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Preface

This volume is the second of two volumes containing the lectures given at the
School “Quantum Independent Increment Processes: Structure and Applica-
tions to Physics”. This school was held at the Alfried Krupp Wissenschafts-
kolleg in Greifswald during the period March 9-22; 2003. We thank the lectur-
ers for all the hard work they accomplished. Their lectures give an introduction
to current research in their domains that is accessible to Ph. D. students. We
hope that the two volumes will help to bring researchers from the areas of clas-
sical and quantum probability, operator algebras and mathematical physics
together and contribute to developing the subject of quantum independent
increment processes.

We are greatly indebted to the Volkswagen Foundation for their finan-
cial support, without which the school would not have been possible. We
also acknowledge the support by the European Community for the Research
Training Network “QP-Applications: Quantum Probability with Applications
to Physics, Information Theory and Biology” under contract HPRN-CT-2002-
00279.

Special thanks go to Mrs. Zeidler who helped with the preparation and
organisation of the school and who took care of all of the logistics.

Finally, we would like to thank all the students for coming to Greifswald
and helping to make the school a success.

Neuherberg and Greifswald, Uwe Franz
August 2005 Michael Schiirmann
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Introduction

In the seventies and eighties of the last century, non-commutative prob-
ability or quantum probability arose as an independent field of research
that generalised the classical theory of probability formulated by Kolmoro-
gov. It follows von Neumann’s approach to quantum mechanics [vIN96] and
its subsequent operator algebraic formulation, cf. [BR87, BR97, Emc72].
Since its initiation quantum probability has steadily grown and now cov-
ers a wide span of research from the foundations of quantum mechan-
ics and probability theory to applications in quantum information and the
study of open quantum systems. For general introductions to the subject see
[ALO3a, ALO3b, Mey95, Bia93, Par92].

Formally, quantum probability is related to classical probability in a sim-
ilar way as non-commutative geometry to differential geometry or the theory
of quantum groups to its classical counterpart. The classical theory is formu-
lated in terms of function algebras and then these algebras are allowed to be
non-commutative. The motivation for this generalisation is that examples of
the new theory play an important role in quantum physics.

Some parts of quantum probability resemble classical probability, but there
are also many significant differences. One is the notion of independence. Unlike
in classical probability, there exist several notions of independence in quantum
probability. In Uwe Franz’s lecture, Lévy processes on quantum groups and
dual groups, we will see that from an axiomatic point of view, independence
should be understood as a product in the category of probability spaces having
certain nice properties. It turns out to be possible to classify all possible
notions of independence and to develop a theory of stochastic processes with
independent and stationary increments for each of them.

The lecture Classical and Free Infinite Divisibility and Lévy Processes by
O.E. Barndorff-Nielsen and S. Thorbjgrnsen focuses on the similarities and
differences between two of these notions, namely classical independence and
free independence. The authors show that many important concepts of infinite
divisibility and Lévy processes have interesting analogues in free probability.
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In particular, the T-mappings provide a direct connection between the Lévy-
Khintchine formula in free and in classical probability.

Another important concept in classical probability is the notion of Marko-
vianity. In classical probability the class of Markov processes contains the class
of processes with independent and stationary processes, i.e. Lévy processes. In
quantum probability this is true for free independence [Bia98], tensor indepen-
dence [Fra99], and for monotone independence [FMO04], but neither for boolean
nor for anti-monotone independence. See also the lecture Random Walks on
Finite Quantum Groups by Uwe Franz and Rolf Gohm, where random walks
on quantum groups, i.e. the discrete-time analogue of Lévy processes, are
studied with special emphasis on their Markov structure.

Burkhard Kiimmerer’s lecture Quantum Markov Processes and Applica-
tion in Physics gives a detailed introduction to quantum Markov processes. In
particular, Kiimmerer shows how these processes can be constructed from in-
dependent noises and how they arise in physics in the description of open quan-
tum systems. The micro-maser and a spin—%-particle in a stochastic magnetic
field can be naturally described by discrete-time quantum Markov processes.
Repeated measurement is also a kind of Markov process, but of a different

type.

References

[ALO3a] S. Attal and J.M. Lindsay, editors. Quantum Probability Communications.
QP-PQ, XI. World Sci. Publishing, Singapore, 2003. Lecture notes from a Sum-
mer School on Quantum Probability held at the University of Grenoble.

[ALO3b] S. Attal and J.M. Lindsay, editors. Quantum Probability Communications.
QP-PQ, XII. World Sci. Publishing, Singapore, 2003. Lecture notes from a
Summer School on Quantum Probability held at the University of Grenoble.

[Bia93] P. Biane. Ecole d’été de Probabilités de Saint-Flour, volume 1608 of Lecture
Notes in Math., chapter Calcul stochastique non-commutatif. Springer-Verlag,
Berlin, 1993.

[Bia98] P. Biane. Processes with free increments. Math. Z., 227(1):143-174, 1998.

[BR87] O. Bratteli and D.W. Robinson. Operator algebras and quantum statistical
mechanics. 1. C*- and W*-algebras, symmetry groups, decomposition of states.
2nd ed. Texts and Monographs in Physics. New York, NY: Springer, 1987.

[BR97] O. Bratteli and D.W. Robinson. Operator algebras and quantum statistical
mechanics. 2: Equilibrium states. Models in quantum statistical mechanics. 2nd
ed. Texts and Monographs in Physics. Berlin: Springer., 1997.

[Emc72] G.G. Emch. Algebraic methods in statistical mechanics and quantum field
theory. Interscience Monographs and Texts in Physics and Astronomy. Vol.
XXVI. New York etc.: Wiley-Interscience, 1972.

[FM04] U. Franz and N. Muraki. Markov structure on monotone Lévy processes.
preprint math.PR /0401390, 2004.

[Fra99] U. Franz. Classical Markov processes from quantum Lévy processes. Inf.
Dim. Anal., Quantum Prob., and Rel. Topics, 2(1):105-129, 1999.

[Mey95] P.-A. Meyer. Quantum Probability for Probabilists, volume 1538 of Lecture
Notes in Math. Springer-Verlag, Berlin, 2nd edition, 1995.



Introduction XV

[Par92] K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus.
Birkh&user, 1992.

[vVN96] J. von Neumann. Mathematical foundations of quantum mechanics. Prince-
ton Landmarks in Mathematics. Princeton University Press, Princeton, 1996.
Translated from the German, with preface by R.T. Beyer.



Random Walks on Finite Quantum Groups

Uwe Franz! and Rolf Gohm?
1 GSF - Forschungszentrum fiir Umwelt und Gesundheit
Institut fiir Biomathematik und Biometrie
Ingolstadter Landstrafle 1
85764 Neuherberg
uwe . franz@gsf.de
2 Ernst-Moritz-Arndt-Universitit Greifswald
Institut fiir Mathematik und Informatik
Friedrich-Ludwig-Jahnstrasse 15 A
D-17487 Greifswald, Germany
gohm@uni-greifswald.de

1 Markov Chains and Random Walks

in Classical Probability ............. ... ... ... ... ... ... 3
2 Quantum Markov Chains ............... ... ... ... .. ...... 5
3 Random Walks on Comodule Algebras .................... 7
4  Random Walks on Finite Quantum Groups ............... 11
5 Spatial Implementation ................... ... ... ... ..., 12
6 Classical Versions ............... ...t 18
7 Asymptotic Behavior.............. ... ... 22
A Finite Quantum Groups...............oiiiiiiiiiiiia. 24
B The Eight-Dimensional Kac-Paljutkin Quantum Group ... 26
References. ... ... ... . . 30
Introduction

We present here the theory of quantum stochastic processes with independent
increments with special emphasis on their structure as Markov processes. To
avoid all technical difficulties we restrict ourselves to discrete time and finite
quantum groups, i.e. finite-dimensional C*-Hopf algebras, see Appendix A.
More details can be found in the lectures of Kiimmerer and Franz in this
volume.

U. Franz and R. Gohm: Random Walks on Finite Quantum Groups,
Lect. Notes Math. 1866, 1-32 (2006)
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2 Uwe Franz and Rolf Gohm

Let G be a finite group. A Markov chain (X,,),>0 with values in G is called
a (left-invariant) random walk, if the transition probabilities are invariant
under left multiplication, i.e.

P(Xn+1 = gl|Xn = g) = P(Xn-'rl = hg/|Xn = hg) = pgflgl

for all n > 0 and g,¢’,h € G, with some probability measure p = (pg)gsec on
G. Since every group element can be translated to the unit element by left
multiplication with its inverse, this implies that the Markov chain looks the
same everywhere in G. In many applications this is a reasonable assumption
which simplifies the study of (X,,),>0 considerably. For a survey on random
walks on finite groups focusing in particular on their asymptotic behavior, see
[SCO4].

A quantum version of the theory of Markov processes arose in the seventies
and eighties, see e.g. [AFL82, Kiim88] and the references therein. The first
examples of quantum random walks were constructed on duals of compact
groups, see [vWI0b, vW90a, Bia90, Bia91lb, Biadla, Bia92a, Bia92¢, Bia92b,
Bia94]. Subsequently, this work has been generalized to discrete quantum
groups in general, see [[z102, Col04, NT04, INT04]. We hope that the present
lectures will also serve as an appetizer for the “quantum probabilistic potential
theory” developed in these references.

It has been realized early that bialgebras and Hopf algebras are closely
related to combinatorics, cf. [JR82, NS82]. Therefore it became natural to
reformulate the theory of random walks in the language of bialgebras. In
particular, the left-invariant Markov transition operator of some probability
measure on a group G is nothing else than the left dual (or regular) action of
the corresponding state on the algebra of functions on G. This leads to the
algebraic approach to random walks on quantum groups in [Maj93, MRP94,
Maj95, Len96, E1104].

This lecture is organized as follows.

In Section 1, we recall the definition of random walks from classical proba-
bility. Section 2 provides a brief introduction to quantum Markov chains. For
more detailed information on quantum Markov processes see, e.g., [Par03] and
of course Kiimmerer’s lecture in this volume.

In Sections 3 and 4, we introduce the main objects of these lectures, namely
quantum Markov chains that are invariant under the coaction of a finite quan-
tum group. These constructions can also be carried out in infinite dimension,
but require more careful treatment of the topological and analytical proper-
ties. For example the properties that use the Haar state become much more
delicate, because discrete or locally compact quantum groups in general do
not have a two-sided Haar state, but only one-sided Haar weights, cf. [[{us05].

The remainder of these lectures is devoted to three relatively independent
topics.

In Section 5, we show how the coupling representation of random walks
on finite quantum groups can be constructed using the multiplicative unitary.
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This also gives a method to extend random walks in a natural way which is
related to quantization.

In Section 6, we study the classical stochastic processes that can be ob-
tained from random walks on finite quantum groups. There are basically two
methods. Either one can restrict the random walk to some commutative sub-
algebra that is invariant under the transition operator, or one can look for a
commutative subalgebra such that the whole process obtained by restriction
is commutative. We give an explicit characterisation of the classical processes
that arise in this way in several examples.

In Section 7, we study the asymptotic behavior of random walks on fi-
nite quantum groups. It is well-known that the Cesaro mean of the marginal
distributions of a random walk starting at the identity on a classical group
converges to an idempotent measure. These measures are Haar measures on
some compact subgroup. We show that the Cesaro limit on finite quantum
groups is again idempotent, but here this does not imply that it has to be a
Haar state of some quantum subgroup.

Finally, we have collected some background material in the Appendix. In
Section A, we summarize the basic theory of finite quantum groups, i.e. finite-
dimensional C*-Hopf algebras. The most important results are the existence
of a unique two-sided Haar state and the multiplicative unitary, see Theorems
A.2 and A.4. In order to illustrate the theory of random walks, we shall present
explicit examples and calculations on the eight-dimensional quantum group
introduced by Kac and Paljutkin in [[K{PG6]. The defining relations of this
quantum group and the formulas for its Haar state, GNS representation, dual,
etc., are collected in Section B.

1 Markov Chains and Random Walks
in Classical Probability

Let (X,)n>0 be a stochastic process with values in a finite set, say M =
{1,...,d}. Tt is called Markovian, if the conditional probabilities onto the
past of time n depend only on the value of (X,,),>0 at time n, i.e.

P(Xpt1 =tn+11Xo =t0,.. ., X =1n) = P(Xpt1 = in+1| X = in)
for all n > 0 and all ig,...,i,41 € {1,...,d} with
P(oni(],...,Xn:in)>0.

It follows that the distribution of (X, ), >0 is uniquely determined by the initial

distribution (\;)1<i<q and transition matrices (pl(-;l))lgi,jgd, n > 1, defined by
Ai=P(Xo=1i) and  p) = P(X,p1 = j|X, = ).

In the following we will only consider the case, where the transition probabil-
ities pgl) = P(Xp4+1 = j| X, = i) do not depend on n.



4 Uwe Franz and Rolf Gohm

Definition 1.1. A stochastic process (X,,)n>0 with values in M = {1,...,d}
is called a Markov chain on M with initial distribution (A\;)1<i<a and transi-
tion matriz (pij)i<ij<d, if

IP(X():’L):)\Z fOTizl,...,d,
2. P(Xpi1 = ing1|Xo = d0,. .., Xpn = in) = Pininy, for alln > 0 and all
i0s i1 € M s.t. P(Xo = i0,..., X = in) > 0.

The transition matrix of a Markov chain is a stochastic matriz, i.e. it has
non-negative entries and the sum over a row is equal to one,

d
Zpij:l’ forall 1 <i<d.
j=1

The following gives an equivalent characterisation of Markov chains, cf.
[Nor97, Theorem 1.1.1.].

Proposition 1.2. A stochastic process (X, )n>0 is a Markov chain with initial
distribution (X;)i1<i<q and transition matriz (pij)i<ij<d if and only if

P(Xo =10, X1 =1, -, Xn = in) = NigPigis =" Di_1in
for allm >0 and all ig,i1,...,i, € M.

If a group G is acting on the state space M of a Markov chain (X,,)n>0,
then we can get a family of Markov chains (¢g.X,,)n>0 indexed by group ele-
ments g € G. If all these Markov chains have the same transition matrices,
then we call (X,,),>0 a left-invariant random walk on M (w.r.t. to the action
of G). This is the case if and only if the transition probabilities satisfy

P(Xp41=hylX, =ha)=P(X,+1 =y|X, =)

for all x,y € M, h € G, and n > 0. If the state space is itself a group, then
we consider the action defined by left multiplication. More precisely, we call
a Markov chain (X,,),>0 on a finite group G a random walk on G, if

P(Xpq1 = hg/|Xn = hg) =P(Xpp1 = glan =g)
for all g,¢’,h € G, n > 0.

Ezxample 1.3. We describe a binary message that is transmitted in a network.
During each transmission one of the bits may be flipped with a small probabil-
ity p > 0 and all bits have the same probability to be flipped. But we assume
here that two or more errors can not occur during a single transmission.

If the message has length d, then the state space for the Markov chain
(Xn)n>0 describing the message after n transmissions is equal to the d-
dimensional hypercube M = {0,1}¢ = Zg. The transition matrix is given
by
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1—pif i=j,
pij =4 p/d if 4,7 differ only in one bit,
0 if 4,7 differ in more that one bit.

This random walk is invariant for the group structure of Z4 and also for the
action of the symmetry group of the hypercube.

2 Quantum Markov Chains

To motivate the definition of quantum Markov chains let us start with a
reformulation of the classical situation. Let M, G be (finite) sets. Any map
b: M x G — M may be called an action of G on M. (Later we shall be
interested in the case that G is a group but for the moment it is enough to have
a set.) Let CM respectively C& be the *-algebra of complex functions on M
respectively G. For all g € G we have unital *-homomorphisms « : cM - cM
given by a4 (f)(z) := f(b(z, g)). They can be put together into a single unital
x-homomorphism

3:CM L CM@CC, f Zag(f)®1{g},

geG

where 1, denotes the indicator function of g. A nice representation of such
a structure can be given by a directed labeled multigraph. For example, the
graph
Crer_  ——=v

with set of vertices M ={x,y} and set of labels G={g, h} represents the map
b: M xG — M with b(xz,g9) = z, blx,h) =y, bly,g) = x = b(y,h). We
get a natural noncommutative generalization just by allowing the algebras
to become noncommutative. In [GKLO04] the resulting structure is called a

transition and is further analyzed. For us it is interesting to check that this is
enough to construct a noncommutative or quantum Markov chain.

Let B and A be unital C*-algebras and g : B — B ® A a unital *-
homomorphism. Here B® A is the minimal C*-tensor product [Sak71]. Then
we can build up the following iterative scheme (n > 0).

jo:B—B, b—1b
j1:B—B® A, bHﬂ(b)Zb(o)@)b(l)

(Sweedler’s notation b0y @ b1y stands for Zz boi ® by; and is very convenient
in writing formulas.)
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JniB=BRQYA  jn=(jn1®ida)op,
1

n—1
b— jn,l(b(o)) ® b(l) S (B &® ®A> ® A.
1

Clearly all the j, are unital *-homomorphisms. If we want to have an algebra
B which includes all their ranges we can form the infinite tensor product
A= @ A (the closure of the union of all Q" A with the natural inclusions
2+ 2 ®1) and then B:= B® A.

Denote by o the right shift on A, i.e., ola1 ®as®...)=10a1Ray®...
Using this we can also write

Jn BHB, b+—>/6Am(b®1)7
where ﬂA is a unital *~homomorphism given by
B:B—B, b®a— folidg@o)(bea)=p0)@a,

i.c., by applying the shift we first obtain b® 1 ® a € B and then interpret
“B0” as the operation which replaces b @ 1 by B(b). We may interpret 5 as a
kind of time evolution producing 71, ja . ..

To do probability theory, consider states 1, ¢ on B, A and form product

states N
e Qo
1

for B® @Y A (in particular for n = co the infinite product state on B, which
we call ¥). Now we can think of the j, as noncommutative random variables
with distributions ¥ o j,,, and (j,)n>0 is & noncommutative stochastic process
[AFL82]. We call ¢ the initial state and ¢ the transition state.

In order to analyze this process, we define for n > 1 linear maps

n n—1
Qo,n—1) 33®®A—>B®®A,
1 1
bRa1 ®...Q0 a1 Qa, —bRa; ®... R an—1 d(an)
In particular @ := Qo =id®¢: B&A — B, b®a— bo(a).

Such maps are often called slice maps. From a probabilistic point of view,
it is common to refer to idempotent norm-one (completely) positive maps
onto a C*-subalgebra as (noncommutative) conditional expectations [Sak71].
Clearly the slice map Qo,,—1] is a conditional expectation (with its range
embedded by z +— x ® 1) and it has the additional property of preserving the
state, i.e., ¥ o Q[o,n—l] =V.
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Proposition 2.1. (Markov property)
Q[O,n—l] O Jn = Jn-1°Ty

where Ty :B— B, b QA3(b) = (id® ¢)o B(b) = by ¢(b1))-
Proof.

Q0,n—11dn () = Qo,n—1] (Jn-1(b(0)) ® b(1)) = jn—1(b0))A(b(1)) = jn-1T5(b).
O

We interpret this as a Markov property of the process (j,)n>0. Note that if
there are state-preserving conditional expectations P,_; onto j,—1(B) and
Pyg,5,—1) onto the algebraic span of jo(B),...,jn—1(B), then because P, is
dominated by Pjg 1) and Py ,_q) is dominated by Qo ,—1], we get

Po,n—1) ©jn = jn-10Ty (Markov property)

The reader should check that for commutative algebras this is the usual
Markov property of classical probability. Thus in the general case, we say
that (jn)n>0 is a quantum Markov chain on B. The map T, is called the
transition operator of the Markov chain. In the classical case as discussed in
Section 1 it can be identified with the transition matrix by choosing indicator
functions of single points as a basis, i.e., Ty(1;3) = Z?Zl pijlyy. It is an
instructive exercise to start with a given transition matrix (p;;) and to realize
the classical Markov chain with the construction above.

Analogous to the classical formula in Proposition 1.2 we can also derive
the following semigroup property for transition operators from the Markov
property. It is one of the main reasons why Markov chains are easier than
more general processes.

Corollary 2.2. (Semigroup property)
Q jn = T(;L

Finally we note that if (¢) ® ¢) o 3 = 1 then ¥ o 3 = ¥. This implies that
the Markov chain is stationary, i.e., correlations between the random variables
depend only on time differences. In particular, the state v is then preserved
by Ty, i.e., o Ty =1).

The construction above is called coupling to a shift, and similar structures
are typical for quantum Markov processes, see [Kiim88, Go04].

3 Random Walks on Comodule Algebras

Let us return to the map b: M x G — M considered in the beginning of the
previous section. If G is group, then b : M x G — M is called a (left) action of
G on M, if it satisfies the following axioms expressing associativity and unit,
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b(b(x,g),h) = b(x,hg), blx,e)==x

forallz € M, g,h € G, e € G the unit of G. In Section 1, we wrote g.z instead
of b(x,g). As before we have the unital *-homomorphisms ay : CM — CM,
Actually, in order to get a representation of G on CM | i.e., ag ap = agy, for
all g, h € G we must modify the definition and use oy, (f)(z) := f(b(z,g71)).
(Otherwise we get an anti-representation. But this is a minor point at the
moment.) In the associated coaction 3 : CM — CM @ C% the axioms above
are turned into the coassociativity and counit properties. These make perfect
sense not only for groups but also for quantum groups and we state them at
once in this more general setting. We are rewarded with a particular interest-
ing class of quantum Markov chains associated to quantum groups which we
call random walks and which are the subject of this lecture.

Let A be a finite quantum group with comultiplication A and counit ¢
(see Appendix A). A C*-algebra B is called an A-comodule algebra if there
exists a unital x-algebra homomorphism 3 : B — B ® A such that

(Beid)oBf=>1d®@A)of, (d®e)op=id.
Such a map 3 is called a coaction. In Sweedler’s notation, the first equation
applied to b € B reads

b)) ® boy(1) ® by = b(o) @ b1y1) ® b2,
which thus can safely be written as by @ b(1) ® b(a).

If we start with such a coaction § then we can look at the quantum Markov

chain constructed in the previous section in a different way. Define for n > 1
kn: A— B A
a—1R1®...10a®01®...,
where a is inserted at the n-th copy of A. We can interpret the k,, as (non-
commutative) random variables. Note that the k,, are identically distributed.
Further, the sequence jg, k1, ko, . . . is a sequence of tensor independent random

variables, i.e., their ranges commute and the state acts as a product state on
them. The convolution jy x k1 is defined by

Jox k1(b) := jo(b(oy) k1(be1y)

and it is again a random variable. (Check that tensor independence is needed
to get the homomorphism property.) In a similar way we can form the convo-
lution of the k, among each other. By induction we can prove the following
formulas for the random variables j,, of the chain.

Proposition 3.1.
Jn=(fRid®...®id)... (®id®id)(f ®id)s
= (([dRid®...0A)...([doide A)(id® A)S
:jo*k‘l*...*kn
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Note that by the properties of coactions and comultiplications the convolution
is associative and we do not need to insert brackets. The statement j, =
Jjo * k1 % ... x k, can be put into words by saying that the Markov chain
associated to a coaction is a chain with (tensor-)independent and stationary
increments. Using the convolution of states we can write the distribution of
Jn = joxkix... %k, as x¢@*™. For all b € B and n > 1 the transition operator
Ty satisfies
BITLB)) = W(ja(b) = 1 6 (b),

and from this we can verify that
Ty = (id®¢*™) o 5,

i.e., given (0 the semigroup of transition operators (Tg) and the semigroup
(¢*™) of convolution powers of the transition state are essentially the same
thing.

A quantum Markov chain associated to such a coaction is called a random
walk on the A-comodule algebra B. We have seen that in the commutative case
this construction describes an action of a group on a set and the random walk
derived from it. Because of this background, some authors call an action of
a quantum group what we called a coaction. But this should always become
clear from the context.

Concerning stationarity we get

Proposition 3.2. For a state ¢ on B the following assertions are equivalent:

(a) (p®id)of=1v()1L.
(b)) (b ®@)oB =1 for all states ¢ on A.
(¢) (Y ®@mn)op =1, wheren is the Haar state on A (see Appendiz A).

Proof. (a)<(b) and (b)=-(c) is clear. Assuming (c¢) and using the invariance
properties of n we get for all states ¢ on A

v=@weonNs=wonee)ideA)s=(Yonee)(feid)s = (Y ¢)s,
which is (b). O

Such states are often called invariant for the coaction (. Of course for
special states ¢ on A there may be other states ¢ on B which also lead to
stationary walks.

Example 3.3. For explicit examples we will use the eight-dimensional finite
quantum group introduced by Kac and Paljutkin [[K{P66], see Appendix B.

Consider the commutative algebra B = C* with standard basis v; =
(1,0,0,0),...,v4 = (0,0,0,1) (and component-wise multiplication). Defining
an A-coaction by
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B(v1) =v1 @ (e1 +e3) +v2 ® (e2 + 64)

+v3 & % (au + 1fla12 + f (l21 + a22>
1 1—14 1+
+v4 & 5 <al1 - Wam ) a21 + a22>
B(v2) = v1 @ (e2 + €4) + v2 ® (€1 + e3)
1 1—14 1+
+v3 ® B (au - Wam - Wam + a22)
1 1—14 1414
+v4 ® 3 <a11 + Wam + Wam + azz) )
1 1414 1—14
B(vz) = v1 ® B <011 + Wau + Wam + 022)
1 1+ 1—1
+v2 ® 3 (an - Walz - Wam + a22>

+v3 @ (e1 + e2) +v4 ® (e3 + €4),

1 147 1—1
V) =0 Q< |a11 — —=a120 — —=a2 +a
B(va) 1® 5 ( 1 i T —ean 22)

L4 o 1-i
Eln
V2 e

+vs ® (e3 + eq4) +v4 ® (e1 + €3),

1
+v2 ® > (an + as1 + azz)

C* becomes an A-comodule algebra.

Let ¢ be an arbitrary state on A. It can be parametrized by pu1, po, ts, pa, ts
> Oand z,y,2 € R with gy + pto + 13+ pa + s = 1 and 22 +y2 4+ 22 < 1, cf.
Subsection B.3 in the Appendix. Then the transition operator Ty = (id®¢)o A
on C* becomes

p1 + p3 po+pa 1‘*‘% 2 _Ljiy
Fl+22) 5 7 ) it ps + pa
be 1—% ks 1+””J§ H3 + g H1 + 2

w.r.t. to the basis vy, vy, v3, V4.

The state 1y : B — C defined by g (v1) = 1o(v2) = tho(v3) = ¥o(ve) = i is

invariant, i.e. we have

Yox ¢ = (Yo ® P) o B =1ho
for any state ¢ on A.
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4 Random Walks on Finite Quantum Groups

The most important special case of the construction in the previous section
is obtained when we choose B = A and 8 = A. Then we have a random
walk on the finite quantum group A. Let us first show that this is indeed a
generalization of a left invariant random walk as discussed in the Introduction
and in Section 1. Using the coassociativity of A we see that the transition
operator Ty = (id ® ¢) o A satisfies the formula

Suppose now that 5 = A consists of functions on a finite group G and g = A
is the comultiplication which encodes the group multiplication, i.e.

Allggy) = Y Loy @ Loy = Y 1=y @ Lingry,
heG heG

where 1,y denotes the indicator function of g. We also have

Ts(Ligy) = Y Po.g gy
geG

where (pg,4) is the transition matrix. Compare Sections 1 and 2. Inserting
these formulas yields

(Ao T<15 gy = Zpg 9/1{9} = Z L1y ® Zpg,g/l{hg}’
geaG heG geG

[(d®Tp) 0 Al Lgyy = (d@Tp) Y L1y ® Lngy
hedG

= Z l{hfl} (24 thg,hg/l{hg}'

heG geG

We conclude that pg g+ = prg,ng for all g, ¢’, h € G. This is the left invariance
of the random walk which was already stated in the introduction in a more
probabilistic language.

For random walks on a finite quantum group there are some natural special
choices for the initial distribution . On the one hand, one may choose ¢ = ¢
(the counit) which in the commutative case (i.e., for a group) corresponds
to starting in the unit element of the group. Then the time evolution of the
distributions is given by € x ¢*" = ¢*™. In other words, we get a convolution
semigroup of states.

On the other hand, stationarity of the random walk can be obtained if
is chosen such that

(Y ®¢)oA=1.
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(Note that stationarity of a random walk must be clearly distinguished from
stationarity of the increments which for our definition of a random walk is
automatic.) In particular we may choose the unique Haar state 7 of the finite
quantum group A (see Appendix A).

Proposition 4.1. The random walks on a finite quantum group are stationary
for all choices of ¢ if and only if v = .

Proof. This follows by Proposition 3.2 together with the fact that the Haar
state is characterized by its right invariance (see Appendix A). 0

5 Spatial Implementation

In this section we want to represent the algebras on Hilbert spaces and obtain
spatial implementations for the random walks. On a finite quantum group A
we can introduce an inner product

(a,b) = n(a’d),

where a,b € A and 7 is the Haar state. Because the Haar state is faithful (see
Appendix A) we can think of A4 as a finite dimensional Hilbert space which
we denote by H. Further we denote by || - || the norm associated to this inner
product. We consider the linear operator

W HOH—-HH, bxa— Ab)(1Ra).

It turns out that this operator contains all information about the quantum
group and thus it is called its fundamental operator. We discuss some of its
properties.

(a) W is unitary.
Proof. Using (n®id) o A = n(-)1 it follows that
Wo®al® =[|AB) (1 ®a)|* =n®n((1®d)AD D) (1®a))
=n(a*[(n ®id)A(b*b)]a) = n(a*n(b*b)a) = n(b*b) n(a*a)
=n@nbb®aa)=|bead*
A similar computation works for Zi b;®a; instead of b®a. Thus W is isometric
and, because H is finite dimensional, also unitary. It can be easily checked

using Sweedler’s notation that with the antipode S the inverse W1 = W*
can be written explicitly as

W b®a)=[(id® S)AD)](1® a).
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(b) W satisfies the Pentagon Equation WisWi3Wag = WasWis.

This is an equation on H ® H ® H and we have used the leg notation Wyo =
W1, Wos =1 W, Wiz = (1® 7)o Wipo(1®7), where 7 is the flip,
T-HOH—->HOH, 7(a®b) =b® a.

Proof.
WiaWisWas a @ b® ¢ = WiaWig a ® b1y ® baye = Wiz a1) ® b1y @ a2)b(2)c
=a() ® a(z)b(l) ® a(3)b(2)c = Was a() ® a(g)b ®c=WysWisa®b® c.
O

Remark 5.1. The pentagon equation expresses the coassociativity of the co-
multiplication A. Unitaries satisfying the pentagon equation have been called
multiplicative unitaries in [BS93].

The operator L, of left multiplication by a € A on H
Ly:H—H, c—ac

will often simply be written as a in the following. It is always clear from the
context whether a € A or a : H — H is meant. We can also look at left
multiplication as a faithful representation L of the C*-algebra A on H. In
this sense we have

(¢c) Ala)= W (a®1)W* forall ac A

Proof. Here A(a) and a ® 1 are left multiplication operators on H ® H. The
formula can be checked as follows.

W@l) Wbec=W (a®1) bq) ® (Sbay)c =W aby ® (Sbz))c
= a)b) ® a@2)b2)(Sb))e = a)b) ® a@)e(bz))e
=amb®@apyc= Aa)(b®c)
O

By left multiplication we can also represent a random walk on a finite
quantum group A. Then j,(a) becomes an operator on an (n + 1)-fold tensor
product of H. To get used to it let us show how the pentagon equation is
related to our Proposition 3.1 above.

Theorem 5.2.
]n(a) =WouWo ... Won (a RIRY...® 1) W(;(n ce WJ2W51

WoiWoz ... Wonln = Wn—12Whn—2n—1 ... Wor|n,

where |1 means restriction to H® 1 ® ... ® 1 and this left position gets the
number zero.



14 Uwe Franz and Rolf Gohm

Proof. A comparison makes clear that this is nothing but Proposition 3.1
written in terms of the fundamental operator W. Alternatively, we prove the
second equality by using the pentagon equation. For n = 1 or n = 2 the
equation is clearly valid. Assume that it is valid for some n > 2. Then

Wor Woz ... Wo -1 Won Wo g1l = Wor Woz ... Wo n—1 Wa n1t Won |1
- n,n+1W01 W02 o WO,n—1WOn‘H = Wn,n—i-an—l,n e W01|’H'
In the first line we used the pentagon equation for positions 0, n, n+1 together
with W), ,,41(1®1) = 1®1. In the second line we applied the fact that disjoint

subscripts yield commuting operators and finally we inserted the assumption.
O

It is an immediate but remarkable consequence of this representation that we
have a canonical way of extending our random walk to B(H), the C*-algebra
of all (bounded) linear operators on H. Namely, we can for n > 0 define the
random variables

Jn : B(H) — B(QR)H) ~ (X B(H).
0 0
€T = W01W02...W0n (I®1®®1) W(;kn"'WE)EW())kl?

i.e., we simply insert an arbitrary operator x instead of the left multiplication
operator a.

Theorem 5.3. (J,)n>0 s a random walk on the A-comodule algebra B(H).

Proof. First we show that W € B(H) @ A. In fact, if 2’ € B(H) commutes
with A then

Wilea)(b@a)=W(hea'a)=ADb)(1@2'a)=Ab)(1®2")(1®a)
=122YADL)(A ®a) =122 )W(Ob®a).
Because W commutes with all 1® 2’ it must be contained in B(H) ® A. (This
is a special case of von Neumann’s bicommutant theorem but of course the
finite dimensional version used here is older and purely algebraic.) We can

now define
v:BH)—=BH) @A z—W@el) W,

and check that it is a coaction. The property (y ® id) oy = (id® A) oy is a
consequence of the pentagon equation. It corresponds to

W01W02(£L' RIR...® I)WJQng = W()lWOQWlQ(SU X 1 R...Q 1)W1*2W6K2W6<1
= W12W01 (I X 1 ®R...x0 1) W&WE

Finally we check that (id ® €) oy = id. In fact,

V@) (b®a)=W(@@ )W (b®a)=W(r®1)by)®(Shy))a
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= [2(ba))l(1) @ [x(b))l(2) (Sbz)) a
and thus

[(id ® e)y(2)](b) = [z(b))] 1) e([z(b(1))](2)) €(Sb(2))

= :C(b(l)) €(b(2)) = :E(b(l) E(b(Q))) = x(b),
ie., (id®e)y(x) = x. Here we used (id®e)oA = id and the fact that 05 = e.
O

Remark 5.4. The Haar state n on A is extended to a vector state on B(H) given
by 1 € H. Thus we have also an extension of the probabilistic features of the
random walk. Note further that arbitrary states on A can always be extended
to vector states on B(H) (see Appendix A). This means that we also find the
random walks with arbitrary initial state ¢ and arbitrary transition state ¢
represented on tensor products of the Hilbert space H and we have extensions
also for them. This is an important remark because for many random walks
of interest we would like to start in v = € and all the possible steps of the
walk are small, i.e., ¢ is not a faithful state.

Remark 5.5. Tt is not possible to give B(H) the structure of a quantum group.
For example, there cannot be a counit because B(H) as a simple algebra
does not have nontrivial multiplicative linear functionals. Thus B(H) must be
treated here as a A-comodule algebra.

In fact, it is possible to generalize all these results and to work with coac-
tions on A-comodule algebras from the beginning. Let 5 : B — B® A be such
a coaction. For convenience we continue to use the Haar state n on A4 and
assume that there is a faithful stationary state 1) on B. As before we can con-
sider A as a Hilbert space H and additionally we have on B an inner product
induced by % which yields a Hilbert space K. By modifying the arguments
above the reader should have no problems to verify the following assertions.
Their proof is thus left as an exercise.

Define V: K®@H — K®H by b® a — [(b)(1 ® a). Using Proposition
3.2, one can show that the stationarity of ¢ implies that V' is unitary. The
map V satisfies VioVi3Wag = Wa3Via (with leg notation on K @ H ® H) and
the inverse can be written explicitly as V=1 (b®a) = [(id® S)3(b)](1 ® a). In
[Wo096] such a unitary V is called adapted to W. We have 3(b) = V (b®1) V*
for all b € B. The associated random walk (j,,)n>0 on B can be implemented
by

() =VorVoz .. Von 0®@1®@...01) V5, ... ViV

with
VorVoz - Vol = Whe1 o Wh—om—1 ... Wi2Voi k.

These formulas can be used to extend this random walk to a random walk
(Jn)nZO on B(’C)



16 Uwe Franz and Rolf Gohm

Remark 5.6. There is an extended transition operator Z : B(K) — B(K) cor-
responding to the extension of the random walk. It can be described explicitly
as follows. Define an isometry

v K—-K®H, bHV*(b®1)=b(0)®Sb(1).

Then we have
Z:B(K)—BK), z—v'z1lu.

Because v is isometric, Z is a unital completely positive map which extends
T,,. Such extended transition operators are discussed in the general frame
of quantum Markov chains in [Go04]. See also [GKIL.04] for applications in
noncommutative coding.

What is the meaning of these extensions? We think that this is an interest-
ing question which leads to a promising direction of research. Let us indicate
an interpretation in terms of quantization.

First we quickly review some facts which are discussed in more detail for
example in [Maj95]. On A we have an action T" of its dual A* which sends
¢ € A" to

Ty: A— A, ar aq dlaw).

Note that if ¢ is a state then Tj is nothing but the transition operator con-
sidered earlier. It is also possible to consider T' as a representation of the
(convolution) algebra A* on H which is called the regular representation. We
can now form the crossed product A x A* which as a vector space is A ® A*
and becomes an algebra with the multiplication

(C® ¢)(d @ ’L/)) = CT¢(1)(d) ® ¢(2)*¢,

where Ap = ¢(1)@¢2) € A*@ A" =2 (A®A)* is defined by Ap(a®b) = ¢(ab)
for a,b € A.
There is a representation S of A x A* on ‘H called the Schrédinger repre-
sentation and given by
S(C & (i)) = LC Td)'

Note further that the representations L and 7" are contained in S by choosing
c®eand 1® ¢.

Theorem 5.7.
S(A® A") = B(H).

If (¢;), (¢;) are dual bases in A, A*, then the fundamental operator W can be

written as
W= Z Td’qﬁ ® LCz‘
i

Proof. See [Maj95], 6.1.6. Note that this once more implies W € B(H) ® A
which was used earlier. 0O
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We consider an example. For a finite group G both A and A* can be realized
by the vector space of complex functions on G, but in the first case we have
pointwise multiplication while in the second case we need convolution, i.e.,
indicator functions 1,4y for g € G' are multiplied according to the group rule
and for general functions the multiplication is obtained by linear extension.
These indicator functions provide dual bases as occurring in the theorem and

we obtain
W=> T,® L,
geG
where
Lg = Ll{g} : 1{h} — (597}1 1{h},
Tg = Tl{g} . 1{h} = 1{hg—1}~
The reader may rediscover here the map b : M x G — M (for M = G)

discussed in the beginning of the Sections 2 and 3. It is also instructive to
check the pentagon equation directly.

WiaWi3Wa3 = Z (To L, @) Ty @1 Ly)(1®T. ® L)

a,b,c
= Z T,Ty @ L,T. ® LyL. = Z T,T. ® L,T. ® L.
a,b,c a,c

= ZTac & LaTc & Lc = ZTa b2 Lacfch & LCa

a,c

where the last equality is obtained by the substitution a < ac~!. This coin-
cides with

WasWia = Z(l RT.L)T,®L,®1) = ZTa ®T.L, ® L,

a,c a,c
precisely because of the relations
T.L, =L, T, foralla,ced.

This is a version of the canonical commutation relations. In quantum mechan-
ics, for G = R, they encode Heisenberg’s uncertainty principle. This explains
why & is called a Schrodinger representation. Its irreducibility in the case
G =R is a well-known theorem. For more details see [Maj95, Chapter 6.1].

Thus Theorem 5.7 may be interpreted as a generalization of these facts
to quantum groups. Our purpose here has been to give an interpretation of
the extension of random walks to B(H) in terms of quantization. Indeed,
we see that B(H) can be obtained as a crossed product, and similarly as
in Heisenberg’s situation where the algebra B(H) occurs by appending to
the observable of position a noncommuting observable of momentum, in our
case we get B(H) by appending to the original algebra of observables all the
transition operators of potential random walks.
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6 Classical Versions

In this section we will show how one can recover a classical Markov chain from
a quantum Markov chain. We will apply a folklore theorem that says that one
gets a classical Markov process, if a quantum Markov process can be restricted
to a commutative algebra, cf. [AFL82, Kiim88, BP95, Bia98, BKSI7].

For random walks on quantum groups we have the following result.

Theorem 6.1. Let A be a finite quantum group, (jn)n>0 a random walk on
a finite dimensional A-comodule algebra B, and By a unital abelian sub-x-
algebra of B. The algebra By is isomorphic to the algebra of functions on a
finite set, say By = C1L-d}

If the transition operator Ty of (jn)n>o0 leaves By invariant, then there ex-
ists a classical Markov chain (X, )n>0 with values in {1,...,d}, whose prob-
abilities can be computed as time-ordered moments of (jn)nen, i-€.,

P(Xo =io,...,Xe =1¢) =¥ (jo(Lgiey) - de(Lgipy)) (6.1)
for all ¢ >0 and ig,...,ip € {1,...,d}.
Proof. We use the indicator functions 11y,..., 114y,

as a basis for By C B. They are positive, therefore A\; = W(jo(l{l})), e A=
¥ (jo(1gqy)) are non-negative. Since furthermore

At X =P (jo(1py) + - + P (jo(1iay) = P (jo(1)) =¥(1) =1,

these numbers define a probability measure on {1,...,d}.
Define now (pij)lgi,jgd by

d
Ts(1gy) =Y pijlesy-
=1

Since Ty, = (id®¢@)og is positive, we have p;; > 0 for 1 <4, j < d. Furthermore,
T,(1) =1 implies

Z > vl

d d
j=1i=1

d
1=T,(1) =T, [ D 1y | =
j=1
ie. Z;l::lpij =1 and so (p;j)1<i,j<d is a stochastic matrix.
Therefore there exists a unique Markov chain (X,,), >0 with initial distri-

bution (\;)i1<i<q and transition matrix (pi;)i<i,j<d-
We show by induction that Equation (6.1) holds.
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For ¢ = 0 this is clear by definition of A1,...,\;. Let now ¢ > 1 and
i0,..-,¢ € {1,...,d}. Then we have

U (jo(Lgigy) - de(Liiny)) =¥ (Jo(Lgio}) - Je—1(Lgi,y Viem1(L gy () )od Liiy ()
= (Jo(Lgioy) -+ Je-1(Lgi 131t (1)) (L) )
=0 (o)) et (L To(1)) )

).

=W (jo(Lgioy) de—1(Lgip 1)) Piv_nsic
= )\igpz’gil c o Pip_qig
= P(Xo =1i0,...,X¢ = iyp),

by Proposition 1.2. 0O

Remark 6.2. If the condition that Ty leaves Ay invariant is dropped, then one
can still compute the “probabilities”

“P(Xo =io,..., Xe =i0)” =¥ (jo(Lgipy) -+ Je(1gi,y)
=¥ (Plos—1(o(Lioy) - 3e(14i)))
= W(jo(l{io}) - 'j@—l(l{i,g,l})je—1(T¢(1{i,;})))

= W(jo(l{io}) et (1{2-[_1}T¢(1{u})))

= w(l{io}T¢(1{i1}T¢(' Ly T (L) - "))),

but in general they are no longer positive or even real, and so it is impossible
to construct a classical stochastic process (X, )n>0 from them. We give an
example where no classical process exists in Example 6.4.

Ezample 6.3. The comodule algebra B = C* that we considered in Example
3.3 is abelian, so we can take By = B. For any pair of a state ¥» on B and
a state ¢ on A, we get a random walk on B and a corresponding Markov
chain (X,)n>0 on {1,2,3,4}. We identify Ci1234} with B by v; = 144 for
1=1,2,3,4.

The initial distribution of (X,,),>0 is given by \; = 9 (v;) and the transi-
tion matrix is given in Equation (3.1).

Ezample 6.4. . Let us now consider random walks on the Kac-Paljutkin quan-
tum group A itself. For the defining relations, the calculation of the dual of
A and a parametrization of all states on A, see Appendix B. Let us consider
here transition states of the form

¢ = pim + pone + 13Nz + [ana,

with g1, p2, ps, pa € [0, 1], pr1 + pi2 + piz + pa = 1.
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The transition operators T, = (id® ¢) o A of these states leave the abelian
subalgebra Ag = span {e1, €3, €3, e4} = C* invariant. The transition matrix of
the associated classical Markov chain on {1,2,3,4} that arises by identifying
ei = 1y for i =1,2,3,4 has the form

M1 b2 43 fq
M2 b1 fg ft3
K3 g p1 2
Ha M3 2 i1

This is actually the transition matrix of a random walk on the group Zs X Z.
The subalgebra span {a11, a12, as1, ase } = M is also invariant under these
states, Ty acts on it by

Ty(X) = X + 2V XVa + Vi X Vs + Vi X Vi

for X = aai1 + bajs + casy + dagy = ((CZ Z), a,b,c,d € C, with

0i 0 —i 10
eeln) e (0) veGh)

Y . .
Let u = (efsossin ﬂ) be a unit vector in C and denote by p, the orthogonal

projection onto u. The maximal abelian subalgebra A, = span{p,,1 — p,}
in My C A is in general not invariant under 7.

1 ab
_ 1 =
E.g., for u = 7 (1> we get the algebra 4, = span { (b a)

It can be identified with C{12} via (Z Z) = (a+0b)1py + (a—b)1gy.

a,bE(C}.

Specializing to the transition state ¢ = 7o and starting from the Haar
measure ) = 7, we see that the time-ordered joint moment

@ (jo(Li1y)ir(qay)dgz(1q2y)is(lgay)) = W(l{l}Tnz(1{1}Tn2(1{2}Tn2(1{2}))))
1 1 11 11 11y
(e C ) ()
2 2 2 2 2 2 2
1 _ 14 149 1
- (D ) -

is negative and can not be obtained from a classical Markov chain.

N|—N =

Ezample 6.5. For states in span {n1, 12,73, N4, @11 + a2}, the center Z(A) =
span {e1, e2, €3, €4, a11+as2 } of Ais invariant under T, see also [NT04, Propo-
sition 2.1]. A state on A, parametrized as in Equation (B.1), belongs to this set
if and only if x = y = z = 0. With respect to the basis ey, es, e3, €4, a11 + a2
of Z(A) we get
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Bl p2 i3 fa o fs
2 fr1 fhg pr3 - s
Tolyay = | s pa pa p2 pis
Ha b3 f2 1 fs

W5 [5 ps ps | _
7Rl il el U5

for the transition matrix of the classical Markov process that has the same
time-ordered joint moments.

For Lévy processes or random walks on quantum groups there exists an-
other way to prove the existence of a classical version that does not use the
Markov property. We will illustrate this on an example.

Ezample 6.6. We consider restrictions to the center Z(A) of A. If a € Z(A),
then a ® 1 € Z(A® A) and therefore

[a®1,A(b)]=0 for all a,b € Z(A).

This implies that the range of the restriction (jy,| 7( A))”ZO of any random walk
on A to Z(A) is commutative, i.e.

[e(a), 5 (0)]

[Jo*k‘l Kook kg)(a), (Jox kK- k ke ) (B)]
= [(jox k1 %+ *ke)(a), (Go* ki * -+ x ko) (b)) (kg1 * -+ k) (b(2))]
=m(je @ (kep1 % x k) ([a®@ 1, A(D)])) =0

for all 0 < ¢ < n and a,b € Z(A). Here m denotes the multiplication,
m: A A — A, m(a®b) = ab for a,b € A. Therefore the restriction
(jn|Z(A))n20 corresponds to a classical process, see also [Sch93, Proposition
4.2.3] and [Fra99, Theorem 2.1].

Let us now take states for which 7} does not leave the center of A invariant,
eg pn=pa=p3s=pp=c=y=0,pu=1,z€[-1,1], i.e

1+2 1—2
5 apl + 5

¢z = Q22.

In this particular case we have the invariant commutative subalgebra Ay =
span {eq, €9, €3, €4, a11, a2e} which contains the center Z(A). If we identity A
with C{1-6} via e = 1y, 64 = 1yygy,a11 = 153,020 = 16y, then the
transition matrix of the associated classical Markov chain is

I3

0 0 0 0 =1

12217
0 0 0 0 2 1J2r
0 0 0 0 ;=i
0 0 0 0 4=l=
1 l1—2 1—2 1
T 000
11—z 142z 142z 1—2 0 0

~
N
N
N
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The classical process corresponding to the center Z(.A) arises from this Markov
chain by “gluing” the two states 5 and 6 into one. More precisely, if (X, ), >0 is
a Markov chain that has the same time-ordered moments as (4, ), >0 restricted
to Ap, and if g : {1,...,6} — {1,...,5} is the mapping defined by ¢(i) = i
fori=1,...,5 and ¢g(6) = 5, then (Y},)n>0 with Y,, = g(X,,), for n > 0, has
the same joint moments as (j,)n>0 restricted to the center Z(A) of A. Note
that (Y,)n>0 is not a Markov process.

7 Asymptotic Behavior

Theorem 7.1. Let ¢ be a state on a finite quantum group A. Then the Cesaro
mean

1 n
n — — *n, N
¢ n;qﬁ ne

converges to an idempotent state on A, i.e. to a state ¢oy Such that Goe*poo =

Poc.-

Proof. Let ¢/ be an accumulation point of (¢, ), >0, this exists since the states
on A form a compact set. We have

1 2
[6n = @ xdull = —[I6 — ¢ || < =

and choosing a sequence (ng)r>o such that ¢,, — ¢, we get ¢ x ¢’ = ¢
and similarly ¢’ x ¢ = ¢'. By linearity this implies ¢, x ¢’ = ¢ = ¢' x ¢,,.
If ¢" is another accumulation point of (¢,) and (m¢)e>o & sequence such
that ¢, — ¢”, then we get ¢ *x ¢/ = ¢/ = ¢ x ¢ and thus ¢’ = ¢” by
symmetry. Therefore the sequence (¢,,) has a unique accumulation point, i.e.,
it converges. 0O

Remark 7.2. If ¢ is faithful, then the Cesaro limit ¢ is the Haar state on A.

Remark 7.3. Due to “cyclicity” the sequence (¢*™),cn does not converge in
general. Take, e.g., the state ¢ = 1o on the Kac-Paljutkin quantum group A,

then we have
wn ) M2 if mis odd,
2T Ve if nis even,

but

Ezample 7.4. Pal[Pal96] has shown that there exist exactly the following eight
idempotent states on the Kac-Paljutkin quantum group [KP66],
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P1L =T =&,
1
p2 = 5(771 +12),
1
p3 = 5(771 +m3),
1
pa = 5 (m +14),
1
ps = 7 (m + 12+ 13+ 1),
— )+
P6 = 1 m T+ 74 20411,
— )+ 5
pr = 1 N N4 20422,
1 1
ps = §(771 +m2 4 ns +ma) + 1(0411 + aa2) = 1.
On locally compact groups idempotent probability measures are Haar mea-
sures on some compact subgroup, cf. [[Tey77, 1.5.6]. But Pal has shown that

pe and p; are not Haar states on some “quantum sub-group” of A.
To understand this, we compute the null spaces N, = {a|p(a*a) = 0} for
the idempotent states. We get

N = span {62763,64,011701276121&22},
, = Span {637647(1117012,@2176122}7

= Spall {62,6476111&12,@217&22},
Spar {627 €3,a11, @12, a21, a22}7
= Span {1111,6112, 02176122}’

6 — Span {627 €3,a12, a22}7

p; — Spall {62,63&11,@21}7

J\/}, = {0}.

All null spaces of idempotent states are coideals. Nz, N,,, N, , N,  Nop , N,
are even Hopf ideals, so that we can obtain new quantum groups by dividing
out these null spaces. The idempotent states ¢, pa, p3, ps, p5,n are equal to
the composition of the canonical projection onto this quotient and the Haar

state of the quotient. In this sense they can be understood as Haar states on
quantum subgroups of A. We obtain the following quantum groups,

[

o

R,
Il

=
|

A/N- = C = functions on the trivial group,
A/N,, = AIN,, = A/N,, = functions on the group Zo,
A/N,, = functions on the group Zs x Zs,

AIN, = A.

But the null spaces of pg and p7 are only coideals and left ideals. Therefore
the quotients A/N,, and A/N,, inherit only a A-module coalgebra structure,
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but no quantum group structure, and pg, p7 can not be interpreted as Haar
states on some quantum subgroup of A, cf. [Pal96].
We define an order for states on A by

01 =X P2 And N¢1 gN¢'2'

The resulting lattice structure for the idempotent states on A can be repre-
sented by the following Hasse diagram,

pL=¢€

L
e
N

ps =1

Note that the convolution product of two idempotent states is equal to their
greatest lower bound in this lattice, p; x p; = p; A p; for ¢,7,€ {1,...,8}.

A Finite Quantum Groups

In this section we briefly summarize the facts on finite quantum groups that
are used throughout the main text. For proofs and more details, see [[XP60,
Maj95, VD97].

Recall that a bialgebra is a unital associative algebra A equipped with two
unital algebra homomorphisms ¢ : A — C and A : A — A® A such that

(id® A)oA=(A®id)o A
(id®e)oA=id=(¢®id) o A.

We call € and A the counit and the comultiplication or coproduct of A.

For the coproduct A(a) = ), a(1y; ® a2y € A® A we will often suppress
the summation symbol and use the shorthand notation A(a) = a@) @ a(g)
introduced by Sweedler[Swe69].

If A has an involution * : A — A such that £ and A are *-algebra homo-
morphisms, then we call A a x-bialgebra or an involutive bialgebra.

If there exists furthermore a linear map S : A — A (called antipode)
satisfying

a(l)S(a(g)) = E(a)l = S(a(l))a(Q)

for all a € A, then we call A a x-Hopf algebra or an involutive Hopf algebra.
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Definition A.1. A finite quantum group is a finite dimensional C*-Hopf
algebra, i.e. a x-Hopf algebra A, whose algebra is a finite dimensional C*-
algebra.

Note that finite dimensional C*-algebras are very concrete objects, namely
they are multi-matrix algebras @fyil My, , where M), denotes the algebra of
k x k-matrices. Not every multi-matrix algebra carries a Hopf algebra struc-
ture. For example, the direct sum must contain a one-dimensional summand
to make possible the existence of a counit.

First examples are of course the group algebras of finite groups. Another
example is examined in detail in Appendix B.

Theorem A.2. Let A be a finite quantum group. Then there exists a unique
state n on A such that

(id®@n) o A(a) =n(a)l (A1)
for all a € A.

The state 7 is called the Haar state of A. The defining property (A.1) is
called left invariance. On finite (and more generally on compact) quantum
groups left invariance is equivalent to right invariance, i.e. the Haar state
satisfies also

(n®id) o A(a) = n(a)l.

One can show that it is even a faithful trace, i.e. n(a*a) = 0 implies a = 0
and

n(ab) = n(ba)
for all a,b € A.

This is a nontrivial result. See [VD97] for a careful discussion of it. Using
the unique Haar state we also get a distinguished inner product on A, namely
for a,be A

(a, by = n(a™D).

The corresponding Hilbert space is denoted by H.
Proposition A.3. Fvery state on A can be realized as a vector state in H.

Proof. Because A is finite dimensional every linear functional can be written
in the form

ba : b n(a’b) = {a,b).
Such a functional is positive iff a € A is positive. In fact, since 7 is a trace, it is
clear that a > 0 implies ¢, > 0. Conversely, assume ¢, > 0. Convince yourself
that it is enough to consider a,b € M} where M is one of the summands of
the multi-matrix algebra A. The restriction of 7 is a multiple of the usual
trace. Inserting the one-dimensional projections for b shows that a is positive.
Because a is positive there is a unique positive square root. We can now
write ¢, = (a2,- a?) and if ¢, is a state then a2 is a unit vector in H. O
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Note that an equation ¢ = (d,- d) does not determine d uniquely. But
the vector constructed in the proof is unique and all these vectors together
generate a positive cone associated to 7.

The following result was already introduced and used in Section 5.

Theorem A.4. Let A be a finite quantum group with Haar state . Then the
map W: AR A — AR A defined by

W(h®a)=Ab)(1®a), a,b € A,
is unitary with respect to the inner product defined by
(b®a,d®c) = n(b*d) n(a*c),

fora,b,c,d € A.

Furthermore, it satisfies the pentagon equation
WiaWi3Waz = WasWia.

We used the leg notation Wis = W ®id, Was = id@ W, Wiz = (id® 1) o
Wiz o (id® 7), where T is the flip, 7: A®@A —- AR A, T(a®b) = bR a.

Remark A.5. The operator W : A® A — A® A is called the fundamental
operator or multiplicative unitary of A, cf. [BS93, BBS99].

B The Eight-Dimensional Kac-Paljutkin
Quantum Group

In this section we give the defining relations and the main structure of an
eight-dimensional quantum group introduced by Kac and Paljutkin [KPG6].
This is actually the smallest finite quantum group that does not come from a
group as the group algebra or the algebra of functions on the group. In other
words, it is the C*-Hopf algebra with the smallest dimension, which is neither
commutative nor cocommutative.

Consider the multi-matrix algebra A = C®C® C® Cd My(C), with the
usual multiplication and involution. We shall use the basis

10
00)°
01
00/
00
10)°
00
01

e1=180000040, a1 =08000806
eo=061808060, a2=08080806
63:0@0@1@0@0, 021:0@0@0@0@

e, =0808081600, ax=0808080c



Random Walks on Finite Quantum Groups 27

The algebra A is an eight-dimensional C*-algebra. Its unit is of course 1 =
e1 + es + e3 + eq + ay1 + age. We shall need the trace Tr on A,

C11 C12

Tr <x1@$2@$3@$4€9 (
C21 C22

)) =T + To + T3+ Ty + C11 + C22.

Note that Tr is normalized to be equal to one on minimal projections.
The following defines a coproduct on A,

A(el):61®61+€2®62+€3®€3+e4®64

1 1 1 1
+§a11 ®ai + §a12 ® a2 + §a21 ® a1 + §a22 ® asa,

Aleg) = €1 ®@ea+ea®e; +e3@es+e4 R ey

1 1 ]
+§a11 @ azz + §a22 @ a1 + %am @ a1z — %am @ a1,

Ales) =e1 Qe +es®e; +eaReq+e4® e

1 .
+§(111 ® ag2 + §a22 ® a1 — %am ® a2 + %aw ® a1,

Aley) =e1®@es+es®@er +ea@esz+e3 R e

1 1 1 1
+56111 ®ai + §a22 & agy — 5012 @ ayg — 5(121 & a1,

Aa11) =e1 ®@ann +a11 e + ez @ azy + az ® e
+e3 ®age + aze ®eg +e4 & arg + a1 X ey,

Alar2) = e1 ® a12 + a12 ® €1 +iex @ az; — iag @ ez

—ie3 @ ag) +1a21 @ ez —e4 @ ajg — a2 @ ey,

Alaz1) = e1 ® ag1 + a21 ® €1 — iea ® a1z + lajz ® e

+ies @ a1p —ia12 @ €3 — e4 @ a1 — a1 D ey,

Aage) = e1 @age +ax Qe + e @ air +ann ® es

ez ®ayr + a1 ®ez + e4 Qase + azg ® ey.

The counit is given by

€ ((El Dro®azDrs® (CH cl2)> =x
C21 C22
The antipode is the transpose map, i.e.
S(ei) = e, S(ajk) = ag;,
fori=1,2,3,4, j,k=1,2.
B.1 The Haar State

Finite quantum groups have unique Haar elements h satisfying h* = h = h?,
g(h) =1, and
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ah =e(a)h = ha for all a € A,
cf. [VD97]. For the Kac-Paljutkin quantum group it is given by h = e;. An
invariant functional is given by ¢(a) = Tr(aK 1), with K = (Tr® id)A(h) =
e1 + e+ €3 +e4 + %(au + a22) and Kil =e] + €2+ e3 +eq4 + 2(@11 + CLQQ).
On an arbitrary element of A the action of ¢ is given by

C11 C12

)) =x1 + 2o+ x3+ T3 + 2c11 + 2¢99.
C21 C22

¢($1@$2@$3@$4@(

Normalizing 1 so that n(1) = 1, we get the Haar state n = %(15

B.2 The Dual of A

The dual A* of a finite quantum groups A is again a finite quantum group,
see [VDOI7]. Its morphisms are the duals of the morphisms of A, e.g.

my =A% ATQA =2 (AR A)" - A", ma-(d1 @ d2) = (p1 @ ) 0 A

and

Age=my A" > A" QA = (AR A", As-p=¢oma.
The involution of A* is given by ¢*(a) = ¢((Sa)*) for ¢ € A%, a € A. To
show that A* is indeed a C*-algebra, one can show that the dual regular
action of A* on A defined by Tga = ¢(az))an) for ¢ € A%, a € A, is a
faithful *-representation of A* w.r.t. the inner product on A defined by

(a,b) = n(a”b)

for a,b € A, cf. [VD97, Proposition 2.3].

For the Kac-Paljutkin quantum group A the dual A* actually turns out
to be isomorphic to A itself.

Denote by {11,712, 13, N4, @11, @12, @21, a2 } the basis of A* that is dual to
{e1,e2,€3,€4,a11, a12,a21,a22}, i.e. the functionals on A defined by

ni(e;) = iz, ni(ars) =0,
akf(ej) =0, Qg (ars) = (skr(5557

fori,j=1,2,3,4, k,0,r,s =1,2.
We leave the verification of the following as an exercise.
The functionals

fi=<(m +m2+ 03+ 04+ 2011 + 20022),

— 00| =

fo=<(m —mn2 —n3+ 04 — 2011 + 20022),

— 00

f3= §(771 — M2 — M3 + N4 + 2011 — 2a22),

1
fa= g(nl + 12 + 13 + N1 — 2011 — 202),
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are minimal projections in A*. Furthermore

1
by = 1(771 + 12 — 13 — M4),

1—1
b1o = ——= (a2 + i),
12 2\@(12 21)
142 .
by = (o2 — i),

2v2

1
bao = 1(771 — 2+ 13 — M),

are matrix units, i.e. satisfy the relations
bijbre = 0jibie  and  (bi;)" = by,
and the “mixed” products vanish,
fibik =0=bfi, i=1,234, jk=12

Therefore A* = C* @ M, (C) = A as an algebra. But actually, e; — f; and
a;; — bi; defines even a C*-Hopf algebra isomorphism from A to A*.

B.3 The States on A

On C there exists only one state, the identity map. States on Ms(C) are
given by density matrices, i.e., positive semi-definite matrices with trace one.
More precisely, for any state ¢ on My (C) there exists a unique density matrix
p € M2(C) such that

¢(A) = Tr(pA),
for all A € M3(C). The 2 x 2 density matrices can be parametrized by the
unit ball By = {(z,y, 2) € R¥2? + y* + 22 < 1},

11+ z 2ty
p(xayaz)*i (x—zy 1—2

A state on A is a convex combination of states on the four copies of C and
a state on My (C). All states on A can therefore be parametrized by the set

{(uas o, i3, pas pis, 9, 2) € R[22 + 2% = 150 + po + i + pua + pis =
15 p1, po, i3, fia, 15 > 0}, They are given by

¢="Tr(p-)=8n(Kp-)

where

B s (142 x+1ay
=1 D 2 D ug D g O 5 (aziy 12).

With respect to the dual basis, the state ¢ can be written as
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¢ = pam + pan2 + psns + pana (B.1)
—&—%((1 + 2)ar1 + (2 — y)oas + (z +iy)agy + (1 — z)agg).

The regular representation T, = (id ® ¢) o A of ¢ on A has the matrix

K1 M2 M3 Ha ;j%us g?g’m ?\7%’;15 ;\_/;i/%

H3 Ha H1 H2 ;&%lts l;\;%’us *Zzwjg% ;j’%%
wils aMs S aMs  SuaMs mitia O 0 p2+ps
”;7_21’#5 ’;;gu5 ff\}é’ur’;}%’us 0 p1—pa —ipp+ipz 0
SRS S tus — G s 0 ipa—ips g —pa O
s 3Hs SuaMs  SaMs etz O 0 pa+pa

with respect to the basis (2v/2e1, 2v/2e2, 2v/2e3, 2v/2¢e4, 2a11, 2012, 2a21, 2a22).
In terms of the basis of matrix units of A*, ¢ takes the form
¢ = (1 + p2 + pz + pa + pis) fr + (p1 — p2 — ps + pa — 2p5) f2
+(p1 — p2 — p3 + pa + 2p5) f3 + (pa + p + ps + pra — ps) fa
+(p1 + p2 — pz — pa)brn + (1 — p2 + p3 — pa)baz

T+ T —
+ ﬂyuf)bm + Wy,%bm

or

¢ = (p1+ p2+ p3 + pa+ ps) & (1 — p2 — ps + pra — 2p15) S
D(pr — po — pz + pra + 2p5) © (1 + p2 + ps + pa — pi5)

® M1+ pho — 3 — g L\E’Ms
%Ms 1 — po + 3 — g

in matrix form.

Remark: Note that the states on A are in general not positive for the
x-algebra structure of A*.

If ¢ € A* is positive for the x-algebra structure of A*, then T} is positive
definite on the GNS Hilbert space H = A of the Haar state 7, since the regular
representation is a x-representation, cf. [VDI7].

On the other hand, if ¢ € A* is positive as a functional on A, then Ty =
(id ® @) o A is completely positive as a map from the C*-algebra A to itself.
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1 Introduction

The present lecture notes have grown out of a wish to understand whether
certain important concepts of classical infinite divisibility and Lévy processes,
such as selfdecomposability and the Lévy-It6 decomposition, have natural
and interesting analogues in free probability. The study of this question has
led to new links between classical and free Lévy theory, and to some new
results in the classical setting, that seem of independent interest. The new
concept of Upsilon mappings have a key role in both respects. These are
regularizing mappings from the set of Lévy measures into itself or, otherwise
interpreted, mappings of the class of infinitely divisible laws into itself. One
of these mappings, 1", provides a direct connection to the Lévy-Khintchine
formula of free probability.

The next Section recalls a number of concepts and results from the clas-
sical framework, and in Section 3 the basic Upsilon mappings 7y and 1" are
introduced and studied. They are shown to be smooth, injective and regular-
izing, and their relation to important subclasses of infinitely divisible laws is
discussed. Subsequently 7y and 7" are generalized to one-parameter families
of mappings (Y¢")acio,1] and (T'*)aepo,1] with similar properties, and which
interpolate between 1} (resp. 7°) and the identity mapping on the set of Lévy
measures (resp. the class of infinitely divisible laws). Other types of Upsilon
mappings are also considered, including some generalizations to higher di-
mensions. Section 4 gives an introduction to non-commutative probability,
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particularly free infinite divisibility, and then takes up some of the above-
mentioned questions concerning links between classical and free Lévy theory.
The discussion of such links is continued in Section 5, centered around the
Upsilon mapping 7" and the closely associated Bercovici-Pata mapping A.
The final Section 6 discusses free stochastic integration and establishes a free
analogue of the Lévy-Ito representation.

The material presented in these lecture notes is based on the authors’ pa-
pers [BaTh02a], [BaTh02b], [BaTh02c], [BaTh04a], [BaTh04b] and [BaTh05].

2 Classical Infinite Divisibility and Lévy Processes

The classical theory of infinite divisibility and Lévy processes was founded
by Kolmogorov, Lévy and Khintchine in the Nineteen Thirties. The mono-
graphs [Sa99] and [Be96],[Be97] are main sources for information on this the-
ory. For some more recent results, including various types of applications, see
[BaMiRe01].

Here we recall some of the most basic facts of the theory, and we dis-
cuss a hierarchy of important subclasses of the space of infinitely divisible
distributions.

2.1 Basics of Infinite Divisibility

The class of infinitely divisible probability measures on the real line will here
be denoted by ZD(x). A probability measure p on R belongs to ZD(x) if there
exists, for each positive integer n, a probability measure pu,,, such that

—_————

n terms

where * denotes the usual convolution of probability measures.

We recall that a probability measure p on R is infinitely divisible if and
only if its characteristic function (or Fourier transform) f,, has the Lévy-
Khintchine representation:

: 2
log f,.(u) = iyu —F/]R (e”*t -1- %) l%t o(dt), (veR), (2.1)
where ~ is a real constant and o is a finite measure on R. In that case, the
pair (v, o) is uniquely determined, and is termed the generating pair for p.

The function log f,, is called the cumulant transform for p and is also
denoted by C),, as we shall do often in the sequel.

In the literature, there are several alternative ways of writing the above
representation. In recent literature, the following version seems to be preferred

(see e.g. [5a99]):
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log f,,(u) = inu — Lau? —|—/ (e — 1 —iutli_y1)(t)) p(dt), (uw€R), (2:2)
R

where 7 is a real constant, a is a non-negative constant and p is a Lévy

measure on R according to Definition 2.1 below. Again, a, p and 7 are uniquely

determined by p and the triplet (a, p,n) is called the characteristic triplet for

1

Definition 2.1. A Borel measure p on R is called a Lévy measure, if it sat-
isfies the following conditions:

p({0}) =0 and /Rmin{l,tQ} p(dt) < oo.

The relationship between the two representations (2.1) and (2.2) is as
follows:

a=o({0}),

1+ ¢2

p(dt) = e 1R\{O}(t) o(dt), (2.3)

n=r+ [ (a0 - ) sl

2.2 Classical Lévy Processes

For a (real-valued) random variable X defined on a probability space (£2, F, P),
we denote by L{X} the distribution® of X.

Definition 2.2. A real valued stochastic process (X;)i>0, defined on a prob-
ability space (£2,F,P), is called a Lévy process, if it satisfies the following
conditions:

(i) whenever n € N and 0 < tg < t; < .-+ < t,, the increments
Xtoath - Xt07Xt2 - tha .. ath - th717

are independent random variables.

(il) X = 0, almost surely.

(iil) for any s,t in [0, 00[, the distribution of Xsy+ — Xs does not depend on s.

(iv) (Xy) is stochastically continuous, i.e. for any s in [0, 00[ and any positive
€, we have: limy_,o P(| X541t — X5| > €) = 0.

(v) for almost all w in 2, the sample path t — X;(w) is right continuous (in
t > 0) and has left limits (int > 0).

'L stands for “the law of”.
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If a stochastic process (X;);>o satisfies conditions (i)-(iv) in the definition
above, we say that (X;) is a Lévy process in law. If (X;) satisfies conditions
(i), (ii), (iv) and (v) (respectively (i), (ii) and (iv)) it is called an additive
process (respectively an additive process in law). Any Lévy process in law
(X¢) has a modification which is a Lévy process, i.e. there exists a Lévy
process (Y:), defined on the same probability space as (X;), and such that
X; = Y; with probability one, for all ¢. Similarly any additive process in law
has a modification which is a genuine additive process. These assertions can
be found in [Sa99, Theorem 11.5].

Note that condition (iv) is equivalent to the condition that Xs 1 —Xs — 0
in distribution, as ¢ — 0. Note also that under the assumption of (ii) and (iii),
this condition is equivalent to saying that X; — 0 in distribution, as ¢ \, 0.

The concepts of infinitely divisible probability measures and of Lévy
processes are closely connected, since there is a one-to-one correspondance
between them. Indeed, if (X;) is a Lévy process, then L{X;} is infinitely
divisible for all ¢ in [0, co[, since for any positive integer n

n

X = Z(th/n — X(j—1)t/n)

j=1
and hence, by (i) and (iii) of Definition 2.2,

L{X;} = L{Xt/n} * L{Xt/n} oo Xk L{Xt/n}'

n terms

Moreover, for each t, L{X;} is uniquely determined by L{X;} via the relation
L{X;} = L{X1}' (see [Sa99, Theorem 7.10]). Conversely, for any infinitely
divisible distribution p on R, there exists a Lévy process (X;) (on some prob-
ability space (£2,F, P)), such that L{X;} = p (cf. [Sa99, Theorem 7.10 and
Corollary 11.6]).

2.3 Integration with Respect to Lévy Processes

We start with a general discussion of the existence of stochastic integrals
w.r.t. (classical) Lévy processes and their associated cumulant functions. Some
related results are given in [ChSh02] and [Sa00], but they do not fully cover
the situation considered below.

Throughout, we shall use the notation C{u I X} to denote the cumulant
function of (the distribution of) a random variable X, evaluated at the real
number u.

Recall that a sequence (o,) of finite measures on R is said to converge
weakly to a finite measure o on R, if

/Rf(t) o, (dt) — /Rf(t) o(dt), asn — oo, (2.4)
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for any bounded continuous function f: R — C. In that case, we write o,, — 0o,
as n — 0o.

Remark 2.3. Recall that a sequence (x,) of points in a metric space (M,d)
converges to a point x in M, if and only if every subsequence (z,,/) has a subse-
quence (z,~) converging to . Taking M = R it is an immediate consequence
of (2.4) that o,, = o if and only if any subsequence (o,) has a subsequence
(0p7) which converges weakly to o. This observation, which we shall make use
of in the folowing, follows also from the fact, that weak convergence can be
viewed as convergence w.r.t. a certain metric on the set of bounded measures
on R (the Lévy metric).

Lemma 2.4. Let (X, m)nmen be a family of random wvariables indexed by
N x N and all defined on the same probability space (£2,F, P). Assume that

Yu € R: / ™ L{X, m}(dt) — 1,  asn,m — ooc. (2.5)
R

Then Xp.m LR 0, as n,m — oo, in the sense that
Ve >0: P(| X, ;m| >€) — 0, asn,m— oo. (2.6)

Proof. This is, of course, a variant of the usual continuity theorem for char-
acteristic functions. For completeness, we include a proof.

To prove (2.6), it suffices, by a standard argument, to prove that L{X,, ,,,} ~
do, as n,m — oo, i.e. that

¥ € CoR): [ F0) L{Xnm}dt) — [ FObolct) = £0), e mm — o,
R R
(2.7)
where C(R) denotes the space of continuous bounded functions f: R — R.
So assume that (2.7) is not satisfied. Then we may choose f in Cp(R) and
€ in ]0, oo[ such that
YN € N 3n,m > N ’/ F(8) L{ X H(dt) — f(O)‘ > e
R

By an inductive argument, we may choose a sequence n; < ns < nz < ng <
-+« of positive integers, such that

¥ € N: | [ 0 LK Hlt) = 7(0)] 2 <. (2.8)
R
On the other hand, it follows from (2.5) that
Vu € R: / e L{X iy mop o }(dt) — 1, as k — oo,
R

so by the usual continuity theorem for characteristic functions, we find that
L{X 100 9s 1} — 0. But this contradicts (2.8). O
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Lemma 2.5. Assume that 0 < a < b < oo, and let f: [a,b] — R be a con-
tinuous function. Let, further, (X;)i>0 be a (classical) Lévy process, and put

uw = L{X1}. Then the stochastic integral ff f(t)dX, exists as the limit, in

probability, of approximating Riemann sums. Furthermore, L{f;7 ) dX;} €
ID(x), and

, b
Clut [ H0ax} = [ Cuture)
for all u in R.

Proof. Thlb is well- known but, for completeness, we sketch the proof: By

definition (cf. [Lu75]) f f(t)dX; is the limit in probability of the Riemann
sums:

j=1

where, for each n, a = tén) < tg") <
such that maszm,__.’n(tg”) — tg.ﬁ)l) — 0 as n — oco. Since (X;) has stationary,

independent increments, it follows that for any u in R,

" = b is a subdivision of [a,b],

Clut Ry} = CLAE™)ut (X, — X, )}
=1 J j—1

ZC (n) Ju i Xt<n> #, }

.
—

n

CuFE ) (1) — 1)),

—

<.

where, in the last equality, we used [5a99, Theorem 7.10]. Since C), and f are
both continuous, it follows that

n b

Clut [0 f(t)dX,} = lim ST Cu(FEMyu) - (@ ) = / C,(f(t)u) dt,
=1 a

for any u in R. O

Proposition 2.6. Assume that 0 < a < b < o0, and let f: ]a,b[— R be a
continuous function. Let, further, (Xi)i>0 be a classical Lévy process, and put
uw=L{X1}. Assume that

Yu € R: /b |Cu(uf(t))|dt < oo,
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Then the stochastic integral f: ft)dX; exists as the limit, in probability, of

the sequence (f;: f(t) dX})nen, where (a,) and (by) are arbitrary sequences
in Ja,b| such that a,, < b, for alln and a, \,a and b, /' b as n — oo.
Furthermore, L{f; f(t)dX:} € ID(*) and

b
clut [P 1) dXt}:/ Co(uf(t))dt, (2.9)

for all uw in R.

Proof. Let (ay) and (b,,) be arbitrary sequences in ]a, b[, such that a,, <b,, for
all n and a,, \, a and b, /' b as n — oo. Then, for each n, consider the sto-
chastic integral fab" f(t) dX;. Since the topology corresponding to convergence

in probability is complete, the convergence of the sequence ( f; F()dXy)nen
will follow, once we have verified that it is a Cauchy sequence. Towards this
end, note that whenever n > m we have that

/: f(t)dXt—/a:m f(t)dXt:/:n f(t)dXt+/b:n F(t)dX,,

so it suffices to show that
am bn
/ f(t) dX; 2,0 and / f(t)dXy 2,0, asn,m— oo.
an bm

By Lemma 2.4, this, in turn, will follow if we prove that
VuGR:C{uiffn’"f(t)dXt}HO, as n,m — oo,
and
VueR: C{u § fbb;f f(t)dX,} — 0, as n,m — 00. (2.10)

But for n,m in N, m < n, it follows from Lemma 2.5 that

[C{ut [i™ F()dX}| < /am |Cu(uf(t))|dt, (2.11)

n

and since f: |C(uf(t))|dt < oo, the right hand side of (2.11) tends to 0 as
n,m — oo. Statement (2.10) follows similarly.

To prove that lim,,_ f;: f(t)dX; does not depend on the choice of se-
quences (a,,) and (by,), let (a),) and (b)) be sequences in |a, b|, also satisfying
that a, < ¥/, for all n, and that a], \, a and b}, /' b as n — co. We may
then, by an inductive argument, choose sequences n; < ng < ng < --- and
my < mg < mg--- of positive integers, such that

Uny > Ay > Gpy > Gy > oo, and by, <), <bp, <), <.
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Consider then the sequences (a)) and (b)) given by:

" o "o 1 - /Y
Agp_1 = Qny, Aop = Gy, and by g = by, by = by, (k €N).

Then a) < b} for all k, and a}] \, @ and b} /" b as k — oco. Thus, by the
argument given above, all of the following limits exist (in probability), and,
by “sub-sequence considerations”, they have to be equal:

bn bn L

nk
lim [ f(t)dX, = lim F(t)dX, = lim F(t) dX,
n— 00 " k—oo - k—oo all
4 ok
= lim [ f(t)dX;= lim F(t) dXx,
k—o0 a!’ k—oco al’
k 2k
b, "
= lim FOdX, = lim [ f(t)dX,,
= Say,, no Jay,
as desired.

To verify, finally, the last statements of the proposition, let (a,) and (b,) be
sequences as above, so that, by definition, fab f(t)dX, = lim, o fab" ft)dX,
in probability. Since ZD(x) is closed under weak convergence, this implies

that L{ff f(t)dX;} € ID(x). To prove (2.9), we find next, using Gnedenko’s
theorem (cf. [GnKo68, §19, Theorem 1] and Lemma 2.5, that

Clut [P F)dx,} = tim Cfut [7 f(t)dX,}

by b
= Jim [ Cupw)de= [, ture)

for any u in R, and where the last equality follows from the assumption that
f; |Cu(uf(t))|dt < oco. This concludes the proof. |

2.4 The Classical Lévy-Ité6 Decomposition

The Lévy-Ito decomposition represents a (classical) Lévy process (X;) as the
sum of two independent Lévy processes, the first of which is continuous (and
hence a Brownian motion) and the second of which is, loosely speaking, the
sum of the jumps of (X;). In order to rigorously describe the sum of jumps
part, one needs to introduce the notion of Poisson random measures. Be-
fore doing so, we introduce some notation: For any A in [0,00] we denote
by Poiss™()\) the (classical) Poisson distribution with mean . In particular,
Poiss™(0) = dp and Poiss™(00) = 0.

