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SOLUTIONS T O PROBLEMS

CHAPTER2

1. From problem statement, we want to find (6P /0T), .

(),

Using the product-rule,

By definition,
_1fov
P=uler p
and
S 1(ov
T v\ OP )
Then,
P 18x107
(6_) S0P XD 338 bar °C”!
oT v Kr  532x10”
Integrating the above equation and assuming o p and k; constant over the temperature range,
we obtain
AP =22 AT
Kr

For AT =1°C, we get
AP =33.8 bar
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Given the equation of state,

we find:

For an isothermal change,

V- _
M:Iz(a—PJ AV = nRIn2=""
n \oT Jy

= —anni
%)

o[ )

AH = J:z [_T(Z_;) + V} dP = nb(Py — Py

P
AG = AH ~TAS = nb(P, — P;)— nRTln(P—IJ
2

AA=AU—-TAS = —nRT In i
P,



3 Solutions Manual

3. This entropy calculation corresponds to a series of steps as follows:

T 3 (vapor,
T=298.15K
P =1 bar)
L
I
sS4 (saturated liq. s, (saturated vapor,
T=298.15K T=298.15K
P =0.03168 bar) P =10.03168 bar)

53 =As155 +Asy 3 +5]

Avaph  (2436)x(18.015)
A1z = Avaps = =T 50 s

& ou
s [ 2] o
P

B

=147.19 K" mol™!

Because v = % (ideal gas),

P
ASZ*):; =—R IH(F}]
2

—_(8.31451)xIn| —2
0.03168

=-2870 JK ! mol™

53 = s° (H, O, vapor)
=147.19-28.70 + 69.96

=188.45 JK ! mol™!
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RT
4. Because a:?—v,

P RT RT
a+v 2-3/v?+v
or
_ RTV?
202 —3+03
[8_Pj __ _RTv(@’+6)
)y v -3+0°)?
As v=23Lmol™!, T=373.15K, R = 0.0831451 bar L K-! mol-!, and molar mass is 100 g
mol-L,

(Z—PJ =—-33245 bar L'! mol = -3.3245 x 108 Pa m™ mol
U
T

2
3
- —(1 ke mj x (1.4) x (;m—‘)lj x[23x103 2| « (—3.3245 « 108 Nmol J
Ns? 100x1073 kg mol m? m*
=24,621m? s>

w=157 ms]

5. Assume a three-step process:
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(1) Isothermal expansion to v = o v=m
(ideal gas state) v 2
(2) Isochoric (v is constant) cool-
ing to T, I (©)] M=
(T5.v5)
(3) Isothermal compression to v,
== (T3.vq)
T
For an isentropic process,
ASZASI +AS2 +AS3 =0
Because s = s(v, T),
ds=[ &) doi| ) ar

ov ) or ),

or
ds=[ L) v+ Cear
or ), T

by using the relations

oS OP .

(—j = (—j (Maxwell relation)
ov)r \oT),

O _Lfou) e
or), rT\or), T

=00 7 0
As:J: [a—PJ dv+j'zc—vdr+fz [G—Pj dv
1 aT v T] T =00 8T v

Using van der Waals’ equation of state,

then,

p BT _a
v—>b 7)2

7,
or), v-b

Thus,
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_ 7, .0
As=RIn| 2270 4 J.zc—”dr
v —b T, T

To simplify, assume

cgzcg—R
RT
'U2=—2
Py
Then,
RpTz_b S-R) (T
In—2 =|-£ In| =L
'Ul—b R Tz
In (82.0578)x (1) —45 =(3.029)><1n623'15
600 —45 5
7, =203K
RT a RT| 1 a
p=-— - _|_- =
v-b 2 v l—é RTv
U
2
Because —2<1,
U
1 2
(1—3) :1+£+b—2+~--
U v v
Thus,

or
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Because

the second virial coefficient for van der Waals equation is given by

B=p-—-2L
RT
7. Starting with
du = Tds — Pdv

As
v—RT+B:£Z+b—iL
P P T2
(a_v) _R, 2
or), P 13
(8_7)] _RT
or )7 P2
Then,
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8. The equation

n
P+——— |((v-m)=RT
( ,UZTI/2 )( )
can be rewritten as

(PTV?y0? —(PmT"?Y0? + nv—nm = RT3 *0?

v - m+£ v | — - 1

At the critical point, there are three equal roots for v = v, or, equivalently,

ENEE
=|— =
ov T=T, ov et

c

(v—vc)3 =1’ -3v,0? +3v v-v,> =0 )

Comparing Eqgs. (1) and (2) at the critical point,

RT,
m+—<=3vu, 3)
C
noo_ a2
[)CTcl/2 - 37}0 (4)
nm .3
PCTCI/Z - 'Uc (5)
From Egs. (3), (4), and (5) we obtain
UC’
m=—= 6
3 (6)
3RT, _RT,
¢ 8P, 8P,
R2T5/2
n=32p)? = 2T BT
64 P.

The equation of state may be rewritten:
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pRL)_1 _n
U l—ﬂ RT3/2U
U
or
Z_E_ I n
U

From critical data,

m=0.0428 L mol~!

n=63.78 bar (L mol~")? K"?

At 100°C and at v = (6.948)x(44)/1000 = 0.3057 L mol-!,
z=0.815

This value of z gives P = 82.7 bar. Tables of Din for carbon dioxide at 100°C and v = 6.948
cm? g1, give P = 81.1 bar or z = 0.799.

9. We want to find the molar internal energy u(7,v) based on a reference state chosen so that
u(Ty, v —> 0)=0
Then,

u(T,v) =u(T,v)—u(Ty,v — o)

=u(T,v)—u(T,v = o)+ u(T,v — ©)—u(Ty,v — ©) (1)
14 T
- limJ (@j dv+ limJ [@) dT
vy \ OV v \ 0T —

Schematically we have:

U=U les)
Ideal gas u
Ref. state Intermediate state State of interest

Ideal gas Ideal gas Real gas
(o, v — @©) (TLv =>®) (T, v)
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In Eq. (1) we are taking 1 mol of gas from the reference state 1 to the state of interest 3
through an intermediate state 2, characterized by temperature 7 and volume v — o, in a two-step
process consisting of an isochoric step and an isothermal step.

In the step 1 — 2 the gas is infinitely rarified, and hence exhibits ideal gas behavior. Then,
the second integral in Eq. (1) gives:

ia
lim L (@j dT = J;T QdT = IT (€Y = R)dT = (cp —R(T ~Ty) 2)
b . 0 Ty

TV—>0 ov
v=U

because for an ideal gas cg —cv R and because, by the problem statement, the heat capacity at

constant pressure of the gas is temperature independent.
We have now to calculate the first integral in Eq. (1). To make this calculation, we first
transform the derivative involved in the integral to one expressed in terms of volumetric proper-

ties.
By the fundamental equation for internal energy (see Table 2-1 of the text),
), 18)
ov )y ov )r
Making the derivative using the equation of state give we obtain
% _ RT  RT L_4a __a )
ov), v-b v-b v(w-b) v(w-b)
Then,
a v—-b U
_— =—|In —In—
- 6v b v - b U b Uy —b L
&)

and

lim o) gy Y20 (6)
voody v b U
T
Combining Eqgs. (1), (2) and (6) we obtain the desired expression for the molar internal en-
ergy’

u(T,v) = () —R)(T—TO)+%ln(v;bj
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10.

Iny,, = A(1-x,)* suchthat y, —>1 as x,—>1

Using Gibbs-Duhem equation,
x,dIny,, +x,dny, =0
or, because dx,, = —dx; (x, +x,=1),

dlny,, .y dlny,
Yodv, Y dx

w

N
dlny,,
w
Then,

3 —2Axs(l—xs)dx
xS

dlny

N

Iny,

2
x;
Iny, =-24 {xs —TAJ

Iny, = A(x2 - 1)

11. Henry’s law for component 1, at constant temperature, is

f1=kx (for 0<x;<a)

where kjis Henry’s constant.

=24(1-x,)(-1) =-24(1-x,,)

s =—2A(1—-x;) dxg

diny, =24 Lx (1-x,)dx,

Solutions Manual

For a liquid phase in equilibrium with its vapor, fiL = fiV. If the vapor phase obeys ideal-

gas law, fiV =y;P.

Henry’s law can then be written:
P = kyx
Taking logarithms this becomes
In(y|P)=Ink; +Inx;

Differentiation at constant temperature gives
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din(y;P) dlnx; 1
dxy da x

Using the Gibbs-Duhem equation

dinP, dinP,
X1 + Xy =

dxl dxl

0

gives

oy, 4002P)

or, because dx, = —dx|,

or,
din(y,P)=dInx,
Integration gives
In()»,P)=Inx; +InC

where InC is the constant of integration.

For x; =1, y, =1,and P=P;. This gives C =P, and we may write

In(nP)=Inx, +In P =In(xy 7))
or
y2P=P2:)C2PZS [for (1—[1)<X2<1]

which is Raoult’s law for component 2.

Solutions Manual

12. Starting from dg; = RTdIn f;,

i (at P
Ag; :RTlnM

" (P* is a low pressure where
P*>P fl (at P)

gas i is ideal)
From the Steam Tables we obtain A# and As at 7 and P to calculate Ag from

Ag=Ah—TAs
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Choose P* =1 bar.

Al =70 bar =y bar =196 T g™

AS = 570 bar =51 par = 22157 g 1°C7!

Then, at 320°C,
Ag=11178J g™ =20137 J mol !

Thus,

20137
nr o =408
1./ (70 bar, 320°C) (831451)x (59315)

or

f=59.1 bar

13. The virial equation for a van der Waals gas can be written (as shown in Problem 6)

:E+b a

’U —_——
P RT

(1

At the Boyle temperature,

or

Tg=— 2

The Joule-Thomson coefficient is

or
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opP c’)Pj o Cp
oH )

OH ov
—| =—v+T| =
(), -+1(%),

. OH
and because ¢, is never zero, when p=0, | —| =0
P oP )

oy ), (&),
”‘( )H (

Because

Substitution in Eq. (1) gives

=-bh+ ﬁ
RT
The inversion temperature is
_2a
JT Rb
Comparison with Eq. (2) gives
Tyr =2Tg
14. At equilibrium,
=1

where subscript 1 stands for the solute.
At constant pressure, a change in temperature may be represented by

G L
[dlnfl ] dT:[dlnfl } o 0
dr dr
P P

Since the solvent is nonvolatile, flG (at constant pressure) depends only on 7 (gas composi-

tion does not change.) However, flL (at constant pressure) depends on 7 and x; (or Inx;):
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P
Further,

dn fiF h) —hft
or ~ RT?
P.x

h; = ideal-gas enthalpy of 1;

where:

hlG = real-gas enthalpy of 1;

}_zlL = partial molar enthalpy of 1 in the liquid phase.

Assuming Henry’s law,

N

—— = constant
X1

oln £
61nx1
T,P

Substituting Egs. (2), (3), (4), and (5) into Eq. (1), we obtain

or

dinx; Al
di/T) R

Solutions Manual

2)

3)

(4)

©)

From physical reasoning we expect hlG > EIL . Therefore x; falls with rising temperature.

This is true for most cases but not always.






SOLUTIONS TO PROBLEWMS

CHAPTETR

3

1.

The Gibbs energy of a mixture can be related to the partial molar Gibbs energies by
m
2—g = (g -2)
i=1

Since, at constant temperature, dg= RTdIn f, we may integrate to obtain

8- 8o = RTIn fryix _RTlnfr?lixt
or
g—8, =RTInfix —RTInP

where subscript mixt stands for mixture.
For a component in a solution, dg; = RTdIn f; . Integration gives

gi—& =RTInf?
& -8 =RTIn(y;P)
Substituting Egs. (2) and (3) into Eq. (1) gives

m m
In fiixe —InP = zyi In f; — Zyi In(y; P)

i=1 i=1

s —mP=3y |2
nfmlxt n _Zyln
i=1 Vi

m
]—Zy,»lnP

i=1

Because

(1)

2

3)

“4)

17



Solutions Manual 18

m m
Zyl- InP=1InP| ZJ’i =InP
i=1 i=1

Eq. (4) becomes

o fi
In finixe = zyi In _IJ %)

i=1 i
Assuming the Lewis fule, f; = y;/pure > Eq. (5) becomes

m
In fixe = Zyi ln.fpure i

i=1

or

m
— Vi
fmixt - prlire i
i=1

2. As shown in Problem 1,

lnfmixt = iyi h{ﬁj

i=1 i

This result is rigorous. It does not assume the Lewis fugacity rule.
Using fugacity coefficients,

Ji=oyP
and

In fnixt =409 4 +yplnep +InP
Jmixt = (P}IQA (9)1/38 P
=(0.65)"% x(0.90)7° x (50)

JSmixt = 41.5 bar
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3. Pure-component saturation pressures show that water is relatively nonvolatile at 25°C.
Under these conditions the mole fraction of ethane in the vapor phase (yg) is close to unity.

Henry’s law applies:

Je =H(T)xg
The equilibrium condition is
fe = 1%
or
Ye@p P =H(T)xg
At 1bar, og =1 and H(T)=P/xg:
1
H(T) = ————=303x 10 bar
0.33x10~
At 35 bar we must calculate @g:
Pz-1
e
PE= )0 P
Using
z=1-763x10P~722x107 P?
we obtain

@p =0.733

Because Henry’s constant H is not a strong function of pressure,

_Je _ 9P
H H

_(0.733)x(35)

_ _ —4
XE = XEthane = 20310 8.47x10

4. The change in chemical potential can be written,

N
0

Apy =py —pp =RT1H[
A

] (2 =1bar)

(D
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The chemical potential may be defined as:

o [0G 0G°
M —H1 = 8_ - P)
m T.P,ny & T.ny

[6_AJ _ [MOJ g
a}’ll T,V,n2 anl T,n2

Combining Eqgs. (1) and (2):

@)

Inf; :L[‘?AAJ 1
RT 8}11 T,V,n2

Using total volume, V =nyv, ny =n +ny,

AA V 14 14
—=nTln —nlln —I’lzln

Taking the partial derivative and substituting gives

ln—f1 = b
NWRT v-b
v—b
or
leT b]
=——exp| ——
J v—b p(v - bj
The same expression for the fugacity can be obtained with an alternative (but equivalent)
derivation:
! A =00 -715% G =0 +Pyr0-15% PV®=n.RT
0 0 0
w2} [ g2
6n1 a}’ll 6n1
T,nj¢1 T,nﬂtl T,njil
and
0 0 0
0A _ ou CRT-T oS
6n1 6711 al’ll
T,nj#-l T,nj:tl T,nj:tl
then

0
“’? = 81 + RT
6n1
T,njatl
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- :ern[L‘Oj (2 =1 bar)
A

1

A
By definition, p; = (S—J . The Helmholtz energy change Aa can be written as
"y

nj#l

nrAa=A4- Z n,-alQ

1

= A= mi(u ~RT)
i
Then,
OnypAa _ 04 B u? _RT
6n1 8}71
njz1TV Nje T,y
=py —m) - RT
and
w-p {a(nTAa/Rn} .
RT 6711 nd],T’V
Using the equation for Aa,
[6(nTAa/RT)} VoV, ik
al’ll nj;tl’T’V V- nTb anT V- I’lTb
or

0
Inf; :ln[ul M J:{a(nTAa/RT)} 1
RT 8111 n#],T,V

}’llRT " ”Tbl
V—I’lTb V—I’lTb

mRT nrb,
f] __" exp Y1
V—nTb V—nTb

=In

Hence,

_NRT by
Y v—b eXp(v—bj

21



Solutions Manual 22

a) Starting with Eq. (3-51):

For a pure component (n; =np):

G G?
W= W=
n; n;
Because
G=U+PV-TS
0 0 0
nl =p? - 750 + RT (M)
From Eq. (3-52),
W=f0£~&QW—mm V+ﬁ—mhfz 2)
V ni V I’IIRT }’li

From Egs. (1) and (2),

PV —n,RT
Hi_H?:r[ﬂ—R—;JdV—RTln v trom
L\

n; n; n;
But,
0
RTIn f; = p; —
and
vo_z
nmRT P

Substitution gives

RTln(ij =r P _RT dV —RTInz; + RT(z; - 1)
P); 4 V

n;

b) Starting with Eq. (3-53):
For a pure component, y; =1. To use Eq. (3-53), we must calculate

( o J
ani T,V,pure component i

Pressure P is a function of 7, V, and »; and
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op ) (om (@_Vj _
on; ), \ov Jp\ P ),
op _ (V) ok
a}’li v 5}1,- P aV n;
_P_|\P, V(ok
n; n; n; aV n;

P viory _11o®r)
n; n; ov " n; oV n
1

i

But,

Then,
RT
J‘”(G_P) [Pt f APV
|4 8nl~ T7V,n/-¢1 |4 /’li nl- PV

= £dV—RT+H
y n; n;

= JjﬂdV—RT(z— D
n;

Now Eq. (3-54) follows directly.

6. The solubility of water in oil is described by

N =H(T)x
Henry’s constant can be evaluated at 1 bar where f; =1bar.
Then,
H(T):A:;:Z%bar (t=140°C)
xp 35x107*

To obtain f at 410 bar and 140°C, use the Steam Tables (e.g., Keenen and Keyes). Alterna-
tively, get f'at saturation (3.615 bar) and use the Poynting factor to correct to 410 bar.
At 140°C,
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RTIn /i = Ag15410 bar = AM—5410 bar — TAS15410 bar
RTInf; =282 g_1 (from Steam Tables)

In /i = @8)x(18)
(831451) x (413)

Then, f; = 4.4 bar at 410 bar and 140°C and

44
R L L NP

H(T) 286

Applying an energy balance to this process,
Ah=hs—hy, =0
This may be analyzed on a P-T plot. Assume 1 mole of gas passing through the valve.

P
TR

A three-step process applies:
I. Isothermal expansion to the ideal-gas state.
II. Isobaric cooling of the ideal gas.

III. Compression to the final pressure.

For this process,
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Ah = Ahl + Ah]] + AhHI =0

Since h = h(T,P),

dk:(@j dP+(@J dr
op)," "\eor),

But,
5
U:£+50—1L
P
Then,
(avJ R 10
- :_+_2
6TP P T
and
Ch = VAC) A +VBC)R
2x10° 0 0 2x10°
Ah=0=|50— : (=P) +(vacha +yBeop (T T, ) +| 50— 2 P

Substitution gives
(—616.7) x P, = (335 Jmol ™' K™1) x (10 bar cm® J=1) x (200 — 300 K) + (—950) x (1 bar)

P, =55.9 bar

8. From the Gibbs-Helmholtz equation:
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or, alternately,

= A= hreal _hideal (l)
7)
ol =
T
Because, at constant temperature,
d(Ag) = Rlen(%) 2)

we may substitute Eq. (2) into Eq. (1) to obtain

From the empirical relation given,

1n£ =0.067P —%P —00012P2% +

n
0

Ah = (8.31451)x[(-30.7)x(30) + (0.416)x(30)2]

0.416P>

=-30.7P+0.416P% = A?f’

At P =30 bar,

Ah = -4545 J mol!

9. Consider mixing as a three-step process:

() Expand isothermally to ideal-gas state.
(I) Mix ideal gas.

(III) Compress mixture isothermally.

du = c,dT + T[a—Pj -P|dv
ar ),

Starting with
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(614] :T[apj p
ov T oT
U

RT
Because, P = a4 s
v—>b 7)2

( ou J _a
ov T 7)2
Integration of this equation to the ideal-gas state (v =) gives

o0
AuzJ ia'vzﬂ

v U2 (%

Therefore,

Ay =14 1292 5914 7 mol ™!
1 )

[(1 bar)x(1 cm?) = 0.1 Joule]

Aup =0 (because is the mixing of ideal gases)

Amixt —xtay +2x1x04/ajaxn x(1-0.1)+ x3ay, ]
A =— =
i mixt XU +xUp

=-5550 J mol ™!

Amixh = Amixu = Aul + AUH + AZ’IIH =364 J mol_l






1.

SOLUTIONS TO PROBLEMS

CHAPTER4

At 25 A we can neglect repulsive forces.
The attractive forces are London forces and induced dipolar forces; we neglect (small) quadrupo-

lar forces. (There are no dipole-dipole forces since N, is nonpolar.)
Let 1 stand for N, and 2 stand for NH;.

London force:

dar _9(11(12 ]1[2

dr P L+,
Since,
o =17.6x107% cm?
0y =226 %1072 cm?
I, =155eV=248x10"1 Nm
I,=11.5eV=184x10718 Nm
then

Flliondon =620 x 10—18 N

Induced dipole force:

29



2.

Solutions Manual

2
[ = L)
12 =~
1’6
2
_ boyu;
12 — 7

ID=1x 10’18(erg cm3)1/2
1y =147 D =147x10718(erg cm?)/2
Fligd =-38x10"18(erg cm?)"2

Neglecting all forces due to quadrupoles (and higher poles),

Ftot _ FLondon + Find

Ft = _658x10718 N

From the Lennard-Jones model:

6
. . c
Attractive potential = —48—6 =T
r

. dr c®
Attractive force = —— = 24—

d}" r7

Assume force of form,

6
Force = _dr = (constant) e
dr k r7

Using corresponding states:

€
(;J = (constant) x T, c® = (constant x 'Uc)z

2
=aT =P

c

where o and [ are universal constants.

30
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(ochy )
force CHy  (constant) (¢/K)cny  (cny )
force substance B (constant) (g/k)g (GB)6
()’
2
B (0, )
2x10®  Te)  ax107emy’
force substance B a(7;,,) B(v,,) 2

(2x10~"em)’
Force substance B= -4 x 10710 dyne

Force= -4x1071° N

Fap =—8x 10716 erg

By the molecular theory of corresponding states:

ﬁ:f[ij (r=20)

2
Tep. . (S—Bj & =B (f is a universal function)
FAA EA f(2) €A

Since &/k=0.77T, (taking the generalized function f as the Lennard-Jones (12-6) poten-
tial),

‘B

I'gg =T'an
CA

=(-8x107'® erg)x (180 K/ 120 K)
Igg =-120x10716 erg

=-120x102 J
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4. For dipole-dipole interaction:

T (dd) =——0 1(8,,0,1.¢)
(4mer”)

with

J(6;,6;,4)=2cos6; cosB ; +sinb; sinB ; cos(p; +¢ ;)

For the relative orientation:
i J
N —> >
9;
0,=0° ¢;=0°
9.
N
Ml —2p5p
[(dd)=————x2x1x(-1)]=————

(4nsor3) (4ngor3)
For y; = W= 1.08 D =3.603x1030Cm and »=0.5x10"9 m,

(-2)x (3.603x10")?
(47) x (8.8542x10 2 x (0.5x10™°)?

