataRow, index As Integer = 0
 For Each row In _dataSet.Tables(0).Rows

 ' Does the id match?
 If row.Item(0) = _lookupId Then
 dgdLookup.CurrentRowIndex = index
 Exit For

Disconnected Data

49

 End If

 ' Next...
 index += 1

 Next

 End Set
End Property

4. From the left-hand drop-down list, select dgdLookup. From the right-hand list, select
CurrentCellChanged. Add this code to the new event handler:

 Private Sub datagridLookup_CurrentCellChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles datagridLookup.CurrentCellChanged

 ' Get the current row...
 If dgdLookup.CurrentRowIndex >= 0 Then
 _lookupId = dgdLookup.Item(dgdLookup.CurrentRowIndex, 0)
 End If

End Sub

5. Open the code editor form Form1 and find the btnLookupSupplier_Click method. Make
these changes:

 Private Sub btnLookupSupplier_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookupSupplier.Click

 ' Firstly, we need the current supplierid...
 Dim supplierId As Integer, selectedRow As DataRow
 Try

 ' Get the product ID that's been selected...
 Dim selectedProductId As Integer
 selectedProductId = _
 dgdProducts.Item(dgdProducts.CurrentRowIndex, 0)

 ' Now, look through the dataset for that item...
 Dim row As DataRow
 For Each row In ProductDataSet.Tables(0).Rows
 If row.Item(0) = selectedProductId Then
 selectedRow = row
 Exit For
 End If
 Next

 ' Did we get one?
 If Not selectedRow Is Nothing Then
 supplierId = selectedRow.Item("Supplierid")

Chapter 14

50

 End If

 Catch
 MsgBox("You must select a product from the list.")
 End Try

 ' Did we get a supplier?
 If supplierId <> 0 Then

 ' Get a list of suppliers back...
 Dim dataSetSuppliers As DataSet
 SetProcessText("Loading list of suppliers from " & _
 Provider.Connection.ToString & ". Please wait...")
 Try
 dataSetSuppliers = Provider.Connection.GetSuppliers
 Catch ex As Exception
 HandleException("The supplier list could not be retrieved.", ex)
 End Try
 ResetProcessText()

 ' Did we get one?
 If Not dataSetSuppliers Is Nothing Then

 ' Create the form...
 Dim lookup As New Lookup()
 lookup.DataSet = dataSetSuppliers
 lookup.LookupId = supplierId

 ' Show the dialog...
 If lookup.ShowDialog(Me) = DialogResult.OK Then
 selectedRow.Item("SupplierID") = lookup.LookupId
 End If

 End If

 End If

End Sub

6. Run the project. Click the Load button to load the product ID and click the Lookup Supplier
button. You should notice that the currently chosen SupplierID in the DataGrid matches the
newly selected supplier in the popup window.

Disconnected Data

51

7. If you select another row and click OK, the SupplierID value on the original form will change
to reflect the new selection.

How It Works

When the Lookup Supplier button on the original form is clicked, we use the CurrentRowIndex of
the DataGrid to find out what product is selected. Although we've only seen one product in the
DataGrid at a time, the client can handle multiple products.

The first thing we have to do is find the ID of the selected product. This will always be the first column
of the currently selected row.

 Dim supplierId As Integer, selectedRow As DataRow
 Try

 ' Get the product ID that's been selected...
 Dim selectedProductId As Integer
 selectedProductId = _
 dgdProducts.Item(dgdProducts.CurrentRowIndex, 0)

Once we have the product ID, we need to find the relevant row in the DataSet. This, again, will be the
item with the first column (actually, the "zeroth" column) that matches the product ID.

 ' Now, look through the dataset for that it...
 Dim row As DataRow
 For Each row In ProductDataSet.Tables(0).Rows
 If row.Item(0) = selectedProductId Then
 selectedRow = row
 Exit For
 End If
 Next

Once we have the row, we can use it to get the supplier ID.

 ' Did we get one?
 If Not selectedRow Is Nothing Then
 supplierId = selectedRow.Item("SupplierID")
 End If

If the user has selected a product, and the SupplierID column contains a valid, integer value, we can go
ahead and display the Lookup form. After we give the Lookup form a list of suppliers, we also give it the
chosen supplier ID by setting the LookupId property. (I've omitted some code here for brevity.)

 ' Create the form...
 Dim lookup As New Lookup()
 lookup.DataSet = dataSetSuppliers
 lookup.LookupId = supplierId

 ' Show the dialog...

Chapter 14

52

 If lookup.ShowDialog(Me) = DialogResult.OK Then
 selectedRow.Item("SupplierID") = lookup.LookupId
 End If

In the Lookup form itself, setting the LookupId property will cause it to loop through the entire
supplier list looking for the ID that we gave it. When it finds it, it changes the DataGrid's
CurrentRowIndex property so that the relevant supplier is selected.

 Get
 Return _lookupId
 End Get
 Set(ByVal Value As Integer)

 ' Store the id...
 _lookupId = Value

 ' Find the selected item in the list...
 Dim row As DataRow, index As Integer = 0
 For Each row In _dataSet.Tables(0).Rows

 ' Does the id match?
 If row.Item(0) = _lookupId Then
 datagridLookup.CurrentRowIndex = index
 Exit For
 End If

 ' Next...
 index += 1

 Next

 End Set

As the user changes the selection, we update the _lookupId member so that it contains the ID of the
currently selected row.

 Private Sub datagridLookup_CurrentCellChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles datagridLookup.CurrentCellChanged

 ' Get the current row...
 If datagridLookup.CurrentRowIndex >= 0 Then
 _lookupId = datagridLookup.Item(datagridLookup.CurrentRowIndex, 0)
 End If

End Sub

Looking back at the code in Form1 that displays the dialog, should the dialog return OK, we can use the
LookupId property again to get the value of the _lookupId member and update the supplier ID.

 ' Create the form...
 Dim lookup As New Lookup()
 lookup.DataSet = dataSetSuppliers
 lookup.LookupId = supplierId

Disconnected Data

53

 ' Show the dialog...
 If lookup.ShowDialog(Me) = DialogResult.OK Then
 selectedRow.Item("SupplierID") = lookup.LookupId
 End If

Calling "GetSuppliers" from the Web Service
If you check the Use Service checkbox and click Lookup Supplier, you'll notice that nothing
happens. That's because we haven't updated the Web Service so that it is able to return a list of
suppliers. We need to create a new method on the Web Service that RemoteConnection can use to
get a list of suppliers.

Unlike the Product Editor project, the NorthwindProviderService project doesn't contain a reference to
the Northwind Provider project. Instead, it contains a reference to the assembly. In Visual Studio .NET,
changes made to a project are automatically reflected in any projects that have a reference to it. When
we add new methods to ProviderConnection, the Product Editor code knows about the new
methods instantly.

However, that doesn't hold true for referenced assemblies. At the moment, NorthwindProviderService
knows nothing about the GetSuppliers method that we've added to ProviderConnection
therefore we cannot call GetSuppliers. To solve this problem, we have to remove the reference and
add it again.

Try It Out – Updating the Web Service

1. If the program is running, close it and open the NorthwindProviderService project.

2. Using Solution Explorer, open up the References item beneath NorthwindProviderService.

3. Right-click Northwind Provider and select Remove.

4. Right-click References and select Add Reference. When the Add Reference dialog appears,
select Browse.

5. Find and open the Northwind Provider.dll file. Click OK to add the assembly reference. At
this point, Visual Studio will examine the assembly again and the GetSupplier method
will be available.

6. View the code for ProviderService.asmx and add this method:

 ' GetSuppliers - return a list of suppliers...
<WebMethod()> Public Function GetSuppliers() As DataSet
 Return Provider.Connection.GetSuppliers()
End Function

7. Run the project and test that the new GetSuppliers method works.

8. Flip back to the Product Editor solution. Using Solution Explorer, find the NorthwindService
Web Service reference under the Northwind Provider project.

Chapter 14

54

9. Right-click NorthwindService and select Update Web Reference. Just as we needed to re-
create the reference to Northwind Provider in the service project, we need to do a similar
thing here so that the new GetSuppliers Web method will be available to
RemoteConnection.

10.Open the code editor for RemoteConnection. Find GetSuppliers and make this change:

 Public Overrides Function GetSuppliers() As System.Data.DataSet

 ' Get the service and call get suppliers...
 Dim service As NorthwindService.ProviderService = GetService()
 Return service.GetSuppliers()

End Function

11.Try running the project again and this time, change to Remote mode using the CheckBox and
click Lookup Supplier. The list should come back exactly as it did over a direct connection.

How It Works

Previously, when we added the GetSupplier method to the abstract ProviderConnection class, to
make the discussion easier to follow we didn't bother adding an implementation to
RemoteConnection because this would have meant adding a new method to the
NorthwindProviderService Web Service.

Since the start of the project, we've been trying to build the client in such a way that it doesn't care
where its data is coming from. This is now paying dividends, because we had to make no changes to
the client at all in order to convince it to get the data from the Web Service rather than directly from
the database.

Saving Changes
The final part of this project involves saving the changes that the user makes to the product information
back to the database. This not only includes saving the supplier ID using the Lookup form, but also
dealing with changes to the other data that the DataGrid allows the user to edit.

Based on the work we've done in previous chapters, you may well be thinking that saving changes to a
DataSet is easy. That's only half true. To transfer data between the database and the DataSet and
back again, we need a DataAdapter object. However, we don't have one of these hanging around;
whenever we use it, we get rid of it immediately after using it.

The reason why we get rid of it is because, although a DataSet can successfully pass through a Web
Service, a DataAdapter cannot. As our architecture has to account for both direct and remote
connections seamlessly, we cannot implement "special" features on each type of connection. Instead, we
have to find a solution that works for both the direct and remote versions. In effect, we have to
duplicate the functionality that the DataAdapter uses to update the database.

Disconnected Data

55

Imagine we have to update the Products table. (The actual algorithm we're going to put together will
work on any DataSet, not just one drawn from the Products table.) Here's what we'll do:

❑ Create a new method called SetProductDetails on ProviderConnection. This
method will accept a DataSet of rows drawn from the Products table. This will be known
as the "Changed DataSet".

❑ We'll examine each row in the Changed DataSet in turn, looking for ones that have their
RowState property set to Modified.

❑ When we find one, we'll get the same product back from the database. This time, however,
we'll keep the SqlDataAdapter around and keep it bound to the DataSet. This new
DataSet will be called the "Master DataSet".

❑ All of the columns in the applicable row in the Changed DataSet will be copied to the
matching column in the Master DataSet.

❑ We'll use the SqlDataAdapter object's Update method to make the changes to the
database itself.

This technique will work whether the Changed DataSet is passed directly to DirectConnection or
through RemoteConnection and the Web Service. The only drawback is that we have to create two
SqlDataAdapter objects whereas, if we only had to deal with a direct connection, we'd need just one.

Building "SetProductDetails"
The first thing we need to do is add SetProductDetails to the abstract ProviderConnection object.

Try It Out – Building "SetProductDetails"

1. Open the code editor for ProviderConnection. Add this method:

' GetSuppliers - get the entire supplier list...
Public MustOverride Function GetSuppliers() As DataSet

 ' SetProductDetails - set the details for products...
Public MustOverride Sub SetProductDetails(ByVal products As DataSet)

End Class

2. Open RemoteConnection and add "stub" method. As before, we'll come back and fill this
in later.

 Public Overrides Sub SetProductDetails(ByVal products As System.Data.DataSet)

End Sub

3. Open DirectConnection and add this method:

Chapter 14

56

 ' SetProductDetails - save changes to changed products...
Public Overrides Sub SetProductDetails(ByVal products As System.Data.DataSet)
 SaveChanges("ProviderGetProductDetails", "@productId", products)
End Sub

4. Then, add the SaveChanges method.

 ' SaveChanges - save changes to changed rows...
Protected Sub SaveChanges(ByVal selectStoredProc As String, _
 ByVal selectParamName As String, _
 ByVal changedDataSet As DataSet)

 ' Need to hold a database connection...
 Dim connection As New SqlConnection(Provider.DbString)
 connection.Open()

 ' Go through each row in the master dataset...
 Dim changedRow As DataRow
 For Each changedRow In changedDataSet.Tables(0).Rows

 ' Has it changed?
 If changedRow.RowState = DataRowState.Modified Then

 ' Get the id of the changes item...
 Dim changedId As Integer = changedRow.Item(0)

 ' Get the master row by using the adapter...
 Dim adapter As SqlDataAdapter = _
 GetDataAdapter(connection, selectStoredProc, _
 selectParamName, changedId)

 ' Create a command builder and bind it to the adapter...
 Dim builder As New SqlCommandBuilder(adapter)

 ' Fill a new dataset...
 Dim masterDataSet As New DataSet()
 adapter.Fill(masterDataSet)

 ' Get the row from this dataset...
 Dim masterRow As DataRow = masterDataSet.Tables(0).Rows(0)

 ' Copy the changes from one to the other...
 Dim dataValue As Object, index As Integer
 index = 0
 For Each dataValue In changedRow.ItemArray
 masterRow.Item(index) = dataValue
 index += 1
 Next

 ' Tell the adapter to update...
 adapter.Update(masterDataSet)

Disconnected Data

57

 End If

 Next

 ' Close the connection...

 connection.Close()

End Sub

5. Open the Form Designer for Form1 and add a new button control next to the Load button.
Change the Name property of the new button to btnSave.