Definition 2.7. Let (©,&,v) be a o-finite measure space and let (12, F, P) be
a probability space. A Poisson random measure on (©,E,v) and defined on
(2, F, P) is a mapping N: £€x 2 — [0, 0], satisfying the following conditions:
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(i) For each E in &, N(E) = N(E, ) is a random variable on (£2,F, P).

(ii) For each E in €, L{N(E)} = Poiss™ (v(E)).

(iii) If En, ..., E, are disjoint sets from &, then N(Ey),...,N(E,) are inde-
pendent random variables.

(iv) For each fized w in (2, the mapping E — N(E,w) is a (positive) measure
on €.

In the setting of Definition 2.7, the measure v is called the intensity mea-
sure for the Poisson random measure N. Let (©,&,v) be a o-finite measure
space, and let N be a Poisson random measure on it (defined on some prob-
ability space (£2,F, P)). Then for any &-measurable function f: © — [0, o0],
we may, for all w in §2, consider the integral f@ f(0) N(df,w). We obtain, thus,
an everywhere defined mapping on 2, given by: w — [ f(6) N(df,w). This
observation is the starting point for the theory of integration with respect
to Poisson random measures, from which we shall need the following basic
properties:

Proposition 2.8. Let N be a Poisson random measure on the o-finite mea-
sure space (0,E,v), defined on the probability space (2, F, P).

(i) For any positive E-measurable function f: @ — [0,00], [ f(0) N(df) is
an F-measurable positive function, and

E{/@f(&)N(dG)}:/@fdu.

(i) If f is a real-valued function in LY(O,E,v), then f € LY(O,E,N(-,w)) for
almost all w in 2, [, f(0) N(d9) € L' (2, F,P) and

IE{/@f(G)N(dQ)}:/@fdy.

The proof of the above proposition follows the usual pattern, proving it first
for simple (positive) £-measurable functions and then, via an approximation
argument, obtaining the results in general. We shall adapt the same method
in developing integration theory with respect to free Poisson random measures
in Section 6.4 below.

We are now in a position to state the Lévy-Ito decomposition for classical
Lévy processes. We denote the Lebesgue measure on R by Leb.

Theorem 2.9 (Lévy-Ité Decomposition). Let (X;) be a classical (gen-
wine) Lévy process, defined on a probability space (2, F, P), and let p be the
Lévy measure appearing in the generating triplet for L{X1}.

(i) Assume that f_ll |z] p(dx) < oo. Then (X;) has a representation in the
form:

X; =yt +VaB: + / x N(ds,dz), (2.12)
10,t] xR



Classical and Free Infinite Divisibilityand Lévy Processes 43

where v € R, a > 0, (By) is a Brownian motion and N is a Poisson ran-
dom measure on (]0,00[xR,Leb ® p). Furthermore, the last two terms on
the right hand side of (2.12) are independent Lévy processes on (2, F, P).

(ii) Iff_l1 |z| p(dz) = oo, then we still have a decomposition like (2.12), but the
integral f]o t]X]RxN(ds,dm) no longer makes sense and has to be replaced
by the limat:

Y, =lim [/ xN(du, dx)f/ xLeb®p(du, dzx)
N0 LJJ0,]x (R\[~e,e]) 10,41 % ([=1,1]\[~¢,€])

The process (Y;) is, again, a Lévy process, which is independent of (By).

The symbol = in (2.12) means that the two random variables are equal

with probability 1 (a.s. stands for “almost surely” ). The Poisson random mea-
sure N appearing in the right hand side of (2.12) is, specifically, given by

N(E,w) = #{s €]0,00]| (s, AX,(w)) € E},

for any Borel subset E of |0, co[x(R\{0}), and where AX; = X, —lim, ~s X,,.
Consequently, the integral in the right hand side of (2.12) is, indeed, the sum of
the jumps of X; until time ¢: f]O,t]xR z N(ds,dz) = > ., AX,. The condition
fil |z| p(dz) < oo ensures that this sum converges. Without that condition,

one has to consider the “compensated sums of jumps” given by the process
(Y2). For a proof of Theorem 2.9 we refer to [Sa99].

2.5 Classes of Infinitely Divisible Probability Measures

In the following, we study, in various connections, dilations of Borel measures
by constants. If p is a Borel measure on R and c¢ is a non-zero real constant,
then the dilation of p by c¢ is the measure D.p given by

Dep(B) = p(¢™'B),

for any Borel set B. Furthermore, we put Dop = dy (the Dirac measure at 0).
We shall also make use of terminology like

D.p(de) = p(c™da),

whenever ¢ # 0. With this notation at hand, we now introduce several impor-
tant classes of infinitely divisible probability measures on R.

In classical probability theory, we have the following fundamental hierar-
chy:

;} CID(x) C P, (2.13)
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(i) P is the class of all probability measures on R.

(ii) ZD(x) is the class of infinitely divisible probability measures on R (as
defined above).

(iii) L(x) is the class of selfdecomposable probability measures on R, i.e.

weE L(x) <= VYee|0,1] Fue € P: = Dep * pie.

(iv) B(x) is the Goldie-Steutel-Bondesson class, i.e. the smallest subclass of
ID(x), which contains all mixtures of positive and negative exponential
distributions® and is closed under convolution and weak limits.

(v) T (x) is the Thorin Class, i.e. the smallest subclass of ZD(x), which con-
tains all positive and negative Gamma distributions? and is closed under
convolution and weak limits.

(vi) R(x) is the class of tempered stable distributions, which will defined
below in terms of the Lévy-Khintchine representation.

(vii) S(x) is the class of stable probability measures on R, i.e.

p € S(x) < {¢(n) | ¥: R — R, increasing affine transformation}

is closed under convolution x .

(viii) G(x) is the class of Gaussian (or normal) distributions on R.

The classes of probability measures, defined above, are all of considerable
importance in classical probability and are of major applied interest. In par-
ticular the classes S(x) and L(x) have received a lot of attention. This is,
partly, explained by their characterizations as limit distributions of certain
types of sums of independent random variables. Briefly, the stable laws are
those that occur as limiting distributions for n — oo of affine transformations
of sums X7 +---+ X,, of independent identically distributed random variables
(subject to the assumption of uniform asymptotic neglibility). Dropping the
assumption of identical distribution one arrives at the class L(x). Finally, the
class ZD(x) of all infinitely divisible distributions consists of the limiting laws
for sums of independent random variables of the form X,,; + -4+ X1, (again
subject to the assumption of uniform asymptotic neglibility).

An alternative characterization of selfdecomposability says that (the dis-
tribution of) a random variable Y is selfdecomposable if and only if for all ¢
in ]0, 1] the characteristic function f of Y can be factorised as

f(€) = F(eQ) fe(€); (2.14)

for some characteristic function f. (which then, as can be proved, necessarily
corresponds to an infinitely divisible random variable Y.). In other words,
considering Y, as independent of Y we have a representation in law

2 A negative exponential (resp. Gamma) distribution is of the form D_u, where
1 is a positive exponential (resp. Gamma) distribution.
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d
Y=cY+Y,

(where the symbol 4 means that the random variables on the left and right
hand side have the same distribution). This latter formulation makes the idea
of selfdecomposability of immediate appeal from the viewpoint of mathemati-
cal modeling. Yet another key characterization is given by the following result
which was first proved by Wolfe in [Wo82] and later generalized and strength-
ened by Jurek and Verwaat ([JuVe83], cf. also Jurek and Mason, [JulMa93,
Theorem 3.6.6]): A random variable Y has law in £(x) if and only if Y has a
representation of the form

Yi/ et dX,, (2.15)
0

where X; is a Lévy process satisfying E{log(1 + |X1|)} < oo. The process
X = (Xy)i>0 is termed the background driving Lévy process or the BDLP
corresponding to Y.

There is a very extensive literature on the theory and applications of stable
laws. A standard reference for the theoretical properties is [SaTa94], but see
also [Fe71] and [BaMiReO1]. In comparison, work on selfdecomposability has
up till recently been somewhat limited. However, a comprehensive account of
the theoretical aspects of selfdecomposability, and indeed of infinite divisibility
in general, is now available in [Sa99]. Applications of selfdecomposability are
discussed, inter alia, in [BrReTw82], [Ba98], [BaShOla] and [BaShO1b].

The class R(*), its d-dimensional version R%(*), and the associated Lévy
processes and Ornstein-Uhlenbeck type processes were introduced and stud-
ied extensively by Rosinski (see [Ros04]), following earlier works by other
authors on special instances of this kind of stochastic objects (see references
in [Ros04]). These processes are of considerable interest as they exhibit sta-
ble like behaviour over short time spans and - in the Lévy process case -
Gaussian behaviour for long lags. That paper also develops powerful series
representations of shot noise type for the processes.

By ZD™ (%) we denote the class of infinitely divisible probability measures,
which are concentrated on [0, oo. The classes ST (), R (x), 7T (x), BT (x) and
L1 (*) are defined similarly. The class 7+ (), in particular, is the class of
measures which was originally studied by O. Thorin in [Th77]. He introduced
it as the smallest subclass of ZD(x), which contains the Gamma distributions
and is closed under convolution and weak limits. This group of distributions is
also referred to as generalized gamma convolutions and have been extensively
studied by Bondesson in [Bo92]. (It is noteworthy, in the present context, that
Bondesson uses Pick functions, which are essentially Cauchy transforms, as
a main tool in his investigations. The Cauchy transform also occur as a key
tool in the study of free infinite divisibility; see Section 4.4).

Example 2.10. An important class of generalized Gamma convolutions are the
generalized inverse Gaussian distributions: Assume that A in R and ~,¢ in
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[0, oo[ satisfy the conditions: A <0=§ >0, A=0= 7,0 >0and A > 0=
~ > 0. Then the generalized inverse Gaussian distribution GIG(\,d,) is the
distribution on Ry with density (w.r.t. Lebesgue measure) given by

g(t; N\, 6,7v) = Mt)‘_lexp{ — (Pt 420}, t>0
T 2K, (07) 2 ’ -7
where K is the modified Bessel function of the third kind and with index
A. For all A\, 0,7 (subject to the above restrictions) GIG(},d,7) belongs to
Tt (x), and it is not stable unless A = —% and v = 0. For special choices of
the parameters, one obtains the gamma distributions (and hence the exponen-
tial and y? distributions), the inverse Gaussian distributions, the reciprocal
inverse Gaussian distributions® and the reciprocal gamma distributions.

Example 2.11. A particularly important group of examples of selfdecompos-
able laws, supported on the whole real line, are the marginal laws of subordi-
nated Brownian motion with drift, when the subordinator process is generated
by one of the generalized gamma convolutions. The induced selfdecomposabil-
ity of the marginals follows from a result due to Sato (cf. [Sa00]).

We introduce next some notation that will be convenient in Section 3.3
below. There, we shall also consider translations of the measures in the classes
T+(x), LT(¥) and D™ (). For a real constant ¢, we consider the mapping
7.: R — R given by

Te(r) =2 +¢, (x € R),

i.e. 7. is translation by c. For a Borel measure o on R, we may then consider
the translated measure 7.(u) given by

TC(IJ/)(B) = M(B - 0)7

for any Borel set B in R. Note, in particular, that if p is infinitely divisi-
ble with characteristic triplet (a,p,n), then 7.(u) is infinitely divisible with
characteristic triplet (a, p,n + ¢).

Definition 2.12. We introduce the following notation:
ID(¥) = {u € ID(x) | e € R: 1.(u) € IDT (%)}
L) ={peID)|TceR: 1.(u) € LT (%)} =ID N L(x)

T (%) ={n € ID(x) | e € R: 7.(u) € TT (%)} = IDF NT ().

3The inverse Gaussian distributions and the reciprocal inverse Gaussian distribu-
tions are, respectively, the first and the last passage time distributions to a constant
level by a Brownian motion with drift.
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Remark 2.13. The probability measures in ZD™ (%) are characterized among
the measures in ZD(x) as those with characteristic triplets in the form (0, p,7),
where p is concentrated on [0, col, f[o jytp(dt) <ooandn > f[o iy to(dt) (cf.

[S299, Theorem 24.11]). Consequently, the class D () can be characterized
as that of measures in ZD(x) with generating triplets in the form (0,7, p),
where p is concentrated on [0, co[ and f[o 1 tp(dt) < oo.

Characterization in Terms of Lévy Measures

We shall say that a nonnegative function k with domain R\ {0} is monotone
on R\ {0} if % is increasing on (—o0,0) and decreasing on (0,00). And we say
that k is completely monotone on R\ {0} if k is of the form

J. v(ds), fort>0
B0 = {foooo —ts (ds) fort <0 (2.16)

for some Borel measure v on R\ {0}. Note in this case that v is necessarily a
Radon measure on R \ {0}. Indeed, for any compact subset K of ]0, co[, we
may consider the strictly positive number m := inf,cx e~ °. Then,

) <m~ / v(ds) <m~ / =m k(1) < co.

Similarly, v(K) < oo for any compact subset of K of | — 0o, 0].

With the notation just introduced, we can now state simple characteriza-
tions of the Lévy measures of each of the classes S (), 7 (%), R (%), L (%), B (x)
as follows. In all cases the Lévy measure has a density r of the form

r(t) = cpt™4 "k (1), for ¢ > 0, (2.17)
et k(t), fort<O, .

where a4, a_,cq,c_ are non-negative constants and where k£ > 0 is monotone
on R\ {0}.

e The Lévy measures of S () are characterized by having densities 7 of the
form (2.17) with ax = 1+ «, a € ]0,2[, and k constant on R and on
R-o.

e The Lévy measures of R (x) are characterized by having densities 7 of the
form (2.17) with ax = 1 4+ «, a € ]0,2[, and k completely monotone on
R\ {0} with £(0+) = k(0—) = 1.

e The Lévy measures of 7 (x) are characterized by having densities r of the
form (2.17) with ax = 1 and k completely monotone on R\ {0}.

e The Lévy measures of L (x) are characterized by having densities r of the
form (2.17) with ay = 1 and k& monotone on R\ {0}.

e The Lévy measures of B () are characterized by having densities 7 of the
form (2.17) with ay = 0 and k completely monotone on R\ {0}.

In the case of S (%) and £ () these characterizations are well known, see for
instance [Sa99]. For 7 (%), R () and B (*) we indicate the proofs in Section 3.
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3 Upsilon Mappings

The term Upsilon mappings is used to indicate a class of one-to-one regu-
larizing mappings from the set of Lévy measures into itself or, equivalently,
from the set of infinitely divisible distributions into itself. They are defined as
deterministic integrals but have a third interpretation in terms of stochastic
integrals with respect to Lévy processes. In addition to the regularizing effect,
the mappings have simple relations to the classes of infinitely divisible laws
discussed in the foregoing section. Some extensions to multivariate settings
are briefly discussed at the end of the section.

3.1 The Mapping Yy

Let p be a Borel measure on R, and consider the family (D,.p),~o of Borel
measures on R. Assume that p has density r w.r.t. some o-finite Borel measure
o on R: p(dt) = r(t) o(dt). Then (Dyp)r>o is a Markov kernel, i.e. for any
Borel subset B of R, the mapping x — D,p(B) is Borel measurable. Indeed,
for any x in ]0, co[ we have

D.p(B) = pla ™ B) = [ Loa(t)r(t) a(dt) = [ La(atyr(t) ofct).
R R
Since the function (¢,z) — 1p(tx)r(t) is a Borel function of two variables,
and since o is o-finite, it follows from Tonelli’s theorem that the function
x— [p 1p(at)r(t) o(dt) is a Borel function, as claimed.
Assume now that p is Borel measure on R, which has a density r w.r.t.
some o-finite Borel measure on R. Then the above considerations allow us to
define a new Borel measure p on R by:

p= | e a (3.1)

or more precisely:
pB) = [ Dap(Bre
0

for any Borel subset B of R. In the following we usually assume that p is a
o-finite, although many of the results are actually valid in the slightly more
general situation, where p is only assumed to have a (possibly infinite) density
w.r.t. a o-finite measure. In fact, we are mainly interested in the case where
p is a Lévy measure (recall that Lévy measures are automatically o-finite).

Definition 3.1. Let M(R) denote the class of all positive Borel measure on R
and let My, (R) denote the subclass of all Lévy measure on R. We then define
a mapping 1o: M (R) — M(R) by

To(o) = [ (Duple*da, (e MR
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As we shall see at the end of this section, the range of 7y is actually a
genuine subset of M (R) (cf. Corollary 3.10 below).

In the following we consider further, for a measure p on R, the transfor-
mation of pjry (o} by the mapping z — z7: R\ {0} — R\ {0} (here pr\ {0}
denotes the restriction of p to R\ {0}). The transformed measure will be de-
noted by w and occasionally also by Jx Note that w is o-finite if p is, and that

p is a Lévy measure if and only if p({0}) = 0 and w satisfies the property:

/min{l,s‘Q}w(ds) < 0. (3.2)
R

Theorem 3.2. Let p be a o-finite Borel measure on R, and consider the Borel
function 7: R\ {0} — [0, 00], given by

f]o,oo[ se™t w(ds), if t >0,

F(t) = (3.3)

Siosoopl8le™ w(ds), ift <0,
where w is the transformation of pr\ {0y by the mapping x — z~': R\ {0} —

R\ {0}.

Then the measure p, defined in (3.1), is given by:
) = p({0})do () + 7(t) dt.
Proof. We have to show that

3(B) = p({0})60(B) + /B PR.OL (3.4)

for any Borel set B of R. Clearly, it suffices to verify (3.4) in the two cases
B C[0,00] and B C ] — 00,0]. If B C [0, 00[, we find that

)= [ ( [, 1) Doplan)e i
_ /OOO (/[0700[ 1p(s2) plds) e da
_ /[0700[ ( /0 T s (sp)et dr) p(ds)

Using, for s > 0, the change of variable u = sz, we find that

5(B) = (13(0) /OOO emdx)p({O})—F/]OOO[(/OOOIB(u)e“/551du) p(ds)
— pl{0)au(B) + | " 15w /] e ) ) du

~ pl{O)du(B) + [ " 1) /] T (as) du,
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as desired. The case B C ] — 00, 0] is proved similarly or by applying, what
we have just established, to the set —B and the measure D_qp. O

Corollary 3.3. Let p be a o-finite Borel measure on R and consider the mea-
sure p given by (3.1). Then

0, ift € R\ {0},

““”:{mmb,#t:a

Corollary 3.4. Let r: R — [0,00[ be a non-negative Borel function and let p
be the measure on R with density r w.r.t. Lebesque measure: p(dt) = r(t) dt.
Consider further the measure p given by (3.1). Then p is absolutely continuous
w.r.t. Lebesque measure and the density, 7, is given by

oy e dy,  ift >0,
f_ooo —y~lr(y~He Wdy, ift<0.

Proof. This follows immediately from Theorem 3.2 together with the fact that
the measure w has density

F(t) =

s 5 2r(s7h), (s e R\ {0}),
w.r.t. Lebesgue measure. 0O

Corollary 3.5. Let p be a Lévy measure on R. Then the measure Yo(p) is
absolutely continuous w.r.t. Lebesque measure. The density, ©, is given by
(3.3) and is a C*°-function on R\ {0}.

Proof. We only have to verify that 7 is a C'°-function on R\ {0}. But this
follows from the usual theorem on differentiation under the integral sign, since,
by (3.2)

/ sPe” ¥ w(ds) < oo and / |s|Pe™ w(ds) < oo,
10,00][ ]—00,0[

for any ¢ in ]0, co[ and any p in N. O

Proposition 3.6. Let p be a o-finite measure on R, let p be the measure given
by (3.1) and let w be the transformation of pr\ (0} under the mapping t — t= 1.
We then have

mwwn=ﬁwa“w®» (t €10, 00, (3.5)
and

0
p(]—oo,t])z/ e w(ds),  (te]—o0,0]) (3.6)

— 00
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Proof. Using Theorem 3.2 we find, for ¢t > 0, that

p([t, ]) = /too (/]o,oo[seUSW(dS)) du = /]o,oo[ (/too e “s du) w(ds)
_ /]0’00[ (/too e dr) w(ds) = /]O’Oo[etsw(ds),

where we have used the change of variable = us. Formula (3.6) is proved
similarly. 0O

Corollary 3.7. The mapping To: ML (R) — M(R) is injective.

Proof. Suppose p € Mz (R) and let w be the transformation of pg\ (0} be
the mapping ¢ +— t~'. Let, further, w, and w_ denote the restrictions of w
to |0, 00[ and | — oo, 0, respectively. By (3.2) it follows then that the Laplace
transform for w is well-defined on all of |0, co[. Furthermore, (3.5) shows that
this Laplace transform is uniquely determined by p. Hence, by uniqueness of
Laplace transforms (cf. [Fe71, Theorem la, Chapter XIIL.1]), w, is uniquely
determined by p. Arguing similarly for the measure D_jw_, it follows that
D_jw_ (and hence w_) is uniquely determined by p. Altogether, w (and hence
p) is uniquely determined by p. 0O

Proposition 3.8. Let p be a o-finite measure on R and let p be the measure
given by (3.1). Then for any p in [0, 00[, we have that

[t ata = rw+ 1) [ e pla).
R R
In particular, the p’th moment of p and p exist simultaneously, in which case
/ tPp(dt)=I(p+1) / tP p(dt). (3.7)
R R

Proof. Let p from [0, oo[ be given. Then

/R|t”ﬁ(dt)/ooo (/prmp(dt))e*l dx/:o (/R|m|pp(dt))e*mdx

= [ ([ e an) tan = o+ 1) [ 10 ot

If the integrals above are finite, we can perform the same calculation without
taking absolute values, and this establishes (3.7). O

Proposition 3.9. Let p be a o-finite Borel measure on R and let p be the
measure given by (3.1). We then have
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/ 1 p(dt) = / =1/t p(d) (3.8)

R\[-1,1 =\(0)

/ t?ﬁ(dt):/ 22 — o=V (1 4 2t 4+ 22) p(dt).  (3.9)
[-1,1] R\ {0}

In particular

/min{u?}ﬁ(dt):/ 22(1— V(|7 + 1)) p(dr),  (3.10)
® R\ {0}

and consequently

/min{l,tz}ﬁ(dt) < oo = /min{l,tz}p(dt) < . (3.11)
R R

Proof. We note first that

/R\[M Loldt) = /000 /1]100 (It]) w(dt))e*xdx
| (] tneeah ptan))e= as
/R o /1 » ””dz) (dt)

[ e
R\{0}

which proves (3.8). Regarding (3.9) we find that

/[_1 1] #*pldt) = /OOO (/Rl[o,u(ﬁ\)tg Dxp(dt))e—x dz
B /Ooo </Rl[°’”(|tf‘|)f2x2 pldt) )e™" du
_ /R\{O} (/Ol/tl 2e—" dx)tQ o(df)

_ / (2 — e V(=2 1 20t171 4+ 2))e2 p(dt)
R\ {0}

(=)

:/ 262 — &= V(1 4 2ft] + 262) p(dt),
R\{0}
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as claimed. Combining (3.8) and (3.9), we immediately get (3.10). To deduce
finally (3.11), note first that for any positive u, we have by second order Taylor
expansion

2 2
E(lfe*"(uﬂ)) - 22 (e“—u+1)=e", (3.12)

for some number ¢ in ]0, u[. It follows thus that
Vi e R\ {0}: 0 < 262(1 — e VI(Je|71 +1)) <1, (3.13)

and from the upper bound together with (3.10), the implication “<” in (3.11)
follows readily. Regarding the converse implication, note that (3.12) also shows
that

lim 26%(1—e YWt + 1)) =1,

[t|—o0

and together with the lower bound in (3.13), this implies that

inf  2t2(1—e M1 +1 0. 3.14
ety 20 (= e HQET 4 1) > (3.14)

Note also that

lim 2(1 — e VIt 7t + 1)) = 2 lim (1-e"(ut1)) =2,

so that
inf  2(1—e VI(t|7M 4+ 1)) > 0. 3.15
et oy 20 7T T D) (319
Combining (3.14),(3.15) and (3.10), the implication “=" in (3.11) follows.
This completes the proof. 0

Corollary 3.10. For any Lévy measure p on R, Yo(p) is again a Lévy measure
on R. Moreover, a Lévy measure v on R is in the range of 1y if and only if
the function F,: R\ {0} — [0, 00[ given by

~Ju(] —oo,t]), ift<0,
F.() = {U([t,oo[), if t >0,

is completely monotone (cf. (2.16)).

Proof. Tt follows immediately from (3.11) that 7°(p) is a Lévy measure if p is.

Regarding the second statement of the corollary, we already saw in Propo-
sition 3.6 that Fy(,) is completely monotone for any Lévy measure p on R.
Assume conversely that v is a Lévy measure on R, such that F, is completely
monotone, i.e.

o(ft, oof) = /Oooe_tsw(ds), (t €10, 00]),
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and 0
v(] —o0,t]) = / e " w(ds), (te]—o00,0]).
— 00

for some Radon measure w on R\ {0}. Now let p be the transformation of
w by the mapping ¢t — t~1: R\ {0} — R\ {0}. Then p is clearly a Radon
measure on R\ {0}, too. Setting p({0}) = 0, we may thus consider p as a
o-finite measure on R. Applying then Proposition 3.6 to p, it follows that p
and v coincide on all intervals in the form | — oo, —t] or [¢, oo[ for ¢ > 0. Since
also p({0} = 0 = v({0}) by Corollary 2.3, we conclude that p = v. Combining
this with formula (3.11), it follows finally that p is a Lévy measure and that
v=7p=To(p) o

Proposition 3.11. Let p be a o-finite measure concentrated on [0, 00[ and let
p be the measure given by (3.1). We then have

/ 1p5(dt) = / eVt p(dt), (3.16)
11,00[ 10,00
/ tp(dt) = / t(1 — ety —e 1/t p(dr). (3.17)
[0,1] 10,00]
In particular
/ min{1, ¢} p(dt) = / t(1 — e 1/t) p(dt), (3.18)
[0,00[ 10,00(
and therefore
/ min{1,t} p(dt) < co <= min{1,t} p(dt) < oco. (3.19)
[0,00[ [0,00[

Proof. Note first that (3.18) follows immediately from (3.16) and (3.17). To
prove (3.16), note that by definition of p, we have

/]1,00[ 1 Atde) = /00" (/[Om[ 11,00/ (t) Dxp(dt))e‘w da
B /000 (/[O,OO[ 11,00 (t2) p(dt))e‘”” da
= /]0700[ (/1/0: e " dx) p(dt)

= / e 1t p(at).
10,00

Regarding (3.17), we find similarly that
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/[071] £ p(dt) = /O h ( /[071] 1 Dop(dt) o~ da
= /Ooo (/[o,oo[ml[o’”(tx) p(dt))e_z dzx
ve
:/]o,oo[t(/o xe dx) p(dt)
=/ t(1—e V(G +1)) p(dt)
]0,00]

:/] e ety 1/t p(dp).
0,00

Finally, (3.19) follows from (3.18) by noting that

e/t 1
0<t(l—e V) = YT <1, whenever ¢t > 0,
and that
lim(l —e YY) =1 = lim ¢(1 —e /%),
AN t—o0o
This concludes the proof. 0O

3.2 The Mapping I
We now extend the mapping 7 to a mapping 7" from ZD(x) into ZD(x).

Definition 3.12. For any p in ZD(*), with characteristic triplet (a, p,n), we
take Y (1) to be the element of TD(x) whose characteristic triplet is (2a, p, 1)
where

i=n+ [ ([0 =1 ®) Daptan)e e 20)

and
5= Tolp) = /0 (Dap)e*da. (3.21)

Note that it is an immediate consequence of Proposition 3.9 that the mea-
sure p in Definition 3.12 is indeed a Lévy measure. We verify next that the
integral in (3.20) is well-defined.

Lemma 3.13. Let p be a Lévy measure on R. Then for any x in ]0,c0[, we
have that

A |ua - (11,17 (uz) — 1y 4 (ua)) | p(du) < cc.
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Furthermore,

/OOO ( /R Juz - (11 () = 1 (u2)) | pldu) e~ dz < oo,

Proof. Note first that for any « in ]0, oo[ we have that

[l () = 1 ()| )

[ (1) = 1y @) )
R

z folul - 11 gy m1,)(w) p(du), if 2 <1,

fo |u\ —1,1\] m—l’z—l](u) p(du), if x > 1.

Note then that whenever 0 < € < K, we have that
[ul - 11— g K]\ [—e,e] (v) < min{K, % } < max{K,e '} min{u?, 1},

for any u in R. Hence, if 0 < < 1, we find that
x/Rf“' (Imamt21 () = 1y (@) | p(du)

< rmax{z 1}/Rmin{u2, 1} p(du) = /]Rmin{u{ 1} p(du) < o0
since p is a Lévy measure. Similarly, if x > 1,
x/RW (U1 () = Lo 0y ()| p(du)
< xmax{l,x}/Rmin{u?, 1} p(du) = xz/Rmin{u2, 1} p(du) < oo
Altogether, we find that

/ / |ugc —11y(ux) = Ty g (uz )’p du)) ~Tdx
1 o]
S/min{uQ,l}p(du) . (/ e ” dx—i—/ rle™" dx) < 00,
R 0 1

as asserted. O

Remark 3.14. In connection with (3.20), note that it follows from Lemma 3.13
above that the integral
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/0OC (/Ru(l[_m] (u) = 1—p 21 (w)) Da;p(du))e—w dz,

is well-defined. Indeed,
/ (/‘u(l[,l,l] (u) = L_g 0 (w))] pr(du))e_x dz
0 R

) /000 ([ b (00) = )] o) e d

Having established that the definition of 7" is meaningful, we prove next a
key formula for the cumulant transform of 7°(x) (Theorem 3.17 below). From
that formula we derive subsequently a number of important properties of 7.
We start with the following technical result.

Lemma 3.15. Let p be a Lévy measure on R. Then for any number ¢ in
] — 00, 0], we have that

/ (/ ‘eigtw =1 —iCtwl_q 5 (t)| p(dt))e*"” dz < oo.
0 R

Proof. Let ¢ from | — 00,0[ and z in [0, co[ be given. Note first that

/ |ei§m =1 —iCtal_q q(t)| p(dt) = / |ei<t‘” — 1| p(dt)
R\[—1,1]

R\[—1,1]

<2 / min{1,#%}p(dt)
R\[—1,1]

< 2/Rmin{1,t2}p(dt).

To estimate fil lei¢t* — 1 —iCtx| p(dt), we note that for any real number ¢, it
follows by standard second order Taylor expansion that

, 1
el —1 —iCta| < —2(gtx)2,

7

and hence

/1 el¢t” — 1 —iCta| p(dt) < i(ga:)Q /1 2 p(dt)
1 P = V2 —1 g

1 2 . 2
< 55 (@) / min{1, 2} p(dt).

Altogether, we find that for any number  in [0, oof,
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icta : 1 2 - 2
/}R‘eC — 1 —iCtal_q yy(t)] p(dt) < (2+ E(Cx) )/len{l,t }p(dt),

and therefore

/000 (/R |eiCtz —1—iCtel_y (t)| p(dt))e*”ﬁ da

< /Rmin{l,tz}p(dt) /OOO (2 + %(sz)e’x dz < o0,

as desired. O

Theorem 3.16. Let p be a measure in ID(x) with characteristic triplet
(a,p,m). Then the cumulant function of T (u) is representable as

CT(H)(O =in¢ — aC2 +/]R (1%@ -1- i<t1[71,1] (t)) p(dt), (3.22)

for any ¢ in R.
Proof. Recall first that for any z € C with Rez < 1 we have

1 o0
T = / e  *dux,
— 5 0

implying that for ¢ real with ( <0

1
1—ict

1 —iCtl_q q(t) = / (' — 1 —iCtal_y qy(t)) e “dz. (3.23)
0

Now, let p from ZD(x) be given and let (a, p,n) be the characteristic triplet
for p. Then by the above calculation

/R<1 —liCt 1= iCt iy (t)) p(dt)

= /R (/OO (0" — 1 —iCtalj_y y(t))e ™" dx)p(dt)

0

= /OOO (/R (eiC“ —1—iCul|_; 4 (u)) p(x_ldu)>e_$ dx

= /OOO (/]R (e — 1 —iCul{_y1y(u)) p(sc_ldu))e_‘lc dz
+i¢ /000 (/Ru(l[_m] (u) = 1j—g,2)(w)) p(x_ldu))e_w dz

_ /R (e — 1 — iCul_ y)(w)) 5(du)
+1i¢ /000 </Ru(1[,171] (u) = 1—z 21 (w)) p(x_ldu))e_m dz,
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where we have changed the order of integration in accordance with Lemma 3.15.
Comparing the above calculation with Definition 3.12, the theorem follows
readily. O

Theorem 3.17. For any u in ID(*) we have

Crw(z) = /0 Cu(zx)e™* da, (z € R).

Proof. Let (a, p,n) be the characteristic triplet for . For arbitrary z in R, we
then have

/ Cu(zx)e " da
0
= / (inzx — —az’a? +/ (e — 1 —itzal_q,1)(t)) p(dt))e_“c dz
0 2 R '

o0 1 oo
= inz/ ze ¥dr — —az? / r?e " dx
0 2 0

+/R (/Ooo (%" — 1 —itzal_y q(t))e " dx) p(dt)

1
—imy — g2 S
=inz —az —l—/R (1 _—p” 1 —iztl_y (t)) p(dt),

(3.24)

where the last equality uses (3.23). According to Theorem 3.16, the resulting
expression in (3.24) equals Cy(,(2), and the theorem follows. O

Based on Theorem 3.17 we establish next a number of interesting proper-
ties for 7.

Proposition 3.18. The mapping T': TD(x) — ID(x) has the following prop-
erties:

(i) T is injective.

(ii) For any measures p,v in ID(x), T(p*xv) =T (u) «T(v).

(iii) For any measure p in ZD(x) and any constant ¢ in R, T (D.p) = DT ().
(iv) For any constant ¢ in R, T(5.) = d..

(v) T is continuous w.r.t. weak convergence®.

Proof. (i) This is an immediate consequence of the definition of 7" together
with the injectivity of 15 (cf. Corollary 3.7).

(ii) Suppose p1, e € ID(x). Then for any z in R we have by Proposi-
tion 3.17

4In fact, it can be proved that 7" is a homeomorphism onto its range with respect
to weak convergence; see [BaTh04c].
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o0 o0
Cruyrps)(2) = / Chysps (z)e™ " da = / (C’m(zx) + C’,Lz(za:))e_z dx
0 0

= Or(u1)(2) + Cr(u) (2) = Cr(un)sr(ue) (2),
which verifies statement (ii)
(iii) Suppose p € ID(x) and ¢ € R. Then for any z in R,
Crp.p (2) :/ Cp,u(zx)e™* da :/ Culezx)e ™ da
0 0

= Cru)(cz) = Cp,r(u)(2),

which verifies (iii).

(iv) Let ¢ from R be given. For z in R we then have

o0 o0
Cray(2) = / Cs, (zx)e ™" da = / iczae™ dx = icz = Cys_(2),
0 0

which verifies (iv).

(v) Although we might give a direct proof of (v) at the present stage
(see the proof of Theorem 3.40), we postpone the proof to Section 5.3, where
we can give an easy argument based on the continuity of the Bercovici-Pata

bijection A (introduced in Section 5.1) and the connection between 7" and A
(see Section 5.2).

Corollary 3.19. The mapping T': ID(x) — ID(x) preserves stability and
selfdecomposability. More precisely, we have

T(S(x)) =8(x) and T(L(x)) C L(x).
Proof. Suppose € S(x) and that ¢,¢/ > 0 and d,d’ € R. Then
(DCH’ * 5(1) * (Dc/lj, * 5(1’) = DC”,U’ * 5d”;

for suitable ¢’ in ]0, 00[ and d” in R. Using now (ii)-(iv) of Proposition 3.18,
we find that

(DY (1) # 64) % (Do (p1) % 6 ) = (T (Dep) ¥ T(8a)) * (Y(Derpr) * T (ar))
= V(Do 84) % V(Do % S
=Y ((Dep ba) * (Der o * 8ar))
= V(D 5))
= DT (p) * b,

which shows that 1'(11) € S(x). This verifies the inclusion 7(S(x)) C S(x). To
prove the converse inclusion, we use Corollary 3.4 (the following argument, in
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fact, also shows the inclusion just verified above). As described in Section 2.5,
the stable laws are characterized by having Lévy measures in the form r(t) dt,
where
t~t=o fort >0,
r(t) = cq 1 or
c_|t|7t7e, fort <0,

with a € ]0,2[ and ¢4, c— > 0. Using Corollary 3.4, it follows then that for u
in S(x), the Lévy measure for 7(u) takes the form 7(¢) d¢, with 7(¢) given by

Jo —y tr(y e vdy, ift <0,
(3.25)
ey r(t+ oyttt ift >0,
e A+ o), ift <0,

where the second equality follows by a standard calculation. Formula (3.25)
shows, in particular, that any measure in S(*) is the image by 7" of another
measure in S(x).

Assume next that g € L(x). Then for any ¢ in |0, 1[, there exists a measure
e in ZD(x), such that u = D.p * p.. Using now (ii)-(iii) of Proposition 3.18,
we find that

T(p) =T (Depx pre) = T(Dep) * T(pe) = DT (1) ¥ T (pc),
which shows that 7'(u) € L(x). O

Remark 3.20. By the definition of 7" and Corollary 3.5 it follows that the Lévy
measure for any probability measure in the range 7(ZD(x)) of 7" has a C*°
density w.r.t. Lebesgue measure. This implies that the mapping 7": ZD(x) —
ID(x) is not surjective. In particular it is apparent that the (classical) Poisson
distributions are not in the image of 7", since the characteristic triplet for the
Poisson distribution with mean ¢ > 0 is (0,¢d1,¢). In [BaMaSa04], it was
proved that the full range of 7" is the Goldie-Steutel-Bondesson class B(x). In
Theorem 3.27 below, we show that V' (L(x)) = 7 ().

We end this section with some results on properties of distributions that
are preserved by the mapping 7". The first of these results is an immediate
consequence of Proposition 3.11.

Corollary 3.21. Let u be a measure in ZD(x). Then p € IDI (%) if and only
if T(u) € ID} (+).

Proof. For a measure p in ZD(x) with Lévy measure p, 7'(11) has Lévy measure
Yo(p) = p. Hence, the corollary follows immediately from formula (3.19) and
the characterization of D] (%) given in Remark 2.13. O

The next result shows that the mapping 1" has the same property as that
of Ty exhibited in Proposition 3.8.
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Proposition 3.22. For any measure p in ID(x) and any positive number p,
we have
w has p’th moment <= 1 (u) has p’th moment.

Proof. Let pin ZD(%) be given and put v = 7"(u). Let (a, p,n) be the charac-
teristic triplet for u and (2a, p,7) the characteristic triplet for v (in particular
p = Tu(p). Now by [5a99, Corollary 25.8] we have

/ |z]P p(de) < o0 <= / |z|P p(dx) < oo, (3.26)
R [~1,1)¢

and

/Rmp v(dr) < oo = - |z p(dz) < oco. (3.27)

Note next that

[ apatan = [ ([ P Dusn))e g
[—1,1]¢ 0 [—1,1]¢

= /Ooo (/R lzy P11 13 (2y) p(d:z:))efy dy (3.28)

= [ar(f : ye ™ dy) pldz).

where we interpret flo/qu yPe Y dy as 0, when x = 0.
Assume now that p has p’th moment. Then by (3.26), f[71 1e |z|P p(dx) <
00, and by (3.28)

[ waPatas)
[_171]C

< /[_171] |3[:|p(/1OO yPe Y dy) p(dx) + I'(p+ 1)/ |z? p(dz).

/lx‘ [_171]C

By (3.27), it remains thus to show that

/ |x|p(/ yPe™Y dy) p(dx) < 0. (3.29)
[(—1,1] /x|

If p > 2, then this is obvious:
[ee]
[ oel(f weran) ot <reen [ el pldo) < o,
(-1,1] 1/|x| (-1,1]

since p is a Lévy measure. For p in ]0,2[ we note first that for any numbers
t,q in ]0, 0o[ we have
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o0 yp+q o0
/ yretdy = / e s / yPHeVdy <t (p + g+ 1).
t t t

Using this with ¢ = 1/|z|, we find for any positive ¢ that
[ owal([ wreray) o) <oty [l pdo).
(-1,1] /]| (—1,1]
Choosing ¢ = 2 — p we find as desired that

[oar([ weran) o <re) [ ol pldo) < o,
[-1.1] 1/|=| [-1,1]

since p is a Lévy measure.

Assume conversely that v = 7°(u) has p’th moment. Then by (3.27), we
have f[—Ll]C |z|P p(dx) < oo, and by (3.26) we have to show that f[—Ll]C lz|? p
(dz) < oo. For this, note that whenever |z| > 1 we have

/ yPe ¥ dy > / yPe Y dy €10, 00].
1/l 1
Setting ¢(p) = floo yPe Y dy and using (3.28) we find thus that

1 oo
z|P p(dz g—/ x[? / yPe YV dy ) p(dx
/[—1,1]C| "ot c(p) [—171]C| | ( 1/]a| ) )

1 / .
< — z|P p(dx) < oo,
c(p) [—1,1]¢ [+l (dz)

as desired. 0O

3.3 Relations between Yy, and the Classes L(x), T (*)

In this section we establish a close connection between the mapping 7" and
the relationship between the classes 7 (x) and L(x). More precisely, we prove
that 7'(L(x)) = 7 () and also that (L} (x)) = 7.7 (x). We consider the latter
equality first.

The Positive Thorin Class

We start by establishing the following technical result on the connection be-
tween complete monotonicity and Lévy densities for measures in ZD™ (x).

Lemma 3.23. Let v be a Borel measure on [0, 00[ such that

Vit > 0: / e " u(ds) < oo,
[0,00[
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and note that v is necessarily a Radon measure. Let q: |0, 00 — [0, o0o[ be the
function given by:

1
o) = 1 / e u(ds),  (t>0).
t
[0,00[
Then q satisfies the condition

(oo}
/ min{1,t}q(t) dt < oo, (3.30)
0
if and only if v satisfies the following three conditions:

(a) v({0}) =0,
(b) fio,1y Nog(#)| v(dt) < oo,

(c) f[l’m[ 1 v(dt) < oo

Proof. We note first that

1
/ tq(t)dt = / / v(ds)dt = / (/ e s dt) v(ds)
0 o, 00[ [0,00[ *JO

_V({O})+/]O [%(l—e S)y(ds).

(3.31)

Note next that

/ /100 g /[0 o “v(ds)dt = /[Om[ (/:O lets dt) v(ds)
/[O,oo[ (/ e~ dt) v(ds) = /Ooo 1e‘t</[0’ﬂ 1v(ds)) dt
[

Assume now that (3.30) is satisfied. It follows then from (3.32) that

(=)

(3.32)

50 > /1 Loty ([0, ]) dt > e_l/l Ly((0,4]) dt.

Here, by partial (Stieltjes) integration,

1

/O1 Ly([0,4]) dt = [log(ﬁ)lf([(ht])}0 - /]0 : log(t) v(dt)

= lim [ Hog (0w ([0, 1) + /]] [ log(t)| »(ds),
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so we may conclude that

lim | log(¢)|v([0,¢]) < 0o and / |log(t)|v(dt) < oo,
t\.0 10,1]

and this implies that (a) and (b) are satisfied. Regarding (c), note that it
follows from (3.30) and (3.31) that

oo>/01tq(t)dt2/[m[;<1—e—8)y(ds)2(1—9,—1)/ 1,(ds),

[1,00]

and hence (c) follows.
Assume conversely that v satisfies conditions (a), (b) and (c). Then by
(3.31) we have

1
/ tq(t) dt = / 11—e%)v(ds) < / 1v(ds) Jr/ Lu(ds),
0 10,00][ 10,1] [1,00[

where we have used that (1 —e~%) <1 for all positive s. Thus, by (b) and
1

(¢), fol tq(t)dt < co. Regarding [, ¢(t)dt, note that for any s in ]0,1] we
have (using (a))

0 < [log(s)|w([0. 5]) = /

o log(s™") v(du) S/ log(u™") v(du)

10,s]
- / | og(u)] v(du),
10,s]

and hence it follows from (b) that |log(s)|v([0,s]) — 0 as s \, 0. By partial
integration we obtain thus that

00 > /}071] |log(s)|v(ds) = [| log(8)|y([07s])}; + /01 1u([0, s]) ds

1
:/ %V([O,s])ds
0

1
Lo=sy s]) ds.
> / Le=* ([0, 5]) d

By (3.32) and (b) it remains, thus, to show that [~ le™*1([0,s])ds < oo.
For that, it obviously suffices to prove that 1v([0,s]) — 0 as s — co. Note,

towards this end, that whenever s >t > 1, we have

1y 0,s =1y 0,t Ly(du) < Lv 0,t ,lvdu,
Ly([0,5]) = 1uA] 1>+/ Ly(du) < L] D+/Mu< )

1¢,s]
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and hence, for any ¢ in [1, oo,

limsup L1([0, s]) < / 1 v(du).
Jt,00]

Letting finally ¢ — oo, it follows from (c) that

limsup 1v([0, s]) = 0,

§— 00

as desired. O

Theorem 3.24. The mapping T maps the class L (x) onto the class T." (%),
i.e.

(L () = T (+).

T

Proof. Assume that p € LI (x) with generating triplet (a,p,n). Then, by
Remark 2.13, a = 0, p is concentrated on [0, 0o, and [;~ min{1, ¢} p(dt) < oco.
Furthermore, since p is selfdecomposable, p(dt) = r(t)dt for some density
function r: [0, 00[— [0, oo[, satisfying that the function ¢(t) = tr(t) (¢t > 0) is
decreasing (cf. the last paragraph in Section 2.5).

Now the measure 7°(1) has generating triplet (0, p, 77), where p has density
7 given by

7(t) = /OOO q(sil)e*tS ds, (t>0),

(cf. Corollary 3.4). We already know from Corollary 3.21 that Y(u) € ZD; (%),
so it remains to show that the function ¢ — ¢7(¢) is completely monotone, i.e.
that

tr(t) = /[0 [e*ts v(ds), (t>0),

for some (Radon) measure v on [0, 00[. Note for this, that the function s —
q(s71) is increasing on ]0,00[. This implies, in particular, that s — ¢(s™!)
has only countably many points of discontinuity, and hence, by changing r on
a Lebesgue null-set, we may assume that s — ¢(s~!) is increasing and right
continuous. Note finally that ¢(s™) — 0 as s \, 0. Indeed, since s — g(s7 1) is
increasing, the limit 8 = limgs o ¢(s™') exists and equals infs~0g(s™'). Since
sr(s) = q(s) — B as s — oo and [~ r(s)ds < oo, we must have 8 = 0.
We may now let v be the Stieltjes measure corresponding to the function
s q(s71), ie.

q(s7h), ifs>0,

v(] = oo, s]) = {0, if s <0.

Then, whenever ¢t € ]0,00[ and 0 < a < b < 0o, we have by partial integration

/a (s ytet ds = [- q(sfl)eﬂz + /] e, (3.33)
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Here g(a=Y)e* — 0 as a \, 0. Furthermore, since fooo q(s Hte P ds =
t7(t) < oo, it follows from (3.33) that v = limp_ o ¢(b™)e " exists in [0, oc].
Now sr(s)e™t/* = q(s)e™"/* — v as s \, 0, and since fol sr(s)ds < oo, this
implies that v = 0. Letting, finally, a — 0 and b — oo in (3.33), we may now
conclude that

t7(t) = / q(s Hte ™ ds = / e Su(ds), (t >0),
0 ]0,00]

as desired.

Assume conversely that ji € 7.7 (x) with generating triplet (a, p,7). Then
a =0, p is concentrated on [0, 00 and [~ min{1,¢} 5(dt) < co. Furthermore,
p has a density 7 in the form

1
(t) = — e ¥ u(ds), t>0),
(1) /[Om[ (ds),  (t>0)

t

for some (Radon) measure v on [0, o[, satisfying conditions (a),(b) and (c) of
Lemma 3.23.
We define next a function r: ]0, co[— [0, co[ by

r(s) = Lu([0,1]), (s >0). (3.34)

Furthermore, we put
q(s) = sr(s) =v([0,1]),  (s>0),

and we note that ¢ is decreasing on 0, oo and that ¢(s™1) = v/([0, s]). Note
also that, since v({0}) = 0 (cf. Lemma 3.23),

0 < v([0,s])e™" < v([0,s]) — 0, as s \, 0,

L1(ds) < oo (cf. Lemma 3.23), it

S

for any ¢ > 0. Furthermore, since f[l oo

follows as in the last part of the proof of Lemma 3.23 that 1v([0,s]) — 0
as s — oo. This implies, in particular, that q(s~1)e ™ = v([0,s])e ™t =
1u([0, s])se™" — 0 as s — oo for any positive ¢. By partial integration, we
now conclude that

oo oo
/ q(s Hte ¥ ds = {— q(s_l)e_ts] + / e " u(ds) = ti (),
0 0 10,00
for any positive t. Hence,
7(t) = / q(s7He " ds = / s7lr(s7het ds, (t >0),
0 0

and by Corollary 3.4, this means that
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= [
0

where p(dt) = r(t)dt. Note that since v is a Radon measure, r is bounded
on compact subsets of ]0,00[, and hence p is o-finite. We may thus apply
Proposition 3.11 to conclude that [~ min{1,t} p(dt) < oo, so in particular p
is a Lévy measure. Now, let 1 be the measure in ZD(*) with generating triplet
(0, p,m), where

n=1n-— /OOO (/Rt(l[,Ll] (t) — 1[,%30] (t)) Dxp(dt))eiz dx.

Then Y(11) = ji and p € ID; (%) (cf. Corollary 3.21). Moreover, since tr(t) =
q(t) is a decreasing function of ¢, it follows that pu is selfdecomposable (cf. the
last paragraph of Section 2.5). This concludes the proof. a
The General Thorin Class

We start again with some technical results on complete monotonicity.

Lemma 3.25. Let v be a Borel measure on [0, 00[ satisfying that
Vit >0: / e " y(ds) < oo,
[0,00]

and note that v is a Radon measure on [0,00[. Let further q: ]0,00[ — [0, 00|
be the function given by

at) =1 /[O7oo[e_tsu(ds), (t>0). (3.35)

Then q is a Lévy density (i.e. f(;)o min{1,t?}q(t)dt < oo) if and only if v
satisfies the following three conditions:

(a) v({0}) = 0.
(b) f]o,1[ |log(t)| v(dt) < co.
(c) f[lm[ L v(dt) < occ.

Proof. We note first that

/Olﬁq(t) dt = /Olt(/[om[ets y(ds)) dt = /[O)oo[ (/Oltets dt) v(ds)

1 1
—on+ [ 5

10,00[ 57

(1 —e7% —se™®)v(ds).
(3.36)

Exactly as in the proof of Lemma 3.23 we have also that
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/100 q(t)dt = /Ooo %e_tu([o,t]) dt. (3.37)

Assume now that ¢ is a Lévy density. Exactly as in the proof of Lemma 3.23,
formula (3.37) then implies that v satisfies conditions (a) and (b). Regarding
(¢), note that by (3.36),

1
1 . 1
00 > / t2q(t) dt > / —(1—e""—se”*)v(ds) > (1—26_1)/ — v(ds),
0 [1,00[ ¥ [

o0 §

where we used that s — 1 — e~ — se™® is an increasing function on [0, oo[. It
follows thus that (c) is satisfied too.
Assume conversely that v satisfies (a),(b) and (c¢). Then by (3.36) we have

1
1 1
/ t2q(t)dt = / —(l—e*—se ")v(ds) < / 1 V(ds)+/ — v(ds),
0 10,00[ 8 10,1] [1,00[ 8

where we used that s 2(1 —e™* — se™%) = fol te~t*dt < 1 for all positive s.
Hence, using (c¢) (and the fact that v is a Radon measure on [0, 0c[), we see
that [ t2q(t) dt < oco.

Regarding floo q(t) dt, we find by application of (a) and (b), exactly as in
the proof of Lemma 3.23, that

1y
oo>/]o’1]|log(s)1/(ds)2/0 —e°v([0, s]) ds.

S

By (3.37), it remains thus to show that [ Le™*1([0,s])ds < oo, and this

clearly follows, if we prove that s~2v([0, s]) — 0 as s — oo (since v is a Radon
measure). The latter assertion is established similarly to the last part of the
proof of Lemma 3.23: Whenever s > ¢ > 1, we have

(08D < S0+ [ v(aw),

Jt,s] U

and hence for any ¢ in [1, oo,

1 1
lim sup S—QV([O, s]) < /]t [ —v(du). (3.38)

$§—00 (7
Letting finally t — oo in (3.38), it follows from (c) that

limsup s~ 2v([0, s]) = 0.

§— 00

This completes the proof. 0O
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Corollary 3.26. Let v be a Borel measure on R satisfying that
vt e R\ {0}: / eIl y(ds) < oo,
R

and note that v is necessarily a Radon measure on R. Let g: R\ {0} — [0, 00|
be the function defined by:

q(t) = % f[opc[eits v(ds), if t >0,
ﬁ ji—oo,O] e ®u(ds), ift<0.

Then q is a Lévy density (i.e. [ min{1,t*}q(t)dt < oc), if and only if v
satisfies the following three conditions:

(d) v({0}) = 0.
(e) f[—Ll]\{O} | log [t]| v(dt) < oo.
L v(dt) < oo.

—~
-
~—

fR\]71,1[

Proof. Let vy and v_ be the restrictions of v to [0, 00[ and | — oo, 0], respec-
tively. Let, further, 7_ be the transformation of v_ by the mapping s — —s,
and put ¢(t) = g(—t). Note then that

1

q(t) = t/[om[ets v_(ds),  (t>0).

By application of Lemma 3.25, we now have

q is a Lévy density on R <= ¢ and ¢ are Lévy densities on [0, o0]
<= v and v_ satisfy (a),(b) and (c) of Lemma 3.25
<= v satisfies (d),(e) and (f).

This proves the corollary. O

Theorem 3.27. The mapping T maps the class of selfdecomposable distribu-
tions on R onto the generalized Thorin class, i.e.

Proof. We prove first that 7(L(x)) € 7 (*). So let ;1 be a measure in £(x) and
consider its generating triplet (a, p,n). Then a > 0, n € R and p(dt) = r(¢) dt
for some density function, r(t), satisfying that the function

q(t) = [tlr(t),  (t€R),
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is increasing on | — oo, 0] and decreasing on ]0, co[. Next, let (2a, g, 7) be the
generating triplet for 7(u). From Lemma 3.4 we know that p has the following
density w.r.t. Lebesgue measure:

” I aly e v dy, ift>0,
T e
ﬁwqwﬂk%hw,ﬁt<&

Note that the function y +— ¢(y~!) is increasing on ]0, co[. Thus, as in the
proof of Theorem 3.24, we may, by changing r(¢) on a null-set, assume that

y +— q(y~!) is increasing and right-continuous on ]0, co[. Furthermore, since
(oo}

T lq(s)ds = [°r(s)ds < oo, it follows as in the proof of Theorem 3.24
that ¢(y~!) — 0 as y \, 0. Thus, we may let v, be the Stieltjes measure
corresponding to the function y — ¢(y~!) on ]0, 0o], i.e.

0, if y <0,
qy™h), ify>0.

wﬂ—wwDZ{

Now, whenever ¢ > 0 and 0 < b < ¢ < oo, we have by partial Stieltjes
integration that

t/bc q(s e " ds = [— e_tsq(s_l)]

C

, + /bc ey (ds). (3.39)

Here, e "q(b=") < q(b™') — 0 as b\, 0. Since [~ q(s™!)e " ds = 7(t) < o0,
(3.39) shows, furthermore, that the limit

— i —te =1y _ Ii —t/s
7= lim e7q(c) lim e sr(s)

exists in [0, 00]. Since [;~ s%r(s)ds < oo, it follows that we must have v = 0.
From (3.39), it follows thus that

tr(t) = t/ooo q(s e " ds = /000 e vy (ds). (3.40)

Replacing now r(s) by r(—s) for s in ]0, oo[, the argument just given yields the
existence of a measure v_ on [0, oo[, such that (after changing r on a null-set)

0, if y <0,

U_(] —o00,y]) = {q(—y_l), if y > 0.

Furthermore, the measure 7_ satisfies the identity

t/ooo qg(—s e ¥ ds = /OOO e " u_(ds), (t>0).

Next, let v_ be the transformation of _ by the mapping s — —s. For ¢ in
] — 00, 0 we then have
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7 (2) —|t\/ s 1) _tsds—|t\/ o~ ltls g
:A e It (m)tﬁw Sv_(ds).

Putting finally v = vy + v_, it follows from (3.40) and (3.41) that

7(t) fo v(ds), ift>0,
f_oo (ds) if t <0,

(3.41)

and this shows that 1’(u) € 7 (), as desired (cf. the last paragraph in Sec-
tion 2.5).

Consider, conversely, a measure fi in 7 (x) with generating triplet (a, p, 7).
Then a > 0, n € R and p has a density, 7, w.r.t. Lebesgue measure such that

17 0) {k ds), ift>0,

ffoo e’ts V(ds), ift <0,

for some (Radon) measure v on R satisfying conditions (d),(e) and (f) of
Corollary 3.26. Define then the function r: R\ {0} — [0, oo[ by

r(s) = g(m]y if s >0,
N q 0]), ifs<0,

and put furthermore

v([0,1]), ifs>0,

1
Gian if s <0 (3.42)

dﬂ=MNQ={

Note that since v({0}) = 0 (cf. Corollary 3.26), we have

vt > 0: v([0,s])e ™ <v([0,s]) — 0, ass\,0,
and

vt < 0:v([s,0))e” " < v([s,0]) =0, ass /0.

Furthermore, since fR\ % v(ds) < oo, it follows as in the last part of the

1,1]
proof of Lemma 3.25 that

lim s 2v([0,s]) = 0= lim s 2v([s,0]).

§—00 5— — 00

In particular it follows that

Vt>0: lim v([0,s])e”* =0, and that Vt<O0: lim v([s,0])e " =0.

§— 00

By partial Stieltjes integration, we find now for ¢ > 0 that
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t/ooo q(s7He " ds = [ — q(s_l)e_ts}zo + /000 e " u(ds) -

_ /0 " et u(ds) = t (1),

Denoting by © the transformation of v by the mapping s — —s, we find
similarly for ¢ < 0 that

|t|F(t)/O et y(ds)/oooetlsﬂ(ds)

— 00

h (3.44)

Combining now (3.43) and (3.44) it follows that

( ) fo q(S_l)e_t‘s ds, if t >0,
7(t) =
fi)oo q(sfl)e ¥ds, ift<O.

By Corollary 3.4 we may thus conclude that p(dt) = fOOO(D$p)e_C” dx, where
p(dt) = r(t) dt. Since v is a Radon measure, 7 is bounded on compact subsets
of R\ {0}, so that p is, in particular, o-finite. By Proposition 3.9, it follows
then that [, min{1,¢*} p(dt) < oo, so that p is actually a Lévy measure and
To(p) = p-

Let, finally, 11 be the measure in ZD(x) with generating triplet (%a,p, n),
where

n=1- /OOO (/Rt(l[—m] (t) = Lj_pu)(t)) sz(dt))efz da.

Then 7" (1) = f1, and since ¢ is increasing on | — 0o, 0] and decreasing on ]0, co[
(cf. (3.42)), we have that p € L(x). This concludes the proof. O

3.4 The Mappings T§* and T, o € [0,1]

As announced in Section 1, we now introduce two families of mappings
{5 to<a<1 and {7*}o<a<1 that, respectively, generalize 1p and 77, with
7Y = Y, T° = 7 and with 73 and Y the identity mappings on 9, and
ID(x), respectively. The Mittag-Leffler function takes a natural role in this.

A review of relevant properties of the Mittag-Leffler function is given. The
transformation 77" is defined in terms of the associated stable law and is shown
to be injective, with absolutely continuous images. Then 7§ is extended to a
mapping 7% : ZD(x) — ZD(x), in analogy with the extension of 7 to 7", and
properties of 7% are discussed. Finally, stochastic representations of 7" and
T are given.
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The Mittag-Leffler Function

The Mittag-Leffler function of negative real argument and index a > 0 is
given by

o (=t)*
E,(—t) = ;F(awr Ty (t > 0). (3.45)
In particular we have F1(—t) = e, and if we define Ey by setting o = 0 on
the right hand side of (3.45) then Eo(—t) = (1 +¢)~! (whenever |t| < 1).
The Mittag-Leffler function is infinitely differentiable and completely
monotone if and only if 0 < a < 1. Hence for 0 < a < 1 it is representable as
a Laplace transform and, in fact, for « in ]0, 1[ we have (see [Fe71, p. 453])

Fo(—t) = /O 1o (2) da, (3.46)

where
(o) = a a1V, (a7 1), (x> 0), (3.47)

and o, denotes the density function of the positive stable law with index «
and Laplace transform exp(—60%). Note that, for 0 < a < 1, the function (, ()
is simply the probability density obtained from o, (y) by the transformation
x =y~ “. In other words, if we denote the distribution functions determined
by (, and o, by Z, and S, respectively, then

Zo(x) =1 = So(z™). (3.48)

As kindly pointed out to us by Marc Yor, (, has a direct interpretation as the
probability density of l;a) where lﬁa) denotes the local time of a Bessel process
with dimension 2(1 — «). The law of lﬁ“) is called the Mittag-Leffler distrib-
ution. See [MoOs69] and [ChYo03, p. 114]; cf. also [GrRoVaYo99]. Defining
Ca(x) as e ® for @« = 0 and as the Dirac density at 1 when o = 1, formula
(3.46) remains valid for all v in [0, 1].

For later use, we note that the probability measure ¢, (z) dz has moments
of all orders. Indeed, for « in ]0,1[ and any p in N we have

= b — >~ —pa
/0 2P (x) da /0 x P (z) de,

where clearly floo x P, (x) dz < oo. Furthermore, by partial integration,

1 1
/ TP, (x) de = [m‘p"Sa(x)]; —i—pa/ zP7lS, () da
0 0

1
= S4(1) +pa/ P18, () do < oo,
0
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where we make use (twice) of the relation

—a

e’ Sy(z) — 0, asxz\,0,

(cf. [Fe7l, Theorem 1, p.448]). Combining the observation just made with
(3.45) and (3.46), we obtain the formula

o R
/0 xc“(x)dx_nakﬂ)’

which holds for all « in [0, 1].

(k € Np), (3.49)

The Mapping Y§"

As before, we denote by 91 the class of all Borel measures on R, and 9, is
the subclass of all Lévy measures on R.

Definition 3.28. For any « in ]0,1[, we define the mapping 1§ : My — M

by the expression:

TS(p) = / T (Dp)Cala)dr,  (pemy). (3.50)

We shall see, shortly, that 7" actually maps 21y, into itself. In the sequel,
we shall often use p, as shorthand notation for Y§*(p). Note that with the
interpretation of (,(z)dz for @« = 0 and 1, given above, the formula (3.50)
specializes to 7} (p) = p and 79 (p) = Yo(p).

Using (3.47), the formula (3.50) may be reexpressed as

paldt) = /0 " (@O dt)on(z) da. (3.51)

Note also that p,(dt) can be written as

o0
oldt) = [ plri) av.

where R, denotes the inverse function of the distribution function Z, of

Colz)dz.
Theorem 3.29. The mapping 1§ sends Lévy measures to Lévy measures.
For the proof of this theorem we use the following technical result:

Lemma 3.30. For any Lévy measure p on R and any positive x, we have
/ 1D, p(dt) < max{l,x2}/ min{1, %} p(dt), (3.52)
R\[—1,1] R

and also

t* Dyp(dt) < max{1,2?} / min{1,#*} p(dt). (3.53)
[-1,1] R
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Proof. Note first that
[ 1Dupldt) = Dop®\ [-1.1) = p(R\ [z a7,
R\[—1,1]
If 0 <z <1, then
PR\ [~ 271)) < p(R\ [-1,1]) < / min{1, 2} p(de),

and if x > 1,

PR\ [~z 1)) < / 228 p(dt) + / 1 ()
[~1L1\[-z—tz—1] R\[-1,1]

< xQ/min{l,tQ}p(dt).
R
This verifies (3.52). Note next that

/ t2 Dyp(dt) = / P11 - (8)p(dt).
[7171]

R
If z > 1, we find that
/ PP () pldt) < 22 / 2111 1(8) pldt) < 22 / min{1, 2} p(dt),
R R R

and, if 0 < x < 1,

/]R $2t21[,x—1,x—1] (t) p(dt)

1
1‘2/ t? p(dt)—|—$2/thl[,m—lvz—l]\[,l’l](t) p(dt)

-1

IN

1
$2/ t2 p(dt) + $2/]Rx_21[_z—1,$—1]\[_171] (t) p(dt)

-1

< [ 1t2p(dt)+ /R Lry(—1,11(t) p(dt)

:/min{l,tg}p(dt).
R

This verifies (3.53). O

Proof of Theorem 3.29. Let p be a Lévy measure on R and consider the
measure po, = 1'*(p). Using Lemma 3.30 and (3.49) we then have
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jgnﬁn{LtQ}ﬁaﬁh)::Aag(j@nﬁn{LtQ}[hpOﬂ)>QAx)dx
/OOO2max{1,x2}</Rmin{l,tQ}p(dt))(a(x)dx

= 2/Rmin{1,t2}p(dt) /000 2max{1,2?}(o(r) dz < oo,

as desired. 0O

Absolute Continuity

As in Section 3.1, we let w denote the transformation of the Lévy measure p

by the mapping = — .

Theorem 3.31. For any Lévy measure p the Lévy measure po given by (3.50)
18 absolutely continuous with respect to Lebesgue measure. The density 7o 1
the function on R\{0} given by

Fo(t) = I sCa(st)w(ds),  ift >0,
" fi)oo [s|Ca(st)w(ds), ift <O.

Proof. It suffices to prove that the restrictions of p, to ] — 0o, 0[ and ]0, o0]
equal those of 7, (t) dt. For a Borel subset B of |0, 0o, we find that

/B Fat)dt = /B ( / " sGa(st)w(ds)) dt = / N / " S15(0Ga(st) dt) w(ds)
= [ (] 1ot ety du) wias),

where we have used the change of variable u = st. Changing again the order
of integration, we have

IRCEE /OOO ([ 106 wwlas) )t au

0
— /OOo (/OOC 15 (su) p(ds))Ca(U) du

:/'mﬂm@wwzmw)

0

One proves similarly that the restriction to | — 00, 0] of p, equals that of
To(t) dt. O
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Corollary 3.32. Letting, as above, Z, denote the distribution function for
the probability measure (,(t) dt, we have

Pallt, ool) = /f(lza(st»w(ds) = /OOO Sal(ts) V) w(ds)  (3.54)

fort in]0,00[, and

Pal] = 00,1]) = / (1- Za(st)w(ds) = [ Sal(ts) /") w(ds) (3.55)

fort in] —o0,0[.

Proof. For ¢ in [0, c0[ we find that

ol = [ ([ salswtds)) du

= /Ooo (/Ooo 5Ca(su) 1t 0o (1) du) w(ds)
— [ (] ol (s ) dw) (i)

— [ (] colwnmw)aw) wias)

:/ (1= Za(st)) w(ds)

0
N /OO Sal(st) "/ ") w(ds),
0

where the last equality follows from (3.48). Formula (3.55) is proved similarly.
O

Injectivity of ¥§*

In order to show that the mappings 1., : ZD(x) — ZD(x) are injective, we first
introduce a Laplace like transform: Let p be a Lévy measure on R, and as above
let w be the transformation of p by the mapping t — t=1: R\ {0} — R\ {0}.
Then w satisfies

W({0}) =0 and / min{1,¢~2} w(dt) < oo, (3.56)
R
For any 60,5 > 0 we then define

Ls(0 % w) = / o017 (dt).

R
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It follows immediately from (3.56) that £5(6 I w) is a finite, positive number
for all 8,3 > 0. For 8 = 1, we recover the usual Laplace transform.

Proposition 3.33. Let « be a fized number in |0, 1], let p be a Lévy measure
on R, and put po, = T§(p). Let further w and &, denote, respectively, the
transformations of p and ps by the mapping t — t=1: R\ {0} — R\ {0}. We
then have

Li/a(0V* §Ga)=L1(0Fw), (6 €]0,00).

Proof. Recall first from Theorem 3.31 that p,(dt) = 74(t) dt, where

Folt) = fooo sCa(st)w(ds), ift >0,
° I IslCalst) w(ds), if ¢ < 0.
Consequently, w,, has the following density w.r.t. Lebesgue measure:
Fo(t-1)? = I st a(st™ ) w(ds), if t >0,
“ IO Islt2Ca (st w(ds), if ¢ < 0.

For any positive 8, we then find

/ Te 0 oy (dt)
0
= /OO e0t" (/00 stfzga(stfl)w(ds)) dt
0 0
= /OOO (/OOO e*(’tl/at’%a(st*l) dt) sw(ds)

= [ e e sy e ()] ) sds)

1 [ > o
_ 7/ (/ o0t/ t—1+1/ao_a(s—1/atl/a)dt) S—l/aw(d8)7
0

« 0

where we have used (3.47). Applying now the change of variable: u =
s~ Vegl/a we find that

oo

/000 o0t W (dt) :/o (/0 e,gsl/waa(u) du) w(ds)
g

oo

e (0s7/%)" w(ds) (3.57)
0
e—9°‘s

/)
/ w(ds),
0
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where we used that the Laplace transform of o, (t) dt is given by
> @
/ e Mo (t)dt =e",  (n>0),
0

(cf. [Fe7l, Theorem 1, p. 448]). Applying next the above calculation to the
measure w := D_jw, we find for any positive # that

/0 oIt J)a(dt)/o eelt””(/o sl 2Ca (st w(ds) ) at

_ /O o ( /O - st™2Ca(st™h) @(ds)) dt
:/oo e "% 5(ds)
0

O @
= / e 075l y(ds).

Combining formulae (3.57) and (3.58), it follows immediately that L/,
@t o) = L1(0% T w), for any positive 6. ]

(3.58)

Corollary 3.34. For each « in ]0,1[, the mapping T§: My — My, is injec-
tive.

Proof. With notation as in Proposition 3.33, it follows immediately from that
same proposition that the (usual) Laplace transform of w is uniquely deter-
mined by po = 1§(p). As in the proof of Corollary 3.7, this implies that w,
and hence p, is uniquely determined by 1§ (p). O

The Mapping ¢

Our next objective is to “extend” 7§ to a mapping *: ID(x) — ID(x).

Definition 3.35. For a probability measure p in TD(x) with generating triplet
(a,p,m), we let Y*(u) denote the measure in ITD(x) with generating triplet
(Cal, PoyNa), where po =T (p) is defined by (3.50) while

2

—_— <a<l
a1 1) for 0<a<

Co —

and

" = -1
Na = m +/0 <~/]Rt(1[_1’1] (t) - 1[—w—1,m—1](t))p(f dt))ca(x)(;izg)
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To see that the integral in (3.59) is well-defined, we note that it was shown,
although not explicitly stated, in the proof of Lemma 3.13 that

/ Juz||1_11)(uz) — 1—y 4 (uz)| p(dz) < max{l,xQ}/ min{1,u?} p(du).
R 0

Together with (3.49), this verifies that 7, is well-defined. Note also that since
Y is injective (cf. Corollary 3.34), it follows immediately from the definition
above that so is 7. The choice of the constants ¢, and 7, is motivated by
the following two results, which should be seen as analogues of Theorems 3.16
and 3.17. In addition, the choice of ¢, and 7, is essential to the stochastic
interpretation of 7 given in Theorem 3.44 below. Note that for o = 0, we
recover the mapping 7", whereas putting o = 1 produces the identity mapping
on ID(x).

Theorem 3.36. Let p be a measure in ID(x) with characteristic triplet
(a,p,m). Then the cumulant function of T*(u) is representable as

Cro(€) = oty — benaC+ [ (Bali€t) = 1= Crrteptionn(®) pla)
(3.60)
for any ¢ in R, and where E, is the Mittag-Leffler function.
Proof. For every 0 < a < 1 we note first that for any ¢ in R,
t .
Eo(i¢t) =1 — igml[—m] (t) = /0 (elcm — 1 —iCtal_q (t))(a(x) dz,
(3.61)

which follows immediately from the above-mentioned properties of E, and
the probability density {, (including the interpretation of {,(x)dx for « = 0
or 1). Note in particular that [ 2¢a(2)dz = Frgy (cf (3.49)).

We note next that it was established in the proof of Lemma 3.15 that

Rt 1
/ ‘e’ctr — 1 —iCtal_q 5 (t)| p(dt) < (2 + f(Cx)2) / min{1, %} p(dt).
0 V2 R
Together with Tonelli’s theorem, (3.61) and (3.49), this verifies that the inte-
gral in (3.60) is well-defined, and that it is permissible to change the order of
integration in the following calculation:
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[ (Batict) =1 =it 1o @) ol
= /R (/0 (eltr —1— iCtel;_yqy(t))Calx) dx)p(dt)
= /Ooo (/]R (el —1— iCul_y1 41 (u)) P(x_ldu))ca(x) du

— /OOO (/}R (€ — 1 —iCulp_yy)(u)) P(x_ldu))ca(x)dx
+iC /Ooo </RU(1[7171] (u) — 1[—96*1,3:*1](16)) p(i’?—ldu))ﬁa(m) da

= /R (eigu —-1- iCul[_lyl] (U)) po(du)

[ ( [ a0 = sy 1) pla™ ) ) (0)

Comparing the above calculation with Definition 3.35, the theorem follows
readily. 0O

Proposition 3.37. For any « in |0,1[ and any measure p in ZD(*) we have

Cra)(z) = /000 Cu(zx)(a(z)de, (z €R).

Proof. Let (a, p,n) be the characteristic triplet for u. For arbitrary z in R, we
then have

| cuteaitato) da
= /Oo (inz:c - 1azQx2 +/ (e —1— itzzli_q1)(t)) p(dt))Ca(x) dx
0 2 R ’

=1inz /OOO 2o (z) da — %QZQ /OO 22 (z) da

0
n /R ( /O h (e — 1 —itzal_y (1)) Ca(2) dx) p(dt)

inz az? ) ) ,
(3.62)

where the last equality uses (3.49) as well as (3.61). According to Theo-
rem 3.36, the resulting expression in (3.62) equals Cya(,)(2), and the propo-
sition follows. 0O
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Properties of T«

We prove next that the mappings 7% posses properties similar to those of 1"
established in Proposition 3.18.

Proposition 3.38. For each « in ]0,1], the mapping T: ID(x) — ID(x)
has the following algebraic properties:

(1) For any pa, pa in ID(x), T(u1 * p2) = T (1) x T(u2).
(ii) For any p in ID(x) and any ¢ in R, T*(D.u) = DT (w).
(iii) For any c in R, T*(0.) = 0.

Proof. Suppose p1, s € ID(x). Then for any z in R we have by Proposi-
tion 3.37

CT“(Nl*Mz)(z) = A Om*uz (Zm)ca(m) dx

= /Ooo (Cpy (22) 4 Cpy (2) ) Ca(2) da

= Cra(uy) (2) + Crauy)(2) = Cra(uy)sra(us)(2),

which verifies statement (i). Statements (i) and (iii) follow similarly by ap-
plications of Proposition 3.37. O

Corollary 3.39. For each « in [0,1], the mapping T*: ID(x) — ID(x) pre-
serves the notions of stability and selfdecomposability, i.e.

TS(x)) CS(x) and T*(L(x)) C L(x).
Proof. This follows as in the proof of Corollary 3.19. O

Theorem 3.40. For each « in ]0,1[, the mapping T*: ID(x) — ID(x) is
continuous with respect to weak convergence®.

For the proof of this theorem we use the following
Lemma 3.41. For any real numbers ( and t we have

. ict |14 t2
et — 1 ic +

2

Proof. For t = 0 the left hand side of (3.63) is interpreted as 3(?, and the
inequality holds trivially. Thus, we assume that ¢t # 0, and clearly we may
assume that ¢ # 0 too.

For ¢ in R\ [—1, 1], note that lﬁz < 2, and hence

®In fact, it can be proved that 7 is a homeomorphism onto its range with
respect to weak convergence; see [BaTh04c].
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Gt g ¢t ‘1+t2 1+ ¢

ic ,
- | S D | < 416 < smax{1 (o).

For ¢ in [—1,1] \ {0}, note first that

. i 1+ ¢2 ) N
ict _q_ 1(75) :(1@_1—'15 't—)
(e 1+2) 2 ¢ G+t ) 4

1+t
t2

- ((cos((t) — 1) +i(sin(Ct) - Ct)) Fict.

(3.64)

Using the mean value theorem, there is a real number & strictly between 0
and ¢, such that

cos(Ct) =1 1 rcos(Ct) —1
2 E( t

) =~ sin(cea)c

and hence

)cos(ct) - 1‘ _ ‘Cz &1 sin(¢r)
t2 t ¢&
Appealing once more to the mean value theorem, there are, for any non-zero

real number z, real numbers &; between 0 and x and &3 between 0 and &o,
such that

HE (3.65)

sin(z) _ 1 =cos(§2) — 1 = =& sin(&3), and hence # - 1‘ < |zl

T

As a consequence

sin(Ct)
@

Combining (3.64)-(3.66), it follows for ¢ in [—1,1] \ {0} that

1 1 1
= [sin(¢t) = ¢t = 5 - [¢t] | <5l =1c2 (3.60)

; it |1+1¢2
et —1— m!? < (I¢]* +1¢?) -2+ I¢] < 5max{1, |¢[*}.
This completes the proof. 0O

Corollary 3.42. Let u be an infinitely divisible probability measure on R with
generating pair (y,0) (see Section 2.1). Then for any real number ¢ we have

Cu(O)] < (Il + 50 (R)) max{1, ¢[*}.

Proof. This follows immediately from Lemma 3.41 and the representation:

ict )1+t2

“he) e o(dt). ]

Cu(C) =WC+/R (eict —1
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Proof of Theorem 3.40. Let (u,) be a sequence of measures from ZD(x),
and suppose that p, — p for some measure p in ZD(x). We need to show
that T (p,) — Yo (). For this, it suffices to show that

Cya(un)(z) — Cya(u) (Z)7 (Z S R). (3.67)

By Proposition 3.37,

Crouy(2) = /OOOC' L (27)Ca(r)dz and  Cya(,y(z) = /000 C(zx)Ca(x) da,

for all n in N and z in R. According to [Sa99, Lemma 7.7],
Cy,(y) — Cyu(y), forallyinR,
so by the dominated convergence theorem, (3.67) follows, if, for each z in R,
we find a Borel function h,: [0, 00[ — [0, oo, such that
(o)
Vn € Nz € [0,00(: |Cp, (22)¢a(2)| < h.(z) and / hy(x)de < oo.
0

(3.68)
Towards that end, let, for each n in N, (y,,0,) denote the generating pair
for pu,,. Since j1,, — p, Gnedenko’s theorem (cf. [GnKo68, Theorem 1, p.87])
asserts that

S:=supo,(R) <oco and G :=suply,| < .
neN neN

Now, by Corollary 3.42, for any n in N, z in R and « in [0, co[ we have
|Gy (22)Ca(2)] < (G + 58) max{1, 2%2°}(a(2),

and here, by formula (3.49),

/OO(G + 58) max{1, 222?*}(,(z) dz < (G + 55) / (1 + 2%2%) () dz
0 R

=(G+59)+ (G + 55’)22% < o0.
Thus, for any z in R, the Borel function
h.(z) = (G +58) max{1, 2%2*}(, (), (x €0, 00]),
satisfies (3.68). This concludes the proof. o

We close this section by mentioning that a replacement of e=¥ by (,(y) in
the proof of Proposition 3.22 produces a proof of the following assertion:

Vu € ID(x) Va € [0,1]: p has p’th moment <= 7*(u) has p’th moment.
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3.5 Stochastic Interpretation of T and

The purpose of this section is to show that for any measure p in ZD(x), the
measure 1°(u) can be realized as the distribution of a stochastic integral w.r.t.
to the (classical) Lévy process corresponding to p. We establish also a similar
stochastic interpretation of 7*(u) for any « in ]0,1[. The main tool in this is
Proposition 2.6.

Theorem 3.43. Let p be an arbitrary measure in ID(x), and let (X;) be a
(classical) Lévy process (in law), such that L{X1} = u. Then the stochastic
integral

1
Z :/ —log(1 —t)dX;
0

exists, as the limit in probability, of the stochastic integrals folfl/n —log(1 —
t)dX;, as n — oco. Furthermore, the distribution of Z is exactly T ().

