INTERNATIONAL STANDARD

ISO 2859-1

> Second edition 1999-11-15

Sampling procedures for inspection by attributes —

Part 1:

Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

Règles d'échantillonnage pour les contrôles par attributs —

Partie 1: Procédures d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)

ISO 2859-1:1999(E)

Contents

1 Scope	1
2 Normative references	2
3 Terms, definitions and symbols	2
4 Expression of nonconformity	7
5 Acceptance quality limit (AQL)	8
6 Submission of product for sampling	8
7 Acceptance and non-acceptance	9
8 Drawing of samples	9
9 Normal, tightened and reduced inspection	10
10 Sampling plans	13
11 Determination of acceptability	14
12 Further information	14
13 Fractional acceptance number plans for single sampling (optional)	16
Tables	
1 Sample size code letters	19
2-A Single sampling plans for normal inspection (Master table)	20
2-B Single sampling plans for tightened inspection (Master table)	21
2-C Single sampling plans for reduced inspection (Master table)	22
3-A Double sampling plans for normal inspection (Master table)	23
3-B Double sampling plans for tightened inspection (Master table)	24
3-C Double sampling plans for reduced inspection (Master table)	25
4-A Multiple sampling plans for normal inspection (Master table)	26
4-B Multiple sampling plans for tightened inspection (Master table)	29

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland

Internet iso@iso.ch

Printed in Switzerland

[©] ISO 1999

4-C	Multiple sampling plans for reduced inspection (Master table)	32
5-A	Producer's risk for normal inspection	35
5-B	Producer's risk for tightened inspection	36
5-C	Producer's risk for reduced inspection	37
6-A	Consumer's risk quality for normal inspection	38
6-B	Consumer's risk quality for tightened inspection	39
6-C	Consumer's risk quality for reduced inspection	40
7-A	Consumer's risk quality for normal inspection	41
7-B	Consumer's risk quality for tightened inspection	42
7-C	Consumer's risk quality for reduced inspection	43
8-A	Average outgoing quality limits for normal inspection (Single sampling plans)	44
8-B	Average outgoing quality limits for tightened inspection (Single sampling plans)	45
	verage sample size curves for single, double and multiple sampling (normal, tightened and reduced aspection)	
10- <i>A</i>	Tables for sample size code letter A (Individual plans)	48
10-E	Tables for sample size code letter B (Individual plans)	50
10-0	Tables for sample size code letter C (Individual plans)	52
10-E	Tables for sample size code letter D (Individual plans)	54
10-E	Tables for sample size code letter E (Individual plans)	56
10-F	Tables for sample size code letter F (Individual plans)	58
10-0	Tables for sample size code letter G (Individual plans)	60
10-F	Tables for sample size code letter H (Individual plans)	62
10-J	Tables for sample size code letter J (Individual plans)	64
10-k	Tables for sample size code letter K (Individual plans)	66
10-L	. Tables for sample size code letter L (Individual plans)	68
10-N	Tables for sample size code letter M (Individual plans)	70
10-N	I Tables for sample size code letter N (Individual plans)	72
10-F	Tables for sample size code letter P (Individual plans)	74
10-0	Tables for sample size code letter Q (Individual plans)	76
10-F	R Tables for sample size code letter R (Individual plans)	78
10-5	Tables for sample size code letter S (Individual plans)	80

11-A Single sampling plans for normal inspection (Auxiliary master table)	81
11-B Single sampling plans for tightened inspection (Auxiliary master table)	82
11-C Single sampling plans for reduced inspection (Auxiliary master table)	83
12 Scheme OC curves (Normalized)	84
Annex A (informative) Example for non-constant sampling plan	85
Bibliography	87

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 2859-1 was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 5, *Acceptance sampling*.

This second edition of ISO 2859-1 cancels and replaces the first edition (ISO 2859-1:1989) of which it constitutes a technical revision.

Significant changes in this edition include:

- a new procedure for switching from normal to reduced inspection;
- a reference to skip-lot sampling as an alternative to reduced inspection;
- the term "limiting quality" has been changed to "consumer's risk quality" in the heading of Tables 6-A, 6-B, 6-C, 7-A, 7-B and 7-C;
- a new table has been added giving producer's risk as the probability of rejection of lots with percent nonconforming equal to the AQL;
- optional fractional acceptance number plans have been added; the purpose of these plans is to provide a
 consistent progression from the plans for acceptance number zero to the acceptance number 1 plans. The
 fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C, where they take the place of the
 arrows in the corresponding positions in tables 2-A, 2-B and 2-C;
- reduced plans have been changed to eliminate the gap between the acceptance and rejection numbers;
- some changes have been made to the double sampling plans to provide a smaller average sample size;
- multiple sampling plans have been changed to five stages rather than seven. The change has not increased
 the average sample size. Some of the new plans have a smaller average sample size than their counterparts in
 the previous edition;
- scheme operating characteristic curves have been added as Table 12.

ISO 2859 consists of the following parts, under the general title Sampling procedures for inspection by attributes:

- Part 0: Introduction to the ISO 2859 attribute sampling system
- Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection

— Part 3: Skip-lot sampling procedures

It is highly recommended that this part of ISO 2859 be used together with ISO 2859-0, which contains illustrative examples.

Annex A of this part of ISO 2859 is for information only.

Sampling procedures for inspection by attributes —

Part 1:

Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

1 Scope

1.1 This part of ISO 2859 specifies an acceptance sampling system for inspection by attributes. It is indexed in terms of the acceptance quality limit (AQL).

Its purpose is to induce a supplier through the economic and psychological pressure of lot non-acceptance to maintain a process average at least as good as the specified acceptance quality limit, while at the same time providing an upper limit for the risk to the consumer of accepting the occasional poor lot.

Sampling schemes designated in this part of ISO 2859 are applicable, but not limited, to inspection of

- end items,
- components and raw materials,
- operations,
- materials in process,
- supplies in storage,
- maintenance operations,
- data or records, and
- administrative procedures.
- **1.2** These schemes are intended primarily to be used for a continuing series of lots, that is, a series long enough to allow the switching rules (9.3) to be applied. These rules provide:
- a) a protection to the consumer (by means of a switch to tightened inspection or discontinuation of sampling inspection) should a deterioration in quality be detected;
- b) an incentive (at the discretion of the responsible authority) to reduce inspection costs (by means of a switch to reduced inspection) should consistently good quality be achieved.

Sampling plans in this part of ISO 2859 may also be used for the inspection of lots in isolation but, in this case the user is strongly advised to consult the operating characteristic curves to find a plan that will yield the desired protection (see 12.6). In that case, the user is also referred to the sampling plans indexed by limiting quality (LQ) given in ISO 2859-2.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 2859. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 2859 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2859-3:1991, Sampling procedures for inspection by attributes — Part 3: Skip-lot sampling procedures.

ISO 3534-1:1993, Statistics — Vocabulary and symbols — Part 1: Probability and general statistical terms.

ISO 3534-2:1993, Statistics — Vocabulary and symbols — Part 2: Statistical quality control.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this part of ISO 2859, the terms and definitions given in ISO 3534-1 and ISO 3534-2 and the following apply.

NOTE For ease of reference, the definitions of some of these terms are quoted from ISO 3534-1 and ISO 3534-2, while others are redefined or newly defined.

3.1.1

inspection

activity such as measuring, examining, testing or gauging one or more characteristics of a product or service, and comparing the results with specified requirements in order to establish whether conformity is achieved for each characteristic

3.1.2

original inspection

first inspection of a lot according to the provisions of this part of ISO 2859

NOTE This is to be distinguished from the inspection of a lot which has been resubmitted after previous non-acceptance.

3.1.3

inspection by attributes

inspection whereby either the item is classified simply as conforming or nonconforming with respect to a specified requirement or set of specified requirements, or the number of nonconformities in the item is counted

NOTE Inspection by attributes includes inspection for conformity of items as well as inspection for number of nonconformities per hundred items.

314

item

that which can be individually described and considered

EXAMPLES

- a physical item;
- a defined quantity of material;
- a service, an activity or a process;
- an organization or a person; or
- some combination thereof.

3.1.5

nonconformity

non-fulfilment of a specified requirement

NOTE 1 In some situations specified requirements coincide with customer usage requirements (see **defect**, 3.1.6). In other situations they may not coincide, being either more or less stringent, or the exact relationship between the two is not fully known or understood.

NOTE 2 Nonconformity will generally be classified according to its degree of seriousness such as:

Class A: those nonconformities of a type considered to be of the highest concern; in acceptance sampling such types of nonconformities will be assigned a very small acceptance quality limit value;

Class B: those nonconformities of a type considered to have the next lower degree of concern; therefore, these can be assigned a larger acceptance quality limit value than those in class A and smaller than in class C, if a third class exists, etc.

NOTE 3 Adding characteristics and classes of nonconformities will generally affect the overall probability of acceptance of the product.

NOTE 4 The number of classes, the assignment into a class, and the choice of acceptance quality limit for each class, should be appropriate to the quality requirements of the specific situation.

3.1.6

defect

non-fulfilment of an intended usage requirement

NOTE 1 The term "defect" is appropriate for use when a quality characteristic of a product or service is evaluated in terms of usage (as contrasted to conformance to specifications).

NOTE 2 Since the term "defect" now has definite meaning within the law, it should not be used as a general term.

3.1.7

nonconforming item

item with one or more nonconformities

NOTE Nonconforming items will generally be classified by their degree of seriousness such as:

Class A: an item which contains one or more nonconformities of class A and may also contain nonconformities of class B and/or class C, etc.;

Class B: an item which contains one or more nonconformities of class B and may also contain nonconformities of class C, etc. but contains no nonconformity of class A.

3.1.8

percent nonconforming

(in a sample) one hundred times the number of nonconforming items in the sample divided by the sample size, viz:

$$\frac{d}{n} \times 100$$

where

d is the number of nonconforming items in the sample;

n is the sample size

3.1.9

percent nonconforming

(in a population or lot) one hundred times the number of nonconforming items in the population or lot divided by the population or lot size, viz:

$$100p = 100\frac{D}{N}$$

where

p is the proportion of nonconforming items;

D is the number of nonconforming items in the population or lot;

N is the population or lot size

NOTE 1 In this part of ISO 2859 the terms **percent nonconforming** (3.1.8 and 3.1.9) or **nonconformities per 100 items** (3.1.10 and 3.1.11) are mainly used in place of the theoretical terms "proportion of nonconforming items" and "nonconformities per item" because the former terms are the most widely used.

NOTE 2 This definition differs from that found in ISO 3534-2.

3.1.10

nonconformities per 100 items

(in a sample) one hundred times the number of nonconformities in the sample divided by the sample size, viz:

$$100\frac{d}{n}$$

where

d is the number of nonconformities in the sample;

n is the sample size

3.1.11

nonconformities per 100 items

(in a population or lot) one hundred times the number of nonconformities in the population or lot divided by the population or lot size, viz:

$$100p = 100\frac{D}{N}$$

where

p is the number of nonconformities per item;

D is the number of nonconformities in the population or lot;

N is the population or lot size

NOTE An item may contain one or more nonconformities.

3.1.12

responsible authority

concept used to maintain the neutrality of this part of ISO 2859 (primarily for specification purposes), irrespective of whether it is being invoked or applied by the first, second or third party

NOTE 1 The responsible authority may be:

- a) the quality department within a supplier's organization (first party);
- b) the purchaser or procurement organization (second party);
- c) an independent verification or certification authority (third party);

d) any of a), b) or c), differing according to function (see Note 2) as described in a written agreement between two of the parties, for example a document between supplier and purchaser.

NOTE 2 The duties and functions of a responsible authority are outlined in this part of ISO 2859 (see 5.2, 6.2, 7.2, 7.3, 7.5, 7.6, 9.1, 9.3.3, 9.4, 10.1, 10.3, 13.1).

3.1.13

lot

definite amount of some product, material or service, collected together

NOTE An inspection lot may consist of several batches or parts of batches.

3.1.14

lot size

number of items in a lot

3.1.15

sample

set of one or more items taken from a lot and intended to provide information on the lot

3.1.16

sample size

number of items in the sample

3.1.17

sampling plan

combination of sample size(s) to be used and associated lot acceptability criteria

NOTE 1 A single sampling plan is a combination of sample size and acceptance and rejection numbers. A double sampling plan is a combination of two sample sizes and acceptance and rejection numbers for the first sample and for the combined sample.

NOTE 2 A sampling plan does not contain the rules on how to draw the sample.

NOTE 3 For the purposes of this part of ISO 2859, a distinction should be made between the terms **sampling plan** (3.1.17), **sampling scheme** (3.1.18) and **sampling system** (3.1.19).

3.1.18

sampling scheme

combination of sampling plans with rules for changing from one plan to another

NOTE See 9.3.

3.1.19

sampling system

collection of sampling plans, or of sampling schemes, each with its own rules for changing plans, together with sampling procedures including criteria by which appropriate plans or schemes may be chosen

NOTE This part of ISO 2859 is a sampling system indexed by lot-size ranges, inspection levels and AQLs. A sampling system for LQ plans is given in ISO 2859-2.

3.1.20

normal inspection

use of a **sampling plan** (3.1.17) with an acceptance criterion that has been devised to secure the producer a high probability of acceptance when the **process average** (3.1.25) of the lot is better than the **acceptance quality limit** (3.1.26)

NOTE Normal inspection is used when there is no reason to suspect that the **process average** (3.1.25) differs from an acceptable level.

3.1.21

tightened inspection

use of a **sampling plan** (3.1.17) with an acceptance criterion that is tighter than that for the corresponding plan for **normal inspection** (3.1.20)

NOTE Tightened inspection is invoked when the inspection results of a predetermined number of consecutive lots indicate that the **process average** (3.1.25) might be poorer than the **AQL** (3.1.26).

3.1.22

reduced inspection

use of a **sampling plan** (3.1.17) with a **sample size** (3.1.16) that is smaller than that for the corresponding plan for **normal inspection** (3.1.20) and with an acceptance criterion that is comparable to that for the corresponding plan for normal inspection

NOTE 1 The discriminatory ability under reduced inspection is less than under normal inspection.

NOTE 2 Reduced inspection may be invoked when the inspection results of a predetermined number of consecutive lots indicate that the **process average** (3.1.25) is better than the **AQL** (3.1.26).

3.1.23

switching score

indicator that is used under normal inspection to determine whether the current inspection results are sufficient to allow for a switch to reduced inspection

NOTE See 9.3.3

3.1.24

acceptance score

indicator that is used for fractional acceptance number plans to determine lot acceptability

NOTE See 13.2.1.2.

3.1.25

process average

process level averaged over a defined time period or quantity of production

[ISO 3534-2:1993, 3.1.2]

NOTE In this part of ISO 2859 the process average is the quality level (percent nonconforming or number of nonconformities per hundred items) during a period when the process is in a state of statistical control.

3.1.26

acceptance quality limit

AQL

quality level that is the worst tolerable process average when a continuing series of lots is submitted for acceptance sampling

NOTE 1 This concept only applies when a sampling scheme with rules for switching and for discontinuation, such as in ISO 2859-1 or ISO 3951, is used.

NOTE 2 Although individual lots with quality as bad as the acceptance quality limit may be accepted with fairly high probability, the designation of an acceptance quality limit does not suggest that this is a desirable quality level. Sampling schemes found in International Standards such as this part of ISO 2859, with their rules for switching and for discontinuation of sampling inspection, are designed to encourage suppliers to have process averages consistently better than the AQL. Otherwise, there is a high risk that the inspection severity will be switched to tightened inspection under which the criteria for lot acceptance become more demanding. Once on tightened inspection, unless action is taken to improve the process, it is very likely that the rule requiring discontinuation of sampling inspection pending such improvement will be invoked.

3.1.27

consumer's risk quality

CRQ

lot or process quality level that in the sampling plan corresponds to a specified consumer's risk

NOTE Consumer's risk is usually 10 %.

3.1.28

limiting quality

LQ

when a lot is considered in isolation, a quality level which for the purposes of sampling inspection is limited to a low probability of acceptance

3.2 Symbols and abbreviations

The symbols and abbreviations used in this part of ISO 2859-1 are as follows:

Ac acceptance number

AQL acceptance quality limit (in percent nonconforming items or in nonconformities per hundred items)

AOQ average outgoing quality (in percent nonconforming items or in nonconformities per hundred items)

AOQL average outgoing quality limit (in percent nonconforming items or in nonconformities per hundred

items)

CRQ consumer's risk quality (in percent nonconforming items or in nonconformities per hundred items)

d number of nonconforming items (or nonconformities) found in a sample from a lot

D number of nonconforming items in a lot

LQ limiting quality (in percent nonconforming items or in nonconformities per hundred items)

N lot size

n sample size

p process average

 p_x quality level for which the probability of acceptance is x, where x is a fraction

P_a probability of acceptance (in percent)

Re rejection number

NOTE The symbol n may be accompanied by a subscript. Numerical subscripts 1 to 5 denote the first to the fifth sample, respectively. In general, n_i is the size of the ith sample in double or multiple sampling.

4 Expression of nonconformity

4.1 General

The extent of nonconformity shall be expressed either in terms of percent nonconforming (see 3.1.8 and 3.1.9) or in terms of nonconformities per 100 items (see 3.1.10 and 3.1.11). Tables 7, 8 and 10 are based on the assumption that nonconformities occur randomly and with statistical independence. If it is known that one nonconformity in an item could be caused by a condition also likely to cause others, the items shall be considered just as conforming or not and multiple nonconformities ignored.

4.2 Classification of nonconformities

Since most acceptance sampling involves evaluation of more than one quality characteristic, and since they may differ in importance in terms of quality and/or economic effects, it is often desirable to classify the types of nonconformities according to agreed classes as defined in 3.1.5. The number of classes, the assignment of nonconformities into

classes, and the choice of AQL for each class should be appropriate to the quality requirements of the specific situation.

5 Acceptance quality limit (AQL)

5.1 Use and application

The AQL, together with the sample size code letter (see 10.2), is used for indexing the sampling plans and schemes provided in this part of ISO 2859.

When a specific value of the AQL is designated for a certain nonconformity or group of nonconformities, it indicates that the sampling scheme will accept the great majority of the lots submitted, provided the quality level (percent nonconforming or nonconformities per 100 items) in these lots is no greater than the designated value of AQL. The sampling plans provided are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size for a given AQL, being generally higher for large samples than for small ones.

The AQL is a parameter of the sampling scheme and should not be confused with the process average that describes the operating level of the manufacturing process. It is expected that the process average will be better than the AQL to avoid excessive rejections under this system.

CAUTION: The designation of an AQL shall not imply that the supplier has the right knowingly to supply any nonconforming item.

5.2 Specifying AQLs

The AQL to be used shall be designated in the contract or by (or in accordance with the prescription laid down by) the responsible authority. Different AQLs may be designated for groups of nonconformities considered collectively or for individual nonconformities as defined in 3.1.5. The classification into groups should be appropriate to the quality requirements of the specific situation. An AQL for a group of nonconformities may be designated in addition to AQLs for individual nonconformities, or subgroups, within that group. When the quality level is expressed as percent of nonconforming items (3.1.8 and 3.1.9), AQL values shall not exceed 10 % nonconforming. When the quality level is expressed as number of nonconformities per 100 items (3.1.10 and 3.1.11), AQL values up to 1 000 nonconformities per 100 items may be used.

5.3 Preferred AQLs

The series of values of AQLs given in the tables are known as the preferred series of AQLs. If, for any product, an AQL is designated other than one of these values, these tables are not applicable.

6 Submission of product for sampling

6.1 Formation of lots

The product shall be assembled into identifiable lots, sub-lots, or in such other manner as may be laid down (see 6.2). Each lot shall, as far as is practicable, consist of items of a single type, grade, class, size and composition, manufactured under uniform conditions at essentially the same time.

6.2 Presentation of lots

The formation of the lots, the lot size and the manner in which each lot shall be presented and identified by the supplier shall be designated or approved by, or according to, the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples.

7 Acceptance and non-acceptance

7.1 Acceptability of lots

Acceptability of a lot shall be determined by the use of a sampling plan or plans.

The term "non-acceptance" is used in this context for "rejection" when it refers to the result of following the procedure. Forms of the term "reject" are retained when they refer to actions the consumer may take, as in "rejection number."

7.2 Disposition of non-acceptable lots

The responsible authority shall decide how lots that are not accepted will be disposed of. Such lots may be scrapped, sorted (with or without nonconforming items being replaced), reworked, re-evaluated against more specific usability criteria, or held for additional information, etc.

7.3 Nonconforming items

If a lot has been accepted, the right is reserved to not accept any item found nonconforming during inspection, whether that item formed part of a sample or not. Items found nonconforming may be reworked or replaced by conforming items, and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.

7.4 Classes of nonconformities or nonconforming items

Specific assignment of nonconformities or nonconforming items to two or more classes requires using a set of sampling plans. In general, the set of sampling plans have a common sample size, but different acceptance numbers for each class having a different AQL, such as in Tables 2, 3 and 4.

7.5 Special reservation for critical classes of nonconformities

Some types of nonconformities may have critical importance. This subclause specifies the special provisions for such types of designated non-conformities. At the discretion of the responsible authority, every item in the lot may be required to be inspected for such designated classes of nonconformities. The right is reserved to inspect every item submitted for such designated nonconformities and to not accept the lot immediately if a nonconformity of this class is found. The right is also reserved to sample, for specified classes of nonconformities, every lot submitted by the supplier and to not accept any lot if a sample drawn from it is found to contain one or more of these nonconformities.

7.6 Resubmitted lots

All parties shall be immediately notified if a lot is found not acceptable. Such lots shall not be resubmitted until all items are re-examined or retested and the supplier is satisfied that all nonconforming items have been removed or replaced by conforming items, or all nonconformities have been corrected. The responsible authority shall determine whether normal or tightened inspection shall be used on re-inspection and whether re-inspection shall include all types or classes of nonconformities or only the particular types or classes of nonconformities which caused initial non-acceptance.

8 Drawing of samples

8.1 Sample selection

The items selected for the sample shall be drawn from the lot by simple random sampling (see 2.1.5 in ISO 3534-2:1993). However, when the lot consists of sub-lots or strata, identified by some rational criterion, stratified sampling shall be used in such a way that the size of the subsample from each sublot or stratum is proportional to the size of that sublot or stratum (for further details see 2.25 in ISO 2859-0:1995).

8.2 Time for drawing the samples

Samples may be drawn after the lot has been produced, or during production of the lot. In either case, the samples shall be selected according to 8.1.

8.3 Double or multiple sampling

When double or multiple sampling is to be used, each subsequent sample shall be selected from the remainder of the same lot.

9 Normal, tightened and reduced inspection

9.1 Start of inspection

Normal inspection shall be carried out at the start of inspection, unless otherwise directed by the responsible authority.

9.2 Continuation of inspection

Normal, tightened or reduced inspection shall continue unchanged on successive lots, except where the switching procedures (see 9.3) require the severity of the inspection to be changed. The switching procedures shall be applied to each class of nonconformities or nonconforming items independently.

9.3 Switching rules and procedures (see Figure 1)

9.3.1 Normal to tightened

When normal inspection is being carried out, tightened inspection shall be implemented as soon as two out of five (or fewer than five) consecutive lots have been non-acceptable on original inspection (that is, ignoring resubmitted lots or batches for this procedure).

9.3.2 Tightened to normal

When tightened inspection is being carried out, normal inspection shall be re-instated when five consecutive lots have been considered acceptable on original inspection.

9.3.3 Normal to reduced

9.3.3.1 **General**

When normal inspection is being carried out, reduced inspection shall be implemented provided that all of the following conditions are satisfied:

- a) the current value of the switching score (see 9.3.3.2) is at least 30; and
- b) production is at a steady rate; and
- c) reduced inspection is considered desirable by the responsible authority.

© ISO ISO ISO ISO ISO 2859-1:1999(E)

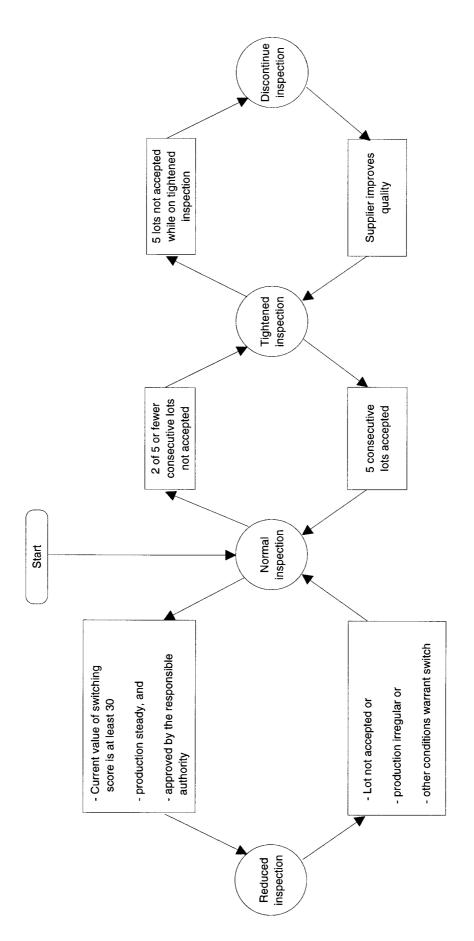


Figure 1 - Outline of the switching rules (see 9.3)

9.3.3.2 Switching score

The calculation of the switching score shall be initiated at the start of normal inspection unless otherwise specified by the responsible authority.

The switching score shall be set at zero at the start and updated following the inspection of each subsequent lot on original normal inspection.

- a) Single sampling plans:
 - 1) when the acceptance number is 2 or more, add 3 to the switching score if the lot would have been accepted if the AQL had been one step tighter; otherwise reset the switching score to zero;
 - 2) when the acceptance number is 0 or 1, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) Double and multiple sampling plans:
 - when a double sampling plan is used, add 3 to the switching score if the lot is accepted after the first sample; otherwise reset the switching score to zero;
 - when a multiple sampling plan is used, add 3 to the switching score if the lot is accepted by the third sample; otherwise reset the switching score to zero.

NOTE The application of the switching score is illustrated in annex A.

9.3.4 Reduced to normal

When reduced inspection is being carried out, normal inspection shall be re-instated if any of the following occur on original inspection:

- a) a lot is not accepted; or
- b) production becomes irregular or delayed; or
- c) other conditions warrant that normal inspection shall be re-instated.

9.4 Discontinuation of inspection

If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches 5, the acceptance procedures of this part of ISO 2859 shall not be resumed until action has been taken by the supplier to improve the quality of the submitted product or service, and the responsible authority has agreed that this action is likely to be effective. Tightened inspection shall then be used as if 9.3.1 had been invoked.

9.5 Skip-lot sampling

The lot-by-lot inspection in this part of ISO 2859 may be replaced by skip-lot sampling when the requirements of ISO 2859-3 are fulfilled.

NOTE There are limitations to the use of the skip-lot procedures of ISO 2859-3 in place of the reduced-inspection procedures of this part of ISO 2859. Some of the AQLs and inspection levels are not applicable.

10 Sampling plans

10.1 Inspection level

The inspection level designates the relative amount of inspection. Three inspection levels, I, II and III, are given in Table 1 for general use. Unless otherwise specified, level II shall be used. Level I may be used when less discrimination is needed or level III when greater discrimination is required. Four additional special levels, S-1, S-2, S-3 and S-4 are also given in Table 1 and may be used where relatively small sample sizes are necessary and larger sampling risks can be tolerated.

The inspection level required for any particular application shall be specified by the responsible authority. This allows the authority to require greater discrimination for some purposes and less for others.

At each inspection level, the switching rules shall operate to require normal, tightened and reduced inspection, as specified in clause 9. The choice of inspection level is quite separate from these three severities of inspection. Thus, the inspection level that has been specified shall be kept unchanged when switching between normal, tightened and reduced inspection.

In the designation of inspection levels S-1 to S-4, care shall be exercised to avoid AQLs inconsistent with these inspection levels. For instance, the code letters under S-1 go no further than D, equivalent to a single sample size of 8, but it is of no use to specify S-1 if the AQL is 0,1 %, for which the minimum sample size is 125.

The amount of information about the quality of a lot gained from examining samples drawn from the lot depends upon the absolute size of the samples, **not** upon the relative size of the sample to the lot size, provided the sample is small relative to the lot that is examined. In spite of this, there are three reasons for varying the sample size with the lot size:

- a) when the loss due to a wrong decision is high, it is more important to make the correct decision;
- b) with a large lot, a sample size can be afforded that would be uneconomic for a small lot;
- c) truly random sampling is relatively more difficult if the sample is too small a proportion of the lot.

10.2 Sample size code letters

Sample sizes are designated by sample size code letters. Table 1 shall be used to find the applicable code letter for the particular lot size and the prescribed inspection level.

NOTE For economy of space in the tables or to avoid unnecessary repetition in the text, the abbreviated term "code letter" is sometimes used.

10.3 Obtaining a sampling plan

The AQL and the sample size code letter shall be used to obtain the sampling plan from Tables 2, 3, 4 or 11. For a specified AQL and a given lot size, the same combination of AQL and sample size code letter shall be used to obtain the sampling plan from the table for normal, tightened and reduced inspection.

When no sampling plan is available for a given combination of AQL and sample size code letter, the tables direct the user to a different letter. The sample size to be used is given by the new sample size code letter, not by the original letter. If this procedure leads to different sample sizes for different classes of nonconformities or nonconforming items, the sample size code letter corresponding to the largest sample size derived may be used for all classes of nonconformities or nonconforming items, when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available) may be used, when designated or approved by the responsible authority. As another alternative, the optional fractional acceptance number plans described in clause 13 may be used when approved by the responsible authority.

10.4 Types of sampling plans

Three types of sampling plans, single, double and multiple, are given in Tables 2, 3 and 4, respectively. When several types of plans are available for a given AQL and sample size code letter, any one may be used. A decision as to the type of plan, either single, double or multiple, when available for a given AQL and sample size code letter, shall usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. For the sampling plans given in this part of ISO 2859, the average sample size of multiple plans is less than for double, and both of these are less than the single sample size (see Table 9). Usually, the administrative difficulty for single sampling and the cost per item in the sample are less than for double or multiple sampling.

11 Determination of acceptability

11.1 Inspection for nonconforming items

To determine acceptability of a lot under percent nonconforming inspection, the applicable sampling plan shall be used in accordance with 11.1.1 to 11.1.3.

11.1.1 Single sampling plans (integer acceptance number)

The number of sample items inspected shall be equal to the sample size given by the plan. If the number of nonconforming items found in the sample is equal to or less than the acceptance number, the lot shall be considered acceptable. If the number of nonconforming items is equal to or greater than the rejection number, the lot shall be considered not acceptable.

11.1.2 Double sampling plans

The number of sample items first inspected shall be equal to the first sample size given by the plan. If the number of nonconforming items found in the first sample is equal to or less than the first acceptance number, the lot shall be considered acceptable. If the number of nonconforming items found in the first sample is equal to or greater than the first rejection number, the lot shall be considered not acceptable.

If the number of nonconforming items found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of nonconforming items found in the first and second samples shall be accumulated. If the cumulative number of nonconforming items is equal to or less than the second acceptance number, the lot shall be considered acceptable. If the cumulative number of nonconforming items is equal to or greater than the second rejection number, the lot shall be considered not acceptable.

11.1.3 Multiple sampling plans

In multiple sampling, the procedure shall be similar to that specified in 11.1.2. In this part of ISO 2859, there are five stages so that a decision will be reached by the fifth stage at the latest.

11.2 Inspection for nonconformities

In order to determine the acceptability of a lot in a nonconformities per hundred items inspection, the procedure specified for nonconforming inspection (see 11.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

12 Further information

12.1 Operating characteristic (OC) curves

The operating characteristic curves for normal and tightened inspection, shown in Table 10, indicate the percentage of lots which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling, integer acceptance number plans; curves for double and multiple sampling are matched as closely as practicable. The OC curves shown for AQLs greater than 10 are applicable for inspection for number of

nonconformities; those for AQLs of 10 or less are applicable for inspection for nonconforming items. For AQLs of 10 or less these OC curves are also applicable to inspection for number of nonconformities.

For each of the curves shown, values of the quality of submitted product corresponding to selected values of probabilities of acceptance are shown in tabular form. In addition, values corresponding to tightened inspection, and values corresponding to sampling for number of nonconformities for AQLs of 10 or fewer nonconformities per 100 items are also given.

Normalized scheme OC curves found in Table 12 indicate the long-range percentage of lots of various qualities that will be accepted, taking into account the switching rules but disregarding the effect of the rule for discontinuation of inspection (9.4). The abscissa is the ratio of the process quality to the AQL. Each curve represents an acceptance number for normal inspection.

12.2 Process average

The process average can be estimated by the average percent nonconforming or average number of nonconformities per 100 items (whichever is applicable) found in the samples of product submitted by the supplier for original inspection, provided that inspection was not curtailed. When double or multiple sampling is used, only first sample results shall be included in the process average estimation.

12.3 Average outgoing quality (AOQ)

The average outgoing quality is the long-term average quality of outgoing product for a given value of incoming product quality, including all accepted lots, plus all lots which are not accepted, after such lots have been effectively 100 % inspected and all nonconforming items replaced by conforming items.

12.4 Average outgoing quality limit (AOQL)

The AOQL is the maximum of the average outgoing qualities for all possible qualities submitted for a given acceptance sampling plan. Approximate AOQL values are given in Table 8-A for each of the single sampling plans for normal inspection and in Table 8-B for each of the single sampling plans for tightened inspection.

12.5 Average sample size curves

Average sample size curves for double and multiple sampling, as compared with the corresponding single sampling plan for each acceptance number, are given in Table 9. These curves show the average sample sizes which may be expected to occur under the various sampling plans for given levels of process quality. The curves assume that the inspection is not curtailed (see ISO 3534-2:1993, 2.5.7).

12.6 Consumer's and producer's risks

12.6.1 Use of individual plans

This part of ISO 2859 is intended to be used as a system employing tightened, normal and reduced inspection on a successive series of lots to achieve consumer protection while assuring the producer that acceptance will occur most of the time if quality is better than the AQL.

Occasionally, specific individual plans are selected from this part of ISO 2859 and used without the switching rules. For example, a purchaser may be using the plans for verification purposes only. This is not the intended application of the system given in this part of ISO 2859 and its use in this way shall not be referred to as "inspection in compliance with ISO 2859-1". When used in this way, this part of ISO 2859 simply represents a repository for a collection of individual plans indexed by AQL. The operating characteristic curves and other measures of a plan so chosen shall be assessed individually for a plan from the tables provided.

12.6.2 Consumer's risk quality tables

If the series of lots is not long enough to allow the switching rules to be applied, it may be desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that give consumer's risk quality not more than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a consumer's risk quality (CRQ) and a consumer's risk (probability of lot acceptance) to be associated with it.

Tables 6 and 7 give values of consumer's risk quality (CRQ) for a consumer's risk of 10 %. Table 6 applies when inspecting for nonconforming items and Table 7 applies when inspecting for number of nonconformities. For individual lots with quality levels less than or equal to the tabulated values of consumer's risk qualities, the probabilities of lot acceptance are equal to or less than 10 %. When there is reason for protecting against a specified limiting quality in a lot, Tables 6 and 7 may be useful for fixing minimum sample sizes to be associated with the AQL and inspection level specified for inspection of the series of lots. ISO 2859-2 gives details of the procedure for selecting sampling plans for lots in isolation.