6. Double-click on the Save button to create a new Click event handler. Add this code:

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ' Save changes...

 Provider.Connection.SetProductDetails(ProductDataSet)

 ' Report the save...

 MsgBox("The changes have been saved.")

End Sub

How It Works

We're going to hold off explaining how the code works until we can actually run
SetProductDetails, which we'll do in a short while.

Chapter 14

58

Testing The Changes
Before we run the project, we have to make sure that a primary key has been defined on the Products
table. Without a primary key, SqlCommandBuilder will be unable to form the appropriate query to
make the database changes. A primary key is necessary as the SqlCommandBuilder uses this
information to generate the necessary SQL WHERE clause.

Try It Out – Checking the Primary Key and Testing the Code

1. Using the Server Explorer, find the Products table item within NorthwindSQL.

2. Right-click on Products and select Design Table.

3. If the ProductID column does not have a small key icon in the selection margin, right-click
ProductID and select Set Primary Key. You should end up with something like this:

4. Select File | Save Products from the menu to save the changes to the definition. Close down
the definition window.

5. Click on the Products table in Server Explorer once more, and this time select Retrieve Data
From Table. The first item should list a product with ID of 1 and a name of Chai.

6. Run the project. Click the Load button to load the product from the database and change the
name to Chai Tea.

Disconnected Data

59

7. Click the Save button. You see a message box telling you that the changes have been saved.

8. Flip back to Visual Studio and find the listing of rows from the Products table again. Right-
click on any column in any one of the rows and select Run. You should now see that the
underlying database data is now the same as the values entered into the DataGrid.

How It Works

Whenever changes are made to the edit control, the related DataSet is automatically updated. We
hold the DataSet containing the products for editing in the ProductDataSet member.

When the Save button is clicked, we pass this DataSet over to the SetProductDetails member of
the current ProviderConnection object, in this case DirectConnection.

 ' Save changes...
 Provider.Connection.SetProductDetails(ProductDataSet)

 ' Report the save...
 MsgBox("The changes have been saved.")

SetProductDetails defers processing of the changes to an internal helper method called
SaveChanges. This method is a general-purpose function that isn't just tied to working with
DataSets drawn from the Products table.

 ' SetProductDetails - save changes to changed products...
Public Overrides Sub SetProductDetails(_
 ByVal products As System.Data.DataSet)
 SaveChanges("ProviderGetProductDetails", "@productId", products)
 End Sub

Let's take a close look at SaveChanges. The first thing we need to do is establish a connection to
the database.

Chapter 14

60

 Dim connection As New SqlConnection(Provider.DbString)
 connection.Open()

Once we have the connection, we need to walk through each of the rows in the first table in the
changedDataSet. We assume that the DataSet we've been given only supports a single table.
Remember that changedDataSet is actually the same DataSet object that the DataGrid used for its
binding so, in our case, it's only going to contain a single row. Preferably, we want the Product Editor
application to handle multiple products. This method is prepared for the eventuality that we supply a
list of multiple products.

 ' Go through each row in the master dataset...
 Dim changedRow As DataRow
 For Each changedRow In changedDataSet.Tables(0).Rows

For each row, we check it to see if it has been modified. Notice we don't do anything if the row has been
deleted or added (both of which we can check for using RowState).

 ' Has it changed?
 If changedRow.RowState = DataRowState.Modified Then

If the row has changed, we use the first column of the row to find the ID of the item that has been
changed. In our case, this will be the ProductID.

 ' Get the id of the changes item...
 Dim changedId As Integer = changedRow.Item(0)

When we called SaveChanges, we provided the name of the stored procedure used to get the row
from the database in the first place ("ProviderGetProductDetails"), and also the name of the sole
parameter on this stored procedure ("@productId"). GetDataAdapter will return a
SqlDataAdapter object that is able to populate a DataSet with whatever is currently stored in the
database for the provided ID.

 ' Get the master row by using the adapter...
 Dim adapter As SqlDataAdapter = _
 GetDataAdapter(connection, selectStoredProc, _
 selectParamName, changedId)

In order to update the database, we need a SqlCommandBuilder. This object is capable of
automatically generating the SQL needed to update the database.

 ' We need to create a command builder and bind it...
 Dim builder As New SqlCommandBuilder(adapter)

The SqlDataAdapter can then be used to fill a new DataSet with whatever value is currently stored
in the database. We also get the first row from the first table in this DataSet and this references the
same product that the current value of changedRow references.

Disconnected Data

61

 ' Fill a new dataset...
 Dim masterDataSet As New DataSet()
 adapter.Fill(masterDataSet)

 ' Get the row from this dataset...
 Dim masterRow As DataRow = masterDataSet.Tables(0).Rows(0)

Once we have both rows, we copy the changed values into values stored against masterRow.

 ' Copy the changes from one to the other...
 Dim dataValue As Object, index As Integer
 index = 0
 For Each dataValue In changedRow.ItemArray
 masterRow.Item(index) = dataValue
 index += 1
 Next

At this point, what we effectively have is a copy of the new data that we were given but, this time, we
have a SqlDataAdapter object that knows how to commit the changes to the database.

 ' Tell the adapter to update...
 adapter.Update(masterDataSet)

 End If

As the method can handle multiple rows, we keep looping and close the connection when we are finished.

 Next

 ' Close the connection...
 connection.Close()

End Sub

Saving Changes over the Web Service
To complete the functionality that we're going to explore with this application, we need to prove that
we can save changes through the Web Service.

Try It Out – Saving Changes over the Web Service

1. Open the Web Service project. Like we did before, delete the reference to Northwind Provider
and add it again. Without this step, the service won't know anything about our new
SetProductDetails method.

2. Open the code viewer for ProviderService.asmx. Add this new method:

Chapter 14

62

 <WebMethod()> Public Sub SetProductDetails(ByVal products As DataSet)
 Provider.Connection.SetProductDetails(products)
End Sub

3. Build the project. Unless you do this, the new SetProductDetails method will not be
available to the client application.

4. Flip back to the Northwind Provider project. Using Solution Explorer, find the
NorthwindService Web Service reference group. Right-click on it and select Update Web
Reference. Without this step, Northwind Provider wouldn't know about the
SetProductDetails method that we just added to the service.

5. Next, open the code editor for RemoteConnection. Locate the dummy implementation for
SetProductDetails and add this code:

 Public Overrides Sub SetProductDetails(_
 ByVal products As System.Data.DataSet)

 ' Get the service and call get suppliers...
 Dim service As NorthwindService.ProviderService = GetService()
 service.SetProductDetails(products)

End Sub

6. Run the project and check on the Use Service checkbox. Database requests should now be routed
through the Web Service. Make a change to the product that you load, click the Save button and
use the Server Explorer to make sure that the changes have "stuck", like we did before.

How It Works

Again, adding functionality to the Web Service is simply an issue of forwarding requests of the Web
method to the existing method on DirectConnection.

 Dim service As NorthwindService.ProviderService = GetService()
 service.SetProductDetails(products)

 .NET handles passing the DataSet over the Web Service and so, when we receive it at the other end,
we can process it as normal.

Disconnected Data

63

Summary
In this chapter, we saw a pretty cool technique for building a client application that is deployable both
inside and outside of the company LAN. With .NET, a lot of the deployment hassles of traditional
desktop applications go away, meaning that companies can return to building desktop applications with
rich and powerful user interfaces, without having to decrease the functionality for use with Web
browsers. Web applications do not benefit from the same, rich user interface controls that desktop
applications like those built with Windows Forms do.

We kicked off the application by introducing the concept of an access layer. Instead of connecting
directly to the database, the application instead connects to this layer. The layer is able to "switch"
between connecting directly to SQL Server Desktop Engine and connecting to a Web Service. This
means that building the Web Service is simply a matter of creating a few methods that defer over to the
existing access layer. Adding new methods to the layer is pretty trivial.

In building the application, we saw how to use the DataGrid control to display and edit product
information. We also provided separate windows for looking up and changing supplier information.
Finally, we solved the problem of saving changes back into the database even though we didn't have a
DataAdapter object handy.

Exercises
1. What's the advantage of using the techniques that we've described in this chapter?

2. Why did we choose a Web Service as the alternative way of connecting to the database?

3. How did we detect if a database connection was available?

4. Why did we need to go through the complicated updating process that we saw in this chapter?

Answers are available at http://p2p.wrox.com/exercises/.

Chapter 14

64

Case Study – B2B Application
Integration using XML

In this case study, we're going to build a Business-to-Business (B2B) application to process XML
documents representing orders made by customers. The application will create the order on the
Northwind system and return status information to the customer as XML.

This process was discussed back in the Web Services chapter (Chapter 13), and it is certainly possible to
create a Web Service that customers can use to place orders with us. However, because Web Services
are a relatively new technology, it's quite likely that we'd also need an "old school" method for
automated order processing.

Today, this type of order processing often employs Electronic Data Interchange, or EDI. Like XML,
this technology aims to facilitate business interactions that follow this pattern:

1. Organization "A" creates a document and passes it to Organization "B"

2. Organization "B" receives the document, processes it, and creates a response document

3. The response document is passed back to Organization "A"

However, EDI has a reputation for being woefully expensive and time-consuming to set up, so the
automated order system we're going to concentrate on in this chapter will be XML-based. Here's what
we're going to assume:

❑ Northwind (as the supplier) has defined an XML schema specifying how orders are to be
organized. This schema describes elements for the customer's details and the shipping address,
as well as the specific details of the order.

❑ The customer has a system that tracks stock levels in their warehouse. When stock levels for
items supplied by Northwind fall below a certain point, those items are automatically ordered
by constructing an order document based on Northwind's schema. The order document is
then passed by some means to Northwind's computers to place the order.

Chapter 15

2

❑ Once the document is received, it is processed and the order placed.

❑ Northwind also defines an XML schema for the response document. After the order has been
placed, a response document is constructed and returned to the customer.

What's important here is how the documents are transferred. The Internet provides myriad techniques
for communicating documents, including:

❑ Web Service interactions.

❑ FTP – Northwind could set up an FTP server that the customer connects to in order to upload
orders. We can then scan for new orders and process them appropriately.

❑ Microsoft Message Queuing Service – this is a Windows feature that allows transfer of
messages/documents between computers in a robust and reliable manner.

❑ E-mail – a variation on message queuing. We can use standard e-mail servers to transfer
messages/documents.

❑ Web – we can use standard web servers for transferring messages over HTTP. (Note, this is a
separate issue to Web Services.)

❑ Proprietary method – we can build our own method for the transfer of data.

We talk about some of these options in more detail later in this chapter. We're going to use the Web
Services model at our end of the process, as we can assume that Northwind has .NET (although our
customers may not), and this is perhaps the simplest method for our purposes. This isn't surprising
really when you consider that Web Services were created to resolve these kinds of integration issues.

In this case study, we're going to look at building solutions to all four parts of this problem. We'll start
off by looking at the schema.

