

JAVA Challenge

Competition Documentation (final phase - 2015)

2015

J201
5

In The Name Of God

2In The Name Of
God

22In The Name Of

God

22In The Name Of

God

22In The Name Of

God

22In The Name Of

God

22In The Name Of

God

Java Challenge (final phase) documentation 2015

2

Previously on JAVA challenge:

Java Challenge (final phase) documentation 2015

3

And now the rest:

Java Challenge (final phase) documentation 2015

4

Java Challenge (final phase) documentation 2015

5

Java Challenge (final phase) documentation 2015

6

Contents
Introduction ... 7

Map ... 7

Blocks ... 7

Cells .. 8

Hints about the game and judging the final phase .. 11

Installing the Prerequisites .. 12

Manual on Coding Interface ... 13

Initialization .. 24

Hints and Suggestions ... 25

Appendix1: NoobFreindly .. 26

Appendix2: How to begin in Java ... 27

Appendix3: How to begin in C++ ... 28

Appendix4: How to begin in Python .. 29

Appendix5: Importing JDK1.8 to Eclipse .. 30

Java Challenge (final phase) documentation 2015

7

Introduction

In this phase, the game is going to be held in a competitive manner and in each match there will be 2-4

teams. In each match, each team must try to increase the total energy of its cells. At the end, the ranking

will be based upon the total energy of all cells of each team. The game will take place in a map covered

with hexagon blocks. At the very beginning, each team has some cells which are located in the blocks on

the map, and as the game goes on the cells will act based on the code of the participating teams. This game

is turn-based and each cell can perform one legal action on each turn. These legal actions include: moving

to an abutting block, gaining resource, undergoing cell Mitosis and attacking other cells. Notice that

‘gaining resources’ and ‘undergoing cell Mitosis’ are only allowed in some special blocks on the map. Each

cell can only see blocks which are in its field of view and it includes the blocks which are near to its location.

At the end, the total energy of all of your cells is calculated as your score. Cells in this phase have the ability

to mutate and evolve in mitosis blocks. Further explanations about the details will follow.

Map

The coordinates of the map is as illustrated in the figure. The coordinates

of the southwestern point is (0, 0). The first element is for x and the second

one is assumed to show y. At the end of this document you can find a map

covered with these hexagons, which you can print and use it to understand

the map better.

Blocks

Each of the blocks in the map has a height. This height affects the movements of cells, which means that

a cell cannot move to a block which is much higher than the block in which it is. There are different types

of blocks:

 None Block: a block which has not been in field of view of the cell yet, thus its type is not clear.

 Resource Block: Resource is stacked in this type of blocks. While a cell is on this type and it is its

turn when it decides to gain resource, it gains specific amount of resource. Each resource block

Java Challenge (final phase) documentation 2015

8

contains particular amount of resource and as the cells gain those, its resource lessens until it finally

runs out of resource.

The resource blocks have an additional height beside the regular height which is caused as a result

of the stacked resource in them. The final height of a resource block is calculated as shown below:

 ℎ = 𝑚𝑖𝑛 {𝐻 + 𝑅/50, 9}

H is the normal height of the block, R is the amount of stacked resource at the block and h is the

height of the resource block.

 Mitosis Block: the blocks in which cells can undergo cell mitosis (divide itself into two parts).

While a cell is in one of mitosis blocks and it decides to undergo mitosis -under certain

circumstances- the cell will be divided to two cells and the new cell will move to an abutting block.

There are four properties for the cells which have the mutation ability and can undergo mitosis

(these properties will be explained in “cells” part). In each of the mitosis blocks, some of these

properties may increase which leads to the cell’s evolution. Notice that all of these evolvements are

applied to the new cell (child) and the old cell (parent) will have its former properties.

 Impassable Blocks: it is not possible for the cells to move to these blocks.

 Normal Blocks: all the other blocks which has none of the mentioned trait, are assumed normal

blocks.