Proof. The existence of the stochastic integral fol —log(1—1t)dX, follows from

Proposition 2.6, once we have verified that fol |C,,(—ulog(l —t))|dt < oo, for
any v in R. Using the change of variable: t =1 —e™*, z € R, we find that

1 oo
-/(J‘Cﬂ(—ulog(l—t)ﬂdt:/() |Cu(ux)|e dez,

and here the right hand side is finite, according to Lemma 3.15.
Combining next Proposition 2.6 and Theorem 3.17 we find for any » in R
that

Crizy(u) = /O Ciu(—ulog(1 — ) dt = /0 " G (ur)e " da = o (1),

which implies that L{Z} = 7'(u), as desired. O

Before proving the analog of Theorem 3.43 for 7%, recall that R, denotes
the inverse of the distribution function Z,, of the probability measure ¢, (x) dz.

Theorem 3.44. Let p be an arbitrary measure in ID(x), and let (X;) be a
(classical) Lévy process (in law), such that L{X1} = p. For each o € ]0,1],
the stochastic integral

1
Y :/ R, (s) dX; (3.69)
0
exists, as a limit in probability, and the law of Y is T (u).

Proof. Tt suffices to consider « in 0, 1[. In order to ensure the existence of
the stochastic integral in (3.69) , it suffices, by Proposition 2.6, to verify that

fol |C (2R (t))| dt < oo for all z in R. Denoting by A the Lebesgue measure
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n [0, 1], note that Z,((s(xz)dx) = A, so that R, (\) = (. () dz. Hence, we
find that

/|c (zRa(t))] dt = /OO|CH(zu)|Ra()\)(du)
= [ 1eue0] - Gl du
0

< /00 (|7] + 5v(R)) max{1, 2°u}({a (u) du < oo,
0

where (v, v) is the generating pair for u (cf Corollary 3.42). Thus, by Propo-

sition 2.6, the stochastic integral ¥ = fo t) dX; makes sense, and the
cumulant function of Y is given by

1 1
Cl{ziY} = /0 Cu(zRy(t)) dt = /0 Cpu(zu)a(u) du = Cray(2),

where we have used Theorem 3.37. This completes the proof. 0O

3.6 Mappings of Upsilon-Type: Further Results

We now summarize several pieces of recent work that extend some of the
results presented in the previous part of the present section.

We start by considering a general concept of Upsilon transformations, that
has the transformations 7y and 7§* as special cases. Another special case, de-
noted Téq) (¢ > —2) is briefly discussed; this is related to the tempered stable
distributions. Further, extensions of the mappings 7y and 7§ to multivari-
ate infinitely divisible distributions are discussed, and applications of these
to the construction of Lévy copulas with desirable properties is indicated.
Finally, a generalization of Téq) to transformations of the class My (M) of
Lévy measures on the cone of positive definite m x m matrices is mentioned.

General Upsilon Transformations

The collaborative work discussed in the subsequent parts of the present Sec-
tion have led to taking up a systematic study of gemeralized Upsilon trans-
formations. Here we mention some first results of this, based on unpublished
notes by V. Pérez-Abreu, J. Rosinski, K. Sato and the authors. Detailed ex-
positions will appear elsewhere.

Let p be a Lévy measure on R, let 7 be a measure on R~ and introduce
the measure p, on R by

prti) = [ " oy ) (dy). (3.70)

Note here that if X is an infinitely divisible random variable with Lévy
measure p(dz) then yX has Lévy measure p(y~'dr).
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Definition 3.45. Given a measure 7 on Ry we define T as the mapping
Y7 : p— pr where pr is given by (3.70) and the domain of 1 is

dom Yy = {p e My, (R) ’ pr €My, (R)} .

We have dom?] = My, (R) if and only if

/Ooo(1+y2)7'(dy)<oo.

Furthermore, letting

o ®) = {p em@® | [ @1 ptan) < oo}

(finite variation case) we have 1 : My (R) — M (R) if and only if

/Ow<1+|y>7<dy><oo.

Mappings of type 7] have the important property of being commutative under
composition. Under rather weak conditions the mappings are one-to-one, and
the image Lévy measures possess densities with respect to Lebesgue measure.
This is true, in particular, of the examples considered below.

Now, suppose that 7 has a density h that is a continuous function on R+ .
Then writing pj, for p, we have

i) = [ oty dh(n)ay (3.71)

Clearly, the mappings 15 and 17§ are special instances of (3.71).

Ezample 3.46. & transformation. The 7 transformation obtained by letting

h(y) = 11,1 (y)y~"

is denoted by @q. Its domain is

dom &y = {p € My, (R) ‘ /R\[ }10g|y|p(dy) < 00} :
11

As is well known, this transformation maps dom®, onto the class of selfde-
composable Lévy measures.
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Ezxample 3.47. Téq) transformations. The special version of 7" obtained by
taking

h(y) =yte™
is denoted To(q). For each ¢ > —1, domLTO(q) =My, (R), for ¢ = —1 the domain
equals domy @y, while, for q € (-2, —1), TéQ) has domain

dom 7§" = {p € M (R) ‘ /R\[ " lyl="p(dy) < OO} :

These transformations are closely related to the tempered stable laws. In fact,
let o(dz) = cxazr™ ' ~*k(z)dr with

h(z) = /O ety (de)

be the Lévy measure of an element in R(x). Then o is the image under Téfl*a)

of the Lévy measure

—

p(dz) =z~ v (dz), (3.72)

where v is the image of the measure v under the mapping z — x~ L
Interestingly, V0@ = @91 = Té_l). The transformations 7} may in wide
generality be characterized in terms of stochastic integrals, as follows. Let

H(E) = /5 " hy) dy,

set s = H(&) and let K, with derivative k, be the inverse function of H, so
that K(H(£)) = & and hence, by differentiation, k(s)h(§) = 1. Let p be an
arbitrary element of My (R) and let L be a Lévy process such that L; has
Lévy measure p. Then, under mild regularity conditions, the integral

H(0)
y = /0 K(s)dL, (3.73)

exists and the random variable Y is infinitely divisible with Lévy measure
pn =13 (p)-

Upsilon Transformations of ZD%(x)

The present subsection is based on the paper [BaMaSa04] to which we refer
for proofs, additional results, details and references.

We denote the class of infinitely divisible probability laws on R? by ZD%(x).
Let A be a function as in the previous subsection and let L be a d-dimensional
Lévy process. Then, under a mild regularity condition on h, a d-dimensional
random vector Y is determined by
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H(0)
Y = / K (s)dLs
0

cf. the previous subsection.

If h is the density determining 7 then each of the components of Y belongs
to class B(x) and Y is said to be of class B%(%), the d-dimensional Goldie-
Steutel-Bondesson class. Similarly, the d-dimensional Thorin class 7%(*) is
defined by taking the components of L; to be in £(x). In [BaMaSa04], prob-
abilistic characterizations of BY(x) and T%(x) are given, and relations to self-
decomposability and to iterations of 1y and &y are studied in considerable
detail.

Application to Lévy Copulas

We proceed to indicate some applications of 1 and @y and of the above-
mentioned results to the construction of Lévy copulas for which the associ-
ated probability measures have prescribed marginals in the Goldie-Steutel-
Bondesson or Thorin class or Lévy class (the class of selfdecomposable laws).
For proofs and details, see [BaLi04].

The concept of copulas for multivariate probability distributions has an
analogue for multivariate Lévy measures, termed Lévy copulas. Similar to
probabilistic copulas, a Lévy copula describes the dependence structure of a
multivariate Lévy measure. The Lévy measure, p say, is then completely char-
acterized by knowledge of the Lévy copula and the m one-dimensional margins
which are obtained as projections of p onto the coordinate axes. An advantage
of modeling dependence via Lévy copulas rather that distributional copulas
is that the resulting probability laws are automatically infinitely divisible.

For simplicity, we consider only Lévy measures and Lévy copulas living on

2. Suppose that pq,..., t,, are one-dimensional infinitely divisible distri-
butions, all of which are in the Goldie-Steutel-Bondesson class or the Thorin
class or the Lévy class. Using any Lévy copula gives an infinitely divisible dis-
tribution p with margins pq, ..., t,. But p itself does not necessarily belong
to the Bondesson class or the Thorin class or the Lévy class, i.e. not every Lévy
copula gives rise to such distributions. However, that can be achieved by the
use of Upsilon transformations. For the Goldie-Steutel-Bondesson class and
the Lévy class this is done with the help of the mappings 7y and @y, respec-
tively, and combining the mappings @ and 1, one can construct multivariate
distributions in the Thorin class with prescribed margins in the Thorin class.

Upsilon Transformations for Matrix Subordinators

The present subsection is based on the paper [BaPA05] to which we refer for
proofs, additional results, details and references.

An extension of Ty to a one-to-one mapping of the class of d-dimensional
Lévy measures into itself was considered in the previous subsection. Here we
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shall briefly discuss another type of generalization, to one-to-one mappings of
IDT ™ (%), the set of infinitely divisible positive semidefinite m x m matrices,
into itself. This class of mappings constitutes an extension to the positive
definite matrix setting of the class {Téq)},1<q<oo considered above, and we

shall use the same notation Téq) in the general matrix case.
We begin by reviewing several facts about infinitely divisible matrices with
. —+ . . . .
values in the cone M, of symmetric nonnegative definite m x m matrices.
Let M, x, denote the linear space of m x m real matrices, M, the linear

subspace of symmetric matrices, M; the closed cone of non-negative definite
matrices in M,,,, M, and {X > 0} the open cone of positive definite matrices
in M,,.

For X € M,,,xm, X | is the transpose of X and tr(X) the trace of X. For X
in M; , X1/2 is the unique symmetric matrix in M; such that X = X1/2X1/2,
Given a nonsingular matrix X in M,,x.,, X! denotes its inverse, |X| its
determinant and X~ the inverse of its transpose. When X is in M} we
simply write X > 0.

The cone M; is not a linear subspace of the linear space M, x., of m x m
matrices and the theory of infinite divisibility on Euclidean spaces does not
apply immediately to M; In general, the study of infinitely divisible random

elements in closed cones requires separate work.

A random matrix M is infinitely divisible in MIL if and only if for each in-

teger p > 1 there exist p independent identically distributed random matrices
M, ..., M, in M; such that M < My + --- 4+ M,. In this case, the Lévy-
Khintchine representation has the following special form, which is obtained
from [Sk91] p.156-157.

Proposition 3.48. An infinitely divisible random matriz M is infinitely di-
visible in M; if and only if its cumulant transform is of the form

C(6: M) = itr(V00) + / (@XO) _)pdX), ©@cME,  (3.74)

M+

m

where W0 € M; and the Lévy measure p satisfies p(I\\/JIm\Mjn) = 0 and has
order of singularity

/7+ min(1, | X|)p(dX) < oco. (3.75)
MT’L
Moreover, the Laplace transform of M is given by

Ly(0) =exp{-K(0; M)}, O €M, (3.76)

where IC is the Laplace exponent

M+

m

K(6: M) = tr(#°0) + / (1 — o=t (X0)) (X)), (3.77)
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For p in M (M) and ¢ > —1 consider the mapping To(q) 1 p — pg given
by

1

pe(d2) = / p(XTdzX Y X |7 e (4. (3.78)
X>0

. , —+
The measure p, is a Lévy measure on M, .

To establish that for each ¢ > —1 the mapping TO(Q) is one-to-one the
following type of Laplace transform of elements p € My, (M}) is introduced:

£Pp(0) = / o~ t(X0) | X7 p(dX). (3.79)
X>0

For any p > 1 and p in M (M), the transform (3.79) is finite for any
© € M, and the following theorem implies the bijectivity.

Theorem 3.49. Letp > 1 and p+ q > 1. Then

Lpy(©) = |O| Hm I [ prp(v) [P em Oy, (3.80)
V>0

for © € M}

As in the one-dimensional case, the transformed Lévy measure determined
by the mapping To(q) is absolutely continuous (with respect to Lebesgue mea-
sure on M ! ) and the density possesses an integral representation, showing in
particular that the density is a completely monotone function on M .

Theorem 3.50. For each ¢ > —1 the Lévy measure p, is absolutely continu-
ous with Lévy density vy given by

—Llim _ —tr -1
R0 = X[ [ TR ) s
Y >0
=X [ RO ), (352)
Y >0 —

4 Free Infinite Divisibility and Lévy Processes

Free probability is a subject in the theory of non-commutative probability.
It was originated by Voiculescu in the Nineteen Eighties and has since been
extensively studied, see e.g. [VoDyNi92], [Vo98] and [B103]. The present section
provides an introduction to the area, somewhat in parallel to the exposition
of the classical case in Section 2.5. Analogues of some of the subclasses of
ID(x) discussed in that section are introduced. Finally, a discussion of free
Lévy processes is given.
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4.1 Non-Commutative Probability and Operator Theory

In classical probability, one might say that the basic objects of study are ran-
dom variables, represented as measurable functions from a probability space
(£2,F, P) into the real numbers R equipped with the Borel o-algebra B. To
any such random variable X : {2 — R the distribution px of X is determined
by the equation:

/R £(8) px (dt) = E(F(X)),

for any bounded Borel function f: R — R, and where E denotes expectation
(or integration) w.r.t. P. We shall also use the notation L{X} for px.

In non-commutative probability, one replaces the random variables by (self-
adjoint) operators on a Hilbert space H. These operators are then referred to
as ‘non—commutative random variables”. The term non-commutative refers
to the fact that, in this setting, the multiplication of “random variables” (i.e.
composition of operators) is no longer commutative, as opposed to the usual
multiplication of classical random variables. The non-commutative situation
is often remarkably different from the classical one, and most often more com-
plicated.

By B(H) we denote the vector space of all bounded operators on H, i.e.
linear mappings a: ‘H — H, which are continuous, or, equivalently, which
satisfy that

lall := sup{llag] | € € H, €] <1} < oo.

The mapping a — ||a|| is a norm on B(H), called the operator norm, and
B(H) is complete in the operator norm. Composition of operators form a
(non-commutative) multiplication on B(H), which, together with the linear
operations, turns B(H) into an algebra.

Recall next that B(H) is equipped with an involution (the adjoint opera-
tion) a — a*: B(H) — B(H), which is given by:

<a€’n> = <£va*77>’ (a € B(H)’ §&mne H)

Instead of working with the whole algebra B(H) as the set of “random vari-
ables” under consideration, it is, for most purposes, natural to restrict atten-
tion to certain subalgebras of B(H).

A (unital) C*-algebra acting on a Hilbert space H is a subalgebra of B(H),
which contains the multiplicative unit 1 of B(H) (i.e. 1 is the identity mapping
on H), and which is closed under the adjoint operation and topologically closed
w.r.t. the operator norm.

A wvon Neumann algebra, acting on H, is a unital C*-algebra acting on H,
which is even closed in the weak operator topology on B(H) (i.e. the weak
topology on B(H) induced by the linear functionals: a — (a&,n), &, n € H).

A state on the (unital) C*-algebra A is a positive linear functional 7: A —
C, taking the value 1 at the identity operator 1 on H. If 7 satisfies, in addition,
the trace property:
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7(ab) = 7(ba), (a,be A),

then 7 is called a tracial state®. A tracial state 7 on a von Neumann algebra
A is called normal, if its restriction to the unit ball of A (w.r.t. the operator
norm) is continuous in the weak operator topology.

Definition 4.1. (i) A C*-probability space is a pair (A, T), where A is a unital
C*-algebra and 7 is a faithful state on A.

(il) A W*-probability space is a pair (A, ), where A is a von Neumann algebra
and T is a faithful, normal tracial state on A.

The assumed faithfulness of 7 in Definition 4.1 means that 7 does not
annihilate any non-zero positive operator. It implies that A is finite in the
sense of F. Murray and J. von Neumann.

In the following, we shall mostly be dealing with W *-probability spaces.
So suppose that (A, 7) is a W*-probability space and that a is a selfadjoint
operator (i.e. a* = a) in A. Then, as in the classical case, we can associate
a (spectral) distribution to @ in a natural way: Indeed, by the Riesz repre-
sentation theorem, there exists a unique probability measure p, on (R, B),
satisfying that

/R F(8) paldt) = 7(f(a)), (4.1)

for any bounded Borel function f: R — R. In formula (4.1), f(a) has the
obvious meaning if f is a polynomial. For general Borel functions f, f(a) is
defined in terms of spectral theory (see e.g. [Ru91]).

The (spectral) distribution p, of a selfadjoint operator a in A is automati-
cally concentrated on the spectrum sp(a), and is thus, in particular, compactly
supported. If one wants to be able to consider any probability measure y on
R as the spectral distribution of some selfadjoint operator, then it is neces-
sary to take unbounded (i.e. non-continuous) operators into account. Such an
operator a is, generally, not defined on all of H, but only on a subspace D(a)
of H, called the domain of a. We say then that a is an operator in H rather
than on H. For most of the interesting examples, D(a) is a dense subspace of
‘H, in which case a is said to be densely defined. We have included a detailed
discussion on unbounded operators in the Appendix (Section A), from which
we extract the following brief discussion.

If (A, 7) is a W*-probability space acting on H and a is an unbounded
operator in H, a cannot be an element of A. The closest a can get to A is to be
affiliated with A, which means that a commutes with any unitary operator u,
that commutes with all elements of A. If a is selfadjoint, a is affiliated with A
if and only if f(a) € A for any bounded Borel function f: R — R. In this case,

5In quantum physics, 7 is of the form 7(a) = tr(pa), where p is a trace class
selfadjoint operator on H with trace 1, that expresses the state of a quantum system,
and a would be an observable, i.e. a selfadjoint operator on H, the mean value of
the outcome of observing a being tr(pa).
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(4.1) determines, again, a unique probability measure p, on R, which we also
refer to as the (spectral) distribution of a, and which generally has unbounded
support. Furthermore, any probability measure on R can be realized as the
(spectral) distribution of some selfadjoint operator affiliated with some W*-
probability space. In the following we shall also use the notation L{a} for the
distribution of a (possibly unbounded) operator a affiliated with (A, 7). By A
we denote the set of operators in H which are affiliated with A.

4.2 Free Independence

The key concept on relations between classical random variables X and Y
is independence. One way of defining that X and Y (defined on the same
probability space (£2,F, P)) are independent is to ask that all compositions
of X and Y with bounded Borel functions be uncorrelated:

E{[f(X) —E{f(X)}] - [9(Y) - E{g(¥)}]} =0,

for any bounded Borel functions f,¢g: R — R.
In the early 1980’s, D.V. Voiculescu introduced the notion of free indepen-
dence among non-commutative random variables:

Definition 4.2. Let ay,as9,...,a, be selfadjoint operators affiliated with a
W -probability space (A, 7). We say then that ay,as,...,a, are freely inde-
pendent w.r.t. T, if

m{[f1(ai,) = T(fr(ai)f2(ai) — 7(f2(ai)] - [fp(ai,) = 7(fp(as,)]} =0,

for any p in N, any bounded Borel functions fi, fa,..., fp: R = R and any
indices i1,12,...,4, m {1,2,...,7} satisfying that i1 # Q2,12 # i3,...,0p—1 #
ip.

At a first glance, the definition of free independence looks, perhaps, quite
similar to the definition of classical independence given above, and indeed, in
many respects free independence is conceptually similar to classical indepen-
dence. For example, if ay,as,...,a, are freely independent selfadjoint opera-
tors affiliated with (A, 7), then all numbers of the form 7{ f1(a;,) fa(as,) - - - fp(as,)}
(where i1,42,...,1, € {1,2,...,r} and fi, fo,..., fp: R — R are bounded
Borel functions), are uniquely determined by the distributions L{a;}, i =
1,2,...,r. On the other hand, free independence is a truly non-commutative
notion, which can be seen, for instance, from the easily checked fact that two
classical random variables are never freely independent, unless one of them is
trivial, i.e. constant with probability one (see e.g. [V09g]).

Voiculescu originally introduced free independence in connection with his
deep studies of the von Neumann algebras associated to the free group factors
(see [Vog5], [Vo9l], [Vo90]). We prefer in these notes, however, to indicate the
significance of free independence by explaining its connection with random
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matrices. In the 1950’s, the phycicist E.P. Wigner showed that the spectral
distribution of large selfadjoint random matrices with independent complex
Gaussian entries is, approximately, the semi-circle distribution, i.e. the distri-
bution on R with density s — /4 — 52 - 1[_39)(s) w.r.t. Lebesgue measure.
More precisely, for each n in N, let X(™ be a selfadjoint complex Gaussian
random matrix of the kind considered by Wigner (and suitably normalized),
and let tr,, denote the (usual) tracial state on the n x n matrices M, (C). Then
for any positive integer p, Wigner showed that

E{tr, [(X(”))p]} — _22 sP/4 — s? ds.

n—oo

In the late 1980’s, Voiculescu generalized Wigner’s result to families of inde-
pendent selfadjoint Gaussian random matrices (cf. [Vo91]): For each n in N, let
X 1(n), XQ(n), ..., X\ be independent” random matrices of the kind considered
by Wigner. Then for any indices i1,142,...,%, in {1,2,...,7r},

B{ir [XOXE - X)) — rla, o),

where z1,%9,...,2, are freely independent selfadjoint operators in a W*-
probability space (A, 7), and such that L{z;} is the semi-circle distribution
for each .

By Voiculescu’s result, free independence describes what the assumed clas-
sical independence between the random matrices is turned into, as n — oc.
Also, from a classical probabilistic point of view, free probability theory may
be considered as (an aspect of) the probability theory of large random matri-
ces.

Voiculescu’s result reveals another general fact in free probability, namely
that the role of the Gaussian distribution in classical probability is taken
over by the semi-circle distribution in free probability. In particular, as also
proved by Voiculescu, the limit distribution appearing in the free version of
the central limit theorem is the semi-circle distribution (see e.g. [VoDyNi92]).

4.3 Free Independence and Convergence in Probability

In this section, we study the relationship between convergence in probability
and free independence. The results will be used in the proof of the free Lévy-
1t6 decomposition in Section 6.5 below. We start by defining the notion of
convergence in probability in the non-commutative setting:

Definition 4.3. Let (A, 1) be a W*-probability space and let a and a,, n € N,
be operators in A. We say then that a, — a in probability, as n — oo, if
|an, — a| — 0 in distribution, i.e. if L{|a, — a|} — 69 weakly.

7in the classical sense; at the level of the entries.
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Convergence in probability, as defined above, corresponds to the so-called
measure topology, which is discussed in detail in the Appendix (Section A). As
mentioned there, if we assume that the operators a,, and a are all selfadjoint,
then convergence in probability is equivalent to the condition:

L{a, —a} - &.

Lemma 4.4. Let (b,,) be a sequence of (not necessarily selfadjoint) operators
in a W*-probability space (A, T), and assume that ||b,|| < 1 for all n. Assume,
further, that b, — b in probability as n — oo for some operator b in A. Then
also ||b]| <1 and 7(b,) — 7(b), as n — oo.

Proof. To see that ||b|| < 1, note first that b5b, — b*b in probability as
n — o0, since operator multiplication and the adjoint operation are both
continuous operations in the measure topology. This implies that b)b, — 0*b
in distribution, i.e. that L{b%b,} = L{b*b} as n — oo (cf. Proposition A.9).
Since supp(L{b}:b,}) = sp(blb,) C [0, 1] for all n (recall that 7 is faithful), a
standard argument shows that also [0,1] D supp(L{b*b}) = sp(b*b), whence
ol <1.

To prove the second statement, consider, for each n in N, b, = Z(b,, + b};)
and b = 2 (b, — b%), and define b',b” similarly from b. Then b/, b}, b, b" are
all selfadjoint operators in A4 of norm less than or equal to 1. Since addition,
scalar-multiplication and the adjoint operation are all continuous operations
in the measure topology, it follows, furthermore, that b/, — o' and b/ — b
in probability as n — oco. As above, this implies that L{0,} > L{V'} and
L{v'Y 5 L{V'} as n — oo.

Now, choose a continuous bounded function f: R — R, such that f(z) =«
for all 2 in [—1,1]. Then, since sp(b},),sp(b’) are contained in [—1, 1], we find
that

W) = r(70) = [ f@) LE ) — [ f@) ) a)
= (F() = 7).

Similarly, 7(b2) — 7(b"”) as n — oo, and hence also 7(b,) = 7(b}, + b)) —
T7(b' +10") = 7(b), as n — oc. O

Lemma 4.5. Let r be a positive integer, and let (b1 n)nen, ..., (brn)nen
be sequences of bounded (not necessarily selfadjoint) operators in the W*-
probability space (A,T). Assume, for each j, that |[bj,|| < 1 for all n
and that b;, — b; in probability as n — oo, for some operator b; in A.

If bin,b2.p,...,brn are freely independent for each m, then the operators
b1,ba,...,b,. are also freely independent.
Proof. Assume that by ,,b2p,...,0b,, are freely independent for all n, and

let i1,42,...,4, in {1,2,...,7} be given. Then there is a universal polynomial
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P;, .., in 7p complex variables, depending only on iy,...,i,, such that for
all n in N|

Now, since operator multiplication is a continuous operation with respect
to the measure topology, b, nbiyn - bi, n — bi by, -+ b;, in probability as
n — oo. Furthermore, [[b;, 1bi, n -~ b, n| < 1 for all n, so by Lemma 4.4 we
have

7 (biy mbign - biym) — T(biybiy -+ bg,).

n—00

Similarly,

T(b;yn) — T(bﬁ), for any j in {1,2,...,r} and £ in N.

n—oo

Combining these observations with (4.2), we conclude that also

7(biy biy -+ bi,) = Piy i, [{T(bf)}gegp’ X {T(bﬁ)}lglgp}’

and since this holds for arbitrary i1,...,4, in {1,2,...,r}, it follows that
bi,...,b. are freely independent, as desired. 0O

For a selfadjoint operator a affiliated with a W*-probability space (A, ),
we denote by k(a) the Cayley transform of a, i.e.

k(a) = (a —ilg)(a+il4)~ "

Recall that even though a may be an unbounded operator, x(a) is a unitary
operator in A.

Lemma 4.6. Let ay,as, ..., a, be selfadjoint operators affiliated with the W*-
probability space (A, 7). Then ay,as,...,a, are freely independent if and only
if k(ar),k(az2),...,k(a,) are freely independent.

Proof. This is an immediate consequence of the fact that a; and x(a;) generate
the same von Neumann subalgebra of A for each j (cf. [Pe89, Lemma 5.2.8]).
O

Proposition 4.7. Suppose r € N and that (a1 )nen, - -, (@rn)nen are se-
quences of selfadjoint operators affiliated with the W*-probability space (A, T).
Assume, further, that for each j in {1,2,...,r}, ajn — a; in probability as
n — oo, for some selfadjoint operator a; affiliated with (A, 7). If the opera-
tors aim, Q2 p, ..., 0r, are freely independent for each n, then the operators
ai,as,...,a. are also freely independent.
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Proof. Assume that a1, a2, ...,a,, are freely independent for all n. Then,
by Lemma 4.6, the unitaries k(a1 ), ..., K(ary,) are freely independent for
each n in N. Moreover, since the Cayley transform is continuous in the measure
topology (cf. [St59, Lemma 5.3]), we have

k(ajn) — k(aj), in probability,
n—oo
for each j. Hence, by Lemma 4.5, the unitaries x(ay), ..., k(a,) are freely inde-
pendent, and, appealing once more to Lemma 4.6, this means that a4, ..., a,
themselves are freely independent. 0O

Remark 4.8. Let B and C be two freely independent von Neumann subalgebras
of a W*-probability space (A, 7). Let, further, (b,) and (¢,,) be two sequences
of selfadjoint operators, which are affiliated with B and C, respectively, in the
sense that f(b,) € B and g(c,) € C for any n in N and any bounded Borel
functions f,¢g: R — R. Assume that b, — b and ¢, — c in probability as
n — 00. Then b and c¢ are also freely independent. This follows, of course,
from Proposition 4.7, but it is also an immediate consequence of the fact that
the set B of closed, densely defined operators, affiliated with B, is complete
(and hence closed) in the measure topology. Indeed, the restriction to B of the
measure topology on A is the measure topology on B (induced by 75). Thus,
b is affiliated with B and similarly c is affiliated with C, so that, in particular,
b and c are freely independent.

4.4 Free Additive Convolution

From a probabilistic point of view, free additive convolution may be considered
merely as a new type of convolution on the set of probability measures on R.
Let a and b be selfadjoint operators in a W*-probability space (A, 1), and
note that a + b is selfadjoint too. Denote then the (spectral) distributions of
a, b and a + b by g, pp and perp. If @ and b are freely independent, it is
not hard to see that the moments of 1,5 (and hence pi,1p itself) is uniquely
determined by p, and pp. Hence we may write p, B pp instead of pq4p, and
we say that g, B ju, is the free additive® convolution of ji, and py.

Since the distribution pu, of a selfadjoint operator a in A is a compactly
supported probability measure on R, the definition of free additive convo-
lution, stated above, works at most for all compactly supported probability
measures on R. On the other hand, given any two compactly supported prob-
ability measures pq and po on R, it follows from a free product construction
(see [VoDyNi92]), that it is always possible to find a W*-probability space

8The reason for the term additive is that there exists another convolution op-
eration called free multiplicative convolution, which arises naturally out of the non-
commutative setting (i.e. the non-commutative multiplication of operators). In the
present notes we do not consider free multiplicative convolution.
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(A, ) and free selfadjoint operators a,b in A, such that a and b have distrib-
utions p1 and ps respectively. Thus, the operation H introduced above is, in
fact, defined on all compactly supported probability measures on R. To extend
this operation to all probability measures on R, one needs, as indicated above,
to consider unbounded selfadjoint operators in a Hilbert space, and then to
proceed with a construction similar to that described above. We postpone a
detailed discussion of this matter to the Appendix (see Remark A.3), since,
for our present purposes, it is possible to study free additive convolution by
virtue of the Voiculescu transform, which we introduce next.

By CT (respectively C™) we denote the set of complex numbers with
strictly positive (respectively strictly negative) imaginary part.

Let u be a probability measure on R, and consider its Cauchy (or Stieltjes)
transform G,,: C* — C~ given by:

Gul) = [ 5w, (=€)

o
Then define the mapping F,: Ct — C* by:

1

FIL(Z) = ma

(z € CH),

and note that F), is analytic on C*. It was proved by Bercovici and Voiculescu
n [BeVo93, Proposition 5.4 and Corollary 5.5] that there exist positive num-
bers 1 and M, such that F), has an (analytic) right inverse F 1 defined on
the region

Iy = {2z € C||Re(2)| < nlm(z), Im(z) > M}.

In other words, there exists an open subset G, s of C* such that F), is
injective on G, s and such that F,(Gya) = Iy m-
Now the Voiculescu transform ¢, of i is defined by

Su(z) = F ' (2) — %,

on any region of the form I’ s, where F~ L is defined. It follows from [BeVo93,
Corollary 5.3] that Im(F,; " (z)) < Im(z) and hence Im(¢,(z)) < 0 for all z in
Iy v
The Voiculescu transform ¢, should be viewed as a modification of
Voiculescu’s R-transform (see e.g. [VoDyNi92]), since we have the correspon-
dence:
$u(2) = Ru()-
A third variant, which we shall also make use of is the free cumulant transform,
given by:
Cu(z) = 2Ru(2) = 2¢,(2). (4.3)
The key property of the Voiculescu transform is the following important re-
sult, which shows that the Voiculescu transform (and its variants) can be
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viewed as the free analogue of the classical cumulant function (the logarithm
of the characteristic function). The result was first proved by Voiculescu for
probability measures p with compact support, and then by Maassen in the
case where p has variance. Finally Bercovici and Voiculescu proved the general
case.

Theorem 4.9 ([Vo86],[Ma92],[BeVo93]). Let u1 and ps be probability
measures on R, and consider their free additive convolution py B po. Then

¢H153M2 (Z) - ¢N1 (Z) + (bﬂz (2)7
for all z in any region Iy, ar, where all three functions are defined.

Remark 4.10. We shall need the fact that a probability measure on R is
uniquely determined by its Voiculescu transform. To see this, suppose p and
(' are probability measures on R, such that ¢, = ¢,/, on a region I, ps. It
follows then that also F), = F},, on some open subset of C*, and hence (by
analytic continuation), F,, = F,» on all of C*. Consequently ; and p/ have the
same Cauchy (or Stieltjes) transform, and by the Stieltjes Inversion Formula
(cf. e.g. [Ch78, page 90]), this means that u = y'.

In [BeVo93, Proposition 5.6], Bercovici and Voiculescu proved the following
characterization of Voiculescu transforms:

Theorem 4.11 ([BeVo93]). Let ¢ be an analytic function defined on a re-
gion Iy nr, for some positive numbers 1) and M. Then the following assertions
are equivalent:

(i) There exists a probability measure p on R, such that ¢(z) = ¢,(2) for all
z in a domain Iy ppe, where M' > M.
(ii) There exists a number M’ greater than or equal to M, such that
(a) Im(¢(2)) <0 for all z in Iy pr.
(b) ¢(2)/z — 0, as |z| — o0, z € L)) mv-
(c) For any positive integer n and any points z1, ..., z, i Iy v, thenxn
matric
Zj — 2k

zj + ¢(zj) — ZK — é(zk) 1<j,k<n

)

18 positive definite.

The relationship between weak convergence of probability measures and
the Voiculescu transform was settled in [BeVo93, Proposition 5.7] and [BePa90,
Proposition 1]:

Proposition 4.12 ([BeVo93],[BePa96]). Let (i) be a sequence of proba-
bility measures on R. Then the following assertions are equivalent:

(a) The sequence (u,) converges weakly to a probability measure p on R.
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(b) There exist positive numbers n and M, and a function ¢, such that all the
functions ¢, ¢, are defined on I3, ar, and such that

(bl) G, (2) = ¢( ), as n — oo, uniformly on compact subsets of I'y p

‘ P, (2

) sup ’—>0 as |z| — 00, z € I .

neN
(¢c) There exist posztwe numbers 1 and M, such that all the functions ¢, are
defined on I, nr, and such that
(c1) hmnﬂOO qu,L (iy) exists for all y in [M, ool.
Pun (i

(c2) sup y‘—>0 as y — oo.

neN

If the conditions (a),(b) and (c) are satisfied, then ¢ = ¢, on Iy p

Remark 4.13 (Cumulants I). Under the assumption of finite moments of all
orders, both classical and free convolution can be handled completely by a
combinatorial approach based on cumulants. Suppose, for simplicity, that u
is a compactly supported probability measure on R. Then for n in N, the
classical cumulant ¢,, of p may be defined as the n’th derivative at 0 of the
cumulant transform log f,. In other words, we have the Taylor expansion:

—n'z”.

NE

log fu(z) =

n=1

Consider further the sequence (my,)nen, of moments of u. Then the sequence
(my,) is uniquely determined by the sequence (¢,,) (and vice versa). The for-
mulas determining m,, from (¢,) are generally quite complicated. However,
by viewing the sequences (m,) and (c¢,) as multiplicative functions M and
C' on the lattice of all partitions of {1,2,...,n}, n € N (cf. e.g. [Sp97]), the
relationship between (m,,) and (¢,,) can be elegantly expressed by the formula:

C = M x Moeb,

where Moeb denotes the Mobius transform and where x denotes combinatorial
convolution of multiplicative functions on the lattice of all partitions (see
[Sp97],[Ro64] or [BaCo89]).

The free camulants (ky,) of p were introduced by R. Speicher in [Sp94].
They may, similarly, be defined as the coefficients in the Taylor expansion of
the free cumulant transform C,,:

o0
= g knz"
n=1

(see (4.3)). Viewing then (k,) and (m,) as multiplicative functions k and
m on the lattice of all non-crossing partitions of {1,2,...,n}, n € N, the
relationship between (k) and (m.,,) is expressed by the exact same formula:
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k = m * Moeb, (4.4)

where now x denotes combinatorial convolution of multiplicative functions on
the lattice of all non-crossing partitions (see [Sp97]).

For a family aj,as,...,a, of selfadjoint operators in a W*-probability
space (A, T) it is also possible to define generalized cumulants, which are
related to the family of all mixed moments (w.r.t. 7) of ay,as,...,a, by a
formula similar to (4.4) (see e.g. [Sp97]). In terms of these multivariate cumu-
lants, free independence of aq, as, ..., a, has a rather simple formulation, and
using this formulation, R. Speicher gave a simple and completely combinato-
rial proof of the fact that the free cumulants (and hence the free cumulant
transform) linearize free convolution (see [Sp94]). A treatment of the theory
of classical multivariate cumulants can be found in [BaCo89)].

4.5 Basic Results in Free Infinite Divisibility

In this section we recall the definition and some basic facts about infinite
divisibility w.r.t. free additive convolution. In complete analogy with the clas-
sical case, a probability measure p on R is H-infinitely divisible, if for any n
in N there exists a probability measure p,, on R, such that

po=pin B g B B g

n terms

It was proved in [Pa906] that the class ZD(H) of H-infinitely divisible proba-
bility measures on R is closed w.r.t. weak convergence. For the corresponding
classical result, see [Gnlo683, §17, Theorem 3]. As in classical probability, B-
infinitely divisible probability measures are characterized as those probability
measures that have a (free) Lévy-Khintchine representation:

Theorem 4.14 ([Vo86],[Ma92],[BeVo93]).
Let 1 be a probability measure on R. Then v is B-infinitely divisible, if and
only if there exist a finite measure o on R and a real constant vy, such that

1+tz

du(z) =~ —l—/ o(dt), (z €C). (4.5)
R 2 — t

Moreover, for a H-infinitely divisible probability measure p on R, the real

constant v and the finite measure o, described above, are uniquely determined.

Proof. The equivalence between H-infinite divisibility and the existence of a
representation in the form (4.5) was proved (in the general case) by Voiculescu
and Bercovici in [BeVo93, Theorem 5.10]. They proved first that p is -
infinitely divisible, if and only if ¢,, has an extension to a function of the form:
¢: CT — C~UR, i.e. a Pick function multiplied by —1. Equation (4.5) (and its
uniqueness) then follows from the existence (and uniqueness) of the integral
representation of Pick functions (cf. [Do74, Chapter 2, Theorem I]). Compared
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to the general integral representation for Pick functions, just referred to, there
is a linear term missing on the right hand side of (4.5), but this corresponds
to the fact that @ — 0 as y — o0, if ¢ is a Voiculescu transform (cf.
Theorem 4.11 above). i

Definition 4.15. Let v be a B-infinitely divisible probability measure on R,
and let v and o be, respectively, the (uniquely determined) real constant and
finite measure on R appearing in (4.5). We say then that the pair (v,0) is the
free generating pair for p.

In terms of the free cumulant transform, the free Lévy-Khintchine repre-
sentation resembles more closely the classical Lévy-Khintchine representation,
as the following proposition shows.

Proposition 4.16. A probability measure v on R is B-infinitely divisible if
and only if there exist a non-negative number a, a real number n and a Lévy
measure p, such that the free cumulant transform C, has the representation:

C.(2) = nz + az? +/R(

— 1 —tzl[_m](t)) p(dt), (z€C7). (4.6)
In that case, the triplet (a,p,n) is uniquely determined and is called the free
characteristic triplet for v.

Proof. Let v be a measure in ZD(H) with free generating pair (v, o0), and
consider its free Lévy-Khintchine representation (in terms of the Voiculescu

transform):
14tz
b0 (2) = +/R oy, (zech). (47)

Then define the triplet (a, p, ) by (2.3), and note that

2

t

1
=17 — t(l _ t) — 7) dt).
v=n /R F1(t) = ) p(dD)
Now, for z in C~, the corresponding free cumulant transform C, is given by
Cu(2)

=z¢,(1/2) = z(v—&-/}RW U(dt))

z+t 22 +tz
:’yz—'_z/letz U(dt):'yz—l—/R 11, o(dt)

1 5 22 +tz t2
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Note here that

1 1 t?

T—y1(t) — T2 1- T e Ipyj—1,)(t) = T e Ipyj—1,1(%),

so that

[0 - ) o) = [ (1 = 7 tmga ) £ota)

Note also that
22 41z 22 tz

O+ 1—tz 148

Therefore,
3 -
Co(2)=nz — [/R (1—|-7252 —t M gy m1 (t)) t2p(dt)}z + az?
22 tz 9
t“p(dt
Jr/R(l—ter 1+t2) p(dt)
2

z
=z + a2’ +/R (1 — +t7 2y (t>) t2p(dt)

(t2)?
=nz+ az? Jr/R (1 _ + tZlR\[_Ll] (t)) p(de).

Further,
1(15_2); +telry-1n(t) = (1(t_z); * tz) ~ (@)
=< iztz —tzl1 1(t)
=1 —ltz — 1 —tzl_y q(t).
We conclude that
C,(2) =nz+az? +/R (1 — 1—t214 (75)) p(dt). (4.8)

Clearly the above calculations may be reversed, so that (4.7) and (4.8) are
equivalent. 0

Apart from the striking similarity between (2.2) and (4.6), note that these
particular representations clearly exhibit how u (respectively v) is always the
convolution of a Gaussian distribution (respectively a semi-circle distribution)
and a distribution of generalized Poisson (respectively free Poisson) type (cf.
also the Lévy-Itd decomposition described in Section 6.5). In particular, the
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cumulant transform for the Gaussian distribution with mean 7 and variance
a is: u — inu — %auQ, and the free cumulant transform for the semi-circle
distribution with mean 7 and variance a is z — 0z + az? (see [VoDyNi92]).

The next result, due to Bercovici and Pata, is the free analogue of Khint-
chine’s characterization of classically infinitely divisible probability measures.
It plays an important role in Section 4.6.

Definition 4.17. Let (ky,)nen be a sequence of positive integers, and let

be an array of probability measures on R. We say then that A is a null array,
if the following condition is fulfilled:

Ve > 0: nlLII;O | Dnax nj (R \ [—€,€]) = 0.
Theorem 4.18 ([BePa00]). Let {pn; | n € N, j € {1,2,...,k,}} be a
null-array of probability measures on R, and let (¢,)nen be a sequence of
real numbers. If the probability measures ji, = 8¢, B pin1 B e B - B ping,
converge weakly, as n — oo, to a probability measure p on R, then p has to
be B-infinitely divisible.

4.6 Classes of Freely Infinitely Divisible Probability Measures

In this section we study the free counterparts S(H) and L(H) to the classes
S(x) and L(x) of stable and selfdecomposable distributions. We show in par-
ticular that we have the following hierarchy

G(H) Cc S(B) C L(B) CcIDH), (4.9)

where G(H) denotes the class of semi-circle distributions. We start with the
formal definitions of and S(H) and L(H).

Definition 4.19. (i) A probability measure j1 on R is called stable w.r.t. free
convolution (or just B-stable), if the class

{(u) | ¥: R — R is an increasing affine transformation}

is closed under the operation 8. By S(H) we denote the class of H-stable
probability measures on R.

(ii) A probability measure u on R is selfdecomposable w.r.t. free additive con-
volution (or just B-selfdecomposable), if for any c in ]0,1[ there exists a
probability measure p. on R, such that

By L(B) we denote the class of B-selfdecomposable probability measures
on R.
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Note that for a probability measure ;1 on R and a constant ¢ in |0, 1], there
can be only one probability measure p., such that p = D.u 8 p.. Indeed,
choose positive numbers 1 and M, such that all three Voiculescu transforms
¢u, ¢p.p and ¢, are defined on the region I, 5. Then by Theorem 4.9, ¢,
is uniquely determined on I s, and hence, by Remark 4.10, p. is uniquely
determined too.

In order to prove the inclusions in (4.9), we need the following technical
result.

Lemma 4.20. Let p be a probability measure on R, and let 7 and M be
positive numbers such that the Voiculescu transform ¢, is defined on I
(see Section j./). Then for any constant ¢ in R\ {0}, ¢p,, is defined on
e[ Ty = Ty jejna, and

(i) if ¢ > 0, then ¢p, . (2) = cou(c™12) for all z in ¢y,
(ii) if ¢ < 0, then ¢p,u(2) = chu(c1Z) for all z in |c[I) ar.

In particular, for a constant ¢ in [—1,1], the domain of ¢p,, contains the
domain of ¢,,.

Proof. (i) This is a special case of [BeVo93, Lemma 7.1].

(ii) Note first that by virtue of (i), it suffices to prove (ii) in the case
c=—1.

We start by noting that the Cauchy transform G, (see Section 4.4) is
actually well-defined for all z in C\ R (even for all z outside supp(u)), and
that G,(Z) = G(2), for all such z. Similarly, F), is defined for all z in C\ R,
and F,(z) = F,(%), for such z.

Note next that for any z in C\R, Gp_,,(2) = —G,(—2), and consequently

Fp_u(2) = =Fu(=2) = =Fu(-2).

Now, since —1') pr = Iy, a1, it follows from the equation above, that Fp_,, has
a right inverse on I, a7, given by FBEw(Z) = —F;'(=%), for all z in I}, .
Consequently, for z in I5, 57, we have

¢p_1u(2) = Fp' (2)=2 = —F; ' (=2)—2 = =(F. ' (=2) = (=2)) = —¢u(-2),
as desired. O

Remark 4.21. With respect to dilation the free cumulant transform behaves
exactly as the classical cumulant function, i.e.

Cp.u(z) = Culcz), (4.11)

for any probability measure p on R and any positive constant c¢. This follows
easily from Lemma 4.20. As a consequence, it follows as in the classical case
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that a probability measure u on R belongs to S(8), if and only if the following
condition is satisfied (for 2! in a region of the form I'(n, M))

Va,a'>0Vb,b' € R3a">03b" € R: Cy(az)+bz+C,(a'2)+b'z = Cy(a"2)+b" 2.
It is easy to see that the above condition is equivalent to the following
Va >03a” > 03" € R: Cu(2) +Cpulaz) =Cu(a"2) + V2. (4.12)

Similarly, a probability measure p on R is H-selfdecomposable, if and only if
there exists, for any ¢ in ]0, 1[, a probability measure u. on R, such that

Cu(z) =Culcz) +C, (2), (4.13)
for 271 in a region of the form I"(n, M). In terms of the Voiculescu transform
¢, formula (4.13) takes the equivalent form

0u(2) = ¢6,(c712) + 61,(2),
for all z in a region I, ar

Proposition 4.22. (i) Any semi-circle law is B-stable.
(ii) Let p be a B-stable probability measure on R. Then p is necessarily B-
selfdecomposable.

Proof. (i) Let 5,2 denote the standard semi-circle distribution, i.e.

702((3113 _1[ 22] \/—71’2(21.%
Then, by definition,
G(B) = {Duv028d |a>0, be R}

It is easy to see that S(H) is closed under the operations D, (a > 0), and
under (free) convolution with &, (b € R). Therefore, it suffices to show that
v0,2 € S(H). By [VoDyNi92, Example 3.4.4], the free cumulant transform of
Y0,2 is given by
C’Yo,z (2) = Z2= (z € (C+)7

and clearly this function satisfies condition (4.12) above.

(ii) Let g be a measure in S(H). The relationship between the constants
a and a” in (4.12) is of the form o’ = f(a), where f:]0,00[ — ]1,00[ is a
continuous, strictly increasing function, satisfying that f(f) — 1 as ¢t — 07

and f(t) — oo as t — oo (see the proof of [BeVo93, Lemma 7.4]). Now, given
cin ]0,1[, put a = f~1(1/c) €10, 00[, so that

Cu(2) +Cpulaz) = Cpc™t2) + bz,

for suitable b in R. Putting z = cw, it follows that
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Cu(w) — Cy(cw) = Cplacw) — bew.

Based on Theorem 4.11 is is not hard to see that z — C,(acw) — bcw is the
free cumulant transform of some measure p. in P. With this p., condition
(4.13) is satisfied. o

We turn next to the last inclusion in (4.9).

Lemma 4.23. Let i be a B-selfdecomposable probability measure on R, let ¢
be a number in |0,1[, and let u. be the probability measure on R determined
by the equation:

= Dc.pB pe.

Let n and M be positive numbers, such that ¢,, is defined on I’y ar. Then ¢,
is defined on I as well.

Proof. Choose positive numbers 1’ and M’ such that Iy v € Iy and such
that ¢, and ¢,,, are both defined on I, . For z in Iy s, we then have (cf.
Lemma 4.20):

¢u(z) = C¢u(c_lz) + dp. (2)-

Recalling the definition of the Voiculescu transform, the above equation means
that

Fu_l(z) —z= cqbﬂ(c_lz) + Fﬂ_cl(z) -z, (zelym),

so that

Fljcl(z) = Fljl(z) —cpu(c'z), (2 € Ly ).

Now put ¢(z) = F,; () — c¢p(c™'z) and note that ¢ is defined and holomor-
phic on all of I}, s (cf. Lemma 4.20), and that

FMC(Q/}(Z» =z, (Z € Fn’,M’)~ (414)
We note next that 1 takes values in C*. Indeed, since F), is defined on C*,
we have that Im(F, ' (z)) > 0, for any z in I}, ar and furthermore, for all such
z, Im(¢,(c712)) <0, as noted in Section 4.4.

Now, since F),. is defined and holomorphic on all of C*, both sides of
(4.14) are holomorphic on I3, . Since Iy v has an accumulation point in
I’ v, it follows, by uniqueness of analytic continuation, that the equality in
(4.14) actually holds for all z in I, as. Thus, F), has a right inverse on I, s,
which means that ¢, is defined on I, s, as desired. O

Lemma 4.24. Let p be a B-selfdecomposable probability measure on R, and
let (cy,) be a sequence of numbers in |0, 1[. For each n, let pi., be the probability
measure on R satisfying

p=De, pB pe,.

. w
Then, if ¢, — 1 as n — oo, we have ., — 0y, as n — oo.
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Proof. Choose positive numbers 7 and M, such that ¢, is defined on I5, /.
Note then that, by Lemma 4.23, ¢,,, is also defined on I5, s for each n in N
and, moreover,

Dpe, (2) = du(z) — cndu(cn'z), (2 € L, n€N). (4.15)

Assume now that ¢, — 1 as n — oo. From (4.15) and continuity of ¢, it is
then straightforward that ¢, (z) — 0 = ¢s,(2), as n — oo, uniformly on
compact subsets of I5, 3s. Note furthermore that

~1
z z e,z
sup ’d)ltcn( )’ _ Sup’¢#( ) o ¢/J‘(7’I:’lb ) N 0, as ‘Z| — 00, % c Fn,Mv
neN z neN z Cn Z
since ¢“T(Z) — 0 as |z| = oo, 2z € ') m, and since ¢,;' > 1 for all n. It follows
thus from Proposition 4.12 that p., ~ &g, for n — oo, as desired. O

Theorem 4.25. Letube a probability measure on R. Ifuis B-selfdecomposable,
then p is B-infinitely divisible.

Proof. Assume that p is B-selfdecomposable. Then by successive applications
of (4.10), we get for any ¢ in ]0, 1] and any n in N that

p=DenptBDnjpie B Den—ape B+ B Depie B . (4.16)

The idea now is to show that for a suitable choice of ¢ = ¢,, the probability
measures:

DCZ’L’H’aDCﬁ*IMCn’DC::*ZIU/Cna"'7Dcn:u/cna,ucn7 (HEN), (417)

form a null-array (cf. Theorem 4.18). Note for this, that for any choice of ¢,
in 10, 1[, we have that

chl/icn (]R \ [_Ea 6]) S He,, (R\ [_67 ED?

for any j in N and any € in ]0, oo[. Therefore, in order that the probability
measures in (4.17) form a null-array, it suffices to choose ¢, in such a way
that

Denp 26y and e, L 6, asn— oo.

We claim that this will be the case if we put (for example)

chn=e¢ v, (neN). (4.18)
To see this, note that with the above choice of ¢,, we have:
cp, —1 and ¢ — 0, asn— oo.

Thus, it follows immediately from Lemma 4.24, that ., ~ &y, as n — oo.
Moreover, if we choose a (classical) real valued random variable X with dis-
tribution y, then, for each n, D is the distribution of ¢; X. Now, cp X — 0,

n
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almost surely, as n — oo, and this implies that ¢} X — 0, in distribution, as
n — oo.

We have verified, that if we choose ¢,, according to (4.18), then the proba-
bility measures in (4.17) form a null-array. Hence by (4.16) (with ¢ = ¢,,) and
Theorem 4.18, 1 is E-infinitely divisible. O

Proposition 4.26. Let p be a B-selfdecomposable probability measure on R,
let ¢ be a number in |0, 1] and let p. be the probability measure on R satisfying
the condition:

p = Dep B pe.

Then . is B-infinitely divisible.

Proof. As noted in the proof of Theorem 4.25, for any d in |0, 1[ and any n in
N we have

p=Dgnpp B Dgn—1p1g B Dgn—2pq B -+ B Dgpg B g,

where pg is defined by the case n = 1. Using now the above equation with
d = c'/", we get for each n in N that

DCIU,BH/LC = U= DCMEDC(n—l)/nMCI/nEHDC(H72)/7L/4LCI/TLBﬂ' . -EDcl/nucl/nEEuc1/n.
(4.19)
From this it follows that

e = Dotn—1ymprorm B Dotnzymprprm BB Doajnpiam B o, (n S N).
(4.20)
Indeed, by taking Voiculescu transforms in (4.19) and using Theorem 4.9, it
follows that the Voiculescu transforms of the right and left hand sides of (4.20)
coincide on some region I}, 3s. By Remark 4.10, this implies the validity of
(4.20).
By (4.20) and Theorem 4.18, it remains now to show that the probability
measures:

Dc(n—l)/nucl/n, Dc(n72)/n Het/ny e ,Dcl/n Met/n s ei/n,

form a null-array. Since ¢/ € ]0,1] for any j in {1,2,...,n — 1}, this is the
case if and only if pr./n — &y, as n — oo. But since ¢!/" — 1, as n — oo,

Lemma 4.24 guarantees the validity of the latter assertion. O

4.7 Free Lévy Processes

Let (A, 7) be a W*-probability space acting on a Hilbert space H (see Sec-
tion 4.1 and the Appendix). By a (stochastic) process affiliated with A, we
shall simply mean a family (Z;)¢cjo,00[ Of selfadjoint operators in A, which
is indexed by the non-negative reals. For such a process (Z;), we let u; de-
note the (spectral) distribution of Z;, i.e. uy = L{Z;}. We refer to the family
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(11¢) of probability measures on R as the family of marginal distributions of
(Z:). Moreover, if s,t € [0,00[, such that s < t, then Z; — Z is again a
selfadjoint operator in A (see the Appendix), and we may consider its distri-
bution s = L{Z; — Zs}. We refer to the family (us¢)o<s<¢ as the family of
increment distributions of (Z;).

Definition 4.27. A free Lévy process (in law), affiliated with a W*-probability
space (A, T), is a process (Zy)i>o of selfadjoint operators in A, which satisfies
the following conditions:

(i) whenever n € N and 0 <ty < t; < --- < t,, the increments
Zioy Zty — Zigy Lty — Ltyy ooy Zt,) — L,y

are freely independent random variables.

(i) Zo = 0.

(iil) for any s,t in [0,00[, the (spectral) distribution of Zsy — Zs does not
depend on s.

(iv) for any s in [0,00[, Zsy+ — Zs — 0 in distribution, as t — 0, i.e. the
spectral distributions L{Zs1+ — Zs} converge weakly to dg, ast — 0.

Note that under the assumption of (ii) and (iii) in the definition above,
condition (iv) is equivalent to saying that Z; — 0 in distribution, as ¢ \, 0.

Remark 4.28. (Free additive processes I) A process (Z;) of selfadjoint op-
erators in A, which satisfies conditions (i), (i) and (iv) of Definition 4.27, is
called a free additive process (in law). Given such a process (Z;), let, as above,
ps = L{Zs} and psy = L{Z; — Zs}, whenever 0 < s < t. It follows then that
whenever 0 < r < s < t, we have

Hs = Hp H Hor,s and Hrt = My s H Hs.ts (421)

and furthermore
fsits — 00, as t— 0, (4.22)

for any s in [0, col.

Conversely, given any family {u; |t > 0} U{ps | 0 < s < ¢} of probability
measures on R, such that (4.21) and (4.22) are satisfied, there exists a free
additive process (in law) (Z;) affiliated with a W*-probability space (A, T),
such that p, = L{Z,} and ps, = L{Z; — Z,s}, whenever 0 < s < ¢. In fact, for
any families (y¢) and (us ) satisfying condition (4.21), there exists a process
(Z;) affiliated with some W*-probability space (A, 7), such that conditions
(i) and (ii) in Definition 4.27 are satisfied, and such that p, = L{Zs} and
wst = L{Z, — Z,}. This was noted in [Bi98] and [Vo98] (see also Remark 6.29
below). Note that with the notation introduced above, the free Lévy processes
(in law) are exactly those free additive processes (in law), for which ps ¢ = pir—s
for all s,¢ such that 0 < s < t. In this case the condition (4.21) simplifies to
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e = ps B s, (0<s<t). (4.23)

In particular, for any family (u;) of probability measures on R, such that
(4.23) is satisfied, and such that pu; — o as t \, 0, there exists a free Lévy
process (in law) (Z;), such that p, = L{Z;} for all t.

Consider now a free Lévy process (Z;):>0, with marginal distributions ().
As for (classical) Lévy processes, it follows then, that each p; is necessarily
H-infinitely divisible. Indeed, for any n in N we have:

n

Zp = Z(th/n —ZG-1)t/n)
=1

and thus, in view of conditions (i) and (iii) in Definition 4.27,

pt = feyn BBy, (n terms).

5 Connections between Free
and Classical Infinite Divisibility

An important connection between free and classical infinite divisibility was
established by Bercovici and Pata, in the form of a bijection A from the class
of classical infinitely divisible laws to the class of free infinitely divisible laws.
The mapping 7" of Section 3.2 embodies a direct version of the Bercovici-
Pata bijection and shows rather surprisingly that, in a sense, the class of
free infinitely divisible laws corresponds to a regular subset of the class of
all classical infinitely divisible laws. The mapping A also give rise to a direct
connection between the classical and the free Lévy processes, as discussed at
the end of the section.

5.1 The Bercovici-Pata Bijection A

The bijection to be defined next was introduced by Bercovici and Pata in
[BePa99].

Definition 5.1. By the Bercovici-Pata bijection A: ID(x) — ID(B) we de-
note the mapping defined as follows: Let p be a measure in ZD(x), and con-
sider its generating pair (v,0) (see formula (2.1)). Then A(u) is the measure
in ITD(A) that has (v,0) as free generating pair (see Definition 4.15).

Since the #-infinitely divisible (respectively B-infinitely divisible) proba-
bility measures on R are exactly those measures that have a (unique) Lévy-
Khintchine representation (respectively free Lévy-Khintchine representation),
it follows immediately that A is a (well-defined) bijection between ZD(x) and
ID(H). In terms of characteristic triplets, the Bercovici-Pata bijection may
be characterized as follows.
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Proposition 5.2. If p is a measure in TD(x) with (classical) characteristic
triplet (a, p,n), then A(u) has free characteristic triplet (a, p,n) (cf. Proposi-
tion 4.16).

Proof. Suppose p € ID(x) with generating pair (7y,0) and characteristic
triplet (a, p,n), the relationship between which is given by (2.3). Then, by
definition of A, A(u) has free generating pair (y,0), and the calculations in
the proof of Proposition 4.16 (with v replaced by A(u)) show that A(u) has
free characteristic triplet (a, p,n). ]

Ezample 5.3. (a) Let u be the standard Gaussian distribution, i.e.

pu(dz) = exp(—32?) dz.

1
ous
Then A(p) is the semi-circle distribution, i.e.

A(p)(dx) = %\/4 — a2 1j_g 9 () dx.

(b) Let 1 be the classical Poisson distribution Poiss™(\) with mean A > 0, i.e.

oY

plin}) =e™" . (n€No).

Then A(p) is the free Poisson distribution Poiss™ (A) with mean ), i.e.
(1 =X+ 5=/ (x —a)(b— ) - Ly p(x)dz, fO<A<,
ﬁ\/(a:—a)(b—x)~1[a’b](x)da:, ifA>1,

where a = (1 —v/A)? and b= (1 + V)2

Alp)(de) =

Remark 5.4 (Cumulants II). Let p be a compactly supported probability
measure in ZD(x), and consider its sequence (¢,,) of classical cumulants (cf.
Remark 4.13). Then the Bercovici-Pata bijection A may also be defined as the
mapping that sends p to the probability measure on R with free cumulants
(¢n). In other words, the free cumulants for A(u) are the classical cumulants
for p. This fact was noted by M. Anshelevich in [An01, Lemma 6.5]. In view
of the theory of free cumulants for several variables (cf. Remark 4.13), this
point of view might be used to generalize the Bercovici-Pata bijection to
multidimensional probability measures.

5.2 Connection between ¥ and A

The starting point of this section is the following observation that links the
Bercovici-Pata bijection A to the 7-transformation of Section 3.
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Theorem 5.5. For any u € ITD(x) we have

Crin(€) = Caun () = | T O o Tdr, (Cel-o00).  (5.1)

Proof. These identities follow immediately by combining Proposition 5.2,
Proposition 4.16, Theorem 3.16 and Theorem 3.17. 0O

Remark 5.6. Theorem 5.5 shows, in particular, that any free cumulant func-
tion of an element in ZD(H) is, in fact, identical to a classical cumulant
function of an element of ZD(x). The second equality in (5.1) provides an
alternative, more direct, way of passing from the measure u to its free coun-
terpart, A(p), without passing through the Lévy-Khintchine representations.
This way is often quite effective, when it comes to calculating A(u) for specific
examples of p. Taking Theorem 3.43 into account, we note that for any mea-
sure u in ZD(x), the free cumulant transform of the measure A(u) is equal to

the classical cumulant transform of the stochastic integral fol —log(1—t)dXy,
where (X;) is a classical Lévy process (in law), such that L{X1} = p.

In analogy with the proof of Proposition 3.38, The second equality in (5.1)
provides an easy proof of the following algebraic properties of A:

Theorem 5.7. The Bercovici-Pata bijection A: TD(x) — ID(H), has the fol-
lowing (algebraic) properties:

(i) If pi1, po € ID(x), then A(py * piz) = A(pa) B A(pz).
(i) If u € ID(%) and ¢ € R, then A(D.p) = D A(p).
(iil) For any constant ¢ in R, we have A(d.) = 0.

Proof. The proof is similar to that of Proposition 3.38. Indeed, property (ii),
say, may be proved as follows: For p in ZD(x) and ¢ in | — 0o, 0], we have

Ca(pop) (i€) :/RODC,L(Cm)ef"” dl’:/RC’“(ch)e’z dx

= Cagu) (icQ) = Cp, Ay (i0),
and the result then follows from uniqueness of analytic continuation. 0O

Corollary 5.8. The bijection A: ID(x) — ID(H) is invariant under affine
transformations, i.e. if p € ID(x) and v: R — R is an affine transformation,

then
AW (p) = »(A(n).

Proof. Let ¢: R — R be an affine transformation, i.e. () = ¢t +d, (t € R),
for some constants ¢, d in R. Then for a probability measure p on R, t(u) =
Dy x4, and also () = Doy B §4. Assume now that p € ZD(x). Then by
Theorem 5.7,

A@(p)) = A(Dop + 84) = DeA(s) B A(64) = Do A(p) B 8g = (A(w),

as desired. O
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As a consequence of the corollary above, we get a short proof of the fol-
lowing result, which was proved by Bercovici and Pata in [BePa99].

Corollary 5.9 ([BePa99]). The bijection A: ID(x) — ID(H) maps the *-
stable probability measures on R onto the H-stable probability measures on
R.

Proof. Assume that i is a *-stable probability measure on R, and let v, 1o :
R — R be increasing affine transformations on R. Then 1 (u) * 12(u) =
Y3(p), for yet another increasing affine transformation 13: R — R. Now by
Corollary 5.8 and Theorem 5.7(i),

Y1(A(p) B2 (A(p) = AP (p) B A(pa(p) = AP (p) * P2(p))

= A(Y3(p)) = ¥3(A(n)),

which shows that A(u) is HB-stable.
The same line of argument shows that p is #-stable, if A(u) is B-stable. O

Corollary 5.10. Let p be a *-selfdecomposable probability measure on R and
let (f1c)cejo,1) be the family of probability measures on R defined by the equa-
tion:

p= Dep* pc.
Then, for any c in ]0,1[, we have the decomposition:

Al) = DeA(p) 8 A(po). (5.2)

Consequently, a probability measure p on R is x-selfdecomposable, if and only
if A(w) is B-selfdecomposable, and thus the bijection A: ITD(x) — ID(H) maps
the class L(x) of *-selfdecomposable probability measures onto the class L(H)
of B-selfdecomposable probability measures.

Proof. For any ¢ in ]0, 1[, the measures D.u and p. are both #-infinitely di-
visible (see Section 2.5), and hence, by (i) and (ii) of Theorem 5.7,

A(:u‘) = A(Dcluf * /j,c) = DCA(M) H A(Hc)'

Since this holds for all ¢ in ]0, 1], it follows that A(u) is B-selfdecomposable.
Assume conversely that ' is a B-selfdecomposable probability measure on
R, and let (1.)ceo,11 be the family of probability measures on R defined by:

' = Dep B pu..

By Theorem 4.25 and Proposition 4.26, u/,pu., € ID(H), so we may con-
sider the -infinitely divisible probability measures y := A7 (y’) and p, =
A7(pl). Then by (i) and (ii) of Theorem 5.7,

p=A"p') = A7 (De(p) B ) = AN (DeA(p) B Apee))

= A_l(A(DC,U/* ,LL(/)) = DL,U/* Le-

Since this holds for any ¢ in ]0, 1[, p is *-selfdecomposable. ]
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To summarize, we note that the Bercovici-Pata bijection A maps each of
the classes G(x), S(*), L(*),ZD(x) in the hierarchy (2.13) onto the correspond-
ing free class in (4.9).

Remark 5.11. Above we have discussed the free analogues of the classical sta-
ble and selfdecomposable laws, defining the free versions via free convolution
properties. Alternatively, one may define the classes of free stable and free
selfdecomposable laws in terms of monotonicity properties of the associated
Lévy measures, simply using the same characterizations as those holding in
the classical case, see Section 2.5. The same approach leads to free analogues
R(B), 7(H) and B(H) of the classes R(x), 7 (x) and B(x). We shall however
not study these latter analogues here.

Remark 5.12. We end this section by mentioning the possible connection be-
tween the mapping 7%, introduced in Section 3.4, and the notion of a-
probability theory (usually denoted g-deformed probability). For each ¢ in
[—1,1], the so called g-deformed probability theory has been developed by
a number of authors (see e.g. [BoSp91] and [Ni95]). For ¢ = 0, this corre-
sponds to Voiculescu’s free probability and for ¢ = 1 to classical probability.
Since the right hand side of (3.60) interpolates correspondingly between the
free and classical Lévy-Khintchine representations, one may speculate whether
the right hand side of (3.60) (for @ = ¢) might be interpreted as a kind of
Lévy-Khintchine representation for the g-analogue of the cumulant transform
(see [Ni95]).

5.3 Topological Properties of A

In this section, we study some topological properties of A. The key result is the
following theorem, which is the free analogue of a result due to B.V. Gnedenko
(cf. [GnKo68, §19, Theorem 1]).

Theorem 5.13. Let u be a measure in ZD(H), and let (p,) be a sequence of
measures in TD(B). For each n, let (v,,0,) be the free generating pair for
tn, and let (y,0) be the free generating pair for u. Then the following two
conditions are equivalent:

(i) pn = g1, as n — co.
(ii) v — v and 0, > 0, as n — oco.

Proof. (ii) = (i): Assume that (ii) holds. By Theorem 4.12 it is sufficient to
show that

(a) o, (iy) — o(iy), as n — oo, for all y in ]0, ool.
(b) sup M‘ — 0, as y — oo.
neN Yy
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Regarding (a), note that for any y in |0, co[, the function ¢ — 11;?3, t eR,
is continuous and bounded. Therefore, by the assumptions in (ii),

. 1 +tiy
G (i) = 7 + / :

R 1y—t n— o0

-
on(dt) — v+ /R i;flf o(dt) = ¢u(iy).

Turning then to (b), note that for n in N and y in ]0, oo,
G (1Y) _ / 1+ tiy
A2 = g [ 2 g, (dt).
y y yiy—n

Since the sequence (7,,) is, in particular, bounded, it suffices thus to show that

1+t
‘/ . n(dt)‘ — 0, asy— 0. (5.3)
nEN ly _t

For this, note first that since o, — o, as n — oo, and since o(R) < oo, it
follows by standard techniques that the family {0, | n € N} is tight (cf. [Br92,
Corollary 8.11]).

Note next, that for any ¢ in R and any y in |0, oo],

‘ 1+ tiy ‘ 1 N It|
vy =01 = yP+ e T QR+

From this estimate it follows that

’ 1+ tiy ’
sup — 2 <
velloolter | Y(iy — 1)

and that for any N in N and y in [1, 00|,

‘ 1+ tiy <N+1

sup . ’ =
y(iy — 1) Yy

te[—N,N]

From the two estimates above, it follows that for any N in N, and any y in
[1, 00[, we have

1+t N+1
sup)/ Tty dt)‘ <2t sup o, ([—N, N]) + 2 - sup o, ([N, N]°)
neN ly_t Y neN neN

N+1
* sup o, (R) 4+ 2 - sup o, ([—N, NJ°).
Y neN neN

IN

(5.4)

Now, given € in |0, co[ we may, since {o,, | n € N} is tight, choose N in N, such
that sup, ey on([—N, N]¢) < £. Moreover, since o, — ¢ and o(R) < oo, the
sequence {0, (R) | n € N} is, in particular, bounded, and hence, for the chosen
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N, we may subsequently choose g in [1, co[, such that N 'H

Using then the estimate in (5.4), it follows that

1+t
‘/ A4ty oo (dt)] <
nGN ly - t

whenever y > yo. This verifies (5.3).
(i) = (ii): Suppose that j,, > p, as n — oc. Then by Theorem 4.12, there
exists a number M in ]0, co[, such that

P o (R) < §.

(c) Yy € [M, OO[ bu, (ly) — du(iy), as n — oo.
@ s 200

nGN

0, as y — 0.

We show first that the family {0, | n € N} is conditionally compact
w.r.t. weak convergence, i.e. that any subsequence (0,/) has a subsequence
(o), which converges weakly to some finite measure o* on R. By [GnlKo68,
§9, Theorem 3 bis], it suffices, for this, to show that {0, | n € N} is tight,
and that {0, (R) | n € N} is bounded. The key step in the argument is the
following observation: For any n in N and any y in 0, co[, we have,

o 1+ tiy
—Im¢,, (iy) = Im(’yn —l—/R - O’n(dt)>

1+ 4 1+4+¢2
Jm(/ Ay on(dt)) :y/ — U ().
R 1WY—t rRY:+t

We show now that {o,, | n € N} is tight. For fixed y in ]0, oo, note that

2
{t€R||t|2y}§{teR|yl;jft22%},

so that, for any n in N,

1 t2 . .
on(lteR||t] > y}) < 2/ ~ U (an) = _21m(¢“"(ly>) < 2‘ Pun (19) ‘
RYS T+ Y Y
Combining this estimate with (d), it follows immediately that {c,, | n € N} is
tight.
We show next that the sequence {0, (R) | n € N} is bounded. For this,

note first that with M as in (c), there exists a constant ¢ in |0, co], such that
M(1+ ¢
c< ﬁ, for all ¢t in R.

It follows then, by (5.5), that for any n in N,

con(R) < M(1+1t%)

S L wEie on(dt) = —Ime,, (iM),
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and therefore by (c),
lim sup o, (R) < lim sup{ —c ! -Img,,, (ZM)} =—c! -Ime, (iM) < oo,

n—oo n—0o0
which shows that {0, (R) | n € N} is bounded.

Having established that the family {o,, | n € N} is conditionally compact,
recall next from Remark 2.3, that in order to show that o, — o, it suffices to
show that any subsequence (0,,) has a subsequence, which converges weakly to
o. A similar argument works, of course, to show that v, — . So consider any
subsequence (7,7, 0,/) of the sequence of generating pairs. Since {o,, | n € N}
is conditionally compact, there is a subsequence (n”’) of (n’), such that the
sequence (o,) is weakly convergent to some finite measure c* on R. Since
the function t — % is continuous and bounded for any y in ]0, co[, we know

then that L Lo
/ + 1y O'n//(dt) _ / + 1y O'*(dt),
R 1y—1 n—oo Jp 1y —1
for any y in |0, c0[. At the same time, we know from (c) that

1+ tiy . . 1+ tiy
n'! n’’ dt) = " - N
gt +/R g (dt) = @y, (iy) — du(iy) 7+/R -

o(dt),

for any y in [M, oo[. From these observations, it follows that the sequence
(Yn7) must converge to some real number +*, which then has to satisfy the

identity:

B 1+ty . 1+ tiy

~ +/ y o (dt):¢u(1y):7+/ . o(dt),
R 1y—1 R

for all y in [M, oo[. By uniqueness of the free Lévy-Khintchine representation
(cf. Theorem 4.14) and uniqueness of analytic continuation, it follows that
we must have oc* = o and v* = . We have thus verified the existence of a
subsequence (v, 0y,) which converges (coordinate-wise) to (v, ), and that
was our objective. O

As an immediate consequence of Theorem 5.13 and the corresponding
result in classical probability, we get the following

Corollary 5.14. The Bercovici-Pata bijection A: ID(x) — ZTD(8) is a home-
omorphism w.r.t. weak convergence. In other words, if p is a measure in TD(x)

and () is a sequence of measures in TD(x), then i, ~ p, asn — oo, if and
only if Ap,) ~ A(p), as n — oo.

Proof. Let (v,0) be the generating pair for 1 and, for each n, let (y,,0,) be
the generating pair for p,.

Assume first that p, — p. Then by [CnlKo68, §19, Theorem 1], 74, — 7
and o,, — . Since (v, 0,,) (respectively (v, o)) is the free generating pair for
A(pn) (vespectively A(u)), it follows then from Theorem 5.13 that A(u,) ~
Ap).-

The same argument applies to the converse implication. 0O
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We end this section by presenting the announced proof of property (v)
in Theorem 3.18. The proof follows easily by combining Theorem 5.5 and
Theorem 5.13.

Proof of Theorem 3.18(v).

Let w, pu1, 12, i3, - - ., be probability measures in ZD(x), such that p, o,
as n — oco. We need to show that Y'(u,) — (i) as n — oo. Since A is
continuous w.r.t. weak convergence, A(u,) — A(y), as n — oo, and this
implies that C,(,, )(i¢) — Ca(y)(i¢), as n — oo, for any ¢ in | — 00, 0] (use e.g.
Theorem 5.13). Thus,

CT(MH)(C) = CA(un)(iC) njgo C/I(M) (IC) = CT(,LL) (C)v

for any negative number ¢, and hence also fr(,,)(¢) = exp(Cr(,,)(()) —
exp(Cru)(€)) = frw(¢), as n — oo, for such ¢. Applying now complex
conjugation, it follows that fr(,.)(¢) — fr(.,)(C), as n — oo, for any (non-

zero) ¢, and this means that ¥'(u,) — ¥'(1), as n — oo. o

5.4 Classical vs. Free Lévy Processes

Consider now a free Lévy process (Z;);>0, with marginal distributions (s).
As for (classical) Lévy processes, it follows then, that each p; is necessarily
H-infinitely divisible. Indeed, for any n in N we have: Z; = Z?Zl(th /n —
Z(j—1)t/n), and thus, in view of conditions (i) and (iii) in Definition 4.27,
My = pyyn BBy m (n terms). From the observation just made, it follows that
the Bercovici-Pata bijection A: ZD(x) — ZD(H) gives rise to a correspondence
between classical and free Lévy processes:

Proposition 5.15. Let (Z,);>0 be a free Lévy process (in law) affiliated with
a W*-probability space (A,T), and with marginal distributions (u:). Then
there exists a (classical) Lévy process (Xi)i>0, with marginal distributions
(A 1u)).

Conversely, for any (classical) Lévy process (X¢) with marginal distribu-

tions (ut), there exists a free Lévy process (in law) (Z;) with marginal distri-
butions (A(u))-

Proof. Consider a free Lévy process (in law) (Z;) with marginal distributions
(11¢). Then, as noted above, p; € ZD(H) for all ¢, and hence we may define
wy = A" (), t > 0. Then, whenever 0 < s < ¢,

prp = A" s B—s) = A7 (s) % A7 (pems) = gl * s

Hence, by the Kolmogorov Extension Theorem (cf. [Sa99, Theorem 1.8]), there
exists a (classical) stochastic process (X;) (defined on some probability space
(2, F, P)), with marginal distributions (u}), and which satisfies conditions
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(i)-(iii) of Definition 2.2. Regarding condition (iv), note that since (Z;) is a
free Lévy process, 1y — 6o as t \, 0, and hence, by continuity of A~" (cf.
Corollary 5.14),

Hy = A7 (1) 2 A7(80) = G, as £\, 0.

Thus, (X:) is a (classical) Lévy process in law, and hence we can find a
modification of (X;) which is a genuine Lévy process.

The second statement of the proposition follows by a similar argument,
using A rather than A~', and that the marginal distributions of a classical
Lévy process are necessarily *-infinitely divisible. Furthermore, we have to call
upon the existence statement for free Lévy processes (in law) in Remark 4.28.

O

Ezample 5.16. The free Brownian motion is the free Lévy process (in law),
(Wi)e>0, which corresponds to the classical Brownian motion, (By);>0, via the
correspondence described in Proposition 5.15. In particular (cf. Example 5.3),

1
LiWei(ds) = 5Vt — s 1_ gy (s)ds,  (t>0).

Remark 5.17. (Free additive processes IT) Though our main objectives in
this section are free Lévy processes, we mention, for completeness, that the
Bercovici-Pata bijection A also gives rise to a correspondence between classical
and free additive processes (in law). Thus, to any classical additive process (in
law), with corresponding marginal distributions (x;) and increment distribu-
tions (fs,¢)o<s<t, there corresponds a free additive process (in law), with mar-
ginal distributions (A(u;)) and increment distributions (A(us))o<s<¢. And
vice versa.

This follows by the same method as used in the proof of Proposition 5.15
above, once it has been established that for a free additive process (in law)
(Z;), the distributions py = L{Z;} and ps = L{Z; — Zs}, 0 < s < t, are
necessarily H-infinitely divisible (for the corresponding classical result, see
[5299, Theorem 9.1]). The key to this result is Theorem 4.18, together with
the fact that (Z;) is actually uniformly stochastically continuous on com-
pact intervals, in the following sense: For any compact interval [0,b] in [0, oo,
and for any positive numbers €, p, there exists a positive number § such that
s t(R\ [—€,€]) < p, for any s,t in [0,b], for which s < ¢t < s+ J. As in the
classical case, this follows from condition (iv) in Definition 4.27, by a standard
compactness argument (see [5299, Lemma 9.6]). Now for any ¢ in [0, co[ and
any n in N, we have (cf. (4.21)),

Ht = Ho,t/n H Ht/n,2t/n &) M2t /n,3t/n BB H(n—1)t/n,t- (56)

Since (Z;) is uniformly stochastically continuous on [0,¢], it follows that the
family {p—1)e/njtm | m € N, 1 < j < n} is a null-array, and hence, by
Theorem 4.18, (5.6) implies that p; is E-infinitely divisible. Applying then
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this fact to the free additive process (in law) (Z; — Z)¢>s, it follows that also
fts,¢ is E-infinitely divisible whenever 0 < s < t.

Remark 5.18. (An alternative concept of free Lévy processes) For a
classical Lévy process (X}), condition (iii) in Definition 2.2 is equivalent to the
condition that whenever 0 < s < t, the conditional distribution Prob(X; | Xj)
depends only on ¢ — s. Conditional probabilities in free probability were stud-
ied by Biane in [Bi98], and he noted, in particular, that in the free case, the
condition just stated is not equivalent to condition (iii) in Definition 4.27.
Consequently, in free probability there are two classes of stochastic processes,
that may naturally be called Lévy processes: The ones we defined in Defini-
tion 4.27 and the ones for which condition (iii) in Definition 4.27 is replaced
by the condition on the conditional distributions, mentioned above. In [3198]
these two types of processes were denoted FALI respectively FAL2. We should
mention here that in [Bi98], the assumption of stochastic continuity (condition
(iv) in Definition 4.27) was not included in the definitions of neither FAL1
nor FAL2. We have included that condition, primarily because it is crucial for
the definition of the stochastic integral to be constructed in the next section.