Defining the Schema
In Chapter 13, we built a simple application that exported orders held in the Orders table from the
database. You'll remember that the DataSet object exported the data in this format:

<?xml version="1.0">

<Orders>
 <Order>
 <OrderID>11077</OrderID>
 <CustomerID>RATTC</CustomerID>
 <EmployeeID>1</EmployeeID>
 <OrderDate>1998-05-06T00:00:00.0000000+01:00</OrderDate>
 <RequiredDate>1998-06-03T00:00:00.0000000+01:00</RequiredDate>
 <ShipVia>2</ShipVia>
 <Freight>8.53</Freight>
 <ShipName>Rattlesnake Canyon Grocery</ShipName>
 <ShipAddress>2817 Milton Dr.</ShipAddress>

Case Study – B2B Application Integration using XML

3

 <ShipCity>Albuquerque</ShipCity>
 <ShipRegion>NM</ShipRegion>
 <ShipPostalCode>87110</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 </Order>
 <Detail>
 <OrderID>11076</OrderID>
 <ProductID>6</ProductID>
 <UnitPrice>25</UnitPrice>
 <Quantity>20</Quantity>
 <Discount>0.25</Discount>
 </Detail>
 <Detail>
 <OrderID>11076</OrderID>
 <ProductID>14</ProductID>
 <UnitPrice>23.25</UnitPrice>
 <Quantity>20</Quantity>
 <Discount>0.25</Discount>
 </Detail>
</Orders>

You may recall that I alluded to the fact that the format used in the DataSet doesn't really match the
structure of the above XML document. To rectify this, it would be better to make the <Detail>
elements "members" of the <Order> element, by placing them inside a <Details> node, like this:

<?xml version="1.0">

<Orders>
 <Order>
 <OrderID>11077</OrderID>
 <CustomerID>RATTC</CustomerID>
 <EmployeeID>1</EmployeeID>
 <OrderDate>1998-05-06T00:00:00.0000000+01:00</OrderDate>
 <RequiredDate>1998-06-03T00:00:00.0000000+01:00</RequiredDate>
 <ShipVia>2</ShipVia>
 <Freight>8.53</Freight>
 <ShipName>Rattlesnake Canyon Grocery</ShipName>
 <ShipAddress>2817 Milton Dr.</ShipAddress>
 <ShipCity>Albuquerque</ShipCity>
 <ShipRegion>NM</ShipRegion>
 <ShipPostalCode>87110</ShipPostalCode>
 <ShipCountry>USA</ShipCountry>
 <Details>
 <Detail>
 <OrderID>11076</OrderID>
 <ProductID>6</ProductID>
 <UnitPrice>25</UnitPrice>
 <Quantity>20</Quantity>
 <Discount>0.25</Discount>
 </Detail>
 <Detail>

Chapter 15

4

 <OrderID>11076</OrderID>
 <ProductID>14</ProductID>
 <UnitPrice>23.25</UnitPrice>
 <Quantity>20</Quantity>
 <Discount>0.25</Discount>
 </Detail>
 </Details>
 </Order>
</Orders>

The reason why the DataSet class doesn't do this kind of encapsulation, despite the fact that it could
determine this structure based on the various DataRelation objects we could attach to it, is because
the serialization code built into the DataSet class is optimized for data transfer, not representation.
The code is used for passing the DataSet between server and client in Web Services and a very closely
related technology called "Remoting". When we're sitting down to design an XML document, however,
we want to design it so that its meaning is self-evident for anyone wishing to use it.

Here's a structure that better suits a B2B "customer talking to supplier" scenario:

<?xml version="1.0">

<Order>
 <CustomerID>RATTC</CustomerID>
 <PreferredShippingMethod>2</PreferredShippingMethod>
 <ResponseEmail>customer@pretendcompany.com</ResponseEmail>
 <ShippingAddress>
 <Name>Rattlesnake Canyon Grocery</Name>
 <Address>2817 Milton Dr.</Address>
 <City>Albuquerque</City>
 <Region>NM</Region>
 <PostalCode>87110</PostalCode>
 <Country>USA</Country>
 </ShippingAddress>
 <Details>
 <Detail>
 <ProductID>6</ProductID>
 <Quantity>20</Quantity>
 </Detail>
 <Detail>
 <ProductID>14</ProductID>
 <Quantity>20</Quantity>
 </Detail>
 </Details>
</Order>

Here's the rationale behind the design:

❑ We don't need an order ID or employee ID when placing orders. We generate the order IDs
ourselves, and the employee ID we use depends on our policy. We can either give a customer
the same employee ID, or we can pick one at random. In this example, we choose the latter
option. We'll include those in the return document.

Case Study – B2B Application Integration using XML

5

❑ To make our lives easier, we're not requiring a date to be provided either. This means that,
when an order comes in, we can process it immediately rather than having to hold it for the
given length of time before processing it. (This is a business decision – there's no technical
reason why we can't do this.)

❑ When we've processed the order, we'll send the response back as an XML document
contained within an e-mail message to the address given by the <ResponseEmail> element.

❑ We still ask for a preferred shipping method. We'll let the customer know what possible
shipping methods are available and also inform them when the list changes.

❑ The shipping address has been encapsulated in a separate shipping address element. There
isn't a strong reason for doing this – it just makes the document neater.

❑ The <Detail> elements are now contained within a <Details> element. Notice as well that
we just want a product ID and a quantity. We'll determine the price at our end – we don't
want the customer to specify any price that they fancy.

Now that we know what we want our XML document to look like, we can create an application that can
produce an appropriate document containing an order.

Placing the Order
In this section we'll build a simple class library that allows us to create a dummy order that matches the
XML document structure that we've already defined. This class library will contain two sets of classes:
the first set describes the order request and the other describes the order response.Remember that
there's no requirement that the names in the XML document need to match the names of the classes
themselves. This is because we need to avoid naming conflicts. For example, both the request and
response document will contain an <Order> element, but they both have very different meanings. The
two key classes in our application that will mirror the XML documents are the OrderRequest and the
OrderResponse classes:

❑ OrderRequest – describes the order being requested. Contains the customer's ID, the
preferred shipping method, the shipping address, the response e-mail address, and a collection
of RequestDetail objects.

❑ RequestDetail – describes a line of the order and contains a product ID and quantity.
Corresponds to the <Detail> element of the XML request document.

❑ RequestDetailCollection – contains a collection of RequestDetail classes.
These correspond to the <Details> element of the XML request document.

❑ OrderResponse – describes the response returned by the server. Contains the new order ID,
the date the order was processed, an expected delivery date, the total charge for the order,
and a collection of ResponseDetail objects.

❑ ResponseDetail – describes an item included in the order, and matches the
<Detail> element of the XML response document. Includes the product ID, the
quantity, the price and any discount applied.

Chapter 15

6

❑ ResponseDetailCollection – contains a collection of ResponseDetail classes.
Corresponds to the <Details> element of the XML response document.

Let's begin building our project now. At this stage, we implement the RequestDetail object only
and, when that's working as it should, we shall move on to the ResposeDetail object.

Try It Out – Building the Project

1. Open Visual Studio .NET and create a new Visual Basic | Class Library project. Call it
NorthwindOrderGenerator.

2. Using Solution Explorer, delete the automatically created Class1.vb. Then right-click on
NorthwindOrderGenerator, still using Solution Explorer, and select Add | Add Class, and call
it OrderRequest.

3. Now, double-click on OrderRequest.vb and add these two namespace declarations to the top
of the code listing:

Imports System.IO

Imports System.Xml

Public Class OrderRequest

4. Next, add this enumeration as a public property of the class:

Public Class OrderRequest

 ' ShippingMethod enum

 Public Enum ShippingMethod As Integer

 SpeedyExpress = 1

 UnitedPackage = 2

 FederalShipping = 3

 End Enum

5. Now, add these members:

Public Class OrderRequest

 ' ShippingMethod enum

 Public Enum ShippingMethod As Integer

 SpeedyExpress = 1

 UnitedPackage = 2

 FederalShipping = 3

 End Enum

 ' Members

Case Study – B2B Application Integration using XML

7

 Public CustomerId As String

 Public PreferredShippingMethod As ShippingMethod

 Public ShippingAddress As New Address()

 Public Details As New RequestDetailCollection()

 Public ResponseEmail As String

6. Next, create a new class called Address using Solution Explorer. Add this code:

Imports System.Xml

Public Class Address

 ' Members
 Public Name As String
 Public Address As String
 Public City As String
 Public Region As String
 Public PostalCode As String
 Public Country As String

End Class

7. Create a third new class called RequestDetail, and add the following to its code file:

Imports System.Xml

Public Class RequestDetail

 ' Members
 Public ProductId As Integer
 Public Quantity As Integer

End Class

8. We'll create a strongly typed collection to contain the RequestDetail objects. This way, we
can inherit System.Collections.CollectionBase, and we then just need Add and
Remove methods and an Item property. Create a new class called RequestDetailCollection
and add this code:

Imports System.Xml

Public Class RequestDetailCollection
 Inherits CollectionBase

 ' Add - add detail
 Public Sub Add(ByVal detail As RequestDetail)
 list.Add(detail)
 End Sub

Chapter 15

8

 Public Function Add(ByVal productId As Integer, _
 ByVal quantity As Integer) As RequestDetail

 ' Create a new detail
 Dim detail As New RequestDetail()
 detail.ProductId = productId
 detail.Quantity = quantity

 ' Add it
 Add(detail)

 ' Return it
 Return detail

 End Function

 Public Sub Remove(ByVal detail As RequestDetail)
 list.Remove(detail)
 End Sub

 Default Public Property Item(ByVal index As Integer) As RequestDetail
 Get
 Return list.Item(index)
 End Get
 Set(ByVal Value As RequestDetail)
 list.Item(index) = Value
 End Set
 End Property

End Class

9. These four classes can now be used to define an order. However, we need to get the objects to
serialize themselves to XML, as this is far and away the easiest way of generating an XML
document. Previously, the Framework objects we used could already perform their own
serialization, so this is the first time we've done this.

First of all, we need a method that can create a file. Open the code editor for OrderRequest
and add this method:

 ' Save - save the order to a file
 Public Sub Save(ByVal filename As String)

 ' Do we need to delete the file?
 Dim info As New FileInfo(filename)
 If info.Exists Then info.Delete()

 ' Create the new file
 Dim stream As New FileStream(filename, FileMode.Create)

 ' Save it
 WriteXml(stream)

Case Study – B2B Application Integration using XML

9

 ' Close the file
 stream.Close()

 End Sub

10.Next, add these two methods:

 ' WriteXml - write XML to a stream
 Public Sub WriteXml(ByVal stream As Stream)

 ' Create a writer
 Dim writer As New XmlTextWriter(stream, New System.Text.ASCIIEncoding())
 WriteXml(writer)
 writer.Close()

 End Sub

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Start top-level tag
 writer.WriteStartElement("Order")

 ' Write the general details
 writer.WriteElementString("CustomerID", CustomerId)
 writer.WriteElementString("PreferredShippingMethod", _
 PreferredShippingMethod)
 writer.WriteElementString("ResponseEmail", ResponseEmail)

 ' Write the address
 ShippingAddress.WriteXml("ShippingAddress", writer)

 ' Write the details
 Details.WriteXml(writer)

 ' Close top-level tag
 writer.WriteEndElement()

 End Sub

11. Double-click on Address.vb in Solution Explorer to open it in the code editor. Add this method:

 Public Sub WriteXml(ByVal elementName As String, _
 ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement(elementName)

 ' Write the details
 writer.WriteElementString("Name", Name)

Chapter 15

10

 writer.WriteElementString("Address", Address)
 writer.WriteElementString("City", City)
 writer.WriteElementString("Region", Region)
 writer.WriteElementString("PostalCode", PostalCode)
 writer.WriteElementString("Country", Country)

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

12.Open RequestDetailCollection.vb and add a WriteXml method there too:

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement("Details")

 ' Go through each detail
 Dim detail As RequestDetail
 For Each detail In InnerList
 detail.WriteXml(writer)
 Next

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

13.We also need to implement a WriteXml method for the RequestDetail class:

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement("Detail")

 ' Write the details
 writer.WriteElementString("ProductID", ProductId)
 writer.WriteElementString("Quantity", Quantity)

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

14.Now we have a set of objects that can be used to create an order and can also serialize
themselves to XML. What we need now is a separate test application that can be used to
create a dummy order document and save it to disk.

Using Solution Explorer, right click on the NorthwindOrderGenerator solution object at the
top of the tree and select Add | New Project.