Cells

Each team has some cells, and during the game the team tries to maximize the total energy of them. In

this document by using the term ‘cell’ we always mean cellular creatures, and not the elements that cover

the map (we refer to them as “block”). Each cell has an energy level which shows the amount of stored

glucose in it. This value is no larger 100 units. The cells have the ability to evolve in mitosis blocks. We

will explain the evolvable properties of the cell in the following paragraphs:

 Cell Gain Rate determines how fast the cell can gain resources from a resource block. If the amount

of available resource at a resource block is less than the gain rate, the cell will gain the whole

resource. The gain rate is no smaller than 15 and no larger than 45.

 Depth of view specifies how far the cell can see. The minimum of

it is 2, which means that the cell can see the blocks which have the

distance at most 2 blocks from its residence. The cell can identify

type and height of the blocks it sees. It also determines if a block is

occupied by another cell or not. In this figure you can see which

blocks a cell can see (in this case the depth of view is equal to 2)

and also you can see the distance of each block to the cell. The

maximum value of the depth of view is 5.

 Jump height specifies the maximum of the height difference

between the present location of the cell and the destination block

which the cell intends to go. The minimum of this property is 2;

Java Challenge (final phase) documentation 2015

9

meaning that the cell can go to blocks which are at most 2 units higher than its present location.

Jump height is 5 units at its maximum.

 Damage is the amount of the energy that the enemy cell will lose in an attack, which can be at most

20; meaning that in an attack to an enemy cell, the attacked cell will lose 20 units of its energy.

Maximum value for damage is 35.

When it is your turn to play, you can command each cell to perform an act, and the cell would obey only if

the situation is appropriate to do so. If you give more than one command to a cell, the final command would

be considered for execution. The possible commands are explained in the following paragraphs.

 Move: This command needs a direction in order to determine which of the abutting blocks the

destination is. There are 6 directions: north, north-east, south-east, south, south-west, north-west.

In the figure the directions with the corresponding blocks are shown.

Here are some explanations on how this works:

◦ A cell can only move to a block if the block is not impassable,

the block is not occupied by another cell, the height difference

between the residence block and the destination block is not

greater than the jump height (in case the destination block has a

greater height than the residence block), height of the

destination block is equal or less than the residence block (note

that the cell can only move within the blocks of the map and

cannot exceed the map or exit it).

◦ If 2 cells simultaneously want to enter one block, in the next

turn of the game, one of them (randomly) is placed in the

destination block and the other cell will stay still.

◦ if a cell tries to move to a block which is going to be emptied at this turn of the game (which

means that the cell in the destination block is going to leave the block in that very turn), then

the action would take place, contrary to the preliminary phase. There’s even a chance that two

cells in two abutting block swap their locations.

 Mitosis: if the cell commands to undergo mitosis, under certain circumstances, which are

explained below, the cell would be divided to two cells and the new cell (child) would absorb the

properties which the mitosis block would add.

◦ Calling mitosis command is only allowed in mitosis blocks and if a cell in a non-mitosis block

sends the mitosis command, undergoing mitosis will not happen.

◦ Undergoing mitosis is only possible if in time of sending the mitosis command, the child can

move to an abutting block (the conditions of the moving act is the same as before). The child

will be located randomly on an abutting passable block.

◦ The energy level of the cell must be above 80 in order to undergo mitosis, otherwise the mitosis

command would be ignored.

◦ After the mitosis, both child and parent have the energy level equal to 40.

◦ Notice that mitosis has higher priority than the move act. If a cell has sent a mitosis command

and the randomly chosen block for the location of the child, is also the destination of another

Java Challenge (final phase) documentation 2015

10

cell which had sent a move command, the move command will be ignored and the mitosis

command will be executed.

 Gaining Resource: If a cell is in a resource block and it sends the gather resource command, a

specific amount of energy is gained by the cell and the block will lose precisely the same amount

of energy. In case that the energy stacked in the block is greater or equal to the cell gain rate, the

cell will gain an amount of energy equal to its gain rate, otherwise the whole energy of the block

would be absorbed by the cell.