6 Free Stochastic Integration

In the classical setting, stochastic integration with respect to Lévy processes
and to Poisson random measures is of key importance. This Section establishes
base elements of a similar theory of free stochastic integration. As applications,
a representation of free selfdecomposable variates as stochastic integrals is
given and free OU processes are introduced. Furthermore, the free Lévy-Ito
decomposition is derived.

6.1 Stochastic Integrals w.r.t. free Lévy Processes

As mentioned in Section 2.3, if (X;) is a classical Lévy process and f: [A, B] —
R is a continuous function defined on an interval [A, B] in [0, co[, then the

stochastic integral ff f(t) dX; may be defined as the limit in probability of
approximating Riemann sums. More precisely, for each n in N, let D,, =
{tn,0:tn,1,-..,tnn} be asubdivision of [A, B], i.e.

A=tyg<tpy < <tpn=B.
Assume that
li ;— 1) =0. 1
i max (g = tnjo1) =0 (6.1)

Moreover, for each n, choose intermediate points:

tzfj € [tn’jfl’tn;jL J = 1a27"-an- (62)
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Then the Riemann sums

STL = Zf(ti]) : (th,j - th-,j—l)’

j=1

converge in probability, as n — oo, to a random variable S. Moreover, this
random variable S does not depend on the choice of subdivisions D,, (satisfy-
ing (6.1)), nor on the choice of intermediate points tf, .. Hence, it makes sense
to call S the stochastic integral of f over [A, B] w.r.t. (X;), and we denote S
by [ f(t) dX;.

The construction just sketched depends, of course, heavily on the stochas-
tic continuity of the Lévy process in law (X;) (condition (iv) in Definition 2.2).
A proof of the assertions made above can be found in [LLu75, Theorem 6.2.3].
We show next how the above construction carries over, via the Bercovici-Pata
bijection, to a corresponding stochastic integral w.r.t. free Lévy processes (in
law).
Theorem 6.1. Let (Z;) be a free Lévy process (in law), affiliated with a W*-
probability space (A, 7). Then for any compact interval [A, B] in [0,00[ and
any continuous function f: [A, B] — R, the stochastic integral ff f(t) dZ;
exists as the limit in probability (see Definition 4.3) of approximating Riemann
sums. More precisely, there exists a (unique) selfadjoint operator T affiliated
with (A, 1), such that for any sequence (Dp)nen of subdivisions of [A, B],
satisfying (6.1), and for any choice of intermediate points tﬁj, as in (6.2),
the corresponding Riemann sums

T, = Zf(tfg) ’ (Ztn,j - Ztn,j—l)’
j=1

converge in probability to T as n — oco. We call T the stochastic integral of f
over [A, B] w.r.t. (Z), and denote it by ff f(t) dZ;.

In the proof below, we shall use the notation:
Ay = ke and By = 0 BB,
for probability measures p1, ..., 1, on R.
Proof of Theorem 6.1. Let (Dy,)nen be a sequence of subdivisions of [A, B]

satisfying (6.1), let tﬁj be a family of intermediate points as in (6.2), and
consider, for each n, the corresponding Riemann sum:

n

T,=Y ftr,) (Z,, 2, ) €A

Jj=1

We show that (7},) is a Cauchy sequence w.r.t. convergence in probability or,
equivalently, w.r.t. the measure topology (see the Appendix). Given any n,m
in N, we form the subdivision
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A=350<s1 < < Sp(n,m) = B,

which consists of the points in D,, U D,, (so that p(n,m) < n + m). Then,
for each j in {1,2,...,p(n,m)}, we choose (in the obvious way) sﬁj in {tffk |
k=1,2,...,n} and sn#m in {tﬁk | E=1,2,...,m} such that

p(n,m) p(n,m)
T, = Z f(sf,g)(zsj 7ZS_7‘—1) and T = Z f(sfz,j)'(zsj 7ZSj—1)'
j=1 j=1
It follows then that
p(n,m)
To=Tw= Y (flsi)) = f(sh ) - (Zs; = Zs, )
j=1

Let (u¢) denote the family of marginal distributions of (Z;), and then con-
sider a classical Lévy process (X;) with marginal distributions (A~ (s)) (cf.
Proposition 5.15). For each n, form the Riemann sum

Sn = Zf(tij> : (th,j - th,jfl)’
j=1

corresponding to the same D,, and tfﬁ ; as above. Then for any n,m in N, we
have also that

p(n,m)

Sy — Sm = Z (f(sf]) - f(sﬁl,j)) ’ (XSJ' - XSJ‘—l)'

j=1
From this expression, it follows that

L{Sy ~ S} = 5™ D, A, = X}

(Sﬁ,j)_f(sn#@,j

_ p(n,m) -1
=*ix Df(sf,j)_f(sﬁ,j)/l (IU/SJ'—ijl)7

so that (by Theorem 5.7),

A(L{Sn = Sm}) = Eﬂﬁg’m)Df(sﬁﬁ—f(sﬁl,j)“%—Sa'—l

p(n,m)

:L{ > (f(sﬁﬂ—f(syﬁ,j))-(Zsj—ZSH)}
— L{T, — Ty}

We know from the classical theory (cf. [Lu75, Theorem 6.2.3]), that (S,,) is a
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L{T,, — T;,} = A(L{S,, — Sp}) = A(60) = 69, as n,m — oo.

By Proposition A.8, this means that (7)) is a Cauchy sequence w.r.t. the
measure topology, and since A is complete in the measure topology (Proposi-
tion A.5), there exists an operator T in A, such that T,, — T in the measure
topology, i.e. in probability. Since T, is selfadjoint for each n (see the Appen-
dix) and since the adjoint operation is continuous w.r.t. the measure topology
(Proposition A.5), T is necessarily a selfadjoint operator.

It remains to show that the operator 7', found above, does not depend
on the choice of subdivisions (D,,) or intermediate points t . Suppose thus
that (T3,) and (7)) are two sequences of Riemann sums of the klnd considered
above. Then by the argument given above, there exist operators T and T’ in
A, such that T,, — T and T/, — T’ in probability. Furthermore, if we consider
the “mixed sequence” Ty,T4,T5,Ty, ..., then the corresponding sequence of
subdivisions also satisfies (6.1), and hence this mixed sequence also converges
in probability to an operator 7" in A. Since the mixed sequence has subse-
quences converging, in probability, to T and T’ respectively, and since the
measure topology is a Hausdorff topology (cf. Proposition A.5), we may thus
conclude that T =T" =T, as desired. O

The stochastic integral f A t) dZ;, introduced above, extends to continuous
functions f: [A,B] — C in the usual way (the result being non-selfadjoint in
general). From the construction of ff f(t) dZ; as the limit of approximating
Riemann sums, it follows immediately that whenever 0 < A < B < C, we
have

fA t)dZ, = fA t) dZ, + fB t) dZ;,

for any continuous function f: [A, C] — C. Another consequence of the con-
struction, given in the proof above, is the following correspondence between
stochastic integrals w.r.t. classical and free Lévy processes (in law).

Corollary 6.2. Let (X;) be a classical Lévy process with marginal distribu-
tions (ue), and let (Z;) be a corresponding free Lévy process (in law) with
marginal distributions (A(ue)) (cf. Proposition 5.15). Then for any compact
interval [A, B] in [0 oo[ and any continuous function f:[A,B] — R, the
distributions L{fA t) dX;} and L{fA t) dZi} are x-infinitely divisible
respectively H- znﬁmtely divisible and, moreover

LY 1) 4Z,} = A[L{ [ £(2) dX0}].

Proof. Let (Dy,)nen be a sequence of subdivisions of [A, B] satisfying (6.1),
let tf j bea family of intermediate points as in (6.2), and consider, for each
n, the corresponding Riemann sums:

Sn = Z f(tﬁj) ! (th,j - th,j—l) and Tn = Z f(tf,j) ! (Ztn,j - Ztn,j—l)'
j=1 j=1
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Since convergence in probability implies convergence in distribution (Proposi-
tion A. 9) it follows from [LLu75, Theorem 6.2. 3} and Theorem 6.1 above, that
L{S,} = L{fA t) dX;} and L{T,} > L{fA t) dZ;}. Since ZD(x) and
ID(H) are closed w.r.t. weak convergence (as noted in Section 4.5), it follows
thus that L{fA t) dX;} € ID(x) and L{fA t) dZ;} € ID(H). Moreover,
by Theorem 5.7, L{T,,} = A(L{S,}), for each n in N, and hence the last
assertion follows by continuity of A. a

6.2 Integral Representation of Freely Selfdecomposable Variates

As mentioned in Section 2.5, a (classical) random variable Y has distribution
in L(x) if and only if it has a representation in law of the form

y < / et dX,, (6.3)
0

where (X;);>0 is a (classical) Lévy process, satisfying the condition E[log(1 +
|X1])] < co. The aim of this section is to establish a similar correspondence
between selfadjoint operators with (spectral) distribution in £(H) and free
Lévy processes (in law).

The stochastic integral appearing in (6.3) is the limit in probability, as
R — oo, of the stochastic integrals fOR e tdX,, i.e. we have

R 0o
/ e tdx, > / e 'dX,, as R — oo,
0 0

(the convergence actually holds almost surely; see Proposition 6.3 below). The
stochastic integral fOR et dX, is, in turn, defined as the limit of approximating
Riemann sums as described in Section 6.1

For a free Lévy process (Z;), we determine next under which conditions
the stochastic integral fooo e~! dZ, makes sense as the limit, for R — oo, of the

stochastic integrals fOR e~tdZ,, which are defined by virtue of Theorem 6.1.
Again, the result we obtain is derived by applications of the mapping A and
the following corresponding classical result:

Proposition 6.3 ([JuVe83]). Let (X;) be a classical Lévy process defined on
some probability space (2,F, P), and let (y,0) be the generating pair for the
x-infinitely divisible probability measure L{X,}. Then the following conditions
are equivalent:

i) fR\ . 1[log(l + [t]) o(dt) < oco.
ii) fo ~t dX; converges almost surely, as R — oo.

iii) f v dX; converges in distribution, as R — oc.

(
(
(
(iv) Ellog(1 + | X4])] < oc.
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Proof. This was proved in [JuVe&3, Theorem 3.6.6]. We note, though, that in
[JuVe83], the measure o in condition (i) is replaced by the Lévy measure p
appearing in the alternative Lévy-Khintchine representation (2.2) for L{X1}.
However, since p(dt) = 1'[—;2 1r\foy(t) o(dt), it is clear that the integrals
fR\]l_l’l[ log(1 + [¢]) p(dt) and fR\]_M[log(l + [t]) o(dt) are finite simultanel:—,
ously.

Proposition 6.4. Let (Z;) be a free Lévy process (in law) affiliated with a
W*-probability space (A, T), and let (y,0) be the free generating pair for the B-
infinitely divisible probability measure L{Z1}. Then the following statements
are equivalent:

(i) fR\]qJ[lOg(l +[t]) o(dt) < 0.
(ii) fOR et dZ; converges in probability, as R — oo.

(iii) fOR e~ dZ; converges in distribution, as R — oc.

Proof. Let (u;) be the family of marginal distributions of (Z;) and consider
then a classical Lévy process (X;) with marginal distributions (A7 (p;)) (cf.
Proposition 5.15). By the definition of A, it follows then that (v,0) is the
generating pair for the x-infinitely divisible probability measure L{X;}.

(i) = (ii): Assume that (i) holds. Then condition (i) in Proposition 6.3 is
satisfied for the classical Lévy process (X;). Hence by (ii) of that proposition,
fOR et dX,; converges almost surely, and hence in probability, as R — oo.
Consider now any increasing sequence (R,,) of positive numbers, such that
R, / o0, as n — oco. Then for any m,n in N such that m > n, we have by
Corollary 6.2

L{ foRm e tdz, — foRn et dZ} =L f}é{: et dZ;} = A[L{ fl??:n e dX}]

= A[L{ [T et dX, — [T et dX,}].
(6.4)

Since the sequence ( fOR" et dX;)nen is a Cauchy sequence with respect to
convergence in probability, it follows thus, by continuity of A, that so is the se-
quence (fOR" e~ " dZ;)nen. Hence, by Proposition A.5, there exists a selfadjoint

operator W affiliated with (A, 7), such that fOR" e~ dZ, — W in probabil-
ity. It remains to argue that W does not depend on the sequence (R,,). This
follows, for example, as in the proof of Theorem 6.1, by considering, for two
given sequences (R,,) and (R)), a third increasing sequence (R)), containing
infinitely many elements from both of the original sequences.

(ii) = (i): Assume that (ii) holds. It follows then by (6.4) and continuity
of A7! that for any increasing sequence (R,), as above, ( fOR” e ' dX,) is a
Cauchy sequence w.r.t. convergence in probability. We deduce that (iii) of
Proposition 6.3 is satisfied for (X;), and hence so is (i) of that proposition. By
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definition of (X}), this means exactly that (i) of Proposition 6.4 is satisfied
for (Z;).

(if) = (iil): This follows from Proposition A.9.

(iii)=-(i): Suppose (iii) holds, and note that the limit distribution is nec-
essarily H-infinitely divisible. Now by Corollary 6.2 and continuity of A1,
condition (iii) of Proposition 6.3 is satisfied for (X;), and hence so is (i) of
that proposition. This means, again, that (i) in Proposition 6.4 is satisfied for
(Z). g

If (Z;) is a free Lévy process (in law) affiliated with (A, ), such that (i)
of Proposition 6.4 is satisfied, then we denote by fooo e~t dZ; the selfadjoint

operator affiliated with (A, 7), to which fOR et dZ; converges, in probability,
as R — oo. We note that L{ [~ e™" dZ;} is B-infinitely divisible, and that
Corollary 6.2 and Proposition A.9 yield the following relation:

L{[Cetdz,} = A[L{ [[Te " dX,}], (6.5)

where (X;) is a classical Lévy process corresponding to (Z;) as in Proposi-
tion 5.15.

Theorem 6.5. Let y be a selfadjoint operator affiliated with a W*-probability
space (A, 7). Then the distribution of y is B-selfdecomposable if and only if y
has a representation in law in the form:

d (o)
Yy :/ e ' dz;, (6.6)
0

for some free Lévy process (in law) (Z;) affiliated with some W*-probability
space (B,v), and satisfying condition (i) of Proposition 6.4.

Proof. Put = L{y}. Suppose first that p is B-selfdecomposable and put
w' = A71(u). Then, by Corollary 5.10, p/ is *-selfdecomposable, and hence by
the classical version of this theorem (cf. [JuVes3, Theorem 3.2]), there exists
a classical Lévy process (X;) defined on some probability space ({2, F, P),
such that condition (i) in Proposition 6.3 is satisfied, and such that A=!(u) =
L{[;° e~ dX,}. Let (Z;) be a free Lévy process (in law) affiliated with some
W*-probability space (B, 1), and corresponding to (X) as in Proposition 5.15.
Then, by definition of A, condition (i) in Proposition 6.4 is satisfied for (Z;)
and, by formula (6.5), L{[;"e™" dZ;} = p.

Assume, conversely, that there exists a free Lévy process (in law) (Z;)
affiliated with some W*-probability space (B,), such that condition (i) of
Proposition 6.4 is satisfied, and such that = L{fooO e " dZ;}. Then consider
a classical Lévy process (X;) defined on some probability space (2, F, P), and
corresponding to (Z;) as in Proposition 5.15. Condition (i) in Proposition 6.3
is then satisfied for (X;) and, by (6.5), A=*(n) = L{ ;" e~* dX,;}. Thus, by
the classical version of this theorem, A~!(p) is *-selfdecomposable, and hence
1 is B-selfdecomposable. 0O
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Remark 6.6 (Free OU processes). Let y be a selfadjoint operator affiliated
with some W*-probability space (A, ), and assume that there exists a free
Lévy process (in law) (Z;) affiliated with some W*-probability space (5, 1)),

such that condition (i) of Proposition 6.4 is satisfied, and such that y 4
foo et dZ;. Note then, that for any positive numbers s, \, we have

0
/ e tdz, = / e MAzZy, = / e M dAZy + / e M dZy
0 0 s 0
[e%) As
= e_)\s/ e_)\t dZ)\(S+t) +/ e_t dZt,
0 0

where we have introduced integration w.r.t. the processes V; = Z); and W; =
Z\(s+t); t = 0. The rules of transformation for stochastic integrals, used above,
are easily verified by considering the integrals as limits of Riemann sums. That
same point of view, together with the fact that (Z;) has freely independent
stationary increments (conditions (i) and (iii) in Definition 4.27), implies,

furthermore, that fooo e M dZy (st 4 fooo M 47y, & y. Note also that the
two terms in the last expression of (6.7) are freely independent. Thus, (6.7)
shows, that for any positive numbers s, A, we have a decomposition in the form:

(6.7)

Y 4 e My(N, s)+u(, s), where y(A, s) and u(X, s) are freely independent, and

where y(, s) 4 y. In particular, we have verified, directly, that L{y} is -
selfdecomposable. Moreover, if we choose a selfadjoint operator Yj affiliated
with (B, 1), which is freely independent of (Z;), and such that L{Yy} = L{y}
(extend (B, ) if necessary), then the expression:

As
Y, =e MY +/ e " dZ, (s>0),
0

defines an operator valued stochastic process (Y;) affiliated with (B, ), sat-
isfying that Y 4 y for all s. If we replace (Z;) above by a classical Lévy
process (X3), satisfying condition (i) in Proposition 6.3, and let Yy be a (clas-
sical) random variable, which is independent of (X;), then the corresponding
process (Y) is a solution to the stochastic differential equation:

dYg = 7>\Yg dS + dXAS;

and (Y3) is said to be a process of Ornstein-Uhlenbeck type or an OU process,
for short (cf. [BaShOla],[BaSh01b] and references given there).

6.3 Free Poisson Random Measures

In this section, we introduce free Poisson random measures and prove their
existence. We mention in passing the related notions of free stochastic mea-
sures (cf. [An00]) and free white noise (cf. [Sp90]). We mention also that the
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existence of free Poisson random measures was established by Voiculescu in
[Vo98] in a different way than the one presented below. Recall, that for any
number A in [0, co[, we denote by Poiss® () the free Poisson distribution with
mean \ (cf. Example 5.3).

Definition 6.7. Let (©,&,v) be a measure space, and put
Ey={E €& |v(E) <}

Let further (A, 1) be a W*-probability space, and let Ay denote the cone of
positive operators in A. Then a free Poisson random measure on (0, &, v) with
values in (A, T), is a mapping M : &y — A, with the following properties:

(i) For any set E in &, L{M(E)} = Poiss® (v(E)).

(ii) If r € N and Ey, ..., E, are disjoint sets from &y, then M(Ey), ..., M(E,)
are freely independent operators.

(iii) If r € N and Ey,..., E, are disjoint sets from &, then M(Ui_ E;) =

Z;:1 M (EJ)

In the setting of Definition 6.7, the measure v is called the intensity mea-
sure for the free Poisson random measure M. Note, in particular, that M (F)
is a bounded positive operator for all E in &. The definition above might seem
a little “poor”compared to that of a classical Poisson random measure. The
following remark might offer a bit of consolation.

Remark 6.8. Suppose M is a free Poisson random measure on the measure
space (©,&,v) with values in the W*-probability space (A, 7). Let further
(E,) be a sequence of disjoint sets from &. If we assume, in addition, that
UjenF; € &, then we also have that

(U )=

jEN
where the right hand side should be understood as the limit in probability (see
Definition 4.3) of 37| M(E};) as n — oo.
Indeed, put £ = UjenE;, and assume that £ € &. Then for any n in N,

M(E) =Y M(E;) = M(E) — M(U}_, E;) = M(U32,,, E)),
j=1
so that

n

L{M(E) = M(Ej)} — Poiss® (V(U2,..1 E))

Jj=1
= POiSSEE (Z?in+1 V(E])) L 60,

as n — oo, since 377 . v(E;) — 0 as n — oo, because > 22 v(E;) =
v(E) < .



132 Ole E. Barndorff-Nielsen and Steen Thorbjgrnsen

The main purpose of the section is to prove the general existence of free
Poisson random measures.

Theorem 6.9. Let (0©,E,v) be a measure space. Then there exists a W*-
probability space (A, 7) and a free Poisson random measure M on (©,E,v)
with values in (A, T).

The proof of Theorem 6.9 is given in a series of lemmas. First of all, though,
we introduce some notation:
If w1, po, ..., p are probability measures on R, we put (as in Section 6.1)

h%lﬂh:,ul*lm*"‘*ﬂr and h@lﬂhzﬂlEﬂQE“'EﬁNw

In the remaining part of this section, we consider the measure space (6, &, v)
appearing in Theorem 6.9. Consider then the set

Z=|J{(Br,....B) | Br,..., By € &\ {0} and Ex,..., Ej, are disjoint},
keN

where we think of (Fy,..., Ey) merely as a collection of sets from &. In par-
ticular, we identify (E1,..., Ey) with (Ex(1),..., Exx)) for any permutation
mof {1,2,...,k}. We introduce, furthermore, a partial order < on Z by the
convention:

(Ev,...,Ey) < (F1,...,F}) <= each E; is a union of some of the F}’s.

Lemma 6.10. Given a tuple S = (E1,...,Ey) from I, there exists a W*-
probability space (Ag,Ts), which is generated by freely independent positive
operators Mg(Ey), ..., Mg(Ey) from Ag, satisfying that

L{Ms(E;)} = Poiss® (V(E;)),  (i=1,...,k).

Proof. This is an immediate consequence of Voiculescu’s theory of (reduced)
free products of von Neumann algebras (cf. [VoDyNi92]). Indeed, we may
take (Ag, Ts) to be the (reduced) von Neumann algebra free product of the
Abelian W*-probability spaces (L (R, p;),E,,), ¢ = 1,...,k, where p; =
Poiss®(v(E;)) and E,, denotes expectation with respect to p;. i

Lemma 6.11. Consider two elements S = (Ey,...,Ey) and T = (Fy,..., F})
of T, and suppose that S < T. Consider the W*-probability spaces (Ag,Ts)
and (Ap, 1) given by Lemma 6.10. Then there exists an injective, unital,
normal x-homomorphism vgr: As — Ar, such that Tg = T o Lg 1.

Proof. We adapt the notation from Lemma 6.10. For any fixed ¢ in {1, ..., k},
we have that E; = Fj(; 1)U- - -UFj(,,), for suitable (distinct) j(i,1),...,5(i, ;)
from {1,2,...,1}. Note then that
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L{Mz(Fjin) + -+ Mp(Fyi,)} = hééll POissEEl(]/(Fj(i,h)))
= Poiss® (V(Fji1) + - + v(Fja,))
= Poiss™ (v(Fj(;1) U+ U Fy1,)))

= Poiss®(V(E))) = L{Ms(E;)}.

In addition, Mg(FE1),..., Mg(F)) are freely independent selfadjoint opera-
tors, and, similarly, the operators 21}221 Mr(Fjiny), @ = 1,...,k are freely
independent and selfadjoint. Combining these observations with [Vo90, Re-
mark 1.8], it follows that there exists an injective, unital, normal *-homomor-
phism ¢g7: Ag — Arp, such that

ts,7(Ms(E;)) = Mp(Fjay) + -+ Mp(Fja,)), (i=1,2,...,1), (6.8
and such that 7¢ = 7p 0 15 7. 0O
Lemma 6.12. Adapting the notation from Lemmas 6.10-0.11, the system

(Ag,78)sez, {tsr|STeZ, S<T}, (6.9)

s a directed system of W*-algebras and injective, unital, normal x-homomor-
phisms (cf. [KaRi83, Section 11.4]).

Proof. Suppose that R = (D1,...,Dp,), S = (E1,...,Ey)and T = (Fy,..., F})
are elements of 7, such that R < § < 7. We have to show that tpr =
ts,T © tr,s. We may write (unambiguously),

Dh:Ei(h,l)U"'UEi(h,kh)a (h:].,...,m),
EZ:F](z,l)UUE](z,l7)7 (221,7k),

for suitable i(h,1),...,i(h,kp) in {1,2,...,k} and j(i,1),...,5(4 ;) in
{1,2,...,1}. Then for any h in {1,...,m}, we have

Litn,1) Lith k)
Dy = Eijn1y U UEip k) ( U Gk, 1), ) ( U G (hokn), r))
so that, by definition of tg 1, tr,s and tgp (cf. (6.8)),

Lith,1) Lih,kp,)

tr,7(Dp) = Z Mr(Fjihay,m) + -+ Z M1 (Fj¢ihkn),r))

r=1

=15, [MS(Ei(h,l))] +e s [MS(Ei(h,kh,))]
=157 [Ms(Ein1)) + -+ Ms(Ein k)]

= 15,7 [tr,s(Dn)]-
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Since Ag is generated, as a von Neumann algebra, by the operators
MR(Dl)v R MR(Dm)7

and since tr 7 and 157 0otR s are both normal *-homomorphisms, it follows by
Kaplansky’s density theorem (cf. [[KaRi83, Theorem 5.3.5]) and the calculation
above that tp 7 = g7 0 LR,g, as desired. o

Lemma 6.13. Let A° denote the C*-inductive limit of the directed system
(6.9) and let 1s: Ag — A° denote the canonical embedding of Ag into A° (cf.
[KaRi83, Proposition 11.4.1]). Then there is a unique tracial state 79 on A,
satisfying that

75 = 7% 013, forall S inT. (6.10)

Proof. Recall that the canonical embeddings ts: As — A° (S € I) satisfy
the condition:

LR = LS OLR,S, whenever R, S €7 and R < S.

We note first that (6.10) gives rise to a well-defined mapping 7° on the set
A% = Ugezts(As). Indeed, suppose that tg(a’) = tr(a”) for some S, T in T
and @’ € Ag, o’ € Ar. We need to show that 75(a’) = 7r(a”). Let SV T
denote the tuple in 7 consisting of all non-empty sets of the form EFNF, where
E € Sand F €T. Note that S,7T" < SVT. Since tg = tgyr ots,syr and vy =
Lsvr o Lty gy, it follows, by injectivity of tgyr, that vs syr(a’) = tp syr(a”).
Hence, by Lemma 6.11,

7s(a') = Tsvr ot svr(a’) = Tsyr o v syr(a’) = Tr(d”),

as desired. Now, given a,b in A%, we can find S from Z, such that a,b are
both in ts(Ag), and hence it follows immediately that 7° is a linear tracial
functional on the vector space A%. Furthermore, if a = tg(a’) for some a’ in
Ag, then
0
™ (a)] = |7s(a)| < |la'|| = [les(a”)[| = [|all,

so that 7° is norm decreasing. Since A% is norm dense in A? (cf. [KaRis3,
Proposition 11.4.1]), if follows then that 7° has a unique extension to a map-
ping 7°: A° — C, which is automatically linear, tracial and norm-decreasing.

In addition, 79(1 40) = 1 = ||7°]|, so, altogether, it follows that 7° is a tracial
state on A, satisfying (6.10). O

Lemma 6.14. Let (A% 7°) be as in Lemma 6.13. There evists a mapping
MO: & — AY, which satisfies conditions (i)-(iii) of Definition 6.7.

Proof. We define M° by the equation:

M°(E) = 1 gy (Mg} (E)),  (E€&).
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Then M°(E) is positive for each E in &, since t{g} is a *-homomorphism.
Note also that if E € & and S € T such that E € S, then {E} < S and

M°(E) = 1 gy (Mg} (E)) = ts o tpy,s(M{p1(E)) = ts(Ms(E)).  (6.11)
We now have

(i) For each E in &, we have that 7(p, = 00 t{gy, and hence, since 1y is
a *-homomorphism, Mgy (E) and M°(E) have the same moments with
respect to 7y gy and 70, respectively. Since both operators are bounded,
this implies that L{M°(E)} = L{M g (E)} = Poiss® (v(E)).

(ii) Let FEy,...,Er be disjoint sets from & and consider the tuple S =
(Ei,...,Ey) € Z. Then, since 7¢ = 7 0 15 and g is a *-homomorphism,
we find, using (6.11),

TO (MO(Eil)MO(Eiz) o MO(Eip)) = TS(MS(Eil)MS(Eiz) T MS(E ))7

tp

for any i1,...,4, in {1,2,...,k}. Since Mg(E1),..., Mg(E})) are freely
independent, this implies that so are M°(Ey), ..., MO(Ey).

(iii) Let Ey,...,Ex be disjoint sets from &, put E = UY_,E; and consider
the tuple S = (E1,..., Ey) € Z. Then, by definition of 1;g} g, we have

M®(E) = 11y (Mg (E)) = ts © t(g},5(M{p)(E))
=15(Ms(Ey) + - - - + Ms(Ey))
= t5(Ms(Er)) + -+ + vs(Ms(Ex))
= M(Ey) +--- 4+ M°(Ey).
This concludes the proof. 0O

Lemma 6.15. Let (A°,7°) be as in Lemma 6.13, let #°: A° — B(H) denote
the GNS representation® of A° associated to 70, and let A be the closure of
PO(A%) in B(H®) with respect to the weak operator topology. Let, further, £°
denote the unit vector in H°, which corresponds to the unit 1 40 via the GNS-
construction, and let T denote the vector state on A given by &Y. Then (A, T)
is a W*-probability space, and 7° = 7 0 &°.

Proof. 1t follows immediately from the GNS-construction that
=700 (6.12)

so we only have to prove that 7 is a faithful trace on A. To see that 7 is a trace,
note that since 7° is a trace, it follows from (6.12) that 7 is a trace on the
weakly dense C*-subalgebra ®°(A°) of A. Since the multiplication of operators

9GNS stands for Celfand-Naimark-Segal; see [KaRi83, Theorem 4.5.2].
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is separately continuous in each variable in the weak operator topology, and
since 7 is a vector state, we may subsequently conclude that 7(ab) = 7(ba)
whenever, say, a € A and b € ®°(A%). Repeating the argument just given,
it follows that 7 is a trace on all of A. This means, furthermore, that £° is
a generating trace vector for A, and hence, by [[KaRi&83, Lemma 7.2.14], it is
also a generating trace vector for the commutant A’ C B(H"). This implies, in
particular, that £° is separating for A (cf. [[KaRi83, Corollary 5.5.12]), which,
in turn, implies that 7 is faithful on A. ]

Proof of Theorem 6.9. Let ®° and (A, T) be as in Lemma 6.15. We then
define the mapping M : & — A, by setting

M(E) = o°(M°(E)), (E € &).

Now, ¢° is a *-homomorphism and 70 = 70 ®°, so ®° preserves all (mixed)
moments of the elements M°(E), E € &. Since M satisfies conditions (i)-(iii)
of Definition 6.7, it follows thus, using the same line of argumentation as in the
proof of Lemma 6.14, that M satisfies conditions (i)-(iii) too. Consequently,
M is a free Poisson random measure on (0, &, v) with values in (A, 7). O

6.4 Integration with Respect to Free Poisson Random Measures

Throughout this section, we consider a free Poisson random measure M on the
o-finite measure space (©,&,r) and with values in the W*-probability space
(A, 7). We consider also a classical Poisson random measure N on (6,&,v)
defined on a classical probability space ({2, F, P). The aim of this section is
to establish a theory of integration with respect to M, making sense, thus, to
the integral f@ fdM for any function f in £(0,&,v). As in most theories of
integration, we start by defining integration for simple v-integrable functions.

Definition 6.16. Let s be a real-valued simple function in L1(©,&,v), i.e. s
can be written, unambiguously, in the form

T
s = E a;lg,,
Jj=1

where v € N, ay,...,a, are distinct numbers in R\ {0} and E1,...,E, are
disjoint sets from &y (since s is v-integrable). We then define the integral
f@ sdM of s with respect to M as follows:

/ sdM =Y a;M(E;) € A.
&) =

Remark 6.17. (a) Since M(FE) € Ay for any E in &, it follows immediately
from Definition 6.16 that f@ sdM is a selfadjoint operator in A for any
real-valued simple function s in £(6, &, ).
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(b) Suppose s and t are real-valued simple functions in £(©,&,v) and that
c € R. Then s+t and ¢ - s are clearly simple functions too, and, using
standard arguments, it is not hard to see that

/(s—i—t)sz/de—i—/th, and /c-dezc sdM.
6 6 6 6 e

(c) Consider now, in addition, the classical Poisson random measure N on
(0,&,v), defined on (2, F,P). Let, further, s be a real-valued simple
function in £'(6, &, v). Then L{ [, sAN} € ID(x), L{ [, s AM } € ID(H),

e A(L{/@st}) :L{/Qde}7

where A is the Bercovici-Pata bijection. Indeed, we may write s in the form
s = Z§=1 ajlg;, where r € N, ay,...,a, are distinct numbers in R\ {0}
and F1, ..., E, are disjoint sets from &. Then, using the properties of A,
we find that

Jj=

L{ /@ de} - L{ iajM(Ej)} - _él D, Poiss® (1v(E;))

= 8 D, A[Poiss" (v(E,))] = A| F Dy, Poiss’ (v(E))]

Jj=

— ] ;W(Ej)}] = afe{ [ san}].

By £1(©,&,v),, we denote the set of positive functions from £*(6, &, v).

Proposition 6.18. Let f be a real-valued function in £L1(6,E,v), and choose
a sequence (s,) of real-valued simple £-measurable functions, satisfying the
conditions:

Jh € /.31(@,8, v); V0 € © ¥n € N: |s,(0)] < h(6), (6.13)
and
nlgglo sn(0) = f(0), (0 €0O). (6.14)

Then s, € LY(O,E,v) for all n, and the integrals f@ sp dM converge in prob-

ability to a selfadjoint (possibly unbounded) operator I(f) affiliated with A.
Furthermore, the limit I(f) is independent of the choice of approximating

sequence (s,) of simple functions (subject to conditions (6.13) and (6.14)).

In condition (6.13), we might have taken h = | f|, but it is convenient to allow
for more general dominators.

Proof of Proposition 6.18. Let f, (s,) and h be as set out in the proposition.
Then, for any n in N, [ |sn|dv < [5hdv < oo, so that s, € L1(6,€,v) and
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f@ sp dM is well-defined. Note further that for any n,m in N, s,, — s,,, is again
a simple function in £1(0, &, v), and, using Remark 6.17(c),(d), it follows that

L{/@sndM—/QsmdM}:L{/@(sn—sm)dM}
:A[L{/@(snfsm)dNH,

with N the classical Poisson random measure introduced before. Since h €
L£Y(O,€,v), it follows from Proposition 2.8 that h € £1(©,€, N(-,w)) for
almost all w in 2. Hence, by Lebesgue’s theorem on dominated convergence,
we have that

/sn(G)N(dQ,w)—>/f(H)N(dH,w), as n — oo,
e e

(6.15)

for almost all w in 2. In other words, f@ SpdN — f@ fdN, almost surely, as
n — oo. In particular [, s,dN — [, fdN, in probability as n — oo, so the
sequence ([, o 5n AN )nen is a Cauchy sequence in probability, i.e.

L{/@(sn—sm)dN}Léo, as n,m — o0.

Combining this with (6.15) and the continuity of A (cf. Corollary 5.14), it
follows that ( f o SndM Jnen is also a Cauchy sequence in probability, i.e. with
respect to the measure topology. Since A is complete in the measure topology
(cf. Proposition A.5), there exists, thus, an operator I(f) in A, such that
Jo sndM — I(f), in probability as n — oc. Since [, s, dM is selfadjoint for
each n, and since the adjoint operation is continuous in the measure topology,
I(f) is a selfadjoint operator in A.

Suppose, finally, that (¢,) is another sequence of simple real-valued &-
measurable functions satisfying conditions (6.13) and (6.14) (with s,, replaced
by t,). Then, by the argument given above, f@ t, dM — I'(f), in probability
as n — oo, for some selfadjoint operator I'(f) in A. Consider now the mixed
sequence (u,) of simple real-valued £-measurable functions given by:

Uy = 81,Uz = t1,u3 = Sg,Uq = la,...,

and note that this sequence satisfies (6.13) and (6.14) too, so that [ u, dM —
I"(f), in probability as n — oo, for some selfadjoint operator I”(f) in A. Now
the subsequence (us,_1) converges in probability to both I”(f) and I(f) as
n — oo, and the subsequence (usy,) converges in probability to both I”(f)
and I'(f) as n — oo. Since the measure topology is a Hausdorff topology, we
may conclude, thus, that I(f) = I"(f) = I'(f). This completes the proof. O

Definition 6.19. Let f be a real-valued function in LY(O,&,v), and let I(f)
be the selfadjoint operator in A described in Proposition 6.18. We call I(f)
the integral of f with respect to M and denote it by f@ fdM.
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Corollary 6.20. Let M and N be the free and classical Poisson random mea-
sures on (0,E,v) introduced above. Then for any f in LY(O,E,v), we have
L{f@de}eID . L{ [y fdM} € ITD(B) and

/de /fdM

Proof. Choose a sequence (s,,) of real-valued simple £-measurable functions
satisfying conditions (6.13) and (6.14) of Proposition 6.18. Then, by Re-
mark 6.17, L{ [ s, AN} € ID(x), L{ [5 s, dM} € ITD(B) and A(L{ [ s,dN})
= L{ [y s, dM} for all n in N. Furthermore

/sndNﬁ/de and /sndML/fdM, as n — 00.
C] C] €} e

In particular (cf. Proposition A.9),

L{/@sndN}LL{/@de} and L{/@sndM}LL{/@fdM},

as n — o0. Since ZD(x) and ID(H) are both closed with respect to weak
convergence (see Section 4.5), this implies that L{ [, fdN} € ZID(x) and
L{[y fdM} € ID(8). Furthermore, by continuity of A, A(L{ [, fdN}) =
L{[y fdM}. O

Proposition 6.21. For any real-valued functions f,g in L*(O,&,v) and any
real number ¢, we have that

/@(f+g)dM:/@fdM+/@ng and /@c~fdM:c/8fdM.

Proof. If f and g are simple functions, this was noted in Remark 6.17. The
general case follows by approximating f and g by simple functions as in Propo-
sition 6.18 and using that addition and scalar-multiplication are continuous
operations in the measure topology (cf. Proposition A.5). O

Proposition 6.22. Let M be a free Poisson random measure on the o-
finite measure space (©,E,v) with values in the W*-probability space (A, T).
Let, further, fi,f2,...,fr be real-valued functions in LY(O,E,v) and let
61,0, ...,0, be disjoint E-measurable subsets of ©. Then the integrals

f1dM, f2 dM,. / frdM,
O1

are freely independent selfadjoint operators affiliated with (A, ).
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Proof. For each j in {1,2,...,7}, let (s;n)nen be a sequence of real valued
simple £-measurable functions, such that

lsin (@) < 1f;0)l,  (0€6, neN),

and

lim s5,(0) = £;0),  (0€6).
Then, for each j in {1,2,...,7} and each n in N, we may write s;, - lg, in
the form: N

Sjmn Z (g, ]-A(l j.n)s

where a(1,7,n),...,a(kjn, j,n) € ]R \ {0} and A(1,j,n),...,A(kjn,j,n) are
disjoint sets from &, such that A(l, j,n) C ©; for all I. Now,

kjn

/ Sjm * 1@j dM = Za(l,j,ﬂ)M((A(l,], n))v (J = 1325 o,y n e N)a
€]

=1

so by the properties of free Poisson random measures, the integrals

/Sl,n'l@ldM7~-~7/57‘,n'1(9¢dM7
] e

are freely independent for each n in N. Finally, for each j in {1,2,...,r} we
have (cf. Proposition 6.18)

/ fidM = /f] lo; dM = lim Sjn + lo, dM,
e

n—oo

where the limit is taken in probability. Taking now Proposition 4.7 into ac-
count, we obtain the desired conclusion. 0O

6.5 The Free Lévy-Ité6 Decomposition

In this section we derive the free version of the Lévy-It6 decomposition. We
mention in passing the related decomposition of free white noises, which was
established in [G1ScSp92).
Throughout this section we put
H =10, 00[xR C R?,
and we denote by B(H) the set of all Borel subsets of H. Furthermore, for any
€,t in ]0, oo[, such that € < ¢, we put
D(e,00) ={seR|e<|s| <oo} =R\ [—¢¢,
Diet)={s € R| e <|s| <t} = [-£,6]\ [~,].

We shall need the following well-known result about classical Poisson ran-
dom measures.
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Lemma 6.23. Let v be a Lévy measure on R and consider the o-finite mea-
sure Leb® v on H. Consider further a (classical) Poisson random measure N
on (H,B(H),Leb ® v), defined on some probability space (£2,F, P).

Then there is a subset £y of (2, such that 29 € F, P(£20) = 1 and such
that the following holds for any w in Qy: For any e,t in ]0,00[, the restric-
tion [N (-,w)]j0,4xD(e,00) Of the measure N(-,w) to the set ]0,t] x D(e,00) is
supported on a finite number of points, each of which has mass 1.

Proof. See [S5299, Lemma 20.1] O

Lemma 6.24. Let v and N be as in Lemma 6.23, and consider a positive
Borel function ¢: R — [0, 00].

(i) For almost all w in §2, the following holds:

Ve>0V0<s<t: / o(x) N(du,dz,w) < co.
]s,t]x D(e,00)

(ii) If f[71 1 p(r)v(dz) < oo, then for almost all w in §2, the following holds:
V0 < s <t: / o(z) N(du,dz,w) < oo.
]s,t] xR

Proof. Since ¢ is positive, it suffices to consider the case s = 0 in (i) and (ii).
Moreover, since ¢ only takes finite values, statement (i) follows immediately
from Lemma 6.23.

To prove (ii), assume that f[—1,1] p(r)v(dz) < oco. By virtue of (i), it
suffices then to prove, for instance, that for almost all w in 2, the following
holds:

Yt > 0: / p(z) N(du,dz,w) < co. (6.16)
10, x[—1,1]

Since the integrals in (6.16) increase with ¢, it suffices to prove that for any
fixed ¢ in ]0, oof,

/ o(x) N(du,dz,w) < oo, for almost all w.
10,t]x[—1,1]

This, in turn, follows immediately from the following calculation:

E{ / o(z) N(du, dac)} = / o(z) Leb ® v(du, dx)
10,t]x[—1,1] 10,¢] x[—1,1]

= t/[_m} o) v(der) < oo,

where we have used Proposition 2.8. O



142 Ole E. Barndorff-Nielsen and Steen Thorbjgrnsen

Lemma 6.25. Let v be a Lévy measure on R, and let M be a Free Pois-
son random measure on (H,B(H),Leb ® v) with values in the W*-probability
space (A, 7). Let, further, N be a (classical) Poisson random measure on

(H,B(H),Leb ® v), defined on a classical probability space (£2,F, P).

(i) For any €, s,t in [0,00[, such that s <t and e > 0, the integrals
/ x M (du, dz), (n €N),
]1s,t]x D(e,n)

converge in probability, as n — oo, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote byf]S % D(e,00) T Mdu, dx).

Furthermore (cf. Lemma 6.24), L{jis fx D(e,00) TN (du, dz)} € ID(x),
L{f]s’t]xD(E’oo) x M(du,dx)} € ID(B) and
xN(ds,dx)}).

L{ /]S’t]xD(mo) xM(du,dx)} - A(L{ /]s,t]xD( (6.17)
6.1

(ii) If f[71 1 |z| v(dz) < oo, then for any s,t in [0,00[, such that s < t, the
integrals

€,00)

/ x M (du,dz), (n eN),
]s,t]x[—n,n]

converge in probability, as n — oo, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote by f]s x M(du, dz).

Furthermore (cf. Lemma 6.24),

S XR

L{ /}SilXRmN(dmdx)} € ID(%), L{ /]M]XRxM(du,dx)} € ID(®)

and

L{ /]S?t}XRmM(du,dx)} :A(L{ /]&t]XRxN(ds,dx)}).

Proof. (i) Note first that for any n in N and any €, s,¢ in [0, 0o, such that
s < t and € > 0, we have that

/ |z| Leb @ v(du, dx) = (t — s) / |z| v(dx) < oo,
]s,t]x D(e,n) D(en)

since v is a Lévy measure. Hence, by application of Proposition 6.18, the
integral f] oM (du,dz) is well-defined and furthermore, by Corol-
lary 6.20,

L /]syt]XD(eﬁn)xM(du,dx)} = (L] /]S’t]XD(Eyn)xN(du,dx)}) (6.18)

s,t]xD(e,n
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Note now that by Lemma 6.24(i) there is a subset {2y of {2, such that 2, € F,
P(.Qo) =1 and

/ |z| N(du,dz,w) < co, for all w in 2.
]s,t]x D(e,00)

Then f]s Hx D(e,00) & N(du,dz,w) is well-defined forall w in 2y andbyLebesgue’s

theorem on dominated convergence,

/ x N(du,dz,w) — x N(du,dz,w),
]s,t]x D(e,n)

00 J1s,t]x D(€,00)

for all w in {2y, i.e. almost surely. In particular

/ x N(du,dz) — x N(du,dz), in probability,
]s,t]x D(e,n)

N0 J1s,t]x D(€,00)

and hence (f]s fx D(en) 2 N(du,dz))nen is a Cauchy sequence in probability.

Now, for any n,m in N, such that n < m, we have, by Proposition 6.21 and
Corollary 6.20,

L{/ xM(du,da:)—/ xM(du,dx)}
]s,t]x D(e,m) ]s,t]x D(e,n)
= L{/ xM(du,da:)}
]s,t]x D(n,m)

A(L{ /] o N(du, dx)})

S

A(L{/} t]XD(gm)xN(du,dx)—/]St]XD(En)xN(du,dx)}).

S

By continuity of A, this shows that (f]s’t]xD(e’n) x M(du, dx)),en is a Cauchy
sequence in probability, and hence, by completeness of A in the measure topol-
ogy,
/ x M(du,dz) := lim x M (du, dz),
]s,t]x D(€,00)

N0 Jls,t]x D(e,n)

exists in A as the limit in probability.
Finally, since ZD(x) and ZD(H) are closed with respect to weak conver-
gence, we have that

L{/ :cN(du,dx)} € ID()
]s,t]x D(€,00)

and
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L{/ xM(du,dx)} € ID(H).
]s,t]x D(e,00)

Moreover, since convergence in probability implies convergence in distribution
(cf. Proposition A.9), it follows from (6.18) and continuity of A that (6.17)
holds.

(ii) Suppose f[—Ll] |z| v(dz) < co. Then for any n in N and any s,¢ in
[0, 00[, such that s < t, we have that

/ |z| Leb ® v(du,dx) = (t — s) / || v(da)
]s,t]x[—n,n]

[_nvn]

_ (t—s)(/[_Ll] |x|1/(dx)+/D(Ln) )

< 00,

since v is a Lévy measure. Hence, by application of Proposition 6.18, the
integral f] x M (du, dz) is well-defined and, by Corollary 6.20,

s,t]x[—n,n]

L{ At]x[_m]xM(du,dx)} :A(L{ /]SW[

From this point on, the proof is exactly the same as that of (i) given above;
the only difference being that the application of Lemma 6.24(i) above must
be replaced by an application of Lemma 6.24(ii). O

xN(du,dac)}).

—n,n]

We are now ready to give a proof of the Lévy-Ito6 decomposition for free
Lévy processes (in law). As is customary in the classical case (cf. [Sa99]), we
divide the general formulation into two parts.

Theorem 6.26 (Free Lévy-Ité Decomposition I). Let (Z;) be a free Lévy
process (in law) affiliated with a W*-probability space (A, T), let v be the Lévy
measure appearing in the free generating triplet for L{Z1} and assume that
f_ll |z] v(dz) < co. Then (Z;) has a representation in the form:

z, < Y1 g0 + aWs + / x M(du,dz), (t>0), (6.19)
10,t] xR

where v € R, a > 0, (Wy) is a free Brownian motion in some W*-probability
space (A%, 79) (see Example 5.16) and M is a free Poisson random measure
on (H,B(H),Leb ® v) with values in (A°,7°). Furthermore, the process

U = / x M(du,dx), (t>0),
10,t] xR

is a free Lévy process (in law), which is freely independent of (Wy), and the
right hand side of (6.19), as a whole, is a free Lévy process (in law).
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As the symbol < appearing in (6.19) just means that the two operators
have the same (spectral) distribution, it does not follow directly from (6.19)
that the right hand side is a free Lévy process (in law) (contrary to the
situation in the classical Lévy-Itd decomposition).

Proof of Theorem 6.26. By Proposition 5.15, we may choose a classical
Lévy process (X;), defined on some probability space (£2,F, P), such that
A(L{X:}) = L{Z;} for all ¢ in [0, 00[. Then v is the Lévy measure for L{X;},
so by the classical Lévy-Itd Theorem (cf. Theorem 2.9), (X;) has a represen-
tation in the form:

X¢ = At + VaB; + / eN(du,dz),  (t=0),
10,t] xR

where (B;) is a (classical) Brownian motion on (2, F, P), N is a (classical)
Poisson random measure on (H, B(H), Leb®v), defined on (£2, F, P) and (By)
and N are independent. Put

Y, = / x N(du,dz), (t>0).
10,t] xR

Now choose a free Brownian motion (W;) in some W *-probability space
(AL, 71), and recall that L{W;} = A(L{B;}) for all t. Choose, further, a
free Poisson random measure M on (H,B(H),Leb ® v) with values in some
W *-probability space (A%, 72). Next, let (A%, 7%) be the (reduced) free prod-
uct of the two W*-probability spaces (A!,71) and (A2, 72) (cf. [VoDyNi92,
Definition 1.6.1]). We may then consider A' and A% as two freely independent
unital W*-subalgebras of A%, such that TEAl =7!and 7&2 = 72, In particular,
(Wy) and M are freely independent in (A%, 79).

Since f[71,1] |z| v(da) < oo, it follows from Lemma 6.25(ii) that for any ¢
in ]0, oo, the integral U, = f]O,t]xR x M (du, dx) is well-defined, and L{U;} =
A(L{Y:}). Furthermore, it follows immediately from Definition 6.16, Propo-
sition 6.18 and Lemma 6.25 that for any ¢ in [0,¢[, U; = flo’HxRxM(du,dx)
is in the closure of A? with respect to the measure topology. As noted in
Remark 4.8, the set A2 of closed, densely defined operators affiliated with A2
is complete (and hence closed) in the measure topology, and therefore U, is
affiliated with A2 for all ¢. This implies, in particular, that the two processes
(Wy) and (U,) are freely independent.

Now, for any ¢ in ]0, co[, we have
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L{ytl g0 + VaW, + Uy} = 6., B D s L{W,} B L{U;}
= A(6y) B D ZAL{B;}) B A(L{Y;})
= A(64¢ * D g L{ By} * L{Y;})
= A(L{yt+VaB, + ;})
= A(L{X:})
= L{Z},

and this proves (6.19). We prove next that the process (U) is a free Lévy
process (in law). For this, recall that (Y;) is a (classical) Lévy process defined
on (2, F,P) (cf. [Sa99, Theorem 19.3]), and such that L{U;} = A(L{Y;}) for
all ¢. Since (Y;) has stationary increments, we find for any s, ¢ in [0, oo that

L{Ussy — U} = L{ /] s+t]XRxM(du7dfc)} = A(L{ /] S+t]XRxN(du,dx)}>

= AL{Ys4t — Ys}) = A(L{Y:}) = L{U},

where we have used Lemma 6.25(ii). Thus, (U;) has stationary increments
too. Furthermore, by continuity of A,

L{UY = A(L{Y;}) =5 A(60) = 6y, ast\,0,

so that (U;) is stochastically continuous. Finally, to prove that (Uy;) has freely
independent increments, consider r in N and ¢g, ¢y, ..., ¢, in [0, 00, such that
0=ty <ty <---<t,. Thenforany jin {1,2,...,7} we have (cf. Lemma 6.25)
that

Uy, —Ut,_, :/ x M(du,dz) = lim x M (du, dx),
' ' Itj—1,t;]xR

]tj*ht]'] X[=n,n]

where the limit is taken in probability. Since
/ |z| Leb ® v(du, dz) < oo
Itj—1,t;]x[=n,n]

for any n in N and any j in {1,2,...,7}, it follows from Proposition 6.22 that
for any n in N, the integrals

/ x M(du, dz), ji=1,2,...,r,
Itj—1,t5]x[=n,n]

are freely independent operators. Hence, by Proposition 4.7, the increments
Uy, Uy = Uy, U, — Uy,

are also freely independent.
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Tt remains to note that the right hand side of (6.19) is a free Lévy process
(in law). This follows immediately from the fact that the sum of two freely
independent free Lévy processes (in law) is again a free Lévy process (in law).
Indeed, the stochastic continuity condition follows from the fact that addition
is a continuous operation in the measure topology, and the remaining con-
ditions are immediate consequences of basic properties of free independence.
This concludes the proof. 0

Theorem 6.27 (Free Lévy-Ito Decomposition II). Let (Z;) be a free
Lévy process (in law) affiliated with a W*-probability space (A, T) and let v be
the Lévy measure appearing in the free characteristic triplet for L{Z,}. Then
(Zt) has a representation in the form:

Zy Lt g0 + VaWe + Vi, (£ >0), (6.20)
where

neR, a>0 and (Wy) is a free Brownian motion in a W*-probability space
(A%, 7°).
(Vi) is a free Lévy process (in law) given by

V; := lim [/ x M(du,dx)—(/ x Leb®v(du, dgp))le}7
N0 L 10,81 D(e,00) 10,4]x D(e,1)

where M is a free Poisson random measure on (H,B(H),Leb ® v) with
values in (A°,7°), and the limit is taken in probability.
(Wy) and (V3) are freely independent processes.

Furthermore, the right hand side of (6.20), as a whole, is a free Lévy
process (in law).

Proof. The proof proceeds along the same lines as that of Theorem 6.26, and
we shall not repeat all the arguments. Let (X;) be a classical Lévy process
defined on a probability space (§2, F, P) such that L{Z;} = A(L{X,}) for all
t. In particular, the Lévy measure for L{X;} is v. Hence, by Theorem 2.9(ii),
(X¢) has a representation in the form

X, 2 nt 4+ VaB; + Yy, (t >0),
where
ne€R, a>0and (B) is a (classical) Brownian motion on ({2, F, P).

(Y;) is a classical Lévy process given by

Y, := lim {/ 2 N(du,dz) 7/ 2 Leb @ v(du, dz)]
NO L JJ0,]x D(e,00) 10,t]x D(e,1)

where N is a (classical) Poisson random measure on (H,B(H),Leb ® v),
defined on (£2, F, P), and the limit is almost surely.
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(B;) and (Y}) are independent processes.

For all €, in ]0, co[, we put:

Yo = / x N(du,dx) — / x Leb ® v(du, dx),
10,8 x D(e,50) 10,6} D(e,1)

so that Y; = lime\ o Y, almost surely, for each ¢.

As in the proof of Theorem 6.26 above, we choose, next, a W*-probability
space (A%, 79), which contains a free Brownian motion (W;) and a free Poisson
random measure M on (H,B(H),Leb ® v), which generate freely independent
W*-subalgebras. For any € in |0, co[, we put (cf. Lemma 6.25(i)),

Ver = / x M(du,dx) — (/ 2 Leb @ v(du, dx))le.
10,6] x D(e,00) 10,] x D(e,1)

Then for any ¢ in ]0,00[ and any €1, € in |0, 1], such that €, > €2, we have
that

Vest—=Ver 1 = / x M(du,dx)—(/ mLeb@u(du,dx))le.
]O,t]XD(CQ,Gl) ]O,t]XD(CQ,Cl)

Making the same calculation for Y, ; — Y, ; and taking Corollary 6.20 into
account, it follows that L{Ve, ; — Vi, 1} = A(L{Ye,+ — Ye, +}). Hence, by con-
tinuity of A and completeness of the measure topology, we may conclude that
the limit V; := lim.\ o Ve exists in probability, and that L{V;} = A(L{Y};}).
Moreover, as in the proof of Theorem 6.26, it follows that (W;) and (V) are
freely independent processes.

Now for any ¢ in |0, o[, we have:

L{ntl go +/aW, + Vi } = 6,0 B D zL{W,} B L{V;}
= A(8y * D g L{B} * L{Y;}) = A(L{X,}) = L{Z,}.

It remains to prove that (V}) is a free Lévy process (in law). For this, note
first that whenever s,¢ > 0, we have (cf. Lemma 6.25(1)),

Ve = Vs

= hH[l) (V:-:,ert - ‘/;,s)

e

= lim [/ x M(du,dx)—(/ 2 Leb @ v(du, d:r:))le]
eNo ]s,8+t]x D(e,00) ]s,s+t]xD(e,1)

Making the same calculation for Y — Y;, and taking Lemma 6.25(i) as well
as the continuity of A into account, it follows that

L{Vsit = Vs} = A(L{Ys4e — Ys}) = A(L{Y3}) = L{V4},
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so that (V;) has stationary increments. The stochastic continuity of (V}) fol-
lows exactly as in the proof of Theorem 6.26. To see, finally, that (V) has
freely independent increments, assume that 0 = t) < t; <ty < --- < t,, and
consider ¢ in |0, 00[. Then for any j in {1,2,...,r},

Vet; = Ver,—, = lim [/ x M(du,dx)
]tj*htj]XD(Evn)

n—oo

- (/]tj_l,tj}xD(eJ) wLeb® v(du, dx))le} :

Hence, by Proposition 6.22 and Proposition 4.7, the increments V., -
Vet;oos J = 1,2,...,7 are freely independent, for any fixed positive e. Yet
another application of Proposition 4.7 then yields that the increments

WJ‘ _WJ‘71 :il\‘Ir(]j (‘/E,t]‘ _‘/E,tj71)7 (.7: 1727"'7r)7

are freely independent too. 0O

Remark 6.28. Let (Z;) be a free Lévy process in law, such that L{Z; } has Lévy
measure v. If 1[7171] |z| v(dx) < oo, then Theorems 6.26 and 6.27 provide two
different “Lévy-Itd decompositions” of (Z;). The relationship between the two
representations, however, is simply that

77=’y+/ xv(dz) and VtzUt—t(/ xu(dx))le, (t>0).
[—1,1] [—1,1]

Remark 6.29. The proof of the general free Lévy-Itd decomposition, Theo-
rem 6.27, also provides a proof of the general existence of free Lévy processes
(in law). Indeed, the conclusion of the proof of Theorem 6.27 might also be
formulated in the following way: For any classical Lévy process (X;), there ex-
ists a W*-probability space (AY, 7°) containing a free Brownian motion (W)
and a free Poisson random measure M on (H,B(H), Leb ® v), which are freely
independent, and such that

A(L{X:}) =
L{ntlAO + \/&Wt‘i'
lim {/ x M(du,dx) — (/ xLeb® V(du,dx))le} },
eNO L J10,4]x D(e,00) 10,8]x D(e,1)
(6.21)
for suitable constants 7 in R and «a in ]0, oo[. In addition, the process appearing

in the right hand side of (6.21) is a free Lévy process (in law) affiliated with
(A%, 70).
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Assume now that (14);>0 is a family of distributions in ZD(H), satisfying
the two conditions

vy = v, Br_g, (0<s<t),

and

v~ 8, ast\,0.
Then put p; = A~1(v4) for all ¢, and note that the family (u;) satisfies the
corresponding conditions:

it = s ¥ fht—s, (0<s <),

and
Ht = 505 ast \ Oa

by the properties of A~!. Hence, by the well-known existence result for clas-
sical Lévy processes, there exists a classical Lévy process (X;), such that
L{X;} = p; and hence A(L{X;}) = v for all t. Therefore, the right hand side
of (6.21) is a free Lévy process (in law), (Z;), such that L{Z,} = v, for all .

The above argument for the existence of free Lévy processes (in law) is,
of course, based on the existence of free Poisson random measures proved in
Theorem 6.9. The existence of free Lévy processes (in law) can also, as noted
in [Bi98] and [V098], be proved directly by a construction similar to that given
in the proof of Theorem 6.9. The latter approach, however, is somewhat more
complicated than the construction given in the proof of Theorem 6.9, since,
in the general case, one has to deal with unbounded operators throughout the
construction, whereas free Poisson random measures only involve bounded
operators.

A Unbounded Operators Affiliated
with a W*-Probability Space

In this appendix we give a brief account on the theory of closed, densely
defined operators affiliated with a finite von Neumann algebra'’. We start
by introducing von Neumann algebras. For a detailed introduction to von
Neumann algebras, we refer to [[<aRi83], but also the paper [Ne74], referred to
below, has a nice short introduction to that subject. For background material
on unbounded operators, see [Ru91].

Let H be a Hilbert space, and consider the vector space B(H) of bounded
(or continuous) linear mappings (or operators) a: H — H. Recall that compo-
sition of operators constitutes a multiplication on B(H), and that the adjoint
operation a — a* is an involution on B(H) (i.e. (a*)* = a). Altogether B(H)
is a *-algebra'l. For any subset S of B(H), we denote by S’ the commutant

19Ty make the appendix appear in self-contained form, some of the definitions
that already appeared in Section 4.1 will be repeated below.

HThroughout this appendix, the * refers to the adjoint operation and not to
classical convolution.
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of S, i.e.
S ={be B(H) | by = yb for all y in S}.

A von Neumann algebra acting on H is a subalgebra of B(H), which contains
the multiplicative unit 1 of B(H), and which is closed under the adjoint opera-
tion and closed in the weak operator topology (see [[XaRi83, Definition 5.1.1]).
By von Neumann’s fundamental double commutant theorem, a von Neumann
algebra may also be characterized as a subset A of B(H), which is closed under
the adjoint operation and equals the commutant of its commutant: A" = A.

A trace (or tracial state) on a von Neumann algebra A is a positive linear
functional 7: A — C, satistying that 7(1) = 1 and that 7(ab) = 7(ba) for all
a,bin A. We say that 7 is a normal trace on A, if, in addition, 7 is continuous
on the unit ball of A w.r.t. the weak operator topology. We say that 7 is
faithful, if 7(a*a) > 0 for any non-zero operator a in A.

We shall use the terminology W*-probability space for a pair (A, 1), where
A is a von Neumann algebra acting on a Hilbert space H, and 7: A — C is
a faithful, normal tracial state on A. In the remaining part of this appendix,
(A, ) denotes a W*-probability space acting on the Hilbert space H.

By a linear operator in H, we shall mean a (not necessarily bounded) linear
operator a: D(a) — H, defined on a subspace D(a) of H. For an operator a
in H, we say that

a is densely defined, if D(a) is dense in H,

a is closed, if the graph G(a) = {(h,ah) | h € D(a)} of a is a closed subspace
of H®H, o

a is preclosed, if the norm closure G(a) is the graph of a (uniquely determined)
operator, denoted [a], in H,

a is affiliated with A, if au = ua for any unitary operator u in the commutant

A

For a densely defined operator a in H, the adjoint operator a* has domain

D(a*) = {n € 1 | sup{|(ag, )] | ¢ € D(a), [l < 1} < oo},
and is given by

(a&,m) = (§,a™n), (£ € D(a), n € D(a”)).

We say that a is selfadjoint if a = a* (in particular this requires that D(a*) =
D(a)).

If a is bounded, a is affiliated with A if and only if a € A. In general, a
selfadjoint operator a in H is affiliated with A, if and only if f(a) € A for any
bounded Borel function f: R — C (here f(a) is defined in terms of spectral
theory). As in the bounded case, if a is a selfadjoint operator affiliated with
A, there exists a unique probability measure p, on R, concentrated on the
spectrum sp(a), and satisfying that
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[ 160) matat) = (1),
R

for any bounded Borel function f: R — C. We call u, the (spectral) distrib-
ution of a, and we shall denote it also by L{a}. Unless a is bounded, sp(a) is
an unbounded subset of R and, in general, p, is not compactly supported.

By A we denote the set of closed, densely defined operators in , which are
affiliated with A. In general, dealing with unbounded operators is somewhat
unpleasant, compared to the bounded case, since one needs constantly to take
the domains into account. However, the following two important propositions
allow us to deal with operators in A in a quite relaxed manner.

Proposition A.1 (cf. [Ne74]). Let (A, 7) be a W*-probability space. If a,b €
A, then a+b and ab are densely defined, preclosed operators affiliated with A,
and their closures [a 4+ b] and [ab] belong to A. Furthermore, a* € A.

By virtue of the proposition above, the adjoint operation may be restricted
to an involution omiA7 and we may define operations, the strong sum and the
strong product, on A, as follows:

(a,b) — [a+0b], and (a,b)+ [ab], (a,b€ A).

Proposition A.2 (cf. [Ne74]). Let(A, 7) be aW*-probability space. Equipped
with the adjoint operation and the strong sum and product, A is a *-algebra.

The effect of the above proposition is, that w.r.t. the adjoint operation and
the strong sum and product, we can manipulate with operators in A, without
worrying about domains etc. So, for example, we have rules like

[la +0b]c] = [lac] + [b]],  [a+b]" =[a” +b7],  [ab]" = [b"a”],

for operators a,b,c in A. Note, in particular, that the strong sum of two
selfadjoint operators in A is again a selfadjoint operator. In the following, we
shall omit the brackets in the notation for the strong sum and product, and it
will be understood that all sums and products are formed in the strong sense.

Remark A.3.If ay,as ..., a, are selfadjoint operators in A, we say that they
are freely independent if, for any bounded Borel functions f1, fo,..., fr: R —
R, the bounded operators fi(a1), f2(az),..., fr(a,) in A are freely indepen-
dent in the sense of Section 4. Given any two probability measures p; and po
on R, it follows from a free product construction (see [VoDyNi92]), that one
can always find a WW*-probability space (A, 7) and selfadjoint operators a and
b affiliated with A, such that p; = L{a} and ps = L{b}. As noted above, for
such operators a + b is again a selfadjoint operator in A, and, as was proved
in [BeVo93, Theorem 4.6], the (spectral) distribution L{a + b} depends only
on pp and po. We may thus define the free additive convolution pq B po of g
and ps to be L{a + b}.
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Next, we shall equip A with a topology; the so called measure topology,
which was introduced by Segal in [Se53] and later studied by Nelson in [Ne74].
For any positive numbers ¢, §, we denote by N(e,d) the set of operators a in

A, for which there exists an orthogonal projection p in A, satisfying that
p(H) € D(a), |lap|<e and 7(p)=1-34. (A1)

Definition A.4. Let (A, T) be a W* -probability space. The measure topology
on A is the vector space topology on A for which the sets N(e,d), €,6 > 0,
form a neighbourhood basis for 0.

Tt is clear from the definition of the sets N (e, §) that the measure topology
satisfies the first axiom of countability. In particular, all convergence state-
ments can be expressed in terms of sequences rather than nets.

Proposition A.5 (cf. [Ne74]). Let (A,7) be a W*-probability space and
consider the x-algebra A. We then have

(i) Scalar-multiplication, the adjoint operation and strong sum and product
are all continuous operations w.r.t. the measure topology. Thus, A is a
topological *-algebra w.r.t. the measure topology.

(ii) The measure topology on A is a complete Hausdorff topology.

We shall note, next, that the measure topology on A is, in fact, the topol-
ogy for convergence in probability. Recall first, that for a closed, densely de-
fined operator a in H, we put |a| = (a*a)'/?. In particular, if a € A, then
la| is a selfadjoint operator in A (see [KaRi83, Theorem 6.1.11]), and we may
consider the probability measure L{|a|} on R.

Definition A.6. Let (A, T) be a W*-probability space and let a and a,,, n € N,
be operators in A. We say then that a,, — a in probability, as n — oo, if
|an, — a| — 0 in distribution, i.e. if L{|a, — a|} — &g weakly.

If a and a,, n € N, are selfadjoint operators in A, then, as noted above,
an — a is selfadjoint for each n, and L{|a, — a|} is the transformation of
L{a,, — a} by the mapping t — |t|, t € R. In this case, it follows thus that
a, — a in probability, if and only if a,, —a — 0 in distribution, i.e. if and only
if L{a,, —a} — 0y weakly.

From the definition of L{|a, — a|}, it follows immediately that we have
the following characterization of convergence in probability:

Lemma A.7. Let (A,7) be a W*-probability space and let a and an, n € N,
be operators in A. Then a,, — a in probability, if and only if

Ve > 0: 7[1je cof(lan —al)] =0, asn — occ.
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Proposition A.8 (cf. [Te&81]). Let (A,7) be a W*-probability space. Then
for any positive numbers €,6, we have

N(e,6) = {a € A| 7[1i(la)] <5}, (A2)

where N (¢,0) is defined via (A.1). In particular, a sequence a,, in A converges,
in the measure topology, to an operator a in A, if and only if a, — a in
probability.

Proof. The last statement of the proposition follows immediately from formula
(A.2) and Lemma A.7. To prove (A.2), note first that by considering the polar
decomposition of an operator a in A (cf. [KaRi83, Theorem 6.1.11]), it follows
that N(e,6) = {a € A | |a| € N(¢,6)}. From this, the inclusion D in (A.2)
follows easily. Regarding the reverse inclusion, suppose a € N (e, ¢), and let p
be a projection in A, such that (A.1) is satisfied with a replaced by |a|. Then,
using spectral theory, it can be shown that the ranges of the projections p and
Lie,00((|al) only have 0 in common. This implies that 7[1j. o((|a])] < 7(1—p) <
0. We refer to [Te81] for further details. O

Finally, we shall need the fact that convergence in probability implies
convergence in distribution, also in the non-commutative setting. The key
point in the proof given below is that weak convergence can be expressed in
terms of the Cauchy transform (cf. [Ma92, Theorem 2.5]).

Proposition A.9. Let (a,,) be a sequence of selfadjoint operators affiliated
with a W*-probability space (A,T), and assume that a,, converges in probabil-
ity, as n — oo, to a selfadjoint operator a affiliated with (A, 7). Then a, — a
in distribution too, i.e. L{a,} ~ L{a}, as n — co.

Proof. Let z,y be real numbers such that y > 0, and put z = = + iy. Then
define the function f,: R — C by

1 1

fZ(t):t—Z:(t—l')—iy’ (tER),

and note that f, is continuous and bounded with sup,cp | f.(¢)| = y~*. Thus,
we may consider the bounded operators f.(a,), f.(a) € A. Note then that
(using strong products and sums),

fz(an) - fz(a) = (an - Zl)il - (a - 21)71
= (an —21) 7" ((a = 21) = (an — 21))(a — 21)! (A.3)
= (an, — zl)_l(a —ap)(a— zl)_l.
Now, given any positive numbers ¢, §, we may choose N in N, such that a, —
a € N(e,6), whenever n > N. Moreover, since ||f,(a,)|,||f:(a)|| < y~!, we

have that f.(a,), f.(a) € N(y~1,0). Using then the rule: N(e1,81)N (e2,d2) C
N(ej€e2,01 + 62), which holds for all €1,€e5 in |0, 00[ and 47, d2 in [0, 00[ (see
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[Ne74, Formula 177), it follows from (A.3) that f,(a,) — f.(a) € N(ey=2,6),
whenever n > N. We may thus conclude that f,(a,) — f.(a) in the measure
topology, i.e. that L{|f.(a,) — f.(a)|} ~ Jo, as n — oo. Using now the
Cauchy-Schwarz inequality for 7, it follows that

[7(f2(@n) = @) < 7(1fo(an) = (@) - 70)
= [T L1860 — F@)l}an — 0,

0

as n — oo, since supp(L{|f.(a,) — f.(a)|}) € [0,2y~}] for all n, and since
t — t? is a continuous bounded function on [0, 2y~!].

Finally, let G,, and G denote the Cauchy transforms for L{a,} and L{a}
respectively. From what we have established above, it follows then that

Gn('z) = _T(fz(an)) - _T(fz(a)) = G(Z), as n — oo,

for any complex number z = x + iy for which y > 0. By [Ma92, Theorem 2.5],
this means that L{a,} — L{a}, as desired. O
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Introduction

Lévy processes play a fundamental role in probability theory and have many
important applications in other areas such as statistics, financial mathematics,
functional analysis or mathematical physics, as well, see [App05, BNT05] and
the references given there.

In quantum probability they first appeared in a model for the laser in
[Wal73, Walg4]. Their algebraic framework was formulated in [ASW88]. This
lead to the theory of Lévy processes on involutive bialgebras, cf. [ASWES,
Sch93, FS99]. These processes are a generalization of both classical stochas-
tic processes with independent and stationary increments, i.e. classical Lévy
processes, and factorizable current representations of groups and Lie algebras.
The increments of these Lévy processes are independent in the sense of tensor
independence, which is a straightforward generalization of the notion of inde-
pendence used in classical probability theory. However, in quantum probability
there exist also other notions of independence like, e.g., freeness [VDN92], see
also Section 3. In order to formulate a general theory of Lévy processes for all
“nice” independences, *-bialgebras or quantum groups have to be replaced by
the dual groups introduced in [Voi&7], see [Sch95b, BGS99, Fra0l, Fra03b].

Quantum Lévy processes play an important role in the theory of contin-
uous measurement, cf. [Hol01], and in the theory of dilations, where they
describe the evolution of a big system or heat bath, which is coupled to the
small system whose evolution one wants to describe.

This chapter is organized as follows.

In the first two sections we review the theory of Lévy processes on invo-
lutive bialgebras. In the remaining two sections we discuss the notion of in-
dependence in quantum probability and study Lévy processes on dual groups
with respect to the five universal independences.

In Section 1, we present the basic theory of Lévy processes on involutive
bialgebras. This is the class of quantum Lévy processes that was studied first
and where the theory has been developed most. We introduce Schiirmann
triples and state Schiirmann’s representation theorem that says that every
Lévy process on an involutive bialgebra can be realized as the solution of
a quantum stochastic differential equation on a Boson Fock space. The co-
efficients of the quantum stochastic differential equation are given by the
Schiirmann triples of the Lévy process. We furthermore present the recent
result by Franz, Schiirmann, and Skeide that the vacuum vector is cyclic for
the realisation of a Lévy processes obtained by Schiirmann’s representation
theorem.
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In Section 2, we study Lévy processes on the non-commutative analogue of
the coefficient algebra of the unitary group U(d) and classify their generators
and Schiirmann triples. These Lévy processes play an important role in the
construction of dilations of quantum dynamical semigroups on the matrix
algebra M.

In Section 3, we introduce the notion of a universal independence and
recall their classification by Muraki. We show that this notion has a natural
formulation in the language of category theory. We also study a notion of
reduction of one independence to another that generalizes the bosonisation of
Fermi independence. It turns out that three of the five universal independences
can be reduced to tensor independence.

Finally, in Section 4, we study Lévy process on dual groups for all five
universal independences. We show that in four of the five cases they can be
reduced to Lévy process on involutive bialgebras and use the theory devel-
opped in Section 1 to construct them and to study their properties. It is still
open, if a similar construction is possible for Lévy processes on dual groups
with free increments.

1 Lévy Processes on Quantum Groups

In this section we will give the definition of Lévy processes on involutive
bialgebras, cf. Subsection 1.1, and develop their general theory.

In Subsection 1.2 we will begin to develop their basic theory. We will see
that the marginal distributions of a Lévy process form a convolution semi-
group of states and that we can associate a generator with a Lévy process
on an involutive bialgebra, that characterizes uniquely its distribution, like
in classical probability. By a GNS-type construction we can get a so-called
Schiirmann triple from the generator.

This Schiirmann triple can be used to obtain a realization of the process
on a symmetric Fock space, see Subsection 1.3. This realization can be found
as the (unique) solution of a quantum stochastic differential equation. It es-
tablishes the one-to-one correspondence between Lévy processes, convolution
semigroups of states, generators, and Schiirmann triples. We will not present
the proof of the representation theorem here, but refer to [Sch93, Chapter 2].

In Subsection 1.4, we present a recent unpublished result by Franz,
Schiirmann, and Skeide. If the cocycle of the Schiirmann triple is surjective,
then the vacuum vector is cyclic for the Lévy process constructed on the
symmetric Fock space via the representation theorem.

Finally, in Subsection 1.5, we look at several examples.

For more information on Lévy processes on involutive bialgebras, see also
[Sch93][Mey95, Chapter VII|[FS99].
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1.1 Definition of Lévy Processes on Involutive Bialgebras

A quantum probability space in the purely algebraic sense is a pair (A, ®)
consisting of a unital x-algebra A and a state (i.e. a normalized positive linear
functional) @ on A. Positivity in this purely algebraic context simply means
$(a*a) > 0 for all a € A. A quantum random variable j over a quantum
probability space (A, @) on a x-algebra B is simply a *-algebra homomorphism
j: B — A. A quantum stochastic process is an indexed family of random
variables (j;)ier. For a quantum random variable j : B — A we will call ¢; =
@ o j its distribution in the state @. For a quantum stochastic process (ji)ier
the functionals ¢, = @ o0 j; : B — C are called marginal distributions. The
joint distribution @ o (Hte I jt) of a quantum stochastic process is a functional
on the free product [[,.; B, see Section 3.
Two quantum stochastic processes (jt(l) :BHA1> and <j,f2) :B— Ag)

tel tel
on B over (A1, P1) and (As,Ps) are called equivalent, if there joint distrib-

utions coincide. This is the case, if and only if all their moments agree, i.e.

if
@1 (310 (1) 380 0n)) = @2 (52 (01) -+ 52 (b))

holds for all n € N, ty,...,t, € [ and all by,...,b, € B.

The term ‘quantum stochastic process’ is sometimes also used for an in-
dexed family (X;);c; of operators on a Hilbert space or more generally of
elements of a quantum probability space. We will reserve the name operator
process for this. An operator process (X;);er C A (where A is a x-algebra of
operators) always defines a quantum stochastic process (j; : C{a,a*) — A),¢;
on the free #-algebra with one generator, if we set j;(a) = X; and extend j;
as a x-algebra homomorphism. On the other hand operator processes can be
obtained from quantum stochastic processes (j; : B — A)ier by choosing an
element x of the algebra B and setting X; = j;(x).

The notion of independence we use for Lévy processes on involutive bial-
gebras is the so-called tensor or boson independence. In Section 3 we will see
that other interesting notions of independence exist.

Definition 1.1. Let (A, ®) be a quantum probability space and B a x-algebra.
The quantum random variables ji,...,7J, : B — A are called tensor or Bose
independent (w.r.t. the state @), if

(Z) @(]1(1)1) e jn(bn)) = @(]1(()1)) cee @(jn(bn)) fO?” all b1, ey b, € B, and
(7)[71(b1), ji (b2)] = 0 for all k # 1 and all by,bs € B.

Recall that an involutive bialgebra (B, A,€) is a unital x-algebra B with
two unital x-homomorphisms A : B — B® B, € : B — C called coproduct or
comultiplication and counit, satisfying

(id®A)oA=(A®id)o A (coassociativity)
(dee)oA=id=(¢®id) o A (counit property).
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Let j1,j2 : B — A be two linear maps with values in some algebra A, then we
define their convolution j; x jo by

jl*j2:on(j1®j2)oA.

Here my : A® A — A denotes the multiplication of A, m(a ® b) = ab for
a,b e A.

Using Sweedler’s notation A(b) = b1y @ b(zy, this becomes (ji * j2)(b) =
J1(b(1)j2(b(2)). If j1 and jo are two independent quantum random variables,
then j; x j2 is again a quantum random variable, i.e. a *-homomorphism. The
fact that we can compose quantum random variables allows us to define Lévy
process, i.e. processes with independent and stationary increments.

Definition 1.2. Let B be an involutive bialgebra. A quantum stochastic process
(Jst)o<s<t on B over some quantum probability space (A, P) is called a Lévy
process, if the following four conditions are satisfied.

1. (Increment property) We have

Jrs * Jst = Jrt f07“ all0 <r<s<t,
e =l for all 0 < ¢,

i.e. ju(b) = €(b)1 for all b € B, where 1 denotes the unit of A.

2. (Independence of increments) The family (jsi)o<s<t s independent, i.e.
the quantum random variables jg, +,,. .., Js,t, are independent for alln €
Noand all 0 < 51 <t; <89 < -+ <tp.

3. (Stationarity of increments) The distribution @s = @ o js of jst depends
only on the difference t — s.

4. (Weak continuity) The quantum random variables js converge to jss in
distribution for t \ s.

Exercise 1.3. Recall that an (involutive) Hopf algebra (B, A,e,S) is an (in-
volutive) bialgebra (B, A,e) equipped with a linear map called antipode
S : B — B satisfying

Sxid=1oe=1id«S. (1.1)

The antipode is unique, if it exists. Furthermore, it is an algebra and coalgebra
anti-homomorphism, i.e. it satisfies S(ab) = S(b)S(a) for all a,b € B and
(S®S)oA=70A0S, where 7: B&B — B® B is the flip T(a®b) = b® a.
If (B, A,¢) is an involutive bialgebra and S : B — B a linear map satisfying
(1.1), then S satisfies also the relation

SoxoSox=id.