Case Study – B2B Application Integration using XML

11

15.Create a new Visual Basic | Windows Application project and call it Order Generator Test
Client. We now need to add a reference to the NorthwindOrderGenerator project so right
click on the new project in Solution Explorer, and select Add Reference.

16.Change to the Projects tab. Ensure NorthwindOrderGenerator is highlighted in the top pane
and click Select. It should now appear in the lower pane as shown. Click OK:

17.When Form1 appears in Design view, add a new Button control. Change its Name property
to btnToFile and its Text property to Write Test Order to File:

18.Using the Toolbox, add a new SaveFileDialog control to the form. Change its Name property
to dlgSaveFile.

19.Double click somewhere on Form1 to open the code editor. Right at the top, add this
namespace reference:

Imports NorthwindOrderGenerator

Public Class Form1
 Inherits System.Windows.Forms.Form

Chapter 15

12

20.Next, add this method to create a new NorthwindOrderGenerator.OrderRequest
object populated with a dummy test order:

 ' CreateTestOrder - create a test order
 Public Function CreateTestOrder() As OrderRequest

 ' Create a new order
 Dim order As New OrderRequest()
 order.CustomerId = "RATTC"
 order.PreferredShippingMethod = order.ShippingMethod.FederalShipping
 order.ResponseEmail = "wrox@matthewreynolds.com"

 ' Set up a shipping address
 order.ShippingAddress.Name = "Warehouse #2"
 order.ShippingAddress.Address = "1234 Nowhere Street"
 order.ShippingAddress.City = "Issaquah"
 order.ShippingAddress.Region = "WA"
 order.ShippingAddress.PostalCode = "98027"
 order.ShippingAddress.Country = "USA"

 ' Add details
 order.Details.Add(6, 10)
 order.Details.Add(14, 30)

 ' Return it
 Return order

 End Function

21.Flip over to the Designer for Form1 and double-click on the Button control. Add this code to
the new event handler:

 Private Sub btnToFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnToFile.Click

 ' Show the dialog
 dlgSaveFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 If dlgSaveFile.ShowDialog() = DialogResult.OK Then

 ' Create the order
 Dim testOrder As OrderRequest = CreateTestOrder()

 ' Save it
 testOrder.Save(dlgSaveFile.FileName)

 ' Inform the user
 MsgBox("The new order has been created at '" & _
 dlgSaveFile.FileName & "'.")

 End If

 End Sub

Case Study – B2B Application Integration using XML

13

22.Using Solution Explorer, right-click the Order Generator Test Client project and select Set as
StartUp Project. Run the project.

23.When the form appears, click the button. A dialog prompts for a location to save the order
document. I recommend creating a new folder called C:\Automated Order Processor on
your local disk for this purpose.

Find the file using Windows Explorer and open it:

How It Works

You can see from the output in Internet Explorer that we've managed to create a file that matches the
format defined earlier in the chapter.

The magic here is all due to the XmlTextWriter class, which lets us create our own XML very easily.
Each of the classes that make up the order request can self-serialize to XML using their WriteXml
method. The first one of these is the OrderRequest class, and its WriteXml method takes a Stream
object. In our example, this stream object is created by the Save method and is actually a FileStream
object pointing to a file on disk.

Once we have a Stream object, we can use it to create an XmlTextWriter object, like this:

Chapter 15

14

 Public Sub WriteXml(ByVal stream As Stream)

 ' Create a writer
 Dim writer As New XmlTextWriter(stream, New System.Text.ASCIIEncoding())
 WriteXml(writer)
 writer.Close()

 End Sub

Once we have the XmlTextWriter, we pass it to an overloaded version of WriteXml, which begins
by writing the top-level Order start tag:

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Start top-level tag
 writer.WriteStartElement("Order")

We then use WriteElementString to add elements for each of the members that we want to include
in the serialization:

 ' Write the general details
 writer.WriteElementString("CustomerID", CustomerId)
 writer.WriteElementString("PreferredShippingMethod", _
 PreferredShippingMethod)
 writer.WriteElementString("ResponseEmail", ResponseEmail)

Although this method is called WriteElementString, there are no similar methods for other data
types. As far as the XmlTextWriter is concerned, anything that gets written out is a string, because the
underlying document is comprised of text. As Visual Basic .NET will implicitly convert data types by
default, when we pass in an integer such as CustomerId, that value is converted to a string through an
implicit call to CustomerId.ToString.

Once we've written the simple members, we call the WriteXml method on the Address and
RequestDetailCollection classes:

 ' Write the address
 ShippingAddress.WriteXml("ShippingAddress", writer)

 ' Write the details
 Details.WriteXml(writer)

Finally, we close the top-level element. Notice that we don't have to specify the name of the element.
The rules of well-formed XML dictate that tags must be closed in the reverse order to which they were
opened (because elements may not overlap), so XmlTextWriter can deduce that the final call to
WriteEndElement corresponds to the first call to WriteStartElement. Thus, if we had called
WriteStartElement three times, we'd have to call WriteEndElement exactly three times also.

Case Study – B2B Application Integration using XML

15

 ' Close top-level tag
 writer.WriteEndElement()

 End Sub

The WriteXml method of the Address object is similar, although you'll notice here that we pass in the
name of the element that will contain the address data. That's because Address makes a good general-
purpose object for requests and responses, to write both the shipping address and the invoice address, say:

 Public Sub WriteXml(ByVal elementName As String, _
 ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement(elementName)

 ' Write the details
 writer.WriteElementString("Name", Name)
 writer.WriteElementString("Address", Address)
 writer.WriteElementString("City", City)
 writer.WriteElementString("Region", Region)
 writer.WriteElementString("PostalCode", PostalCode)
 writer.WriteElementString("Country", Country)

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

Again, similar code is used in RequestDetailCollection. For each RequestDetail object, note
the call to the WriteXml method of RequestDetail. Also, note the use of InnerList, a protected
property provided by CollectionBase to allow access to the underlying list. This property lets us
iterate through all items in a collection from a method or property in a derived class.

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement("Details")

 ' Go through each detail
 Dim detail As RequestDetail
 For Each detail In InnerList
 detail.WriteXml(writer)
 Next

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

Chapter 15

16

Finally, the WriteXml method of the Detail class offers no surprises:

 Public Sub WriteXml(ByVal writer As XmlTextWriter)

 ' Write the top-level tag
 writer.WriteStartElement("Detail")

 ' Write the details
 writer.WriteElementString("ProductID", ProductId)
 writer.WriteElementString("Quantity", Quantity)

 ' Close the top-level tag
 writer.WriteEndElement()

 End Sub

In this section we've seen how to control serialization of objects and related objects to build an XML
document that exactly suits our requirements. Later, we'll look at how to de-serialize the objects from
the XML document once it has been received.

Transferring the Document
So, once we've put together the XML document describing the order, how can we pass it to the
supplier's (Northwind's) server for processing? There are many different techniques and we'll see some
of them in this chapter.

Web Service
If we were asked to recommend a ".NET way" of transferring the document, we'd probably say a Web
Service. We could configure an ASP.NET Web Service to run on a server and listen for incoming
documents. Once a document was received, it could then be processed.

We demonstrate this technique fully in this chapter.

FTP
Of course, we can't guarantee that our customers will be using .NET, and we also can't guarantee that
they're going to be able to use Web Services of any kind. One avenue open to us has been around
almost as long as the Internet itself. File Transfer Protocol, or FTP, is a simple protocol that enables a
two-way transfer of documents. (Generally, the Web is geared towards just downloading documents
requested by a browser.)

.NET's support for FTP can, with a positive spin, be described as poor. Some even describe it as non-
existent. Either way, it's hard to build .NET applications that use FTP, although in this chapter we'll
have a go at receiving documents through FTP.

Case Study – B2B Application Integration using XML

17

E-mail
Another message transfer mechanism with broad support is e-mail. On most platforms, it's very easy to
send e-mail from an application once it's been composed. All we'd have to do is make our server
monitor a mailbox for incoming messages and process them.

In this chapter's sample application, we're not going to listen for incoming mails but we are going to
send a response out by e-mail once an order has been processed.

Message Queuing
Microsoft Message Queuing Service is designed for transferring messages between computers over
potentially unreliable networks, such as the Internet. It's effectively a private e-mail server whereby a
queue is set up on a destination computer and the source computer sends messages to that queue. The
queue is monitored for incoming documents and each incoming document can then be processed.

We won't be looking at the Message Queuing Service here because it requires the server to run on a
network with a Primary Domain Controller. If you're particularly interested in this facility, try Wrox's
Professional MTS & MSMQ Programming with VB and ASP (ISBN 1861001460).

Proprietary
Another way of transferring documents would be to put together your own proprietary protocol and
write your own server. With this technique you have ultimate control, but you're asking a lot of the
people who want to use your service. Anyone wanting to transfer documents to you would need to
either download a client you wrote to communicate with your service or write their own. It's likely that,
when faced with such an option, your clients will harrumph loudly, "Can't I just use a Web Service or
FTP or something!?"

Receiving and Processing the Order
Now that we can create an XML document containing the order (which will come from a Northwind
customer), we need to turn our attention to the other end of the problem – how do we (at Northwind)
receive the order, process it, and send a response.

What we want to do is offer a number of possibilities for how the file is transferred. Although a Web
Service seems the obvious choice for transmitting the order details, as a relatively new technology, it's
not smart to insist that our business partners and customers use it. They may be using a platform with
relatively poor Web Service support, or simply do not have the resources to deploy a Web Service
based solution.

In the past, document transfers have commonly been done over FTP. A customer logs onto a special FTP
site and uploads their file, which can be detected by a service at the supplier's end and added to the queue
for processing. The beauty is that FTP is an old, established technology with native support in every
computing platform. Well, every computing platform except .NET. For some reason, Microsoft has chosen
not to include FTP support in the initial release of the Framework. This means that, in this case study, we
cannot demonstrate how to transfer the file, but we can show what happens when it is received.

Chapter 15

18

There are some FTP components available for old school Windows DNA development.
One free example is Server Object's ASPInet component available from
http://www.serverobjects.com/

All FTP services work in the same way – you create a folder somewhere on your network and configure
an FTP site that uses that folder as its "root". When the user connects to the FTP site, files are uploaded
into that folder. So, if we create a folder called C:\Automated Order Processor\Inbound and configure
an FTP site with this directory as its root, all uploaded files will then appear in C:\Automated Order
Processor\Inbound.

In this section, we're going to create a service that monitors this folder for any new files – and
remember that each new file contains exactly one order request document. We can simulate the action
of the user uploading a file with an FTP client to copy files from to the server, or simpler yet by
manually copying the file with Windows Explorer. Unfortunately, we will not be able to get our test
client that we've just built to automatically upload to FTP because of the lack of FTP support in .NET.

Creating the Service
Ideally, what we want to do is build a Windows Service on the computer that will monitor the Inbound
directory. By creating a service we're actually creating a program that will run automatically whenever
the computer is started, but more importantly will run when the user is not logged on.

For those of you unfamiliar with how a server works, most of the time they remain at the login screen.
Nearly all of the tasks undertaken by the server – such as running a database, a web site, or making files
accessible over the network – do not require user interaction and the safest way to leave a server is at
the Windows login screen. In that way no one can change the server setup without a valid user name
and password. Software that runs all the time, even while the login screen is displayed, is called a
Windows Service.

Building a Windows Service in .NET is far easier than it was before. For ease of debugging and
maintenance, however, we're going to build the project in three parts. We need:

❑ A class library that contains the code that powers the service. In our case, this will be code
that monitors the Inbound folder, reads XML order request documents, updates the
database, and prepares a response.

❑ A console application that can load the class library and display the results. We'll need this
for debugging.

❑ A Windows Service that will load the class library but won't display the results. We would
need this if we were to put the service into a production environment.

We'll use the console application to test and debug the service as we develop. As the "guts" of the
service will be placed in the class library, when it's time to roll the system out in a production setting,
we can get the Windows Service to load the same class library and everything should then work just as
it did in the development lab.

First, we'll create the class library and the console application for debugging the project.

Case Study – B2B Application Integration using XML

19

Try It Out – Building the "Automated Order Processor"

1. Open Visual Studio .NET. Create a new Windows Application | Class Library project, and
call it Automated Order Processor.