EXAMPLE Assume a consumer's risk quality of 5 % nonconforming items with an associated probability of acceptance of 10 % or less is desired for individual lots. If an AQL of 1 % nonconforming items is designated for inspection of the series of lots, Table 6-A indicates that the minimum sample size shall be given by sample size code letter L.

12.6.3 Producer's risk tables

Tables 5-A, 5-B and 5-C give the probability of rejection for lots of AQL quality on normal, tightened and reduced inspections, respectively. This probability is denoted as producer's risk in 2.6.7 of ISO 3534-2:1993.

13 Fractional acceptance number plans for single sampling (optional)

13.1 Application of fractional acceptance number plans

This subclause specifies optional procedures for fractional acceptance number sampling plans. The optional procedures may be used with the approval of the responsible authority. Unless otherwise specified, standard procedures shown above shall be followed.

Fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C. For normal and tightened inspection, the fractions 1/3 and 1/2 are found in place of the two entries with arrows in Table 2-A and 2-B between the plans for acceptance number 0 and acceptance number 1. For reduced inspection, the fractions 1/5, 1/3 and 1/2 are found in place of the three entries with arrows in Table 2-C between the plans for acceptance number 0 and acceptance number 1.

The use of fractional acceptance number plans does not require a change in sample size code letters, with the corresponding change in sample size, when the combination of sample size code letter and AQL results in a plan between the 0 and 1 acceptance number as described in 10.3.

13.2 Acceptability determination

13.2.1 Inspection for nonconforming items

13.2.1.1 Constant sampling plans

When the fractional acceptance number sampling plans remain constant for all lots, the following rules apply.

- a) When there is no nonconforming item in the sample the lot shall be considered acceptable.
- b) When there are two or more nonconforming items in the sample, the lot shall be considered not acceptable.
- c) When there is only one nonconforming item in the sample from the current lot, the lot shall be considered acceptable only if no nonconforming items have been found in the samples from a sufficient number of immediately preceding lots.

For an acceptance number of 1/2 one such lot is required. For an acceptance number of 1/3 two such lots are required. For an acceptance number of 1/5 four such lots are required. Otherwise the current lot shall be considered not acceptable. If the first lot inspected has one nonconforming item, that lot is not accepted.

13.2.1.2 Non-constant sampling plans

When the sampling plan does not remain constant for each successive lot, because of varying lot sizes and/or switching, use an acceptance score that is calculated and used as follows.

- a) Reset the acceptance score to zero at the start of any phase of normal, tightened or reduced inspection.
- b) If the sampling plan obtained indicates an acceptance number 0, the acceptance score shall be kept unchanged.

If the given acceptance number is 1/5, add 2 to the acceptance score.

If the given acceptance number is 1/3, add 3 to the acceptance score.

If the given acceptance number is 1/2, add 5 to the acceptance score.

If the given acceptance number is 1 or more, add 7 to the acceptance score.

- c) When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 8 or less, the lot can be considered acceptable only if there are no nonconforming items in the sample. When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 9 or more, the lot can be considered acceptable only if there is at most one nonconforming item in the sample. When the acceptance number is an integer, use this acceptance number to determine acceptability (in accordance with 11.1.1 or 11.2).
- d) If one or more nonconforming items are found in the sample, reset the acceptance score to 0 (i.e. after making a decision regarding the acceptability of the lot).

The acceptance score shall be updated (added to) after obtaining the sampling plan but before deciding on the acceptability of the lot. The acceptance score shall be reset after the acceptability decision is made. In contrast, the switching score (see 9.3.3.2) shall be added to or reset after deciding on acceptability of the lot.

NOTE When an acceptance score is used for the case of constant sampling plans, the results are the same as 13.2.1.1.

13.2.2 Inspection for number of nonconformities

In order to determine the acceptability of a lot when inspecting for number of nonconformities, the procedures specified for inspection for nonconforming items (see 13.2.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

13.3 Switching rules

13.3.1 Normal to tightened and tightened to normal

These rules are the same as indicated in 9.3.1 and 9.3.2, respectively.

13.3.2 Normal to reduced

The rule for updating the switching score (9.3.3.2) under single sampling when using a fractional acceptance number is as follows.

- a) When the given acceptance number is 1/3 or 1/2, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) When the acceptance number is zero, add 2 to the switching score if no nonconforming items are found in the sample; otherwise reset the switching score to zero.

13.3.3 Reduced to normal inspection and discontinuation of inspection

The rules are the same as indicated in 9.3.4 and 9.4, respectively.

NOTE Fractional acceptance number sampling plans are not applicable under the ISO 2859-3 skip-lot sampling system.

13.4 Non-constant sampling plan

An example given in annex A illustrates the application of this acceptance sampling system using the optional fractional acceptance number plans with variable lot size.

It is assumed throughout this example that a series of lots are submitted for inspection for nonconforming items, and that it has been agreed to use an AQL of 1 % nonconforming items with general inspection level II. The results for the first 25 lots are given in annex A.

Table 1 - Sample size code letters (see 10.1 and 10.2)

Lot size		Special inspection levels	ection levels		Genera	General inspection levels	levels
	S-1	8-2	£-S	8-4	1	II	
2 to 8	A	٧	٧	٧	٧	٧	В
9 to 15	٨	۷	∢	۷	∢	В	O
16 to 25	۷	∢	В	В	В	O	۵
26 to 50	٧	В	В	O	O	۵	ш
51 to 90	8	В	O	O	O	ш	ட
91 to 150	В	В	O	Q	Q	щ	Ø
151 to 280	Ф	O	۵	ш	ш	Ø	I
281 to 500	В	O	D	Ш	ш	I	7
501 to 1 200	O	O	ш	ш	Ø	7	×
1 201 to 3 200	O	Q	ш	Ø	I	¥	_
3 201 to 10 000	ပ	Q	ш	g	7	_	Σ
10 001 to 35 000	ပ	Q	ш	I	¥	Σ	z
35 001 to 150 000	۵	ш	១	7	ب	z	۵
150 001 to 500 000	۵	ш	១	7	Σ	۵	Ø
500 001 and over	۵	ш	I	¥	Z	Ø	æ

Table 2-A — Single sampling plans for normal inspection (Master table)

							:																			l
	•				Acce	ptance	Acceptance quality limit,		OL, in	percer	it nonc	onform	ing ite	ms and	nonc	nformi	lies per	100 it	ms (nc	ırmal ir.	AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	(u				
Sample size	0,010	0,015 0	0,025	0,040	0,065	0,10	0,15	0,25	0,40	9,0	1,0	1,5	2,5	4,0	6,5	10	15	25	40	. 99	100	150	250	400	650 1	1 000
	Ac Re	Ac Re A	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re /	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re A	Ac Re A	Ac Re Ac	Ac Re A	Ac Re A	Ac Re Ac	Re	Ac Re
2				Ċ.					<u> </u>					➾	F 0		♦	1 2	2 3	3 4 5	2 9 9	~	10 11 14	1 15 21	22	30 31
ო									-				\Rightarrow	0	\$	\Rightarrow	1 2	2 3	8 4 ب	5 6 7	7 8 10	11 14	4 15 21	- 22	31	44 45
S												\Rightarrow	0	\$	♦	1 2	8	9 4	9 9	7 8 10	0 11 14	15 21	1 22 30	31 44	45	\leftarrow
80	T	i	 		i	1	<u> </u>	l I		! !	⇌	1-0	♦	♦	1 2	2 3	3 4	2 6	7 8 1	10 11 14	4 15 21	1 22 30	0 31 44	45	 	<u> </u>
13										\Rightarrow	0	\(\rac{1}{2} \)	♦	2	8	8 4	2 6	7 8 1	10 11 14 15		21 22 30	30 31 4	44 45	-		
50									\Rightarrow	-	\$	➪	2	2 3	ه 4	5	7 8	10 11 1	14 15 21	1 22	<u>,</u>	<u></u>	-			
32		i	<u> </u>		 	I .		⇌	- 0	♦	♦	1 2	2 3	3 4	5 6	7 8	10 11	14 15 2	21 22	 		1	 		<u> </u>	<u> </u>
20							\Rightarrow	0	\$	♦	1 2	2 3	8 4	5 6	7 8	10 11	14 15	21 22	\							
80						\Rightarrow	0	\$	♦	1 2	8	ω 4	5 6	7 8	10 11	14 15	21 22	⟨								
125						- 0	♦	♦	1 2	2 3	3 4	5 6	7 8	10 11	14 15	21 22	⟨	<u> </u>	! !	 		i !	! !	! ! !] 	
200				\Rightarrow	0	♦	♦	1 2	2 3	8 4	5 6	7 8	10 11	14 15	21 22	\									-	
315			\Rightarrow	0 1	\(\rac{1}{2} \)	➪	1 2	2 3	8 4	5	7 8	10 11	14 15	21 22	\											
200		<u>⊢</u>	1 0	\ \bar{\psi}	♦	1 2	2 3	3 4	2 6	7 8 1	10 11	14 15	21 22	⟨≔		l. 	! ! !		ii	! ! !			 	 	! !	
800	\Rightarrow	- 0	\(\rangle	♦	2	2 3	ε 4	5	7 8 1	10 11	14 15	21 22	\													
1 250	0 1	\	⇔	1 2	2 3	3 4	5 6	7 8 1	10 11 1	14 15	21 22	\														
2 000	❖		1 2 ,	2 3	3 4	5 6	7 8	10 11	14 15 2	21 22	♦								i		<u> </u>					

♦ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

Ac = Acceptance number

Re = Rejection number

 $[\]Phi$ = Use the first sampling plan above the arrow.

Table 2-B — Single sampling plans for tightened inspection (Master table)

				Acce	Acceptance quality limit,	quality		aL, in	percent	noncor	ormin	g items	and no	onconfc	rmities	; per 1(0 items	(tighte	ned ins	AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	<u> </u>			
Sample size	0,010	0,015 0,025	25 0,040	0 0,065	0,10	0,15	0,25	0,40	99'0	1,0	1,5	2,5	4,0 E	6,5	5	15	25 4	40 65	100	150	250	400	650	1 000
	Ac Re Ac	Ac Re Ac Re	Re Ac Re	e Ac Re	e Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re A	Ac Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac Re	Зе Ac Re	e Ac Re	e Ac Re	e Ac Re	Ac Re	Ac Re
2												<u> </u>		°	-		-	2 2	8	4 5 6	6 8	12 13	18 19	27 28
က	-												⇒	_			2	<u>დ</u>	5	8 9	12 13	18 19	27 28	41 42
5												\Rightarrow	-		<u>-</u>	2	<u>ო</u>	4 ت	89	9 12 13	3 18 19	27 28	41 42	\leftarrow
80										l I		+ 0		<u>-</u>	2	8	4 5	8	9 12 1	13 18 19	9 27 28	41 42	\	I I
13										\Rightarrow	0		<u>-</u> ⇒>	2	е С	4	8	9	13 18 19	9 27 28	3 41 42	<u> </u>		
20									\Rightarrow	-		<u>-</u>	2	е С	4	9	9 12	12 13 18 19	<u>6</u>	<u></u>	<u></u>			
32		 			 	i I I	i 	\Rightarrow	-		- →	2 2	ю г	4 5	8 9	9 12	13	18 19	¦ ⊿_	<u> </u>	: 		 	<u> </u>
20							\Rightarrow	0		\Rightarrow	- N	2 3	4 5	9	9 12	12 13 18	18 19	\						
80						\Rightarrow	0 1		\Rightarrow	- 2	2 3	3 4 5	9	9 12	12 13 18	18 19	<u></u>							
125	<u> </u>	 		 	\Rightarrow	0		\Rightarrow	1 2	8	3 4 5	5 6 8	6	12 13 18	18 19	<u>;</u> <=	i 	I L I		<u> </u>	 	1	!	
200				\Rightarrow	0		\Rightarrow	- 2	2	۵. 4	2 6	8 9	12 13 18	18 19	<u></u>									
315			\Rightarrow	0 1		\Rightarrow	1 2	2	ω 4	2 0	6 8	12 13 18	18 19	<u> </u>										
200			0 1			1 2	2 3	3 4	9 9	8 9	12 13 1	18 19	<u></u>	! !	l 			l Ll		<u>'</u>	:		1 	
800	-	<u>°</u>	-	\Rightarrow	1 2	2	ω 4	ۍ و	б 80	12 13 1	18 19	\												
1 250	\Rightarrow	-	\Rightarrow	1 2	2 3	& 4	5	б 80	12 13	18 19	\										-			-
2 000	0 1 4	\ \ \ \	1 2	η Ο	3 4	5 6	6 8	12 13	18 19	\(\frac{1}{2} \)	 	<u> </u>			<u> </u>						:	<u></u>	<u></u>	
3 150			- 2																					

징 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]Phi$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Table 2-C — Single sampling plans for reduced inspection (Master table)

	1 000	Re Ac Re	22 30 31	22 30 31	22] 			 			I I			
	099 (le Ac Re	15 21 2	15 21 2	15 21 2	22 1			!			 			I 			
	400	e Ac Re	11 14 1	11 14 1	11 14 1	15 21 2	$\frac{1}{2}$	_	i			i			i			
	250	e Ac Re	유	9	5	11 14 1	2	\										
ection)	150	Ac Re	7 8	7 8	8	9	11 14 15	\vdash	<u> </u>			!			<u> </u>			
d insp	100	Ac Re	5 6	5	6 7	6 8	10	<u> </u>	<u> </u>			<u> </u> 		•	L			
reduce	99	Ac Re	ε 4	ε 4	5 6	2 9	6	10 11	⊱						<u>. </u>			
tems (40	Ac Re	2 3	2 3	8 4	5	2 9	6 8	10 11	\		i i			l I			
ır 100 i	52	Ac Re	1 2	1 2	2	3 4	5	6 7	6 8	10 11	\leftarrow	<u>i</u> <u>i</u> i			<u>. </u>			
ties pe	15	Ac Re		\Rightarrow	1 2	2 3	3 4	5 6	6 7	8	10 11	₽			! !			
onformi	10	Ac Re			\Rightarrow	1 2	2 3	8 4	5 6	2 9	ი 8	10 11	\		İ			
nonce	6,5	Ac Re	0 1	\(\rightarrow \)		<u>1</u>	1 2	2 3	3 4	5 6	6 7	8	10 11	(=	 			
ms and	4,0	Ac Re	♦	0	\$		\Rightarrow	ار -	2 3	ω 4	5 6	2 9	ნ 8	10 11	\			
ing ite	2,5	Ac Re		\Rightarrow	0	♦		\Rightarrow	1 2	2	ъ 4	5 6	2 9	6 8	10 11	\		
onform	1,5	Ac Re			\Rightarrow	0	\$			2	2	4	5 6	2 9	6 8	10 11	(=	
t nonc	1,0	Ac Re				\Rightarrow	0	\(\rapprox		\Rightarrow	1 2	2 3	8 4	9	2 9	ග හ	10 11	\$
percer	0,65	Ac Re					\Rightarrow	- 0	♦		\Rightarrow	1 2	8	ε 4	5 6	2 9	о 80	10 11
AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	0,40	Ac Re						\Rightarrow	-	♦		\Rightarrow	2	2 3	4	9 9	2 9	6 8
	0,25	Ac Re				 			\Rightarrow	0 1	\$		\Rightarrow	- 2	2 3	ω 4	5	2 9
Acceptance quality limit,	0,15	Ac Re							<u> </u>	\Rightarrow	0	♦		\Rightarrow	2	اد د	ع 4	5 6
tance	0,10	Ac Re									\Rightarrow	7	♦			1 2	3	4
Accep	0,065	Ac Re							l			⇒	- 0	\(\rac{1}{2} \)		\Rightarrow	1 2	2 3
	0,040	Ac Re							 			<u> </u>	\Rightarrow	0	♦		\Rightarrow	1 2
	0,025	Ac Re											-	\Rightarrow	1 0	\		
	0,015	Ac Re										l 				- 0	\	
	0,010 (Ac Re													L		0	\$
	Sample size	+	2	α	2	ဗ	Ŋ	œ	13	50	32	50	88	125	200	315	200	800
Sample		letter	4	ø	O	Q	ш	ш	g	Ι	ר	ㅈ	_	Σ	Z	۵	a	α

장 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

Re = Rejection number

⁴ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Table 3-A — Double sampling plans for normal inspection (Master table)

		1 000	Ac Re	*	25 31 56 57	\	I I I	·					I I						
		929	Ac Re	*	17 22 37 38	25 31 56 57	(=			1			 			<u>. </u>			<u> </u>
		400	Ac Re	*	11 16 1	17 22 2 37 38 5	25 31 56 57	\		! ! !			<u> </u> 			1			
		250	Ac Re	*	11	11 16 1 26 27 3	17 22 2 37 38 5	25 31 56 57	\	!			i !			1			!
, a	<u>(</u>	55	Ac Re	*	9 13	19	16 27	22 88	=	<u> </u>	······································	•	! !			 			
togua	200	8	Ac Re	*	6 5 12	9 7 13 18	11 11 11 11 26	16 17 1 27 37	\ =				 			! !			<u> </u>
ri lem	<u> </u>	65 1	æ	*	5 3	6 5 10 12	9 7 13 18	11 11	16	<u></u>			i 						<u>i</u>
00) 30	200	40	Ac Re Ac	*	5 3	5 3 7 9	6 5 12	9 7 13 18	11 11 19 26	16	—		 			 		-,	<u> </u>
1 2			Re		£ 4	5 3	5 3	6 5 10 12	9 7 13 18	11 19 26	16 5	1_				 			
l ac	n de	5 25	\second	*	3 0	£ 4	5 2	5 3	6 5 7 2	9 7	11 11 19 26	16 2	-			1 1			
- agitim	Ď	15	Re Ac Re	♦	0 -	3 0	ω 4 - 4	5 2	5 3 7	6 5 12 1	9 7 1	11 11 1	16 16		•	 			I
- Judge		5	le Ac Re		\Rightarrow	0 -	30	4 4	5 2 6 5	5 3 6	5 12	9 7 1	11 11 1	\$\frac{1}{2}		! !		· ·	Ļ
100		6,5	e Ac Re	*	\	➾	0 -	0 %	3 1 3	0 0	3 6 9 10	5	7	1 11 16 9 26 27	, 	i I			<u> </u>
e sme	2	4,0	Ac Re		*	\$	❖	9 5	0 %	+ 4 8 3	2 5 6 7	3 6 9 10	5 9 12 13	7 11	11 16	\			
i point	6	2,5	Ac Re		\Rightarrow	*	♦	➾	0 -	0 ε ε 4	1 3	2 5	3 6 0 10	5 9 12 13	7 11 18 19	11 16 26 27	ᢣ		
nofor		1,5	Ac Re	_		\Rightarrow	*	\$	➾	0 +	0 3 4	1 3 5	2 6 7	3 6 9 10	5 9 12 13	7 11 18 19	11 16 26 27	\	
(nistipulia) tan 100 tan and nonconforming items and nonconformities as 100 items (normal incaration)	5	1,0	Ac Re				\Rightarrow	*	♦	➾	0 2	0 8 4	+ 4 8	2 5 6 7	3 6 9 10	5 9 12 13	7 11 18 19	11 16 26 27	\$
90.00	מוכו	99'0	Ac Re	_				\Rightarrow	*	♦	↔	0 2 2	0 8 4	t 4	2 5 6 7	3 6 9 10	5 9 12 13	7 11	11 16
.s	j	0,40	Ac Re Ac Re				l 		⇒	 *	❖	➾	10	0 E 4	4 د د ت	2 5 6 7	3 6 9 10	5 9 12 13	7 11
4 tim	1111,	0,25	Ac Re			W. L. L.	1	***		\Rightarrow	*	♦	➾	0 -	ω 4	£ 4	2 5 6 7	3 6 9 10 1	5 9 7
i i	dalliy	0,15	Ac Re							i	\Rightarrow	*	♦	\$	20	ω 4	ကအ	7	9 6
		0,10	Ac Re							 		⇒	*	♦	\$	9 0	£ 4	3 2 6	1 22
Accentance	ירפטוני	0,065	Ac Re A							L		-		*	\$	\$	30	€ 4 + 4	8 1
Ā	۱		Ac Re Ac											<u>_</u> >	*	γ Φ	- - -	2 0 3	60 4
		0,025 0,040	Ac Re Ac											~			٠ 4	٥-	0 0
] 					- ~	*		4	0,
		10 0,015	Re Ac Re													 	*	\mathbb{I}	
	ل	0,010	Ac Re														\Rightarrow	*	♦
	Cumu-	lative sample	size		W 4	၉	5 10	8 16	13 26	20 40	32	50 100	80 160	125 250	200	315 630	500 1 000	800 1 600	1 250
		Sample size			2	33	2 2	8 8	13	20	32	50 50	80 80	125 125	200	315 315	500	800	1 250
		Sample			First Second	First Second	First Second	First Second	First	First Second	First	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First
	Sample	size	letter	٧	8	ပ	O	ш	ш	ŋ	I	7	쏘	٦	Σ	z	۵.	σ	Œ

🖑 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $^{\ \, \}diamondsuit$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

Table 3-B — Double sampling plans for tightened inspection (Master table)

	1 000	Ac Re	*	23 29 52 53	(!			! !			! !			L				
	650	Ac Re	*	15 20 2 34 35 5	23 29 52 53	=			<u>;</u>			, 			<u> </u>				
	400	Ac Re	*	9 14 1	15 20 2 34 35 5	23 29 52 53	\] 			1						 	
	250	Re	*	6 10 9 15 16 2	4 ₄	35	2 29	=	i !			1			i!				
tion)	150	Ac Re Ac	*	7 T	6 10 9 15 16 23	14 15 24 34	20 23	<u> </u>	 			<u> </u>			! !			<u> </u>	
pedsu	100	Re	*	5 4 7	<u>~ =</u>	10 9 16 23	14 15 24 34	\ \	1 1 1			! 			 				
ened	65 1	Ac Re Ac	*	5 2	5 7 10	7 6	10 9 16 23	14 2				i							
s (tight		Re Ac		£ 4	5 2 6	5 4 7	7 6	10 9 16 23	42	1					i i			 -	
) items	40	Ac	*	3 0	£ 4	5 3	5 4 7 10	7 6 11 15	10 9	4 4 2							******	 	
Jer 100	25	e Ac Re	♦	0 -	30	£ 4	6.2	5 4 7	9 5	9	24 t2	 			I 				
nities p	15	e Ac Re		\Rightarrow	0 -	0 %	£ 4	0 0	7 4 7	6 10	6 8	<u></u>	I		I I				
onforn	10	Ac Re			\Rightarrow	0 -	0 %	- 4 ε ε	2 5 6 7	10 11	6 10	9 14 23 24	\		! ! !			<u></u>	
quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	6,5	Ac Re	➾	*	_	\Rightarrow	0 2 1 2	0 8	t 4	2 5 6 7	4 7 10 11	6 10 15 16	9 14 23 24		 			<u> </u>	
ns and	4,0	Ac Re		\Rightarrow	*		\Rightarrow	0 2 1 2	0 3	1 3	2 5 6 7	4 7 10 11	6 10 15 16	9 14 23 24	ᢣ				
ng iter	2,5	Ac Re			\Rightarrow	, * 		\Rightarrow	0 - 2 2	0 E	t 3	2 5 6 7	4 7 10 11	6 10 15 16	9 14 23 24	(
nformi	1,5	Ac Re				\Rightarrow	*		\Rightarrow	2 2	0 E	4 - 4 د د	2 5 6 7	4 7 10 11	6 10 15 16	9 14	\		
nonco	1,0	Ac Re				1	⇒	*	<u> </u>	⇒	2 2	0 8	1 3	2 5 6 7	7 4 10 11	6 10	9 14	♦	
arcent	9,65	Ac Re /				! ! ! !		\Rightarrow	 *	_	⇒	1 2 2	ю 4	ကက	2 5 6 7 1	10 11	6 10	9 14 23 24	
≅i	0,40	Ac Re				!			<u>-</u>	*		<u> </u>	0 0	6 4	6 3	۷ ک	7 7	16	
it, AQI	0,25 (æ				 				 =⇒	*		<u></u> >	30	£ 4	5 2	7 7	7 1	
lity lim	0,15 0	Ac Re Ac				 			 			*		<u></u> >	2 3	ω 4 - 4	5 2 6	5 4 7	
e dua	10	å				i 			i !	w_w_a_					<u> </u>	3.0	ω 4 - 4	5 2	
Acceptance	0,065 0,	Re							i I				` ⇒>			<u> </u>	30	6 4 1 4	
Acc		Ac Re Ac Re				l 			! !			l 	<u> </u>	*		<u> </u>	N	3 0	
	25 0,040	3e Ac				 			<u>-</u>			 		⇒	*		→	0 -	2 2
	5 0,025	le Ac Re				 						 				*			0 +
	0 0,015	e Ac Re										 		'		\Rightarrow	*	♦	
	0,010	Ac Re				_		1	i i			i					\Rightarrow	*	
Cumu-	lative sample	size		2 4	9	5	8 16	13 26	20	32 64	50 100	98 160	125 250	200	315 630	1 000	800 1 600	1 250 2 500	2 000 4
	Sample size			2 2	ဗ	2 2	88	<u> </u>	20	32 32	50	8 8	125 125	200	315 315	500	800	1 250 1 250	2 000
	Sample			First	First Second	First	First Second	First Second	First Second	First	First Second	First	First	First Second	First Second	First Second	First	First Second	First
Sample		letter	∢	В	0	٥	ш	щ	5	I	J.	*	ر ا	Σ	z	۵	o	۳	S

्रे = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]widehat{\Box} = \mathsf{Use}$ the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or atternatively use the double sampling plan below, where available).

Table 3-C — Double sampling plans for reduced inspection (Master table)

	8	şe.	Τ-	1	_	:			!			:						·
	1 000	Ac Re	*	*	╚							<u> </u>			<u> </u>			
	650	Ac Re	*	*	*	\leftarrow						! !						
	<u> </u>	Re	\vdash		1	16 ,			1			<u> </u>			<u>i </u>			
	400	Ac	*	*	*	12 92	U		! !			! 						
	250	Ac Re	*	*	*	7 11	11 16 26 27	\	<u>!</u>			! 			<u> </u>			
Ē	20	Re A		<u> </u>	-	13 7	11 1 2	1_	<u> </u>			 			<u> </u>			
ectic	15	Ac	*	*	<u> </u>	2 5	7 18	7	I			 		7	<u> </u>			
insp	ş	Ac Re	*	*	*	4 7 10 11	5 9 12 13	\	<u> </u>			i i			<u> </u>			
ncec	65	26	*	*	*	9 8	~ =	<u>υ τ</u>		-		1			<u>, </u>			<u> </u>
(red		e Ac			_	4 3 6 7	6 4 5	7 1 5 1 2	9 5 5	1		i I						<u> </u>
tems	5	Ac Re	*	*	*	2 2	3 6	4 7 10 11	5 9	├		<u> </u>			L			
100	25	c Re	*	*	*	ကေ	4 0	ဖထ	7 1	9 13	\leftarrow				i 			
per		Re		\perp		ω 4 - 4	5 2 2	4 3	6 4 10	7 5 11 12	9 5				<u>. </u>			<u> </u>
ities	15	Ϋ́		->	*	ဝ၈	- 4	21.72	e ν	4 5	ი 2	J			 			
-form	₽	Ac Re	_		⇒	0 2 1	ε 4	5 2	4 9	9 8	4 7 10 11	5 9 12 13	(=		<u> </u>			
and nonconformities per 100 items (reduced inspection)	ري 	Ac Re	*	♦	T	 	2 0	ε 4 - 4	5 2 2	4 3	9 8	7 =	o €		!			
Dr Dr	9		Ľ	7	Ľ		0 -	0 %	- 4	21.72	8 /	4 5	ء 15	7	i 			
ns ar	4,0	Ac Re	♦	*	♦	_	\Rightarrow	10	0 ε ε 4	t 4	4 2 2	3 6	4 7 10 11	5 9 12 13	५≔			
in percent nonconforming items	2,5	Ac Re		⇌	*			\Rightarrow	00	ω 4	ကေ	4 9	ဖြ	7 =	9 2	\		
ini					_	•	4	<u>, </u>	0 -	3.0	4 4	5 2 5	4 3 7	6 4 10	7 5 11 12	9 5	Γ.	
outo	1,5	Ac Re	_		⇒	*	♦	C	\Rightarrow	0 -	0 %	- 4	21.72	8 /	4 0	2 2	\downarrow	
non	0,1	Ac Re	_			\Rightarrow	*	\$	_	\Rightarrow	1 2 2	ω 4	- 4 ε τ	4 9	3 6	4 7 10 11	5 9 12 13	\$
cent	35	æ					➾		♦		→	2 2 3	ω 4	5 3	4 9	9 8	7 = 1	9
ן per	0,65	Ac				<u> </u>	-	*	7			0-	0 %	- 4	5 2	6 /	4 0	5 5
ار بن	0,4	Ac Re	=			<u> </u>		\Rightarrow	 * 	♦	_		1 2 2	0 E	1 3	4 9	3 6	4 7 10 11
it, AC	0,25	28								*	♦			2 2	ω 4	ကက	4 9	9 8
ality limit, AQL,		A _C									٦		~	0-	0 %	ω 4 - 4	2 5	2 3
	0,15	Ac Re								\Rightarrow	*	♦		\Rightarrow	0 2 1 2	0 m	1 3	2 4 5 6
Acceptance qu	0,10	Ac Re						•	L		\Rightarrow	 *	♦	_		2 2	е 4	ъ з
eptar		e A						 -	<u> </u>			l I	_			0 -	2 0 2 2 3	4 4
Acc	0,065	Ac Re								<u></u>		\Rightarrow	*	❖		\Rightarrow	0 -	0 %
	0,040	Ac Re											\Rightarrow	*	❖		\Rightarrow	2 - 2
	0,025 0	Ac Re	_			L								⇒				0 -
		P C													*	7		
	0,015	Ac Re	_												=>	*	\Downarrow	
	0,010	Ac Re /						****								\Rightarrow	*	\dots
																- 7		
Cumu-	lative sample	size				2 4	၉	5 10	8 16	13 26	20 40	32 64	50 100	80 160	125 250	200	315 630	500 1 000
	Sample size					2 2	ကက	5	8	13 13	20 20	32 32	50 50	80 80	125 125	200 200	315 315	500 500
						st ynd	st	st and	st	st	st ind	st	st	st	st	st	st	st
	Sample					First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second
Sample	size code	itter	٧	В	c	D	Ш	д.	9	Н	J	K	L	Σ	z	Ъ	Ø	Œ
Sai	ა გ	<u>a</u>					,											

्रे = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

Table 4-A — Multiple sampling plans for normal inspection (Master table)

	1 000	Ac Re	*	‡	ै	i					i					i_					<u> </u>				_
	650 1	Ac Re	*	‡	‡						 		-			<u> </u>									_
			Ĺ			16 4	27	38	48	57						! !					 				
	400	Ac Re	*	‡	‡	9	17	59	40	56	ᡧ										<u> </u>				_
	250	Ac Re	*	‡	‡	4 12	11 19	19 27	28 34	37 38	9 16	17 27	29 38	40 48	56 57	\					i i				_
ction)	150	Ac Re	*	‡	‡	6	4	5	25	27	12	19	27	34	38						1				
nspe	90	Ac Re	*	‡	‡	7 2	10 7	13 13	17 20	19 26	9	14	19 19	25 28	27 37						 				
mali	<u> </u>		_			5	4	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	14	19	25	7	i				_
ou) s	65	Ac Re	*	‡	‡	0	ო	<u></u>	6	12	-	4	80	12	18	2	7	13	20	26 27	ᡧ	==			_
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	4	Ac Re	*	‡	‡	0 4	1	33	5	9 10	0 5	8	01 9	9 12	12 13	1 7	4 10	8 13	12 17	18 19	2 9	7 14	13 19	20 25	26 27
r 18	25	Ac Re	₽	‡	‡	4	S	9	2	7	4	9	œ	6	10	5	80	10	12	13	7	9	13	17	19
ed se	5	Ac Re	_	<u></u>	 ‡	# ص	₂	4	5	5 6	4	ro _	9	7	7	0	9	8	6	10 12	5	8	10	12 12	13 18
rmiti			_	_		# 2	3	3 +	3	4	#		2	5	5	0	5	9	7 5	6 /	0	9	9	6	10 12
confc	9	Ac Re			➾	#	0	0	-	က	#	0	-	N	4	#	-	7	4	φ	0	-	т г	ιΩ	9 1
d non	6,5	Ac Re	*	♦	❖	# 2	0	0 2	0	1	#	0	0 3	د	3 4	به #	0	4	2 5	5	#	د ص	2 6	4 7	6 7
ารลก	4,0	Ac Re	♦	*	♦					_ ⇒	2	2	7	7	0	2	8	8	က	4	ю **	e 0	4	ß	5
giten	2,5	Ac Re			*					_	-	0	•	0		5	2	2 0	2	2	7	3	ب	3	4
ormin			-	_	Ĺ	7									<u>~</u>	#	0	0	0	_	# 2	2 0	0	2	2 3
confc	1,5	Ac Re			\Rightarrow			*			⊱				_					⇒	#	0	0	0	-
nt non	1,0	Ac Re	_			•				➾			*			⊱				_	_				⇒
ercer	0,65	Ac Re													_ ⇒			*			ᡧ				
in p	0,40	Ac Re																		- >			*		
, AQI						—					 					 				_	<u> </u>				_
/ limit	0,25	e Ac Re														į									⇒
quality	0,15	Ac Re									<u> </u>					<u> </u>					<u> </u>			-	⇒
nuce (0,10	Ac Re	=			<u></u>					<u> </u>				==	<u> </u>					=				╬
cepta	0,065	Ac Re																							>
Ac	0,040 0	Ac Re A									i 					i !					i 				
											 														=>
	0,025	Ac Re	Ш																						⇒
	0,015	Ac Re			_											! ! !					 				⇒
	0,010	Ac Re														<u> </u>									= <u>₹</u>
																<u> </u>									_
<u> </u>	lative sample	size				2	4	9	80	유	3	9	6	12	15	2	9	15	20	25	8	16	24	32	40
	Sample size					2	2	8	2	2	3	က	က	၉	3	2	2	2	2	5	8	80	80	80	8
	Sample					First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fiffh
Sample	size	letter	Α	В	O			۵					ш					ц.					g		

S = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

^{++ =} Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

^{# =} Acceptance is not permitted for this sample size.