In particular, it follows that the antipode S of an involutive Hopf algebra is
invertible. This is not true for Hopf algebras in general.

Show that if (k;);>0 is any quantum stochastic process on an involutive
Hopf algebra, then the quantum stochastic process defined by
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jst =mao ((ksoS)®k)oA,

for 0 < s < t, satisfies the increment property (1) in Definition 1.2. A one-
parameter stochastic process (k¢);>o on a Hopf -algebra H is called a Léuvy
process on H, if its increment process (js¢)o<s<¢ With js = (k:s 0S)®ki)o A
is a Lévy process on H in the sense of Definition 1.2.

Let (jst)o<s<t be a Lévy process on some involutive bialgebra. We will
denote the marginal distributions of (js:)o<s<t by @i—s = P 0 joi. Due to the
stationarity of the increments this is well defined.

Lemma 1.4. The marginal distributions (¢;)i>0 of a Lévy process on an in-
volutive bialgebra B form a convolution semigroup of states on B, i.e. they
satisfy

1. =€, s x @t = Qsyy for all s,t > 0, and limy o i (b) = €(b) for all
be B, and
2. 01(1) =1, and o (b*b) > 0 for all t > 0 and all b € B.

Proof. w; = @ o jo; is clearly a state, since jo; is a *-homomorphism and @ a
state.
From the first condition in Definition 1.2 we get

po =P o joo =P(1)e =¢,

and

L)05+75<b) = ¢(j0,s+t(b)) =9 (Z jOs(b(l))js,ert(b(Z))) 5

for b € B, A(b) = b(1) ®b(a). Using the independence of increments, we can
factorize this and get

Sﬁert(b) = Z@(j()s(b(l)))@(js,ert(b(Q))) - Z@s(b(n)ﬁpt(b@))
= e ® @i (AWB) = g (D)

for all € B.
The continuity is an immediate consequence of the last condition in Defi-
nition 1.2. 0

Lemma 1.5. The convolution semigroup of states characterizes a Lévy process
on an involutive bialgebra up to equivalence.

Proof. This follows from the fact that the increment property and the in-
dependence of increments allow to express all joint moments in terms of
the marginals. E.g., for 0 < s < ¢t < v < v and a,b,c € B, the moment
D (jsu(a)js(b)jso(c)) becomes
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D (jsu(@)jst(b)jsu(c)) = P((Jat * jru)(@)jse (D) (st * Jeu * Juv)(c))
= D(jar(ag))deulaca)) st (b)jse (cr))drulc(2)) juv(cs)))
= D (jst(aqybe))dru(a@)c2))jun(Cs)))
= pr—s(a@)beq))Pu-t(a()Ce)) po—ulces))-

0

It is possible to reconstruct process (jst)o<s<¢ from its convolution semigroup,
see [5¢h93, Section 1.9] or [F599, Section 4.5]. Therefore, we even have a one-
to-one correspondence between equivalence classes of Lévy processes on B and
convolution semigroups of states on 5.

1.2 The Generator and the Schiirmann Triple of a Lévy Process

In this subsection we will meet two more objects that classify Lévy processes,
namely their generator and their triple (called Schiirmann triple by P.-A.
Meyer, see [Mey95, Section VII.1.6]).

We begin with a technical lemma.

Lemma 1.6. (a) Let ¢ : C — C be a linear functional on some coalgebra C.
Then the series

exp. 0(0) 2 30 T 0) = 0) + 00) + g 0) +

converges for all b € C.
(b) Let (p1)i>0 be a convolution semigroup on some coalgebra C. Then the
limit 1

L(v) = lim 5 (¢1(8) — ()

exists for all b € C. Furthermore we have ¢, = exp, tL for allt > 0.

The proof of this lemma relies on the fundamental theorem of coalgebras,
see [ASWSS, Sch93].

Proposition 1.7. (Schoenberg correspondence) Let B be an involutive
bialgebra, (¢1)i>0 a convolution semigroup of linear functionals on B and

1
L= l{n (¢r —€).
Then the following are equivalent.

(i) (¢1)e>0 s a convolution semigroup of states.
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(ii) L : B — C satisfies L(1) = 0, and it is hermitian and conditionally
positive, i.e.
L(b*) = L(b)

for all b € B, and
L(b*b) >0

for all b € B with e(b) = 0.

Proof. We prove only the (easy) direction (i)=-(ii), the converse will follow
from the representation theorem 1.15, whose proof can be found in [Sch93,
Chapter 2].

The first property follows by differentiating ¢;(1) = 1 w.r.t. t.

Let b € B, ¢(b) = 0. If all ¢, are states, then we have ¢;(b*b) > 0 for all
t > 0 and therefore

" o1 * * . o(b*D)
= - - = = 2 >0
L(b™D) }{% ; (¢u(b*b) — e(b*D)) }{1(1) r 0

Similarly, L is hermitian, since all ¢; are hermitian. 0O

We will call a linear functional satisfying condition (ii) of the preced-
ing Proposition a generator. Lemma 1.6 and Proposition 1.7 show that Lévy
processes can also be characterized by their generator L = %‘ o Pt-

Let D be a pre-Hilbert space. Then we denote by £(D) the set of all linear
operators on D that have an adjoint defined everywhere on D, i.e.

L(D) = {X : D — D linear there exists X* : D — D linear s.t. } .

(u, Xv) = (X*u,v) for all u,v € D
L(D) is clearly a unital x-algebra.

Definition 1.8. Let B be a unital *-algebra_equipped with a unital hermitian
character € : B — C (i.e. £(1) = 1, (b*) = &(b), and e(ab) = (a)e(b) for all
a,b € B). A Schiirmann triple on (B,¢) is a triple (p,n, L) consisting of

e a unital x-representation p : B — L(D) of B on some pre-Hilbert space D,
e qa p-e-1-cocycle n: B — D, i.e. a linear map n : B — D such that

n(ab) = p(a)n(b) + nla)e(b) (1.2)

for all a,b € B, and
e a hermitian linear functional L : B — C that has the bilinear map B x B >
(a,b) — —(n(a*),n(b)) as a e-e-2-coboundary, i.e. that satisfies

— (n(a®),n(b)) = 0L(a,b) = e(a) L(b) — L(ab) + L(a)e(b) (1.3)

for all a,b € B.
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We will call a Schiirmann triple surjective, if the cocycle n : B — D is surjec-
tive.

Theorem 1.9. Let B be an involutive bialgebra. We have one-to-one corre-
spondences between Lévy processes on B (modulo equivalence), convolution
semigroups of states on B, generators on B, and surjective Schiirmann triples
on B (modulo unitary equivalence).

Proof. Tt only remains to establish the one-to-one correspondence between
generators and Schiirmann triples.

Let (p,n, L) be a Schiirmann triple, then we can show that L is a generator,
i.e. a hermitian, conditionally positive linear functional with L(1) = 0.

The cocycle has to vanish on the unit element 1, since

n(1) =n(1-1) =p(1)n(1) +n(1)e(1) = 2n(1).
This implies

L(1)=L(A-1)=¢e(1)L(1) + (n(1),n(1)) + L(1)e(1) = 2L(1) = 0.
Furthermore, L is hermitian by definition and conditionally positive, since by
(1.3) we get

L(b*b) = (n(b),n(b)) = [In(v)[|* > 0
for b € kere.

Let now L be a generator. The sesqui-linear form (-,-); : Bx B — C
defined by

(a,b)1, = L((a —e(a)1)" (b - e(b)l))
for a,b € B is positive, since L is conditionally positive. Dividing B by the
null-space
N ={a € Bl{a,a), =0}

we obtain a pre-Hilbert space D = B/N7, with a positive definite inner product
(+,+) induced by (-,-)r. For the cocycle n : B — D we take the canonical
projection, this is clearly surjective and satisfies Equation (1.3).

The #-representation p is induced from the left multiplication on B on
kere, i.e.

plan(b—e®)1) =n(a(b—=®)1)) or  playn(®) = n(ab) — n(a)e(b)

for a,b € B. To show that this is well-defined, we have to verify that left
multiplication by elements of B leaves the null-space invariant. Let therefore
a,b € B, b € Ny, then we have

(o - =)

L((ab —ag(b)1)" (ab — ae(b)l))
L(( ) (ab—ae b)l))
(b~

(
b)1,a%a(b—e(b)1)),
(b—s(b)lH2 —0,

IN

H(
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with Schwarz’ inequality.
That the Schiirmann triple (p, 7, L) obtained in this way is unique up to
unitary equivalence follows similarly as for the usual GNS construction. O

Exercise 1.10. Let (X;);>0 be a classical real-valued Lévy process with all
moments finite (on some probability space ({2, F, P)). Define a Lévy process
on the free unital algebra C[x] generated by one symmetric element x = x*
with the coproduct and counit determined by A(z) = c ® 1+ 1 ® = and
e(z) = 0, whose moments agree with those of (X;);>¢. More precisely, such
that

B(jor(2h)) = E ((X: — X,)¥)

holds for all k € N and all 0 < s <.
Construct the Schiirmann triple for Brownian motion and for a compound
Poisson process (with finite moments).

For the classification of Gaussian and drift generators on an involutive
bialgebra B with counit e, we need the ideals

K = kere,
K? = span {abla,b € K},
K3 = span {abc|a,b,c € K}.

Proposition 1.11. Let L be a conditionally positive, hermitian linear func-
tional on B. Then the following are equivalent.

(i) n=0,

(i) L] k> = 0,

(#i) L is an e-derivation, i.e. L(ab) = e(a)L(b) + L(a)e(b) for all a,b € B,

(iv) The states p; are homomorphisms, i.e. pi(ab) = @i(a)p:(b) for all a,b €
B andt>0.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and the associated Lévy process a drift.

Proposition 1.12. Let L be a conditionally positive, hermitian linear func-
tional on B.
Then the following are equivalent.

(Z) L|K3 =0,

(ii) L(b*b) = 0 for all b € K2,

(iii) L(abe) = L(ab)e(c) + L(ac)e(b) + L(bc)e(a) — e(ab)L(c) — e(ac)L(b) —
e(be)L(a) for all a,b,c € B,

(i) plk = 0 for the representation p in the surjective Schiirmann triple
(p,m, L) associated to L by the GNS-type construction presented in the
proof of Theorem 1.9,
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(v) p = €1, for the representation p in the surjective Schiirmann triple (p,n, L)
associated to L by the GNS-type construction presented in the proof of
Theorem 1.9,

(vi) Nz = 0 for the cocycle n in any Schirmann triple (p,n, L) containing
L,

(vii) n(ab) = e(a)n(b) + n(a)e(d) for all a,b € B and the cocycle n in any
Schiirmann triple (p,n, L) containing L.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and also the associated Lévy process quadratic or
Gaussian.

The proofs of the preceding two propositions can be carried out as an
exercise or found in [Sch93, Section 5.1].

Proposition 1.13. Let L be a conditionally positive, hermitian linear func-
tional on B. Then the following are equivalent.

(i) There exists a state ¢ : B — C and a real number A\ > 0 such that

L(b) = A(¢(b) — (b))

for allb e B.
(i) There exists a Schirmann triple (p,n, L) containing L, in which the co-
cycle m is trivial, i.e. of the form

n(b) = (p(b) — (b)) w, for allb € B,

for some non-zero vector w € D. In this case we will also call n the
coboundary of the vector w.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it a Poisson generator and the associated Lévy process
a compound Poisson process.
Proof. To show that (ii) implies (i), set ¢(b) = % and \ = ||w||%.

For the converse, let (D, p,w) be the GNS triple for (B, ¢) and check that
(p,n, L) with n(b) = (p(b) — €(b))w, b € B defines a Schiirmann triple. O

Remark 1.14. The Schiirmann triple for a Poisson generator L = A(¢ —¢) ob-
tained by the GNS construction for ¢ is not necessarily surjective. Consider,
e.g., a classical additive R-valued compound Poisson process, whose Lévy mea-
sure g is not supported on a finite set. Then the construction of a surjective
Schiirmann triple in the proof of Theorem 1.9 gives the pre-Hilbert space Dy =
span {2*|k = 1,2,...} C L?(R, ). On the other hand, the GNS-construction
for ¢ leads to the pre-Hilbert space D = span {z¥|k =0,1,2,...} C L3(R, ).
The cocycle 7 is the coboundary of the constant function, which is not con-
tained in Dy.
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1.3 The Representation Theorem

The representation theorem gives a direct way to construct a Lévy process
from the Schiirmann triple, using quantum stochastic calculus.

Theorem 1.15. (Representation theorem) Let B be an involutive bial-
gebra and (p,m, L) a Schirmann triple on B. Then the quantum stochastic
differential equations

djss = Jst * (dAf[ on+dAio(p—e)+dAonox+ Ldt) (1.4)

with the initial conditions
Jss = €1

have a solution (jst)o<s<t. Moreover, in the vacuum state P(-) = (2, - 2),
(Jst)o<s<t s a Lévy process with generator L.
Conversely, every Lévy process with generator L is equivalent to (jst)o<s<t-

For the proof of the representation theorem we refer to [Sch93, Chapter 2].
Written in integral form and applied to an element b € B with A(b) =
b(1) @ bea) (Sweedler’s notation), Equation (1.4) takes the form

Jst(b) = e(b)1+
/S Jerlbiay) (445 (1(8)) + dAr (biz) — oa) + - (1) + (b )dr).
Exercise 1.16. Show that
AM, = dA o+ dA, o (p—e) +dA; oo+ Ldt

formally defines a *-homomorphism on ker £ = By, if we define the algebra of
quantum stochastic differentials (or Itd algebra, cf. [Bel98] and the references
therein) over some pre-Hilbert space D as follows.

The algebra of quantum stochastic differentials Z(D) over D is the -
algebra generated by

{dA(F)|F € L(D)} U{dA*(u)lu € D} U{dA(u)|u € D} U{dt},
if we identify

dAAF + uG) = MA(F) + pdA(G),
dA* (Au + pv) = AdA* (u) + pdA* (v),
dA(\u + pw) = MdA(u) + adA(v),

for all F,G € L(D), u,v € D, A\, u € C. The involution of Z(D) is defined by
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dA(F)* = dA(F™),

(dA*(u))* = dA(u),
dA(u)* = dA™(u),
at* = dt,

for F € L(D), u € D, and the multiplication by the It6 table

[ o [ dA*(u) [ dA(F) [dA(u)|dt]

W] 0 | 0 0 |0
dA(G) [[dA*(Gu)|dA(GF)| 0 |0
dA(v) || (v,u)dt |dA(F*v)| 0 |0

dt 0 0 0 |0

for all F,G € L(D), u,v € D, i.e. we have, for example,
dA(v) e dA™(u) = (v,u)dt, and dA*(u)edA(v)=

Proposition 1.17. Let (jst)o<s<t be a Lévy process on a *-bialgebra B with
Schiirmann triple (p,n, L), realized on the Fock space I'(L*(Ry, D)) over the
pre-Hilbert space D. Let furthermore u be a unitary operator on D and w € D.
Then the quantum stochastic differential equation

2
dU; = Uy <dAt(w) —dA; (uw) + dA(u — 1) — Hw2|| dt>

with the initial condition Uy = 1 has a unique solution (U;);>o with U a
unitary for all t > 0.
Furthermore, the quantum stochastic process (Jst)o<s<: defined by

jst(b) = Ut*jst(b)Ut, fO?” be B,

is again a Lévy process with respect to the vacuum state. The Schiirmann
triple (p, 1, L) of (Jst)o<s<t is given by

p(B) = u*p(b)u,

7i(b) = un(b) — u* (p(b) — £(b) usw

i<b>=L<b> (i m(8) = (00), ) + (o ((0) — £0) )
L(B) — (w, (b)) — (i(b"), ) — (w, (B(b) — £(8))w)

The proof of this proposition is part of the following Exercise.

Exercise 1.18. Show that (on exponential vectors) the operator process
(Ut)i>0 is given by

U, = e—Af(uw)Flt(u)ef‘\t(w)e—tl\w\\2/27
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where I (u) denotes the second quantization of u. (U;)¢>0 is a unitary local
cocycle or HP-cocycle, cf. [Lin05, Bha05].
Setting
kt (lL’) = Ut

and extending this as a x-homomorphism, we get a Lévy process on the group
algebra A = CZ. A can be regarded as the *-algebra generated by one unitary
generator x, i.e. CZ = C(x,x*) /{xa* — 1, 2*x — 1). Its Hopf algebra structure
is given by

e(x) =1, Alz) =z @, S(x) ==x".

Verify that (7s:)o<s<: is a Lévy process, using the information on (Uy);>0
we have due to the fact that it is a local unitary cocycle or a Lévy process.

Using the quantum Ité formula, one can then show that (j)o<s<¢ satisfies
the quantum stochastic differential equation

djst = jse * (dA] 0 +dAy o (p— ) + dA; o fj o+ + Ldt)

with initial condition jss = €1, and deduce that (p, 7, L) is a Schiirmann triple
for (jst)OSSSt'

Corollary 1.19. If the cocycle n is trivial, then (js;)s<s<t 15 cocycle conjugate
to the second quantization (Fst(p))0<8<t of p.

1.4 Cyclicity of the Vacuum Vector

Recently, Franz, Schiirmann, and Skeide['S03] have shown that the vacuum
vector is cyclic for the realization of a Lévy process over the Fock space given
by Theorem 1.15, if the cocycle is surjective.

Theorem 1.20. Let (p,n, L) be a surjective Schirmann triple on an involu-
tive bialgebra B and let (jsi)o<s<i be the solution of Equation (1.4) on the
Fock space I'(L?*(Ry, D)). Then the vacuum vector §2 is cyclic for (jst)o<s<t,
i.e. the span of

{jsltl(bl) o 'jsntn(b’ﬂ)“(2|n € N,O < S1 < tl < 52 << tn7b17' s 7bn S B}
is dense in I'(L*(Ry., D)).

The proof which we will present here is due to Skeide. It uses the fact that
the exponential vectors of indicator functions form a total subset of the Fock
space.

Theorem 1.21. [PS98, Ske00] Let b be a Hilbert space and B C b a total
subset of h. Let furthermore R denote the ring generated by bounded intervals
in Ry. Then

{E€(vl;)lve B, I e R}

is total in I'(L*(R4, ).
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We first show how exponential vectors of indicator functions of intervals
can be generated from the vacuum vector.

Lemma 1.22. Let 0 < s <t and b € kere. For n € N, we define

7.y (b) = Jssts(1+b)jstssras(L40) - jis (14 b)e” 7O,
where § = (t — s)/n. Then U[’; " (b)02 converges to the exponential vector
g(n(b)l[s7t])

Proof. Let b € B and k € D. Then the fundamental lemma of quantum
stochastic calculus, cf. [Lin05], implies

<g(k1[O,T]>7jst(b> Q>

— () + / (E (L po.1)Jur (b)) 2) (k. 1(bay)) + L{biay))dr

for 0 < s <t < T. This is an integral equation for a linear functional on B, it
has a unique solution given by the convolution exponential

(€L po.11), it (B)2) = exp, (¢ — 5) ((k, n(B)) + L(B)).

(On the right-hand-side compute first the convolution exponential of the func-
tional b — (t — s)((k,n(b)) + L(b)) and then apply it to b.)
Let b € ker e, then we have

(€(kLior)), Jse(1 +b)e”TEOQ) = 14 (£ — 5)(k,n(b)) + O ((t — 9)°)

forall 0 <s<t<T.
Furthermore, we have
(Got(L+0)e” O Qo (14 b)e”7IH0 )
= (2,55t (14 5)* (1 + b)) e~ = EO+LOD) )
= (14 @—s(b") + 1—s(b) + py—s(b*b)) e~ t=)LEIFLET)

for b € ker e, and therefore

(ot (L +0)e” O Q (14 b)e”E0 )

=14 (¢ = 5) ), n(B) + O (¢~ 5)?)

These calculations show that I [7; 4
vector E(n(b)l[syt]), since using the independence of increments of (js;)o<s<t,

we get

(b)£2 converges in norm to the exponential
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HH[”] )02 = E(n(b)1 (s, H
= (Hf, g (0)2, 117, 4 (5)2) = {11 (6)2,€ (n(b)1,.)
—(E ) L), 7 5 (1)02) + (€MD) 1e17), € (D)1 s07))
= (L+8lln()|P +0(8%)" — et =)

0.

0

Proof. (of Theorem 1.20) We can generate exponential vectors of the form
E(wly), with I = [ U---UI; € R a union of disjoint intervals by taking
products

117 (b) = 117, (b) - - - 17, (D)

with an element b € kere, n(b) = v. If n is surjective, then it follows from
Theorem 1.21 that we can generate a total subset from the vacuum vector.
O

If the Lévy process is defined on a Hopf algebra, then it is sufficient to con-
sider time-ordered products of increments corresponding to intervals starting
at 0.

Corollary 1.23. Let H be a Hopf algebra with antipode S. Let furthermore
(p,n, L) be a surjective Schiirmann triple on H over D and (jsi)o<s<t the so-
lution of Equation (1.4) on the Fock space F(LQ(I&_, D)) Then the subspaces

H1 = span{jo, (b1) - - - Jor, (b)) 02|10 < tq <ty <--- <tp,b1,...,b, € H},
H| = span{jot, (b1) - - - Jot, (bn) 20 <t <t < -+ <tp,b1,...,b, € H},

are dense in I'(L*(Ry, D)).

Remark 1.24. Let (p,n, L) be an arbitrary Schiirmann triple on some involu-
tive bialgebra B and let (js:)o<s<: be the solution of Equation (1.4) on the
Fock space F(L2 (Ry, D)) Denote by Hg the span of the vectors that can be
created from the vacuum using arbitrary increments.

Then we have Hy € Ho and ‘H| € Hy for the subspaces Hy, H|,Hy C
I'(L*(Ry, D)) defined as in Theorem 1.20 and Corollary 1.23. This fol-
lows since any product js,¢,(b1) - Jjs,t, (by) with arbitrary bounded inter-
vals [s1,t1], ... [$n,tn] € R4 can be decomposed in a linear combination of
products with disjoint intervals, see the proof of Lemma 1.5.

E.g., for jos(a)jot(b), a,b € B, 0 < s <t, we get

Jos(@)jo (D) = jos(abe1y) st (bay)
where A(b) = b(l) X b(g)
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Proof. The density of H; follows, if we show H; = Hy. This is clear, if we
show that the map T4 : H® H - H® H, T1 = (m®1id) o (id ® A), i.e.,
Ti(a @ b) = ab(1) ® b(z) is a bijection, since
Jot, (b1) -+ Jot,, (bn)
= m%—l) 0 (Jot, ® Jtrte @+ ® Jo_1t,) ((bl ® 1) (A(bz) ® 1) . (A(n—l)))
(n—1)

=m0 (or, @ jirty @+ @ G 10n) 0TIV (b1 @ - @ by),

where
Tl = (T1 X ldH®(n72)) o (ldH ®RTT ® 1dH®(n73)) o o (1dH®(n72) ® Tl)

see also [F'S99, Section 4.5]. To prove that T} is bijective, we give an explicit
formula for its inverse,

T7'=(meid)o (ild® S®id) o (id® A).

To show H| = H, it is sufficient to show that the map 75 : HOH — H®RH,
Ty = (m®id)o (id® 7)o (A®id), To(a ®b) = a)b @ a(sy is bijective. This
follows from the first part of the proof, since T = (x ® ¥) o Th o (x ® x). O

Exercise 1.25. (a) Prove T} o Tl_1 =idgey = T1_1 o T using associativity,
coassociativity, and the antipode axiom.
(b) Find an explicit formula for the inverse of Tb.

The following simple lemma is useful for checking if a Gaussian Schiirmann
triple is surjective.

Lemma 1.26. Let (p,n, L) be a Gaussian Schirmann triple on a x-bialgebra
B and let G C B be a set of algebraic generators, i.e.

span{gi --- gnln € N, g1,...,9, € G} = B.

Then we have

spann(G) = n(B).

Proof. For Gaussian Schiirmann triples one can show by induction over n,

n
(g1 gn) = Y _e(g1-+ gr-19k+1 - gn)1(gk)-
k=1
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1.5 Examples
Additive Lévy Processes

For a vector space V' the tensor algebra T (V') is the vector space

T(V)=EVven,

neN

where V@™ denotes the n-fold tensor product of V with itself, V&° = C, with
the multiplication given by

(v1®-~-®vn)(w1®-~-®wm):v1®~-~®vn®w1®---®wm,

for n,m € N, vi,...,v5,w1,...,wy, € V. The elements of (J, y Venr are
called homogeneous, and the degree of a homogeneous element a # 0 is n if
a € VO If {v;]i € I} is a basis of V, then the tensor algebra 7 (V') can be
viewed as the free algebra generated by v;, ¢ € I. The tensor algebra can be
characterized by the following universal property.

There exists an embedding ¢+ : V' — 7 (V) of V into 7 (V') such that for
any linear mapping R : V' — A from V into an algebra there exists a unique
algebra homomorphism 7(R) : 7(V) — A such that the following diagram

commutes,
R

%)

(V)

Vv A

ie. T(R)or= R.

Conversely, any algebra homomorphism @ : 7 (V) — A is uniquely deter-
mined by its restriction to V.

In a similar way, an involution on V' gives rise to a unique extension as an
involution on 7 (V). Thus for a x-vector space V we can form the tensor -
algebra 7 (V). The tensor x-algebra 7 (V') becomes a *-bialgebra, if we extend
the linear x-maps

e:V—-C, e(v) =0,
AV -TV)RT(V), Aw)=v1+1®uv,
as «-homomorphisms to 7 (V). We will denote the coproduct 7(A) and the
counit 7 (¢) again by A and e. The tensor *-algebra is even a Hopf x-algebra
with the antipode defined by S(v) = —v on the generators and extended as
an anti-homomorphism.

We will now study Lévy processes on 7 (V). Let D be a pre-Hilbert space
and suppose we are given

1. alinear *-map R:V — L(D),
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2. a linear map N : V — D, and
3. a linear x-map ¢ : V — C (i.e. a hermitian linear functional),

then
Ji(v) = A (R(v)) + A,’f(N(U)) + A, (N(v*)) + ty(v) (1.5)

for v € V extends to a Lévy process (ji)i>0, jt = 7 (Ji), on T (V) (w.r.t. the
vacuum state).

In fact, and as we shall prove in the following two exercises, all Lévy
processes on 7 (V') are of this form, cf. [Sch91b].

Exercise 1.27. Show that (R, N, ) can be extended to a Schiirmann triple
on 7 (V) as follows

1. Set p=T(R).
2. Define : 7(V) — D by (1) =0, n(v) = N(v) for v € V, and
N1 @ ®@wn) = R(vr) -+ R(vn—1)N(vn)

2

for homogeneous elements v; @ --- @ v, € V& n > 2,
= (v) for v € V, and

3. Finally, define L : 7(V) — C by L(1) =0, L(v)

Lot ®- Qvy) = { é%&

for homogeneous elements v, ® - -+ @ v, € V& n > 2.

)7N(02)> ifn=2,
), R(v2) -+ R(vy—1)N(vy,)) if n >3,

Prove furthermore that all Schiirmann triples of 7 (V') are of this form.

Exercise 1.28. Let (p,7n,L) be a Schiirmann triple on 7 (V). Write down
the corresponding quantum stochastic differential equation for homogeneous
elements v € V' of degree 1 and show that its solution is given by (1.5).

Lévy Processes on Finite Semigroups

Exercise 1.29. Let (G, -, e) be a finite semigroup with unit element e. Then
the complex-valued functions F(G) on G form an involutive bialgebra. The
algebra structure and the involution are given by pointwise multiplication and
complex conjugation. The coproduct and counit are defined by

A(f)(g1,92) = (91 - 92) for g1,92 € G,
e(f) = fle),

for f € F(G).
Show that the classical Lévy processes in G (in the sense of [App(5]) are
in one-to-one correspondence to the Lévy processes on the x-bialgebra F(G).
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Lévy Processes on Real Lie Algebras

The theory of factorizable representations was developed in the early seventies
by Araki, Streater, Parthasarathy, Schmidt, Guichardet, - - -, see, e.g. [Gui72,
PS72] and the references therein, or Section 5 of the historical survey by
Streater [Str00]. In this Subsection we shall see that in a sense this theory is
a special case of the theory of Lévy processes on involutive bialgebras.

Definition 1.30. A Lie algebra g over a field K is a K-vector space with a
linear map [-,] : g X g — g called Lie bracket that satisfies the following two
properties.

1. Anti-symmetry: for oll X,Y € g, we have
[X,Y] = -]V, X].
2. Jacobi identity: for oll X,Y,Z € g, we have
(X, [Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] =0.

For K =R, we call g a real Lie algebra, for K = C a complex Lie algebra.

If A is an algebra, then [a,b] = ab — ba defines a Lie bracket on A.

We will see below that we can associate a Hopf x-algebra to a real Lie
algebra, namely its universal enveloping algebra. But it is possible to define
Lévy processes on real Lie algebras without explicit reference to any coalgebra
structure.

Definition 1.31. Let g be a Lie algebra over R, D be a pre-Hilbert space, and
2 € D a unit vector. We call a family (jst g — .C(D))O<S<lt of representa-

* —

tions of g by anti-hermitian operators (i.e. satisfying jsi(X)* = —js(X) for
all X € g,0<s<t)aLévy process on g over D (with respect to §2), if the
following conditions are satisfied.

1. (Increment property) We have

forall0 < s<t<wandall X €g.
2. (Independence) We have [jsi(X), jorr (V)] =0 for all X, Y € g, 0 < s <
t<s" <t and

(92, oy (X)Fr o g0 (X)) 02)
= (2, jsrt, (XD)F1 Q) (02,50 (X))

foralln,kl,...,kHEN, OSSl Stl SSQSStn, Xl,...7Xn€g.
3. (Stationarity) For alln € N and all X € g, the moments

mn(X;8,t) = (2, 7(X)"2)

depend only on the difference t — s.
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4. (Weak continuity) We have limy s{(§2,j51(X)"82) = 0 for alln € N and
all X € g.

For a classification of several processes on several Lie algebras of interest
of physics and for several examples see also [AFS02, Fra03a].

Exercise 1.32. Let g be a real Lie algebra. Then the complex vector space
gc = C®r g=g®igis acomplex Lie algebra with the Lie bracket

(X +iY, X' +iV'] = [X,X'] - VY] +i([X, Y]+ [Y, X))

for X, X" Y)Y’ € g.

1. Show that * : gc — gc, Z = X +iY — Z* = —X 4+ iY defines an
involution on gc, i.e. it satisfies

(Zy =2 and [Z1, Zs)" = [Z5, Z7]

for all Z, 71,725 € gc

2. Show that g — (gc, *) is an isomorphism between the category of real Lie
algebras and the category of involutive complex Lie algebras. What are
the morphisms in those two categories? How does the functor g — (gc, *)
act on morphisms?

The universal enveloping algebrald(g) of a Lie algebra g can be constructed
as the quotient 7(g)/J of the tensor algebra 7 (g) over g by the ideal J
generated by
{X@Y—Y@X— [X,Y]|X,Y € g}.

The universal enveloping algebra is characterized by a universal property.
Composing the embedding ¢ : g — 7 (g) with the canonical projection p :
T(g) — 7(g)/J we get an embedding ' = por: g — U(g) of g into its
enveloping algebra. For every algebra A and every Lie algebra homomorphism
R : g — A there exists a unique algebra homomorphism U(R) : U(g) — A
such that the following diagram commutes,

R

A

%)

U(g)

g

ie. U(R) o4/ = R. If g has an involution, then it can be extended to an
involution of U(g).

The enveloping algebra U(g) becomes a bialgebra, if we extend the Lie
algebra homomorphism

e:g—C, e(X) =0,
A:g—U(g)@U(), AX)=X®1+12X,
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to U(g). We will denote the coproduct U(A) and the counit U(e) again by A
and e. Tt is even a Hopf algebra with the antipode S : U(g) — U(g) given by
S(X) = —X on g and extended as an anti-homomorphism.

Exercise 1.33. Let g be a real Lie algebra and & = U(gc) the enveloping
algebra of its complexification.

1. Let (jst)o<s<t be a Lévy process on U. Show that its restriction to ¢ is a
Lévy process on g.

2. Let (kst)o<s<¢ now be a Lévy process on g. Verify that its extension to U
is a Lévy process on U.

3. Show that this establishes a one-to-one correspondence between Lévy
processes on a real Lie algebra and Lévy processes on its universal en-
veloping algebra.

We will now show that Lévy processes on real Lie algebras are the same
as factorizable representation of current algebras.

Let g be a real Lie algebra and (T, 7, 1) a measure space (e.g. the real line
R with the Lebesgue measure A). Then the set of g-valued step functions

i=1

gI: {XZXZ]_M“)Q Eg,Mi ET,M(MZ') < 00, M; QI,HGN}

on I C T is again a real Lie algebra with the pointwise Lie bracket. For I1 C I
we have an inclusion iz, g, : gt — g'2, simply extending the functions as zero
outside I;. Furthermore, for disjoint subsets I1, I, € T, g/V!2 is equal to the
direct sum gt @ g’2. If 7 be a representation of g" and I € 7, then have also
a representation 7/ = 7 o iy of g’

Recall that for two representation pi,ps of two Lie algebras g; and g,,
acting on (pre-) Hilbert spaces H; and Hy, we can define a representation
p=(p1 ® p2) of g1 ® g1 acting on H; @ Hy by

(1 ® p2)(X1 + X2) = p1(X1) ® 1+ 1 ® pa(Xa),
for X, € g1, Xy € go.

Definition 1.34. A triple (7, D, §2) consisting of a representation © of g* by
anti-hermitian operators and a unit vector {2 € D is called a factorizable
representation of the simple current algebra g, if the following conditions are
satisfied.

1. (Factorization property) For all 1,15 € T, Iy N I, = (), we have
(V2 D )= (@12, D D, 2 N).
2. (Invariance) The linear functional @5 : U(g) — determined by
er(X") = (02,7(X1)"(2)
for X € g, I €T depends only on u(I).
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3. (Weak continuity) For any sequence (Ij)reny with img_,o0 p(I;) = 0 we
have limy,_. @7, (v) = e(u) for all u € U(g).

Proposition 1.35. Let g be a real Lie algebra and (T, 7T, ) = (R, B(R4), \).
Then we have a one-to-one correspondence between factorizable representa-
tions of g®+ and Lévy processes on g.

The relation which is used to switch from one to the other is
7T(*le[:s,t[) = Jst (X)
for0<s<tand X €g.

Proposition 1.36. Let g be a real Lie algebra and (T, T, p) a measure space
without atoms. Then all factorizable representations of g° are characterized
by generators or equivalently by Schirmann triples on U(gc). They have a
realization on the symmetric Fock space F(L2 (T, T, u)) determined by

m(X1r) = A* (17 x p(X)) + A1 ® p(X)) + A1 @ n(X™)) + u(I)L(X)

for I €T with p(I) < oo and X € g.

The Quantum Azéma Martingale

Let ¢ € C and B, the involutive bialgebra with generators z,z*,y,y* and
relations

yr = quy, 'y = qya”,
Alx)=z@y+1z,  Aly)=yQy,
e(z) =0, e(y) =1

Proposition 1.37. There exists a unique Schiirmann triple on B, acting on
D = C with

Let (jst)o<s<t be the associated Lévy process on B, and set Y; = jo,(v),
X: = jot(z), and X} = jos(x*). These operator processes are determined by
the quantum stochastic differential equations

dY; = (¢ — 1)YidAy, (1.6)

with initial conditions Yy = 1, Xo = Xj = 0. This process is the quantum
Azéma martingale introduced by Parthasarathy [Par90], see also [Sch91a]. The
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first Equation (1.6) can be solved explicitely, the operator process (Y;);>0 is
the second quantization of multiplication by ¢, i.e.,

Y, = I(q), fort >0
Its action on exponential vectors is given by
YiE(f) = 5(Qf1[0,t[ + fl[t,+oo[)~

The hermitian operator process (Z;);>o defined by Z, = X, + X} has as
classical version the classical Azéma martingale (M;);>¢ introduced by Azéma
and Emery, cf. [Emes9], i.e. is has the same joint moments,

(2,27 21 0Q) = E (M]" - MJ™)

forall ny,...,ng € Ny tq,...,tx € Ry. This was the first example of a classical
normal martingale having the so-called chaotic representation property, which
is not a classical Lévy process.

2 Lévy Processes and Dilations
of Completely Positive Semigroups

In this section we will show how Lévy process can be used to construct di-
lations of quantum dynamical semigroups on the matrix algebra M, . That
unitary cocycles on the symmetric Fock space tensor a finite-dimensional ini-
tial space can be interpreted as a Lévy process on a certain involutive bial-
gebra, was first observed in [Sch90]. For more details on quantum dynamical
semigroups and their dilations, see [Bha01l, Bha05] and the references therein.

2.1 The Non-Commutative Analogue of the Algebra
of Coefficients of the Unitary Group

For d € N we denote by U, the free non-commutative (!) *-algebra generated
by indeterminates w;j;, u;;, i,j = 1,...,d with the relations

d
*

E Ugjup; = Oke,

i=1

d
> wluje = Ok,
j=1
The x-algebra Uy is turned into a *-bialgebra, if we put
d
Aluge) = Zukj ® uje,
j=1

E(ukg) = (Skg.
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This #-bialgebra has been investigated by Glockner and von Waldenfels, see
[GvW89]. If we assume that the generators u;;, u}; commute, we obtain the
coefficient algebra of the unitary group U (d). This is why Uy is often called the
non-commutative analogue of the algebra of coefficients of the unitary group.

It is isomorphic to the #-algebra generated by the mappings

Epe - UCT® H) — B(H)
with

§ee(U) = PLUP] = Upy
for U € U(C* ® H) C Mq(B(H)), where H is an infinite-dimensional, sep-
arable Hilbert space and U(C? @ H) denotes the unitary group of operators
on C? ® H. Moreover B(H) denotes the *-algebra of bounded operators on

H, Mq(B(H)) the -algebra of d x d-matrices with elements from B(H) and
P, :C?® H — H the projection on the k-th component.

Proposition 2.1. 1. On U, a faithful Haar measure is given by A\(u™) =
50,»,“ n €.
2. On Uy an antipode is given by setting S(x) = x* and extending S as a
x-algebra homomorphism.
3. For d > 1 the bialgebra Uy does not possess an antipode.

Exercise 2.2. Recall that a (two-sided) Haar measure on a bialgebra B is a
normalized linear functional A satisfying

Axp=p(L)A=p* A

for all linear functionals ¢ on B.
Verify (1) and (2).

Proof. Let us prove (3). We suppose that an antipode exists. Then

d d
uin = > S(ury)ujnug,

n=1j=1
d d
_ ook
= Sury) Y wjntiy,
j=1 n=1

[
M=~

S(ukj)(sj‘g = S(ukg).

.
Il
N

Similarly, one proves that S(uy,) = w. Since S is an antipode, it has to be
an algebra anti-homomorphisms. Therefore,

d d d
S D gy | =D S(uiy)Surg) =D Juseusy,
=1 j=1 Jj=1

which is not equal to dxg, if d > 1. ]
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Remark 2.3. Since U, does not have an antipode for d > 1, it is not a com-
pact quantum group (for d = 1, of course, its C*-completion is the compact
quantum group of continuous functions on the circle S'). We do not know, if
U,y has a Haar measure for d > 1.

We have U,, = C1 & Z/IO, where Z/IO K, = ker € is the ideal generated
by u;; = ui; — 31, 4,5 = 1,...n, and their adjoints. The defining relations
become

d
_ Z@i]‘azj = Ui + ukz Zuﬂujk, (2.1)

j=1

for i,k =1,...,n, in terms of these generators. We shall also need the ideals

Ky = span{abla,b € K1} and Kj = span{abc|a,b,c € K;}.

2.2 An Example of a Lévy Process on Uy

A one-dimensional representation o : Uy; — C is determined by the matrix
w = (wij)1<ij<d € Ma, wij = o(u;;). The relations in Uy imply that w is
unitary. For £ = (¢;;) € Mgy we can define a o-cocycle (or o-derivation) as
follows. We set

ne(wij) = Lij,
d
ne(ui;) = —(w*); = — Zﬁk;‘&m
]

on the generators and require 7, to satisfy

ne(ab) = o(a)ne(b) + ne(a)e(b)
for a,b € Ug. The hermitian linear functional L., ¢ : Uy — C with

L,e(1) =0,

Lup e(tig) = L o(uj;) = =3 4* =-3 me&w

Ly e(ab) = (@)L, e (b) + ne(a*)ne(b) + Lw,e(a)f(b)

for a,b € Uy, can be shown to be a generator with Schiirmann triple
(0,M¢, Lyy,¢). The generator L, ¢ is Gaussian if and only if w is the identity
matrix.

The associated Lévy process on U, is determined by the quantum stochas-
tic differential equations

djst(uij) =

d d d
. N - 1 -
;]ﬂ(uik) (fkjdAt + (W — Oky)d Ay — Z Wy jlprd Ay — 5 Z fnkfnjdt> ;

n=1 n=1
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on I'(L*(R4, C)) with initial conditions jg,(ui;) = d;;.
We define an operator process (Ust)o<s<t in Mg ® B(F(LQ(R+,(C))) o
B(C?® I(LA(R+,C))) by

Ut = (Jot(uij)) 1<i,j<d’

for 0 < s <t. Then (Us)o<s<: is a unitary operator process and satisfies the
quantum stochastic differential equation

1
AUy = Uy (edA: + (w—1)dA, — CFwdA, — 2£*€dt)

with initial condition Uss = 1. The increment property of (js:)o<s<: implies
that (Ust)o<s<: satisfies
UOsUs,s+t = UO,s+t (22)

forall 0 < s <t.
Let S; : L*(Ry,K) — L?(R,K) be the shift operator,

Stf(s):{f(s—t) if s>t

0 else,
for f € L*(Ry,K), and define W, : I'(L*(R4,K)) ® I'(L*([0,¢[,K)) —
(L3R4, K)) by
Wi (E(f) (9)) = E(g+ S:f),
on exponential vectors E(f), ) of functions f € L*(R,K), g € L*([0,¢[,K).
Then the CCR flow v, : B(T'(L2(R,, K ) is defined by

’Yt(Z) = Wt(Z [029] ].)Wt*,

for Z € B(F(L?(m,/C))). On B((Cd ® F(LZ(R+,/C))) we have the Fy-

semigroup (J¢)¢>0 with 4 = id @ .
We have Uy s+ = 35 (Uo) for all s,t > 0 and therefore increment property
(2.2) implies that (U;)¢>0 with U, = Uy, t > 0, is a left cocycle of (3¢)¢>0, i.e.

U5+t = US:YS (Ut)7

for all s, > 0. One can check that (U;)¢> is also local and continuous, i.e.
an HP-cocycle, see [Lin05, Bha05].
Therefore we can define a new Egp-semigroup (7;):>o on the algebra B ((Cd®
P ) b
m(Z) = Uy (2)U7, (2.3)

for Z € B(Cd ® F(L2(R+,IC))) and ¢ > 0.
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Let {e1,...,eq} be the standard basis of C? and denote by Eg the condi-
tional expectation from B((Cd ® I'(L*(Ry, IC))) to B(C?) = M, determined
by

(E()(Z))ij = (e; ® 2, Ze; @ 2)

for 7 € B(C? @ I(L*(R+,K)) ). Then

7 = Eo(n:(X @ 1)) (2.4)

defines a quantum dynamical semigroup on M. It acts on the matrix units
Eij by
7 (Eij)
<€1 & (27 Ut(Eij ® 1)Ut*€1 ® -Q> tee <€1 ® Q, Ut(Eij ® 1)Ut*€d & .Q>

(eqa ® 2,U(E;; @ 1)Ufer @ 2) -+ (eq @ 2,U(Ei; ® 1)Ufeq @ £2)

* * *
uliulj ’UJM’LLQJ- R u”udj
* * *
UiUyj UiUgy * - U2iUg;
= Pt . . )
* * *
udiulj udiu2j R udiudj

and therefore the generator £ of (7;);>0 is given by
L(E;j) = (Lwl(“kiu;knj))lgk,mgw
for 1 <i,5 <d.

Lemma 2.4. The generator L of (1;)i>0 s given by
1
L(X)=lwXwl— i{X’ e}

for X € My.

Proof. We have, of course, % |t:0 ot (urity,;) = Lw,g(ukiu;‘nj). Using (1.3) and
the definition of the Schiirmann triple, we get

Lo e(ukitiny) = €(ui) L, e () + 0e(ui)ne () + Lo (ugi)e ()

1
= =0k (0 0)mj + (W) i (W) oy (0°0) O -

1 1
2 2

Writing this in matrix form, we get
* 1 “ ‘ B 1,
(vag(ukiumj))lgk,mgd = —iEijf C+ CwEjw™l — §f LB,

and therefore the formula given in the Lemma. O
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2.3 Classification of Generators on Uy

In this section we shall classify all Lévy processes on Uy, see also [Sch97] and
[Fra00, Section 4].
The functionals D;; : Uy — C, 71,5 =1,...,d defined by
Dij(tr) = Dij(urr) = 061,
Dij(igy) = Dij(ugy) = —Dij(lur) = —idadj,
Dij(u) =0 if u & span{i;,i;;;4,5 =1,...,d},
for i,j,k,l =1,...,d, are drift generators, since they are hermitian and form

Schiirmann triples together with the zero cocycle n = 0 and the trivial repre-

sentation p = e.
Let A = (a;i) € M4(C) be a complex d x d-matrix. It is not difficult to
see that the triples (e,n4 : Uy — C,GA), 1,7 = 1,...,d defined by

na(t;r) = nalujr) = aj,
na() = naujy) = —na(uks) = —a;,

Na(l) = na(uv) =0 for u,v € ng,
and

Ga(l) = Galiy, —af;) =0, forjk=1,....d,

d d
GA(’LAij + ﬁz]) =—-G4 (Z 112@[}6) = — Z@alk = —(A*A)jk,
=1 =1
for j,k=1,....d,
Ga(uv) = (na(u),na(v)) = na(u*)na(v),

for u,v € L{g, are Schiirmann triples. Furthermore, we have n4|x, = 0 and
Galk, = 0, i.e. the generators G4 are Gaussian. On the elements ﬁjk,ﬁ;‘m
J.k=1,...,d, this gives

1
Galtgr) = =5 (A A)jk
s 1 *

Galiy) = —S(A"A)y,
Ga(Ujrtum) = na (@5 )na(lim) = —ak;aim,
GA (ﬁjkulm) = Tjaml
Ga (a;kalm) = Q5 0lm
GA(a;k:ﬂ;m) = —Qjkam]

for j,k,lm=1,...,d.
Let us denote the standard basis of M4(C) by Eji, j,k = 1,...,d. We
define the functionals Gk i, : Uqg — C by
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Gjkim(1) =0,
N 1 1
Gkim(lrs) = _§5kr5jl5ms = _i(EjkElm)”’ forr,s=1,...,d,
. 1 1 .,
ij,lm(urs) = —iékséﬂémr = _i(EjkElm)STv for r,s = ].7 e 7d,

Gik,im(uv) = (0Ey, (W), 18, (V) = N8, (W)nE,, (v),
for u,v €U, j, k,l,m=1,...,d.

Theorem 2.5. A generator L : Uy — C is Gaussian, if and only if it is of
the form

d d
L= E ik tm Gk im + E bjxDjk,
Jrk,l,m=1 J,k=1

with a hermitian d x d-matriz (bj) and a positive semi-definite d* x d*-matriz
(jkim)- It is a drift, if and only if ok im =0 for jk,l,m=1,...,d.

Proof. Applying L to Equation (2.1), we see that L(d;;) = —L(ty;) has to
hold for a drift generator. By the hermitianity we get L(d;x) = L(4j,;), and

thus a drift generator L has to be of the form Z bi; D;; with a hermitian
Jik=1
d x d-matrix (b;;).

Let (p,m, L) be a Schiirmann triple with a Gaussian generator L. Then
we have p = ¢id, and n(1) = 0, 9|k, = 0. By applying n to Equation (2.1),
we get n(i;;) = —n(i;;). Therefore 1(Uy) has at most dimension d? and the
Schiirmann triple (p,n, L) can be realized on the Hilbert space M 4(C) (where

d
the inner product is defined by (A4, B) = Z kb for A = (ajx),B =
jk=1
(bjr) € M4(C)). We can write 7 as
d
n=Y_ na, B (2.5)
jk=1

where the matrices A;; are defined by (Aji)im = (Eim,n(4jk)), for 4, k,1,m =
1,....d.
Then we get
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L(apyagy) = (n((aps)*),n(agz))
d
= Z <77Ajk ((a;é)*)Ejk)v NAm (ﬁ‘;i)Elm»
7.k, l,m=1
d
= Z NA;L ((uTé)*)nAjk(ut.i)
J,k=1
Z?,k:l —(Aji)sr(Aji )t if 4 =4%2 =1
S e (A i @ = it —
ZZk:l (Ajk)rs(Ajr)ta I 4% =4a%,0% =14
d ~ o ~ o ~ ok
ikt —(Ajk)rs(Aji)ue if 4% = 0% =4
d
= D OumpaGikm (U1052)
l,m,p,q=1
d n
= DY okimGirim+ Y bixDy | (@152)
Jrk,l,m=1 jmj=1
for r;s,t,u = 1,...,d, where 0 = (0 pq) € Mg2(C) is the positive semi-
definite matrix defined by
d —
Olm,pqg = Z (Ajk)im(Ajk)pg
Jrk=1

for I,m,p,q=1,...,d.
Setting bjr = —5L(wjx — ﬂzj), for j,k=1,...,d, we get

~ ~
Urs + U,

L) = 2 (22

p=1
R .
= _5 Z (AjkAjk)rs + by
J.k=1
d d

= Z it tm Gjke,im + Z bjrDjr | (Grs)

Jiklm=1 jmj=1

~ ~ d
Ups — Upy 1 R R .
B} S 0. ) + i
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~ ~ ~ ~ d
. Ups + U Upg — U 1 R R .
L(usr) = L( - 5 st T D) sr> = _5 Z<n(upr)777(ups)> — ibys
p=1
1 d
- _5 (A;kAjk)T's - ibrs
J,k=1
d d
= > oikmGirim+ > bipDi | (i)
Jrk,l,m=1 jmj=1

where we used Equation (2.1) for evaluating L(,s + @%,.). Therefore we have

d n
L= E ik im Gk, im + E b Dj, since both sides vanish on K3 and
J,k,l,m=1 jmj=1

on 1. The matrix (b;j) is hermitian, since L is hermitian,

b i .
bjr = 5 LGk — tf;) = 5 L@ — drs) = brj,
for jk=1,...,d.
d d
Conversely, let L = Z ik tm Gk ,im + Z bjxDji with a positive semi-
1,j=1 Jik=1
definite d? x d*-matrix (0jk m) and a hermitian d x d-matrix (b;). Then we
d
can choose a matrix M = (M m1) € Mgz (C) such that Z Mg,k Mpg,im =
p,q=1

Ojkam forall i,j,r,s =1,...,d. We define n : Uy — c® by the matrices Ajp
with components (Aj;)im = Mjkim as in Equation (2.5). It is not difficult
to see that (eidg42,n, L) is a Schiirmann triple and L therefore a Gaussian
generator. 0

We can give the generators of a Gaussian Lévy process on U,, also in the
following form, cf. [Sch93, Theorem 5.1.12]

Proposition 2.6. Let L',...,L", M € My(C), with M* = M, and let H
be an n-dimensional Hilbert space with orthonormal basis {e1,...,e,}. Then
there ezists a unique Gaussian Schirmann triple (p,n, L) with

p = eidy,
n(ujk) = ZL?ker
v=1

n(ujy) = —n(ug),
d
(m(uf,), n(ur)) +iMjk

NN

Lujk) =

—

r=

for 1 <jk<d.
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The following theorem gives a classification of all Lévy processes on Uy.

Theorem 2.7. Let H be a Hilbert space, U a unitary operator on H @ C?,
A = (a;) an element of the Hilbert space H@M4(C) and A = (A\ji) € Mq(C)
a hermitian matriz. Then there exists a unique Schirmann triple (p,n, L) on
H such that

p(Ujk> = PjUP]:7 (2.6&)
n(ujr) = aji, (2.6b)
L(Ujk — ’LLZJ) = 2i)\jk, (26C)

forj,k=1...,d, where P; : H® C*—- H® Ce; = H projects a vector with
entries in H to its j*" component.
Furthermore, all Schiirmann triples on U,, are of this form.

Proof. Let us first show that all Schiirmann triples are of the form given in
the theorem. If (p,n, L) is a Schiirmann triple, then we can use the Equations
(2.6) to define U, A, and \. The defining relations of Uy imply that U is
unitary, since

d d

d d d
UUP; =Y Y PUPRUP =Y Y plugyue) = Y 6p(1) = idpse,,
j=1

j—l k=1 j—l k=1
d d d
UUrp = ZZ jUPLPU" P = ZZP i) = Y 85p(1) = idnee,
j=1k=1 j=1k=1 j=1

for | =1,...,d, where eq,...,eq denotes the standard basis of C?. The her-
mitianity of A\ is an immediate consequence of the hermitianity of L.
Conversely, let U, A, and A be given. Then there exists a unique repre-
sentation p on H such that p(u;i) = P;UP;, for j.k,= 1,...,d, since the
unitarity of U implies that the defining relations of U,, are satisfied. We

can set n(u;,) = ajk, and extend via n(ujy;,) = —n (ﬂik + 2?21 ﬁ;iﬁjk) =

—air — Y5y p(iti)*aze, for i,k = 1,....d and n(uw) = p(w)n(v) + n(w)e(v)
(i.e. Equation (1.2), for u,v € Uy, in this way we obtain the unique (p,¢)-
d
1
cocycle with n(@j,) = a;i. Then we set L(uji) = tA\jx — 5 Z<alj,alk> and
1=1
1
5 Z(alj,alk>7 for j,k =1,...,d, and use Equation (1.3)
=1
to extend it to all of Uy. This extension is again unique, because the Re-
d
lation (2.1) implies L(ujx + up;) = _Z<al]‘,alk~>7 and this together with
1=1
L(ujk — u};j) = 2i)\;, determines L on the generators ujk,u;fk of U;. But once
L is defined on the generators, it is determined on all of /; thanks to Equation
(1.3). O

L(uy;) = —iX\jk —
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2.4 Dilations of Completely Positive Semigroups on My

Let (7¢)¢>0 be a quantum dynamical semigroup on Mg, i.e. a weakly continuous
semigroup of completely positive maps 74 : Mg — Mg.

Definition 2.8. A semigroup (6;)i>0 of not necessarily unital endomorphisms
of B(H) with C% C 'H is called a dilation of (¢)i>0), if

Tt(X) = P@t(X)P

holds for all t > 0 and all X € My = B(C%) = PB(H)P. Here P is the
orthogonal projection from H to C?.

Example 2.9. We can use the construction in Section 2.2 to get an example.
Let (7¢)s>0 be the semigroup defined in (2.4). We identify C? with the subspace
Cl® N C Cd®F(L2(R+, IC)) The orthogonal projection P : H — C% is given
by P =idce ® Pq, where Pg, denotes the projection onto the vacuum vector.
Furthermore, we consider Mg as a subalgebra of B((Cd ® I'(L*(Ry4, IC))) by
letting a matrix X € My act on v@w € C?* @ I'(L*(R4,K)) as X ® Po.
Note that we have
Eo(X)® P =PXP

for all X € B(Cd ® F(L?(R+,/C))).

Then the semigroup (1;);>0 defined in (2.3) is a dilation of (7;);>0, since

Pni(X @ Po)P = PU (X @ Po)U; P = PU(X ®idpr(re(jo,1,x)) ®@ Po)Ui P
= PUt(X (24 l)Ut*P = Tt(X) ® PQ

for all X € M. Here we used that fact that the HP-cocycle (U;);>0 is adapted.

Definition 2.10. A dilation (0;)i>0 on H of a quantum dynamical semigroup
(7¢)i>0 on C? is called minimal, if the subspace generated by the 0,(X) from
C? is dense in H, i.c. if

span {0 (X1) -0y, (Xp)vlt1, ... tn >0, Xy,..., X,, € Mg,v € Cd n e N}
s equal to H.

Lemma 2.11. It is sufficient to consider ordered times t1 >ty > --- > t, >
0, since

span {th(Xl) ol (Xp)vlty > 00>, >0, X, ., Xy € Mg, v € (Cd}
= span {th(Xl) sl (Xp)vlty, .ty >0, Xy, .., X, € Mg,v € Cd}

Proof. See [Bha(l, Section 3] O
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Ezxample 2.12. We will now show that the dilation from Example 2.9 is not
minimal, if w and ¢ not linearly independent.
Due to the adaptedness of the HP-cocycle (Uy);>0, we can write

(X ® Po) = Uy (X @ Po)U; = (U(X @ 1)U}) ® Py
on I'(L*([0,t],K)) @ I'(L*([t, 00[, K)). Let
(X)) =X e1l)=U/(X 1)U
for X € My and ¢t > 0, then we have
e (X1) -+ e, (Xn v = 1, (X1 @ Po) -+ -, (X @ Po)v

forveCl®@R2, neN,t; >--->t, >0, Xi1,...,X,, My, ie. time-ordered
products of the 7;(X) generate the same subspace from C?® (2 as the n;(X ®
Pg). Using the quantum It6 formula, one can show that the operators 7 (X),
X € M, satisfy the quantum stochastic differential equation.

t
WX)=U(X 1)U =X®1 +/ U wXw* — X)UrdA,, ¢ >0,
0

if £ = w.
Since the quantum stochastic differential equation for 7;(X) has no cre-
ation part, these operators leave C?® {2 invariant. More precisely, the subspace

{He, (X1) e, (X))o @ 2t > ... > t, >0, X4,...,X, € Mg,veC?}

is equal to C?® (2, and therefore the dilation (1;)¢>0 is not minimal, if w and
¢ are not linearly independent. Note that in this case the quantum dynamical
semigroup is also trivial, i.e. 7u = id for all £ > 0, since its generator vanishes.

One can show that the converse is also true, if w and /¢ are linearly inde-
pendent, then the dilation (7;);>0 is minimal.

The general form of the generator of a quantum dynamical semigroup on
M was determined by [GIKS76, Lin76].

Theorem 2.13. Let (7¢)¢>0 be a quantum dynamical semigroup on Mg. Then
there exist matrices M, L', ... L™ € Mgy, with M* = M, such that the gen-

erator L = %7} s given by
£00) =i X+ 3 (A X2 - 4 (X, (2924
k=1
for X € My.

Note that M, L!,..., L™ € My are not uniquely determined by (7
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Proposition 2.14. Let n € N, M,L',--- L™ € My, M* = M, and let
(Jst)o<s<t be the Lévy process on Uy over F(LQ(]RJr7 (C")), whose Schiirmann
triple is constructed from M,L',--- L™ as in Proposition 2.6. Then the semi-
group (n:)i>o0 defined from the unitary cocycle

Jot(u11) -+ Joe(u1a)
Ui = : :
Jot(uar) -+ Jor(uda)

as in (2.3) is a dilation of the quantum dynamical semigroup (Ti)i>0 with
generator

L(X)=i[M,X]+ zn: ((Lk)*XLk — % {X, (Lk)*Lk}>

k=1
for X € My.

Proof. The calculation is similar to the one in Section 2.2. O

We denote this dilation by (1;);>0 and define again 7, : My — B(Cd ®
F(L?([o,t],/C))), t>0by

(X)) =m(X®1)=U(X @ 1)U/

for X € My.
Denote by Qg4 the subalgebra of Uy generated by u;uy,, 1 <1i,j,k, ¢ < d.
This is even a subbialgebra, since

d
* * *
Auijuge) = E Uirtlps © UrjUgy

r,s=1
forall 1 <i,j,k, ¢ <d.

Lemma 2.15. Let n : Uy — H be the cocycle associated to L*,...,L", M €
M4(C), with M* = M, in Proposition 2.0.

(a) n is surjective, if and only if L*,... L™ are linearly independent.
(b) n|o, is surjective, if and only if I,L*,... L™ are linearly independent,
where I denotes the identity matrix.

Proof. (a) Uqg is generated by {u;;|1 <1i,j < d}, so by Lemma I.1.26 we have
1n(Ua) = span{n(u;)|1 < i,j < d}.
Denote by Ay : H — span {(L')*,...,(L")*} € My(C) the linear map
defined by A;(e,) = (L¥)*, v = 1,...,n. Then we have ker A; = n(Uy)*,
since
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d
(,n(ug)) =Y oLy = M(v),  1<i,j<d,
v=1
forv=>"_ v,e, € H. The map A; is injective, if and only if L', ..., L"
are linearly independent. Since ker A; = n(Uy)*, this is also equivalent to
the surjectivity of 1|y, .
(b) We have n(Qq) = span{n(u;;uj,)|1 <1i,j,k,¢ < d}.
Denote by Ag : H — span{(L')*®@I—I®(LY)*, ... (L")*®@I—-I®(L")*} C
M 4(C)®@M4(C) the linear map defined by Ay (e,) = (L¥)* @I —T1®(L")*,
v=1,...,n. Then we have ker Ay = 1(Qq)", since

(v, n(uiguge)) = (v, e(uij)n(uge) + n(uije(uge))
= (v, =05m(uer) + 1(uijore))

d
= > WLk — 65 L)
v=1
:AQ(U)ji,k€7 1§Za.77k/)a£§da

forv=>"_ v.e, € H.

The map As is injective, if and only if L', ..., L™ are linearly independent
and I ¢ span{L',... L"}, ie. iff I,L' ... L™ are linearly independent.
Since ker Ay = n(Q4)*, it follows that this is equivalent to the surjectivity

of 77|Qd'
O

Bhat [Bha01l, Bha05] has given a necessary and sufficient condition for the
minimality of dilations of the form we are considering.

Theorem 2.16. [Bhall, Theorem 9.1] The dilation (1:)>0 is minimal if and
only if I, L*,..., L™ are linearly independent.

Remark 2.17. The preceding arguments show that the condition in Bhat’s
theorem is necessary. Denote by H the subspace of I’ (LQ(R+, (C”)), which is
generated by operators of form j (u;juy,). By Theorem 1.20, this subspace
is dense in I’ (L2 (RJr,n(Qd)). Therefore the subspace generated by elements
of the 7;(X) = Uy(X ® 1)U} from C¢ ® (2 is contained in C¢ ® Hy. If 7 is
minimal, then this subspace in dense in C? ® I'(L*(Ry,C™)). But this can
only happen if Hy is dense in I'(L?(R,C™)). This implies 7(Qq) = C% and
therefore that I, L', ... L™ are linearly independent.

Bhat’s theorem is actually more general, it also applies to dilations of
quantum dynamical semigroups on the algebra of bounded operators on an
infinite-dimensional separable Hilbert space, whose generator involves infi-
nitely many L’s, see [BhaOl, Bha05].
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3 The Five Universal Independences

In classical probability theory there exists only one canonical notion of inde-
pendence. But in quantum probability many different notions of independence
have been used, e.g., to obtain central limit theorems or to develop a quan-
tum stochastic calculus. If one requires that the joint law of two independent
random variables should be determined by their marginals, then an indepen-
dence gives rise to a product. Imposing certain natural condition, e.g., that
functions of independent random variables should again be independent or an
associativity property, it becomes possible to classify all possible notions of in-
dependence. This program has been carried out in recent years by Schiirmann
[Sch95a], Speicher [Sped7], Ben Ghorbal and Schiirmann [BGS99][BGS02],
and Muraki [Mur03, Mur02]. In this section we will present the results of these
classifications. Furthermore we will formulate a category theoretical approach
to the notion of independence and show that boolean, monotone, and anti-
monotone independence can be reduced to tensor independence in a similar
way as the bosonization of Fermi independence [HP806] or the symmetrization
of [Sch93, Section 3].

3.1 Preliminaries on Category Theory

We recall the basic definitions and properties from category theory that we
shall use. For a thorough introduction, see, e.g., [Mac98].

Definition 3.1. A category C consists of

(a)a class ObC of objects denoted by A, B,C, ...,

(b) a class MorC of morphism (or arrows) denoted by f,g,h,...,

(¢) mappings tar,src : MorC — ObC assigning to each morphism f its source
(or domain) src(f) and its target (or codomain) tar(f). We will say that
fis a morphism in C from A to B or write “f : A — B is a morphism in
C”if f is a morphism in C with source src(f) = A and target tar(f) = B,

(d) a composition (f,g) — gof for pairs of morphisms f, g that satisfy src(g) =
tar(f),

(e) and a map id : ObC — MorC assigning to an object A of C the identity
morphism idy : A — A,

such that the
(1) associativity property: for all morphisms f : A — B, g : B — C, and
h:C — D of C, we have
(hog)of=ho(gof),

and the
(2)identity property: idia, sy o f = f and f oidg.ery = f holds for all mor-
phisms [ of C,
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are satisfied.

Let us emphasize that it is not so much the objects, but the morphisms
that contain the essence of a category (even though categories are usually
named after their objects). Indeed, it is possible to define categories without
referring to the objects at all, see the definition of “arrows-only metacate-
gories” in [Mac98, Page 9]. The objects are in one-to-one correspondence with
the identity morphisms, in this way ObC can always be recovered from Mor C.

We give an example.

Ezample 3.2. Let Ob Get be the class of all sets (of a fixed universe) and
Mor Get the class of total functions between them. Recall that a total function
(or simply function) is a triple (A, f, B), where A and B are sets, and f C
A x B is a subset of the cartesian product of A and B such that for a given
x € A there exists a unique y € B with (z,y) € f. Usually one denotes this
unique element by f(z), and writes  — f(z) to indicate (;v,f(x)) € f. The
triple (A, f, B) can also be given in the form f: A — B. We define

src((A,f, B)) =A, and tar((A,f, B)) = B.
The composition of two morphisms (A, f, B) and (B, g,C) is defined as
(B,g9,C) o (A, f,B) = (A, g0 [,C),
where g o f is the usual composition of the functions f and g, i.e.
go f={(x,2) € Ax C; there exists a y € B s.t. (z,y) € f and (y,2) € g}.

The identity morphism assigned to an object A is given by (A,id 4, A), where
ida € A x A is the identity function, id4 = {(z,x);x € A}. It is now easy to
check that these definitions satisfy the associativity property and the identity
property, and therefore define a category. We shall denote this category by
Get.

Definition 3.3. Let C be a category. A morphism f: A — B in C is called an
isomorphism (or invertible), if there exists a morphism g : B — A in C such
that go f =ida and f o g =idg. Such a morphism g is uniquely determined,
if it exists, it is called the inverse of f and denoted by g = f~'. Objects A and
B are called isomorphic, if there exists an isomorphism f: A — B.

Morphisms f with tar(f) = sre(f) = A are called endomorphisms of A.
Isomorphic endomorphism are called automorphisms.

For an arbitrary pair of objects A, B € ObC we define Mor¢(A, B) to be
the collection of morphisms from A to B, i.e.

More (A, B) = {f € MorC;src(f) = A and tar(f) = B}.
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Often the collections Mor¢(A, B) are also denoted by home (A, B) and called
the hom-sets of C. In particular, Morc(A, A) contains exactly the endomor-
phisms of A, they form a semigroup with identity element with respect to the
composition of C (if Mor¢ (A, A) is a set).

Compositions and inverses of isomorphisms are again isomorphisms. The
automorphisms of an object form a group (if they form a set).

Ezample 3.4. Let (G,o0,e) be a semigroup with identity element e. Then
(G,0,€e) can be viewed as a category. The only object of this category is
G itself, and the morphisms are the elements of G. The identity morphism is
e and the composition is given by the composition of G.

Definition 3.5. For every category C we can define its dual or opposite cat-
egory C°P. It has the same objects and morphisms, but target and source are
interchanged, i.e.

tarcos (f) = srce(f) and sreeon (f) = tare(f)
and the composition is defined by foopg = go f. We obviously have C°P°P = C.

Dualizing, i.e. passing to the opposite category, is a very useful concept
in category theory. Whenever we define something in a category, like an epi-
morphism, a terminal object, a product, etc., we get a definition of a “co-
something” | if we take the corresponding definition in the opposite category.
For example, an epimorphism or epi in C is a morphism in C which is right
cancellable, i.e. h € MorC is called an epimorphism, if for any morphisms
91,92 € MorC the equality g1 o h = go o h implies g1 = g. The dual notion
of a epimorphism is a morphism, which is an epimorphism in the category
C°P, i.e. a morphism that is left cancellable. It could therefore be called a “co-
epimorphism”, but the generally accepted name is monomorphism or monic.
The same technique of dualizing applies not only to definitions, but also to
theorems. A morphism r : B — A in C is called a right inverse of h : A — B
in C, if hor =idp. If a morphism has a right inverse, then it is necessarily an
epimorphism, since g1 0 g = g2 o h implies gy = g1 ogor =gasohor = go, if
we compose both sides of the equality with a right inverse r of h. Dualizing
this result we see immediately that a morphism f : A — B that has a left
inverse (i.e. a morphism [ : B — A such that [ o f = id4) is necessarily a
monomorphism. Left inverses are also called retractions and right inverses are
also called sections. Note that one-sided inverses are usually not unique.

Definition 3.6. A category D is called a subcategory of the category C, if

(1) the objects of D form a subclass of ObC, and the morphisms of D form a
subclass of Mor C,

(2) for any morphism f of D, the source and target of f in C are objects of D
and agree with the source and target taken in D,

(3) for every object D of D, the identity morphism idp of C is a morphism of
D, and
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(4) for any pair f : A — B and g : B — C in D, the composition go f in C is
a morphism of D and agrees with the composition of f and g in D.

A subcategory D of C is called full, if for any two objects A, B € ObD all
C-morphisms from A to B belong also to D, i.e. if

Morp (A, B) = Morc(A, B).

Remark 3.7. If D is an object of D, then the identity morphism of D in D is
the same as that in C, since the identity element of a semigroup is unique, if
it exists.

Exercise 3.8. Let (G, o, ¢) be a unital semigroup. Show that a subsemigroup
Gyo of G defines a subcategory of (G,o,e) (viewed as a category), if and only
ifee Go.

Definition 3.9. Let C and D be two categories. A covariant functor (or simply
functor) T': C — D is a map for objects and morphisms, every object A € ObC
is mapped to an object T(A) € ObD, and every morphism f : A — B inC
is mapped to a morphism T(f) : T(A) — T(B) in D, such that the identities
and the composition are respected, i.e. such that

T(ida) = idp(ay, for all A€ ObC
T(go f)=T(g)oT(f), whenever go f is defined in C.

We will denote the collection of all functors between two categories C and D
by Funct(C, D).

A contravariant functor T : C — D maps an object A € ObC to an object
T(A) € ObD, and a morphism f : A — B inC to a morphism T(f) : T(B) —
T(A) in D, such such that

T(idA) = idT(A), fOT’ all A€ ObC
T(go f)=T(f)oT(g), whenever go f is defined in C.

Ezample 3.10. Let C be a category. The identity functoride : C — C is defined
by id¢(A) = A and ide(f) = f.

Ezxample 3.11. The inclusion of a subcategory D of C into C also defines a
functor, we can denote it by C: D — C or by D C C.

Ezxample 3.12. The functor op : C — C°P that is defined as the identity map
on the objects and morphisms is a contravariant functor. This functor allows
to obtain covariant functors from contravariant ones. Let T : C — D be a
contravariant functor, then T'oop : C°? — D and opo T : C — D°P are
covariant.

Example 3.13. Let G and H be unital semigroups, then the functors 7' : G —
H are precisely the identity preserving semigroup homomorphisms from G to
H.
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Functors can be composed, if we are given two functors S : A — B and
T : B — C, then the composition To S : A — C,

(T'0 8)(A) = T(S(A)), for Ae ObA,
(ToS)(f) =T(S(f)), for fe€ MordA,

is again a functor. The composite of two covariant or two contravariant func-
tors is covariant, whereas the composite of a covariant and a contravariant
functor is contravariant. The identity functor obviously is an identity w.r.t.
to this composition. Therefore we can define categories of categories, i.e. cat-
egories whose objects are categories and whose morphisms are the functors
between them.

Definition 3.14. Let C and D be two categories and let S, T : C — D be two
functors between them. A natural transformation (or morphism of functors)
n: S — T assigns to every object A € ObC of C a morphism na : S(A) —
T(A) such that the diagram

S(A) - T(A)

S(f)J/ T(f)

nB

S(B) ——=T(B)

is commutative for every morphisms f : A — B in C. The morphisms nu,
A € ObC are called the components of 1. If every component na ofn: S — T
is an isomorphism, then n : S — T is called a natural isomomorphism (or a
natural equivalence), in symbols this is expressed asn:S =T.

We will denote the collection of all natural transformations between two
functors S,T : C — D by Nat(S,T).

Exercise 3.15. Let GG; and G5 be two groups (regarded as categories as in
Example 3.4). S, T : G; — G2 are functors, if they are group homomorphisms,
see Example 3.13. Show that there exists a natural transformation n: S — T
if and only if S and T are conjugate, i.e. if there exists an element i € G such
that T'(g) = hS(g)h~! for all g € G;.

Definition 3.16. Natural transformations can also be composed. Let S, T, U :
B—Candletn:S —T and? : T — U be two natural transformations. Then
we can define a natural transformation 9-n : S — U, its components are simply
(0-n)a =1940na. To show that this defines indeed a natural transformation,
take a morphism f : A — B of B. Then the following diagram is commutative,
because the two trapezia are.
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(0-n)a=DVa0na

S(A) U(A)
\T( /
S(f) lT(f) u(s)
T(B)
/ \
S(B) U(B)

(9n)p=9ponn

For a given functor S : B — C there exists also the identical natural trans-
formation idg : S — S that maps A € ObB to idga) € MorC, it is easy to
check that it behaves as a unit for the composition defined above.

Therefore we can define the functor category CB that has the functors from
B to C as objects and the natural transformations between them as morphisms.

Remark 3.17. Note that a natural transformation n : S — T has to be de-
fined as the triple (S, (na)a,T') consisting of its the source S, its components
(na)a and its target T. The components (n4) 4 do not uniquely determine the
functors S and T, they can also belong to a natural transformation between
another pair of functors (S’,7").

Definition 3.18. Two categories B and C can be called isomorphic, if there
exists an invertible functor T : B — C. A useful weaker notion is that of
equivalence or categorical equivalence. Two categories B and C are equivalent,
if there exist functors F': B — C and G : C — B and natural isomorphisms
GoF =idg and F o G = ide.

We will look at products and coproducts of objects in a category. The idea
of the product of two objects is an abstraction of the Cartesian product of
two sets. For any two sets M7 and M, their Cartesian product M7 x My has
the property that for any pair of maps (fi, f2), f1 : N — My, fo : N — Mo,
there exists a unique map h : N — My x My such that f; = p;oh fori=1,2,
where p; : My x My — M, are the canonical projections p;(mi,ms) = m;.
Actually, the Cartesian product M7 x Ms is characterized by this property up
to isomorphism (of the category Get, i.e. set-theoretical bijection).

Definition 3.19. A triple (AIl B,wa,7p) is called a product (or binary
product) of the objects A and B in the category C, if for any object C € ObC
and any morphisms f : C — A and g : C — B there exists a unique morphism
h such that the following diagram commutes,
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We will also denote the mediating morphism h: C — AII B by [f,g].

Often one omits the morphisms 74 and g and simply calls A IT B the product
of A and B. The product of two objects is sometimes also denoted by A x B.

Proposition 3.20. (a) The product of two objects is unique up to isomor-
phism, if it exists.

(b) Let f1 : Ay — By and fa : A — By be two morphisms in a category
C and assume that the products Ay Il Ay and By Il By exist in C. Then
there exists a unique morphism fi Il fo : Ay IT Ay — By Il By such that
the following diagram commutes,

A1L>Bl

VW

A IT Ay f1II f2 > B Il By

A2 —_— BQ
f2
(c) Let Ay, A, By, Ba,C1,Co be objects of a category C and suppose that the
products Ay Il Ay, By II By and Cy II Cy exist in C. Then we have
ida, ITida, =ida, m 4, and (g1 I g2) o (f1 IT f2) = (g1 © f1) II (g2 © fa)
for all morphisms f; : A; — By, g; : B; — C;, i1 =1,2.

Proof. (a) Suppose we have two candidates (P,m4,7p) and (P’, 7'y, n;) for
the product of A and B, we have to show that P and P’ are isomorphic.
Applying the defining property of the product to (P, 74, 75) with C = P’
and to (P’ 7'y, 7) with C = P, we get the following two commuting

diagrams,

A<;P4>B A<;P’4>B

We get mgohoh/ =7nyoh/ =my and rgohoh’ =nlgoh/ = mp, i.e. the
diagram
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N

A< —P—>B

is commutative. It is clear that this diagram also commutes, if we replace
hoh/ by idp, so the uniqueness implies h o h/ = idp. Similarly one proves
h' o h =idp/, so that h : P — P is the desired isomorphism.

(b) The unique morphism f; IT fo exists by the defining property of the prod-
uct of By and Bs, as we can see from the diagram

A 1T Ay

flyl Hfzxoﬂ':z
\

By <~——B1 1l By ——— By
T{'Bl ﬂ'32

(c) Both properties follow from the uniqueness of the mediating morphism in
the defining property of the product. To prove id 4, IIid4, = ida, 17 4, One
has to show that both expressions make the diagram

Ay 1T Ay

N
\

Ay =—— A1 T Ay —— Ay
TA, TA,

commutative, for the the second equality one checks that (g1 IT g2) o
(f1I1 f2) and (g1 o f1) II (g2 © f2) both make the diagram

Ay IT Ay

I
4

Ci<=—C1 I Cy —— (Y
TCy TCy

commutative.

The notion of product extends also to more then two objects.

Definition 3.21. Let (4;)icr be a family of objects of a category C, indexed
by some set I. The pair (Hie] A, (ﬂ'j ier 4i — Aj)je]) consisting of an
object [T;c; Ai of C and a family of morphisms (m; : [;c; Ai — Aj)jel of
C is a product of the family (A;)icr if for any object C and any family of

morphisms (f; : C — A;)ier there exists a unique morphism h: C — []
such that

ZEI
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mjoh=f;, foralljel

holds. The morphism m; : [[;c; Ai — Aj for j € I is called the jth product
projection. We will also write [filicr for the morphism h: C' — [, o As.

An object T of a category C is called terminal, if for any object C of C
there exists a unique morphism from C' to T. A terminal object is unique
up to isomorphism, if it exists. A product of the empty family is a terminal
object.

Exercise 3.22. (a) We say that a category C has finite products if for any
family of objects indexed by a finite set there exists a product. Show that
this is the case if and only if it has binary products for all pairs of objects
and a terminal object.

(b) Let C be a category with finite products, and let

C1L>D1

be morphisms in C. Show

(h1 11 ha) o [g1,92] = [h1 0 g1, he 0 g2) and [g1,g2] 0 f = [g1 0 f,g2 0 f].

Remark 3.23. Let C be a category that has finite products. Then the product is
associative and commutative. More precisely, there exist natural isomorphisms
aapc  AII(BIIC) — (AIIB)C and yap : BIIA — AIIB for all
objects A, B,C' € Ob(C.

The notion coproduct is the dual of the product, i.e.

HAi’ (’Lj : Aj — HA1>
jel

el el

is called a coproduct of the family (A4;);c; of objects in C, if it is a product
of the same family in the category C°P. Formulated in terms of objects and
morphisms of C only, this amounts to the following.

Definition 3.24. Let (A;)icr be a family of objects of a category C, indexed
by some set I. The pair (Hiel A, (12 A = TLies Ai)jel) consisting of an
object [[;c; Ai of C and a family of morphisms (zj 2 Ay — [ier Ai)je[ of C
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is a coproduct of the family (A;)icr if for any object C' and any family of
morphisms (f; + A; — C)ier there exists a unique morphism h : [[;.; A; — C
such that

howvw =f;, foralljel

holds. The morphism v; : Aj — [],c; Ai for j € I is called the jth coproduct
injection. We will write [filicr for the morphism h:[,c; Ai — C.

A coproduct of the empty family in C is an initial object, i.e. an object I
such that for any object A of C there exists exactly one morphism from I to
A.

It is straightforward to translate Proposition 3.20 to its counterpart for
the coproduct.

Ezample 3.25. In the trivial unital semigroup (G = {e},-, e), viewed as a
category (note that is is isomorphic to the discrete category over a set with
one element) its only object G is a terminal and initial object, and also a
product and coproduct for any family of objects. The product projections
and coproduct injections are given by the unique morphism e of this category.