2. Using Solution Explorer, delete Class1.vb, and create a new class called Processor.

At the top of the Processor.vb code file, add these namespace declarations:

Imports System.IO
Imports System.Xml
Imports System.Xml.Schema
Imports System.Xml.Serialization

Public Class Processor

3. Add these members:

Public Class Processor

 ' Members
 Public Const InboundFolder As String = "C:\Automated Order Processor\Inbound"
 Public Shared DbString As String = "Initial Catalog=NorthwindSQL; _
 Data Source=NET-MONKEY\NetSDK;User ID=sa"
 Private _watcher As FileSystemWatcher

4. Add the start up method:

 ' Start - start the watcher
 Public Sub Startup()

 ' Create a watcher
 _watcher = New FileSystemWatcher(InboundFolder)

 ' Create an event handler
 AddHandler _watcher.Created, AddressOf Me.ProcessOrder

 ' Start watching
 _watcher.Filter = "*.xml"
 _watcher.EnableRaisingEvents = True

 ' Tell the user
 Log("Monitoring '" & InboundFolder & "'")

 End Sub

5. Now, add the shut down method:

Chapter 15

20

 ' Stop - This method halts the watcher
 Public Sub Shutdown()

 ' Stop the watcher
 If Not _watcher Is Nothing Then
 _watcher.EnableRaisingEvents = False
 _watcher = Nothing
 Log("Watcher closed")
 End If

 End Sub

6. Then, add the method that writes information to the log file:

 ' Write log information
 Public Sub Log(ByVal buf As String)
 Console.WriteLine(Date.Now.ToLongTimeString & ": " & buf)
 End Sub

7. When we process the order, we have to prepare a response that can be sent back to the
user. The easiest way is to create an OrderResponse class and associated classes just like we
did for OrderRequest. It makes sense to add these classes to the existing
NorthwindOrderGenerator library.

Using Solution Explorer, right-click on the Automated Order Processor solution and select
Add | Existing Project. Find and open NorthwindOrderGenerator.vbproj:

Case Study – B2B Application Integration using XML

21

8. The Solution Explorer should now show the following:

9. We must also tie the two projects together by adding a reference to NorthwindOrderGenerator
from the Automated Order Processor object, otherwise the Automated Order Processor code
will not be able to access the classes defined there. Right-click on the Automated Order
Processor project and select Add Reference.

Change to the Projects tab. Make sure NorthwindOrderGenerator is selected, click Select,
and then OK.

10.Open Processor.vb in the code editor again. Add this namespace declaration:

Imports System.IO
Imports System.Xml
Imports System.Xml.Schema
Imports System.Xml.Serialization
Imports NorthwindOrderGenerator

Public Class Processor

11.Also add this method inside the Processor class:

 ' ProcessOrder - process an order
 Public Sub ProcessOrder(ByVal sender As Object, _
 ByVal e As FileSystemEventArgs)

 ' Tell the user
 Log("Processing '" & e.FullPath & "'...")

 ' We'll do the processing here

 ' Tell the user
 Log("Finished '" & e.FullPath & "'...")

 End Sub

Chapter 15

22

12.To run the solution, we need another project because class libraries cannot be started directly,
and both projects in the solution are class libraries. Using Solution Explorer, right-click on the
Automated Order Processor solution and select Add | Add New Project.

Add a new Visual Basic | Console Application project. Call it Automated Order Processor
Test Host.

13.When the code editor for Module1 appears, add this code:

Module Module1

 Sub Main()

 ' Start the processor
 Dim processor As New Automated_Order_Processor.Processor()
 processor.Startup()

 ' Wait
 Console.WriteLine()
 Console.WriteLine("Press Return to close the host")
 Console.ReadLine()

 ' Stop the processor
 processor.Shutdown()

 End Sub

End Module

14.One more thing before we can run the project – right-click on the new Automated Order
Processor Test Host project in Solution Explorer and select Set as StartUp Project.

15.Now run the project.You should see this:

16.Now, using Windows Explorer, copy the XML file containing the test order that you saved
previously in the C:\Automated Order Processor\Inbound folder. You should see
this, indicating that the processor received an order:

Case Study – B2B Application Integration using XML

23

How It Works

We've created a central library of functionality that will eventually contain everything related to the
automatic processing of orders. For development purposes, we've created a console application project
that creates an instance of the Processor class defined in this library, and told it to monitor the
C:\Automated Order Processor\Inbound folder. Later in this chapter, we'll reuse this library in
a Windows Service application.

For now, what's important here is the use of the System.IO.FileSystemWatcher class. This class
can monitor a given folder for new files, changes to existing files, files being renamed, and files being
deleted. In this case, it can notify us when a new order has been received.

The StartUp method is responsible for starting up the FileSystemWatcher. Here, we create a new
instance of the class and provide the path to the Inbound folder, using the constant InboundFolder
member defined at the beginning of the Processor class:

 ' Start - start the watcher
 Public Sub Startup()

 ' Create a watcher
 _watcher = New FileSystemWatcher(InboundFolder)

We're only interested in listening for new files, so we add a handler to the object's Created event using
the AddHandler keyword:

 ' Create an event handler
 AddHandler _watcher.Created, AddressOf Me.ProcessOrder

Also, as we're only interested in new XML files, we provide a filter for FileSystemWatcher so it only
fires an event when the file has an extension of .xml:

 ' Start watching
 _watcher.Filter = "*.xml"

We then tell it to start raising events, and send a message to the log file:

 _watcher.EnableRaisingEvents = True

 ' Tell the user
 Log ("Monitoring '" & InboundFolder & "'")

 End Sub

When using our Console Application, the Log method will direct its output to the console, giving us a
way of seeing what's going on. We can leave these calls in when we eventually run this as a Windows
Service, as the messages will not be shown as there will be no "console".

The FileSystemWatcher object stops listening when the EnabledRaisingEvents property is set
to False:

Chapter 15

24

 ' Stop - stop the watcher
 Public Sub Shutdown()

 ' Stop the watcher
 If Not _watcher Is Nothing Then
 _watcher.EnableRaisingEvents = False
 _watcher = Nothing
 Log("Watcher closed")
 End If

 End Sub

Whenever a new file is added (as was the case when we copied the file over), the ProcessOrder
method will now be called as a result of the Created event being fired. The FileSystemEventArgs
object passed through e contains the full path of the file that was added.

 ' ProcessOrder - process an order
 Public Sub ProcessOrder(ByVal sender As Object, _
 ByVal e As FileSystemEventArgs)

 ' Tell the user
 Log("Processing '" & e.FullPath & "'...")

 ' We'll do the processing here

 ' Tell the user
 Log("Finished '" & e.FullPath & "'...")

 End Sub

One thing to note – if you try and copy the file into the Inbound directory again, you won't see the file
get processed again. That's because we've configured FileSystemWatcher only to raise events when
the file has been created not changed. You'll need to delete the copy of the XML document and then
copy the file if you want to repeat what we've just seen.

Responding to Order Requests
Now that we can detect when a new file has been received, we should look at processing the order and
sending the response by e-mail. Unlike the Web Service model, e-mail gives us maximum flexibility –
we don't have to process an order as soon as we receive it and if we want, we can collect all orders
received in a day and process them as a single batch.

Imagine we receive an order for 100 widgets, but we only have 60. We ship 60, and create and e-mail
an XML response document that informs the customer that 60 are on their way. We place the remaining
40 on back order and in a few days time when we receive stock, we create and e-mail another response
document telling the customer that the remaining 40 are on the way.

This process is relatively complicated. We need to create another set of classes that describe an order
response. As this response will contain information additional to the request document, we need another
set of objects. To make our lives easier though, we'll use the XmlSerializer to turn these objects into
an XML document, unlike for the request document where we did this "by hand".

Case Study – B2B Application Integration using XML

25

The complicated part comes when we have to de-serialize the request document and enter the
information into the database. We'll come to this in the second part of this discussion.

Try It Out – Sending a Response

1. Using Solution Explorer, add a new class called OrderResponse to the
NorthwindOrderGenerator project. Place this code inside it:

Imports System.Xml.Serialization

Public Class OrderResponse

 ' members
 Public Problem As ResponseProblem
 Public OrderId As Integer
 Public ProcessedDate As Date
 Public ExpectedDeliveryDate As Date
 Public Details As New ResponseDetailCollection()
 Public SubTotal As Single
 Public FreightCharge As Single
 Public Total As Single

End Class

2. When a problem occurs on the server (and in our case we're mainly talking about exceptions here),
we'll need to encapsulate the problem in the response to the customer. Add a new class called
ResponseProblem to the NorthwindOrderGenerator project containing the following code:

Public Class ResponseProblem

 ' Codes
 Public Enum ProblemCode As Integer
 Unknown = -1
 Exception = 0
 End Enum

 ' Members
 Public Code As ProblemCode = ProblemCode.Unknown
 Public Type As String
 Public Description As String

End Class

3. Next, add a new class called ResponseDetail to the NorthwindOrderGenerator project, and
insert this code:

Public Class ResponseDetail

 ' Members

Chapter 15

26

 Public ProductId As Integer
 Public Quantity As Integer
 Public UnitPrice As Single
 Public Discount As Single
 Public Total As Single

End Class

4. To hold lists of ResponseDetail objects, we need our own collection. Add a new class called
ResponseDetailCollection to the NorthwindOrderGenerator project with this code:

Public Class ResponseDetailCollection
 Inherits CollectionBase

 ' Add - add detail
 Public Sub Add(ByVal detail As ResponseDetail)
 list.Add(detail)
 End Sub

 ' Remove - remove detail
 Public Sub Remove(ByVal detail As ResponseDetail)
 list.Remove(detail)
 End Sub

 ' Item
 Default Public Property Item(ByVal index As Integer) As ResponseDetail
 Get
 Return list.Item(index)
 End Get
 Set(ByVal Value As ResponseDetail)
 list.Item(index) = Value
 End Set
 End Property

End Class

5. Open the code editor for Processor.vb. (Remember this is in the Automated Order
Processor project.) Add these namespace declarations to the top of the code listing:

Imports System.IO
Imports System.Xml
Imports System.Xml.Schema
Imports System.Xml.Serialization
Imports System.Data.SqlClient
Imports System.Web
Imports System.Web.Mail

6. Add a new method:

Case Study – B2B Application Integration using XML

27

 Public Function ProcessOrder(ByVal filename As String) As OrderResponse

 ' Create an XML reader
 Dim reader As New XmlTextReader(filename)
 Dim response As OrderResponse = ProcessOrder(reader)
 reader.Close()

 ' Return
 Return response

 End Function

7. Now add this method, but replace the e-mail address in the SendResponse method call with
your own:

 Public Function ProcessOrder(ByVal reader As XmlTextReader) As OrderResponse

 ' Create a new response
 Dim response As New OrderResponse()

 ' Add some dummy information for testing
 response.OrderId = 999
 response.ProcessedDate = Date.Now
 response.ExpectedDeliveryDate = Date.Now.AddDays(4)

 ' Add some dummy details
 Dim detail As New ResponseDetail()
 detail.ProductId = 4
 detail.Quantity = 1000
 detail.UnitPrice = 3.95
 detail.Total = detail.Quantity * detail.UnitPrice
 response.Details.Add(detail)

 ' Update the totals
 response.SubTotal = detail.Total
 response.FreightCharge = 10.5
 response.Total = response.SubTotal + response.FreightCharge

 ' Send e-mail
 SendResponse(response, "mytest@pretendcompany.com")

 ' Return the results
 Return response

 End Function

8. Next, add this method:

 ' SendResponse - send the document by e-mail
 Public Sub SendResponse(ByVal response As OrderResponse, _

Chapter 15

28

 ByVal emailAddress As String)

 ' Serialize the response object to a memory stream
 Dim stream As New MemoryStream()
 Dim serializer As New XmlSerializer(response.GetType)
 serializer.Serialize(stream, response)

 ' Convert the stream to a string
 stream.Seek(0, SeekOrigin.Begin)
 Dim reader As New StreamReader(stream)
 Dim responseXml As String = reader.ReadToEnd

 ' Close the stream and the reader
 reader.Close()
 stream.Close()

 ' Send the e-mail
 Try
 SmtpMail.Send("server@pretendcompany.com", emailAddress, _
 "Status of Order #" & response.OrderId, responseXml)
 Log("Sent to '" & emailAddress & "'")
 Catch ex As Exception
 reportexception(ex)
 End Try

 End Sub

The Send method of System.Web.Mail.SmtpMail provides a quick way of
sending e-mail. The parameters you need are the "from address", the "to address",
the "subject", and the "message body" respectively.