Table 4-A — Multiple sampling plans for normal inspection (Master table) (continued)

	1 000	Ac Re	⟨⊨					<u>i</u>					i					<u> </u>					<u> </u>				
			L.	·				<u>i</u> 					-										_				
	920	Ac Re	♥					1										!									<u> </u>
	400	Ac Re	⊱					i					i i					i					i •				=
	250	Ac Re	⊹							****																	_
ion)	150	Ac Re A	1					<u> </u>					<u> </u>] 1 }					! !				_
spect	-		7					-					i					j r									_ _
la in	100	Ac Re	ᡧ					<u> </u>					<u> </u>					<u> </u>									=
(norn	65	Ac Re	₽		-			<u>i </u>										<u> </u>					<u> </u> -				_
items	40	Ac Re	ᡧ					i i					<u> </u>					i I					i 				_ _
r 100	25	Ac Re	6	4	3 19	25	3 27	<u>_</u>					! !										 				_
es pe	15	Ac Re A	7 2	10 7	13 13	17 20	19 26	6	4	19	25	27	\		a								!				_
ormiti	_	Re Ac	1 2	8	10.8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	14	19	25	27	1					<u> </u> 				<u> </u>
confc	10	Ac	0	ღ	9	6	12	-	4	œ	12	18	2	7	13	20	26	♥		_							_
nou p	6,5	Ac Re	4	1	ω ω	5	9 10	0 5	3	6 10	9 12	12 13	1 7	4 10	8 13	12 17	18 19	2 9	7 14	13 19	20 25	26 27	\				_
ns and	4,0	Ac Re	4	1 5	2 6	4 7	2 9	4	9	8	5	10	0 5	3 8	9	12	12 13	1 7	9	13	12 17	18 19	2 9	4	13 19	20 25	26 27
ng iten	2,5	Ac Re	8	<u>ო</u>	4	2	Ŋ	4	r.	9	7	7	4	9	8	6	10	5	8	10 8	12	<u>ნ</u>	7	10 7	13	17	19
formir	1,5	Re	2	3	3	8	4	# «	3	4	5	2	0	ro T	9	7 5	7	4	9	8	6	10 12	5	8	10	12 12	13 18
ncon	Н	Ac	# 2	0	2 0	7	2	# 2	3 0	-	3	4	#	-	2	5	9	0	5	9	7	6 2	0	9	9	6	10 12
nt no	1,0	Ac Re	#	0	0	0	-	#	0	0	-	e e	*	0	-	۵,	4	#	-	7	4	2 9	0	-	8	2	6
perce	0,65	Ac Re	_			-	⇒>	# 2	0	0 2	0 2	1	#	0	0	د	3 4	# 3	0	4	2 5	5	#	1	2 6	4 7	6 7
ì, in	0,40	Ac Re	ᡧ				_					⇒	2 #	0 2	0 2	0 2	1 2	2 #	e 0	0 3		3 4	8 #	0 3	4	2 2	5
it, AG	0,25	Ac Re			*			=				_					 ⇒	2	8	7	2	7	2	က	က	ო	4
uality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	0,15 (Ac Re A					— ⇒	<u> </u>		*			\				<u> </u>	#	0				5 #	2	2	0	2
e dua	0,10	Ac Re Ac						<u>i</u>				_	1					1				~	#	0	0	0	
Acceptance q								<u>i </u>				→			*			\blacksquare					_				→
Acce	0,065	e Ac Re															⇒			*			1				<u> </u>
	0,040	Ac Re						<u>i </u>														⇒			*		
	0,025	Ac Re															_										_ ⇒
	0,015	Ac Re						 			_							 	_								-√ -
								 																			~ -
	0,010	Ac Re											<u> </u>														⇒
Cumu-	lative sample	size	13	56	39	25	92	8	04	09	80	100	32	64	96	128	160	20	100	150	200	250	80	160	240	320	400
	Sample size		13	5	13	5	13	20	50	50	20	20	32	35	32	32	32	20	20	20	20	50	80	80	80	80	80
	Sample		First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	£
Sample	size Se	tter	_	3	ı	ıĽ			ν, γ	<u>⊢</u>	ш			Š	<u>-</u>	<u>. </u>			S		щ	-	<u></u>	Se	<u>⊢</u> Σ	ш	
Sar	S	Φ			_										_					_					_		

 $\dot{\gamma}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

Table 4-A — Multiple sampling plans for normal inspection (Master table) (concluded)

	1 000	Ac Re	⊹					<u> </u>					<u>i </u>					1				_
			Ľ					1					-) 				
	650	Ac Re	↓					!					1			_		1				_
	400	Ac Re	∠ ⊨										! !									_
	ļ							<u> </u>					<u> </u>					i 				
	250	Ac Re	<⊨					i														_
tion	150	Ac Re	Ų					<u> </u>														_
sbec	-		-					<u> </u>					1					<u> </u>				
la in	100	Ac Re	♥					<u> </u>										i				<u> </u>
norm	59	Ac Re	⊱										<u> </u>					<u> </u>				_
) sm	_		1] 					 				
0 ite	40	Ac Re	7					<u> </u>														<u> </u>
er 10	25	Ac Re	⟨	-				<u>i </u>					<u>. </u>					<u>: </u>				_
les p	15	Ac Re	<=															i i				_
rmit			 					<u> </u>										1				
confc	10	Ac Re	♥					1					I L					<u>. </u>				—
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	6,5	Ac Re	⟨ ⊢					1					<u> </u>									_
and	-	Ac Re A						<u> </u>					<u> </u> -					<u> </u> 				
tems	0,4		7		_		Ţ	<u> </u>														<u> </u>
ing it	2,5	Ac Re	2 9	7 14	13 19	20 25	26 27	⊱					! <u> </u>					<u>!</u> I				_
form	1,5	Ac Re	7	5	13	17	18 19	6	4	19	52	27	_					<u> </u>				
ncon			5 1	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	4	19	ın		l 				_
t no	1,0	Ac Re	0	8	6	9	12 1	-	4	₩	12 1	18 1	8	7 14	13 1	20 25	26 27	⊱				_
ercer	9,65	Ac Re	4	9	80	6	10	2	æ	10	12	2 13	7	10	13	17	3 19	6	4	3 19	25	3 27
in Pg			4 0	5	9	7	7	4	9	9 8	6	10 12	5	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26
Å,	0,40	Ac Re	*	-	0	4	9	0	_	ო	5	თ	0	က	9	თ	12	-	4	∞	12	13 18
oit, A	0,25	Ac Re	#	0	4	2 5	5	4	- 2	2 6	4 7	2 9	4	9 _	3	5	9	0 5	3 8	9	12	12 13
T E	0,15		2	<u>س</u>	<u>ه</u>	ю 0	4	6	<u>ო</u>	4	22	2	4	2	9	<u>-</u>	7	4	9	8	6	10
quali	⊢	Ac Re	#	0	0	-	က	#	0	-	7	4	#	-	Ø	4	9	0	-	ო	Ŋ	6
nce	0,10	Ac Re	# 2	0	0	0	-	#	0	0	1 3	3 4	_#	0	4	2 5	4 5	#	5	2 6	4 7	6 7
epta	0,065	Ac Re					 >	2	7	0	8	8	2	ო	ო	က	4	6	က	4	r.	'n
Acc								#	0	0	0	-	# 7	2	2 0	2	3	#	0	-	3	4
	0,040	Ac Re	\forall				_	_				⇒	#	0	0	0		#	0	0	-	ص
	0,025	Ac Re			*			⊱				_					⇒	1 2	2	2	2	2
		Ac Re A				_		-										#	0	0	_	_
	0,015	Ac					\Rightarrow			*			Ţ									_
	0,010	Ac Re	_					_				⇒			*			ᡧ				—
þ			rð.		ιΩ	•	r.	0				8	5	_	22	8	75	0	8	8	8	<u> </u>
Cumu-		size	125	250	375	200	625	200	400	009	800	1 000	315	630	945	1 260	1 575	200	1 000	1 500	2 000	2 500
	Sample size		125	125	125	125	125	200	200	200	200	200	315	315	315	315	315	500	200	200	200	200
								<u> </u>														
	Sample		First	Second	Third	Fourth	Ħ	First	Second	Third	Fourth	₽	First	Second	Third	Fourth	Εİ	First	Second	Third	Fourth	Ē
Sample		Į.			_										~							
Sarr	size	letter			z					о.					Ø					ш		

🖔 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

Table 4-B — Multiple sampling plans for tightened inspection (Master table)

Г	8	æ	Ι.	T +	1/	ĭ					i					i		•			i				
	1 000	Ac Re	*	‡	7	į .					i					-					Ī				
	650	Ac Re	*	‡	‡	⊱		_			1	==				i i					1				-
	400	Ac Re	*	‡	‡	5	52	35	45	53	<u></u>														
	<u> </u>			+	╁	10	17 16	24 26	31 38	35 52	15	25	35	45	53						-				
٤	250	Ac Re	*	‡	‡	8	10	17	25	34	9	16	26	88	52	╚					i				
ectic	150	Ac Re	*	‡	‡	- 8	6 12	11 17	16 22	23 24	3 10	10 17	17 24	25 31	34 35	⟨ =					<u>: </u>				_
d insp	9	Ac Re	*	‡	‡	9	6	12	15	16	80	5	17	22	24	1					<u> </u>				
tenec	-			╁╌	-	0	7	6	= =	11 15	- 9	9	12 1	15 16	16 23	8 4	12	17	22	24					
(tigh	65	Ac Re	*	‡	‡	0	8	4	9	2	0	ო	7 1	Ę	15	-	9	Ξ	16	23	ѷ	-			_
tems	6	Ac Re	*	‡	‡	#	5	2 6	4 7	2 9	0	2 7	9	6 11	10 11	9 0	3	7 12	11 15	15 16	8	6 12	11 17	16 22	23 24
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	25	Ac Re	♦	‡	‡	6	က	4	Ŋ	2	4	ß	9	7	7	4	7	6	=	=	9	6	57	5	16
ber :				Τ.	⊢	2	3	3	3	4	# @	3	4	5	5 6	0	5	6	7	7 10	0	7 3	2 6	11 11	11 15
nities	15	Ac Re	╚	⇒	‡	#	0	0	_	ო	#	0	-	0	4	#	-	8	4	9	0	N	4	9	2
nforr	우	Ac Re	-		\Rightarrow	#	0	0	0 2	1 2	# 2	0	0	1 3	ع 4	#	0 3	4	2 5	5	#	5	2 6	4 7	6 7
ouco	6,5	Ac Re	₽	*						⇒	2	7	~	8	8	2	က	က	က	4	က	က	4	2	2
n pur	 									_	#		0	0	_	7	2	2 0	2	2	2	3	T	3	4
ems (4,0	e Ac Re		= >	*										=>	#	0	0	0	-	#	0	0	-	8
ing it	2,5	Ac Re	=		⇒			*			=					<u>L</u>				➾	#	0	0	0	1 2
form	1,5	Ac Re	_	_		-				⇒			*			_					_				⇒
ncon	1,0	Ac Re				<u> </u>															<u> </u>				
nt no	<u> </u>										<u> </u>					<u> </u>					_				\dashv
perce	0,65	Ac Re	_								<u>: </u>									\Rightarrow			*		
r,	0,40	Ac Re		_		I I					i				_	<u>i</u>									⇒
t, AQ	0,25	Ac Re									<u> </u>										$\overline{}$				\Rightarrow
y limi	2	æ				! 					 					 					<u> </u>	-			
nalit	.'0	Ϋ́				į										i I					<u> </u>		-		⇒
nce o	0,10	Ac Re	=			<u> </u>					<u> </u> 			_		i i				- 1			,		⇒
epta	0,065	Ac Re									! !					<u> </u>									\Rightarrow
Acc	0,040	Ac Re	_							-	<u> </u> 							·							
			_								<u>.</u> !														\dashv
	0,025	Ac Re																							\Rightarrow
	0,015	Ac Re														<u> </u>				_					⇒
	0,010	Ac Re														L. 									긱
																-				\exists			_		\dashv
Cumu-	fative sample	size				2	4	9	80	10	3	9	6	12	15	2	9	15	20	22	80	16	24	32	5
	Sample					2	7	Ø	8	2	3	ю	ო	က	3	5	ည	ß	ഹ	2	80	80	æ	80	80
	Sample					First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Hift.	First	Second	Third	Fourth	ŦĮĘ
Sample	size	letter	٨	В	O			۵				_	ш					ட			-		g		

🖔 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \bigtriangleup = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

Table 4-B — Multiple sampling plans for tightened inspection (Master table) (continued)

0.040 0.065 0.10 0.15 0.25	0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5
0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40	0,025 0,040 0,065 0,10 0,15 0,25 0,40
Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re
*	*
\Rightarrow	\uparrow
*	*
	⇒
#	
*	*
	0
	\uparrow
# 2 #	# 2
0 2 0	7
*	2
0 2 1	
	1 2
	# 2 # 2
0 2 0 3 0	2 0 3
*	0 2 0
0 2 1 3 2	2 1 3

 \circlearrowleft = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

Table 4-B — Multiple sampling plans for tightened inspection (Master table) (concluded)

Sample	96							Acce	ptanc	Acceptance qua	lity lim	it, AQI	ri, in	ercent	lity limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	nformir	ng item	is and	noncc	nform	ities p	er 100	items	(tighte	ned in	spectio	<u>ē</u>				
size	Sample	Sample	v	0,010	0,01	5 0,025	5 0,040		0,065	0,10	0,15	0,25	0,40	9,0	1,0	1,5	2,5	4,0	6,5	10	15	25	40	65	100	150	250	400	650	F	8
lette	_		size	Ac Re	e Ac Re	e Ac Re		Ac Re Ac	Ac Re Ac	Ac Re A	Ac Re /	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re
	First	125	125						_		2 #	# 2	e #	4	4	9 0	- 8	⟨⊨	⟨⊨	4	⊱	₽	⟨	⊱	₽	ᡧ	⊹	ᡧ	♦	1	1
	Second	ld 125	250								2	0	0	5	2 7	ი ი	6 12														
z	Third	125	375				*				2 0	8 0	4	2 6	6	7 12 1	11 17														
	Fourth	h 125	200			•					2	8	2 5	4 7	6 11	11 15	16 22												-		
	Fifth	125	625			\Rightarrow			_	 ⇒	2	4	5	. 2 9	10 11	15 16	23 24														
	First	200	200						*	‡ 5	# 2	e #	4	4	9 0	80	ᡧ	<u> </u>	! !	<u> </u>	 	<u> </u>	<u> </u> 	<u> </u>	<u>i</u> i		<u> </u>	1	 	<u>i</u>	i
	Second	200	400		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0	8	8	0 3	1 5	2 7	6 E	6 12												-			
Δ.	Third	500	009			*			0	7		4	2 6	6	7 12 1	11 17			-												
	Fourth	200	800						0	- 2	<u>ო</u>	2	4 7	0 11	11 15	16 22									•						
	Fifth	200	1 000		⇒			- /	7	2	4	5	2 9	10 11	15 16	23 24															
	First	315	315					#	5 #	5	8 #	4	4 0	9 0	1 8	ै	<u>. </u>	! ! !	<u> </u>	!]]	 	 	<u> </u>	<u> </u>	<u> </u>	i		<u> </u>	į	i
	Second	315	630					0	2 0	8	· ·	5	2 7	ი ი	6 12																
Ø	Third	315	945		*			0	2	3	4	9 2	4 9	7 12 1	11 17																
	Fourth	315	1 260					0	2	8	2	4 7	11	11 15 1	16 22																
	Fifth	315	1 575	⇒			⇒	-	2 3	4	2 (6 7 1	10 11	15 16	23 24						-										
	First	200	200		\forall		#	#	5 #	#	4	0 4 (9 0	8	\		<u> </u>			<u> </u>] : :	<u> </u> 	 	<u> </u> 	<u> </u> 	<u> </u>	i I		1	<u>i </u>	i
	Second	Q 200	1 000				0	0	9	8	- n	2 7	3 9	6 12				-					-								
Œ	Third	200	1 500	*			0	2 0	ь -	4	9	4 9 7	7 12	11 17																	
	Fourth	200	2 000				0	2	3	72	7 +	6 11 1	11 15	16 22														_			
	Fifth	500	2 500		_	\Rightarrow	-	2 3	4 4	5 6	3 7 1	10 11 1	15 16	23 24	_	_		=	_	_	=	_	_	_	_	_	_	—	_		_
	First	800	800			#	6.																							_	
	Second	900 p	1 600			0	<u> </u>																								
S	Third	800	2 400			0	6.																								
	Fourth	800	3 200			0 2	<u> </u>																								
	Fifth	800	4 000			1 2	<u> </u>																								
																			1	1			1	ŀ						-	7

🕓 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

← = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table)

	1 000	Ac Re	*	*	<_	i_	<u> </u>	í					i					i				_
	—		Ĺ	Ĺ	7	i –	<u> </u>	<u> </u>					i					i				
	650	Ac Re	*	*	*	⟨	1	<u> </u>		_			1					1				_
	400	Ac Re	*	*	*	‡	₹						<u> </u>									_
	<u> </u>		_	-				-					 					<u> </u>				
_ ا	250	Ac Re	*	*	*	‡	‡	ѷ					i					ï				
ectio	55	Ac Re	*	*	*	‡	‡	ᡧ					<u>:</u>									_
insp	8	Ac Re	*	*	*	‡	‡	_										<u> </u>				
peor	-		_			┝	-	5 4		9	12	13	H					<u> </u>				
(red	65	Ac Re	*	*	*	‡	‡	0	~ د	9	6	12 1	∜					<u> </u>				_
tems	9	Ac Re	*	*	*	‡	‡	4	2 7	9	6 11	10 11	0 5	8	10	9 12	12 13	₹				===
100	25	Ac Re	*	*	*	+	‡	4	9	7	- 80	- 80	4	7	9	-	=	2	80	9	12	<u>ნ</u>
s per	<u> </u>		 	<u> </u>		-	<u> </u>	3	4	2	5	6 7	0	- 5	7 4	9	8 10	0	7	9	1 9	11 12
nitie	15	Ac Re		₽	*	‡	‡	#	-	7	ო	2	0	-	8	4	^	0	N	4	9	9
ity limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	9	Ac Re	=	<u>!</u> !	⊨>	‡	‡	#	0	1 4	2 5	5	#	4	2 5	3 5	5 6	0 4	9	2 7	8	7 8
Jouce	6,5	Ac Re	*	♦	_	12-1	+	2	ო	ო	က	4	က	က	4	വ	വ	ဗ	4	2	Ŋ	9
andr			_				Ļ	5	2	2 0	-	3	5	3	3	3	4	#	3	2	3	5
sma	4,0	Ac Re	❖	*	♦			#	0	0	0	-	#	0	0	-	ო	#	0	-	8	4
ing it	2,5	Ac Re	_	\Rightarrow	*	♦	=	_				➾	# 2	0 2	0	0 2	1 2	#	0 3	0 3	33	3 4
form	5,5	Ac Re				*	♦										 >	2	8	7	8	2
ncon	<u> </u>			_		Ļ							<u> </u> 				_	#	0	_	0	-
l ro	1,0	Ac Re		-	-	-	*	Ų									•	ı I				\Rightarrow
erce	0,65	Ac Re					=>			*			⊱				_	=				⇒
i ii	0,40	Ac Re	U									 ⇒			*			⟨ =				
AQ!	0,25	Ac Re A			\vdash	\vdash	$\overline{}$					_					_	Ì				
<u>iii</u>				-	\neg	_	$\overline{}$	_									- ->	<u> </u>		*		
lality	0,15	Ac Re											<u> </u>					i i				⇒∤
Acceptance qual	0,10	Ac Re	I																			⇒
ptan		Ac Re A											! 				-					\dashv
Acce	0,065	9 Ас				i																\Rightarrow
	0,040	Ac Re	ᅼ	_	_	-	_											<u> </u>				⇒
	0,025	Ac Re	4		닠	i i																⇒
			i		_	i												<u>i</u>				\dashv
	0,015	e Ac Re		-			j															⇒
	0,010	Ac Re	극	<u>i</u>		_	븏										_					⇒
-nwn-		size						Ø	4	9	80	٠ 1	8	9	თ	12	15	2	9	15	20	52
	Sample I					\dashv		2	- 2	8	8	2	ဗ		<u></u>	က	3	5	2	2	rs.	5
		_	_		_	_																
	Sample							First	Second	Third	Fourth	Fiff	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	臣
Sample	size	letter	∢	В	O	۵	ш			ட					g					Ξ		

🖓 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \diamondsuit = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table) (continued)

Sumple Sample Sa		9	æ	_				ï					i					i					
Sumple su		1 000	Ac Re	⇐				ij										i					
Sumple su		920	. Re	⟨⊨																			_
Sample Simple Si																		\rightarrow					\dashv
Sample Simple Si		9	Ac R	\leftarrow										_			_						-
Sumple simple si		9						_				-						-					コ
Sample First Lative Sample Sample Sample Sample Sample Sarple	e .	25		7				ij										i					긔
Sample First Lative Sample Sample Sample Sample Sample Sarple	ctio	150	c Re	\ =				=										<u>i</u>					-1
Sample First Lative Sample Sample Sample Sample Sample Sarple	edsı							<u> </u>										-					
Sample First Lative Sample Sample Sample Sample Sample Sarple	pe ir	ě	Ac F	⟨⊨				i							=			i					-
Sample First Lative Sample Sample Sample Sample Sample Sarple	g	35	Re	<u></u>				1															
Sample First Lative Sample Sample Sample Sample Sample Sarple	s (re	_		_									_					1	···				
Sample First Lative Sample Sample Sample Sample Sample Sarple	tem	\$	Ac Re	⊱		-							=					-			=		-
Sample First Lative Sample Sample Sample Sample Sample Sarple	8			1				<u> </u>										<u>-</u>					
Sample First Lative Sample Sample Sample Sample Sample Sarple	Je 1	Š		<u> </u>																			긔
Sample First Lative Sample Sample Sample Sample Sample Sarple	es b	15	c Re						़														_
Sample First Lative Sample Sample Sample Sample Sample Sarple	rmiti			_					ro		0	2	6	_				_ <u>i</u>					\dashv
Sample First Lative Sample Sample Sample Sample Sample Sarple	Jufor	유	Ac B											\forall				- !					-
Sample First Lative Sample Sample Sample Sample Sample Sarple	oucc	rύ	Re	4	9	7	8		4	7			11	2	80	10	12		<u>_</u>				
Sample First Lative Sample Sample Sample Sample Sample Sarple	n pt	9	Ac																<u>'</u>		C	CI	-
Sample First Lative Sample Sample Sample Sample Sample Sarple	ıs ar	4,0	Ac Re		4				_	1 6	-												
Sample First Lative Sample Sample Sample Sample Sample Sarple	item	ις.			n			_	<u> </u>	4			-					-	_				
Sample First Lative Sample Sample Sample Sample Sample Sarple	ing	2,		#	0	-	0	4	#	-	8	က	2	0	-	N	4	7	0	~	4	9	2
Sample First Lative Sample Sample Sample Sample Sample Sarple	form	1,5	c Re				က				4												- 1
Sample First Lative Sample Sample Sample Sample Sample Sarple	00			\vdash			-				-			_									
Sample First Lative Sample Sample Sample Sample Sample Sarple	5	1,0	Ac B	1								-	က			_	8	4	#	-	7	ဗ	22
Sample First Lative Sample Sample Sample Sample Sample Sarple	cent	99	Re	_				<u> </u>	2	7	0	7	7	2	က	က	က	4	3	က	4	5	5
Sample First Lative Sample Sample Sample Sample Sample Sarple	per	_							-	0	0	0	-				-	_			<u>~</u>		_
Sample First Lative Sample Sample Sample Sample Sample Sarple	L, in	0,40	Ac Re	=					_				⇒	i									
Sample First Lative Sample Sample Sample Sample Sample Sarple	A	52		1				_						 				7	2	0	Ø	7	7
Sample First Lative Sample Sample Sample Sample Sample Sarple	imit	0,		7				_						į				~	*	0	0	0	긔
Sample size sample Flist Lative sample size sample sample Flist Cumu- o.010 O.015 O.025 O.040 O.065 O.040 O.065 O.010 First Second Flist 8 16 Ac Re Ac	lity I	0,15				*			ै				_	-		_							⇒∣
Sample lative cumu. Sample lative size size size lative cond. Size size lative lative size size latin lative cond. Second latin lat	dna	_		\vdash					_														$\overline{}$
Sample lative cumu. Sample lative size size size lative cond. Size size lative lative size size latin lative cond. Second latin lat	ınce	0,1	Ac F					➾			*			⊱				_					=>
Sample lative cumu. Sample lative size size size lative cond. Size size lative lative size size latin lative cond. Second latin lat	epta	965	, Re										_ ⇒			*			\				_
Sample lative o.010 o.015 o.025 size sample lative sample sample lative sample lative sample Third 8 16 16 16 16 16 16 16 16 16 16 16 16 16	Acc		¥						i				_	<u> </u>					H				\dashv
Sample lative o.010 o.015 o.025 size sample lative sample sample lative sample lative sample Third 8 16 16 16 16 16 16 16 16 16 16 16 16 16		0,04(Ac B	=					<u> </u>					<u> </u>				⇒			*		
Sample size sample lative sound Cumu- cont of size sample lative sample size sample size sample lative supple size sample lative size sample size sample size size size size size size size siz		-	8											i I									7
Sample size Cumu-sample sample sample semple s														i I									_
Sample size Cumu-sample sample sample semple s		,015	lc Be	=					<u> </u>					<u> </u>					<u> </u>				⇒∣
Sample size Cumulative sample sample size First 8 Second 8 First 13 Fourth 8 First 13 First 13 Fifth 13 Fifth 13 Fourth 13 Fifth 13 Fourth 20 Fifth 20 Fifth 20 Fourth 20 Fifth 20 Fifth 32 Second 32 First 32 Second 32 First 32 Furth 32 Furth 32 Fourth 32 Fifth 32 Fifth 32 188 128			e e	_					<u> </u>					!					<u>1</u> 				\neg
Sample size size size size size size size siz		0,0	Ac F						<u> </u>				_										⇒
Sample size size size size size size size siz	į	tive	9Z		9	4:	22	9	63	92	93	ž	73	, o	Q	8	2	8	22	75	96	28	90
Sample Second Third First Second Third Fourth Fifth	3		us .				.,		ļ				_	<u> </u>				_	Ĺ				
Sample Second Third First Second Third Fourth Fifth		ample		8	80	œ	œ	æ	13	5	13	13	5	20	50	20	20	8	32	32	35	32	32
				-	2	77			-	2			_	-	<u>P</u>	ъ	<u></u>		<u></u>	P		£	
		Samp		Firs	Secol	Thir	Four	ŧ	Firs	Secol	Ţ	Four	Ē	Firs	Seco	Ţ	Four	畫	Firs	Seco	Ţ	Four	Fif
Sam Siz Siz Siz Siz Siz Siz Siz Siz Siz Siz	- S		in in											\vdash							_		
	Samı	siz	lette			7						_	_								≥		

⇒ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or atternatively use the double sampling plan below, where available).

^{++ =} Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

^{# =} Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table) (concluded)

	8	Re	1					Ĭ										T				_
	1 000	Ac Re	7					İ					Ī					Ĭ				
	650	Ac Re	⟨					<u> </u>					<u></u>				-	i				
	\vdash		Ļ		-			!					+-					!				
	400	Ac Re	⟨-					!_					i		-			<u> </u>				_
								i					÷					!				
=	250	Ac Re	\ \ =		*			T					i			-		i				_
jë	150	Ac Re	7					Ī					<u> </u>					ĺ				
) bec			1					<u> </u>					i					i				
ij	8	Ac Re	¢⊨					<u> </u>					<u>i</u> _					<u>i </u>				_
nce	┢		╁.					1					!					1				
(red	65	Ac Re	<=	:				 					-					 				_
ms	40	Ac Re	1~					Ĺ					i					i				
) ite	4		7										<u>i</u>					!				
þ	25	Ac Re	 					<u>!</u>					<u> </u>					<u>!</u>				_
per			Ļ					<u>i </u>) 					<u> </u>				
ties	15	Ac Re	4				_	<u> </u>		_			 					 				=
lity limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)		_	1										 					<u> </u>				
l g	9	Ac Re	7				_						Ī				_					_
oue	6,5	Ac Re	 <=					!					!									_
٩	٣		1					_					1									
sar	4,0	Ac Re	⟨⊨					<u> </u>			_		<u>! </u>					!				_
ite	<u></u>	1	2	80	-0	12	5	 			_		<u>i </u>					i 				
ing	2,5	Ac Re	0	ဗ	. 9	თ	12	┡										†		_		_
l E	1,5	Ac Re	4	7	6	Ξ	Ξ	r.	80	9	12	13	_									
on	<u> </u>		0	N	4	9	19	0	ဗ	9	თ	12	7									
ĕ	0,1	Ac Re	4	9	~	œ	α,	4	7	6	Ξ	1	5	ω	10	12	13	k⊨				_
t	├		3	4	2	5 4	6 7	0	9	7	9	9	0	ю •	9	6	12	1			<u> </u>	3
erce	0,65	Ac Re	#	_	27	₀	5	0	-	2	8	7 8	0	2 7	9	6 11	10 11	0 5	3	01 9	9 12	12 13
i p	g	Ac Re	6	က	4	ro.	2	8	4	Ŋ	ω.	9	4	9	_	80	80	4	7	6	=	11
٩	0,40		#	0	-	7	4	#	-	0	က	ß	0	_	7	4	7	0	7	4	9	9
t,	0,25	Ac Re	~	က	က	က	4	3	က	4	5	5	3	4	5	5	9	4	9	7	æ	8
<u>ië</u>	<u> </u>		#	0	-		n	#			3	4	#	-	2	ო	2	0	_	2	4	7
alif4	0,15	Ac Re	*	0 2	0	0	1 2	2 #	0 3	0 3	_	8	#	0	_	2 5	ro C	#	4	2 5	3 5	5 6
Ď	0						_	2	~	α	7	N	2	ر	<u>е</u>	· ·	4	т г	3	4	-2	2,
Acceptance qua	0,10	Ac Re					➾	#	0	0	0	-	#	0	0	-	က	#	0	_	ο.	4
epta	0,065	Ac Re											2	2	8	7	8	7	က	က	က	4
Acc		, Ac					_					_	#	0	0	0	_	#	0	0	-	ဧ
	0,040	Ac Re	⟨⊨				—	_			_		i		-		⇒	2 #	2	2	2	2
	$\overline{}$							 					<u> </u>					 *	0	_	_	-
	0,025	Ac Re Ac Re			*			╚					_					-				-
	0,015	Re								*												
		Ac					~						1									_
	0,010	Ac Re						_			_==	⇒			*			⊱				_
-								-				_						Ľ				ᆜ
Cumu-	lative sample	size	20	100	150	200	250	80	160	240	320	400	125	250	375	200	625	200	400	009	800	1 000
-																						一
	Sample size		20	20	20	20	20	80	80	80	80	8	125	125	125	125	125	200	200	200	200	200
<u> </u>			_	<u>_</u>					g	_		-										
	Sample		First	Second	Third	Fourth	Fiff	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth
Φ		-		Ø	•	ш		_	Ñ		ш.	_		ŭ		u.	_		ŏ		L	긔
Sample	size code	letter			z					۵					O					Œ		ļ
L																						$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$

♦ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 5-A — Producer's risk for normal inspection

(in percent of lots not accepted for single sampling plans)

			0.10 0.15	5 0.25	0.40	0.65	10	7.	2.5	0 4	5.5	<u>-</u>	15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 1.0 1.5 2.5 4.0 6.5 1.0 1.5 2.5 2.5 2.0 6.5 1.0 1.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	75	40 65	100	150	250	90	650	1
								-	}		T	* *	***	-	4		<u> </u>			1,41	1,35
										11,3	6,85*	9,45*	7,54 4	4,05 3,	3,38 1,48	1,19	9 0,667	7 1,03	0,607	0,979	0,627
									11,8 7	7,15* 1	10,8*	9,02	4,05	3,83 1,	1,66 1,83	1,37	7 1,03	0,940	1,35	2,17	
								11,3	7,15* 1 7,16* 1	10,5* 9	9,63	4,74 3,81	3,38 1	1,66 1,	1,68	77 1,73	3 0,607	7 1,35	1,73		
							12,2 12,2	6,85*	10,8*	9,63	5,41 4,80	4,31 3,42	1,48	1,83	1,77 2,62	1,41	1 0,979	9 2,17			
						12,2 12,2	7,15* 7,16*	9,45*	9,02	4,74	4,31	1,66	1,19	1,37 1,	1,73 1,41	=					
					12,0 12,0	7,63*	10,5* 10,5*	8,42 8,30	4,74	3,77	1,58	1,68	1,04	1,73 1,	1,20						
				11,8	7,15*	10,8* 10,8*	9,02 8,94	4,05 3,92	3,83	1,66	1,83	1,37	1,03	0,940							
			£ £	3 7,15* 3 7,15*	* 10,5* * 10,5*	9,63 9,58	4,74	3,38 3,26	1,66	1,68	1,77	1,73	0,607								
		11,8	,8 6,41* 8 6,41*	* 10,1* 10,1*	9,02	4,92	3,83	1,25	1,48	1,37	1,95 0	0,940							<u> </u>		
	12,2 12,2	,2 7,15* ,2 7,15*	5* 9,45* 5* 9,45*	9,02	4,74	4,31	1,66	1,19	1,37	1,73	1,41						_				
1 1	11,8 7,44* 11,8 7,44*	10,2* 14* 10,2*		4,56 9 4,54	3,92	1,83	1,55	0,936	1,52 1	1,02											
11,8 7,1 11,8 7,1	7,15* 10,8* 7,15* 10,8*	,8* 9,02 ,8* 9,01	2 4,05 1 4,04	5 3,83 4 3,81	1,66 1,63	1,83	1,37	1,03 (0,971)	0,940												
11,3 7,15* 10 11,3 7,15* 10	10,5* 9,63 10,5* 9,63	53 4,74 53 4,73	—	3 1,66	1,68	1,77	1,73	0,607													
250 11,8 6,41* 10,1* 9,0	9,02 4,92 9,02 4,92	3,83 3,82	3 1,25 2 1,24	5 1,48	1,37	1,95	0,940														
2 000 7,15* 9,45* 9,02 4,7,15* 9,45* 9,02 4,	4,74 4,31 4,74 4,30	31 1,66 30 1,65		9 1,37 8 1,36	1,73	1,41		:													

NOTES

¹ The producer's risk is the probability of nonacceptance for lots of AQL quality.

² Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Table 5-B — Producer's risk for tightened inspection

(in percent of lots not accepted for single sampling plans)

0.40 0.66 1.0 1, 5 2, 4, 0 6, 5 10 15 25 40 65 10 15 0.00 1. 1, 1, 2, 2, 4, 0 6, 5 10 13, 7 21, 0 19, 1 4, 3 14, 3 6, 39 6, 81 6, 39 6, 82 5, 25 13, 1 14, 3 14,	0		Accel	Accel	Accel		otance	quality	v limit,	AQL,	in per	Sent ne	oncont	formin	g item	is and	noncc	onform	ities p	er 100	items	(tighte	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	pectic	(c)		
18,1 17,7 13,2 17,2 17,3	size 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40	0,015 0,025 0,040 0,065 0,10 0,15 0,25	0,015 0,025 0,040 0,065 0,10 0,15 0,25	0,025 0,040 0,065 0,10 0,15 0,25	0,065 0,10 0,15 0,25	0,065 0,10 0,15 0,25	0,10 0,15 0,25	0,25		0,4(ᆽ	0,65	1,0	1,5	2,5	4,0	6,5	10	15							650	7
18. 17.7 13.7 17.9 17.3 12.1 13.4 6.39 4.03 4.27 3.74 4.09 18.1 18.1 18.5 14.2 17.3 13.2 14.3 14.2 17.3 13.2 14.3 1	2																	-					_	9	6,38	ļ	5,25
18.1 18.5 22.0 19.1 18.1 18.5 11.0 18.1 18.5 11.0 18.1 18.5 11.0 18.1 18.5 11.1 18.1	n																										2,21
18,1 15,1 22,2 19,1 14,3 10,5 8,19 6,38 3,74 5,25 18,1 17,7 15,5 22,2 20,7 14,3 13,4 11,1 8,19 8,79 6,98 4,09 6,16 18,1 13,7 21,0 19,1 14,3 14,3 14,3 8,39 6,81 6,38 6,98 6,16 18,2 13,8 13,7 21,10 13,8 15,8 15,9 3,44 1,1 8,19 8,79 6,98 4,09 6,16 18,2 13,8 13,7 13,1 13,8 15,8 14,3	ın																			-				—		<u> </u>	
18.7 15.5' 22.2' 20.7 14.3 13.4 11.1 8.19 8.79 6.98 4.09 18.1 17.8 15.6' 22.4' 20.5 13.4 11.1 8.19 8.79 6.98 4.09 18.1 13.7' 21.0' 19.1 14.3 14.3 14.3 8.39 6.81 6.88 6.98 4.09 18.8 15.1' 19.7' 19.1 13.8 15.2 9.44 6.81 6.81 6.88 6.98 4.09 18.8 15.2' 19.4' 13.5 14.3 10.5 9.44 4.27 5.19 8.22 8.39 6.81 6.81 6.98 4.09 18.5 21.0' 17.3 12.9 13.9 10.4 5.79 4.28 6.39 6.19 4.29 6.39 6.19 8.19 6.98 4.09 4.09 8.19 6.98 6.99 4.09 1.11 6.19 7.19 7.19 7.19 7.1	α									ļ															 		
18,1 13,7 21,0° 19,1 14,3 14,3 8,39 6,81 6,38 6,38 18,2 13,8° 21,1° 19,0 13,7 13,3 8,39 6,81 6,38 6,81 6,38 18,3 18,8 15,2° 13,8° 21,1° 19,0 13,5 13,9 10,5 5,58 6,38 6,38 6,22 6,38 6,22 6,38 6,22 6,39 6,22 6,19 11,1 6,11 6,21 4,27 5,19 7,11 6,81 4,27 5,19 7,21 7,19 7,01 5,19 7,29 7,19 7,21 7,19 7,21 7,19 7,21 7,11 6,81 7,29 7,29 7,19 7,21 7,19 7,21 7,19 7,21 7,19 7,21 7,21 7,19 7,21 7,21 7,19 7,21 7,19 7,21 7,21 7,19 7,21 7,19 7,21 7,19 7,21 7,19 7,21 7,19 7,21	13									ļ										<u> </u>			<u> </u>				
18,8 15,1* 19,7* 19,1 13,8 15,8 10,5 5,58 6,38 18,8 15,2* 19,8* 19,0 13,5 15,2 9,44 5,58 6,38 15,5* 21,0* 17,3 12,9 13,9 10,4 5,79 4,27 5,19 22,2* 19,1 12,1 14,3 10,6 8,19 6,38 3,74 5,19 19,6 13,2 12,1 10,1 7,51 5,38 3,74 5,19 19,6 13,1 12,0 9,44 6,41 6,34 4,28 5,19 14,3 14,3 12,0 9,44 6,41 6,34 4,28 5,19 14,2 13,1 12,0 9,44 6,41 6,34 4,28 5,19 6,32 1,428 5,19 6,32 1,438 6,38 6,38 6,38 6,38 6,38 6,38 6,38 6,38 6,38 6,38 6,38 7,48 7,48	20													-							9	86					
15,5° 21,0° 17,3 13,2 14,3 11,1 6,81 4,27 15,5° 21,0° 17,3 12,9 13,9 10,4 5,79 4,27 22,2° 19,1 12,1 14,1 10,1 7,51 5,38 3,74 19,6 13,2 12,1 9,70 6,81 7,00 5,19 3,74 19,6 13,1 12,0 9,44 6,41 6,34 4,28 4,28 14,3 14,2 8,29 6,81 6,38 6,98 4,28 4,28 14,2 14,2 8,24 6,66 5,99 6,32 6,98 6,98 6,15 6,98 15,1 9,88 5,03 5,66 5,15 7,1 1,1 6,81 4,28 8,38 11,1 6,81 4,28 5,15 7,1 7,1 1,1 1,1 4,14 4,96 7,1 1,1	32																				22						
22,2° 19,1 12,1 14,3 10,5 8,19 6,38 22,2° 19,1 11,9 14,1 10,1 7,51 5,38 19,6 13,2 12,1 9,70 6,81 7,00 5,19 19,5 13,1 12,0 9,44 6,41 6,38 4,28 14,2 14,2 8,24 6,56 5,99 6,32 15,2 9,98 5,16 5,80 5,52 15,1 9,88 5,03 5,56 5,15 11,1 6,81 4,26 5,19 11,1 6,71 4,14 4,96 8,19 6,38 3,74 4,96 8,19 6,28 3,63 7,00 5,19 7,00 6,94 5,10 7,00 6,94 5,10 7,00 6,98 5,10 7,00 6,98 5,10 7,00 6,98 5,10 7,00 6,98 5,10 7,00 6,98 5,10 7,00	50		- -	- -							18,1						-			61,1							
19,6 13,2 12,1 9,70 6,81 7,00 19,5 13,1 12,0 9,44 6,41 6,34 14,3 14,2 14,2 14,2 14,2 14,2 14,2 15,2 9,98 5,16 5,80 5,52 15,1 9,88 5,03 5,56 5,15 11,1 6,81 4,27 5,19 11,1 6,71 4,14 4,96 8,19 6,28 3,63 7,00 5,19 6,94 5,10 6,98 5,10	80 18,1 15,1* 18,1 15,2*									5, 5,			\vdash		-				3,74								
14,3 14,3 8,39 6,81 6,38 6,98 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2 15,9 6,39 6,32 15,1 9,88 5,16 5,80 5,52 15,5 15,5 15,5 15,6 15,19 11,1 6,81 4,27 5,19 14,4 4,96 14,4 4,96 14,14 4,96 14,14 14,96 14,14 14,96 14,14 14,96 14,14 14,14 14,96 14,14<	125 17,1 14,6* 21,0* 17,1 14,6* 21,0* 17,1 14,6* 21,0*	14,6* 14,6*	14,6* 14,6*	14,6* 14,6*	14,6* 14,6*	14,6* 14,6*	14,6* 14,6*	14,6* 14,6*		2, 2								5,19									
15,2 9,98 5,16 5,80 15,1 9,88 5,03 5,56 11,1 6,81 4,27 5,19 11,1 6,71 4,14 4,96 8,19 6,38 3,74 8,13 6,28 3,63 7,00 5,19 6,94 5,10 6,98 6,92	21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	7* 21,0* 7* 21,0*		15 5	_	_	+	-	-	+	+							-			
11,1 6,81 4,27 5,19 11,1 6,71 4,14 4,96 8,19 6,38 3,74 8,13 6,28 3,63 7,00 5,19 6,94 5,10 6,98 6,92	315 14,8° 19,3° 18,7 1 18,5 14,8° 19,3° 18,7 1	14,8* 19,3* 18,7 14,8* 19,3* 18,7	14,8* 19,3* 18,7 14,8* 19,3* 18,7	14,8* 19,3* 18,7 14,8* 19,3* 18,7	14,8* 19,3* 18,7 14,8* 19,3* 18,7	14,8* 19,3* 18,7 14,8* 19,3* 18,7	19,3* 18,7 19,3* 18,7	3* 18,7 3* 18,7			13,4	—		1	├	5,52								-			
8,19 6,38 3,74 8,13 6,28 3,63 7,00 5,19 6,94 5,10 6,98 6,92	15,5* 21,0* 17,3 13,2	15,5* 21,0* 17,3 13,2	15,5* 21,0* 17,3 13,2	15,5* 21,0* 17,3 13,2	15,5* 21,0* 17,3 13,2	21,0* 17,3 13,2	21,0* 17,3 13,2	3 13,2		1 ~	-	╁	├—	┼─								-	<u> </u>			L	
8.19 6.38 8.13 6.28 7,00 5,19 6,94 5,10 6,98 6,92	18,1 15,5" 21,0" 17,3 13,1	18,1 15,5" 21,0" 17,3 13,1	18,1 15,5" 21,0" 17,3 13,1	18,1 15,5" 21,0" 17,3 13,1	15,5" 21,0" 17,3 13,1	15,5" 21,0" 17,3 13,1	21,0" 17,3 13,1	13,1	-	-1;	_	-	+	+	4,96	\top			1		_	-			_		
7,00 6,94 6,98 6,92	800 18,1 15,1° 22,2° 19,1 12,1 14,3 10,5 18,1 15,1° 18,1 15,1° 22,2° 19,1 12,0 14,3 10,5	15,1* 22,2* 19,1 12,1 14,3	15,1* 22,2* 19,1 12,1 14,3	15,1* 22,2* 19,1 12,1 14,3	22,2* 19,1 12,1 14,3 22,2* 19,1 12,0 14,3	22,2* 19,1 12,1 14,3 22,2* 19,1 12,0 14,3	19,1 12,1 14,3 19,1 12,0 14,3	14,3 14,3		우 의				3,74													
	1 250 17,1 14,6* 21,0* 19,6 13,2 12,1 9,70 6, 17,1 14,6* 21,0* 19,6 13,1 12,1 9,68 6;	17,1 14,6* 21,0* 19,6 13,2 12,1 9,70 17,1 14,6* 21,0* 19,6 13,1 12,1 9,68	14,6* 21,0* 19,6 13,2 12,1 9,70 14,6* 21,0* 19,6 13,1 12,1 9,68	14,6* 21,0* 19,6 13,2 12,1 9,70 14,6* 21,0* 19,6 13,1 12,1 9,68	21,0* 19,6 13,2 12,1 9,70 21,0* 19,6 13,1 12,1 9,68	19,6 13,2 12,1 9,70 19,6 13,1 12,1 9,68	12,1 9,70 12,1 9,68	9,70 9,68	_	တ်တ်	6,81		5,19				1					_					
 	19,1 14,3 14,3 8,39 6,81 19,1 14,3 14,3 8,38 6,78	18,1 13,7* 21,0* 19,1 14,3 14,3 8,39 6,81 18,1 13,7* 21,0* 19,1 14,3 14,3 8,38 6,78	21,0* 19,1 14,3 14,3 8,39 6,81 21,0* 19,1 14,3 14,3 8,38 6,78	21,0* 19,1 14,3 14,3 8,39 6,81 21,0* 19,1 14,3 14,3 8,38 6,78	19,1 14,3 14,3 8,39 6,81 19,1 14,3 14,3 8,38 6,78	14,3 14,3 8,39 6,81 14,3 14,3 8,38 6,78	8,39 6,81 8,38 6,78	6,81	-	မ မ	6,38	6,98													<u> </u>		
	3 150 18,7 18,7 18,7		18,7	18,7 18,7															_								

NOTES

¹ The producer's risk is the probability of nonacceptance for lots of AQL quality.

² Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 5-C — Producer's risk for reduced inspection

(in percent of lots not accepted for single sampling plans)

Sample size	Sample			¥	cepta	nce d	uality	limit, /	\QL, ir	perc.	ent no	nconf	orming	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	and no	nconf	ormitie	s per	100 ite	ms (re	duced	inspec	tion)			
code	size	0,010	0,015 0,	0,025 0,	0,040 0,	0,065 0	0,10 0	0,15 0	0,25 0,	0,40 0,	0,65	1,0	1,5	2,5 4,0	6,5	9	15	55	40	65	5	150	250	400	650	1 000
∢	OJ.														12,2 12,6	2 7,15* 6 7,19*	* 9,45*	9,02	4,74	4,31	1,66	1,19	1,37	1,73	1,41	1,35
В	7													7,69	5,40*)* 7,15* 3* 7,19*	9,45*	9,02	4,74	4,31	1,66	1,19	1,37	1,73	1,41	1,35
O	2												4, 4,	4,88 2,33* 4,94 2,30*	3* 3,39* 0* 3,29*	3* 4,72* 3* 4,42*	3,69	1,44	0,908	1,07	0,453 (0,380	1,37	1,73	1,41	
D	ဇ		<u></u>									4 4	4,40 2,0 4,43 2,0	2,07* 2,94* 2,05* 2,87*	4* 4,51* 7* 4,33*	3,69	1,09	0,729	0,775	0,396	0,38	0,667	1,03	0,607		
Е	2										4 4	4,88 2,0 4,90 2,0	2,07* 3,1 2,06* 3,1	3,16* 4,72* 3,12* 4,61*	2* 4,27 1* 3,70	7 1,44 0 0,856	0,729	0,912	0,453	0,629	1,37	1,03	0,940			
Ŀ	8									ດ່ນ	5,07 2,3 5,08 2,3	2,33* 2,	2,94* 4,7 2,91* 4,6	4,72* 4,15 4,65* 3,81	1,59	9 0,908	0,775	0,453	0,571	1,77						
ŋ	13								່ນຸນ	5,07 2,4 5,08 2,4	2,56* 3, 2,56* 3,	3,39* 4,9 3,37* 4,	4,51* 4,7 4,47* 4,0	4,27 1,59 4,06 1,35	9 1,09 5 0,793	9 1,07 3 0,646	0,396	0,629	1,77							
Ι	50							4 4	4,88 2,3 4,88 2,3	2,33* 3,0 2,32* 3,0	3,39* 4, 3,38* 4,0	4,72* 3, 4,69* 3,	3,69 1, 3,57 1,	1,44 0,908 1,30 0,741	1,07 1,07 11 0,788	7 0,453 8 0,239	3 0,380	1,37								
ſ	32						4 4	4,69 4,69 2,2	2,33* 3,2	3,30* 5,0 3,29* 5,0	5,06* 4, 5,04* 4,	4,15 1, 4,07 1,	1,29 0,9 1,21 0,8	0,908 1,00 0,836	0 0,558 36 0,389	8 0,571 9 0,330	1,04									
×	20					4 4	4,88 2, 4,88 2,	2,07* 3, 2,07* 3,	3,16* 4,7 3,16* 4,7	4,72* 4, 4,71* 4,	4,27 1, 4,21 1,	1,44 0,7	0,729 0,9 0,674 0,8	0,912 0,453 0,813 0,361	53 0,629 51 0,454	9 1,37 4 0,935	. 10								<u> </u>	
۱	80				5, 5,	5,07 2, 5,07 2,	2,33* 2, 2,33* 2,	2,94* 4,	4,72* 4, 4,71* 4,	4,15 1, 4,12 1,	1,59 0,9 1,56 0,8	0,908 0,7	0,775 0,4 0,720 0,3	0,453 0,571 0,395 0,468	71 1,77	. ~										
Σ	125			4.4,	4,88 2,0 4,88 2,0	2,39* 3, 2,39* 3,	3,16* 4, 3,16* 4,		3,98 1, 3,96 1,	1,44 0,9 1,42 0,9	0,957 0,9	0,912 0,3	0,321 0,493 0,293 0,434	0,493 1,37 0,434 1,19	7 6								ļ <u> </u>			
Z	200		4.4,	4,88 2,4 4,88 2,4	2,33* 3,3	3,39* 4, 3,39* 4,	4,72* 3	3,69 1, 3,68 1,	1,44 0,9 1,42 0,8	0,908 1,	1,07 0,4 1,04 0,4	0,453 0,3	0,380 1,3	1,37												
Ъ	315		4,62 2,7	2,26* 3, 2,26* 3,	3,20* 4,9	4,92* 4,	4,03	1,24 0,8	0,861 0,9	0,942 0,5 0,926 0,4	0,513 0,5	0,518 0,9	0,936													
σ	500	4,88	2,07* 3, 2,07* 3,	3,16* 4, 3,16* 4,	4,72* 4, 4,72* 4,	4,27 1, 4,26 1,	1,44 0, 1,43 0,	0,729 0,9	0,912 0,4 0,902 0,4	0,453 0,6 0,444 0,6	0,629 1,	1,37														
æ	800	2,33*	2,94* 4, 2,94* 4,	4,72* 4, 4,72* 4,	4,15 1, 4,15 1,	1,59 0, 1,59 0,	0,908 0,77 0,904 0,76	ည်	0,453 0,5 0,447 0,5	0,571 1, 0,561 1,	1,77															

NOTES

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

Table 6-A — Consumer's risk quality for normal inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	10	*0,69	57,6*	58,4	53,8	4,4	41,5	34,0	29,1	24,2	21,9						
	6,5	68,4	54,1*	39,8*	40,6	36,0	30,4	27,1	22,4	18,6	15,7	13,8	•				
	4,0		53,6	37,3*	27,0*	26,8	24,5	19,7	17,8	14,3	12,1	9,91	8,84				
	2,5			36,9	25,2*	17,5*	18,1	15,8	12,9	11,3	9,24	2,60	6,33	5,60			
ms	1,5				25,0	16,4*	11,8*	11,6	10,3	8,16	7,29	5,82	4,85	4,00	3,51		
Acceptance quality limit, AQL, percent nonconforming items	1,0					16,2	11,0*	7,50*	7,56	6,52	5,27	4,59	3,71	3,06	2,51	2,25	
nonconfo	0,65						10,9	7,01*	4,87*	4,78	4,20	3,31	2,92	2,34	1,92	1,61	1,41
, percent	0,40							6,94	4,54*	3,07*	3,08	2,64	2,11	1,85	1,47	1,23	1,00
mit, AQL,	0,25								4,50	2,86*	1,97*	1,93	1,68	1,33	1,16	0,940	0,769
quality li	0,15									2,84	1,84*	1,24*	1,23	1,06	0,833	0,741	0,588
ceptance	0,10										1,83	1,16*	0,788*	0,776	0,664	0,534	0,463
¥	0,065											1,14	0,735*	0,497*	0,485	0,425	0,334
	0,040												0,728	0,464*	0,311*	0,311	0,266
	0,025													0,459	0,290*	0,199*	0,194
	0,015														0,287	0,186*	0,124*
	0,010															0,184	0,116*
Sample	size	7	က	5	ω	13	20	32	20	80	125	200	315	200	800	1 250	2 000
Sample size	code	4	В	O	۵	ш	Щ	ڻ ت	I	7	×		Σ	z	۵.	Ø	Œ

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Table 6-B — Consumer's risk quality for tightened inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	10	68,4	54,1*	*8,66	40,6	36,0	30,4	27,1	24,7	21,4	19,3				· · · · · · · · · · · · · · · · · · ·			
	6,5		53,6	37,3*	27,0*	26,8	24,5	19,7	17,8	15,7	13,9	12,2						
	4,0			36,9	25,2*	17,5*	18,1	15,8	12,9	11,3	10,2	8,76	7,77					
	2,5				25,0	16,4*	±8, 11,8	11,6	10,3	8,16	7,29	6,42	5,59	4,92				
TIS	1,5					16,2	11,0*	7,50*	7,56	6,52	5,27	4,59	4,09	3,54	3,08			
Acceptance quality limit, AQL, percent nonconforming items	1,0						10,9	7,01*	4,87*	4,78	4,20	3,31	2,92	2,59	2,21	1,98		
nonconfo	9,65							6,94	4,54*	3,07*	3,08	2,64	2,11	1,85	1,62	1,42	1,24	
, percent	0,40								4,50	2,86*	1,97*	1,93	1,68	1,33	1,16	1,04	0,888	
imit, AQL	0,25									2,84	1,84*	1,24*	1,23	1,06	0,833	0,741	0,649	
e quality l	0,15										1,83	1,16*	0,788*	0,776	0,664	0,534	0,463	
ceptance	0,10											1,14	0,735*	*497*	0,485	0,425	9334	
¥	0,065												0,728	0,464*	0,311*	0,311	0,266	
	0,040								-					0,459	0,290*	0,199*	0,194	
	0,025		***			***			-						0,287	0,186*	0,124*	0,123
	0,015															0,184	0,116*	
	0,010																0,115	
Sample	size	2	က	2	∞	13	20	32	20	80	125	200	315	200	800	1 250	2 000	3 150
Sample	code	∢	83	O	۵	ш	Щ	Ø	I	٦	×	J	Σ	z	۵	σ	Œ	S

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 6-C — Consumer's risk quality for reduced inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	9	*0,69	*0,69	73,2*	80,4	75,3	65,5	52,3	46,7	37,4	29,1						
	6,5	68,4	68,4*	*0'69	57,6*	58,4	53,8	44,4	36,1	30,6	24,7	18,6					
	4,0		68,4	68,4*	54,1*	39,8*	40,6	36,0	30,4	23,4	20,1	15,7	12,1		·		
	2,5			68,4	53,6*	37,3*	27,0*	26,8	24,5	19,7	15,4	12,8	10,2	7,60			
L SEL	1,5				53,6	36,9*	25,2*	17,5*	18,1	15,8	12,9	9,74	8,27	6,42	4,85		
Acceptance quality limit, AQL, percent nonconforming items	1,0					36,9	25,0*	16,4*	11,8*	11,6	10,3	8,16	6,29	5,21	4,09	3,06	
nonconfc	9'0						25,0	16,2*	11,0*	7,50*	7,56	6,52	5,27	3,96	3,32	2,59	1,92
, percent	0,40		-2-11					16,2	10,9*	7,01*	4,87*	4,78	4,20	3,31	2,52	2,10	1,62
imit, AQL	0,25								10,9	6,94*	4,54*	3,07*	3,08	2,64	2,11	1,59	1,31
e quality li	0,15									6,94	4,50*	2,86*	1,97*	1,93	1,68	1,33	0,997
ceptance	0,10										4,50	2,84*	1,84*	1,24*	1,23	1,06	0,833
AC	0,065											2,84	1,83*	1,16*	0,788*	0,776	0,664
	0,040												1,83	1,14*	0,735*	0,497*	0,485
	0,025													1,14	0,728*	0,464*	*118,0
	0,015														0,728	0,460*	*062,0
	0,010															0,459	0,287*
Sample	size	2	8	2	က	5	8	13	20	32	20	80	125	200	315	200	800
Sample size	code letter	∢	Ø	O	۵	Ш	Щ	g	I	ס	×		Σ	z	۵	a	Œ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

Table 7-A — Consumer's risk quality for normal inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	916	1 793							·							
	650 1	1 409 1	277	1 076												T.	
	400	1 006	939 1	766 1	672						<u> </u>						
	250 4	770 1	671	564 7	479 6	414											
	150 2	589 7	514 6	403	352 4	295 4											
	100	464 5	392 5	308	252 3	217							· · · · ·			, , e n.	
	65 1	334 4	309	235 3	193 2	155 2			T							*	
	40	3,	223				141	<u>-</u>									
				185	6 147	119	0,	9 88,1	4								
tems	5 25	5* 194	0 177	6 134	116	3 90,5	9 77,0	1 62,9	3 56,4	- 0							
er 100 i	15	3* 125*	130	8 106	5 83,5	4 71,3	4 58,9	8 48,1	8 40,3	2 35,2	20						
Acceptance quality limit, AQL, nonconformities per 100 items	9	116*	5* 83,0*	3* 77,8	6 66,5	9 51,4	46,4	36,8	30,8	3 25,2	1 22,5		WW.				
onform	6,5	115	3 77,5*	49,8*	* 48,6	40,9	33,4	9 29,0	5 23,5	19,3	16,1	14,1					
nouc,	4,0		76,8	46,5*	* 31,1*	29,9	26,6	20,9	18,5	14,7	12,3	10,1	8,95				
nit, AQI	2,5			46,1	29,1*	19,2*	19,4	16,6	13,4	11,6	9,42	7,70	6,39	5,64			:
ality lin	1,5				28,8	17,9*	12,5*	12,2	10,6	8,35	7,42	5,89	4,89	4,03	3,52		
nce dn	1,0					17,7	11,6*	7,78*	7,78	6,65	5,34	4,64	3,74	3,08	2,52	2,25	
ccepta	0,65						11,5	7,26*	4,98*	4,86	4,26	3,34	2,94	2,35	1,93	1,61	1,41
⋖	0,40							7,20	4,65*	3,11*	3,11	2,66	2,12	1,85	1,47	1,23	1,01
	0,25				•				4,61	2,91*	1,99*	1,94	1,69	1,34	1,16	0,942	0,770
	0,15									2,88	1,86*	1,25*	1,23	1,06	0,835	0,742	0,589
	0,10										1,84	1,16*	0,791*	0,778	0,665	0,534	0,464
	0,065											1,15	0,731 0,738* 0,791*	0,461 0,465* 0,498* 0,778	0,486	0,426	0,334
	0,040	-									-		0,731),465*(0,288 0,291* 0,311* 0,486	0,311	0,334
	0,025												-	0,461 (,291*(,199*	0,266
	0,015				<u>-</u>),288 c	0,186* 0,199*	,125* (
	0,010															0,184 0	0,116* 0,125*
Sample	size (8	ო	သ	ω	ن	20	32	20	80	125	200	315	200	800	1 250 0	2 000 0
	code	∢	ω	O	۵	ш	LL.	ŋ	I	r	¥		Σ	z	۵.	ø	æ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the Poisson distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Table 7-B — Consumer's risk quality for tightened inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	1 748	1 683															
	650	1 238	1 165 1 683	1 010														
	400	688	825	669	631								·					
	250	650	593	495	437	388												
	150	464	433	356	309	569												
	100	334	309	260	222	190												
	65	266	223	185	162	137	124					, .						
	40	194	177	134	116	8	6'88	77,4										
St	25	125*	130	106	83,5	71,3	65,0	55,6	49,5									
Acceptance quality limit, AQL, nonconformities per 100 items	15	116*	83,0*	8,77	66,5	51,4	46,4	40,6	35,6	30,9								
es per	2	115	77,5*	49,8*	48,6	40,9	33,4	29,0	26,0	22,2	19,8							
nformiti	6,5		76,8	46,5*	31,1*	29,9	26,6	20,9	18,5	16,2	14,2	12,4						
noncor	4,0			46,1	29,1*	19,2*	19,4	16,6	13,4	11,6	10,4	8,89	7,86					
t, AQL,	2,5				28,8	17,9*	12,5*	12,2	10,6	8,35	7,42	6,50	5,64	4,95				
llity limi	1,5					17,7	11,6*	7,78*	7,78	6,65	5,34	4,64	4,13	3,56	3,09			
nce dua	1,0						11,5	7,26*	4,98*	4,86	4,26	3,34	2,94	2,60	2,22	1,98		
cceptar	0,65							7,20	4,65*	3,11*	3,11	2,66	2,12	1,85	1,62	1,42	1,24	
 	0,40								4,61	2,91*	1,99*	1,94	1,69	1,34	1,16	1,04	0,889	
	0,25									2,88	1,86*	1,25*	1,23	1,06	0,835	0,742	0,266 0,334 0,464 0,650 0,889	
	0,15										1,84	1,16*	0,791*	0,778	0,665	0,534	0,464	
	0,10					18						1,15	0,731 0,738* 0,791*	0,461 0,465* 0,498*	0,288 0,291* 0,311* 0,486	0,426	0,334	
	0,025 0,040 0,065												0,731	0,465*	0,311*	0,311	0,266	
	0,040													0,461	0,291*	0,199*	0,194	
	0,025														0,288	0,184 0,186* 0,199*	0,115 0,116* 0,125* 0,194	0,123
	0,015															0,184	0,116*	
	0,010																0,115	
Sample	size	0	ო	2	80	13	20	32	20	80	125	200	315	200	800	1 250	2 000	3 150
Sample	code letter	٨	Ø	O	۵	ш	Щ	ŋ	Ι	Ŋ	×	_	Σ	z	۵	Ø	Œ	S

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the Poisson distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 7-C — Consumer's risk quality for reduced inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	8	916	916			***************************************		<u> </u>			<u> </u>	•					Π
	<u> </u>	_	1 409 1 916	409								···		-			_
	650	6 1 409	- 1 4(-													<u> </u>
	400	1 006	1 006	1 006	626												
	250	770	770	770	671	564											
	150	589	589	650	514	403											
	100	464	464	527	433	308						.,					
	65	334	334	400	351	260	193										
	40	266	266	334	266	211	162	119								.,,,,,	
l "	25	194*	194	266	223	160	132	8	0,77								
)0 item	15	125*	125*	194	177	134	6,66	81,0	65,0	48,1		•					
Acceptance quality limit, AQL, nonconformities per 100 items	2	116*	116*	125*	130	106	83,5	61,5	52,7	40,6	30,8						
ormitie	6,5	115	115*	116*	83,0*	8,77	66,5	51,4	40,0	32,9	26,0	19,3					
onconf	4,0		115	115*	77,5*	49,8*	48,6	40,9	33,4	25,0	21,1	16,2	12,3				
AQL, r	2,5		•	115	76,8*	46,5*	31,1*	29,9	26,6	50,9	16,0	13,2	10,4	0,770			
y limit,	1,5				76,8 7	46,1*	29,1*	19,2*	19,4	9,91	13,4	66'6	8,43	6,50	4,89		
e qualit	1,0					46,1	28,8* 2	17,9* 1	12,5*	12,2	10,6	8,35	66,39	5,27	4,13	3,08	
eptano	0,65						28,8	17,7*	11,6*	7,78*	7,78	9 29'9	5,34	4,00	3,34	2,60	1,93
Acc	0,40				-		- CV	17,7	11,5*	7,26* 7	4,98* 7	4,86	4,26	3,34 4	2,54	2,11	1,62
	0,25 0							-	11,5	7,20* 7,	4,65* 4,	3,11* 4	3,11	2,66 3	2,12	1,60	1,32
	0,15 0								_	7,20 7,	4,61* 4,	2,91* 3,	1,99* 3,	1,94 2,	1,69 2,	1,34	0,999 1,
	0,10 0,	i				-				7,	4,61 4,6	2,88* 2,9	1,86* 1,9	1,25* 1,		1,06	0,835 0,9
	0,065 0,		_								4,				91* 1,23		65 0,8
				•								2,88	1,84*	5* 1,16*	38* 0,7(8, 0,778	36 0,665
	25 0,040												1,84	5 1,15*	1* 0,73	5*0,49	1* 0,4
	15 0,025													1,15	0,731 0,731* 0,738* 0,791*	0,461 0,461* 0,465* 0,498*	0,288* 0,291* 0,311* 0,486
	0 0,015														0,73	1 0,46	,* 0,29
	0,010															0,461	0,288
Sample	size	2	8	2	ო	Ŋ	8	13	20	32	20	80	125	200	315	200	800
Sample	code	V	В	O	۵	ш	Щ	g	I	ſ	¥	J	Σ	z	<u>a</u> .	Ø	Œ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the Poisson distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

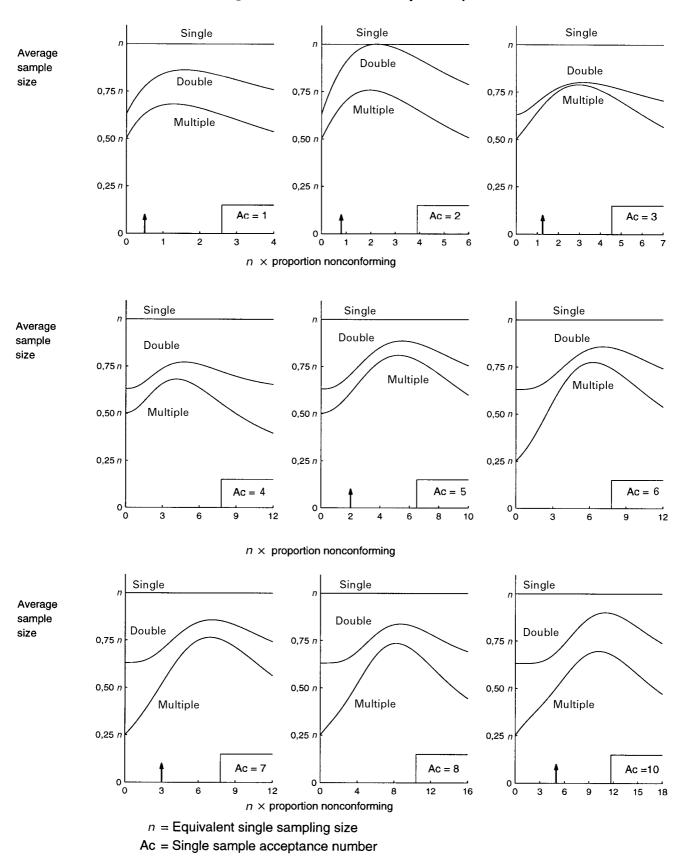
Table 8-A — Average outgoing quality limits for normal inspection (Single sampling plans)

	1 000	1 085	1 102																							
	650	733	723	661																						
	400	470	489	434	413																					
	250	326	313	293	271	254																				
	150	224	218	188	183	167																				
tion)	9	158	149	131	117	113																				
inspec	65	97,1	106	89,4	81,6	72,3	73.3	_						L												
ormal	9	9,89	64,7	63,4	55,9	50,2	47.0	_	45,8	L																
tems (r	25	45,0	45,7	38,8	39,6	34,4	32.6		29,4	_	2,62															
100 i	5		28,0	27,4	24,3	24,4	22.4	-	20,4	┝	Σ Σ	18.3			_											
ities pe	9			16,8 16,0	17,1 17,0	14,9 15,1	-	16,2	14,0 14,3	13,1			12,0	<u> </u>	11,9											
onform	6,5	18,4 14,8			10,5 10,1	10,5 10,5	_	9,75	9,90	8,94	90'6	8,16	8,27	7,52	7,61	7,33	7,41									
d nonc	4,0		12,3 10,5			6,46	98'9	6,82	6,07	6,34	6,38	5,59	5,63	5,22	5,26	4,70	4,73	4,65	4,69							
ems an	2,5			7,36			4,20	4,14	4,28 4,27	3,88	3,89	3,96	3,98	3,58	3,60	3,26	3,28	2,98	3,00	2,93	2,94				ļ	
ming it	1,5				4,60 4,33				2,62	2,74	2,74	2,43	2,43	2,53	2,54	2,24	2,24	2,07	2,08	1,88	1,89	1,83	1,84			
confor	1,0					2,83 2,73				1,68	1,67	1,71	1,71	1,55	1,55	1,58	1,59	1,42	1,42	1,31	1,31	1,17	1,18	1,17	1,17	
ent nor	0,65						1,84	1,79				1,05	1,05	1,10	1,10	0,971	0,971	1,0	1,01	0,894	0,895	0,816	0,817	0,752	0,753	0,733
, in perc	0,40								1,15					0,672	0,670		0,685	0,617	0,617		0,634	_	0,559		0,523	0,470
it, AQL	0,25									0,736	0,728						0,419	0,435	0,435		0,388		966,0	0,358	0,358	0,326
ality lin	0,15											0,460	0,457						0,266		0,274	_	0,243		0,254	0,224
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	0,10													0,294	,293			<u> </u>			0,168 (0,171		_	0,158 (0,00,158 (0,00)
Accept	0,065												1			0,184	0,183					_	0,105			
	0,040															0 (<u> </u>	0,117	0,117			0	9		0,0672 0	0,0420 0,0686 0,0971 0,0420 0,0686 0,0971
	\vdash										-		1		_			oʻ.	ŏ	36	35		_	0,0	취	20 00 20 0,0
	5 0,025							4					4				-		_	0,0736	0,0735	0	0			0,0420
	0,015						_	\downarrow														0,0460	0,0460			
	0,010																							0,0294	0,0294	
Sample	size	2	ဗ	5	8	13	8		32	Č.	3	8		125		200		315		200		800		1 250		2 000
Sample	code	∢	Δ.	O	۵	ш	ш		_o	I	=	7		¥		ب		Σ		z		<u> </u>		o	•	œ