In any other unital semigroup there exist no initial or terminal objects and
no binary or higher products or coproducts.

Ezample 3.26. In the category Get a binary product of two sets A and B is
given by their Cartesian product Ax B (together with the obvious projections)
and any set with one element is terminal. A coproduct of A and B is defined
by their disjoint union AUB (together with the obvious injections) and the
empty set is an initial object. Recall that we can define the disjoint union as
AUB = (A x {A}) U (B x {B}).

Exercise 3.27. Let Vet be the category that has as objects all vector spaces
(over some field K) and as morphisms the K-linear maps between them. The
trivial vector space {0} is an initial and terminal object in this category.
Show that the direct sum of (finitely many) vector spaces is a product and a
coproduct in this category.

The following example shall be used throughout this section and the fol-
lowing.

Example 3.28. The coproduct in the category of unital algebras 2(lg is the free
product of x-algebras with identification of the units. Let us recall its defining
universal property. Let {Ay}rer be a family of unital *-algebras and [, ., Ax
their free product, with canonical inclusions {ix, : Ar — [l,c; Artrer. If
B is any unital %-algebra, equipped with unital x-algebra homomorphisms
{1}, : Ax — B}rer, then there exists a unique unital *-algebra homomorphism
h: [1,er Ax — B such that

hoiy =i}, forall kel
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It follows from the universal property that for any pair of unital x-algebra
homomorphisms j; : Ay — By, jo : As — By there exists a unique unital *-
algebra homomorphism ji [ 72 : A1 [ A2 — By ][ B2 such that the diagram

Ay Lb’l

AT A2 g1 J2 > B[ B

1
k %

Ay —= B>
J2
commutes.

The free product [ [, ; Ax can be constructed as a sum of tensor products
of the Ay, where neighboring elements in the product belong to different
algebras. For simplicity, we illustrate this only for the case of the free product
of two algebras. Let

A=Jlee{,2} e #ea # - #en}

neN

and decompose A; = C1® AV, i = 1,2, into a direct sum of vector spaces. As
a coproduct A; [] Az is unique up to isomorphism, so the construction does
not depend on the choice of the decompositions.

Then A; [] Ay can be constructed as

AT A2 = P A,

€cA

where A" =C, A= A% @---® A? for € = (e1,...,€,). The multiplication
in Ay [] Az is inductively defined by

@@ (an b)) Q- Rby, if €, =1,
(a1®...®an).(b1®...®bm)* {a1®"'®an®bl®"'®bm if €, # 01,
for a1 @ -+ - ®a, € A, by ® --- @b, € A°. Note that in the case ¢, =
01 the product a,, - by is not necessarily in Agn, but is in general a sum of
a multiple of the unit of 4. and an element of Agn. We have to identify
MR Uy 1 @1 @by ® by, With a1 @ -+ @ a1 - by @ -+ - byp,.

Since [] is the coproduct of a category, it is commutative and associative
in the sense that there exist natural isomorphisms

Yaras AL [ A2 S A T A, (3.1)

aaaas AL (Az HA3> E (/h HA2> 1T As
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for all unital x-algebras A;, Az, As. Let ig : Ay — Ay [[ A2 and @), : Ay —
A3 [] A1, € = 1,2 be the canonical inclusions. The commutativity constraint
Va4, 2 Al A2 — A ][ A maps an element of A; [T Az of the form
il(al)iQ(bl) cee ZQ(bn) with a1,...,0y € Al, bl, ey bn S AQ to

Yar, A5 (11(a1)iz(b1) - -ia(bn)) = 4y (a1)in(b1) - - in(bn) € Ag HAl-

Exercise 3.29. We also consider non-unital algebras. Show that the free prod-
uct of x-algebras without identification of units is a coproduct in the category
nu2lg of non-unital (or rather not necessarily unital) algebras. Give an explicit
construction for the free product of two non-unital algebras.

Exercise 3.30. Show that the following defines a a functor from the category
of non-unital algebras nulg to the category of unital algebras 2(lg. For an
algebra A € Obnulg, A is equal to A = C1 @ A as a vector space and the
multiplication is defined by

A +a)(N1+d')=IN1+Na+ \d +ad

for A, N € C, a,a’ € A. We will call A the unitization of A. Note that
A201+ A C Ais not only a subalgebra, but even an ideal in A.

How is the functor defined on the morphisms?

Show that the following relation holds between the free product with iden-
tification of units [[, and the free product without identification of units

Hanl[g’ o
Ay [ A2z AT A
nuflg Alg

for all Ay, As € Obnulllg.

Note furthermore that the range of this functor consists of all algebras that
admit a decomposition of the form A = C1 & Ay, where A is a subalgebra.
This is equivalent to having a one-dimensional representation. The functor is
not surjective, e.g., the algebra My of 2 X 2-matrices can not be obtained as
a unitization of some other algebra.

Let us now come to the definition of a tensor category.

Definition 3.31. A category (C,0) equipped with a bifunctor J:C x C — C,
called tensor product, that is associative up to a natural isomorphism

aapc: AO(BOC) = (AOB)OC, for all A, B,C € ObC,
and an element E that is, up to natural isomorphisms
M :EOAS A and pa: AOE S A, for all A€ ObC,

a unit for O, is called a tensor category or monoidal category, if the pentagon
axiom
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(ADB)O(COID)

AD(BO(COD)) ((ADB)OC)OD

idADO‘B’C‘D\L T(XA)B)cDidD

AD((BOC)OD) (AO(BOC))OD

@A, BOC.D

and the triangle axiom

XA E,C

AQ(ECC) (AOE)OC

oo Ao

AOC
are satisfied for all objects A, B,C, D of C.

If a category has products or coproducts for all finite sets of objects, then
the universal property guarantees the existence of the isomorphisms «, A, and
p that turn it into a tensor category.

A functor between tensor categories, that behaves “nicely” with respect to
the tensor products, is called a tensor functor or monoidal functor, see, e.g.,
Section XI.2 in MacLane[Mac93g].

Definition 3.32. Let (C,0) and (C',00) be two tensor categories. A coten-
sor functor or comonoidal functor F' : (C,0) — (C',00) is an ordinary
functor F : C — C' equipped with a morphism Fy : F(E¢) — Ec¢ and
a natural transformation Fy : F(-0O-) — F(-)O'F(-), i.e. morphisms
Fy(A,B) : F(AOB) — F(A)O'F(B) for all A,B € ObC that are natural
in A and B, such that the diagrams

F(AQ(BOC)) loaee) F((AOB)OC) (3.2)
Fg(A,BDC)\L le(AIZIB,C)
F(A)T'F(BOC) F(AOB)'F(C)
idF(A)D’Fg(B,C)\L le(A,B)D’idF(c)
F(A)T (F(B)'F(C)) (F(A)D'F(B))YF(C)
QF(A),F(B),F(C)
F(BOEe) — 2B o3y F(Ee) (3.3)
F(pg)l \LidBD’Fg
F(B) F(B)V Ee:

P%(B)
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F>(Ec,B)

F(E:OB) F(Ec:)'F(B) (3.4)
F(AB)\L lFOD’idB
F(B) ﬁ Ec'F(B)

commute for all A, B,C € Ob(C.

We have reversed the direction of Fyy and F5 in our definition. In the case of
a strong tensor functor, i.e. when all the morphisms are isomorphisms, our
definition of a cotensor functor is equivalent to the usual definition of a tensor
functor as, e.g., in MacLane[Mac98].

The conditions are exactly what we need to get morphisms

Fo(Ar,..., Ay): F(AO---0A,) — F(A)D - O F(A,)

for all finite sets { Ay, ..., A, } of objects of C such that, up to these morphisms,
the functor F : (C,0) — (C’,00') is a homomorphism.

3.2 Classical Stochastic Independence and the Product
of Probability Spaces

Two random variables Xy : (2, F,P) — (Fy,&) and Xo @ (2,F,P) —
(E2,&), defined on the same probability space (2, F,P) and with values
in two possibly distinct measurable spaces (E1,&1) and (Esg, &), are called
stochastically independent (or simply independent) w.r.t. P, if the o-algebras
X&) and X5 (&) are independent w.r.t. P, i.e. if

P((X7 (M) N Xy N (M) = P((X (M) P(X5 H (My))

holds for all My € &, My € &. If there is no danger of confusion, then the
reference to the measure P is often omitted.

This definition can easily be extended to arbitrary families of random
variables. A family (Xj (2, F,P)— (E;,&j))jes, indexed by some set J, is
called independent, if

P (ﬂ X]_kl(MJk)> = HP(X]_kl(MJk))
k=1 k=1

holds for all n € N and all choices of indices k1, ..., k, € J with j # j,; for
J # ¢, and all choices of measurable sets M;, € &;, .

There are many equivalent formulations for independence, consider, e.g.,
the following proposition.

Proposition 3.33. Let X1 and X5 be two real-valued random variables. The
following are equivalent.
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(i) X1 and X5 are independent.
(i) For all bounded measurable functions f1, fo on R we have

E(f1(X1) f2(X2)) = E(f1(X1))E(f2(X2)).

(iii)The probability space (R?, B(R?), P(x,,x,)) is the product of the probability
spaces (R, B(R), Px,) and (R, B(R), Px,), i.e.

P(leXz) = le 4 PXQ.

We see that stochastic independence can be reinterpreted as a rule to
compute the joint distribution of two random variables from their marginal
distribution. More precisely, their joint distribution can be computed as a
product of their marginal distributions. This product is associative and can
also be iterated to compute the joint distribution of more than two indepen-
dent random variables.

The classifications of independence for non-commutative probability spaces
[Spe97, BGS99, BGOT, Mur03, Mur02] that we are interested in are based on
redefining independence as a product satisfying certain natural axioms.

3.3 Definition of Independence in the Language
of Category Theory

We will now define the notion of independence in the language of category
theory. The usual notion of independence for classical probability theory and
the independences classified in [Spe97, BGS99, BGOL, Mur03, Mur02] will
then be instances of this general notion obtained by considering the category
of classical probability spaces or categories of algebraic probability spaces.

In order to define a notion of independence we need less than a (co-)
product, but a more than a tensor product. What we need are inclusions or
projections that allow us to view the objects A, B as subsystems of their
product ACIB.

Definition 3.34. A tensor category with projections (C,0, 7) is a tensor cat-
egory (C,0) equipped with two natural transformations m : O — P and
mo : O — P, where the bifunctors P, P, : C x C — C are defined by
Py(By, Bs) = By, Py(By, By) = Ba, on pairs of objects By, By of C, and sim-
tlarly on pairs of morphisms. In other words, for any pair of objects By, Bo
there exist two morphisms g, : BiUBy — By, mp, : BiOBy — Ba, such that
for any pair of morphisms f1 : A1 — B, fo: Ay — Bs, the following diagram
commutes,

j41<%jél441[L42‘ji34>4A2
fll fl%_‘fZ lh

Bl < BlmBg P—— BQ.
By T By
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Similarly, a tensor product with inclusions (C,[1,4) is a tensor category
(C,0) equipped with two natural transformations iy : Py — O and iy : Py — O,
i.e. for any pair of objects By, By there exist two morphisms ip, : By —
B0Bsy, ip, : By — B10Bs, such that for any pair of morphisms f1 : Ay —
By, fo: Ay — Bs, the following diagram commutes,

Ay —— A 04y <— Ay

’LAl 7«A2
f1l f1[£f2 lfz
iB v B

By —— BBy <—— Bs.

In a tensor category with projections or with inclusions we can define a
notion of independence for morphisms.

Definition 3.35. Let (C,0,7) be a tensor category with projections. Two
morphism f1 : A — By and fy : A — Bs with the same source A are called
independent (with respect to ), if there exists a morphism h : A — B10By

such that the diagram
A
/ h \
Y

By =—— Bi0By —— B>
B, TBy

(3.5)

commutes.

In a tensor category with inclusions (C,0,1), two morphisms f1 : By — A
and fa : By — A with the same target B are called independent, if there exists
a morphism h : B{OBy — A such that the diagram

(3.6)
A
h

f1 f2

By —— B[0By <—— By
ZBI 132

commutes.

This definition can be extended in the obvious way to arbitrary sets of mor-
phisms.

If O is actually a product (or coproduct, resp.), then the universal property
in Definition 3.19 implies that for all pairs of morphisms with the same source
(or target, resp.) there exists even a unique morphism that makes diagram
(3.5) (or (3.6), resp.) commuting. Therefore in that case all pairs of morphism
with the same source (or target, resp.) are independent.

We will now consider several examples. We will show that for the category
of classical probability spaces we recover usual stochastic independence, if we
take the product of probability spaces, cf. Proposition 3.36.
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Example: Independence in the Category
of Classical Probability Spaces

The category Meas of measurable spaces consists of pairs (£2, F), where (2 is
a set and F C P({2) a o-algebra. The morphisms are the measurable maps.
This category has a product,

(20, F1) 1T (029, Fo) = (§21 X 29, F1 @ F2)

where (21 X (25 is the Cartesian product of 27 and (25, and F; ® F» is the
smallest o-algebra on 27 x 25 such that the canonical projections p; : 21 X
25 — 1 and py : §21 X 29 — (25 are measurable.

The category of probability spaces Prob has as objects triples (£2, F, P)
where (£2,F) is a measurable space and P a probability measure on ({2, F).
A morphism X : (£1,F;,P1) — (£21,F2,P) is a measurable map X :
(1, F1) — (£21, F2) such that

PioX =P,

This means that a random variable X : (£2,F,P) — (E,&) automatically
becomes a morphism, if we equip (E, &) with the measure

Px =PoX!

induced by X.
This category does not have universal products. But one can check that
the product of measures turns Brob into a tensor category,

(21, F1, P1) @ ($2, F2, P2) = ($1 X 22, F1 @ Fa, P ® P),
where P; ® P» is determined by
(Pl 39 PQ)(Ml X Mg) = Pl(Ml)Pg(Mg),

for all My € Fy, My € Fs. It is even a tensor category with projections in
the sense of Definition 3.34 with the canonical projections p; : (24 X {29, F1 ®
Fo, PL @ Py) — (21, F1, P1), pa : (1 X (25, F1 @ Fo, PL @ Pa) — (§22, F2, )
given by pl((wl,wg)) = wy, pg((wl,wg)) = wy for wy € 4, woy € (25.

The notion of independence associated to this tensor product with projec-
tions is exactly the one used in probability.

Proposition 3.36. Two random variables Xy : (2,F,P) — (E1,&1) and
Xo 2 (2, F,P) — (FE2,&), defined on the same probability space (§2,F, P)
and with values in measurable spaces (E1,&1) and (E2, &), are stochastically
independent, if and only if they are independent in the sense of Definition
3.35 as morphisms Xy : (2, F,P) — (E1,&1,Px,) and X5 : (2,F,P) —
(E2, &, Px,) of the tensor category with projections (Prob, ®, p).
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Proof. Assume that X; and X5 are stochastically independent. We have to
find a morphism h : (2,F, P) — (Fy X E9,& ® &, Px, ® Px,) such that the
diagram

(2, F, P)

h
v

(B, &1, Pxy) <o— (By X B2, &1 @ &, P, @ Px,) = (B2, &, Px;,)

commutes. The only possible candidate is h(w) = (Xi(w), X2(w)) for all
w € (2, the unique map that completes this diagram in the category of mea-
surable spaces and that exists due to the universal property of the product of
measurable spaces. This is a morphism in Prob, because we have

P(h™'(My x Ms)) = P(X7H (M) N X5 (M) = P(X; ' (M) P (X5 N (My))
= Px, (M1)Px,(Mz) = (Px, ® Px,)(My x Ma)

for all My € &, My € &, and therefore
Poh™' =Py, ® Px,.

Conversely, if X7 and X, are independent in the sense of Definition 3.35, then
the morphism that makes the diagram commuting has to be again h : w —
(X1 (w), X2(w)). This implies

P(Xl,Xg) = Poh_l = PX1 ®PX2
and therefore
P(X7H (M) N X5 (M) = P(X7 (M) P(X5 ' (Ma))
for all My € &, My € &s. O

Example: Tensor Independence in the Category
of Algebraic Probability Spaces

By the category of algebraic probability spaces AlgProb we denote the category
of associative unital algebras over C equipped with a unital linear functional.
A morphism j : (Ay, 1) — (Asg, ¢2) is a quantum random variable, i.e. an al-
gebra homomorphism j : A; — As that preserves the unit and the functional,
Le. j(lAl) = 1A2 and p20] = 1.

The tensor product we will consider on this category is just the usual
tensor product (A; ® Az, 1 ® p2), i.e. the algebra structure of A; @ Ay is
defined by

1A1®A2 = 1A1 ® 1-/427
(a1 @ az)(by @ by) = a1by ® asba,
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and the new functional is defined by

(p1 ® p2)(a1 @ az) = p1(a1)p2(az),

for all al,bl € Al, az,bg e As.
This becomes a tensor category with inclusions with the inclusions defined
by

iAl (0’1) =a1® ]-Aza
ia,(a2) = 14, ® ag,

for a; € Ay, as € As.

One gets the category of #-algebraic probability spaces, if one assumes that
the underlying algebras have an involution and the functional are states, i.e.
also positive. Then an involution is defined on A; ® As by (a1 ®a2)* = af ®ab
and ¢ ® o is again a state.

The notion of independence associated to this tensor product with inclu-
sions by Definition 3.35 is the usual notion of Bose or tensor independence
used in quantum probability, e.g., by Hudson and Parthasarathy.

Proposition 3.37. Two quantum random variables j1 : (B1,¢1) — (A, @)
and jo i (Ba,12) — (A, ), defined on algebraic probability spaces (By,1),
(Ba,1¥2) and with values in the same algebraic probability space (A, p) are
independent if and only if the following two conditions are satisfied.

(i) The images of j1 and jo commute, i.e.

[71(a1), j2(a2)] =0,

for all ay € Ay, as € As.
(i) ¢ satisfies the factorization property

¢ (j1(a1)j2(a2)) = ¢(j1(a1)) ¢ (j2(az2)),
for all ay € Ay, as € As.

We will not prove this Proposition since it can be obtained as a special case of
Proposition 3.38, if we equip the algebras with the trivial Zy-grading A®) = A,
AN = {0},

Example: Fermi Independence

Let us now consider the category of Zs-graded algebraic probability spaces
Zo-AlgProb. The objects are pairs (A, ) consisting of a Zs-graded unital
algebra A = A© @ AM and an even unital functional ¢, i.e. ¢| 40 = 0.
The morphisms are random variables that don’t change the degree, i.e., for
J: (A1,(,D1) — (Aa, p2), we have



Lévy Processes on Quantum Groups and Dual Groups 217
. 0 0 . 1 1
AP C AP andj(ATY) € AP

The tensor product (A1 ®z, A2, 01 ® @2) = (A1, 1) @z, (A2, p2) is defined
as follows. The algebra A; ®z, Az is the graded tensor product of A; and As,
Le. (A1 ®z,4) = AV @ AL @ AV 0 AV, (A ®7, A2)D = AV @ AV @
Aﬁo) ® Aél), with the algebra structure given by

1v41®z2«42 =14, @14,
(a1 ® ag) - (by @ by) = (—1)4°8229°8014, 1) @ ayby,

for all homogeneous elements aq, b1 € A1, as,by € As. The functional 1 ® o
is simply the tensor product, i.e. (¢1 ® v2)(a1 ® az) = 1(a1) @ @a(az) for
all a; € Ay, as € Ay. It is easy to see that p; ® @s is again even, if
and 9 are even. The inclusions i1 : (A1, ¢1) — (A1 ®z, Az, p1 @ ¢2) and
iy 1 (Az, 02) — (AL @z, A2, 01 ® @2) are defined by

il(a1)=a1®1A2 and iz(a2)=1A1®a2,

for a; € Ay, as € As.

If the underlying algebras are assumed to have an involution and the func-
tionals to be states, then the involution on the Zs-graded tensor product is
defined by (a3 ® ag)* = (—1)desardesazgx @ g% this gives the category of
Zo-graded *-algebraic probability spaces.

The notion of independence associated to this tensor category with inclu-
sions is called Fermi independence or anti-symmetric independence.

Proposition 3.38. Two random variables j1 : (Bi,v1) — (A, ) and jo :
(Ba,2) — (A, @), defined on two Zs-graded algebraic probability spaces
(B1,11), (Ba,12) and with values in the same Zs-algebraic probability space
(A, @) are independent if and only if the following two conditions are satisfied.

(i) The images of j1 and jo satisfy the commutation relations
ja(as)ji(ar) = (=1)18 42y (a1) o (a2)

for all homogeneous elements a1 € By, as € Bs.
(i) ¢ satisfies the factorization property

@(j1(al)j2(a2)) = <p(j1(a1))90(j2(a2)),
for all aq € By, as € Bs.

Proof. The proof is similar to that of Proposition 3.36, we will only outline
it. It is clear that the morphism h : (By, 1) ®z, (B2,12) — (A, ) that makes
the diagram in Definition 3.35 commuting, has to act on elements of By ® 1,
and 1z, ® Bs as

h(bl X 132) = jl(bl) and h(181 ® bg) = jg(bg)
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This extends to a homomorphism from (By, 1) ®z, (B2, %) to (A, ¢), if and
only if the commutation relations are satisfied. And the resulting homomor-
phism is a quantum random variable, i.e. satisfies ¢ o h = 1)1 ® 1o, if and only
if the factorization property is satisfied. 0O

Example: Free Independence

We will now introduce another tensor product with inclusions for the category
of algebraic probability spaces AlgProb. On the algebras we take simply the
free product of algebras with identifications of units introduced in Example
3.28. This is the coproduct in the category of algebras, therefore we also have
natural inclusions. It only remains to define a unital linear functional on the
free product of the algebras.

Voiculescu’s[VDN92] free product 1 * o of two unital linear functionals
o1 : Ay — C and g : Ay — C can be defined recursively by

(prx@a)(aag--am) =Y (=)™ (1% ) <H ak) [T #ex(ar)

IS{1,...,m} kel keI

for a typical element ajas---an € Ay [[ Az, with ar € A, , €1 # €2 # -+ #
€m, 1.e. neighboring a’s don’t belong to the same algebra. #I denotes the
number of elements of I and [], -, ax means that the a’s are to be multiplied
in the same order in which they appear on the left-hand-side. We use the
convention (1 * 2) ([Tpep ar) = 1.

It turns out that this product has many interesting properties, e.g., if ¢
and o are states, then their free product is a again a state. For more details,
see [BNT05] and the references given there.

Examples: Boolean, Monotone, and Anti-monotone Independence

Ben Ghorbal and Schiirmann[BGO1, BGS99] and Muraki[Mur03] have also
considered the category of non-unital algebraic probability nu(lg®Brob consist-
ing of pairs (A, ¢) of a not necessarily unital algebra A and a linear functional
. The morphisms in this category are algebra homomorphisms that leave the
functional invariant. On this category we can define three more tensor prod-
ucts with inclusions corresponding to the boolean product ¢, the monotone
product > and the anti-monotone product < of states. They can be defined by

p1opa(aray - am) = [ ¢e, (an),
k=1

801>902(a1a2"'am)—801< H ak) H pa(ar),

kiep=1 kiep=2
p1<4p2(araz - am) = H w1(ar) @2 ( H ak) )
kiex=1 kiep=2
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for o1 : A7 — C and ¢y : Ay — C and a typical element ajas---a,, €
A1 [T Az, a, € A, €1 # €2 # -+ # €, 1.e. neighboring a’s don’t belong to
the same algebra. Note that for the algebras and the inclusions we use here the
free product without units, the coproduct in the category of not necessarily
unital algebras.

The monotone and anti-monotone product are not commutative, but re-

lated by
01> P2 = (P2 <4P1) © VA, Ass

for all linear functionals ¢; : A3 — C, w2 : Ay — C, where v4,, 4,
A [J Az — A3 ][ Ay is the commutativity constraint (for the commutativity
constraint for the free product of unital algebras see Equation (3.1)). The
boolean product is commutative, i.e. it satisfies

01092 = (P2091) 074, A5
for all linear functionals 1 : A7 — C, o : Ay — C.

Exercise 3.39. The boolean, the monotone and the anti-monotone product
can also be defined for unital algebras, if they are in the range of the unitiza-
tion functor introduced in Exercise 3.30.

Let ¢7 : Ay — C and @3 : A3 — C be two unital functionals on algebras
A1, As, which can be decomposed as A; = C1 ® AY, A, = C1 @ AY. Then
we define the boolean, monotone, or anti-monotone product of ¢ and @9 as
the unital extension of the boolean, monotone, or anti-monotone product of
their restrictions ¢1]40 and 2| 49

Show that this leads to the following formulas.

1o p2(araz---an) = HSDQ (a:),
i=1

01> pa(arag---an) = 1 < H ai) H pa(a;),

16, =1 1€, =2

p1<9pa(aras--an) = ] e1(ai)ee ( 11 ai> ;

e, =1 i€, =2

for ajag -+ -an € A1 [[ A2,y a; € AQZ,, €1 # €3 # - -+ # €,. We use the convention
that the empty product is equal to the unit element.

These products can be defined in the same way for *-algebraic proba-
bility spaces, where the algebras are unital x-algebras having such a de-
composition A = C1 & Ay and the functionals are states. To check that
1 © Y2, 1 B> o, p1 < o are again states, if p; and @5 are states, one can
verify that the following constructions give their GNS representations. Let
(m1, H1,&) and (e, Ha, &2) denote the GNS representations of (Aj,¢1) and
(A, 2). The GNS representations of (A; []Az2, 010 v2), (A1 [ Az, p1>p2),
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and (A; [] Az, p1 <p2) can all be defined on the Hilbert space H = Hy ® Hy
with the state vector £ = & ®&,. The representations are defined by 7(1) = id
and

Tl = Mm@ P2, mag= PL@m, for pi0ps,

Tlg0 = T ® P2, 749 =idy, @ w2, for o1 g,

Tl g0 = m @idp,, a9 = PL @2, for p1 <,

where P;, P, denote the orthogonal projections P, : Hy — C&, P : Hy —
C&,. For the boolean case, £ = & ® & € Hy ® Hy is not cyclic for m, only the
subspace C¢ @ HY @ HY can be generated from &.

3.4 Reduction of an Independence

For a reduction of independences we need a little bit more than a cotensor
functor.

Definition 3.40. Let (C,[0,4) and (C',[0,i") be two tensor categories with
inclusions and assume that we are given functors [ :C — D and I’ : C' — D
to some category D. A reduction (F,J) of the tensor product O to the tensor
product O’ (w.r.t. (D,1,I'))is a cotensor functor F : (C,0) — (C",T0') and a
natural transformation J : I — I' o F', i.e. morphisms Jy : A — F(A) in D
for all objects A € ObC such that the diagram

1(A) —24 1 o F(4)

I(f)J/ ll’oF(f)

I(B)—=1I'o F(B)

B
commutes for all morphisms f: A — B in C.

In the simplest case, C will be a subcategory of C’, I will be the inclusion
functor from C into C’, and I’ the identity functor on C’. Then such a reduction
provides us with a system of inclusions J,,(A41,...,A,) = F(A1,...,A,) 0
Ja,0..04,

Jn(Al, .. ,An) : Alﬂ e DAn — F(Al)D/ . DIF(AH)

with Jy(A) = J4 that satisfies, e.g., Jpim (A1, ..., Appm) = Fo (F(Al)D' 0
F(An)v F(AnJrl)Dl T D/F(An+m))o (Jn(Ala tey An)DJm<An+1a veey An+m))
for all n,m € Nand Ay,..., Ayt € ObC.

A reduction between two tensor categories with projections would consist
of a cotensor functor F' and a natural transformation P : F' — I’.

In our applications we will also often encounter the case where C is not be
a subcategory of C’, but we have, e.g., a forgetful functor U from C to C’ that
“forgets” an additional structure that C has. An example for this situation
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is the reduction of Fermi independence to tensor independence in following
subsection. Here we have to forget the Zs-grading of the objects of Zo-AlgProb
to get objects of AlgProb. In this situation a reduction of the tensor product
with inclusions [ to the tensor product with inclusions [0 is a tensor function
F from (C,0) to (C',00) and a natural transformation J : U — F.

Ezxample 3.41. The identity functor can be turned into a reduction from
(Alg, []) to (Alg, ®) (with the obvious inclusions).

The Symmetric Fock Space as a Tensor Functor

The category Uec with the direct product @ is of course a tensor category
with inclusions and with projections, since the direct sum of vector spaces is
both a product and a coproduct.

Not surprisingly, the usual tensor product of vector spaces is also a tensor
product in the sense of category theory, but there are no canonical inclusions or
projections. We can fix this by passing to the category Uet, of pointed vector
spaces, whose objects are pairs (V, v) consisting of a vector space V and a non-
zero vector v € V. The morphisms h : (Vi,v1) — (Va,v2) in this category are
the linear maps h : V; — V4 with h(v1) = vs. In this category (equipped with
the obvious tensor product (V,v1)®(Va,ve) = (V1®Va, v1®vsy)) inclusions can
be defined by I : Vi S u+— u®uy € Vi@Voand I : Vi D u— v1Qu € ViRVs.

Exercise 3.42. Show that in (Lek,, ®, I) all pairs of morphisms are indepen-
dent, even though the tensor product is not a coproduct.

Proposition 3.43. Take D = Ueb, I = idgyee, and I’ : Veb, — Yek the
functor that forgets the fized vector.

The symmetric Fock space I is a reduction from (UVek, &, 1) to (Vek,, ®, 1)
(w.r.t, (‘Beﬂ idmee, I/))

We will not prove this proposition, we will only define all the natural
transformations.

On the objects, I' maps a vector space V to the pair (F(V), Q) consisting
of the algebraic symmetric Fock space

rwv)y=gve"

neN

and the vacuum vector 2. The trivial vector space {0} gets mapped to the
field I'({0}) = K with the unit 1 as fixed vector. Linear maps h : Vi — V5 get
mapped to their second quantization I'(h) : I'(Vy) — I'(Va). Fy : T'({0}) =
(K,1) — (K,1) is just the identity and F» is the natural isomorphism from
I'(Vi @ Vs) to I'(Vq) @ I'(Vz) which acts on exponential vectors as

Fy: E(up +ug) — E(uy) @ E(ug)

for uy € Vl, us € V.
The natural transformation J : idyg,. — I finally is the embedding of V'
into I'(V') as one-particle space.
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Example: Bosonization of Fermi Independence

We will now define the bosonization of Fermi independence as a reduction
from (AlgProb, ®, 1) to (Zo-AlgProb, ®z,,i). We will need the group algebra
CZsy of Zs and the linear functional ¢ : CZy — C that arises as the linear
extension of the trivial representation of Zs, i.e.

e(1)=¢(9) =1,

if we denote the even element of Zs by 1 and the odd element by g.
The underlying functor F' : Zo-2AlgBrob — AlgPBrob is given by

~ Ob Zy-AlgProb > (A, @) = (A ®z, CZLz, o ® ) € ObAlgProb,
" Mor Zy-AlgPBrob > f — f ®idcz, € Mor AlgProb.

The unit element in both tensor categories is the one-dimensional unital
algebra C1 with the unique unital functional on it. Therefore Fy has to be a
morphism from F(C1) 2 CZs to C1. It is defined by Fy(1) = Fy(g) = 1.

The morphism F5(A, B) has to go from F(A ®z, B) = (A ®z, B) @ CZs
to F(A) @ F(B) = (A®gz, CZs) ® (B®yz, CZs). It is defined by

(a®1)® (b®1) if bis even,

“®b®1h*{m®gwub®n it bis odd,

and
(c®g)® (b®g) if bis even,
(e®1)® (b®g) if bis odd,
for a € A and homogeneous b € B.

Finally, the inclusion J4 : A — A ®z, CZs is defined by

Jala) =a®1

a®b®g»—>{

for all a € A.

In this way we get inclusions J,, = Jn(A1,...,A,) = Fo(Ay,..., A,) o
J A, ®2, .92, A, Of the graded tensor product A; ®z, - - - ®z, A, into the usual
tensor product (A; ®z, CZ2) @ -+ @ (A, @z, CZs) which respect the states
and allow to reduce all calculations involving the graded tensor product to
calculations involving the usual tensor product on the bigger algebras F'(A;) =
Ay ®z, CZs, ..., F(A,) = A, ®z, CZy. These inclusions are determined by

J(1® - ®12e21®---01)=§® - 0jRa1®---®1,

k — 1 times n —k times k& — 1 times n — k times
for a € Ay odd, and
Jo(1® - ®10e®1®---®1)=1®---91Ri®1®---01,

k — 1 times n — k times k — 1 times n — k times
for a € A even, 1 < k < n, where we used the abbreviations

g=1®g, a=a®1, 1=1®1.
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The Reduction of Boolean, Monotone, and Anti-Monotone
Independence to Tensor Independence

We will now present the unification of tensor, monotone, anti-monotone, and
boolean independence of Franz[Fra03b] in our category theoretical framework.
It resembles closely the bosonization of Fermi independence in Subsection 3.4,
but the group Zs has to be replaced by the semigroup M = {1,p} with two
elements, 1-1=1,1-p=p-1=p-p=p. We will need the linear functional
e:CM — C with e(1) = ¢(p) = 1.

The underlying functor and the inclusions are the same for the reduction
of the boolean, the monotone and the anti-monotone product. They map the
algebra A of (A, ) to the free product F(A) = A][CM of the unitization A
of A and the group algebra CM of M. For the unital functional F'(¢) we take
the boolean product @ ¢ e of the unital extension ¢ of ¢ with €. The elements
of F'(A) can be written as linear combinations of terms of the form

praip- - pamp”

with m € N, o,w € {0,1}, ay,....a,, € A, and F(yp) acts on them as

F(p)(p*arp- - pamp®) = [ ] elar)-
k=1

The inclusion is simply
Jyg:A>a—ae F(A).

The morphism Fy : F(C1) = CM — C1 is given by the trivial representation
of M, Fo(]_) = Fo(p) =1.

The only part of the reduction that is different for the three cases are the
morphisms

Fy(Ar, Ap) A [ ] A2 — F(AD) ® F(Ap) = (A [[CM) @ (A ] CM).

We set

5 - a@p ifaEAlv
Fy (A1, Az)(a) = {p@a if a € A,

for the boolean case,

a®p ifae Ay,
(A1, Az)(a) = {1 ®§ ifa e A;
for the monotone case, and
a®1 ifac Ay,

FPM(Ay, Ag)(a) = {p®a if a € As,

for the anti-monotone case.
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For the higher order inclusions J = F3(Ay,..., An) 0 Ja, 1] ]] An» ® €
{B,M, AM}, one gets

JB(a) — p®(k_1) QRa® p®(”_k)’
_ 1®(k*1) Ra® p®(’ﬂ*k)7
Tt (a) = p®

if a € Ag.

One can verify that this indeed defines reductions (F'B,.J), (FM,.J),
and (FAMJ) from the categories (nulg¥Prob,o,q), (nuAlgProb,>,4), and
(nuAlgProb, <, i) to (AlgProb, ®,4). The functor U : nuAlgProb — AlgProb
is the unitization of the algebra and the unital extension of the functional and
the morphisms.

This reduces all calculations involving the boolean, monotone or anti-
monotone product to the tensor product. These constructions can also be
applied to reduce the quantum stochastic calculus on the boolean, monotone,
and anti-monotone Fock space to the boson Fock space. Furthermore, they
allow to reduce the theories of boolean, monotone, and anti-monotone Lévy
processes to Schiirmann’s[Sch93] theory of Lévy processes on involutive bial-
gebras, see Franz[Fra03b] or Subsection 4.3.

Exercise 3.44. Construct a similar reduction for the category of unital alge-
bras A having a decomposition A = C1 & Ay and the boolean, monotone, or
anti-monotone product defined for these algebras in Exercise 3.39

3.5 Classification of the Universal Independences

In the previous Subsection we have seen how a notion of independence can
be defined in the language of category theory and we have also encountered
several examples.

We are mainly interested in different categories of algebraic probability
spaces. Their objects are pairs consisting of an algebra A and a linear func-
tional ¢ on A. Typically, the algebra has some additional structure, e.g., an
involution, a unit, a grading, or a topology (it can be, e.g., a von Neumann
algebra or a C*-algebra), and the functional behaves nicely with respect to
this additional structure, i.e., it is positive, unital, respects the grading, con-
tinuous, or normal. The morphisms are algebra homomorphisms, which leave
the linear functional invariant, i.e., j: (A, ¢) — (B, 1)) satisfies

p=1voj

and behave also nicely w.r.t. additional structure, i.e., they can be required
to be x-algebra homomorphisms, map the unit of A to the unit of B, respect
the grading, etc. We have already seen one example in Subsection 3.3.

The tensor product then has to specify a new algebra with a linear func-
tional and inclusions for every pair of of algebraic probability spaces. If the
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category of algebras obtained from our algebraic probability space by forget-
ting the linear functional has a coproduct, then it is sufficient to consider the
case where the new algebra is the coproduct of the two algebras.

Proposition 3.45. Let (C,0,4) be a tensor category with inclusions and F :
C — D a functor from C into another category D which has a coproduct || and
an initial object Ep. Then F is a tensor functor. The morphisms Fy(A, B) :
F(A)JIF(B) — F(AOB) and Fy : Ep — F(FE) are those guaranteed by
the universal property of the coproduct and the initial object, i.e. Fy : Ep —
F(E) is the unique morphism from Ep to F(E) and F3(A, B) is the unique
morphism that makes the diagram

F(ia) F(AOB) F(ip)

A
) F2(A,B) -
TF(A) YF(B)

F(A)ITF(B)

F(A) F(B)

commuting.

Proof. Using the universal property of the coproduct and the definition of Fj,
one shows that the triangles containing the F'(A) in the center of the diagram

QXF(A),F(B),F(C)

FATT(F(B)IIF(©)) (F(ALTFB)ITF(C)
idpeay [1 Fz(BaC)l \\lF(m zF(A)/ \LFz (A,B)[1idr(c)
\ /

F(A) [ F(BOC) <—ircay— F(A) F(AOB)]]

Fg(A,BDC)l F(u/ \F J{ (AOB,0)

F(AD(BDC))

( (AOB)OC)

F(aa,B,c)

commute (where the morphism from F(A) to F(AOB) ][] F(C) is given by
F(ia)[1idp(cy), and therefore that the morphisms corresponding to all the
different paths form F(A) to F((AOB)OC) coincide. Since we can get simi-
lar diagrams with F(B) and F(C), it follows from the universal property of
the triple coproduct F(A)[] (F(B)[[F(C)) that there exists only a unique
morphism from F(A)[] (F(B)[]F(C)) to F((AOB)OC) and therefore that
the whole diagram commutes.

The commutativity of the two diagrams involving the unit elements can
be shown similarly. O

Let C now be a category of algebraic probability spaces and F the functor
that maps a pair (A, ) to the algebra A, i.e., that “forgets” the linear func-
tional ¢. Suppose that C is equipped with a tensor product [J with inclusions
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and that F(C) has a coproduct []. Let (A, ¢), (B,1) be two algebraic proba-
bility spaces in C, we will denote the pair (A, )0(B, ) also by (AOB, ).
By Proposition 3.45 we have morphisms F5(A, B) : A[[ B — AOB that define
a natural transformation from the bifunctor [] to the bifunctor OJ. With these
morphisms we can define a new tensor product O with inclusions by

(A4,)0B, ) = (A]] B, (¢0v) 0 F2(A,B))
The inclusions are those defined by the coproduct.

Proposition 3.46. If two random variables f1 : (A1, 1) — (B,v) and
f1: (A1 1) — (B,y) are independent with respect to O, then they are also
independent with respect to [1.

Proof. If f; and fy are independent with respect to [, then there exists a
random variable h : (A10Az, p10p2) — (B,7) that makes diagram (3.6) in
Definition 3.35 commuting. Then ho F5( A1, As) : (A1 [[ A2, p10p2) — (B,1))

makes the corresponding diagram for (0 commuting. 0O

The converse is not true. Consider the category of algebraic probability spaces
with the tensor product, see Subsection 3.3, and take B = A; [[ A3 and ¢ =
(p1 ® p2) 0 F5( Ay, A2). The canonical inclusions i 4, : (A1, p1) — (B,) and
ia, : (Ag,02) — (B,v) are independent w.r.t. @, but not with respect to the
tensor product itself, because their images do not commute in B = A; [ As.

We will call a tensor product with inclusions in a category of quantum
probability spaces universal, if it is equal to the coproduct of the corresponding
category of algebras on the algebras. The preceding discussion shows that
every tensor product on the category of algebraic quantum probability spaces
AlgProb has a universal version. E.g., for the tensor independence defined in
the category of algebraic probability spaces in Subsection 3.3, the universal
version is defined by

P1@pa(araz - am) = @1 ( 11 ai> 2 ( 11 ai>

e, =1 i€, =2

for two unital functionals ¢ : A; — C and ¢y : Ay — C and a typical element
araz - am € Ay [ Az, with a, € A, €1 # €2 # -+ # €, L.e. neighboring
a’s don’t belong to the same algebra.

We will now reformulate the classification by Muraki[Mur03] and by Ben
Ghorbal and Schirmann[BGO1, BGS99] in terms of universal tensor products
with inclusions for the category of algebraic probability spaces AlgProb.

In order to define a universal tensor product with inclusions on AlgProb
one needs a map that associates to a pair of unital functionals (¢1, p2) on two
algebras A; and As a unital functional ¢; - p2 on the free product A; [] Ay
(with identification of the units) of A; and A5 in such a way that the bifunctor
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O (A1, 1) X (Az,01) = (A1 [ [ Az 01+ 92)

satisfies all the necessary axioms. Since [J is equal to the coproduct [] on the
algebras, we don’t have a choice for the isomorphisms «, A, p implementing
the associativity and the left and right unit property. We have to take the
ones following from the universal property of the coproduct. The inclusions
and the action of [J on the morphisms also have to be the ones given by the
coproduct.

The associativity gives us the condition

((801 : @2) ’ <P3) OQA Az A3 = P1° (802 : @3), (3-7)

for all (Aq, 1), (A2, p2), (Asz, p3) in AlgProb. Denote the unique unital func-
tional on C1 by 4, then the unit properties are equivalent to

(p-6)opa=¢ and (5-p)ola=¢,

for all (A, ¢) in AlgProb. The inclusions are random variables, if and only if

(p1-p2)0ia, =¢1 and (p1-p2)0ig, =p2 (3.8)

for all (A, 1), (A2, p2) in AlgProb. Finally, from the functoriality of O we
get the condition

(1 2) 0 (1 [ 42) = (1 01) - (20 j2) (3.9)

for all pairs of morphisms 71 : (B1,v¢1) — (A1, 91), j2 : (B2,12) — (Aa, p2)
in AlgProb.

Our Conditions (3.7), (3.8), and (3.9) are exactly the axioms (P2), (P3),
and (P4) in Ben Ghorbal and Schiirmann[BGS99], or the axioms (U2), the
first part of (U4), and (U3) in Muraki[Mur03].

Theorem 3.47. (Muraki ~ [Mur03],  Ben  Ghorbal and  Schirmann
[BGO1, BGS99]). There exist exactly two universal tensor products with in-
clusions on the category of algebraic probability spaces AlgProb, namely the
universal version & of the tensor product defined in Section 3.3 and the one
associated to the free product x of states.

For the classification in the non-unital case, Muraki imposes the additional
condition

(1 - p2)(araz) = @c, (a1)pe, (az) (3.10)
for all (e1,e2) € {(1,2),(2,1)}, a1 € A¢,, a2 € Aq,.

Theorem 3.48. (Muraki[Mur(3]) There exist exactly five universal tensor
products with inclusions satisfying (5.10) on the category of non-unital al-
gebraic probability spaces nuAlgProb, namely the universal version & of the
tensor product defined in Section 3.3 and the ones associated to the free prod-
uct x, the boolean product o, the monotone product > and the anti-monotone
product <.
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The monotone and the anti-monotone are not symmetric, i.e. (A; [[ Az, 1>
o) and (Az [ Az, p2 > 1) are not isomorphic in general. Actually, the anti-
monotone product is simply the mirror image of the monotone product,

(A1 HA2,<P1 > o) = (Ag HA1,<P2 A1)

for all (A, ¥1), (A2, p2) in the category of non-unital algebraic probability
spaces. The other three products are symmetric.

In the symmetric setting of Ben Ghorbal and Schiirmann, Condition (3.10)
is not essential. If one drops it and adds symmetry, one finds in addition the
degenerate product

e (ar) if m=1,
(p1 oo@z)(a1a2-~~am){gl( 2 if m>1.

and families
p1og 02 =q((a 1) (¢ w2)),
parametrized by a complex number ¢ € C\{0}, for each of the three symmetric
products, e € {®, x,0}.
If one adds the condition that products of states are again states, then one
can also show that the constant has to be equal to one.

Exercise 3.49. Consider the category of non-unital x-algebraic probability
spaces, whose objects are pairs (A, ) consisting of a not necessarily unital *-
algebra A and a state ¢ : A — C. Here a state is a linear functional ¢ : A — C
whose unital extension ¢ : 4=~ C1® A — C, \14+a— ¢(A1+a) = A+ ¢(a),
to the unitization of A is a state.

Assume we have products - : S(A;) x S(As) — S(A1][A2) of linear
functionals on non-unital algebras A;, A5 that satisfy

(¢1 - p2)(araz) = crp1(ar)p2(az),
(¢1 - p2)(azar) = capi(ar)p2(az),

for all linear functionals ¢; : A7 — C, @9 : Ay — C, and elements a; € A,
as € Ao with “universal” constants ci,co € C, i.e. constants that do not
depend on the algebras, the functionals, or the algebra elements. That for
every universal independence such constants have to exist is part of the proof
of the classifications in [BGOL, BGS99, Mur03].

Show that if the products of states are again states, then we have ¢; =
co = 1. Hint: Take for A4; and A5 the algebra of polynomials on R and for ¢
and 9 evaluation in a point.

The proof of the classification of universal independences can be split into
three steps.

Using the “universality” or functoriality of the product, one can show that
there exist some “universal constants” - not depending on the algebras - and
a formula for evaluating
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(901 : 902)(a1a2 T am)

for ayas -+ am € Ay [ A2, with ay, € A, , €1 # €2 # -+ # €, as a linear com-
bination of products ¢1(Mj), w2(Ms), where My, My are “sub-monomials”
of ajas -+ a,,. Then in a second step it is shown by associativity that only
products with ordered monomials M7, My contribute. This is the content of
[BGS02, Theorem 5] in the commutative case and of [Mur03, Theorem 2.1] in
the general case.

The third step, which was actually completed first in both cases, see
[Spe97] and [Mur02], is to find the conditions that the universal constants
have to satisfy, if the resulting product is associative. It turns out that the
universal coefficients for m > 5 are already uniquely determined by the coef-
ficients for 1 < m < 5. Detailed analysis of the non-linear equations obtained
for the coeflicients of order up to five then leads to the classifications stated
above.

4 Lévy Processes on Dual Groups

We now want to study quantum stochastic processes whose increments are
free or independent in the sense of boolean, monotone, or anti-monotone in-
dependence. The approach based on bialgebras that we followed in the first
Section works for the tensor product and fails in the other cases because the
corresponding products are not defined on the tensor product, but on the free
product of the algebra. The algebraic structure which has to replace bialge-
bras was first introduced by Voiculescu [Voi&7, Voi90], who named them dual
groups. In this section we will introduce these algebras and develop the theory
of their Lévy processes. It turns out that Lévy processes on dual groups with
boolean, monotonically, or anti-monotonically independent increments can be
reduced to Lévy processes on involutive bialgebra. We do not know if this is
also possible for Lévy processes on dual groups with free increments.

In the literature additive free Lévy processes have been studied most in-
tensively, see, e.g., [G5592, Bia98, Ans02, Ans03, BNT02b, BNT02a].

4.1 Preliminaries on Dual Groups

Denote by Comflg the category of commutative unital algebras and let B €
Ob Com&lg be a commutative bialgebra. Then the mapping

Ob Com2lg > A — Morgomaig (B, A)

can be understood as a functor from €omflg to the category of unital semi-
groups. The multiplication in Morg4 (B, A) is given by the convolution, i.e.

frg=mao(f@g)ols
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and the unit element is el 4. A unit-preserving algebra homomorphism
h: Ay — As gets mapped to the unit-preserving semigroup homomorphism
Morgomaig(B, A1) 3 f — ho f € Morgomaig (B, Az), since

ho(fxg)=(hof)x(hog)

for all A1, Ay € Ob Com2lg, h € Morgomaig (A1, A2), f, g € Moregomaig (B, A1).
If B is even a commutative Hopf algebra with antipode S, then Moreomaig
(B, A) is a group with respect to the convolution product. The inverse of a
homomorphism f : B — A with respect to the convolution product is given
by folS.
The calculation

(fxg)(ab) =mao (f ®g)o As(ab)
= fla@ybay)gla@bey) = flaw)) f(bay)glae))g(be))
= flawy)glaw))f(bwy)glbey) = (f xg)(a)(f x g)(b)

shows that the convolution product fx g of two homomorphisms f,g: B — A
is again a homomorphism. It also gives an indication why non-commutative
bialgebras or Hopf algebras do not give rise to a similar functor on the category
of non-commutative algebras, since we had to commute f(b(1)) with g(a(s)).

Zhang [Zha91], Berman and Hausknecht [BH96] showed that if one replaces
the tensor product in the definition of bialgebras and Hopf algebras by the free
product, then one arrives at a class of algebras that do give rise to a functor
from the category of non-commutative algebras to the category of semigroups
or groups.

A dual group [Voi87, Voi90] (called H-algebra or cogroup in the category of
unital associative *-algebras in [Zha91] and [BI196], resp.) is a unital x-algebra
B equipped with three unital x-algebra homomorphisms A : B — B[] 5,
S:B — Bande:B— C (also called comultiplication, antipode, and counit)
such that

(AHid) oA = (idHA) o A, (4.1)
(aHid)oA:id: (1(1]_[5)04 (4.2)
mBo(S]_[id)oAzidszo(ist)oA, (4.3)

where mg : B][[B — B, mp(a1 ®as @+ ®an) = ay-az- -+ -ay, is the multi-
plication of B. Besides the formal similarity, there are many relations between
dual groups on the one side and Hopf algebras and bialgebras on the other
side, cf. [Zha91]. For example, let B be a dual group with comultiplication A,
and let R : B][B — B ® B be the unique unital *-algebra homomorphism
with

RB,BOil(b)Zb(@l, RB7BOZ‘2(b):1®b,
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for all b € B. Here i1,i2 : B — B]][B denote the canonical inclusions of B
into the first and the second factor of the free product B][B. Then B is a
bialgebra with the comultiplication A = Rp 0 A, see [Zha91, Theorem 4.2],
but in general it is not a Hopf algebra.

We will not really work with dual groups, but the following weaker notion.
A dual semigroup is a unital x-algebra B equipped with two unital x-algebra
homomorphisms A : B — B[ B and ¢ : B — C such that Equations (4.1) and
(4.2) are satisfied. The antipode is not used in the proof of [Zha91, Theorem
4.2], and therefore we also get an involutive bialgebra (B, A, ¢) for every dual
semigroup (B, A, €).

Note that we can always write a dual semigroup B as a direct sum B =
C1® B°, where B = ker¢ is even a *-ideal. Therefore it is in the range of the
unitization functor and the boolean, monotone, and anti-monotone product
can be defined for unital linear functionals on B, cf. Exercise 3.39.

The comultiplication of a dual semigroup can also be used to define a
convolution product. The convolution j; x jo of two unital x-algebra homo-
morphisms j1,jo : B — A is defined as

jl*j2:on(j1Hj2>oA.

As the composition of the three unital x-algebra homomorphisms A : B —
BIIB, j1llj2 : BIIB — AJ[A, and my4 : A[[ A — A, this is obviously
again a unital x-algebra homomorphism. Note that this convolution can not
be defined for arbitrary linear maps on B with values in some algebra, as for
bialgebras, but only for unital x-algebra homomorphisms.

4.2 Definition of Lévy Processes on Dual Groups

Definition 4.1. Let j1 : By — (A, D),...,jn = B, — (A, P) be quantum
random variables over the same quantum probability space (A, ®) and denote
their marginal distributions by ¢; = ® o j;, i = 1,...,n. The quantum ran-
dom variables (ji,...,jn) are called tensor independent (respectively boolean
independent, monotonically independent, anti-monotonically independent or
free), if the state Domao (j1 [1--11Jjn) on the free product [}, B; is equal
to the tensor product (boolean, monotone, anti-monotone, or free product, re-
spectively) of ©1,. .., ¢n.

Note that tensor, boolean, and free independence do not depend on
the order, but monotone and anti-monotone independence do. An n-tuple
(J1s--+,Jn) of quantum random variables is monotonically independent, if
and only if (j,,...,j1) is anti-monotonically independent.

We are now ready to define tensor, boolean, monotone, anti-monotone,
and free Lévy processes on dual semigroups.

Definition 4.2. [Sch95b] Let (B, A,€) be a dual semigroup. A quantum sto-
chastic process {jsi fo<s<i<r on B over some quantum probability space (A, D)
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is called a tensor (resp. boolean, monotone, anti-monotone, or free) Lévy
process on the dual semigroup B, if the following four conditions are satisfied.

1. (Increment property) We have

Jrs * Jst = Jrt forallOSTSSStST,
Jee =elyg  forall0 <t <T.

2. (Independence of increments) The family {jsito<s<i<r 5 tensor inde-
pendent (resp. boolean, monotonically, anti-monotonically independent, or
free) w.r.t. @, i.e. the n-tuple (Jsytyy-- -+ Jsnt, ) 1S tensor independent (resp.
boolean, monotonically, anti-monotonically independent, or free) for all
neNandall)0 <s; <t; <sg<---<t, <T.

3. (Stationarity of increments) The distribution pst = P o js of js¢ depends
only on the difference t — s.

4. (Weak continuity) The quantum random variables jg converge to jss in
distribution for t \ s.

Remark 4.3. The independence property depends on the products and there-
fore for boolean, monotone and anti-monotone Lévy processes on the choice
of a decomposition B = C1 @ B. In order to show that the convolutions de-
fined by (p1 0 w2) 0 A, (1> p2) 0o A, and (p1 <4¢p2) o A are associative and
that the counit £ acts as unit element w.r.t. these convolutions, one has to
use the universal property [BGS99, Condition (P4)], which in our setting is
only satisfied for morphisms that respect the decomposition. Therefore we are
forced to choose the decomposition given by BY = kere.

The marginal distributions ¢y, := @ = @0 js form again a convolution
semigroup {¢;}ier, , with respect to the tensor (boolean, monotone, anti-
monotone, or free respectively) convolution defined by (p1®¢2) 0 A ((p1 ©
p2) 0 A, (1> p2) 0 A, (o1 <pa) o A, or (p1 * pg) o A, respectively). It has
been shown that the generator v : B — C,

1
P(b) = }{% 7 (Qﬁt(b) - 5(5))
is well-defined for all b € B and uniquely characterizes the semigroup
{pt}ter,, cf. [Sch95b, BGS99, Fra0l].

Denote by S be the flip map S : BI[B — BI[B, S = mpg o
(i2]]41), where i1,i2 : B — B][B are the inclusions of B into the first
and the second factor of the free product B[] B. The flip map S acts on
il(al)iQ(bl) N Zg(bn) S BHB with Ay, ... ,an,bl, e ,bn € B as

S(ir(ar )ia(by) - - ig(bn)) — ia(ar)in(b1) - - -i1(bn).

If j1 : B — A; and jo : B — A are two unital x-algebra homomorphisms,
then we have (jo [[j1)0S = 74, ,4,°(Jj1 [ j2). Like for bialgebras, the opposite
comultiplication A°P = So A of a dual semigroup (B, 4, €) defines a new dual
semigroup (B, AP, ¢).
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Lemma 4.4. Let {js : B — (A, ) bo<s<i<r be a quantum stochastic process
on a dual semigroup (B, A, ¢) and define its time-reversed process {jo1 to<s<t<T
by

Jet = JT—t.1—s
for0<s<t<T.

(i) The process {jsi}o<s<i<r 1S a tensor (boolean, free, respectively) Léuvy
process on the dual semigroup (B, A, €) if and only if the time-reversed
process {jot Yo<s<t<T is a tensor (boolean, free, respectively) Lévy process
on the dual semigroup (B, A°P ¢).

(i1) The process {jstto<s<i<r is a monotone Lévy process on the dual semi-
group (B, A, €) if and only if the time-reversed process {jo; }o<s<t<T iS an
anti-monotone Lévy process on the dual semigroup (B, AP, ¢).

Proof. The equivalence of the stationarity and continuity property for the
quantum stochastic processes {js: Jo<s<t<r and {jyf bo<s<it<r is clear.

The increment property for {js }o<s<i<r With respect to A is equivalent
to the increment property of {jof fo<s<t<7 with respect to A°P, since

mao (3 T3%) 0 4% = mao (jrsw—s [[r-ur-i) e SoA
=MACVAAC (jT—u,T—t HjT—t,T—s) oA
=mao (jT—u,T—t HjT—t7T—s) oA

foral0<s<t<u<T.
If {jsi}o<s<i<r has monotonically independent increments, i.e. if the n-

tuples (Jsytys---,Js,t,) are monotonically independent for all n € N and
all 0 < 51 <t < 89 < -+ < ty, then the n-tuples (Js,t,,---,Jsit,) =
(Ui, Ts,s+ 2 J7 4, 7—s,) arve anti-monotonically independent and there-

fore {jof to<s<t<r has anti-monotonically independent increments, and vice
versa.

Since tensor and boolean independence and freeness do not depend on
the order, {js }o<s<t<r has tensor (boolean, free, respectively) independent
increments, if and only {jsf }o<s<t<7 has tensor (boolean, free, respectively)
independent increments. O

Before we study boolean, monotone, and anti-monotone Lévy processes in
more detail, we will show how the theory of tensor Lévy processes on dual
semigroups reduces to the theory of Lévy processes on involutive bialgebras,
see also [Sch95Db]. If quantum random variables ji, ..., j, are independent in
the sense of Condition 2 in Definition 1.2, then they are also tensor inde-
pendent in the sense of Definition 4.1. Therefore every Lévy process on the
bialgebra (B, A, €) associated to a dual semigroup (B, A, ¢) is automatically
also a tensor Lévy process on the dual semigroup (B, A, ). To verify this, it
is sufficient to note that the increment property in Definition 1.2 with respect
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to A and the commutativity of the increments imply the increment property
in Definition 4.2 with respect to A.

But tensor independence in general does not imply independence in the
sense of Condition 2 in Definition 1.2, because the commutation relations are
not necessarily satisfied. Therefore, in general, a tensor Lévy process on a
dual semigroup (B, A,e) will not be a Lévy process on the involutive bial-
gebra (B, A, ¢). But we can still associate an equivalent Lévy process on the
involutive bialgebra (B, A, ¢) to it. To do this, note that the convolutions of
two unital functionals ¢1, s : B — C with respect to the dual semigroup
structure and the tensor product and with respect to the bialgebra structure
coincide, i.e.

(P1@p2) 0 A = (p1 @ p2) 0 A.

for all unital functionals @1, o : B — C. Therefore the semigroup of marginal
distributions of a tensor Lévy process on the dual semigroup (B, A, ¢) is also a
convolution semigroup of states on the involutive bialgebra (B, 4, €). It follows
that there exists a unique (up to equivalence) Lévy process on the involutive
bialgebra (B, A, €) that has this semigroup as marginal distributions. It is easy
to check that this process is equivalent to the given tensor Lévy process on the

dual semigroup (B, A, ). We summarize our result in the following theorem.

Theorem 4.5. Let (B, A,¢) be a dual semigroup, and (B, A,c) with A =
Rp oA the associated involutive bialgebra. The tensor Lévy processes on the
dual semigroup (B, A, e) are in one-to-one correspondence (up to equivalence)
with the Lévy processes on the involutive bialgebra (B, A, ¢).

Furthermore, every Lévy process on the involutive bialgebra (B, A,¢) is
also a tensor Lévy process on the dual semigroup (B, A, ¢).

4.3 Reduction of Boolean, Monotone, and Anti-Monotone Lévy
Processes to Lévy Processes on Involutive Bialgebras

In this subsection we will construct three involutive bialgebras for every
dual semigroup (B, A, ¢) and establish a one-to-one correspondence between
boolean, monotone, and anti-monotone Lévy processes on the dual semigroup
(B, A,e) and a certain class of Lévy processes on one of those involutive bial-
gebras.

We start with some general remarks.

Let (C,0) be a tensor category. Then we call an object D in C equipped
with morphisms

e:D— E, A:D— DOD

a dual semigroup in (C,0), if the following diagrams commute.
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EDld’D 1dD|:|5

D DDD
/ \
DUD DUD

DO(DOD) (POD)OD

ap,D,D

Proposition 4.6. Let D be a dual semigroup in a tensor category and let
F : C — g be a cotensor functor with values in the category of unital algebras
(equipped with the usual tensor product). Then F (D) is a bialgebra with the
counit Fy o F(g) and the coproduct F»>(D,D) o F(A).

Proof. We only prove the right half of the counit property. Applying F' to
Ap o (e0idp) o A = idp, we get F'(Ap) o F(eidp) o FA = idp(py. Using
the naturality of F» and Diagram (3.3), we can extend this to the following
commutative diagram,

F(D) & F(D) e O F(D) & F(E)

F»,(D,D)

idpUe
F(pop) L4 ppop)

idp(p)®Fo

F(D) F(pp)

F(D)®C

which proves the right counit property of F(D). The proof of the left counit
property is of course done by taking the mirror image of this diagram and
replacing p by A. The proof of the coassociativity requires a bigger diagram
which makes use of (3.2). We leave it as an exercise for ambitious students. O

Assume now that we have a family (D;);>0 of objects in C equipped with
morphisms € : Dy — E and g : Dgyy —: DsOD, for s,t > 0 such that the
following diagrams commute.

Ds+t+u

D,0D; 1 D,.,0D,

idDétul \Léstljid

DO(DOD) (P,O0D,)OD,

AD;, Dy, Dy
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p,OD; 22— p, — ¢ p,00D,

edid id ide

EDDt I —— Dt < DtDE
Ap, PDy

In the application we have in mind the objects D, will be pairs consisting of

a fixed dual semigroup B and a state ¢; on B that belongs to a convolution

semigroup (¢¢);>0 on B. The morphisms d,; and € will be the coproduct and

the counit of B.

If there exists a cotensor functor F' : C — AlgPBrob, F(D;) = (A, 1) such
that the algebras Alg(F(Dt)) = A; and the morphisms F5 (D, Dy) o F ()
are do not depend on s and ¢, then A = Alg(F (Dt)) is again a bialgebra
with coproduct A = Fy(Dy, D;) o F(ds) and the counit & = Fy o F(e), as in
Proposition 4.6.

Since morphisms in AlgPBrob leave the states invariant, we have s ® @y o
A= s+t and g = €, i.e. (p1)i>0 is a convolution semigroup on A (up to the
continuity property).

Construction of a Lévy Process on an Involutive Bialgebra

After the category theoretical considerations of the previous subsection we
shall now explicitely construct one-to-one correspondences between boolean,
monotone, and anti-monotone Lévy processes on dual groups and certain
classes of Lévy processes on involutive bialgebras.

Let M = {1,p} be the unital semigroup with two elements and the mul-
tiplication p? = 1p = pl1 = p, 12 = 1. Its ‘group algebra’ CM = span {1, p}
is an involutive bialgebra with comultiplication A(1) =1® 1, A(p) = p ® p,
counit £(1) = e(p) = 1, and involution 1* = 1, p* = p. The involutive bial-
gebra CM was already used by Lenczweski [Len98, Len0O1] to give a tensor
product construction for a large family of products of quantum probability
spaces including the boolean and the free product and to define and study
the additive convolutions associated to these products. As a unital x-algebra
it is also used in Skeide’s approach to boolean calculus, cf. [SkeO1], where
it is introduced as the unitization of C. It also plays an important role in
[Sch00, FS00).

Let B be a unital *-algebra, then we define its p-extension B as the free
product B = B][ CM. Due to the identification of the units of B and CM, any
element of B can be written as sums of products of the form p®b,pbap - - - pby,p*
with n € N, by,...,b, € B and o,w = 0, 1. This representation can be made
unique, if we choose a decomposition of B into a direct sum of vector spaces
B = C1@®V° and require by, ..., b, € V°. We define the p-extension ¢ : B—C
of a unital functional ¢ : B — C by



Lévy Processes on Quantum Groups and Dual Groups 237

G(p*brpbap - - pbup®) = @(b1)p(b2) - - - p(bn) (4.4)

and @¢(p) = 1. The p-extension does not depend on the decomposition B =
C1 @V, since Equation (4.4) actually holds not only for by, ...,b, € V°, but
also for by,...,b, € B.

If By, ..., B, are unital %-algebras that can be written as direct sums B; =
C1 @ BY of x-algebras, then we can define unital *-algebra homomorphisms
P s s s I g i Br—Bi® @B, fork=1,...,nby

By 5. b)) =p® - RpRbRPR--- B,

k — 1 times n — k times

I;lgv,[zsl,i..,sn(b) =1 - 1P ---®p,

k — 1 times n — k times
Y 5 (0)=p8 - @pRbR1IR---®1,

k — 1 times n — k times

for b € BY.
Let n € N, 1 < k < n, and denote the canonical inclusions of 3}, into the
k'™ factor of the free product ]_[?:1 Bj by ij. Then, by the universal property,
there exist unique unital *-algebra homomorphisms R 5 : [[;_, Br —

@} _1 B such that
Rz’sl,...,B" ol = 11:,51,...,8

7L)

for e € {B,M, AM}.

Proposition 4.7. Let (B, A, ¢) be a dual semigroup. Then we have the follow-
ing three involutive bialgebras (B, A, €), (B, Awm, €), and (B, Aam, &), where
the comultiplications are defined by

Ap = Rg o A,
Ay = RZDS/[,B o A,
Apn = R o A,
on B and by o - -
Ap(p) = Am(p) = Aam(p) =p®p
on CM.

Remark 4.8. This is actually a direct consequence of Proposition 4.6. Below
we give an explicit proof.

Proof. We will prove that (B, Ag, &) is an involutive bialgebra, the proofs for
(B, Ay, é) and (B, Aaw, €) are similar.

It is clear that Ag : B — B® B and € : B — C are unital x-algebra
homomorphisms, so we only have to check the coassociativity and the counit
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property. That they are satisfied for p is also immediately clear. The proof for
elements of B is similar to the proof of [Zha91l, Theorem 4.2]. We get

(ZB X ldg) OZB|B = RZBS,B,B o (AHldB) oA

— RE s 50 (idB I1 A) oA
(idg ® Bp) o A,

and
(®@idg) o Ap|, = (E®@idg) o Rgpo A
( 1d,3>oA — ids
(as11) o

(1 B®€)ORBBOA
= (idg ® &) o Ag|, .

O

These three involutive bialgebras are important for us, because the boolean
convolution (monotone convolution, anti-monotone convolution, respectively)
of unital functionals on a dual semigroup (B, 4, ) becomes the convolution
with respect to the comultiplication Ap (Ay, Aawm, respectively) of their
p-extensions on B.

Proposition 4.9. Let (B, A, ) be a dual semigroup and @1, ps : B — C two
unital functionals on B. Then we have

(p1op2)0 A= (¢1® @) o0 A,

)
(p1>p2) 0 A= (¢1® @) 0 Aw,
) o Aam.

(p1<p2)0 A= (1 ® P2

Proof. Let b € B°. As an element of B[] B, A(b) can be written in the form
A(b) = >0 ca b € @ .y Be. Only finitely many terms of this sum are non-
zero. The individual summands are tensor products b = 0 @ - -+ ® bleé‘ and

due to the counit property we have b? = 0. Therefore we have

(01 0 ¢2) => H Pey. (bi)-

eeh k=1
c#0

For the right-hand-side, we get the same expression on B,
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($1® @2) 0 Ap(b) = (#1 ® @2) 0 R 30 A(b)

= (P1®@2) o Rgp > b ®-- b,
ecA
— Z @1 (bSpbS - )@ (pbSp - -+ )

e€A
e1=1

+ ) @rlpbsp- - )pa(bipbs )

le]
= Z H Per (bfc)

ceh =1
20

To conclude, observe

Ag(p®bip- - - pbup”) = (p* @ p*)Ap(b1)(p @ p) - - (p @ p) A (bn) (p* © p*)

for all by,...,b, € B, a,w € {0,1}, and therefore

—~

($1® @) 0 Ap = (&1 ® @2) 0 Az = (10 p2) 0 A
The proof for the monotone and anti-monotone product is similar. ]
We can now state our first main result.

Theorem 4.10. Let (B, A, ¢) be a dual semigroup. We have a one-to-one cor-
respondence between boolean (monotone, anti-monotone, respectively) Lévy
processes on the dual semigroup (B, A,e) and Lévy processes on the invo-
lutive bialgebra (B,ZB,E) ((B,ZM,E), (lg,ZAM,E), respectively), whose mar-
ginal distributions satisfy

@e(p*b1p -+ pbnp™) = @e(b1) -+ - p1(bn) (4.5)
forallt >0, by,...,b, € B, a,w € {0,1}.

Proof. Condition (4.5) says that the functionals ¢; on B are equal to the
p-extension of their restriction to B5.

Let {jst}o<s<i<r be a boolean (monotone, anti-monotone, respectively)
Lévy process on the dual semigroup (B, A,e) with convolution semigroup
¢i—s = P o jsg. Then, by Proposition 4.9, their p-extensions {@;};>¢ form
a convolution semigroup on the involutive bialgebra (B, A, &) ((B, Ay, &),
(B, Aant, €), respectively). Thus there exists a unique (up to equivalence)
Lévy process {Ju }o<s<i<r on the involutive bialgebra (B, Ag, &) (B, Aw, €),
(B, A, €), respectively) with these marginal distribution.

Conversely, let {jst}o<s<t<r be a Lévy process on the involutive bialgebra
(B, Ag, &) (B, A, €), (B, Aaw, ), respectively) with marginal distributions
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{¢1}1>0 and suppose that the functionals ¢, satisfy Equation (4.5). Then,
by Proposition 4.9, their restrictions to B form a convolution semigroup on
the dual semigroup (B, A,e) with respect to the boolean (monotone, anti-
monotone, respectively) convolution and therefore there exists a unique (up
to equivalence) boolean (monotone, anti-monotone, respectively) Lévy process
on the dual semigroup (B, A, ¢) that has these marginal distributions.

The correspondence is one-to-one, because the p-extension establishes a
bijection between unital functionals on B and unital functionals on B that
satisfy Condition (4.5). Furthermore, a unital functional on B is positive if
and only if its p-extension is positive on B. 0O

We will now reformulate Equation (4.5) in terms of the generator of the
process. Let n > 1, by,...,b, € B =kere, a,w € {0,1}, then we have

1 o w S w
Y(p®bip - - - pbup®) =t1{%;(%(p bip- - pbup®) — E(Pbip - pbup®))

-l %(mm) o) = e(br) - =(00)

_ Z (b1) -+ e(br—1)(br)e(br+1) - - - e(byn)

B ¢(b1) if n=1,
10 if n>1.

Conversely, let {¢; : B — C}>0 be a convolution semigroup on (B, 4,,£),
e € {B,M, AM}, whose generator 1 : B — C satisfies (1) = ¢(p) = 0 and

fed w b if =1,
Y(p*bip- - - pbyp®) = {g’( 1) ;f Z>1

(4.6)
foralln > 1,by,...,b, € B® =kere, a,w € {0,1}. Forbl,.. b, € BY, Al(b;)
is of the form Au(b;) = b; ® 1+ 1@ b; + Y4, b} @ b7, thbﬁl,z,b@)
ker €. By the fundamental theorem of coalgebras [Sv\( 69] there exists a finite-
dlmensmnal subcoalgebra C C B of B that contains all possible products of
1,0;, 000 03 i=1, k=1,

Then we have

Osttle (p*bap - - - pbrp®)
= (@sle @ @tle) ((pa @ p*) Ae(b1)(p @ p) -+ (p @ p) Au(br) (p* @ p*))

and, using (4.6), we find the differential equation
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@sle (P*b1p- - pbnp®)

= Z @sle (P*bip -+ bi—1plpbiyip- - - bup” ) (i)
i—1

+ Z Z le P*b1p--- bi—1pb§,1k)ipbi+1p' x bnp“)w(bf;ﬁi) (4.7)

i=1 k;=1

for { p¢|¢}+>0. This a linear inhomogeneous differential equation for a function
with values in the finite-dimensional complex vector space C* and it has a
unique global solution for every initial value ¢ol.. Since we have

n;
k=1

= 3w+ > e ),
k;=1

we see that { (otlg) ‘c} satisfies the differential equation (4.7). The initial
>0

values also agree,

wo(P*bip- - - pbpp®”) = E(Pb1p- - - pbpp”) = €(b1) - - €(bn) = wo(b1) - - - Yo (bn)

and therefore it follows that {¢; }i>0 satisfies Condition (4.5).
We have shown the following.

Lemma 4.11. Let {¢; : B — C}e>0 be a convolution semigroup of unital
functionals on the involutive bialgebra (B, A,,&), o € {B,M,AM}, and let
¥ : B — C be its infinitesimal generator.

Then the functionals of the convolution semigroup {p}i>0 satisfy (4.5)
for all t >0, if and only if its generator ¢ satisfies (4.6).

For every linear functional ¢ : B — C on B there exists only one unique
functional v : B — C with 9|5 = 9 that satisfies Condition (4.6). And since
this functional 1& is hermitian and conditionally positive, if and only if ¢ is
hermitian and conditionally positive, we have shown the following.

Corollary 4.12. We have a one-to-one correspondence between boolean Lévy
processes, monotone Lévy processes, and anti-monotone Lévy processes on a
dual semigroup (B, A, €) and generators, i.e. hermitian, conditionally positive,

linear functionals ¥ : B — C on B with ¢ (1) = 0.

Another corollary of Theorem 4.10 is the Schoenberg correspondence for
the boolean, monotone, and anti-monotone convolution.
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Corollary 4.13. (Schoenberg correspondence) Let {¢;}1>0 be a convo-
lution semigroup of wunital functionals with respect to the tensor, boolean,
monotone, or anti-monotone convolution on a dual semigroup (B, A &) and

let i : B — C be defined by

00 = lim 1 (eu(8) — =(0)

for b € B. Then the following statements are equivalent.

(i) @y is positive for all t > 0.
(i) is hermitian and conditionally positive.

We have now obtained a classification of boolean, monotone, and anti-
monotone Lévy processes on a given dual semigroup in terms of a class of Lévy
processes on a certain involutive bialgebra and in terms of their generators.
In the next subsection we will see how to construct realizations.

Construction of Boolean, Monotone,
and Anti-Monotone Lévy Processes

The following theorem gives us a way to construct realizations of boolean,
monotone, and anti-monotone Lévy processes.

Theorem 4.14. Let {kB}o<ocicr ({kN o<s<i<r, {kAMYo<s<i<T, respectively)
be a boolean (monotone, anti-monotone, respectively) Lévy process with gen-
erator 1 on some dual semigroup (B, A,e). Denote the unique extension of
1 : B — C determined by Equation (4.6) by V:B—C.

If {Joto<s<icr ({Tsttoss<e<r, {7 Jo<s<i<r, respectively) is a Lévy
process on the involutive bialgebra (B, Ap,&) ((B, A, €), (B, A, €), re-
spectively), then the quantum stochastic process {j5}o<s<i<r ({5 }o<s<i<T,
{75MYo<s<t<T, Tespectively) on B defined by

Ja(1) =id,  jg(b) = J.(p )jBt(b)]tT(p) for b€ B° =kere,
ja(1) =id,  j5(b) = 75 (D)t ( ) for be B’ =kere,
gaM ) =id, jEM () = 10 ()35 () for be BY =kere,

for 0 < s <t < T, is a boolean (monotone, anti-monotone, respectively)
Lévy process on the dual semigroup (B, A,e). Furthermore, if {75 Yo<s<i<T
A o<s<i<t, {7aM Yo<s<t<T, respectively) has generator 1, then {55 }o<s<i<r
{iMYo<s<i<r, {i8MYo<s<i<T, respectively) is equivalent to {kB}o<s<i<T
(k3 Yozs<i<r, (kM Yo<s<i<r, respectively).

Remark 4.15. Every Lévy process on an involutive bialgebra can be realized
on boson Fock space as solution of quantum stochastic differential equations,
see Theorem 1.15 or [Sch93, Theorem 2.5.3]. Therefore Theorem 4.14 implies
that boolean, monotone, and anti-monotone Lévy processes can also always
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be realized on a boson Fock space. We will refer to the realizations obtained
in this way as standard Fock realization.

It is natural to conjecture that monotone and anti-monotone Lévy processes
can also be realized on their respective Fock spaces (see Subsection 4.3) as
solutions of monotone or anti-monotone quantum stochastic differential equa-
tions, like this has been proved for the tensor case in [Sch93, Theorem 2.5.3)
and discussed for free and boolean case in [Sch95b, BGO1]. We will show in
Subsection 4.3 that this is really possible.

Proof. {7% Yo<s<t<7 is a Lévy process on the involutive bialgebra (B, Ag, €),
e ¢ {B,M,AM}, and therefore, by the independence property of its incre-
ments, we have

[j;t(bl)aj;’t’ (b2)] =0

forall 0 < s <t <T,0< s <t <T with Js,t[N]s',t'[= 0 and all
bi,by € B. Using this property one immediately sees that the Jo are unital
x-algebra homomorphisms. Using again the independence of the increments
of {72 o<s<t<r and the fact that its marginal distributions ¢?, = @ o j8,

0 <s<t<T,satisfy Equation (4.5), we get

D(751(b)) = D (J6. ()T (0)7ir () = (o5 (1) P (75 (0)) P (Gr (p)) = ¥ (b)

and similarly

D(jsi (b)) = 51 (b),
D(ji (b)) = M (D),

for all b € B°. Thus the marginal distributions of {j$ }o<s<i<7 are simply
the restrictions of the marginal distributions of {72, }o<s<¢<7. This proves the
stationarity and the weak continuity of {2, fo<s<¢<r, it only remains to show
the increment property and the independence of the increments. We check
these for the boolean case, the other two cases are similar. Let b € B° with
A(b) =3, cp bS, where b* = b5 ® -+ b, € Bo = (B°)®ll, then we have

Elel

Ap(b) = Y bipb§- - @pbsp---+ > pbsp- - @ ipb§ - (4.8)
e€h €e€EA
e1=1 e1=2

We set jB = ji, jB = jo, and get
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mao (75 55) o A®)
- Zjél (bi)jéz (bg) o 'jeM (bff‘)

= J0s ()35 (09)380 ()35, ()75, (05) 3 (p) - - - 365 (P) 35 (b3 (P)
+ ) 30 0)IE 000 (9)36s ()75 (05) 380 () - - - 36+ (P) T (b T (D)

= ]05 Z ]st be jst( )jst(bd) jtu( )]tﬁu(b6 )jtu(p) T jET(p)

eeh
e1=1

+765(P) Zi?t(p)ii(bé)ii() T ()70 ()70 (05) -+ | T (p)

= Jou(p) (ma o (Jst ® Ju) © AB(0)) Jur (p)
J(]s(p)]su(b)]uT( ) - JEu( )

For the boolean independence of the increments of {45 }o<s<i<7, we have to

check
Pomac (jitl H o Hjitn) =¢dulsorowl, s

forall n € Nand 0 < s1 < t1 < s < -+ < t, < T. Let, e.g.,
n = 2, and take an element of B[] B of the form i1(ay)ia(b1) - - - iy (by), with
ai,...,an,b1,...,b, € B Then we have

domao (i85, TTik) (i) -+ in(ba)
=D (Jos, (0)Tor 1, (01) 707 (D)0, (P) oty (01)T1 (D) -+ - Tos, (P )]52t2(bn)~tB2T(p))
=& (76, )75, (@)iB 4, (0) -+ 784, (@n)g o, (0)F5 1, (b1) -+ 351, ()T ()

3

= 80}531t1 (a1pasp-- 'pan)¢§2t2 (pbip- - pby) = H ‘Pitl (a;) H (pngtQ(bj)
Jj=1 j=

= (P50 0 Phty) (1(a1)iz(b1) - - in(bn)).
The calculations for the other cases and general n are similar. 0

For the actual construction of {75 }o<s<i<r ({IM o<s<i<T, {7 bo<s<i<T,
respectively) via quantum stochastic calculus, we need to know the Schiirmann

triple of 1&

Proposition 4.16. Let B be a unital *-algebra, v : B — C a generator,
i.e. a hermitian, conditionally positive linear functional with (1) = 0, and
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U : B — C the extension of ¢ to B given by Equation (4.6). If (p,n,v) is a
Schiirmann triple of 1, then a Schirmann triple (p,1,) for v is given by

pls =p, plp) =0,
7:7|B =1, 7:7(]7) = 07
Yl =1, Y(p) =0,

in particular, it can be defined on the same pre-Hilbert space as (p,n, ).