9. Also, add this method:

 ' ReportException - log an exception
 Public Sub ReportException(ByVal ex As Exception)

 ' Get the innermost one
 Do While Not ex.InnerException Is Nothing
 ex = ex.InnerException
 Loop

 ' Report it
 Log("An exception occured: " & ex.Message)
 Console.WriteLine(ex.Source)
 Console.WriteLine(ex.StackTrace)

 End Sub

Case Study – B2B Application Integration using XML

29

10.Go back to the original ProcessOrder method and add the highlighted code:

 ' ProcessOrder - process an order
 Public Sub ProcessOrder(ByVal sender As Object, _
 ByVal e As FileSystemEventArgs)

 ' tell the user
 Log("Processing '" & e.FullPath & "'...")

 ' we'll do the processing here
 Dim response As OrderResponse
 response = ProcessOrder(e.FullPath)

 ' tell the user
 Log("Finished '" & e.FullPath & "'...")

 End Sub

11.Run the Automated Order Test Host project.

Using Windows Explorer, find the Inbound folder. Delete the copy of the XML document
that you made previously, and copy the file again. You'll see this:

12. In a few minutes, you should receive the e-mail response. If not, there's probably something
awry with your SMTP configuration. (This usually happens if your computer is behind a
firewall, or you have incorrectly specified your SMTP server.)

13. If the e-mail does not appear, you can still see the message. Use Windows Explorer to open
the c:\Inetpub\MailRoot\Queue folder, where unsent messages are kept:

Chapter 15

30

14.Double-click the message and it will be loaded into your mail program:

How It Works

In the first part of this exercise, we built a set of "response" objects similar to the ones that contain the
order "requests".

When we detect that a new file has been added to the Inbound folder, our ProcessOrder method
will be called by the FileSystemWatcher object's Create event. We create a new XmlTextReader
object and pass that to another version of ProcessOrder:

 Public Function ProcessOrder(ByVal filename As String) As OrderResponse

 ' Create an XML reader
 Dim reader As New XmlTextReader(filename)
 Dim response As OrderResponse = ProcessOrder(reader)
 reader.Close()

 ' Return
 Return response

 End Function

Case Study – B2B Application Integration using XML

31

This second version of ProcessOrder will eventually contain code to add the order to the database.
For now, we create a dummy response with a fixed order ID and details:

 Public Function ProcessOrder(ByVal reader As XmlTextReader) As OrderResponse

 ' Create a new response
 Dim response As New OrderResponse()

 ' Add some dummy information for testing
 response.OrderId = 999
 response.ProcessedDate = Date.Now
 response.ExpectedDeliveryDate = Date.Now.AddDays(4)

 ' Add some dummy details
 Dim detail As New ResponseDetail()
 detail.ProductId = 4
 detail.Quantity = 1000
 detail.UnitPrice = 3.95
 detail.Total = detail.Quantity * detail.UnitPrice
 response.Details.Add(detail)

 ' Update the totals
 response.SubTotal = detail.Total
 response.FreightCharge = 10.5
 response.Total = response.SubTotal + response.FreightCharge

After we've created the new OrderResponse object, we pass it over to the SendResponse method
together with an e-mail address:

 ' Send e-mail
 SendResponse(response, "mytest@pretendcompany.com")

 ' Return the results
 Return response

 End Function

We said before that we were going to use System.Xml.Serialization.XmlSerializer to turn
the OrderResponse object into an XML document rather than doing the serialization ourselves. In
most cases, XmlSerializer is used to save an object to a file but, in our case, we actually want to save
it to a string. We have to create a System.IO.MemoryStream object to do this. This kind of stream
works like standard FileStream objects, but rather than storing in a file on disk, MemoryStream uses
an area of memory:

 ' SendResponse - send the document as e-mail
 Public Sub SendResponse(ByVal response As OrderResponse, _
 ByVal emailAddress As String)

 ' Serialize the response object to a memory stream
 Dim stream As New MemoryStream()
 Dim serializer As New XmlSerializer(response.GetType)
 serializer.Serialize(stream, response)

Chapter 15

32

Once XmlSerializer has finished, we need to read the data back from the stream and into a string.
We rewind the stream to the beginning, create a System.IO.StreamReader, and call ReadToEnd to
extract the entire contents of the stream and return it as a string:

 ' Convert the stream to a string
 stream.Seek(0, SeekOrigin.Begin)
 Dim reader As New StreamReader(stream)
 Dim responseXml As String = reader.ReadToEnd

Windows 2000 and .NET can send Internet e-mail through the SMTP Service using the
System.Web.Mail.SmtpMail class. There isn't much to sending mail – we just need to specify a
"from" address, a "to" address, a subject, and the message body through the shared Send method:

 ' Send the e-mail
 Try
 SmtpMail.Send("server@pretendcompany.com", emailAddress, _
 "Status of Order #" & response.OrderId, responseXml)
 Log("Sent to '" & emailAddress & "'")
 Catch ex As Exception
 reportexception(ex)
 End Try

 End Sub

Processing the Order
Now that we can create a response document and send it via e-mail, we can turn our attention to de-
serializing the original request and saving the order in the database.

Try It Out – Processing the Order

1. If the project is still running, close it.

2. Open OrderRequest.vb, defined in the NorthwindOrderGenerator project, in the code editor
and add the ReadXml method:

 ' ReadXml - load the order document
 Public Sub ReadXml(ByVal reader As XmlTextReader)

 ' Read through the elements
 Do While True

 If reader.Read() = False Then
 Exit Do
 End If

 ' What node type do we have?
 Select Case reader.NodeType

Case Study – B2B Application Integration using XML

33

 Case XmlNodeType.Element
 Select Case reader.Name

 Case "CustomerID"
 reader.Read()
 Me.CustomerId = reader.Value

 Case "PreferredShippingMethod"
 reader.Read()
 Me.PreferredShippingMethod = reader.Value

 Case "ResponseEmail"
 reader.Read()
 Me.ResponseEmail = reader.Value

 Case "ShippingAddress"
 Me.ShippingAddress.ReadXml(reader.Name, reader)

 Case "Details"
 Me.Details.ReadXml(reader)

 End Select

 End Select

 Loop

 End Sub

3. Now add a ReadXml method to the Address.vb code:

 ' ReadXml - read from an XML stream
 Public Sub ReadXml(ByVal elementName As String, _
 ByVal reader As XmlTextReader)

 ' Loop
 Do While True

 ' Read
 If reader.Read() = False Then
 Exit Do
 End If

 ' What node type do we have?
 Select Case reader.NodeType

 Case XmlNodeType.Element

 ' What we do have?
 Select Case reader.Name

Chapter 15

34

 Case "Name"
 reader.Read()
 Me.Name = reader.Value

 Case "Address"
 reader.Read()
 Me.Address = reader.Value

 Case "City"
 reader.Read()
 Me.City = reader.Value

 Case "Region"
 reader.Read()
 Me.Region = reader.Value

 Case "PostalCode"
 reader.Read()
 Me.PostalCode = reader.Value

 Case "Country"
 reader.Read()
 Me.Country = reader.Value

 End Select

 Case XmlNodeType.EndElement

 ' Have we reached the end of the element?
 If reader.Name = elementName Then
 Return
 End If

 End Select

 Loop

 End Sub

4. Then add one to RequestDetailCollection.vb:

 ' ReadXml - read from an XML stream
 Public Sub ReadXml(ByVal reader As XmlTextReader)

 ' Loop
 Do While True

 ' Read
 If reader.Read() = False Then
 Exit Do

Case Study – B2B Application Integration using XML

35

 End If

 ' What node type do we have?
 Select Case reader.NodeType

 Case XmlNodeType.Element

 ' Do we have a detail element?
 If reader.Name = "Detail" Then

 ' Create one
 Dim detail As New RequestDetail()
 detail.ReadXml(reader)

 ' Add it
 Add(detail)

 End If

 Case XmlNodeType.EndElement

 ' Have we reached the end of the element?
 If reader.Name = "Details" Then
 Return
 End If

 End Select

 Loop

 End Sub

5. Finally, RequestDetail.vb needs a ReadXml method also:

 ' ReadXml - read from an XML stream
 Public Sub ReadXml(ByVal reader As XmlTextReader)

 ' Loop
 Do While True

 ' Read
 If reader.Read() = False Then
 Exit Do
 End If

 ' What node type do we have?
 Select Case reader.NodeType

 Case XmlNodeType.Element

 ' What do we have?

Chapter 15

36

 Select Case reader.Name

 Case "ProductID"
 reader.Read()
 Me.ProductId = reader.Value

 Case "Quantity"
 reader.Read()
 Me.Quantity = reader.Value

 End Select

 Case XmlNodeType.EndElement

 ' Have we reached the end of the element?
 If reader.Name = "Detail" Then
 Return
 End If

 End Select

 Loop

 End Sub

6. Make these changes to the third overloaded ProcessOrder method in the Processor.vb file of
the Automated Order Processor project. This code replaces the dummy code we used earlier:

 Public Function ProcessOrder(ByVal reader As XmlTextReader) As OrderResponse

 ' Create a new response
 Dim response As New OrderResponse()

 ' Load the order
 Try

 Dim request As New OrderRequest()
 request.ReadXml(reader)

 ' Connect to the database
 Dim connection As New SqlConnection(DbString)
 connection.Open()

 ' Set the date
 response.ProcessedDate = Date.Now
 response.ExpectedDeliveryDate = Date.Now.AddDays(3)

 ' Assume we have a fixed freight charge
 response.FreightCharge = 10.5

 ' Right, create a new order

Case Study – B2B Application Integration using XML

37

 response.OrderId = CreateOrder(connection, request, _
 response.FreightCharge)

 ' Go through each detail
 Dim requestDetail As RequestDetail
 For Each requestDetail In request.Details

 ' Create a response detail
 Dim responseDetail As New ResponseDetail()
 response.Details.Add(responseDetail)

 ' Get the basic info
 responseDetail.ProductId = requestDetail.ProductId
 responseDetail.Quantity = requestDetail.Quantity

 ' Get the price
 Dim unitPrice As Single = _
 GetProductPrice(connection, requestDetail.ProductId)
 responseDetail.Discount = 0.02
 responseDetail.UnitPrice = unitPrice * _
 (1 - responseDetail.Discount)
 responseDetail.Total = responseDetail.UnitPrice * _
 responseDetail.Quantity

 ' Add the detail
 AddOrderDetails(connection, response.OrderId, responseDetail)

 ' Adjust the charge of the order
 response.SubTotal += responseDetail.Total

 Next

 ' Update the total
 response.Total = response.SubTotal + response.FreightCharge

 ' Close the databsae connection
 connection.Close()

 Catch ex As Exception
 ReportException(ex)
 End Try

 ' Send e-mail
 SendResponse(response, "mytest@pretendcompany.com")

 ' Return the results
 Return response

 End Function

7. The next method we must add to Processor.vb is quite lengthy:

Chapter 15

38

 ' CreateOrder - create a new order
 Public Function CreateOrder(ByVal connection As SqlConnection, _
 ByVal order As OrderRequest, ByVal freightCharge As Single) As Integer

 ' Create a command
 Dim command As New SqlCommand("CreateOrder", connection)
 command.CommandType = CommandType.StoredProcedure