NOTE

Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

Table 8-B — Average outgoing quality limits for tightened inspection (Single sampling plans)


	1 000	996	1 020																						
	650	619	644	612																					
	94	397	412	387	382																				
	250	257	265	247	242	235																			
	150	158	172	159	155	149																			
ction)	5	97,1	106	103	66'3	95,2																			
inspe	65	9'89	64,7	63,4	64,3	61,1	61,9																		
htened	40	42,0	45,7	38,8	966	39,6	39,7	38.7	, 0																
ns (tigl	25		28,0	27,4	24,3	24,4	25,7	24 B	۲,۳	24,7															
100 iter	15			16,8	17,1	14,9	15,8	16.1	10,1	15,9	46	0,0													
s per	9	18,4 14,8			10,5 10,1	10,5 10,5	9,71 9,75	9,90	10,0	10,3 10,5	9,93	10,1	9,90	10,1											
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	6,5		12,3 10,5			6,46 6,32	6,86	6,07	6,08	6,34	6,43	6,49	96,3	6,42	6,19	6,25									
oncon	4,0			7,36			4,20	4,28	4,27	3,88	3,96	3,98	4,12	4,14	3,97	4,00	3,93	3,95							
s and r	2,5				4,60			├	2,60	2,74	2,43	2,43	2,53	2,54		2,58		2,53	2,47	1					
ig item	1,5					2,83				1,68	1,71		1,55	1,55		1,59		1,64	1,59	_	1,55				
nformir	1,0						1,84				1,05	1,05	1,10	1,10		0,971		1,01	1,03	+-		066'0	0,991		
nonco	0,65							1,15	1,13		,	_	0,672	0,670		0,685 0		0,617 1	0,634	_		0,636 0	0,636 0	0,619	
ercent	0,40							_		0,736			ο	0,	_	0,419 0,		0,435 0,	0,388 0,	_					
ال	<u> </u>								\dashv	0,7	Q	7			0,4	0, 4,				+-			4 0,412		┿
mit, AC	0,25										0,460	0,457					0,267	0,266	0,274				0,254	0,257	
uality li	0,15												0,294	0,293					0,168				0,155	0,158	
ance q	0,10														0,184	0,183				0.105	0,105	0,110	0,110),0971),0971	
Accept	0,065																0,117	0,117				0,0672	0,0672	0,0686 0,0971 0,0686 0,0971	
	0,040					-							_				0	-	0,0736	+		o,	0,	0,0420 0, 0,0420 0,	
																		4	0 0		ő			0,0	
	0,025																			0.0460	0,0460				0,0267
	0,015																					0,0294	0,0294		
	0,010																							0,0184	
Sample	l	0:		, s		13		- 2		_		-	, je	,		<u> </u>	- 22	,		+		<u> </u>	3		20
	size			5			20	32	5	20		5	105	2	500	i 	315	; -	200		<u></u>	1 050	-	2 000	3 150
Sample	code	∢	В	ပ	۵	ш	ш	g	,	I	-	,	7	۷	_	ļ.	Σ		z	"	1.	c	,	œ	တ

NOTE

Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

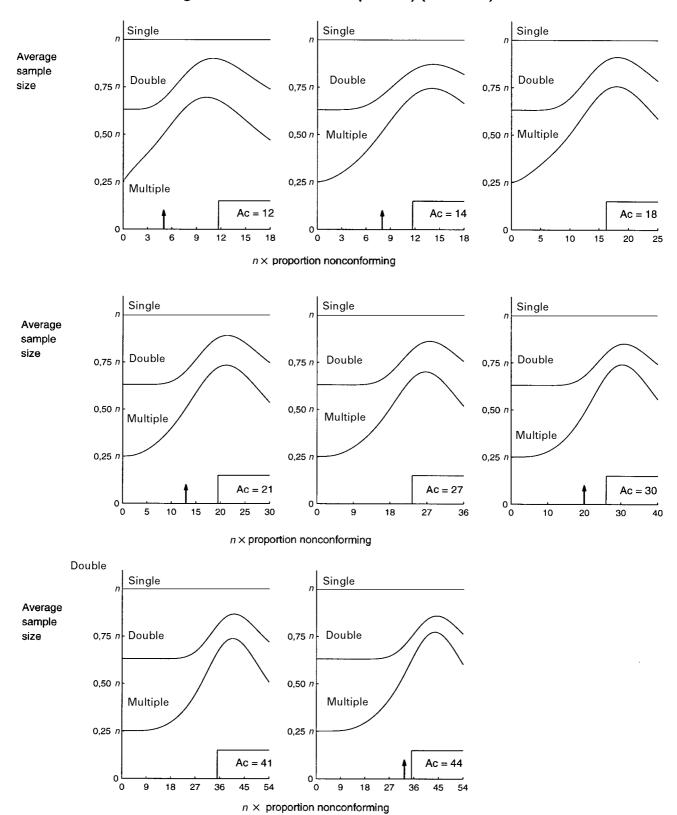
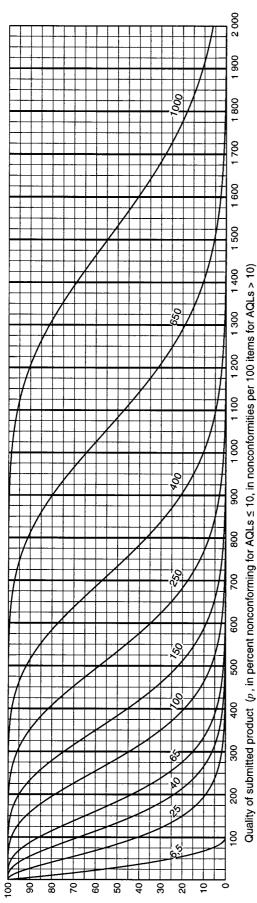

ISO 2859-1:1999(E) © ISO

Table 9 — Average sample size curves for single, double and multiple sampling (normal, tightened and reduced inspection)

= Reference point showing performance at AQL for normal inspection

Table 9 — Average sample size curves for single, double and multiple sampling (normal, tightened and reduced inspection) (concluded)

n = Equivalent single sampling size


Ac = Single sample acceptance number

= Reference point showing performance at AQL for normal inspection

© ISO ISO 2859-1:1999(E)

Table 10-A — Tables for sample size code letter A (Individual plans)

Chart A Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-A-1 — Tabulated values for operating characteristic curves for single sampling plans

			Accept	ance Quality	/ Limit, non	mal inspect	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ent noncon	forming and	l nonconfo	rmities per	100 items)			
P	6,5	6,5	25	40	65	100	150		250	$\sqrt{}$	400	$\sqrt{}$	059	$\sqrt{}$	1 000
1 0	p (in percent nonconforming)			,			<i>p</i> (in nc	nconformit	p (in nonconformities per 100 items)	items)					
0'66	0,501	0,503	7,43	21,8	41,2	89,3	145	175	239	305	374	517	629	859	776
95,0	2,53	2,56	17,8	40,9	68,3	131	199	235	308	384	462	622	745	995	1 122
0'06	5,13	5,27	26,6	55,1	87,2	158	233	272	351	432	515	684	812	1 073	1 206
75,0	13,4	14,4	48,1	86,4	127	211	298	342	431	521	612	795	934	1214	1 354
20,0	29,3	34,7	83,9	134	184	284	383	433	533	633	733	933	1 083	1 383	1 533
25,0	50,0	69,3	135	196	255	371	484	540	651	761	870	1 087	1 248	1 568	1 728
10,0	68,4	115	194	566	334	464	589	920	0//	688	1 006	1 238	1 409	1 748	1 916
2,0	9'22	150	237	315	388	526	657	722	848	972	1 094	1 335	1 512	1 862	2 035
1,0	90,0	230	332	420	502	655	800	870	1 007	1 141	1 272	1 529	1 718	2 088	2 270
		\bigvee	40	65	100	150	\bigvee	250	\bigvee	400	\bigvee	650	\bigvee	1 000	\bigvee
			Acceptar	Acceptance Quality	Limit, tighte	ened inspec	ity Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	sent nonco	nforming an	d nonconfe	ormities per	. 100 items			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be accepted (P_a) Percent of lots

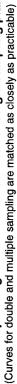
Table 10-A-2 — Sampling plans for sample size code letter A

Type of samp-	Cumu- lative			Accepi	tance Q	uality Lir	mit, norr	nal insp	ection (i	n percei	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	nformin	g and no	onconfo	rmities p	oer 100	items)		
ling	sample	< 6,5	6,5	X	10	15	25	40	65	100	150	X	250	X	400	X	650	X	1 000
płan	size	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re
Single	2	⇒	0 1				1 2	2 3	3 4	5 6	8 /	6 8	10 11 12	12 13 14	14 15 18	18 19 21	21 22 27	28	30 31
Double		⇒	*	use code letter	use code letter	use code letter	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	*	*
Multiple		⇒	*	۵	O	Δ	*	*	*	*	*	*	*	*	*	*	*	*	*
		< 10	X	10	15	25	40	65	100	150	X	250	X	400	X	650	X	1 000	X
		· · · · · · · · · · · · · · · · · · ·		Accepta	ince Qui	ality Lim	it, tighte	ned ins	oection ((in perce	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	onformi	ng and r	nonconf	ormities	per 100) items)		

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Ac Re

= Rejection number


= use single sampling plan above (or alternatively use code letter D)

= use single sampling (or alternatively use code letter B)

Table 10-B — Tables for sample size code letter B (Individual plans)

Chart B Operating characteristic curves for single sampling plans

Percent of lots expected to be

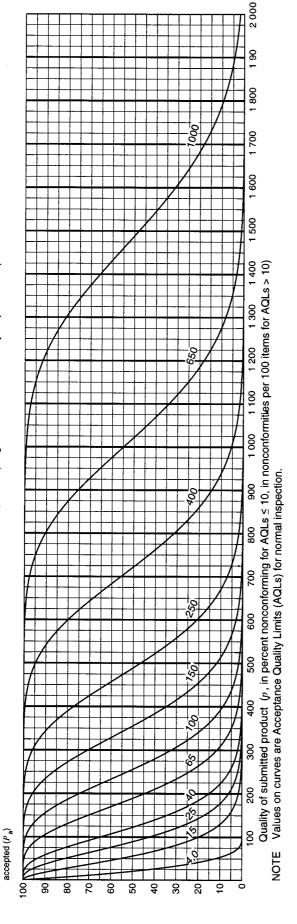


Table 10-B-1 — Tabulated values for operating characteristic curves for single sampling plans

			Acce	Acceptance Qu	uality Limit	, normal i	uality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	(in percer	nt noncont	orming ar	nd noncon	formities	per 100 it	ems)			
Q	4,0	4,0	15	25	40	65	100	\bigvee	150	X	250		400	X	029	\mathbb{X}	1 000
a	p (in percent nonconforming)							p (in non	p (in nonconformities per 100 items)	es per 10	0 items)				1		
0,66	0,334	0,335	4,95	14,5	27,4	59,5	6'96	117	159	203	249	345	419	572	651	947	1 029
95,0	1,70	1,71	11,8	27,3	45,5	87,1	133	157	506	256	308	415	496	699	748	1 065	1 152
0,06	3,45	3,51	17,7	36,7	58,2	105	144	181	234	288	343	456	541	716	804	1 131	1 222
75,0	9,14	9,59	32,0	9'29	84,5	141	199	228	287	347	408	530	623	808	903	1 249	1 344
20,0	20,6	23,1	55,9	89,1	122	189	256	588	356	422	489	622	722	922	1 022	1 389	1 489
25,0	37,0	46,2	868	131	170	247	323	360	434	202	280	724	832	1 045	1 152	1 539	1 644
10,0	53,6	8'92	130	177	223	309	392	433	514	593	671	825	626	1 165	1 277	1 683	1 793
5,0	63,2	6'66	158	210	258	350	438	481	292	648	730	890	1 008	1 241	1 356	1 773	1 886
1,0	78,5	154	221	280	335	437	533	580	671	761	848	1 019	1 145	1 392	1 513	1 951	2 069
	6,5	6,5	25	40	65	100	\bigvee	150	\bigvee	250	\bigvee	400	\bigvee	650	\bigvee	1 000	\bigvee
			Accept	tance Qua	ulity Limit,	tightened	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	(in perce	ant noncor	oforming a	and nonco	nformities	s per 100	items)			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-B-2 — Sampling plans for sample size code letter B

Type of Cumu-samp-ling Samp-ling Cumu-samp-ling Samp-ling Samp-lin		l s	e e	45	31	57			1		1
Lative Sample Cumu. Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Sample Califor Ca		-	Ac F						‡	[X	
Lative Sample Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Lative Sample Ac Re		7	- Se	42,	65	53				T _e	4
Cumu- Sample C4,0 4,0 6,5 C4,0		IX	8	=					Ŧ	9	
Cumu- Sample C4,0 4,0 6,5 C4,0			g	3	72	38			1		7
Cumu- Sample C4,0 4,0 6,5 C4,0	(S)	65	2		'_	37 (‡	IX	l (Su
Cumu- lative sample < 4,0 4,0 6 size Ac Re	lem	7	l g	8	8	32		<u> </u>		- / ₋	ig
Cumu- lative sample < 4,0 4,0 6 size Ac Re	8	IX	١٥	2.	5	4			‡	650	8
Cumu- lative sample < 4,0 4,0 6 size Ac Re	1 7	٣	e	8	9	-23					<u> </u>
Cumu- lative sample < 4,0 4,0 6 size Ac Re	be s	9	O H	-		9			‡	IX	l &
Cumu- lative sample < 4,0 4,0 6 size Ac Re	iii e	7	e	6	4	2				/ <u>'</u>	iii
Cumu- lative sample < 4,0 4,0 6 size Ac Re	orm	IX	C B	8	9	3			‡	\ \$	for
Cumu- lative sample < 4,0 4,0 6 size Ac Re	out	$\overline{}$		5		6					J 8
Cumu- lative sample < 4,0 4,0 6 size Ac Re	ouo	22	S B	+	1	1			+	$ \rangle$	<u> </u>
Cumu- lative sample < 4,0 4,0 6 size Ac Re	ر م	<u> </u>	¥ 0	3	1	-2-				/ \	4 E
Cumu- lative sample < 4,0 4,0 6 size Ac Re) an	IX	a,	<u> </u>] =	-			+	20	g
Cumulative sample < 4,0 4,0 6 size Ac Re A	l ig	$ / \rangle$	¥	15		=======================================				N] <u>Ē</u>
Cumulative sample < 4,0 4,0 6 size Ac Re A	forn	20	A.	-		55			+ +	\searrow	[] 를
Cumulative sample < 4,0 4,0 6 size Ac Re A	o		¥			12				$\overline{}$	1 §
Cumulative sample < 4,0 4,0 6 size Ac Re A	ρ		B.	6		Ξ			‡	20	ĕ
Cumulative sample < 4,0 4,0 6 size Ac Re A	Į į	$/ \setminus$	¥	ω	4					-	ent
Cumulative sample < 4,0 4,0 6 size Ac Re A	1 20	8	Re	80	ဖ	10			†	\sim	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Cumulative sample < 4,0 4,0 6 size Ac Re A	ا م	Ē		2	ო	6			т		آء.
Cumulative sample < 4,0 4,0 6 size Ac Re A	i) u	ιΩ	Re	9	5	7			+	8]
Cumulative sample < 4,0 4,0 6 size Ac Re A	ctio	9	Ac	5	0	9			+	=	ecti
Cumulative sample < 4,0 4,0 6 size Ac Re A	sbe	-	Re	4	က	5			+	20	٦ <u>ق</u>
Cumulative sample < 4,0 4,0 6 size Ac Re A] <u>:</u>	4		က	-	4			+	99	l ë
Cumulative sample < 4,0 4,0 6 size Ac Re A	l E	10	Re	3	င	4		-	+		ig i
Cumulative sample < 4,0 4,0 6 size Ac Re A	2	Š	Ac	2	0	က			+	4	ight
Cumulative sample < 4,0 4,0 6 size Ac Re A	i E	٦	3e	2	7	2			<u></u>	1.	<u>‡</u>
Cumulative sample < 4,0 4,0 6 size Ac Re A) V	=	Ac I	-	0	_			+	25	<u> </u>
Cumulative sample < 4,0 4,0 6 size Ac Re A	laji H				<u> </u>	Ф	<u></u>				∮
Cumulative sample < 4,0 4,0 6 size Ac Re A	ğ	=	Ac F		nsn	ဝဝ	lette	O			l g
Cumulative sample < 4,0 4,0 6 size Ac Re A	l g	7	le/		Φ.						9
Cumulative sample < 4,0 4,0 6 size Ac Re A) pta	X	γc F		nse	ò	ette			우	tan
Cumulative sample < 4,0 4,0 6 size Ac Re A		/ \	le 4								9 9
Cumu-lative sample size 3 3 3		6,5	S H		nse	öö	ette	⋖		IX	&
Cumu-lative sample size 3 3 3			e A				<u> </u>			/ \	4
Cumu-lative sample size 3 3 3		4,0	c B		*				*	5,5	
Cumu-lative sample size 3 3 3			Ą	0			{				4
Cumu-lative sample size 3 3 3		4,0	, E	⇒	⇒				\Rightarrow	3,5	
			ď								
	l i e	ple	بو			_					
	Pun	äm	siz	ဗ	2	4					
Type of sampling plan Single Double		<i>v</i> ,							-		
Type san lin lin ble Sing Sing Multi	o d−	D	ا ڃ	<u>3</u> e	ble				<u>ble</u>		
	ype	<u>≔</u>	pla	Sin	Zou				Aulti		
				•							

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

В

Ac = Acceptance number

Re = Rejection number

^{* =} use single sampling plan above (or alternatively use code letter E)

^{++ =} use double sampling plan above (or alternatively use code letter D)

ISO 2859-1:1999(E) © ISO

Table 10-C — Tables for sample size code letter C (Individual plans)

Chart C Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

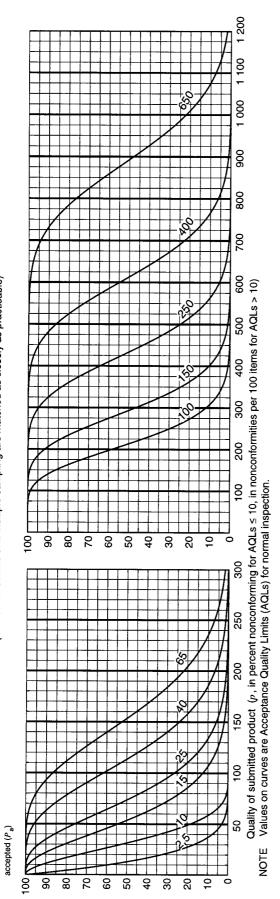


Table 10-C-1 — Tabulated values for operating characteristic curves for single sampling plans

								_				
650		618	691	733	908 0	893	986	1 076	1 131	1 241	\setminus	
X		568	639	629	749	833	923	1 010	1 064	1 171	650	
400		391	449	482	542	613	691	992	814	806	X	
X		343	398	429	485	553	627	669	745	835	400	tome)
250		251	298	325	374	433	499	564	605	687	X	ner 100 i
X		207	249	273	318	373	435	495	534	612	250	nformities
150	00 items)	150	185	506	245	293	348	403	438	509	X	Acceptance Quality Limit, tightened inspection (in percent nonconforming and perconformities per 100 items)
X	ties per 10	122	154	173	208	253	304	356	389	456	150	forming
100	conformi	95,4	123	140	172	213	260	308	339	403	X	nt poppor
X	p (in nor	70,1	6'86	109	137	173	216	260	588	348	100	(in perce
99		58,1	9,67	93,1	119	153	194	235	263	320	\bigvee	inspection
40		2,35	52,3	63,0	84,4	113	148	185	210	262	65	ightened
52		16,5	27,3	34,9	2'09	73,4	102	134	155	201	40	ity Limit
15		8,72	16,4	22,0	34,5	53,5	78,4	106	126	168	25	ance Qual
10		2,97	7,11	10,6	19,2	33,6	53,9	8,77	94,9	133	15	Accepts
2,5		0,201	1,03	2,11	5,75	13,9	27,7	46,1	6'69	92,1	4,0	
10	ercent orming)	3,27	7,64	11,2	19,4	31,4	45,4	58,4	65,7	77,8	\bigvee	
2,5	p (in p nonconf	0,201	1,02	2,09	5,59	12,9	24,2	36,9	45,1	60,2	4,0	
$P_{\mathbf{a}}$		0,66	95,0	90,0	75,0	20,0	25,0	10,0	5,0	1,0		
	2,5 10 2,5 10 15 25 40 65 7 100 7 150 7 250 7 400 7	2,5 10 2,5 10 15 250 40 85 p (in percent nonconforming) p (in nonconformities per 100 items)	2.5 10 2,5 10 15 25 40 65 7 100 7 150 7 250 7 400 7 100	2,5 10 2,5 10 15 25 40 65 70 100 70 150 70 400 70 400 70 <	2,5 10 2,5 10 15 25 40 65 40 65 40 65 40 400 <	2,5 10 2,5 10 15 25 40 65 40 65 40 65 40 400 <	2,5 10 2,5 10 15 25 40 65 7 10 7 150 7 250 7 400 7 nonconforming) nonconforming) nonconforming) 0,201 3,27 0,201 2,97 8,72 16,5 35,7 58,1 70,1 95,4 122 150 207 251 343 391 568 1,02 7,64 1,03 7,11 16,4 27,3 52,3 79,6 93,9 123 154 185 249 298 398 449 639 2,09 11,2 2,11 10,6 22,0 34,9 63,0 93,1 179 172 206 273 325 429 482 679 5,59 19,4 5,75 84,4 119 137 172 208 245 318 374 485 542 749 12,9 31,4 13,9 13,3	2,5 10 2,5 10 65 40 65 40 65 40 65 40 65 40 65 40 400	2,5 10 2,5 10 15 25 40 65 70 100 75 150 75 400 70 p (in percent nonconforming) p (in nonconforming) p (in nonconforming) p (in nonconforming) 0,201 3,27 0,201 2,97 8,72 16,5 35,7 58,1 70,1 95,4 122 150 207 251 343 391 568 1,02 7,64 1,03 7,11 16,4 27,3 52,3 79,6 93,9 123 154 185 249 298 398 499 639 2,09 11,2 2,11 10,6 22,0 34,9 63,0 93,1 170 173 206 273 269 273 325 429 489 679 679 489 489 679 84,4 113 133 134 435 435 435 436 436 436 436 436 <t< td=""><td>2.5 10 2.5 10 5.5 40 65 65 63 63 122 150 207 251 349 449 630 63 123 124 122 150 207 251 349 489 630 93,1 70,1 95,4 122 150 207 251 253 253 253 154 152 154 155 253 253 254 155 155 254 253 253 253 253 253 253 253 253 253 253 253 253</td><td>2.5 10 2,5 10 15 2.5 40 65 40 65 40 65 40 65 40</td><td>2,5 10 2,5 10 15 25 40 65 70 10 70 250 400 70 70 ρ (in percent nonconforming) γ (in percent nonconforming) γ (in nonconforming) γ (in nonconforming) γ (in nonconforming) γ (in nonconforming) 0,201 3,27 0,201 2,97 8,72 16,5 35,7 58,1 70,1 95,4 122 150 207 251 343 391 568 1,02 7,64 1,03 7,11 16,4 27,3 52,3 79,6 93,9 123 154 185 249 289 449 639 2,09 11,2 2,11 10,6 22,0 34,9 63,0 93,1 109 173 206 273 289 449 639 5,59 19,4 10,2 13,3 13,3 13,4 14,4 11,4 17,2 203 245 309 439 439 439 439 <</td></t<>	2.5 10 2.5 10 5.5 40 65 65 63 63 122 150 207 251 349 449 630 63 123 124 122 150 207 251 349 489 630 93,1 70,1 95,4 122 150 207 251 253 253 253 154 152 154 155 253 253 254 155 155 254 253 253 253 253 253 253 253 253 253 253 253 253	2.5 10 2,5 10 15 2.5 40 65 40 65 40 65 40 65 40	2,5 10 2,5 10 15 25 40 65 70 10 70 250 400 70 70 ρ (in percent nonconforming) γ (in percent nonconforming) γ (in nonconforming) γ (in nonconforming) γ (in nonconforming) γ (in nonconforming) 0,201 3,27 0,201 2,97 8,72 16,5 35,7 58,1 70,1 95,4 122 150 207 251 343 391 568 1,02 7,64 1,03 7,11 16,4 27,3 52,3 79,6 93,9 123 154 185 249 289 449 639 2,09 11,2 2,11 10,6 22,0 34,9 63,0 93,1 109 173 206 273 289 449 639 5,59 19,4 10,2 13,3 13,3 13,4 14,4 11,4 17,2 203 245 309 439 439 439 439 <

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-C-2 — Sampling plans for sample size code letter C

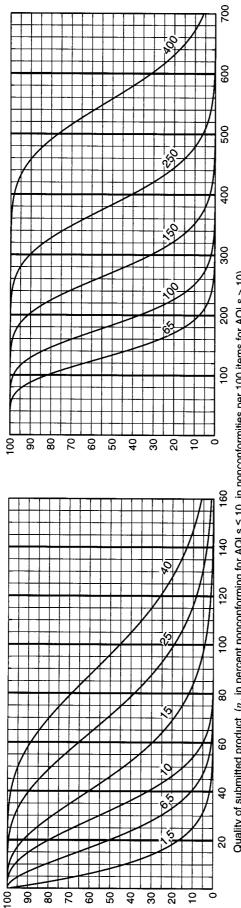
	1 000	. Re		esn	code	letter	В				1 000	
		3e Ac	45	31 u	57 cc	<u>•</u>					-	
	650	Ac Re	44	29 25 3	53 56				+		X	
	\bigvee	Ac Re	1 42	3 29	53				+ +		650	
(su		3e A	31 41	52 53	38 52						\	(sus
0 iter	400	Ac Re	30	17 2	35 37 38 52				‡		X	oc ite
er 10	X	Ac Re Ac Re Ac Re	9 10 11 12 13 14 15 18 19 21 22 27 28 30 31 41 42 44	9 14 11 16 15 20 17 22 23	1 35				‡		400	ity Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
es be		Je A	22 27	16 15	11 12 13 15 16 18 19 23 24 26 27 34						4	lies p
rmiti	250	Ac	21	=	56				‡		X	ormi
confc	X	c Re	3 19	14	3 24				+	.,,	250	iconf
non			15 18	1 9	19/23						3	non k
and	150	Ac F	4		18				+		X	gand
ming	X	Ac Re Ac Re	2 13	10	5 16				+		150	rminę
Julor			= = = = = = = = = = = = = = = = = = = =	9 6	13 15						_	outo
ouco	100	Ac Re	10	5	12				‡		X	nonc
ent n	X	Ac Re Ac Re		7	11				‡		100	cent
perc		3e A	- δ	4	0 10						-	per r
n (ji	65		2	က	9 10				‡		X	on (ir
ectio	40	Ac Re Ac Re Ac Re	9	5	7				‡		65	ectic
insp	_	3e A	5	3	5 6	\dashv						l insp
rma	52	Ac F	က	-	4				‡		4	enec
t, no	15	: Re	3	3	4				‡		25	tight
Limi		3e Ac	2 2	0	2							imit,
ıality	유	Ac Re	-	0	-				‡		15	lity L
J g	6,5	c Re		esn	epoo	letter	۵				10	Qua
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)		ReA		nse	code	letter	Ш					Acceptance Qual
Acce	\triangle	e Ac				<u>-</u>					6,5	Accep
	4,0	Ac B		nse	code	letter	æ				X	
	2,5	Ac Re Ac Re Ac Re Ac Re	0 1	*					k		4,0	
	< 2,5	Re /	⇒	⇒							< 4,0	
1			•			\dashv		-	•		V	
Cumu- lative	sample	size	2	င	9							
Type of samp-	ling	plan	Single	Double		T			Multiple			
Tyl	<u>=</u>	۵	. <u>is</u>	۵			• • • • • • • • • • • • • • • • • • • •		∑ ∑ 			····

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

e = Rejection number

* = use single sampling plan above (or alternatively use code letter F)


++ = use double sampling plan above (or alternatively use code letter D)

C

ISO 2859-1:1999(E) © ISO

Table 10-D — Tables for sample size code letter D (Individual plans)

Chart D Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-D-1 — Tabulated values for operating characteristic curves for single sampling plans

				Acı	Acceptance Quality		imit, norn	nal inspec	tion (in pe	Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	conformir	ng and nc	nconform	ities per 1	100 items				
Pa	1,5	6,5	10	1,5	6,5	10	15	25	40	\bigvee	99	\bigvee	100	\bigvee	150	\bigvee	250	X	400
	p (in pe	p (in percent nonconforming)	informing)							p (in nor	p (in nonconformities per 100 items)	ties per 1	00 items)						
0,66	0 0,126	1,97	6,08	0,126	1,86	5,45	10,3	22,3	36,3	43,8	9'69	76,2	93,5	129	157	215	244	355	386
95,0	0,639	4,64	11,1	0,641	4,44	10,2	17,1	32,7	49,8	58,7	77,1	96,1	116	156	186	249	281	399	432
90'0	0 1,31	98'9	14,7	1,32	6,65	13,8	21,8	39,4	58,2	6'29	8,78	108	129	171	203	268	301	424	458
75,0	0 3,53	12,1	22,1	3,60	12,0	21,6	31,7	52,7	74,5	85,5	108	130	153	199	234	303	339	468	504
50,0	0 8,30	20,1	32,1	8,66	21,0	33,4	45,9	6'02	6'26	108	133	158	183	233	271	346	383	521	558
25,0	0 15,9	30,3	43,3	17,3	33,7	49,0	63,9	92,8	121	135	163	190	217	272	312	392	432	277	617
10,0	0 25,0	40,6	53,8	28,8	48,6	99	83,5	116	147	162	193	222	252	309	352	437	479	631	672
5,0	31,2	47,1	0'09	37,4	59,3	78,7	6'96	131	164	180	212	243	274	334	378	465	509	999	707
1,0	43,8	59,0	70,7	57,6	83,0	105	126	164	200	218	252	285	318	382	429	522	568	732	9//
	2,5	10	\bigvee	2,5	10	15	25	40	\bigvee	99	\bigvee	100	\bigvee	150	\bigvee	250	X	400	X
			Acceptan	ice Qualit	y Limit, tig	ghtened is	nspection	(in perce	nt noncon	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	und nonco	nformities	3 per 100	items)					

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

expected to be accepted (Pa)

8

8 20 6

Table 10-D-2 — Sampling plans for sample size code letter D

		Το	1	Τ									Γ
	> 400	Ac Re	←	←			←					> 400	
	400		45	31	57		16	27	38	48	57		
	4	Ac Re	4	25	56		9	17	29				ĺ
		8	42 44	29	53		5	25	35	45 40	53 56		İ
	ΙX	4c					9					400	
l)	٦	l e	3141	22 23	38 52		12	19 16	27 26	34 38	38 52		Su:
ie	250	Ac Re Ac					4			<u>α</u>		X] j¥
6		i e	28 30	20 17	35 37		10	17 11	24 19	31 28	35 37	-	ĕ
ē	IX	Ac Re					8			r.	4	250	per
d Se	<u> </u>		22 27	16 15	27 34) 6	14 10	19 17	25 25	27 34		ies
i	150	Ac Re			9		0	7		0	9	IX	ij
forr		0	19 21	14 11	24 26		80	12	17 13	22 20	24 26	//	ıfo
05	IX	Ac Re		l						9	8	150	اق
Į į	\vdash		15 18	1 0	923			9	13 1	17 16	19 23		lo Io
٦٩	100	Ac Re	-	1	3 19		7	10			~	X	pu
gar	Ļ,	¥	13 14	^	16 18		-	4	80	15 12	16 18	$/\!\!\!/$	် ရ
nin in	$ \vee $	Ac Re	2	10			9	0	12		9	9	ij
for	\triangle		11 12	9	13 15		0	က	7	<u> </u>	13 15		l fo
8	65	Ac Re		6			5	ω	10	12	13	$-1 \vee 1$	و
٥	L		9	ည	11 12		0	ო	9	6	11 12	$\bot \triangle$	5
ਵੁ		Re	6	_			4	7	6	11		65	ent
2	\triangle	Αc	8	4	10		0	8	4	9	10	9	ē
l g	8	Ac Re	8	9	10		4	9	8	6	10		u
=	4	Ac	7	(ო	6		0	-	က	5	6		ָ ער
iĕ	2	Re	9	5	7		4	r2	9	7	7		cţic
) e	25	Ac Re	5	2	9		#	_	N	4	9	8	sbe
ins	10	Re	4	ო	2		ო	က	4	2	5	1	<u> </u>
ma_	15	Ac	က	-	4		#	0	_	N	4	25	üe
no.			3	က	4		7	က	က	က	4	+-	ghte
nit,	유	Ac Re	2	0	က		#	0	0	_	က	15	. †. .≢.
<u>;</u>	15		2	2	7		N	N	~	N	- 2	+	Ξ
lity	6,5	\c F	_	0	_		#	0	0	0	_	무	IÀ.
Ö		le/		<u> </u>								+-	ra
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	4,0	₹C F		nse	opoo	letter	ш					6,5	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
otar		} 										+	anc
ce	X	S F		asn	epoo	letter	ш					4,0	ept
Α	/ \	e A											9
	2,5	C B		nse	code	letter	O					X	
		e A				<u> </u>						+	
	1,5	ŭ,	_	*			*					2,5	
		Ac Re Ac Re Ac Re Ac Re Ac Re	0										
	< 1,5	۳	⇒	⇒			\Rightarrow					< 2,5	
		¥										\ \ \	
₽ ø	ple	o l	_		_	ŀ					_		
Cumu- lative	sample	size	8	5	10	ı	2	4	9	œ	10		
-	()	\dashv				\dashv						-	
Type of Cumu-samp-lative	ling	plan	Single	Double					Multiple				
Typ sar	<u>.=</u>	ם	Sin	Dot					Μ				
<u> </u>		1		_							····		

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

c = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter G)

= acceptance not permitted at this sample size

D

ISO 2859-1:1999(E) © ISO

Table 10-E — Tables for sample size code letter E (Individual plans)