I'(dd) =

—1.87x10°2y

For the relative orientation:

0,=90° ¢; = 0°

For the dipole-induced dipole interaction:

2 2
oL Heoy;
it (3cos?0; +1)— S

I'(dd)=-
' 2(41‘580)21‘6 2(4n80)2r

2
z (3cos™6; +1)

For the relative orientation:
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i > /> 0.=0° 9j290°

~(3.603x1073%)? x (2.60x1073?)

r(ddl')sz 10 9.6
2x(1.1124x10710)% (0.5x107)

= 7.77x10723] ~ -8.0x10 23

For the relative orientation:

(3.603x1073%)% x (2.60x10730)
2x(1.1124x1071%)x (0.5x10™)°

I(dd;) = — x(4+1)

= —4.85x1072 J~—4.8x10723J

5. The energy required to remove the molecule from the solution is

po L&l u?
a3 28r+1
g, =3.5 a=3.0x10% cm p=2D

(See, for example, C. J. E. Bottcher, 1952, The Theory of Electric Polarization, Elsevier)

E =4.61x10"2! J/molecule = 2777 J mol!

a) The critical temperatures and critical volumes of N, and CO are very similar, more similar
than those for N, and argon (see Table J-4 of App. J). Therefore, we expect N,/CO mixtures to
follow Amagat’s law more closely than N,/Ar mixtures.
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b) Using a harmonic oscillator model for CO, F = —Kx, where F is the force, x is the displace-
ment (vibration) of nuclei from equilibrium position and K is the force constant. This constant
may be measured by relating it to characteristic frequency v through:

oo L K(mc +mg)
B 21 mcmg

where m and m are, respectively, the masses of carbon and oxygen atoms.

Infrared spectrum will show strong absorption at v.

Argon has only translational degrees of freedom while CO has, in addition, rotational and
vibrational degrees of freedom. Therefore, the specific heat of CO is larger than that of argon.

7. Electron affinity is the energy released when an electron is added to a neutral atom (or mole-

cule).
Tonization potential is the energy required to remove an electron from a neutral atom (or

molecule).

Lewis acid = electron acceptor (high electron affinity).

Lewis base = electron donor (low ionization potential).

Aromatics are better Lewis bases than paraffin. To extract aromatics from paraffins we want
a good Lewis acid. SO, is a better a Lewis acid than ammonia.

8. From Debye’s equation:

_ 2

v| & ! = i1tNAoc + inNA B

g +2 3 3 3kT
| —

Static polarization

- -
Total polarization
independent of T’

Measurement of molar volume, v, and relative permitivity, €,, in a dilute solution as a
function of T, allows p to be determined (plot total polarization versus 1/7; slope gives ).
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9. We compare the attractive part of the LJ potential (» >> o) with the London formula.
The attractive LJ potential is
6
11
Iy = —4811(—)
,

6
S 22

6
C12

We assume that o}, =1/2(c| +05,) . The London formula is

3021
Ty=-—
4r
_ 3a3l
2=
470
3 [0 5]0%] [112
Tp=-21—%
2 r 11+12

Substitution gives

1/2]  \O11522 NI
1

epp = (&11822)
E(Gll‘f‘czz) %(114'[2)

Only when 6;; =05, and /; =/, do we obtain

1/2
&2 = (€11€22)

Notice that both correction factors (in brackets) are equal to or less than unity. Thus, in gen-
eral,

1/2
e1p < (g11€)

10. See Pimentel and McClellan, The Hydrogen Bond, Freeman (1960).
Phenol has a higher boiling point and a higher energy of vaporization than other substituted ben-
zenes such as toluene or chlorobenzene. Phenol is more soluble in water than other substituted
benzenes. Distribution experiments show that phenol is strongly associated when dissolved in
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11.

12.

nonpolar solvents like CCly. Infrared spectra show absorption at a frequency corresponding to
the —OH---H hydrogen bond.

Yacetone(ccl, ) > Yacetone(CHCI,) because acetone can hydrogen-bond with chloroform but not

with carbon tetrachloride.

a)

CHCl,4 Chloroform is the best solvent due to hydrogen bonding which is not
present in pure chloroform or in the polyether (PPD).

i Chlorobenzene is the next best solvent due to its high polarizability and

it is a Lewis acid while PPD is a Lewis base.

I/j Cyclohexane is worst due to its low polarizability.

P n-butanol is probably a poor solvent for PPD. Although it can hydrogen-
bond with PPD, this requires breaking the H-bonding network between
n-butanol molecules.

t-butanol is probably better. Steric hindrance prevents it from forming H-
bonding networks; therefore, it readily exchanges one H-bond for an-
other when mixed with PPD. The lower boiling point of 7-butanol sup-
ports the view that it exhibits weaker hydrogen bonding with itself than
does n-butanol.

b) Cellulose nitrate (nitrocellulose) has rwo polar groups: ONO, and OH. For maximum solu-
bility, we want one solvent that can “hook up” with the ONO, group (e.g., an aromatic hydro-
carbon) and another one for the OH group (e.g., an alcohol or a ketone).

¢) Using the result of Problem 5,
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13.

At 20°C, the dielectric constants are

e,(CCly) =2.238 e, (CgHjg) = 1.948
Thus,
£,(CCly) _ 1
&,(CgHpg)

It takes more energy to evaporate HCN from CCl, than from octane.

At 170°C and 25 bar:

7y, is above 1

z is well below 1 1

amine

zycy 1s slightly below 1 z

Yamine

a) A mixture of amine and H, is expected to exhibit positive deviations from Amagat’s law.

b) Since amine and HCI can complex, mixtures will exhibit negative deviations from Amagat’s
law.

)

argon

Yargon
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14.

The strong dipole-dipole attractive forces between HCI molecules cause zycy <1, while ar-
gon is nearly ideal. Addition of argon to HCI greatly reduces the attractive forces experienced by
the HCI molecules, and the mixture rapidly approaches ideality with addition of argon. Addition
of HCI to Ar causes induced dipole attractive forces to arise in argon, but these forces are much
smaller than the dipole-dipole forces lost upon addition of Ar to HCI. Thus the curve is convex
upwards.

a) Acetylene has acidic hydrogen atoms while ethane does not. Acetylene can therefore com-
plex with DMF, explaining its higher solubility. No complexing occurs with octane.

b) At the lower pressure (3 bar), the gas-phase is nearly ideal. There are few interactions be-
tween benzene and methane (or hydrogen). Therefore, benzene feels equally “comfortable” in
both gases.

However, at 40 bar there are many more interactions between benzene and methane (or hy-
drogen) in the gas phase. Now benzene does care about the nature of its surroundings. Because
methane has a larger polarizability than hydrogen, benzene feels more “comfortable” with meth-
ane than with hydrogen. Therefore, K (in methane) > Ky (in hydrogen).

¢) Under the same conditions, CO, experiences stronger attractive forces with methane than
with hydrogen due to differences in polarizability. This means that CO, is more “comfortable” in
methane than in H, and therefore has a lower fugacity that explains the condensation in H, but
not in CHy.

d) It is appropriate to look at this from a corresponding-states viewpoint. At 100°C, for ethane
Tk =12, for helium, Ty = 80.

At lower values of Ty (near unity) the molecules have an average thermal (kinetic) energy
on the order of € (because Tp is on the order of k7 /¢ ). The colliding molecules (and molecules
near one another, of which there will be many at 50 bar) can therefore be significantly affected
by the attractive portion of the potential, leading to z < 1. At higher 7%, the molecules have such
high thermal energies that they are not significantly affected by the attractive part. The mole-
cules look like hard spheres to one another, and only the repulsive part of the potential is impor-
tant. This leads to z > 1.

e) Chlorobenzene would probably be best although cyclohexane might be good too because
both are polar and thus can interact favorably with the polar segment of poly(vinyl chloride).
Ethanol is not good because it hydrogen bonds with itself and n-heptane will be poor because it
is nonpolar.

f) 1) Dipole.
ii) Octopole.
iii) Quadrupole.
iv) Octopole.
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15.

16.

g) Lowering the temperature lowers the vapor pressure of heptane and that tends to lower sol-
vent losses due to evaporation. However, at 0°C and at 600 psia, the gas phase is strongly non-
ideal, becoming more nonideal as temperature falls. As the temperature falls, the solubility of
heptane in high-pressure ethane and propane rises due to increased attraction between heptane
and ethane on propane. In this case, the effect of increased gas-phase nonideality is more impor-
tant than the effect of decreased vapor pressure.

a) They are listed in Page 106 of the textbook:

1. O can be factored so that Q; . is independent of density.

2. Classical (rather than quantum) statistical mechanics is applicable.
3. Tiotal = 2 (Tpairs) (pairwise additivity).

4. T'/e=F(r/o) (universal functionality).

b) In general, assumption 4 is violated. But if we fix the core size to be a fixed fraction of the
collision diameter, then Kihara potential is a 2-parameter (o, €) potential that satisfies corre-
sponding states.

¢) Hydrogen (at least at low temperatures) has a de Broglie wavelength large enough so that
quantum effects must be considered and therefore assumption 2 is violated. Assumption 1 is
probably pretty good for H,; assumption 4 is violated slightly. All substances violate assumption
3, but H, isn’t very polarizable so it might be closer than the average substance to pairwise addi-
tivity.

d) Corresponding states (and thermodynamics in general) can only give us functions such as

c —cg. Values of cg (for isolated molecules) cannot be computed by these methods, because

P
the contributions to cg (rotation, vibration, translational kinetic energy) appear in O, and the

kinetic energy factor, not in the configuration integral.

Let a represent the phase inside the droplet and 3 the surrounding phase.
Schematically we have for the initial state and for the final (equilibrium) state:
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NC;
NO; o
a
Na+
K +
Lysz' Lys2-
p p e

Initial state Equilibrium state

Because the molar mass of lysozyme is above the membrane’s cut-off point, lysozyme can-
not diffuse across the membrane.

Let:
d represent the change in K* concentration in o;
¢ represent the change in Na't concentration in B.

The final concentrations (f) of all the species in a and f are:

ma: @ =0 ¢ =00 _§5 fa _ o =0 _§549¢
Lys—2 Kt K" Nat NO3 NO3

In f: P 5 =% o P o= PO 10) P B =P 45— 0]
Lys Lys K" Nat  Nat NO3 NO3

The equilibrium equations for the two nitrates are

o 4,0 _ B n B
'S MNog He T H NO3
(M
a 4,0 T
uNa+ MNog Nat MNOg_
Similar to the derivation in the text (pages 102-103), Eq. (1) yields
P L
Kt NO3 Kt NO3
2
P L
Na© NO3 Nat NO3
where, for clarity, superscript f has been removed from all the concentrations.
Substituting the definitions of & and ¢ gives:
Oa Oa — 0p
c’t=d|c -30+09|=0)|c + 06—
( K* )( NO3 (p) ( )[ NO3 (P)
A3)

0B _ 0B 5— — 0o _ 5
(cNa+ (pj(cNog " (p] ((P)[CNog HP)

where
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oo _ 0o _ 0.01 mol

* = =9.970x10> mol L!
K NO3 ] kg water
(using the mass density of water at 25°C: 0.997 g cm'3)
and

¢ =% =001 molL!
Na NO3

Solving for & and ¢ gives

§=4.985%x10mol L}
“4)
©=5.000x10"mol L"!

Because both solutions are dilute, we can replace the activities of the solvent by the corre-
sponding mole fractions. The osmotic pressure is thus given by [cf. Eq. (4-50) of the text]

RT  xP
P P (5)
Us  xg
where x is the mole fraction of the solvent (water) given by
o _ o _ o o o
Xy =X, = 1—(xNOg tX TEL )
(6)

xE :xE} = 1—(xEIog +xlli+ +xEja+ +xEys)

Because solutions are dilute, we expand the logarithmic terms in Eq. (5), making the ap-
proximation In(1— A)~—4:

RTT_ B LN N o o 0
n—v—[—(xNO; X A +xLys) + (xNO; XX )}
w

Again, because solutions are very dilute,

C; C;
X = I~ L
C; Cy

%

with

Therefore, with these simplifying assumptions, the osmotic pressure is given by

T N S S

n=RT[c _ -l —c
NO3 Kt Nat NO3 Kt Na*t Lys

Using the relationships with the original concentrations, we have
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_ 0 0 0B 0B 0B
n= I’QT[(CI\%5 -0+¢)+ (cK‘_’L —-8)+ (cp)—(cNOg B -0 )- (cNa+ =0)=(cpy)]

Because
cOo._ _ cOo.
NO3 Kt
OB 0B
NO3 Na*
we obtain

n=RTQ2c" —2c% P 4514
( o 2y ?)

-c
at Lys
The lysozyme concentration is

OB 2g (2/14,000) mol
1L

_ -4 -1
s =11 =1429%10™ mol L

Substitution of values in Eq. (7) gives the osmotic pressure

m=(8314.51 PaL mol™! K™') x (298 K) x [(2x9.97x1073) = (2x 0.01) - (1.429x 10™%)

—(4x4.985%x1073)+ (4 x 5.000 x 1073) (mol L™1)]

=-354 Pa

17. Because only water can diffuse across the membrane, we apply directly Eq. (4-41) derived
in the text:

U pure w

—lna, =-In(x,y,,)= RT

where subscript w indicates water.

42

()

(1)

Since the aqueous solution in part a is dilute in the sense of Raoult’s law, v,, = 1. This re-

duces Eq. (1) to:

T pure w

—Inx,, =—In(I-xp —xp,) = (xp +Xa,) = RT

or equivalently,

2
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o RT()CA +XA2)
Upure w

AtT=300K, v =0.018069 mol L.

pure w

43

Mole fractions x, and x,, can be calculated from the dimerization constant and the mass

balance on protein A:

X
an XA
v, =M 1801510060 cm? mol™!
d, 0997

(5/5,000) mol A
(1000/18.069) mol water

=181x107 =xp +2x,,
Solving Eqs. (4) and (5) simultaneously gives

xp =734x107°

Xp, =538x107°
Substituting these mole fractions in Eq. (3), we obtain

__ (0.0831451) x (300) x (538 x 1070 +734x107%)

(0.018069)

=0.01756 bar =1756 Pa

18.
a) From Eq. (4-45):
n  RT

— == 4RTB ¢y + -
o M

4)

©)

Ploting n/c, (with m in pascal and ¢, in g L'!) as a function of ¢,, we obtain the protein’s

molecular weight from the intercept and the second virial osmotic coefficient from the slope.
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50

47 .51

N
T

42.51

nlcy, PalL gt

N
?

37.5

35

0 ' 20 ' 40 ' 60
BSA Concentration, g t

From a least-square fitting we obtain:
Intercept = RT/M, = 35.25 Pa L g"! = 35.25 Pa m3 kg"! from which we obtain

_RT  (29815)x(8314)
3525 3525

M,

=70321 kg mol™! =70,321 g mol™!

Slope = 0.196 = RTB". Therefore, B* = 7.92x108 L mol g2.
The protein’s specific volume is given by the ratio molecular volume/molecular mass.

The mass per particle is

M, 70,321
m=—=——

=1.17x107" g molecule™!
Ny 6.022x10%

Because protein molecule is considered spherical, the actual volume of the particle is 1/4 of
the excluded volume. Therefore the actual volume of the spherical particle is

-24
L18x1077 =295x1072° m? molecule™!

which corresponds to a molecular radius of 4.13x10 m or 4.13 nm.
For the specific volume:

-25
295x10 5 5310 md g ! =2.52em’ g
117x10719

b) Comparison of this value with the nonsolvated value of 0.75 cm? g-!, indicates that the par-
ticle is hydrated.
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¢) Plotting /¢, (with 7 in pascal and ¢, in g L'!) as a function of ¢, for the data at pH = 7.00,
we obtain:

60

57.5- .

42.54

15 25 35 45 55
BSA Concentration, g t!

Slope = 0.3317, which is steeper that at pH = 5.34, originating a larger second virial os-
motic coefficient: B*=1.338x10"7 L mol g2 = 13.38x10-8 L mol g2.

At pH = 7.00, the protein is charged. The charged protein particles require counterions so
electroneutrality is obtained. The counterions form an ion atmosphere around a central protein
particle and therefore this particles and its surrounding ion atmosphere have a larger excluded
volume than the uncharged particle.

It is the difference between the value of B* at pH = 7.00 and that at pH = 5.37 for the un-
charged molecule gives the contribution of the charge to B™:

100022

(13.38 - 7.92) x108 L mol g2 = —
4 M5p1myix

In this equation, we take the solution mass density p; = pyater * 1 8 cm™ . Moreover, M, =

70,321 g mol-!, and my;x ~ 0.15 mol kg

22::4x(546x10_8)x(7Q32D2x(LO)x(015x103)
1000

~ 162

or z==13. Because pH is higher than the protein’s isoelectric point, the BSA must be nega-
tively charged. Hence, z = -13.

19.
a) From Eq. (4-45) and according to the data:

T RT *
=2 L RTBY(c—cg)+--
M (¢=co)

c—Cy 2
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Ploting 7/ (c—cg) (with m in pascal and ¢, in g L!) as a function of ¢ — ¢, we obtain the
solute’s molecular weight from the intercept and the second virial osmotic coefficient from the

slope.
18.0 : : :
17.5 |- e
FIU)
- 17.0 |- B
<
~ °
(I-)O
S 165 -
R
°
16.0 - .
| | |
30 40 50 60

(c-cy). g L’

From a least-square fitting we obtain:

Intercept = RT/M, = 14.658 Pa L g'! = 14.658 Pa m? kg™! from which we obtain

_RT _(298.15)x(8.314)
14.659 14.659

M,

=169.109 kg mol~! =169,109 g mol™!

Slope = 0.053495 = RTB". Therefore, B* = 2.16x10-8 L mol g2.

b) The number of molecules in the aggregate is obtained by comparison of the molecular
weight of the original ether (M = 390 g mol-!) with that obtained in a):

169,109

Number of molecules in the aggregate = ~ 434

Assuming that the colloidal particles are spherical, we obtain the molar volume of the ag-
gregates from the value of the second virial osmotic coefficient B*. It can be shown (see, e.g.,
Principles of Colloid and Surface Chemistry, 1997, P.C. Hiemenz, R. Rajagopalan, 3. Ed., Mar-
cel Dekker) that B* is related to the excluded volume Ve through

N
2M;

*
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From a), B* = 2.16x10"8 L mol g2 = 2.16x105 m? mol kg2 and M, = 169,109 g mol"! =
169.109 kg mol-!. The above equation gives V°X that is 4 times the actual volume of the particles
(we assume that the aggregates are spherical). Calculation gives for the aggregate’s volume,
5.13x10725 m3 (or 30.90 dm3 mol™!) with a radius of 4.97x10 m or 5 nm.






1.

SOLUTIONS TO PROBLEMS

CHAPTEHR

Initial pressure P;:
- for ny moles of gas 1 at constant 7 and V-

By

PV
—1 _1+}’ll
V

mRT
or
2
RT n{RTB
p= mrsL A 11
14 72
Final pressure Pg:
- after addition of #n, moles of gas 2 at same 7 and V-

_(m+m)RT _ (m + n,)* RTB

P,
f % V2

where (}’ll +n2)2B = nlan +2n1n2312 + VI%B22

Pressure change AP:

nyRT RT
AP = Pf -P = 2 +(2}’ll}’12312 +I’Z§Bzz)ﬁ
Solving for B,:
By, = ! Y —nV—1m3B
12 21’111’12 RT 2 20922

5

49
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2. For precipitation to occur,
4 %Y
Jco, > 1co,

To obtain fc%z ,

D
feo, 1

n = J: (27.6)dP
(0.1392)  (83.1451)x(173) %.1392

fc°62 =0.156 bar (at 60 bar, 173 K)

Next, find the vapor mole fraction of CO, that is in equilibrium with the solid at the speci-
fied P and T:

V
(PC02P

Yco, =
Using the virial equation for the vapor,
Vv 2
necq, = ;(J’cochoz +YH,BHy-co, ) —Inz

Because yco, <<1, we may make the approximations

ZHZRT
P

z=zy, and UV=vUy, =
From data for H, (see App. C) at —100°C,
By, =8.8 cm’ mol™!
which indicates that zy, =1.

From correlations:

Bco, =—460 cm?® mol ™!

Bco,-n, =—321 cm?® mol ™!

At equilibrium

45,/
COp

vV
fC02

and then
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O/,
fco )

Yco, P
exp { [)’co2 Bco, +(1-yco,)Bu,-co, J} P

RT

Yeo, =000344

Because yco, < 0.01 at equilibrium, CO, precipitates.

To find out how much, assume solid is pure CO,. Let n be the number of moles of CO, left
in the gas phase. From the mass balance and, as basis, 1 mole of mixture,

000344 = —"
n+0.99
n=0.003417

The number of moles precipitating is

0.01-0.003417 = 0.0066 moles CO,

Condensation will occur in the outlet if ch02 > féoz .