 Attack: like the ‘move’ command, the ‘attack’ command needs a direction. When a cell attacks a

block which has a cell in it, the attacked cell will have an energy loss equal to the damage of the

attacker cell, and if the attacked cell’s energy is less than the damage, then the attacked cell will

die. Notice that “friendly fire” is on, meaning that you could possibly damage your own cells.

‘Mitosis’ has the highest priority among the commands and ‘Move’ has the lowest one. The order of

priorities are Mitosis, Attack, Gaining Resource and Move.

Java Challenge (final phase) documentation 2015

11

Hints about the game and judging the final phase

Here are some hints and points about the game and the competition

Game:

 Each game has 500 turns.

 The map size is at maximum 60 × 40.

 Score for each team is the total sum of its cells’ energy.

 The procedure of competition and qualifications and will be announced.

 In order to run the game, two clients must be executed. For the second client, there is a ‘jar’ file

available for you. Notice that this client is just the default random algorithm.

 The maps used in the previous phase (preliminary phase) are not usable for this phase. You have

to use the new ones.

 The arrow keys on the keyboard are used for rotating and magnifying graphics. The {W, A, S, D}

keys are for adjusting the camera and using the {R} key you can reset the camera to the default

mode.

 The maps which the competition would be held on will definitely be different with the ones which

have been released as samples.

 Most of the matches in this phase would be held with four teams.

 There is no specific rule for the location of the different types of blocks and each type may be in

any place on the map.

The maps which will be used for judging would be the same for all teams.

Execution restrictions:

 You have 1GHz processing resource for you code.

 There will be 500MB of storage available for your code.

Java Challenge (final phase) documentation 2015

12

Installing the Prerequisites

In order to begin coding and executing the game, you have to install the prerequisites:

1. Java Development Kit 1.8.0

2. Python 3

3. C++ 11

4. C++ Boost 1.55

case ‘1’ is necessary to run the game, case ‘2’ is needed in case you want to use ‘python’ to code, and the

cases ‘3’ and ‘4’ are only essential if you want to use C++. Notice that C++ is only supported on the Linux

OS. The installation procedure for each of the Prerequisites will be explained in the following parts.

1. Java Development Kit 1.8.0

In order to install this, you can use the link below and download the compatible version with your

OS.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

You can find the proper help based on your OS in the links below:

Windows http://www.wikihow.com/Install-the-Java-Software-Development-Kit

Linux http://www.wikihow.com/Install-Oracle-Java-JDK-on-Ubuntu-Linux

Mac-OS http://www.wikihow.com/Install-the-JDK-(Java-Development-Kit)-on-Mac-

OS-X

2. Python 3

Installing ‘Python 3’ is only needed for the teams who want to use python client. Use one of the

links below, based on you OS, to download the proper version.

Windows https://www.python.org/downloads/windows/

Linux https://www.python.org/downloads/source/

Mac-OS https://www.python.org/downloads/mac-osx/

You can find an installation manual in the link below:

www.wikihow.com/Install-Python

3. C++11 Compiler
The teams who want to use C++ client must have a compiler able to compile C++11 codes. This

client will be compiled on the Linux OS.

4. C++ Boost 1.55

The teams willing to use C++ client should also have Boost library version 1.55 installed on their

systems. This library is available at the link below:

http://www.boost.org/users/history/version_1_55_0.html

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.wikihow.com/Install-the-Java-Software-Development-Kit
http://www.wikihow.com/Install-Oracle-Java-JDK-on-Ubuntu-Linux
http://www.wikihow.com/Install-the-JDK-(Java-Development-Kit)-on-Mac-OS-X
http://www.wikihow.com/Install-the-JDK-(Java-Development-Kit)-on-Mac-OS-X
https://www.python.org/downloads/windows/
https://www.python.org/downloads/source/
https://www.python.org/downloads/mac-osx/
http://www.wikihow.com/Install-Python
http://www.boost.org/users/history/version_1_55_0.html

Java Challenge (final phase) documentation 2015

13

Manual on Coding Interface

You have a class called ‘AI’ at your possession. In this class there is a function called ‘doTurn’. In each

turn this function is called once. You have to write the commands which you want to send to your cells, in

this function. So you have to write this function in a way that your cells act intelligently. Each turn of the

game will last one second, which you have only the first 400 milliseconds to send commands to your cells.