Chart E Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

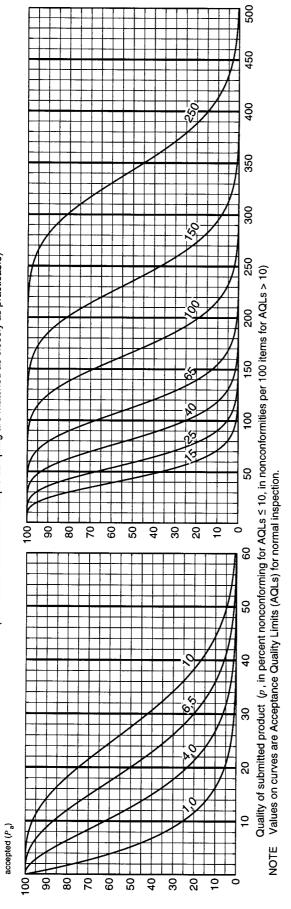


Table 10-E-1 — Tabulated values for operating characteristic curves for single sampling plans

	Г										\ /	\mathbf{r}
250		238	266	282	310	344	379	414	435	477	X	
X		219	246	261	288	321	355	388	409	450	250	
150		150	173	185	208	236	566	295	313	349	X	
X		132	153	165	187	213	241	569	286	321	150	
100		2'96	115	125	144	167	192	217	233	564	X	00 items
X		9'62	95,7	105	122	44	167	190	205	235	100	lies per 1
65	00 items)	57,5	71,1	79,2	94,1	113	134	155	168	196	X	conformit
X	es per 1(46,9	59,2	66,5	80,2	97,4	117	137	150	176	65	and non
40	conformiti	36,7	47,5	54,0	66,3	82,1	9	119	130	155	X	nforming
X	in non	27,0	36,1	41,8	52,6	2'99	83,1	9	Ξ	134	40	ent nonco
22	d	22,4	30,6	35,8	45,8	29,0	74,5	90,5	101	123	X	(in perce
15		13,7	20,1	24,2	32,5	43,6	57,1	71,3	6'08	101	25	spection
10		6,33	10,5	13,4	19,5	28,2	39,3	51,4	9'69	77,3	15	htened in
6,5		3,35	6,29	8,48	13,3	50,6	30,2	40,9	48,4	64,7	10	Limit, tig
4,0		1,14	2,73	4,09	7,39	12,9	20,7	59,9	36,5	51,1	6,5	• Quality
1,0		0,0773	0,395	0,810	2,21	5,33	10,7	17,7	23,0	35,4	1,5	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
9	ning)	6,95	11,3	14,2	19,9	27,5	36,1	44,4	49,5	58,8	X	Ă
6,5	onconfor	3,58	6,60	8,80	13,4	20,0	28,0	36,0	41,0	50,6	10	
4,0	ercent no	1,18	2,81	4,17	7,41	12,6	19,4	26,8	31,6	41,3	6,5	
0,1	d (in p	0,0773	0,394	0,807	2,19	5,19	10,1	16,2	20,6	29,8	1,5	
P _a		0,66	95,0	90,0	75,0	90,09	25,0	10,0	2,0	1,0		
	1,0 4,0 6,5 10 1,0 4,0 6,5 10 15 25 7 40 65 5 10 150 7 150 7	1,0 4,0 6,5 10 1,0 4,0 6,5 10 15 25 40 5 100 150 7 150 7 p (in percent nonconforming) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items)	1,0 4,0 6,5 10 1,0 4,0 6,5 10 15 25 40 40 65 100 70 150 70 p (in percent nonconforming) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items)	1,0 4,0 6,5 10 4,0 6,5 10 150	1,0 4,0 6,5 10 1,0 4,0 6,5 10 1,0 4,0 1,0 4,0 1,0 4,0 1,0 4,0 1,0 4,0 6,5 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 10 7 10 10 7 10	1,0 4,0 6,5 10 4,0 6,5 10 150 7 40 7 65 7 100 7 150 7 p (in nonconformities per root of parcent monconformities) no.0773 1,18 3,58 6,95 0,0773 1,14 3,35 6,33 13,7 22,4 27,0 36,7 46,9 57,5 79,6 96,7 132 150 219 0,394 2,81 6,60 11,3 0,395 2,73 6,29 10,5 20,1 30,6 36,1 47,5 59,2 71,1 95,7 115 153 173 246 0,807 4,17 8,80 14,2 20,1 30,6 36,1 47,5 59,2 71,1 95,7 115 153 185 261 2,19 4,17 8,80 14,2 20,1 36,6 41,8 54,0 66,5 79,2 105 185 185 261 2,19	1,0 4,0 6,5 1 4,0 6,5 1 4,0 6,5 1 4,0 6,5 1 4,0	1.0 4.0 6.5 10 1.0 4,0 6.5 10 1.0 4,0 6.5 10 15 25 3.4 40 5.7 46,0 6.5 10 15 3.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	1,0 4,0 6,5 10 1,0 4,0 6,5 10 1,0 4,0 6,5 10 15 25 7,0 10 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,	1,0 4,0 6,5 10 4,0 6,5 10 4,0 6,5 10 4,0 6,5 10 4,0 6,5 10 4,0	1,0 4,0 6,5 10 4,0 6,5 10 1,0 4,0 6,5 10 1,0 4,0 6,5 10 7 6,5 10 7 6,5 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 10 7 10	1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.5 10 1.0 4.0 6.3 1.3

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-E-2 — Sampling plans for sample size code letter E

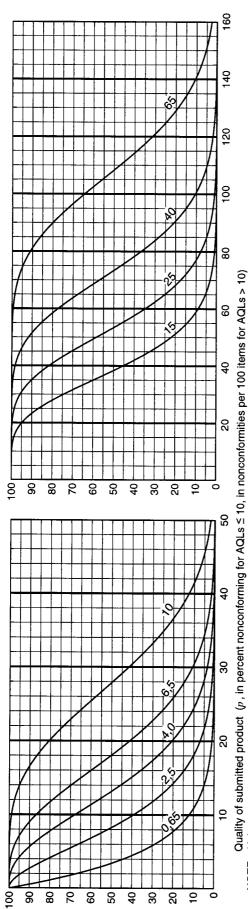
	> 250	Ac Re	←	←			←					250	
	250 >	Ac Re	45	31	22		16	27	38	48	22	\uparrow	
	25		4	55	26		ø	17	59	40	26	\triangle	
ļ	X	Ac Re	41 42	23 29	52 53		6 15	16 25	26 35	38 45	52 53	250	
	 		31	22 2	38 5		12 (19	27 2	34	38		
(SII	150	Ac Re	30	17	37		4	=	19	28 (37 (X	(swa
0 iter	X	Ac Re	, 28	5 20	35		10	17	. 24	31	. 35	150	oc ite
er 10		4	22 27	16 15	27 34		8	14 10	9 17	5 25	7 34	Ι-	er 1(
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	100	Ac Re	212	= -	26 2		2 6	7	13 19	20 25	26 27	X	ties p
ormiti		Ac Re	19	4	24		80	12	17 13	55	24		formi
confe			48	6	33		-	9	Ţ	16	23	100	lcon
nou	65	Ac Re	14 15	7 11	18 19		2	9 1	13	2 17	8 19		ou p
g and	\ /		13	10 1	16		9	9 4	12 8	15 12	16 18	+	ig an
l iii	X	Ac Re	12	9	15		0	က	7	= 1	15 1	65	rmin
onfo	64	Ac Re	=	6	13		5	ω	10	5	13	\bigvee	confc
nonc			9	Ω.	- 4		0	ო	9	<u>ი</u>	5	\triangle	non
cent	lΧ	Ac Re	ი დ	7 4	10 11		4	2 7	9	6 11	10 11	6	rcent
) per			80	9	-0		4	9	- 00	<u></u>	<u> </u>	\forall	in pe
e ii)	25	Ac Re	2	ო	О		0	-	က	2	o	X	ion (
pecti	15	. Re	9	2	7		4	5	9	7	7	25	spect
l ins		e Ac	5	3 2	5 6	_		3	2	4		+	ji.
Jorma	10	Ac Re	ε	-	4		#	0	- -	2	4	15	htene
mit, r	6,5	Ac Re	ဗ	က	4		8	ო	ო	က	4	9	it, tig
<u>i</u>	9		2	0	ო		#	0	0	_	ო		/ Lim
Qual	4,0	Ac Re	1 2	2 2	- 2		±+	2	7	2	- 2	6,5	ualit
ance	2			0	<u>e</u>				-	-		+	O e e
Acceptance	2,5	Ac Re		nse	code	letter	<u>ı</u>					4,0	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
Ac	X	Ac Re		nse	code	letter	Ø					2,5	Acc
	1,5	Ac Re		nse	code	letter	Ω					X	
	1,0	Ac Re	0 1	*			*			<u>.</u>		1,5	
	< 1,0	Ac Re		⇒			⇒					< 1,5	
<u> </u>			-										
Cumu- lative	sample	size	13	80	16		ဗ	9	6	12	15		
Type of samp-	ling	plan	Single	Double					Multiple				

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number


* = use single sampling plan above (or alternatively use code letter H)

= acceptance not permitted at this sample size

© ISO ISO 2859-1:1999(E)

Table 10-F — Tables for sample size code letter F (Individual plans)

Chart F Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-F-1 — Tabulated values for operating characteristic curves for single sampling plans

				Accepi	Acceptance Qual	lity Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ormal insp	ection (in p	ercent nor	nconformir	ng and non	conformitie	es per 100	items)			
Pa	0,65	2,5	4,0	6,5	10	0,65	2,5	4,0	6,5	10	15	\bigvee	25	X	40	X	65
		p (in per	p (in percent nonconforming)	informing)						on ni) q	nconformit	p (in nonconformities per 100 items)	0 items)				
0,66	0,0502	0,759	2,27	4,36	9,75	0,0503	0,743	2,18	4,12	8,93	14,5	17,5	23,9	30,5	37,4	51,7	62,9
95,0	0,256	1,81	4,22	7,14	14,0	0,256	1,78	4,09	6,83	13,1	19,9	23,5	30,8	38,4	46,2	62,2	74,5
90,0	0,525	2,69	5,64	9,02	16,6	0,527	2,66	5,51	8,72	15,8	23,3	27,2	35,1	43,2	51,5	68,4	81,2
75,0	1,43	4,81	8,70	12,8	21,6	1,44	4,81	8,64	12,7	21,1	29,8	34,2	43,1	52,1	61,2	79,5	93,4
20,0	3,41	8,25	13,1	18,1	27,9	3,47	8,39	13,4	18,4	28,4	38,3	43,3	53,3	63,3	73,3	93,3	108
25,0	6,70	12,9	18,7	24,2	34,8	6,93	13,5	19,6	25,5	37,1	48,4	54,0	65,1	76,1	87,0	109	125
10,0	10,9	18,1	24,5	30,4	41,5	11,5	19,4	26,6	33,4	46,4	6'89	65,0	0,77	6'88	101	124	141
5,0	13,9	21,6	28,3	34,4	45,6	15,0	23,7	31,5	38,8	52,6	65,7	72,2	84,8	97,2	109	133	151
1,0	20,6	28,9	35,8	42,1	53,2	23,0	33,2	45,0	50,2	65,5	80,0	87,0	101	114	127	153	172
	1,0	4,0	6,5	10	\bigvee	1,0	4,0	6,5	10	15	\bigvee	25	\bigvee	40	\bigvee	92	\bigvee
			Ac	Acceptance Quality Limi	Quality Lim	it, tightened inspection (in percent nonconforming and nonconformities per 100 items)	d inspectio	in (in perce	ant noncon	forming ar	nopucon pt	formities po	er 100 iten	SI (SI			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots accepted (Pa)

8 8 70

20 8

5 ဓ

Table 10-F-2 — Sampling plans for sample size code letter F

	т -	1	г	1									
	> 65	Ac Re	(←			←					> 65	
	65	Ac Re	22	16	3 27		6	14	19	25	27	V	
			21	=	26		2		13	20	26	$/ \setminus$	
items)	X	Ac Re	18 19	9 14	23 24		1 8	6 12	11 17	16 22	23 24	65	items)
er 100	64	Ac Re	14 15	7 11	18 19		1 7	4 10	8 13	12 17	18 19	X	per 100
ies p	7	Re /	13 1	10	16_1		9	6	12	15	16	/ \	ities
formit	X	Ac B	12 1	6 1	15 1		0	က	7 1	=	15 1	40	nform
ncor	25	Ac Re	7	6	13		5	8	10	12	13	\bigvee	ouc
ou p			10	5	12		0	က	9	6	12	\triangle	u pu
lg an		Ac Re	6	7	=======================================		4	7	6	Ξ	1	25	ng a
rmi		_	8	4	9		0	0	4	9	10		ormi
onfo	15	c Re	60	9	9		4	9	∞	თ	10		conf
l ou	<u> </u>	Ac		က	<u>ი</u>		0		ო		6		non
ent	10	Ac Re	9	10	7		4	5	9	_	7	15	cent
perc		-	2	7	9		#		- 2	4	9		ı per
on (in	6,5	Ac Re	8 4	- 3	4		#	0 3	4	2	4	10	ion (ir
Decti		æ	က	က	4		N	က	က	က	4	5	pect
l insp	4,0	Ac	0	0	က		#	0	0	-	က	6,6	d ins
orma	2,5	æ	2	2	2		7	7	Ø	8	N	0	tene
it, n	2	Ϋ́	_	0	_		#	0	0	0	-	4,0	, tigh
ality Lin	1,5	Ac Re		nse	epoo	letter	Ø					2,5	ity Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re		asn	code	letter	工	-				1,5	Acceptance Qual
Accepta	1,0	Ac Re		esn	code	letter	ш					X	ceptan
		\vdash				<u> </u>							Ą
	9'0	Ac Re	0	*			*					1,0	
	< 0,65	Ac Re	#	⇒			⇒					< 1,0	
Cumu- lative	sample	size	20	13	56		က	10	15	50	25		
Type of samp-		plan	Single	Double					Multiple				
L 3									≥				

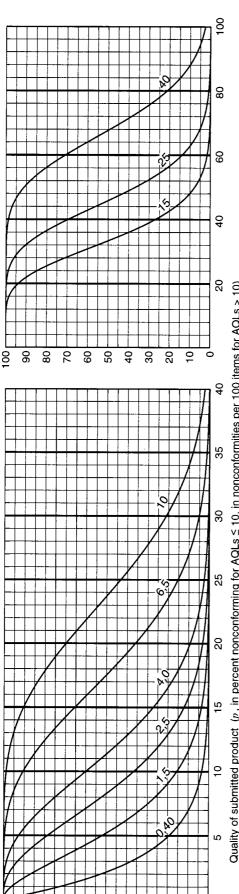
= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

t = use single sampling plan above (or alternatively use code letter J)


= acceptance not permitted at this sample size

F

© ISO ISO 2859-1:1999(E)

Table 10-G — Tables for sample size code letter G (Individual plans)

Chart G Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-G-1 Tabulated values for operating characteristic curves for single sampling plans

				Acce	Acceptance Qual		ity Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	spection ((in percen	t nonconfe	orming an	d noncon	formities _I	oer 100 ite	ems)			
Pa	0,40	1,5	2,5	4,0	6,5	10	0,40	1,5	2,5	4,0	6,5	10	X	15	\bigvee	25	\bigvee	40
		p (in	percent n	p (in percent nonconforming)	ning)						p (in non	p (in nonconformities per 100 items)	es per 10	0 items)				
0,66	0,0314	0,471	1,40	2,67	5,88	9,73	0,0314	0,464	1,36	2,57	5,58	80'6	11,0	14,9	19,1	23,4	32,3	39,3
95,0	0,160	1,12	2,60	4,38	8,50	13,1	0,160	1,11	2,56	4,27	8,17	12,4	14,7	19,3	24,0	28,9	38,9	46,5
0'06	0,329	1,67	3,49	5,56	10,2	15,1	0,329	1,66	3,44	5,45	9,85	14,6	17,0	21,9	27,0	32,2	42,7	50,8
75,0	0,895	3,01	5,42	7,98	13,4	19,0	668'0	3,00	5,40	7,92	13,2	18,6	21,4	26,9	32,6	38,2	49,7	58,4
50,0	2,14	5,19	8,27	11,4	17,5	23,7	2,17	5,24	8,36	11,5	17,7	24,0	27,1	33,3	39,6	45,8	58,3	67,7
25,0	4,24	8,19	11,9	15,4	22,3	29,0	4,33	8,41	12,3	16,0	23,2	30,3	33,8	40,7	47,6	54,4	6,79	78,0
10,0	6,94	11,6	15,8	19,7	27,1	34,0	7,20	12,2	16,6	20,9	29,0	36,8	40,6	48,1	55,6	62,9	77,4	88,1
5,0	8,94	14,0	18,4	22,5	30,1	37,2	96'6	14,8	19,7	24,2	32,9	41,1	45,1	53,0	8,09	68,4	83,4	94,5
1,0	13,4	19,0	23,8	28,1	36,0	43,2	14,4	20,7	26,3	31,4	41,0	50,0	54,4	63,0	71,3	79,5	92'6	107
	0,65	2,5	4,0	6,5	10	\bigvee	0,65	2,5	4,0	6,5	10	\bigvee	15	\bigvee	25	X	40	\bigvee
			Accept	tance Qua	ality Limit,	tightened	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	(in perce	nt noncon	forming a	nd noncor	oformities	per 100 ii	tems)				

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be accepted (P_a) Percent of lots

9 50 40 30

Table 10-G-2 — Sampling plans for sample size code letter G

	6	æ										T.	Γ
	\ 4	Ac F	←	=			←					> 40	
	6	Re	22	16	27		ი	4	19	25	27	\bigvee	1
	4	Ac	21	=	26		7	7	13	20	26	$ \rangle$	
(su		Ac Re	19	14	24		80	12	17	22	24	40	
iten		Ac	18	6	23		1	9	Ŧ	16	23	4	
1 20	25	Ac Re	15	=	19		7	10	13	17	19	$\overline{}$	
s per		Ac	4	^	48		-	4	- ∞	12	18	/	
nitie	$ \bigvee$	Ac Re	13	유	16		9	6	12	15	16	25	
lforr			12	9	15		0	က	7	F	15		
Joon	15	Re	=	6	13		5	ω	10	12	13		
O		Ac	9	5	12		0	က	9	6	12	\triangle	
g an	\bigvee	Ac Re	6	_	Ξ		4	7	တ	Ξ	Ξ	15	
mim	\triangle		8	4	10		0	7	4	9	9		
outo	9	. Re	8	9	9		4	9	ω	တ	10		
onor		Ac	7	б	<u>ი</u>		0	_	က	Ω.	<u>ი</u>	/	
entr	6,5	S Re	9	5	7		4	5	9	7	7	10	
perc	L	Ac	5	2	9		#		~	4	9		
[i]	4,0	Ac Re	4	က	5		. m	က	4	ß	2	6,5	
ction		-	3	_	4		#	0		-2	4	 	
edsu	2,5	Ac Re	က	က	4		0	က	က	က	4	0,4	
nal ir	<u> </u>		0	0	<u>ო</u>		#	0	<u> </u>		က	<u> </u>	
norn	1,5	Ac Re	7	8	Ø		0	0	0	0	7	2,5	
mit,		-		0			#		0	0			
ty Li	1,0	Ac Re		nse	code	letter	I					1,5	
Juali				· · · · · · · · · · · · · · · · · · ·								+	
) eoc	X	Ac Re		asn	code	letter	7					0, 1	
ptar	<u> </u>											+-	
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,65	Ac Re		nse	code	letter	ш					X	
	Н		-		-					ı		+	
	0,40	Ac Re	0	*			*					0,65	
	<u>ç</u>												
	< 0,40	Ac Re	⇒	\Rightarrow			\Rightarrow					< 0,65	
- 4						\dashv						+	
Cumu- lative	sample	size	32	20	40		∞	16	24	32	40		
L	——	,										_	
Type of samp-	ling	plan	Single	Double					Multiple				
Tyr sa	≝	ਾ	Sir	Dol					Mu				

= use next preceding sample size code letter for which acceptance and rejection numbers are available

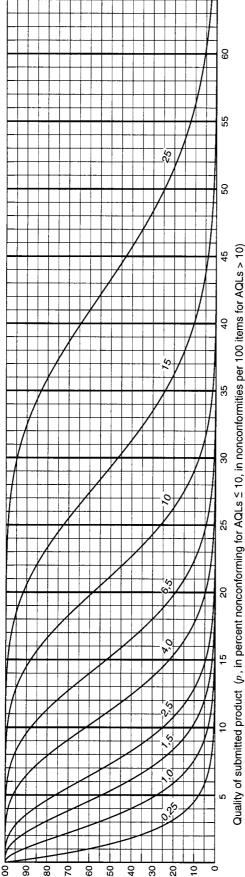
= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter K)

= acceptance not permitted at this sample size


G

© ISO ISO 2859-1:1999(E)

Table 10-H — Tables for sample size code letter H (Individual plans)

Chart H Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-H-1 — Tabulated values for operating characteristic curves for single sampling plans

Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	2,5 4,0 6,5 \times 10 0,25 1,0 1,5 2,5 4,0 6,5 \times 10 \times 15 \times 25	p (in percent nonconforming)	6 1,68 3,69 6,07 7,36 10,1 0,0201 0,297 0,872 1,65 3,57 5,81 7,01 9,54 12,2 15,0 20,7 25,1	5 2,78 5,36 8,22 9,72 12,9 0,103 0,711 1,64 2,73 5,23 7,96 9,39 12,3 15,4 18,5 24,9 29,8	2 3,53 6,43 9,54 11,2 14,5 0,211 1,06 2,20 3,49 6,30 9,31 10,9 14,0 17,3 20,6 27,3 32,5	5 5,10 8,51 12,0 13,8 17,5 0,575 1,92 3,45 5,07 8,44 11,9 13,7 17,2 20,8 24,5 31,8 37,4	7,29 11,3 15,2 17,2 21,2 1,39 3,36 5,35 7,34 11,3 15,3 17,3 21,3 25,3 29,3 37,3 43,3	9 10,0 14,5 18,8 21,0 25,2 2,77 5,39 7,84 10,2 14,8 19,4 21,6 26,0 30,4 34,8 43,5 49,9	3 12,9 17,8 22,4 24,7 29,1 4,61 7,78 10,6 13,4 18,5 23,5 26,0 30,8 35,6 40,3 49,5 56,4	14,8 19,9 24,7 27,0 31,6 5,99 9,49 12,6 15,5 21,0 26,3 28,9 33,9 43,8 53,4 60,5	3 18,7 24,2 29,2 31,6 36,3 9,21 13,3 16,8 20,1 26,2 32,0 34,8 40,3 45,6 50,9 61,2 68,7	4,0 6,5 \times 10 \times 0,40 1,5 2,5 4,0 6,5 \times 10 \times 15 \times 25 \times 25	
Acceptance Qua		onconforming)										9'2	
	1,5 2,5	p (in percent t	0,886 1,68	1,66 2,78	2,22 3,53	3,46 5,10	5,31 7,29	7,69 10,0	10,3 12,9	12,1 14,8	15,8 18,7	2,5 4,0	
	0,25 1,0		0,0201 0,300	0,103 0,715	0,210 1,07	0,574 1,92	1,38 3,33	2,73 5,29	4,50 7,56	5,82 9,14	8,80 12,6	0,40 1,5	
	Pa		0,66	95,0	0'06	75,0	20,0	25,0	10,0	2,0	1,0		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots accepted (P_a)

Table 10-H-2 — Sampling plans for sample size code letter H

Ac Re Ac Re <th< th=""><th>0.05</th><th> </th><th>Accepts</th><th>Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)</th><th>ality Limi</th><th>t, norm</th><th>al insp</th><th>ection </th><th>n (in p</th><th>ercer</th><th>t nor</th><th>confo</th><th></th><th>and</th><th>nonco</th><th>nformi</th><th>lies p</th><th>er 10</th><th>o item</th><th></th><th>25</th><th></th></th<>	0.05	 	Accepts	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ality Limi	t, norm	al insp	ection	n (in p	ercer	t nor	confo		and	nonco	nformi	lies p	er 10	o item		25	
AC He AC He <th< td=""><td>0,40</td><td>\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \</td><td></td><td>_ <</td><td>0,65</td><td>1,0</td><td>- 3</td><td>┪,</td><td>2,5</td><td>4,0</td><td></td><td>6,5</td><td>_\</td><td>\sqrt{c}</td><td>9 5</td><td>$\Delta \cdot$</td><td>-, -</td><td>15</td><td><u> </u></td><td>, </td><td>55</td><td>ر ا ر</td></th<>	0,40	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		_ <	0,65	1,0	- 3	┪,	2,5	4,0		6,5	_\	\sqrt{c}	9 5	$\Delta \cdot$	-, -	15	<u> </u>	, 	55	ر ا ر
1 2 2 3 3 4 5 6 7 8 8 9 10 11 12 13 14 15 18 19 21 22 0 2 0 3 1 3 2 5 3 6 4 7 5 9 6 10 7 11 9 14 11 16 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 # 2 # 2 # 3 # 4 0 4 0 4 0 5 0 6 1 7 1 8 2 9 0 2 0 3 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 0 2 0 3 1 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1 5 2,5 4,0 6,5 7 10 10 11 12 13 15 16 18 19 23 24 26 27	AC He AC He AC H		\rightarrow	<u>e</u> Γ	Ac He	Ac He	8	_	lc Re	AC AC	_	Ac Re		<u>8</u>	Ac Re	₹	-	S Be	¥	\dashv	Ac Re	Ac R
0 2 0 3 1 3 2 5 3 6 4 7 5 9 6 10 7 11 9 14 11 16 # 2 # 2 # 3 # 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 # 2 # 2 # 3 # 4 0 4 0 4 0 5 0 6 1 7 1 8 2 9 0 2 0 3 1 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 17 13 19 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1,5 2,5 4,0 6,5 \times 10 10 11 12 13 15 16 18 19 23 24 26 27	1 0				J	1 2				S			80			12			18			
1 2 3 4 5 6 7 9 10 11 12 13 15 16 18 19 23 24 26 27 # 2 # 3 # 4 0 4 0 5 0 6 1 7 1 8 2 9 0 2 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 13 19 11 11 11 11 11 11 11 12 11 15 16 17 16 2 2 2 2 2 2 2 2 4 4 5 6 11 11 11 11 11 11 12 11 12	esn esn *		nse		nse			 	<u>ო</u>	7			4	7								
# 2 # 3 # 4 0 4 0 5 0 6 1 7 1 8 2 9 0 2 0 3 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 17 13 19 0 2 1 3 2 5 4 7 5 9 6 11 9 12 11 15 12 17 16 22 20 25 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 22 20 25 1 5 2 4 0 6 7 9 10<	epoo epoo		code		epoo	1 2				9						15			23			
# 2 # 3 # 4 0 4 0 5 0 6 1 7 1 8 2 9 0 2 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 13 19 0 2 1 3 2 5 4 7 5 9 6 11 9 12 11 15 12 17 16 22 20 25 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 22 20 25 1 2 2 4 0 6 7 9 10 10 11 1	letter letter		letter		letter																	
0 2 0 3 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 0 2 0 3 1 4 2 6 3 8 4 9 6 10 7 12 8 13 11 17 13 19 0 2 1 3 2 5 4 7 5 9 6 11 9 12 11 15 12 17 16 22 20 25 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1,5 2,5 4,0 6,5 10 10 11 12 13 15 16 18 19 23 24 26 27	٠ ٢		×		7		#			#			0	4		0	φ	7	-	<u> </u>		=
0 2 1 3 2 5 4 7 5 9 6 11 9 12 11 15 12 17 16 22 20 25 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1,5 2,5 4,0 6,5 7 10 10 11 12 13 15 16 18 19 23 24 26 27										-			8			က						
0 2 1 3 2 5 4 7 5 9 6 11 9 12 11 15 12 17 16 22 20 25 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 1,5 2,5 4,0 6,5 \times 10 \times 10 \times 15 \times 25 \times 5									4	N			4						=			
1 2 3 4 4 5 6 7 9 10 11 12 13 15 16 18 19 23 24 26 27 1,5 2,5 4,0 6,5 7 10 15 25 7 >							-			4			9			Ξ			16			_
1,5 2,5 4,0 6,5 \ 10 \ 15 \ 25 \ 25 \ >										9						15			23			
	0,40 0,65	0,65	0,65	+	0,-	1,5	2,5	+	4,0							15	1/ \		25	+	X	> 25

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter L)

= acceptance not permitted at this sample size

© ISO ISO 2859-1:1999(E)

Table 10-J — Tables for sample size code letter J (Individual plans)

Chart J Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

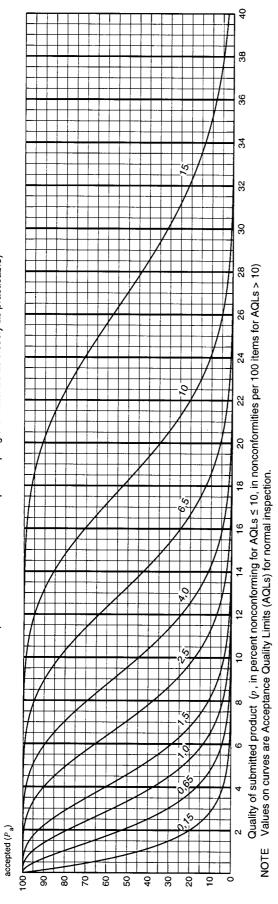


Table 10-J-1 — Tabulated values for operating characteristic curves for single sampling plans

	Ţ	1	ı			Г						١ .	7
	15		15,7	18,6	20,3	23,4	27,1	31,2	35,2	37,8	42,9	X	
	X		12,9	15,6	17,1	19,9	23,3	27,2	30,9	33,4	38,2	15	
	10	:	9,35	11,6	12,9	15,3	18,3	21,7	25,2	27,4	31,8	X	
	X		7,62	9,61	10,8	13,0	15,8	19,0	22,2	24,3	28,5	2	
ms)	6,5	30 items	5,96	7,71	8,78	10,8	13,3	16,3	19,3	2,12	25,2	X	ome)
r 100 ite	X	es per 1	4,38	5,87	6,79	8,55	10,8	13,5	16,2	18,0	21,8	6,5	1001
nities pe	4,0	nformitie	3,63	4,98	5,82	7,45	9,59	12,1	14,7	16,4	20'0	X	mities n
conforn	2,5	p (in nonconformities per 100 items)	2,23	3,27	3,94	5,27	7,09	9,28	11,6	13,1	16,4	4,0	nconfor
and nor	1,5	i) <i>d</i>	1,03	1,71	2,18	3,17	4,59	6,39	8,35	69'6	12,6	2,5	ou pue
forming	1,0		0,545	1,02	1,38	2,16	3,34	4,90	6,65	7,87	10,5	ر. 5,	forming
noncon	0,65		0,186	0,444	0,665	1,20	2,10	3,37	4,86	5,93	8,30	1,0	t nonco
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,15		0,0126	0,0641	0,132	0,360	0,866	1,73	2,88	3,74	5,76	0,25	ity Limit. tightened inspection (in percent nonconforming and nonconformities per 100 items)
ction (in	10		9,76	11,9	13,2	15,5	18,3	21,3	24,2	26,0	29,5	X	ection (i
al inspe	X		7,93	68,6	11,0	13,2	15,8	18,6	21,4	23,2	26,6	10	ned insp
nit, norm	6,5		6,17	7,91	8,95	10,9	13,3	16,0	18,6	20,3	23,6	X	t. tiahter
ality Lin	X	ning)	4,51	6,00	06'9	8,61	10,8	13,3	15,7	17,3	20,2	6,5	
ance Qu	4,0	nconform	3,73	5,07	5,91	7,50	9,55	11,9	14,3	15,8	18,9	X	nce Qua
Accepta	2,5	p (in percent nonconforming)	2,28	3,32	3,99	5,30	2,06	9,14	11,3	12,7	15,6	4,0	Acceptance Qual
	1,5	in per (in	1,04	1,73	2,20	3,18	4,57	6,30	8,16	9,41	12,0	2,5	_
	1,0	F	0,550	1,03	1,39	2,16	3,33	4,84	6,52	2,66	10,1	1,5	
	0,65		0,187	0,446	0,667	1,20	2,09	3,33	4,78	5,79	8,01	1,0	
	0,15		0,0126	0,0641	0,132	0,359	0,863	1,72	2,84	3,68	5,59	0,25	
	P _a		0'66	95,0	0,06	75,0	20,0	25,0	10,0	2,0	1,0	_	

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-J-2 — Sampling plans for sample size code letter J

	т		T	Τ								_	
	> 15	Ac Re	←	←			=					> 15	
		æ	22	16	27		6	4	19	25	27	\/	
	15	Ac Re	21	=	26		8	7	13	20	26	X	
(9)	∇	Re	19	4	24	1	8	12	17	22	24	Í.,	ns)
item	ľÅ	Ac	8	6	23	ı	-	9	=	16	23	15) iter
5		æ	15	Ξ.	19		7	10	13	17	19	1/	100
per	유	Ac Re	4	7	8	١	_	4	œ	42	48	X	be s
ities		æ	13	10	16	\exists	9	თ	12	15	16		nitie
lorm l	$ \Lambda $	Ac	5	9	15	1	0	က	7	Ξ	15	10	forn
Con	2	Re	Ţ	0	13	7	5	- 00	9	12	13		ncor
non	6,5	Ac Re	9	2	12		0	က	9	0	72	IX	d no
and		æ	6	7	Ξ	1	4	7	6	F	=	10	gan
ning	ľŇ	Ac	80	4	9		0	7	4	9	10	6,5	minę
	0	Re Re	- 80	9	10		4	9	<u></u>	6	10		nfor
loon.	4,0	Ac Re	7	₆	6		0		က	2	6	X	onc
t no	5	æ	9	5	7	İ	4	2	9	7	7		nt n
rcer	2,5	Ac.	5	8	9		#	_	8	4	9	4,0	erce
l pe	2	Re-	4	က	Ω.	T	ო	က	4	5	2	<u></u>	(in p
) uo	1,5	Ac Re	က	-	4		#	0	-	Ø	4	2,5	tion
Secti	-	Re	က	က	4	T	N	က	က	က	4	10	bec
lins	1,0	Ac	2	0	က		*	0	0	_	က	1,5	d ins
rma	35	Re	2	7	Ø	T	N	N	7	7	7		tene
t, no	0,65	Ac Re	-	0	_		#	0	0	0	-	1,0	tigh
ality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,40	Ac Re		esn	code	letter	×					0,65	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
Acceptance Qua	X	Ac Re		esn	epoo	letter						0,40	ce Qual
ccepta	0,25	Ac Re		esn	epoo	letter	T						ceptan
•						≖							Ac
	0,15	Ac Re	0	*			*					0,25	
	< 0,15	Ac Re	⇒	⇒			⇒					< 0,25	
Cumu- lative	samble	size	80	50	100		50	40	09	80	100		
Type of samp-	ling	plan	Single	Double					Multiple		<u>, , , , , , , , , , , , , , , , , , , </u>		
							~						

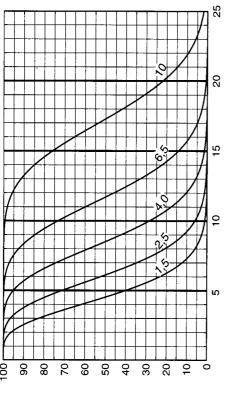
= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

c = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter M)