First it is necessary to find the outlet temperature, assuming no condensation. Joule-
Thomson throttling is an isenthalpic process that may be analyzed for 1 mole of gas through a 3-
step process:

I, II: Isothermal pres- =)
sure changes. T5R

II: Isobaric temperature
change.
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Then
Ahyorar = 0 = Ahy + Ahyy + Ahyyy (1
0
Ahy = J- v-T, (8_"0) dP @)
B or P
T,
Ny = [ ¢pmixe dT (3)
Py
0 oT P

Assuming that the volumetric properties of the gaseous mixture are given by the virial equa-
tion of state truncated after the second term,

RT
v=—pt Binixt
then,
(@q :£+F@m&)
or), P \ dr ),
where B, ;.. is the second virial coefficient of the mixture.
Because
Bunixt = ViB11 +2y192B13 + ¥3By (%)
(1=CHy 2=CO0,)
dBixi _ 2 dBy) dBy, 5 dBy
=yf—=+2 — =ty —== 6
o7 g TR T (6)
If
1 2
poc0, <
72
then
dB D 202
Z--5-= )
dr T T
Assume
0 0 0
cp,mixt = yCH4 Cp,CH4 + yCOz Cp,COz (8)

then,
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o

dB & i dB
0=J'O Byt — T | —ixt dP+I Cpomi dT+L Bt — T | —2XL || gp
R[ mixt 0[ dT B - p,mixt mixt f dT »

mlxt T Tf Tf

260 302 2D 342
0=|c9 | “Tmixt , 7r"nlxt (=P + Cpmint (Tr — Ty + CI(T(])J;t n Cmixt 4 Zomixt 3Cixt (B)
0 o

From data:
As y1=07, y, =03, Cp.mixt = 36.22 JK ! mol™ according to Eq. (8).
From Egs. (5), (6) and (7),

0
Enl)xt = 41849
1

Enzxt =—18683

c® = _3412x10°

mlxt

Substitution in Eq. (9) gives Ty =2784 K.

Second, the fugacities of liquid and vapor phases may be calculated.

L
Yco,
RT

dpP

L _ S )
Jeo, =co,7co, o, o, SXP J‘Pv
COy

This equation may be simplified assuming that xco, . ¥co, > (pSCOz equal to unity.

At 278 K, Pgo2 =398 bar and véoz =490 cm3mol~!.

(49.0) x (1-39.8)

L
=(39.8) x ex =36.6 bar
Jco, = (398)xexp { (83.1451)><(278)}

Fugacity of vapor is calculated from
14
fco2 = (pCO2yC02P
with

P
Ingco, = [2(%023002 +ycH, Bco,-cH, )~ mlxt:| xT

Inpco, = [2x(0.3)x(—139)+2x(0.7)x(—77)+(69)]R—PT

53

)
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([)CO2 = 0995 ~ l
Then
Voo
fC02 =0.3 bar
Because

-V L
Jco, <Jco,

no condensation occurs.

4. The Stockmayer potential is

o 12 - 6 Hz
I'=4¢ (—) _((_j _r_3g(913927¢2_¢1)

r r

where p is the dipole moment.

//g SN

We can write the potential in dimensionless form:

2
T r . . .
—= —,—H where 1 is a universal function.
€ (e} 8(53

Therefore, we can write the compressibility factor z in terms of the reduced quantities:
z=f(T, P, 1)
with

kT

T="-
4
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ﬁ:P_"3
e
~_n
p= 3
t{e)

a) For acetylene: 7, =3083K, o =0.184. At 0°C, Tp =0.886 = 0.90 . Using Lee-Kesler charts
(see, e.g., AIChE J.,21: 510 [1975]):

As© /R =3993 zV) =078 2 =010
As /R =3856 zP) =011 z0 =-0.04

Ayaps = (831451)x[3.993+(0.184) x (3.856)] = 39.1 T K~! mol ™!
Ayaph =T A s = (273)%(39.1) = 10.67 kJ mol ™
Ayaptt = Ayaph = RT(zy —z;) =10.67— (8.31451) x (273) x (0.76 - 0.092) x 10~

Ayaptt =915 kJ mol ™!

b)
C,Hy: T, =4252K Ny T, =1262K
P. =380 bar P. =337 bar
o =0.193 o =0.04
v, =255 cm? mol! v, =895 c¢cm3 mol-!
At 461 K: Ty = 1084 Tp =365

Using the Pitzer-Tsonopoulos equation (see Sec. 5.7):

Beyny =267 cm? mol-! By, =155 cm3 mol-!

For BIZ:

1
(O] :5(0)1 +Cl)2): 0.1165
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(g, =1990)

T, = (T, T,,)"? =2316K

=0.291-0.08w;, = 0.2817
2

ch
P :M:343 bar
12 1(01/3+U1/3)3

g e TV

Then, Bj; =-21.6 ¢cm3 mol-!

2 2 31
Biixt =1 Bi1 +2y1y2B1 + 2 By =—177.2 cm™ mol

<)
CH4(1): T. =190.6K N,(2): T, =1262K H,(3): T, =332K
P. =46.0 bar P. =337 bar P. =130 bar
® =0.008 ® = 0.040 o=-022

U, =99.0 cm® mol ™! v, =89.5 em® mol ™! v, =65.0 em® mol™!

Tg = 6.02 Tg =105

At 200 K: Tp =158

At 100 bar: Pp =297 Pr =217 Pp =769

Using the mixing rules suggested by Lee and Kesler:
1 13 |, 1/33
YUe,mixt = gz%xjxk(vcj +Uck )
J

1 13 | . 1/333 12
Tc,mixt = P zzxjxk(vcj +UCk) (ch'Tck)
C ] k

®mixt :sz(Dj =0
J

Pc,mixt =(0.291-0.080 mixt )RTc,mixt / Ue,mixt

Uemixt = 341 em® mol™!

T, mixt = 11138 K (T =180)

P mixt = 3147 bar (Pp =318)

Enthalpy of mixing = A* = I ure —é(hl +hy +h3).

Using the Lee-Kesler charts,
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hE =—922— % (—5385—1383+0) = 1334 J mol!

6.
L/G=5 L G N
Y
P =40 bar
t=25°C
4 40% N,
- | L 50%H,
10% CHg

From the mass balance for C;Hg:
YinG = YoutG + Xout (L + [Vin = Yout 1G)
YoutG = 0.05y;,G
0.10 = 0.005+5.005x¢,
Xcy = 0.01898 = mole fraction of C5Hg in effluent oil.
To find the driving force, note that
P, = Py = ycy P = (0.10) x (40) = 4 bar
P =Fey =1y 19¢;
where
fg3 =xcyH =(0.01898) x (533)=1.012 bar

and

* 2P
Ingc, = m[)’cﬁq +¥NyBey-Ny T VHy Boy—my 1-Inz”

Obtain virial coefficients from one of the generalized correlations:

57
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BC3 =—-400.8 cm3 mol-!

Bcy N, =735 cm? mol-!
Bey—p, =35 cm® mol!

We may estimate z* = 0.95 (feed value).

To find y&, y;IZ, and yEz , we know that (y;&z/yiﬁlz) = 4/5. As first guess, assume

yé} =0.10. Then we calculate,

1.012

— s -0.0292
(40) x (0.855)

(pz3 =0.855 and ya =

This gives

YNy FIH, =09708  or  yy, =04308, y, =0.540
With these y*’s, calculate (P*C3 again:

@cy =0924 and  yc, =0027

That is close enough. Thus,

P _ 1012 4095 bar
30924

Now we must check the assumption z* = 0.95was correct. Using the virial equation, the as-
sumption is close enough.

Driving force = (PC3 - Pg3) =(4.00-1.095) = 2.91 bar

7. Since f,iV:fiL,

'5100 (P B Psi)lv)

Yi0iP = x;H, 501y €Xp 2T

As PS5

solv

=0,

yi _H; exp(U;°P/RT)
x; ¢;P

Using the virial equation,
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2
Ing; = ;@1311 +y2B13) —Inz iy

2
Ing, = ;(Vszz +11B12) —Inz i

Because
ﬂ 1+ Bmixt
RT U
2 _RT__ BuinRT _
P P
Bpixt = =323 cm? mol-!
v=524 cm3 mol!, z... =10067
Thus,
01 =0.8316 ¢, =0.9845
(100) eXp[ 3(1630) X 25301)4 }
A CIHx@ID]_, 44
X (50) x (0.8316)
and
22 2131
X2

8. For methane (1) and methanol (2), we may write
A =ht
£ =1

Neglecting the Poynting corrections [Note: the Poynting Correction is 1.035. Including this,
we get y, = 0.00268],

NeP=x1H,
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Y202P = X272 P 05

Because x,=1, assume y, =1.
Use virial equation to get fugacity coefficients:

ByPy _ (-4068)x (0.0401) _

5 =ex 0.993
P2 =Py (8314) x (273)
Assuming y; =1, y, =0 as first estimate,
¢ =0954 ¢, =0.783
Thus,
x =27 _ 00187
1,2
1_ x PS N
yy = A=x)hey _ 0.00250
02P
Using now y, =0.00250, get
¢; =0954 ¢, =0.770
and
x1 =0.01867 ¥y =0.00255

This calculation is important to determine solvent losses in natural gas absorbers using
methanol as solvent.

2(monomer) <=  dimer

The equilibrium constant is

02
_a _ Ll _Ja|fa
Ka= 2 02 2| 40
(@)™ Um/fm)™ Jm| Ja
where ay is the activity of the dimer, and a,, is the activity of the monomer.

2
The quantity £ / fao is a constant that depends on 7, but not on P or y.
Then,
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fa=kf3

where k is a constant.

10.
CH CH
3 3
N /
CH—O—CH
/ AN
8 8 CH, CH,— O— CH, CH, CH, (H,

Di-isopropyl ether Ethyl butyl ether

HCI can associate with the ether’s non-bonded electron pairs. However, the di-isopropyl
ether will offer some steric hindrance. The cross-coefficient, Bj,, is a measure of association.
Both virial coefficients will be negative; B, for ethyl butyl ether/HCI will be more negative.

11. Let a be the fraction of molecules that are dimerized at equilibrium.

2A ‘_: A2
1-a a/2

ny :l—a+%:1—%

_oal/2
A T 1202
_ I-a
YA 1-a/2

By assuming the vapor to be an ideal gas, we may write

_ Py AP (@/2)1-a/2)
(P (aP) (-a)’P

K

At the saturation pressure, P = 2.026 bar and
ya =0.493 o =0.6726



Solutions Manual

Then
IX = fX = yaP =(0.493)x(2.026) = 0.999 bar

The pressure effect on fugacity is given by

olnf) T
oP ), RT

Assuming the liquid to be incompressible in the range P’ to 50 bar,

Ja(50bar)  UAAP
Sa(2.026 bar)  RT

fa (50 bar) =1.1 bar

12.
a) The Redlich-Kwong equation is

Pu U a 1
Z=—= —
RT wv-b RTY\v+b
If z is expanded in powers of 1/v :

B C
z=14+—+—+--
U 1)2

This gives

But,
B'=B/RT

_C-B?
(RT)?

Substitution gives

po L[4

62
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. a __a
C'= R3T33 (3b RT].S)

b) Using an equation that gives fugacities from volumetric data, we obtain

2 2 2 1/2
P yiay —2y1a1 +ysay =25 (a1ay)
ln(p1=—|:b1+ 141 141 R2T55 2\4142

Evaluate a and b using critical data:

Ethylene (1): T.,=2824K P.=50.4 bar

Nitrogen (2): T,=126.2K P_,=33.7 bar

a, =7.86x107 bar cm® K12 mol2
a,= 1.57x107
by=404 cm3 mol-!
Substitution gives ¢; = 0.845,
f1 =y191P =8.44 bar

13. Using the virial equation,

pP= E_I_ RTBmixt
U 7)2
with
Bumixt = V1B11 +2y192B12 + ¥3 By (1
For maximum pressure,

oP RT [ OB,;

[_J ) _2( - j ) 0 (2)
M )ry v )p

Substituting Eq. (1) into Eq. (2) gives (), =1-1):

OB,
(ﬂ] =20 B11 =2y, By + 2y1Byy —2B5, =0
6)’1 T

At maximum,
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B
y, = 22 )
By + By = By
Using the correlations,
By =-126.7 cm3 mol'! (ethylene)
Byy =-125 cm’ mol'! (argon)
Bj, =-459 cm? mol’!
Substitution in Eq. (3) gives
Nn= 0.134
14. Consider a 3-step process:
Pure ideal gases Mixed ideal gases
T T.
f A r ) f
P=20.7 bar
| 11
Pure gases L ¥ Mixed gases
T Tt
The overall enthalpy change is zero:
AHI +AHH +AHIH =0
AH[ = mAH| +n,AH, (1 =hydrogen; 2 = ethylene)

HY-H
AHy = €y (Ty = Ty) +————(RT,;)

1

H-H

AHy = e, (Ty = T})+ (RT,)

2

where is evaluated using Lee-Kesler Tables.
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For heat capacities, we can estimate

021 =28.6 JK-! mol!

¢y =437 TK! mol!

AHp =0  (because we are mixing ideal gas)

65

H-H
AH == ———— RT. pmixe  evaluatedat Tp =T/ T, i, Pr=20.7/P, o
RTc,mixt ’ ’
Find T; by trial and error:
T; =247K
15. At equilibrium,
=1
P S
YAQAP = (1=xco, )PA9) eXpJ. RAT dap

Assuming xco, ~0,

S
PA

P dwe-pP
aP)PA —exp UA (P=Fy)

PA@A

But
OA

Because ya <<yco,, Yco, =1

Pp =exp [(2BAC02 - Bco,)

RT

BAAPS
= exp {%J =1.00

.
RT

S
A

or

RT RT

AP exp[vﬁj (P-PY) (2Ba-co, ~Bco,)P }
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, P
P:l:P;i'Ug/ +RT1H%}/('U% —2BA_CO2 +BC02)
A

Substitution gives

P =68.7 bar

For this pressure, y, =1.9x 107* << 1 and assumption y, =0 is correct.

16. Let 1 = ethylene and 2 = naphthalene.
As, at equilibrium,

& 14
fH =15
and as
P &

(%
‘=P SexJ. —2-dp
fz A pp22RT

1y =30,P
we may write
vy =(—x))PS¢S exp[vy (P—P5)/ RT]/ o5 P

a) Using ideal-gas law:

03 =05 =1
As 'U/f/ _ 128174 111.94 cm®mol ™!,
145
& N
(% (P—P ) -5
=P exp| 2———22|/P=1.1x10
N2 =0 P[ RT ]
b) Using VDW constants:
a=27R*T? / 64P, b=RT,/8P.
a; = 4.62 x10° bar cm® mol-2 by = 5823 cm?3 mol"!

a, =4.03x107 bar cm® mol-2 by =192.05 cm? mol’!
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By =by—a; /RT =-1222 c¢m? mol"!

By =—1382 cm? mol!

Because y, <<y, y; =1 and B ;. =B},
ByP
S —exp—222 =]
P2 p RT

P P
Inoy =[201 B> + v2B>y)—Boi i |— = (2B;> — B;)—
¢y =[20B1y +12B) mlxt]RT (2B, ”)RT

Blz =b12 —dai / RT with b12 = 1/2(1)1 +b2) and app = 1}((11612)

b, =12514 cm3mol!  and a;,=1.36x107 bar cm® mol-?

Then B, = -406 cm? mol-!.
4 P
=exp| (2B;, —Bj;)— | = 0.446
(o)) P[( 12 “)RT}

yy = (2.80x104) x exp[(111.9x30)/(83.1451x308)]/(0.446x30)

Py = 2.4x10

17. Water will condense if fgzo > fI%O'

Thus, the maximum moisture content, VH,0 > is given by

Voo o_
szO - szO

S

v P FUHZO
_ S
yHZO(PHz()P_ xH2OPH2O eXp s RT dP
H,O

Assuming that the condensate is pure (solid) water,

tzO =1 and 1

s —
(PHQO -

Then

67
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(18/0.92){30— 1.95 )

v (1.95 torr) 750.06
x (30 bar) = e
011,0@p,0)( ) (750.06 torr/bar) (83.1451)x(263.15)
, 890x107°
H)O =~
®H50

Let 1 =N, 2 =0,, and 3 = H,0.

To get (p]zzo use the virial equation of state:

P
oy,  =Ine3 =[2(1 B3 + 2823 +¥3833) — Buyixt 1 ——
H,O0 RT

with

i

Bixt = ZZJ’:’J’/B;]
J
Assume y; <<y, where y; = 0.80 and y, = 0.20.
Then,
Bmixt = ylzBll +y§B22 +2y1y2312 =-218 Cm3 mol-l

Substitution in the equation for Ings gives ¢z =0.871
As

, 890 %1075
HyO = 5
PHs50

then

YH,0 =1.0x107*

18. The Joule-Thompson coefficient is defined as

_(er
HH:(@P]H (1

Applying the triple-product rule with 7, P and H, we have
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(&) ) (5, - &
op ) \om )\ oT ),

a_H =c
or)p 7

Because

and

]

combining Egs. (1) and (2) gives

1 (oH
Ly = _E(EJT 3)

From the fundamental equation dH = TdS + VdP , we have
(G_H) = T(ﬁ) +V o)
OP ) oP )

However, we also have Maxwell’s relation:

&)%),

Therefore,
(a_H) = —T(a—Vj +V 5)
oP ) oT )p
Substituting Eq. (5) into Eq. (3) gives
T —T[a—V) v (©)
cp oT )p
or, in terms of molar volume (v) and molar heat capacity at constant pressure (c,),
1
= —T(a—”] ‘o )
p oT )p

Because in this specific problem we want g of the hydrogen-ethane mixture to be zero,

Eq. (7) yields
ov
U= T(a—T)P (8)
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From the truncated-virial equation of state

ﬂ =1+ E (9)
RT U
we have
R o e R s @
ov)p \RANv+B v+B R) (v+ B)?
Substituting the equation of state Eq. (9) and Eq. (10) into Eq. (8) yields
2
RT(, B)_, R @+B)” (11
P v P u(u+2B)
or equivalently,
B=0 (12)

where B is the second virial coefficient of the hydrogen-ethane mixture at 300 K.
Using the McGlashan and Potter equation [Eq. (5-52)],

-1 -2
B _ 0.430— 0.866(1j - 0.694[£j (13)
T T

Z)C‘ 4 c

we obtain Bj; =114 cm® mol™! for hydrogen, and By, =-1733 cm’® mol™! for ethane, and
By, = By; =114 cm’ mol™! for the cross term, respectively.

Applying

Buixt = 2, 2 Viv;By
J

i
and the material balance y; +y, =1,, we have
Byt (em® mol™1) = 114y7 + 228y, (1- y1) —1733(1- ;)* (14)

Equations (12) and (14) yield y; = 0.73.
Consequently, if we start out with 1 mol of H,, the amount of ethane that must be added to

have a zero py is 0.37 mol.

19. Because methane does not significantly dissolve in liquid water at moderate pressures, the

equation of equilibrium is

fZV :fp[{lreZ (1)
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or equivalently,

vk (P-F})

RT 2

V292 P = Py @3 exp

where subscript 2 denotes water.
The fugacity coefficient from the volume-explicit virial equation of state is given by Eq. (5-
33):

P
Ing, =[2(1B), +y2B22)_Bmixt]E 3)
with
2
Buixt = 1" B11 + 20192813 + ¥3 B “4)

Similarly, we also have

By Py

RT ©)

Ingj =

(1) At the inlet (60°C, 20 bar):

Substitute Eqgs. (3), (4), and (5) into Eq. (2). Solving Eq. (2) using ’Ué =18 cm? mol™! and

Py =149 mmHg, we obtain

yé =0.011 (superscript i denotes inlet).

(ii) At the outlet (25°C, 40 bar):

Similarly, with vé =18 cm® mol™! and Py =24 mmHg, we obtain

»3 =0.000951 (superscript o denotes outlet).

Because the gas phase is primarily methane, the amount of water that must be removed per
mol methane is

mol water removed ;
=y, —y5 =0.01

mol methane

20. Assuming negligible changes in potential and kinetic energies, the first law of thermody-
namics for a steady-state flow process is
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AH =0+, (1)

where AH is the change in enthalpy, and Q and W, are, respectively, the heat and the shaft
work done on the system (by the surroundings).

Because we are given the initial and final state and enthalpy is a state function, AH is fixed
in this problem. Consequently, minimum W corresponds to maximum Q. Maximum @ occurs
when the process is reversible, or equivalently Q = TAS'.

Hence, Eq. (1) can be rewritten as

W, = AH —TAS 2)

where W, is now the minimum amount of work required for the process.
To calculate AH and AS from the volume-explicit virial equation of state

PV

nTRT

=1+BP

we take an isothermal reversible path from the initial to the final state.
Expressions for enthalpy and entropy are given by Egs. (3-9) and (3-10) in the text:

P v o 0
H:J V—T(—) dP +mnhy +nyh,
0 or P.np

©)
P ﬂTR ov 0 0
S =j —_—| = dP = R(n; Iny| P+ ny Iny, P)+nysy +npsy
o| P oT Pop
Substituting
R
[l = ”L(l +BP)
or Puny P
from the virial equation of state gives
H= nlh{) + nzhg
“4)
S =nyRBP—R(n; Iny|P+n, Iny,P)+ nls? + nzsg
Applying Eq. (4) to this specific problem, we have
AH =0
©)

AS = RP(ny By —mBi1 —npByy) = R(ny Inyy +ny Inyy)

At 298 K, second virial coefficients are
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By =419 cm? mol !
B, =—-1222 cm? mol ! (6)

By, =-66.0 cm?® mol™!

Hence, at 298 K,

Bhixt = ZZyiijij =-74.0 cm> mol’!
i

Taking a basis of ny =1 mol of the mixture initially, then n; =n, =0.5 mol, Eq. (5) yields
at298 K

AH=0
™)
TAS = -2485k]

Substituting Eq. (7) into Eq. (2), the minimum amount of work required for this process is
248.5kJ mol~! of initial mixture.

21. The second virial coefficient for a square-well potential is given by Eq. (5-39) in the text

B:bOR3(1—R;3_ lexp%J M
with
by = %ﬂNAG3 2
Substituting €/ k=469K, c=0.429 nm and R=0.337c gives
B(423K) = 302 cm> mol"!
Because, for a pure component,

1n(p:1ni:£
P RT

fugacity is given by
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Hence, at 150°C and 30 atm,

(30 atm) % (301.8 cm? mol_l)
(82.06 atm cm® mol 1) x (423 K)

=30 atm) x exp,

=38.94 atm ~ 39 atm

74

To obtain the standard enthalpy and entropy of dimerization of methyl chloride we assume a
small degree of dimerization. In this case, the relation between the second virial coefficient and

the dimerization constant is given by Eq. (5-113):

p=pFIK
po

Applying P® = RT¢? (where ¢® =1mol L™! =10~ mol cm™ is the standard state) gives

103(em® mol™HK = B-b

Because we only have a weak dimerization,
2
b= bo = ETC]VAG3

and the second virial coefficient is essentially that of pure methyl chloride [Eq. (1)].
Combining Eqgs. (1) and (3) gives

3_
103(cm3 mol_l)K = g1INA¢:S3 R 1- R 1expi -1
3 R3 kT

The following table shows K(7') calculated from Eq. (4).