The ‘doTurn’ function receives an object from the ‘World’ class as an input. This object describes the

present situation of the world, and contains all the information which is accessible to you. You can see the

general form of this class, in different coding languages, below. Teams who use ‘python’ must notice that

all the needed data are in ‘Model.py’ file. For more information you can refer to the parts below.

Python C++ Java

class AI():

 def doTurn(world):

 // AI code comes here

class AI {

 void doTurn(World*

world) {

 // AI code comes here

 }

};

class AI {

 doTurn(World world) {

 // AI code comes here

 }

}

Java Challenge (final phase) documentation 2015

14

World Class:

This class contains all the needed information to describe the present situation of the game. Notice that

in each turn of the game this data changes and if you want to access the previous data, you should store it

yourself. The proper access to the data will be explained in the following parts.

Python C++ Java

World.teams std::vector<std::string>

getTeams()

String[] getTeams()

Teams:
Accessing the name of the teams participating in the game as an array of strings:

Python C++ Java

World.teams std::vector<std::string>

getTeams()

String[] getTeams()

My Id:
Accessing my team number:

Python C++ Java

World.my_id int getMyId() int getMyId()

My Name:
Accessing my team name:

Python C++ Java

World.my_name std::string getMyName() String getMyName()

Map Size:
Accessing the size of the map in a form of and ‘MapSize’ object:

Python C++ Java

World.map_size MapSize getMapSize() MapSize getMapSize()

Map:

Java Challenge (final phase) documentation 2015

15

Accessing the present map of the game and its information:

Python C++ Java

World.map Map* getMap() Map getMap()

Turn:
Accessing the current turn number in the game:

Python C++ Java

World.turn int getTurn() int getTurn()

All Cells:
Accessing all the available cells in the field of view of your own cells in a list of cells form:

Python C++ Java

World.all_cells std::vector<Cell*>

getAllCells()

ArrayList<Cell>

getAllCells()

My Cells:
Accessing all the cells in your team in a list of cells form:

Python C++ Java

World.my_cells std::vector<Cell*>

getMyCells()

ArrayList<Cell>

getMyCells()

Enemy Cells:
Accessing the enemy’s cells in a list of cells format:

Python C++ Java

World.enemy_cells std::vector<Cell*>

getEnemyCells()

ArrayList<Cell>

getEnemyCells()

 Map Size:
‘MapSize’ object contains length and width of the map. It can be easily accessed using the patterns below:

Java Challenge (final phase) documentation 2015

16

Python C++ Java

MapSize["height"]

MapSize["width"]

int getHeight()

int getWidth()

int getHeight()

int getWidth()

Map Class:

This class holds the information and functions related to the blocks of the map:

At:
This function returns a block which is located at the input ‘Position’ or input (x, y), as described below:

Python C++ Java

at(pos) Block* at(Position)

Block* at(int x, int

y)

Block at(Position)

Block at(int x, int y)

Cell Class:

Each object of this class is one of the available cells and has the following functions and information on

it.