= acceptance not permitted at this sample size

J

© ISO ISO 2859-1:1999(E)

Table 10-K — Tables for sample size code letter K (Individual plans)

Chart K Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product in percent nonconforming or in nonconformities per 100 items Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-K-1 — Tabulated values for operating characteristic curves for single sampling plans

					_						E	_
10		10,1	11,9	13,0	14,9	17,3	20,0	22,5	24,2	27,5	X	
X		8,28	9,95	10,9	12,7	14,9	17,4	19,8	21,4	24,5	9	
6,5		5,98	7,40	8,24	9,79	11,7	13,9	16,1	17,5	20,4	X	
X	s)	4,88	6,15	6,92	8,34	10,1	12,2	14,2	15,6	18,3	6,5	
4,0	00 item	3,82	4,94	5,62	06'9	8,53	10,4	12,3	13,6	16,1	X	
X	s per 1	2,81	3,76	4,35	5,47	6,94	8,64	10,4	11,5	13,9	4,0	(Si
2,5	formitie	2,32	3,18	3,72	4,76	6,14	7,75	9,42	10,5	12,8	X	100 item
1,5	попсоп	1,43	2,09	2,52	3,38	4,54	5,94	7,42	8,41	10,5	2,5	ties per
1,0	p (in	0,659	1,09	1,40	2,03	2,94	4,09	5,34	6,20	8,04	1,5	conform
9,0		0,349	0,654	0,882	1,38	2,14	3,14	4,26	5,04	6,72	1,0	and non
0,40		0,119			0,769	1,34	2,15	3,11	3,80	5,31	99'0	forming
0,10		,00804	0,0410	0,0843	0,230	0,555	£,	1,84	2,40	3,68	0,15	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
9		10,4	12,2	13,3	15,1	17,3	19,6	21,9	23,3	26,0	X	n percer
X		8,55	10,2	11,1	12,8	14,9	17,1	19,3			10	ection (i
6,5		6,15	7,54	8,37	98'6	11,7	13,7	15,7	17,0	19,4	X	ned insp
X		5,00	6,26	7,01	8,39	10,1	12,0	13,9	15,1	17,5	6,5	iit, tighte
4,0	ming)	3,90	5,01	5,69	6,94	8,51	10,3	12,1	13,2	15,5	X	ality Lin
X	nconfor	2,86	3,81	4,39	5,50	6,92	8,54	10,2	11,3	13,4	4,0	
2,5	ent noi	2,36	3,22	3,76	4,79	6,12	7,66	9,24	10,3	12,3	X	Acceptance
1,5	(in per	1,45	2,11	2,54	3,39	4,52	5,88	7,29	8,23	10,2	2,5	
1,0	D	0,664	1,10	1,40	2,03	2,93	4,05	5,27	60'9	7,81	1,5	
0,65			0,657	0,885	1,38	2,13	3,11	4,20	4,95	6,55	1,0	
0,40					692'0	1,34	2,14	3,08	3,74	5,19	0,65	
0,10		,00804				0,553	1,10	1,83	2,37	3,62	0,15	
Pa		0 0'66	95,0	0,06	75,0	20,0	25,0	10,0	2,0	1,0		
	0,10 0,40 0,65 1,0 1,5 2,5 4,0 6,5 1,0 0,10 0,10 0,40 0,65 1,0 1,5 2,5 6,5	0,10 0,40 0,65 1,0 1,5 2.5 4,0 6,5 1,0 0,10 0,40 0,65 1,0 1,5 2,5 4,0 6,5 1,0 0,10 0,40 0,65 1,0 1,5 2,5 4,0 6,5 1,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	0,10 0,40 0,65 1,0 1,5 2,5 7,0 4,0 7,00804 0,119 0,351 0,664 1,45 2,36 2,8 3,90 5,00 6,15 8,55 10,4 0,00804 0,119 0,351 0,664 1,45 2,36 2,86 3,90 5,00 6,15 8,55 10,4 0,00804 0,119 0,351 0,664 1,45 2,36 2,86 3,90 5,00 6,15 8,55 10,4 0,00804 0,119 0,349 0,659 1,43 2,32 2,81 3,82 4,88 5,98 8,28 1	0,10 0,40 0,65 1,0 1,5 2,5 7, 0,0410 0,285 0,657 1,10 2,11 3,12 3,81 5,01 6,26 7,74 1,01 0,10 0,10 0,10 0,284 0,138 0,658 0,657 1,10 2,11 3,12 3,81 5,01 6,26 7,54 1,02 1,01 0,284 0,138 0,658 0,657 1,10 2,11 3,12 3,12 3,81 5,01 6,26 7,54 1,02 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,10 0,40 0,65 1,0 1,5 1,5 2,5 7,1 0 0,40 0,65 1,0 0,40 0,65 1,0 0,40 0,65 1,0 0,40 0,65 1,0 1,5 2,5 7,1 0 0,40 0,40 0,40 0,40 0,40 0,40 0,40	0,10 0,40 0,65 1,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	0,10 0,40 0,65 1,0 1,5 1,5 2,5 4,0 1,0 6,5 1,0 1,5 1,0 1,5 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1.0 0.40 0.65 1.0 1.5 2.	1,0 0,40 0,65 1,0 1,5 2,5 4,0 4,0 6,5 4,0 4,0 6,5 4,0 4,0 6,5 1,0 1,5 5,5 4,0 4,0 5,5 4,0 4,0 5,0 6,15 4,0 4,0 6,15	1.0 0.40 0.65 1.0 1.5 2.5 4.0 4.0 6.5 4.0 6.5 4.0 0.65 1.0 0.40 0.65 1.0 1.5 2.5 4.0 4.0 6.5 4.0 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 6.5 4.0 6.5	1. 1. 1. 1. 1. 1. 1. 1.	1. 1. 1. 1. 1. 1. 1. 1.

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be accepted (P_a) Percent of lots

8 70 50

9

30 20 9

Table 10-K-2 — Sampling plans for sample size code letter K

		ø	Ĭ	Γ	,		Ī					Ta	
	> 10	Ac Re	<=	←			←					v 10	
	9	Re	22	16	27		6	4	19	25	27		
		Ac	21	=	26		7	_ \	13	20	26		
ms)	\bigvee	% B	19	4	24		ω	12	17	22	24	9	ms)
o ite		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18	6	23		-	9	-	16	23) ite
10,	6,5	Ac Re	15	=	19		7	10	13	17	19		er 10
s pe		-	4		18		-	4	∞	12	18	\triangle	d se
mitie	$ \bigvee$	Ac Re	13	9	16		9	6	12	15	16	6,5	l jį
nforr		\ —	12	9	15		0	ო	7	Ξ	15	9	outo
ouco	0,4	Ac Re	=	6	13		5	ω	10	12	13		ouc
Ju p		-	유	2	12		0	က	9	თ	12	\triangle	n bu
ng ar		. Re	6	_	Ξ		4	7	6	=======================================	=	4,0	ng a
rm in	\triangle	Ac	80	4	10		0	7	4	9	우	1	ormi
outo	2,5	Ac Re	8	9	10		4	9	∞	6	10		confe
Jonor	Ľ	├	2	ო	თ		0	_	3	5	თ	\triangle	nou
entr	1,5	: Re	9	5	7		4	5	9	7	7	2,5	Sent
perc	Ĺ	Ac	5	7	9		#		0	4	9		perc
i.j	0,1	Ac Re	4	_ ო 	5		က	က	4	2	2	1,5	n (in
ction	_	_	3	-	4		#			- α	4		ctio
edsu	0,65	Ac Re	3	က	4		0	က	က	က	4	0,1	nspe
la lir	<u> </u>	_	2	0	က		#	0	0		က		ed i
nor	0,40	Ac Re	2	2	7		0	0	8	2	0	0,65	Jhter
ait,		-	-	0			#			0		19	it, tiç
ality Li	0,25	Ac Re		nse	code	letter	_					0,40	ty Lim
Oue	\bigvee	Re		<u> </u>	— Э	ē						12	Juali
tance	\triangle	Ac Re		nse	code	letter	Σ					0,25	nnce (
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,15	Ac Re		nse	code	letter	7						Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
	0,10	Ac Re	0 1	*			*					0,15	
	< 0,10	Ac Re				1						< 0,15	
		Ac	⇒	⇒ ———			⇒					0 V	
Cumu- lative	sample	size	125	80	160		32	64	96	128	160		
Type of samp-	ling	plan	Single	Double					Multiple				

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

= Rejection number Ac Re = use single sampling plan above (or alternatively use code letter N)

Table 10-L — Tables for sample size code letter L (Individual plans)

Chart L Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

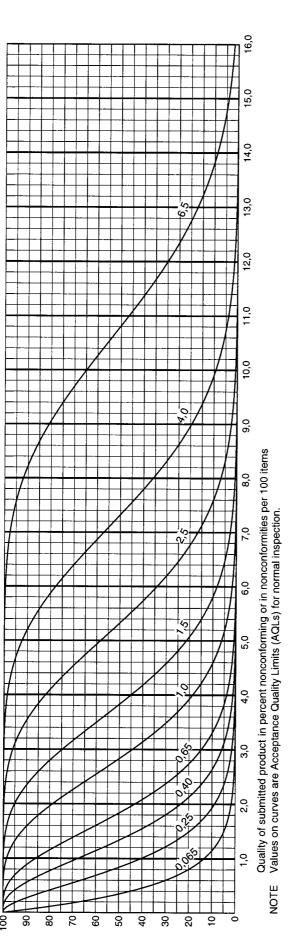


Table 10-L-1 — Tabulated values for operating characteristic curves for single sampling plans

	2		စ္တ	77	2	4	ω,	12,5	T-	_	N.	\/	Τ
	6,5		6,29	7,45	8,12	9,34	10,8		4	15,	17,2	X	
	X		5,17	6,22	6,84	7,95	9,33	10,9	12,4	13,3	15,3	6,5	
	4,0		3,74	4,62	5,15	6,12	7,33	8,70	10,1	10,9	12,7	X	
	X	us)	3,05	3,84	4,32	5,21	6,33	7,61	8,89	9,72	11,4	4,0	
	2,5	100 iter	2,39	3,08	3,51	4,31	5,33	6,51	7,70	8,48	10,1	X	
ls)	X	es per	1,75	2,35	2,72	3,42	4,33	5,40	6,50	7,22	8,70	2,5	ns)
100 item	1,5	formiti	1,45	1,99	2,33	2,98	3,83	4,84	5,89	6,57	8,00	X	100 iter
ties per	1,0	p (in nonconformities per 100 items)	0,893	1,31	1,58	2,11	2,84	3,71	4,64	5,26	6,55	1,5	ifies per
conformi	0,65	p (in	0,412	0,683	0,872	1,27	1,84	2,55	3,34	3,88	5,02	1,0	conform
and non	0,40		0,218	0,409	0,551	0,864	1,34	1,96	2,66	3,15	4,20	0,65	and nor
forming	0,25		0,074	0,178	0,266	0,481	0,839	1,35	1,94	2,37	3,32	0,40	nforming
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,065		0,00503	0,0256	0,0527	0,144	0,347	0,693	1,15	1,50	2,30	0,10	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
n percen	6,5		6,43	7,57	8,22	9,40	10,8	12,4	13,8	14,8	16,6	X	in perce
ection (ii	X		5,28	6,31	6,91	8,00	9,32	10,8	12,2	13,1	14,8	6,5	pection (
mal insp	4,0		3,80	4,68	5,20	6,15	7,32	8,63	9,91	10,7	12,4	X	ened ins
imit, nor	X		3,10	3,89	4,36	5,23	6,32	7,55	8,76	9,54	11,1	4,0	it, tighte
Juality L	2,5	ming)	2,42	3,11	3,54	4,33	5,33	6,46	09'2	8,33	9,82	X	uality Lin
Acceptance (X		1,77	2,37	2,73	3,43	4,33	5,36	6,42	7,10	8,50	2,5	tance Qu
Acce	1,5	cent no	1,47	2,01	2,34	2,99	3,83	4,81	5,82	6,47	7,82	X	Accep
	1,0	p (in percent nonconfo	006'0	1,31	1,58	2,11	2,83	3,69	4,59	5,18	6,42	1,5	
	99'0	d	0,414	989'0	0,875	1,27	1,83	2,54	3,31	3,83	4,93	1,0	
	0,40		0,219	0,410	0,552	0,864	1,33	1,95	2,64	3,11	4,14	9,0	
	0,25		0,074		0,266	0,481	0,838	1,34	1,93	2,35	3,27	0,40	
	90'0		0,00503	0,0256 0,178	0,0527	0,144	0,346	0,691	1,14	1,49	2,28	0,10	
	Pa		0,66	95,0	0,06	75,0	50,0	25,0	10,0	2,0	1,0		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots accepted (Pa)

Table 10-L-2 — Sampling plans for sample size code letter L

Type of Cumu- sampe Colores Outcolor			_											· · · ·
Cumu- sample Co,065 O,065 O,10 Co,065 O,10 O,10 Co,065 O,10			Ac Re	←	⇐			←					> 6,5	-
Cumu- sample Cumu- solution Cumu- solution Cumu- sample		5	æ	22	16	27		6	4	19	25	27	1	
Cumu- sample Cumu- size Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Size Ac Re		6,	Ac	21	=	26		0	7	13	20	26		
Listive Sample Cumurature	(2)		Re	19	4	24		8	12	17	22		2	ns)
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	item	$ \wedge $	Ac	18	6	23		-	9	=	16	23	6,	iter
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	100	0	Re	15	Ξ	19		7	10	13	17	19		1 6
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	per	4,	Ac	4		8		-	4	8	12	48		s pei
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	ities		Re	13	10	16		9	တ	12	15	16	0	nitie
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	form	$ \wedge $	Ac	42	9	15		0	က	7	Ξ	15	4,	form
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	con	5	Re	÷	6	13		5	ω	10	12			ncor
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	l oc	ζ,	Ac	9	5	12		0	က	9	თ	12		ou p
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	and	\bigvee	R	6	7	Ξ		4	7	ი	=		5	gan
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	ming		₽	ω	4	10		0	7	4	9	10	,2,	min
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	nforr	ιū	Re	ω	9	9		4	9	8	ი	10		onfoi
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	Dool		Ac		က	6		0	-	က	5	6		onco
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	t	O,	Re	9	5	7		4	2	9	7	7	5	ent n
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	ercel		Ac	rc.	2	9		#	-	0	4	9	1,	erce
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	in pg	65	Re	4	3	5		တ	3	4	5	5	0	(in p
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	ion (o,	Ac	3		4		#	0	-	0	4	-	tion
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	pect	9	Re	က	က	4		2	3	က	3	4	65	sbec
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	l ins	o,	Ac	2	0	က		#	0	0	-	ო	0,	ai þ
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	orma	25	Re	2	~	8		0	2	N	7	Ø	40	tene
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	it, no	,0,		-	0	_		#	0	0	0	_	o,	, tigh
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\psi	ality Lim	0,15	Ac Re		nse	code	letter	Σ					0,25	ity Limit,
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\tau	e Qu	\bigvee	: Re		se	əpc	tter	z					5	Qual
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\psi	tanc	$/ \setminus$	-			<u>გ</u>	<u>ē</u>						0	ınce
Cumulative sample < 0,065 0,065 size Ac Re Ac Re 200 \$\psi\$ \$\psi	Accep	0,10	Ac Re		nse	code	letter	ᅩ						Accepta
Cumu-lative sample size size 200 200 250 250 250 250 250 250 250 250		0,065	Ac Re	0 1	*			*					0,10	
Cumu-lative sample size size 200 200 250 250 250 250 250 250 250 250		< 0,065	Ac Re	⇒	⇒			⇒					< 0,10	
	Cumu- lative		size	200	125	250		20	100	150	200	250		
1 1 1		ling	plan	Single	Double					Multiple	., .			

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Ac Re

= Rejection number

= use single sampling plan above (or alternatively use code letter P)

Table 10-M — Tables for sample size code letter M (Individual plans)

Chart M Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

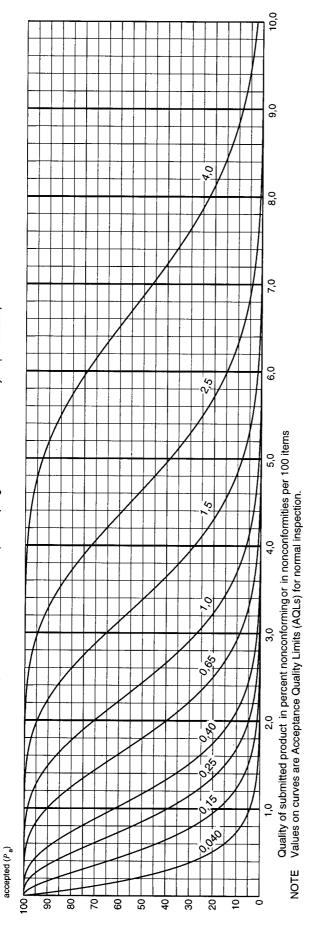


Table 10-M-1 — Tabulated values for operating characteristic curves for single sampling plans

Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	2,5 4,0 0,040 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0	p (in nonconformities per 100 items)	2,40 3,33 4,05 0,00319 0,047 0,138 0,261 0,567 0,923 1,11 1,51 1,94 2,37 3,28 3,99	2,96 3,99 4,78 0,0163 0,113 0,260 0,434 0,830 1,26 1,49 1,96 2,44 2,94 3,95 4,73	3,29 4,37 5,20 0,0334 0,169 0,350 0,554 1,00 1,48 1,72 2,23 2,74 3,27 4,34 5,16	3,90 5,07 5,95 0,0913 0,305 0,548 0,805 1,34 1,89 2,17 2,74 3,31 3,89 5,05 5,93	4,65 5,92 6,87 0,220 0,533 0,849 1,17 1,80 2,43 2,75 3,39 4,02 4,66 5,93 6,88	5,49 6,86 7,87 0,440 0,855 1,24 1,62 2,36 3,07 3,43 4,13 4,83 5,52 6,90 7,92	6,33 7,77 8,84 0,731 1,23 1,69 2,12 2,94 3,74 4,13 4,89 5,64 6,39 7,86 8,95	6,86 8,36 9,46 0,951 1,51 2,00 2,46 3,34 4,17 4,58 5,38 6,17 6,95 8,47 9,60	7,93 9,51 10,7 1,46 2,11 2,67 3,19 4,16 5,08 5,52 6,40 7,24 8,08 9,71 10,9	0.40	
conformities	⊢	on ni) q	⊢		-	Ľ			┝			0,65 1,	
g and non	⊢					_			Ľ	2,00		0,40	
conformin	\vdash					_			_			35 0,25	
ercent non			_			-						0,06	
tion (in p€	4,					_). 0,1	
nal inspec	2,5								_			Ž	
Limit, norr	X		1,95	2,46	2,76	3,32	4,02	4,81	5,59	6,10	7,12	2,5	
e Quality	1,5	orming)	1,53	1,97	2,24	2,74	3,38	4,11	4,85	5,33	6,29	\bigvee	
Acceptance	X	p (in percent nonconfo	1,12	1,50	1,73	2,17	2,75	3,41	4,09	4,54	5,44	1,5	
AC	1,0	ercent	0,929	3 1,27	1,48	1,89	2,43	3,06	3,71	4,13	5,01	X	
	0,65	p (in p	0,570	5 0,833	5 1,00	5 1,34	3 1,80	2,35	2,92	3,31	5 4,11	5 1,0	
	5 0,40		9 0,262	0,435	0,555	9 0,805	1,16	1,62	3 2,11	9 2,44	3,15	0,65	
	5 0,25		0,139	3 0,260	0,350	0,549	0,848	3 1,24	3 1,68	0 1,99	9 2,64	5 0,40	
	0,15		19 0,047	3 0,113	4 0,169	3 0,305	0,532	9 0,853	1,23	1,50	2,09	0,25	
	0,040		0,00319	0,0163	0,0334	0,0913	0,220	0,439	0,728	0,947	1,45	0,065	
	Pa		066	95,0	90,0	75,0	50,0	25,0	10,0	5,0	1,0	_	_

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-M-2 — Sampling plans for sample size code letter M

Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	5 1,0 7 1,5 2,5 7 4,0 < 4,0	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	6 7 8 8 9 10 11 12 13 14 15 18 19 21 22	5 3 6 4 7 5 9 6 10 7 11 9 14 11 16	7 9 10 11 12 13 15 16 18 19 23 24 26 27		4 0 4 0 5 0 6 1 7 1 8 2 9 1	5 1 6 2 7 3 8 3 9 4 10 6 12 7 14	6 3 8 4 9 6 10 7 12 8 13 11 17 13 19	7 5 9 6 11 9 12 11 15 12 17 16 22 20 25	7 9 10 11 12 13 15 16 18 19 23 24 26 27	1,5	
ent nonconf	0,65 1,0	Ac Re Ac R		က	o		0	-	က	2	თ	1,0	
ion (in perce	0,40	Ac Re	3 4 5	1 3 2	4 5 6		# ®	0 3	1 4 2	2 5 4	4 5 6	0,65	
nal inspect	0,25	e Ac Re	2 2 3	2 0 3	2 8 4		2 # 5	2 0 3	2 0 3	2 1 3	2 3 4	0,40	
Limit, norn	10 0,15	Re Ac Re	+	0	-	je	#	0	0	0	-	5 0,25	
e Quality	0,10	Ac Re Ac Re		esn esn	epoo epoo	letter letter	Z 					0,10 0,15	
Acceptanc	0,065	Ac Re Ad		n esn	epoo	letter le						0	
	0,040	Ac Re	0 1	*			*					0,065	
	< 0,040	Ac Re	⇒	⇒.			⇒					< 0,065	
Cumu- lative	sample	size	315	200	400		80	160	240	320	400		
Type of samp-	ling	plan	Single	Double					Multiple				

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

= Rejection number Ac Re

= use single sampling plan above (or alternatively use code letter Q)

Table 10-N — Tables for sample size code letter N (Individual plans)

Chart N Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

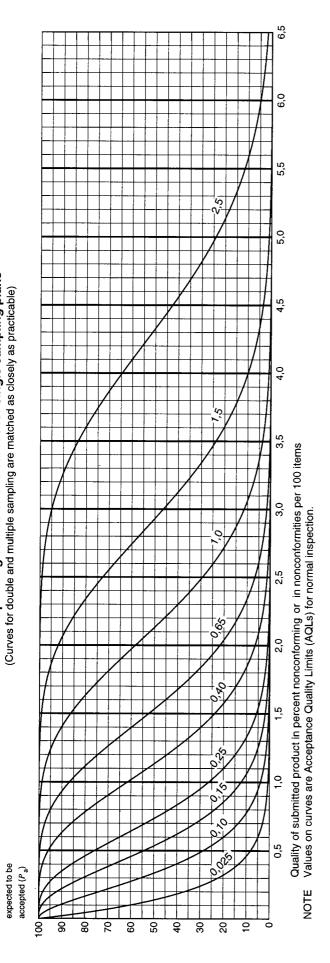


Table 10-N-1 — Tabulated values for operating characteristic curves for single sampling plans

	2,5		51	2,98	3,25	3,74	4,33	4,99	5,64	6,05	87	\bigvee	1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7 2,51			-			├		6,87	Λ	
•	X		2,07	2,49	2,73	3,18	3,73	4,35	4,95	5,34	6,12	2,5	
	1,5		1,50	1,85	2,06	2,45	2,93	3,48	4,03	4,38	5,09	X	
	X) (sı	1,22	1,54	1,73	2,08	2,53	3,04	3,56	3,89	4,56	1,5	
	1,0	100 iten	0,954	1,23	1,40	1,72	2,13	2,60	3,08	3,39	4,03	X	
(S)	X	es per	0,701	0,939	1,09	1,37	1,73	2,16	2,60	2,89	3,48	1,0	(Su
100 item	0,65	p (in nonconformities per 100 items)	0,581	0,796	0,931	1,19	1,53	1,94	2,35	2,63	3,20	X	- 100 iter
ties per	0,40	noncoi	0,357	0,523	0,630	0,844	1,13	1,48	1,85	2,10	2,62	0,65	ities per
conformi	0,25	p (in	0,165	0,273	0,349	0,507	0,734	1,02	1,34	1,55	2,01	0,40	conform
and non	0,15		0,087	0,164	0,220	0,345	0,535	0,784	1,06	1,26	1,68	0,25	and nor
forming	0,10		0,03	0,071	0,106	0,192	0,336	0,539	0,778	0,949	1,33	0,15	forming
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,025		0,00201	0,0103	0,0211	0,0575	0,139	0,277	0,461	0,599	0,921	0,040	uality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
n percen	2,5		2,54	3,00	3,26	3,75	4,33	4,97	5,60	5,99	6,78	X	in percei
ection (ir	X		2,09	2,50	2,75	3,19	3,73	4,33	4,92	5,29	6,04	2,5	ection (
mal insp	1,5		1,51	1,86	2,07	2,45	2,93	3,47	4,00	4,34	5,03	X	ened ins
imit, nor	X		1,23	1,54	1,74	2,09	2,53	3,03	3,54	3,86	4,51	1,5	nit, tighte
Juality L	1,0	ming)	0,959	1,24	1,41	1,73	2,13	2,60	3,06	3,37	3,99	X	uality Lin
Acceptance (X		0,705	0,942	1,09	1,37	1,73	2,15	2,59	2,87	3,45	1,0	Acceptance Q
Acce	99'0	cent no	0,584	0,799	0,933	1,19	1,53	1,93	2,34	2,61	3,17	X	Accep
	0,40	p (in percent nonconfo	0,358	0,524	0,632	0,845	1,13	1,48	1,85	2,09	2,60	0,65	
	0,25	d	0,165	0,274	0,349	0,507	0,734	1,02	1,33	1,54	1,99	0,40	
	0,15		0,087	0,164	0,221	0,346	0,534	0,783	1,06	1,25	1,67	0,25	
	0,10		0,03	0,071	0,106	0,192	0,335	0,538	9///0	0,945	1,32	0,15	
	0,025		0,00201	0,0103	0,0211	0,0575	0,139	0,277	0,459	765'0	0,917	0,040	
	σ_{a}		0,66	0,36	0'06	75,0	20,0	25,0	10,0	2,0	1,0		_
					!								

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots

Table 10-N-2 — Sampling plans for sample size code letter N

	> 2,5		<=	1 _								2,5	
		Ac Re		_			₩					^	
	τί	Ac Re	22	16	27		6	14	19	25	27		
	2,	Ac	21	=	26		2	7	5	20	26	\triangle	
l (su	$ \bigvee$	Re	19	4	24		80	12	17	22	24	2,5	(sua
ite	\triangle	Ac	18	6	23		-	9	Ξ	16	23	2	0 ite
9 -	1,5	Ac Re	15	=	19		7	10	5	17	19		er 10
s per			14	_	18		-	4	80	12	18	\triangle	ed se
nitie	V	Ac Re	13	유	16		9	თ	12	15	16	1,5	mitie
lorn	\triangle		12	9	15		0	က	7	7	15	_	nfor
ncor	1,0	Ac Re	=	0	13		5	ω	9	12	13	V	oouc
9 p		Ac	10	5	12		0	ო	9	თ	12		ou pu
g and	$ \bigvee$	Re	6	_ ^	Ξ		4	7	6	Ξ	=	1,0	ıg ar
min j	\triangle	Ac		4	9		0	Ø	4	9	10	_	Ē
nfor	0,65	Ac Re	ω	9	10		4	9	œ	6	9		onfo
ouc	0,	Ac	7	က	6		0	-	ო	5	ი	\triangle	ono
l z	0,40	Ac Re	9	വ	7		4	5	9	7	7	0,65	ent r
erce	0,	Ac	വ	7	9		#	-	7	4	9	o,)erc
in pe	0,25	Re	4	က	2		ဗ	ຕ ຸ	4	5	5	0,40	(in p
ion (0,	Ac	ဗ	-	4		#	0	_	7	4	o	tion
pect	0,15	Re	က	ო	4		8	က	က	က	4	0,25	sbec
l ins	0,	Ac	7	0	က		#	0	0		က	o'	ğ
rma	0,10	Ac Re	7	0	0		0	0	2	2	Ø	0,15	itene
it, no	0,	Ac	-	0	-		#	0	0	0	-	0	tigh
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,065	Ac Re		nse	code	letter	۵.					0,10	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
ice Qua	X	Ac Re		nse	code	letter	Ø					0,065	e Quali
ptan	/ \												tanc
Acce	0,040	Ac Re		nse	code	letter	Σ		-			X	Accep
	0,025	Ac Re	0	*			*					0,040	
	< 0,025	Ac Re	⇒	⇒			⇒					< 0,040	
		٨										لٽا	
Cumu- lative	sample	size	500	315	630		125	250	375	200	625		
Type of samp-	ling	plan	Single	Double					Multiple				

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter R)

Table 10-P — Tables for sample size code letter P (Individual plans)

Chart P Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

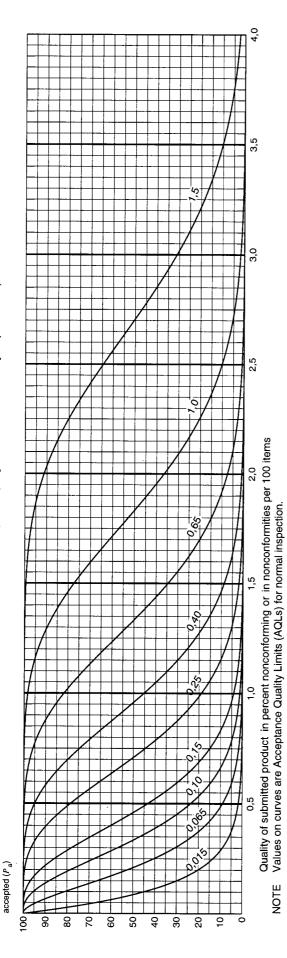


Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans

	7,5		1,57	1,86	2,03	2,34	2,71	3,12	3,52	3,78	4,29	X	
	X	-	1,29	1,56	1,71	1,99	2,33	2,72	3,09	3,34	3,82	1,5	
	1,0		0,935	1,16	1,29	1,53	1,83	2,17	2,52	2,74	3,18	X	
	X	(%)	0,762	0,961	1,08	1,30	1,58	1,90	2,22	2,43	2,85	0,	
	0,65	30 items	965,0	0,771	0,878	1,08	1,33	1,63	1,93	2,12	2,52	X	
[@	X	s per 1(0,438	0,587	6/9'0	0,855	1,08	1,35	1,62	1,80	2,18	0,65	(SI
100 item	0,40	p (in nonconformities per 100 items)	0,363	0,498	0,582	0,745	0,959	1,21	1,47	1,64	2,00	X	100 item
ties per	0,25	noncon	0,223	0,327	0,394	0,527	0,709	0,928	1,16	1,31	1,64	0,40	ities per
onformi	0,15	u) d	0,103	0,171	0,218	0,317	0,459	0,639	0,835	696'0	1,26	0,25	conform
and non	0,10		0,0545	0,102	0,138	0,216	0,334	0,490	0,665	0,787	1,05	0,15	and non
orming	0,065		0,0186	0,0444	0,0665	0,120	0,210	0,337	0,486	0,593	0,830	0,10	forming
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,015		0,00126	0,00641	0,0132	0,0360	0,0866	0,173	0,288	0,374	0,576	0,025	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
percen	1,5		1,58	1,87	2,04	2,34	2,71	3,11	3,51	3,76	4,26	X	in percel
ection (ir	X		1,30	1,56	1,71	1,99	2,33	2,71	3,08	3,32	3,79	1,5	ection (
nal insp	1,0		938	1,16	1,29	1,53	1,83	2,17	2,51	2,72	3,16	X	ned insp
imit, non	X		0,765	0,964	1,08	1,30	1,58	1,90	2,21	2,42	2,83	1,0	nit, tighte
Juality L	0,65	orming)	965'0	0,773	0,879	1,08	1,33	1,62	1,92	2,11	2,50	X	ality Lin
Acceptance (X	nconfor	0,440	0,588	0,680	0,855	1,08	1,35	1,62	1,80	2,16	0,65	ance O
Acce	0,40	p (in percent nonconfo	0,364	0,499	0,583	0,745	0,958	1,21	1,47	1,64	1,99	X	Accept
	0,25	(in per	0,224	0,327	0,394	0,528	0,708	0,926	1,16	1,31	1,63	0,40	
	0,15	d	0,103	0,171	0,218	0,317	0,459	0,638	0,833	996'0	1,25	0,25	
	0,10		0,0546	0,102	0,138	0,216	0,334 0,459	0,489	0,664	0,785 0,966	1,05	0,15	
	0,065		0,0186	0,0444	0,0665	0,120	0,210	0,336	0,485	0,592	0,827	0,10	
	0,015		0,00126 0,0186 0,0546 0,103	0,00641 0,0444 0,102 0,171	0,0132	0,0360	0,0866	0,173	0,287	0,374	0,574	0,025	
	Pa		0,66	95,0	0'06	75,0	90,0	25,0	10,0	5,0	1,0		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-P-2 — Sampling plans for sample size code letter P

	т —	т.					Γ					_	
	> 1,5	Ac Re	←	←			⇐					> 1,5	
	5	Re	22	16	27		6	14	19	25	27	\/	
	1,5	Ac Re	21	=	26		8	7	13	20	26	X	
(SI	∇	Ac Re	19	4-	24		8	12	17	22	24	5	ns)
item	$ \wedge $	PS PS	8	6	23		-	9	Ξ	16	23	1,5) iter
100	6	Re	15	+	19		2	10	13	17	19		9
per	1,0	Ac Re	4	7	8		-	4	ω	12	18		s per
ities	∇	Ac Re	13	10	16		9	6	12	15	16	0	nitie
form	$ \wedge $	Ac	42	9	15		0	ဗ	7	=======================================	15	1,0	Jorn
Con	0,65	Ac Re	=	6	13		5	æ	10	12	13		ncor
nor	ó	Ac	10	5	12		0	ო	9	6	12	$ \Lambda $	ou p
and	\bigvee	Re	6	7	1		4	7	თ	+	F	35	gan
l ming	\triangle	Ac	8	4	9		0	8	4	9	10	0,65	min
nforr	0,40	Ac Re	ω	9	10		4	9	8	6	10		onfor
lo Di	ò	Ac	7	ო	6		0	_	က	ည	6		ouc
t	0,25	Ac Re	9	2	7		4	2	9	_	7	2	ant n
ercel	o,	Ac	2	0	9		#		0	4	9	0,40	erce
i Pe	0,15	Ac Re	4	က	S		ო	က	. 4	5	5	55	(in p
jon (o,	Ac	3	-	4		#	0	-	Ø	4	0,25	tion
pect	0,10	Ac Re	3	က	4		2	က	3	ဗ	4	0,15	sbec
l ins	o,	Ac	2	0	က		#	0	0	_	က	0,	<u>:</u>
lma	0,065	Ac Re	0	N	8		2	2	2	2	2	0,10	tene
it, no	0,0	Ac	-	0	-		#	0	0	0		0,	tigh
uality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,040	Ac Re		nse	epoo	letter	Ø					0,065	Limit
Juali	\ /												ality
ance C	X	Ac Re		nse	code	letter	<u>α</u>					0,040	nce Qu
Acceptance Qu	0,025	Ac Re		nse	code	letter	z					X	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
	_		-									5.	⋖
	0,015	Ac Re	0	*			*					0,025	
	10	Re	-		•				-			_	
	0,010	Ac Re	⇒	⇒			⇒					< 0,025	
Cumu- lative	sample	size	800	200	1 000		200	400	009	800	1 000		
	Š					_		•					
Type of samp-	ling	plan	Single	Double					Multiple				
												Ц	