T (K) K

100 10.74
200 0.939
300 0.376
400 0.222
500 0.155

Because the standard enthalpy and entropy of dimerization obey [Eq. (5-114)]

A 0
—Ranz%—Aso

plotting —RInK as a function of 1/7 gives Ah° as the slope, and —As as the intercept.
Results are

ARY = —4.34 kJ mol !

As' =-232J K ! mol™!

€)

“4)
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22.
a) Substitution of given I'(») in Eq. (5-19) gives

B=2nN, r(l—efw/kT)r2dr+ Jm(l—eA/kTrn)rzdr}
0

(o)

=27N, rrzdr+ Jm(l—eA/kTrn)rzdr} (1)
0

(o}

s )
=2nN, %+ r(l—eA/kTr )rzdr}

C

At high temperatures, A/kTr" is small.
Because

2
X .
ex:l+x+?+-~- when x is small,

. n
we expand the exponencial AR

v
eA/le ~1+

+...
kTr"

Substitution of this approximation into Eq. (1) gives:

r(l—eA/kTrn)rzdr: r 1-1- 4 rzdr=jr(r_")r2dr
o S kTr" kT Js
.y " Al 3T
=— dr =—— 2
kTJj(r )dr kT|:3—nG @)

A 637n _Ac3fn
TKT\ 3=n | KT(n-3)

We substitute now this result in Eq. (1):

2 3 G3—n
B=2aN 63 214N ;| ———
3 kT(n—3)

Constant » is large (i.e., n > 3):
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) 3
B =—7INA63 —2nAN 4 -2
3 kT(n—3)c”"

3)

2 2 A
=Z7N 6% -ZaN 4o° _ 4
3 3 kT(n—3)c”

b) From Eq. (3) we see that it is the attractive part of the potential that causes negative B
and is responsible for the temperature dependence of B [the first term on the right hand side of
Eq. (3) is independent of temperature].

23. Substitution of the square-well potential [Eq. (5-39)] into Eq. (5-17) gives

B=27N, r (1-e Ty 2,
0

_ o
=2nN f(l—e‘w/kT)rzdr+j (- ¥y 2 gy + r(l—eO/kT)rzdr}
0 c R'

S
=21N, %+I - Ty 200+ 0
'C

[ 3 3 3
=27N, %+[%—%}(1—e8/”)

2 2
=§TcNAG3 +§nNA(l—eg/kT)(R’3—c3)

In the equation above, R’ = Rc = 1.55c. For argon, ¢ = 0.2989 nm = 0.2989x10° m,  e/k
=141.06 K, and R'= 1.556 = 4.633x10"10 m,
The above equation gives for 7=273.15 K,

B=3368%x107 +(=6202x107)

=-2834x10"m3mol ! ~ 28 em3 mol™!

The calculated value compares relatively well with the experimental B for argon at the same
temperature: By, = -22.08 cm? mol-!.
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24. Substitution of Sutherland potential [Eq. (5-37)] in Eq. (5-19) with N = N, gives

B(T)=2nN,, { F(1—e*w/kT)r2dr+ r(l—eK/kTré)rzdr}
0 o

(1
2 6
=ZnN 60 + Jm(l—eK/kTr Yyrldr
3 o
K K K? K3 x*
exp| — |[*l+—F+ 22 318 T 424 2
kTr kTr®  2(kT)"r 6(kT)'r 24(kT)"r
2 3 4
[e" ml+x+—+"—+—+ ]
20 31 41

We now have to replace the approximate result [Eq. (2)] in Eq. (1) and perform the neces-
sary integrations.
The result is:

2nN,K  2mN,K*  2nN,KP 2nNKY
3kTo®  18(kT)?c® 90(kT) o' 504(kT)* 2!

B(T)= %nN P

This equation is best solved using an appropriate computer software such as Mathematica,
TKSolver, MathCad, etc.
Making the necessary programming we obtain at 373 K,

B(methane) = -20 cm? mol’!

B(n-pentane) = -634 cm3 mol!

In both cases, the agreement with experiment is very good.

25. The equation of equilibrium for helium is
=1 )

where superscripts L and R stand for left and right compartments, respectively.
Equivalently,
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L R
yie Pt =yfe, PR )

Equation (5-33) of the text gives the fugacity coefficients in both compartments from the
volume-explicit virial equation of state:

P
Ing; =[20By1 +y2B12) - Bmixt]ﬁ 3
with
2
Buixt = 1" B11 + 20192813 + ¥3B) 4

Further, we also have material balances

oy =1
®)
yirg =1
Applying Egs. (3), (4), and (5) to both compartments yields
R L L L2 L L L2 Pt
Ingy = {2[% By +(1-x )Blz:|_|:0/1 ) By 2y (1=)1)Bp + (1= 1) Bzz} RT
(6)
I R R R\2 R R R\2 PR
Ingy = {2[)’1 By +(1-y )313}[()/1 ) By +2y (1= )Bi3 +(1=y) Bss} R
Total mole balance on helium gives
nf +nf =0.02 mol (7)
Combining with mass balances on ethane and nitrogen gives
L
yh = n
L0994k
®)
R L
n 0.02—-n
le 1 _ 1

0994k 101-nf
Substituting Egs. (6) and (8) into Eq. (2) yields

nt =0.013 mol
Combining this result and Eq. (8) gives

yE =0.013

yi =0.007
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26. Because the equilibrium constant is independent of pressure, the more probable reaction is
the one that satisfies this condition.

(1) Assuming reaction (a) is more probable:

With this scheme, concentration of (HF)¢ is negligible compared to those of (HF) and
(HF)4.
The equilibrium constant K,y is

y(HF)4 y(HF)4 (1)
@~ 4 p3- 4
Y(HF) [l—y(HF)4] P
Total mass balance for (HF) gives
Y(HF), 17 (4 % MHF)+[1 — Y(HF)4 ]nTMHF =Vxpyr 2

where V' is the total volume; pgp and Mpgg are the mass density and the molar mass of hydro-
gen fluoride, respectively; ny is the total number of moles that can be calculated by assuming
that the gas phase is ideal:

PV
T =or 3)

Substituting Egs. (2) and (3) into Eq. (1) yields

(1/3)(pHFRT_1J
P X MHF

4
{1—(1/3)(‘“”—1)} p3
PX MHF

Applying Eq. (4) at the two pressures, 1.42 and 2.84 bar, we obtain for K, :

K@y = 4)

P (bar) PHF (g/L) K(a)
1.42 1.40 0.0595
2.84 5.45 0.453

Because K(,) depends on pressure, reaction (a) cannot be the more probable one.

Next we need to check for the pressure independence of Ky, .

(2) Assuming reaction (b) is more probable:
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In this case, concentration of (HF), is negligible compared to those of (HF) and (HF).

The equilibrium constant Ky is

_ YHF)g Y(HF)g

K = 5)
(b) 6 5 6
y(HF)P [1_y(HF)6:| P5
Mass balance for HF in this case is:
Y(HF)g 7 (6% Myp) + [1 ~ Y(HF)g ]”TMHF =Vxpyr (6)
where all terms are defined in Eq. (2).
Substitution of Egs. (3) and (6) into Eq. (5) gives
a/ 5){w _ 1]
% _ P x MHF 7
(b) = (7N

6
{1-(1/5)("‘“”—1]} ps
PX MHF

Corresponding values of Ky, at 1.42 and 2.84 bar are:

P (bar) PHE (L) Kp)
1.42 1.40 0.017
2.84 5.45 0.017

Because Ky, is independent of pressure, reaction (b) is the more probable.
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SOLUTIONS T O PROBLEMS

CHAPTETR

The three equations of equilibrium (in addition to TL =77 and PL =P")are

o] P=xy fi
J’2(P£/P:x2Y2f2L

y305 P =x373/F
with (assuming the liquid incompressible)

vl (P-P)

L S S
=P’p; ex
fl 1 91 €Xp RT

o . L L
We write similar expressions for f, and f; .

For (pre may write
14
RTIngp = P2y By +2y,Bip +2y3B13 = Byixt)
and similar expressions for (pg and (pg/. In these equations,

2 2 2
Buixt = YiBi1 +¥3 By + ¥3B33 + 2132 B15 + 2133813 + 2213823

6

81
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2. Given gFf = Axjxp with P’/ Py =1.649, and assuming ideal vapor,

nP
Y1 = 5
lel

nkP
x2P2S

Y2 =

At azeotrope, x; =):

Iny; =ln—

P
Iny, :ln—s
2
or

lnY—1 =ln—==
From the g expression,

4 5
Iny; =—=x
Y1 RT 2

and

A 5
Iny, =—x
v2 RT !

Then
A4 2 2
In—=—(x5—-x
Lotz D)

A -0.5 -1

RT x2-x2 4xy+2

or

Because 0<x, <1,

Thus, if | 4> %RT, an azeotrope exists.
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3. From the plot P-x-y we can see the unusual behavior of this system:

1. There is a double azeotrope

2. Liquid and vapor curves are very close to each other.

75 —

74 —
g .
g
=}
g 73 —
a
— — = Liquid (@)
2= Vapor (O)
] ] ] ]
0 0.2 04 0.6 0.8

X1,y1

4. Neglecting vapor phase non-idealities,
P= X]'YIPIS +x2Y2PZS

At the maximum,

oP
(—j :0=“/1P1S+X1P1s(%] —xzf’zs[%] -12P
le T 6x1 T 8x2 T

From the Gibbs-Duhem equation (at constant 7 and low pressure),

1.0

83

(1

2
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X Olny; +xy Olny, —0
6x1 T 8x1 T

ﬂ(%j :x_Z[%j 3)
vi\ox )y v2\0xy )y

Substituting Eq. (3) into Eq. (2) and simplifying,

or

X
nA —szzs)(ﬂ—l%j =0

Y1 0%

There are two possibilities:

) V1P —v2Py =0
Then
v2by _ _On/x)
"B O/ xp)

o =1 corresponds to an azeotrope

) TP AR
Y1 0%
The solution to this differential equation is x;y; = constant .
To find the constant, use the boundary condition y; =1when x; =1.

Hence y;x; =1

As y\P=xy, P’ if y;x; =1, then y, must be I.T
Hence, the curve P-x goes through a maximum at x; =1. This is also an azeotrope (but a

trivial one).

5. Given
E
g~ = Appx1xy + A13x1x3 + A14X1X4 + Ax3X X3 + Apaxpxy + A34X3X4

where

This may not be immediately obvious. But y;x is the activity, and the activity of component 1 cannot reach unity for any x| less

than one because the solution will split into two phases of lower activity. See Fig. 6-25 in the text.
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Xy =n/ng

Xy =Xy [y

with np =ny +ny + 13 +ny the total number of moles.

Because

onr gE

RTIny, :( o
1

]P,T,nz 3,14
we find

2 2 2
RTInyy = A1px5 + A13x3 + A1ax +x2x3(A1p + 413 — Ap3)

+x2x4 (App + Ay — Apg) + X34 (Ap3 + Ay — A34)

6. Calculate T-y giving pressure and for x = 0.1, 0.2, ..., 0.9 — bubble-point calculation.
We have to solve the equilibrium equations:

QP =vyx;P’ (D

Because total pressure is low (below atmospheric) we assume vapor phase as ideal: ¢; = 1.
The activity coefficients are obtained from the equation for GE given in the data. Using Eq.
(6-47) of the text we obtain

Iny, = —2.1x§

(@)

Iny, = —2.1x12

As the pressure is fixed, temperature varies along with x; (and y;) and is bounded by the
saturation temperatures of the two components. These can be easily obtained from the vapor-
pressure equations. They are given in the form,

B

InP¥=4- 3
T+C @
from which we obtain the saturation temperature
r-—8 ¢ @

A—InP*
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For PS = 30 kPa, we obtain 7 =387.26 K for cyclohexanone (1) and T; =41559K for

phenol (2).
To obtain the 7-x;-y; diagram we assign values for the liquid mole fraction x;. Total pres-
sure is
P= ’YIXIPIS +’Yz.X'2pzs
or
P
o (5)

N
2
Y1X1+Y1X1F
1

To start the calculation we make an initial estimate of the temperature:

T:XITIS-I—Xszs (6)
For example, let us fix x; = 0.5: 7 =0.5x387.26+0.5x 41559 = 40142 K
With this temperature we obtain P’ and P; from Eq. (3), the pure-component vapor pres-

sure equations: P’ =47243kPa and Py =17918kPa Because we fixed x|, Eqgs. (2) give
v, = exp(-2.1x0.5%)=0.592 and y, = 0.592.

Next we recalculate P’ =73.482kPa from Eq. (5), which in turn gives a new temperature,

T =416.34 K, from the pure cyclohexanone vapor pressure equation.
The sequence of calculations is now repeated for this new temperature (we assume here that
activity coefficients are independent of temperature), yielding:

P =30.786 kPa; P’ = 71.426 kPa  [from Eq.(5)]

T¥ =41534K  [from Eq.(6)]

PS=71.552kPa; T$=41540K; Pj=29.798 kPa

After these values, the change in temperature is small and therefore additional iterations
leads to no significant further change in the remaining values.
We can now calculate the vapor phase mole fraction from

_ iR (05)x(0592)x (71.552)
P 30

=0.706

The whole process is repeated for a new liquid mole fraction.
The following figure shows the computed 7-x;-y; diagram for this system at 30 kPa.
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430

Temperature/K

380

0.0

0.2

0.4

Cyclohexanone Mole Fraction

0.6

87

Similarly, with the data calculated we can easily draw the corresponding y;-x; diagram,

shown in the figure below.

Vapor Mole Fraction Cyclohexanone

0.0

0.2

0.4

0.6

0.8

Liquid Mole Fracton Cyclohexanone

As both figures show, this system has an azeotrope at T ~ 421K and for the composition

x{*=03.



88

Solutions Manual

7. Assume g = Ax;x,,where 4 is a function of temperature. Then,

RTIny{" =RTInyy =4

But
0 _ 4
T-273 RT

Iny{ =015+

Because

agtiry -nf
oT T2

agf /T)  —10Rxx, —h*

or (T-273> T2

At x; =x, =05 and 7= 333K,
hE = A pich = 641 J mol ™!

a) From the equation for I?W we can obtain the infinite dilution partial molar enthalpy of water

in sulfuric acid solutions at 293 K and 1 bar as:

H? = lim H, = lim H, =-41.44 kJ mol!

x,—0 xy—1

b) The mixing process is schematically shown below.

Ha Hu
A w
W .
f Coaling
o I & —7 coils
(@] (@]
O ()
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Taking the liquid in the vessel as the system, a first law balance gives for this flow process:
dU=dQ+dW +H 4dn,+ H ,dn,,

where work W is dW =—PdV , done on environment by the rising liquid level, under constant
pressure.
Then,

dU+PV)=dH =dQ+H 4dn,+ H,dn,

Integrating between initial state (empty vessel) and final state (full vessel), because
H, =H/(T,P) of the pure acid and H,, = H,,(T,P) of the pure water are constant, we obtain

H=Q+nH 4+n,H, or Q=H-n4H,y-n,H,

But H =n4H 4 +n,H,,,and the equation above becomes

Q=ny(H,—Hy)+n,(H,-H,)=n,AH  +n,AH, = AH (1)

where n, = 1 mol and n,, = 2 mol in the final state.

In Eq. (1), the quantity (Ew —H,,) is given by the equation given in the data, because the
reference state in that equation has been chosen to be pure water at system 7 and P:
2
— 134x%

H,-H,=—— 4 ¥Jmol’! ©)
Y (140.7983x )2

We need now to calculate the quantity (H 4—H,), knowing (ﬁw —H,,). This can be done

by using the Gibbs-Duhem equation.
At constant 7 and P:

x4dH  +x,dH,=0 = dH;=-"%dH,=-—"44dH, 3)

Differentiating Eq. (2), at constant 7 and P, we obtain:

_ 2x 4(1+0.7983x 4)% —2(0.7983)x% (1+0.7983
A, = (134 k) mol 1) x 224 Xa)” ~ 207983 ) g

(1+0.7983x ;) A
“4)
:&“dm (kJ mol™1)
(1+0.7983x ,)
Therefore, from Egs. (3) and (4),
i, = —2080=x0) (kJ mol 1) (5)

A~ A
(1+0.7983x 4)°

Integrating Eq. (5) between composition x, and composition x, = 1 (pure acid) gives
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- — — T4 268(1-
HA_HA(XA:D:HA_HA:J. _208-xy) xA)3dx
| (140.7983x )

(6)

(kJ mol)~!

~133571(x - 0.1263) 4 _ T7451(1-x )2
(1+0.7983x )% || (1+0.7983x 4)

We can now calculate the heat load QO in Eq. (1). Setting n = n, + n,, = 3 mol, and using
Egs. (2) and (6) in (1),

Q:n_—74.51xA(l—xA)2 1345 (-x)
| (1+0.7983x )%  (1+0.7983x )

74.51x ,(1-x  )(1—x , +1.7983x ;)
=n > (7
(1+0.7983x ;)
—n —74.51XA(1—XA) (kJ mOl_l)
| 1+0.7983x

Substitution of » = 3 mol and x, = 1/3 gives the desired heat load:

0=-39.23 kJ

Q is negative because heat is removed from the system.

a) Yes, it’s possible. Slight positive deviations merely mean that the physical interaction be-
tween SO, and C,Hg makes a larger contribution to the excess Gibbs energy than does the
chemical interaction.

b)

E E
gSOZ —isobutene > g802 —n-butene-2

because the tendency to complex (which tends to make g£ negative) is stronger with n-butene-2.
Steric hindrance in isobutene is larger than in n-butene-2.
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10. The suggested procedure is to integrate numerically a suitable form of the Gibbs-Duhem

equation.
At low pressures, we may write the Gibbs-Duhem equation:

0
Q(L] +x_z(av_zJ “o
vi\ox ), Y2\ )
By assuming ideal-gas behavior,
nP _ A

1=

xlf)ls X] f)ls

o, ;(aﬁj_ A

8xl XIP]S 8x1 x12P1S

Similarly,

o2 1 [aﬁ}_ P

ox X, Py 0Oxy x%PZS

Substituting we find

X 0P _ Xy 0Py
f)l 6x1 P2 8x2

Because P=P, +P,, dP =dP, +dP,, then

on_opp
6x2 8x2 1- X2P]
x1 P
In different form:
AR, 1 AP
Ax, 1— x P Ax,
x1 P

For P-x data, we choose a small Ax, (say 0.05) and integrate to find AP, and thus P,. We

obtain P by difference: P, =P-P;.
This method is described by Boissanas, quoted in Prigogine and Defay, Chemical Thermo-
dynamics, page 346. It gives good agreement with experimental partial-pressure data for this par-

ticular system.

11. For a binary system, the Wilson equation gives
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A A
Iny; = —In(x, +x2A12)+x2{ 2___ 2l } (1)
x|+ A12x2 Xy +X1A21

A A
Iny, =~ In(x +x1A21)—x{ 22 } )
xp+xA 1 Xy XA

At infinite dilution these equations become
Iny{" =-InApp+(1-Ayy) 3)
Iny3 =-InAy - (A -1 4)
For y{° =120, y5 =3.89, solve Egs. (3) and (4) to find,

Ay =01220

Assuming ideal-gas behavior and neglecting Poynting correction, we may write:

NP =x7 P )
1P =xy7,Py (6)
P=x171P +x372P 7

From Perry’s, the saturation pressures at 45°C are:

P’ =0.188 bar

P} =0.0958 bar

To construct the P-x-y diagram:

1. Choose x; (or x,)
2. Calculate y; (or y,) from Eq. (5) and using Eqgs. (1) and (2)
3. Calculate P from Eq. (7).

12. The solution procedure would be:

1. Find P’and P; ateach 7.

2. At this low pressure, assume ideal-gas behavior and neglect Poynting correc-
tion:
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nP=x7R

WP =x7,R

For y’s use the Wilson equation with two parameters: Aj, and A,;. Assume that
(A1 —71p)and (Apy —Aqp) are independent of temperature.
Ajp and A, are, however, temperature-dependent as given by Eqs. (6-107) and (6-108).

3. Assume value of (A;; —Ap)and (Ay; —A;y)and calculate the total pressure:
Pcalc = xlylpls +x2y2P2S
4. Repeat; assuming new values. Keep repeating until P, is very close to 0.5
bar for every point; that is until

n
Z(Pcalc -P )2 is @ minimum
i=1

where n is the number of data points.

13.
a) 2-Butanone:
T
H (0] H H
Cyclohexane:
(CHy)s
6 groups CH,: R = 0.6744; O = 0.540
Molecule Group Number R Q
2-Butanone CH,CO 1 1.6724 1.488
CH,4 1 0.9011 0.848
CH, 1 0.6744 0.540
Cyclohexane CH, 6 0.6744 0.540

b) We use UNIFAC activity coefficient equations to calculate y; and y, for the equimolar mix-
ture at 75°C (for a detailed example of a similar UNIFAC calculation see Chapter 8 of The Prop-
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erties of Gases and Liquids by R.C. Reid, J.M. Prausnitz, B. E Poling (4™. Ed., McGraw-Hill,
1988).
We obtain:

Iny, = 1nyf°mb +Iny ] =0.01228+02595=027238 = y; =131

Iny, = lnygomb +Iny’® =0.01415+0.3420 = 035615 = 1y, =143

¢) Using UNIFAC we can calculate the activity coefficients as a function of composition at
75°C.
Total pressure is calculated from

P=x7 B +x7,P)
and the vapor-phase composition from

_ v 1B

Y1 P

Using Antoine vapor pressure equations at 75°C, we obtain for 2-butanone
P’ =0.8695 bar and for cyclohexane Py =0.8651 bar .

The following figures show the calculated results in the form of P-x;-y; and y;-x; dia-
grams.

Pressure/bar

0.7 - -

0.6 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

2-Butanone Mole Fraction
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Vapor Mole Fraction 2-Butanone

Liquid Mole Fracton 2-Butanone

0.6

0.8
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The table below shows the calculated activity coefficients from UNIFAC, vapor composi-
tion and total pressure.