 ' Add parameters
 Dim customerIdParam As SqlParameter = _
 command.Parameters.Add("@CustomerId", SqlDbType.VarChar, 5)
 customerIdParam.Value = order.CustomerId
 Dim employeeIdParam As SqlParameter = _
 command.Parameters.Add("@employeeId", SqlDbType.Int)
 employeeIdParam.Value = GetRandomEmployeeId(connection)
 Dim shipViaParam As SqlParameter = _
 command.Parameters.Add("@shipVia", SqlDbType.Int)
 shipViaParam.Value = order.PreferredShippingMethod
 Dim emailParam As SqlParameter = _
 command.Parameters.Add("@email", SqlDbType.VarChar, 48)
 emailParam.Value = order.ResponseEmail
 Dim freightParam As SqlParameter = _
 command.Parameters.Add("@freight", SqlDbType.Float)
 freightParam.Value = freightCharge
 Dim shipNameParam As SqlParameter = _
 command.Parameters.Add("@shipName", SqlDbType.VarChar, 32)
 shipNameParam.Value = order.ShippingAddress.Name
 Dim shipAddressParam As SqlParameter = _
 command.Parameters.Add("@shipAddress", SqlDbType.VarChar, 32)
 shipAddressParam.Value = order.ShippingAddress.Address
 Dim shipCityParam As SqlParameter = _
 command.Parameters.Add("@shipCity", SqlDbType.VarChar, 32)
 shipCityParam.Value = order.ShippingAddress.City
 Dim shipRegionParam As SqlParameter = _
 command.Parameters.Add("@shipRegion", SqlDbType.VarChar, 32)
 shipRegionParam.Value = order.ShippingAddress.Region
 Dim shipPostalCodeParam As SqlParameter = _
 command.Parameters.Add("@shipPostalCode", SqlDbType.VarChar, 32)
 shipPostalCodeParam.Value = order.ShippingAddress.PostalCode
 Dim shipCountryParam As SqlParameter = _
 command.Parameters.Add("@shipCountry", SqlDbType.VarChar, 32)
 shipCountryParam.Value = order.ShippingAddress.Country

 ' Add a param for the return value
 Dim idParam As SqlParameter = _
 command.Parameters.Add("@id", SqlDbType.Int)
 idParam.Direction = ParameterDirection.ReturnValue

 ' Run it
 command.ExecuteNonQuery()

 ' Get the ID
 Dim orderId As Integer = idParam.Value

Case Study – B2B Application Integration using XML

39

 ' Cleanup
 command.Dispose()

 ' Return the ID
 Return orderId

 End Function

8. The GetRandomEmployeeId method assigns the order to an employee picked at random. In
a real-world situation, particular employees would be designated to deal with certain accounts,
but this will suffice for our example:

 ' GetRandomEmployeeId - pick an ID from those available
 Public Function GetRandomEmployeeId(ByVal connection As SqlConnection) _
 As Integer

 ' Fill a dataset
 Dim adapter As New SqlDataAdapter("SELECT EmployeeID FROM Employees WHERE _
 ReportsTo IS NOT null", connection)
 Dim dataset As New DataSet()
 adapter.Fill(dataset)
 adapter.Dispose()

 ' Get the employee id
 Dim index As Integer = _
 New System.Random().Next(dataset.Tables(0).Rows.Count - 1)
 Dim employeeId As Integer = dataset.Tables(0).Rows(index).Item(0)

 ' Clean up
 dataset.Dispose()

 ' Return
 Return employeeId

 End Function

9. Add the GetProductPrice method:

 ' GetProductPrice - get the price of a product
 Public Function GetProductPrice(ByVal connection As SqlConnection, _
 ByVal productId As Integer) As Single

 ' Get an adapter and fill a dataset
 Dim adapter As New SqlDataAdapter("SELECT unitprice FROM products WHERE _
 productid=" & productId, connection)
 Dim dataset As New DataSet()
 adapter.Fill(dataset)
 adapter.Dispose()

Chapter 15

40

 ' Get the price
 Dim price As Single = dataset.Tables(0).Rows(0).Item(0)

 ' Cleanup
 dataset.Dispose()

 ' Return it
 Return price

 End Function

10.Next, the AddOrderDetails method:

 ' AddOrderDetails - add details to the order
 Public Sub AddOrderDetails(ByVal connection As SqlConnection, _
 ByVal orderId As Integer, ByVal detail As ResponseDetail)

 ' Create a command
 Dim command As New SqlCommand("AddOrderDetails", connection)
 command.CommandType = CommandType.StoredProcedure

 ' Add parameters
 Dim orderIdParam As SqlParameter = _
 command.Parameters.Add("@orderId", SqlDbType.Int)
 orderIdParam.Value = orderId
 Dim productIdParam As SqlParameter = _
 command.Parameters.Add("@productId", SqlDbType.Int)
 productIdParam.Value = detail.ProductId
 Dim unitPriceParam As SqlParameter = _
 command.Parameters.Add("@unitPrice", SqlDbType.Float)
 unitPriceParam.Value = detail.UnitPrice
 Dim quantityParam As SqlParameter = _
 command.Parameters.Add("@quantity", SqlDbType.Int)
 quantityParam.Value = detail.Quantity
 Dim DiscountParam As SqlParameter = _
 command.Parameters.Add("@discount", SqlDbType.Float)
 DiscountParam.Value = detail.Discount

 ' Run it
 command.ExecuteNonQuery()

 ' Close
 command.Dispose()

 End Sub

11.You'll also need to create new stored procedures to commit the information to the database.
Add the stored procedure below to the NorthwindSQL database using Server Explorer:

Case Study – B2B Application Integration using XML

41

CREATE PROCEDURE CreateOrder

(

 @customerId varchar(5),

 @employeeId int,

 @shipVia int,

 @email varchar(48),

 @freight float,

 @shipName varchar(32),

 @shipAddress varchar(32),

 @shipCity varchar(32),

 @shipRegion varchar(32),

 @shipPostalCode varchar(32),

 @shipCountry varchar(32)

)

AS

 /* insert the order */

 INSERT INTO orders(customerid, employeeid, orderdate, requireddate, shipvia,

 freight, shipname, shipaddress, shipcity, shipregion, shippostalcode,

 shipcountry)

 VALUES (@customerid, @employeeid, getdate(), getdate(), @shipVia,

 @freight, @shipname, @shipaddress, @shipcity, @shipregion,

 @shippostalcode, @shipcountry)

 /* return the id */

 return @@identity

12.Then, add this stored procedure:

CREATE PROCEDURE AddOrderDetails

(

 @orderId int,

 @productId int,

 @unitPrice float,

 @quantity int,

 @discount float

)

 AS

 INSERT INTO [Order Details] (OrderID, ProductID, UnitPrice,

 Quantity, Discount)

 VALUES (@orderId, @productId, @unitPrice, @quantity, @discount)

13.Run the project and delete the XML file from the Inbound folder. Copy the original back
there to trigger the order creation process.

You'll see this response document:

Chapter 15

42

14.Now, when you examine the contents of the Orders table, you'll find the new order:

15.You'll also see the details in the Order Details table:

Case Study – B2B Application Integration using XML

43

How It Works

The first problem to address is how to de-serialize the order request from the XML document. We do
this by building a ReadXml method to accompany the WriteXml method, using the
System.Xml.XmlTextReader class as opposed to the System.Xml.XmlTextWriter class.

The XmlTextReader class works on the principle that XML files can be broken down into nodes.
Each node defines a separate point in the document and can be roughly divided into four types. Note
that here a node does not represent a single XML element and, in fact, an element such as
<dog>Rover</dog> contains three nodes in total:

❑ Start tag

❑ End tag

❑ Value

Technically, there's also whitespace – the spaces, tabs, and new-line characters typically used between
elements for readability – but we don't care too much about it here. We are only concerned with these
three kinds of nodes. To take the first few lines of our order request document:

<Order>
 <CustomerID>RATTC</CustomerID>
 <PreferredShippingMethod>3</PreferredShippingMethod>

These elements are therefore broken down (or parsed) like so:

❑ Start tag: Order

❑ Whitespace

❑ Start tag: CustomerID

❑ Value: RATTC

❑ End tag: CustomerID

❑ Whitespace

❑ Start tag: PreferredShippingMethod

❑ Value: 3

❑ End tag: PreferredShippingMethod

XmlTextReader works by stepping between nodes and examining each one in turn. Each call to Read
advances the pointer from one node to the next, and the NodeType, Name, and Value properties tell
us what we're currently looking at. We need to determine when we start looking at an element, so we
use NodeType to check for XmlNodeType.Element:

 ' ReadXml - load the order document
 Public Sub ReadXml(ByVal reader As XmlTextReader)

 ' Read through the elements

Chapter 15

44

 Do While True

 ' Read
 If reader.Read() = False Then
 Exit Do
 End If

 ' What node type do we have?
 Select Case reader.NodeType

 Case XmlNodeType.Element

Once we know we're looking at a start tag, we use a Select Case block to examine the name:

 Select Case reader.Name

If the element name is CustomerID, PreferredShippingMethod, or ResponseEmail, we have to
advance the reader by one node to point at the value node following that XML tag, which contains the
actual data for that element. We can then use Value to extract the data and store it in a variable:

 Case "CustomerID"
 reader.Read()
 Me.CustomerId = reader.Value

 Case "PreferredShippingMethod"
 reader.Read()
 Me.PreferredShippingMethod = reader.Value

 Case "ResponseEmail"
 reader.Read()
 Me.ResponseEmail = reader.Value

In the case of ShippingAddress and Details, we defer processing to the ReadXml method
implemented on each of the classes. This is similar to how we dealt with serializing the other objects in
WriteXml:

 Case "ShippingAddress"
 Me.ShippingAddress.ReadXml(reader.Name, reader)

 Case "Details"
 Me.Details.ReadXml(reader)

 End Select

 End Select

 Loop

 End Sub

Case Study – B2B Application Integration using XML

45

By and large, de-serializing an object in this way isn't difficult, but it is verbose. Look at the listing for
ReadXml in Address and you'll see that it's a really long listing, although it's basically straightforward.
This can be a nuisance for maintenance.

Processing the order by the ProcessOrder method is simply a matter of getting into a position where
we can call methods that subsequently call stored procedures to add the rows to the database. First this
method sets up a blank OrderResponse object, and then creates and loads an OrderRequest object
from the XmlTextReader passed in:

 Dim request As New OrderRequest()
 request.ReadXml(reader)

We can then connect to the database. For simplicity, we apply a fixed shipping charge of $10.50 to
each order:

 ' Assume we have a fixed freight charge
 response.FreightCharge = 10.5

The CreateOrder method needs a database connection and an OrderRequest object. Most of the
information that it needs to store in the database is contained within OrderRequest, with the notable
exception of the freight charge, which we hard-coded above:

 ' Right, create a new order
 response.OrderId = CreateOrder(connection, request, _
 response.FreightCharge)

We can then look through each of the RequestDetail objects to find what has actually been ordered
and add the details to the database:

 ' Go through each detail
 Dim requestDetail As RequestDetail
 For Each requestDetail In request.Details

 ' Create a response detail
 Dim responseDetail As New ResponseDetail()
 response.Details.Add(responseDetail)

 ' Get the basic info
 responseDetail.ProductId = requestDetail.ProductId
 responseDetail.Quantity = requestDetail.Quantity

We'll also apply a flat 2% discount for all orders placed through the online system. In a production
situation, you'd probably use a scheme that required you to look up each customer and determine the
discount that was appropriate for them:

 ' Get the price
 Dim unitPrice As Single = _
 GetProductPrice(connection, requestDetail.ProductId)
 responseDetail.Discount = 0.02

Chapter 15

46

 responseDetail.UnitPrice = _
 unitPrice * (1 - responseDetail.Discount)
 responseDetail.Total = _
 responseDetail.UnitPrice * responseDetail.Quantity

 ' Add the detail
 AddOrderDetails(connection, response.OrderId, responseDetail)

 ' Adjust the charge of the order
 response.SubTotal += responseDetail.Total

 Next

After working through the detail, we can update the total:

 ' Update the total
 response.Total = response.SubTotal + response.FreightCharge

Finally, we close the database connection and send the response through e-mail as normal:

 ' Close the databsae connection
 connection.Close()

 Catch ex As Exception
 ReportException(ex)
 End Try

 ' Send e-mail
 SendResponse(response, "mytest@pretendcompany.com")

 ' Return the results
 Return response

 End Function

Building the Windows Service
At this point, we can accept orders through the online system. However, we're still using the test console
application. What we'll do in this section is reuse the objects in the Automated Order Processor class
library within a Windows Service.