Proof. The restrictions of p and 7 to B have to be unitarily equivalent to p
and 7, respectively, since ¥|g = ¢. We can calculate the norm of 7j(p) with
Equation (1.3), we get

D(p) = (*) = E@)d(p) + (") 0 (p)) + P (P)EP)
and therefore ||7(p)||> = =1 (p) = 0. From Equation (1.2) follows

o " b1) if n=1,a=0,we{0,1},
fi(p b1pb2p---pbnp)={n(01) fn>lora=L o0

For the representation p we get
p(p)n(b) = 7(pb) — 7i(p)e(b) = 0
for all b € B. O

The Lévy processes {j% Jo<s<t<7 on the involutive bialgebras (B, A,, é),
e ¢ {B,M, AM}, with the generator ¢ can now be constructed as solutions of
the quantum stochastic differential equations

t
7%.(b) = £(b)id + ( / 7® dIT> A(b), for all b € B,

where the integrator dI is given by
dI;(b) = dAy(p(b) — E(b)id) + dAT (7(b)) + dA(A(6)) + P(b)dt.

The element p € B is group-like, i.e. A,(p) = p ® p, and mapped to
zero by any Schiirmann triple (/3,77,1&) on B that is obtained by extending
a Schiirmann triple (p,7n,%) on B as in Proposition 4.16. Therefore we can
compute {72, (p) bo<s<i<r without specifying e € {B, M, AM} or knowing the
Schiirmann triple (p,n, ).

Proposition 4.17. Let {7% }o<s<i<r be a Lévy process on (B, A,.é), o €
{B,M, AM}, whose Schiirmann triple (ﬁ,f]ﬂ[]) 1s of the form given in Propo-
sition 4.16. Denote by Oy the projection from L*([0,T[, D) to L*([0,s], D) ®
L3([t, T[,D) C L?([0,T], D),
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F(r) if T ¢ s t],
Ost.f(7) = {0 if T € [s,t],

Then
) =T (0g) forall0<s<t<T,

i.e. 7°%(p) is equal to the second quantization of Og for all0 < s <t <T and
e c {B,M, AM}.

Proof. This follows immediately from the quantum stochastic differential
equation

J(p) = id — / 72 (p)dA, (id).

Boson Fock Space Realization of Boolean, Monotone,
and Anti-Monotone Quantum Stochastic Calculus

For each of the independences treated in this chapter, we can define a Fock
space with a creation, annihilation and conservation process, and develop a
quantum stochastic calculus. For the monotone case, this was done in [Mur97,
[Lu97], for the boolean calculus see, e.g., [BGDS01] and the references therein.

Since the integrator processes of these calculi have independent and sta-
tionary increments, we can use our previous results to realize them on a bo-
son Fock space. Furthermore, we can embed the corresponding Fock spaces
into a boson Fock space and thus reduce the boolean, monotone, and anti-
monotone quantum stochastic calculus to the quantum stochastic calculus on
boson Fock space defined in [[HP84] (but the integrands one obtains in the
boolean or monotone case turn out to be not adapted in general). For the
anti-monotone creation and annihilation process with one degree of freedom,
this was already done in [Par99] (see also [Lic99]).

Let H be a Hilbert space. Its conjugate or dual is, as a set, equal to
H = {u|u € H}. The addition and scalar multiplication are defined by

u+v=u-+o, , 20U = Zu, foru,v € H, ze¢eC.

Then V(H) = H® H ® H @ H (algebraic tensor product and direct sum, no
completion) is an involutive complex vector space with the involution

(WVRU+T+Y) =uRV+7y+a, for u,v,z,y € H.

We will also write |u)(v| for u ® U. Let now By be the free unital *-algebra
over V(H). This algebra can be made into a dual semigroup, if we define the
comultiplication and counit by

Av =i1(v) +i2(v),
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and (v) = 0 for v € V(H) and extend them as unital *-algebra homomor-
phisms. On this dual semigroup we can define the fundamental noises for all
our independences. For the Schiirmann triple we take the Hilbert space H,
the representation p of By on H defined by

p(u) = p(@) =0, p(lu)(v]) : H >z~ (v,2)u € H,
the cocycle 1 : By — H with
n(w) =u, 1@ =n(ju)v]) =0,
and the generator ¢ : By — C with
¥(1) = P(u) = (@) = ¢ (ju){v]) =0,

for all u,v € H.

A realization of the tensor Lévy process {js: fo<s<: on the dual semigroup
(B, A, €) with this Schiirmann triple on the boson Fock space I'(L*(R., H))
is given by

Jet(u) = Af(u),  ju(@) = Aa(u), jse(Ju)(v]) = As(lu)(v]),
foral 0 <s<t<T, u,veH.
Boolean Calculus

Let H be a Hilbert space. The boolean Fock space over L?([0,T[; H) =
L2([0,T]) ® H is defined as I's(L2([0,T[,H)) = C & L*([0,T[, H). We will
write the elements of I'z(L*([0,T[, H)) as vectors

(%)

f

with A\ € C and f € L*([0,T[, H). The boolean creation, annihilation, and
conservation processes are defined as

4570 (1) = ()
A3“0<;>::(1:w,éﬂxh),

Ag(uxw)<}>(1kﬂnQifc»u>’

for A\ € C, f € L*([0,T[,H), u,v € H. These operators define a boolean Lévy
process {kB}o<s<i<r on the dual semigroup (By, A, ¢e) with respect to the
vacuum expectation, if we set
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k() = A (u), kg (@) = AG(u), kg (Ju)(v]) = A5 (|lu)(v]),

for all 0 < s <t < T, u,v € H, and extend the k5 as unital x-algebra
homomorphisms to By .

On the other hand, using Theorem 4.14 and Proposition 4.16, we can
define a realization of the same Lévy process on a boson Fock space. Since the
comultiplication Ap acts on elements of the involutive bialgebra (Bg, Ag, €)
as

Ap(v) =v@p+p®v, for v e V(H),

we have to solve the quantum stochastic differential equations
t t
) = [ rOmaar - [ 7 asdidn)
st St
2 = [ r0maa-w ~ [ P @adn),
t t
stt(|“><U|) = / F(Osr)d/lr(\uﬂvl) _/ j?r(|u><v‘)dAr(idH)v

and set
Jar(w) = I'(005) g (u) T (Opr),
Jsi (@) = I'(00s) ] (@) (0s7),

5 (1) (o1) = O0n), () ) T 00,
These operators act on exponential vectors as
Jar(WE(f) = ulfsy,
HONORS S f()r e,
0 G)EC) = Ty O

for 0<s<t<T, feL*[0,T]), u,v € H.

Since {k5 }o<s<i<r and {jB}lo<s<i<r are boolean Lévy processes on the
dual semigroup (Bg, 4, ¢) with the same generator, they are equivalent.

If we isometrically embed the boolean Fock space I's(L*([0,T[, H)) into
the boson Fock space F(L2([O, T, H)) in the natural way,

QB : FB(Lz([O’TLH)) - F(Lz([OaT[vH))v HB <;> = )\Q+fa

for A € C, f € L*([0,T[, H), then we have
ki (b) = 0575 (b)0s

for all b € B.



Lévy Processes on Quantum Groups and Dual Groups 249
Anti-Monotone Calculus

We will treat the anti-monotone calculus first, because it leads to simpler
quantum stochastic differential equations. The monotone calculus can then
be constructed using time-reversal, cf. Lemma 4.4.

We can construct the monotone and the anti-monotone calculus on the
same Fock space. Let

Tp={(t1, ..., tn)|0 <ty <ty <---<t, <T}C[0,T["C R,

then the monotone and anti-monotone Fock space I'vi(L?([0,T[,H)) over
L2([0,T], H) can be defined as

FM (Lz([OaT[a H)) =CNo éLQ(TTH H@n)’

n=1

where where H®™ denotes the n-fold Hilbert space tensor product of H and
the measure on T, is the restriction of the Lebesgue measure on R"™ to T,,.
Since T,, C [0,T[", we can interpret f; ® --- ® f, € L*([0,T[, H)®" =
L2([0,T[", H®™) also as an element of L?(T,,, H®™) (by restriction).

The anti-monotone creation, annihilation, and conservation operator are

defined by
AT W L@@ faltyy o tog)
=1 (t1)u® L ® - @ fulta, .. tnyr)
ASAtM(u)fl K- f’I’L(t17 e 7tn71)

min(t,t1)
=/ (s (P72 @ -+ ® fultrs- s tas)

A () (0]) f1 @ - @ fultry s tn)
=1 (t) (0, i) u® f2 @+ @ frlta,... tn),

for0<s<t<T,0<t1 <ty<---<t, <tpy1 <T,u,veH.
These operators define an anti-monotone Lévy process {k?tM}ogsgth on
the dual semigroup B with respect to the vacuum expectation, if we set

kot (u) = AGM (), kM @) = A (), KM (Ju)(v]) = A5 (Jud(v]),

forall 0 < s <t <T,uwv c H, and extend the k4 as unital x-algebra
homomorphisms to B.

We can define a realization of the same Lévy process on a boson Fock
space with Theorem 4.14. The anti-monotone annihilation operators j4M (),
u € H, obtained this way act on exponential vectors as

J?)&M(u)g(f) = Ul[s,t[(') s g(Oo-f)7 f € LQ([O’ T[’ H)7
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and the anti-monotone creation operators are given by j?tM(u)iz GAM (@)
u € H. On symmetric simple tensors f1 ® -+ ® f,, € L2([0,T[, H®™) they act
as

]L?tM(u)fl PR fn(th v ;tn+1)
=f(t1) ® @ fr1(th—1) @ uligy(tr) @ frp1(try1) @+ @ fultn)
where k has to be chosen such that t;, = min{t1,...,tn41}.

Since {kAM}o<s<i<r and {j4M}o<s<i<r are boolean Lévy processes on
the dual semigroup B with the same generator, they are equivalent.

A unitary map Oy : I (L2([0,T[, H)) — I'(L*([0,T[, H)) can be defined
by extending functions on T,, to symmetric functions on [0, T[" and dividing
them by v/nl. The adjoint 63 : I'(L*([0,T[, H)) — I'u(L*([0,T[, H)) of Ou
acts on simple tensors f1 @ --- ® f,, € L*([0,T[, H)®™ = L*([0,T["*, H®™) as
restriction to T,, and multiplication by v/n!, i.e.

0301 @ @ fults, . tn) = Valfi(t) @ - @ fultn),
for all f1,..., f, € L2([0,T[, H), (t1,...,tn) € Ty.

This isomorphism intertwines between {k4M}o<s<;<7 and {j4M}o<s<i<r,
we have
ko (b) = 03455 (b))
forall0<s<t<T and b€ By.

Monotone Calculus

The monotone creation, annihilation, and conservation operator on the

monotone Fock space I (L?([0,T[, H)) can be defined by
Alsvtl—‘r(u)fl Q- & fn(tla oo >tn+1)
= f1 R ® fn(tla - 7tn) ® 1[S7t[(tn+1)u

ASAtM(u)fl Q- ---® f’I’L(t17 cee atnfl)
t
-/ (s fu (AT F1 -+ @ fr(trs s )
max(8,tn—1)

A?tM(|u><v|)fl Q- fn(t17~ . ~atn)
= fl - ® fn—l(tl’ s 7tn—1)1[s,t[(tn)<v7fn(tn)>ua

for 0 < s <t <T, u,v € H. These operators define a monotone Lévy
process {kM}o<s<i<r on the dual semigroup B with respect to the vacuum
expectation, if we set

kot (u) = AN (w), k(@) = A (), ki (Ju)(vl) = A5 (Ju)(v]),

forall 0 < s <t < T, uv € H, and extend the kivt[ as unital x-algebra
homomorphisms to B.



Lévy Processes on Quantum Groups and Dual Groups 251

Define a time-reversal R : I'n (L*([0,T[, H)) — I'n (L2([0,T[, H)) for the
monotone Fock space by R{2 = (2 and

Rft®@ @ fulty, ... .tn) = fu(T —tn) ® -+ @ f1(T — t1),

for (t1,...,tn) € T, f...., fn € L*(T,). The time-reversal R is unitary and
satisfies R? = id Iv(L2([0,7;H))- 1t intertwines between the monotone and anti-
monotone noise on the monotone Fock space, i.e. we have

ko' (0) = Rky o (D)R

forall 0 < s <t <T,be By. On the boson Fock space we have to consider
Ry = OmROY : T(L2(0,T[,H)) — T(L([0,T[, H)). This map is again
unitary and satisfies also RZ; = id. It follows that the realization {jM }o<s<i<7
of {kM}o<s<i<r on boson Fock space can be defined via

M) = / A () T(0,7),
M) = / dA, ()T (0r7),

P (ju) (o) = / dA, (ju) (v]) T (0.7),

where the integrals are backward quantum stochastic integrals.

Remark 4.18. Taking H = C and comparing these equations with [Sch93,
Section 4.3], one recognizes that our realization of the monotone creation and
annihilation process on the boson Fock space can be written as

OMAYNT (1)03; = 4N (1) = X3, I (04r),
OmAY (105 = jof (1) = Xt (Osr),

where {(X};, Xs) }o<s<i<r 18 the quantum Azéma martingale [Par90, Sch9la]
with parameter ¢ = 0, cf. Subsection I.1.5. Note that here 1 denotes the unit
of H = C, not the unit of B¢.

Realization of boolean, monotone, and anti-monotone Lévy process on
boolean, monotone, and anti-monotone Fock spaces

Free and boolean Lévy processes on dual semigroups can be realized as solu-
tions of free or boolean quantum stochastic equations on the free or boolean
Fock space, see e.g. [Sch95b]. A full proof of this fact is still missing, because
it would require a generalization of their calculi to unbounded coefficients, but
for a large class of examples this has been shown in [BGO1, Section 6.5] for the
boolean case. For dual semigroups that are generated by primitive elements
(i.e. A(v) = i1(v) + 12(v)) it is sufficient to determine the operators jo:(v),
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which have additive free or boolean increments. It turns out that they can
always be represented as a linear combination of the corresponding creators,
annihilators, conservation operators and time (which contains the projection
I'(0pr) to the vacuum in the boolean case), cf. [G5592, BGO1].

We will sketch, how one can show the same for monotone and anti-
monotone Lévy processes on dual semigroups.

We can write the fundamental integrators of the anti-monotone calculus
on the monotone Fock space I'vi(L?([0,t[, H)) as

dAMM (w) = 03.(00:)d A (w)br,
dAMM (1) = 03,1 (00)d Ay (1),
d/lfM(|u><v|) = 9K/IF(00t)d/1t(|u><UD9M,

where Oy : v (L2([0,t], H)) — I'(L2([0,¢[, H)) is the unitary isomorphism
introduced in 4.3. Anti-monotone stochastic integrals can be defined using
this isomorphism. We call an operator process {X;}o<¢<7 on the monotone
Fock space anti-monotonically adapted, if {0x;X0m fo<i<r is adapted on the
boson Fock space I'(L?([0,¢[, H)) and define the integral by

T T
/ X dIMM = Oy ( / efquteMdIt> Oxr
0 0

dIPM = dAMM (|2) (y[) + dAPMT (w) + dAMM (v),
I, = I'(0gr) (d/lt(|ac><y|) +AAAMH () 4 dAfM(u)),

for

for x,y,u,v € H. In this way all the domains, kernels, etc., defined in [Sch93,
Chapter 2] can be translated to the monotone Fock space.

Using the form of the comultiplication of (lg’,ZAM,é), the quantum sto-
chastic equation for the Lévy process on the involutive bialgebra (&ZAM, £)
that we associated to an anti-monotone Lévy process on the dual semigroup
(B, A,e) in Theorem 4.10, and Theorem 4.14, one can now derive a represen-
tation theorem for anti-monotone Lévy processes on dual semigroups.

To state our result we need the free product ]_[0 without unification of
units. This is the coproduct in the category of all x-algebras (not necessarily
unital). The two free products [] and [” are related by

cron][CreB =c1e (AHOB) .

We will use the notation I'nv(0s;) = 031 (0s¢)0M, 0 < s <t <T.

Theorem 4.19. Let (B, A, ¢) be a dual semigroup and let (p,n,¥) be a Schiir-
mann triple on B over some pre-Hilbert space D. Then the anti-monotone
stochastic differential equations
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t 0
Gst(b) = / (jw]_[ dIﬁM) o A(b),  forbe B’ =kere, (4.9)
with
ALY (b) = dAPY (p(b)) + AP (n(b)) + AR (n(b7)) + 9 (0) T (0or)dt,
have solutions (unique in O3 ApOm ). If we set js (1) = id, then {jsi fo<s<i<T
is an anti-monotone Lévy process on the dual semigroup (B, A, ) with respect

to the vacuum state. Furthermore, any anti-monotone Lévy process on the
dual semigroup (B, A, &) with generator 1 is equivalent to {jst fo<s<i<r-

Remark 4.20. Let b € BY, A(b) = > ., b%, b° € B, then Equation (4.9) has
to be interpreted as

) = 0 [ A @) 45) -

ecA

e1=1,e#(1)

+ 2 /t AN (61)sr (b5)A2M(5) - - -
eea VS
e1=2
see also [Sch95b]. This equation can be simplified using the relation
AIM (b)) X d I (by) = (02, X,02) (A1 (by) @ AT (by))

for by, by € B® and anti-monotonically adapted operator processes {X; }o<i<7,
where the product ‘e’ is defined by the anti-monotone It6 table

| . [ dA™ () | d(z)(m])  [dA™ (0[]
dAAMT (y) 0 0 0 0
dAMM (Jg) (yal) [ (2, ua)dANT (29) [y, 21)d AN (Ja2) (y1 ]) 0 0
dAAM (vg) (va, u1) (0o )dE (v, x1)d A (yy) 0 0

det 0 0 0 0

for w;, v, x4,y; € D, i =1,2.
One can check that dI*M is actually a homomorphism on B for the Ito

product, i.e.
dIMM(by) @ dIMM(by) = dIAM(byby),

for all bl, by € BO.

Using the time-reversal R defined in 4.3, we also get a realization of
monotone Lévy processes on the monotone Fock space as solutions of back-
ward monotone stochastic differential equations.

It follows also that operator processes with monotonically or anti-monotoni-
cally independent additive increments can be written as linear combination
of the four fundamental noises, where the time process has to be taken as
TAM = f: I'vi(0pr)dr, 0 < s < t < T, for the anti-monotone case and

™ = f: I'vi(07)d7 for the monotone case.
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Introduction

In this course we discuss aspects of the theory of stationary quantum Markov
processes.

By ‘processes’ we mean stochastic processes; hence, ideas of probability
theory are central to our discussions. The attribute ‘Markov’ indicates that
we are mainly concerned with forms of stochastic behaviour where the (prob-
abilities of) future states depend on the present state, but beyond this the
behaviour in the past has no further influence on the future behaviour of the
process.
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The attribute ‘quantum’ refers to the fact that we want to include sto-
chastic behaviour of quantum systems into our considerations; this does not
mean, however, that we discuss quantum systems exclusively. While quantum
systems are described in the language of Hilbert spaces and operators, clas-
sical systems are modelled by phase spaces and functions on phase spaces.
A mathematical language which allows a unified description of both types of
systems is provided by the theory of operator algebras. This is the language
we shall use throughout these lectures. Noncommutativity of such an algebra
corresponds to quantum features of the system while classical systems are
modelled by commutative algebras. The price paid for this generality lies in
the abstractness of the mathematical theory of operator algebras. We seek to
compensate its abstractness by giving a detailed description of two particular
physical systems, a spin- 1 -particle in a stochastic magnetic field (Chapter 6)
and the micro-maser (Chapter 7).

Finally, the attribute ‘stationary’ indicates that we are mainly interested
in a stochastic behaviour which possesses a distinguished stationary state, of-
ten referred to as an equilibrium distribution or equilibrium state . This does
not mean, that we usually find the system in such a stationary state, but in a
number of cases an initial state will converge to a stationary state if we wait
long enough. The mere existence of a stationary state as a reference state
has a number of pleasant mathematical consequences. First it allows, classi-
cally speaking, to work on a fixed measure space, which does not depend on
the initial state of the process and does not change in time. In the operator
algebraic description this is reflected by the fact that the mathematics can
be done within the framework of von Neumann algebras, frequently equipped
with a faithful normal reference state. They can be viewed as non-commutative
versions of spaces of the type L>°(£2, X ). A second useful consequence of
stationarity is the fact that the time evolution of such a process can be im-
plemented by a group of automorphisms on the underlying von Neumann
algebra of observables, leaving the reference state fixed. This relates station-
ary processes to stationary dynamical systems, in particular to their ergodic
theory. From this point of view a stationary stochastic process is simply a
dynamical system, given by a group of automorphisms with a stationary state
on a von Neumann algebra, where the action on a distinguished subalgebra —
the time zero algebra — is of particular interest. As an example of the fruit-
fulness of this point of view we discuss in Chapter 4 a scattering theory for
Markov processes. The existence of stationary states is again fundamental
in our discussion of the ergodic theory of repeated measurement in the final
Chapter 10.

Needless to say that many important stochastic processes are not station-
ary, like the paradigmatic process of Brownian motion. However, even here
stationarity is present, as Brownian motion belongs to the class of processes
with stationary independent increments. Many efforts have been spent on em-
ploying the stationarity of its increments to the theory of Brownian motion.
The approach of Hida in [Hid] is a famous example: The basic idea is to
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consider Brownian motion as a function of its stationary increment process,
white noise, and early developments of quantum stochastic calculus on Fock
space can be considered as an extension of this approach. Recent developments
of these ideas can be found in the present two volumes.

We end with a brief guide through the contents of these lectures: A first
part (Chapters 1-3) introduces and discusses basic notions which are needed
for the following discussion of stationary quantum Markov processes. In par-
ticular, we introduce a special class of such Markov processes in Chapter 3. It
will play a prominent role in the following parts of these lectures. The second
part (Chapter 4) looks at this class of stationary Markov processes from the
point of view of scattering theory. In a third part (Chapters 5-8) we show
that such Markov processes do naturally occur in the description of certain
physical systems. The final part (Chapters 8-10) discusses a different type
of stochastic processes which describe repeated measurement. The aim is to
discuss the ergodic properties of such processes.

Parts of these notes are adaptions and revised versions from texts of two
earlier summer schools in Grenoble [KK13] and Dresden [I<ii4].

Acknowledgements: It is a pleasure to thank Uwe Franz and Michael
Schiirman for their hospitality not only during this summer school but at
many occasions during the past few years. Particular thanks go to Uwe Franz
for his patience with these notes. I would like to thank Florian Haag und
Nadiem Sissouno for their help during the final proof-reading. Above all I
would like to thank Hans Maassen. Large parts of the material included in
these notes result from our collaboration in friendship over many years.

1 Quantum Mechanics

Our first aim is to introduce quantum Markov processes. In order to do this we
start by giving a mathematical description of quantum mechanics. This frame
will be extended in the next section in such a way that it also incorporates
the description of classical systems.

1.1 The Axioms of Quantum Mechanics

Following the ideas of J.v. Neumann [JvN] quantum mechanics can be axiom-
atized as follows:
To a physical system there corresponds a Hilbert space H such that

1. Pure states of this system are described by unit vectors in H (determined
up to a phase).

2. Observables of this system are described by (possibly unbounded) self-
adjoint operators on H.

3. If the system is in a state described by the unit vector & € H then
the measurement of an observable described by a self-adjoint operator X
yields the expectation value E(X) = <X§,§> .
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4. If an observable is described by the self-adjoint operator X on H then
the observable obtained from it by changing the scale of the measurement
apparatus via a measurable function f is described by the operator f(X).
Here, f(X) is obtained from X by use of the spectral theorem (cf. Section
1.3).

If f is a bounded function then f(X) is a bounded operator; therefore,
from a theoretical point of view working with bounded operators suffices.

From these axioms one can deduce large parts of the quantum mechanical
formalism (cf. the discussion in Section 1.3). Determining H, X, and &,
however, is a different problem which is not touched in these axioms.

1.2 An Example: Two—Level Systems

In order to have a concrete example in mind consider a quantum mechanical
two—level system like a spinféfparticle. The corresponding Hilbert space is
the two-dimensional Hilbert space H = C? and a standard set of observables
is given by the self-adjoint matrices

01 0 —i 10
(o) = (00) =05

which may be interpreted as describing the measurement of polarization in
x,y, and z-direction, respectively.

Every self-adjoint matrix is a unique real linear combination of 1, 0,, 0y, 0.
and such a matrix

o . ' o a+z r—1iy
S=a-l+z-0,+y-oy+2 UZ_(Q:—I—iya—z)

is a density matrix of a mixed state iff, by definition, & > 0 and tr(®) =1,
hence iff o = % and 22 +y? + 22 < i.

Thus the convex set of mixed states can be identified with a (full) ball in
R3 (of radius % in our parametrization) and the pure states of the system

correspond to the extreme points, i.e. to the points on the surface of this ball.

1.3 How Quantum Mechanics is Related to Classical Probability

The formalism of quantum mechanics is not as different from the formalism
of classical probability as it might seem at a first glance. The link between
both of them is established by the spectral theorem (cf. [RS]):

If X is a self-adjoint operator on a separable Hilbert space then there exist

— a probability space (2, X, u),
— a real-valued random variable Y : 2 — R,
— aunitary u: H — L*(2,X, ),
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such that uXu* = My , where My is the operator acting on L?(£2, X, ) by
pointwise multiplication with Y .

If follows that the spectrum o(X) of X is equal to o(My), hence it is
given by the essential range of the random variable Y. The function Y can
be composed with any further real or complex function f which is defined on
the (essential) range of Y, hence on the spectrum of X . Therefore we can
also define the operator

f(X) =u" Moy -u

for any such function f.

It thus appears that a self-adjoint operator can be identified with a real-
valued random variable. There is only one problem: Two self-adjoint operators
may not be equivalent to multiplication operators on the same probability
space with the same intertwining unitary u. Indeed, a family of self-adjoint
operators on ‘H admits a simultaneous realization by multiplication operators
on one probability space if and only if they commute. It is only at this point,
the occurrence of non-commuting self-adjoint operators, where quantum me-
chanics separates from classical probability.

Aslong as only one self-adjoint operator is involved, we can proceed further
as in classical probability:

A state £ € H induces a probability measure j¢ on the spectrum o(X) C
R which is uniquely characterized by the property

(F(X)E,€) = /R SO dpe (V)

for all bounded measurable functions f on R. The measure pe is called the
spectral measure of X with respect to ¢ but it may also be viewed as the
distribution of X:

The function ué € L2(2,X,u) is a unit vector, therefore, its squared
pointwise absolute value |ué|? is, with respect to p, the density of a proba-
bility measure on (2, X) and g is the distribution of ¥ with respect to this
probability measure.

The quantum mechanical interpretation of j¢ is given in the next state-
ment.

Proposition 1.1. A measurement of an observable X on a system in a state
& gives a value in o(X) and the probability distribution of these values is
gwen by pe .

This result can be deduced from the axioms in Section 1.1 as follows: Let
[ =X = Xo(x)c be the characteristic function of the complement of o(X).
By Axiom 4 a measurement of x(X) yields a value 0 or 1. Therefore, the
probability that this measurement gives the value 1 is equal to the expectation
of this measurement, hence equal to
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(X(X)&,€) = (0€,6) =0.

It follows that a measurement of x(X) gives 0, hence measuring X gives a
value in o(X). More generally, if A C o(X) then the probability for obtaining
from a measurement of X a value in A is the probability to obtain the value
1 in a measurement of x4(X) (again we used the fourth axiom), which is
given by

(xa(X)¢,6) = /]RXAdﬂg = pe(A) .

The above proof could have been condensed. But in its present form it shows
more clearly the role played by the fourth axiom.

Corollary 1.2. A measurement of an observable X on a system in a state
& gives a value in a subset A C o(X) with certainty iff 1 = pe(A) =
(xA(X)E,&), hence if and only if xa(X)€ = &. This means, that & is an
eigenvector with eigenvalue 1 of the spectral projection xa(X) of X .

It follows that after a measurement of the observable X, if it resulted in
a value in A C o(X), the state of the system has changed to a vector in
XA(X)H. The reason is that an immediate second measurement of X should
now give a value in A with certainty.

In such a manner one can now proceed further deducing, step by step, the
formalism of quantum mechanics from these axioms.

2 Unified Description of Classical and Quantum Systems

In this second chapter we extend the mathematical model in such a way that
it allows to describe classical systems and quantum systems simultaneously.
Additional motivation is given in [I<iiMa2].

2.1 Probability Spaces
Observables

In the above formulation of the second axiom of quantum mechanics we have
been a bit vague: We left open how many self-adjoint operators correspond to
physical observables. We are now going to use this freedom:

Axiom 2, improved version. There is a *—algebra A of bounded operators
on ‘H such that the (bounded) observables of the system are described by the
self-adjoint operators in A.

Here the word *-algebra means: If z,y € A, then also « + y, Az (A € C),
x -y, and the adjont z* are elements of A. In the literature the adjoint of x
is sometimes denoted by z'.
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A is called the algebra of observables of the system. For simplicity we
assume that A contains the identity 1. For mathematical convenience A is
usually assumed to be closed either in the norm — it is then called a C* -
algebra — or in the strong operator topology — in this case it is called a von
Neumann algebra or W* —algebra.

In a truly quantum situation with only finitely many degrees of freedom
one would choose A = B(H), the algebra of all bounded operators on H.
Indeed, von Neumann in his formulation of quantum mechanics assumed this
explicitly. This assumption is known as his irreducibility axiom .

On the other hand, if (2, 1) is a probability space then bounded real-
valued random variables (the classical pendant to observables in quantum me-
chanics) are functions in L*°(§2, X, 1) and any such function can be viewed
as a bounded multiplication operator on L2(£2, X, 1). Therefore, classical sys-
tems correspond to (subalgebras of) algebras of the type L>(£2, X, i), which
are now viewed as algebras of multiplication operators. Moreover, it is a non-
trivial fact (cf. [Tak2]) that any commutative von Neumann algebra is isomor-
phic to some L°(£2, X, ). Therefore, it is safe to say that classical systems
correspond to commutative algebras of observables. If we do not think in prob-
abilistic terms but in terms of classical mechanics then 2 becomes the phase
space of the system and the first choice for p is the Liouville measure on {2.

States

The next problem is to find a unified description of quantum mechanical states
on the one hand and classical probability measures on the other. The idea is
that both give rise to expectation values of observables. Moreover, they are
uniquely determined by the collection of all expectation values. Thus, we will
axiomatize the notion of an expectation value.

Starting again with quantum mechanics a state given by a unit vector
& € H gives rise to the expectation functional

pe: B(H) 2z (2€,€) € C.
The functional ¢ is linear, positive (@¢(x) > 0 if 2 > 0) and normalized
(pe(1) =1). More generally, if p is a density matrix on 7, then

v :B(H)2xz—tr(px)eC

still enjoys the same properties. (A density matriz or density operator p on
‘H is a positive operator p such that ¢r(p) = 1 where tr denotes the trace.)

On the other hand, if (£2, X, ) is a classical probability space, then the
probability measure u gives rise to the expectation functional

on: I*(@.5,5) 3 f =~ B() = [ fnec.
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Again, ¢, is a linear, positive, and normalized functional on L(§2, X, ).
This leads to the following notions.

Definition 2.1. A state on an algebra A of observables is a positive normal-
1zed linear functional

p: A—=C.
If ¢ is a state on A then the pair (A, @) is called a probability space.

Instead of calling ¢ a ‘state’ one could call it a ‘probability measure’ as
well, but the term ‘state’ has become common. In order to avoid confusion
with classical probability spaces, a pair (A, ) is sometimes called quantum
probability space or non-commutative probability space, despite the fact that
it may describe a classical system and A may be commutative. Finally we
note that under certain continuity conditions a state on B(H) is induced by a
density matrix and a state on L>°(§2, X, i) comes from a probability measure
on (£2,%) (see below).

2.2 From the Vocabulary of Operator Algebras

As might become clear from the above, the language of operator algebras is
appropriate when a unified mathematical description of classical systems and
quantum systems is needed. For convenience we review some basic notions
from the vocabulary of operator algebras. For further information we refer to
the books on this subject like [Tak2].

As mentioned above operator algebras can be viewed as *-algebras of
bounded operators on some Hilbert space H, closed either in the operator
norm (C*-algebra) or in the strong operator topology (von Neumann alge-
bra). Here, operators (x;);c; € B(H) converge to an operator z € B(H) in
the strong operator topology if (x;(£))ier converges to z(§) for every vector
& € H. Therefore, strong operator convergence is weaker than convergence in
the operator norm. It follows that von Neumann algebras are also C*-algebras.
But for many purposes convergence in the operator norm is too strong while
most C*-algebras are not closed in the strong operator topology. Conversely,
von Neumann algebras are ‘very large’ when considered as C*-algebras. There
is also an abstract characterization of C*-algebras as Banach *-algebras for
which [|z*x| = ||z||? for all elements z (the usefulness of this condition is
by far not obvious). Von Neumann algebras are abstractly characterized as
C*-algebras which have, as a Banach space, a predual.

A typical example of a commutative C*-algebra is C(K), the algebra
of continuous functions on a compact space K, and every commutative C*-
algebra with an identity is isomorphic to an algebra of this type. A typical ex-
ample of a commutative von Neumann algebra is L (2, X, u) (here (£2, X, )
should be a localizable measure space) and every commutative von Neumann
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algebra is isomorphic to an algebra of this type. The algebras M, of n x n-
matrices and, more generally, the algebra B(H) of all bounded operators on
a Hilbert space H are C*-algebras and von Neumann algebras. On the other
hand the algebra of all compact operators on H is only a C*-algebra whenever
‘H is not finite dimensional. Other C*-algebras which are interesting from the
point of view of physics are the C*-algebras of the canonical commutation
relations (CCR) and of the canonical anticommutation relations (CAR) (cf.
[EvLe]).

Elements x with z = z* are called self-adjoint as they are represented
by self-adjoint operators. It is less obvious that elements of the form x*x
should be called positive. If y is an operator on some Hilbert space then by
the spectral theorem y is positive semidefinite if and only if y = ™z for some
operator x. But is not so easy to see that also for an abstract C*-algebra this
leads to the right notion of positivity.

As motivated above a state on a C*-algebra A is abstractly defined as a
linear functional ¢ : A — C which is positive (in view of the above this means
that ¢(xz*x) >0 for all € A) and normalized, i.e. ||¢|| = 1. If A has an
identity and ¢ is already positive then |||/ =1 whenever (1) = 1. A state
is thus an element of the Banach space dual of a C*-algebra A. If A is a von
Neumann algebra and ¢ is not only in the dual but in the predual of A then
it is called a normal state. There are various characterizations of normal states
by continuity or order continuity properties. For the moment it is enough to
know that a state ¢ on a commutative von Neumann algebra L>°(£2, X, 1) is
normal if and only if there is a ‘density’ function f, € L*(£2, X, i) such that
wlg) = fQ fogdp for all g € L>(£2, X, ). A state ¢ on the von Neumann
algebra B(’H) is normal if and only if there is a density matrix p, on H such
that ¢(z) = tr(p, - x) for all x € B(H).

The mathematical duality between states and observables has its counter-
part in the description of time evolutions of quantum systems: By their very
nature time evolutions are transformations on the space of (normal) states.
The Banach space adjoint of such a transformation is a transformation on
the dual space of observables. In the language of physics a description of time
evolutions on the states is referred to as the Schridinger picture while the
Heisenberg picture refers to a description on the space of observables. These
two descriptions are dual to each other and they are equivalent from a theoret-
ical point of view. But spaces of observables have a richer algebraic structure
(e.g., operators can be multiplied). Therefore, working in the Heisenberg pic-
ture can be of great mathematical advantage, although a discussion in the
Schrédinger picture is closer to intuition.

3 Towards Markov Processes

In this chapter we discuss, step by step, the notions which will finally lead to
the definition of a Markov process in the operator algebraic language.
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3.1 Random Variables and Stochastic Processes

We are looking for a definition of a Markov process which covers the classical
and the quantum case. We already saw that in this general context there is no
state space {2y available such that the system could jump between the points
of 2. Even if we generalized points of 2y to pure states on an algebra Ag
of observables then a state given by a density matrix can not be interpreted
in a unique way as a probability measure on the pure states (the state space
of My, cf. 1.2, demonstrates this problem drastically). Consequently, there is
no direct way to talk about transition probabilities and transition operators
in this general context and we will introduce transition operators only much
later via conditional expectations.

Instead we proceed with defining random variables first. Unfortunately,
the notion of a general random variable seems to be the most abstract and
unaccessible notion of quantum probability.

From the foregoing it should be clear that a real-valued random variable is
a self-adjoint operator in A. But what would happen if one wanted to consider
random variables having other state spaces? For example, when studying the
behaviour of a two-level system one wants to consider polarization in all space
directions simultaneously. In classical probability it is enough to change from
2y = R to more general versions of (2 like 20 = R?. Now we need an
algebraic description of {2y and this is obtained as follows ([AF'L]).

If X :(£2,X, 1) — 2 is a random variable and f : 2y — C is a measur-
able function then

ix(f)i=foX: (2,2, u)—C

is measurable. Moreover, f +— ix(f) is a *~homomorphism from the al-
gebra Ay of all bounded measurable C-valued functions on (2, into A :=
Lo (02, X, n) with ix (1) = 1. (* ~homomorphism means that ix preserves
addition, multiplication by scalars, multiplication, and involution which is
complex conjugation in this case).

We are allowing now Ay and A to be non-commutative algebras of ob-
servables. For the first part of our discussion they could be any *-algebras of
operators on a Hilbert space. Later in our discussion we have to require that
they are C*-algebras or even von Neumann algebras. We thus arrive at the
following definition.

Definition 3.1. (/AFL]) A random variable on A with values in Ay is an
tdentity preserving * —homomorphism

i:Ao'—MA.

It may be confusing that the arrow seems to point into the wrong direction,
but this comes from the fact that our description is dual to the classical
formulation. Nevertheless our definition describes an influence of A onto Ajg:
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If the ‘world” A is in a certain state ¢ then i induces the state ¢ o7 on Ay
given by Ag 3 x — ¢(i(x)) € C. If i comes from a classical random variable
X as above then ¢ o is the state induced by the distribution of X hence it
can be called the distribution of i also in the general case.

From now on we equip A with a state ¢ thus obtaining a probability space
(A, ¢). Once having defined the notion of a random variable the definition of
a stochastic process is obvious:

Definition 3.2. A stochastic process indexed by a time parameter in T is a
family

Z‘t:AOH(AﬂD) ) tETa

of random variables. Such a process will also be denoted by (A, ¢, (it)ier; Ao) -

Stationary stochastic processes are of particular importance in classical prob-
ability. In the spirit of our reformulations of classical concepts the following
generalizes this notion.

Definition 3.3. A stochastic process (i¢)iet : Ao — (A, @) is called station-
ary if for all s >0

@i, (1) - .o i, () = Plitys(@1) oo, 45(Tn))
with n € N, xq,...,2, € Ao, t1,...,t, €T arbitrarily.

As in the classical situation this means that multiple time correlations depend
only on time differences. It should also be noted that it is not sufficient to
require the above identity only for ordered times t1 <o < ... <{,.

Finally, if a classical stochastic process is represented on the space of its
paths then time translation is induced by the time shift on the path space.
This is turned into the following definition:

Definition 3.4. A process (it)ier : Ao — (A, ) admits a time translation if
there are * ~homomorphisms oy : A — A (t € T) such that

i) gt = agoay forall s,t €T
i) iy = apoig forall t € T.

In this case we may also denote the process (A, @, (it)ier; Ao) by

(Av T2 (at)t€T§ AO) .

In most cases, in particular if the process is stationary, such a time translation
exists. In the stationary case, it leaves the state ¢ invariant.
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3.2 Conditional Expectations

Before we can formulate a Markov property for a stochastic process we should
talk about conditional expectations. The idea is as in the classical framework:

One is starting with a probability space ({2, ) which describes our
knowledge about the system in the following sense: We expect an event A € X/
to occur with probability p(A). Now assume that we obtain some additional
information on the probabilities of the events in a o—subalgebra X, C Y.
Their probabilities are now given by a new probability measure v on (§2, X).
It leads to improved — conditional — probabilities for all events of X given by
a probability measure 7 on (§2,X) which extends v on (£2,%)). (Since v
is absolutely continuous with respect to the restriction of u to X, it has a
Yp-measurable density f by the Radon Nikodym theorem, and one can put
dv = fdu.)

Similarly, we now start with a (quantum) probability space (A, ). If we
perform a measurement of a self-adjoint observable x € A we expect the value
o(x). Assume again that we gained some additional information about the
expectation values of the observables in a subalgebra A4, (for example by an
observation): Now we expect a value v (z) for the outcome of a measurement
of x € Ay where v is a new state on Ag. As above this should change our
expectation for all measurements on A in an appropriate way, expressed by
a state ¥ on A. Unfortunately, there is no general Radon Nikodym theorem
for states on operator algebras which gives all the desired properties. Thus we
have to proceed more carefully.

Mathematically speaking we should have an extension map () assigning
to each state ¥ on Ay a state ¢ = Q(¥) on A; the map should thus satisfy
Q) (z) = ¢(x) for all © € Ay. Moreover, if ¢(z) = ¢(z) for all z € Ay,
that is if there is no additional information, then the state ¢ should remain
unchanged, hence we should require Q(v)) = ¢ in this case. If we require, in
addition, that @ is an affine map (Q(Ab1+(1—=N)w2) = AQ(¥1)+(1—-N)Q(w2)
for states ¥; and 9 on Ay and 0 < XA < 1) and has a certain continuity
property (weak *-continuous if Ay and A are C*-algebras) then one can easily
show that there exists a unique linear map P : A — A such that P(A) = Ay,
P? = P, and ||P|| < 1, which has the property Q(¢(z)) = ¥(P(z)) for all
states ¢ on Ag and = € A: Up to identification of Ay with a subalgebra of
A the map P is the adjoint of Q. The passage from @) to P means to change
from a state picture (Schrodinger picture) into the dual observable picture
(Heisenberg picture). If Ay and A are C*-algebras then such a map P is
called a projection of norm one and it automatically enjoys further properties:
P maps positive elements of A into positive elements and it has the module

property
P(axb) = aP(x)b

for a,b e Ay, x € A ([Tak2]). Therefore, such a map P is called a conditional
expectation from A onto Ap.
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From the property ¢(P(z)) = ¢(x) for all x € A it follows that there is
at most one such projection P. Indeed, with respect to the scalar product
< @,y >o:= @(y*x) induced by ¢ on A the map P becomes an orthog-
onal projection. Therefore, we will talk about the conditional expectation
P: (A o) — Ay ... if it exists.

Typical examples for conditional expectations are conditional expectations
on commutative algebras (on commutative von Neumann algebras they always
exist by the Radon Nikodym theorem) and conditional expectations of tensor
type: If Ap and C are C*-algebras and 1) is a state on C then

Py: A@C3220y—¢(y) -z 1

extends to a conditional expectation from the (minimal) tensor product
A=Ay ®C onto Ag ® 1 (cf. [Tak2]. If Ay and C are von Neumann al-
gebras and 1) is a normal state on C then P, can be further extended to a
conditional expectation which is defined on the larger ‘von Neumann algebra
tensor product’ of Ay and C ([Tak?2]). Sometimes it is convenient to identify
Ay with the subalgebra Ay ® 1 of Ay ® C and to call the map defined by
Aoy ®C 3 2@y — (y)x € Ay a conditional expectation, too. From its defin-
ition it is clear that Py, leaves every state ¢ ® 1 invariant where ¢q is any
state on Ag.

In general, the existence of a conditional expectation from (A, ) onto
a subalgebra Ag is a difficult problem and in many cases it simply does not
exist: Equip A = My with a state ¢ which is induced from the density matrix

<>\ 0 ) (0 < A <1). Then the conditional expectation P from (Ma, )

01—X\
0
Aoz{(gb) :a,bEC}

onto
does exist while the conditional expectation from (Ma,¢) onto the commu-

tative subalgebra
ab
ao={(27) caec)

does not exist (we still insist on the invariance of ) whenever \ # %

There is a beautiful theorem due to M. Takesaki ([Tak1]) which solves
the problem of existence of conditional expectations in great generality. Since
we will not need this theorem explicitly we refer for it to the literature. It
suffices to note that requiring the existence of a conditional expectation can
be a strong condition. On the other hand, from a probabilistic point of view
it can nevertheless make sense to require its existence as we have seen above.

With the help of conditional expectations we can define transition opera-
tors:

Definition 3.5. Suppose i1, ia: Ag — (A, ) are two random variables such
that iy 1s injective and thus can be inverted on its range. If the conditional
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expectation P : (A, p) — i1(Ag) exists then the operator T : Ay — Aq defined
by
T(2) = it P(in(a))

for x € Ay is called a transition operator.

If the random variables i; and i, are random variables of a stochastic process
at times t; and to ({3 < t3) then T describes the transitions from time ¢;
to time t5.

3.3 Markov Processes

Using conditional expectations we can now formulate a Markov property
which generalizes the Markov property for classical processes:

Let (it)ter : Ao — (A, @) be a stochastic process. For I C T we denote by
Ay the subalgebra of A generated by {i;(z) : x € Ay,t € I}. In particular,
subalgebras A; and A}, are defined as in the classical context. A subalgebra
Aj generalizes the algebra of functions on a classical probability space which
are measurable with respect to the o-subalgebra generated by the random
variables at times t € I.

Definition 3.6. The process (it)ier is a Markov process if for all t € T the
conditional expectation

Py (A p) — At]

exists and

for all x € Ay we have Py(z) € it(Ao) -

If, in particular, the conditional expectation P; : (A, ¢) — i;(Ag) exists, then
this requirement is equivalent to P(x) = P;(x) for all € Ap. This parallels
the classical definition.

Clearly, a definition without requiring the existence of conditional expecta-
tions is more general and one can imagine several generalizations of the above
definition. On the other hand the existence of Py : (A, ¢) — io(Ao) = Agoy
allows us to define transition operators as above: Assume again, as is the case
in most situations, that ig is injective. Then ig(A4p) is an isomorphic image
of Ay in A on which iy can be inverted. Thus we can define the transition
operator Ty by

Ty:Ag— Ap :x — io_lpoit(x).

From its definition it is clear that T} is an identity preserving (completely)
positive operator, as it is the composition of such operators. Moreover, it
generalizes the classical transition operators and the Markov property again
implies the semigroup law
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Ts+t :Ts 'Tt for S,t > 0

while 7o = 1 is obvious from the definition. The derivation of the semigroup
law from the Markov property is sometimes called the quantum regression
theorem, although in the present context it is an easy exercise.

In the classical case we have a converse: Any such semigroup comes from a
Markov process which, in addition, is essentially uniquely determined by the
semigroup. It is a natural question whether this extends to the general context.
Unfortunately, it does not. But there is one good news: For a semigroup on
the algebra M, of complex n x n—matrices there does exist a Markov process
which can be constructed on Fock space (cf. Sect. 9.3). For details we refer
to [Par]. However, this Markov process is not uniquely determined by its
semigroup as we will see in Sect. 6.3. Moreover, if the semigroup (7})¢>0 on Ag
admits a stationary state g, that is, po(7T;(z)) = @o(z) for z € Ay, t >0,
then one should expect that it comes from a stationary Markov process as it
is the case for classical processes. But here we run into severe problems. They
are basically due to the fact that in a truly quantum situation interesting
joint distributions — states on tensor products of algebras — do not admit
conditional expectations. As an illustration of this kind of problem consider
the following situation.

Consider A9 = M,,, 2 < n < oo. Such an algebra Ay describes a
truly quantum mechanical system. Moreover, consider any random variable

i: AO - (A7 QO) .
Proposition 3.7. The algebra A decomposes as

A~ M, ®C for some algebra C , such that
i(z)=2®1 foralaxecAy=M, .

Proof: Put C:={ye A:i(x) -y=y-i(x) for all z € Ap}.

Moreover, the existence of a conditional expectation forces the state ¢ to
split, too:

Proposition 3.8. If the conditional expectation

P:(Ap)—i(A) =M, 21

exists then there is a state v on C such that

o =Y

i.e., p(r®@y) = wo(z) Y(y) for v € Ay, y € C with po(x) == p(z®1). It
follows that

hence P is a conditional expectation of tensor type (cf. Sect. 3.2).
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Again, the proof is easy: From the module property of P it follows that P
maps the relative commutant 1 ® C of i(Ag) into the center of M, , hence
onto the multiples of 1; thus P on 1® C defines a state ¥ on C.

Therefore, if Ag = M,, then the existence of the conditional expectation
P: (A, p) — Ay forces the state to split into a product state hence the state
can not represent a non-trivial joint distribution.

3.4 A Construction Scheme for Markov Processes

The discussion in the previous section seems to indicate that there are no
interesting Markov processes in the truly quantum context: On the one hand
we would like to have a conditional expectation onto the time zero algebra
A of the process, on the other hand, if Ay = M,,, this condition forces the
state to split into a tensor product and this prevents the state from represent-
ing an interesting joint distribution. Nevertheless, there is a way to bypass
this problem. This approach to stationary Markov processes was initiated in
([Ki2]). It avoids the above problem by putting the information about the
relationship between different times into the dynamics rather than into the
state:

We freely use the language introduced in the previous sections. We note
that the following construction can be carried out on different levels: If the
algebras are merely *-algebras of operators then the tensor products are meant
to be algebraic tensor products. If we work in the category of C*-algebras
then we use the minimal tensor product of C*-algebras (cf. [Tak?2]). In most
cases, by stationarity, we can even turn to the closures in the strong operator
topology and work in the category of von Neumann algebras. Then all algebras
are von Neumann algebras, the states are assumed to be normal states, and
the tensor products are tensor products of von Neumann algebras (cf. [Tak2]).
In many cases we may even assume that the states are faithful: If a normal
state is stationary for some automorphism on a von Neumann algebra then
its support projection, too, is invariant under this automorphism and we may
consider the restriction of the whole process to the part where the state is
faithful. In particular, when the state is faithful on the initial algebra Ay (see
below), then all states can be assumed to be faithful. On the other hand,
as long as we work on an purely algebraic level or on a C*-algebraic level,
the following construction makes sense even if we refrain from all stationarity
assumptions.

We start with the probability space (Ao, ¢o) for the time-zero-algebra of
the Markov process to be constructed. Given any further probability space
(Co, o) then we can form their tensor product

(Ao, o) ® (Co, %o) := (Ao @ Co, po @ to) ,

where A ®Cy is the tensor product of Ag and Cy and g ®1) is the product
state on Ay ® Cp determined by g ® ¢o(xr ® y) = o(x) - 1o(y) for = € Ay,
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y € Cy. Finally, let o be any automorphism of (A, ¢o)®(Co, o) that means
that «y is an automorphism of the algebra Ay ® Cy which leaves the state
@ ®1 invariant. From these ingredients we now construct a stationary Markov
process:

There is also an infinite tensor product of probability spaces. In particular,
we can form the infinite tensor product @), (Co,%0): The algebra @, Co is
the closed linear span of elements of the form - ®1®z_,® - Rz, Q1R - -
and the state on such elements is defined as ¥o(z_,) ... o(z,) for z; € Cy,
neN, —n <i<n.Then §,(Co, 1) is again a probability space which we
denote by (C,). Moreover, the tensor right shift on the elementary tensors
extends to an automorphism S of (C, ).

We now form the probability space

(Av 90) = (“401 900) ® (Cﬂﬁ) = (A(]a 900) ® (®(COV¢0))
z

and identify (A, po) ® (Co,10) with a subalgebra of (A, ) by identifying
(Co, o) with the zero factor (n = 0) of @,(Co,10). Thus, by letting it act as
the identity on all other factors of @), (Co, 1o), we can trivially extend «; from
an automorphism of (Ag, o) ® (Co, 1) to an automorphism of (A, ). This
extension is still denoted by «; . Similarly, S is extended to the automorphism
Id® S of (A, ¢) = (Ao, ¢0) ® (C,1), acting as the identity on Ay @ 1 C A.
Finally, we define the automorphism

a:=ajo(ld®S) .
This construction may be summarized in the following picture:

(A()7<P())
& (651
- ® (Co,y o) ® (Co,o) ® (Co,0) @ - --

S

The identification of Ay with the subalgebra Ay ® 1 of A gives rise to a
random variable iy : Ay — (A, ¢). From iy we obtain random variables i,
for n € Z by i, := a™ oip. Thus we obtain a stochastic process (in)nez
which admits a time translation «. This process is stationary (a; as well as
S preserve the state ) and the conditional expectation Py : (A, ) — Ao
exists (cf. Sect. 3.2).

Theorem 3.9. The above stochastic process (A, @, (a™)nez; Ao) is a station-
ary Markov process.

The proof is by inspection: By stationarity it is enough to show that for all
x in the future algebra Ajy we have Py(z) € Ap. But the algebra A is
obviously contained in



Quantum Markov Processes and Applications in Physics 277

(AOaQOO)
®
- @1 ® (Coyvho) ® (Coytho) @ -+

while the past Ag) is contained in

(Ao,gﬁo)
X
@ Cote)® 1 ®1® .

Discussion

This construction can also be carried out in the special case, where all algebras
are commutative. It then gives a construction scheme for classical Markov
processes, which is different from its canonical realization on the space of its
paths. It is not difficult to show that every classical discrete time stationary
Markov process can be obtained in this way. However, this process may not
be minimal, i.e., Az may be strictly contained in A.

Given the initial algebra (Ag,po) then a Markov process as above is de-
termined by the probability space (Cp,%0) and the automorphism «; . In par-
ticular, the transition operator can be computed from T'(z) = Pyo ay(z @ 1)
for © € Ap. It generates the semigroup (7T™),ecn of transition operators on
(Ao, po) (cf. Section 3.3). By construction the state g is stationary, i.e.,
pooT =¢o.

Conversely, given a transition operator T' of (Ag, pg) with g stationary,
if one wants to construct a corresponding stationary Markov process, then it
is enough to find (Co, o) and «; as above. This makes the problem easier
compared to the original problem of guessing the whole Markov process, but
it is by no means trivial. In fact, given 7', there is no universal scheme for
finding (Co,v0) and aq, and there are some deep mathematical problems
associated with their existence. On the other hand, if one refrains from the
stationarity requirements then the Stinespring representation easily leads to
constructions of the above type (cf. Section 10.3).

We finally remark that for Ay = M, this form of a Markov process is
typical and even, in a sense, necessary. In fact there are theorems which show
that if Ay = M,, then an arbitrary Markov process has a structure similar to
the one above: It is always a coupling of Aq to a shift system. The meaning of
this will be made more precise in the next chapter. Further information can
be found in [Kii3].

3.5 Dilations

The relation between a Markov process with time translations (c;); on (A, ¢)
and its semigroup (73); of transition operators on Ay can be brought into
the form of a diagram:
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Ty

Ao I ./40
) Py

(A, ) o (A )

This diagram commutes for all ¢ > 0.

From this point of view the Markovian time evolution (at); can be un-
derstood as an extension of the irreversible time evolution (7;); on Ag to an
evolution of *-homomorphisms or even *-automorphisms on the large alge-
bra A. Such an extension is referred to as a dilation of (T3); to (ay):. The
paradigmatic dilation theory is the theory of unitary dilations of contraction
semigroups on Hilbert spaces, defined by the commuting diagram

Ho — Ho

H — H

U
Here (T})¢>0 is a semigroup of contractions on a Hilbert space Ho, (Uy); is a
unitary group on a Hilbert space H, ig : Hy — H is an isometric embedding,
and Py is the Hilbert space adjoint of iy, which may be identified with the
orthogonal projection from H onto Hy. The diagram has to commute for all
t>0.

There is an extensive literature on unitary dilations starting with the pi-
oneering books [SzNF] and [LaPh]. It turned out to be fruitful to look at
Markov processes and open systems from the point of view of dilations, like
for example in [Fvie] and [Kii2]. In fact, the next chapter on scattering is
a demonstration of this: P.D. Lax and R. S. Phillips based their approach
to scattering theory in [Lal’h] on unitary dilations and our original idea in
[KiiMa3] was to transfer some of their ideas to the theory of operator alge-
braic Markov processes. Meanwhile this transfer has found various interesting
applications. One is to the preparation of quantum states which is discussed
in Chapter 7.

There is a deeper reason why the understanding of unitary dilations can
be helpful for the understanding of Markov processes as the following section
will show.

3.6 Dilations from the Point of View of Categories

The relation between the above two types of dilations can be brought beyond
the level of an intuitive feeling of similarity. For simplicity we discuss the case
of a discrete time parameter only:

Consider a category whose objects form a class O. For any two ob-
jects 01,02 € O denote by M(O71,02) the morphisms from O; to Os.
By Ido € M(O,0O) denote the identity morphism of an object O € O, which
is characterized by Idp oT =T for all T € M(A,0) and SolIdp =S for
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all S € M(O,B) where A and B are any further objects in O. Finally, a
morphism T € M(O,0) is called an automorphism of O if there exists a
morphism 7! € M(0O,0) such that T1 oT =Ido =T oT™!.

Now we can formulate the general concept of a dilation (cf. [Kii2]):

Definition 3.10. Given T € M(O,O) for some object O € O then we call
a quadruple (O,T;i, P) a dilation of (O,T) if T € M(O,0) is an automor-
phism of O and i € M(0,0) and P € M(O,0) are morphisms such that
the diagram

0] (0]
T’IL

commutes for all n € Ny. Here we adopt the convention T® = Ido for any

morphism T € M(O,0O).

For the special case n = 0 the commutativity of the dilation diagram implies
Poi = Ido. Hence (ioP)? =ioPoioP =ioldpoP =ioP,ie.,
ioP e M(O,0) is an idempotent morphism.

Now we can specialize to the case where the objects of the category
are Hilbert spaces and the morphisms are contractions between Hilbert
spaces. In this category automorphisms are unitaries while idempotent mor-
phisms are orthogonal projections. Therefore, if Hy is some Hilbert space,
T € M(Ho, Hp) is a contraction, and (H,U;ig, Pp) is a dilation of (Ho,T),
then U is unitary, i : Ho — H is an isometry, and the orthogonal projection
10 o Py projects onto the subspace ig(Ho) € H. We thus retain the definition
of a unitary dilation.

On the other hand we can specialize to the category whose objects are
probability spaces (A, @) where A is a von Neumann algebra and ¢ is a
faithful normal state on A. As morphisms between two such objects (A, ¢)
and (B,v) we consider completely positive operators T : A — B which are
identity preserving, i.e., T(14) = 1, and respect the states, i.e., o T = p.
(For further information on completely positive operators we refer to Chap-
ter 8). In this category an automorphism of (A, y) is a *-automorphism of
A which leaves the state ¢ fixed. Moreover, an idempotent morphism P of
(A, ) turns out to be a conditional expectation onto a von Neumann sub-
algebra Ag of A [KiiNa]. Therefore, if T' is a morphism of a probability
space (Ag, o) and (A, p, a;ig, Py) is a dilation of (Ag, o, T) (we omit the
additional brackets around probability spaces) then i : A4y — A is an in-
jective *~homomorphism, hence a random variable, Py o ig is the conditional
expectation from (A, ) onto ig(Ag), and (A, ¢, (a")nez;io(Ag)) is a sta-
tionary stochastic process with (a™)pez as its time translation and (77)nen,
as its transition operators. In particular, we have obtained a dilation as in
the foregoing Section 3.5. Depending on the situation it can simplify notation
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to identify Ay with the subalgebra ig(Ag) € A and we will freely do so,
whenever it seems to be convenient.

This discussion shows that unitary dilations and stationary Markov proces-
ses are just two realizations of the general concept of a dilation. In fact,
the relation between those two realizations is even closer: Between the two
categories above there are functors in both directions which, in particular,
carry dilations into dilations:

The GNS-construction associates with a probability space (A, ¢) a Hilbert
space H,, which is obtained from completing A4 with respect to the scalar pro-
duct <z,y>, = ¢(y*z) for z,y € A. A morphism T : (A, ) — (B,?) is
turned into a contraction T, : H, — Hy, as follows from the Cauchy-
Schwarz inequality for completely positive operators (cf. Chapter 8). Thus
the GNS-construction turns a dilation of (A, @, T) into a unitary dilation
of (Hy, Ty ). However this functorial relation is of minor interest, since in
general this unitary dilation is far from being unique.

There are, however, several interesting functors into the other direction.
We sketch only briefly some of them:

Given a Hilbert space H there is, up to stochastic equivalence, a unique
family of real valued centered Gaussian random variables {X (&) : & € H}
on some probability space (£2, X, ), such that H > £ — X () is linear
and E(X(§) - X(n)) = <& n> for {,n € H. Assuming that the o-algebra
X is already generated by the random variables {X () : £ € H} we obtain
an object (A, ¢) with A = L>(02,X,u) and ¢(f) = [, fdu for f e A.
Moreover, consider two Hilbert spaces ‘H and K leading, as above, to two
families of Gaussian random variables {X (€) : € € H} and {Y(n) : n € £} on
probability spaces (£21, X1, pu1) and (£22, X9, p2), respectively. It follows from
the theory of Gaussian random variables (cf. [ITid]) that to a contraction T :
H — K there is canonically associated a positive identity preserving operator
T . Ll(Ql,El,ILLl) — Ll(QQ’EQ,‘LLQ) with T(X(g)) = Y(Tf) (f S H) which
maps L (21, X1, p1) into L>(2s, X, o). It thus leads to a morphism T :
(A7 90) - (va) with A := LOO(‘Qla 217/"’1)7 So(f) = f_()l fdlu‘l for f € Aa and
B = L>®(§25, X, 2), ¥(g) := f92 gdus for g € B. Therefore, this ‘Gaussian
functor’ carries unitary dilations into classical Gaussian Markov processes,
usually called Ornstein-Uhlenbeck processes.

Similarly, there are functors carrying Hilbert spaces into non-commutative
probability spaces. The best known of these functors come from the theory of
canonical commutation relations (CCR) and from canonical anticommutation
relations (CAR). In both cases, fixing an ‘inverse temperature’ 8 > 0, to a
Hilbert space H there is associated a von Neumann algebra A of canoni-
cal commutation relations or anticommutation relations, respectively, which
is equipped with a faithful normal state g, called the equilibrium state at
inverse temperature [ (for the CCR case this functor is used in our discus-
sion in Section 4.6). Again, contractions between Hilbert spaces are carried
into morphisms between the corresponding probability spaces. Hence unitary
dilations are carried into non-commutative stationary Markov processes. For
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details we refer to [Fovie] and [Fva]. An extension of these functors to the case
of g-commutation relations has been studied in [BICS].

In order to provide a unified language for all these situations we make the
following definition.

Definition 3.11. Consider a functor which carries Hilbert spaces as objects
into probability spaces of the form (A,p) with A a von Neumann algebra
and ¢ a faithful normal state on A, and which carries contractions between
Hilbert spaces into morphisms between such probability spaces. Such a functor
is called a functor of white noise, if, in addition, the trivial zero-dimensional
Hilbert space is carried into the trivial one-dimensional von Neumann algebra
C1 and if families of contractions between Hilbert spaces which converge in
the strong operator topology are carried into morphisms which converge in the
pointwise strong operator topology.

The name functor of white noise will become in Section 4.3. From the
above discussion it is already clear that unitaries are carried into automor-
phisms while orthogonal projections are carried into conditional expectations
([KiiNa]). In particular, subspaces of a Hilbert space correspond to subalge-
bras of the corresponding von Neumann algebra. Moreover, orthogonal sub-
spaces correspond to independent subalgebras in the sense described in Sec-
tion 4.3. The functor is called minimal if the algebra corresponding to some
Hilbert space H is algebraically generated by the subalgebras corresponding
to Hilbert subspaces of H which generate H linearly. The continuity assump-
tion could be omitted but it assures that, in particular, strongly continuous
unitary groups are carried into pointwise weak*-continuous groups of auto-
morphisms. Finally, we will see in the next section that a unitary dilation is
carried into a stationary Markov process by any such functor.
All functors mentioned above are minimal functors of white noise.

4 Scattering for Markov Processes

The Markov processes constructed in Section 3.4 above have a particular
structure which we call ” coupling to white noise”. The part (C, 1, S) is a non-
commutative Bernoulli shift, i.e., a white noise in discrete time, to which the
system algebra Aj is coupled via the automorphism «;. Thus the evolution
a of the whole Markov process may be considered as a perturbation of the
white noise evolution S by the coupling a;. By means of scattering theory
we can compare the evolution a with the "free evolution” S. The operator
algebraic part of the following material is taken from [[KiiMa3] to which we
refer for further details and proofs.

4.1 On the Geometry of Unitary Dilations

Before entering into the operator algebraic discussion it may be useful to have
a more detailed look at the geometry of unitary dilations. On the one hand
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this shows that the particular structure of the Markov processes constructed
in Section 3.4 is more natural than it might seem at a first glance. On the other
hand these considerations will motivate the operator algebraic discussions to
come.

It should be clear from the above discussion about categories that the
Hilbert space analogue of a two-sided stationary stochastic process with time
translation in discrete time is given by a triple (H,U;Hy) where H is a
Hilbert space, U : H — H is a unitary and Hg C H is a distinguished
subspace. This subspace describes the ‘time zero’ part, U"Hy the ‘time n
part’ of this process. If Py : H — Hy denotes the orthogonal projection from
‘H onto Hy then the operators T}, : Hy — Ho with T;, := PobU" Py, n € Z, are
the Hilbert space versions of the transition operators of a stochastic process.
In general, the family (7},)nen, will not form a semigroup, i.e., T,, may well
be different from T7* for n > 2. Still, the process (H,U;Ho) may be called a
unitary dilation of (Ho, (T}, )nez), which now means that the diagram

commutes for all n € Z. Here we identify H, via the isometry ip with a
subspace of H. The following theorem characterizes the families (77,)nez of
operators on Hy which allow a unitary dilation in the sense above:

Theorem 4.1. [SzNF] For a family (T,,)nez of contractions of Hy the fol-
lowing conditions are equivalent:

a) (Ho, (Th)nez) has a unitary dilation.
b) To = 1y, and the family (T),)nez is positive definite , i.e., for all n € N
and for all choices of vectors &1, ...,&, € Ho:

Y <Tij6,6>>0.

ij=1

Moreover, if the unitary dilation is minimal, i.e., if H is the closed linear span
of {U™E : € € Ho, n € Z}, then the unitary dilation is uniquely determined
up to unitary equivalence.

If T:Hy — Hp is a contraction and if we define T,, := T™ for n > 0 and
T, := (T~™)* for n < 0 then this family (T},)nez is positive definite and thus
it has a unitary dilation (H,U;Hp) (cf. [SzNF]). In slight abuse of language
we call (H,U;Hp) a unitary dilation of (Hg,T) also in this case.

In order to understand the geometry of such a unitary dilation we define
for a general triple (H,U;Hp) as above and for any subset I C Z the subspace
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H; as the closed linear span of {U"¢ : & € Ho,n € I} and Pr: H — H; as
the orthogonal projection from H onto H;. For simplicity we denote Hy,y
by H, and P, by P, for n € Z, too.

The following observation describes the geometry of a unitary dilation of

(Ho,T):

Proposition 4.2. For a unitary dilation (H,U;Ho) of a positive definite
family (T,)nez the following conditions are equivalent:

a) (H,U;Hy) is a unitary dilation of a semigroup, i.e., T,, = T7* for n € N.

b) For all £ € Ho and for all n,m € N: U™ Pg-U"¢ is orthogonal to Hy .
c) For all § € Hjg,oo] we have P_ 0)(§) = Po(§)-

Here, Py~ denotes the orthogonal projection 11— Py onto the orthogonal com-
plement Hg of Hy. Condition b) can be roughly rephrased by saying that the
part of the vector U™¢ which is orthogonal to Hy, i.e., which ‘has left’ Hy,
will stay orthogonal to Hy at all later times, too. We therefore refer to this
condition as the ‘they never come back principle’. Condition c) is the linear
version of the Markov property as formulated in Section 3.3.

Proof: Given £ € Hy and n,m > 0 we obtain

Trimé = PU™E = PQUMU™E = PU™(Py + Py )U™¢
= PyU"P)U™E + PlU"P-U™¢
= T, Té + PoU"PFU™E .

Thus Ty 4 = 13,15, if and only if POU"POLUT”«E =0 for all £ € Hp, which
proves the equivalence of a) and b).

In order to prove the implication b) = ¢) decompose 7 := U™ with £ € Hy,
n >0, as
1= Pon+Fyn .

By assumption, we have for all { € Hy:
0= <U™Pin,(>=<Pin, U ™C>,

hence Pg-n is orthogonal to Hj—oo,0) as this holds for all m > 0; it follows
that

P01 = P-co0Pon + P—ooqPy-n = Pon .

Since the set of these vectors n is total in Hjg o the assertion holds for all
n e H[O,oo[-

Finally, in order to deduce condition a) from condition ¢) we ‘apply’ U™ to
condition c) and find

P]foo,n]f = Pp¢
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for all § € Hjy, o[- Therefore, we obtain for § € Ho and n,m > 0:

Tim€ = Py U™ ™E = PyUMU™E
= PyB_ oo mU"U™E = PyPUU™E
= PU"PyU™E = PoU T €
= T, T)é.

O
It should be noted that the above result and its proof hold in continuous time
as well.

Corollary 4.3. A (minimal) functor of white noise carries a unitary dilation
of a semigroup into a stationary Markov process.

The proof is immediate from the above condition ¢) as such a functor trans-
lates the linear Markov property into the Markov property as defined in Sec-
tion 3.3. Moreover, it is clear that such a functor carries the semigroup of the
unitary dilation into the semigroup of transition operators of the correspond-
ing Markov process. Finally, we remark that an Ornstein-Uhlenbeck process
is obtained by applying the Gaussian functor as above to a unitary dilation.

The above geometric characterization of unitary dilations of semigroups
can be used in order to guess such a unitary dilation: Start with a contraction
T : Ho — Ho and assume that (H,U;Hp) is a unitary dilation of (Ho,T).
First of all the unitary U has to compensate the defect by which 7' differs
from a unitary. This defect can be determined as follows: Given £ € Hy we
obtain

|UEI? — |T€|? = <&,6> — <TETE> = <€,6> — <T*TEE>

= <1-T"T¢ E>
— IWI-TTe?.
Therefore,
T Ho

: Ho — ©
V1 =T*T Ho
is an isometry. (We write operators on direct sums of copies of Hy as block

matrices with entries from B(Hy).)
The easiest way to complete this isometry in order to obtain a unitary is

by putting
T — 1 =TT* Ho
U, .= on @
VI1I-T*T T* Ho

A short computation is necessary in order to show that T+/1 —T*T =
V1 —TT* T, hence U; is indeed a unitary. Identifying the original copy of Hg
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with the upper component of this direct sum we obviously have PyUy Py =T .
On the other hand, if T was not already an isometry then PyU?P, would
differ from T2. The reason is that in this case the ‘they never come back
principle’ from the above proposition is obviously violated. In order to get it
satisfied we need to take care that elements after once having left the upper
copy of Hp and hence having arrived at the lower copy of Hy are not brought
back into the upper copy of Hy, in other words, they have to be brought
away. The easiest way to accomplish this is just to shift away these elements.
But also the elements having been shifted away are not allowed to come back,
so they have to be shifted further. Continuing this way of reasoning and also
taking care of negative times one finally arrives at a unitary dilation which
has a structure analogously to the one of the Markov process in Section 3.4:
Put
H=Ho & (D Ho) = Ho & 1*(Z; Ho) -
z

Let Uy act on Ho@®HY where HJ denotes the zero’th summand of @D, Ho, and
extend U; trivially to a unitary on all of H by letting it act as the identity on
the other summands. Denote by S the right shift on &, Ho = 1*(Z; Hy) and
extend it trivially to a unitary by letting it act as the identity on the summand
Ho @ 0. Finally, put U := Uy o S and define i : Hg 2 £ — £ ® 0 € H, where
the 0 is the zero in [2(Z,Hy), and put Py := i*. This construction may be
summarized by the following picture:

Ho
® » U,
@My Hy) @Ho D

S

By the above reasoning it is clear that (H,U;ig, Py) is a unitary dilation of
(Ho,T). In general, this unitary dilation will not be minimal, but this can
easily be corrected: Put £ := V1 —-TT*Hy and K := 1 —T*THy where
the bar denotes the closure. If we substitute in the above picture the copies
of Hy by L for n > 0 and by K for n < 0 so that the whole space H is now
of the form

Ho
©®
KB LOLD

then the unitary U as a whole is still well defined on this space and the
dilation will be minimal. For more details on the structure of unitary dilations
of semigroups in discrete and in continuous time we refer to [[<iiS1].
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4.2 Scattering for Unitary Dilations

In the above situation the unitary U might be considered as a perturbation
of the free evolution S, which is a shift, by the local perturbation U;. This
is a simple example of the situation which is discussed in the Lax-Phillips
approach to scattering theory in [LLaPh]. One way to compare the evolutions
U and S is to consider the wave operator
¢_:= lim ST"U"
n—oo

if it exists. On & € Hg oo N Hg we have U¢ = S¢, hence @_¢ = ¢ for such
&. From this observation it is almost immediate to conclude that

lim S_nUn’L()(f)

exists for £ € Hy if and only if lim, .., T"¢ exists. From this one easily
derives the following result:

Proposition 4.4. In the above situation the following conditions are equiva-
lent:

a) P_ :=1lim,, o, ST"U™ exists in the strong operator topology and ¢_(H) C
He |
b) lim, oo T™ = 0 in the strong operator topology.
If this is the case then ®_U = S[;+®_. Since S|;1 is a shift, it follows, in
particular, that U is unitarily equivalent to a shift.
The following sections intend to develop an analogous approach for Markov
processes. They give a review of some of the results obtained in [[<iiMa3].

4.3 Markov Processes as Couplings to White Noise

For the following discussion we assume that all algebras are von Neumann
algebras and all states are faithful and normal.

Independence

On a probability space (A, p) we frequently will consider the topology induced
by the norm ||z||?, := ¢(z*x), which on bounded sets of A agrees with the
s(A, A,) topology or the strong operator topology (A, denotes the predual
of the von Neumann algebra A).

Definition 4.5. Given (A, ) then two von Neumann subalgebras Ay and
Ay of A are independent subalgebras of (A, ) or independent with respect
to @, if there exist conditional expectations Py and Py from (A, p) onto Ay
and As , respectively, and if

p(r172) = p(1)P(T2)

for any elements x1 € .A1, T9 € As.
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Independence of subalgebras may be considered as an algebraic analogue to

orthogonality of subspaces in Hilbert space theory. Indeed, it is a short exercise

to prove that a functor of white noise as discussed in Section 3.5 will always

turn orthogonal subspaces of a Hilbert space into independent subalgebras.
The typical example of independence is the situation where

(A, ) = (A1 ® A2, 01 ® @2) 5

then A4; ® 1 and 1® A, are independent.

There are, however, very different examples of independence. Another ex-
ample is obtained by taking A as the [Ij-factor of the free group with two
generators a and b, equipped with the trace, and A; and As as the com-
mutative subalgebras generated by the unitaries U, and U, respectively,
representing the generators a and b. In this case A; and Ay are called
freely independent. Other examples of independence are studied in [BKS],
[[KiiMa2]. A more detailed discussion of independence is contained in [I{ii3]
and in [[KiMa2].

White Noise

Roughly speaking white noise means that we have a stochastic process where
subalgebras for disjoint times are independent. In continuous time, however,
we cannot have a continuous time evolution on the one hand and independent
subalgebras of observables for each individual time ¢ € R on the other hand.
Therefore, in continuous time the notion of a stochastic process is too restric-
tive for our purpose and we have to consider subalgebras for time intervalls
instead of for individual times. This is the idea behind the following defini-
tion. It should be interpreted as our version of white noise as a generalized
stationary stochastic process as it is formulated for the classical case in [Hid].

Definition 4.6. A (non-commutative) white noise in time T =7 or T =R
is a quadruple (C,,S¢;Clo,) where (C,1) is a probability space, (Si)ier is
a group of automorphisms of (C,v), pointwise weak*-continuous in the case
T =R, and for each t € T, t > 0, Cjp,4 is a von Neumann subalgebra of C
such that

(i) C is generated by the subalgebras { Ss(Cro,y) | t>0,seT };
(ii) Cjo,s44) 15 generated by Cjo) and Ss(Cjo.y), (s,t>0);
(iii) Cpo,s) and S.(Cjo4) are independent subalgebras of (C,v) whenever s,t >
0 and r > s.

In such a situation we can define the algebras C, ) := Ss(Cjp,+—s)) Whenever
s < t. Then subalgebras associated with disjoint time intervals are indepen-
dent. For an open interval I we denote by C; the union of all subalgebras C;
with the interval J C I closed.
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Classical examples in discrete time are provided by Bernoulli systems with
n states in X := {1,--- ,n} and probability distribution p := {1, -+, A,}
on X . Define C := L (X%, u”), denote by S the map on C which is induced
by the coordinate left shift on X7, and define Clo,q as the set of all functions
in C which depend only on the time interval [0,t]. Then (C,1,S;;Cjoy) is a
white noise in the sense of the above definition.

This example is canonically generalised to the algebraic and non-commuta-
tive setting: one starts with some non-commutative probability space (Co, %),
defines (C, 1) as the infinite tensor product &),(Co, o) with respect to the
infinite product state ), 1o, S as the tensor right shift on C, and C 4 as
the subalgebra generated by operators of the form - I1® 1Rz @z ® - &
r;@1®--- in C. Then (C,v, S¢;Co,y) is a white noise. If Cy is commutative
and finite dimensional then this example reduces to the previous one.

Other non-commutative examples can be constructed by using other forms
of independence, cf., e.g., [[<i13], [KiiMa2].

As examples in continuous time one has, as the continuous analogue of
a Bernoulli system, classical white noise as it is discussed in [Hid]. Non-
commutative Boson white noise on the CCR, algebra may be considered as the
continuous analogue of a non-commutative Bernoulli shift. Similarly, there is
the non-commutative Fermi white noise on the CAR algebra. Again, more
examples can be provided, such as free white noise and g-white noise [BKS].

In our algebraic context, white noise will play the same role which is played
by the two-sided Hilbert space shift systems on L?(R; ') or [2(Z; N) in the
Hilbert space context, where A is some auxiliary Hilbert space (cf. [SzNF],
[LaPh]). Indeed, any minimal functor of white noise will carry such a Hilbert
space shift system into a white noise in the sense of our definition. In partic-
ular, Gaussian white noise as it is discussed in [Iid] is obtained by applying
the Gaussian functor to the Hilbert space shift system L?(R), equipped with
the right translations. This explains the name ‘functor of white noise” we have
chosen for such a functor.

Couplings to White Noise

Consider a two-sided stochastic process (A, ¢, (o)ier; Ao) indexed by time
T =7 or R. For short we simply write (A, ¢, as;Ag) for such a process. We
assume that the conditional expectation Py : (A, ¢) — Ay exists. It follows
from [Tak1] that also the conditional expectations Pr: (A, ) — A exist for
any time interval I.

The following definition axiomatizes a type of Markov process of which
the Markov processes constructed above are paradigmatic examples.

Definition 4.7. A stationary process (A, p,ar; Ag) is a coupling to white
noise if there exists a von Neumann subalgebra C of A and a (weak*-
continuous) group of automorphisms (St)ter of (A, ) such that
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(1) A is generated by Ay and C;
(ii) Ay and C are independent subalgebras of (A, ) ;
(iii) There exist subalgebras Cjo 4, t > 0, of C such that (C, St|c,®lc;Clo,g) is
a white noise and Si|a, s the identity;
iv) For all t > 0 the map oy coincides with Sy on Cig o)y and on C_o ),
whereas oy maps Ao V C_y ) into AoV Cloy ;
(v) A,y C AoV Cpoy-

Here AV B denotes the von Neumann subalgebra generated by von Neumann
subalgebras A and B.