X4 Y1 Y2 7 Plbar
0 4.38 1.00 0 0.8511
0.2 2.27 1.07 0.351 1.124
0.4 1.51 1.27 0.447 1.175
0.5 1.32 1.42 0.485 1.178
0.6 1.18 1.62 0.528 1.169
0.8 1.04 2.19 0.660 1.096
1.0 1.00 3.10 1.0 0.8695

Comparison of the calculated y’s in this table with those given in the data, indicate that the
latter are actually UNIFAC predictions and not experimental data. In the tables, at x; = 0 and x;

=1 the activity coefficients listed are, respectively,y{° and y5 . UNIFAC predicts y{° =438,

which compares well with the experimental ebulliometry data at 77.6°C, y{° = 3.70.

14. The UNIQUAC equation is

E E E
& = &combinatorial T &residual
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E
@ @ 0 0
Seomb _ . In—L 4 2y In—2+Z (x1qy In—+ x5 In—2)
RT x| X, 2 D, 0,
E
8res

Pl In(0; +0,721) —x29 In(65 +6;712)

@, = X1 0, = X191
X\ +xon X191 +X29>
a2 D1
Ty = exp(—?) To1 = eXP(—T)

The condition for instability of a binary liquid mixture is

24 .
0" Amix& <0 ()
ox? PT

where Acg is the molar change in Gibbs energy upon mixing, or

2 E
0 g2 +RT[L+LJ< 0
Oxj PT X X

Incipient instability occurs at

and

3
(a Amixg} -0
——s =
Ox P,

Given xy,x, and all parameters, we could determine if Eq. (1) is satisfied. However, the
procedure is long and tedious. It is easier to graph A ;g over the composition range and to
look for inflection points.

For the data given, phase separation occurs at -40°C.
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X n-Hexane

Apixg (ol

223.15K
233.15K
243.15K
253.15K
263.15K

onxee

15. If the two curves cross Amixg/RT is zero because
Amix&€ = Amixh =T Apixs

This is not possible, because A ;. ¢ must always be negative for two liquids to be miscible.

97
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16. Torelate y{"to H,;:

_ i
Yi 0
xifi
then,
. H
vE = lim | =%lim[£j—%
O\ xifi ) i Yi i
Assuming fl.0 =P’,
w Hij
Yi =—
P
then,
v = A1 ~ 2 1869
e 107
v9 = Hy _ 16 =1203
Poop 133
Using the van Laar equations,
AI
lnyl = )
1+ix—1
B’ XZ
B/
Iny, = 3
1+£,x—2
A Xl

we get
Iny{ =4 =0.625
InyS =B'=0.185
To solve for vapor composition (assuming ideal vapor and neglecting Poynting corrections),

nP=xyFA

2P =x72P

P= y1P+y2P
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At X1 =Xp 20.5,

62

Iny, :L5f 0.033 = vy =1.033

0.625

1422

( 0.185)
Iny, :&52:0.110 = v, =1.116

0.185

T+

0.625

Therefore,

3P = (0.5)%(1.033)x(1.07) = 0.55 bar

¥2P=(0.5)x(1.116)x (1.33) = 0.74 bar

P=0.55+0.74 =1.29 bar

» =0.55/1.29=0.426

Yo = 0.574

99

17. To estimate the vapor-phase composition, assume ideal vapor:
yiP = x[’YiPiS (i:L 23 3)
Then,

P:y1P+y2P+y3P

To find the activity coefficients, assume that gE /RT is given by a sum of Margules terms

[Eq. (6-149)]. Then,

Iny| = A{2x3 + A{3x3 +(Afy + Af3 — 433)xyx3
Inyy = Afyx? + Ap3x? +(Afy + A3 — Af3)x1x3

Inys = Af3x] + A33x3 + (A3 + 453 — Af»)xx,

We can find 4j,, A3, 453 from binary data.

(1

(@)

3)
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From (1-2) binary:

A
Iny{ =—=1n(13)= 0262
LAy (1.3)

A, =0262 at 320K

320

At 300K, A4j, =(0.262)x| —
12 =( ) (300

] =0.280 (assuming regular solution).

From (1-3) binary:

At azeotrope x| =y, X3 =)3

nP=x1 R

y3P = x373P5
Y1 =73 =P/f)ls =1.126

4 3

Iny; =—x

11 RT 2

A '
At X3 :0.5, ﬁ:A”) =0.475.

From (2-3) binary:

Iny, = —x%
At incipient instability,
4 _ )
RT¢
or

A 27°
R

C
A _ (AN =(2)x 270 =1.80
RT RT N T 300
Ay3 =1.80

With x; = x, = x3, from Egs. (1), (2) and (3):
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Then,

101

Iny, =-0.0322 = v1 =0.968
Iny, =0.409 = v1=1506
Iny3 =0.475 = Y1 =1.607
P =(1/3)x(0.968) x (0.533) = 0.172 bar
¥ P =(1/3)x(1.506) x (0.400) = 0.201 bar

y3P = (1/3)x (1607) x (0.533) = 0.286 bar

P=0.172+0.201 + 0.286 = 0.659 bar

Nn= 0.261
5 =0.305

3 =0.434

18. Using the 3-suffix Margules equation,

we obtain

At infinite dilution,

which gives

gF /RT = xyx,[A+ B(x| — x,)]

Iny, = (4+3B)x? - 4Bx3

Iny, = (A-3B)x} +4Bx}

Iny{"=4-B

Inyy =A+B

A=1.89
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B=-034

2,E
[6 g2 ] +RT(i+LJ<O
o7 Jpr XX

For instability to occur,

Rewriting gE as

gf = RT[(4- B)x| — (A-3B)x} - 2Bx}]

og” 2
= RTI(A=B)=2(4=3B)x ~ 6Bx} |
X1

aZgE
= RT[-2(A-3B)—12Bx,]
6x12

Thus, the condition for instability (at constant 7)) is:

RT{—2A+6B—IZBx1 +i+ ! }< 0
X1 1—X1

Finding the zeros of the function in brackets,

x; =0421 and x;=0352 intherange 0< x| <1.

Thus, instability at 7 is in the range

0.352 <x; <0.421

19.
a) At the azeotrope

i I
aXA T
With g% /RT of the form g /RT = Ax 4xp,

Iny 4 = Ax123

Inypg = AxiI
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Assuming an ideal vapor phase,

VaP=x 47 4Py

ygP=xpYpPg
P=x,y4P]+xpv5Ps

P = x ; exp(Ax%)P; + xp exp(Ax5 )Py

[;_Pj = P exp(Ax)(1-2x gxpA) + P exp(Axy)(—1+2xpx 44) = 0
X 4

P exp(Axlzg) =P exp(Axfl)

Ax% = In(P§ / P§)+ Ax’
At 30°C,
Py =0235bar; P =0.658bar; A=0.415

Then, x4 =0.30.

At 50°C,

P =0.539bar; Py =0.658bar; A4=0415
Then x4 =0.26.
At 70°C,

Py =1.119bar; Py =1367bar; 4=0.330
Then x4 =0.20.

b) Assuming ideal vapor,

Y4 =y4P/x 4P}

Yp=y4P/xpPg

At azeotrope, x4 =y 4, xg = yg. Then



Solutions Manual

YA:P/Pj

YB = P/Pg
Taking the ratio

valvp="Ps!Py
In(y4/yg)=InPy —InPj

= 12.12—@—11.92+M
T T

=0.20

Because

Iny 4 = Axé and Inyp = Ax124,
— 2 2N _
In(y 4/yp)=A(xz—x3)=02

1

A=———  Dbecause 0<x,<I
5-10x 4

If |A| > 0.2 there is an azeotrope.
The pure component boiling points are:

A o
i =67°C

B o
(B =61°C

104

In the range 61°C << 67°C, 4 is always larger than 0.2. Therefore, the azeotrope exists.

¢) The enthalpy of mixing equation cannot be totally consistent since the expression for gE is

quadratic in mole fraction and the expression for A/ is cubic. However, they may be close.

To check this, we use the Gibbs-Helmholtz equation:

o¢® IRT  —h®
oT RT?
E

g

2—=A(T)x 4x

RT (T)x 4xp

E
aga# =X ,xp 2—’; = x x(~0.00425)
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Because hf = A h,

0
AmgTh — = (323) x (0.00425)x 4xp = 1373x 4xp

The other data indicate

Amixh® (1020 +0.112x ;)
— =l . X 4 )X 4X
RT AIVYA'B
Looking at selected values:

X, ApixshMIRT A WIRT
0.1 0.123 0.093
0.2 0.220 0.167
0.3 0.288 0.221
0.4 0.330 0.256
0.5 0.343 0.269
0.6 0.330 0.261
0.7 0.288 0.231
0.8 0.220 0.178
0.9 0.123 0.101

The above shows the degree of inconsistency of the two sets of data.






1.

SOLUTIONS TO PROBLEM

CHAPTEHR

Using regular-solution theory and data for A in CS, we find the solubility parameter for A.

Then, we predict vapor-liquid equilibria for the A/toluene system.
Let B refer to toluene and C refer to CS, From regular-solution theory,

RTIny o =0 @2 (35 ~5¢) (for A in CS,)
Further, assuming ideal vapor phase, we have

VAP =Py = xp7 APy

A= 05 x133)

or
Iny, =0.185
Then,
1/2

RTInyp 1
Op —0c =% —

Ua CDC

with

vp =200 cm’ mol!  and @ =0.234

5 —8c =£6.30 (Jem>)!/2

S

7

107
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For liquid hydrocarbons, & is approximately 12-18 (J cm=)2. Therefore, we take the

smaller value.
For A in toluene,

2
RTlnyA :'UAq)2B(8A _8]3)

or
ya =118

RTIH'YB = 'UB(Di(SA —SB)Z

or
YB = 1.37

For ideal vapor,
PZPA +PB :xAYAP/i +xByBPS =253 kPa
Hence,

ya =031

yg = 0.69

Excess properties (hE, sE ) are defined in reference to an ideal (in the sense of Raoult’s law)
mixture of pure components.

The partial molar quantities hE and 5% are the contributions to these excess properties per

differential amount added to the solution.
The “pure” acetic acid is highly dimerized, so as the first bits go into solution thse dimers

must be broken up. This will require energy (P_zlE > 0) and will increase the entropy more than is

accounted for by the ideal mixing term (s'lE >0).
As x| gets larger, some dimer will begin to exist in the solution, so these effects will dimin-
ish. Therefore, at small x;, the curves should look something like this:
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0.5 Xq

3. The K factors for hexane (1) and benzene (2) (neglecting Poynting corrections and assuming
ideal-vapor phase) are:

PS
K] _ Y147
P
PS
K, = Y217
P

where
P=x171 P +x372P)
Using regular-solution theory,

RTIny, =v,®3(5, -3,)’

RTlny2 = ”02(1)%(81 —62)2
The volume fractions are
@, =0.389 D, =0.611

From the above equations,

vy =132 v, =108

P = (0.3)x(1.32)x(0.533) + (0.7)x(1.08)x(0.380) = 0.498 bar

~(1.32)x(0.533)

Ky =Koy, = =141

~ _ (1.08)x(0.38)
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4. Ether and pentachloroethane hydrogen bond with each other (but not with themselves).
Then, g% <0.

gE

5. The relative volatility of A and B is

_a/xa)

(g /xp)

aAB
Assuming ideal vapor phase and neglecting Poynting corrections,
VAP =xA7APA

ygP = xpypPls

At the azeotrope, x5 =y, and

From regular-solution theory,
2 2
RTII’I'YA = ,UACDB(SA _6B)

RTInyp =vp®2 (5, —05)
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Because vy =vUpg, Yo =Yg, then Py =P3.

For the ternary mixture,
RTln'Yl' = 'Ul'(6[' —g)z
g = ZCDI'SI'
i
As ®, =0 =02 and O =06, §=172 (Jem>)"2.
Then

_(100)x(14.3-17.2)°
T (8.31451)x(300)

(100)x(16.4—17.2)>
T (8.31451)x(300)

B

111

6. Assuming ideal vapor phase and neglecting Poynting corrections,
nP=xy P
vaP = xy72P)
P=xiv\ P +x37,P
Using regular-solution theory,
_ 2 2
RTIny, =v;®3(3; - 8;)
_ 2 2
RTIny, =v,®7(8; - 6,)
Because v; =v,, we can rewrite [Eqgs. (7-25) and (7-26)]:
RTIny; =13 (8 - 8,)
2 2
RTIny, =v5xi (8) - 8,)

As v =v5 =160 ¢cm3 mol-l,

(1
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v = exp(0.616x3)

v, = exp(0.616x7)
Substitution in Eq. (1) gives

P =0.533exp(0.616x3 ) + 0.800 exp(0.616x7)

Py
6x1 T

0.616x3 = 0.40547 +0.16x7

At the azeotrope,

Thus, after differentiation,

Solving for x4,

X1 = 0.171

7. Neglecting vapor-phase non-idealities and Poynting corrections, the total pressure, P, is
P=xavaPx +xpyphy

Because the two fluids are similar in size, simple and nonpolar, we can assume that y’s are
given by two-suffix Margules equations:

4 5

Iy = ——x

VAT Rr B

A4 5

Inyp = ——x

VBT RrtA
As xp =xg =05,

P=0.667=0.5x|exp A (0.427+0.493)
4RT

A =4696 J mol-!

From Eq. (6-144) of the text,

T¢ ==
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T¢=282K

If one considers the effect of non-randomness (based on the quasichemical approximation),
Eq. (7-110) gives
A

T¢=——=253K
223R

(assuming that % = % = constant and that the temperature dependence is given by Iny propor-

tional to 1/7).
Thus, random mixing predicts a value higher than that given by quasichemical theory. The
observed consolute temperature is likely to be lower than both.

Let:

1 = benzene

2 = n-butane

There are three unknowns: x;, y;, and V/F.

To solve for them, we use two equilibrium equations and one mass balance.
Assuming ideal vapor and neglecting Poynting corrections:

nP=x7,7
(I-yDP=(-x))y, 5

(-
F F

Using regular-solution theory,

RTIny; =v,03(3; -8,)



Solutions Manual 114

with v; =92 ¢cm3 mol! and v, = 106 cm3 mol-!.
Then,

71 = exp(0.828D3)

v, = exp(0.950D7)

Substitution gives

;= 0.368x; exp(0.828D3) 1)

(1 yy) = 4.76(1 x; ) exp(0.9500) 2)
14 V

OSZ(ijl +(1—ijl (3)

@, and @, are related to x; and x, by Eqs. (7-25) and (7-26).
To solve Egs. (1), (2), and (3) for x;, y;, and V'/F, assume first that y; = 1. This gives,

x, =0.856 ¥ =0315 %: 0.658

A second approximation (y; #1) gives

X = )Cc()H6 =0.94

3 =0.35

r =0.741
F

9. Asderived in Sec. 7.2 of the text, the regular-solution equations can be written in the van
Laar form

Axix
E 112
i S S 1
{ (D

— X +X
Bl 2

where parameters A and B are related to pure-component liquid molar volume and solubility pa-
rameters as follows [Eqs. (7-38) and (7-39)]:
A=vUp (35 —3p)°
2
B=ug(8, —3p)
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Substituting the given liquid molar volumes and solubility parameters, we obtain

A= (120 cm® mol ) x[(18—-12)2T ecm™>]=4320 J mol™!
A3)
B=(180 cm> mol ) x[(18—-12)2J cm™>]= 6480 J mol ™!

As discussed in Section 6-12, the temperature and composition at the consolute point are

found from solving:
(amaAj _[@mnay | @
axA T,P axi TP

Upon substitution of Eq. (1) into Eq. (4), the results are given in Eq. (6-146) in the text:

[(A4/B)? +1-(A4/B)]V? - (4/B)
1-(A/B)

¢ _
XA—

)

o _ 2x§ (1-x§)(4% / B)
R[(A/ B)x§ +(1-x)P

where superscript ¢ denotes consolute.
Substituting Eq. (3) into Eq. (5), we finally obtain

x§ = 0.646

T¢=328K

10. For each phase we choose the standard-state fugacity for cyclohexane as its pure subcooled
liquid at 25°C. The equation of equilibrium is

Ay =<y )

where subscript 3 denotes cyclohexane and superscripts (1) and (2) denote, respectively, carbon
disulfide phase and perfluoro-n-heptane phase.
Rearrangement of Eq. (1) gives

NMOREMC)

MO0

2
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Because phase (1) contains only carbon disulfide and a trace amount of cyclohexane,

whereas phase (2) contains only perfluoro-n-heptane and a trace amount of cylohexane, ygD and

ygz) are essentially activity coefficients at the infinite-dilution limit of cyclohexane.

Hence, we can write
(1) @71
x
*3 73
where superscript oo denotes the infinite-dilution limit of cyclohexane.

. ml* @1 . )
From the regular-solution theory [Eq. (7-37)], |73} and |v3 are given by:

© v
1H[Y(31)J :R_3T(61 ~83)°
“4)

QT Y3 (5, _5.)
in 7 | =228 -53)

Substituting the pure-component liquid molar volumes and solubility parameters, we obtain

0 3 -1
1n[ygl>] - (109 = HIOI ) x[(20.5—16.8)2J cm'ﬂ — 0.602
(8314 T mol™! K™)x (298 K)

(10)

" 3ol
ln[yg)} _ (1o9cnll n;ol ) x[(12.3—16.8)2Jcm'3}:0.891
(8314 T mol” K™)x (298 K)

Substituting Eq. (5) into Eq. (3), we have
K=1.34

11. From the definition of the solubility parameter, J,

Au,

52 _ complete vaporization

”UL

[Complete vaporization means going from saturated liquid to ideal gas at constant 7]
Then,
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0 ;L
[h h JRJ;—RTG—ZL)
2

RT,
- :LRT
PS
n0 —ht
2
I P
P. zLTR ZL
Because
h0 —nt
=f(Tp,®
RT, S(Tp,®)
and
vV _ L _ S _
z' = f(Ip,®) 2" = f(Tp,0) Pr = f(Tg,®)
for Tz <1,

2
% = fO(Tx) + 0 fD(Ty) + (higher terms)

c

[Reference: Lyckman et al., 1965, Chem. Eng. Sci., 20: 703].

12.
a) Pure methanol is hydrogen-bonded to dimers, trimers, etc. In dilute solution (in iso-octante),
methanol is a monomer. For an order-of-magnitude estimate, we can assume that, to make a
monomer, approximately one hydrogen bond must be broken. Thus %% = 12 kJ mol-!.

b) From solubility parameters we get (roughly) an endothermic heat of 263 J mol-!. The molar
specific heat is (roughly) 125 J K-! mol-! . Thus, Az~ —2°C.

¢) We want a Lewis acid that can hook on to the double bond in hexene.

Good Solvents are:
Dimethyl sulfoxide

Sulfur Dioxide Strong Lewis acids

Acetonitrile
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Poor Solvents are:

Ammonia
Weak Lewis acids
Aniline

It is also important that the solvent should not be something that prefers self-interaction
than that with hexene molecules. Strongly hydrogen-bonded liquids (e.g. water and most alco-
hols) would therefore be poor solvents.

13. Let (HA) be the acid. In ionized form,

HA == H" + A-

Hexane

Water

Equilibrium constants are defined as

(HA)W
K= n),

_HHH) _ (A7)
(HAw  (HA)y

In hexane: Cy = (HA)y
Inwater:  Cyy = (HA)y + (A7) = (HA)y + m
= K(HA)y, + K Ko (HA),,
Cyw = KiCyy + KKy Cyy

Thus,



Solutions Manual 119

with
JKK,
and
Ki=b

14.

Benzene

Ag 2 1BA;
1
[V

A

W

Water

Assume constant distribution coefficient and “reaction” equilibrium.

A
K] = _B
Ay
At
K, = 3
(48)
In water:
Cw = 4w
In benzene:
CB = AB + 3AT

Cp = K Cy +3K,K{CY,

S gy 3K,KCY,
Cw
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15.

C .
Thus, plot C_B as a function of C%V .

w
Slope is 3K2K13 and intercept is K.

a) Pure CH,Cl, and acetone do not hydrogen bond themselves but some hydrogen bonding is
likely to occur between dissimilar pairs, which explains the negative deviations from Raoult’s
law observed for this system.

Pure methanol is highly hydrogen bonded. However, in dilute solutions of CH,Cl,, metha-

nol exists primarily as monomer. Hydrogen bonding between methanol and CH,Cl, is likely to

be weak. (Note that at infinite dilution, activity coefficient y{° indicates the effect on a molecule
1 when surrounded by molecules of the other component).

b) Nitroethane has a large dipole moment. Both n-hexane and benzene are non-polar but, due
to m electrons, benzene is more polarizable. Therefore, we expect nitroethane/benzene interac-
tions to be stronger than those for nitroethane/n-hexane. Thus Y, ccthane I #-hexane is larger than

that in benzene.

¢) Both CHCIl; and methanol are polar and slightly acidic. Although methanol has a slightly
higher dipole moment, CHCl; is likely to solvate the coal tar more easily because methanol tends

to form strong hydrogen bonds with itself.
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SOLUTIONS T O PROBLEMS

Given

For r >>1,

If y = 0.44,

As defined,

Because

CHAPTER

InTy° = (l—lj+x

,
InT° =1+y
InT° =144 = I =422

rP=- 9 __42 =  a=422x10"
D, 1074

A

a =
P]S

P =(422x 1074) % (4.49) = 0.0019 bar

For a non-volatile polymer, P, =0. Therefore,

P =P =0.0019 bar

8

121
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2. We can use the data for the Henry’s-law region to evaluate the Flory interaction parameter, ¥,
and then predict results at higher concentration.