Id:
Accessing the cell number:

Python C++ Java

Cell.id int getId() int getId()

Position:
Accessing the cell location in the form of an object of ‘Position’ class:

Python C++ Java

Cell.pos Position getPos() Position getPos()

Team Id:
Accessing the cell’s team number:

Java Challenge (final phase) documentation 2015

17

Python C++ Java

Cell.team_id int getTeamId() int getTeamId()

Energy:
Accessing the current cell’s energy level:

Python C++ Java

Cell.energy int getEnergy() int getEnergy()

Depth of Field:
Accessing to the depth of field value for the cell (if you attempt to get this for an enemy cell, the returning

value would be something irrelevant from the real value):

Python C++ Java

Cell.depth_of_field int getDepthOfField() int getDepthOfField()

Jump Height:
Accessing to the jump height value for the cell (if you attempt to get this for an enemy cell, the returning

value would be something irrelevant from the real value):

Python C++ Java

Cell.jump int getJump() int getJump()

Gain Rate:
Accessing to the gain rate value for the cell (if you attempt to get this for an enemy cell, the returning

value would be something irrelevant from the real value):

Python C++ Java

Cell.gain_rate int getGainRate() int getGainRate()

Damage:
Accessing to the damage value for the cell (if you attempt to get this for an enemy cell, the returning

value would be something irrelevant from the real value):

Python C++ Java

Cell.attack_value int getAttackValue() int getAttack()

Java Challenge (final phase) documentation 2015

18

Move:
In order to command a cell to move you can use one of the six directions available in ‘Direction’ class

and send this function to a cell.

Python C++ Java

move(direction) void move(Direction) void move(Direction)

Gain Resource:
Using this function you can command a cell to gain resource.

Python C++ Java

gain_resource() void gainResource() void gainResource()

Mitosis:
Using this function you can command a cell to undergo mitosis.

Python C++ Java

mitosis() void mitosis() void mitosis()

Attack:
In order to command a cell to attack, you have to use one of the directions in available in ‘Direction’

class, and send the function to the cell.

Python C++ Java

attack(direction) void

attack(Direction)

void

attack(Direction)

Direction:

It is an enumerator (in Java and C++) or it is a class (as in ‘Python’) which has the six available directions

in it. These directions are accessible as it is described in the codes below.

Java Challenge (final phase) documentation 2015

19

Python C++ Java

Constants.Direction.NORTH

Constants.Direction.NORTH_EA

ST

Constants.Direction.SOUTH_EA

ST

Constants.Direction.SOUTH

Constants.Direction.SOUTH_WE

ST

Constants.Direction.NORTH_WE

ST

Direction::NORTH

Direction::NORTH_EA

ST

Direction::SOUTH_EA

ST

Direction::SOUTH

Direction::SOUTH_WE

ST

Direction::NORTH_WE

ST

Direction.NORTH

Direction.NORTH_EA

ST

Direction.SOUTH_EA

ST

Direction.SOUTH

Direction.SOUTH_WE

ST

Direction.NORTH_WE

ST

Position:

The coordinates of the related position and all the possible positions which are passable from a block,

can be accessed through this function.

Next Position:
It provides the position of an abutting block in an specific given direction.

Python C++ Java

get_next_pos(direction,

position)

Position

getNextPos(Direction)

Position

getNextPos(Direction)

X:
accessing to the X property of the position:

Python C++ Java

position["x"] int getX() int getX()

Y:
accessing to the Y property of the position:

Python C++ Java

position["y"] int getY() int getY()

Block Class:

This class contains all the information about a block.

Java Challenge (final phase) documentation 2015

20

Position:
Use this function in order to find the position of a particular block.

Python C++ Java

Block.pos Position getPos() Position getPos()

Minimum Height:
To find the initial height of a block, you can call this function. Notice that the initial height and the height

of a resource block may be different.

Python C++ Java

Block.min_height int getMinHeight() int getMinHeight()

Height:
To find the height of a block you can call this function, but notice that the height of a block may change if

it is a resource block.

Python C++ Java

Block.height() int getHeight() int getHeight()

Resource:
To find the amount of resource stacked in a resource block, you can use this function. This function

returns zero value for the non-resource blocks.

Python C++ Java

Block.resource int getResource() int getResource()

Type:
This function determines the type of a block.

Python C++ Java

Block.type std::string getType() String getType()

Gain Rate Improvement Amount:
Returns the gain rate improvement amount of a mitosis block. Notice that this is only for mitosis blocks.