It it obvious that the Markov processes constructed in Section 3.4 give
examples of couplings to white noise. Examples of independence other than
tensor products lead to other examples of couplings to white noise. Indeed,
whenever we apply a minimal functor of white noise to a unitary dilation as
described in Section 4.1 then the result will be a coupling to white noise. This
is the reason why we work with these abstract notions of couplings to white
noise. It is easy to see that whenever a stationary process is a coupling to
white noise in the above sense then it will be a Markov process.

In such a situation we define the coupling operators Cy := «a; o S_; for
t > 0.5 a = C, o8, and (C;)i>0 can be extended to a cocycle of the
automorphism group S; and we consider (o)t as a perturbation of (S¢)ier -
Our requirements imply that Ct|C[t,m) =1Id and Ot|C<7oo,a) =1Id for t > 0.

There is a physical interpretation of the above coupling structure which
provides a motivation for its study. The subalgebra Ay of A may be inter-
preted as the algebra of observables of an open system, e.g, a radiating atom,
while C contains the observables of the surroundings (e.g., the electromagnetic
field) with which the open system interacts. Then S; naturally describes the
free evolution of the surroundings, and «a; that of the coupled system. Later
in these lectures we will discuss examples of such physical systems.

4.4 Scattering

Let us from now on assume that (A, ¢, ay; Ag)is a Markov process which has
the structure of a coupling to the white noise (C, ), St; Cjo 4) . We are interested
in the question, under what conditions every element of A eventually ends
up in the outgoing noise algebra Cjg o). In scattering theory, this property is
called asymptotic completeness .

In the physical interpretation of quantum optics this means that any ob-
servable of the atom or molecule can eventually be measured by observing the
emitted radiation alone. Another example will be discussed in Chapter 7.

We start by defining the von Neumann subalgebra A,,; of those elements
in A which eventually end up in Cg ):

Aout := U a—t(C[O,oo))'

t>0
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The closure refers to the ||-||,-norm. Let @ denote the conditional expectation
from (A, ) onto the outgoing noise algebra Cpg o) -

Lemma 4.8. For x € A the following conditions are equivalent:

a) x € Aoyt -
b) limy—o0 [|Q 0 ()| = ||zl
c) |l Il -limy—oe S—¢ 0 () exists and lies in C.

If these conditions hold, then the limit in (c) defines an isometric *-homo-
morphism @_ : Aguy — C.

Lemma 4.9. For all x € C the limit || - ||, -limy—oc vy 0 Si(z) =: 2_(x)
exists and ©_2_ = 1Idc. In particular, @_ : Aow — C is an isomorphism.

In scattering theory the operators §2_ and @_, and the related operators
2y :=limy_ar0S_; and &, := S; 0 a_; (taken as strong operator limits
in the || - ||, - norm) are known as the Moller operators or wave operators
([LaPh]) associated to the evolutions (S;)ier and (oi)ter. The basic result is
the following.

Theorem 4.10. [KilMa3] For a stationary process which is a coupling to
white noise the following conditions are equivalent:

a) A= Aout -

b) For all x € Ay we have limy_. [|Q o ()|, = ||lz|, -

¢) The process has an outgoing translation representation, i.e., there exists an
isomorphism j: (A, ) — (C,¢) with jlc, .., = 1d such that Sioj = jooy .

A stationary Markov process which is a coupling to white noise and satisfies

these conditions will be called asymptotically complete.

4.5 Criteria for Asymptotic Completeness

In this section we shall formulate concrete criteria for the asymptotic com-
pleteness of a stationary Markov process coupled to white noise.

As before, let @ denote the conditional expectation from (A, ¢) onto the
outgoing noise algebra Cp ), and put Q+ :=1dy — Q. For t > 0, let Z,
denote the compression Q@+, Q" of the coupled evolution to the orthogonal
complement of the outgoing noise.

Lemma 4.11. (Z;);>0 is a semigroup, i.e., for all s,t >0,
Z8+t = Zs O Zt-
Now, let us note that for a € Ag

Zi(a) = QLatQL(a) = QLOét (a —¢(a)- ]1) = QLat(a)v
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so that
1Zi(a)]|2, = [lall2 = [|Qau(a)]l3.-

Hence, by the above theorem asymptotic completeness is equivalent to the
condition that for all a € Ag

| Zi(a)||lp — O as t — 00 .

In what follows concrete criteria are given to test this property of Z; in the
case of finite dimensional 4y and a tensor product structure of the coupling
to white noise.

Theorem 4.12. [KilMa3] Let (A, ¢, as; Ag) be a Markov process with a finite
dimensional algebra Ay, and assume that this process is a tensor product
coupling to a white noise (C,1,S). Let Q+ and Z; be as described above,

and let ey, es, ..., e, be an orthonormal basis of Ag with respect to the scalar
product induced by ¢ on Ag. Then the following conditions are equivalent:
a) A= Aout -

b) For all a € Ay, limy_. || Z:(a)]|, = 0.

¢) For all nonzero a € Ay there exists t > 0 such that ||Zi(a)|, < |lall, .

d) For some t > 0, the n-tuple {Q o ay(ey) ‘j = 1,2,-~-n} is linearly
independent.

e) For some € >0, t >0, and all x € Ap o),

HZtQC”so <(1- 5)||$H90~

4.6 Asymptotic Completeness in Quantum Stochastic Calculus

As a first application to a physical model we consider the coupling of a finite
dimensional matrix algebra to Bose noise. This is a satisfactory physical model
for an atom or molecule in the electromagnetic field, provided that the widths
of its spectral lines are small when compared to the frequencies of the radiation
the particle is exposed to. In [RoMa] this model was used to calculate the
nontrivial physical phenomenon known as the ‘dynamical Stark effect’, namely
the splitting of a fluorescence line into three parts with specified height and
width ratios, when the atom is subjected to extremely strong, almost resonant
radiation. The effect was calculated against a thermal radiation background,
which is needed in order to ensure faithfulness of the state on the noise algebra.
In the limit where the temperature of this background radiation tends to zero,
the results agreed with those in the physics literature, both theoretical [Mol]
and experimental [SSH].

The model mentioned above falls into the class of Markov chains with a
finite dimensional algebra 4y driven by Bose noise, as described briefly below.
In this section, we cast criterion (c¢) for asymptotic completeness of the above
theorem into a manageable form for these Markov processes.
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Although the main emphasis in these notes is put on discrete time, in the
following we freely use notions from quantum stochastic calculus. Some addi-
tional information on Lindblad generators and stochastic differential equations
may be found in Sect. 9.3. For a complete discussion we refer to [[<iiMa3].

For Ay we take the algebra M, of all complex n x n matrices, on which
a faithful state ¢q is given by

po(x) := tr (pz).
Here, p is a diagonal matrix with strictly positive diagonal elements summing
up to 1. The modular group of (Ag, o) is given by

oi(z) == p tap™.

We shall couple the system (Ao, o) to Bose noise (cf. [Par], [ApH], [LiMa]).
Let C denote the Weyl algebra over an m-fold direct sum of copies of L?(R),
on which the state v is given by

YW@ f2® @ fn)) = %Zcoth 385117

The probability space (C, ) describes a noise source consisting of m channels
which contain thermal radiation at inverse temperatures 31,32, -, Gm. Let
the free time evolution S; on C be induced by the right shift on the func-
tions fi, fa, -, fm € L?*(R). The GNS representation of (C,v) lives on the
2m-th tensor power of the Boson Fock space over L?(R) (cf. [Par]), where
annihilation operators A;(t), (j =1,---,m) are defined by

Aty =10l (A @l-¢ 10 A(t)) @ o (1a ).

The operator is in the j-th position and the constants c;r and ¢; are given

by
ct .= eiﬁj o= #
J ebi +1° J efi +1

In [LiMa], Section 9, Markov processes (A, ¢, az; Ag) are constructed by cou-
pling to these Bose noise channels. They are of the following form.

A=A ®C
Q=0 ®1 with Po(z @ y) = (y);
ai(a) == ui(Id @ S¢)(a)us, (¢ > 0); = (a7t (t<0),

where wu; is the solution of the quantum stochastic differential equation
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duy = (Z(vjé@dA —vj@dAj(t)—z(] vjv; + ¢ v; vi)@1- dt)

j=1
+(ih® 1) - dt) u,

with initial condition wy = 1. The semigroup of transition operators on
(Ao, ¢o) associated to this Markov process is given by

Pyoay(a) =: Ty(a) = e (a)

for a € Ag, where the infinitesimal generator L : Ay — Ag is given by

m
L(a) =ilh,a]—1 Z(cj(v;vja—%;avj +avjvy)+e; (vvfa—2vav} +avvy)).
j=1

Here v; € Ay = M,, must be eigenvectors of the modular group oy of (A, ¢o)
and h must be fixed under o;.

Now, the key observation in [LiMa] and [RoMa] which we need here is the
following. Let L5 be the operator =+ [v5,z] on Ay.

Observation. 1f Q is the projection onto the future noise algebra Cg, ), then
Qo (z ® 1)
(1) (k)
= Zk 0 236{1 - m}k Zee{ 1y Gy "C;(k)

e(k) e(1) 2
12 (Tt_skLJ(k)T‘sk —Sgp—1 """ T82—51Lj(1)T81 (x)> ’ dsy -+ - dsg.

f0§81§“'SSA~St

Together with the above theorem this leads to the following results concerning
asymptotic completeness.

Proposition 4.13. The system (A, p,as; Ag) described above is asymptoti-
cally complete if and only if for all nonzero x € M, there are t > 0,
k€N, and s1,892, - ,8 satisfying 0 < s3 < -+ < s <t, j(1),---,4(k) €
{1,---m} and £ € {—1,1}" such that

k 1
(Tt SkLgEk; T52*51LEE )T ( )) 7&0

In particular, if ¢ is a trace, i.e. p = %]1 in the above, then @y o Ty = ¢

and ¢g o L5 = 0, so that the system can never be asymptotically complete

for n > 2. This agrees with the general idea that a tracial state ¢ should

correspond to noise at infinite temperature, i.e., to classical noise [KiiMal].

Obviously, if C is commutative there can be no isomorphism j between C
and C® M, .
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Corollary 4.14. A sufficient condition for (A, e, a:; Ag) to be asymptotically
complete is that for all x € M, there exists k € N, j € {1,2,--- ,m}*, and
e € {-1,1}* such that

e(k) e(1)
¥ (Lj(k) ' "Lju)) # 0.

In particular, the Wigner-Weisskopf atom treated in [RoMa] is asymptotically
complete.

5 Markov Processes in the Physics Literature

In this chapter we compare our approach to Markov processes developed in
the first three chapters with other ways of describing Markovian behaviour in
the physics literature.

5.1 Open Systems

First, we compare our formalism of quantum probability with a standard
discussion of open quantum systems as it can be found in a typical book on
quantum optics. We will find that these approaches can be easily translated
into each other. The main difference is that the discussion of open systems in
physics usually uses the Schrodinger picture while we work in the Heisenberg
picture which is dual to it. The linking idea is that a random variable i
identifies A with the observables of an open subsystem of (A, ¢).

Being more specific the description of an open system usually starts with
a Hilbert space

H=H;@Hy .

The total Hilbert space H decomposes into a Hilbert space Hy for the open
subsystem and a Hilbert space Hj, for the rest of the system which is usually
considered as a bath .

Correspondingly, the total Hamiltonian decomposes as

H:H3+Hb+Hint7

more precisely,

H=H,® 1+ 1® H,+ H;,:

where Hj is the free Hamiltonian of the system, H is the free Hamiltonian
of the bath and H,,; stands for the interaction Hamiltonian.

At the beginning, at time ¢ = 0, the bath is usually assumed to be in
an equilibrium state. Hence its state is given by a density operator p, on H,
which commutes with Hy: [pp, H] = 0.
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Next, one can frequently find a sentence similar to “if the open system is
in a state ps then the composed system is in the state ps ® p,”. The mapping
ps — ps @ pp from states of the open system into states of the composed
system is dual to a conditional expectation.

Indeed, if we denote by Ay the algebra B(Hs) and by C the algebra
B(Hp) and if v, on C is the state induced by p, that is ¥p(y) = try(pp - y)
for y € C, then the mapping

Ag@Co22@y— P(y) - 2@ 1

extends to a conditional expectation of tensor type P = Py, from Ay ®C to
Ao @ 1 such that

trs(ps(P(z ®@y))) =tr(ps @ pp - * @ y)

where we identified Ag ® 1 with Ag. This duality is an example of the type
of duality discussed in Sect. 2.2.

A further step in discussing open systems is the introduction of the partial
trace over the bath: If the state of the composed system is described by a
density operator p on Hs® H,, (which, in general, will not split into a tensor
product of density operators) then the corresponding state of the open system
is given by the partial trace tr,(p) of p over H;. The partial trace on a tensor
product p = p; ® po of density matrices p; on Hg and py on H is defined
as

try(p) = try(p1 @ p2) = trp(p2) - p1
and is extended to general p by linearity and continuity. It thus has the
property
tr(p-x® 1) =try(try(p) - x)

for all z € Ap, that is x on H,, and is therefore dual to the random variable
i:B(Hs) >z —a2®1e B(Hs) ® B(Hy) -

The time evolution in the Schrodinger picture is given by p — upu; with
uy = €M Dual to it is the time evolution

X ujrug
in the Heisenberg picture which can be viewed as a time translation «; of a
stochastic process (it); with it(x) := a0 i(x).
Finally, the reduced time evolution on the states of the open system maps
an initial state ps of this system into

ps(t) == try(ue - ps ® po - uf) -
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Thus the map ps — ps(t) is the composition of the maps ps — ps @ pp,
p— ugpuy, and p — try(p). Hence it is dual to the composition of the maps
i,a4, and P, that is to

Ty Ag— Ag : o= Poagoi(x) = P(iy(x))

which is a transition operator of this stochastic process.

In almost all realistic models this stochastic process will not have the
Markov property. Nevertheless, in order to make the model accessible to com-
putations one frequently performs a so—called ‘Markovian limit’. Mathemat-
ically this turns this process into a kind of Markov process. Physically, it
changes the system in such a way that the dynamics of the heat bath looses
its memory. Hence its time evolution would become a kind of white noise. In
many cases it is not possible to perform such a limit rigorously on the whole
system. In important cases one can show that at least the reduced dynamics
of the open system converges to a semigroup (e.g. when performing a weak
coupling limit cf. [Dav2]). Sometimes one already starts with the white noise
dynamics of a heat bath and changes only the coupling (singular coupling
limit cf. [KiiS1]).

5.2 Phase Space Methods

In the physics literature on quantum optics one can frequently find a different
approach to quantum stochastic processes: if the system under observation is
mathematically equivalent to a system of one or several quantum harmonic
oscillators — as it is the case for one or several modes of the quantized electro-
magnetic field — then phase space representations are available for the den-
sity matrices of the system. The most prominent of these representations are
the P-representation, the Wigner-representation, and the ()Q—representation
(there exist other such representations and even representations for states of
other quantum systems). The idea is to represent a state by a density func-
tion, a measure, or a distribution on the phase space of the corresponding
classical physical system. These density functions are interpreted as classical
probability distributions although they are not always positive. This provides
a tool to take advantage of ideas of classical probability:

If (T})¢>0 on Ay is a semigroup of transition operators it induces a time
evolution p — p; on the density operators and thus on the corresponding
densities on phase space.

With a bit of luck this evolution can be treated as if it were the evolution
of probabilities of a classical Markov process and the machinery of partial
differential equations can be brought into play (cf. also our remarks in Sec-
tion 9.1). It should be noted, however, that a phase space representation does
not inherit all properties from the quantum Markov process. It is a description
of Markovian behaviour on the level of a phenomenological description. But
it can not be used to obtain a representation of the quantum Markov process
on the space of its paths.
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5.3 Markov Processes with Creation and Annihilation Operators

In the physics literature a Markov process of an open quantum system as in
Sect. 5.1 is frequently given by certain families (A;), and (A;); of creation
and annihilation operators. The relation to the above description is the fol-
lowing: If the open system has an algebra Ag of observables which contains an
annihilation operator Ag then a Markovian time evolution a; of the composed
system applies, in particular, to Ay and gives an operator A;. Sometimes the
operators (A¢): can be obtained by solving a quantum stochastic differential
equation (cf. Sect. 9.3).

6 An Example on M,

In this section we discuss Markov processes of the type discussed in Section 3.4
for the simplest non-commutative case. They have a physical interpretation in
terms of a spin- %—particle in a stochastic magnetic field. More information on
this example can be found in [[Kiil]. A continuous time version of this example
is discussed in [I{ii52].

6.1 The Example

We put Ay := Ms and ¢q := tr, the tracial state on M.

If (Co,10) is any probability space then the algebra M; ®C is canonically
isomorphic to the algebra Ms(C) of 2 x 2-matrices with entries in C: The
element

($11$12)®ﬂ e My®C
T21 T22

corresponds to
211 -1 212+ 1
o1 - 1 x99 - 1

> e M),

while the element
I1®c € My®C (cel)

(8 2) e M (C).

Accordingly, the state tr ® 1) on My ® C is identified with

corresponds to

C21 C22

My(C) > <C” Cu) = 5 (W(enn) + ¢(eaz))

on M5(C), and the conditional expectation Py from (My ® C,tr ® 1) onto
Ms ® 1 reads as
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My(C) 3 <C” Cu) - (1/} (c11) :i (Cu)) € My

C21 €2 Y (ca1) ¥ (c22)

when we identify My ® 1 with My itself.

In Sect. 3.4 we saw that whenever we have a non-commutative probability
space (Co, %) and an automorphism aq of (Ma®Cy, tr®1)g), then we can ex-
tend this to a stationary Markov process. We begin with the simplest possible
choice for (Co,1o): put 2 := {—1,1} and consider the probability measure
po on 2 given by po({—1}) = § = po({1}). The algebra Co := L>(£0, o)
is just C? and the probability measure pg induces the state 1y on Cy which
is given by ¥ (f) = %f(—l) + %f(l) for a vector f € Cy.

In this special case there is yet another picture for the algebra My ® Cy =
M, ® C2. It can be canonically identified with the direct sum My @ My in
the following way. When elements of My ®Cy = M3(Cp) are written as 2 x 2-
matrices with entries f;; in Co = L ({2, 1to), then an isomorphism is given
by

. C(fu iz J11(=1) fi2(=1) J11(1) fi2(1)
Ma(Co) = Mo & My <f21 f22) (f21(—1) f22(—1)> ® <f21(1) f22(1)> '

Finally, we need to define an automorphism «; . We introduce the following
notation: a unitary « in an algebra A induces an inner automorphism Adu :
A— Az — u* -z -u. For any real number w we define the unitary w,, :=

1 . . .
( 0 > € M, . It induces the inner automorphism

0 eiw
) T11 T12 T11  T10€¥
Adww . M2 — MQ, <1}21 J,‘22) = (J}2le_1w Tog ) .

Now, for some fixed w define the unitary v := w_,®w,, € Ma® My = My®Cy .
It induces the automorphism «; := Adwu which is given by Adw_,, & Adw,,
on M2 D M2 .

To these ingredients there corresponds a stationary Markov process as in
Sect. 3.4. From the above identifications it can be immediately verified that
the corresponding one—step transition operator is given by

T:My— My, = <$11 112> . Poooq(x®]l) _ ( T11 $12P>
To21 T22 T21p T22

where p = 1(e' + ™) = cos(w).

6.2 A Physical Interpretation:
Spins in a Stochastic Magnetic Field

We now show that this Markov process has a natural physical interpretation: it
can be viewed as the description of a spin—%—particle in a stochastic magnetic
field. This system is at the basis of nuclear magnetic resonance.
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Spin Relaxation

We interpret the matrices o, , 0y, and o, in My as observables of (multiples
of) the spin component of a spin—%—particle in the x-, y-, and z-directions,
respectively (cf. Sect. 1.2).

If a probe of many spin- %—particles is brought into an irregular magnetic
field in the z-direction, one finds that the behaviour in time of this probe is
described by the semigroup of operators on My given by

17
— 5\t
r11 T x Trip-€ 2
Ty: My — My:x=|""712) o 12 ,
T21 T22 -

where the real part of A is larger than zero.

When we restrict to discrete time steps and assume A to be real (in phys-
ical terms this means that we change to the interaction picture), then this
semigroup reduces to the powers of the single transition operator

11 T12 T11 cT12
T:My— My :x = — P
€21 T22 P T21 T22

for some p, 0 < p < 1. This is just the operator, for which we constructed
the Markov process in the previous section. We see that polarization in the
z-direction remains unaffected, while polarization in the x-direction and y-
direction dissipates to zero. We want to see whether our Markov process gives
a reasonable physical explanation for the observed relaxation.

A Spin—%—Particle in a Magnetic Field

A spin—%—particle in a magnetic field B in the z-direction is described by
the Hamiltonian H = %%B S0, = %w - 0., where e is the electric charge
and m the mass of the particle. w is called the Larmor—frequency. The time
evolution, given by e describes a rotation of the spin-particle around the
z-axis with this frequency:

wt
Ade_th( T11 T12 )= Ty e“'ryq
To1 To2 e Wiy Tg '

Since we are discussing the situation for discrete time steps, we consider

the unitary _
o i e—lw/Q 0
w,=e " = ( 0 ew/2)

It describes the effect of the time evolution after one time unit in a field of

strength B. Note that Adw,, = Adw, with w, = (1 as in Sect. 6.1.

0 ew
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A Spin—%—Particle in a Magnetic Field with Two Possible Values

Imagine now that the magnetic field is constant during one time unit, that it
always has the same absolute value |B| such that cosw = p, but that it points
into +z-direction and —z-direction with equal probability % . Representing the
two possible states of the field by the points in 2y = {41, —1}, then the mag-
netic field is described by the probability space (£2,10) = ({+1,-1}, (3, 1))
as in the previous section. The algebraic description of this magnetic field
leads to (Cp, 1) where Cy is the two-dimensional commutative algebra C?,
considered as the algebra of functions on the two points of 2y, while v is
the state on Cy which is induced by the probability measure gy .

The spin- %—particle is described by the algebra of observables Ag = My
and assuming that we know nothing about its polarization, then its state is
appropriately given by the tracial state tr on My (this state is also called
the “chaotic state”).

Therefore, the system which is composed of a spin—%-particle and of a
magnetic field with two possible values, has Ms ® Cy as its algebra of observ-
ables. We use the identification of this algebra with the algebra My & Ms as
it was described in Section 6.1.

The point —1 € {2y corresponds to the field in —z-direction. Therefore,
the first summand of My & Ms corresponds to the spin—%—particle in the
field in —z-direction and the time evolution on this summand is thus given
by Adw_, = Adw_,. On the second summand it is accordingly given by
Adw, = Adw,, . Therefore, the time evolution of the whole composed system
is given by the automorphism oy = Adw_,, & Adw, on (Ms ® Co,tr @ 1p).
We thus have all the ingredients which we needed in Section 3.4 in order to
construct a Markov process.

A Spin—%—Particle in a Stochastic Magnetic Field

What is the interpretation of the whole Markov process? As in Section 3.4,
denote by (C,) the infinite tensor product of copies of (Cp, ), and denote
by S the tensor right shift on it. Then (C,) is the algebraic description
of the classical probability space ({2, ) whose points are two-sided infinite
sequences of —1’s and 1’s, equipped with the product measure constructed
from po = (3,%). The tensor right shift S is induced from the left shift
on these sequences. Therefore, (C,,S5;Cp) is the algebraic description of the
classical Bernoulli—process, which describes, for example, the tossing of a coin,
or the behaviour of a stochastic magnetic field with two possible values, +B
or —B, which are chosen according to the outcomes of the coin toss: (C,,S)
is the mathematical model of such a stochastic magnetic field. Its time zero-
component is coupled to the spin- %—particle via the interaction—automorphism
a1 . Finally, the Markov process as a whole describes the spin- % -particle which

is interacting with this surrounding stochastic magnetic field.
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This is precisely how one explains the spin relaxation T': The algebra Mo,
of spin observables represents a large ensemble of many spin- %—particles. As-
sume, for example, that at time zero they all point in the x-direction. So one
measures a macroscopic magnetic moment in this direction. Now they feel the
above stochastic magnetic field in z-direction. In one time unit, half of the
ensemble feels a field in —z-direction and starts to rotate around the z-axis,
say clockwise; the other half feels a field in +z-direction and starts to rotate
counterclockwise. Therefore, the polarization of the single spins goes out of
phase and the overall polarization in x-direction after one time step reduces by
a factor p. Alltogether, the change of polarization is appropriately described
by T'. After another time unit, cards are shuffled again: two other halfs of
particles, stochastically independent of the previous ones, feel the magnetic
fields in —z-direction and +z-direction, respectively. The overall effect in po-
larization is now given by 72, and so on. This description of the behaviour
of the particles in the stochastic magnetic field is precisely reflected by the
structure of our Markov process.

6.3 Further Discussion of the Example

The idea behind the construction of our example in Sect. 6.1 depended on
writing the transition operator T as a convex combination of the two automor-
phisms Adw_, and Adw,, . This idea can be generalized. In fact, whenever
a transition operator of a probability space (Ag, o) is a convex combination
of automorphisms of (Ag, o) or even a convex integral of such automor-
phisms, a Markov process can be constructed in a similar way ([I<i2]). There
is even a generalization to continuous time of this idea, which is worked out
in ([KiiMal]).

We do not want to enter into such generality here. But it is worth going at
least one step further in this direction. Obviously, there are many more ways
of writing T as a convex combination of automorphisms of Ms: let ug be any
probability measure on the intervall [—m, @] such that ["_e“duo(w) = p.
Obviously, there are many such probability measures. When we identify the
intervall [—m, 7] canonically with the unit circle in the complex plane and 1
with a probability measure on it, this simply means that the barycenter of pg
is p. Then it is clear that T = f:r Adw,,dug(w), i.e., T is a convex integral
of automorphisms of the type Adw, . To any such representation of 7' there
correspond (Co, o) and ay as follows. Put Co := L ([—m, 7], o) and let 1y
be the state on Cy induced by pg. The function [—7m, 7] 3w+ e defines a

unitary v in Cy. It gives rise to a unitary u := O) € M5(Cop) = My 2 Cy

0w
and thus to an automorphism oy := Adu of (My® Co,tr ®1g). Our example
of Sect. 6.1 is retained when choosing g := %5_w + 0o, where ¢, denotes

the Dirac measure at point x (obviously, it was no restriction to assume
w € [—m, 7).
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In this way for any such p we obtain a Markov process for the same
transition operator 7. By computing the classical dynamical entropy of the
commutative part of these processes one sees that there are uncountably many
non-equivalent Markov processes of this type. This is in sharp contrast to the
classical theory of Markov processes: up to stochastic equivalence a classical
Markov process is uniquely determined by its semigroup of transition opera-
tors. On the other hand, our discussion of the physical interpretation in the
previous section shows that these different Markov processes are not artificial,
but they correspond to different physical situations: The probability measure
1o on the points w appears as a probability measure on the possible values
of the magnetic fields. It was rather artificial when we first assumed that the
field B can only attain two different values of equal absolute value. In general,
we can describe any stochastic magnetic field in the z-direction as long as it
has no memory in time.

There are even non-commutative Markov processes for a classical transi-
tion operator which are contained in these examples: The algebra Ms contains
the two-dimensional commutative subalgebra generated by the observable o,
and the whole Markov—process can be restricted to the subalgebra generated
by the translates of this observable. This gives a Markov process with val-
ues in the two-dimensional subalgebra C?, which still is non-commutative for
certain choices of po. Thus we also have non-commutative processes for a
classical transition matrix. Details may be found in [I<ii2].

7 The Micro-Maser as a Quantum Markov Process

The micro-maser experiment as it is carried through by H. Walther [VBW W]
turns out to be another experimental realization of a quantum Markov process
with all the structure described in Section 3.4. It turns out that the scat-
tering theory for such processes leads to some suggestions on how to use a
micro-maser for the preparation of interesting quantum states. In the follow-
ing we give a description of this recent considerations. For details we refer to
[WBIM] for the results on the micro-maser, to [I[<iiMa3] for the mathemati-
cal background on general scattering theory, and to [[Taa] for the asymptotic
completeness of this system. For the physics of this experiment we refer to
[VBWW].

7.1 The Experiment

In the micro-maser experiment a beam of isolated Rubidium atoms is pre-
pared. The atoms of this beam are prepared in highly exited Rydberg states
and for the following only two of these states are relevant. Therefore we may
consider the atoms as quantum mechanical two-level systems. Thus the alge-
bra of observables for a single atom is the algebra My of 2 x 2-matrices. The
atoms with a fixed velocity are singled out and sent through a micro-wave
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cavity which has small holes on both sides for the atoms to pass through this
cavity. During their passage through the cavity the atoms interact with one
mode of the electromagnetic field in this cavity which is in tune with the energy
difference of the two levels of these atoms. One mode of the electromagnetic
field is described mathematically as a quantum harmonic oscillator. Hence its
algebra of observable is given by B(H) where H = L*(R) or H = [*(N),
depending on whether we work in the position representation or in the energy
representation. The atomic beam is weak enough so there is at most one atom
inside the cavity at a time and since the atoms all come with the same veloc-
ity there is a fixed time for the interaction between atom and field for each
of these atoms. To simplify the discussion further we assume that the time
between the passage through the cavity of two successive atoms is always the
same. So there is a time unit such that one atom passes during one time unit.
This is not realistic but due to the particular form of the model (cf. below)
the free evolution of the field commutes with the interaction evolution and
can be handled separately. Therefore it is easy to turn from this description
to a more realistic description afterwards where the arrival times of atoms in
the cavity have, for example, a Poissonian distribution.

For the moment we do not specify the algebras and the interaction involved
and obtain the following scheme of description for the experiment: ¢ stands
for the state of the field mode and (p;); denote the states of the successive
atoms. For the following discussion it will be convenient to describe states by
their density matrices.

Micro-
Wayve- isolated Rubidium atoms
Cavity in Rydberg-states

— @ — @ — O — O —

¥
Cp-1 ® po @ p1 @ p2 ...

7.2 The Micro-Maser Realizes a Quantum Markov Process

We consider the time evolution in the interaction picture. For one time
step the time evolution naturally decomposes into two parts. One part de-
scribes the interaction between a passing atom and the field, the other part
describes the moving atoms.
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Consider one atom which is passing through the cavity during one time
step. Assuming that before the passage the cavity was in a state ¢ and the
atom was in a state p then the state of the system consising of field mode
and atom is now given by wuin: - ¢ ® p - uj,, where u;,; = el H is the
Hamiltonian, and t( is the interaction time given by the time an atom needs
to pass through the cavity.

The other part of the time evolution describes the moving atoms. For one
time unit it is the tensor right shift in the tensor product of states of the
flying atoms. Thus the time evolution for one step of the whole system might
be written in the following suggestive way:

P
Uint &@ u:nt
tensor left shift (--- p_1 ® po @ p1 @p2---)

We continue to use this suggestive picture for our description. Then a descrip-
tion of this system in the Heisenberg picture looks as follows: If = € B(H) is
an observable of the field mode and (y;); € My are observables of the atoms
then a typical observable of the whole systems is given by

x B(H)
oy € &
...y_1®y0®y1... ...M2® M2 ®M2...

and arbitrary observables are limits of linear combinations of such observables.
The dynamics of the interaction between field mode and one passing atom is
now given by

T x
. *
Qint - & = WUint * X - Uint
Yo Yo

while the dynamics of the chain of moving atoms is now the tensor right shift
on the observables:

S: ...y71®y0®y1®y2...|_) ...y72®y71®y0®y1...

Therefore, the complete dynamics for one time step is given by « := ajut - S
and can be written as

B(H)
0y Qint
e @ My ® My Q@ My @ ---
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S

We see that the dynamics of this systems is a realization of the dynamics of
a quantum Markov process of the type as discussed in Sect. 3.4.

7.3 The Jaynes—Cummings Interaction

Before further investigating this Markov process we need to be more specific
on the nature of the interaction between field mode and two-level atoms. In the
micro-maser regime it is a good approximation to assume that the interaction
is described by the Jaynes—Cummings model: On the Hilbert space ?(N)® C?
of field mode and atom we can use the simplified Hamiltonian given by

h
H= hwra'a@ 1+ 13 §wAUZ+gh(a+a*)®(a++a,)
h
~ hwpa*a®ll+11®§wAUZ+gh(a®a++a*®U_)

h
~ fw a*a®]1+]l®§w o, +ghla®@oy +a"®o_) .

Here the first line is the original Hamiltonian of a field—atom interaction where
wp is the frequency of the field mode, w4 is the frequency for the transition
between the two levels of our atoms, and g is the coupling constant. In the
second line this Hamiltonian is simplified by the rotating wave approximation
and in the third line we further assume wp = wy =: w. The operators o
and o_ are the raising and lowering operators of a two-level system. The
Hamiltonian generates the unitary group

U(t) = e #1

and we put u;,; := U(tg) where to is the interaction time needed for one
atom to pass through the cavity.

We denote by [n) ® || ) and |n) ® |1 ) the canonical basis vectors of the
Hilbert space where |n) denotes the n-th eigenstate of the harmonic oscillator
and |T) and || ) are the two eigenstates of the two-level atom. The Hilbert
space decomposes into subspaces which are invariant under the Hamiltonian
and the time evolution:

Denote by Hy the one-dimensional subspace spanned by |0) ® || ); then
the restriction of H to Hy is given by Hy = 0. Hence the restriction of U(t)
to Ho is Up(t) = 1. For k € N denote by Hj the two-dimensional subspace
spanned by the vectors |k) ® || ) and |k — 1) ® |7 ). Then the restriction of
H to Hjy is given by
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and hence the restriction of U(t) to Hj, is

U(t) = olwkt [ €OS g\/Et fising\/%t
b —isingVkt cosgVkt '

Finally, if for some inverse temperatur 5, 0 < 8 < oo, ¢g and g are the
equilibrium states for the free Hamiltonian of the field mode and of the two-
level-atom, respectively, then ¢g®13 is invariant under the full time evolution
generated by the Jaynes—Cummings interaction Hamiltonian H from above.
Therefore, a := @nt := Aduin; on B(H)® Ms leaves this state invariant and
the dynamics of the micro-maser is the dynamics of a full stationary Markov
process (A, p, ar; Ag)as discussed in Sect. 3.4: Put

(A p) = (B(H), 05) ® (QQ(Mo, 5)) ,

z
ay :=al for t € Z with o := a0 5, and Ag := B(H).

7.4 Asymptotic Completeness and Preparation of Quantum States

The long-term behaviour of this system depends very much on whether or
not a so-called trapped state condition is fulfilled. That means that for some
k € N the constant gv/kto is an integer multiple nr of 7 for some n € N. In
this case the transition

k-1 e[T)—IhHell)

is blocked. Therefore, if the initial state of the micro-maser has a density
matrix with non-zero entries only in the upper left £k — 1 x kK — 1 corner then
the atoms, in whichever state they are, will not be able to create a state in the
micro-maser with more than & — 1 photons. This has been used [VBWW] to
prepare two-photon number states experimentally: the initial state of the field
mode is the vacuum, the two-level atoms are in the upper state |7 ) and the
interaction time is chosen such that the transition from two to three photons
is blocked. This forces the field-mode into the two-photon number state.

On the other hand, if no trapped state condition is fulfilled and all tran-
sitions are possible then the state of the field-mode can be controlled by the
states of the passing atoms [WBIXM]. The mathematical reason is the follow-
ing theorem:

Theorem 7.1. If no trapped state condition is fulfilled then for every inverse
temperature 3 > 0 the Markov process (A, p, ay; Ag) as above, which describes
the time evolution of the micro-maser, is asymptotically complete.
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A proof is worked out in [Haa].
For convenience we recall from Chapter 4 that a Markov process as in
Section 3.4 is asymptotically complete if for all z € A

S_(z):= lim S™"a"(z) exists strongly
and P_(x)e 1®C.

Moreover, as was noted in Chapter 4, it suffices if this condition is satisfied
for all z € Agy. For x € Ay, however, we find that

ad"zel)=ul x2x 1 u,
Up = Snil(uint) : SniQ(uz’nt) et S(Uznt) * Uint

and asymptotic completeness roughly means that for =z € Ay and for very
large n € N there exists z,, € C such that

a"zel)=u,c@l-u, =12, .

We translate this into the Schrédinger picture and, for a moment, we use
again density matrices for the description of states. Then we find that if such
a Markov process is asymptotically complete then for any density matrix ¢,
of Ay and large n € N we can find a density matrix pg of C such that

U - o @ Po - Ul X op ® p'

for some density matrix p’ of C and the choice of pg is independent of the
initial state ¢¢ on Ag. This means that if we want to prepare a state ¢, on
Ap (in our case of the field mode) then even without knowing the initial state
o of Ay we can prepare an initial state pg on C such that the state po ® pg
evolves after n time steps, at least up to some ¢, into the state ¢, on Ag
and some other state p’ of C which, however, is not entangled with Ag.

This intuition can be made precise as follows: For simplicity we use discrete
time and assume that (A, @, a;.Ap) is a Markov process which is a coupling
to a white noise (C,v,5;Cjo)-

Definition 7.2. We say that a normal state ¢, on Ag can be prepared if
there is a sequence 1, of normal states on C such that for all x € Ay and
all normal initial states 0 on Ay

lim 0 @Y, 0a™(z @ 1) = poo() .

n—oo

It turns out that for systems like the micro-maser this condition is even equiv-
alent to asymptotic completeness:
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Theorem 7.3. If the Markov process (A, p,a; Ag) is of the form as consid-
ered in Section 3.4 and if, in addition, the initial algebra Ay is finite dimen-
sional or isomorphic to B(H) for some Hilbert space H then the following
conditions are equivalent:

a) The Markov process (A, @, a; Ag) is asymptotically complete.
b) Every normal state on Ay can be prepared.

A proof of this result is contained in [Haa]. This theorem is also the key
for proving the above theorem on the asymptotic completeness of the micro-
maser.

Therefore, from a mathematical point of view it is possible to prepare an
arbitrary state of the field-mode with arbitrary accuracy by sending suitably
prepared atoms through the cavity. This raises the question whether also from
a physical point of view states of the micro-maser can be prepared by this
method. This question has been investigated in [WBIKM], [Wel]. The results
show that already with a small number of atoms one can prepare interesting
states of the field mode with a very high fidelity. Details can be found in
[WBEKM]. As an illustration we give a concrete example: If the field mode is
initially in the vacuum |0) and one wants to prepare the two-photon number
state |2) with 4 incoming atoms then by choosing an optimal interaction time
tint one can prepare the state |2) with a fidelity of 99.87% if the four atoms
are prepared in the state

o) = V0.867[1 )]
+1/0.069] 1
—/0.052| |

T

)

)
+v/0.0051 )

)

)

—/0.004] |

T
!
)
!
T
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8 Completely Positive Operators

8.1 Complete Positivity

After the discussion of some specific examples from physics we now come back
to discussing the general theory. A physical system is again described by its
algebra A of observables. We assume that A is, at least, a C*-—algebra of
operators on some Hilbert space and we can always assume that 1 € A. A
normalized positive linear state functional ¢ : A — C is interpreted either as
a physical state of the system or as a probability measure.
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All time evolutions and other ‘operations’ which we have considered so far
had the property of carrying states into states. This was necessary in order
to be consistent with their physical or probabilistic interpretation. In the
Heisenberg picture these ‘operations’ are described by operators on algebras
of operators. In order to avoid such an accumulation of ‘operators’ we talk
synonymously about maps. Given two C*-algebras A and B then it is obvious
that for a map T : A — B the following two conditions are equivalent:

a) T is state preserving: for every state ¢ on B the functional

poT : A3z — o(T(x))
on A is a state, too.

b) T is positive and identity preserving: T(z) > 0 for x € A, x > 0, and
T(M) =1.

Indeed, all maps which we have considered so far had this property. A closer
inspection, however, shows that these maps satisfy an even stronger notion of
positivity called complete positivity.

Definition 8.1. A map T : A — B is n—positive if

T@Id, : AQM, - BM,:z@y—T(x)y
is positive. It is completely positive if T' is n—positive for all n € N.

Elements of A® M,, may be represented as n x n—matrices with entries from
A. In this representation the operator T'® Id, appears as the map which
carries such an n x n-matrix (z;;);; into (T'(xs;));,; with z;; € A. Thus
T is n-positive if such non-negative n x n-matrices are mapped again into
non-negative n X n-matrices.

From the definition it is clear that 1-positivity is just positivity and
(n + 1)-positivity implies n-positivity: in the above matrix representation
elements of A ® M,, can be identified with n x n—matrices in the upper left
corner of all (n+ 1) x (n+ 1)—matrices in A ® M, ;1.

It is a non—trivial theorem that for commutative 4 or commutative B
positivity already implies complete positivity (cf. [Tak2], IV. 3). If A and B
are both non-commutative algebras, this is no longer true. The simplest (and
typical) example is the transposition on the (complex) 2 x 2—matices M, .

The map
Mys (“0) s (%) e
2 cd bd 2

is positive but not 2—positive hence not completely positive. From this example
one can proceed further to show that for all n there are maps which are n—
positive but not (n+1)—positive. It is true, however, that on M,, n—positivity
already implies complete positivity.
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It is an important property of 2—positive and hence of completely positive
maps that they satisfy a Schwarz—type inequality:

ITT (z"2) = T(2)"T (x)

for x € A (the property T(z*) = T'(x)* follows from positivity).

It can be shown that *—~homomorphisms and conditional expectations are
automatically completely positive. All maps which we have considered so far
are either of these types or are compositions of such maps, like transition
operators. Hence they are all completely positive. This is the mathematical
reason why we have only met completely positive operators.

One could wonder, however, whether there is also a physical reason for
this fact.

8.2 Interpretation of Complete Positivity

In the introduction to this paragraph we argued that time evolutions should
be described by positive identity preserving maps. Now suppose that T is such
a time evolution on a system A and that S is a time evolution of a different
system B. Even if these systems have nothing to do with each other we can
consider them — if only in our minds — as parts of the composed system A® B
whose time evolution should then be given by T'® S — there is no interaction.
Being the time evolution of a physical system the operator T'® S, too, should
be positive and identity preserving. This, however, is not automatic: already
for the simple case B = My and S = Id there are counter-examples as
mentioned above. This is the place where complete positivity comes into play.
With this stronger notion of positivity we can avoid the above problem.

Indeed, if T': Ay — Ay and S : By — By are completely positive operators
then T®S can be defined uniquely on the minimal tensor product 4; ®B; and
it becomes again a completely positive operator from A; ®B; into As®@Bsy. It
suffices to require that T preserves its positivity property when tensored with
the maps Id on M, . Then T can be tensored with any other map having
this property and the composed system still has the right positivity property:
Complete positivity is stable under forming tensor products. Indeed, this holds
not only for C*-tensor products, but also for tensor products in the category
of von Neumann algebras as well. For these theorems and related results we
refer to the literature, for example ([Tak2], IV. 4 and IV. 5).

8.3 Representations of Completely Positive Operators

The fundamental theorem behind almost all results on complete positivity
is Stinespring’s famous representation theorem for completely positive maps.
Consider a map T : A — B. Since B is an operator algebra it is contained in
B(H) for some Hilbert space H and it is no restriction to assume that T is
amap T: A— B(H).
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Theorem 8.2. (Stinespring 1955, cf. [Tak?2]). For a map T : A — B(H) the
following conditions are equivalent:

a) T is completely positive.
b) There is a further Hilbert space IC, a representation 7 : A — B(K) and
a bounded linear map v : H — K such that

T(x) =v*m(x)v
forall x € A. If T(1) = 1 then v is an isometry.

The triple (IC, 7, v) is called a Stinespring representation for T . If it is minimal
that is, the linear span of {m(z)v{, £ € H, x € A} is dense in K, then the
Stinespring representation is unique up to unitary equivalence.

From Stinespring’s theorem it is easy to derive the following concrete rep-
resentation for completely positive operators on M, .

Theorem 8.3. For T : M,, — M, the following conditions are equivalent:

a) T is completely positive.
b) There are elements ay,...,a; € M, for some k such that

k
T(z) = Za’{xai .
i=1

Clearly, T 1is identity preserving if and only if Zle ara; = 1.

Such decompositions of completely positive operators are omnipresent when-
ever completely positive operators occur in a physical context. It is important
to note that such a decomposition is by no means uniquely determined by
T (see below). In a physical context different decompositions rather corre-
spond to different physical situations (cf. the discussion in Sect. 6.3; cf. also
Sect. 10.2).

The following basic facts can be derived from Stinespring’s theorem with-
out much difficulty:

A concrete representation T'(z) = Zle ajxa; for T can always be chosen
such that {a1,as,...,a;} C M, islinearly independent, in particular, k < n?.
We call such a representation minimal. The cardinality k of a minimal repre-
sentation of T is uniquely determined by 7', i.e., two minimal representations
of T have the same cardinality. Finally, all minimal representations can be
characterized by the following result.

Proposition 8.4. Let T(z) = Zle afra; and S(x) = 25:1 bixb; be two
minimal representations of completely positive operators S and T on M, .
The following conditions are equivalent:

a) S=T.
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b) k=1 and there is a unitary k x k-matriz A = (\;j);; such that

k
a; = Z)\ZJ b]' .
Jj=1

The results on concrete representations have an obvious generalization to the
case n = oo. Then infinite sums may occur, but they must converge in the
strong operator topology on B(H).

9 Semigroups of Completely Positive Operators
and Lindblad Generators

9.1 Generators of Lindblad Form

In Section 3.3 we saw that to each Markov process there is always associated
a semigroup of completely positive transition operators on the initial algebra
Ag. If time is continuous then in all cases of physical interest this semigroup
(T)1>0 will be strongly continuous. According to the general theory of one-
parameter semigroups (cf. [Dav2]) the semigroup has a generator L such that

d

ST(2) = L(Ti())

for all = in the domain of L, which is formally written as 7, = e’*. In the
case of a classical Markov process with values in R™ one can say much more.
Typically, L has the form of a partial differential operator of second order of
a very specific form like

Lf(@) = Y o) g @)+ 3 5 bul) oo fe) + [ fduty)

for f atwice continuously differentiable function on R™ and suitable functions
a;, b;j and a measure w(-,t).

It is natural to wonder whether a similar characterization of generators can
be given in the non-commutative case. This turns out to be a difficult problem
and much research on this problem remains to be done. A first breakthrough
was obtained in a celebrated paper by G. Lindblad [Lin] in 1976 and at the
same time, for the finite dimensional case, in [GIS].

Theorem 9.1. Let (T})¢>0 be a semigroup of completely positive identity pre-
serving operators on M, with generator L.

Then there is a completely positive operator M : M, — M, and a self-
adjoint element h € M, such that
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L(z) =ilh,z] + M(z) — %(M(]l)x + 2 M(1)).

where, as usual, [h,z] stands for the commutator hx — xh. Conversely, every
operator L of this form generates a semigroup of completely positive identity
preserving operators.

Since we know that every such M has a concrete representation as
M(zx) = Z alza;
i
we obtain for L the representation
. . Lo, .
L(z) =i[h,x] + Zai xa; — §(ai a; T + za;a;)
i

This representation is usually called the Lindblad form of the generator.
Lindblad was able to prove this result for norm-continuous semigroups on
B(H) for infinite dimensional . In this situation L is still a bounded opera-
tor. If one wants to treat the general case of strongly continuous semigroups on
B(H) then one has to take into account, for example, infinite unbounded sums
of bounded and unbounded operators a;. Until today no general characteriza-
tion of such generators is available, which would generalize the representation
of L as a second order differential operator as indicated above. Nevertheless,
Lindblad’s characterization seems to be ‘philosophically true’ as in most cases
of physical interest unbounded generators also appear to be in Lindblad form.
Typically, the operators a; are creation and annihilation operators.

9.2 Interpretation of Generators of Lindblad Form

The relation between a generator in Lindblad form and the above partial
differential operator is not so obvious. The following observation might clarify
their relation. For an extended discussion we refer to [I{iiMal].

For h € M, consider the operator D on M, given by

D:zwih,z] =i(he —xzh) (x € M,).
Then

D(xy) = D(x) -y +x - D(y)

Hence D is a derivation.

In Lindblad’s theorem h is self-adjoint and in this case D is a real deriva-
tion (i.e. D(x*) = D(z)*) and generates the time evolution z + ettye=iit
which is implemented by the unitary group (e**);cr. Therefore, for self-
adjoint h the term x — i[h, 2] is a ‘quantum derivative’ of first order and
corresponds to a drift term.
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For the second derivative we obtain after a short computation

D?*(z) = ilh,i[h, z]]
= 2(hxh — 3(h?x + xh?)) .

This resembles the second part of a generator in Lindblad form. It shows that
for self-adjoint a the term

1
ara — §(a2x + za?)

is a second derivative and thus generates a quantum diffusion.

On the other hand for ¢ = uw unitary the term a*za — %(a*aaz + za*a)
turns into w*xu — x which generates a jump process: If we define the jump

operator J(z) := u*zu and
L(z) :== J(x) —x = (J — Id)(z) then

Lt _ o(J=Td)t _ o=t  oJt

e e

= Yo I
This is a Poissonian convex combination of the jumps {J", n € N}. Therefore,
terms of this type correspond to classical jump processes.

In general a generator of Lindblad type L =Y, ajza; — 3(a}a;x + a}a;x)
can not be decomposed into summands with a; self-adjoint and a; unitary
thus there are more general types of transitions. The cases which allow de-
compositions of this special type have been characterized and investigated
in [I[KiiMal]. Roughly speaking a time evolution with such a generator can
be interpreted as the time evolution of an open quantum system under the
influence of a classical noise.

In the context of quantum trajectories decompositions of Lindblad type
play an important role. They are closely related to unravellings of the time
evolution T; (cf., e.g., [Car], [KiiMad], [KiiMab]).

9.3 A Brief Look at Quantum Stochastic Differential Equations

We already mentioned that for a semigroup (7});>o of transition operators
on a general initial algebra A there is no canonical procedure which leads to
an analogue of the canonical representation of a classical Markov process on
the space of its paths. For Ay = M,,, however, quantum stochastic calculus
allows to construct a stochastic process which is almost a Markov process in
the sense of our definition. But in most cases stationarity is not preserved by
this construction.

Consider Ty = e on M,, and assume, for simplicity only, that the gen-
erator L has the simple Lindblad form

Lt
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L(z) = i[h,z] + b*xb — %(b*bx + ab*b) .

Let F(L%*(R)) denote the symmetric Fock space of L?(R). For a test function
f € L*(R) there exist the creation operator A*(f) and annihilation operator
A(f) as unbounded operators on F(L?(R)). For f = X[o,1] » the characteristic
function of the interval [0,¢] C R, the operators A*(f) and A(f) are usually
denoted by Af (or AI ) and A;, respectively. It is known that the operators
By = A; + Ay on F(L%(R)),t > 0, give a representation of classical Brownian
motion by a commuting family of self-adjoint operators on F(L?*(R)) (cf. the
discussion in Sect. 1.3). Starting from this observation R. Hudson and K.R.
Parthasaraty have extended the classical Ito—calculus of stochastic integration
with respect to Brownian motion to more general situations on symmetric
Fock space. An account of this theory is given in [Par].

In particular, one can give a rigorous meaning to the stochastic differential
equation

1
duy = u (bdA; +b*dA, + (ih — 2b*b)dt))

where bd A} stands for b ® dA; on C" @ F(L?(R)) and similarly for b*dA,,
while ih — £b*b stands for (ih—1b*b)®1 on C"® F(L*(R)). It can be shown
that the solution exits, is unique, and is given by a family (u;);>o of unitaries
on C" ® F(L?(R)) with ug = 1.

This leads to a stochastic process with random variables

iv: My dx—ul 2@ 1-u € M, @ B(F(L*(R)))

which can, indeed, be viewed as a Markov process with transition operators
(T})t>0- This construction can be applied to all semigroups of completely
positive identity preserving operators on M,, and to many such semigroups
on B(H) for infinite dimensional H.

10 Repeated Measurement and its Ergodic Theory

We already mentioned that in a physical context completely positive oper-
ators occur frequently in a particular concrete representation and that such
a representation may carry additional physical information. In this chapter
we discuss such a situation of particular importance: The state of a quantum
system under the influence of a measurement. The state change of the system
is described by a completely positive operator and depending on the partic-
ular observable to be measured this operator is decomposed into a concrete
representation. After the discussion of a single measurement we turn to the
situation where such a measurement is performed repeatedly as it is the case
in the micro-maser example. We describe some recent results on the ergodic
theory of the outcomes of a repeated measurement as well as of the state
changes caused by it.
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10.1 Measurement According to von Neumann

Consider a system described by its algebra A of observables which is in a
state . In the typical quantum case A will be B(H) and ¢ will be given by
a density matrix p on H. Continuing our discussion in Section 1.1 we consider
the measurement of an observable given by a self-adjoint operator X on H.
For simplicity we assume that the spectrum o(X) is finite so that X has a
spectral decomposition of the form X = > . A\;p; with o(X) = {A\1,... A}
and orthogonal projections pi,pa,...,p, with X;p; = 1. According to the
laws of quantum mechanics the spectrum o(X) is the set of possible outcomes
of this measurement (cf. Sect. 1.1). The probability of measuring the value
Ai € 0(X) is given by

o(pi) = tr(ppi)

and if this probability is different from zero then after such a measurement
the state of the system has changed to the state

. o(pirp;)
Qi T
o(pi)
with density matrix
Pippi
tr(pip)

It will be convenient to denote the state ¢; also by

o(pi - pi)
@(pi)

leaving a dot where the argument x has to be inserted.

The spectral measure o(X) 3 \; — ©(p;) defines a probability measure
e, on the set 2y := o(X) of possible outcomes. If we perform the measure-
ment of X, but we ignore its outcome (this is sometimes called “measurement
with deliberate ignorance”) then the initial state ¢ has changed to the state
©; with probability ¢(p;). Therefore, the state of the system after such a
measurement in ignorance of its outcome is adequately described by the state

Pi =

px = Zippi) - pi = Zip(pi - pi) -
(Here it is no longer necessary to single out the cases with probability ¢(p;) =
0.)
Turning to the dual description in the Heisenberg picture an element x € A

changes as
Pixpi
—

¢(pi)
if A\; was measured. A measurement with deliberate ignorance is described by
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2 Y piopy
7
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the map ¢ — @ ® 1 of states on A into states on A®C. We already saw
in Sect. 5.1 that dual to this map is the conditional expectation of tensor

type

Py A®C— A:z®@y—d(y) o

which thus describes this step in the Heisenberg picture (again we identify
A with the subalgebra A® 1 of A® C so that we may still call Py a
conditional expectation).

() The time evolution of A4 ® C during the interaction time ¢y is given by
an automophism 7j,; on A® C. It changes any state x on A ® C into
X © Tint .

v) A measurement of X = " \;p; € C changes a state x on A® C into

the state % and this happens with probability x(1 ® p;). It

is convenient to consider this state change together with its probability.
This can be described by the non-normalized but linear map

x—x(A@p - 1ep;).
Dual to this is the map

ARC3>2—1®p;-2- 1R p;

which thus describes the unnormalized state change due to a measurement
with outcome \; in the Heisenberg picture.
When turning from a measurement with outcome A; to a measurement
with deliberate ignorance then the difference between the normalized and
the unnormalized description will disappear.

0) This final step maps a state x on the composed system A®C to the state

Xla: A3z - x(2®1).
The density matrix of x|4 is obtained from the density matrix of x by a
partial trace over C. As we already saw in Sect. 5.1 a description of this
step in the dual Heisenberg picture is given by the map

Asrz—z2zl1e AxC.

By composing all four maps in the Schrodinger picture and in the Heisenberg
picture we obtain

A a) A®C B) A®C 4) AzC ) A
@ —  p®Y — Yol — @i — pila
PyTint(x @ p;) «— Tine(x @ p;) «— x®@p; «— @1 — =z
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with g, =@ ¢po Ty (1®@p; - 1®p;).
Altogether, the operator

T, A— Az PyTin(z ®p;)

describes, in the Heisenberg picture, the non-normalized change of states in
such a measurement if the i-th value \; is the outcome. The probability for
this to happen can be computed from the previous section as

@Y oTim(l®p) =@ P( Tint(1®@pi))
= p( PyTine(1®@p;) )
= @( T(1) ).

When performing such a measurement but deliberately ignoring its outcome
the change of the system is described (in the Heisenberg picture) by

T=YT.

Since the operators T; were unnormalized we do not need to weight them
with their probabilities. The operator T can be computed more explicitly:
For x € A we obtain

T(.T) = Z PLIJTint(x & pl) = Pl/)ﬂnt(x (39 ﬂ)

since Y. p; = 1.

From their construction it is clear that all operators T and T; are com-
pletely positive and, in addition, T is identity preserving that is T'(1) = 1. It
should be noted that T" does no longer depend on the particular observable
X € C, but only on the interaction T3,; and the initial state ¢ of the appa-
ratus C. The particular decomposition of T' reflects the particular choice of
X.

10.3 Measurement of a Quantum System and Concrete
Representations of Completely Positive Operators

Once again consider a ‘true quantum situation” where A is given by the al-
gebra M,, of all n x n—matrices and C is given by M,, for some m. Assume
further that we perform a kind of ‘perfect measurement’ : In order to draw a
maximal amount of information from such a measurement the spectral pro-
jection p; should be minimal hence 1-dimensional and the initial state v of
the measurement apparatus should be a pure state. It then follows that there
are operators a; € A= M,, 1 <i<m, such that

Ti(x) = afzxa;  and thus
T(x)=>,aza, .
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Indeed, every automophism T;,; of M, ® M,, is implemented by a unitary
u € M, ® M, such that T;,(z) = Adu(z) = u*zu for z € M,, ® M,, . Since
M,, ® M,, can be identified with M,,(M,,), the algebra of m x m-matrices
with entries from M,,, the unitary u can be written as an m X m matrix

u = uij
mxm

with entries u;; € My, 1 <4,5 <m.
Moreover, the pure state ¢ on M,, is a vector state induced by a unit vec-

(1
tor € C™ while p; projects onto the 1-dimensional subspace spanned
U |
3
by a unit vector ol eCm.
&

A short computation shows that T'(z) = )", T;(x) where

Ti(z) = PpTin(x @ p;) = Pp(u* -z @ p; - u)
= ajza;

with
‘ _ (G
—1 =1
ai:(glw"vgm)' Ui
Um
Summing up, a completely positive operator T" with T'(1) = 1 describes the
state change of a system in the Heisenberg picture due to a measurement
with deliberate ignorance. It depends only on the coupling of the system
to a measurement apparatus and on the initial state of the apparatus. The
measurement of a specific observable X = 3. \;p; leads to a decomposition
T = ), T; where T; describes the (non-normalized) change of states if the
the outcome \; has occurred. The probability of this is given by ¥(7T;(1)).
In the special case of a perfect quantum measurement the operators T;
are of the form T;(x) = afxa; and the probability of an outcome J; is given
by ¢(aja;).
Conversely, a concrete representation T'(x) = >, a;za,; for T : M,, — M,

with T'(1) = 1 may always be interpreted as coming from such a measurement:
Since T'(1) = 1 the map

aj
vi=| from C" into C"@C"=C"®...aC"
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is an isometry and T'(z) = v* -2 ® 1- v is a Stinespring representation of T'.

ay
Construct any unitary u € M, ® M,, = M,,(M,) which has v = | : in
Am
1
- 0
its first column (there are many such unitaries) and put ¢ := | . [ € C™
0

which induces the pure state @ on M,,. Then

Pyu - z2@l-u)=v"-2@1-v=T(x) .

Finally, with the orthogonal projection p; onto the 1-dimensional subspace
0

spanned by the ¢-th canonical basis vector with 1 as the i-th entry,

1
0
we obtain

Py(u* -z ®@p;-u) =a;jza; .

10.4 Repeated Measurement

Consider now the case where we repeat such a measurement infinitely often.
At each time step we couple the system in its present state to the same
measurement apparatus which is always prepared in the same initial state.
We perform a measurement, thereby changing the state of the system, we
then decouple the system from the apparatus, perform the measurement on
the apparatus, and start the whole procedure again. Once more the micro—
maser can serve as a perfect illustration of such a procedure: Continuing the
discussion in Section 10.2 one is now sending many identically prepared atoms
through the cavity, one after the other, and measuring their states after they
have left the cavity.

For a mathematical description we continue the discussion in the previous
section: Each single measurement can have an outcome i in a (finite) set
{2y (the particular eigenvalues play no further role thus it is enough just to
index the possible outcomes). For simplicity assume that we perform a perfect
quantum measurement. Then it is described by a completely positive identity
preserving operator 7' on an algebra M, (n € N or n = oo) with a concrete
representation T'(x) = 3, o aiza;.

A trajectory of the outcomes of a repeated measurement will be an element
in
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2= 0 = {(w1,wa,...) wi € o} .

Given the system is initially in a state ¢ then the probability of measuring
i1 € {2y at the first measurement is ¢(a; a;, ) and in this case its state changes
to

@(a; i ail)
(P(afl iy )
Therefore, the probability of measuring now is € {2 in a second measurement

is given by ©(aj aj,a;,a;,) and in this case the state changes further to

gp(a;‘l a;‘; © Wiy Ay )

p(aj aj,ai,a;,)

11 12
Similarly, the probability of obtaining a sequence of outcomes (i1, ..., i,) €
027 =920 x ... x {2 is given by
Po((i1, 32, - - -y i) i= plaj af, - .- af @i, - ... Gi,ai,)

which defines a probability measure P7 on (2.
The identity ), afa; = T(1) = 1 immediately implies the compatibil-
ity condition

PUt (i1, 2, o yin) X £20) = PL((i1, .- - ,in)) -
Therefore, there is a unique probability measure P, on {2 defined on the
o—algebra X generated by cylinder sets

Ail-,-u,in = {u} c Q LW = il,. ey Wp = Z‘n}

such that

]PLP(Ailywwin) = PZ((“? EEE) ZTL)) :
The measure P, contains all information on this repeated measurement: For

every A € X the probability of measuring a trajectory in A is given by
Po(A).

10.5 Ergodic Theorems for Repeated Measurements

Denote by o the time shift on {2 that is o((w1, w2, ws,...)) = (wo,ws, Wy, .. .).
Then a short computation shows that

Py (071 (4)) = Pyor(4)

for all sets A € Y. In particular, if ¢ is stationary for T', that is ¢ o T = ¢,
then P, is stationary for o on 2. This allows to use methods of classical
ergodic theory for the analysis of trajectories for repeated quantum measure-
ments. Indeed, what follows is an extension of Birkhoff’s pointwise ergodic
theorem to this situation.
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Theorem 10.1. Ergodic Theorem ([KiilMaj]) If

N-1
T DIRE N

for all states ¢ then for any initial state @ and for any set A € X which is
time invariant, that is o~ *(A) = A, we have either P,(A) =0 or P,(A) = 1.

We illustrate this theorem by an application: How likely is it to find during
such a repeated measurement a certain sequence of outcomes (iy,...,i,) €
£257 If the initial state is a T -invariant state (o then the probability of
finding this sequence as outcome of the measurements k, k+1,...k+n—1 is
the same as the probability for finding it for the first n measurements. In both
cases it is given by ¢o(aj, ...aj a;, ...a; ). However, it is also true that this
probability is identical to the relative frequency of occurences of this sequence
in an arbitrary individual trajectory:

Corollary 10.2. For any initial state ¢ and for (iy,...in) € 2§
. .. . )
A}EHOON\{]:]<N and wjp1 =11, .., Wity = in}|

= <p0(a;-‘1 Ceeenag Qg “ag,)

for P, — almost all paths w € Q2 .

Similarly, all kind of statistical information can be drawn from the observation
of a single trajectory of the repeated measurement process: correlations can
be measured as autocorrelations. This was tacitly assumed at many places in
the literature but it has not been proven up to now. For proofs and further
discussions we refer to [[KiiMa4], where the continuous time versions of the
above results are treated.
If a sequence of nm measurements has led to a sequence of outcomes
(i1,...,1,) € L2} then the operator
Tiyiy. i,

FX A G TG, Gy

d

describes the change of the system in the Heisenberg picture under this mea-
surement, multiplied by the probability of this particular outcomes to occur.
Similarly, to any subset A C {2} we associate the operator

% = ZTw.

weny

In particular, Tiop =1T".

For subsets A C (27 and B C (2" the set A x B may be naturally
identified with a subset of 27 x 25" = 27*T™  and from the definition of T7%
we obtain
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TEm — n oo T
AxB — +A B -

Therefore, the operators {T% : n € N, A C 2} form a discrete time version
of the type of quantum stochastic processes which have been considered in
[Davl] for the description of quantum counting processes.

Also for this type of quantum stochastic processes we could prove a point-
wise ergodic theorem [IiiMa5]. It concerns not only the outcomes of a repeated
measurement but the quantum trajectories of the system itself which is being
repeatedly measured.

Theorem 10.3. [KilMa5] Under the same assumptions as in the above er-
godic theorem

* * . .
n—00 (af ...aj ai, ...ai)

i ii plaj, ...a; -ai,...a;)
N o = %o
n=1
for any initial state ¢ and w = (i1,12,...) P, — almost surely.

The continuous time version of this theorem has been discussed and proven
in [KiiMa5]. We continue to discuss the discrete time version hoping that this
shows the ideas of reasoning more clearly. In order to simplify notation we
put

My = (a; - a;)

for any state ¢. Thus >, Mjp =1 oT.
Given the initial state ¢ and w € {2 we define

O, (w) = My, -...- My :go(azl...ajjn- A, - gy )
T My, - My, | play, ...ak ay, ... au,)
whenever [[M,,, -...- M, ¢|| # 0. By the definition of P, the maps 6, (w)

are well-defined random variables on (§2,P,) with values in the states of A.
Putting Oy(w) := ¢ for w € 2 we thus obtain a stochastic processs (O,,)n>0
taking values in the state space of A. A path of this process is also called a
quantum trajectory . In this sense decompositions as T'(z) = X;a;za; define
quantum trajectories.

Using these notions we can formulate a slightly more general version of
the above theorem as follows.

Theorem 10.4. For any initial state ¢ the pathwise time average

exists for P, —almost every w € 2. The limit defines a random variable O
taking values in the stationary states.
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If, in particular, there is a unique stationary state g with @goT = @q
then

N—-1
IR S SLHEE

P, —almost surely.

Quantum trajectories are extensively used in the numerical simulation of irre-
versible behaviour of open quantum systems, in particular, for computing their
equilibrium states (cf. [Car]). The theorem above shows that for purposes like
this it is not necessary to perform multiple simulations and determine their
sample average. Instead, it is enough to do a simulation along a single path
only.

Proof: Since A = M, is finite dimensional and ||T'|| = 1 the operator T is
mean ergodic , i.e.,

N-1
Pi=lm — > 1"

exists and P is the projection onto the set of fixed elements. It follows that
PT =TP = P. For more information on ergodic theory we refer to [[Kre] and
[KiiNa].

By X, we denote the o-—subalgebra on (2 generated by the process
(Or)k>0 up to time n. Thus X, is generated by the cylinder sets {A;, ., ,
(i1,...,0n) € £20}. As usual, E(X|X,,) denotes the conditional expectation
of a random variable X on (2 with respect to X, .

Evaluating the random variables ©,, n > 0, with values in the state
space of A on an element x € A we obtain scalar-valued random variables
Or . 235w O,w)(x), n > 0. Whenever it is convenient we write also
O, (z) for ©F . For the following arguments we fix an arbitrary element x € A.

Key observation: On P,-almost all w € {2 we obtain

E(On+t1(2)|Z0n)(w) = Zie(zo | M;On (w)]| - ?ﬂ(ﬁgim
= 2icq, MiOn(w)(x) (%)

= O, (w)(Tx) .

Step 1: Define random variables

Vi =0h41(x) —60,(Tx), n>0,

on (£2,P,). In order to simplify notation we now omit the argument w €
2. The random variable V,, is X, ;— measurable and E(V,|X,) = 0 by
(%) . Therefore, the process (V;,)n>0 consists of pairwise uncorrelated random
variables, hence the process (Y,,),>0 with
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mﬁ—l

J

hem 35

is a martingale.

From E(V}?) < 4 - [jz]]* we infer E(Y,?) < 4- [z %2, hence (Y,,)n>1
is uniformly bounded in L'(£2,P,). Thus, by the martingale convergence
theorem (cf. [Dur]),

"1
lim -V =Y,
neoo];] 7

exists P, —almost surely. Applying Kronecker’s Lemma (cf. [Dur]), it follows
that

| Nl
— Vi — 0 Pg,-almost surely,
N =0 N — oo
ie.,
| Nl
N (9j+1(x) -0, (TCL‘)) v 0 P,-almost surely,
i=0 >
hence
| Nl
— Z <(9j (x) — O (T:c)) — 0 Py -almost surely,
j=0

since the last sum differs from the foregoing only by two summands which can
be neglected when N becomes large. Applying T it follows that

N—
Z ( 0,(T*x )) N 0 P,-almost surely,
J=0

and by adding this to the foregoing expression we obtain

MZ

( 0,(T?x )) v 0 P, -almost surely.
=0 >

By the same argument we see

N—
1
( 0;(T'x )) — 0 P, -almost surely for all/ € N

N — oo
j=0

,_.

<.

and averaging this over the first m values of [ yields



Quantum Markov Processes and Applications in Physics 327

m—1

N-1

1 1

N E (Qj (z) — - E O, (Tla:)) N 0 P,-almost surely form € N .
5=0 1=0

We may exchange the limits N — oo and m — oo and finally obtain

N

;| N-
i Z (@j (z) — @j(Pz)) N 0 P,-almost surely. (%)
7=0

=

Step 2: From the above key observation (x) we obtain

E(On41(Px)|Xy) = On(TPx) = O, (Px) ,

hence the process (0,,(Px))n>0, too, is a uniformly bounded martingale which
converges to a random variable ©% P, -almost surely on 2. By (¥x) the
averages of the difference (0;(z) — ©,(Px));>0 converge to zero, hence

N-1
o1 x
]\}LH;O N E > O,(x) =05 P, almost surely on (2.
J:

This holds for all x € A, hence the averages

1 N—-1
N 2O
=0

converge to some random variable @, with values in the state space of A
P, —almost surely.
Finally, since PTx =Tz for x € A, we obtain

O (Tz) = limy, o0 O (PTz) = lim,, .o O, (Px)
= O(2),

hence @, takes values in the stationary states.
O

If a quantum trajectory starts in a pure state ¢ it will clearly stay in the
pure states for all times. However, our computer simulations showed that
even if initially starting with a mixed state there was a tendency for the
state to "purify” along a trajectory. There is an obvious exception: If T' is
decomposed into a convex combination of automorphisms, i.e., if the operators
a; are multiples of unitaries for all i € 2y then a mixed state ¢ will never
purify since all states along the trajectory will stay being unitarily equivalent
to ¢. In a sense this is the only exception:

For a state ¢ on A = M, we denote by py the corresponding density
matrix such that ¢(z) = tr(py - ©) where, as usual, tr denotes the trace on
A= M,.
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Definition 10.5. A quantum trajectory (0, (w))n>0 purifies, if

Theorem 10.6. [MaKi] The quantum trajectories (6,

lim tr(pén(w)) =1.

n—oo

))n>07 w e '(27 pu-

(w
rify P, —almost surely or there exists a projection p € A = M, with dim p
> 2, such that paja;p = N\ip for all i € 29 and \; > 0.

Corollary 10.7. On A = M, quantum trajectories purify P, —almost surely
or a; = M\u; for A; € C and u; € My wunitary for all i € 2y, i.e., T is
decomposed into a convex combination of automorphisms.
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C*-algebra 262, 264
canonical anticommutation relations
277
canonical commutation relations 17,
277
canonical realization of a stochastic
process 273
categorical equivalence 201

categories
isomorphic 201
category 196,275
dual 198

full sub- 198
functor 201
monoidal 207
opposite 198
sub- 198
category of algebraic probability spaces
213
Cauchy transform 100, 152
Cayley transform 97
CCR flow 185
characteristic triplet
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classical 35
free 103
coaction 8
coboundary
cocycle 166
codomain see target
cogroup 229
comodule algebra 8
comonoidal functor 208
complete monotonicity 46, 67
completely positive 305
completely positive operator 276
components of a natural transformation
200
compound Poisson process 169
comultiplication 24,162, 229
concrete representation of completely
positive operators 307, 317
conditional expectation 268,276,291,
313
conditional expectation of tensor type
268,271,291, 314
conditionally positive 165
contravariant functor 199
convolution
of algebra homomorphisms 229
of linear maps 162
convolution semigroup
of states 163
coproduct 204
of a bialgebra 24,162
coproduct injection 205
cotensor functor 208
counit 24,229
coupling to a shift 7
covariant functor 199
cumulant transform
classical 34
free 99

cumulants

166, 168

101,113

density matrix 260, 263, 265

density operator 263

diffusion term 310

dilation 191,274,275

dilation diagram 275

distribution 261, 266
of a quantum random variable 161
of a quantum stochastic process 161

domain see source
drift 168
drift term 310
dual category 198
dual group 229
dual semigroup 229
in a tensor category 233

endomorphism 197

epi  see epimorphism
epimorphism 198
equilibrium distribution 257
equivalence 201
categorical 201

natural

processes 161
ergodic theorem 319-321
expectation 259
expectation functional 263
expectation value 263

factorizable representation 179

Fermi independence 215

finite quantum group 25

flip 13,26, 163,231

free
additive convolution 98, 100
Brownian motion 121
cumulant transform 99
cumulants 101
independence 94,97, 151

and weak convergence 95

infinite divisibility 102

free independence 216

free Lévy process 230

free product
of x-algebras
of states 216

freely independent 230

full subcategory 198

function 197
total 197

functor 199
comonoidal 208
contravariant 199
covariant 199
identity 199
monoidal 208

205, 207

see natural isomorphism
equivalence of quantum stochastic
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functor of white noise
fundamental operator

277, 285, 286
12,26

Gaussian generator 168
Gaussian process 277
generalized inverse Gaussian distribu-
tion 45

generating pair

classical 34

free 103

and weak convergence 116

generator

Poisson 169

quadratic or Gaussian 168
generator of a Lévy process 165
GIG see generalized inverse Gaussian

distribution

Gnedenko 116
GNS representation 134
Goldie-Steutel-Bondesson class 43, 46
H-algebra 229
Haar measure 183
Haar state 25, 28
Heisenberg picture 265
hom-set 197
Hopf algebra 163

involutive 24
HP-cocycle 171,185

identical natural transformation 201
identity functor 199
identity morphism 196
identity property 196
inclusion 199
increment property 162
independence 283
anti-monotone 230
boolean 230
Bose or tensor 162,214
Fermi or anti-symmetric 215
free 216,230
monotone 230
of morphisms 211
tensor 230
independent
stochastically 209
infinite divisibility 34
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classical 34
characterization of classes of laws in
terms of Lévy measure 46
classes of laws 42
free 91,102
classes of laws
of matrices 90
initial distribution 3
initial object 205
initial state 6
injection
coproduct 205
inner automorphism 295
integral representation see stochastic
integration
inverse
left 198
right 198
inverse Gaussian distribution 45
inverse morphism 197
invertible morphism see isomorphism
involutive bialgebra 24,162
involutive Hopf algebra 24,163
irreducibility axiom 262
isomomorphism
natural 200
isomorphic 197
isomorphic categories 201
isomorphism 197

105, 115

joint distribution
of a quantum stochastic process 161
jump operator 310

Laplace like transform 77
left inverse 198

leg notation 13,26
Lévy
copulas 89
measure 35
process
classical 34, 35

connection between classical and
free 120,125

free 91,110,122

on a dual semigroup 230

on a Hopf x-algebra 163

on a Lie algebra 177

on an involutive bialgebra 162
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Lévy-1td6 decomposition natural equivalence see natural
classical 40,41 isomomorphism
free 139,143,145 natural isomorphism 200
Lévy-Khintchine representation natural transformation 200
classical 34 identical 201
free 102,103 non-commutative analogue of the
Lie algebra 177 algebra of coefficients of the
Lindblad form of a generator 309 unitary group 182
non-commutative probability space
marginal distribution 263
of a quantum stochastic process 161 noncommutative probability 92
Markov chain 3 normal state 265
Markov process 3, 265,270,273, 292, nuclear magnetic resonance 295
311
Markov property 257 object 196
mean ergodic 321 initial 205
measure topology 96, 151 terminal 204
measurement 259, 261 observable 259
micro-maser 257,313,318 open system 291
minimal concrete representation of operator algebra 257,264
completely positive operators operator process 162
308 operator theory 92
minimal dilation 192 opposite category 198
minimal Stinespring representation Ornstein-Uhlenbeck process 277
307 OU process 128
Mittag-Leffler
distribution 73 P-representation 293
function 72,80 partial trace 292
mixed state 260 pendagon axiom 207
module property 268 perfect measurement 316
Mobius transform 101 phase space methods 293
monic see monomorphism Pick functions 102
monoidal category 207 Poisson
monoidal functor 208 distribution
monomorphism 198 classical 113
monotone calculus 249 free 113
monotone Lévy process 230 intensity measure
monotone product 216 classical 41
monotonically independent 230 free 130
morphism 196, 275 random measure
inverse 197 classical 40
left 198 free 129,130,135
right 198 Poisson generator 169
invertible see isomorphism positive definite 279
morphism of functors see natural probability space 263,276
transformation product 201, 203
multiplicative unitary 13,26 binary 201

product projection 204
n—positive 305 projection
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product 204 selfdecomposability
pufification of quantum trajectories classical 42-45
324 and Thorin class 65, 69
pure state 260 integral representation 44
free 105,109
g-commutation relations 277 integral representation 125,128
quadratic generator 168 selfdecomposable laws
quantum Azéma martingale 181 classical 42-46, 89
quantum dynamical semigroup 191 free 105,115
quantum group semi-circle distribution 95,107,112
finite 25 source 196
quantum Markov chain 7 spectral measure 261
quantum measurement 312 spectral theorem 260
quantum mechanics 259 spectrum 260, 312
quantum probability space 161,263 spin- %—particle 257,259,295
quantum random variable 161 stable distributions
quantum regression theorem 270 classical 42-44, 46
quantum stochastic calculus 311 free 105,107
quantum stochastic process 161 state 92,259, 263, 264
quantum trajectory 311,320, 321 normal 93
quantum trajectory, purification 324 tracial 93
stationarity of increments 163
random variable 266, 276 stationary Markov process 273
random walk 1,4,9 stationary state 319
on a finite group 4 stationary stochastic process 257,267,
random walk on a comodule algebra 9 276
random walk on a finite quantum group  Stieltjes transform see Cauchy
11 transform
real-valued random variable 265 Stinespring representation 307,317
reciprocal inverse Gaussian distribution  stochastic differential equation 311
45 stochastic integration
reduced time evolution 292 classical 36, 38
reduction of an independence 218 existence 38
repeated quantum measurement 317 free 122,135,136
representation theorem for Lévy connection 125
processes on involutive bialgebras stochastic matrix 3
169 stochastic process 266
retraction see left inverse stochastically independent 209
right inverse 198 strong operator topology 264
subcategory 198
Schoenberg correspondence 240 full 198
Schrédinger picture 265 surjective Schiirmann triple 166
Schiirmann triple 166, 243 Sweedler’s notation 162
Schwarz inequality for maps 306
section see right inverse target 196
selfadjoint operator tempered stable 42,43, 46
affiliated with W*-algebra 93,149, tensor algebra 175
150 tensor category 207

spectral distribution 93,94, 150 with inclusions 211
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with projections 210 unravellings of operators 311
tensor functor 208 Upsilon transformations 47, 86
tensor independence 162,214, 230 T 54
tensor independent 8 re 72,79
tensor Lévy process 230 rT 87
tensor product 207 To 47
terminal object 204 Ty 72,74
Thorin class absolute continuity 49, 76
connection to selfdecomposability algebraic properties 58, 82
65, 69 connection 7 and A 113
general 42,43, 46, 67, 69 connection to L(*) and 7 (¥) 62
positive 44, 62, 65 for matrix subordinators 89
time translation 267,276 generalized 86, 87
total function 197 stochastic integral representation 85
transformation
identical natural 201 Voiculescu transform 99, 100, 102, 106

nat.ulral 200. von Neumann algebra 92,149, 262,
transition matrix 3 264

transition operator 7,269, 270,274,
276,292, 295, 311 .
transition state 6 W
triangle axiom 208 -probability space 93,149

two—level system 259 WH-algebra 262
weak convergence 36, 37,82,100, 105

unitary dilation 274,276 white noise 258,292
unitization 207 Wigner 95
universal enveloping algebra 178 Wigner representation 293
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