Let:
1 = solvent
2 = polymer
w; = weight fraction
®; = volume fraction

Then,
W
v
D, = 1 __ P
Up+U; W W
P1 P2
In the Henry’s law region,
w; — 0, Wy —> 1

o __fi _whpy
cD] q)l]rlo q)lfio

But, as w; =0,

Oy =wip,y /py
@2 :l
Then,
@ _ P
D pyff
0 o
If £0 = ps,

o _ h P (0783)x(183)

O @0 p,pr (L1D)x(3340/760)

From Flory-Huggins theory (7 is large),

aq 2
In—=®, +¢®
(O} 27X

If (Dl—)l,

In(2.94)=1+y =  x=0.078
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At higher concentrations (w; = 0.5), assume y, # x(w;):

D, = (0.5x(/1.1D =0414 (D, =0.586)
(0.5)x(1/1.11)+(0.5)x (1/0.783)

Then,

ln;—l = 0.414+0.078 x (0.414)2
1

A 153 or  a =0898
1

P~ fi=af =~ aP =(0.898)x (3340) = 3000 torr

P =3000 torr = 3.9 bar

a) The generalized van der Waals partition is given by [Eq. (8-39)]

(7 N . . £ Y
Q(T’V’N)ZE[FJ [9ext ] [@ine (D] {eXp[—zk" H (1)

Following the discussion on pages 442 and 443 of the textbook, we further have

rc
Y
A3 Gext A3

E, -rsm

(@)

Substituting Eq. (2) into Eq. (1) yields
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InQ =—InN'- NrcInA® + NreIn(tro*)
(3)

U 13 Nrs
+3Nrcln|| — | —1|+ Nlngj, + n
o 20kT

Because the first, second, third and fifth terms on the right-hand side of Eq. (3) are only
functions of temperature, the equation of state is given by

i_(aanJ _ 1 (amQ
kT oV Jyr Nrl ov )y

4
_ 1] 3Nre 17)_2/3 N Nrsm( 1
Nr| @3-\ 3u=1/3 | 2kT \ o?
We can rewrite Eq. (4) as
Py 97 )
T #1731 T
where the reduced properties are defined by
T sM
%2
B i* _ 2v° P (6)
P sM
.U
TU=—
U*
Equation (5) is the Flory equation of state [Eq. (8-45) of the textbook].
b) The configurational partition function [Eqgs. (8-82) and (8-83]
C E
=0 exp| ——
0=0 p( ij
(7
v ivH)Y 1

C
= (constant
o =( ) Ny ! N! (V/U*)N(V*D

where

v

Z=Ny+rN
*

v
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E-

“Zen, | N ®)
2 V/v")
Combining Egs. (7) and (8) gives
InQ = In(constant) + L*ln (LJ _
U

U* *

—InNy! —InN! —N(r—l)ln(z*) 9
v

+ e* (U rN)? [L*j y2

U
where
. Z €
&g =——-
2 kT
(10)
lnNOI:anLJ—rN}!
U*
Ll
v v v
The equation of state is thus given by
P _(0lnQ
kT v Inr
:Lln[lj{ljv 1/v") 1
vt \vt 7N v v
1
—iln[l—rNj—[L— N] Vo L
v \v* 7N l—rN v
'Z}*
% -2
N -1) I/ rer Ny L
Viv* v

We can rewrite
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7N (12)
. N
+0-1+——¢
r Vv
o1
r U To
where
F L __T
75 ze/2k
~ P P
P=== (13)
P ze/2vu
. U
’Z}:_
v*

Equation (12) is the Sanchez-Lacombe lattice-fluid equation of state [Eq. (8-84) of the text-
book].

4. The Flory-Huggins equation for the activity of the solvent [Eq. (8-11)] is
11’1a1 :ln(l—®2)+[l——)®2 +X(Dz (1)
r

Conditions for incipient instability give [analogous to Egs. (6-141) and (6-142)]:
1
0D, P

% Ing

%2
o0,

=0

P,T
Equivalently, we have
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2

because
* *
q)l +CD2 =1

Substituting Eq. (1) into Eq. (2), we obtain

C
1- @,
2
1
-2¢“=0
*C
1-0,
where superscript ¢ stands for critical.
Hence, we obtain
*C 1
) =
1+712

5. The Flory-Huggins equation for the activity coefficient of HMDS (1) [Eq. (8-12)] with ¢y =0

1S
Iny, :1{1—(1—%@;}(1—1}(1)3
r r

Using data in Table 8-5 of the text, calculated molecular characteristic volumes V™, ratios
of molecular segments » and activity coefficients of HMDS (at d); =0.8) are given in the fol-
lowing table:
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Substance V= vspMn . Vz* / Vl* Iny, ((I); -0.8)
(cm3 mol1)

HMDS 162.30 - -
PDMS 3 521.53 3.21 -0.249
PDMS 10 832.89 5.13 -0.389
PDMS 20 1313.8 8.09 -0.528
PDMS 100 3507.8 21.61 -0.677
PDMS 350 5530.1 34.07 -0.722
PDMS 1000 6604.8 40.70 -0.735
PDMS 00 o0 -0.809

As we increase the molecular weight of PDMS, Iny; becomes more negative. y; is smaller
than unity and increasingly deviates from unity as the molecular weight of PDMS is increased.

This example illustrates the effect of differences in molecular sizes of HMDS and various
PDMS with x =0 (Fig. 8-3).

6. The flux of gas i through the membrane is given by, Eq. (8-118)

D; (G G pG
J; =5, : (SiFPiF _SiPPiP) (1
M

Because solubility coefficients for both O, and N, in the feed and permeate are assumed to
be equal and the permeate pressure is vacuum, Eq. (1) reduces to

G
_DS p

iF

J

1 6M
2

1

DS’

B
SM Yil'p

where y; and Py (Pp =2x 10° Pa) denote, respectively, the mole fraction of component i and the

total pressure of the feed.
For the feed mixture (air) we have

Yo, =021

)
N, =0.79

Substituting Eq. (3) and the given data for membrane thickness, solubility and diffusion
coefficients into Eq. (2), the corresponding fluxes of O, and N, are
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Jo, =0.148x107 m® m? s
2

Jn, =0.197x107° m? m? s7!
2

The separation factor is defined by [Eq. (8-121)]

=2.79

Although o, /N, >1, the net flux of N, is larger than that of O, due to the difference in

partial pressures in the feed.

7. [If the feed pressure were low, we could use Eq. (8-112) to calculate Jj, the flux of carbon diox-
ide, and J,, the flux of methane. Equation (8-113) then gives the composition () of the perme-

ate.

However, because the pressure of the feed is high, we must allow for the effect of pressure
on nonideality of the gas phase.

Equation (8-111) is

Dy(m_ M
Ji :_(CIF_CIP) (1
S
where clM is the concentration of carbon dioxide in the membrane; subscripts F' and P refer to
feed and permeate.
To find ¢, we use the equilibrium relation

T,P
01 Por) {H M exp("iﬂ @)
1 1F 1¢1 RT B

where | and T, are Henry’s constant and partial molar volume for carbon dioxide in the mem-

brane, both at 300 K and 100 bar.
Fugacity coefficient ¢, is given by the virial equation of state, truncated after the second

virial coefficient [Eq. (5-33)]:
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2
P
Ing, = {ZzyiBli — Bhixt }ﬁ

i=1

€)

2 2
Bnixt = ZZ)’LV i Bij

i=1 j=1

Substituting the given temperature, pressure and second virial coefficients into Eq. (3), we
obtain

¢; =0.729
Substituting Eq. (4) and all other given data into Eq. (2) yields

M =0314 mol L @)

To find c% we use the equilibrium relation

01Pe)p = (Hic!")p (5)
where Pp =1 bar and @;p =1.
Hence, Eq. (5) reduces to

c% = yll_9 mol L™ (6)

The quantity y;p is an unknown in this problem.
Substituting Egs. (4) and (6) into Eq. (1) gives

-6
gy | el A0 5145107 ~ 2P 13 (7)
0.1 19

Cl’Il2 S

Applying the same procedure for methane (2), we obtain

-6
Jy | oL | LS00 55103 Z22P 4 13 (8)
om? s 0.1 50

m2

The (steady-state) mole fraction of carbon dioxide in the permeate is given by [Eq. (8-113)]

g1
= 9
e Ji+J, ®
Further, the mass conservation gives
np +y2p=1 (10)

Substituting Eqgs. (7), (8) and (10) into Eq. (9) gives y;p =0.168 for carbon dioxide in the

permeate.
Therefore, for methane in the permeate, y,p = 0.832.
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8.
a) Flux of water through the membrane is given by Eq. (8-128):
permeability L L v,,(Pr —Pp)
J, =] ———|x - exp| —————*= 1
" ( thickness j {XWF wp xp{ RT O

where vavP =1 (pure water in the permeate); Pp = P, = 0.0312 atm.
To calculate concentration of water in the feed, we use

(B)F =(x5B)F )
with

P} =0.0312 atm

P,r=(1 -0.0184)x(0.0312) atm
Therefore, we obtain
xk=0.9816
Because the permeate is pure water, we obtain

-1
= _ 18.015 g mol

~vu, —=18.069 cm® mol”™!
0.997 gem

The feed pressure is thus given by

-5 -2 -1
7.2x10_4gcm_2s_1:(2'6><10 gemem © S ]

10x10™* cm

3 -1 _
><{0.9816—(1)xexp{_(18'069 em” mol”) x (P~ 0.0312 atm)}

(82.06 atm L K~! mol™!)x (298.15 K)

|——

Therefore, the feed pressure is

Pr=63.93 atm

b)

1x10% gallons/day = 3785.4 m>/day = 0.0438 m>/s = 43.67 kg/s
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2 1 43.67x10° gs~!

Flux =7.2x107™ gem 5
(A cm®)

3)

where A4 is the membrane area needed.
Solving Eq. (3) for the area, we get

A=6.07x10" cm? =6.07x10° m? = 6.5x10* ft>



SOLUTIONS TO PROBLEWMS

CHAPTER9

The solubility product is the equilibrium constant for the reaction

AgCl <—= Ag" + CI
Solid Aqueous solution

defined as
Ksp = (aAg+ )

being the standard states the pure solid AgCl and the ideal dilute 1-molal aqueous solution for
each ion.

. . . 1 AgCl .
a) Let S be the solubility of AgCl in pure water, in oo ng (a molality).
kg water

Dpgt =V agtS o= =V

Ksp=(a, g )=0, )0 )82 =(y+ ) (1)

Because the solution is very dilute, y4 ~1 and S~ ,/Kgp and is of the order of 10-> molal

and therefore the ionic strength is also very low: I ~131x107> molal. Therefore we may apply
the Debye-Hiickel limiting law.

I=%[m><(+1)2+m><(—1)2]=m=5

Using Eq. (9-50a) of the text,

133
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logy (™ = ~0510 |1 x (-1} * =~05105" o
We now replace vy, given by Eq. (2) into Eq. (1) and solve for the solubility S:
1/2
[(1070510577) 512 = 172 x 10710

S$=1.31x10"3 mol kg™! (y+~10)

b) With the addition of NaCl the ionic strength increases and we need to evaluate y, because
now the solution is not very dilute and therefore we don't have y, = 1.0 .

Let S be the new solubility of AgCl in this aqueous solution that contains NaCl. The mola-
lities are

m =S m__ =5+0.01
Agt Cl

The total ionic strength (due almost exclusively to NaCl because S is small) is

I= %[s X (+1)2 + 8 x (=1)> +0.01x (+1)% +0.01 x (~1)2] = 0.01 mol kg™

We use in this case the extended limiting law [Eq. (9-52)] with 4, =1174 kgl/2 mol /2

1174 x (0.01)2
Iny, =—(—1/)2 = y,=090
1+ (0.01)

As in a),

KSP = (aAg+ )(aCI‘ ) = (YAg+ )(YCl— )(mAg+ )(mCI_ )

=(12)*(S)(S+0.01)=1.72x10710
or substituting y, =0.90,
S(S+0.01)=212x10710

Because S is small and S << 0.01, we obtain S~ 2.12x10°® mol kgl

The addition of NaCl reduces the AgCl solubility from 1.31x10-3 mol kg! [as calculated in
a) for pure water] to 2.12x108 mol kg! (in a 0.01 molal NaCl aqueous solution). This is the
common ion (“salting out”) effect.
¢) Similarly, let S be the new AgCl solubility.

Molalities are:

m =S m._ _ =5

Again, the ionic strength is almost exclusively due to NaNOj:
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1 =0.01 mol kg_1 and v, =090

KSP = (aAg+ )(acr ) = (yAg+ )(ycr )(mAg+ )(mcr )

= (1)) =1.72x1071°

S=1.46x10"> mol kg

Compared to the solubility of AgCl in pure water, the solubility of AgCl in a 0.01 molal
NaNO; aqueous solution increases by roughly 10%, because the higher ionic strength reduces

the activity of Ag™ and Cl- ions and causes more AgCl to dissolve (“salting in” effect).

2. The solubility product is the equilibrium constant for the reaction (Pbl, is a 1-2 electrolyte)

Pbl, < Pb** + 2I

Solid Aqueous solution

defined as
Ksp=(ay2 @) =(1:)’S>

being the standard states the pure solid Pbl, and the ideal dilute 1-molal aqueous solution for
. . . o . . 1 Pbl

each ion. In the above equation, S is the solubility of Pbl, in pure water, in rlr(lo—tz (a mo-
g water

lality). Because the solution is very dilute, y+ =1 and
Kgp =(8)° = (166 x1073)? = 4.57x 1077

For the solution with KI the ionic strength increases and we need to evaluate vy, because
now the solution is not very dilute and therefore we may not have y, =~ 1.0 .

Let S be the new solubility of Pbl, in this aqueous solution that contains KI. The molalities
are

My, = S m_ = 28+0.01 me, = 0.01
The total ionic strength is

I= %[ZS X (=1)% + S x (+2)% +0.01 x (+1)% +0.01 x (=1)*>]= (35 +0.01) mol kg (1)

We use in this case the extended limiting law [Eq. (9-52)] with 4, = 1174 kgl/2 mol /2
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1174 0012
Iny, = - 74 x (3S + 1/)2 @
1+(3S+0.01)
Simultaneous solution of Egs. (1) and (2) gives
Yi = 0.88
S=1.89x10" mol kg!
3. The solubility product for Pbl, in an aqueous solution is
logKgp =3logm, + 3logys (1)
where
my =myo. =m
m_=m._ = 2m (2)
5 1/3
my = [m(Zm) J =1.587m
With [ = %(22m +2m)=3m Eq. (9-50a) gives
logy, =—0.510x(2)x (3m)"/? 3)
With m=1.66x10"> mol kg'1 we obtain
logKSP =-7.953 (4)

For the solutions containing sodium chloride or potassium iodide saturated with Pbl,, we

have

logKgp =—7.953 =3xlogm, — 0.510x(2)x1'"?

For the NaCl solution, we write

)
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Mo = m m . = 2m M+ = Moo = 0.01

5 1/3
m. z[mx(2m) } —1.587m

I = %[22;?1 L 2m o+ 2x (0.01)} = 3m +0.01
Substitution in Eq. (1) yields

m =1.89 mol kg'1

For the KI solution, we write

My os = m m - =2m+0.01 m . =0.01

5 1/3
my = [mx(Zm +0.01) }

= %[(22)x m2m+ 2% (0.01)} —3m +0.01
Substitution in Eq. (1) yields

m =0.24 mol kg™ !

For both systems, calculated and experimental values are in good agreement. The large de-
crease in Pbl, solubility in the KI solution follows because all iodide ions are included in 724
This reduction in solubility is called the common-ion effect.

The dissociation of acetic acid is represented by
CH;COOH <—= H" +CH;COOH"
or schematically
AH — H' + A"

The dissociation constant is
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(GH+ )(aH* )

AaH

K =1.758x10" =

_ ) ) GE)Y_ Omg Yom ) (A

LT O S 1

Designating by o the extent of ionization, and by m the stoichiometric molality of acetic

acid, in dilute solutions we may assume ap =d,_ =a and a gt = Mo Further, the activity

of undissociated acetic acid approaches its molality at infinite dilution.
Assuming that the activity coefficients are unity (very dilute solutions) we have
2
(@)@ _ o
m-o m-ao

K=1758x10"° =

For a m = 1073 molal aqueous solution, the equation above gives o = 124 x 1074,
The fraction of acetic acid ionized is:

-4
o _ 124 x10 —0.124

m  1x1073

5. In SI units, the Debye length is defined by Eq. (9-47) of the text:

172
_1_| RTeqe,
®o= 22
2d;Nye“l
where d_ is the density of the solvent in kg m™3. For water at 25°C, d, = 997 kg m™.

The ionic strength is 7/ = 0.001 mol kg! for the 0.001 M solution and 7 = 0. 1 mol kg-! for

the 0.1 M solution.
Substitution of values gives the values for the Debye length k! (in nm) presented in the

following table:

Solution Water Methanol
0.001 M 9.6 6.1
0.1 M 0.96 0.61

We see that k! decreases ten times with a hundredfold increase in concentration. For the so-
lutions at higher concentrations, shielding effects are more important and «! is low. Further, the
Debye length increases with increasing dielectric constant: when ¢, is large (as in water), the
ionic atmosphere is weak and the coulombic interactions are strongly reduced.
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a) The molality of NaCl in seawater is

£ mol NaCl
58.5

(100 —-3.5) g water

[ 3.5 J
= \983) g0 MO

© (100-3.5) kg

MNaCl =

=0.620 mol/kg water

The ionic strength is given by

1 2 2 y_ . _
1= E(mNa+ ZNa+ tm ZCl— )=m=0.620 mol/kg water

which is a relatively high value.
Also,

V=V TV =2

The molar volume of water at 25°C is

M, 18 g/mol

Uw—d

= 7 = 1805 cm? mol’!
W 0.997 g/ cm

To obtain the molal osmotic coefficient, ¢, we need an expression for y, in terms of the
ionic strength I (= m).
Since solution is not dilute, we use Bromley’s model:

4,12 , 0138+ 138B)1

T 3 +2.303B/
1+7 (1+1.51)

Iny, =-

with, for NaCl at 25°C, 4, =1.174 kgl/2 mol 2 and B =0.0574 kgl/2 mol 2.
From Eq. (9-11) of the text (reminding that in this case I = m),
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/
(1):1+%’L[dlnyir

1/2 I
_1——J'0 iy dl +(0.138+1.388)————
21+1

(1+1.51)?
o/
_(0.138+1.38B) s B J‘
I (1+151) 2303 Jo

Performing the integrations, we obtain:

o=1-A1 1012 o1y ——1
1 1+1"2

+(O.138+1.383){ 1431
15

L nas1sn 1230328
(1+1.50?% 151 2

Substituting 4,=1.174, B=10.0574, and 7/ = 0.62 we obtain ¢ = 0.924.

b) From the expression that relates the osmotic pressure, m, to the molal osmotic coefficient, ¢,
we obtain

_ VRTM,,
10007)l

= om

_(2)x(8.314 TK ! mol")x(298.15 K)x (18 g mol ')
(1000)x (18.05x107%)

% (0.924)x(0.620 molkg™")

=2.83x10° Pascal =28.3 bar ~ 28 atm

Linear interpolation from osmotic pressure data of aqueous NaCl listed in Perry gives for m
=0.62 mol kg1, 28.0 atm, in good agreement with our calculated osmotic pressure.

7. For K,SO4, which is a 2-1 electrolyte, we have
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my=mg. =2m ; z, =1

m_=m, =m ; z_=-2

S0%”
1 2
125(2m+2 m)=3m; v,=2, v_=1, v=3

A, |z, z_ 12 A
(m)=Y|+—|+bI = b=y

z, Z_|(3m)1/2
Iny
14+ Ba'? 3ml " 14 BaGm)(3m)'?

Y

With
y(im) =0.4 form=0.12 mol kg''; 4,=1.174 kg'? mol™?; B=033kg"? mol V2A; a=4A

we obtain

1/2
oL 0. (L174)x(2)x(036) kg mol~!
0.36 1+(0.33)x (4)x (0.36) /2

=-0.362 kg mol !

For m=0.33 mol kgfl, we obtain y; =0.25 (the experimental value is 0.275).

To use Eq. (9-25) for calculating the activity of water, we first need to calculate the osmotic
coefficient, ¢.

¢ —1- 1.1374 (2)><(3><0.33)1/26(y)— 0.3615X2(3><0.33)

where

y=(0.33)x4x(3x0.33)"2 =1.32
and

o(y=132)= [1+1.32—21n(1+1.32)— ! }:0.257
(1.32)° 1+1.32
¢:0.618:{ 1000 (gke) }xlnaw
3% 0.33 (mol/kg) x18 (g/mol)

Ina, =-0011 =  a,=0.989

B,/P)Y" =098 =  P,=0.0314bar

The vapor pressure has not changed much; it is only about 1% lower than that of pure wa-
ter because m is still small.
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I c +ecoy + Bed
= CBSA CI BSA
RT

¢ = concentration in mol L}

CI = counter ion

Because the charge on BSA is —20, there are 20 counter ions (protons) for each molecule of

BSA.
B is the osmotic second virial coefficient characterizing the BSA-BSA interaction in a 1 M

aqueous NaCl medium. We neglect contributions from proton-proton and proton-BSA interac-

tions, and also contributions from interactions with NaCl.
Because the concentration (1 M) of NaCl is the same in both sides and because 1 M is much

larger than the concentration of counter ions, we neglect any (tiny) charges that might occur in
NaCl concentration due to interactions of Na™ and CI- with counter ions or with BSA.

24

T =172 mmHg; T =298 K; R =62.36 mmHg L mol™' K!

44.6

= 000" 6.76x10™* mol L ccp =(20)x(6.76 104 mol L!