Java Challenge (final phase) documentation 2015

21

Python C++ Java

Block.gain_improvement_a

mount

int

getGainImprovementAmo

unt()

int

getGainImprovementAmo

unt()

Depth of Field Improvement Amount:

Returns the amount of improvement for the depth of field in a mitosis block. Only works for mitosis

blocks.

Python C++ Java

Block.depth_of_field_imp

rovement_amount

int

getDepthOfFieldImprov

ementAmount()

int

getDepthOfFieldImprov

ementAmount()

Jump Improvement Amount:
Returns the amount of jump improvement in a mitosis block. Only works for mitosis blocks.

Python C++ Java

Block.jump_improvement_a

mount

int

getJumpImprovementAmo

unt()

int

getJumpImprovementAmo

unt()

 Improvement Amount:
Return the amount of improvement for the damage in a mitosis block. Only works for mitosis blocks.

Python C++ Java

Block.attack_improvemen

t_amount

int

getAttackImprovementA

mount()

int

getAttackImprovementA

mount()

Constants Class:

In this class the constant values and strings which contain the type of all blocks are stored.

None Block:

A string with contents of ‘none’

Python C++ Java

Constants.BLOCK_TYPE_NONE std::string

BLOCK_TYPE_NONE

String

BLOCK_TYPE_NONE

Java Challenge (final phase) documentation 2015

22

Normal Block:
A string with contents of ‘normal’

Python C++ Java

Constants.BLOCK_TYPE_NORMAL std::string

BLOCK_TYPE_NORMAL

String

BLOCK_TYPE_NORMAL

Mitosis Block:
A string with contents of ‘mitosis’

Python C++ Java

Constants.BLOCK_TYPE_MITOSIS std::string

BLOCK_TYPE_MITOSIS

String

BLOCK_TYPE_MITOSIS

Resource Block:
A string with contents of ‘resource’

Python C++ Java

Constants.BLOCK_TYPE_

RESOURCE

std::string

BLOCK_TYPE_

RESOURCE

String

BLOCK_TYPE_RESOURCE

Impassable Block:
A string with contents of ‘impassable’

Python C++ Java

Constants.BLOCK_TYPE_

IMPASSABLE

std::string

BLOCK_TYPE_

IMPASSABLE

String

BLOCK_TYPE_IMPASSABLE

Min Energy for Mitosis:
Minimum value for undergoing mitosis (80)

Python C++ Java

Constants.CELL_MIN_ENERGY_F

OR_MITOSIS

int

CELL_MIN_ENERGY_FOR

_MITOSIS

int

CELL_MIN_ENERGY_FOR

_MITOSIS

Max Energy:
Maximum value of a cell’s energy (100)

Java Challenge (final phase) documentation 2015

23

Python C++ Java

Constants.

CELL_MAX_ENERGY

int CELL_MAX_ENERGY int CELL_MAX_ENERGY

Gain Rate:
Amount of resource which a cell can gain (15 at its minimum)

Python C++ Java

Constants.

CELL_GAIN_RATE

int CELL_GAIN_RATE int CELL_GAIN_RATE

Depth of Field:
The minimum value of depth of field of a cell (2)

Python C++ Java

Constants.

CELL_DEPTH_OF_FIELD

int

CELL_DEPTH_OF_FIELD

int

CELL_DEPTH_OF_FIELD

Java Challenge (final phase) documentation 2015

24

Initialization

In order to begin coding and execute your codes, you have to run ‘JavaChallenge2015’ which is in the

compressed file ‘NoobFriendly’ which will be given to you. This program actually runs the server program.

Any information you may need can be found in appendix1. The other appendixes are about how to start

coding for the client program. If you had any problems, use them to find the solution.

Java Challenge (final phase) documentation 2015

25

Hints and Suggestions

 You can only use one programming language (C++, JAVA or Python) and you cannot submit code

for several languages.

 In case of having any questions or problems, you can use the Q&A page available at

http://javachallenge.ir/qa/ and ask your questions.