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number
Re = Rejection number

use single sampling plan above

Table 10-Q — Tables for sample size code letter Q (Individual plans)

Chart Q Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

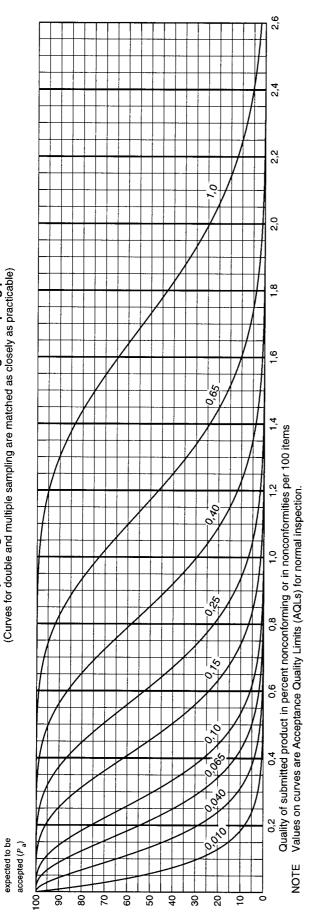


Table 10-Q-1 — Tabulated values for operating characteristic curves for single sampling plans

,						Accept	tance Qu	nality Lin	it, norm	al inspec	tion (in	percent	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	rming an	nd noncor	nformities	per 100) items)						
$\sigma_{\rm a}$	0,010	0,040	0,065	0,10	0,15	0,25	X	0,40	X	0,65	\forall	<u>-</u>	0,010	0,040	0,065	0,10	0,15	0,25	X	0,40	X	0,65	X	1,0
) d	p (in percent noncon	ent nonc	conform	forming)								p (in no	nconfo	rmities	$\it p$ (in nonconformities per 100 items)	items)				
0'66	0,0008	0,0119 0,0349 0,0659 0,143 0,233	0,0349	0,0659	0,143	0,233	0,281	0,383	0,489	0,600	0,830	1,01	8000'0	0,0119	0,0349	0,0659	0,143	0,232	0,281	0,382	0,488 (0,598	0,828	1,01
95,0	0,0041	0,0284	0,0284 0,0654	0,109	0,209	0,319	9/8/0	0,494	0,616	0,741 0	866'0	1,19	0,00410	0,0284	0,0654	0,109	0,209	0,318	0,376	0,494	0,615	0,740	0,995	1,19
0'06	-	0,00843 0,0426	0,0882	0,140	0,252	0,373	0,435	0,562	0,693	0,825	1,10	1,30	0,00843	0,0425	0,0882	0,140	0,252	0,372	0,435	0,562 د	0,692	0,824	. 60,	1,30
75,0	0,0230	0,0769	0,138	0,203	0,338	0,477	0,547	069'0	0,834	0,980	1,27	1,50	0,0230	69/0'0	0,138	0,203	0,338	0,476	0,547	0,69,0	0,834	0,979	1,27	1,49
20,0	0,0554	0,134	0,214	0,294	0,453	0,613	0,693	0,853	1,01	1,17	1,49	1,73	0,0555	0,134	0,214	0,294	0,454	0,614	0,694	0,853	1,01	1,17	1,49	1,73
25,0	0,111	0,215	0,313	0,408	0,593	0,774	0,863	1,04	1,22	1,39	1,74	1,99	0,111	0,215	0,314	0,409	0,594	0,775	0,864	1,04	1,22	1,39	1,74	2,00
10,0	0,184	0,311	0,425	0,534 0,741		0,940	1,04	1,23	1,42	1,61	1,98	2,25	0,184	0,311	0,426	0,534	0,742	0,942	1,04	1,23	1,42	1,61	86,1	2,25
5,0	0,239	0,379	0,503	0,619	0,839	1,05	1,15	1,35	1,55	1,75	2,13	2,41	0,240	0,380	0,504	0,620	0,841	1,05	1,15	1,36	1,56	1,75	2,14	2,42
1,0	0,368	0,530	0,671	0,801	1,05	1,28	1,39	1,61	1,82	2,03	2,43	2,73	0,368	0,531	0,672	0,804	1,05	1,28	1,39	1,61	1,83	2,04	2,45	2,75
	0,015	0,065	0,10	0,15	0,25	X	0,40	X	0,65	X	1,0	X	0,015	0,065	0,10	0,15	0,25	X	0,40	X	0,65	X) 0,	X
						Acceptance		llity Limit	, tighten	ed inspe	ction (in	n percen	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	orming a	nd nonce	nformitie	s per 10	0 items)						

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots

Table 10-Q-2 — Sampling plans for sample size code letter Q

	v 1,0	Ac Re	←	←			←					> 1,0	
	1,0	Re	22	16	27		6	4	19	25	27	∇	
		Å	21	=	26		2	7	13	20	26	Λ	
	$ \bigvee$	æ	19	4	24		8	12	17	22	24	1,0	(8)
tems		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-8	6	23		-	9	1	16	23		item
100	0,65	Ac Re	15	=	19		7	10	13	17	19		100
ber		¥	4	7	18		-	4	ω	12	18	$/\!\!\!/$	ber ;
ities	$ \rangle$. Re	13	9	16		9	6	12	15	16	0,65	nities
form		Ac	12	9	15		0	ო	7	F	15	0	nforr
l con	0,40	Ac Re	=	6	13		5	∞	10	12	13		ouco
ou p		-	6	5	12		0	က	9	<u>ი</u>	12	$/ \setminus$	ou pc
gan	X	Ac Re	6	7	1		4	7	თ	=	=======================================	0,40	ng ar
rmin	/\		- ∞	4	9		0		4	9		10	ormi
confo	0,25	Ac Re	ω .	9	10		4	9	ω	6	10	X	conf
nou	-	├		m	<u>ნ</u>				က	r.	<u></u>	// \	חסח
Sent	0,15	Ac Re	9	rc.	7		4	Ŋ	9	_	7	0,25	cent
per			4 5	2	9		#		Ω	4	φ	1	n pe
l (ii	0,10	Ac Re	3 7	8	4 5		e #	.0	4	2	5	0,15	on (i
ectic			3		4				<u></u>	<u>. ი</u>	4	+	pecti
insp	0,065	Ac Re	2	0	თ		#	0	0	·-	, ი	0,10	d ins
orma	⊢	Re	7	7	8	\dashv	0	- 2	8	2	<u>ر</u>	5	tene
it, no	0,040	Ac F	-	0	_		#	0	0	0	_	0,065	, tigh
ity Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	25	Re		se		اب ق						\$	Limit
ualit	0,025	Ac		ns	code	letter	Œ					0,040	ality
O	\bigvee	Ac Re		asn	epoo	letter	S					25	n O e
ptan	\triangle	Ac			<u>ც</u>	<u>e</u>	<u> </u>					0,025	tanc
Acceptance Qual	0,015	Ac Re		nse	code	letter	a						Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
		_			<u> </u>	<u>Ψ</u>					·	/	
	0,010	Ac Re	_	*			*					0,015	
	\ \		0									+	
	X	Ac Re		nse	code	letter	Œ					0,010	
و ذ	Se Se		0							<u> </u>	2		
Cumu- lative	sample	size	1250	800	1 600		315	630	945	1 260	1 575		
<u> </u>			<u></u>	<u> </u>		\dashv	-		<u>e</u>			1	
Type of samp-	ling	plan	Single	Double					Multiple				
			-										

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above

Table 10-R — Tables for sample size code letter R (Individual plans)

Chart R Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

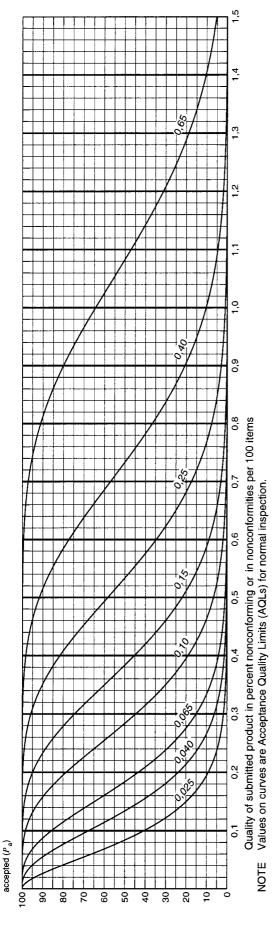


Table 10-R-1 — Tabulated values for operating characteristic curves for single sampling plans

						Acceptance		y Limit, n	ormal ins	pection (in percer	Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	orming ar	oouou pu	nformitie	3 per 100	items)					
Pa	0,025	0,040	0,065	0,10	0,15	X	0,25	X	0,40	X	0,65	0,025	0,040	0,065	0,10	0,15	X	0,25	X	0,40	X	0,65
				i) d	in perce	p (in percent nonconforming)	nformin	(B							p (in no	nconfor	mities po	p (in nonconformities per 100 items)	(sme)			
0'66	0,00743	0,0218	0,0218 0,0412	0,0893	0,145	0,176	0,239	0,305	0,374	0,518	0,630	0,00743	0,0218	0,0412	0,0893	0,145	0,175	0,239	0,305	0,374	0,517	0,629
95,0	0,0178	0,0409	0,0409 0,0683	0,131	0,199	0,235	60£'0	0,385	0,463	0,623	0,746	0,0178	0,0409 0,0683	0,0683	0,131	0,199	0,235	0,308	0,384	0,462	0,622	0,745
0,06	0,0266	0,0551	0,0873	0,158	0,233	0,272	0,351	0,433	0,515	0,684	0,813	0,0266	0,0551	0,0872	0,158	0,233	0,272	0,351	0,432	0,515	0,684	0,812
75,0	0,0481	0,0864	0,127	0,211	0,298	0,342	0,431	0,521	0,612	962'0	0,935	0,0481	0,0864	0,127	0,211	0,298	0,342	0,431	0,521	0,612	0,795	0,934
50,0	0,0839	0,134	0,184	0,283	0,383	0,433	0,533	0,633	0,733	0,933	1,08	0,0839	0,134	0,184	0,284	0,383	0,433	0,533	0,633	0,733	0,933	1,08
25,0	0,135	0,196	0,255	0,371	0,484	0,540	0,650	0,760	0,869	1,09	1,25	0,135	0,196	0,255	0,371	0,484	0,540	0,651	0,761	0,870	1,09	1,25
10,0	0,194	0,266	0,334	0,463	0,588	0,649	692'0	0,888	1,00	1,24	1,41	0,194	0,266	0,334	0,464	0,589	0,650	0,770	0,889	1,01	1,24	1,41
5,0	0,237	0,314	0,387	0,525	0,656	0,721	0,847	0,970	1,09	1,33	1,51	0,237	0,315	0,388	0,526	0,657	0,722	0,848	0,972	1,09	1,33	15,
1,0	0,331	0,420	0,501	0,654	0,798	0,868	1,00	1,14	1,27	1,52	1,71	0,332	0,420	0,502	0,655	0,800	0,870	1,01	1,14	1,27	1,53	1,72
	0,040	0,065	0,10	0,15	\bigvee	0,25	X	0,40	X	0,65	X	0,040	0,065	0,10	0,15	X	0,25	X	0,40	\bigvee	0,65	X
					¥	Acceptance (Limit, tig	htened in	spection	(in perce	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	forming a	nou put	onformitie	s per 10	0 items)					

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

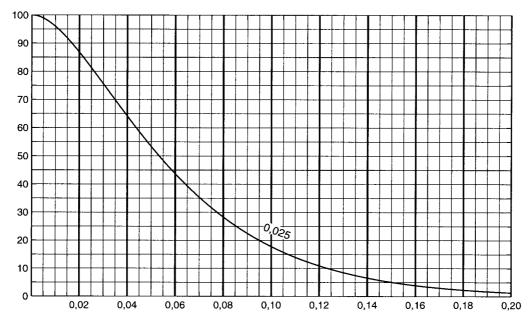
Percent of lots expected to be

Table 10-R-2 — Sampling plans for sample size code letter R

Size AC Reptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Size AC Reptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Size AC Re	> 0,65	> 0,65								(=	Ac Re	> 0,65	
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Ac Re Ac	7		27	25	19	4	ი		27	16	22	Re	35	
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	√ _@		26	20	13	7	N		26	1	21	Ac	0,0	
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	65 item	65	24	22	17	12	80		24	14	19	Re	\bigvee	ems
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	9 6	0,0	23	16	7	9	-		23	6	18	Ac	\triangle	00 it
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	√ ĕ		19	17	13	10	7		19	=	15	Re	40	per 1
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code		\triangle	18		ω	4	-			7			О,	ties
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	of Included	40		15	12	0	9			5			\bigvee	formi
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code		0				ო	0			9				Con
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	√ g /	\mathbb{N}		12	10	ω	ß			6			,25	d nor
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	Z Z	A								<u> </u>			0	gan
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	ormii	,25		=	თ	7	4				6			min
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	o ut	0						_					/\	onfo
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	\ <u> </u>	X	9	თ	∞	9	4		9	9),15	Jonor
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	Gent	$/ \setminus$											\vdash	ent r
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	5,15 per	,15	7	7	9	Ŋ	4		7	57	9		0,10	perc
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code		L						.					<u> </u>	l ë
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	or, c	0,10	UΣ		4					()			,065	ctio
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	insp	\vdash											_	usbe
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	oned	990,		(1)									,040	mali
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	tighte	\vdash											_	nor,
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	mit,	,040	.,						.,				,025	ja j
Acceptance Ac Re Ac Re Ac Re Ac Code Code Code Code Code Code Code Code	ity Li	+-	-				#		_					ality
Acceptanc Ac Re Ac Re Ac Re	J,UZE	3,025					တ	letter	code	nse			X	
Ac Re Ac Re 0 1	nce (2	ance
Ac Re Ac Re 0 010 * use code code	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	X					۵.	lette	эроэ	esn		Ac	0,01	Accept
AC Be , , , 0,010	G10,	,015					Ø	etter	ode	nse			,010	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	+-						_ 					0	
ative ample size size 250 000 000 000 000 500 500 500 500 500	0,0	0,010					*			*	0		X	
			2 500	2 000	1 500	1 000	200		2 500	1 250	2 000	size	sample	Cumu- lative
0 - 22			CV .										ŏ	
Type of sampling plan plan Single Multiple					Multiple					Double	Single	plan	ling	Type of samp-

= Acceptance number Ac Re

= Rejection number


= use single sampling plan above

ISO 2859-1:1999(E) © ISO

Table 10-S — Tables for sample size code letter S (Individual plans)

Percent of lots expected to be accepted (P_a)

Chart S Operating characteristic curves for single sampling plan (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product in percent nonconforming or in nonconformities per 100 items NOTE Value on curve are Acceptance Quality Limit (AQL) for tightened inspection.

Table 10-S-1 — Tabulated values for operating characteristic curve for single sampling plan

	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)									
P_{a}	p (in percent nonconforming)	p (in nonconformities per 100 items)								
99,0	0,00472	0,00472								
95,0	0,0113	0,0113								
90,0	0,0169	0,0169								
75,0	0,0305	0,0305								
50,0	0,0533	0,0533								
25,0	0,0855	0,0855								
10,0	0,123	0,123								
5,0	0,151	0,151								
1,0	0,211	0,211								
	0,025	0,025								
	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)									

Ac = Acceptance number Re = Rejection number

Table 10-S-2 — Sampling plans for sample size code letter S

Type of sampling plan	Cumulative sample size	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)						
		Ac	Re					
Single	3 150	1	2					
Double	2 000	0	2					
	4 000	1	2					
	800	#	2					
Multiple	1 600	0	2					
	2 400	0	2					
	3 200	0	2					
	4000	1	2					
		0,025						
		Acceptance Quality Limit, tightener inspection (in percent nonconformir and nonconformities per 100 items						

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

S

^{# =} acceptance not permitted at this sample size

Table 11-A — Single sampling plans for normal inspection (Auxiliary master table)

	8	æ	3	45	<u></u>	T												
	- 0	Ac	30	4	\leftarrow													
	650	c Re	1 22	0 31	4 45	₹												
	⊢—	e Ac	15 21	22 30	31 44	<u>l</u> `			! 			-			<u> </u>			\vdash
	9	Ac Re	4	21 2	30	44 45	\Leftarrow		<u> </u> 			i			<u> </u>			
	250	Ac Re	=	15	22	31	44 45		l			l I			<u> </u>			
	ř		2	4	2	8	4	7	<u> </u>			<u> </u>			İ			
(no	150	Ac Re	8 2	10 11	14 15	21 22	30 31	\leftarrow	<u> </u>			<u> </u>						┾╽
Decti	0		9	-8	=	15 2	22		<u> </u>			i 						\vdash
l inst	100	Ac Re	2	7	9	4	2	\	i			i			i			
l ma	65	Ac Re	3 4	5	7 8	10 11	14 15	21 22	⟨			<u> </u>						
s (nc	<u> </u>	Re	ю п	4	9	8 -	=	15 2	22			!			<u>1</u> !			1
item	64	Ac	7	ო	જ	7	2	4	21	\		<u> </u>						
8	25	Ac Re	~	<u>ო</u>	4	9	ω.	0 11	4 15	1 22	\leftarrow	<u>i</u>			<u>i </u>			⊢ ∣
per	<u></u>		-	2	8	5	9	8 10	11 4	15 21	77				<u> </u> 			!
ities	15	Ac Re	1/2	-	Ø	8	Ŋ	7	1 01	4	2	<=			<u> </u>			<u>-</u>
form	10	Ac Re	1/3	1/2	Ø	ю	4	ø	∞	=	15	22	⟨⊨		<u> </u>			
noor			-			2	9	4 5	2 9	8	11 4	15 21	7		!			
d nor	6,5	Ac Re	0	1/3	1/2	-	0	8	5	7	10 1	141	21.2	\leftarrow	<u> </u>			누ㅣ
AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	4,0	Ac Re	➾	-	1/3	1/2	7	m	4	9	80	Ξ	15	22	\ <u></u>			
item				0				~	8	5	- 2	9	11 4	5 21	2			凵
guir	2,5	Ac Re		\Rightarrow	0	1/3	1/2	1 2	2 3	ъ 4	5	7 8	10 1	14 15	21 22	\leftarrow		_
	5,1	Ac Re				-	1/3	1/2	2	က	4	9	00	F	15	22	\	
ncor	<u> </u>						-	-	-	N	m	ιΩ		우	4	21		
nt no	1,0	Ac Re	=			\Rightarrow	0	1/3	1/2	- 2	3	8	5	7 8	10 11	14 15	21 22	♦
ercer	0,65	Ac Re					_	_	1/3	1/2	0	6	4	9	8	11	15	22
in pe						i –	<u> </u>	0	<u> </u>	-		2	ო	ľ	_	2	4	24
ĺQ,	0,40	Ac Re				<u></u>		\Rightarrow	- 0	1/3	1/2	1 2	3	4	2 6	7 8	10 11	14 15
	0,25	-				<u> </u>				_	1/3		~	<u>е</u>	4	9	80	=
l Fi		Ac Re							/ /	0	-	1/2	-	۲۵	е	2	7	유
Acceptance quality limit,	0,15	Ac Re				<u>i</u>			<u> </u>	\Rightarrow	0	1/3	1/2	2	2 3	8 4	5	7 8
Jce C	├—											-		-	2	<u>е</u>	4 G	9
eptaı	0,10	Ac Re				<u> </u>					⇒	0	1/3	1/2	-	7	က	2
Acc	0,065	Ac Re							<u> </u>			<u>-</u>	-	1/3	1/2	2	e ο	4
									 					-			2	3
	0,040	Ac Re										<u> </u>	\Rightarrow	0	1/3	1/2	_	2
	0,025	Ac Re												U	-	1/3	1/2	2
			-									 		<i>V</i>	0	-		
	0,015	Ac Re										!			\Rightarrow	0	1/3	1/2
	0,010	Ac Re			1							İ				<u>-</u> >	-	1/3
		Ac				. ————————————————————————————————————						i				~	0	\vdash
	Sample size		2	က	2	80	5	50	32	20	8	125	200	315	500	800	1 250	2 000
<u>ē</u>		_																
Sample	size code	letter	∢	В	ပ	۵	ш	ш	σ	I	7	ㅗ	_	Σ	z	۵.	ø	<u>د</u>
			<u> </u>									L						

 \bigcirc = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

Table 11-B — Single sampling plans for tightened inspection (Auxiliary master table)

	То	ο	28	Ŋ		·						1			-			т .
	1 000	Ac Re	27 2	41 42	\leftarrow	<u>. </u>			<u>! </u>			<u>!</u>			 			\Rightarrow
			6	88	42	1		-				 			<u> </u>			<u>!</u> !
	650	Ac Re	- ∞	27	41 42	<=			!						!	-		
	400	Ac Re	13	19	28	41 42	\vdash		<u> </u>			i			1			
	4		12	18	27		•		i			í			i			
	250	Ac Re	6	13	19	. 28	41 42	\leftarrow	<u> </u>			<u> </u>						
			- 00		3 48	9 27	-4-		<u>i </u>			<u> </u>			! ! !			
tion	150	Ac Re	5 6	6 8	12 13	18 19	27 28	\leftarrow	<u>: </u>			<u>: </u>			<u>!</u> 			ـــــا
bec	<u></u>	Re	4	9	6	13 1			 			-			_			<u> </u>
lis	100	Ac F	9	2	œ	12 1	18 19	\	!						i			÷
l Su	22	æ	ო	4	9	თ	5	19							.			;
ghte	65	Ac	2	က	വ	80	72	18	7			i i						
S (±	9	Ac Re	2	ဗ	4	9	6	13	19	⊱		<u>. </u>			!			
lem	Ľ		-	N	ო	5	- ∞	12	8			l 			l -			
8	25	Ac Re	1/2	2	e o	4	9	6	2 13	3 19	⟨⊨	<u> </u>						<u> </u>
er 1	-		<u> </u>		2	3	5	8	9 12	13 18	<u>•</u>	<u> </u>			<u> </u>			
S p	15	Ac Re	1/3	1/2	-	8	ω 4	5 6	8	12 13	18 19							
AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	_		-			7	· · ·	4	9	-6	- 13	19			<u>. </u>			i
년	5	Ac Re	0	1/3	1/2	-	8	က	5	œ	12 1	18	⟨ =					
	6,5	Ac Re	7	-	<u>ო</u>	2	7	က	4	9	თ	3	9		 			
2	, ô	Ac	\$	0	1/3	1/2	-	N	က	2	ω	12	8	⟨ =	ĺ			
and	4,0	Ac Re		\Rightarrow	-	1/3	1/2	2	က	4	ဖ	6	13	19				
sms	F-				0			-	7	ო	'n	8	12	8	7			
gite	2,5	Ac Re	<u></u>		=>	-	1/3	1/2	7	က	4	9	თ	2 13	3 19	\leftarrow		⊨
l iE	-				-	0			_	2	<u>ო</u>	5	8	9 12	13 18			
lg.	1,5	Ac Re					0	1/3	1/2		ο, O	် ဗ	5	80	12 1:	18 19	\leftarrow	
2				-							8	8	4	9	6	<u>£</u>	-61	\vdash
1 2	1,0	Ac Re					=>	0	1/3	1/2	-	7	က	2	æ	57	<u>φ</u>	�
Cen	9,65	Ac Re						\Rightarrow	-	1/3	1/2	7	က	4	9	0	13	19
be l	o,							<u>/</u>	0	-	+	-	0	က	2	8	5	28
اً ا	0,40	Ac Re							⊟>		1/3	1/2	2	က	4	9	თ	13
	├ ─									0		<u> </u>	-		ဇ	LO.	- ∞	12
Ĭ,	0,25	Ac Re							<u></u>	\Rightarrow	0	1/3	1/2	1 2	2 3	۵ 4	5	6 8
<u>=</u>												-			2		т)	8 9
 tal	0,15	Ac Re									\Rightarrow		1/3	1/2	-	ο,	້ ຕ	5 (
ge	0,10	Ac Re											-	က	2	Q	က	4
otan													0	1/3	1/2	-	7	က
Acceptance quality limit,	0,065	Ac Re				-							<u></u>	1	1/3	1/2	2	က
۲					i				 				<i>v</i>	0			-	2
	0,040	Ac Re												⇒	-	1/3	1/2	2
								:	 					_	0			
	0,025	Ac Re			_										\Rightarrow	0	1/3	1/2
									l					<u> </u>				┢
	0,015	Ac Re										1				=>	0	1/3
	0,010	Ac Re			†												7	
		Ac															7	0
	Sample size		2	3	5	80	13	20	32	20	80	125	200	315	0	8	250	Ş
<u> </u>	San			_	٠,	w	Ψ.	Ñ	6	Ū	ã	12	20	31	200	800	12	2 000
ple	92	je j		~			1	,.		_								
Sample	size code	letter	∢	Ω	٥	۵	ш	ш	g	I	٦	×	_	Σ	z	۵	σ	۳ ا

♦ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

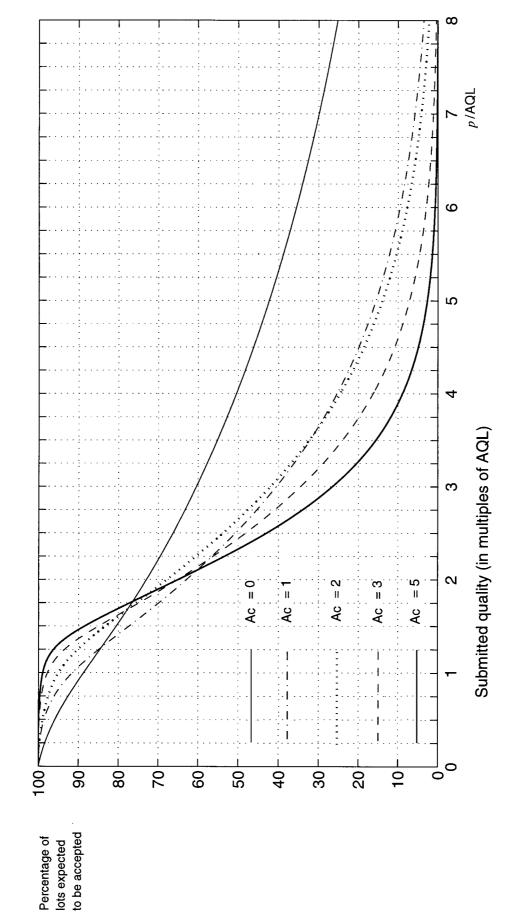
 $[\]Phi$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

Table 11-C — Single sampling plans for reduced inspection (Auxiliary master table)

	1 000	Ac Re	0 31	30 31	╚										<u> </u>			
	650 1	Re-	22 30	22	72	_			l I						i I			
	\vdash	Re	15 21	15 21	15 21	22 4			 			 						-
	400	\A \A	4	4	4	21	<u>+</u>		i			i			i i			
	250	Ac Re	10 11	10 11	10 11	14 15	21 22	\leftarrow	<u> </u> 			<u> </u>			!			
(in	150	Ac Re	80	80	6	=	14 15	←				!			!			
specti	100	Ac Re	2 9	2 9	7 8	9 10	10 11 1/		! 			<u> </u>			! !			<u> </u>
ed ins	<u>-</u>		4 ت	5	5	7 8	9 10	-	i			i			i			<u> </u>
educ	65	Ac Re	e e	₀	4	g	σ ₀	10 11	♥						<u> </u> 			
ı) sme	04	Ac Re	2	2	3 4	5 4	2 9	6	10 11	\		<u> </u>			! 			-
00 ite	25	Ac Re	2	0	3	4	2	^	6	10 11	<u>-</u>				<u> </u>			
per 1	5	Ac Re	2	1/2	2 2	3	4	5	7 8	9 10	=				i T			<u> </u>
nities			1/2			2 2	3	4	2 6	- ∞	9 10	1			1			
onfor	9	Ac Re	1/3	1/3	1/2	-	α	₄	4	6 7	ω ω	10 11	\Diamond		1			
nonc	6,5	Ac Re	- 0	1/5	1/3	1/2	1 2	2	۵ 4	5	2 9	6 8	10 11	\	<u>: </u>			
s and	4,0	Ac Re	\$	-	1/5	1/3	1/2	N	ო	4	5	_	6	10 11	 <=			
item	2,5	Ac Re		<u> </u>	-		1/3	1/2	2 2	3	4	2	7 8	9 10	=			
rming	<u> </u>			- /	٥	1 1/5			-	2	е 8	4	2	7 8	9 10	<u>-</u>		
confo	1,5	Ac Re			\Rightarrow	0	1/5	1/3	1/2	-	α	e e	4	9	80	10 11	\	
t non	1,0	Ac Re	_			\Rightarrow	0	1/5	1/3	1/2	1 2	2 3	ω 4	4 5	2 9	6 8	10 11	4
AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	0,65	Ac Re	_				\Rightarrow	0 1	1/5	1/3	1/2	2	е 0	4	ιo.		თ	=
ë ë	0,40	Ac Re							-	1/5	1/3	1/2	2	ε ε	4	2	7	9 10
		-							0	-			-	2	е е	4	5	7 8
Acceptance quality limit,	0,25	Ac Re			1					0	1/5	1/3	1/2	_	73	ო	4	9
qualit	0,15	Ac Re			<u>!</u>					\Rightarrow	0	1/5	1/3	1/2	1 2	ω 8	ω 4	5
tance	0,10	Ac Re									Î	0 1	1/5	1/3	1/2	1 2	2 3	4
deco	0,065	Ac Re											-	1/5	1/3	1/2	N	m m
														-			-	2 2
	5 0,040	e Ac Re			i								⇒	0	1/5	1/3	1/2	-
	0,025	Ac Re			i									\Rightarrow	0	1/5	1/3	1/2
	0,015	Ac Re													=>	- 0	1/5	1/3
	0,010	Ac Re /							-								-	1/5
		Ă			i			i									0	
	Sample size		α	CI	۵	_ص	2	8	13	20	32	20	8	125	500	315	200	800
Sample	size	letter	∢	8	O	۵	ш	ш	g	I	ח	×		Σ	z	۵	O	æ


♦ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 Φ = Use the first sampling plan above the arrow.

Ac = Acceptance number

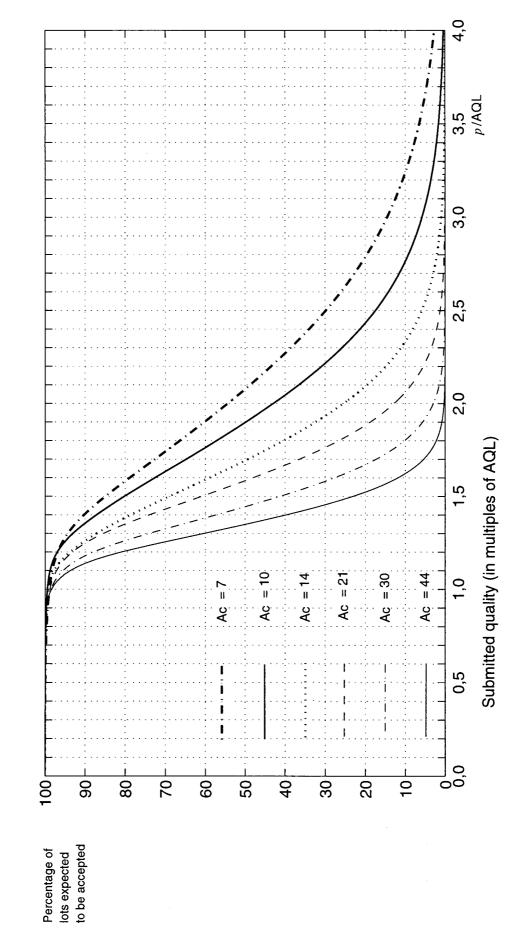

Re = Rejection number

Table 12 — Scheme OC curves (Normalized)

NOTE Ac at each curve denotes the acceptance number for normal inspection.

Table 12 — Scheme OC curves (Normalized) (concluded)

NOTE Ac at each curve denotes the acceptance number for normal inspection.

ISO 2859-1:1999(E) © ISO

Annex A (informative)

Example for non-constant sampling plan

Lot number	Lot size N	Sample size code letter	Sample size	Given Ac	Acceptance score (before inspection)	Applic- able Ac	Nonconforming items	Accept- ability	Acceptance score (after inspection)	Switching score	Future action
1	180	G	32	1/2	5	0	0	А	5	2	Continue normal
2	200	G	32	1/2	10	1	1	Α	0	4	Continue normal
3	250	G	32	1/2	5	0	1	R	0	0	Continue normal
4	450	Н	50	1	7	1	1	Α	0	2	Continue normal
5	300	Н	50	1	7	1	1	А	0	4	Continue normal
6	80	E	13	0	0	0	1	R	0	0	Switch to tightened
7	800	J	80	1	7	1	1	А	0	_	Continue tightened
8	300	Н	50	1/2	5	0	0	Α	5	_	Continue tightened
9	100	F	20	0	5	0	0	Α	5	_	Continue tightened
10	600	J	80	1	12	1	0	Α	12	_	Continue tightened
11	200	G	32	1/3	15	1	1	Α	0*	_	Restore normal
12	250	G	32	1/2	5	0	0	А	5	2	Continue normal
13	600	J	80	2	12	2	1	Α	0	5	Continue normal
14	80	E	13	0	0	0	0	Α	0	7	Continue normal
15	200	G	32	1/2	5	0	0	А	5	9	Continue normal
16	500	Н	50	1	12	1	0	А	12	11	Continue normal
17	100	F	20	1/3	15	1	0	А	15	13	Continue normal
18	120	F	20	1/3	18	1	0	Α	18	15	Continue normal
19	85	E	13	0	18	0	0	А	18	17	Continue normal
20	300	Н	50	1	25	1	1	Α	0	19	Continue normal
21	500	Н	50	1	7	1	0	А	7	21	Continue normal
22	700	J	80	2	14	2	1	А	0	24	Continue normal
23	600	J	80	2	7	2	0	Α	7	27	Continue normal
24	550	J	80	2	14	2	0	А	0*	30	Switch to reduced
25	400	Н	20	1/2	5	0	0	А	5	_	Continue reduced

NOTES: A = acceptable R = not acceptable

^{*} denotes the acceptance score after switching

Bibliography

[1] ISO 2859-0:1995, Sampling procedures for inspection by attributes — Part 0: Introduction to the ISO 2859 attribute sampling system.

- [2] ISO 2859-2:1985, Sampling procedures for inspection by attributes Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection.
- [3] ISO 3951, Sampling procedures and charts for inspection by variables for percent nonconforming.
- [4] ISO 8402, Quality management and quality assurance Vocabulary.