CBSA

Substitution gives

B =-29040 L mol™

a) To calculate the activity coefficients of water we use the Gibbs-Duhem equation:

diny,, = -5 dlny, (1)

Xw

where subscripts w and s refer to water and salt, respectively.
Integration of Eq. (1) between mole fractions x, = 0 (or x,, = 1, for which y,, = 1) and x,,

gives
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Xs
IHYW(XS):J- a dlrIYi
0

- X

or

lnyw(m:j i (d“‘“jdxs @)
0

1—x, | dxg
The derivative in Eq. (2) can be obtained from the truncated Pitzer equation given:

~8.766x% +124.598x3/2
lnYi = 1/2 (3)
1+9x

We made / = x,, because being NaBr a 1-1 electrolyte, the solution ionic strength is
1 , 1
I :32% =) =% )
i
Differentiation of In y, in Eq. (3) in order of x and substitution in Eq. (2) gives

dx

X, {—4.383)%‘”2 +186.897x, "2 +1121382x, 6)
S

)CS _
Iny (x):J. :
)y 1y (1+9x,"%)2

The salt mole fractions are easily calculated from the given molalities (between m = 0 and m
=5 mol kg!) from:

_ "NaBr _ MNaBr _ MNaBr 6
¥s = ~ 71000 - ©)
n,, + ANaBr + NGB 5551+ MNaBr
18.015 asr

The following figure shows the activity coefficients of water in different NaBr aqueous so-
lutions at 25°C, calculated using the Sympson rule to evaluate the integral in Eq. (5). As the fig-
ure shows, v,, ~ 1 until about m = 1.5 mol kg-! and becomes less than one after that concentra-
tion. For example, y,, = 0.92 for m = 8 mol kg'! and y,, = 0.88 for m =10 mol kg!.
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1.00 - Bl

Yw

0.01 0.10 1.00 10.00

Molality NaBr

b) The mean ionic activity coefficients for NaBr aqueous solutions at 25°C are calculated from
Debye-Hiickel equation, Iny, =—4,4//, , and from the Pitzer equation as given in this problem.

The following figure compares both predictions. As expected, they agree only at very low salt
concentrations.

0.8 Pitzer

Mean lonic Actvity Coefficient

0.6 * B
04 - * . Debye-Huckel 7
02 L Lol L Lol L L Lol : o Lol
0.001 0.01 0.1 1 10
Molality NaBr

¢) Equation (4-44) gives the Van’t Hoff equation for the osmotic pressure: (valid for ideal, di-
lute solutions):

nV =nRT @)

where V' is the total volume and n, the number of moles of the salt.
Taking into consideration the nonideality of the liquid phase we write [Eq. (4-41)]:
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v,
RT

—Ina,, ==In(y,x,) = (8)
where v, is the molar volume of the pure solvent (water).

We use Eq. (7) to calculate the osmotic pressure for the simplest case (Van’t Hoff equation)
and Eq. (8) for the more correct calculation that takes into account the solution nonideality, with
Y,, obtained from Eq. (5).

Assuming that NaBr is completely dissociated into Na* and Br- in water, we rewrite Eq. (7)
as

n=2c,RT with ¢ :n?s mol L' C)

S

We obtain the salt concentrations (molarities) from the given molalities (m,) from

dmy

c molLfl =
s ) 1+0.001 M m,

where d is the mass density (in g cm™) of the solution and M, is the molar mass of NaBr (in g
mol-1).

To use Eq. (8) we take the molar volume of pure water as v, =18.015 cm® mol ™!,
x,, =1-2x; withy, given by Eq. (5).

The following figures compares the results obtained from the Van’t Hoff equation [Eq. (9)]
with the equation that takes into account the solution nonideality [Eq. (8)].

700

600 |- Eq. (8) .
500 | .
400 | . .

" Van't Hoff
300 - L : i

Osmotic Pressue (atm)

200 4

100 - 1

Molality NaBr

As the figure shows, the solution behaves as an ideal solution (i.e. Van’t Hoff equation is
valid) up to a concentration of about my,p, = 2 mol kg-!. However, for more concentrated solu-
tions (my,p, > 2 mol kg), the effect of thermodynamic nonideality can not be neglected any-
more.
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10. For the dissociation reaction
AB ~— AT+B-
the equilibrium constant is
(a,+ Nag-)
K=—A""B" _ 55107 mol kg_1
daB
The equilibrium equation is
L 14
JaB = /AB (1)
where fdenotes fugacity.
Equation (1) is equivalent to (Henry’s constant Hp ,, = 30 bar kg mol !, yap=1)
P G%
MABH AR w €Xp I ABap|=gapP )
P RT

Component AB in the vapor phase is in equilibrium with the undissociated AB dissolved in
water. The total molality of AB (solubility) in water is:

mp =mag + mA+
If a is the fraction dissociated, we obtain

m,. =omy and  mpg =(—-)my

The equilibrium constant then is

2 2
K =5%x10"° mol kg_1 SRR

l-o ®
and Eq. (2) becomes
7—)00 P_Psat
(1—a)mpHpp  eXp [%TW)} = AP (2a)

where P— Py = P because P =50 bar >> Py,
The fugacity coefficient at 50 bar is
i BAB,AB:|

=ex
PAB p RT

(50 bar)x (200 cm>mol )

=P 3 "
| (83.14 cm” bar K™ mol ") x (298 K)

=0.668

With [ = E(mA+ +mg)=m,, =axmr, the mean ionic activity coefficient is [Eq. (9-52)]
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A,Y amy

Iy, =-——~— 4)
* 1+/amy

where 4, =1.174 kg"? mol™!/2,

We have now three equations [Egs. (2a), (3), (4)] and three unknowns my, a, and y,.

Solving these gives:

my =1.038 mol kg ™!
0. = 0.0871

75 =0.762

Iteration procedure is:
Start with o =0 in Eq. (2a) and calculate m;.

Then calculate a first approximation for a with y4 =1 using Eq. (3).
Use my and a in Eq. (4) to obtain better y,, etc.

11. In his theory of absolute reaction rates, Eyring states that reactants A and B form an activa-
ted complex (AB) as an intermediate state in the reaction

A + B <~— (AB) — Products (1)

By assumption, reactants A and B are in equilibrium with the activated complex (AB), so
that

K= 9(AB) ()
aadg

The reaction rate is proportional to the concentration of (AB), i.e., constantxcap) -

Replacing the activities by the products of concentrations and activity coefficients in Eq. (2)
we obtain

YAYB (3)
Y(AB)

caB) = Keacp

Hence,

YAYB (4)
Y(AB)

Rate of reaction = (constant)Kc cg
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The rate of reaction can also be expressed in the usual manner by kcycg, where k is the ob-
served specific rate. Hence, from Eq. (4), we can write

k= (constant)Kw =k, YAYB )
Y(AB) Y(AB)

Equivalently, we can write

logk =logk, + logM (6)

Y(AB)

To calculate the second term on the right side of Eq. (6), we use Eq. (9-50a)

log TATB - 0.510VTx (3 + 2 — Z2ap)) 7)
Y(AB)

Substituting Z(AB) =Zp t2Zp giVeS

log YATB _ 05101 x(2242) (8)
Y(AB)
Combining Egs. (6) and (8) gives
loghk = logk, +1.02z5z~/1 9)

Therefore, a plot of logk versus JIisa straight line with slope 1.02z4zg.

Reaction ZpZp Change of &
I 2 Decreases with increasing /
II 0 Constant

When the inert salt NaCl is added, / changes.
For my,c) =0.01 and negligible molalities of reactants, we obtain

my =my + =0.01 z, =1
(10)
m_=me. = 0.01 z_=-1
and
I:%(0.01+0.01):0.01 M (11)

Combining Eqgs. (9) and (11) gives
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Reaction ZpZR k
I -2 -0.204
II 0 0

12. Some helpful relations for single-electrolyte solutions (i.e., one cation M and one anion X)

v \%

v=vy+vyx or 1=-M; X (1
A% A%

VMZM + VxzZx = 0 or VM |ZM| =Vx |Zx| (2)

mv = my +myx =mvy +mvy
Zm[ =vm
i

ZMI- |Zi| = m(VM |ZM|+ Vx |ZX |)
i

1 1
I= EZmlziZ = Em(VMZI%/[ + vng()
i

a) Eq.(9-59) from Eq. (I-13):

For a single electrolyte: c=1=Manda=1=X
All @’s, ¥’s, and A’s are zero. Equations (I-14), (I-15), (9-61) and Eq. (I-13) give
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Iy, =|zwzx| /7 +|zmzx | mvmx Bux

+V—MmX [ZBMX +Zml- |z,-|cMX]
% -

1

+V—XmM (2BMX +Zm,~ |Zi|CMX}
A% X

1

mym
+MX

2VM |ZM| CMX

where Byx and BI'\/IX are given by Eq. (I-19a) and Eq. (I-19b), respectively, and Cyx is given
by Eq. (I-18).
Equations (I-16), (I-19), and (9-62) — (9-65) give

2Byx +1By = Blix
and

2 1/2
Cux = gcg,,x /(2|zMzX| )

From Eq. (9-45), the terms with By;x or By, can be summarized as:

VM +Vx g jBMX

|ZMZx|mmeBi\4X +2( N

21 d 1
= —mvavXBMX + —(VMVXm + VXVMm)ZBMX
mv A%

2 \
= MWZ([BMX + ZBMX )

o (ZVMVX j Bl
\%

Summarizing the Cyx terms gives:
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21
KVTMmX +TX’”MJ(MM |2+ mx 2 ) + mMme 2VMZM}§WCK4

2 Y
Y vV MoV v G
{(MW%MJ(VMIZMIWX|Zx|>m+%2VMZM}¢

v |ZMZX |l /2

3/2
2 {2(VMVX> } o
A%

The 3 terms above marked with are identical to the 3 terms in Eq. (9-59).

b) Egq. (9-60) from Eq. (I-10):

Asbeforec=1=Manda=1=Xand all ®’s, ¥’s, and A’s are zero.
Equations (9-64) and (I-18) and Eq. (I-10) give

o—1=(21/3 m;) f*

| S —

)

Bl (1)

(@)

mMmX
Z |ZMZX|1/2 MX

3

Term (1):
ZI/Zm,- = Z%m(szI%,[ +VXZ§()

_ VMZ]%/[ + VxZg(
A%

With viy|zy| = vx|zx] . it follows
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1
Term (1) = ;{VM |ZM|::—X|Zx| + Vx |Zx|\:}—l;(/[|ZM|]
M
A%

~ o o[22+
A%

~ e o[22+ 22
A% A%

=[eml|=x]
Term (2):
2
sz mygmy, = 2m :}:IVX —m (ZV%ij
1
Term (3):
2 mymx vaXm2 m(Vy |ZM| +Vx |ZX |)
— m. Z =
zmiz l| l|2|ZMZX|1/2 vm |ZMZX|1/2
Again using vy |zM| =vx |ZX| gives
v 1/2
R I Y e P L
M
and
VM |ZM| + Vx |Zx| = 2VX |Zx|
Therefore,

3/2
Term (3) = YMYX m? 2vx |ZX| = m2 {2(VMVX)
1/2.-1/2
v vm' % |zx| v

152

Comparison of the results for the terms (1), (2), and (3) with those in Eq. (9-60) shows that

they are identical.



SOLUTIONS TO PROBLEMS

CHAPTER 10

Let 1 = methane, 2 = benzene, 3 = m-xylene, and 4 = hexane.
Neglecting Poynting corrections and vapor non-idealities,

L
N Y lf pure 1

| =—=—

x] P

From Fig. 10-13 of the text we obtain ‘fI'JL at 366 K and 13.8 bar.

ure 1

Because y; =1 we can use Lewis’ fugacity rule to obtain ¢ by writing ¢1 =(f/P)pyre1 -
We find y; from

v = v (3 -5’
! RT

In the first iteration, find & using x; = 0.

For a second estimate, first calculate y; from y; =1-y; —y3 —y4, where

0
X
by = %21{2, et

Then,

paE

X] =
Ky

(other x; from relative amounts)

Recalculate & for second estimate of v to find

153



Solutions Manual 154

2. Let 1 = argyle acetate and 2 = helium.
Because we have two data points, we can use the Krichevsky-Kasarnovsky equation to evaluate

the two parameters H,; and T3 .

ln[&] =In H(PIS) —630 - PIS )

X, 20 TR
Assume:
1. y5=1
2. PP <<P

Then, for helium,
fr=y202P
From data given in App. C for helium,

B,,(293 K) =12.1 cm® mol ™!

Using the virial equation and assume y, =1,

By,P
Inp, =—=—
¢2 RT
Find f, at different pressures:

P (bar) o% f, (bar)
25 1.012 253
75 1.038 77.8
150 1.077 161.5

At 25 bar,

Ind2 In(253x10%)
X2

L _(29x@)
(83.14)x (293)

(75)x (©3)

In(27x10%) = InH, | +
7 (8314) % (293)



Solutions Manual 155

These equations give
— 3 -l
Ty =32.4 cm” mol
and

InHy, =124

At 150 bar,

Inx, =Inf, —12.62

Xy = Xpe = 5.37x1074

3. Over a small range of values for 8, Hildebrand has shown that logx, is linear (approximately)
in §;. A plot of logx; Vvs. 8gyjyent giVeSs X, in liquid air.

|OgX2

31

Because

we can calculate 8’s from data given:
Scuy =150 (Jem ™)1
and
8co =14 (Jem™)2

For air, assume a mixture of N, and O,:

Sair =114 (J em )2
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From plot of logx, vs.8; we find for 5=114 {J cm_3)1/2 ,

Xy (in air) = Xy, =2.63x107

Note that in this case we hit one of our known points. In general, we must interpolate or ex-
trapolate.

a) The equilibrium equation between the gaseous phase containing oxygen and the liquid phase
saturated in dissolved oxygen is:

G _ oL
8 =1L (M)
At the low pressures of interest here, we assume the gas phase as an ideal gas mixture:
G _
18, =70,P @)

Moreover, because oxygen is sparingly soluble, i.e., oxygen is present at very low concen-
trations in the liquid phase, Henry's law holds:

15, =*0,k0, 3)
From Egs. (1), (2) and (3),
y02P = %o, ko2 4)

Equation (4) is the condition for phase equilibrium that characterizes the dissolution of a
sparingly soluble gas. Under the given pressure and gaseous composition, Henry's law constant
ko, can be determined, once the solubility xp, is known. This solubility is given here by the

Bunsen coefficient a.
Substituing # = 20°C in the equation for o we obtain,

Nem®(0,)

o =31.01x103 3
cm” (H,0)
where Nem? stands for normal cubic centimeters, i.e., cubic centimeters of gas measured at 0°C
and 1 atm.
We convert normal cubic centimeters of gas to moles using the ideal gas law:
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_RT _ (8.31451)x(293.15)
P 101325

'UOZ
=0.022414 m> mol™!

=22414 cm’ mol ™!

The molar density of water at 20°C and 1 atm is

1 PH0 09982
'UHZO MHZO 18.015

Under the conditions of the Bunsen experiment, we have:

o 3101x107°
vo, 22414

Dissolved oxygen = =13835x10

=0.0554 mol cm™>

-6 mol 02

157

The liquid phase is made exclusively of H,O and O,. Then the mole fraction of O, in the

liquid is

e
Y0y _13835x107°

Yo, UH,0

_13835x107° mol O,

=2497x107°

X = =
©2 [ o ] [ 1 ] 13835 x 1070 +0.0554
— |+

0.0554 mol O, + mol H,O

By the definition of a,, yo, =10 and P =1 atm = 1.01325 bar.
From Eq. (4),

o - Y0, P (10)x(1.01325)
27 o, (2497x107)

b) Here we want to determine xp, given yg,, P and ka , using again Eq. (4).

=4.058x 104 bar

The atmospheric air above the water phase is a mixture of water vapor, oxygen and other

atmospheric gases (predominantly nitrogen).
Assuming that the air is saturated in water vapor,

PlLo 175
15510) .
=20 2150230
TH0 =5 T 560

The mole fraction of oxygen in the vapor phase is then
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Fo, _ (02095) x[(760)~(17.5)]

= =0.02047
Y02 = 7p (760)
For the ambient pressure we obtain form Eq. (4),
P
X0, = Yo " _ (0.2047) x (1.01325) _5112x10°6 mol.Oz.
ko, (4.057x107) mol liquid

This solubility can now be expressed as mass of gas per volume of liquid, making the sim-
plifying assumption that the liquid phase is pratically pure water:

(5.112x10~®mol O, / mol liquid)x (32.0 g O, /mol O,)
1
0.9982 g H,O/em® H,0

Solubility=

(18.015 g H,O/mol H20)><[ Jx (1 mol HyO/mol liquid)

=9.06x107%g 0,/cm® H,0=9.06 mg dm™> =9.06 ppm

5. The number of moles for each component is

180__ 10.0 mol ny = 420 _ 5.0 mol 3 28

- =——=1.0 mol
18.015 84.16 28.012

n
The volume available for the vapor phase is

y=30- 220 180 1 1076 —228x1073 m>
0.774 0997

Therefore the pressure inside the vessel is (assuming vapor — formed almost exclusively by
nitrogen whose second virial coefficient at 25°C is zero — as ideal),

p_mRT _ (1) (8314)x (29815)
4 (228 x107%)

=10.88 x 10° Pa = 10.88 bar

Because the solubilities are very small, we use Henry's law to describe the fugacity of
cyclohexane in gas phase:

S =p3=ynP=x3H;;.

Further, because we neglect mutual solubility of water and cyclohexane, we obtain for the
solubility of nitrogen in water,
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—1 _1
xy, = | 30| (80000} T 6 04
s 10.88 '

and for the solubility of nitrogen in cyclohexane,

-1 -1
X3 = M) (1300} 7 g5g 103
< p 10.88

6. Letl=N,and2=H,.

From Orentlicher’s correlation,
s A oy (P-P'
2 o)+ A 2o 281D
Xy ’ RT

RT
Assuming that the vapor is pure H,:
fr=1) =e,P =88 bar (with y, =1)

Because,
P=1 bar
A=7.1 Lbarmol™
H,| =467 bar
73 =313 cm® mol™!
by trial and error we find

Xy = 0.17

7. From Fig. 10-11 with 8; =149 (J em—)Y2 | at 25°C and at 1.01325 bar partial pressure,

logx, ==3.1 =  x,=8x10""

For = 0°C, use Eq. (10-26):

159
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In23°2) (75) = _A§2 1n£
@) R T

But at 25°C and 1.01325 bar,

~Rlnx, =59.29 J mol ™' K~!

and from Fig. 10-7,

5L 59 =177 mol ' K7}

53 75
Then,
A5y =5F —s§ =177 mol™' K™
In—22 - 17 lnﬁ
§x10* 831451 298
Xy =6.7x% 1074 (at 1 bar)
Assuming

X (B) _ (1P
x(B) (0P

we obtain at 0°C and 2 bar partial pressure,

x, =1.34x1073

8. Let 1 = ethylene oxide and 2 = CHy,.
Then,

Py U (P-P°
nd2 - lnHéll ) +2(—1)
Xp ? RT

From Tables 10-2 and 10-3 at 10°C,
H2’1 = 621 bar

75 =45 cm? mol™!

At 10°C, P’ ~1 bar. Then,
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1né =6.5
X2
L = 665 bar
X2
But
fa=0onP
Assuming y, = 1,
By, P
Ing, = %
with B,y =—49 cm® mol~! (Table 10-3)
@, =0.949

/> =(0.949) x (25) = 23.7 bar

/:
XCHy =X = 6—625 =0.036

a) Henry’s constant H, ; is calculated from [Eq. (10-21)]:

P

_ pSL,®
Hyi =Ho;

where (pé’OO is the fugacity coefficient of solute 2 in the liquid phase at infinite dilution (x, = 0);
¢, may be obtained from Eq. (12-64) of the text with
bmixture = by

oS
Umixture ® V1
P~ Pls
Xy = 0

Then, H, ; is given by
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RT n b2 _ albz'vl
vi—=b vi=by  RTbi[vi(vy +b)+by (v —by)]

InH; =1In

aby (U +2414b)  ap | (v +2414Dy)
W2RTH (v —0414b) RT\2b, (v —0.414h))

where
apy = (@ay)"?(1-kyy)

ky = 0.0867

Constants a; and a, are obtained from Eqgs. (12-61) to (12-63) and constants »; and b, from
Eq. (12-60). Substitution gives

H;; =360 bar
b) From Eq. (10-22),

m=0

Using Peng-Robinson equation of state [Eq. (12-59)], we find

RT(by+vi—b) 2ay, N 2ayby (V5 — by)
— W5 —by)? V(U + b))+ b (U —by) [V +by)+ by (U - By)T?
RT 2ay(vy +by)
@] —0)* (U} @] +b)+ b @] b))

Substitution gives

U5 =69.5 cm3 mol ™!

¢) Margules parameter 4 can be found from Eq. (10-23):

_ _E[fﬂw% J
2
22 P=P’ . T.x3=0
The result is:
e RT | byby—b)-v'by  abyv'+2byvian—a) v~y —by)
2 @ =) RTB[U] @] +b)+ b0 b)) v} —b
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aybyv} [(b2 oo @ + )+ by @ — b)) b 2y {0 @ + )+ (0 = BBy - bl)}]

+

rrfa[of s+ net -]

_2h(ap—a)-—aby —b)[2ap by | U] +2414b
2V2RTH? a by ) vl -0414h

_ ag Cll(a2 —alz)—2a12(a12—a1)+ bz(bz _bl) In 'Ui +2414bl
V2RTb, a? 257 v$ —0.414by

_q 26112 _b_2 Ui(bZ _bl)_blv'
RTh\ ay by ) (@ +2414b))(¥5 —0.414b))

with

ov _
U= [—a =7y -1
*2 x2=0

Substitution gives

A=13,900 bar cm ™ mol ™"
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1.

SOLUTIONS T O PROBLEMS

CHAPTER 11

Assuming
S = Fyure
and
fF=xife  Geyi=1)
with 7; =T,,, Ac, =0,

L
: Aush;
P CCTR Y R e
o x) RT | T,

pure i

Rearranging,

T = [Afushi j 1
R In l + Afushi
X; RTm,i
For i = benzene, Aggh =9843 J mol!, x; = 0.95, T, =2787K, we obtain

T=275K

For i = naphthalene, Afushl- =19008 J mol-!, x;=0.05, T,,; =353.4 K, we obtain

m,i

T=241K

165
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We choose the higher temperature (i.e., benzene precipitates first).

TK 353K
279K

275K [

Benzene Naphthalene

At T=275 K, a solid phase appears.

2. We need activity a, at x, = x3' /2.

At saturation,
L _ o
fA - fA - fpureA
Because

L _ L
fA _aAfpureA

L
waroaf)] (1) efrer s
TN Joure t

Assuming, T, =T, we find a3 =0.118.

Because xy\' =005, y, =236.

To find the activity at another composition, assume that

RTIny 5 = D(1-x,)?
Using the above data, we find D = 2357 J mol ™.
Hence at x5 =x3'/2,

YA = 247
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apn =XAYA = 0.0618
Then

L:8.04 = 6=0.89
1-6

Thus, 89% of sites are occupied.

3. Klatt’s data are really at 0°C, not -70°C. This is above the freezing points of toluene and xylene
and near that of benzene.
Let HF be component 1 and the solute (2) be A (benzene), B (toluene), and C (m-xylene).
The order of increasing substitution (basicity) is A, B, C. To simplify things, ignore the solubil-
ity of 1 in 2.
Then:

0
Joure2 = foin1 = %2Y2 /5

But, f20 = Jpure 2 » 80 this reduces to: 1=1x,y,. Therefore, x, is inversely proportional to v,.

We might think that y, depends only on the 1-2 interaction. On this basis, we expect
Yo <YB <Ya,andthus xc >xpg > x4 . Klatt’s data show the reverse.

There is, however, another factor: the strength of the 2-2 interactions. At 0°c,
P} ~0.036 bar, P3 ~0.009 bar and P2 ~ 0.002 bar. This means that pure C “holds on” to its

molecules more tightly than B which in turn has a tighter grip than A.

In other words, the more volatile solute (that has the weakest 2-2 interactions) exerts more
“pressure” to enter the solvent phase. This is discussed in a qualitative manner by Hildebrand,
1949, J. Phys. Coll. Chem., 53: 973.

It may be helpful to look at this from a lattice theory (interchange energy) perspective. Us-
ing the simplest form of this theory, we can say:

w 2
Iny, =—x
v2 kT !

WZZ[Flz—l(Fnﬂerz)]
2

where w is the interchange energy.
With the attractive interaction, we expect I'jp >T'1g > Tj¢.

This produces a higher w (and hence a higher v, and lower x,) for the less-substituted mole-

cule.
But, if we look at the vapor pressures we see that the less-substituted molecules have less
attractive 2-2 interactions. Hence, I'pyp >I'gg > 'cc. This produces a higher w (and hence a

higher v, and lower x,) for the more-substituted molecule. Sometimes, this effect is greater than
that of the 1-2 interactions; that is apparently true in this case.
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4. Let 1 = naphthalene, 2 = iso-pentane, and 3 = CCly.
At saturation,

& _ gL _ L
ST =0 =X pure

: "y &
Assuming, fl,pure =,

L
Ag il
ln[%] =-Ing :ﬁ[l—lJ:—lnxlyl
i pure RT T

From the regular-solution theory, assuming x; = 0 initially, we obtain

5 =149 (J cm3)!1”2

and

v,(8; - 8)2
= =145

8, =203 (Jem3)l2

111611 =118
x, = 0073

Now repeat the calculation using x; = 0.073 and X g , to obtain
X3

5=153 (J cm3)12

and

x; =0.093

One more iteration gives x| = Xpappthalene = 0.10 .

5. The equilibrium equation for benzene (B) is

Partial pressure of B= ygP = xBYBPﬁquid B (1
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where xg (xg =0.10) and yg denote liquid-phase mole fraction and activity coefficient of ben-

zene, PlfquidB is the vapor pressure of pure, subcooled liquid benzene at 260 K.

To find PlfquidB , we use the approximation

Biqias [ f*
s | o 2)
FoliaB \/" Jouen
where Biiap (Polids = 0.0125 bar at 260 K ) is the vapor pressure of pure solid benzene at 260
K; the fugacity ratio for pure benzene is calculated from Eq. (11-13) neglecting Ac,, for benzene

S (T
W) R

Substituting Ag,gh = 30.45 cal g ' =9944.07 Imol ™', T,, =278.7 K, T =260 K and R = 8.314
J K1 mol-! into Egs. (2) and (3), we obtain

P
—l‘sq‘“d B _1362 (%)
Fyolia B
Hence,
Ripuia s = 1.362(0.0125 bar) = 0.0170 bar (5)

To calculate yg in Eq. (1), we use Eq. (7-55):

’zj —
Inyg =—2 (55 — 5) 6
YB RT( B—9) (6)
where
3
6:Z®i6i
i=1
(N
D, = 3xivi
ij%
J

Substituting 7 =260K, R=28.314 JK™' mol™ and the given liquid-phase mole fractions,
pure-component molar volumes and solubility parameters into Eqgs. (6) and (7), we obtain

vg =1.305 ®)
Combining xg =0.10 and Eqgs. (1), (5) and (8) yields

Partial pressure of B=ygP =0.0022 bar
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6. This is similar to Problem 1, but includes activity coefficients.
S _ S L L
fz - fi,pure - fl - xiYi-fi, pure

Then, considering Ac,, =0 and 7, =T,

L
In /. :—Aﬁlshi I—L :ln[ ! ]
5 ure RT Tn,i X;Yi

Using the regular-solution theory,

U;(8) ~8,)7 D7

1n . =
Vi RT

Let 1 = benzene and 2 = n-heptane

@, = 0935

 (89)x(188-15.1)> x(0935)> 128

v, (831451)x(T) T
Then,
%(1 —Lj = —ln{(O.l)x exp(%ﬂ
RT 278.7 T
Solving for 7,
T=200K
Similarly, for n-heptane,
®, =0.065

(148)x(18.8—15.1)> x(0.065)>  1.03
Iny, = ==

0
(8.31451)x(T) T

10670, T ) _ iyl 0.9)xexp| 12
RT 182.6 d

T=181K

Then,

Solving for 7,
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As temperature decreases, benzene starts to precipitate at 200 K.

7. Plotting the data we obtain:

1245
N
1200 |- N _
N
\\
N !
N
8
¢ 1000 + —
935
805
800 - ————— —
| | |
100 80 60 40
Mole % CupO

A compound, Cu,0P,0s, is formed with a congruent melting point at 1518 K. Eutectics oc-
cur at 1208 K and 1078 K.

a) According to the ideal solubility equation, T, of the solvent has no influence on the solubil-
ity. Any difference would have to come from nonideality (i.e. activity coefficients).

If we look at solubility parameters, we find that the solubility parameter of CS, is closer to
that of benzene. Therefore, we expect greater solubility in CS,.
b) Let 1 =benzene, 2 = CS, and 3 = n-octane.

Assuming

LYY _ gL _ L
fl - purel_fl _XIY1fpurel

and
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Acp=0
T, =T,
we have
Agyh T
“Inyx, = —usTl o © 1
M= [ Tf] (1

Using the regular-solution theory,

v,(8; - 8)?
le—l !

RT 2)

with

>l
1]

T e
©
NO/)

From Tables:

Component & (J cm™3)1/2 v (cm3 mol™)
1 18.8 89

20.4 61
3 15.3 164

From Eq. (1) with x; = 0.3,
Iny, =0.144

Then, from Eq. (2),

Iny, = 0144 = 21C1=9)
RT

6 =17.1 (or 20.6; this value is probably meaningless since it is higher than 8’s of pure com-
ponents).

_ 3
8 = ZCDI'SI'
i=1

@, = X171 etc
XU + XUy +X3U3 ’

Solving for x, and x;,
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x; =030
Xo = xC52 =032

x3 =038

9. At x, =025,
S b _ oL _ L
f2 - fpure 2~ f2 = X7 prure 2

Xa¥2 = (Y 1 1) pure 2 = 056

v, =224
Because fpou/re ) = sz/"“” =0.99 bar,
L
fpure2 =177 bar

Assuming Iny, = Axl2 ,at x, =025, then y, =224, and
A=1434
At x, =0.05,

-V _ oL _ L
S =1 —xZYprurez

Iny, = (1.434)x (0.95)°
Y5 =365

Py = P, =(0.05)x (365) x (177) = 0.323 bar

173

10. At 250 K, we need a standard-state fugacity for a hypothetical liquid.



Solutions Manual

_ (13000 X(l_@j

(8.31451)x(250) 300
Hence,
L
/, A —284
fA4
Because solid is pure,
fA/ = pbtfreA = P:/’Sat =35 torr
L 35
=| ——— [x(2.84) = 0.1325 bar
Jpure A (750.06] (2.84)

For the A-CCl, system,

V L L
fA :fA = xAYAfpureA

Neglecting vapor-phase non idealities and the Poynting correction factor,

L
yAP = XA"/ Afpure A

(5/750.06)

A=) 1677
(0.03)x(0.1325)

Using the regular-solution theory,

RTInyp =UA (B4 _SCC14 )ZCD%JCM

Thus,

(6r 50y ) = (83145Dx(250)x(In .677)
A —Occl, ) =

© 5){ (0.97)x(97)
(0.03)x(95)+(0.97)x (97)

8A _SCC14 =34 (J CIII_?’)I/2
As for 8¢cy, =176 (J cm3)'?,

o =210 (Jem3)12

or

174
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o =142 (Jem3)12

Because A is a branched hydrocarbon, we choose 8, =142 (J cm3)1/2,
For the A-hexane system,

L
yAP = XA’Y Afpure A

_ VA4 ~Bhex)’ o2

Inys RT hex

2
(95)x (14.2— 14.9)% x (0.99)x(132)
(0.01)x (95) + (0.99)x (132)
(8.31451)x(250)
YA =102
Then,
VAP = Py = (0.01) x (102) x (0.1325)
P, = 0.00135 bar
11. Let

IX =3nfoen (A =D

1E :xprLureB (yg=D

From Eq. (11-13) with T=T,,, Ac,, =0,

In

L
fpureA :AfushA[l_ T J

fp%re A RT L A

L
ln ‘fpure B — Afl.lShB [1_ T ]
f[ﬁire B RT Tm’B

Because solids A and B are mutually insoluble,

& _ &
fA ~ Jpure A
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S el
fB ~ Jpure B
At equilibrium,
v L
fA - fopure A
v L
fB - xprure B

Then,
L

| Jpire A :h{lJ: (8000) x[l—i)

Foure A xp ) (8.31451)x(T) 293

L L (12000) x[1— Tj

xg  (8.31451)x(T) 278

with xg =1-x4.
Solving the above equations, we obtain x, =0.516 (or 51.6 mol % A), xg =0.484 and
T =244 K.
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CHAPTETR 12

i)y T<Ty
P
L+l
L L
“Ce Loy,
\Y%
n-Alkane X Water n-Alkane X Water
111) TU<T<TCn IV) TCn<T<TCb
P P
L+G L
\Y%
n-Alkane X Water n-Alkane X Water

177
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= i <T<
P P
G+G
\Y Q
n-Alkane X Water n-Alkane X Water
.. <
vil) T TCH2 o
P
G+G
n-Alkane X Water
2.
a) T=T, b) Py <Pycgp
P T v
L+Vv
(&V
L L+
L
1 x 2 X 2
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Py = Pycgp P3> Pycgp
T T L v
L
L+l
1 N 2

3. Let A stand for alcohol.
For alcohol distributed between phases ' and "

noon

XAYA = XAV A

Then,

At 0°C and 1 bar,
Inyx = —=(1-xx)°
RT

320 .,
In =—(1-x
YA RT( A)

The pressure correction to v, is

(Py) =7 A (P) J'PME dP
= ex —
YAUD) =7 A7)EXp A RT

The temperature correction is:
) _%E
val)= “/A(Tl)eXPJ. —dr
7 RT?

Thus, we can write,
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2400 J~100 16
+
1

7a = [(8.3145 1)x(273) E31asx )

303 .
—J; 4800 dT | x(1-x)?

73 (8.31451)x(T?)

=0.9178x(1—-xy )

320 100 -10
+ dP
(8.31451)x(273) & (8.31451)x(273)

Iny, =[

303 .
—J; Lz dT |x(1-xx )
73 (8.31451)x(T?)

=0.0712(1—xp )?

This gives

K= lim YA —0.429
YA—0y 5

4. For pure benzene, neglecting fugacity coefficients and assuming constant density of each phase
with respect to pressure,

=ty

vl (P- Pyt
RT

v (P-Py®)

Pl ex
B XP RT

= Pg’O/ exp

with vX =87.7 cm® mol™! and v =77.4 cm® mol™!, as obtained from density data.

oL 5,0/
Pé,L ox [(87.7)x(200—P§ )} e [(77.4)x(200_ P )]

®3.1450T | (83.1451)T

Temperature T can be found from the intercept of the curves obtained by representing each
side of the last equation as a function of temperature.

In an alternate way, we can express PE;:’L and Pg"’/ from vapor-pressure equations:
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L 10(79622-1785/T)
S,Lo

B 750.06

PS,Q/ B 10(9.846—2310/T)
Y =
750.06
which, together with the last equation, can be solved for T:

T,,(200 bar) = 284.4 K

5. The Redlich-Kwong equation is:

_ RT _ a
v—b TYV2yw+b)

with

— _ 2 2
a= ZZZizjaij =zapp t22pZpaap +2zapp
i

b= z;b; =zpbp +zpbp
i
Assuming that a, g is given by the geometric rule,
aap = (aaaapp)"?
we get for zp, =z =05,
a=435x10% bar (cm3 mol-') K12
b=91.5 cm? mol'!

Substitution in the R-K equation gives for total pressures:

P =-413bar

Because this result is absurd, we use Henry’s constant data to find app.
For infinitely dilute solutions of A in B,

Hpp =(Pop)xp-0 = P08

At infinite dilution, Py = P

pure B which can be obtained from the R-K equation with the

appropriate constants [ a = 4.53x10® bar (cm3 mol-1)2 K2 and b = 82.8 cm3 mol-!].
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This gives,
Pz =113 bar
Therefore,
H
% =08 _TO1_ 6195
B3 113

For the R-K equation, fugacity coefficients are given by:

2
ln(pf —In ke, " bA _ aaB ln'U+b abA 'U+b_ b —lnﬂ
v—b v-b RTI?p v RT3?2p? v vU+b RT

Using b=bg, a=ag and v =wvy (infinite dilution of A).
Solving for aug,

axg = 3.963x 108 bar (cm® mol-1)2 K172
Then, for the mixture,

a=4159x108 bar (cm® mol-!) K12

bh=915 cm? mol!
Calculating again the pressure we obtain,

P =4.14 bar

6. Let1=C,yHgand 2= CgHg.
The K factor of component i is defined as

L
Ki:&:(pj (Pax)

Xi (PIV(Pay)
with
¢ = @4 cOpy c(z)zi

Thus, we need to solve for P and y; (or y,).
At equilibrium,

no{ =xof (1)
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A-yDey =1-x))e5 )

From the given equations, we rewrite Eqgs.(1) and (2) for x; = 0.263:

125452458 x 104 P— 0.4091y, )y, = 1.1699—0.008345P
1)1

[0.74265—7.0069 x 1073 P+0.50456(1— y,)](1- y;) = 0.24596 — 0.001874 P

The above equations can be solved (either graphically or numerically) for P and y:

P =59 atm
y1 =0.715 (»rp =0.285)
Then,
X Y 0.715 o7
x; 0263
K, = Y2 _ @ 0387
X2 0737

[From Kay’s data: K; =2.73 and K, =0.41].

7. The stability criterion is [see Eq. (6-131) of text]:
2 FE
0 g2 +RT(i+LJ<0
0Oxy I.p X1 X2

We need an expression for g valid at high pressures.

E
oP
T,x

Because

we write

P
gE(T,P,x) =g (T,P =1atm,x)+ jl vEdp

P
= (RT) x (1.877)x;x, + jl X132 (4.026 — 0.2331n P)dP
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Thus,

gE (T,P,x)=(RT)x (1L877)x1x5 + (P —1) x (4.026)x;x,
+(P —1)x(0.233)x1x, —0.233P(In P)x x5

= (42043 +4259P — 0233PIn P)x;x; = Ax;x,

For g£ of this form (gf = Ax;x,, where A is a constant), the stability criterion is (see Sec.
6.12):

—>2
RT
or
42043+ 4.259P—0.233PIn P > (2) x (82.0578) x (273)
Solving for P,
P =1046 atm (or 1060 bar)
At pressures higher than 1060 bar, the system splits into two phases.
To solve for the composition at a higher pressure, we use:
XY =AY
(=x)ya = (=)
where

RTIny; = (42043 + 4259P - 0233PIn P)x?

At 1500 atm (or 1520 bar) and 273 K,
Iny; =20477x;
Thus,
x1 exp[2.0477(1—x;)?] = x| exp[2.0477(1—x{)*]
(1-x1)exp[2.0477(x1)?] = (1 - x1 ) exp[2.0477(x1)?]
Solving (either graphically or numerically), we obtain
x; = 0.37 (x5 =0.63)

x; = 0.63 (x5 =0.37)
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8. We want to relate 4% to volumetric data. Relations given in Chapter 3 of the text may be used.
We write £ at any pressure P relative to 4£ at 1 bar as:

E/py 1 E (Pl g 00f
hE (P) h(lbar)—J.l vf -1 PdP

Thus, we need the above integrand as a function of pressure at 333 K.
From volumetric data, using linear regression at each pressure between 323 K and 348 K,

E FE
v 00186 v — 00154
oT oT
1 bar 100 bar

E E
v ~0.01239 v — 0.00963
oT oT
250 bar 500 bar

Using linear interpolation, at 333 K,

v (1 bar) =1.091 v% (100 bar) = 0.9638
vF (250 bar) = 0.8284 vF (500 bar) = 0.6846
If
E
FPy=vf —1] &
oT
P
then:
P (bar) 1 100 250 500
F(P) (J bar mol")  -0.5102 -0.4164 -0.3297 -0.2522

Using a trapezoid-rule approximation,
360 |
F(P)dP=-128 J mol™
Therefore, at 333K

E L E 360
n (360 bar) = hE (1bar)+ | F(P)dP
1

=1445-128

hE (360 bar, 333K) =1317 J mol !
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9. For condensation to occur,
L 14
Sw > fw

To find the temperature for condensation (at constant pressure and vapor composition), we
solve the equilibrium relation

&= e

The liquid phase is assumed to be pure water. Its fugacity is given by
L _ ¢L P oy
= ex dpP
I = Jpure &XP .[ pS RT

As a good approximation, let

v (P—PS
f&/ = Py, expW(Tw) (obtain data from Steam Tables)

Thus, we are neglecting @3, and we assume that (liquid) water is incompressible over the

pressure range between Py, and P (150 atm).

The vapor phase is described by an equation of state. Therefore,
fy = rwowP

To obtain (p{;v, we use the Redlich-Kwong equation of state:

RT a
- ) (1)
v=b TY“0u(v+b)
from which we obtain
v by 15,1, (U+h
In =In ———(2 qaw; (RT b)) " In| ——
ow =In——+— (%:y] wi)( ) ( - j
(2)
s tbw b by Po
RTSp? v v+b RT

where v is the molar volume of the mixture and
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a= Z Zyiy_ja_,»j
i

b= zyibi
i

187

In these equations, ay and aco, are given as functions of temperature; the cross-coefficient

is

a; = (al.(O) aj(o))l/z LO05SR2T2SK

With a trial-and-error procedure, we can calculate f{,. Use the following procedure:

. Guess temperature.
. Calculate v from equation of state [Eq. (1)].

. Calculate the fugacity of vapor.

1

2

3. Use T and v (along with P and y) to calculate @y from Eq. (2).
4

5

. Compare f\; with saturation pressure of water at that temperature.

Typical results are:

T (K) Ow fr; (atm)
475 0.588 17.7
500 0.633 19.9
525 0.711 21.3
550 0.746 22.4

Plotting f\;/, and fé, as a function of temperature (see figure), we see that

=1y

at T =482 K. That is the temperature where condensation first occurs (dew-point temperature of

the mixture).
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100 F e
E
(W]
o 75 F
[0]
5
S
©
2 50
(]
(0]
(o))
=}
[T
25 | i
0 I I I I I
400 450 500 550 600

Temperature, K

Fugacity of water in vapor phase and in liquid phase at P = 150 atm.

10.
a) For equilibrium between solid solute and solute dissolved in the supercritical fluid,

K (P.T)= 1 (P.T.y)
or
dinf =dinff M

where subscript 2 refers to solute and superscript fto fluid phase.
Expanding Eq. (1) with respect to 7, P and composition (see Sec. 12.4), we obtain (tempera-
ture is constant):

oln £y
or

omn g
or

=0
Py
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oln 1
n/s =0  (pure solid solute)
% PT

>

dln £ oln £/ oln £
2 || | I,
T T,y T,P

But because

Equation (2) becomes:

- ol ff oln ff
© Uz)dP:[ anJ dyzz[ 2 iy
T,Pdj T

RT 6lny2

>

Finally, because

1 = 920,P
Equation (3) becomes
vy —6{
[ dlny, ) _ RT
oP T 1+ ( Oln (0)) J
Olny, .p

b) Maxima (or minima) occur when

Glnyz _ O
oP ),

189

()

©)

“4)

Because Olng,/0lny, is always greater than —0.4, the above derivative is zero when

& _=f
Uy =T,

It is necessary, then, to calculate 7_){ as a function of pressure.

Using Eq. (12-41),
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6}12 T,V.n

V)1 aiin

and the Redlich-Kwong equation of state with the mixing rules,

a= ZZXinaij'
i

b= ZXibi
i

we obtain

200 x;a5;)—ab, (v +b)
RT ([, b\ 5
_v-b v-b v(v+b)T"?

Uy =
RT  a 20+b
-0 TY?| 0 +@w+b)

Assuming that the fluid phase is almost pure solvent, v, a and b are those for pure solvent 1.
Cross parameter ay, is given by:

apy = (ayap)"* (1= ki)
Constants are:
ap =0.7932x108  bar (cm® mol™!)? K!?
ay) = 0.11760x10'" bar (cm® mol™")? K2
app =0.3264x10°  bar (cm® mol™!)? K!/?

by =40.683 cm> mol ™! by =140.576 cm® mol ™!

Using volumetric data for ethylene at 318 K (IUPAC Tables), and because

. 128174
vy =
1144

=112 cm? mol ™!

the maximum (and minimum) occurs (U, = vg‘/) at (see figure below)

minimum = 19 bar

maximum = 478 bar

These values are in good agreement with results shown in Fig. 5-39 of the text.
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Solubility Solubility
minimum i maximum

100 N 1000 10,000 P (bar)

(cm3mol-T)

8 -1000 — —
B
-1500 — —
2000 —

Partial molar volumes of naphthalene infinitely dilute in ethylene at 318 K calculated from
Redlich-Kwong equation of state with k;, = -0.0182.