 Use tags in the Q&A page on the programming language (C++, JAVA, Python) and your OS (Mac

OS X, Linux, Windows).

 Make sure that your question has not been asked yet and avoid submitting repeated questions.

 The procedure of submitting codes will be announced.

 To access the internet, a LAN connection is given to each team and they can use Sharif ID VPN to

connect to the internet. To do so, you can use the manual available at https://id.sharif.ir . Use the

given username and password.

http://javachallenge.ir/qa/
https://id.sharif.ir/

Java Challenge (final phase) documentation 2015

26

Appendix1: NoobFreindly

The game which you will encounter consists of two parts: Server and Client. The game will be executed

over the server. In the files provided for you there is file named ‘Server’ which you can use to test your

codes before submitting them.

In order to run the game you must do the procedure below:

Extract the ‘NoobFriendly’ file. Inside it depending on your OS there is a file named

‘JavaChallenge2015.bat’ for Win OS, ‘JavaChallenge2015.sh’ for Linux and Mac OS. Run this file. If you

ran to ‘Permission denied’ error in Linux , use the command below in order to get rid of it.

chmod -R 777 *

On the OSs mentioned below, if you encountered ‘libudev.so.0 file not found’, go to

NOOBFRIENDLY_PATH\dest\Terminal_UI\node-webkit-v0.11.6-linux-x64 folder and run ‘buf-fix.sh’
file. (this is only need to be done once)

 Ubuntu 13.04+

 Fedora 18+

 Arch

 Gentoo

 Any deviation of each of the mentioned above

Whilst running ‘JavaChallenge2015’ if you encountered ‘connection failed’ error, and the

problem was not solved by clicking ‘try again’, then the problem must be one of these:

 JDK 1.8 is not properly installed or is not correctly added to the path. In order to install it

properly, use the manual available at page 7 of the doc.

 One of the ports which server uses is open. The simplest way to investigate this problem is

to restart the computer. If the problem was solved, then make sure that you exit server and

the client completely after running a game.

If your problem was still unsolved, ask it in the Q&A page.

After running ‘JavaChallenge2015’ you will see a graphical interface. There click on ‘choose

map’ icon and choose a map (there are some maps in the folder NOOBFRIENDLY_PATH\dest\map

which you can use in order to test your codes).

Now click on ‘New game’. Server will wait for you to run your code. The helping manual to

begin coding in each programing language are in other appendixes (run your code and don't be

worried about its connection to the server, we will handle this.

After running your code, click on ‘Start Game’ and enjoy the game.

Do these modifications in NoobFriendly:

Mitosis.jar in directory NoobFriendly [OS_NAME]/dest/ must be replaced.

File ‘JGTerminal.nw’ at directory NoobFriendly_[OS_NAME]/dest/Terminal_UI/ must be replaced.

 ‘resources’ folder must be replaced at the directory NoobFriendly_[OS_NAME]/dest/ .

Java Challenge (final phase) documentation 2015

27

Appendix2: How to begin in Java

Coding style:

 You must place your AI code in ‘do_Turn’ function in ‘AI.java’ file.

 You can add files and modify all files in ‘client’ package except ‘Main.java’.

How to run:

1. In case you have installed JDK 1.8 but you don't have access to it via eclipse, take a look at

appendix5.

2. Import ‘MitosisClient’ into your IDE. To do so, in ‘File’ menu choose ‘import’ option. Then

in the popped up window, in General folder choose ‘Existing Projects into Workspaces’ option

and click ‘Next’. In the new window, choose ‘Select archive file’ and enter the directory for

‘MitosisClient.zip’. Click on ‘Finish’. Now we have to import the used libraries to the project. On

the left-side of eclipse at ‘Package Explorer’ in ‘libs’ folder right-click on ‘gson-2.3.1.jar’ and in

menu ‘Build Path’, choose ‘Add to Build Path’.

3. Make sure you have imported that file properly by building it once. In case of proper build you

yet may see some Exceptions with ‘Connection Refused’ errors or ‘error while connecting server’

errors, which are normal as the server is not up.

Submitting files:

For submitting your codes, compress your ‘client’ package with ‘zip’ format and change its name

to ‘client.zip’. ‘client.zip’ is the file which you upload.

Java Challenge (final phase) documentation 2015

28

Appendix3: How to begin in C++

Coding style:

 You must place your AI code in ‘do_Turn’ function in ‘AI.cpp’ file.

 You can add files and modify all files for ‘client’ except ‘main.cpp‘.

How to run:

To install C++ client in Linux, you have to install these packages by entering these commands

in terminal.

Compiler C++11: sudo apt-get install build-essentials

Eclipse C++: sudo apt-get install eclipse-cdt

Boost library: sudo apt-get install libboost-all-dev

To run the Client C++ project you have to unzip the attached file with name ‘Cpp_Client.zip’ in eclipse’s

workspace. Then in eclipse choose ‘Import Project’ and in ‘General’ part choose ‘Existing projects into

Workspace’. Then at ‘Select Root Directory’ select the folder which you have unzipped at ‘workspace’ (JC)

and then click ‘Finish’.

Now you can compile the project you have created. You may see some Exceptions with ‘Connection

Refused’ errors or ‘error while connecting server’, which are normal as the server is not up.

For teams who use C++, there exists two ways to submit their codes:

1.

Creating ‘Makefile’ for the project and submitting it along with the codes. The name of the output

file which your Makefile will generate should be ‘out’.

2.

Export your project via eclipse using ‘General->Archive File’. In this case you have to choose

codes, ‘.project’ type file and file with ‘.cproject’ postfix to be exported and there is no need for

the rest.

Submitting files:

For submitting your codes, compress all files related to ‘client’ alongside with ‘Makefile’ with

‘zip’ format and change its name to ‘client.zip’. ‘client.zip’ is the file which you upload.

Java Challenge (final phase) documentation 2015

29

Appendix4: How to begin in Python

Coding style:

 You must place your AI code in ‘do_Turn’ function in ‘AI.py file.

 You can add files and modify all files except ‘Controller.py’.

How to run:

First use appendix1 to run the server, and then according to your os, run ‘client’ with one of the

methods explained below:

 Windows: run ‘Controller.py’ file. In case you have any problem executing it, and have

installed Python 2, you can right-click on the file and in ‘open with’ section, choose

‘python.exe’ from the directory where you have installed ‘Python 3’.

 Linux: open terminal and enter ‘python-client’ folder. Then use these command to run the

code.

Python3 Controller.py

Wait until you see the ‘connected to server’ message. If you got error, make sure that the server

is already running. Now press start button in JavaChallenge2015.

Submitting files:

For submitting your codes, compress all files related to ‘client’ with ‘zip’ format and change its

name to ‘client.zip’. ‘client.zip’ is the file which you upload.

Java Challenge (final phase) documentation 2015

30

Appendix5: Importing JDK1.8 to Eclipse

If you are using ‘Luna’ version of eclipse then you don't need this manual, but if you use ‘Kepler’

version then it might be useful. Other versions of eclipse don't support JDK 1.8, and if you are

working with them, you must download one of the aforementioned versions.

First choose help, then select submenu ‘Eclipse Marketplace’. In the field ‘Find’ enter ‘java 8’

and then install ‘java 8 support for Eclipse’. Restart your Eclipse then.

Right-click on the project and select ‘properties’. In the menu on the left choose ‘java compiler’

and change ‘compliance level’ to 1.8.

Now click on ‘java build path’ on the menu on the left side of ‘properties’ and if ‘jre 1.8’ had

any problems, click on it and choose ‘edit’, select ’installed JREs’. in case you couldn't find ‘jre

1.8’ click on ‘add’, after choosing ‘Standard VM’ click next, and afterward enter the address of

‘jre 1.8’ on the directory part, and then click ‘Finish’.

Java Challenge (final phase) documentation 2015

31