Try It Out – Creating a Windows Service

1. If the project is running, close it.

2. Using Solution Explorer, add a new Visual Basic | Windows Service project. Call it
Automated Order Processor Service:

Case Study – B2B Application Integration using XML

47

3. Right-click on the References object within the new project. Select Add Reference.

4. Change to the Projects tab. Select Automated Order Processor, click Select, and then click OK.

5. At this point, Visual Studio .NET should be showing the Designer for Service1.

Display the Properties window for Service1 and change ServiceName to Automated
Order Processor:

6. In the previous screenshot, the mouse cursor is over a link called Add Installer. Click this link.

This will automatically create an installer for the service, a mechanism for installing the
service on the computer, and it is essential for us to run it. This installer contains two objects:
ServiceProcessInstaller1 and ServiceInstaller1:

Chapter 15

48

7. Select ServiceInstaller1. In the Properties window, make sure ServiceName reads Automated
Order Processor.

8. Select ServiceProcessInstaller1. In the Properties window, change Account to LocalSystem.

9. Using Solution Explorer, open the code editor for Service1. Add this member:

Imports System.ServiceProcess

Public Class Service1
 Inherits System.ServiceProcess.ServiceBase

 ' Members
 Dim Processor As New Automated_Order_Processor.Processor()

10.Now, add this code to OnStart:

 Protected Overrides Sub OnStart(ByVal args() As String)
 ' Add code here to start your service. This method should set things
 ' in motion so your service can do its work.
 Processor.Startup()
 End Sub

11.Next, add this code to OnStop:

 Protected Overrides Sub OnStop()
 ' Add code here to perform any tear-down necessary to stop your service.
 Processor.Shutdown()
 End Sub

12. It's not possible to run a service project from within Visual Studio .NET. You have to build
and install the service, and start it separately. This makes Windows Services awkward to
debug, and is our main motivation for placing the guts of the service in a separate library so
we can use a console application for testing.

13.From the menu, select Build | Build Solution.

14.Click the Windows Start button on the task bar. Select Programs | Microsoft Visual Studio
.NET 7.0 | Visual Studio .NET Tools | Visual Studio .NET Command Prompt. This will open
a new command prompt:

Case Study – B2B Application Integration using XML

49

15.You can now run the InstallUtil utility for installing .NET services. Enter InstallUtil
followed by the complete path to the service executable. Here's mine:

installutil "c:\Automated Order Processor\bin\Automated Order Processor
Service.exe"

16.Eventually, you'll see a message like this:

The Commit phase completed successfully.

The transacted install has completed.

17.Now, click the Windows Start button again. Select Settings | Control Panel. Open the
Administrative Tools folder. Then, open the Services management console. You'll find the
Automated Order Processor service listed there:

18.Right-click on the service and select Start. The service will start running.

19.Copy the XML request document into the Inbound folder. The service will process the
order, but you won't see anything because service applications do not have a user interface.
However, the e-mail confirming the order should soon arrive.

How It Works

As we mentioned before, a Windows Service is a special kind of Windows application that runs without
presenting a user interface – it even runs when no user is logged in! We've created a separate project as
a test console application for the same Automated Order Processor library.

Chapter 15

50

Because Windows Service applications cannot be executed directly within Visual Studio, this separate
test application is a good idea – we can develop and debug functionality using the console application to
ensure we're ready to deploy as a Windows Service.

The rigmarole getting the Windows Service running stems from the fact that a service has to be installed
before it can be started. The .NET Framework SDK provides the InstallUtil utility to install and
uninstall .NET Windows Service applications. (To uninstall, run InstallUtil again but add the /u
switch before the service executable's filename.)

Sending the Order via a Web Service
In this section we've concentrated on processing orders with legacy technology. At the start, we hinted
that we could do the same thing with a Web Service. This is what we shall undertake in this section.

This means our complete application will support a full spread of technology:

❑ Customers using legacy systems unable to deploy Web Service solutions can generate an XML
document according to our schema and send it over FTP.

❑ Customers using Windows DNA can generate the XML document and transmit it to the Web
Service using the SOAP Toolkit available from MSDN.

❑ Customers using .NET can use the NorthwindOrderGenerator class library to generate
new OrderRequest objects and use a method we'll add to this object called Send to
transmit the order to our Web Service.

❑ Customers using a different platform can talk to the Web Service to send the request because
Web Services are based on open standards with wide cross-platform support.

What we're going to do is tweak our NorthwindOrderGenerator class library so that it can
communicate with a Web Service on the Internet. This Web Service will expose a single web method
called PlaceOrder that takes an OrderRequest object as its parameter.

However, there are two ways we could handle the order our Web Service has gotten hold of it. One is
to include the Automated Order Processor classes in the Web Service itself, and call ProcessOrder
direct with the OrderRequest object supplied. Alternatively, we can take the OrderRequest object
and serialize it to an XML file in the Inbound folder, whereupon the Windows Service will pick it up
and process it as if it were received over FTP.

The only real consideration here is one of deployment. If we have only one part of the system
responsible for processing the order, the system becomes simpler – everything enters through one point,
is processed by the same code, and leaves by one point. If we make the Web Service capable of
processing orders itself, everything is doubled, making the system more complex and hard to maintain.
Therefore, we shall just have the Web Service drop the orders in XML format into the Inbound folder.

Case Study – B2B Application Integration using XML

51

Try It Out – Building a Web Service

1. Using Solution Explorer, add a new Visual Basic | ASP.NET Web Service project to the solution.
Call it NorthwindOrderWebService, and create it on the local machine if you can. (If you're lost,
refer back to the discussion in Chapter 11 on how to set up Web Application projects.)

2. When the project has been created, right-click on the References object contained within the
NorthwindOrderWebService project in Solution Explorer.

Change to the Projects tab. Make sure NorthwindOrderGenerator is selected in the list, click
Select, and then click OK.

3. Open Service1.asmx.vb in the code editor. Add these two namespace declarations to the top
of the file:

Imports System.Web.Services
Imports System.IO
Imports NorthwindOrderGenerator

Public Class Service1
 Inherits System.Web.Services.WebService

4. Next, add this method:

 <WebMethod()> Public Sub PlaceOrder(ByVal orderXml As String)

 ' get a guaranteed unique ID string
 Dim guidString As String

Chapter 15

52

 guidString = Guid.NewGuid.ToString()

 ' get a filename
 Dim filename As String
 filename = "c:\Automated Order Processor\Inbound\" & guidString & ".xml"

 ' save the file
 Dim stream As New FileStream(filename, FileMode.Create)
 Dim writer As New StreamWriter(stream)
 writer.Write(orderXml)
 writer.Flush()
 writer.Close()
 stream.Close()

 End Sub

5. That's all we have to do to get the Web Service running. Now, using Solution Explorer, right-
click on the NorthwindOrderGenerator project and select Add Web Reference.

6. Click the Web References on Local Web Server link. A list of available Web Services
will appear:

7. Click on the NorthwindOrderWebservice.vsdisco link, and click the Add Reference button
that appears.

8. Rename the new localhost web reference OrderService:

Case Study – B2B Application Integration using XML

53

9. Now, add this method to the OrderRequest class:

 ' Send - send the order to the Web Service
 Public Sub Send()

 ' Create a memory stream
 Dim memoryStream As New MemoryStream()

 ' Create an XML writer on the stream and write the document
 Dim writer As New XmlTextWriter(memoryStream, _
 New System.Text.ASCIIEncoding())
 WriteXml(writer)
 writer.Flush()

 ' Read the stream back
 memoryStream.Seek(0, SeekOrigin.Begin)
 Dim reader As New StreamReader(memoryStream)
 Dim orderXml As String = reader.ReadToEnd
 reader.Close()
 memoryStream.Close()

 ' Connect to the Web Service
 Dim service As New OrderService.Service1()
 service.PlaceOrder(orderXml)

 End Sub

10.To test this next part out, you'll need to go all the way back to the Order Generator Test
Client project that we built much earlier in the chapter. Add that project to the current
solution. Right-click on it and select Set as StartUp Project.

Chapter 15

54

11.Double-click Form1 to open the designer, and add a new button. Set its Text property to Send
Test Order to Web Service, and change its Name property to btnToWeb.

12.Double-click on the button. Add this code to the event handler:

 Private Sub btnToWeb_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnToWeb.Click

 ' Create the test order
 Dim testOrder As OrderRequest = CreateTestOrder()

 ' Send it
 testOrder.Send()

 ' Tell the user
 MsgBox("The order was sent to the Web Service.")

 End Sub

13.Make sure that the Automated Order Processor Service isn't running, and start up the project.
Also, run the Test Host project so you can see what happens. Click the Send Test Order
button and you'll see the Test Host report the fact that the order has been processed:

How It Works

As mentioned before, we want to create a single route for orders however the XML describing the order
was generated. In this exercise, we've added a method called Send to OrderRequest, which reuses
our existing WriteXml method but captures the results in memory rather than writing them to disk.
The MemoryStream object is conceptually similar to a FileStream but it outputs to a block of
memory rather than to a disk file:

 ' Send - send the order to the Web Service
 Public Sub Send()

 ' Create a memory stream
 Dim memoryStream As New MemoryStream()

Case Study – B2B Application Integration using XML

55

 ' Create an XML writer on the stream and write the document
 Dim writer As New XmlTextWriter(memoryStream, _
 New System.Text.ASCIIEncoding())
 WriteXml(writer)
 writer.Flush()

Once WriteXml has written the XML, we then reset the stream to the beginning and use a
StreamReader on it to read back everything that WriteXml had added. We store this in a string
called orderXml:

 ' Read the stream back
 memoryStream.Seek(0, SeekOrigin.Begin)
 Dim reader As New StreamReader(memoryStream)
 Dim orderXml As String = reader.ReadToEnd
 reader.Close()
 memoryStream.Close()

With orderXml populated, we connect to the Web Service and pass it the XML string:

 ' Connect to the Web Service
 Dim service As New OrderService.Service1()
 service.PlaceOrder(orderXml)

 End Sub

At the other end, that is, inside the PlaceOrder method of the Web Service, we take the XML and
write it out to a file. However, we need a unique filename, so we use System.Guid to create a
guaranteed unique 128-bit number for the filename:

 <WebMethod()> Public Sub PlaceOrder(ByVal orderXml As String)

 ' Get a guaranteed unique ID string
 Dim guidString As String
 guidString = Guid.NewGuid.ToString()

 ' Get a filename
 Dim filename As String
 filename = "c:\Automated Order Processor\Inbound\" & guidString & ".xml"

Once we have the filename, we open the file and write out the XML passed in the orderXml parameter:

 ' Save the file
 Dim stream As New FileStream(filename, FileMode.Create)
 Dim writer As New StreamWriter(stream)
 writer.Write(orderXml)
 writer.Flush()
 writer.Close()
 stream.Close()

 End Sub

Once the file has been written to the Inbound folder, it's down to the service to pick it up. In this
example, the Test Host picked up the order but, of course, this would work equally well with our
Windows Service.

Chapter 15

56

Summary
In this case study, we took a very detailed look at how we could build a system to receive and
automatically process orders.

We started off by looking at the schema that we'd use to describe our orders. This was fairly
straightforward, and comprised the shipping address, the customer ID, and order details. We built a
new class library to generate and read an XML document that fitted the schema.

Once we had the document, we turned our attention to how to transfer it. There are a number of
possibilities but, to maintain a single point of entry for documents coming into the system, a good idea
is to create a folder on the server that we monitor for new files. This we did – we built a separate class
library containing an order processor capable of monitoring a folder for incoming files. When a new file
is detected, it is read and the order processed.

We then wrapped the order processor in a standalone Windows Service so that the order processing
functionality would be available even if no-one is logged into the server. We finally built a Web Service
that enables .NET-ready customers to transmit the order directly to us with a minimum of hassle.

Case Study – B2B Application Integration using XML

57

Chapter 15

58

	Title Page
	Introduction
	Chap 1 - Relational Database Design
	Chap 2 - Microsoft SQL Server 2000 Desktop Engine
	Chap 3 - Querying the Database
	Chap 4 - Exploring the Server Explorer
	Chap 5 - The User Interface for the Database
	Chap 6 - Data Access with ADO.NET
	Chap 7 - Reading Data into the DataSet
	Chap 8 - Data Binding
	Chap 9 - Updating the DataSet and Handling Errors
	Chap 10 - Conflict Resolution
	Chap 11 - ASP.NET
	Chap 12 - ADO.NET and XML
	Chap 13 - Web Ser vices
	Chap 14 - Disconnected Data
	Case Study – B2B Application Integration using XML

	a:

