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Preface

This volume is the second of two volumes containing the lectures given at the
School “Quantum Independent Increment Processes: Structure and Applica-
tions to Physics”. This school was held at the Alfried Krupp Wissenschafts-
kolleg in Greifswald during the period March 9–22, 2003. We thank the lectur-
ers for all the hard work they accomplished. Their lectures give an introduction
to current research in their domains that is accessible to Ph. D. students. We
hope that the two volumes will help to bring researchers from the areas of clas-
sical and quantum probability, operator algebras and mathematical physics
together and contribute to developing the subject of quantum independent
increment processes.

We are greatly indebted to the Volkswagen Foundation for their finan-
cial support, without which the school would not have been possible. We
also acknowledge the support by the European Community for the Research
Training Network “QP-Applications: Quantum Probability with Applications
to Physics, Information Theory and Biology” under contract HPRN-CT-2002-
00279.

Special thanks go to Mrs. Zeidler who helped with the preparation and
organisation of the school and who took care of all of the logistics.

Finally, we would like to thank all the students for coming to Greifswald
and helping to make the school a success.

Neuherberg and Greifswald, Uwe Franz
August 2005 Michael Schürmann
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DK-8000 Århus, Denmark
oebn@imf.au.dk

B. V. Rajarama Bhat
Indian Statistical Institute
Bangalore, India
bhat@isibang.ac.in

Uwe Franz
GSF - Forschungszentrum für
Umwelt und Gesundheit
Institut für Biomathematik und
Biometrie
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Introduction

In the seventies and eighties of the last century, non-commutative prob-
ability or quantum probability arose as an independent field of research
that generalised the classical theory of probability formulated by Kolmoro-
gov. It follows von Neumann’s approach to quantum mechanics [vN96] and
its subsequent operator algebraic formulation, cf. [BR87, BR97, Emc72].
Since its initiation quantum probability has steadily grown and now cov-
ers a wide span of research from the foundations of quantum mechan-
ics and probability theory to applications in quantum information and the
study of open quantum systems. For general introductions to the subject see
[AL03a, AL03b, Mey95, Bia93, Par92].

Formally, quantum probability is related to classical probability in a sim-
ilar way as non-commutative geometry to differential geometry or the theory
of quantum groups to its classical counterpart. The classical theory is formu-
lated in terms of function algebras and then these algebras are allowed to be
non-commutative. The motivation for this generalisation is that examples of
the new theory play an important role in quantum physics.

Some parts of quantum probability resemble classical probability, but there
are also many significant differences. One is the notion of independence. Unlike
in classical probability, there exist several notions of independence in quantum
probability. In Uwe Franz’s lecture, Lévy processes on quantum groups and
dual groups, we will see that from an axiomatic point of view, independence
should be understood as a product in the category of probability spaces having
certain nice properties. It turns out to be possible to classify all possible
notions of independence and to develop a theory of stochastic processes with
independent and stationary increments for each of them.

The lecture Classical and Free Infinite Divisibility and Lévy Processes by
O.E. Barndorff-Nielsen and S. Thorbjørnsen focuses on the similarities and
differences between two of these notions, namely classical independence and
free independence. The authors show that many important concepts of infinite
divisibility and Lévy processes have interesting analogues in free probability.
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In particular, the Υ -mappings provide a direct connection between the Lévy-
Khintchine formula in free and in classical probability.

Another important concept in classical probability is the notion of Marko-
vianity. In classical probability the class of Markov processes contains the class
of processes with independent and stationary processes, i.e. Lévy processes. In
quantum probability this is true for free independence [Bia98], tensor indepen-
dence [Fra99], and for monotone independence [FM04], but neither for boolean
nor for anti-monotone independence. See also the lecture Random Walks on
Finite Quantum Groups by Uwe Franz and Rolf Gohm, where random walks
on quantum groups, i.e. the discrete-time analogue of Lévy processes, are
studied with special emphasis on their Markov structure.

Burkhard Kümmerer’s lecture Quantum Markov Processes and Applica-
tion in Physics gives a detailed introduction to quantum Markov processes. In
particular, Kümmerer shows how these processes can be constructed from in-
dependent noises and how they arise in physics in the description of open quan-
tum systems. The micro-maser and a spin- 1

2 -particle in a stochastic magnetic
field can be naturally described by discrete-time quantum Markov processes.
Repeated measurement is also a kind of Markov process, but of a different
type.
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Introduction

We present here the theory of quantum stochastic processes with independent
increments with special emphasis on their structure as Markov processes. To
avoid all technical difficulties we restrict ourselves to discrete time and finite
quantum groups, i.e. finite-dimensional C∗-Hopf algebras, see Appendix A.
More details can be found in the lectures of Kümmerer and Franz in this
volume.

U. Franz and R. Gohm: Random Walks on Finite Quantum Groups,
Lect. Notes Math. 1866, 1–32 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



2 Uwe Franz and Rolf Gohm

Let G be a finite group. A Markov chain (Xn)n≥0 with values in G is called
a (left-invariant) random walk, if the transition probabilities are invariant
under left multiplication, i.e.

P (Xn+1 = g′|Xn = g) = P (Xn+1 = hg′|Xn = hg) = pg−1g′

for all n ≥ 0 and g, g′, h ∈ G, with some probability measure p = (pg)g∈G on
G. Since every group element can be translated to the unit element by left
multiplication with its inverse, this implies that the Markov chain looks the
same everywhere in G. In many applications this is a reasonable assumption
which simplifies the study of (Xn)n≥0 considerably. For a survey on random
walks on finite groups focusing in particular on their asymptotic behavior, see
[SC04].

A quantum version of the theory of Markov processes arose in the seventies
and eighties, see e.g. [AFL82, Küm88] and the references therein. The first
examples of quantum random walks were constructed on duals of compact
groups, see [vW90b, vW90a, Bia90, Bia91b, Bia91a, Bia92a, Bia92c, Bia92b,
Bia94]. Subsequently, this work has been generalized to discrete quantum
groups in general, see [Izu02, Col04, NT04, INT04]. We hope that the present
lectures will also serve as an appetizer for the “quantum probabilistic potential
theory” developed in these references.

It has been realized early that bialgebras and Hopf algebras are closely
related to combinatorics, cf. [JR82, NS82]. Therefore it became natural to
reformulate the theory of random walks in the language of bialgebras. In
particular, the left-invariant Markov transition operator of some probability
measure on a group G is nothing else than the left dual (or regular) action of
the corresponding state on the algebra of functions on G. This leads to the
algebraic approach to random walks on quantum groups in [Maj93, MRP94,
Maj95, Len96, Ell04].

This lecture is organized as follows.
In Section 1, we recall the definition of random walks from classical proba-

bility. Section 2 provides a brief introduction to quantum Markov chains. For
more detailed information on quantum Markov processes see, e.g., [Par03] and
of course Kümmerer’s lecture in this volume.

In Sections 3 and 4, we introduce the main objects of these lectures, namely
quantum Markov chains that are invariant under the coaction of a finite quan-
tum group. These constructions can also be carried out in infinite dimension,
but require more careful treatment of the topological and analytical proper-
ties. For example the properties that use the Haar state become much more
delicate, because discrete or locally compact quantum groups in general do
not have a two-sided Haar state, but only one-sided Haar weights, cf. [Kus05].

The remainder of these lectures is devoted to three relatively independent
topics.

In Section 5, we show how the coupling representation of random walks
on finite quantum groups can be constructed using the multiplicative unitary.



Random Walks on Finite Quantum Groups 3

This also gives a method to extend random walks in a natural way which is
related to quantization.

In Section 6, we study the classical stochastic processes that can be ob-
tained from random walks on finite quantum groups. There are basically two
methods. Either one can restrict the random walk to some commutative sub-
algebra that is invariant under the transition operator, or one can look for a
commutative subalgebra such that the whole process obtained by restriction
is commutative. We give an explicit characterisation of the classical processes
that arise in this way in several examples.

In Section 7, we study the asymptotic behavior of random walks on fi-
nite quantum groups. It is well-known that the Cesaro mean of the marginal
distributions of a random walk starting at the identity on a classical group
converges to an idempotent measure. These measures are Haar measures on
some compact subgroup. We show that the Cesaro limit on finite quantum
groups is again idempotent, but here this does not imply that it has to be a
Haar state of some quantum subgroup.

Finally, we have collected some background material in the Appendix. In
Section A, we summarize the basic theory of finite quantum groups, i.e. finite-
dimensional C∗-Hopf algebras. The most important results are the existence
of a unique two-sided Haar state and the multiplicative unitary, see Theorems
A.2 and A.4. In order to illustrate the theory of random walks, we shall present
explicit examples and calculations on the eight-dimensional quantum group
introduced by Kac and Paljutkin in [KP66]. The defining relations of this
quantum group and the formulas for its Haar state, GNS representation, dual,
etc., are collected in Section B.

1 Markov Chains and Random Walks
in Classical Probability

Let (Xn)n≥0 be a stochastic process with values in a finite set, say M =
{1, . . . , d}. It is called Markovian, if the conditional probabilities onto the
past of time n depend only on the value of (Xn)n≥0 at time n, i.e.

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in)

for all n ≥ 0 and all i0, . . . , in+1 ∈ {1, . . . , d} with

P (X0 = i0, . . . , Xn = in) > 0.

It follows that the distribution of (Xn)n≥0 is uniquely determined by the initial
distribution (λi)1≤i≤d and transition matrices (p(n)

ij )1≤i,j≤d, n ≥ 1, defined by

λi = P (X0 = i) and p
(n)
ij = P (Xn+1 = j|Xn = i).

In the following we will only consider the case, where the transition probabil-
ities p(n)

ij = P (Xn+1 = j|Xn = i) do not depend on n.
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Definition 1.1. A stochastic process (Xn)n≥0 with values in M = {1, . . . , d}
is called a Markov chain on M with initial distribution (λi)1≤i≤d and transi-
tion matrix (pij)1≤i,j≤d, if

1. P (X0 = i) = λi for i = 1, . . . , d,
2. P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = pinin+1 for all n ≥ 0 and all
i0, . . . , in+1 ∈M s.t. P (X0 = i0, . . . , Xn = in) > 0.

The transition matrix of a Markov chain is a stochastic matrix, i.e. it has
non-negative entries and the sum over a row is equal to one,

d∑

j=1

pij = 1, for all 1 ≤ i ≤ d.

The following gives an equivalent characterisation of Markov chains, cf.
[Nor97, Theorem 1.1.1.].

Proposition 1.2. A stochastic process (Xn)n≥0 is a Markov chain with initial
distribution (λi)1≤i≤d and transition matrix (pij)1≤i,j≤d if and only if

P (X0 = i0,X1 = i1, . . . , Xn = in) = λi0pi0i1 · · · pin−1in

for all n ≥ 0 and all i0, i1, . . . , in ∈M .

If a group G is acting on the state space M of a Markov chain (Xn)n≥0,
then we can get a family of Markov chains (g.Xn)n≥0 indexed by group ele-
ments g ∈ G. If all these Markov chains have the same transition matrices,
then we call (Xn)n≥0 a left-invariant random walk on M (w.r.t. to the action
of G). This is the case if and only if the transition probabilities satisfy

P (Xn+1 = h.y|Xn = h.x) = P (Xn+1 = y|Xn = x)

for all x, y ∈ M , h ∈ G, and n ≥ 0. If the state space is itself a group, then
we consider the action defined by left multiplication. More precisely, we call
a Markov chain (Xn)n≥0 on a finite group G a random walk on G, if

P (Xn+1 = hg′|Xn = hg) = P (Xn+1 = g′|Xn = g)

for all g, g′, h ∈ G, n ≥ 0.

Example 1.3. We describe a binary message that is transmitted in a network.
During each transmission one of the bits may be flipped with a small probabil-
ity p > 0 and all bits have the same probability to be flipped. But we assume
here that two or more errors can not occur during a single transmission.

If the message has length d, then the state space for the Markov chain
(Xn)n≥0 describing the message after n transmissions is equal to the d-
dimensional hypercube M = {0, 1}d ∼= Z

d
2. The transition matrix is given

by
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pij =






1− p if i = j,
p/d if i, j differ only in one bit,
0 if i, j differ in more that one bit.

This random walk is invariant for the group structure of Z
d
2 and also for the

action of the symmetry group of the hypercube.

2 Quantum Markov Chains

To motivate the definition of quantum Markov chains let us start with a
reformulation of the classical situation. Let M,G be (finite) sets. Any map
b : M × G → M may be called an action of G on M . (Later we shall be
interested in the case that G is a group but for the moment it is enough to have
a set.) Let C

M respectively C
G be the ∗-algebra of complex functions on M

respectively G. For all g ∈ G we have unital ∗-homomorphisms αg : C
M → C

M

given by αg(f)(x) := f(b(x, g)). They can be put together into a single unital
∗-homomorphism

β : C
M → C

M ⊗ C
G, f �→

∑

g∈G
αg(f)⊗ 1{g},

where 1{g} denotes the indicator function of g. A nice representation of such
a structure can be given by a directed labeled multigraph. For example, the
graph

xg
h y
g
h

with set of vertices M={x, y} and set of labels G={g, h} represents the map
b : M × G → M with b(x, g) = x, b(x, h) = y, b(y, g) = x = b(y, h). We
get a natural noncommutative generalization just by allowing the algebras
to become noncommutative. In [GKL04] the resulting structure is called a
transition and is further analyzed. For us it is interesting to check that this is
enough to construct a noncommutative or quantum Markov chain.

Let B and A be unital C∗-algebras and β : B → B ⊗ A a unital ∗-
homomorphism. Here B ⊗A is the minimal C∗-tensor product [Sak71]. Then
we can build up the following iterative scheme (n ≥ 0).

j0 : B → B, b �→ b

j1 : B → B ⊗A, b �→ β(b) = b(0) ⊗ b(1)

(Sweedler’s notation b(0) ⊗ b(1) stands for
∑
i b0i ⊗ b1i and is very convenient

in writing formulas.)
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jn : B → B ⊗
n⊗

1

A, jn = (jn−1 ⊗ idA) ◦ β,

b �→ jn−1(b(0))⊗ b(1) ∈
(
B ⊗

n−1⊗

1

A
)
⊗A.

Clearly all the jn are unital ∗-homomorphisms. If we want to have an algebra
B̂ which includes all their ranges we can form the infinite tensor product
Â :=

⊗∞
1 A (the closure of the union of all

⊗n
1 A with the natural inclusions

x �→ x⊗ 1) and then B̂ := B ⊗ Â.
Denote by σ the right shift on Â, i.e., σ(a1 ⊗ a2 ⊗ . . .) = 1⊗ a1 ⊗ a2 ⊗ . . .

Using this we can also write

jn : B → B̂, b �→ β̂n(b⊗ 1),

where β̂ is a unital ∗-homomorphism given by

β̂ : B̂ → B̂, b⊗ a �→ β ◦ (idB ⊗ σ)(b⊗ a) = β(b)⊗ a,

i.e., by applying the shift we first obtain b ⊗ 1 ⊗ a ∈ B̂ and then interpret
“β◦” as the operation which replaces b⊗ 1 by β(b). We may interpret β̂ as a
kind of time evolution producing j1, j2 . . .

To do probability theory, consider states ψ, φ on B,A and form product
states

ψ ⊗
n⊗

1

φ

for B ⊗
⊗n

1 A (in particular for n =∞ the infinite product state on B̂, which
we call Ψ). Now we can think of the jn as noncommutative random variables
with distributions Ψ ◦ jn, and (jn)n≥0 is a noncommutative stochastic process
[AFL82]. We call ψ the initial state and φ the transition state.

In order to analyze this process, we define for n ≥ 1 linear maps

Q[0,n−1] : B ⊗
n⊗

1

A → B ⊗
n−1⊗

1

A,

b⊗ a1 ⊗ . . .⊗ an−1 ⊗ an �→ b⊗ a1 ⊗ . . .⊗ an−1 φ(an)

In particular Q := Q[0,0] = id⊗ φ : B ⊗A → B, b⊗ a �→ b φ(a).

Such maps are often called slice maps. From a probabilistic point of view,
it is common to refer to idempotent norm-one (completely) positive maps
onto a C∗-subalgebra as (noncommutative) conditional expectations [Sak71].
Clearly the slice map Q[0,n−1] is a conditional expectation (with its range
embedded by x �→ x⊗ 1) and it has the additional property of preserving the
state, i.e., Ψ ◦Q[0,n−1] = Ψ .
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Proposition 2.1. (Markov property)

Q[0,n−1] ◦ jn = jn−1 ◦ Tφ

where Tφ : B → B, b �→ Qβ(b) = (id⊗ φ) ◦ β(b) = b(0) φ(b(1)).

Proof.

Q[0,n−1]jn(b) = Q[0,n−1]

(
jn−1(b(0))⊗ b(1)

)
= jn−1(b(0))φ(b(1)) = jn−1Tφ(b).

��

We interpret this as a Markov property of the process (jn)n≥0. Note that if
there are state-preserving conditional expectations Pn−1 onto jn−1(B) and
P[0,n−1] onto the algebraic span of j0(B), . . . , jn−1(B), then because Pn−1 is
dominated by P[0,n−1] and P[0,n−1] is dominated by Q[0,n−1], we get

P[0,n−1] ◦ jn = jn−1 ◦ Tφ (Markov property)

The reader should check that for commutative algebras this is the usual
Markov property of classical probability. Thus in the general case, we say
that (jn)n≥0 is a quantum Markov chain on B. The map Tφ is called the
transition operator of the Markov chain. In the classical case as discussed in
Section 1 it can be identified with the transition matrix by choosing indicator
functions of single points as a basis, i.e., Tφ(1{j}) =

∑d
i=1 pij1{i}. It is an

instructive exercise to start with a given transition matrix (pij) and to realize
the classical Markov chain with the construction above.

Analogous to the classical formula in Proposition 1.2 we can also derive
the following semigroup property for transition operators from the Markov
property. It is one of the main reasons why Markov chains are easier than
more general processes.

Corollary 2.2. (Semigroup property)

Qjn = Tnφ

Finally we note that if (ψ ⊗ φ) ◦ β = ψ then Ψ ◦ β̂ = Ψ . This implies that
the Markov chain is stationary, i.e., correlations between the random variables
depend only on time differences. In particular, the state ψ is then preserved
by Tφ, i.e., ψ ◦ Tφ = ψ.

The construction above is called coupling to a shift, and similar structures
are typical for quantum Markov processes, see [Küm88, Go04].

3 Random Walks on Comodule Algebras

Let us return to the map b : M ×G→M considered in the beginning of the
previous section. If G is group, then b : M×G→M is called a (left) action of
G on M , if it satisfies the following axioms expressing associativity and unit,
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b(b(x, g), h) = b(x, hg), b(x, e) = x

for all x ∈M, g, h ∈ G, e ∈ G the unit of G. In Section 1, we wrote g.x instead
of b(x, g). As before we have the unital ∗-homomorphisms αg : C

M → C
M .

Actually, in order to get a representation of G on C
M , i.e., αg αh = αgh for

all g, h ∈ G we must modify the definition and use αg(f)(x) := f(b(x, g−1)).
(Otherwise we get an anti-representation. But this is a minor point at the
moment.) In the associated coaction β : C

M → C
M ⊗ C

G the axioms above
are turned into the coassociativity and counit properties. These make perfect
sense not only for groups but also for quantum groups and we state them at
once in this more general setting. We are rewarded with a particular interest-
ing class of quantum Markov chains associated to quantum groups which we
call random walks and which are the subject of this lecture.

Let A be a finite quantum group with comultiplication ∆ and counit ε
(see Appendix A). A C∗-algebra B is called an A-comodule algebra if there
exists a unital ∗-algebra homomorphism β : B → B ⊗A such that

(β ⊗ id) ◦ β = (id⊗∆) ◦ β, (id⊗ ε) ◦ β = id.

Such a map β is called a coaction. In Sweedler’s notation, the first equation
applied to b ∈ B reads

b(0)(0) ⊗ b(0)(1) ⊗ b(1) = b(0) ⊗ b(1)(1) ⊗ b(1)(2),

which thus can safely be written as b(0) ⊗ b(1) ⊗ b(2).
If we start with such a coaction β then we can look at the quantum Markov

chain constructed in the previous section in a different way. Define for n ≥ 1

kn : A → B ⊗ Â
a �→ 1B ⊗ 1⊗ . . .1⊗ a⊗ 1⊗ . . . ,

where a is inserted at the n-th copy of A. We can interpret the kn as (non-
commutative) random variables. Note that the kn are identically distributed.
Further, the sequence j0, k1, k2, . . . is a sequence of tensor independent random
variables, i.e., their ranges commute and the state acts as a product state on
them. The convolution j0 
 k1 is defined by

j0 
 k1(b) := j0(b(0)) k1(b(1))

and it is again a random variable. (Check that tensor independence is needed
to get the homomorphism property.) In a similar way we can form the convo-
lution of the kn among each other. By induction we can prove the following
formulas for the random variables jn of the chain.

Proposition 3.1.

jn = (β ⊗ id⊗ . . .⊗ id) . . . (β ⊗ id⊗ id)(β ⊗ id)β
= (id⊗ id⊗ . . .⊗∆) . . . (id⊗ id⊗∆)(id⊗∆)β
= j0 
 k1 
 . . . 
 kn
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Note that by the properties of coactions and comultiplications the convolution
is associative and we do not need to insert brackets. The statement jn =
j0 
 k1 
 . . . 
 kn can be put into words by saying that the Markov chain
associated to a coaction is a chain with (tensor-)independent and stationary
increments. Using the convolution of states we can write the distribution of
jn = j0 
k1 
. . .
kn as ψ
φ�n. For all b ∈ B and n ≥ 1 the transition operator
Tφ satisfies

ψ(Tnφ (b)) = Ψ(jn(b)) = ψ 
 φ�n(b),

and from this we can verify that

Tnφ = (id⊗ φ�n) ◦ β,

i.e., given β the semigroup of transition operators (Tnφ ) and the semigroup
(φ�n) of convolution powers of the transition state are essentially the same
thing.

A quantum Markov chain associated to such a coaction is called a random
walk on the A-comodule algebra B. We have seen that in the commutative case
this construction describes an action of a group on a set and the random walk
derived from it. Because of this background, some authors call an action of
a quantum group what we called a coaction. But this should always become
clear from the context.

Concerning stationarity we get

Proposition 3.2. For a state ψ on B the following assertions are equivalent:

(a) (ψ ⊗ id) ◦ β = ψ(·)1.
(b) (ψ ⊗ φ) ◦ β = ψ for all states φ on A.
(c) (ψ ⊗ η) ◦ β = ψ, where η is the Haar state on A (see Appendix A).

Proof. (a)⇔(b) and (b)⇒(c) is clear. Assuming (c) and using the invariance
properties of η we get for all states φ on A

ψ = (ψ ⊗ η)β = (ψ ⊗ η ⊗ φ)(id⊗∆)β = (ψ ⊗ η ⊗ φ)(β ⊗ id)β = (ψ ⊗ φ)β,

which is (b). ��

Such states are often called invariant for the coaction β. Of course for
special states φ on A there may be other states ψ on B which also lead to
stationary walks.

Example 3.3. For explicit examples we will use the eight-dimensional finite
quantum group introduced by Kac and Paljutkin [KP66], see Appendix B.

Consider the commutative algebra B = C
4 with standard basis v1 =

(1, 0, 0, 0), . . . , v4 = (0, 0, 0, 1) (and component-wise multiplication). Defining
an A-coaction by
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β(v1) = v1 ⊗ (e1 + e3) + v2 ⊗ (e2 + e4)

+v3 ⊗
1
2

(
a11 +

1− i√
2
a12 +

1 + i√
2
a21 + a22

)

+v4 ⊗
1
2

(
a11 −

1− i√
2
a12 −

1 + i√
2
a21 + a22

)
,

β(v2) = v1 ⊗ (e2 + e4) + v2 ⊗ (e1 + e3)

+v3 ⊗
1
2

(
a11 −

1− i√
2
a12 −

1 + i√
2
a21 + a22

)

+v4 ⊗
1
2

(
a11 +

1− i√
2
a12 +

1 + i√
2
a21 + a22

)
,

β(v3) = v1 ⊗
1
2

(
a11 +

1 + i√
2
a12 +

1− i√
2
a21 + a22

)

+v2 ⊗
1
2

(
a11 −

1 + i√
2
a12 −

1− i√
2
a21 + a22

)

+v3 ⊗ (e1 + e2) + v4 ⊗ (e3 + e4),

β(v4) = v1 ⊗
1
2

(
a11 −

1 + i√
2
a12 −

1− i√
2
a21 + a22

)

+v2 ⊗
1
2

(
a11 +

1 + i√
2
a12 +

1− i√
2
a21 + a22

)

+v3 ⊗ (e3 + e4) + v4 ⊗ (e1 + e2),

C
4 becomes an A-comodule algebra.

Let φ be an arbitrary state onA. It can be parametrized by µ1, µ2, µ3, µ4, µ5

≥ 0 and x, y, z ∈ R with µ1 +µ2 +µ3 +µ4 +µ5 = 1 and x2 + y2 + z2 ≤ 1, cf.
Subsection B.3 in the Appendix. Then the transition operator Tφ = (id⊗φ)◦∆
on C

4 becomes

Tφ =





µ1 + µ3 µ2 + µ4
µ5
2

(
1 + x+y√

2

)
µ5
2

(
1− x+y√

2

)

µ2 + µ4 µ1 + µ3
µ5
2

(
1− x+y√

2

)
µ5
2

(
1 + x+y√

2

)

µ5
2

(
1 + x−y√

2

)
µ5
2

(
1− x−y√

2

)
µ1 + µ2 µ3 + µ4

µ5
2

(
1− x−y√

2

)
µ5
2

(
1 + x−y√

2

)
µ3 + µ4 µ1 + µ2




(3.1)

w.r.t. to the basis v1, v2, v3, v4.

The state ψ0 : B → C defined by ψ0(v1) = ψ0(v2) = ψ0(v3) = ψ0(v4) = 1
4 is

invariant, i.e. we have

ψ0 
 φ = (ψ0 ⊗ φ) ◦ β = ψ0

for any state φ on A.
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4 Random Walks on Finite Quantum Groups

The most important special case of the construction in the previous section
is obtained when we choose B = A and β = ∆. Then we have a random
walk on the finite quantum group A. Let us first show that this is indeed a
generalization of a left invariant random walk as discussed in the Introduction
and in Section 1. Using the coassociativity of ∆ we see that the transition
operator Tφ = (id⊗ φ) ◦∆ satisfies the formula

∆ ◦ Tφ = (id⊗ Tφ) ◦∆.

Suppose now that B = A consists of functions on a finite group G and β = ∆
is the comultiplication which encodes the group multiplication, i.e.

∆(1{g′}) =
∑

h∈G
1{g′h−1} ⊗ 1{h} =

∑

h∈G
1{h−1} ⊗ 1{hg′},

where 1{g} denotes the indicator function of g. We also have

Tφ(1{g′}) =
∑

g∈G
pg,g′1{g},

where (pg,g′) is the transition matrix. Compare Sections 1 and 2. Inserting
these formulas yields

(∆ ◦ Tφ)1{g′} = ∆(
∑

g∈G
pg,g′1{g}) =

∑

h∈G
1{h−1} ⊗

∑

g∈G
pg,g′1{hg},

[
(id⊗ Tφ) ◦∆

]
1{g′} = (id⊗ Tφ)

∑

h∈G
1{h−1} ⊗ 1{hg′}

=
∑

h∈G
1{h−1} ⊗

∑

g∈G
phg,hg′1{hg}.

We conclude that pg,g′ = phg,hg′ for all g, g′, h ∈ G. This is the left invariance
of the random walk which was already stated in the introduction in a more
probabilistic language.

For random walks on a finite quantum group there are some natural special
choices for the initial distribution ψ. On the one hand, one may choose ψ = ε
(the counit) which in the commutative case (i.e., for a group) corresponds
to starting in the unit element of the group. Then the time evolution of the
distributions is given by ε 
 φ�n = φ�n. In other words, we get a convolution
semigroup of states.

On the other hand, stationarity of the random walk can be obtained if ψ
is chosen such that

(ψ ⊗ φ) ◦∆ = ψ.
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(Note that stationarity of a random walk must be clearly distinguished from
stationarity of the increments which for our definition of a random walk is
automatic.) In particular we may choose the unique Haar state η of the finite
quantum group A (see Appendix A).

Proposition 4.1. The random walks on a finite quantum group are stationary
for all choices of φ if and only if ψ = η.

Proof. This follows by Proposition 3.2 together with the fact that the Haar
state is characterized by its right invariance (see Appendix A). ��

5 Spatial Implementation

In this section we want to represent the algebras on Hilbert spaces and obtain
spatial implementations for the random walks. On a finite quantum group A
we can introduce an inner product

〈a, b〉 = η(a∗b),

where a, b ∈ A and η is the Haar state. Because the Haar state is faithful (see
Appendix A) we can think of A as a finite dimensional Hilbert space which
we denote by H. Further we denote by ‖ · ‖ the norm associated to this inner
product. We consider the linear operator

W : H⊗H → H⊗H, b⊗ a �→ ∆(b)(1⊗ a).

It turns out that this operator contains all information about the quantum
group and thus it is called its fundamental operator. We discuss some of its
properties.

(a) W is unitary.

Proof. Using (η ⊗ id) ◦∆ = η(·)1 it follows that

‖W b⊗ a‖2 = ‖∆(b)(1⊗ a)‖2 = η ⊗ η
(
(1⊗ a∗)∆(b∗b)(1⊗ a)

)

= η
(
a∗[(η ⊗ id)∆(b∗b)]a

)
= η(a∗η(b∗b)a) = η(b∗b) η(a∗a)

= η ⊗ η(b∗b⊗ a∗a) = ‖b⊗ a‖2.

A similar computation works for
∑
i bi⊗ai instead of b⊗a. Thus W is isometric

and, because H is finite dimensional, also unitary. It can be easily checked
using Sweedler’s notation that with the antipode S the inverse W−1 = W ∗

can be written explicitly as

W−1(b⊗ a) = [(id⊗ S)∆(b)](1⊗ a).

��
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(b) W satisfies the Pentagon Equation W12W13W23 = W23W12.

This is an equation on H⊗H⊗H and we have used the leg notation W12 =
W ⊗ 1, W23 = 1 ⊗W , W13 = (1 ⊗ τ) ◦W12 ◦ (1 ⊗ τ), where τ is the flip,
τ : H⊗H → H⊗H, τ(a⊗ b) = b⊗ a.

Proof.

W12W13W23 a⊗ b⊗ c = W12W13 a⊗ b(1) ⊗ b(2)c = W12 a(1) ⊗ b(1) ⊗ a(2)b(2)c

= a(1) ⊗ a(2)b(1) ⊗ a(3)b(2)c = W23 a(1) ⊗ a(2)b⊗ c = W23W12 a⊗ b⊗ c.

��

Remark 5.1. The pentagon equation expresses the coassociativity of the co-
multiplication ∆. Unitaries satisfying the pentagon equation have been called
multiplicative unitaries in [BS93].

The operator La of left multiplication by a ∈ A on H

La : H → H, c �→ a c

will often simply be written as a in the following. It is always clear from the
context whether a ∈ A or a : H → H is meant. We can also look at left
multiplication as a faithful representation L of the C∗-algebra A on H. In
this sense we have

(c) ∆(a) = W (a⊗ 1) W ∗ for all a ∈ A

Proof. Here ∆(a) and a⊗ 1 are left multiplication operators on H⊗H. The
formula can be checked as follows.

W (a⊗ 1) W ∗ b⊗ c = W (a⊗ 1) b(1) ⊗ (Sb(2))c = W ab(1) ⊗ (Sb(2))c
= a(1)b(1) ⊗ a(2)b(2)(Sb(3))c = a(1)b(1) ⊗ a(2)ε(b(2))c
= a(1)b⊗ a(2)c = ∆(a)(b⊗ c)

��

By left multiplication we can also represent a random walk on a finite
quantum group A. Then jn(a) becomes an operator on an (n+ 1)-fold tensor
product of H. To get used to it let us show how the pentagon equation is
related to our Proposition 3.1 above.

Theorem 5.2.

jn(a) = W01W02 . . .W0n (a⊗ 1⊗ . . .⊗ 1) W ∗
0n . . .W

∗
02W

∗
01.

W01W02 . . .W0n|H = Wn−1,nWn−2,n−1 . . .W01|H,
where |H means restriction to H ⊗ 1 ⊗ . . . ⊗ 1 and this left position gets the
number zero.
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Proof. A comparison makes clear that this is nothing but Proposition 3.1
written in terms of the fundamental operator W . Alternatively, we prove the
second equality by using the pentagon equation. For n = 1 or n = 2 the
equation is clearly valid. Assume that it is valid for some n ≥ 2. Then

W01 W02 . . .W0,n−1W0nW0,n+1|H = W01 W02 . . .W0,n−1Wn,n+1W0n|H
= Wn,n+1W01 W02 . . .W0,n−1W0n|H = Wn,n+1Wn−1,n . . .W01|H.

In the first line we used the pentagon equation for positions 0, n, n+1 together
with Wn,n+1(1⊗1) = 1⊗1. In the second line we applied the fact that disjoint
subscripts yield commuting operators and finally we inserted the assumption.

��

It is an immediate but remarkable consequence of this representation that we
have a canonical way of extending our random walk to B(H), the C∗-algebra
of all (bounded) linear operators on H. Namely, we can for n ≥ 0 define the
random variables

Jn : B(H)→ B(
n⊗

0

H) �
n⊗

0

B(H),

x �→ W01W02 . . .W0n (x⊗ 1⊗ . . .⊗ 1) W ∗
0n . . .W

∗
02W

∗
01,

i.e., we simply insert an arbitrary operator x instead of the left multiplication
operator a.

Theorem 5.3. (Jn)n≥0 is a random walk on the A-comodule algebra B(H).

Proof. First we show that W ∈ B(H) ⊗ A. In fact, if x′ ∈ B(H) commutes
with A then

W (1⊗ x′)(b⊗ a) = W (b⊗ x′a) = ∆(b)(1⊗ x′a) = ∆(b)(1⊗ x′)(1⊗ a)
= (1⊗ x′)∆(b)(1⊗ a) = (1⊗ x′)W (b⊗ a).

Because W commutes with all 1⊗x′ it must be contained in B(H)⊗A. (This
is a special case of von Neumann’s bicommutant theorem but of course the
finite dimensional version used here is older and purely algebraic.) We can
now define

γ : B(H)→ B(H)⊗A, x �→W (x⊗ 1) W ∗,

and check that it is a coaction. The property (γ ⊗ id) ◦ γ = (id⊗∆) ◦ γ is a
consequence of the pentagon equation. It corresponds to

W01W02(x⊗ 1⊗ . . .⊗ 1)W ∗
02W

∗
01 = W01W02W12(x⊗ 1⊗ . . .⊗ 1)W ∗

12W
∗
02W

∗
01

= W12W01 (x⊗ 1⊗ . . .⊗ 1) W ∗
01W

∗
12.

Finally we check that (id⊗ ε) ◦ γ = id. In fact,

γ(x)(b⊗ a) = W (x⊗ 1)W ∗(b⊗ a) = W (x⊗ 1) b(1)⊗(Sb(2)) a
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= [x(b(1))](1) ⊗ [x(b(1))](2) (Sb(2)) a

and thus

[(id⊗ ε)γ(x)](b) = [x(b(1))](1) ε([x(b(1))](2)) ε(Sb(2))

= x(b(1)) ε(b(2)) = x(b(1) ε(b(2))) = x(b),

i.e., (id⊗ε)γ(x) = x. Here we used (id⊗ε)◦∆ = id and the fact that ε◦S = ε.
��

Remark 5.4. The Haar state η onA is extended to a vector state on B(H) given
by 1 ∈ H. Thus we have also an extension of the probabilistic features of the
random walk. Note further that arbitrary states on A can always be extended
to vector states on B(H) (see Appendix A). This means that we also find the
random walks with arbitrary initial state ψ and arbitrary transition state φ
represented on tensor products of the Hilbert space H and we have extensions
also for them. This is an important remark because for many random walks
of interest we would like to start in ψ = ε and all the possible steps of the
walk are small, i.e., φ is not a faithful state.

Remark 5.5. It is not possible to give B(H) the structure of a quantum group.
For example, there cannot be a counit because B(H) as a simple algebra
does not have nontrivial multiplicative linear functionals. Thus B(H) must be
treated here as a A-comodule algebra.

In fact, it is possible to generalize all these results and to work with coac-
tions on A-comodule algebras from the beginning. Let β : B → B⊗A be such
a coaction. For convenience we continue to use the Haar state η on A and
assume that there is a faithful stationary state ψ on B. As before we can con-
sider A as a Hilbert space H and additionally we have on B an inner product
induced by ψ which yields a Hilbert space K. By modifying the arguments
above the reader should have no problems to verify the following assertions.
Their proof is thus left as an exercise.

Define V : K ⊗ H → K ⊗ H by b ⊗ a �→ β(b)(1 ⊗ a). Using Proposition
3.2, one can show that the stationarity of ψ implies that V is unitary. The
map V satisfies V12V13W23 = W23V12 (with leg notation on K ⊗H⊗H) and
the inverse can be written explicitly as V −1(b⊗ a) = [(id⊗ S)β(b)](1⊗ a). In
[Wo96] such a unitary V is called adapted to W . We have β(b) = V (b⊗1) V ∗

for all b ∈ B. The associated random walk (jn)n≥0 on B can be implemented
by

jn(b) = V01V02 . . . V0n (b⊗ 1⊗ . . .⊗ 1) V ∗
0n . . . V

∗
02V

∗
01

with
V01V02 . . . V0n|K = Wn−1,nWn−2,n−1 . . .W12V01|K.

These formulas can be used to extend this random walk to a random walk
(Jn)n≥0 on B(K).
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Remark 5.6. There is an extended transition operator Z : B(K) → B(K) cor-
responding to the extension of the random walk. It can be described explicitly
as follows. Define an isometry

v : K → K⊗H, b �→ V ∗(b⊗ 1) = b(0) ⊗ Sb(1).

Then we have
Z : B(K)→ B(K), x �→ v∗ x⊗ 1 v.

Because v is isometric, Z is a unital completely positive map which extends
Tη. Such extended transition operators are discussed in the general frame
of quantum Markov chains in [Go04]. See also [GKL04] for applications in
noncommutative coding.

What is the meaning of these extensions? We think that this is an interest-
ing question which leads to a promising direction of research. Let us indicate
an interpretation in terms of quantization.

First we quickly review some facts which are discussed in more detail for
example in [Maj95]. On A we have an action T of its dual A∗ which sends
φ ∈ A∗ to

Tφ : A → A, a �→ a(0) φ(a(1)).

Note that if φ is a state then Tφ is nothing but the transition operator con-
sidered earlier. It is also possible to consider T as a representation of the
(convolution) algebra A∗ on H which is called the regular representation. We
can now form the crossed product A�A∗ which as a vector space is A⊗A∗

and becomes an algebra with the multiplication

(c⊗ φ)(d⊗ ψ) = c Tφ(1)(d) ⊗ φ(2)
 ψ,

where ∆φ = φ(1)⊗φ(2) ∈ A∗⊗A∗ ∼= (A⊗A)∗ is defined by ∆φ(a⊗b) = φ(ab)
for a, b ∈ A.

There is a representation S of A�A∗ on H called the Schrödinger repre-
sentation and given by

S(c⊗ φ) = Lc Tφ.

Note further that the representations L and T are contained in S by choosing
c⊗ ε and 1⊗ φ.

Theorem 5.7.
S(A⊗A∗) = B(H).

If (ci), (φi) are dual bases in A,A∗, then the fundamental operator W can be
written as

W =
∑

i

Tφi
⊗ Lci

Proof. See [Maj95], 6.1.6. Note that this once more implies W ∈ B(H) ⊗ A
which was used earlier. ��
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We consider an example. For a finite group G both A and A∗ can be realized
by the vector space of complex functions on G, but in the first case we have
pointwise multiplication while in the second case we need convolution, i.e.,
indicator functions 1{g} for g ∈ G are multiplied according to the group rule
and for general functions the multiplication is obtained by linear extension.
These indicator functions provide dual bases as occurring in the theorem and
we obtain

W =
∑

g∈G
Tg ⊗ Lg,

where

Lg := L1{g} : 1{h} �→ δg,h 1{h},

Tg := T1{g} : 1{h} �→ 1{hg−1}.

The reader may rediscover here the map b : M × G → M (for M = G)
discussed in the beginning of the Sections 2 and 3. It is also instructive to
check the pentagon equation directly.

W12W13W23 =
∑

a,b,c

(Ta ⊗ La ⊗ 1)(Tb ⊗ 1⊗ Lb)(1⊗ Tc ⊗ Lc)

=
∑

a,b,c

TaTb ⊗ LaTc ⊗ LbLc =
∑

a,c

TaTc ⊗ LaTc ⊗ Lc

=
∑

a,c

Tac ⊗ LaTc ⊗ Lc =
∑

a,c

Ta ⊗ Lac−1Tc ⊗ Lc,

where the last equality is obtained by the substitution a ↔ ac−1. This coin-
cides with

W23W12 =
∑

a,c

(1⊗ Tc ⊗ Lc)(Ta ⊗ La ⊗ 1) =
∑

a,c

Ta ⊗ TcLa ⊗ Lc

precisely because of the relations

Tc La = Lac−1 Tc for all a, c ∈ G.

This is a version of the canonical commutation relations. In quantum mechan-
ics, for G = R, they encode Heisenberg’s uncertainty principle. This explains
why S is called a Schrödinger representation. Its irreducibility in the case
G = R is a well-known theorem. For more details see [Maj95, Chapter 6.1].

Thus Theorem 5.7 may be interpreted as a generalization of these facts
to quantum groups. Our purpose here has been to give an interpretation of
the extension of random walks to B(H) in terms of quantization. Indeed,
we see that B(H) can be obtained as a crossed product, and similarly as
in Heisenberg’s situation where the algebra B(H) occurs by appending to
the observable of position a noncommuting observable of momentum, in our
case we get B(H) by appending to the original algebra of observables all the
transition operators of potential random walks.



18 Uwe Franz and Rolf Gohm

6 Classical Versions

In this section we will show how one can recover a classical Markov chain from
a quantum Markov chain. We will apply a folklore theorem that says that one
gets a classical Markov process, if a quantum Markov process can be restricted
to a commutative algebra, cf. [AFL82, Küm88, BP95, Bia98, BKS97].

For random walks on quantum groups we have the following result.

Theorem 6.1. Let A be a finite quantum group, (jn)n≥0 a random walk on
a finite dimensional A-comodule algebra B, and B0 a unital abelian sub-∗-
algebra of B. The algebra B0 is isomorphic to the algebra of functions on a
finite set, say B0

∼= C
{1,...,d}.

If the transition operator Tφ of (jn)n≥0 leaves B0 invariant, then there ex-
ists a classical Markov chain (Xn)n≥0 with values in {1, . . . , d}, whose prob-
abilities can be computed as time-ordered moments of (jn)n∈N, i.e.,

P (X0 = i0, . . . , X� = i�) = Ψ
(
j0(1{i0}) · · · j�(1{i�})

)
(6.1)

for all � ≥ 0 and i0, . . . , i� ∈ {1, . . . , d}.

Proof. We use the indicator functions 1{1}, . . . ,1{d},

1{i}(j) = δij , 1 ≤ i, j,≤ d,

as a basis for B0 ⊆ B. They are positive, therefore λ1 = Ψ
(
j0(1{1})

)
, . . . , λd =

Ψ
(
j0(1{d})

)
are non-negative. Since furthermore

λ1 + · · ·+ λd = Ψ
(
j0(1{1})

)
+ · · ·+ Ψ

(
j0(1{d})

)
= Ψ

(
j0(1)

)
= Ψ(1) = 1,

these numbers define a probability measure on {1, . . . , d}.
Define now (pij)1≤i,j≤d by

Tφ(1{j}) =
d∑

i=1

pij1{i}.

Since Tφ = (id⊗φ)◦β is positive, we have pij ≥ 0 for 1 ≤ i, j ≤ d. Furthermore,
Tφ(1) = 1 implies

1 = Tφ(1) = Tφ




d∑

j=1

1{j}



 =
d∑

j=1

d∑

i=1

pij1{i}

i.e.
∑d
j=1 pij = 1 and so (pij)1≤i,j≤d is a stochastic matrix.

Therefore there exists a unique Markov chain (Xn)n≥0 with initial distri-
bution (λi)1≤i≤d and transition matrix (pij)1≤i,j≤d.

We show by induction that Equation (6.1) holds.
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For � = 0 this is clear by definition of λ1, . . . , λd. Let now � ≥ 1 and
i0, . . . , i� ∈ {1, . . . , d}. Then we have

Ψ
(
j0(1{i0}) · · · j�(1{i�})

)
=Ψ

(
j0(1{i0}) · · · j�−1(1{i�−1})j�−1(1{i�}(1)

)k�(1{i�}(2)
)
)

= Ψ
(
j0(1{i0}) · · · j�−1(1{i�−1}1{i�}(1)

)
)
φ(1{i�}(2)

)

= Ψ
(
j0(1{i0}) · · · j�−1(1{i�−1}Tφ(1{i�})

))

= Ψ
(
j0(1{i0}) · · · j�−1

(
1{i�−1})

)
pi�−1,i�

= λi0pi0i1 · · · pi�−1i�

= P (X0 = i0, . . . , X� = i�),

by Proposition 1.2. ��

Remark 6.2. If the condition that Tφ leaves A0 invariant is dropped, then one
can still compute the “probabilities”

“P (X0 = i0, . . . , X� = i�)” = Ψ
(
j0(1{i0}) · · · j�(1{i�})

)

= Ψ
(
P[0,�−1]

(
j0(1{i0}) · · · j�(1{i�})

))

= Ψ
(
j0(1{i0}) · · · j�−1(1{i�−1})j�−1

(
Tφ(1{i�})

))

= Ψ
(
j0(1{i0}) · · · j�−1

(
1{i�−1}Tφ(1{i�})

))

= · · ·
= ψ

(
1{i0}Tφ

(
1{i1}Tφ(· · ·1{i�−1}Tφ(1{i�}) · ··)

))
,

but in general they are no longer positive or even real, and so it is impossible
to construct a classical stochastic process (Xn)n≥0 from them. We give an
example where no classical process exists in Example 6.4.

Example 6.3. The comodule algebra B = C
4 that we considered in Example

3.3 is abelian, so we can take B0 = B. For any pair of a state ψ on B and
a state φ on A, we get a random walk on B and a corresponding Markov
chain (Xn)n≥0 on {1, 2, 3, 4}. We identify C

{1,2,3,4} with B by vi ≡ 1{i} for
i = 1, 2, 3, 4.

The initial distribution of (Xn)n≥0 is given by λi = ψ(vi) and the transi-
tion matrix is given in Equation (3.1).

Example 6.4. . Let us now consider random walks on the Kac-Paljutkin quan-
tum group A itself. For the defining relations, the calculation of the dual of
A and a parametrization of all states on A, see Appendix B. Let us consider
here transition states of the form

φ = µ1η1 + µ2η2 + µ3η3 + µ4η4,

with µ1, µ2, µ3, µ4 ∈ [0, 1], µ1 + µ2 + µ3 + µ4 = 1.



20 Uwe Franz and Rolf Gohm

The transition operators Tφ = (id⊗φ)◦∆ of these states leave the abelian
subalgebra A0 = span {e1, e2, e3, e4} ∼= C

4 invariant. The transition matrix of
the associated classical Markov chain on {1, 2, 3, 4} that arises by identifying
ei ≡ 1{i} for i = 1, 2, 3, 4 has the form





µ1 µ2 µ3 µ4

µ2 µ1 µ4 µ3

µ3 µ4 µ1 µ2

µ4 µ3 µ2 µ1



 .

This is actually the transition matrix of a random walk on the group Z2×Z2.
The subalgebra span {a11, a12, a21, a22} ∼= M2 is also invariant under these

states, Tφ acts on it by

Tφ(X) = µ1X + µ2V
∗
2 XV2 + µ3V

∗
3 XV3 + µ4V

∗
4 XV4

for X = aa11 + ba12 + ca21 + da22
∼=
(
a b
c d

)
, a, b, c, d ∈ C, with

V2 =
(

0 i
1 0

)
, V3 =

(
0 −i
1 0

)
, V4 =

(
1 0
0 −1

)
.

Let u =
(

cosϑ
eiδ sinϑ

)
be a unit vector in C and denote by pu the orthogonal

projection onto u. The maximal abelian subalgebra Au = span {pu,1 − pu}
in M2 ⊂ A is in general not invariant under Tφ.

E.g., for u = 1√
2

(
1
1

)
we get the algebra Au = span

{(
a b
b a

)∣∣∣∣ a, b ∈ C

}
.

It can be identified with C
{1,2} via

(
a b
b a

)
≡ (a+ b)1{1} + (a− b)1{2}.

Specializing to the transition state φ = η2 and starting from the Haar
measure ψ = η, we see that the time-ordered joint moment

Ψ
(
j0(1{1})j1(1{1})j2(1{2})j3(1{2})

)
= η

(
1{1}Tη2

(
1{1}Tη2

(
1{2}Tη2(1{2})

)))

=
1
4
Tr

((
1
2

1
2

1
2

1
2

)
V ∗

2

(
1
2

1
2

1
2

1
2

)
V ∗

2

(
1
2 −

1
2

− 1
2

1
2

)
V ∗

2

(
1
2 −

1
2

− 1
2

1
2

)
V 3

2

)

=
1
4
Tr

(
− 1+i

8
−1+i

8

− 1+i
8

−1+i
8

)
= − 1
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is negative and can not be obtained from a classical Markov chain.

Example 6.5. For states in span {η1, η2, η3, η4, α11 + α22}, the center Z(A) =
span {e1, e2, e3, e4, a11+a22} of A is invariant under Tφ, see also [NT04, Propo-
sition 2.1]. A state on A, parametrized as in Equation (B.1), belongs to this set
if and only if x = y = z = 0. With respect to the basis e1, e2, e3, e4, a11 + a22

of Z(A) we get
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Tφ|Z(A) =





µ1 µ2 µ3 µ4 µ5

µ2 µ1 µ4 µ3 µ5

µ3 µ4 µ1 µ2 µ5

µ4 µ3 µ2 µ1 µ5
µ5
4

µ5
4

µ5
4

µ5
4 1− µ5





for the transition matrix of the classical Markov process that has the same
time-ordered joint moments.

For Lévy processes or random walks on quantum groups there exists an-
other way to prove the existence of a classical version that does not use the
Markov property. We will illustrate this on an example.

Example 6.6. We consider restrictions to the center Z(A) of A. If a ∈ Z(A),
then a⊗ 1 ∈ Z(A⊗A) and therefore

[a⊗ 1,∆(b)] = 0 for all a, b ∈ Z(A).

This implies that the range of the restriction (jn|Z(A))n≥0 of any random walk
on A to Z(A) is commutative, i.e.

[
j�(a), jn(b)

]

=
[
(j0 
 k1 
 · · · 
 k�)(a), (j0 
 k1 
 · · · 
 kn)(b)

]

=
[
(j0 
 k1 
 · · · 
 k�)(a), (j0 
 k1 
 · · · 
 k�)(b(1))(k�+1 
 · · · kn)(b(2))

]

= m
(
j� ⊗ (k�+1 
 · · · 
 kn)([a⊗ 1,∆(b)])

)
= 0

for all 0 ≤ � ≤ n and a, b ∈ Z(A). Here m denotes the multiplication,
m : A ⊗ A → A, m(a ⊗ b) = ab for a, b ∈ A. Therefore the restriction
(jn|Z(A))n≥0 corresponds to a classical process, see also [Sch93, Proposition
4.2.3] and [Fra99, Theorem 2.1].

Let us now take states for which Tφ does not leave the center ofA invariant,
e.g. µ1 = µ2 = µ3 = µ4 = x = y = 0, µ5 = 1, z ∈ [−1, 1], i.e.

φz =
1 + z

2
α11 +

1− z

2
α22.

In this particular case we have the invariant commutative subalgebra A0 =
span {e1, e2, e3, e4, a11, a22} which contains the center Z(A). If we identity A0

with C
{1,...,6} via e1 ≡ 1{1}, . . . , e4 ≡ 1{4}, a11 ≡ 1{5}, a22 ≡ 1{6}, then the

transition matrix of the associated classical Markov chain is




0 0 0 0 1+z
2

1−z
2

0 0 0 0 1−z
2

1+z
2

0 0 0 0 1−z
2

1+z
2

0 0 0 0 1+z
2

1−z
2

1+z
4

1−z
4

1−z
4

1+z
4 0 0

1−z
4

1+z
4

1+z
4

1−z
4 0 0





.
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The classical process corresponding to the center Z(A) arises from this Markov
chain by “gluing” the two states 5 and 6 into one. More precisely, if (Xn)n≥0 is
a Markov chain that has the same time-ordered moments as (jn)n≥0 restricted
to A0, and if g : {1, . . . , 6} → {1, . . . , 5} is the mapping defined by g(i) = i
for i = 1, . . . , 5 and g(6) = 5, then (Yn)n≥0 with Yn = g(Xn), for n ≥ 0, has
the same joint moments as (jn)n≥0 restricted to the center Z(A) of A. Note
that (Yn)n≥0 is not a Markov process.

7 Asymptotic Behavior

Theorem 7.1. Let φ be a state on a finite quantum group A. Then the Cesaro
mean

φn =
1
n

n∑

k=1

φ�n, n ∈ N

converges to an idempotent state on A, i.e. to a state φ∞ such that φ∞
φ∞ =
φ∞.

Proof. Let φ′ be an accumulation point of (φn)n≥0, this exists since the states
on A form a compact set. We have

||φn − φ 
 φn|| =
1
n
||φ− φ�n+1|| ≤ 2

n
.

and choosing a sequence (nk)k≥0 such that φnk
→ φ′, we get φ 
 φ′ = φ′

and similarly φ′ 
 φ = φ′. By linearity this implies φn 
 φ
′ = φ′ = φ′ 
 φn.

If φ′′ is another accumulation point of (φn) and (m�)�≥0 a sequence such
that φm�

→ φ′′, then we get φ′′ 
 φ′ = φ′ = φ′ 
 φ′′ and thus φ′ = φ′′ by
symmetry. Therefore the sequence (φn) has a unique accumulation point, i.e.,
it converges. ��

Remark 7.2. If φ is faithful, then the Cesaro limit φ∞ is the Haar state on A.

Remark 7.3. Due to “cyclicity” the sequence (φ�n)n∈N does not converge in
general. Take, e.g., the state φ = η2 on the Kac-Paljutkin quantum group A,
then we have

η�n2 =
{
η2 if n is odd,
ε if n is even,

but

lim
n→∞

1
n

n∑

k=1

ηk2 =
ε+ η2

2
.

Example 7.4. Pal[Pal96] has shown that there exist exactly the following eight
idempotent states on the Kac-Paljutkin quantum group [KP66],
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ρ1 = η1 = ε,

ρ2 =
1
2
(η1 + η2),

ρ3 =
1
2
(η1 + η3),

ρ4 =
1
2
(η1 + η4),

ρ5 =
1
4
(η1 + η2 + η3 + η4),

ρ6 =
1
4
(η1 + η4) +

1
2
α11,

ρ7 =
1
4
(η1 + η4) +

1
2
α22,

ρ8 =
1
8
(η1 + η2 + η3 + η4) +

1
4
(α11 + α22) = η.

On locally compact groups idempotent probability measures are Haar mea-
sures on some compact subgroup, cf. [Hey77, 1.5.6]. But Pal has shown that
ρ6 and ρ7 are not Haar states on some “quantum sub-group” of A.

To understand this, we compute the null spaces Nρ = {a|ρ(a∗a) = 0} for
the idempotent states. We get

Nε = span {e2, e3, e4, a11, a12, a21, a22},
Nρ2 = span {e3, e4, a11, a12, a21, a22},
Nρ3 = span {e2, e4, a11, a12, a21, a22},
Nρ4 = span {e2, e3, a11, a12, a21, a22},
Nρ5 = span {a11, a12, a21, a22},
Nρ6 = span {e2, e3, a12, a22},
Nρ7 = span {e2, e3, a11, a21},
Nη = {0}.

All null spaces of idempotent states are coideals.Nε,Nρ2 ,Nρ3 ,Nρ4 ,Nρ5 ,Nη
are even Hopf ideals, so that we can obtain new quantum groups by dividing
out these null spaces. The idempotent states ε, ρ2, ρ3, ρ4, ρ5, η are equal to
the composition of the canonical projection onto this quotient and the Haar
state of the quotient. In this sense they can be understood as Haar states on
quantum subgroups of A. We obtain the following quantum groups,

A/Nε ∼= C ∼= functions on the trivial group,
A/Nρ2 ∼= A/Nρ3 ∼= A/Nρ4 ∼= functions on the group Z2,

A/Nρ5 ∼= functions on the group Z2 × Z2,

A/Nη ∼= A.

But the null spaces of ρ6 and ρ7 are only coideals and left ideals. Therefore
the quotients A/Nρ6 and A/Nρ7 inherit only a A-module coalgebra structure,
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but no quantum group structure, and ρ6, ρ7 can not be interpreted as Haar
states on some quantum subgroup of A, cf. [Pal96].

We define an order for states on A by

φ1 � φ2 ⇔ Nφ1 ⊆ Nφ2 .

The resulting lattice structure for the idempotent states on A can be repre-
sented by the following Hasse diagram,

ρ1 = ε

ρ2 ρ3 ρ4

ρ5 ρ6 ρ7

ρ8 = η

Note that the convolution product of two idempotent states is equal to their
greatest lower bound in this lattice, ρi 
 ρj = ρi ∧ ρj for i, j,∈ {1, . . . , 8}.

A Finite Quantum Groups

In this section we briefly summarize the facts on finite quantum groups that
are used throughout the main text. For proofs and more details, see [KP66,
Maj95, VD97].

Recall that a bialgebra is a unital associative algebra A equipped with two
unital algebra homomorphisms ε : A → C and ∆ : A → A⊗A such that

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆
(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆.

We call ε and ∆ the counit and the comultiplication or coproduct of A.
For the coproduct ∆(a) =

∑
i a(1)i ⊗ a(2)i ∈ A⊗A we will often suppress

the summation symbol and use the shorthand notation ∆(a) = a(1) ⊗ a(2)

introduced by Sweedler[Swe69].
If A has an involution ∗ : A → A such that ε and ∆ are ∗-algebra homo-

morphisms, then we call A a ∗-bialgebra or an involutive bialgebra.
If there exists furthermore a linear map S : A → A (called antipode)

satisfying
a(1)S(a(2)) = ε(a)1 = S(a(1))a(2)

for all a ∈ A, then we call A a ∗-Hopf algebra or an involutive Hopf algebra.
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Definition A.1. A finite quantum group is a finite dimensional C∗-Hopf
algebra, i.e. a ∗-Hopf algebra A, whose algebra is a finite dimensional C∗-
algebra.

Note that finite dimensional C∗-algebras are very concrete objects, namely
they are multi-matrix algebras

⊕N
n=1 Mkn

, where Mk denotes the algebra of
k × k-matrices. Not every multi-matrix algebra carries a Hopf algebra struc-
ture. For example, the direct sum must contain a one-dimensional summand
to make possible the existence of a counit.

First examples are of course the group algebras of finite groups. Another
example is examined in detail in Appendix B.

Theorem A.2. Let A be a finite quantum group. Then there exists a unique
state η on A such that

(id⊗ η) ◦∆(a) = η(a)1 (A.1)

for all a ∈ A.

The state η is called the Haar state of A. The defining property (A.1) is
called left invariance. On finite (and more generally on compact) quantum
groups left invariance is equivalent to right invariance, i.e. the Haar state
satisfies also

(η ⊗ id) ◦∆(a) = η(a)1.

One can show that it is even a faithful trace, i.e. η(a∗a) = 0 implies a = 0
and

η(ab) = η(ba)

for all a, b ∈ A.
This is a nontrivial result. See [VD97] for a careful discussion of it. Using

the unique Haar state we also get a distinguished inner product on A, namely
for a, b ∈ A

〈a, b〉 = η(a∗b).

The corresponding Hilbert space is denoted by H.

Proposition A.3. Every state on A can be realized as a vector state in H.

Proof. Because A is finite dimensional every linear functional can be written
in the form

φa : b �→ η(a∗b) = 〈a, b〉.
Such a functional is positive iff a ∈ A is positive. In fact, since η is a trace, it is
clear that a ≥ 0 implies φa ≥ 0. Conversely, assume φa ≥ 0. Convince yourself
that it is enough to consider a, b ∈ Mk where Mk is one of the summands of
the multi-matrix algebra A. The restriction of η is a multiple of the usual
trace. Inserting the one-dimensional projections for b shows that a is positive.

Because a is positive there is a unique positive square root. We can now
write φa = 〈a 1

2 , · a 1
2 〉 and if φa is a state then a

1
2 is a unit vector in H. ��
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Note that an equation φ = 〈d, · d〉 does not determine d uniquely. But
the vector constructed in the proof is unique and all these vectors together
generate a positive cone associated to η.

The following result was already introduced and used in Section 5.

Theorem A.4. Let A be a finite quantum group with Haar state η. Then the
map W : A⊗A → A⊗A defined by

W (b⊗ a) = ∆(b)(1⊗ a), a, b ∈ A,

is unitary with respect to the inner product defined by

〈b⊗ a, d⊗ c〉 = η(b∗d) η(a∗c),

for a, b, c, d ∈ A.
Furthermore, it satisfies the pentagon equation

W12W13W23 = W23W12.

We used the leg notation W12 = W ⊗ id, W23 = id ⊗W , W13 = (id ⊗ τ) ◦
W12 ◦ (id⊗ τ), where τ is the flip, τ : A⊗A → A⊗A, τ(a⊗ b) = b⊗ a.

Remark A.5. The operator W : A ⊗ A → A ⊗ A is called the fundamental
operator or multiplicative unitary of A, cf. [BS93, BBS99].

B The Eight-Dimensional Kac-Paljutkin
Quantum Group

In this section we give the defining relations and the main structure of an
eight-dimensional quantum group introduced by Kac and Paljutkin [KP66].
This is actually the smallest finite quantum group that does not come from a
group as the group algebra or the algebra of functions on the group. In other
words, it is the C∗-Hopf algebra with the smallest dimension, which is neither
commutative nor cocommutative.

Consider the multi-matrix algebra A = C⊕C⊕C⊕C⊕M2(C), with the
usual multiplication and involution. We shall use the basis

e1 = 1⊕ 0⊕ 0⊕ 0⊕ 0, a11 = 0⊕ 0⊕ 0⊕ 0⊕
(

1 0
0 0

)
,

e2 = 0⊕ 1⊕ 0⊕ 0⊕ 0, a12 = 0⊕ 0⊕ 0⊕ 0⊕
(

0 1
0 0

)
,

e3 = 0⊕ 0⊕ 1⊕ 0⊕ 0, a21 = 0⊕ 0⊕ 0⊕ 0⊕
(

0 0
1 0

)
,

e4 = 0⊕ 0⊕ 0⊕ 1⊕ 0, a22 = 0⊕ 0⊕ 0⊕ 0⊕
(

0 0
0 1

)
.
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The algebra A is an eight-dimensional C∗-algebra. Its unit is of course 1 =
e1 + e2 + e3 + e4 + a11 + a22. We shall need the trace Tr on A,

Tr
(
x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕

(
c11 c12
c21 c22

))
= x1 + x2 + x3 + x4 + c11 + c22.

Note that Tr is normalized to be equal to one on minimal projections.
The following defines a coproduct on A,

∆(e1) = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4

+
1
2
a11 ⊗ a11 +

1
2
a12 ⊗ a12 +

1
2
a21 ⊗ a21 +

1
2
a22 ⊗ a22,

∆(e2) = e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e4 + e4 ⊗ e3

+
1
2
a11 ⊗ a22 +

1
2
a22 ⊗ a11 +

i

2
a21 ⊗ a12 −

i

2
a12 ⊗ a21,

∆(e3) = e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e4 + e4 ⊗ e2

+
1
2
a11 ⊗ a22 +

1
2
a22 ⊗ a11 −

i

2
a21 ⊗ a12 +

i

2
a12 ⊗ a21,

∆(e4) = e1 ⊗ e4 + e4 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2

+
1
2
a11 ⊗ a11 +

1
2
a22 ⊗ a22 −

1
2
a12 ⊗ a12 −

1
2
a21 ⊗ a21,

∆(a11) = e1 ⊗ a11 + a11 ⊗ e1 + e2 ⊗ a22 + a22 ⊗ e2

+e3 ⊗ a22 + a22 ⊗ e3 + e4 ⊗ a11 + a11 ⊗ e4,

∆(a12) = e1 ⊗ a12 + a12 ⊗ e1 + ie2 ⊗ a21 − ia21 ⊗ e2

−ie3 ⊗ a21 + ia21 ⊗ e3 − e4 ⊗ a12 − a12 ⊗ e4,

∆(a21) = e1 ⊗ a21 + a21 ⊗ e1 − ie2 ⊗ a12 + ia12 ⊗ e2

+ie3 ⊗ a12 − ia12 ⊗ e3 − e4 ⊗ a21 − a21 ⊗ e4,

∆(a22) = e1 ⊗ a22 + a22 ⊗ e1 + e2 ⊗ a11 + a11 ⊗ e2

e3 ⊗ a11 + a11 ⊗ e3 + e4 ⊗ a22 + a22 ⊗ e4.

The counit is given by

ε

(
x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕

(
c11 c12
c21 c22

))
= x1

The antipode is the transpose map, i.e.

S(ei) = ei, S(ajk) = akj ,

for i = 1, 2, 3, 4, j, k = 1, 2.

B.1 The Haar State

Finite quantum groups have unique Haar elements h satisfying h∗ = h = h2,
ε(h) = 1, and
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ah = ε(a)h = ha for all a ∈ A,
cf. [VD97]. For the Kac-Paljutkin quantum group it is given by h = e1. An
invariant functional is given by φ(a) = Tr(aK−1), with K = (Tr⊗ id)∆(h) =
e1 + e2 + e3 + e4 + 1

2 (a11 + a22) and K−1 = e1 + e2 + e3 + e4 + 2(a11 + a22).
On an arbitrary element of A the action of φ is given by

φ

(
x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕

(
c11 c12
c21 c22

))
= x1 + x2 + x3 + x3 + 2c11 + 2c22.

Normalizing η so that η(1) = 1, we get the Haar state η = 1
8φ.

B.2 The Dual of A

The dual A∗ of a finite quantum groups A is again a finite quantum group,
see [VD97]. Its morphisms are the duals of the morphisms of A, e.g.

mA∗ = ∆∗
A : A∗ ⊗A∗ ∼= (A⊗A)∗ → A∗, mA∗(φ1 ⊗ φ2) = (φ1 ⊗ φ2) ◦∆

and
∆A∗ = m∗

A : A∗ → A∗ ⊗A∗ ∼= (A⊗A)∗, ∆A∗φ = φ ◦mA.

The involution of A∗ is given by φ∗(a) = φ
(
(Sa)∗

)
for φ ∈ A∗, a ∈ A. To

show that A∗ is indeed a C∗-algebra, one can show that the dual regular
action of A∗ on A defined by Tφa = φ(a(2))a(1) for φ ∈ A∗, a ∈ A, is a
faithful ∗-representation of A∗ w.r.t. the inner product on A defined by

〈a, b〉 = η(a∗b)

for a, b ∈ A, cf. [VD97, Proposition 2.3].
For the Kac-Paljutkin quantum group A the dual A∗ actually turns out

to be isomorphic to A itself.
Denote by {η1, η2, η3, η4, α11, α12, α21, α22} the basis of A∗ that is dual to

{e1, e2, e3, e4, a11, a12, a21,a22}, i.e. the functionals on A defined by

ηi(ej) = δij , ηi(ars) = 0,
αk�(ej) = 0, αk�(ars) = δkrδ�s,

for i, j = 1, 2, 3, 4, k, �, r, s = 1, 2.
We leave the verification of the following as an exercise.
The functionals

f1 =
1
8
(η1 + η2 + η3 + η4 + 2α11 + 2α22),

f2 =
1
8
(η1 − η2 − η3 + η4 − 2α11 + 2α22),

f3 =
1
8
(η1 − η2 − η3 + η4 + 2α11 − 2α22),

f4 =
1
8
(η1 + η2 + η3 + η4 − 2α11 − 2α22),
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are minimal projections in A∗. Furthermore

b11 =
1
4
(η1 + η2 − η3 − η4),

b12 =
1− i

2
√

2
(α12 + iα21),

b21 =
1 + i

2
√

2
(α12 − iα21),

b22 =
1
4
(η1 − η2 + η3 − η4),

are matrix units, i.e. satisfy the relations

bijbk� = δjkbi� and (bij)∗ = bji,

and the “mixed” products vanish,

fibjk = 0 = bjkfi, i = 1, 2, 3, 4, j, k = 1, 2.

Therefore A∗ ∼= C
4 ⊕M2(C) ∼= A as an algebra. But actually, ei �→ fi and

aij �→ bij defines even a C∗-Hopf algebra isomorphism from A to A∗.

B.3 The States on A

On C there exists only one state, the identity map. States on M2(C) are
given by density matrices, i.e., positive semi-definite matrices with trace one.
More precisely, for any state φ onM2(C) there exists a unique density matrix
ρ ∈M2(C) such that

φ(A) = Tr(ρA),

for all A ∈ M2(C). The 2 × 2 density matrices can be parametrized by the
unit ball B1 = {(x, y, z) ∈ R

3|x2 + y2 + z2 ≤ 1},

ρ(x, y, z) =
1
2

(
1 + z x+ iy
x− iy 1− z

)

A state on A is a convex combination of states on the four copies of C and
a state on M2(C). All states on A can therefore be parametrized by the set
{(µ1, µ2, µ3, µ4, µ5, x, y, z) ∈ R

8|x2 + y2 + z2 = 1;µ1 + µ2 + µ3 + µ4 + µ5 =
1;µ1, µ2, µ3, µ4, µ5 ≥ 0}. They are given by

φ = Tr(µ · ) = 8η(Kµ · )

where

µ = µ1 ⊕ µ2 ⊕ µ3 ⊕ µ4 ⊕
µ5

2

(
1 + z x+ iy
x− iy 1− z

)
.

With respect to the dual basis, the state φ can be written as
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φ = µ1η1 + µ2η2 + µ3η3 + µ4η4 (B.1)

+
µ5

2
(
(1 + z)α11 + (x− iy)α12 + (x+ iy)α21 + (1− z)α22

)
.

The regular representation Tφ = (id⊗ φ) ◦∆ of φ on A has the matrix




µ1 µ2 µ3 µ4
1+z
2
√

2
µ5

x−iy
2
√

2
µ5

x+iy

2
√

2
µ5

1−z
2
√

2
µ5

µ2 µ1 µ4 µ3
1−z
2
√

2
µ5 − ix−y2

√
2
µ5

ix+y

2
√

2
µ5

1+z
2
√

2
µ5

µ3 µ4 µ1 µ2
1−z
2
√

2
µ5

ix−y
2
√

2
µ5 − ix+y

2
√

2
µ5

1+z
2
√

2
µ5

µ4 µ3 µ2 µ1
1+z
2
√

2
µ5 −x−iy2

√
2
µ5 −x+iy2

√
2
µ5

1−z
2
√

2
µ5

1+z
2
√

2
µ5

1−z
2
√

2
µ5

1−z
2
√

2
µ5

1+z
2
√

2
µ5 µ1 + µ4 0 0 µ2 + µ3

x−iy
2
√

2
µ5

ix−y
2
√

2
µ5 − ix−y2

√
2
µ5−x−iy2

√
2
µ5 0 µ1 − µ4 −iµ2 + iµ3 0

x+iy

2
√

2
µ5− ix+y2

√
2
µ5

ix+y

2
√

2
µ5 −x+iy2

√
2
µ5 0 iµ2 − iµ3 µ1 − µ4 0

1−z
2
√

2
µ5

1+z
2
√

2
µ5

1+z
2
√

2
µ5

1−z
2
√

2
µ5 µ2 + µ3 0 0 µ1 + µ4





.

with respect to the basis (2
√

2e1, 2
√

2e2, 2
√

2e3, 2
√

2e4, 2a11, 2a12, 2a21, 2a22).
In terms of the basis of matrix units of A∗, φ takes the form

φ = (µ1 + µ2 + µ3 + µ4 + µ5)f1 + (µ1 − µ2 − µ3 + µ4 − zµ5)f2

+(µ1 − µ2 − µ3 + µ4 + zµ5)f3 + (µ1 + µ2 + µ3 + µ4 − µ5)f4

+(µ1 + µ2 − µ3 − µ4)b11 + (µ1 − µ2 + µ3 − µ4)b22

+
x+ y√

2
µ5b12 +

x− y√
2
µ5b21

or

φ = (µ1 + µ2 + µ3 + µ4 + µ5)⊕ (µ1 − µ2 − µ3 + µ4 − zµ5)⊕
⊕(µ1 − µ2 − µ3 + µ4 + zµ5)⊕ (µ1 + µ2 + µ3 + µ4 − µ5)⊕

⊕
(
µ1 + µ2 − µ3 − µ4

x+y√
2
µ5

x−y√
2
µ5 µ1 − µ2 + µ3 − µ4

)

in matrix form.
Remark: Note that the states on A are in general not positive for the

∗-algebra structure of A∗.
If φ ∈ A∗ is positive for the ∗-algebra structure of A∗, then Tφ is positive

definite on the GNS Hilbert spaceH ∼= A of the Haar state η, since the regular
representation is a ∗-representation, cf. [VD97].

On the other hand, if φ ∈ A∗ is positive as a functional on A, then Tφ =
(id⊗ φ) ◦∆ is completely positive as a map from the C∗-algebra A to itself.
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Infin. Dim. Anal., Quantum Prob. and Rel. Topics, 2(1):105-129, 1999. 21

[Go04] R. Gohm. Noncommutative Stationary Processes. Lecture Notes in Math.,
Vol. 1839, Springer, 2004. 7, 16
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1 Introduction

The present lecture notes have grown out of a wish to understand whether
certain important concepts of classical infinite divisibility and Lévy processes,
such as selfdecomposability and the Lévy-Itô decomposition, have natural
and interesting analogues in free probability. The study of this question has
led to new links between classical and free Lévy theory, and to some new
results in the classical setting, that seem of independent interest. The new
concept of Upsilon mappings have a key role in both respects. These are
regularizing mappings from the set of Lévy measures into itself or, otherwise
interpreted, mappings of the class of infinitely divisible laws into itself. One
of these mappings, Υ , provides a direct connection to the Lévy-Khintchine
formula of free probability.

The next Section recalls a number of concepts and results from the clas-
sical framework, and in Section 3 the basic Upsilon mappings Υ0 and Υ are
introduced and studied. They are shown to be smooth, injective and regular-
izing, and their relation to important subclasses of infinitely divisible laws is
discussed. Subsequently Υ0 and Υ are generalized to one-parameter families
of mappings (Υα0 )α∈[0,1] and (Υα)α∈[0,1] with similar properties, and which
interpolate between Υ0 (resp. Υ ) and the identity mapping on the set of Lévy
measures (resp. the class of infinitely divisible laws). Other types of Upsilon
mappings are also considered, including some generalizations to higher di-
mensions. Section 4 gives an introduction to non-commutative probability,
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particularly free infinite divisibility, and then takes up some of the above-
mentioned questions concerning links between classical and free Lévy theory.
The discussion of such links is continued in Section 5, centered around the
Upsilon mapping Υ and the closely associated Bercovici-Pata mapping Λ.
The final Section 6 discusses free stochastic integration and establishes a free
analogue of the Lévy-Ito representation.

The material presented in these lecture notes is based on the authors’ pa-
pers [BaTh02a], [BaTh02b], [BaTh02c], [BaTh04a], [BaTh04b] and [BaTh05].

2 Classical Infinite Divisibility and Lévy Processes

The classical theory of infinite divisibility and Lévy processes was founded
by Kolmogorov, Lévy and Khintchine in the Nineteen Thirties. The mono-
graphs [Sa99] and [Be96],[Be97] are main sources for information on this the-
ory. For some more recent results, including various types of applications, see
[BaMiRe01].

Here we recall some of the most basic facts of the theory, and we dis-
cuss a hierarchy of important subclasses of the space of infinitely divisible
distributions.

2.1 Basics of Infinite Divisibility

The class of infinitely divisible probability measures on the real line will here
be denoted by ID(∗). A probability measure µ on R belongs to ID(∗) if there
exists, for each positive integer n, a probability measure µn, such that

µ = µn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
n terms

,

where ∗ denotes the usual convolution of probability measures.
We recall that a probability measure µ on R is infinitely divisible if and

only if its characteristic function (or Fourier transform) fµ has the Lévy-
Khintchine representation:

log fµ(u) = iγu+
∫

R

(
eiut − 1− iut

1 + t2

)1 + t2

t2
σ(dt), (u ∈ R), (2.1)

where γ is a real constant and σ is a finite measure on R. In that case, the
pair (γ, σ) is uniquely determined, and is termed the generating pair for µ.

The function log fµ is called the cumulant transform for µ and is also
denoted by Cµ, as we shall do often in the sequel.

In the literature, there are several alternative ways of writing the above
representation. In recent literature, the following version seems to be preferred
(see e.g. [Sa99]):
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log fµ(u) = iηu− 1
2au

2 +
∫

R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt), (u ∈ R), (2.2)

where η is a real constant, a is a non-negative constant and ρ is a Lévy
measure on R according to Definition 2.1 below. Again, a, ρ and η are uniquely
determined by µ and the triplet (a, ρ, η) is called the characteristic triplet for
µ.

Definition 2.1. A Borel measure ρ on R is called a Lévy measure, if it sat-
isfies the following conditions:

ρ({0}) = 0 and
∫

R

min{1, t2} ρ(dt) <∞.

The relationship between the two representations (2.1) and (2.2) is as
follows:

a = σ({0}),

ρ(dt) =
1 + t2

t2
· 1R\{0}(t) σ(dt),

η = γ +
∫

R

t
(
1[−1,1](t)−

1
1 + t2

)
ρ(dt).

(2.3)

2.2 Classical Lévy Processes

For a (real-valued) random variableX defined on a probability space (Ω,F , P ),
we denote by L{X} the distribution1 of X.

Definition 2.2. A real valued stochastic process (Xt)t≥0, defined on a prob-
ability space (Ω,F , P ), is called a Lévy process, if it satisfies the following
conditions:

(i) whenever n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the increments

Xt0 ,Xt1 −Xt0 ,Xt2 −Xt1 , . . . , Xtn −Xtn−1 ,

are independent random variables.
(ii) X0 = 0, almost surely.
(iii) for any s, t in [0,∞[, the distribution of Xs+t−Xs does not depend on s.
(iv) (Xt) is stochastically continuous, i.e. for any s in [0,∞[ and any positive

ε, we have: limt→0 P (|Xs+t −Xs| > ε) = 0.
(v) for almost all ω in Ω, the sample path t �→ Xt(ω) is right continuous (in

t ≥ 0) and has left limits (in t > 0).

1L stands for “the law of”.
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If a stochastic process (Xt)t≥0 satisfies conditions (i)-(iv) in the definition
above, we say that (Xt) is a Lévy process in law. If (Xt) satisfies conditions
(i), (ii), (iv) and (v) (respectively (i), (ii) and (iv)) it is called an additive
process (respectively an additive process in law). Any Lévy process in law
(Xt) has a modification which is a Lévy process, i.e. there exists a Lévy
process (Yt), defined on the same probability space as (Xt), and such that
Xt = Yt with probability one, for all t. Similarly any additive process in law
has a modification which is a genuine additive process. These assertions can
be found in [Sa99, Theorem 11.5].

Note that condition (iv) is equivalent to the condition that Xs+t−Xs → 0
in distribution, as t→ 0. Note also that under the assumption of (ii) and (iii),
this condition is equivalent to saying that Xt → 0 in distribution, as t↘ 0.

The concepts of infinitely divisible probability measures and of Lévy
processes are closely connected, since there is a one-to-one correspondance
between them. Indeed, if (Xt) is a Lévy process, then L{Xt} is infinitely
divisible for all t in [0,∞[, since for any positive integer n

Xt =
n∑

j=1

(Xjt/n −X(j−1)t/n),

and hence, by (i) and (iii) of Definition 2.2,

L{Xt} = L{Xt/n} ∗ L{Xt/n} ∗ · · · ∗ L{Xt/n}︸ ︷︷ ︸
n terms

.

Moreover, for each t, L{Xt} is uniquely determined by L{X1} via the relation
L{Xt} = L{X1}t (see [Sa99, Theorem 7.10]). Conversely, for any infinitely
divisible distribution µ on R, there exists a Lévy process (Xt) (on some prob-
ability space (Ω,F , P )), such that L{X1} = µ (cf. [Sa99, Theorem 7.10 and
Corollary 11.6]).

2.3 Integration with Respect to Lévy Processes

We start with a general discussion of the existence of stochastic integrals
w.r.t. (classical) Lévy processes and their associated cumulant functions. Some
related results are given in [ChSh02] and [Sa00], but they do not fully cover
the situation considered below.

Throughout, we shall use the notation C{u ‡ X} to denote the cumulant
function of (the distribution of) a random variable X, evaluated at the real
number u.

Recall that a sequence (σn) of finite measures on R is said to converge
weakly to a finite measure σ on R, if

∫

R

f(t) σn(dt)→
∫

R

f(t) σ(dt), as n→∞, (2.4)
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for any bounded continuous function f : R→ C. In that case, we write σn
w→ σ,

as n→∞.

Remark 2.3. Recall that a sequence (xn) of points in a metric space (M,d)
converges to a point x in M , if and only if every subsequence (xn′) has a subse-
quence (xn′′) converging to x. Taking M = R it is an immediate consequence
of (2.4) that σn

w→ σ if and only if any subsequence (σn′) has a subsequence
(σn′′) which converges weakly to σ. This observation, which we shall make use
of in the folowing, follows also from the fact, that weak convergence can be
viewed as convergence w.r.t. a certain metric on the set of bounded measures
on R (the Lévy metric).

Lemma 2.4. Let (Xn,m)n,m∈N be a family of random variables indexed by
N× N and all defined on the same probability space (Ω,F , P ). Assume that

∀u ∈ R :
∫

R

eitu L{Xn,m}(dt)→ 1, as n,m→∞. (2.5)

Then Xn,m
P→ 0, as n,m→∞, in the sense that

∀ε > 0: P (|Xn,m| > ε)→ 0, as n,m→∞. (2.6)

Proof. This is, of course, a variant of the usual continuity theorem for char-
acteristic functions. For completeness, we include a proof.

To prove (2.6), it suffices, by a standard argument, to prove that L{Xn,m} w→
δ0, as n,m→∞, i.e. that

∀f ∈ Cb(R) :
∫

R

f(t)L{Xn,m}(dt) −→
∫

R

f(t) δ0(dt) = f(0), as n,m→∞,

(2.7)
where Cb(R) denotes the space of continuous bounded functions f : R→ R.

So assume that (2.7) is not satisfied. Then we may choose f in Cb(R) and
ε in ]0,∞[ such that

∀N ∈ N ∃n,m ≥ N :
∣∣∣
∫

R

f(t)L{Xn,m}(dt)− f(0)
∣∣∣ ≥ ε.

By an inductive argument, we may choose a sequence n1 ≤ n2 < n3 ≤ n4 <
· · · , of positive integers, such that

∀k ∈ N :
∣∣∣
∫

R

f(t)L{Xn2k,n2k−1}(dt)− f(0)
∣∣∣ ≥ ε. (2.8)

On the other hand, it follows from (2.5) that

∀u ∈ R :
∫

R

eitu L{Xn2k,n2k−1}(dt)→ 1, as k →∞,

so by the usual continuity theorem for characteristic functions, we find that
L{Xn2k,n2k−1}

w→ δ0. But this contradicts (2.8). ��
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Lemma 2.5. Assume that 0 ≤ a < b < ∞, and let f : [a, b] → R be a con-
tinuous function. Let, further, (Xt)t≥0 be a (classical) Lévy process, and put
µ = L{X1}. Then the stochastic integral

∫ b
a
f(t) dXt exists as the limit, in

probability, of approximating Riemann sums. Furthermore, L{
∫ b
a
f(t) dXt} ∈

ID(∗), and

C
{
u ‡

∫ b
a
f(t) dXt

}
=
∫ b

a

Cµ(uf(t)) dt,

for all u in R.

Proof. This is well-known, but, for completeness, we sketch the proof: By
definition (cf. [Lu75]),

∫ b
a
f(t) dXt is the limit in probability of the Riemann

sums:

Rn :=
n∑

j=1

f(t(n)
j )

(
X
t
(n)
j
−X

t
(n)
j−1

)
,

where, for each n, a = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = b is a subdivision of [a, b],

such that maxj=1,2,...,n(t
(n)
j − t

(n)
j−1)→ 0 as n→∞. Since (Xt) has stationary,

independent increments, it follows that for any u in R,

C{u ‡ Rn} =
n∑

j=1

C
{
f(t(n)

j )u ‡
(
X
t
(n)
j

−X
t
(n)
j−1

)}

=
n∑

j=1

C
{
f(t(n)

j )u ‡ X
t
(n)
j −t(n)

j−1

}

=
n∑

j=1

Cµ
(
f(t(n)

j )u
)
· (t(n)

j − t
(n)
j−1),

where, in the last equality, we used [Sa99, Theorem 7.10]. Since Cµ and f are
both continuous, it follows that

C
{
u ‡

∫ b
a
f(t) dXt

}
= lim
n→∞

n∑

j=1

Cµ
(
f(t(n)

j )u
)
· (t(n)

j − t
(n)
j−1) =

∫ b

a

Cµ(f(t)u) dt,

for any u in R. ��

Proposition 2.6. Assume that 0 ≤ a < b ≤ ∞, and let f : ]a, b[→ R be a
continuous function. Let, further, (Xt)t≥0 be a classical Lévy process, and put
µ = L{X1}. Assume that

∀u ∈ R :
∫ b

a

∣∣Cµ(uf(t))
∣∣ dt <∞.
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Then the stochastic integral
∫ b
a
f(t) dXt exists as the limit, in probability, of

the sequence (
∫ bn

an
f(t) dXt)n∈N, where (an) and (bn) are arbitrary sequences

in ]a, b[ such that an ≤ bn for all n and an ↘ a and bn ↗ b as n→∞.
Furthermore, L{

∫ b
a
f(t) dXt} ∈ ID(∗) and

C
{
u ‡

∫ b
a
f(t) dXt

}
=
∫ b

a

Cµ(uf(t)) dt, (2.9)

for all u in R.

Proof. Let (an) and (bn) be arbitrary sequences in ]a, b[, such that an ≤ bn for
all n and an ↘ a and bn ↗ b as n → ∞. Then, for each n, consider the sto-
chastic integral

∫ bn

an
f(t) dXt. Since the topology corresponding to convergence

in probability is complete, the convergence of the sequence (
∫ bn

an
f(t) dXt)n∈N

will follow, once we have verified that it is a Cauchy sequence. Towards this
end, note that whenever n > m we have that

∫ bn

an

f(t) dXt −
∫ bm

am

f(t) dXt =
∫ am

an

f(t) dXt +
∫ bn

bm

f(t) dXt,

so it suffices to show that
∫ am

an

f(t) dXt
P−→ 0 and

∫ bn

bm

f(t) dXt
P−→ 0, as n,m→∞.

By Lemma 2.4, this, in turn, will follow if we prove that

∀u ∈ R : C
{
u ‡

∫ am

an
f(t) dXt

}
−→ 0, as n,m→∞,

and

∀u ∈ R : C
{
u ‡

∫ bn

bm
f(t) dXt

}
−→ 0, as n,m→∞. (2.10)

But for n,m in N, m < n, it follows from Lemma 2.5 that

∣∣C
{
u ‡

∫ am

an
f(t) dXt

}∣∣ ≤
∫ am

an

∣∣Cµ(uf(t))
∣∣ dt, (2.11)

and since
∫ b
a
|Cµ(uf(t))|dt < ∞, the right hand side of (2.11) tends to 0 as

n,m→∞. Statement (2.10) follows similarly.
To prove that limn→∞

∫ bn

an
f(t) dXt does not depend on the choice of se-

quences (an) and (bn), let (a′n) and (b′n) be sequences in ]a, b[, also satisfying
that a′n ≤ b′n for all n, and that a′n ↘ a and b′n ↗ b as n → ∞. We may
then, by an inductive argument, choose sequences n1 < n2 < n3 < · · · and
m1 < m2 < m3 · · · of positive integers, such that

an1 > a′m1
> an2 > a′m2

> · · · , and bn1 < b′m1
< bn2 < b′m2

< · · · .
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Consider then the sequences (a′′k) and (b′′k) given by:

a′′2k−1 = ank
, a′′2k = a′mk

, and b′′2k−1 = bnk
, b′′2k = b′mk

, (k ∈ N).

Then a′′k ≤ b′′k for all k, and a′′k ↘ a and b′′k ↗ b as k → ∞. Thus, by the
argument given above, all of the following limits exist (in probability), and,
by “sub-sequence considerations”, they have to be equal:

lim
n→∞

∫ bn

an

f(t) dXt = lim
k→∞

∫ bnk

ank

f(t) dXt = lim
k→∞

∫ b′′2k−1

a′′2k−1

f(t) dXt

= lim
k→∞

∫ b′′k

a′′k

f(t) dXt = lim
k→∞

∫ b′′2k

a′′2k

f(t) dXt

= lim
k→∞

∫ b′mk

a′mk

f(t) dXt = lim
n→∞

∫ b′n

a′n

f(t) dXt,

as desired.
To verify, finally, the last statements of the proposition, let (an) and (bn) be

sequences as above, so that, by definition,
∫ b
a
f(t) dXt = limn→∞

∫ bn

an
f(t) dXt

in probability. Since ID(∗) is closed under weak convergence, this implies
that L{

∫ b
a
f(t) dXt} ∈ ID(∗). To prove (2.9), we find next, using Gnedenko’s

theorem (cf. [GnKo68, §19, Theorem 1] and Lemma 2.5, that

C
{
u ‡

∫ b
a
f(t) dXt

}
= lim
n→∞

C
{
u ‡

∫ bn

an
f(t) dXt

}

= lim
n→∞

∫ bn

an

Cµ(uf(t)) dt =
∫ b

a

Cµ(uf(t)) dt,

for any u in R, and where the last equality follows from the assumption that∫ b
a
|Cµ(uf(t))|dt <∞. This concludes the proof. ��

2.4 The Classical Lévy-Itô Decomposition

The Lévy-Itô decomposition represents a (classical) Lévy process (Xt) as the
sum of two independent Lévy processes, the first of which is continuous (and
hence a Brownian motion) and the second of which is, loosely speaking, the
sum of the jumps of (Xt). In order to rigorously describe the sum of jumps
part, one needs to introduce the notion of Poisson random measures. Be-
fore doing so, we introduce some notation: For any λ in [0,∞] we denote
by Poiss∗(λ) the (classical) Poisson distribution with mean λ. In particular,
Poiss∗(0) = δ0 and Poiss∗(∞) = δ∞.

Definition 2.7. Let (Θ, E , ν) be a σ-finite measure space and let (Ω,F , P ) be
a probability space. A Poisson random measure on (Θ, E , ν) and defined on
(Ω,F , P ) is a mapping N : E×Ω → [0,∞], satisfying the following conditions:
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(i) For each E in E, N(E) = N(E, ·) is a random variable on (Ω,F , P ).
(ii) For each E in E, L{N(E)} = Poiss∗(ν(E)).
(iii) If E1, . . . , En are disjoint sets from E, then N(E1), . . . , N(En) are inde-

pendent random variables.
(iv) For each fixed ω in Ω, the mapping E �→ N(E,ω) is a (positive) measure

on E.

In the setting of Definition 2.7, the measure ν is called the intensity mea-
sure for the Poisson random measure N . Let (Θ, E , ν) be a σ-finite measure
space, and let N be a Poisson random measure on it (defined on some prob-
ability space (Ω,F , P )). Then for any E-measurable function f : Θ → [0,∞],
we may, for all ω in Ω, consider the integral

∫
Θ
f(θ)N(dθ, ω). We obtain, thus,

an everywhere defined mapping on Ω, given by: ω �→
∫
Θ
f(θ)N(dθ, ω). This

observation is the starting point for the theory of integration with respect
to Poisson random measures, from which we shall need the following basic
properties:

Proposition 2.8. Let N be a Poisson random measure on the σ-finite mea-
sure space (Θ, E , ν), defined on the probability space (Ω,F , P ).

(i) For any positive E-measurable function f : Θ → [0,∞],
∫
Θ
f(θ)N(dθ) is

an F-measurable positive function, and

E

{∫

Θ

f(θ)N(dθ)
}

=
∫

Θ

f dν.

(ii) If f is a real-valued function in L1(Θ, E , ν), then f ∈ L1(Θ, E , N(·, ω)) for
almost all ω in Ω,

∫
Θ
f(θ)N(dθ) ∈ L1(Ω,F , P ) and

E

{∫

Θ

f(θ)N(dθ)
}

=
∫

Θ

f dν.

The proof of the above proposition follows the usual pattern, proving it first
for simple (positive) E-measurable functions and then, via an approximation
argument, obtaining the results in general. We shall adapt the same method
in developing integration theory with respect to free Poisson random measures
in Section 6.4 below.

We are now in a position to state the Lévy-Itô decomposition for classical
Lévy processes. We denote the Lebesgue measure on R by Leb.

Theorem 2.9 (Lévy-Itô Decomposition). Let (Xt) be a classical (gen-
uine) Lévy process, defined on a probability space (Ω,F , P ), and let ρ be the
Lévy measure appearing in the generating triplet for L{X1}.

(i) Assume that
∫ 1

−1
|x| ρ(dx) < ∞. Then (Xt) has a representation in the

form:

Xt
a.s.= γt+

√
aBt +

∫

]0,t]×R

xN(ds,dx), (2.12)
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where γ ∈ R, a ≥ 0, (Bt) is a Brownian motion and N is a Poisson ran-
dom measure on (]0,∞[×R,Leb⊗ ρ). Furthermore, the last two terms on
the right hand side of (2.12) are independent Lévy processes on (Ω,F , P ).

(ii) If
∫ 1

−1
|x| ρ(dx) =∞, then we still have a decomposition like (2.12), but the

integral
∫
]0,t]×R

xN(ds,dx) no longer makes sense and has to be replaced
by the limit:

Yt= lim
ε↘0

[ ∫

]0,t]×(R\[−ε,ε])
xN(du,dx)−

∫

]0,t]×([−1,1]\[−ε,ε])
xLeb⊗ρ(du,dx)

]
.

The process (Yt) is, again, a Lévy process, which is independent of (Bt).

The symbol a.s.= in (2.12) means that the two random variables are equal
with probability 1 (a.s. stands for “almost surely”). The Poisson random mea-
sure N appearing in the right hand side of (2.12) is, specifically, given by

N(E,ω) = #
{
s ∈ ]0,∞[

∣∣ (s,∆Xs(ω)) ∈ E
}
,

for any Borel subset E of ]0,∞[×(R\{0}), and where ∆Xs = Xs−limu↗sXu.
Consequently, the integral in the right hand side of (2.12) is, indeed, the sum of
the jumps of Xt until time t:

∫
]0,t]×R

x N(ds,dx) =
∑
s≤t∆Xs. The condition

∫ 1

−1
|x| ρ(dx) < ∞ ensures that this sum converges. Without that condition,

one has to consider the “compensated sums of jumps” given by the process
(Yt). For a proof of Theorem 2.9 we refer to [Sa99].

2.5 Classes of Infinitely Divisible Probability Measures

In the following, we study, in various connections, dilations of Borel measures
by constants. If ρ is a Borel measure on R and c is a non-zero real constant,
then the dilation of ρ by c is the measure Dcρ given by

Dcρ(B) = ρ(c−1B),

for any Borel set B. Furthermore, we put D0ρ = δ0 (the Dirac measure at 0).
We shall also make use of terminology like

Dcρ(dx) = ρ(c−1dx),

whenever c �= 0. With this notation at hand, we now introduce several impor-
tant classes of infinitely divisible probability measures on R.

In classical probability theory, we have the following fundamental hierar-
chy:

G(∗) ⊂ S(∗) ⊂ R(∗) ⊂ T (∗) ⊂
{
L(∗)
B(∗)

}
⊂ ID(∗) ⊂ P, (2.13)

where
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(i) P is the class of all probability measures on R.
(ii) ID(∗) is the class of infinitely divisible probability measures on R (as

defined above).
(iii) L(∗) is the class of selfdecomposable probability measures on R, i.e.

µ ∈ L(∗) ⇐⇒ ∀c ∈ ]0, 1[ ∃µc ∈ P : µ = Dcµ ∗ µc.

(iv) B(∗) is the Goldie-Steutel-Bondesson class, i.e. the smallest subclass of
ID(∗), which contains all mixtures of positive and negative exponential
distributions2 and is closed under convolution and weak limits.

(v) T (∗) is the Thorin Class, i.e. the smallest subclass of ID(∗), which con-
tains all positive and negative Gamma distributions2 and is closed under
convolution and weak limits.

(vi) R(∗) is the class of tempered stable distributions, which will defined
below in terms of the Lévy-Khintchine representation.

(vii) S(∗) is the class of stable probability measures on R, i.e.

µ ∈ S(∗) ⇐⇒ {ψ(µ) | ψ : R→ R, increasing affine transformation}
is closed under convolution ∗ .

(viii) G(∗) is the class of Gaussian (or normal) distributions on R.

The classes of probability measures, defined above, are all of considerable
importance in classical probability and are of major applied interest. In par-
ticular the classes S(∗) and L(∗) have received a lot of attention. This is,
partly, explained by their characterizations as limit distributions of certain
types of sums of independent random variables. Briefly, the stable laws are
those that occur as limiting distributions for n→∞ of affine transformations
of sums X1 + · · ·+Xn of independent identically distributed random variables
(subject to the assumption of uniform asymptotic neglibility). Dropping the
assumption of identical distribution one arrives at the class L(∗). Finally, the
class ID(∗) of all infinitely divisible distributions consists of the limiting laws
for sums of independent random variables of the form Xn1 + · · ·+Xnkn

(again
subject to the assumption of uniform asymptotic neglibility).

An alternative characterization of selfdecomposability says that (the dis-
tribution of) a random variable Y is selfdecomposable if and only if for all c
in ]0, 1[ the characteristic function f of Y can be factorised as

f(ζ) = f(cζ)fc(ζ), (2.14)

for some characteristic function fc (which then, as can be proved, necessarily
corresponds to an infinitely divisible random variable Yc). In other words,
considering Yc as independent of Y we have a representation in law

2A negative exponential (resp. Gamma) distribution is of the form D−1µ, where
µ is a positive exponential (resp. Gamma) distribution.
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Y
d= cY + Yc

(where the symbol d= means that the random variables on the left and right
hand side have the same distribution). This latter formulation makes the idea
of selfdecomposability of immediate appeal from the viewpoint of mathemati-
cal modeling. Yet another key characterization is given by the following result
which was first proved by Wolfe in [Wo82] and later generalized and strength-
ened by Jurek and Verwaat ([JuVe83], cf. also Jurek and Mason, [JuMa93,
Theorem 3.6.6]): A random variable Y has law in L(∗) if and only if Y has a
representation of the form

Y
d=
∫ ∞

0

e−t dXt, (2.15)

where Xt is a Lévy process satisfying E{log(1 + |X1|)} < ∞. The process
X = (Xt)t≥0 is termed the background driving Lévy process or the BDLP
corresponding to Y .

There is a very extensive literature on the theory and applications of stable
laws. A standard reference for the theoretical properties is [SaTa94], but see
also [Fe71] and [BaMiRe01]. In comparison, work on selfdecomposability has
up till recently been somewhat limited. However, a comprehensive account of
the theoretical aspects of selfdecomposability, and indeed of infinite divisibility
in general, is now available in [Sa99]. Applications of selfdecomposability are
discussed, inter alia, in [BrReTw82], [Ba98], [BaSh01a] and [BaSh01b].

The class R(∗), its d-dimensional version Rd(∗), and the associated Lévy
processes and Ornstein-Uhlenbeck type processes were introduced and stud-
ied extensively by Rosinski (see [Ros04]), following earlier works by other
authors on special instances of this kind of stochastic objects (see references
in [Ros04]). These processes are of considerable interest as they exhibit sta-
ble like behaviour over short time spans and - in the Lévy process case -
Gaussian behaviour for long lags. That paper also develops powerful series
representations of shot noise type for the processes.

By ID+(∗) we denote the class of infinitely divisible probability measures,
which are concentrated on [0,∞[. The classes S+(∗),R+(∗), T +(∗),B+(∗) and
L+(∗) are defined similarly. The class T +(∗), in particular, is the class of
measures which was originally studied by O. Thorin in [Th77]. He introduced
it as the smallest subclass of ID(∗), which contains the Gamma distributions
and is closed under convolution and weak limits. This group of distributions is
also referred to as generalized gamma convolutions and have been extensively
studied by Bondesson in [Bo92]. (It is noteworthy, in the present context, that
Bondesson uses Pick functions, which are essentially Cauchy transforms, as
a main tool in his investigations. The Cauchy transform also occur as a key
tool in the study of free infinite divisibility; see Section 4.4).

Example 2.10. An important class of generalized Gamma convolutions are the
generalized inverse Gaussian distributions: Assume that λ in R and γ, δ in
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[0,∞[ satisfy the conditions: λ < 0 ⇒ δ > 0, λ = 0 ⇒ γ, δ > 0 and λ > 0 ⇒
γ > 0. Then the generalized inverse Gaussian distribution GIG(λ, δ, γ) is the
distribution on R+ with density (w.r.t. Lebesgue measure) given by

g(t;λ, δ, γ) =
(γ/δ)λ

2Kλ(δγ)
tλ−1 exp

{
− 1

2 (δ2t−1 + γ2t)
}
, t ≥ 0,

where Kλ is the modified Bessel function of the third kind and with index
λ. For all λ, δ, γ (subject to the above restrictions) GIG(λ, δ, γ) belongs to
T +(∗), and it is not stable unless λ = − 1

2 and γ = 0. For special choices of
the parameters, one obtains the gamma distributions (and hence the exponen-
tial and χ2 distributions), the inverse Gaussian distributions, the reciprocal
inverse Gaussian distributions3 and the reciprocal gamma distributions.

Example 2.11. A particularly important group of examples of selfdecompos-
able laws, supported on the whole real line, are the marginal laws of subordi-
nated Brownian motion with drift, when the subordinator process is generated
by one of the generalized gamma convolutions. The induced selfdecomposabil-
ity of the marginals follows from a result due to Sato (cf. [Sa00]).

We introduce next some notation that will be convenient in Section 3.3
below. There, we shall also consider translations of the measures in the classes
T +(∗), L+(∗) and ID+(∗). For a real constant c, we consider the mapping
τc : R→ R given by

τc(x) = x+ c, (x ∈ R),

i.e. τc is translation by c. For a Borel measure µ on R, we may then consider
the translated measure τc(µ) given by

τc(µ)(B) = µ(B − c),

for any Borel set B in R. Note, in particular, that if µ is infinitely divisi-
ble with characteristic triplet (a, ρ, η), then τc(µ) is infinitely divisible with
characteristic triplet (a, ρ, η + c).

Definition 2.12. We introduce the following notation:

ID+
τ (∗) = {µ ∈ ID(∗) | ∃c ∈ R : τc(µ) ∈ ID+(∗)}

L+
τ (∗) = {µ ∈ ID(∗) | ∃c ∈ R : τc(µ) ∈ L+(∗)} = ID+

τ ∩ L(∗)

T +
τ (∗) = {µ ∈ ID(∗) | ∃c ∈ R : τc(µ) ∈ T +(∗)} = ID+

τ ∩ T (∗).

3The inverse Gaussian distributions and the reciprocal inverse Gaussian distribu-
tions are, respectively, the first and the last passage time distributions to a constant
level by a Brownian motion with drift.
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Remark 2.13. The probability measures in ID+(∗) are characterized among
the measures in ID(∗) as those with characteristic triplets in the form (0, ρ, η),
where ρ is concentrated on [0,∞[,

∫
[0,1]

t ρ(dt) < ∞ and η ≥
∫
[0,1]

t ρ(dt) (cf.
[Sa99, Theorem 24.11]). Consequently, the class ID+

τ (∗) can be characterized
as that of measures in ID(∗) with generating triplets in the form (0, η, ρ),
where ρ is concentrated on [0,∞[ and

∫
[0,1]

t ρ(dt) <∞.

Characterization in Terms of Lévy Measures

We shall say that a nonnegative function k with domain R\ {0} is monotone
on R\ {0} if k is increasing on (−∞, 0) and decreasing on (0,∞). And we say
that k is completely monotone on R\ {0} if k is of the form

k (t) =

{∫∞
0

e−tsν (ds) , for t > 0∫ 0

−∞ e−tsν (ds) , for t < 0
(2.16)

for some Borel measure ν on R\ {0}. Note in this case that ν is necessarily a
Radon measure on R \ {0}. Indeed, for any compact subset K of ]0,∞[, we
may consider the strictly positive number m := infs∈K e−s. Then,

ν(K) ≤ m−1

∫

K

e−s ν(ds) ≤ m−1

∫ ∞

0

e−s ν(ds) = m−1k(1) <∞.

Similarly, ν(K) <∞ for any compact subset of K of ]−∞, 0[.
With the notation just introduced, we can now state simple characteriza-

tions of the Lévy measures of each of the classes S (∗) , T (∗) ,R (∗) ,L (∗) ,B (∗)
as follows. In all cases the Lévy measure has a density r of the form

r (t) =

{
c+t

−a+k (t) , for t > 0,
c− |t|−a− k (t) , for t < 0,

(2.17)

where a+, a−, c+, c− are non-negative constants and where k ≥ 0 is monotone
on R\ {0}.
• The Lévy measures of S (∗) are characterized by having densities r of the

form (2.17) with a± = 1 + α, α ∈ ]0, 2[, and k constant on R<0 and on
R>0.

• The Lévy measures of R (∗) are characterized by having densities r of the
form (2.17) with a± = 1 + α, α ∈ ]0, 2[, and k completely monotone on
R\ {0} with k(0+) = k(0−) = 1.

• The Lévy measures of T (∗) are characterized by having densities r of the
form (2.17) with a± = 1 and k completely monotone on R\ {0}.

• The Lévy measures of L (∗) are characterized by having densities r of the
form (2.17) with a± = 1 and k monotone on R\ {0}.

• The Lévy measures of B (∗) are characterized by having densities r of the
form (2.17) with a± = 0 and k completely monotone on R\ {0}.
In the case of S (∗) and L (∗) these characterizations are well known, see for

instance [Sa99]. For T (∗), R (∗) and B (∗) we indicate the proofs in Section 3.
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3 Upsilon Mappings

The term Upsilon mappings is used to indicate a class of one-to-one regu-
larizing mappings from the set of Lévy measures into itself or, equivalently,
from the set of infinitely divisible distributions into itself. They are defined as
deterministic integrals but have a third interpretation in terms of stochastic
integrals with respect to Lévy processes. In addition to the regularizing effect,
the mappings have simple relations to the classes of infinitely divisible laws
discussed in the foregoing section. Some extensions to multivariate settings
are briefly discussed at the end of the section.

3.1 The Mapping Υ0

Let ρ be a Borel measure on R, and consider the family (Dxρ)x>0 of Borel
measures on R. Assume that ρ has density r w.r.t. some σ-finite Borel measure
σ on R: ρ(dt) = r(t)σ(dt). Then (Dxρ)x>0 is a Markov kernel, i.e. for any
Borel subset B of R, the mapping x �→ Dxρ(B) is Borel measurable. Indeed,
for any x in ]0,∞[ we have

Dxρ(B) = ρ(x−1B) =
∫

R

1x−1B(t)r(t)σ(dt) =
∫

R

1B(xt)r(t)σ(dt).

Since the function (t, x) �→ 1B(tx)r(t) is a Borel function of two variables,
and since σ is σ-finite, it follows from Tonelli’s theorem that the function
x �→

∫
R

1B(xt)r(t)σ(dt) is a Borel function, as claimed.
Assume now that ρ is Borel measure on R, which has a density r w.r.t.

some σ-finite Borel measure on R. Then the above considerations allow us to
define a new Borel measure ρ̃ on R by:

ρ̃ =
∫ ∞

0

(Dxρ)e−x dx, (3.1)

or more precisely:

ρ̃(B) =
∫ ∞

0

Dxρ(B)e−x dx,

for any Borel subset B of R. In the following we usually assume that ρ is a
σ-finite, although many of the results are actually valid in the slightly more
general situation, where ρ is only assumed to have a (possibly infinite) density
w.r.t. a σ-finite measure. In fact, we are mainly interested in the case where
ρ is a Lévy measure (recall that Lévy measures are automatically σ-finite).

Definition 3.1. Let M(R) denote the class of all positive Borel measure on R

and let ML(R) denote the subclass of all Lévy measure on R. We then define
a mapping Υ0 : ML(R)→M(R) by

Υ0(ρ) =
∫ ∞

0

(Dxρ)e−x dx, (ρ ∈ML(R)).
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As we shall see at the end of this section, the range of Υ0 is actually a
genuine subset of ML(R) (cf. Corollary 3.10 below).

In the following we consider further, for a measure ρ on R, the transfor-
mation of ρ|R\{0} by the mapping x �→ x−1 : R \ {0} → R \ {0} (here ρ|R\{0}
denotes the restriction of ρ to R \ {0}). The transformed measure will be de-
noted by ω and occasionally also by ρ←−. Note that ω is σ-finite if ρ is, and that

ρ is a Lévy measure if and only if ρ({0}) = 0 and ω satisfies the property:
∫

R

min{1, s−2}ω(ds) <∞. (3.2)

Theorem 3.2. Let ρ be a σ-finite Borel measure on R, and consider the Borel
function r̃ : R \ {0} → [0,∞], given by

r̃(t) =






∫
]0,∞[

se−ts ω(ds), if t > 0,
∫
]−∞,0[

|s|e−ts ω(ds), if t < 0,
(3.3)

where ω is the transformation of ρ|R\{0} by the mapping x �→ x−1 : R \ {0} →
R \ {0}.

Then the measure ρ̃, defined in (3.1), is given by:

ρ̃(dt) = ρ({0})δ0(dt) + r̃(t) dt.

Proof. We have to show that

ρ̃(B) = ρ({0})δ0(B) +
∫

B\{0}
r̃(t) dt, (3.4)

for any Borel set B of R. Clearly, it suffices to verify (3.4) in the two cases
B ⊆ [0,∞[ and B ⊆ ]−∞, 0]. If B ⊆ [0,∞[, we find that

ρ̃(B) =
∫ ∞

0

(∫

[0,∞[

1B(s)Dxρ(ds)
)
e−x dx

=
∫ ∞

0

(∫

[0,∞[

1B(sx) ρ(ds)
)
e−x dx

=
∫

[0,∞[

(∫ ∞

0

1B(sx)e−x dx
)
ρ(ds).

Using, for s > 0, the change of variable u = sx, we find that

ρ̃(B) =
(
1B(0)

∫ ∞

0

e−x dx
)
ρ({0}) +

∫

]0,∞[

(∫ ∞

0

1B(u)e−u/ss−1 du
)
ρ(ds)

= ρ({0})δ0(B) +
∫ ∞

0

1B(u)
(∫

]0,∞[

s−1e−u/s ρ(ds)
)

du

= ρ({0})δ0(B) +
∫ ∞

0

1B(u)
(∫

]0,∞[

se−us ω(ds)
)

du,



50 Ole E. Barndorff-Nielsen and Steen Thorbjørnsen

as desired. The case B ⊆ ] −∞, 0] is proved similarly or by applying, what
we have just established, to the set −B and the measure D−1ρ. ��

Corollary 3.3. Let ρ be a σ-finite Borel measure on R and consider the mea-
sure ρ̃ given by (3.1). Then

ρ̃({t}) =

{
0, if t ∈ R \ {0},
ρ({0}), if t = 0.

Corollary 3.4. Let r : R→ [0,∞[ be a non-negative Borel function and let ρ
be the measure on R with density r w.r.t. Lebesgue measure: ρ(dt) = r(t) dt.
Consider further the measure ρ̃ given by (3.1). Then ρ̃ is absolutely continuous
w.r.t. Lebesgue measure and the density, r̃, is given by

r̃(t) =






∫∞
0

y−1r(y−1)e−ty dy, if t > 0,
∫ 0

−∞−y−1r(y−1)e−ty dy, if t < 0.

Proof. This follows immediately from Theorem 3.2 together with the fact that
the measure ω has density

s �→ s−2r(s−1), (s ∈ R \ {0}),

w.r.t. Lebesgue measure. ��

Corollary 3.5. Let ρ be a Lévy measure on R. Then the measure Υ0(ρ) is
absolutely continuous w.r.t. Lebesgue measure. The density, r̃, is given by
(3.3) and is a C∞-function on R \ {0}.

Proof. We only have to verify that r̃ is a C∞-function on R \ {0}. But this
follows from the usual theorem on differentiation under the integral sign, since,
by (3.2),

∫

]0,∞[

spe−ts ω(ds) <∞ and
∫

]−∞,0[

|s|pets ω(ds) <∞,

for any t in ]0,∞[ and any p in N. ��

Proposition 3.6. Let ρ be a σ-finite measure on R, let ρ̃ be the measure given
by (3.1) and let ω be the transformation of ρ|R\{0} under the mapping t �→ t−1.
We then have

ρ̃([t,∞[) =
∫ ∞

0

e−ts ω(ds), (t ∈ ]0,∞[), (3.5)

and

ρ̃(]−∞, t]) =
∫ 0

−∞
e−ts ω(ds), (t ∈ ]−∞, 0[). (3.6)
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Proof. Using Theorem 3.2 we find, for t > 0, that

ρ̃([t,∞[) =
∫ ∞

t

(∫

]0,∞[

se−us ω(ds)
)

du =
∫

]0,∞[

(∫ ∞

t

e−ussdu
)
ω(ds)

=
∫

]0,∞[

(∫ ∞

ts

e−x dx
)
ω(ds) =

∫

]0,∞[

e−ts ω(ds),

where we have used the change of variable x = us. Formula (3.6) is proved
similarly. ��

Corollary 3.7. The mapping Υ0 : ML(R)→M(R) is injective.

Proof. Suppose ρ ∈ ML(R) and let ω be the transformation of ρ|R\{0} be
the mapping t �→ t−1. Let, further, ω+ and ω− denote the restrictions of ω
to ]0,∞[ and ]−∞, 0[, respectively. By (3.2) it follows then that the Laplace
transform for ω+ is well-defined on all of ]0,∞[. Furthermore, (3.5) shows that
this Laplace transform is uniquely determined by ρ̃. Hence, by uniqueness of
Laplace transforms (cf. [Fe71, Theorem 1a, Chapter XIII.1]), ω+ is uniquely
determined by ρ̃. Arguing similarly for the measure D−1ω−, it follows that
D−1ω− (and hence ω−) is uniquely determined by ρ̃. Altogether, ω (and hence
ρ) is uniquely determined by ρ̃. ��

Proposition 3.8. Let ρ be a σ-finite measure on R and let ρ̃ be the measure
given by (3.1). Then for any p in [0,∞[, we have that

∫

R

|t|p ρ̃(dt) = Γ (p+ 1)
∫

R

|t|p ρ(dt).

In particular, the p’th moment of ρ̃ and ρ exist simultaneously, in which case
∫

R

tp ρ̃(dt) = Γ (p+ 1)
∫

R

tp ρ(dt). (3.7)

Proof. Let p from [0,∞[ be given. Then
∫

R

|t|p ρ̃(dt) =
∫ ∞

0

(∫

R

|t|pDxρ(dt)
)
e−x dx

∫ ∞

0

(∫

R

|tx|p ρ(dt)
)
e−x dx

=
∫

R

|t|p
(∫ ∞

0

xpe−x dx
)
ρ(dt) = Γ (p+ 1)

∫

R

|t|p ρ(dt).

If the integrals above are finite, we can perform the same calculation without
taking absolute values, and this establishes (3.7). ��

Proposition 3.9. Let ρ be a σ-finite Borel measure on R and let ρ̃ be the
measure given by (3.1). We then have
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∫

R\[−1,1]

1 ρ̃(dt) =
∫

R\{0}
e−1/|t| ρ(dt) (3.8)

∫

[−1,1]

t2 ρ̃(dt) =
∫

R\{0}
2t2 − e−1/|t|(1 + 2|t|+ 2t2) ρ(dt). (3.9)

In particular
∫

R

min{1, t2} ρ̃(dt) =
∫

R\{0}
2t2

(
1− e−1/|t|(|t|−1 + 1)

)
ρ(dt), (3.10)

and consequently
∫

R

min{1, t2} ρ̃(dt) <∞ ⇐⇒
∫

R

min{1, t2} ρ(dt) <∞. (3.11)

Proof. We note first that
∫

R\[−1,1]

1 ρ̃(dt) =
∫ ∞

0

(∫

R

1]1,∞[(|t|)Dxρ(dt)
)
e−x dx

=
∫ ∞

0

(∫

R

1]1,∞[(|tx|) ρ(dt)
)
e−x dx

=
∫

R\{0}

(∫ ∞

1/|t|
e−x dx

)
ρ(dt)

=
∫

R\{0}
e−1/|t| ρ(dt),

which proves (3.8). Regarding (3.9) we find that
∫

[−1,1]

t2 ρ̃(dt) =
∫ ∞

0

(∫

R

1[0,1](|t|)t2 Dxρ(dt)
)
e−x dx

=
∫ ∞

0

(∫

R

1[0,1](|tx|)t2x2 ρ(dt)
)
e−x dx

=
∫

R\{0}

(∫ 1/|t|

0

x2e−x dx
)
t2 ρ(dt)

=
∫

R\{0}

(
2− e−1/|t|(t−2 + 2|t|−1 + 2)

)
t2 ρ(dt)

=
∫

R\{0}
2t2 − e−1/|t|(1 + 2|t|+ 2t2) ρ(dt),
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as claimed. Combining (3.8) and (3.9), we immediately get (3.10). To deduce
finally (3.11), note first that for any positive u, we have by second order Taylor
expansion

2
u2

(
1− e−u(u+ 1)

)
=

2e−u

u2

(
eu − u+ 1

)
= eξ−u, (3.12)

for some number ξ in ]0, u[. It follows thus that

∀t ∈ R \ {0} : 0 < 2t2
(
1− e−1/|t|(|t|−1 + 1)

)
≤ 1, (3.13)

and from the upper bound together with (3.10), the implication “⇐” in (3.11)
follows readily. Regarding the converse implication, note that (3.12) also shows
that

lim
|t|→∞

2t2
(
1− e−1/|t|(|t|−1 + 1)

)
= 1,

and together with the lower bound in (3.13), this implies that

inf
t∈R\[−1,1]

2t2
(
1− e−1/|t|(|t|−1 + 1)

)
> 0. (3.14)

Note also that

lim
t→0

2
(
1− e−1/|t|(|t|−1 + 1)

)
= 2 lim

u→∞

(
1− e−u(u+ 1)

)
= 2,

so that
inf

t∈[−1,1]\{0}
2
(
1− e−1/|t|(|t|−1 + 1)

)
> 0. (3.15)

Combining (3.14),(3.15) and (3.10), the implication “⇒” in (3.11) follows.
This completes the proof. ��

Corollary 3.10. For any Lévy measure ρ on R, Υ0(ρ) is again a Lévy measure
on R. Moreover, a Lévy measure υ on R is in the range of Υ0 if and only if
the function Fυ : R \ {0} → [0,∞[ given by

Fυ(t) =

{
υ(]−∞, t]), if t < 0,
υ([t,∞[), if t > 0,

is completely monotone (cf. (2.16)).

Proof. It follows immediately from (3.11) that Υ (ρ) is a Lévy measure if ρ is.
Regarding the second statement of the corollary, we already saw in Propo-

sition 3.6 that FΥ (ρ) is completely monotone for any Lévy measure ρ on R.
Assume conversely that υ is a Lévy measure on R, such that Fυ is completely
monotone, i.e.

υ([t,∞[) =
∫ ∞

0

e−ts ω(ds), (t ∈ ]0,∞[),
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and

υ(]−∞, t]) =
∫ 0

−∞
e−ts ω(ds), (t ∈ ]−∞, 0[).

for some Radon measure ω on R \ {0}. Now let ρ be the transformation of
ω by the mapping t �→ t−1 : R \ {0} → R \ {0}. Then ρ is clearly a Radon
measure on R \ {0}, too. Setting ρ({0}) = 0, we may thus consider ρ as a
σ-finite measure on R. Applying then Proposition 3.6 to ρ, it follows that ρ̃
and υ coincide on all intervals in the form ]−∞,−t] or [t,∞[ for t > 0. Since
also ρ̃({0} = 0 = υ({0}) by Corollary 2.3, we conclude that ρ̃ = υ. Combining
this with formula (3.11), it follows finally that ρ is a Lévy measure and that
υ = ρ̃ = Υ0(ρ). ��

Proposition 3.11. Let ρ be a σ-finite measure concentrated on [0,∞[ and let
ρ̃ be the measure given by (3.1). We then have

∫

]1,∞[

1 ρ̃(dt) =
∫

]0,∞[

e−1/t ρ(dt), (3.16)

∫

[0,1]

t ρ̃(dt) =
∫

]0,∞[

t(1− e−1/t)− e−1/t ρ(dt). (3.17)

In particular
∫

[0,∞[

min{1, t} ρ̃(dt) =
∫

]0,∞[

t(1− e−1/t) ρ(dt), (3.18)

and therefore
∫

[0,∞[

min{1, t} ρ̃(dt) <∞ ⇐⇒
∫

[0,∞[

min{1, t} ρ(dt) <∞. (3.19)

Proof. Note first that (3.18) follows immediately from (3.16) and (3.17). To
prove (3.16), note that by definition of ρ̃, we have

∫

]1,∞[

1 ρ̃(dt) =
∫ ∞

0

(∫

[0,∞[

1]1,∞[(t)Dxρ(dt)
)
e−x dx

=
∫ ∞

0

(∫

[0,∞[

1]1,∞[(tx) ρ(dt)
)
e−x dx

=
∫

]0,∞[

(∫ ∞

1/t

e−x dx
)
ρ(dt)

=
∫

]0,∞[

e−1/t ρ(dt).

Regarding (3.17), we find similarly that
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∫

[0,1]

t ρ̃(dt) =
∫ ∞

0

(∫

[0,1]

tDxρ(dt)
)
e−x dx

=
∫ ∞

0

(∫

[0,∞[

tx1[0,1](tx) ρ(dt)
)
e−x dx

=
∫

]0,∞[

t
(∫ 1/t

0

xe−x dx
)
ρ(dt)

=
∫

]0,∞[

t
(
1− e−1/t( 1

t + 1)
)
ρ(dt)

=
∫

]0,∞[

t(1− e−1/t)− e−1/t ρ(dt).

Finally, (3.19) follows from (3.18) by noting that

0 ≤ t(1− e−1/t) = −e−1/t − 1
1/t

≤ 1, whenever t > 0,

and that
lim
t↘0

(1− e−1/t) = 1 = lim
t→∞

t(1− e−1/t).

This concludes the proof. ��

3.2 The Mapping Υ

We now extend the mapping Υ0 to a mapping Υ from ID(∗) into ID(∗).

Definition 3.12. For any µ in ID(∗), with characteristic triplet (a, ρ, η), we
take Υ (µ) to be the element of ID(∗) whose characteristic triplet is (2a, ρ̃, η̃)
where

η̃ = η +
∫ ∞

0

(∫

R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx (3.20)

and
ρ̃ = Υ0(ρ) =

∫ ∞

0

(Dxρ)e−xdx. (3.21)

Note that it is an immediate consequence of Proposition 3.9 that the mea-
sure ρ̃ in Definition 3.12 is indeed a Lévy measure. We verify next that the
integral in (3.20) is well-defined.

Lemma 3.13. Let ρ be a Lévy measure on R. Then for any x in ]0,∞[, we
have that ∫

R

∣∣ux ·
(
1[−1,1](ux)− 1[−x,x](ux)

)∣∣ ρ(du) <∞.
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Furthermore,
∫ ∞

0

(∫

R

∣∣ux ·
(
1[−1,1](ux)− 1[−x,x](ux)

)∣∣ ρ(du)
)
e−x dx <∞.

Proof. Note first that for any x in ]0,∞[ we have that
∫

R

∣∣ux ·
(
1[−1,1](ux)− 1[−x,x](ux)

)∣∣ ρ(du)

=
∫

R

∣∣ux ·
(
1[−x−1,x−1](u)− 1[−1,1](u)

)∣∣ ρ(du)

=





x
∫

R
|u| · 1[−x−1,x−1]\[−1,1](u) ρ(du), if x ≤ 1,

x
∫

R
|u| · 1[−1,1]\[−x−1,x−1](u) ρ(du), if x > 1.

Note then that whenever 0 < ε < K, we have that

|u| · 1[−K,K]\[−ε,ε](u) ≤ min{K, u
2

ε } ≤ max{K, ε−1}min{u2, 1},

for any u in R. Hence, if 0 < x ≤ 1, we find that

x

∫

R

∣∣u ·
(
1[−x−1,x−1](u)− 1[−1,1](u)

)∣∣ ρ(du)

≤ xmax{x−1, 1}
∫

R

min{u2, 1} ρ(du) =
∫

R

min{u2, 1} ρ(du) <∞,

since ρ is a Lévy measure. Similarly, if x ≥ 1,

x

∫

R

∣∣u ·
(
1[−1,1](u)− 1[−x−1,x−1](u)

)∣∣ ρ(du)

≤ xmax{1, x}
∫

R

min{u2, 1} ρ(du) = x2

∫

R

min{u2, 1} ρ(du) <∞.

Altogether, we find that
∫ ∞

0

(∫

R

∣∣ux ·
(
1[−1,1](ux)− 1[−x,x](ux)

)∣∣ ρ(du)
)
e−x dx

≤
∫

R

min{u2, 1} ρ(du) ·
(∫ 1

0

e−x dx+
∫ ∞

1

x2e−x dx
)
<∞,

as asserted. ��

Remark 3.14. In connection with (3.20), note that it follows from Lemma 3.13
above that the integral
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∫ ∞

0

(∫

R

u
(
1[−1,1](u)− 1[−x,x](u)

)
Dxρ(du)

)
e−x dx,

is well-defined. Indeed,
∫ ∞

0

(∫

R

∣∣u
(
1[−1,1](u)− 1[−x,x](u)

)∣∣Dxρ(du)
)
e−x dx

=
∫ ∞

0

(∫

R

∣∣ux
(
1[−1,1](ux)− 1[−x,x](ux)

)∣∣ ρ(du)
)
e−x dx.

Having established that the definition of Υ is meaningful, we prove next a
key formula for the cumulant transform of Υ (µ) (Theorem 3.17 below). From
that formula we derive subsequently a number of important properties of Υ .
We start with the following technical result.

Lemma 3.15. Let ρ be a Lévy measure on R. Then for any number ζ in
]−∞, 0[, we have that

∫ ∞

0

(∫

R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt)

)
e−x dx <∞.

Proof. Let ζ from ]−∞, 0[ and x in [0,∞[ be given. Note first that
∫

R\[−1,1]

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt) =

∫

R\[−1,1]

∣∣eiζtx − 1
∣∣ ρ(dt)

≤ 2
∫

R\[−1,1]

min{1, t2}ρ(dt)

≤ 2
∫

R

min{1, t2}ρ(dt).

To estimate
∫ 1

−1
|eiζtx − 1− iζtx| ρ(dt), we note that for any real number t, it

follows by standard second order Taylor expansion that

∣∣eiζtx − 1− iζtx
∣∣ ≤ 1√

2
(ζtx)2,

and hence
∫ 1

−1

∣∣eiζtx − 1− iζtx
∣∣ ρ(dt) ≤ 1√

2
(ζx)2

∫ 1

−1

t2 ρ(dt)

≤ 1√
2
(ζx)2

∫

R

min{1, t2} ρ(dt).

Altogether, we find that for any number x in [0,∞[,
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∫

R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt) ≤

(
2 +

1√
2
(ζx)2

)∫

R

min{1, t2} ρ(dt),

and therefore
∫ ∞

0

(∫

R

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt)

)
e−x dx

≤
∫

R

min{1, t2} ρ(dt)
∫ ∞

0

(
2 +

1√
2
(ζx)2

)
e−x dx <∞,

as desired. ��

Theorem 3.16. Let µ be a measure in ID(∗) with characteristic triplet
(a, ρ, η). Then the cumulant function of Υ (µ) is representable as

CΥ (µ)(ζ) = iηζ − aζ2 +
∫

R

( 1
1− iζt

− 1− iζt1[−1,1](t)
)
ρ(dt), (3.22)

for any ζ in R.

Proof. Recall first that for any z ∈ C with Rez < 1 we have

1
1− z

=
∫ ∞

0

ezxe−xdx,

implying that for ζ real with ζ ≤ 0

1
1− iζt

− 1− iζt1[−1,1](t) =
∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
e−xdx. (3.23)

Now, let µ from ID(∗) be given and let (a, ρ, η) be the characteristic triplet
for µ. Then by the above calculation

∫

R

( 1
1− iζt

− 1− iζt1[−1,1](t)
)
ρ(dt)

=
∫

R

(∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
e−x dx

)
ρ(dt)

=
∫ ∞

0

(∫

R

(
eiζu − 1− iζu1[−x,x](u)

)
ρ(x−1du)

)
e−x dx

=
∫ ∞

0

(∫

R

(
eiζu − 1− iζu1[−1,1](u)

)
ρ(x−1du)

)
e−x dx

+ iζ
∫ ∞

0

(∫

R

u
(
1[−1,1](u)− 1[−x,x](u)

)
ρ(x−1du)

)
e−x dx

=
∫

R

(
eiζu − 1− iζu1[−1,1](u)

)
ρ̃(du)

+ iζ
∫ ∞

0

(∫

R

u
(
1[−1,1](u)− 1[−x,x](u)

)
ρ(x−1du)

)
e−x dx,
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where we have changed the order of integration in accordance with Lemma 3.15.
Comparing the above calculation with Definition 3.12, the theorem follows
readily. ��

Theorem 3.17. For any µ in ID(∗) we have

CΥ (µ)(z) =
∫ ∞

0

Cµ(zx)e−x dx, (z ∈ R).

Proof. Let (a, ρ, η) be the characteristic triplet for µ. For arbitrary z in R, we
then have
∫ ∞

0

Cµ(zx)e−x dx

=
∫ ∞

0

(
iηzx− 1

2
az2x2 +

∫

R

(
eitzx − 1− itzx1[−1,1](t)

)
ρ(dt)

)
e−x dx

= iηz
∫ ∞

0

xe−x dx− 1
2
az2

∫ ∞

0

x2e−x dx

+
∫

R

(∫ ∞

0

(
eitzx − 1− itzx1[−1,1](t)

)
e−x dx

)
ρ(dt)

= iηz − az2 +
∫

R

( 1
1− izt

− 1− izt1[−1,1](t)
)
ρ(dt),

(3.24)

where the last equality uses (3.23). According to Theorem 3.16, the resulting
expression in (3.24) equals CΥ (µ)(z), and the theorem follows. ��

Based on Theorem 3.17 we establish next a number of interesting proper-
ties for Υ .

Proposition 3.18. The mapping Υ : ID(∗)→ ID(∗) has the following prop-
erties:

(i) Υ is injective.
(ii) For any measures µ, ν in ID(∗), Υ (µ ∗ ν) = Υ (µ) ∗ Υ (ν).
(iii) For any measure µ in ID(∗) and any constant c in R, Υ (Dcµ) = DcΥ (µ).
(iv) For any constant c in R, Υ (δc) = δc.
(v) Υ is continuous w.r.t. weak convergence4.

Proof. (i) This is an immediate consequence of the definition of Υ together
with the injectivity of Υ0 (cf. Corollary 3.7).

(ii) Suppose µ1, µ2 ∈ ID(∗). Then for any z in R we have by Proposi-
tion 3.17

4In fact, it can be proved that Υ is a homeomorphism onto its range with respect
to weak convergence; see [BaTh04c].
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CΥ (µ1∗µ2)(z) =
∫ ∞

0

Cµ1∗µ2(zx)e−x dx =
∫ ∞

0

(
Cµ1(zx) + Cµ2(zx)

)
e−x dx

= CΥ (µ1)(z) + CΥ (µ2)(z) = CΥ (µ1)∗Υ (µ2)(z),

which verifies statement (ii)
(iii) Suppose µ ∈ ID(∗) and c ∈ R. Then for any z in R,

CΥ (Dcµ)(z) =
∫ ∞

0

CDcµ(zx)e−x dx =
∫ ∞

0

Cµ(czx)e−x dx

= CΥ (µ)(cz) = CDcΥ (µ)(z),

which verifies (iii).
(iv) Let c from R be given. For z in R we then have

CΥ (δc)(z) =
∫ ∞

0

Cδc
(zx)e−x dx =

∫ ∞

0

iczxe−x dx = icz = Cδc
(z),

which verifies (iv).
(v) Although we might give a direct proof of (v) at the present stage

(see the proof of Theorem 3.40), we postpone the proof to Section 5.3, where
we can give an easy argument based on the continuity of the Bercovici-Pata
bijection Λ (introduced in Section 5.1) and the connection between Υ and Λ
(see Section 5.2).

Corollary 3.19. The mapping Υ : ID(∗) → ID(∗) preserves stability and
selfdecomposability. More precisely, we have

Υ (S(∗)) = S(∗) and Υ (L(∗)) ⊆ L(∗).

Proof. Suppose µ ∈ S(∗) and that c, c′ > 0 and d, d′ ∈ R. Then

(Dcµ ∗ δd) ∗ (Dc′µ ∗ δd′) = Dc′′µ ∗ δd′′ ,

for suitable c′′ in ]0,∞[ and d′′ in R. Using now (ii)-(iv) of Proposition 3.18,
we find that
(
DcΥ (µ) ∗ δd

)
∗
(
Dc′Υ (µ) ∗ δd′

)
=
(
Υ (Dcµ) ∗ Υ (δd)

)
∗
(
Υ (Dc′µ) ∗ Υ (δd′)

)

= Υ (Dcµ ∗ δd) ∗ Υ (Dc′µ ∗ δd′)

= Υ
(
(Dcµ ∗ δd) ∗ (Dc′µ ∗ δd′)

)

= Υ
(
Dc′′µ ∗ δd′′)

)

= Dc′′Υ (µ) ∗ δd′′ ,

which shows that Υ (µ) ∈ S(∗). This verifies the inclusion Υ (S(∗)) ⊆ S(∗). To
prove the converse inclusion, we use Corollary 3.4 (the following argument, in
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fact, also shows the inclusion just verified above). As described in Section 2.5,
the stable laws are characterized by having Lévy measures in the form r(t) dt,
where

r(t) =

{
c+t

−1−α, for t > 0,
c−|t|−1−α, for t < 0,

with α ∈ ]0, 2[ and c+, c− ≥ 0. Using Corollary 3.4, it follows then that for µ
in S(∗), the Lévy measure for Υ (µ) takes the form r̃(t) dt, with r̃(t) given by

r̃(t) =

{∫∞
0

y−1r(y−1)e−ty dy, if t > 0,∫ 0

−∞−y−1r(y−1)e−ty dy, if t < 0,

=

{
c+Γ (1 + α)t−1−α, if t > 0,
c−Γ (1 + α)|t|−1−α, if t < 0,

(3.25)

where the second equality follows by a standard calculation. Formula (3.25)
shows, in particular, that any measure in S(∗) is the image by Υ of another
measure in S(∗).

Assume next that µ ∈ L(∗). Then for any c in ]0, 1[, there exists a measure
µc in ID(∗), such that µ = Dcµ ∗ µc. Using now (ii)-(iii) of Proposition 3.18,
we find that

Υ (µ) = Υ (Dcµ ∗ µc) = Υ (Dcµ) ∗ Υ (µc) = DcΥ (µ) ∗ Υ (µc),

which shows that Υ (µ) ∈ L(∗). ��

Remark 3.20. By the definition of Υ and Corollary 3.5 it follows that the Lévy
measure for any probability measure in the range Υ (ID(∗)) of Υ has a C∞

density w.r.t. Lebesgue measure. This implies that the mapping Υ : ID(∗)→
ID(∗) is not surjective. In particular it is apparent that the (classical) Poisson
distributions are not in the image of Υ , since the characteristic triplet for the
Poisson distribution with mean c > 0 is (0, cδ1, c). In [BaMaSa04], it was
proved that the full range of Υ is the Goldie-Steutel-Bondesson class B(∗). In
Theorem 3.27 below, we show that Υ (L(∗)) = T (∗).

We end this section with some results on properties of distributions that
are preserved by the mapping Υ . The first of these results is an immediate
consequence of Proposition 3.11.

Corollary 3.21. Let µ be a measure in ID(∗). Then µ ∈ ID+
τ (∗) if and only

if Υ (µ) ∈ ID+
τ (∗).

Proof. For a measure µ in ID(∗) with Lévy measure ρ, Υ (µ) has Lévy measure
Υ0(ρ) = ρ̃. Hence, the corollary follows immediately from formula (3.19) and
the characterization of ID+

τ (∗) given in Remark 2.13. ��

The next result shows that the mapping Υ has the same property as that
of Υ0 exhibited in Proposition 3.8.
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Proposition 3.22. For any measure µ in ID(∗) and any positive number p,
we have

µ has p’th moment ⇐⇒ Υ (µ) has p’th moment.

Proof. Let µ in ID(∗) be given and put ν = Υ (µ). Let (a, ρ, η) be the charac-
teristic triplet for µ and (2a, ρ̃, η̃) the characteristic triplet for ν (in particular
ρ̃ = Υ0(ρ). Now by [Sa99, Corollary 25.8] we have

∫

R

|x|p µ(dx) <∞ ⇐⇒
∫

[−1,1]c
|x|p ρ(dx) <∞, (3.26)

and ∫

R

|x|p ν(dx) <∞ ⇐⇒
∫

[−1,1]c
|x|p ρ̃(dx) <∞. (3.27)

Note next that
∫

[−1,1]c
|x|pρ̃(dx) =

∫ ∞

0

(∫

[−1,1]c
|x|pDyρ(dx)

)
e−y dy

=
∫ ∞

0

(∫

R

|xy|p1[−1,1]c(xy) ρ(dx)
)
e−y dy

=
∫

R

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx),

(3.28)

where we interpret
∫∞
1/|x| y

pe−y dy as 0, when x = 0.
Assume now that µ has p’th moment. Then by (3.26),

∫
[−1,1]c

|x|p ρ(dx) <
∞, and by (3.28)
∫

[−1,1]c
|x|pρ̃(dx)

≤
∫

[−1,1]

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx) + Γ (p+ 1)

∫

[−1,1]c
|x|p ρ(dx).

By (3.27), it remains thus to show that
∫

[−1,1]

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx) <∞. (3.29)

If p ≥ 2, then this is obvious:
∫

[−1,1]

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx) ≤ Γ (p+ 1)

∫

[−1,1]

|x|p ρ(dx) <∞,

since ρ is a Lévy measure. For p in ]0, 2[ we note first that for any numbers
t, q in ]0,∞[ we have
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∫

t

ype−y dy =
∫ ∞

t

yp+q

yq
e−y dy ≤ t−q

∫ ∞

t

yp+qe−y dy ≤ t−qΓ (p+ q + 1).

Using this with t = 1/|x|, we find for any positive q that
∫

[−1,1]

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx) ≤ Γ (p+ q + 1)

∫

[−1,1]

|x|p+q ρ(dx).

Choosing q = 2− p we find as desired that
∫

[−1,1]

|x|p
(∫ ∞

1/|x|
ype−y dy

)
ρ(dx) ≤ Γ (3)

∫

[−1,1]

|x|2 ρ(dx) <∞,

since ρ is a Lévy measure.
Assume conversely that ν = Υ (µ) has p’th moment. Then by (3.27), we

have
∫
[−1,1]c

|x|p ρ̃(dx) <∞, and by (3.26) we have to show that
∫
[−1,1]c

|x|p ρ
(dx) <∞. For this, note that whenever |x| > 1 we have

∫ ∞

1/|x|
ype−y dy ≥

∫ ∞

1

ype−y dy ∈ ]0,∞[.

Setting c(p) =
∫∞
1

ype−y dy and using (3.28) we find thus that
∫

[−1,1]c
|x|p ρ(dx) ≤ 1

c(p)

∫

[−1,1]c
|x|p

(∫ ∞

1/|x|
ype−y dy

)
ρ(dx)

≤ 1
c(p)

∫

[−1,1]c
|x|p ρ̃(dx) <∞,

as desired. ��

3.3 Relations between Υ0, Υ and the Classes L(∗), T (∗)

In this section we establish a close connection between the mapping Υ and
the relationship between the classes T (∗) and L(∗). More precisely, we prove
that Υ (L(∗)) = T (∗) and also that Υ (L+

τ (∗)) = T +
τ (∗). We consider the latter

equality first.

The Positive Thorin Class

We start by establishing the following technical result on the connection be-
tween complete monotonicity and Lévy densities for measures in ID+(∗).

Lemma 3.23. Let ν be a Borel measure on [0,∞[ such that

∀t > 0:
∫

[0,∞[

e−ts ν(ds) <∞,
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and note that ν is necessarily a Radon measure. Let q : ]0,∞[→ [0,∞[ be the
function given by:

q(t) =
1
t

∫

[0,∞[

e−ts ν(ds), (t > 0).

Then q satisfies the condition
∫ ∞

0

min{1, t}q(t) dt <∞, (3.30)

if and only if ν satisfies the following three conditions:

(a) ν({0}) = 0,
(b)

∫
]0,1]
| log(t)| ν(dt) <∞,

(c)
∫
[1,∞[

1
t ν(dt) <∞.

Proof. We note first that
∫ 1

0

tq(t) dt =
∫ 1

0

∫

[0,∞[

e−ts ν(ds) dt =
∫

[0,∞[

(∫ 1

0

e−ts dt
)
ν(ds)

= ν({0}) +
∫

]0,∞[

1
s (1− e−s) ν(ds).

(3.31)

Note next that
∫ ∞

1

q(t) dt =
∫ ∞

1

1
t

∫

[0,∞[

e−ts ν(ds) dt =
∫

[0,∞[

(∫ ∞

1

1
t e

−ts dt
)
ν(ds)

=
∫

[0,∞[

(∫ ∞

s

1
t e

−t dt
)
ν(ds) =

∫ ∞

0

1
t e

−t
(∫

[0,t]

1 ν(ds)
)

dt

=
∫ ∞

0

1
t e

−tν([0, t]) dt.

(3.32)

Assume now that (3.30) is satisfied. It follows then from (3.32) that

∞ >

∫ 1

0

1
t e

−tν([0, t]) dt ≥ e−1

∫ 1

0

1
t ν([0, t]) dt.

Here, by partial (Stieltjes) integration,
∫ 1

0

1
t ν([0, t]) dt =

[
log(t)ν([0, t])

]1

0
−
∫

]0,1]

log(t) ν(dt)

= lim
t↘0
| log(t)|ν([0, t]) +

∫

]0,1]

| log(t)| ν(dt),
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so we may conclude that

lim
t↘0
| log(t)|ν([0, t]) <∞ and

∫

]0,1]

| log(t)| ν(dt) <∞,

and this implies that (a) and (b) are satisfied. Regarding (c), note that it
follows from (3.30) and (3.31) that

∞ >

∫ 1

0

tq(t) dt ≥
∫

[1,∞[

1
s (1− e−s) ν(ds) ≥ (1− e−1)

∫

[1,∞[

1
s ν(ds),

and hence (c) follows.
Assume conversely that ν satisfies conditions (a), (b) and (c). Then by

(3.31) we have

∫ 1

0

tq(t) dt =
∫

]0,∞[

1
s (1− e−s) ν(ds) ≤

∫

]0,1[

1 ν(ds) +
∫

[1,∞[

1
s ν(ds),

where we have used that 1
s (1 − e−s) ≤ 1 for all positive s. Thus, by (b) and

(c),
∫ 1

0
tq(t) dt < ∞. Regarding

∫∞
1

q(t) dt, note that for any s in ]0, 1] we
have (using (a))

0 ≤ | log(s)|ν([0, s]) =
∫

]0,s]

log(s−1) ν(du) ≤
∫

]0,s]

log(u−1) ν(du)

=
∫

]0,s]

| log(u)| ν(du),

and hence it follows from (b) that | log(s)|ν([0, s]) → 0 as s ↘ 0. By partial
integration we obtain thus that

∞ >

∫

]0,1]

| log(s)| ν(ds) =
[
| log(s)|ν([0, s])

]1

0
+
∫ 1

0

1
sν([0, s]) ds

=
∫ 1

0

1
sν([0, s]) ds

≥
∫ 1

0

1
se

−sν([0, s]) ds.

By (3.32) and (b) it remains, thus, to show that
∫∞
1

1
se

−sν([0, s]) ds < ∞.
For that, it obviously suffices to prove that 1

sν([0, s]) → 0 as s → ∞. Note,
towards this end, that whenever s ≥ t ≥ 1, we have

1
sν([0, s]) = 1

sν([0, t]) +
∫

]t,s]

1
s ν(du) ≤ 1

sν([0, t]) +
∫

]t,s]

1
u ν(du),
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and hence, for any t in [1,∞[,

lim sup
s→∞

1
sν([0, s]) ≤

∫

]t,∞[

1
u ν(du).

Letting finally t→∞, it follows from (c) that

lim sup
s→∞

1
sν([0, s]) = 0,

as desired. ��

Theorem 3.24. The mapping Υ maps the class L+
τ (∗) onto the class T +

τ (∗),
i.e.

Υ (L+
τ (∗)) = T +

τ (∗).

Proof. Assume that µ ∈ L+
τ (∗) with generating triplet (a, ρ, η). Then, by

Remark 2.13, a = 0, ρ is concentrated on [0,∞[, and
∫∞
0

min{1, t} ρ(dt) <∞.
Furthermore, since µ is selfdecomposable, ρ(dt) = r(t) dt for some density
function r : [0,∞[→ [0,∞[, satisfying that the function q(t) = tr(t) (t ≥ 0) is
decreasing (cf. the last paragraph in Section 2.5).

Now the measure Υ (µ) has generating triplet (0, ρ̃, η̃), where ρ̃ has density
r̃ given by

r̃(t) =
∫ ∞

0

q(s−1)e−ts ds, (t ≥ 0),

(cf. Corollary 3.4). We already know from Corollary 3.21 that Υ (µ) ∈ ID+
τ (∗),

so it remains to show that the function t �→ tr̃(t) is completely monotone, i.e.
that

tr̃(t) =
∫

[0,∞[

e−ts ν(ds), (t > 0),

for some (Radon) measure ν on [0,∞[. Note for this, that the function s �→
q(s−1) is increasing on ]0,∞[. This implies, in particular, that s �→ q(s−1)
has only countably many points of discontinuity, and hence, by changing r on
a Lebesgue null-set, we may assume that s �→ q(s−1) is increasing and right
continuous. Note finally that q(s−1)→ 0 as s↘ 0. Indeed, since s �→ q(s−1) is
increasing, the limit β = lims↘0 q(s−1) exists and equals infs>0 q(s−1). Since
sr(s) = q(s) → β as s → ∞ and

∫∞
1

r(s) ds < ∞, we must have β = 0.
We may now let ν be the Stieltjes measure corresponding to the function
s �→ q(s−1), i.e.

ν(]−∞, s]) =

{
q(s−1), if s > 0,
0, if s ≤ 0.

Then, whenever t ∈ ]0,∞[ and 0 < a < b <∞, we have by partial integration
∫ b

a

q(s−1)te−ts ds =
[
− q(s−1)e−ts

]b
a

+
∫

]a,b]

e−ts ν(ds). (3.33)
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Here q(a−1)e−ta → 0 as a ↘ 0. Furthermore, since
∫∞
0

q(s−1)te−ts ds =
tr̃(t) <∞, it follows from (3.33) that γ = limb→∞ q(b−1)e−bt exists in [0,∞].
Now sr(s)e−t/s = q(s)e−t/s → γ as s ↘ 0, and since

∫ 1

0
sr(s) ds < ∞, this

implies that γ = 0. Letting, finally, a→ 0 and b→∞ in (3.33), we may now
conclude that

tr̃(t) =
∫ ∞

0

q(s−1)te−ts ds =
∫

]0,∞[

e−tsν(ds), (t > 0),

as desired.
Assume conversely that µ̃ ∈ T +

τ (∗) with generating triplet (a, ρ̃, η̃). Then
a = 0, ρ̃ is concentrated on [0,∞[ and

∫∞
0

min{1, t} ρ̃(dt) <∞. Furthermore,
ρ̃ has a density r̃ in the form

r̃(t) =
1
t

∫

[0,∞[

e−ts ν(ds), (t > 0),

for some (Radon) measure ν on [0,∞[, satisfying conditions (a),(b) and (c) of
Lemma 3.23.

We define next a function r : ]0,∞[→ [0,∞[ by

r(s) = 1
sν([0,

1
s ]), (s > 0). (3.34)

Furthermore, we put

q(s) = sr(s) = ν([0, 1
s ]), (s > 0),

and we note that q is decreasing on ]0,∞[ and that q(s−1) = ν([0, s]). Note
also that, since ν({0}) = 0 (cf. Lemma 3.23),

0 ≤ ν([0, s])e−ts ≤ ν([0, s])→ 0, as s↘ 0,

for any t > 0. Furthermore, since
∫
[1,∞[

1
s ν(ds) < ∞ (cf. Lemma 3.23), it

follows as in the last part of the proof of Lemma 3.23 that 1
sν([0, s]) → 0

as s → ∞. This implies, in particular, that q(s−1)e−ts = ν([0, s])e−ts =
1
sν([0, s])se

−ts → 0 as s → ∞ for any positive t. By partial integration, we
now conclude that

∫ ∞

0

q(s−1)te−ts ds =
[
− q(s−1)e−ts

]∞
0

+
∫

]0,∞[

e−ts ν(ds) = tr̃(t),

for any positive t. Hence,

r̃(t) =
∫ ∞

0

q(s−1)e−ts ds =
∫ ∞

0

s−1r(s−1)e−ts ds, (t > 0),

and by Corollary 3.4, this means that
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ρ̃ =
∫ ∞

0

(Dxρ)e−x dx,

where ρ(dt) = r(t) dt. Note that since ν is a Radon measure, r is bounded
on compact subsets of ]0,∞[, and hence ρ is σ-finite. We may thus apply
Proposition 3.11 to conclude that

∫∞
0

min{1, t} ρ(dt) <∞, so in particular ρ
is a Lévy measure. Now, let µ be the measure in ID(∗) with generating triplet
(0, ρ, η), where

η = η̃ −
∫ ∞

0

(∫

R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx.

Then Υ (µ) = µ̃ and µ ∈ ID+
τ (∗) (cf. Corollary 3.21). Moreover, since tr(t) =

q(t) is a decreasing function of t, it follows that µ is selfdecomposable (cf. the
last paragraph of Section 2.5). This concludes the proof. ��

The General Thorin Class

We start again with some technical results on complete monotonicity.

Lemma 3.25. Let ν be a Borel measure on [0,∞[ satisfying that

∀t > 0:
∫

[0,∞[

e−ts ν(ds) <∞,

and note that ν is a Radon measure on [0,∞[. Let further q : ]0,∞[→ [0,∞[
be the function given by

q(t) =
1
t

∫

[0,∞[

e−ts ν(ds), (t > 0). (3.35)

Then q is a Lévy density (i.e.
∫∞
0

min{1, t2}q(t) dt < ∞) if and only if ν
satisfies the following three conditions:

(a) ν({0}) = 0.
(b)

∫
]0,1[
| log(t)| ν(dt) <∞.

(c)
∫
[1,∞[

1
t2 ν(dt) <∞.

Proof. We note first that
∫ 1

0

t2q(t) dt =
∫ 1

0

t
(∫

[0,∞[

e−ts ν(ds)
)

dt =
∫

[0,∞[

(∫ 1

0

te−ts dt
)
ν(ds)

=
1
2
ν({0}) +

∫

]0,∞[

1
s2

(1− e−s − se−s) ν(ds).

(3.36)

Exactly as in the proof of Lemma 3.23 we have also that
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∫ ∞

1

q(t) dt =
∫ ∞

0

1
t
e−tν([0, t]) dt. (3.37)

Assume now that q is a Lévy density. Exactly as in the proof of Lemma 3.23,
formula (3.37) then implies that ν satisfies conditions (a) and (b). Regarding
(c), note that by (3.36),

∞ >

∫ 1

0

t2q(t) dt ≥
∫

[1,∞[

1
s2

(1−e−s−se−s) ν(ds) ≥ (1−2e−1)
∫

[1,∞[

1
s2

ν(ds),

where we used that s �→ 1− e−s − se−s is an increasing function on [0,∞[. It
follows thus that (c) is satisfied too.

Assume conversely that ν satisfies (a),(b) and (c). Then by (3.36) we have

∫ 1

0

t2q(t) dt =
∫

]0,∞[

1
s2

(1−e−s−se−s) ν(ds) ≤
∫

]0,1[

1 ν(ds)+
∫

[1,∞[

1
s2

ν(ds),

where we used that s−2(1 − e−s − se−s) =
∫ 1

0
te−ts dt ≤ 1 for all positive s.

Hence, using (c) (and the fact that ν is a Radon measure on [0,∞[), we see
that

∫ 1

0
t2q(t) dt <∞.

Regarding
∫∞
1

q(t) dt, we find by application of (a) and (b), exactly as in
the proof of Lemma 3.23, that

∞ >

∫

]0,1]

| log(s)| ν(ds) ≥
∫ 1

0

1
s
e−sν([0, s]) ds.

By (3.37), it remains thus to show that
∫∞
1

1
se

−sν([0, s]) ds < ∞, and this
clearly follows, if we prove that s−2ν([0, s])→ 0 as s→∞ (since ν is a Radon
measure). The latter assertion is established similarly to the last part of the
proof of Lemma 3.23: Whenever s ≥ t ≥ 1, we have

1
s2
ν([0, s]) ≤ 1

s2
ν([0, t]) +

∫

]t,s]

1
u2

ν(du),

and hence for any t in [1,∞[,

lim sup
s→∞

1
s2
ν([0, s]) ≤

∫

]t,∞[

1
u2
ν(du). (3.38)

Letting finally t→∞ in (3.38), it follows from (c) that

lim sup
s→∞

s−2ν([0, s]) = 0.

This completes the proof. ��
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Corollary 3.26. Let ν be a Borel measure on R satisfying that

∀t ∈ R \ {0} :
∫

R

e−|ts| ν(ds) <∞,

and note that ν is necessarily a Radon measure on R. Let q : R \ {0} → [0,∞[
be the function defined by:

q(t) =

{
1
t

∫
[0,∞[

e−ts ν(ds), if t > 0,
1
|t|
∫
]−∞,0]

e−ts ν(ds), if t < 0.

Then q is a Lévy density (i.e.
∫

R
min{1, t2}q(t) dt < ∞), if and only if ν

satisfies the following three conditions:

(d) ν({0}) = 0.
(e)

∫
[−1,1]\{0}

∣∣ log |t|
∣∣ ν(dt) <∞.

(f)
∫

R\]−1,1[
1
t2 ν(dt) <∞.

Proof. Let ν+ and ν− be the restrictions of ν to [0,∞[ and ]−∞, 0], respec-
tively. Let, further, ν̌− be the transformation of ν− by the mapping s �→ −s,
and put q̌(t) = q(−t). Note then that

q̌(t) =
1
t

∫

[0,∞[

e−ts ν̌−(ds), (t > 0).

By application of Lemma 3.25, we now have

q is a Lévy density on R ⇐⇒ q and q̌ are Lévy densities on [0,∞[

⇐⇒ ν+ and ν̌− satisfy (a),(b) and (c) of Lemma 3.25

⇐⇒ ν satisfies (d),(e) and (f).

This proves the corollary. ��

Theorem 3.27. The mapping Υ maps the class of selfdecomposable distribu-
tions on R onto the generalized Thorin class, i.e.

Υ (L(∗)) = T (∗).

Proof. We prove first that Υ (L(∗)) ⊆ T (∗). So let µ be a measure in L(∗) and
consider its generating triplet (a, ρ, η). Then a ≥ 0, η ∈ R and ρ(dt) = r(t) dt
for some density function, r(t), satisfying that the function

q(t) := |t|r(t), (t ∈ R),
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is increasing on ]−∞, 0[ and decreasing on ]0,∞[. Next, let (2a, ρ̃, η̃) be the
generating triplet for Υ (µ). From Lemma 3.4 we know that ρ̃ has the following
density w.r.t. Lebesgue measure:

r̃(t) =

{∫∞
0

q(y−1)e−ty dy, if t > 0,
∫ 0

−∞ q(y−1)e−ty dy, if t < 0.

Note that the function y �→ q(y−1) is increasing on ]0,∞[. Thus, as in the
proof of Theorem 3.24, we may, by changing r(t) on a null-set, assume that
y �→ q(y−1) is increasing and right-continuous on ]0,∞[. Furthermore, since∫∞
1

1
sq(s) ds =

∫∞
1

r(s) ds < ∞, it follows as in the proof of Theorem 3.24
that q(y−1) → 0 as y ↘ 0. Thus, we may let ν+ be the Stieltjes measure
corresponding to the function y �→ q(y−1) on ]0,∞[, i.e.

ν+(]−∞, y]) =

{
0, if y ≤ 0,
q(y−1), if y > 0.

Now, whenever t > 0 and 0 < b < c < ∞, we have by partial Stieltjes
integration that

t

∫ c

b

q(s−1)e−ts ds =
[
− e−tsq(s−1)

]c
b
+
∫ c

b

e−ts ν+(ds). (3.39)

Here, e−tbq(b−1) ≤ q(b−1)→ 0 as b↘ 0. Since
∫∞
0

q(s−1)e−ts ds = r̃(t) <∞,
(3.39) shows, furthermore, that the limit

γ := lim
c→∞

e−tcq(c−1) = lim
s↘0

e−t/ssr(s)

exists in [0,∞]. Since
∫∞
0

s2r(s) ds <∞, it follows that we must have γ = 0.
From (3.39), it follows thus that

tr̃(t) = t

∫ ∞

0

q(s−1)e−ts ds =
∫ ∞

0

e−ts ν+(ds). (3.40)

Replacing now r(s) by r(−s) for s in ]0,∞[, the argument just given yields the
existence of a measure ν̌− on [0,∞[, such that (after changing r on a null-set)

ν̌−(]−∞, y]) =

{
0, if y ≤ 0,
q(−y−1), if y > 0.

Furthermore, the measure ν̌− satisfies the identity

t

∫ ∞

0

q(−s−1)e−ts ds =
∫ ∞

0

e−ts ν̌−(ds), (t > 0).

Next, let ν− be the transformation of ν̌− by the mapping s �→ −s. For t in
]−∞, 0[ we then have
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|t|r̃(t) = |t|
∫ 0

−∞
q(s−1)e−ts ds = |t|

∫ ∞

0

q(−s−1)e−|t|s ds

=
∫ ∞

0

e−|t|s ν̌−(ds) =
∫ 0

−∞
e−ts ν−(ds).

(3.41)

Putting finally ν = ν+ + ν−, it follows from (3.40) and (3.41) that

|t|r̃(t) =

{∫∞
0

e−ts ν(ds), if t > 0,∫ 0

−∞ e−ts ν(ds), if t < 0,

and this shows that Υ (µ) ∈ T (∗), as desired (cf. the last paragraph in Sec-
tion 2.5).

Consider, conversely, a measure µ̃ in T (∗) with generating triplet (a, ρ̃, η̃).
Then a ≥ 0, η̃ ∈ R and ρ̃ has a density, r̃, w.r.t. Lebesgue measure such that

|t|r̃(t) =

{∫∞
0

e−ts ν(ds), if t > 0,∫ 0

−∞ e−ts ν(ds), if t < 0,

for some (Radon) measure ν on R satisfying conditions (d),(e) and (f) of
Corollary 3.26. Define then the function r : R \ {0} → [0,∞[ by

r(s) =

{
1
sν([0,

1
s ]), if s > 0,

1
|s|ν([

1
s , 0]), if s < 0,

and put furthermore

q(t) = |s|r(s) =

{
ν([0, 1

s ]), if s > 0,
ν([1s , 0]), if s < 0.

(3.42)

Note that since ν({0}) = 0 (cf. Corollary 3.26), we have

∀t > 0: ν([0, s])e−ts ≤ ν([0, s])→ 0, as s↘ 0,

and
∀t < 0: ν([s, 0])e−ts ≤ ν([s, 0])→ 0, as s↗ 0.

Furthermore, since
∫

R\[−1,1]
1
s2 ν(ds) <∞, it follows as in the last part of the

proof of Lemma 3.25 that

lim
s→∞

s−2ν([0, s]) = 0 = lim
s→−∞

s−2ν([s, 0]).

In particular it follows that

∀t > 0: lim
s→∞

ν([0, s])e−ts = 0, and that ∀t < 0: lim
s→−∞

ν([s, 0])e−ts = 0.

By partial Stieltjes integration, we find now for t > 0 that
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t

∫ ∞

0

q(s−1)e−ts ds =
[
− q(s−1)e−ts

]∞
0

+
∫ ∞

0

e−ts ν(ds)

=
∫ ∞

0

e−ts ν(ds) = tr̃(t).

(3.43)

Denoting by ν̌ the transformation of ν by the mapping s �→ −s, we find
similarly for t < 0 that

|t|r̃(t) =
∫ 0

−∞
e−ts ν(ds) =

∫ ∞

0

e−|t|s ν̌(ds)

=
[
e−|t|sq(−s−1)

]∞
0

+ |t|
∫ ∞

0

e−|t|sq(−s−1) ds = |t|
∫ 0

−∞
e−tsq(s−1) ds.

(3.44)

Combining now (3.43) and (3.44) it follows that

r̃(t) =

{∫∞
0

q(s−1)e−ts ds, if t > 0,
∫ 0

−∞ q(s−1)e−sy ds, if t < 0.

By Corollary 3.4 we may thus conclude that ρ̃(dt) =
∫∞
0

(Dxρ)e−x dx, where
ρ(dt) = r(t) dt. Since ν is a Radon measure, r is bounded on compact subsets
of R \ {0}, so that ρ is, in particular, σ-finite. By Proposition 3.9, it follows
then that

∫
R

min{1, t2} ρ(dt) < ∞, so that ρ is actually a Lévy measure and
Υ0(ρ) = ρ̃.

Let, finally, µ be the measure in ID(∗) with generating triplet (1
2a, ρ, η),

where

η = η̃ −
∫ ∞

0

(∫

R

t
(
1[−1,1](t)− 1[−x,x](t)

)
Dxρ(dt)

)
e−x dx.

Then Υ (µ) = µ̃, and since q is increasing on ]−∞, 0[ and decreasing on ]0,∞[
(cf. (3.42)), we have that µ ∈ L(∗). This concludes the proof. ��

3.4 The Mappings Υ α
0 and Υ α, α ∈ [0, 1]

As announced in Section 1, we now introduce two families of mappings
{Υα0 }0≤α≤1 and {Υα}0≤α≤1 that, respectively, generalize Υ0 and Υ , with
Υ 0

0 = Υ0, Υ 0 = Υ and with Υ 1
0 and Υ 1 the identity mappings on ML and

ID(∗), respectively. The Mittag-Leffler function takes a natural role in this.
A review of relevant properties of the Mittag-Leffler function is given. The

transformation Υα0 is defined in terms of the associated stable law and is shown
to be injective, with absolutely continuous images. Then Υα0 is extended to a
mapping Υα : ID(∗)→ ID(∗), in analogy with the extension of Υ0 to Υ , and
properties of Υα are discussed. Finally, stochastic representations of Υ and
Υα are given.
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The Mittag-Leffler Function

The Mittag-Leffler function of negative real argument and index α > 0 is
given by

Eα(−t) =
∞∑

k=0

(−t)k
Γ (αk + 1)

, (t > 0). (3.45)

In particular we have E1(−t) = e−t, and if we define E0 by setting α = 0 on
the right hand side of (3.45) then E0(−t) = (1 + t)−1 (whenever |t| < 1).

The Mittag-Leffler function is infinitely differentiable and completely
monotone if and only if 0 < α ≤ 1. Hence for 0 < α ≤ 1 it is representable as
a Laplace transform and, in fact, for α in ]0, 1[ we have (see [Fe71, p. 453])

Eα(−t) =
∫ ∞

0

e−txζα(x) dx, (3.46)

where
ζα(x) = α−1x−1−1/ασα(x−1/α), (x > 0), (3.47)

and σα denotes the density function of the positive stable law with index α
and Laplace transform exp(−θα). Note that, for 0 < α < 1, the function ζα(x)
is simply the probability density obtained from σα(y) by the transformation
x = y−α. In other words, if we denote the distribution functions determined
by ζα and σα by Zα and Sα, respectively, then

Zα(x) = 1− Sα(x−1/α). (3.48)

As kindly pointed out to us by Marc Yor, ζα has a direct interpretation as the
probability density of l(α)

1 where l(α)
t denotes the local time of a Bessel process

with dimension 2(1 − α). The law of l(α)
1 is called the Mittag-Leffler distrib-

ution. See [MoOs69] and [ChYo03, p. 114]; cf. also [GrRoVaYo99]. Defining
ζα(x) as e−x for α = 0 and as the Dirac density at 1 when α = 1, formula
(3.46) remains valid for all α in [0, 1].

For later use, we note that the probability measure ζα(x) dx has moments
of all orders. Indeed, for α in ]0, 1[ and any p in N we have

∫ ∞

0

xpζα(x) dx =
∫ ∞

0

x−pασα(x) dx,

where clearly
∫∞
1

x−pασα(x) dx <∞. Furthermore, by partial integration,

∫ 1

0

x−pασα(x) dx =
[
x−pαSα(x)

]1
0

+ pα

∫ 1

0

x−pα−1Sα(x) dx

= Sα(1) + pα

∫ 1

0

x−pα−1Sα(x) dx <∞,
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where we make use (twice) of the relation

ex
−α

Sα(x)→ 0, as x↘ 0,

(cf. [Fe71, Theorem 1, p.448]). Combining the observation just made with
(3.45) and (3.46), we obtain the formula

∫ ∞

0

xkζα(x) dx =
k!

Γ (αk + 1)
, (k ∈ N0), (3.49)

which holds for all α in [0, 1].

The Mapping Υ α
0

As before, we denote by M the class of all Borel measures on R, and ML is
the subclass of all Lévy measures on R.

Definition 3.28. For any α in ]0, 1[, we define the mapping Υα0 : ML → M

by the expression:

Υα0 (ρ) =
∫ ∞

0

(Dxρ)ζα(x) dx, (ρ ∈ML). (3.50)

We shall see, shortly, that Υα0 actually maps ML into itself. In the sequel,
we shall often use ρ̃α as shorthand notation for Υα0 (ρ). Note that with the
interpretation of ζα(x)dx for α = 0 and 1, given above, the formula (3.50)
specializes to Υ 1

0 (ρ) = ρ and Υ 0
0 (ρ) = Υ0(ρ).

Using (3.47), the formula (3.50) may be reexpressed as

ρ̃α(dt) =
∫ ∞

0

ρ(xαdt)σα(x) dx. (3.51)

Note also that ρ̃α(dt) can be written as

ρ̃α(dt) =
∫ ∞

0

ρ
(

1
Rα(y)dt

)
dy,

where Rα denotes the inverse function of the distribution function Zα of
ζα(x) dx.

Theorem 3.29. The mapping Υα0 sends Lévy measures to Lévy measures.

For the proof of this theorem we use the following technical result:

Lemma 3.30. For any Lévy measure ρ on R and any positive x, we have
∫

R\[−1,1]

1Dxρ(dt) ≤ max{1, x2}
∫

R

min{1, t2} ρ(dt), (3.52)

and also ∫

[−1,1]

t2 Dxρ(dt) ≤ max{1, x2}
∫

R

min{1, t2} ρ(dt). (3.53)
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Proof. Note first that
∫

R\[−1,1]

1Dxρ(dt) = Dxρ(R \ [−1, 1]) = ρ(R \ [−x−1, x−1]).

If 0 < x ≤ 1, then

ρ(R \ [−x−1, x−1]) ≤ ρ(R \ [−1, 1]) ≤
∫

R

min{1, t2} ρ(dt),

and if x > 1,

ρ(R \ [−x−1, x−1]) ≤
∫

[−1,1]\[−x−1,x−1]

x2t2 ρ(dt) +
∫

R\[−1,1]

1 ρ(dt)

≤ x2

∫

R

min{1, t2} ρ(dt).

This verifies (3.52). Note next that
∫

[−1,1]

t2 Dxρ(dt) =
∫

R

x2t21[−x−1,x−1](t)ρ(dt).

If x ≥ 1, we find that
∫

R

x2t21[−x−1,x−1](t) ρ(dt) ≤ x2

∫

R

t21[−1,1](t) ρ(dt) ≤ x2

∫

R

min{1, t2} ρ(dt),

and, if 0 < x < 1,
∫

R

x2t21[−x−1,x−1](t) ρ(dt)

= x2

∫ 1

−1

t2 ρ(dt) + x2

∫

R

t21[−x−1,x−1]\[−1,1](t) ρ(dt)

≤ x2

∫ 1

−1

t2 ρ(dt) + x2

∫

R

x−21[−x−1,x−1]\[−1,1](t) ρ(dt)

≤
∫ 1

−1

t2 ρ(dt) +
∫

R

1R\[−1,1](t) ρ(dt)

=
∫

R

min{1, t2} ρ(dt).

This verifies (3.53). ��

Proof of Theorem 3.29. Let ρ be a Lévy measure on R and consider the
measure ρ̃α = Υα(ρ). Using Lemma 3.30 and (3.49) we then have
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∫

R

min{1, t2} ρ̃α(dt) =
∫ ∞

0

(∫

R

min{1, t2}Dxρ(dt)
)
ζα(x) dx

=
∫ ∞

0

2max{1, x2}
(∫

R

min{1, t2}ρ(dt)
)
ζα(x) dx

= 2
∫

R

min{1, t2}ρ(dt)
∫ ∞

0

2max{1, x2}ζα(x) dx <∞,

as desired. ��

Absolute Continuity

As in Section 3.1, we let ω denote the transformation of the Lévy measure ρ
by the mapping x �→ x−1.

Theorem 3.31. For any Lévy measure ρ the Lévy measure ρ̃α given by (3.50)
is absolutely continuous with respect to Lebesgue measure. The density r̃α is
the function on R\{0} given by

r̃α(t) =

{∫∞
0

sζα(st)ω(ds), if t > 0,∫ 0

−∞ |s|ζα(st)ω(ds), if t < 0.

Proof. It suffices to prove that the restrictions of ρ̃α to ] −∞, 0[ and ]0,∞[
equal those of r̃α(t) dt. For a Borel subset B of ]0,∞[, we find that
∫

B

r̃α(t) dt =
∫

B

(∫ ∞

0

sζα(st)ω(ds)
)

dt =
∫ ∞

0

(∫ ∞

0

s1B(t)ζα(st) dt
)
ω(ds)

=
∫ ∞

0

(∫ ∞

0

1B(s−1u)ζα(u) du
)
ω(ds),

where we have used the change of variable u = st. Changing again the order
of integration, we have

∫

B

r̃α(t) dt =
∫ ∞

0

(∫ ∞

0

1B(s−1u)ω(ds)
)
ζα(u) du

=
∫ ∞

0

(∫ ∞

0

1B(su) ρ(ds)
)
ζα(u) du

=
∫ ∞

0

ρ(u−1B)ζα(u) du = ρ̃α(B).

One proves similarly that the restriction to ] − ∞, 0[ of ρ̃α equals that of
r̃α(t) dt. ��
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Corollary 3.32. Letting, as above, Zα denote the distribution function for
the probability measure ζα(t) dt, we have

ρ̃α([t,∞[) =
∫ ∞

0

(1− Zα(st))ω(ds) =
∫ ∞

0

Sα((ts)−1/α)ω(ds) (3.54)

for t in ]0,∞[, and

ρ̃α(]−∞, t]) =
∫ 0

−∞
(1− Zα(st))ω(ds) =

∫ 0

−∞
Sα((ts)−1/α)ω(ds) (3.55)

for t in ]−∞, 0[.

Proof. For t in [0,∞[ we find that

ρ̃α([t,∞[) =
∫ ∞

t

(∫ ∞

0

sζα(su)ω(ds)
)

du

=
∫ ∞

0

(∫ ∞

0

sζα(su)1[t,∞[(u) du
)
ω(ds)

=
∫ ∞

0

(∫ ∞

0

ζα(w)1[t,∞[(s−1w) dw
)
ω(ds)

=
∫ ∞

0

(∫ ∞

0

ζα(w)1[st,∞[(w) dw
)
ω(ds)

=
∫ ∞

0

(1− Zα(st))ω(ds)

=
∫ ∞

0

Sα((st)−1/α)ω(ds),

where the last equality follows from (3.48). Formula (3.55) is proved similarly.
��

Injectivity of Υ α
0

In order to show that the mappings Υα : ID(∗)→ ID(∗) are injective, we first
introduce a Laplace like transform: Let ρ be a Lévy measure on R, and as above
let ω be the transformation of ρ by the mapping t �→ t−1 : R \ {0} → R \ {0}.
Then ω satisfies

ω({0}) = 0 and
∫

R

min{1, t−2}ω(dt) <∞. (3.56)

For any θ, β > 0 we then define

Lβ(θ ‡ ω) =
∫

R

e−θ|t|
β

ω(dt).
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It follows immediately from (3.56) that Lβ(θ ‡ ω) is a finite, positive number
for all θ, β > 0. For β = 1, we recover the usual Laplace transform.

Proposition 3.33. Let α be a fixed number in ]0, 1[, let ρ be a Lévy measure
on R, and put ρ̃α = Υα0 (ρ). Let further ω and ω̃α denote, respectively, the
transformations of ρ and ρ̃α by the mapping t �→ t−1 : R \ {0} → R \ {0}. We
then have

L1/α(θ1/α ‡ ω̃α) = L1(θ ‡ ω), (θ ∈ ]0,∞[).

Proof. Recall first from Theorem 3.31 that ρ̃α(dt) = r̃α(t) dt, where

r̃α(t) =

{∫∞
0

sζα(st)ω(ds), if t > 0,∫ 0

−∞ |s|ζα(st)ω(ds), if t < 0.

Consequently, ω̃α has the following density w.r.t. Lebesgue measure:

r̃α(t−1)t−2 =

{∫∞
0

st−2ζα(st−1)ω(ds), if t > 0,∫ 0

−∞ |s|t−2ζα(st−1)ω(ds), if t < 0.

For any positive θ, we then find
∫ ∞

0

e−θt
1/α

ω̃α(dt)

=
∫ ∞

0

e−θt
1/α

(∫ ∞

0

st−2ζα(st−1)ω(ds)
)

dt

=
∫ ∞

0

(∫ ∞

0

e−θt
1/α

t−2ζα(st−1) dt
)
sω(ds)

=
∫ ∞

0

(∫ ∞

0

e−θt
1/α

t−2
[
α−1(st−1)−1−1/ασα((st−1)−1/α)

]
dt
)
sω(ds)

=
1
α

∫ ∞

0

(∫ ∞

0

e−θt
1/α

t−1+1/ασα(s−1/αt1/α) dt
)
s−1/αω(ds),

where we have used (3.47). Applying now the change of variable: u =
s−1/αt1/α, we find that

∫ ∞

0

e−θt
1/α

ω̃α(dt) =
∫ ∞

0

(∫ ∞

0

e−θs
1/αuσα(u) du

)
ω(ds)

=
∫ ∞

0

e−(θs1/α)α

ω(ds)

=
∫ ∞

0

e−θ
αs ω(ds),

(3.57)
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where we used that the Laplace transform of σα(t) dt is given by
∫ ∞

0

e−ηtσα(t) dt = e−η
α

, (η > 0),

(cf. [Fe71, Theorem 1, p. 448]). Applying next the above calculation to the
measure ω̌ := D−1ω, we find for any positive θ that

∫ 0

−∞
e−θ|t|

1/α

ω̃α(dt) =
∫ 0

−∞
e−θ|t|

1/α
(∫ 0

−∞
|s|t−2ζα(st−1)ω(ds)

)
dt

=
∫ ∞

0

e−θt
1/α

(∫ ∞

0

st−2ζα(st−1) ω̌(ds)
)

dt

=
∫ ∞

0

e−θ
αs ω̌(ds)

=
∫ 0

−∞
e−θ

α|s| ω(ds).

(3.58)

Combining formulae (3.57) and (3.58), it follows immediately that L1/α

(θ ‡ ω̃α) = L1(θα ‡ ω), for any positive θ. ��

Corollary 3.34. For each α in ]0, 1[, the mapping Υα0 : ML → ML is injec-
tive.

Proof. With notation as in Proposition 3.33, it follows immediately from that
same proposition that the (usual) Laplace transform of ω is uniquely deter-
mined by ρ̃α = Υα0 (ρ). As in the proof of Corollary 3.7, this implies that ω,
and hence ρ, is uniquely determined by Υα0 (ρ). ��

The Mapping Υ α

Our next objective is to “extend” Υα0 to a mapping Υα : ID(∗)→ ID(∗).

Definition 3.35. For a probability measure µ in ID(∗) with generating triplet
(a, ρ, η), we let Υα(µ) denote the measure in ID(∗) with generating triplet
(cαa, ρ̃α, ηα), where ρ̃α = Υα0 (ρ) is defined by (3.50) while

cα =
2

Γ (2α+ 1)
for 0 ≤ α ≤ 1

and

ηα =
η

Γ (α+ 1)
+
∫ ∞

0

(∫

R

t
(
1[−1,1](t)− 1[−x−1,x−1](t)

)
ρ(x−1dt)

)
ζα(x) dx.

(3.59)
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To see that the integral in (3.59) is well-defined, we note that it was shown,
although not explicitly stated, in the proof of Lemma 3.13 that
∫

R

|ux|
∣∣1[−1,1](ux)− 1[−x,x](ux)

∣∣ ρ(dx) ≤ max{1, x2}
∫ ∞

0

min{1, u2} ρ(du).

Together with (3.49), this verifies that ηα is well-defined. Note also that since
Υα0 is injective (cf. Corollary 3.34), it follows immediately from the definition
above that so is Υα. The choice of the constants cα and ηα is motivated by
the following two results, which should be seen as analogues of Theorems 3.16
and 3.17. In addition, the choice of cα and ηα is essential to the stochastic
interpretation of Υα given in Theorem 3.44 below. Note that for α = 0, we
recover the mapping Υ , whereas putting α = 1 produces the identity mapping
on ID(∗).

Theorem 3.36. Let µ be a measure in ID(∗) with characteristic triplet
(a, ρ, η). Then the cumulant function of Υα(µ) is representable as

CΥα(µ)(ζ) =
iηζ

Γ (α+ 1)
− 1

2cαaζ
2 +

∫

R

(
Eα(iζt)− 1− iζ t

Γ (α+1)1[−1,1](t)
)
ρ(dt),

(3.60)
for any ζ in R, and where Eα is the Mittag-Leffler function.

Proof. For every 0 ≤ α ≤ 1 we note first that for any ζ in R,

Eα(iζt)− 1− iζ
t

Γ (α+ 1)
1[−1,1](t) =

∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
ζα(x) dx,

(3.61)
which follows immediately from the above-mentioned properties of Eα and
the probability density ζα (including the interpretation of ζα(x)dx for α = 0
or 1). Note in particular that

∫∞
0

xζα(x)dx = 1
Γ (α+1) (cf. (3.49)).

We note next that it was established in the proof of Lemma 3.15 that
∫ ∞

0

∣∣eiζtx − 1− iζtx1[−1,1](t)
∣∣ ρ(dt) ≤

(
2 +

1√
2
(ζx)2

)∫

R

min{1, t2} ρ(dt).

Together with Tonelli’s theorem, (3.61) and (3.49), this verifies that the inte-
gral in (3.60) is well-defined, and that it is permissible to change the order of
integration in the following calculation:
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∫

R

(
Eα(iζt)− 1− iζ t

Γ (α+1)1[−1,1](t)
)
ρ(dt)

=
∫

R

(∫ ∞

0

(
eiζtx − 1− iζtx1[−1,1](t)

)
ζα(x) dx

)
ρ(dt)

=
∫ ∞

0

(∫

R

(
eiζu − 1− iζu1[−x−1,x−1](u)

)
ρ(x−1du)

)
ζα(x) dx

=
∫ ∞

0

(∫

R

(
eiζu − 1− iζu1[−1,1](u)

)
ρ(x−1du)

)
ζα(x) dx

+ iζ
∫ ∞

0

(∫

R

u
(
1[−1,1](u)− 1[−x−1,x−1](u)

)
ρ(x−1du)

)
ζα(x) dx

=
∫

R

(
eiζu − 1− iζu1[−1,1](u)

)
ρ̃α(du)

+ iζ
∫ ∞

0

(∫

R

u
(
1[−1,1](u)− 1[−x−1,x−1](u)

)
ρ(x−1du)

)
ζα(x) dx.

Comparing the above calculation with Definition 3.35, the theorem follows
readily. ��

Proposition 3.37. For any α in ]0, 1[ and any measure µ in ID(∗) we have

CΥα(µ)(z) =
∫ ∞

0

Cµ(zx)ζα(x) dx, (z ∈ R).

Proof. Let (a, ρ, η) be the characteristic triplet for µ. For arbitrary z in R, we
then have
∫ ∞

0

Cµ(zx)ζα(x) dx

=
∫ ∞

0

(
iηzx− 1

2
az2x2 +

∫

R

(
eitzx − 1− itzx1[−1,1](t)

)
ρ(dt)

)
ζα(x) dx

= iηz
∫ ∞

0

xζα(x) dx− 1
2
az2

∫ ∞

0

x2ζα(x) dx

+
∫

R

(∫ ∞

0

(
eitzx − 1− itzx1[−1,1](t)

)
ζα(x) dx

)
ρ(dt)

=
iηz

Γ (α+ 1)
− az2

Γ (2α+ 1)
+
∫

R

(
Eα(izt)− 1− iz t

Γ (α+1)1[−1,1](t)
)
ρ(dt),

(3.62)

where the last equality uses (3.49) as well as (3.61). According to Theo-
rem 3.36, the resulting expression in (3.62) equals CΥα(µ)(z), and the propo-
sition follows. ��
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Properties of Υ α

We prove next that the mappings Υα posses properties similar to those of Υ
established in Proposition 3.18.

Proposition 3.38. For each α in ]0, 1[, the mapping Υα : ID(∗) → ID(∗)
has the following algebraic properties:

(i) For any µ1, µ2 in ID(∗), Υα(µ1 ∗ µ2) = Υα(µ1) ∗ Υα(µ2).
(ii) For any µ in ID(∗) and any c in R, Υα(Dcµ) = DcΥ

α(µ).
(iii) For any c in R, Υα(δc) = δc.

Proof. Suppose µ1, µ2 ∈ ID(∗). Then for any z in R we have by Proposi-
tion 3.37

CΥα(µ1∗µ2)(z) =
∫ ∞

0

Cµ1∗µ2(zx)ζα(x) dx

=
∫ ∞

0

(
Cµ1(zx) + Cµ2(zx)

)
ζα(x) dx

= CΥα(µ1)(z) + CΥα(µ2)(z) = CΥα(µ1)∗Υα(µ2)(z),

which verifies statement (i). Statements (ii) and (iii) follow similarly by ap-
plications of Proposition 3.37. ��

Corollary 3.39. For each α in [0, 1], the mapping Υα : ID(∗)→ ID(∗) pre-
serves the notions of stability and selfdecomposability, i.e.

Υα(S(∗)) ⊆ S(∗) and Υα(L(∗)) ⊆ L(∗).

Proof. This follows as in the proof of Corollary 3.19. ��

Theorem 3.40. For each α in ]0, 1[, the mapping Υα : ID(∗) → ID(∗) is
continuous with respect to weak convergence5.

For the proof of this theorem we use the following

Lemma 3.41. For any real numbers ζ and t we have

∣∣∣eiζt − 1− iζt
1 + t2

∣∣∣
1 + t2

t2
≤ 5max{1, |ζ|2}. (3.63)

Proof. For t = 0 the left hand side of (3.63) is interpreted as 1
2ζ

2, and the
inequality holds trivially. Thus, we assume that t �= 0, and clearly we may
assume that ζ �= 0 too.

For t in R \ [−1, 1], note that 1+t2

t2 ≤ 2, and hence

5In fact, it can be proved that Υ α is a homeomorphism onto its range with
respect to weak convergence; see [BaTh04c].
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∣∣∣eiζt − 1− iζt
1 + t2

∣∣∣
1 + t2

t2
≤ (1 + 1)

1 + t2

t2
+
∣∣∣
iζ
t

∣∣∣ ≤ 4 + |ζ| ≤ 5max{1, |ζ|2}.

For t in [−1, 1] \ {0}, note first that

(
eiζt − 1− iζt

1 + t2

)1 + t2

t2
=
(
eiζt − 1− iζt+ iζt

t2

1 + t2

)1 + t2

t2

=
((

cos(ζt)− 1
)

+ i
(
sin(ζt)− ζt

))1 + t2

t2
+ iζt.

(3.64)

Using the mean value theorem, there is a real number ξ1 strictly between 0
and t, such that

cos(ζt)− 1
t2

=
1
t

(cos(ζt)− 1
t

)
= −1

t
sin(ζξ1)ζ,

and hence ∣∣∣
cos(ζt)− 1

t2

∣∣∣ =
∣∣∣ζ2 · ξ1

t
· sin(ζξ1)

ζξ1

∣∣∣ ≤ |ζ|2. (3.65)

Appealing once more to the mean value theorem, there are, for any non-zero
real number x, real numbers ξ2 between 0 and x and ξ3 between 0 and ξ2,
such that

sin(x)
x
− 1 = cos(ξ2)− 1 = −ξ2 sin(ξ3), and hence

∣∣∣
sin(x)
x
− 1

∣∣∣ ≤ |x|.

As a consequence

1
t2
·
∣∣ sin(ζt)− ζt

∣∣ =
1
t2
· |ζt| ·

∣∣∣
sin(ζt)
ζt

− 1
∣∣∣ ≤ 1

t2
· |ζt|2 = |ζ|2. (3.66)

Combining (3.64)-(3.66), it follows for t in [−1, 1] \ {0} that

∣∣∣eiζt − 1− iζt
1 + t2

∣∣∣
1 + t2

t2
≤
(
|ζ|2 + |ζ|2

)
· 2 + |ζ| ≤ 5max{1, |ζ|2}.

This completes the proof. ��

Corollary 3.42. Let µ be an infinitely divisible probability measure on R with
generating pair (γ, σ) (see Section 2.1). Then for any real number ζ we have

∣∣Cµ(ζ)
∣∣ ≤ (|γ|+ 5σ(R))max{1, |ζ|2}.

Proof. This follows immediately from Lemma 3.41 and the representation:

Cµ(ζ) = iγζ +
∫

R

(
eiζt − 1− iζt

1 + t2

)1 + t2

t2
σ(dt). �
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Proof of Theorem 3.40. Let (µn) be a sequence of measures from ID(∗),
and suppose that µn

w→ µ for some measure µ in ID(∗). We need to show
that Υα(µn)

w→ Υα(µ). For this, it suffices to show that

CΥα(µn)(z) −→ CΥα(µ)(z), (z ∈ R). (3.67)

By Proposition 3.37,

CΥα(µn)(z) =
∫ ∞

0

Cµn
(zx)ζα(x) dx and CΥα(µ)(z) =

∫ ∞

0

Cµ(zx)ζα(x) dx,

for all n in N and z in R. According to [Sa99, Lemma 7.7],

Cµn
(y) −→ Cµ(y), for all y in R,

so by the dominated convergence theorem, (3.67) follows, if, for each z in R,
we find a Borel function hz : [0,∞[→ [0,∞[, such that

∀n ∈ N ∀x ∈ [0,∞[ :
∣∣Cµn

(zx)ζα(x)
∣∣ ≤ hz(x) and

∫ ∞

0

hz(x) dx <∞.

(3.68)
Towards that end, let, for each n in N, (γn, σn) denote the generating pair
for µn. Since µn

w→ µ, Gnedenko’s theorem (cf. [GnKo68, Theorem 1, p.87])
asserts that

S := sup
n∈N

σn(R) <∞ and G := sup
n∈N

|γn| <∞.

Now, by Corollary 3.42, for any n in N, z in R and x in [0,∞[ we have
∣∣Cµn

(zx)ζα(x)
∣∣ ≤ (G+ 5S)max{1, z2x2}ζα(x),

and here, by formula (3.49),
∫ ∞

0

(G+ 5S)max{1, z2x2}ζα(x) dx ≤ (G+ 5S)
∫

R

(1 + z2x2)ζα(x) dx

= (G+ 5S) + (G+ 5S)z2 2
Γ (2α+1) <∞.

Thus, for any z in R, the Borel function

hz(x) = (G+ 5S)max{1, z2x2}ζα(x), (x ∈ [0,∞[),

satisfies (3.68). This concludes the proof. ��

We close this section by mentioning that a replacement of e−y by ζα(y) in
the proof of Proposition 3.22 produces a proof of the following assertion:

∀µ ∈ ID(∗) ∀α ∈ [0, 1] : µ has p’th moment ⇐⇒ Υα(µ) has p’th moment.
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3.5 Stochastic Interpretation of Υ and Υ α

The purpose of this section is to show that for any measure µ in ID(∗), the
measure Υ (µ) can be realized as the distribution of a stochastic integral w.r.t.
to the (classical) Lévy process corresponding to µ. We establish also a similar
stochastic interpretation of Υα(µ) for any α in ]0, 1[. The main tool in this is
Proposition 2.6.

Theorem 3.43. Let µ be an arbitrary measure in ID(∗), and let (Xt) be a
(classical) Lévy process (in law), such that L{X1} = µ. Then the stochastic
integral

Z =
∫ 1

0

− log(1− t) dXt

exists, as the limit in probability, of the stochastic integrals
∫ 1−1/n

0
− log(1 −

t) dXt, as n→∞. Furthermore, the distribution of Z is exactly Υ (µ).

Proof. The existence of the stochastic integral
∫ 1

0
− log(1−t) dXt follows from

Proposition 2.6, once we have verified that
∫ 1

0
|Cµ(−u log(1− t))|dt <∞, for

any u in R. Using the change of variable: t = 1− e−x, x ∈ R, we find that
∫ 1

0

∣∣Cµ(−u log(1− t))
∣∣ dt =

∫ ∞

0

∣∣Cµ(ux)
∣∣e−x dx,

and here the right hand side is finite, according to Lemma 3.15.
Combining next Proposition 2.6 and Theorem 3.17 we find for any u in R

that

CL{Z}(u) =
∫ 1

0

Cµ(−u log(1− t)) dt =
∫ ∞

0

Cµ(ux)e−x dx = CΥ (µ)(u),

which implies that L{Z} = Υ (µ), as desired. ��

Before proving the analog of Theorem 3.43 for Υα, recall that Rα denotes
the inverse of the distribution function Zα of the probability measure ζα(x) dx.

Theorem 3.44. Let µ be an arbitrary measure in ID(∗), and let (Xt) be a
(classical) Lévy process (in law), such that L{X1} = µ. For each α ∈ ]0, 1[,
the stochastic integral

Y =
∫ 1

0

Rα(s) dXs (3.69)

exists, as a limit in probability, and the law of Y is Υα(µ).

Proof. It suffices to consider α in ]0, 1[. In order to ensure the existence of
the stochastic integral in (3.69) , it suffices, by Proposition 2.6, to verify that∫ 1

0
|Cµ(zRα(t))|dt < ∞ for all z in R. Denoting by λ the Lebesgue measure
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on [0, 1], note that Zα(ζα(x) dx) = λ, so that Rα(λ) = ζα(x) dx. Hence, we
find that

∫ 1

0

∣∣Cµ(zRα(t))
∣∣ dt =

∫ ∞

0

∣∣Cµ(zu)
∣∣Rα(λ)(du)

=
∫ ∞

0

∣∣Cµ(zu)
∣∣ · ζα(u) du

≤
∫ ∞

0

(
|γ|+ 5ν(R)

)
max{1, z2u2}ζα(u) du <∞,

where (γ, ν) is the generating pair for µ (cf. Corollary 3.42). Thus, by Propo-
sition 2.6, the stochastic integral Y =

∫ 1

0
Rα(t) dXt makes sense, and the

cumulant function of Y is given by

C{z ‡ Y } =
∫ 1

0

Cµ(zRα(t)) dt =
∫ 1

0

Cµ(zu)ζα(u) du = CΥα(µ)(z),

where we have used Theorem 3.37. This completes the proof. ��

3.6 Mappings of Upsilon-Type: Further Results

We now summarize several pieces of recent work that extend some of the
results presented in the previous part of the present section.

We start by considering a general concept of Upsilon transformations, that
has the transformations Υ0 and Υα0 as special cases. Another special case, de-
noted Υ

(q)
0 (q > −2) is briefly discussed; this is related to the tempered stable

distributions. Further, extensions of the mappings Υ0 and Υα0 to multivari-
ate infinitely divisible distributions are discussed, and applications of these
to the construction of Lévy copulas with desirable properties is indicated.
Finally, a generalization of Υ (q)

0 to transformations of the class ML(M+
m) of

Lévy measures on the cone of positive definite m×m matrices is mentioned.

General Upsilon Transformations

The collaborative work discussed in the subsequent parts of the present Sec-
tion have led to taking up a systematic study of generalized Upsilon trans-
formations. Here we mention some first results of this, based on unpublished
notes by V. Pérez-Abreu, J. Rosinski, K. Sato and the authors. Detailed ex-
positions will appear elsewhere.

Let ρ be a Lévy measure on R, let τ be a measure on R>0 and introduce
the measure ρτ on R by

ρτ (dx) =
∫ ∞

0

ρ(y−1dx)τ(dy). (3.70)

Note here that if X is an infinitely divisible random variable with Lévy
measure ρ(dx) then yX has Lévy measure ρ(y−1dx).
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Definition 3.45. Given a measure τ on R>0 we define Υ τ0 as the mapping
Υ τ0 : ρ �→ ρτ where ρτ is given by (3.70) and the domain of Υ τ0 is

domLΥ
τ
0 =

{
ρ ∈ML (R)

∣∣∣ ρτ ∈ML (R)
}
.

We have domLΥ
τ
0 = ML (R) if and only if

∫ ∞

0

(
1 + y2

)
τ (dy) <∞.

Furthermore, letting

M0 (R) =
{
ρ ∈M (R)

∣∣∣
∫ ∞

0

(1 + |t|) ρ (dt) <∞
}

(finite variation case) we have Υ τ0 : M0 (R)→M0 (R) if and only if
∫ ∞

0

(1 + |y|) τ (dy) <∞.

Mappings of type Υ τ0 have the important property of being commutative under
composition. Under rather weak conditions the mappings are one-to-one, and
the image Lévy measures possess densities with respect to Lebesgue measure.
This is true, in particular, of the examples considered below.

Now, suppose that τ has a density h that is a continuous function on R>0.
Then writing ρh for ρτ we have

ρh(dx) =
∫ ∞

0

ρ(y−1dx)h(y)dy. (3.71)

Clearly, the mappings Υ0 and Υα0 are special instances of (3.71).

Example 3.46. Φ0 transformation. The Υh0 transformation obtained by letting

h(y) = 1[−1,1](y)y−1

is denoted by Φ0. Its domain is

domLΦ0 =

{
ρ ∈ML (R)

∣∣∣
∫

R\[−1,1]

log |y| ρ(dy) <∞
}
.

As is well known, this transformation maps domLΦ0 onto the class of selfde-
composable Lévy measures.
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Example 3.47. Υ (q)
0 transformations. The special version of Υh0 obtained by

taking
h(y) = yqe−y

is denoted Υ
(q)
0 . For each q > −1, domLΥ

(q)
0 = ML (R), for q = −1 the domain

equals domLΦ0, while, for q ∈ (−2,−1), Υ (q)
0 has domain

domLΥ
(q)
0 =

{
ρ ∈ML (R)

∣∣∣
∫

R\[−1,1]

|y|−q−1ρ(dy) <∞
}
.

These transformations are closely related to the tempered stable laws. In fact,
let σ(dx) = c±αx

−1−αk(x)dx with

k(x) =
∫ ∞

0

e−xcν(dc)

be the Lévy measure of an element inR(∗). Then σ is the image under Υ (−1−α)
0

of the Lévy measure
ρ(dx) = x−α ν←−(dx), (3.72)

where ν←− is the image of the measure ν under the mapping x �→ x−1.

Interestingly, Υ0Φ0 = Φ0Υ0 = Υ
(−1)
0 . The transformations Υh0 may in wide

generality be characterized in terms of stochastic integrals, as follows. Let

H(ξ) =
∫ ∞

ξ

h(y) dy,

set s = H(ξ) and let K, with derivative k, be the inverse function of H, so
that K(H(ξ)) = ξ and hence, by differentiation, k(s)h(ξ) = 1. Let ρ be an
arbitrary element of ML (R) and let L be a Lévy process such that L1 has
Lévy measure ρ. Then, under mild regularity conditions, the integral

Y =
∫ H(0)

0

K(s) dLs (3.73)

exists and the random variable Y is infinitely divisible with Lévy measure
ρh = Υh0 (ρ).

Upsilon Transformations of IDd(∗)

The present subsection is based on the paper [BaMaSa04] to which we refer
for proofs, additional results, details and references.

We denote the class of infinitely divisible probability laws on R
d by IDd(∗).

Let h be a function as in the previous subsection and let L be a d-dimensional
Lévy process. Then, under a mild regularity condition on h, a d-dimensional
random vector Y is determined by
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Y =
∫ H(0)

0

K(s) dLs

cf. the previous subsection.
If h is the density determining Υ0 then each of the components of Y belongs

to class B(∗) and Y is said to be of class Bd(∗), the d-dimensional Goldie-
Steutel-Bondesson class. Similarly, the d-dimensional Thorin class T d(∗) is
defined by taking the components of L1 to be in L(∗). In [BaMaSa04], prob-
abilistic characterizations of Bd(∗) and T d(∗) are given, and relations to self-
decomposability and to iterations of Υ0 and Φ0 are studied in considerable
detail.

Application to Lévy Copulas

We proceed to indicate some applications of Υ0 and Φ0 and of the above-
mentioned results to the construction of Lévy copulas for which the associ-
ated probability measures have prescribed marginals in the Goldie-Steutel-
Bondesson or Thorin class or Lévy class (the class of selfdecomposable laws).
For proofs and details, see [BaLi04].

The concept of copulas for multivariate probability distributions has an
analogue for multivariate Lévy measures, termed Lévy copulas. Similar to
probabilistic copulas, a Lévy copula describes the dependence structure of a
multivariate Lévy measure. The Lévy measure, ρ say, is then completely char-
acterized by knowledge of the Lévy copula and the m one-dimensional margins
which are obtained as projections of ρ onto the coordinate axes. An advantage
of modeling dependence via Lévy copulas rather that distributional copulas
is that the resulting probability laws are automatically infinitely divisible.

For simplicity, we consider only Lévy measures and Lévy copulas living on
R
m
>0. Suppose that µ1, . . . , µm are one-dimensional infinitely divisible distri-

butions, all of which are in the Goldie-Steutel-Bondesson class or the Thorin
class or the Lévy class. Using any Lévy copula gives an infinitely divisible dis-
tribution µ with margins µ1, . . . , µm. But µ itself does not necessarily belong
to the Bondesson class or the Thorin class or the Lévy class, i.e. not every Lévy
copula gives rise to such distributions. However, that can be achieved by the
use of Upsilon transformations. For the Goldie-Steutel-Bondesson class and
the Lévy class this is done with the help of the mappings Υ0 and Φ0, respec-
tively, and combining the mappings Φ0 and Υ0 one can construct multivariate
distributions in the Thorin class with prescribed margins in the Thorin class.

Upsilon Transformations for Matrix Subordinators

The present subsection is based on the paper [BaPA05] to which we refer for
proofs, additional results, details and references.

An extension of Υ0 to a one-to-one mapping of the class of d-dimensional
Lévy measures into itself was considered in the previous subsection. Here we
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shall briefly discuss another type of generalization, to one-to-one mappings of
IDm×m

+ (∗), the set of infinitely divisible positive semidefinite m×m matrices,
into itself. This class of mappings constitutes an extension to the positive
definite matrix setting of the class {Υ (q)

0 }−1<q<∞ considered above, and we
shall use the same notation Υ

(q)
0 in the general matrix case.

We begin by reviewing several facts about infinitely divisible matrices with
values in the cone M

+

m of symmetric nonnegative definite m×m matrices.
Let Mm×m denote the linear space of m×m real matrices, Mm the linear

subspace of symmetric matrices, M
+

m the closed cone of non-negative definite
matrices in Mm, M

+
m and {X > 0} the open cone of positive definite matrices

in Mm.
For X ∈Mm×m, X� is the transpose of X and tr(X) the trace of X. For X

in M
+

m , X1/2 is the unique symmetric matrix in M
+

m such that X = X1/2X1/2.
Given a nonsingular matrix X in Mm×m, X

−1 denotes its inverse, |X| its
determinant and X−� the inverse of its transpose. When X is in M

+
m we

simply write X > 0.
The cone M

+

m is not a linear subspace of the linear space Mm×m of m×m
matrices and the theory of infinite divisibility on Euclidean spaces does not
apply immediately to M

+

m. In general, the study of infinitely divisible random
elements in closed cones requires separate work.

A random matrix M is infinitely divisible in M
+

m if and only if for each in-
teger p ≥ 1 there exist p independent identically distributed random matrices
M1, ...,Mp in M

+

m such that M
d= M1 + · · · + Mp. In this case, the Lévy-

Khintchine representation has the following special form, which is obtained
from [Sk91] p.156-157.

Proposition 3.48. An infinitely divisible random matrix M is infinitely di-
visible in M

+

m if and only if its cumulant transform is of the form

C(Θ;M) = itr(Ψ0Θ) +
∫

M
+
m

(eitr(XΘ) − 1)ρ(dX), Θ ∈M
+
m, (3.74)

where Ψ0 ∈ M
+

m and the Lévy measure ρ satisfies ρ(Mm\M
+

m) = 0 and has
order of singularity

∫

M
+
m

min(1, ‖X‖)ρ(dX) <∞. (3.75)

Moreover, the Laplace transform of M is given by

LM (Θ) = exp{−K(Θ;M)}, Θ ∈M
+
m, (3.76)

where K is the Laplace exponent

K(Θ;M) = tr(Ψ0Θ) +
∫

M
+
m

(1− e−tr(XΘ))ρ(dX). (3.77)



92 Ole E. Barndorff-Nielsen and Steen Thorbjørnsen

For ρ in ML(M+
m) and q > −1 consider the mapping Υ

(q)
0 : ρ �→ ρq given

by

ρq(dZ) =
∫

X>0

ρ(X
−�

dZX
−1

) |X|q e−tr(X)dX. (3.78)

The measure ρq is a Lévy measure on M
+

m.
To establish that for each q > −1 the mapping Υ

(q)
0 is one-to-one the

following type of Laplace transform of elements ρ ∈ML(M+
m) is introduced:

Lpρ(Θ) =
∫

X>0

e−tr(XΘ) |X|p ρ(dX). (3.79)

For any p ≥ 1 and ρ in ML(M+
m), the transform (3.79) is finite for any

Θ ∈M
+
m, and the following theorem implies the bijectivity.

Theorem 3.49. Let p ≥ 1 and p+ q ≥ 1. Then

Lpρq(Θ) = |Θ|−
1
2 (m+1)−(p+q)

∫

V >0

Lpρ(V) |V |p+q e−tr(Θ−1V )dV. (3.80)

for Θ ∈M
+
m

As in the one-dimensional case, the transformed Lévy measure determined
by the mapping Υ

(q)
0 is absolutely continuous (with respect to Lebesgue mea-

sure on M
+
m) and the density possesses an integral representation, showing in

particular that the density is a completely monotone function on M
+
m.

Theorem 3.50. For each q > −1 the Lévy measure ρq is absolutely continu-
ous with Lévy density rq given by

rq(X) = |X|q
∫

Y >0

|Y |−
1
2 (m+1)−q e−tr(XY−1)ρ(dY ) (3.81)

= |X|q
∫

Y >0

|Y |
1
2 (m+1)+q e−tr(XY) ρ←−(dY ). (3.82)

4 Free Infinite Divisibility and Lévy Processes

Free probability is a subject in the theory of non-commutative probability.
It was originated by Voiculescu in the Nineteen Eighties and has since been
extensively studied, see e.g. [VoDyNi92], [Vo98] and [Bi03]. The present section
provides an introduction to the area, somewhat in parallel to the exposition
of the classical case in Section 2.5. Analogues of some of the subclasses of
ID(∗) discussed in that section are introduced. Finally, a discussion of free
Lévy processes is given.
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4.1 Non-Commutative Probability and Operator Theory

In classical probability, one might say that the basic objects of study are ran-
dom variables, represented as measurable functions from a probability space
(Ω,F , P ) into the real numbers R equipped with the Borel σ-algebra B. To
any such random variable X : Ω → R the distribution µX of X is determined
by the equation: ∫

R

f(t) µX(dt) = E(f(X)),

for any bounded Borel function f : R→ R, and where E denotes expectation
(or integration) w.r.t. P . We shall also use the notation L{X} for µX .

In non-commutative probability, one replaces the random variables by (self-
adjoint) operators on a Hilbert space H. These operators are then referred to
as “non–commutative random variables”. The term non-commutative refers
to the fact that, in this setting, the multiplication of “random variables” (i.e.
composition of operators) is no longer commutative, as opposed to the usual
multiplication of classical random variables. The non-commutative situation
is often remarkably different from the classical one, and most often more com-
plicated.

By B(H) we denote the vector space of all bounded operators on H, i.e.
linear mappings a : H → H, which are continuous, or, equivalently, which
satisfy that

‖a‖ := sup{‖aξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1} <∞.

The mapping a �→ ‖a‖ is a norm on B(H), called the operator norm, and
B(H) is complete in the operator norm. Composition of operators form a
(non-commutative) multiplication on B(H), which, together with the linear
operations, turns B(H) into an algebra.

Recall next that B(H) is equipped with an involution (the adjoint opera-
tion) a �→ a∗ : B(H)→ B(H), which is given by:

〈aξ, η〉 = 〈ξ, a∗η〉, (a ∈ B(H), ξ, η ∈ H).

Instead of working with the whole algebra B(H) as the set of “random vari-
ables” under consideration, it is, for most purposes, natural to restrict atten-
tion to certain subalgebras of B(H).

A (unital) C∗-algebra acting on a Hilbert space H is a subalgebra of B(H),
which contains the multiplicative unit 111 of B(H) (i.e. 111 is the identity mapping
onH), and which is closed under the adjoint operation and topologically closed
w.r.t. the operator norm.

A von Neumann algebra, acting on H, is a unital C∗-algebra acting on H,
which is even closed in the weak operator topology on B(H) (i.e. the weak
topology on B(H) induced by the linear functionals: a �→ 〈aξ, η〉, ξ, η ∈ H).

A state on the (unital) C∗-algebra A is a positive linear functional τ : A →
C, taking the value 1 at the identity operator 111 on H. If τ satisfies, in addition,
the trace property:
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τ(ab) = τ(ba), (a, b ∈ A),

then τ is called a tracial state6. A tracial state τ on a von Neumann algebra
A is called normal, if its restriction to the unit ball of A (w.r.t. the operator
norm) is continuous in the weak operator topology.

Definition 4.1. (i) A C∗-probability space is a pair (A, τ), where A is a unital
C∗-algebra and τ is a faithful state on A.

(ii) A W ∗-probability space is a pair (A, τ), where A is a von Neumann algebra
and τ is a faithful, normal tracial state on A.

The assumed faithfulness of τ in Definition 4.1 means that τ does not
annihilate any non-zero positive operator. It implies that A is finite in the
sense of F. Murray and J. von Neumann.

In the following, we shall mostly be dealing with W ∗-probability spaces.
So suppose that (A, τ) is a W ∗-probability space and that a is a selfadjoint
operator (i.e. a∗ = a) in A. Then, as in the classical case, we can associate
a (spectral) distribution to a in a natural way: Indeed, by the Riesz repre-
sentation theorem, there exists a unique probability measure µa on (R,B),
satisfying that ∫

R

f(t) µa(dt) = τ(f(a)), (4.1)

for any bounded Borel function f : R → R. In formula (4.1), f(a) has the
obvious meaning if f is a polynomial. For general Borel functions f , f(a) is
defined in terms of spectral theory (see e.g. [Ru91]).

The (spectral) distribution µa of a selfadjoint operator a in A is automati-
cally concentrated on the spectrum sp(a), and is thus, in particular, compactly
supported. If one wants to be able to consider any probability measure µ on
R as the spectral distribution of some selfadjoint operator, then it is neces-
sary to take unbounded (i.e. non-continuous) operators into account. Such an
operator a is, generally, not defined on all of H, but only on a subspace D(a)
of H, called the domain of a. We say then that a is an operator in H rather
than on H. For most of the interesting examples, D(a) is a dense subspace of
H, in which case a is said to be densely defined. We have included a detailed
discussion on unbounded operators in the Appendix (Section A), from which
we extract the following brief discussion.

If (A, τ) is a W ∗-probability space acting on H and a is an unbounded
operator in H, a cannot be an element of A. The closest a can get to A is to be
affiliated with A, which means that a commutes with any unitary operator u,
that commutes with all elements of A. If a is selfadjoint, a is affiliated with A
if and only if f(a) ∈ A for any bounded Borel function f : R→ R. In this case,

6In quantum physics, τ is of the form τ(a) = tr(ρa), where ρ is a trace class
selfadjoint operator on H with trace 1, that expresses the state of a quantum system,
and a would be an observable, i.e. a selfadjoint operator on H, the mean value of
the outcome of observing a being tr(ρa).
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(4.1) determines, again, a unique probability measure µa on R, which we also
refer to as the (spectral) distribution of a, and which generally has unbounded
support. Furthermore, any probability measure on R can be realized as the
(spectral) distribution of some selfadjoint operator affiliated with some W ∗-
probability space. In the following we shall also use the notation L{a} for the
distribution of a (possibly unbounded) operator a affiliated with (A, τ). By A
we denote the set of operators in H which are affiliated with A.

4.2 Free Independence

The key concept on relations between classical random variables X and Y
is independence. One way of defining that X and Y (defined on the same
probability space (Ω,F , P )) are independent is to ask that all compositions
of X and Y with bounded Borel functions be uncorrelated:

E
{
[f(X)− E{f(X)}] · [g(Y )− E{g(Y )}]

}
= 0,

for any bounded Borel functions f, g : R→ R.
In the early 1980’s, D.V. Voiculescu introduced the notion of free indepen-

dence among non-commutative random variables:

Definition 4.2. Let a1, a2, . . . , ar be selfadjoint operators affiliated with a
W ∗-probability space (A, τ). We say then that a1, a2, . . . , ar are freely inde-
pendent w.r.t. τ , if

τ
{
[f1(ai1)− τ(f1(ai1))][f2(ai2)− τ(f2(ai2))] · · · [fp(aip)− τ(fp(aip))]

}
= 0,

for any p in N, any bounded Borel functions f1, f2, . . . , fp : R → R and any
indices i1, i2, . . . , ip in {1, 2, . . . , r} satisfying that i1 �= i2, i2 �= i3, . . . , ip−1 �=
ip.

At a first glance, the definition of free independence looks, perhaps, quite
similar to the definition of classical independence given above, and indeed, in
many respects free independence is conceptually similar to classical indepen-
dence. For example, if a1, a2, . . . , ar are freely independent selfadjoint opera-
tors affiliated with (A, τ), then all numbers of the form τ{f1(ai1)f2(ai2) · · · fp(aip)}
(where i1, i2, . . . , ip ∈ {1, 2, . . . , r} and f1, f2, . . . , fp : R → R are bounded
Borel functions), are uniquely determined by the distributions L{ai}, i =
1, 2, . . . , r. On the other hand, free independence is a truly non-commutative
notion, which can be seen, for instance, from the easily checked fact that two
classical random variables are never freely independent, unless one of them is
trivial, i.e. constant with probability one (see e.g. [Vo98]).

Voiculescu originally introduced free independence in connection with his
deep studies of the von Neumann algebras associated to the free group factors
(see [Vo85], [Vo91], [Vo90]). We prefer in these notes, however, to indicate the
significance of free independence by explaining its connection with random
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matrices. In the 1950’s, the phycicist E.P. Wigner showed that the spectral
distribution of large selfadjoint random matrices with independent complex
Gaussian entries is, approximately, the semi-circle distribution, i.e. the distri-
bution on R with density s �→

√
4− s2 · 1[−2,2](s) w.r.t. Lebesgue measure.

More precisely, for each n in N, let X(n) be a selfadjoint complex Gaussian
random matrix of the kind considered by Wigner (and suitably normalized),
and let trn denote the (usual) tracial state on the n×n matrices Mn(C). Then
for any positive integer p, Wigner showed that

E
{
trn

[
(X(n))p]

}
−→
n→∞

∫ 2

−2

sp
√

4− s2 ds.

In the late 1980’s, Voiculescu generalized Wigner’s result to families of inde-
pendent selfadjoint Gaussian random matrices (cf. [Vo91]): For each n in N, let
X

(n)
1 ,X

(n)
2 , . . . , X

(n)
r be independent7 random matrices of the kind considered

by Wigner. Then for any indices i1, i2, . . . , ip in {1, 2, . . . , r},

E
{
trn

[
X

(n)
i1

X
(n)
i2
· · ·X(n)

ip

]}
−→
n→∞

τ{xi1xi2 · · ·xip},

where x1, x2, . . . , xr are freely independent selfadjoint operators in a W ∗-
probability space (A, τ), and such that L{xi} is the semi-circle distribution
for each i.

By Voiculescu’s result, free independence describes what the assumed clas-
sical independence between the random matrices is turned into, as n → ∞.
Also, from a classical probabilistic point of view, free probability theory may
be considered as (an aspect of) the probability theory of large random matri-
ces.

Voiculescu’s result reveals another general fact in free probability, namely
that the role of the Gaussian distribution in classical probability is taken
over by the semi-circle distribution in free probability. In particular, as also
proved by Voiculescu, the limit distribution appearing in the free version of
the central limit theorem is the semi-circle distribution (see e.g. [VoDyNi92]).

4.3 Free Independence and Convergence in Probability

In this section, we study the relationship between convergence in probability
and free independence. The results will be used in the proof of the free Lévy-
Itô decomposition in Section 6.5 below. We start by defining the notion of
convergence in probability in the non-commutative setting:

Definition 4.3. Let (A, τ) be a W ∗-probability space and let a and an, n ∈ N,
be operators in A. We say then that an → a in probability, as n → ∞, if
|an − a| → 0 in distribution, i.e. if L{|an − a|} → δ0 weakly.

7in the classical sense; at the level of the entries.
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Convergence in probability, as defined above, corresponds to the so-called
measure topology, which is discussed in detail in the Appendix (Section A). As
mentioned there, if we assume that the operators an and a are all selfadjoint,
then convergence in probability is equivalent to the condition:

L{an − a} w−→ δ0.

Lemma 4.4. Let (bn) be a sequence of (not necessarily selfadjoint) operators
in a W ∗-probability space (A, τ), and assume that ‖bn‖ ≤ 1 for all n. Assume,
further, that bn → b in probability as n→∞ for some operator b in A. Then
also ‖b‖ ≤ 1 and τ(bn)→ τ(b), as n→∞.

Proof. To see that ‖b‖ ≤ 1, note first that b∗nbn → b∗b in probability as
n → ∞, since operator multiplication and the adjoint operation are both
continuous operations in the measure topology. This implies that b∗nbn → b∗b

in distribution, i.e. that L{b∗nbn}
w→ L{b∗b} as n → ∞ (cf. Proposition A.9).

Since supp(L{b∗nbn}) = sp(b∗nbn) ⊆ [0, 1] for all n (recall that τ is faithful), a
standard argument shows that also [0, 1] ⊇ supp(L{b∗b}) = sp(b∗b), whence
‖b‖ ≤ 1.

To prove the second statement, consider, for each n in N, b′n = 1
2 (bn + b∗n)

and b′′n = 1
2i (bn − b∗n), and define b′, b′′ similarly from b. Then b′n, b

′′
n, b

′, b′′ are
all selfadjoint operators in A of norm less than or equal to 1. Since addition,
scalar-multiplication and the adjoint operation are all continuous operations
in the measure topology, it follows, furthermore, that b′n → b′ and b′′n → b′′

in probability as n → ∞. As above, this implies that L{b′n}
w→ L{b′} and

L{b′′n}
w→ L{b′′} as n→∞.

Now, choose a continuous bounded function f : R→ R, such that f(x) = x
for all x in [−1, 1]. Then, since sp(b′n), sp(b′) are contained in [−1, 1], we find
that

τ(b′n) = τ(f(b′n)) =
∫

R

f(x)L{b′n}(dx) −→
n→∞

∫

R

f(x)L{b′}(dx)

= τ(f(b′)) = τ(b′).

Similarly, τ(b′′n) → τ(b′′) as n → ∞, and hence also τ(bn) = τ(b′n + ib′′n) →
τ(b′ + ib′′) = τ(b), as n→∞. ��

Lemma 4.5. Let r be a positive integer, and let (b1,n)n∈N, . . . , (br,n)n∈N

be sequences of bounded (not necessarily selfadjoint) operators in the W ∗-
probability space (A, τ). Assume, for each j, that ‖bj,n‖ ≤ 1 for all n
and that bj,n → bj in probability as n → ∞, for some operator bj in A.
If b1,n, b2,n, . . . , br,n are freely independent for each n, then the operators
b1, b2, . . . , br are also freely independent.

Proof. Assume that b1,n, b2,n, . . . , br,n are freely independent for all n, and
let i1, i2, . . . , ip in {1, 2, . . . , r} be given. Then there is a universal polynomial
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Pi1,...,ip in rp complex variables, depending only on i1, . . . , ip, such that for
all n in N,

τ(bi1,nbi2,n · · · bip,n) = Pi1,...,ip

[{
τ(b�1,n)

}
1≤�≤p, . . . ,

{
τ(b�r,n)

}
1≤�≤p

]
. (4.2)

Now, since operator multiplication is a continuous operation with respect
to the measure topology, bi1,nbi2,n · · · bip,n → bi1bi2 · · · bip in probability as
n → ∞. Furthermore, ‖bi1,nbi2,n · · · bip,n‖ ≤ 1 for all n, so by Lemma 4.4 we
have

τ
(
bi1,nbi2,n · · · bip,n

)
−→
n→∞

τ
(
bi1bi2 · · · bip

)
.

Similarly,

τ(b�j,n) −→
n→∞

τ(b�j), for any j in {1, 2, . . . , r} and � in N.

Combining these observations with (4.2), we conclude that also

τ(bi1bi2 · · · bip) = Pi1,...,ip

[{
τ(b�1)

}
1≤�≤p, . . . ,

{
τ(b�r)

}
1≤�≤p

]
,

and since this holds for arbitrary i1, . . . , ip in {1, 2, . . . , r}, it follows that
b1, . . . , br are freely independent, as desired. ��

For a selfadjoint operator a affiliated with a W ∗-probability space (A, τ),
we denote by κ(a) the Cayley transform of a, i.e.

κ(a) = (a− i111A)(a+ i111A)−1.

Recall that even though a may be an unbounded operator, κ(a) is a unitary
operator in A.

Lemma 4.6. Let a1, a2, . . . , ar be selfadjoint operators affiliated with the W ∗-
probability space (A, τ). Then a1, a2, . . . , ar are freely independent if and only
if κ(a1), κ(a2), . . . , κ(ar) are freely independent.

Proof. This is an immediate consequence of the fact that aj and κ(aj) generate
the same von Neumann subalgebra of A for each j (cf. [Pe89, Lemma 5.2.8]).

��

Proposition 4.7. Suppose r ∈ N and that (a1,n)n∈N, . . . , (ar,n)n∈N are se-
quences of selfadjoint operators affiliated with the W ∗-probability space (A, τ).
Assume, further, that for each j in {1, 2, . . . , r}, aj,n → aj in probability as
n → ∞, for some selfadjoint operator aj affiliated with (A, τ). If the opera-
tors a1,n, a2,n, . . . , ar,n are freely independent for each n, then the operators
a1, a2, . . . , ar are also freely independent.
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Proof. Assume that a1,n, a2,n, . . . , ar,n are freely independent for all n. Then,
by Lemma 4.6, the unitaries κ(a1,n), . . . , κ(ar,n) are freely independent for
each n in N. Moreover, since the Cayley transform is continuous in the measure
topology (cf. [St59, Lemma 5.3]), we have

κ(aj,n) −→
n→∞

κ(aj), in probability,

for each j. Hence, by Lemma 4.5, the unitaries κ(a1), . . . , κ(ar) are freely inde-
pendent, and, appealing once more to Lemma 4.6, this means that a1, . . . , ar
themselves are freely independent. ��

Remark 4.8. Let B and C be two freely independent von Neumann subalgebras
of a W ∗-probability space (A, τ). Let, further, (bn) and (cn) be two sequences
of selfadjoint operators, which are affiliated with B and C, respectively, in the
sense that f(bn) ∈ B and g(cn) ∈ C for any n in N and any bounded Borel
functions f, g : R → R. Assume that bn → b and cn → c in probability as
n → ∞. Then b and c are also freely independent. This follows, of course,
from Proposition 4.7, but it is also an immediate consequence of the fact that
the set B of closed, densely defined operators, affiliated with B, is complete
(and hence closed) in the measure topology. Indeed, the restriction to B of the
measure topology on A is the measure topology on B (induced by τ|B). Thus,
b is affiliated with B and similarly c is affiliated with C, so that, in particular,
b and c are freely independent.

4.4 Free Additive Convolution

From a probabilistic point of view, free additive convolution may be considered
merely as a new type of convolution on the set of probability measures on R.
Let a and b be selfadjoint operators in a W ∗-probability space (A, τ), and
note that a + b is selfadjoint too. Denote then the (spectral) distributions of
a, b and a + b by µa, µb and µa+b. If a and b are freely independent, it is
not hard to see that the moments of µa+b (and hence µa+b itself) is uniquely
determined by µa and µb. Hence we may write µa � µb instead of µa+b, and
we say that µa � µb is the free additive8 convolution of µa and µb.

Since the distribution µa of a selfadjoint operator a in A is a compactly
supported probability measure on R, the definition of free additive convo-
lution, stated above, works at most for all compactly supported probability
measures on R. On the other hand, given any two compactly supported prob-
ability measures µ1 and µ2 on R, it follows from a free product construction
(see [VoDyNi92]), that it is always possible to find a W ∗-probability space

8The reason for the term additive is that there exists another convolution op-
eration called free multiplicative convolution, which arises naturally out of the non-
commutative setting (i.e. the non-commutative multiplication of operators). In the
present notes we do not consider free multiplicative convolution.
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(A, τ) and free selfadjoint operators a, b in A, such that a and b have distrib-
utions µ1 and µ2 respectively. Thus, the operation � introduced above is, in
fact, defined on all compactly supported probability measures on R. To extend
this operation to all probability measures on R, one needs, as indicated above,
to consider unbounded selfadjoint operators in a Hilbert space, and then to
proceed with a construction similar to that described above. We postpone a
detailed discussion of this matter to the Appendix (see Remark A.3), since,
for our present purposes, it is possible to study free additive convolution by
virtue of the Voiculescu transform, which we introduce next.

By C
+ (respectively C

−) we denote the set of complex numbers with
strictly positive (respectively strictly negative) imaginary part.

Let µ be a probability measure on R, and consider its Cauchy (or Stieltjes)
transform Gµ : C

+ → C
− given by:

Gµ(z) =
∫

R

1
z − t

µ(dt), (z ∈ C
+).

Then define the mapping Fµ : C
+ → C

+ by:

Fµ(z) =
1

Gµ(z)
, (z ∈ C

+),

and note that Fµ is analytic on C
+. It was proved by Bercovici and Voiculescu

in [BeVo93, Proposition 5.4 and Corollary 5.5] that there exist positive num-
bers η and M , such that Fµ has an (analytic) right inverse F−1

µ defined on
the region

Γη,M := {z ∈ C | |Re(z)| < ηIm(z), Im(z) > M}.

In other words, there exists an open subset Gη,M of C
+ such that Fµ is

injective on Gη,M and such that Fµ(Gη,M ) = Γη,M .
Now the Voiculescu transform φµ of µ is defined by

φµ(z) = F−1
µ (z)− z,

on any region of the form Γη,M , where F−1
µ is defined. It follows from [BeVo93,

Corollary 5.3] that Im(F−1
µ (z)) ≤ Im(z) and hence Im(φµ(z)) ≤ 0 for all z in

Γη,M .
The Voiculescu transform φµ should be viewed as a modification of

Voiculescu’s R-transform (see e.g. [VoDyNi92]), since we have the correspon-
dence:

φµ(z) = Rµ( 1
z ).

A third variant, which we shall also make use of is the free cumulant transform,
given by:

Cµ(z) = zRµ(z) = zφµ( 1
z ). (4.3)

The key property of the Voiculescu transform is the following important re-
sult, which shows that the Voiculescu transform (and its variants) can be
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viewed as the free analogue of the classical cumulant function (the logarithm
of the characteristic function). The result was first proved by Voiculescu for
probability measures µ with compact support, and then by Maassen in the
case where µ has variance. Finally Bercovici and Voiculescu proved the general
case.

Theorem 4.9 ([Vo86],[Ma92],[BeVo93]). Let µ1 and µ2 be probability
measures on R, and consider their free additive convolution µ1 � µ2. Then

φµ1�µ2(z) = φµ1(z) + φµ2(z),

for all z in any region Γη,M , where all three functions are defined.

Remark 4.10. We shall need the fact that a probability measure on R is
uniquely determined by its Voiculescu transform. To see this, suppose µ and
µ′ are probability measures on R, such that φµ = φµ′ , on a region Γη,M . It
follows then that also Fµ = Fµ′ on some open subset of C

+, and hence (by
analytic continuation), Fµ = Fµ′ on all of C

+. Consequently µ and µ′ have the
same Cauchy (or Stieltjes) transform, and by the Stieltjes Inversion Formula
(cf. e.g. [Ch78, page 90]), this means that µ = µ′.

In [BeVo93, Proposition 5.6], Bercovici and Voiculescu proved the following
characterization of Voiculescu transforms:

Theorem 4.11 ([BeVo93]). Let φ be an analytic function defined on a re-
gion Γη,M , for some positive numbers η and M . Then the following assertions
are equivalent:

(i) There exists a probability measure µ on R, such that φ(z) = φµ(z) for all
z in a domain Γη,M ′ , where M ′ ≥M .

(ii) There exists a number M ′ greater than or equal to M , such that
(a) Im(φ(z)) ≤ 0 for all z in Γη,M ′ .
(b) φ(z)/z → 0, as |z| → ∞, z ∈ Γη,M ′ .
(c) For any positive integer n and any points z1, . . . , zn in Γη,M ′ , the n×n

matrix [
zj − zk

zj + φ(zj)− zk − φ(zk)

]

1≤j,k≤n

,

is positive definite.

The relationship between weak convergence of probability measures and
the Voiculescu transform was settled in [BeVo93, Proposition 5.7] and [BePa96,
Proposition 1]:

Proposition 4.12 ([BeVo93],[BePa96]). Let (µn) be a sequence of proba-
bility measures on R. Then the following assertions are equivalent:

(a) The sequence (µn) converges weakly to a probability measure µ on R.
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(b) There exist positive numbers η and M , and a function φ, such that all the
functions φ, φµn

are defined on Γη,M , and such that
(b1) φµn

(z)→ φ(z), as n→∞, uniformly on compact subsets of Γη,M ,

(b2) sup
n∈N

∣∣∣
φµn

(z)
z

∣∣∣→ 0, as |z| → ∞, z ∈ Γη,M .

(c) There exist positive numbers η and M , such that all the functions φµn
are

defined on Γη,M , and such that
(c1) limn→∞ φµn

(iy) exists for all y in [M,∞[.

(c2) sup
n∈N

∣∣∣
φµn

(iy)
y

∣∣∣→ 0, as y →∞.

If the conditions (a),(b) and (c) are satisfied, then φ = φµ on Γη,M .

Remark 4.13 (Cumulants I). Under the assumption of finite moments of all
orders, both classical and free convolution can be handled completely by a
combinatorial approach based on cumulants. Suppose, for simplicity, that µ
is a compactly supported probability measure on R. Then for n in N, the
classical cumulant cn of µ may be defined as the n’th derivative at 0 of the
cumulant transform log fµ. In other words, we have the Taylor expansion:

log fµ(z) =
∞∑

n=1

cn
n!
zn.

Consider further the sequence (mn)n∈N0 of moments of µ. Then the sequence
(mn) is uniquely determined by the sequence (cn) (and vice versa). The for-
mulas determining mn from (cn) are generally quite complicated. However,
by viewing the sequences (mn) and (cn) as multiplicative functions M and
C on the lattice of all partitions of {1, 2, . . . , n}, n ∈ N (cf. e.g. [Sp97]), the
relationship between (mn) and (cn) can be elegantly expressed by the formula:

C = M 
Moeb,

where Moeb denotes the Möbius transform and where 
 denotes combinatorial
convolution of multiplicative functions on the lattice of all partitions (see
[Sp97],[Ro64] or [BaCo89]).

The free cumulants (kn) of µ were introduced by R. Speicher in [Sp94].
They may, similarly, be defined as the coefficients in the Taylor expansion of
the free cumulant transform Cµ:

Cµ(z) =
∞∑

n=1

knz
n,

(see (4.3)). Viewing then (kn) and (mn) as multiplicative functions k and
m on the lattice of all non-crossing partitions of {1, 2, . . . , n}, n ∈ N, the
relationship between (kn) and (mn) is expressed by the exact same formula:
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k = m 
Moeb, (4.4)

where now 
 denotes combinatorial convolution of multiplicative functions on
the lattice of all non-crossing partitions (see [Sp97]).

For a family a1, a2, . . . , ar of selfadjoint operators in a W ∗-probability
space (A, τ) it is also possible to define generalized cumulants, which are
related to the family of all mixed moments (w.r.t. τ) of a1, a2, . . . , ar by a
formula similar to (4.4) (see e.g. [Sp97]). In terms of these multivariate cumu-
lants, free independence of a1, a2, . . . , ar has a rather simple formulation, and
using this formulation, R. Speicher gave a simple and completely combinato-
rial proof of the fact that the free cumulants (and hence the free cumulant
transform) linearize free convolution (see [Sp94]). A treatment of the theory
of classical multivariate cumulants can be found in [BaCo89].

4.5 Basic Results in Free Infinite Divisibility

In this section we recall the definition and some basic facts about infinite
divisibility w.r.t. free additive convolution. In complete analogy with the clas-
sical case, a probability measure µ on R is �-infinitely divisible, if for any n
in N there exists a probability measure µn on R, such that

µ = µn � µn � · · ·� µn︸ ︷︷ ︸
n terms

.

It was proved in [Pa96] that the class ID(�) of �-infinitely divisible proba-
bility measures on R is closed w.r.t. weak convergence. For the corresponding
classical result, see [GnKo68, §17, Theorem 3]. As in classical probability, �-
infinitely divisible probability measures are characterized as those probability
measures that have a (free) Lévy-Khintchine representation:

Theorem 4.14 ([Vo86],[Ma92],[BeVo93]).
Let µ be a probability measure on R. Then µ is �-infinitely divisible, if and

only if there exist a finite measure σ on R and a real constant γ, such that

φµ(z) = γ +
∫

R

1 + tz

z − t
σ(dt), (z ∈ C). (4.5)

Moreover, for a �-infinitely divisible probability measure µ on R, the real
constant γ and the finite measure σ, described above, are uniquely determined.

Proof. The equivalence between �-infinite divisibility and the existence of a
representation in the form (4.5) was proved (in the general case) by Voiculescu
and Bercovici in [BeVo93, Theorem 5.10]. They proved first that µ is �-
infinitely divisible, if and only if φµ has an extension to a function of the form:
φ : C

+ → C
−∪R, i.e. a Pick function multiplied by −1. Equation (4.5) (and its

uniqueness) then follows from the existence (and uniqueness) of the integral
representation of Pick functions (cf. [Do74, Chapter 2, Theorem I]). Compared
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to the general integral representation for Pick functions, just referred to, there
is a linear term missing on the right hand side of (4.5), but this corresponds
to the fact that φ(iy)

y → 0 as y → ∞, if φ is a Voiculescu transform (cf.
Theorem 4.11 above). ��

Definition 4.15. Let µ be a �-infinitely divisible probability measure on R,
and let γ and σ be, respectively, the (uniquely determined) real constant and
finite measure on R appearing in (4.5). We say then that the pair (γ, σ) is the
free generating pair for µ.

In terms of the free cumulant transform, the free Lévy-Khintchine repre-
sentation resembles more closely the classical Lévy-Khintchine representation,
as the following proposition shows.

Proposition 4.16. A probability measure ν on R is �-infinitely divisible if
and only if there exist a non-negative number a, a real number η and a Lévy
measure ρ, such that the free cumulant transform Cν has the representation:

Cν(z) = ηz + az2 +
∫

R

( 1
1− tz

− 1− tz1[−1,1](t)
)
ρ(dt), (z ∈ C

−). (4.6)

In that case, the triplet (a, ρ, η) is uniquely determined and is called the free
characteristic triplet for ν.

Proof. Let ν be a measure in ID(�) with free generating pair (γ, σ), and
consider its free Lévy-Khintchine representation (in terms of the Voiculescu
transform):

φν(z) = γ +
∫

R

1 + tz

z − t
σ(dt), (z ∈ C

+). (4.7)

Then define the triplet (a, ρ, η) by (2.3), and note that

σ(dt) = aδ0(dt) +
t2

1 + t2
ρ(dt),

γ = η −
∫

R

t
(
1[−1,1](t)−

1
1 + t2

)
ρ(dt).

Now, for z in C
−, the corresponding free cumulant transform Cν is given by

Cν(z)

= zφν(1/z) = z
(
γ +

∫

R

1 + t(1/z)
(1/z)− t

σ(dt)
)

= γz + z

∫

R

z + t

1− tz
σ(dt) = γz +

∫

R

z2 + tz

1− tz
σ(dt)

= ηz −
[ ∫

R

t
(
1[−1,1](t)−

1
1 + t2

)
ρ(dt)

]
z + az2 +

∫

R

z2 + tz

1− tz

t2

1 + t2
ρ(dt).
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Note here that

1[−1,1](t)−
1

1 + t2
= 1− 1

1 + t2
− 1R\[−1,1](t) =

t2

1 + t2
− 1R\[−1,1](t),

so that
∫

R

t
(
1[−1,1](t)−

1
1 + t2

)
ρ(dt) =

∫

R

( t

1 + t2
− t−11R\[−1,1](t)

)
t2ρ(dt).

Note also that
z2 + tz

(1− tz)(1 + t2)
=

z2

1− tz
+

tz

1 + t2
.

Therefore,

Cν(z) = ηz −
[ ∫

R

( t

1 + t2
− t−11R\[−1,1](t)

)
t2ρ(dt)

]
z + az2

+
∫

R

( z2

1− tz
+

tz

1 + t2

)
t2ρ(dt)

= ηz + az2 +
∫

R

( z2

1− tz
+ t−1z1R\[−1,1](t)

)
t2ρ(dt)

= ηz + az2 +
∫

R

( (tz)2

1− tz
+ tz1R\[−1,1](t)

)
ρ(dt).

Further,

(tz)2

1− tz
+ tz1R\[−1,1](t) =

( (tz)2

1− tz
+ tz

)
− tz1[−1,1](t)

=
tz

1− tz
− tz1[−1,1](t)

=
1

1− tz
− 1− tz1[−1,1](t).

We conclude that

Cν(z) = ηz + az2 +
∫

R

( 1
1− tz

− 1− tz1[−1,1](t)
)
ρ(dt). (4.8)

Clearly the above calculations may be reversed, so that (4.7) and (4.8) are
equivalent. ��

Apart from the striking similarity between (2.2) and (4.6), note that these
particular representations clearly exhibit how µ (respectively ν) is always the
convolution of a Gaussian distribution (respectively a semi-circle distribution)
and a distribution of generalized Poisson (respectively free Poisson) type (cf.
also the Lévy-Itô decomposition described in Section 6.5). In particular, the
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cumulant transform for the Gaussian distribution with mean η and variance
a is: u �→ iηu − 1

2au
2, and the free cumulant transform for the semi-circle

distribution with mean η and variance a is z �→ ηz + az2 (see [VoDyNi92]).
The next result, due to Bercovici and Pata, is the free analogue of Khint-

chine’s characterization of classically infinitely divisible probability measures.
It plays an important role in Section 4.6.

Definition 4.17. Let (kn)n∈N be a sequence of positive integers, and let

A = {µnj | n ∈ N, j ∈ {1, 2, . . . , kn}},

be an array of probability measures on R. We say then that A is a null array,
if the following condition is fulfilled:

∀ε > 0: lim
n→∞

max
1≤j≤kn

µnj(R \ [−ε, ε]) = 0.

Theorem 4.18 ([BePa00]). Let {µnj | n ∈ N, j ∈ {1, 2, . . . , kn}} be a
null-array of probability measures on R, and let (cn)n∈N be a sequence of
real numbers. If the probability measures µn = δcn

� µn1 � µn2 � · · · � µnkn

converge weakly, as n → ∞, to a probability measure µ on R, then µ has to
be �-infinitely divisible.

4.6 Classes of Freely Infinitely Divisible Probability Measures

In this section we study the free counterparts S(�) and L(�) to the classes
S(∗) and L(∗) of stable and selfdecomposable distributions. We show in par-
ticular that we have the following hierarchy

G(�) ⊂ S(�) ⊂ L(�) ⊂ ID(�), (4.9)

where G(�) denotes the class of semi-circle distributions. We start with the
formal definitions of and S(�) and L(�).

Definition 4.19. (i) A probability measure µ on R is called stable w.r.t. free
convolution (or just �-stable), if the class

{ψ(µ) | ψ : R→ R is an increasing affine transformation}

is closed under the operation �. By S(�) we denote the class of �-stable
probability measures on R.

(ii) A probability measure µ on R is selfdecomposable w.r.t. free additive con-
volution (or just �-selfdecomposable), if for any c in ]0, 1[ there exists a
probability measure µc on R, such that

µ = Dcµ� µc. (4.10)

By L(�) we denote the class of �-selfdecomposable probability measures
on R.
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Note that for a probability measure µ on R and a constant c in ]0, 1[, there
can be only one probability measure µc, such that µ = Dcµ � µc. Indeed,
choose positive numbers η and M , such that all three Voiculescu transforms
φµ, φDcµ and φµc

are defined on the region Γη,M . Then by Theorem 4.9, φµc

is uniquely determined on Γη,M , and hence, by Remark 4.10, µc is uniquely
determined too.

In order to prove the inclusions in (4.9), we need the following technical
result.

Lemma 4.20. Let µ be a probability measure on R, and let η and M be
positive numbers such that the Voiculescu transform φµ is defined on Γη,M
(see Section 4.4). Then for any constant c in R \ {0}, φDcµ is defined on
|c|Γη,M = Γη,|c|M , and

(i) if c > 0, then φDcµ(z) = cφµ(c−1z) for all z in cΓη,M ,
(ii) if c < 0, then φDcµ(z) = cφµ(c−1z) for all z in |c|Γη,M .

In particular, for a constant c in [−1, 1], the domain of φDcµ contains the
domain of φµ.

Proof. (i) This is a special case of [BeVo93, Lemma 7.1].
(ii) Note first that by virtue of (i), it suffices to prove (ii) in the case

c = −1.
We start by noting that the Cauchy transform Gµ (see Section 4.4) is

actually well-defined for all z in C \ R (even for all z outside supp(µ)), and
that Gµ(z) = Gµ(z), for all such z. Similarly, Fµ is defined for all z in C \ R,
and Fµ(z) = Fµ(z), for such z.

Note next that for any z in C\R, GD−1µ(z) = −Gµ(−z), and consequently

FD−1µ(z) = −Fµ(−z) = −Fµ(−z).

Now, since −Γη,M = Γη,M , it follows from the equation above, that FD−1µ has
a right inverse on Γη,M , given by F−1

D−1µ
(z) = −F−1

µ (−z), for all z in Γη,M .
Consequently, for z in Γη,M , we have

φD−1µ(z) = F−1
D−1µ

(z)−z = −F−1
µ (−z)−z = −(F−1

µ (−z)− (−z)) = −φµ(−z),

as desired. ��

Remark 4.21. With respect to dilation the free cumulant transform behaves
exactly as the classical cumulant function, i.e.

CDcµ(z) = Cµ(cz), (4.11)

for any probability measure µ on R and any positive constant c. This follows
easily from Lemma 4.20. As a consequence, it follows as in the classical case
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that a probability measure µ on R belongs to S(�), if and only if the following
condition is satisfied (for z−1 in a region of the form Γ (η,M))

∀a, a′>0 ∀b, b′ ∈ R ∃a′′>0 ∃b′′ ∈ R : Cµ(az)+bz+Cµ(a′z)+b′z = Cµ(a′′z)+b′′z.

It is easy to see that the above condition is equivalent to the following

∀a > 0 ∃a′′ > 0 ∃b′′ ∈ R : Cµ(z) + Cµ(az) = Cµ(a′′z) + b′′z. (4.12)

Similarly, a probability measure µ on R is �-selfdecomposable, if and only if
there exists, for any c in ]0, 1[, a probability measure µc on R, such that

Cµ(z) = Cµ(cz) + Cµc
(z), (4.13)

for z−1 in a region of the form Γ (η,M). In terms of the Voiculescu transform
φµ, formula (4.13) takes the equivalent form

φµ(z) = cφµ(c−1z) + φµc
(z),

for all z in a region Γη,M .

Proposition 4.22. (i) Any semi-circle law is �-stable.
(ii) Let µ be a �-stable probability measure on R. Then µ is necessarily �-

selfdecomposable.

Proof. (i) Let γ0,2 denote the standard semi-circle distribution, i.e.

γ0,2(dx) = 1[−2,2](x)
√

4− x2 dx.

Then, by definition,

G(�) = {Daγ0,2 � δb | a ≥ 0, b ∈ R}.

It is easy to see that S(�) is closed under the operations Da (a > 0), and
under (free) convolution with δb (b ∈ R). Therefore, it suffices to show that
γ0,2 ∈ S(�). By [VoDyNi92, Example 3.4.4], the free cumulant transform of
γ0,2 is given by

Cγ0,2(z) = z2, (z ∈ C
+),

and clearly this function satisfies condition (4.12) above.
(ii) Let µ be a measure in S(�). The relationship between the constants

a and a′′ in (4.12) is of the form a′′ = f(a), where f : ]0,∞[ → ]1,∞[ is a
continuous, strictly increasing function, satisfying that f(t) → 1 as t → 0+

and f(t)→∞ as t→∞ (see the proof of [BeVo93, Lemma 7.4]). Now, given
c in ]0, 1[, put a = f−1(1/c) ∈ ]0,∞[, so that

Cµ(z) + Cµ(az) = Cµ(c−1z) + bz,

for suitable b in R. Putting z = cw, it follows that
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Cµ(w)− Cµ(cw) = Cµ(acw)− bcw.

Based on Theorem 4.11 is is not hard to see that z �→ Cµ(acw) − bcw is the
free cumulant transform of some measure µc in P. With this µc, condition
(4.13) is satisfied. ��

We turn next to the last inclusion in (4.9).

Lemma 4.23. Let µ be a �-selfdecomposable probability measure on R, let c
be a number in ]0, 1[, and let µc be the probability measure on R determined
by the equation:

µ = Dcµ� µc.

Let η and M be positive numbers, such that φµ is defined on Γη,M . Then φµc

is defined on Γη,M as well.

Proof. Choose positive numbers η′ and M ′ such that Γη′,M ′ ⊆ Γη,M and such
that φµ and φµc

are both defined on Γη′,M ′ . For z in Γη′,M ′ , we then have (cf.
Lemma 4.20):

φµ(z) = cφµ(c−1z) + φµc
(z).

Recalling the definition of the Voiculescu transform, the above equation means
that

F−1
µ (z)− z = cφµ(c−1z) + F−1

µc
(z)− z, (z ∈ Γη′,M ′),

so that
F−1
µc

(z) = F−1
µ (z)− cφµ(c−1z), (z ∈ Γη′,M ′).

Now put ψ(z) = F−1
µ (z)− cφµ(c−1z) and note that ψ is defined and holomor-

phic on all of Γη,M (cf. Lemma 4.20), and that

Fµc
(ψ(z)) = z, (z ∈ Γη′,M ′). (4.14)

We note next that ψ takes values in C
+. Indeed, since Fµ is defined on C

+,
we have that Im(F−1

µ (z)) > 0, for any z in Γη,M and furthermore, for all such
z, Im(φµ(c−1z)) ≤ 0, as noted in Section 4.4.

Now, since Fµc
is defined and holomorphic on all of C

+, both sides of
(4.14) are holomorphic on Γη,M . Since Γη′,M ′ has an accumulation point in
Γη,M , it follows, by uniqueness of analytic continuation, that the equality in
(4.14) actually holds for all z in Γη,M . Thus, Fµc

has a right inverse on Γη,M ,
which means that φµc

is defined on Γη,M , as desired. ��

Lemma 4.24. Let µ be a �-selfdecomposable probability measure on R, and
let (cn) be a sequence of numbers in ]0, 1[. For each n, let µcn

be the probability
measure on R satisfying

µ = Dcn
µ� µcn

.

Then, if cn → 1 as n→∞, we have µcn

w→ δ0, as n→∞.
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Proof. Choose positive numbers η and M , such that φµ is defined on Γη,M .
Note then that, by Lemma 4.23, φµcn

is also defined on Γη,M for each n in N

and, moreover,

φµcn
(z) = φµ(z)− cnφµ(c−1

n z), (z ∈ Γη,M , n ∈ N). (4.15)

Assume now that cn → 1 as n → ∞. From (4.15) and continuity of φµ it is
then straightforward that φµcn

(z) → 0 = φδ0(z), as n → ∞, uniformly on
compact subsets of Γη,M . Note furthermore that

sup
n∈N

∣∣∣
φµcn

(z)
z

∣∣∣ = sup
n∈N

∣∣∣
φµ(z)
z
− φµ(c−1

n z)
c−1
n z

∣∣∣→ 0, as |z| → ∞, z ∈ Γη,M ,

since φµ(z)
z → 0 as |z| → ∞, z ∈ Γη,M , and since c−1

n ≥ 1 for all n. It follows
thus from Proposition 4.12 that µcn

w→ δ0, for n→∞, as desired. ��

Theorem 4.25. Letµbe a probability measure on R. Ifµis �-selfdecomposable,
then µ is �-infinitely divisible.

Proof. Assume that µ is �-selfdecomposable. Then by successive applications
of (4.10), we get for any c in ]0, 1[ and any n in N that

µ = Dcnµ�Dcn−1µc �Dcn−2µc � · · ·�Dcµc � µc. (4.16)

The idea now is to show that for a suitable choice of c = cn, the probability
measures:

Dcn
n
µ,Dcn−1

n
µcn

,Dcn−2
n

µcn
, . . . , Dcn

µcn
, µcn

, (n ∈ N), (4.17)

form a null-array (cf. Theorem 4.18). Note for this, that for any choice of cn
in ]0, 1[, we have that

Dcj
n
µcn

(R \ [−ε, ε]) ≤ µcn
(R \ [−ε, ε]),

for any j in N and any ε in ]0,∞[. Therefore, in order that the probability
measures in (4.17) form a null-array, it suffices to choose cn in such a way
that

Dcn
n
µ

w→ δ0 and µcn

w→ δ0, as n→∞.

We claim that this will be the case if we put (for example)

cn = e−
1√
n , (n ∈ N). (4.18)

To see this, note that with the above choice of cn, we have:

cn → 1 and cnn → 0, as n→∞.

Thus, it follows immediately from Lemma 4.24, that µcn

w→ δ0, as n → ∞.
Moreover, if we choose a (classical) real valued random variable X with dis-
tribution µ, then, for each n, Dcn

n
µ is the distribution of cnnX. Now, cnnX → 0,
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almost surely, as n → ∞, and this implies that cnnX → 0, in distribution, as
n→∞.

We have verified, that if we choose cn according to (4.18), then the proba-
bility measures in (4.17) form a null-array. Hence by (4.16) (with c = cn) and
Theorem 4.18, µ is �-infinitely divisible. ��

Proposition 4.26. Let µ be a �-selfdecomposable probability measure on R,
let c be a number in ]0, 1[ and let µc be the probability measure on R satisfying
the condition:

µ = Dcµ� µc.

Then µc is �-infinitely divisible.

Proof. As noted in the proof of Theorem 4.25, for any d in ]0, 1[ and any n in
N we have

µ = Ddnµ�Ddn−1µd �Ddn−2µd � · · ·�Ddµd � µd,

where µd is defined by the case n = 1. Using now the above equation with
d = c1/n, we get for each n in N that

Dcµ�µc = µ = Dcµ�Dc(n−1)/nµc1/n �Dc(n−2)/nµc1/n �· · ·�Dc1/nµc1/n �µc1/n .
(4.19)

From this it follows that

µc = Dc(n−1)/nµc1/n �Dc(n−2)/nµc1/n � · · ·�Dc1/nµc1/n � µc1/n , (n ∈ N).
(4.20)

Indeed, by taking Voiculescu transforms in (4.19) and using Theorem 4.9, it
follows that the Voiculescu transforms of the right and left hand sides of (4.20)
coincide on some region Γη,M . By Remark 4.10, this implies the validity of
(4.20).

By (4.20) and Theorem 4.18, it remains now to show that the probability
measures:

Dc(n−1)/nµc1/n ,Dc(n−2)/nµc1/n , . . . , Dc1/nµc1/n , µc1/n ,

form a null-array. Since cj/n ∈ ]0, 1[ for any j in {1, 2, . . . , n − 1}, this is the
case if and only if µc1/n

w→ δ0, as n → ∞. But since c1/n → 1, as n → ∞,
Lemma 4.24 guarantees the validity of the latter assertion. ��

4.7 Free Lévy Processes

Let (A, τ) be a W ∗-probability space acting on a Hilbert space H (see Sec-
tion 4.1 and the Appendix). By a (stochastic) process affiliated with A, we
shall simply mean a family (Zt)t∈[0,∞[ of selfadjoint operators in A, which
is indexed by the non-negative reals. For such a process (Zt), we let µt de-
note the (spectral) distribution of Zt, i.e. µt = L{Zt}. We refer to the family
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(µt) of probability measures on R as the family of marginal distributions of
(Zt). Moreover, if s, t ∈ [0,∞[, such that s < t, then Zt − Zs is again a
selfadjoint operator in A (see the Appendix), and we may consider its distri-
bution µs,t = L{Zt − Zs}. We refer to the family (µs,t)0≤s<t as the family of
increment distributions of (Zt).

Definition 4.27. A free Lévy process (in law), affiliated with a W ∗-probability
space (A, τ), is a process (Zt)t≥0 of selfadjoint operators in A, which satisfies
the following conditions:

(i) whenever n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the increments

Zt0 , Zt1 − Zt0 , Zt2 − Zt1 , . . . , Ztn − Ztn−1 ,

are freely independent random variables.
(ii) Z0 = 0.
(iii) for any s, t in [0,∞[, the (spectral) distribution of Zs+t − Zs does not

depend on s.
(iv) for any s in [0,∞[, Zs+t − Zs → 0 in distribution, as t → 0, i.e. the

spectral distributions L{Zs+t − Zs} converge weakly to δ0, as t→ 0.

Note that under the assumption of (ii) and (iii) in the definition above,
condition (iv) is equivalent to saying that Zt → 0 in distribution, as t↘ 0.

Remark 4.28. (Free additive processes I) A process (Zt) of selfadjoint op-
erators in A, which satisfies conditions (i), (ii) and (iv) of Definition 4.27, is
called a free additive process (in law). Given such a process (Zt), let, as above,
µs = L{Zs} and µs,t = L{Zt − Zs}, whenever 0 ≤ s < t. It follows then that
whenever 0 ≤ r < s < t, we have

µs = µr � µr,s and µr,t = µr,s � µs,t, (4.21)

and furthermore
µs+t,s

w−→ δ0, as t→ 0, (4.22)

for any s in [0,∞[.
Conversely, given any family {µt | t ≥ 0}∪{µs,t | 0 ≤ s < t} of probability

measures on R, such that (4.21) and (4.22) are satisfied, there exists a free
additive process (in law) (Zt) affiliated with a W ∗-probability space (A, τ),
such that µs = L{Zs} and µs,t = L{Zt−Zs}, whenever 0 ≤ s < t. In fact, for
any families (µt) and (µs,t) satisfying condition (4.21), there exists a process
(Zt) affiliated with some W ∗-probability space (A, τ), such that conditions
(i) and (ii) in Definition 4.27 are satisfied, and such that µs = L{Zs} and
µs,t = L{Zt−Zs}. This was noted in [Bi98] and [Vo98] (see also Remark 6.29
below). Note that with the notation introduced above, the free Lévy processes
(in law) are exactly those free additive processes (in law), for which µs,t = µt−s
for all s, t such that 0 ≤ s < t. In this case the condition (4.21) simplifies to
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µt = µs � µt−s, (0 ≤ s < t). (4.23)

In particular, for any family (µt) of probability measures on R, such that
(4.23) is satisfied, and such that µt

w→ δ0 as t ↘ 0, there exists a free Lévy
process (in law) (Zt), such that µt = L{Zt} for all t.

Consider now a free Lévy process (Zt)t≥0, with marginal distributions (µt).
As for (classical) Lévy processes, it follows then, that each µt is necessarily
�-infinitely divisible. Indeed, for any n in N we have:

Zt =
n∑

j=1

(Zjt/n − Z(j−1)t/n),

and thus, in view of conditions (i) and (iii) in Definition 4.27,

µt = µt/n � · · ·� µt/n (n terms).

5 Connections between Free
and Classical Infinite Divisibility

An important connection between free and classical infinite divisibility was
established by Bercovici and Pata, in the form of a bijection Λ from the class
of classical infinitely divisible laws to the class of free infinitely divisible laws.
The mapping Υ of Section 3.2 embodies a direct version of the Bercovici-
Pata bijection and shows rather surprisingly that, in a sense, the class of
free infinitely divisible laws corresponds to a regular subset of the class of
all classical infinitely divisible laws. The mapping Λ also give rise to a direct
connection between the classical and the free Lévy processes, as discussed at
the end of the section.

5.1 The Bercovici-Pata Bijection Λ

The bijection to be defined next was introduced by Bercovici and Pata in
[BePa99].

Definition 5.1. By the Bercovici-Pata bijection Λ : ID(∗) → ID(�) we de-
note the mapping defined as follows: Let µ be a measure in ID(∗), and con-
sider its generating pair (γ, σ) (see formula (2.1)). Then Λ(µ) is the measure
in ID(�) that has (γ, σ) as free generating pair (see Definition 4.15).

Since the ∗-infinitely divisible (respectively �-infinitely divisible) proba-
bility measures on R are exactly those measures that have a (unique) Lévy-
Khintchine representation (respectively free Lévy-Khintchine representation),
it follows immediately that Λ is a (well-defined) bijection between ID(∗) and
ID(�). In terms of characteristic triplets, the Bercovici-Pata bijection may
be characterized as follows.
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Proposition 5.2. If µ is a measure in ID(∗) with (classical) characteristic
triplet (a, ρ, η), then Λ(µ) has free characteristic triplet (a, ρ, η) (cf. Proposi-
tion 4.16).

Proof. Suppose µ ∈ ID(∗) with generating pair (γ, σ) and characteristic
triplet (a, ρ, η), the relationship between which is given by (2.3). Then, by
definition of Λ, Λ(µ) has free generating pair (γ, σ), and the calculations in
the proof of Proposition 4.16 (with ν replaced by Λ(µ)) show that Λ(µ) has
free characteristic triplet (a, ρ, η). ��

Example 5.3. (a) Let µ be the standard Gaussian distribution, i.e.

µ(dx) =
1√
2π

exp(− 1
2x

2) dx.

Then Λ(µ) is the semi-circle distribution, i.e.

Λ(µ)(dx) =
1
2π

√
4− x2 · 1[−2,2](x) dx.

(b) Let µ be the classical Poisson distribution Poiss∗(λ) with mean λ > 0, i.e.

µ({n}) = e−λ
λn

n!
, (n ∈ N0).

Then Λ(µ) is the free Poisson distribution Poiss�(λ) with mean λ, i.e.

Λ(µ)(dx) =





(1− λ)δ0 + 1

2πx

√
(x− a)(b− x) · 1[a,b](x) dx, if 0≤λ ≤ 1,

1
2πx

√
(x− a)(b− x) · 1[a,b](x) dx, if λ > 1,

where a = (1−
√
λ)2 and b = (1 +

√
λ)2.

Remark 5.4 (Cumulants II). Let µ be a compactly supported probability
measure in ID(∗), and consider its sequence (cn) of classical cumulants (cf.
Remark 4.13). Then the Bercovici-Pata bijection Λ may also be defined as the
mapping that sends µ to the probability measure on R with free cumulants
(cn). In other words, the free cumulants for Λ(µ) are the classical cumulants
for µ. This fact was noted by M. Anshelevich in [An01, Lemma 6.5]. In view
of the theory of free cumulants for several variables (cf. Remark 4.13), this
point of view might be used to generalize the Bercovici-Pata bijection to
multidimensional probability measures.

5.2 Connection between Υ and Λ

The starting point of this section is the following observation that links the
Bercovici-Pata bijection Λ to the Υ -transformation of Section 3.
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Theorem 5.5. For any µ ∈ ID(∗) we have

CΥ (µ)(ζ) = CΛ(µ)(iζ) =
∫ ∞

0

Cµ(ζx)e−x dx, (ζ ∈ ]−∞, 0[). (5.1)

Proof. These identities follow immediately by combining Proposition 5.2,
Proposition 4.16, Theorem 3.16 and Theorem 3.17. ��
Remark 5.6. Theorem 5.5 shows, in particular, that any free cumulant func-
tion of an element in ID(�) is, in fact, identical to a classical cumulant
function of an element of ID(∗). The second equality in (5.1) provides an
alternative, more direct, way of passing from the measure µ to its free coun-
terpart, Λ(µ), without passing through the Lévy-Khintchine representations.
This way is often quite effective, when it comes to calculating Λ(µ) for specific
examples of µ. Taking Theorem 3.43 into account, we note that for any mea-
sure µ in ID(∗), the free cumulant transform of the measure Λ(µ) is equal to
the classical cumulant transform of the stochastic integral

∫ 1

0
− log(1− t) dXt,

where (Xt) is a classical Lévy process (in law), such that L{X1} = µ.

In analogy with the proof of Proposition 3.38, The second equality in (5.1)
provides an easy proof of the following algebraic properties of Λ:

Theorem 5.7. The Bercovici-Pata bijection Λ : ID(∗)→ ID(�), has the fol-
lowing (algebraic) properties:

(i) If µ1, µ2 ∈ ID(∗), then Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2).
(ii) If µ ∈ ID(∗) and c ∈ R, then Λ(Dcµ) = DcΛ(µ).
(iii) For any constant c in R, we have Λ(δc) = δc.

Proof. The proof is similar to that of Proposition 3.38. Indeed, property (ii),
say, may be proved as follows: For µ in ID(∗) and ζ in ]−∞, 0[, we have

CΛ(Dcµ)(iζ) =
∫

R

CDcµ(ζx)e−x dx =
∫

R

Cµ(cζx)e−x dx

= CΛ(µ)(icζ) = CDcΛ(µ)(iζ),

and the result then follows from uniqueness of analytic continuation. ��
Corollary 5.8. The bijection Λ : ID(∗) → ID(�) is invariant under affine
transformations, i.e. if µ ∈ ID(∗) and ψ : R→ R is an affine transformation,
then

Λ(ψ(µ)) = ψ(Λ(µ)).

Proof. Let ψ : R→ R be an affine transformation, i.e. ψ(t) = ct + d, (t ∈ R),
for some constants c, d in R. Then for a probability measure µ on R, ψ(µ) =
Dcµ ∗ δd, and also ψ(µ) = Dcµ � δd. Assume now that µ ∈ ID(∗). Then by
Theorem 5.7,

Λ(ψ(µ)) = Λ(Dcµ ∗ δd) = DcΛ(µ) � Λ(δd) = DcΛ(µ) � δd = ψ(Λ(µ)),

as desired. ��
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As a consequence of the corollary above, we get a short proof of the fol-
lowing result, which was proved by Bercovici and Pata in [BePa99].

Corollary 5.9 ([BePa99]). The bijection Λ : ID(∗) → ID(�) maps the ∗-
stable probability measures on R onto the �-stable probability measures on
R.

Proof. Assume that µ is a ∗-stable probability measure on R, and let ψ1, ψ2 :
R → R be increasing affine transformations on R. Then ψ1(µ) ∗ ψ2(µ) =
ψ3(µ), for yet another increasing affine transformation ψ3 : R → R. Now by
Corollary 5.8 and Theorem 5.7(i),

ψ1(Λ(µ)) � ψ2(Λ(µ)) = Λ(ψ1(µ)) � Λ(ψ2(µ)) = Λ(ψ1(µ) ∗ ψ2(µ))

= Λ(ψ3(µ)) = ψ3(Λ(µ)),

which shows that Λ(µ) is �-stable.
The same line of argument shows that µ is ∗-stable, if Λ(µ) is �-stable. ��

Corollary 5.10. Let µ be a ∗-selfdecomposable probability measure on R and
let (µc)c∈]0,1[ be the family of probability measures on R defined by the equa-
tion:

µ = Dcµ ∗ µc.
Then, for any c in ]0, 1[, we have the decomposition:

Λ(µ) = DcΛ(µ) � Λ(µc). (5.2)

Consequently, a probability measure µ on R is ∗-selfdecomposable, if and only
if Λ(µ) is �-selfdecomposable, and thus the bijection Λ : ID(∗)→ ID(�) maps
the class L(∗) of ∗-selfdecomposable probability measures onto the class L(�)
of �-selfdecomposable probability measures.

Proof. For any c in ]0, 1[, the measures Dcµ and µc are both ∗-infinitely di-
visible (see Section 2.5), and hence, by (i) and (ii) of Theorem 5.7,

Λ(µ) = Λ(Dcµ ∗ µc) = DcΛ(µ) � Λ(µc).

Since this holds for all c in ]0, 1[, it follows that Λ(µ) is �-selfdecomposable.
Assume conversely that µ′ is a �-selfdecomposable probability measure on

R, and let (µ′
c)c∈]0,1[ be the family of probability measures on R defined by:

µ′ = Dcµ
′ � µ′

c.

By Theorem 4.25 and Proposition 4.26, µ′, µ′
c ∈ ID(�), so we may con-

sider the ∗-infinitely divisible probability measures µ := Λ−1(µ′) and µc :=
Λ−1(µ′

c). Then by (i) and (ii) of Theorem 5.7,

µ = Λ−1(µ′) = Λ−1(Dc(µ′) � µ′
c) = Λ−1(DcΛ(µ) � Λ(µc))

= Λ−1(Λ(Dcµ ∗ µc)) = Dcµ ∗ µc.

Since this holds for any c in ]0, 1[, µ is ∗-selfdecomposable. ��
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To summarize, we note that the Bercovici-Pata bijection Λ maps each of
the classes G(∗),S(∗),L(∗), ID(∗) in the hierarchy (2.13) onto the correspond-
ing free class in (4.9).

Remark 5.11. Above we have discussed the free analogues of the classical sta-
ble and selfdecomposable laws, defining the free versions via free convolution
properties. Alternatively, one may define the classes of free stable and free
selfdecomposable laws in terms of monotonicity properties of the associated
Lévy measures, simply using the same characterizations as those holding in
the classical case, see Section 2.5. The same approach leads to free analogues
R(�), T (�) and B(�) of the classes R(∗), T (∗) and B(∗). We shall however
not study these latter analogues here.

Remark 5.12. We end this section by mentioning the possible connection be-
tween the mapping Υα, introduced in Section 3.4, and the notion of α-
probability theory (usually denoted q-deformed probability). For each q in
[−1, 1], the so called q-deformed probability theory has been developed by
a number of authors (see e.g. [BoSp91] and [Ni95]). For q = 0, this corre-
sponds to Voiculescu’s free probability and for q = 1 to classical probability.
Since the right hand side of (3.60) interpolates correspondingly between the
free and classical Lévy-Khintchine representations, one may speculate whether
the right hand side of (3.60) (for α = q) might be interpreted as a kind of
Lévy-Khintchine representation for the q-analogue of the cumulant transform
(see [Ni95]).

5.3 Topological Properties of Λ

In this section, we study some topological properties of Λ. The key result is the
following theorem, which is the free analogue of a result due to B.V. Gnedenko
(cf. [GnKo68, §19, Theorem 1]).

Theorem 5.13. Let µ be a measure in ID(�), and let (µn) be a sequence of
measures in ID(�). For each n, let (γn, σn) be the free generating pair for
µn, and let (γ, σ) be the free generating pair for µ. Then the following two
conditions are equivalent:

(i) µn
w→ µ, as n→∞.

(ii) γn → γ and σn
w→ σ, as n→∞.

Proof. (ii) ⇒ (i): Assume that (ii) holds. By Theorem 4.12 it is sufficient to
show that

(a) φµn
(iy)→ φ(iy), as n→∞, for all y in ]0,∞[.

(b) sup
n∈N

∣∣∣
φµn

(iy)
y

∣∣∣→ 0, as y →∞.
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Regarding (a), note that for any y in ]0,∞[, the function t �→ 1+tiy
iy−t , t ∈ R,

is continuous and bounded. Therefore, by the assumptions in (ii),

φµn
(iy) = γn +

∫

R

1 + tiy
iy − t

σn(dt) −→
n→∞

γ +
∫

R

1 + tiy
iy − t

σ(dt) = φµ(iy).

Turning then to (b), note that for n in N and y in ]0,∞[,

φµn
(iy)
y

=
γn
y

+
∫

R

1 + tiy
y(iy − t)

σn(dt).

Since the sequence (γn) is, in particular, bounded, it suffices thus to show that

sup
n∈N

∣∣∣
∫

R

1 + tiy
y(iy − t)

σn(dt)
∣∣∣→ 0, as y →∞. (5.3)

For this, note first that since σn
w→ σ, as n → ∞, and since σ(R) < ∞, it

follows by standard techniques that the family {σn | n ∈ N} is tight (cf. [Br92,
Corollary 8.11]).

Note next, that for any t in R and any y in ]0,∞[,

∣∣∣
1 + tiy
y(iy − t)

∣∣∣ ≤ 1
y(y2 + t2)1/2

+
|t|

(y2 + t2)1/2
.

From this estimate it follows that

sup
y∈[1,∞[,t∈R

∣∣∣
1 + tiy
y(iy − t)

∣∣∣ ≤ 2,

and that for any N in N and y in [1,∞[,

sup
t∈[−N,N ]

∣∣∣
1 + tiy
y(iy − t)

∣∣∣ ≤ N + 1
y

.

From the two estimates above, it follows that for any N in N, and any y in
[1,∞[, we have

sup
n∈N

∣∣∣
∫

R

1 + tiy
y(iy − t)

σn(dt)
∣∣∣ ≤ N + 1

y
sup
n∈N

σn([−N,N ]) + 2 · sup
n∈N

σn([−N,N ]c)

≤ N + 1
y

sup
n∈N

σn(R) + 2 · sup
n∈N

σn([−N,N ]c).

(5.4)

Now, given ε in ]0,∞[ we may, since {σn | n ∈ N} is tight, choose N in N, such
that supn∈N σn([−N,N ]c) ≤ ε

4 . Moreover, since σn
w→ σ and σ(R) < ∞, the

sequence {σn(R) | n ∈ N} is, in particular, bounded, and hence, for the chosen
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N , we may subsequently choose y0 in [1,∞[, such that N+1
y0

supn∈N σn(R) ≤ ε
2 .

Using then the estimate in (5.4), it follows that

sup
n∈N

∣∣∣
∫

R

1 + tiy
y(iy − t)

σn(dt)
∣∣∣ ≤ ε,

whenever y ≥ y0. This verifies (5.3).
(i)⇒ (ii): Suppose that µn

w→ µ, as n→∞. Then by Theorem 4.12, there
exists a number M in ]0,∞[, such that

(c) ∀y ∈ [M,∞[ : φµn
(iy)→ φµ(iy), as n→∞.

(d) sup
n∈N

∣∣∣
φµn

(iy)
y

∣∣∣→ 0, as y →∞.

We show first that the family {σn | n ∈ N} is conditionally compact
w.r.t. weak convergence, i.e. that any subsequence (σn′) has a subsequence
(σn′′), which converges weakly to some finite measure σ∗ on R. By [GnKo68,
§9, Theorem 3 bis], it suffices, for this, to show that {σn | n ∈ N} is tight,
and that {σn(R) | n ∈ N} is bounded. The key step in the argument is the
following observation: For any n in N and any y in ]0,∞[, we have,

−Imφµn
(iy) = −Im

(
γn +

∫

R

1 + tiy
iy − t

σn(dt)
)

= −Im
(∫

R

1 + tiy
iy − t

σn(dt)
)

= y

∫

R

1 + t2

y2 + t2
σn(dt).

(5.5)

We show now that {σn | n ∈ N} is tight. For fixed y in ]0,∞[, note that

{t ∈ R | |t| ≥ y} ⊆
{
t ∈ R | 1+t2

y2+t2 ≥
1
2

}
,

so that, for any n in N,

σn({t ∈ R | |t| ≥ y}) ≤ 2
∫

R

1 + t2

y2 + t2
σn(dt) = −2Im

(φµn
(iy)
y

)
≤ 2

∣∣∣
φµn

(iy)
y

∣∣∣.

Combining this estimate with (d), it follows immediately that {σn | n ∈ N} is
tight.

We show next that the sequence {σn(R) | n ∈ N} is bounded. For this,
note first that with M as in (c), there exists a constant c in ]0,∞[, such that

c ≤ M(1 + t2)
M2 + t2

, for all t in R.

It follows then, by (5.5), that for any n in N,

cσn(R) ≤
∫

R

M(1 + t2)
M2 + t2

σn(dt) = −Imφµn
(iM),
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and therefore by (c),

lim sup
n→∞

σn(R) ≤ lim sup
n→∞

{
− c−1 · Imφµn

(iM)
}

= −c−1 · Imφµ(iM) <∞,

which shows that {σn(R) | n ∈ N} is bounded.
Having established that the family {σn | n ∈ N} is conditionally compact,

recall next from Remark 2.3, that in order to show that σn
w→ σ, it suffices to

show that any subsequence (σn′) has a subsequence, which converges weakly to
σ. A similar argument works, of course, to show that γn → γ. So consider any
subsequence (γn′ , σn′) of the sequence of generating pairs. Since {σn | n ∈ N}
is conditionally compact, there is a subsequence (n′′) of (n′), such that the
sequence (σn′′) is weakly convergent to some finite measure σ∗ on R. Since
the function t �→ 1+tiy

iy−t is continuous and bounded for any y in ]0,∞[, we know
then that ∫

R

1 + tiy
iy − t

σn′′(dt) −→
n→∞

∫

R

1 + tiy
iy − t

σ∗(dt),

for any y in ]0,∞[. At the same time, we know from (c) that

γn′′ +
∫

R

1 + tiy
iy − t

σn′′(dt) = φµn′′ (iy) −→
n→∞

φµ(iy) = γ +
∫

R

1 + tiy
iy − t

σ(dt),

for any y in [M,∞[. From these observations, it follows that the sequence
(γn′′) must converge to some real number γ∗, which then has to satisfy the
identity:

γ∗ +
∫

R

1 + tiy
iy − t

σ∗(dt) = φµ(iy) = γ +
∫

R

1 + tiy
iy − t

σ(dt),

for all y in [M,∞[. By uniqueness of the free Lévy-Khintchine representation
(cf. Theorem 4.14) and uniqueness of analytic continuation, it follows that
we must have σ∗ = σ and γ∗ = γ. We have thus verified the existence of a
subsequence (γn′′ , σn′′) which converges (coordinate-wise) to (γ, σ), and that
was our objective. ��

As an immediate consequence of Theorem 5.13 and the corresponding
result in classical probability, we get the following

Corollary 5.14. The Bercovici-Pata bijection Λ : ID(∗)→ ID(�) is a home-
omorphism w.r.t. weak convergence. In other words, if µ is a measure in ID(∗)
and (µn) is a sequence of measures in ID(∗), then µn

w→ µ, as n→∞, if and
only if Λ(µn)

w→ Λ(µ), as n→∞.

Proof. Let (γ, σ) be the generating pair for µ and, for each n, let (γn, σn) be
the generating pair for µn.

Assume first that µn
w→ µ. Then by [GnKo68, §19, Theorem 1], γn → γ

and σn
w→ σ. Since (γn, σn) (respectively (γ, σ)) is the free generating pair for

Λ(µn) (respectively Λ(µ)), it follows then from Theorem 5.13 that Λ(µn)
w→

Λ(µ).
The same argument applies to the converse implication. ��
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We end this section by presenting the announced proof of property (v)
in Theorem 3.18. The proof follows easily by combining Theorem 5.5 and
Theorem 5.13.

Proof of Theorem 3.18(v).

Let µ, µ1, µ2, µ3, . . ., be probability measures in ID(∗), such that µn
w→ µ,

as n → ∞. We need to show that Υ (µn)
w→ Υ (µ) as n → ∞. Since Λ is

continuous w.r.t. weak convergence, Λ(µn)
w→ Λ(µ), as n → ∞, and this

implies that CΛ(µn)(iζ)→ CΛ(µ)(iζ), as n→∞, for any ζ in ]−∞, 0[ (use e.g.
Theorem 5.13). Thus,

CΥ (µn)(ζ) = CΛ(µn)(iζ) −→
n→∞

CΛ(µ)(iζ) = CΥ (µ)(ζ),

for any negative number ζ, and hence also fΥ (µn)(ζ) = exp(CΥ (µn)(ζ)) →
exp(CΥ (µ)(ζ)) = fΥ (µ)(ζ), as n → ∞, for such ζ. Applying now complex
conjugation, it follows that fΥ (µn)(ζ) → fΥ (µ)(ζ), as n → ∞, for any (non-
zero) ζ, and this means that Υ (µn)

w→ Υ (µ), as n→∞. ��

5.4 Classical vs. Free Lévy Processes

Consider now a free Lévy process (Zt)t≥0, with marginal distributions (µt).
As for (classical) Lévy processes, it follows then, that each µt is necessarily
�-infinitely divisible. Indeed, for any n in N we have: Zt =

∑n
j=1(Zjt/n −

Z(j−1)t/n), and thus, in view of conditions (i) and (iii) in Definition 4.27,
µt = µt/n�· · ·�µt/n (n terms). From the observation just made, it follows that
the Bercovici-Pata bijection Λ : ID(∗)→ ID(�) gives rise to a correspondence
between classical and free Lévy processes:

Proposition 5.15. Let (Zt)t≥0 be a free Lévy process (in law) affiliated with
a W ∗-probability space (A, τ), and with marginal distributions (µt). Then
there exists a (classical) Lévy process (Xt)t≥0, with marginal distributions
(Λ−1(µt)).

Conversely, for any (classical) Lévy process (Xt) with marginal distribu-
tions (µt), there exists a free Lévy process (in law) (Zt) with marginal distri-
butions (Λ(µt)).

Proof. Consider a free Lévy process (in law) (Zt) with marginal distributions
(µt). Then, as noted above, µt ∈ ID(�) for all t, and hence we may define
µ′
t = Λ−1(µt), t ≥ 0. Then, whenever 0 ≤ s < t,

µ′
t = Λ−1(µs � µt−s) = Λ−1(µs) ∗ Λ−1(µt−s) = µ′

s ∗ µ′
t−s.

Hence, by the Kolmogorov Extension Theorem (cf. [Sa99, Theorem 1.8]), there
exists a (classical) stochastic process (Xt) (defined on some probability space
(Ω,F , P )), with marginal distributions (µ′

t), and which satisfies conditions
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(i)-(iii) of Definition 2.2. Regarding condition (iv), note that since (Zt) is a
free Lévy process, µt

w→ δ0 as t ↘ 0, and hence, by continuity of Λ−1 (cf.
Corollary 5.14),

µ′
t = Λ−1(µt)

w→ Λ−1(δ0) = δ0, as t↘ 0.

Thus, (Xt) is a (classical) Lévy process in law, and hence we can find a
modification of (Xt) which is a genuine Lévy process.

The second statement of the proposition follows by a similar argument,
using Λ rather than Λ−1, and that the marginal distributions of a classical
Lévy process are necessarily ∗-infinitely divisible. Furthermore, we have to call
upon the existence statement for free Lévy processes (in law) in Remark 4.28.

��

Example 5.16. The free Brownian motion is the free Lévy process (in law),
(Wt)t≥0, which corresponds to the classical Brownian motion, (Bt)t≥0, via the
correspondence described in Proposition 5.15. In particular (cf. Example 5.3),

L{Wt}(ds) =
1

2πt

√
4t− s2 · 1[−

√
4t,

√
4t](s) ds, (t > 0).

Remark 5.17. (Free additive processes II) Though our main objectives in
this section are free Lévy processes, we mention, for completeness, that the
Bercovici-Pata bijection Λ also gives rise to a correspondence between classical
and free additive processes (in law). Thus, to any classical additive process (in
law), with corresponding marginal distributions (µt) and increment distribu-
tions (µs,t)0≤s<t, there corresponds a free additive process (in law), with mar-
ginal distributions (Λ(µt)) and increment distributions (Λ(µs,t))0≤s<t. And
vice versa.

This follows by the same method as used in the proof of Proposition 5.15
above, once it has been established that for a free additive process (in law)
(Zt), the distributions µt = L{Zt} and µs,t = L{Zt − Zs}, 0 ≤ s < t, are
necessarily �-infinitely divisible (for the corresponding classical result, see
[Sa99, Theorem 9.1]). The key to this result is Theorem 4.18, together with
the fact that (Zt) is actually uniformly stochastically continuous on com-
pact intervals, in the following sense: For any compact interval [0, b] in [0,∞[,
and for any positive numbers ε, ρ, there exists a positive number δ such that
µs,t(R \ [−ε, ε]) < ρ, for any s, t in [0, b], for which s < t < s + δ. As in the
classical case, this follows from condition (iv) in Definition 4.27, by a standard
compactness argument (see [Sa99, Lemma 9.6]). Now for any t in [0,∞[ and
any n in N, we have (cf. (4.21)),

µt = µ0,t/n � µt/n,2t/n � µ2t/n,3t/n � · · ·� µ(n−1)t/n,t. (5.6)

Since (Zt) is uniformly stochastically continuous on [0, t], it follows that the
family {µ(j−1)t/n,jt/n | n ∈ N, 1 ≤ j ≤ n} is a null-array, and hence, by
Theorem 4.18, (5.6) implies that µt is �-infinitely divisible. Applying then
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this fact to the free additive process (in law) (Zt−Zs)t≥s, it follows that also
µs,t is �-infinitely divisible whenever 0 ≤ s < t.

Remark 5.18. (An alternative concept of free Lévy processes) For a
classical Lévy process (Xt), condition (iii) in Definition 2.2 is equivalent to the
condition that whenever 0 ≤ s < t, the conditional distribution Prob(Xt | Xs)
depends only on t− s. Conditional probabilities in free probability were stud-
ied by Biane in [Bi98], and he noted, in particular, that in the free case, the
condition just stated is not equivalent to condition (iii) in Definition 4.27.
Consequently, in free probability there are two classes of stochastic processes,
that may naturally be called Lévy processes: The ones we defined in Defini-
tion 4.27 and the ones for which condition (iii) in Definition 4.27 is replaced
by the condition on the conditional distributions, mentioned above. In [Bi98]
these two types of processes were denoted FAL1 respectively FAL2. We should
mention here that in [Bi98], the assumption of stochastic continuity (condition
(iv) in Definition 4.27) was not included in the definitions of neither FAL1
nor FAL2. We have included that condition, primarily because it is crucial for
the definition of the stochastic integral to be constructed in the next section.

6 Free Stochastic Integration

In the classical setting, stochastic integration with respect to Lévy processes
and to Poisson random measures is of key importance. This Section establishes
base elements of a similar theory of free stochastic integration. As applications,
a representation of free selfdecomposable variates as stochastic integrals is
given and free OU processes are introduced. Furthermore, the free Lévy-Itô
decomposition is derived.

6.1 Stochastic Integrals w.r.t. free Lévy Processes

As mentioned in Section 2.3, if (Xt) is a classical Lévy process and f : [A,B]→
R is a continuous function defined on an interval [A,B] in [0,∞[, then the
stochastic integral

∫ B
A
f(t) dXt may be defined as the limit in probability of

approximating Riemann sums. More precisely, for each n in N, let Dn =
{tn,0, tn,1, . . . , tn,n} be a subdivision of [A,B], i.e.

A = tn,0 < tn,1 < · · · < tn,n = B.

Assume that
lim
n→∞

max
j=1,2,...,n

(tn,j − tn,j−1) = 0. (6.1)

Moreover, for each n, choose intermediate points:

t#n,j ∈ [tn,j−1, tn,j ], j = 1, 2, . . . , n. (6.2)
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Then the Riemann sums

Sn =
n∑

j=1

f(t#n,j) · (Xtn,j
−Xtn,j−1),

converge in probability, as n → ∞, to a random variable S. Moreover, this
random variable S does not depend on the choice of subdivisions Dn (satisfy-
ing (6.1)), nor on the choice of intermediate points t#n,j . Hence, it makes sense
to call S the stochastic integral of f over [A,B] w.r.t. (Xt), and we denote S
by

∫ B
A
f(t) dXt.

The construction just sketched depends, of course, heavily on the stochas-
tic continuity of the Lévy process in law (Xt) (condition (iv) in Definition 2.2).
A proof of the assertions made above can be found in [Lu75, Theorem 6.2.3].
We show next how the above construction carries over, via the Bercovici-Pata
bijection, to a corresponding stochastic integral w.r.t. free Lévy processes (in
law).

Theorem 6.1. Let (Zt) be a free Lévy process (in law), affiliated with a W ∗-
probability space (A, τ). Then for any compact interval [A,B] in [0,∞[ and
any continuous function f : [A,B] → R, the stochastic integral

∫ B
A
f(t) dZt

exists as the limit in probability (see Definition 4.3) of approximating Riemann
sums. More precisely, there exists a (unique) selfadjoint operator T affiliated
with (A, τ), such that for any sequence (Dn)n∈N of subdivisions of [A,B],
satisfying (6.1), and for any choice of intermediate points t#n,j, as in (6.2),
the corresponding Riemann sums

Tn =
n∑

j=1

f(t#n,j) · (Ztn,j
− Ztn,j−1),

converge in probability to T as n→∞. We call T the stochastic integral of f
over [A,B] w.r.t. (Zt), and denote it by

∫ B
A
f(t) dZt.

In the proof below, we shall use the notation:

∗rj=1µj := µ1 ∗ · · · ∗ µr and �r
j=1µj := µ1 � · · ·� µr,

for probability measures µ1, . . . , µr on R.

Proof of Theorem 6.1. Let (Dn)n∈N be a sequence of subdivisions of [A,B]
satisfying (6.1), let t#n,j be a family of intermediate points as in (6.2), and
consider, for each n, the corresponding Riemann sum:

Tn =
n∑

j=1

f(t#n,j) · (Ztn,j
− Ztn,j−1) ∈ A.

We show that (Tn) is a Cauchy sequence w.r.t. convergence in probability or,
equivalently, w.r.t. the measure topology (see the Appendix). Given any n,m
in N, we form the subdivision
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A = s0 < s1 < · · · < sp(n,m) = B,

which consists of the points in Dn ∪ Dm (so that p(n,m) ≤ n + m). Then,
for each j in {1, 2, . . . , p(n,m)}, we choose (in the obvious way) s#n,j in {t#n,k |
k = 1, 2, . . . , n} and s#m,j in {t#m,k | k = 1, 2, . . . ,m} such that

Tn =
p(n,m)∑

j=1

f(s#n,j) ·(Zsj
−Zsj−1) and Tm =

p(n,m)∑

j=1

f(s#m,j) ·(Zsj
−Zsj−1).

It follows then that

Tn − Tm =
p(n,m)∑

j=1

(
f(s#n,j)− f(s#m,j)

)
· (Zsj

− Zsj−1).

Let (µt) denote the family of marginal distributions of (Zt), and then con-
sider a classical Lévy process (Xt) with marginal distributions (Λ−1(µt)) (cf.
Proposition 5.15). For each n, form the Riemann sum

Sn =
n∑

j=1

f(t#n,j) · (Xtn,j
−Xtn,j−1),

corresponding to the same Dn and t#n,j as above. Then for any n,m in N, we
have also that

Sn − Sm =
p(n,m)∑

j=1

(
f(s#n,j)− f(s#m,j)

)
· (Xsj

−Xsj−1).

From this expression, it follows that

L{Sn − Sm} = ∗p(n,m)
j=1 Df(s#n,j)−f(s#m,j)

L{Xsj
−Xsj−1}

= ∗p(n,m)
j=1 Df(s#n,j)−f(s#m,j)

Λ−1(µsj−sj−1),

so that (by Theorem 5.7),

Λ(L{Sn − Sm}) = �p(n,m)
j=1 Df(s#n,j)−f(s#m,j)

µsj−sj−1

= L
{ p(n,m)∑

j=1

(
f(s#n,j)− f(s#m,j)

)
· (Zsj

− Zsj−1)
}

= L{Tn − Tm}.

We know from the classical theory (cf. [Lu75, Theorem 6.2.3]), that (Sn) is a
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L{Tn − Tm} = Λ(L{Sn − Sm}) w→ Λ(δ0) = δ0, as n,m→∞.

By Proposition A.8, this means that (Tn) is a Cauchy sequence w.r.t. the
measure topology, and since A is complete in the measure topology (Proposi-
tion A.5), there exists an operator T in A, such that Tn → T in the measure
topology, i.e. in probability. Since Tn is selfadjoint for each n (see the Appen-
dix) and since the adjoint operation is continuous w.r.t. the measure topology
(Proposition A.5), T is necessarily a selfadjoint operator.

It remains to show that the operator T , found above, does not depend
on the choice of subdivisions (Dn) or intermediate points t#n,j . Suppose thus
that (Tn) and (T ′

n) are two sequences of Riemann sums of the kind considered
above. Then by the argument given above, there exist operators T and T ′ in
A, such that Tn → T and T ′

n → T ′ in probability. Furthermore, if we consider
the “mixed sequence” T1, T

′
2, T3, T

′
4, . . ., then the corresponding sequence of

subdivisions also satisfies (6.1), and hence this mixed sequence also converges
in probability to an operator T ′′ in A. Since the mixed sequence has subse-
quences converging, in probability, to T and T ′ respectively, and since the
measure topology is a Hausdorff topology (cf. Proposition A.5), we may thus
conclude that T = T ′′ = T ′, as desired. ��

The stochastic integral
∫ B
A
f(t) dZt, introduced above, extends to continuous

functions f : [A,B]→ C in the usual way (the result being non-selfadjoint in
general). From the construction of

∫ B
A
f(t) dZt as the limit of approximating

Riemann sums, it follows immediately that whenever 0 ≤ A < B < C, we
have ∫ C

A
f(t) dZt =

∫ B
A
f(t) dZt +

∫ C
B
f(t) dZt,

for any continuous function f : [A,C] → C. Another consequence of the con-
struction, given in the proof above, is the following correspondence between
stochastic integrals w.r.t. classical and free Lévy processes (in law).

Corollary 6.2. Let (Xt) be a classical Lévy process with marginal distribu-
tions (µt), and let (Zt) be a corresponding free Lévy process (in law) with
marginal distributions (Λ(µt)) (cf. Proposition 5.15). Then for any compact
interval [A,B] in [0,∞[ and any continuous function f : [A,B] → R, the
distributions L{

∫ B
A
f(t) dXt} and L{

∫ B
A
f(t) dZt} are ∗-infinitely divisible

respectively �-infinitely divisible and, moreover

L
{∫ B
A
f(t) dZt

}
= Λ

[
L
{ ∫ B

A
f(t) dXt

}]
.

Proof. Let (Dn)n∈N be a sequence of subdivisions of [A,B] satisfying (6.1),
let t#n,j be a family of intermediate points as in (6.2), and consider, for each
n, the corresponding Riemann sums:

Sn =
n∑

j=1

f(t#n,j) · (Xtn,j
−Xtn,j−1) and Tn =

n∑

j=1

f(t#n,j) · (Ztn,j
− Ztn,j−1).
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Since convergence in probability implies convergence in distribution (Proposi-
tion A.9), it follows from [Lu75, Theorem 6.2.3] and Theorem 6.1 above, that
L{Sn} w→ L{

∫ B
A
f(t) dXt} and L{Tn} w→ L{

∫ B
A
f(t) dZt}. Since ID(∗) and

ID(�) are closed w.r.t. weak convergence (as noted in Section 4.5), it follows
thus that L{

∫ B
A
f(t) dXt} ∈ ID(∗) and L{

∫ B
A
f(t) dZt} ∈ ID(�). Moreover,

by Theorem 5.7, L{Tn} = Λ(L{Sn}), for each n in N, and hence the last
assertion follows by continuity of Λ. ��

6.2 Integral Representation of Freely Selfdecomposable Variates

As mentioned in Section 2.5, a (classical) random variable Y has distribution
in L(∗) if and only if it has a representation in law of the form

Y
d=
∫ ∞

0

e−t dXt, (6.3)

where (Xt)t≥0 is a (classical) Lévy process, satisfying the condition E[log(1+
|X1|)] < ∞. The aim of this section is to establish a similar correspondence
between selfadjoint operators with (spectral) distribution in L(�) and free
Lévy processes (in law).

The stochastic integral appearing in (6.3) is the limit in probability, as
R→∞, of the stochastic integrals

∫ R
0

e−t dXt, i.e. we have

∫ R

0

e−t dXt
p→
∫ ∞

0

e−t dXt, as R→∞,

(the convergence actually holds almost surely; see Proposition 6.3 below). The
stochastic integral

∫ R
0

e−t dXt is, in turn, defined as the limit of approximating
Riemann sums as described in Section 6.1

For a free Lévy process (Zt), we determine next under which conditions
the stochastic integral

∫∞
0

e−t dZt makes sense as the limit, for R→∞, of the
stochastic integrals

∫ R
0

e−t dZt, which are defined by virtue of Theorem 6.1.
Again, the result we obtain is derived by applications of the mapping Λ and
the following corresponding classical result:

Proposition 6.3 ([JuVe83]). Let (Xt) be a classical Lévy process defined on
some probability space (Ω,F , P ), and let (γ, σ) be the generating pair for the
∗-infinitely divisible probability measure L{X1}. Then the following conditions
are equivalent:

(i)
∫

R\]−1,1[
log(1 + |t|) σ(dt) <∞.

(ii)
∫ R
0

e−t dXt converges almost surely, as R→∞.
(iii)

∫ R
0

e−t dXt converges in distribution, as R→∞.
(iv) E[log(1 + |X1|)] <∞.
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Proof. This was proved in [JuVe83, Theorem 3.6.6]. We note, though, that in
[JuVe83], the measure σ in condition (i) is replaced by the Lévy measure ρ
appearing in the alternative Lévy-Khintchine representation (2.2) for L{X1}.
However, since ρ(dt) = 1+t2

t2 · 1R\{0}(t) σ(dt), it is clear that the integrals∫
R\]−1,1[

log(1 + |t|) ρ(dt) and
∫

R\]−1,1[
log(1 + |t|) σ(dt) are finite simultane-

ously. ��

Proposition 6.4. Let (Zt) be a free Lévy process (in law) affiliated with a
W ∗-probability space (A, τ), and let (γ, σ) be the free generating pair for the �-
infinitely divisible probability measure L{Z1}. Then the following statements
are equivalent:

(i)
∫

R\]−1,1[
log(1 + |t|) σ(dt) <∞.

(ii)
∫ R
0

e−t dZt converges in probability, as R→∞.
(iii)

∫ R
0

e−t dZt converges in distribution, as R→∞.

Proof. Let (µt) be the family of marginal distributions of (Zt) and consider
then a classical Lévy process (Xt) with marginal distributions (Λ−1(µt)) (cf.
Proposition 5.15). By the definition of Λ, it follows then that (γ, σ) is the
generating pair for the ∗-infinitely divisible probability measure L{X1}.

(i) ⇒ (ii): Assume that (i) holds. Then condition (i) in Proposition 6.3 is
satisfied for the classical Lévy process (Xt). Hence by (ii) of that proposition,∫ R
0

e−t dXt converges almost surely, and hence in probability, as R → ∞.
Consider now any increasing sequence (Rn) of positive numbers, such that
Rn ↗ ∞, as n → ∞. Then for any m,n in N such that m > n, we have by
Corollary 6.2

L
{ ∫ Rm

0
e−t dZt −

∫ Rn

0
e−t dZt

}
= L

{ ∫ Rm

Rn
e−t dZt

}
= Λ

[
L
{ ∫ Rm

Rn
e−t dXt

}]

= Λ
[
L
{ ∫ Rm

0
e−t dXt −

∫ Rn

0
e−t dXt

}]
.

(6.4)

Since the sequence (
∫ Rn

0
e−t dXt)n∈N is a Cauchy sequence with respect to

convergence in probability, it follows thus, by continuity of Λ, that so is the se-
quence (

∫ Rn

0
e−t dZt)n∈N. Hence, by Proposition A.5, there exists a selfadjoint

operator W affiliated with (A, τ), such that
∫ Rn

0
e−t dZt → W in probabil-

ity. It remains to argue that W does not depend on the sequence (Rn). This
follows, for example, as in the proof of Theorem 6.1, by considering, for two
given sequences (Rn) and (R′

n), a third increasing sequence (R′′
n), containing

infinitely many elements from both of the original sequences.
(ii) ⇒ (i): Assume that (ii) holds. It follows then by (6.4) and continuity

of Λ−1 that for any increasing sequence (Rn), as above, (
∫ Rn

0
e−t dXt) is a

Cauchy sequence w.r.t. convergence in probability. We deduce that (iii) of
Proposition 6.3 is satisfied for (Xt), and hence so is (i) of that proposition. By
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definition of (Xt), this means exactly that (i) of Proposition 6.4 is satisfied
for (Zt).

(ii) ⇒ (iii): This follows from Proposition A.9.
(iii)⇒(i): Suppose (iii) holds, and note that the limit distribution is nec-

essarily �-infinitely divisible. Now by Corollary 6.2 and continuity of Λ−1,
condition (iii) of Proposition 6.3 is satisfied for (Xt), and hence so is (i) of
that proposition. This means, again, that (i) in Proposition 6.4 is satisfied for
(Zt). ��

If (Zt) is a free Lévy process (in law) affiliated with (A, τ), such that (i)
of Proposition 6.4 is satisfied, then we denote by

∫∞
0

e−t dZt the selfadjoint
operator affiliated with (A, τ), to which

∫ R
0

e−t dZt converges, in probability,
as R → ∞. We note that L{

∫∞
0

e−t dZt} is �-infinitely divisible, and that
Corollary 6.2 and Proposition A.9 yield the following relation:

L
{ ∫∞

0
e−t dZt

}
= Λ

[
L
{ ∫∞

0
e−t dXt

}]
, (6.5)

where (Xt) is a classical Lévy process corresponding to (Zt) as in Proposi-
tion 5.15.

Theorem 6.5. Let y be a selfadjoint operator affiliated with a W ∗-probability
space (A, τ). Then the distribution of y is �-selfdecomposable if and only if y
has a representation in law in the form:

y
d=
∫ ∞

0

e−t dZt, (6.6)

for some free Lévy process (in law) (Zt) affiliated with some W ∗-probability
space (B, ψ), and satisfying condition (i) of Proposition 6.4.

Proof. Put µ = L{y}. Suppose first that µ is �-selfdecomposable and put
µ′ = Λ−1(µ). Then, by Corollary 5.10, µ′ is ∗-selfdecomposable, and hence by
the classical version of this theorem (cf. [JuVe83, Theorem 3.2]), there exists
a classical Lévy process (Xt) defined on some probability space (Ω,F , P ),
such that condition (i) in Proposition 6.3 is satisfied, and such that Λ−1(µ) =
L{

∫∞
0

e−t dXt}. Let (Zt) be a free Lévy process (in law) affiliated with some
W ∗-probability space (B, ψ), and corresponding to (Xt) as in Proposition 5.15.
Then, by definition of Λ, condition (i) in Proposition 6.4 is satisfied for (Zt)
and, by formula (6.5), L{

∫∞
0

e−t dZt} = µ.
Assume, conversely, that there exists a free Lévy process (in law) (Zt)

affiliated with some W ∗-probability space (B, ψ), such that condition (i) of
Proposition 6.4 is satisfied, and such that µ = L{

∫∞
0

e−t dZt}. Then consider
a classical Lévy process (Xt) defined on some probability space (Ω,F , P ), and
corresponding to (Zt) as in Proposition 5.15. Condition (i) in Proposition 6.3
is then satisfied for (Xt) and, by (6.5), Λ−1(µ) = L{

∫∞
0

e−t dXt}. Thus, by
the classical version of this theorem, Λ−1(µ) is ∗-selfdecomposable, and hence
µ is �-selfdecomposable. ��
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Remark 6.6 (Free OU processes). Let y be a selfadjoint operator affiliated
with some W ∗-probability space (A, τ), and assume that there exists a free
Lévy process (in law) (Zt) affiliated with some W ∗-probability space (B, ψ),
such that condition (i) of Proposition 6.4 is satisfied, and such that y

d=∫∞
0

e−t dZt. Note then, that for any positive numbers s, λ, we have
∫ ∞

0

e−t dZt =
∫ ∞

0

e−λt dZλt =
∫ ∞

s

e−λt dZλt +
∫ s

0

e−λt dZλt

= e−λs
∫ ∞

0

e−λt dZλ(s+t) +
∫ λs

0

e−t dZt,
(6.7)

where we have introduced integration w.r.t. the processes Vt = Zλt and Wt =
Zλ(s+t), t ≥ 0. The rules of transformation for stochastic integrals, used above,
are easily verified by considering the integrals as limits of Riemann sums. That
same point of view, together with the fact that (Zt) has freely independent
stationary increments (conditions (i) and (iii) in Definition 4.27), implies,
furthermore, that

∫∞
0

e−λt dZλ(s+t)
d=
∫∞
0

e−λt dZλt
d= y. Note also that the

two terms in the last expression of (6.7) are freely independent. Thus, (6.7)
shows, that for any positive numbers s, λ, we have a decomposition in the form:
y

d= e−λsy(λ, s)+u(λ, s), where y(λ, s) and u(λ, s) are freely independent, and
where y(λ, s) d= y. In particular, we have verified, directly, that L{y} is �-
selfdecomposable. Moreover, if we choose a selfadjoint operator Y0 affiliated
with (B, ψ), which is freely independent of (Zt), and such that L{Y0} = L{y}
(extend (B, ψ) if necessary), then the expression:

Ys = e−λsY0 +
∫ λs

0

e−t dZt, (s ≥ 0),

defines an operator valued stochastic process (Ys) affiliated with (B, ψ), sat-
isfying that Ys

d= y for all s. If we replace (Zt) above by a classical Lévy
process (Xt), satisfying condition (i) in Proposition 6.3, and let Y0 be a (clas-
sical) random variable, which is independent of (Xt), then the corresponding
process (Ys) is a solution to the stochastic differential equation:

dYs = −λYs ds+ dXλs,

and (Ys) is said to be a process of Ornstein-Uhlenbeck type or an OU process,
for short (cf. [BaSh01a],[BaSh01b] and references given there).

6.3 Free Poisson Random Measures

In this section, we introduce free Poisson random measures and prove their
existence. We mention in passing the related notions of free stochastic mea-
sures (cf. [An00]) and free white noise (cf. [Sp90]). We mention also that the
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existence of free Poisson random measures was established by Voiculescu in
[Vo98] in a different way than the one presented below. Recall, that for any
number λ in [0,∞[, we denote by Poiss�(λ) the free Poisson distribution with
mean λ (cf. Example 5.3).

Definition 6.7. Let (Θ, E , ν) be a measure space, and put

E0 = {E ∈ E | ν(E) <∞}.

Let further (A, τ) be a W ∗-probability space, and let A+ denote the cone of
positive operators in A. Then a free Poisson random measure on (Θ, E , ν) with
values in (A, τ), is a mapping M : E0 → A+, with the following properties:

(i) For any set E in E0, L{M(E)} = Poiss�(ν(E)).
(ii) If r ∈ N and E1, . . . , Er are disjoint sets from E0, then M(E1), . . . ,M(Er)

are freely independent operators.
(iii) If r ∈ N and E1, . . . , Er are disjoint sets from E0, then M(∪rj=1Ej) =∑r

j=1 M(Ej).

In the setting of Definition 6.7, the measure ν is called the intensity mea-
sure for the free Poisson random measure M . Note, in particular, that M(E)
is a bounded positive operator for all E in E0. The definition above might seem
a little “poor”compared to that of a classical Poisson random measure. The
following remark might offer a bit of consolation.

Remark 6.8. Suppose M is a free Poisson random measure on the measure
space (Θ, E , ν) with values in the W ∗-probability space (A, τ). Let further
(En) be a sequence of disjoint sets from E0. If we assume, in addition, that
∪j∈NEj ∈ E0, then we also have that

M
( ⋃

j∈N

Ej

)
=

∞∑

j=1

M(Ej),

where the right hand side should be understood as the limit in probability (see
Definition 4.3) of

∑n
j=1 M(Ej) as n→∞.

Indeed, put E = ∪j∈NEj , and assume that E ∈ E0. Then for any n in N,

M(E)−
n∑

j=1

M(Ej) = M(E)−M(∪nj=1Ej) = M(∪∞j=n+1Ej),

so that

L
{
M(E)−

n∑

j=1

M(Ej)
}

= Poiss�(ν(∪∞j=n+1Ej)
)

= Poiss�(∑∞
j=n+1 ν(Ej)

) w−→ δ0,

as n → ∞, since
∑∞
j=n+1 ν(Ej) → 0 as n → ∞, because

∑∞
j=1 ν(Ej) =

ν(E) <∞.
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The main purpose of the section is to prove the general existence of free
Poisson random measures.

Theorem 6.9. Let (Θ, E , ν) be a measure space. Then there exists a W ∗-
probability space (A, τ) and a free Poisson random measure M on (Θ, E , ν)
with values in (A, τ).

The proof of Theorem 6.9 is given in a series of lemmas. First of all, though,
we introduce some notation:

If µ1, µ2, . . . , µr are probability measures on R, we put (as in Section 6.1)

r∗
h=1

µh = µ1 ∗ µ2 ∗ · · · ∗ µr and
r

�
h=1

µh = µ1 � µ2 � · · ·� µr.

In the remaining part of this section, we consider the measure space (Θ, E , ν)
appearing in Theorem 6.9. Consider then the set

I =
⋃

k∈N

{(E1, . . . , Ek) | E1, . . . , Ek ∈ E0 \ {∅} and E1, . . . , Ek are disjoint},

where we think of (E1, . . . , Ek) merely as a collection of sets from E0. In par-
ticular, we identify (E1, . . . , Ek) with (Eπ(1), . . . , Eπ(k)) for any permutation
π of {1, 2, . . . , k}. We introduce, furthermore, a partial order ≤ on I by the
convention:

(E1, . . . , Ek) ≤ (F1, . . . , Fl) ⇐⇒ each Ei is a union of some of the Fj ’s.

Lemma 6.10. Given a tuple S = (E1, . . . , Ek) from I, there exists a W ∗-
probability space (AS , τS), which is generated by freely independent positive
operators MS(E1), . . . ,MS(Ek) from AS, satisfying that

L{MS(Ei)} = Poiss�(ν(Ei)), (i = 1, . . . , k).

Proof. This is an immediate consequence of Voiculescu’s theory of (reduced)
free products of von Neumann algebras (cf. [VoDyNi92]). Indeed, we may
take (AS , τS) to be the (reduced) von Neumann algebra free product of the
Abelian W ∗-probability spaces (L∞(R, µi),Eµi

), i = 1, . . . , k, where µi =
Poiss�(ν(Ei)) and Eµi

denotes expectation with respect to µi. ��

Lemma 6.11. Consider two elements S = (E1, . . . , Ek) and T = (F1, . . . , Fl)
of I, and suppose that S ≤ T . Consider the W ∗-probability spaces (AS , τS)
and (AT , τT ) given by Lemma 6.10. Then there exists an injective, unital,
normal ∗-homomorphism ιS,T : AS → AT , such that τS = τT ◦ ιS,T .

Proof. We adapt the notation from Lemma 6.10. For any fixed i in {1, . . . , k},
we have that Ei = Fj(i,1)∪· · ·∪Fj(i,li), for suitable (distinct) j(i, 1), . . . , j(i, li)
from {1, 2, . . . , l}. Note then that
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L
{
MT (Fj(i,1)) + · · ·+MT (Fj(i,li))

}
=

li
�
h=1

Poiss�(ν(Fj(i,h)))

= Poiss�(ν(Fj(i,1)) + · · ·+ ν(Fj(i,li))
)

= Poiss�(ν(Fj(i,1) ∪ · · · ∪ Fj(i,li))
)

= Poiss�(ν(Ei)) = L{MS(Ei)}.

In addition, MS(E1), . . . ,MS(Ek) are freely independent selfadjoint opera-
tors, and, similarly, the operators

∑li
h=1 MT (Fj(i,h)), i = 1, . . . , k are freely

independent and selfadjoint. Combining these observations with [Vo90, Re-
mark 1.8], it follows that there exists an injective, unital, normal ∗-homomor-
phism ιS,T : AS → AT , such that

ιS,T (MS(Ei)) = MT (Fj(i,1)) + · · ·+MT (Fj(i,li)), (i = 1, 2, . . . , r), (6.8)

and such that τS = τT ◦ ιS,T . ��

Lemma 6.12. Adapting the notation from Lemmas 6.10-6.11, the system

(AS , τS)S∈I , {ιS,T | S, T ∈ I, S ≤ T}, (6.9)

is a directed system of W ∗-algebras and injective, unital, normal ∗-homomor-
phisms (cf. [KaRi83, Section 11.4]).

Proof. Suppose thatR = (D1, . . . , Dm), S = (E1, . . . , Ek) and T = (F1, . . . , Fl)
are elements of I, such that R ≤ S ≤ T . We have to show that ιR,T =
ιS,T ◦ ιR,S . We may write (unambiguously),

Dh = Ei(h,1) ∪ · · · ∪Ei(h,kh), (h = 1, . . . ,m),

Ei = Fj(i,1) ∪ · · · ∪Ej(i,li), (i = 1, . . . , k),

for suitable i(h, 1), . . . , i(h, kh) in {1, 2, . . . , k} and j(i, 1), . . . , j(i, li) in
{1, 2, . . . , l}. Then for any h in {1, . . . ,m}, we have

Dh = Ei(h,1) ∪ · · · ∪Ei(h,kh) =
( li(h,1)⋃

r=1

Fj(i(h,1),r)

)
∪ · · · ∪

( li(h,kh)⋃

r=1

Fj(i(h,kh),r)

)

so that, by definition of ιR,T , ιR,S and ιS,T (cf. (6.8)),

ιR,T (Dh) =
li(h,1)∑

r=1

MT (Fj(i(h,1),r)) + · · ·+
li(h,kh)∑

r=1

MT (Fj(i(h,kh),r))

= ιS,T
[
MS(Ei(h,1))

]
+ · · ·+ ιS,T

[
MS(Ei(h,kh))

]

= ιS,T
[
MS(Ei(h,1)) + · · ·+MS(Ei(h,kh))

]

= ιS,T
[
ιR,S(Dh)

]
.
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Since AR is generated, as a von Neumann algebra, by the operators

MR(D1), . . . ,MR(Dm),

and since ιR,T and ιS,T ◦ιR,S are both normal ∗-homomorphisms, it follows by
Kaplansky’s density theorem (cf. [KaRi83, Theorem 5.3.5]) and the calculation
above that ιR,T = ιS,T ◦ ιR,S , as desired. ��

Lemma 6.13. Let A0 denote the C∗-inductive limit of the directed system
(6.9) and let ιS : AS → A0 denote the canonical embedding of AS into A0 (cf.
[KaRi83, Proposition 11.4.1]). Then there is a unique tracial state τ0 on A0,
satisfying that

τS = τ0 ◦ ιS , for all S in I. (6.10)

Proof. Recall that the canonical embeddings ιS : AS → A0 (S ∈ I) satisfy
the condition:

ιR = ιS ◦ ιR,S , whenever R,S ∈ I and R ≤ S.

We note first that (6.10) gives rise to a well-defined mapping τ0 on the set
A00 = ∪S∈IιS(AS). Indeed, suppose that ιS(a′) = ιT (a′′) for some S, T in I
and a′ ∈ AS , a′′ ∈ AT . We need to show that τS(a′) = τT (a′′). Let S ∨ T
denote the tuple in I consisting of all non-empty sets of the form E∩F , where
E ∈ S and F ∈ T . Note that S, T ≤ S ∨T . Since ιS = ιS∨T ◦ ιS,S∨T and ιT =
ιS∨T ◦ ιT,S∨T , it follows, by injectivity of ιS∨T , that ιS,S∨T (a′) = ιT,S∨T (a′′).
Hence, by Lemma 6.11,

τS(a′) = τS∨T ◦ ιS,S∨T (a′) = τS∨T ◦ ιT,S∨T (a′′) = τT (a′′),

as desired. Now, given a, b in A00, we can find S from I, such that a, b are
both in ιS(AS), and hence it follows immediately that τ0 is a linear tracial
functional on the vector space A00. Furthermore, if a = ιS(a′) for some a′ in
AS , then

|τ0(a)| = |τS(a′)| ≤ ‖a′‖ = ‖ιS(a′)‖ = ‖a‖,
so that τ0 is norm decreasing. Since A00 is norm dense in A0 (cf. [KaRi83,
Proposition 11.4.1]), if follows then that τ0 has a unique extension to a map-
ping τ0 : A0 → C, which is automatically linear, tracial and norm-decreasing.
In addition, τ0(111A0) = 1 = ‖τ0‖, so, altogether, it follows that τ0 is a tracial
state on A0, satisfying (6.10). ��

Lemma 6.14. Let (A0, τ0) be as in Lemma 6.13. There exists a mapping
M0 : E0 → A0

+, which satisfies conditions (i)-(iii) of Definition 6.7.

Proof. We define M0 by the equation:

M0(E) = ι{E}(M{E}(E)), (E ∈ E0).
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Then M0(E) is positive for each E in E0, since ι{E} is a ∗-homomorphism.
Note also that if E ∈ E0 and S ∈ I such that E ∈ S, then {E} ≤ S and

M0(E) = ι{E}(M{E}(E)) = ιS ◦ ι{E},S(M{E}(E)) = ιS(MS(E)). (6.11)

We now have

(i) For each E in E0, we have that τ{E} = τ0 ◦ ι{E}, and hence, since ι{E} is
a ∗-homomorphism, M{E}(E) and M0(E) have the same moments with
respect to τ{E} and τ0, respectively. Since both operators are bounded,
this implies that L{M0(E)} = L{M{E}(E)} = Poiss�(ν(E)).

(ii) Let E1, . . . , Ek be disjoint sets from E0 and consider the tuple S =
(E1, . . . , Ek) ∈ I. Then, since τS = τ0 ◦ ιS and ιS is a ∗-homomorphism,
we find, using (6.11),

τ0
(
M0(Ei1)M

0(Ei2) · · ·M0(Eip)
)

= τS
(
MS(Ei1)MS(Ei2) · · ·MS(Eip)

)
,

for any i1, . . . , ip in {1, 2, . . . , k}. Since MS(E1), . . . ,MS(Ek) are freely
independent, this implies that so are M0(E1), . . . ,M0(Ek).

(iii) Let E1, . . . , Ek be disjoint sets from E0, put E = ∪ki=1Ei and consider
the tuple S = (E1, . . . , Ek) ∈ I. Then, by definition of ι{E},S , we have

M0(E) = ι{E}(M{E}(E)) = ιS ◦ ι{E},S(M{E}(E))

= ιS
(
MS(E1) + · · ·+MS(Ek)

)

= ιS(MS(E1)) + · · ·+ ιS(MS(Ek))

= M0(E1) + · · ·+M0(Ek).

This concludes the proof. ��

Lemma 6.15. Let (A0, τ0) be as in Lemma 6.13, let Φ0 : A0 → B(H0) denote
the GNS representation9 of A0 associated to τ0, and let A be the closure of
Φ0(A0) in B(H0) with respect to the weak operator topology. Let, further, ξ0

denote the unit vector in H0, which corresponds to the unit 111A0 via the GNS-
construction, and let τ denote the vector state on A given by ξ0. Then (A, τ)
is a W ∗-probability space, and τ0 = τ ◦ Φ0.

Proof. It follows immediately from the GNS-construction that

τ0 = τ ◦ Φ0, (6.12)

so we only have to prove that τ is a faithful trace on A. To see that τ is a trace,
note that since τ0 is a trace, it follows from (6.12) that τ is a trace on the
weakly dense C∗-subalgebra Φ0(A0) ofA. Since the multiplication of operators

9GNS stands for Gelfand-Naimark-Segal; see [KaRi83, Theorem 4.5.2].
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is separately continuous in each variable in the weak operator topology, and
since τ is a vector state, we may subsequently conclude that τ(ab) = τ(ba)
whenever, say, a ∈ A and b ∈ Φ0(A0). Repeating the argument just given,
it follows that τ is a trace on all of A. This means, furthermore, that ξ0 is
a generating trace vector for A, and hence, by [KaRi83, Lemma 7.2.14], it is
also a generating trace vector for the commutant A′ ⊆ B(H0). This implies, in
particular, that ξ0 is separating for A (cf. [KaRi83, Corollary 5.5.12]), which,
in turn, implies that τ is faithful on A. ��

Proof of Theorem 6.9. Let Φ0 and (A, τ) be as in Lemma 6.15. We then
define the mapping M : E0 → A+ by setting

M(E) = Φ0(M0(E)), (E ∈ E0).

Now, Φ0 is a ∗-homomorphism and τ0 = τ ◦ Φ0, so Φ0 preserves all (mixed)
moments of the elements M0(E), E ∈ E0. Since M0 satisfies conditions (i)-(iii)
of Definition 6.7, it follows thus, using the same line of argumentation as in the
proof of Lemma 6.14, that M satisfies conditions (i)-(iii) too. Consequently,
M is a free Poisson random measure on (Θ, E , ν) with values in (A, τ). ��

6.4 Integration with Respect to Free Poisson Random Measures

Throughout this section, we consider a free Poisson random measure M on the
σ-finite measure space (Θ, E , ν) and with values in the W ∗-probability space
(A, τ). We consider also a classical Poisson random measure N on (Θ, E , ν)
defined on a classical probability space (Ω,F , P ). The aim of this section is
to establish a theory of integration with respect to M , making sense, thus, to
the integral

∫
Θ
f dM for any function f in L1(Θ, E , ν). As in most theories of

integration, we start by defining integration for simple ν-integrable functions.

Definition 6.16. Let s be a real-valued simple function in L1(Θ, E , ν), i.e. s
can be written, unambiguously, in the form

s =
r∑

j=1

aj1Ej
,

where r ∈ N, a1, . . . , ar are distinct numbers in R \ {0} and E1, . . . , Er are
disjoint sets from E0 (since s is ν-integrable). We then define the integral∫
Θ
sdM of s with respect to M as follows:

∫

Θ

sdM =
r∑

j=1

ajM(Ej) ∈ A.

Remark 6.17. (a) Since M(E) ∈ A+ for any E in E0, it follows immediately
from Definition 6.16 that

∫
Θ
sdM is a selfadjoint operator in A for any

real-valued simple function s in L1(Θ, E , µ).
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(b) Suppose s and t are real-valued simple functions in L1(Θ, E , ν) and that
c ∈ R. Then s + t and c · s are clearly simple functions too, and, using
standard arguments, it is not hard to see that
∫

Θ

(s+ t) dM =
∫

Θ

sdM +
∫

Θ

tdM, and
∫

Θ

c · sdM = c

∫

Θ

sdM.

(c) Consider now, in addition, the classical Poisson random measure N on
(Θ, E , ν), defined on (Ω,F , P ). Let, further, s be a real-valued simple
function in L1(Θ, E , ν). Then L{

∫
Θ
sdN} ∈ ID(∗), L{

∫
Θ
sdM} ∈ ID(�),

and
Λ
(
L
{∫

Θ

sdN
})

= L
{∫

Θ

sdM
}
,

where Λ is the Bercovici-Pata bijection. Indeed, we may write s in the form
s =

∑r
j=1 aj1Ej

, where r ∈ N, a1, . . . , ar are distinct numbers in R \ {0}
and E1, . . . , Er are disjoint sets from E0. Then, using the properties of Λ,
we find that

L
{∫

Θ

sdM
}

= L
{ r∑

j=1

ajM(Ej)
}

=
r
�
j=1

Daj
Poiss�(ν(Ej))

=
r
�
j=1

Daj
Λ
[
Poiss∗(ν(Ej))

]
= Λ

[
r∗
j=1

Daj
Poiss∗(ν(Ej))

]

= Λ
[
L
{ r∑

j=1

ajN(Ej)
}]

= Λ
[
L
{∫

Θ

sdN
}]
.

By L1(Θ, E , ν)+, we denote the set of positive functions from L1(Θ, E , ν).

Proposition 6.18. Let f be a real-valued function in L1(Θ, E , ν), and choose
a sequence (sn) of real-valued simple E-measurable functions, satisfying the
conditions:

∃h ∈ L1(Θ, E , ν)+ ∀θ ∈ Θ ∀n ∈ N : |sn(θ)| ≤ h(θ), (6.13)

and
lim
n→∞

sn(θ) = f(θ), (θ ∈ Θ). (6.14)

Then sn ∈ L1(Θ, E , ν) for all n, and the integrals
∫
Θ
sn dM converge in prob-

ability to a selfadjoint (possibly unbounded) operator I(f) affiliated with A.
Furthermore, the limit I(f) is independent of the choice of approximating

sequence (sn) of simple functions (subject to conditions (6.13) and (6.14)).

In condition (6.13), we might have taken h = |f |, but it is convenient to allow
for more general dominators.

Proof of Proposition 6.18. Let f , (sn) and h be as set out in the proposition.
Then, for any n in N,

∫
Θ
|sn|dν ≤

∫
Θ
hdν <∞, so that sn ∈ L1(Θ, E , ν) and
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∫
Θ
sn dM is well-defined. Note further that for any n,m in N, sn−sm is again

a simple function in L1(Θ, E , ν), and, using Remark 6.17(c),(d), it follows that

L
{∫

Θ

sn dM −
∫

Θ

sm dM
}

= L
{∫

Θ

(sn − sm) dM
}

= Λ
[
L
{∫

Θ

(sn − sm) dN
}]
,

(6.15)

with N the classical Poisson random measure introduced before. Since h ∈
L1(Θ, E , ν), it follows from Proposition 2.8 that h ∈ L1(Θ, E , N(·, ω)) for
almost all ω in Ω. Hence, by Lebesgue’s theorem on dominated convergence,
we have that

∫

Θ

sn(θ)N(dθ, ω) −→
∫

Θ

f(θ)N(dθ, ω), as n→∞,

for almost all ω in Ω. In other words,
∫
Θ
sn dN →

∫
Θ
f dN , almost surely, as

n → ∞. In particular
∫
Θ
sn dN →

∫
Θ
f dN , in probability as n → ∞, so the

sequence (
∫
Θ
sn dN)n∈N is a Cauchy sequence in probability, i.e.

L
{∫

Θ

(sn − sm) dN
}

w−→ δ0, as n,m→∞.

Combining this with (6.15) and the continuity of Λ (cf. Corollary 5.14), it
follows that (

∫
Θ
sn dM)n∈N is also a Cauchy sequence in probability, i.e. with

respect to the measure topology. Since A is complete in the measure topology
(cf. Proposition A.5), there exists, thus, an operator I(f) in A, such that∫
Θ
sn dM → I(f), in probability as n→∞. Since

∫
Θ
sn dM is selfadjoint for

each n, and since the adjoint operation is continuous in the measure topology,
I(f) is a selfadjoint operator in A.

Suppose, finally, that (tn) is another sequence of simple real-valued E-
measurable functions satisfying conditions (6.13) and (6.14) (with sn replaced
by tn). Then, by the argument given above,

∫
Θ
tn dM → I ′(f), in probability

as n→∞, for some selfadjoint operator I ′(f) in A. Consider now the mixed
sequence (un) of simple real-valued E-measurable functions given by:

u1 = s1, u2 = t1, u3 = s2, u4 = t2, . . . ,

and note that this sequence satisfies (6.13) and (6.14) too, so that
∫
Θ
un dM →

I ′′(f), in probability as n→∞, for some selfadjoint operator I ′′(f) in A. Now
the subsequence (u2n−1) converges in probability to both I ′′(f) and I(f) as
n → ∞, and the subsequence (u2n) converges in probability to both I ′′(f)
and I ′(f) as n→∞. Since the measure topology is a Hausdorff topology, we
may conclude, thus, that I(f) = I ′′(f) = I ′(f). This completes the proof. ��

Definition 6.19. Let f be a real-valued function in L1(Θ, E , ν), and let I(f)
be the selfadjoint operator in A described in Proposition 6.18. We call I(f)
the integral of f with respect to M and denote it by

∫
Θ
f dM .



Classical and Free Infinite Divisibilityand Lévy Processes 139

Corollary 6.20. Let M and N be the free and classical Poisson random mea-
sures on (Θ, E , ν) introduced above. Then for any f in L1(Θ, E , ν), we have
L{

∫
Θ
f dN} ∈ ID(∗), L{

∫
Θ
f dM} ∈ ID(�) and

Λ
(
L
{∫

Θ

f dN
})

= L
{∫

Θ

f dM
}
.

Proof. Choose a sequence (sn) of real-valued simple E-measurable functions
satisfying conditions (6.13) and (6.14) of Proposition 6.18. Then, by Re-
mark 6.17, L{

∫
Θ
sn dN} ∈ ID(∗), L{

∫
Θ
sn dM} ∈ ID(�) and Λ(L{

∫
Θ
sndN})

= L{
∫
Θ
sn dM} for all n in N. Furthermore,

∫

Θ

sn dN a.s.−→
∫

Θ

f dN and
∫

Θ

sn dM
p−→

∫

Θ

f dM, as n→∞.

In particular (cf. Proposition A.9),

L
{∫

Θ

sn dN
}

w−→ L
{∫

Θ

f dN
}

and L
{∫

Θ

sn dM
}

w−→ L
{∫

Θ

f dM
}
,

as n → ∞. Since ID(∗) and ID(�) are both closed with respect to weak
convergence (see Section 4.5), this implies that L{

∫
Θ
f dN} ∈ ID(∗) and

L{
∫
Θ
f dM} ∈ ID(�). Furthermore, by continuity of Λ, Λ(L{

∫
Θ
f dN}) =

L{
∫
Θ
f dM}. ��

Proposition 6.21. For any real-valued functions f, g in L1(Θ, E , ν) and any
real number c, we have that

∫

Θ

(f + g) dM =
∫

Θ

f dM +
∫

Θ

g dM and
∫

Θ

c · f dM = c

∫

Θ

f dM.

Proof. If f and g are simple functions, this was noted in Remark 6.17. The
general case follows by approximating f and g by simple functions as in Propo-
sition 6.18 and using that addition and scalar-multiplication are continuous
operations in the measure topology (cf. Proposition A.5). ��

Proposition 6.22. Let M be a free Poisson random measure on the σ-
finite measure space (Θ, E , ν) with values in the W ∗-probability space (A, τ).
Let, further, f1, f2, . . . , fr be real-valued functions in L1(Θ, E , ν) and let
Θ1, Θ2, . . . , Θr be disjoint E-measurable subsets of Θ. Then the integrals

∫

Θ1

f1 dM,

∫

Θ2

f2 dM, . . . ,

∫

Θr

fr dM,

are freely independent selfadjoint operators affiliated with (A, τ).
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Proof. For each j in {1, 2, . . . , r}, let (sj,n)n∈N be a sequence of real valued
simple E-measurable functions, such that

|sj,n(θ)| ≤ |fj(θ)|, (θ ∈ Θ, n ∈ N),

and
lim
n→∞

sj,n(θ) = fj(θ), (θ ∈ Θ).

Then, for each j in {1, 2, . . . , r} and each n in N, we may write sj,n · 1Θj
in

the form:

sj,n · 1Θj
=

kj,n∑

l=1

α(l, j, n)1A(l,j,n),

where α(1, j, n), . . . , α(kj,n, j, n) ∈ R \ {0} and A(1, j, n), . . . , A(kj,n, j, n) are
disjoint sets from E0, such that A(l, j, n) ⊆ Θj for all l. Now,

∫

Θ

sj,n · 1Θj
dM =

kj,n∑

l=1

α(l, j, n)M((A(l, j, n)), (j = 1, 2, . . . , r, n ∈ N),

so by the properties of free Poisson random measures, the integrals
∫

Θ

s1,n · 1Θ1 dM, . . . ,

∫

Θ

sr,n · 1Θr
dM,

are freely independent for each n in N. Finally, for each j in {1, 2, . . . , r} we
have (cf. Proposition 6.18)

∫

Θj

fj dM =
∫

Θ

fj · 1Θj
dM = lim

n→∞

∫

Θ

sj,n · 1Θj
dM,

where the limit is taken in probability. Taking now Proposition 4.7 into ac-
count, we obtain the desired conclusion. ��

6.5 The Free Lévy-Itô Decomposition

In this section we derive the free version of the Lévy-Itô decomposition. We
mention in passing the related decomposition of free white noises, which was
established in [GlScSp92].

Throughout this section we put

H = ]0,∞[×R ⊆ R
2,

and we denote by B(H) the set of all Borel subsets of H. Furthermore, for any
ε, t in ]0,∞[, such that ε < t, we put

D(ε,∞) = {s ∈ R | ε < |s| <∞} = R \ [−ε, ε],

D(ε, t) = {s ∈ R | ε < |s| ≤ t} = [−t, t] \ [−ε, ε].
We shall need the following well-known result about classical Poisson ran-

dom measures.
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Lemma 6.23. Let ν be a Lévy measure on R and consider the σ-finite mea-
sure Leb⊗ ν on H. Consider further a (classical) Poisson random measure N
on (H,B(H),Leb⊗ ν), defined on some probability space (Ω,F , P ).

Then there is a subset Ω0 of Ω, such that Ω0 ∈ F , P (Ω0) = 1 and such
that the following holds for any ω in Ω0: For any ε, t in ]0,∞[, the restric-
tion [N(·, ω)]]0,t]×D(ε,∞) of the measure N(·, ω) to the set ]0, t] × D(ε,∞) is
supported on a finite number of points, each of which has mass 1.

Proof. See [Sa99, Lemma 20.1] ��

Lemma 6.24. Let ν and N be as in Lemma 6.23, and consider a positive
Borel function ϕ : R→ [0,∞[.

(i) For almost all ω in Ω, the following holds:

∀ε > 0 ∀0 ≤ s < t :
∫

]s,t]×D(ε,∞)

ϕ(x)N(du,dx, ω) <∞.

(ii) If
∫
[−1,1]

ϕ(x) ν(dx) <∞, then for almost all ω in Ω, the following holds:

∀0 ≤ s < t :
∫

]s,t]×R

ϕ(x)N(du,dx, ω) <∞.

Proof. Since ϕ is positive, it suffices to consider the case s = 0 in (i) and (ii).
Moreover, since ϕ only takes finite values, statement (i) follows immediately
from Lemma 6.23.

To prove (ii), assume that
∫
[−1,1]

ϕ(x) ν(dx) < ∞. By virtue of (i), it
suffices then to prove, for instance, that for almost all ω in Ω, the following
holds:

∀t > 0:
∫

]0,t]×[−1,1]

ϕ(x)N(du,dx, ω) <∞. (6.16)

Since the integrals in (6.16) increase with t, it suffices to prove that for any
fixed t in ]0,∞[,

∫

]0,t]×[−1,1]

ϕ(x)N(du,dx, ω) <∞, for almost all ω.

This, in turn, follows immediately from the following calculation:

E

{∫

]0,t]×[−1,1]

ϕ(x)N(du,dx)
}

=
∫

]0,t]×[−1,1]

ϕ(x) Leb⊗ ν(du,dx)

= t

∫

[−1,1]

ϕ(x) ν(dx) <∞,

where we have used Proposition 2.8. ��
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Lemma 6.25. Let ν be a Lévy measure on R, and let M be a Free Pois-
son random measure on (H,B(H),Leb ⊗ ν) with values in the W ∗-probability
space (A, τ). Let, further, N be a (classical) Poisson random measure on
(H,B(H),Leb⊗ ν), defined on a classical probability space (Ω,F , P ).

(i) For any ε, s, t in [0,∞[, such that s < t and ε > 0, the integrals
∫

]s,t]×D(ε,n)

xM(du,dx), (n ∈ N),

converge in probability, as n → ∞, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote by

∫
]s,t]×D(ε,∞)

xM(du,dx).
Furthermore (cf. Lemma 6.24), L{

∫
]s,t]×D(ε,∞)

xN(du,dx)} ∈ ID(∗),
L{

∫
]s,t]×D(ε,∞)

xM(du,dx)} ∈ ID(�) and

L
{∫

]s,t]×D(ε,∞)

xM(du,dx)
}

= Λ
(
L
{∫

]s,t]×D(ε,∞)

xN(ds,dx)
})

.

(6.17)
(ii) If

∫
[−1,1]

|x| ν(dx) < ∞, then for any s, t in [0,∞[, such that s < t, the
integrals ∫

]s,t]×[−n,n]

xM(du,dx), (n ∈ N),

converge in probability, as n → ∞, to some (possibly unbounded) selfad-
joint operator affiliated with A, which we denote by

∫
]s,t]×R

xM(du,dx).
Furthermore (cf. Lemma 6.24),

L
{∫

]s,t]×R

xN(du,dx)
}
∈ ID(∗), L

{∫

]s,t]×R

xM(du,dx)
}
∈ ID(�)

and

L
{∫

]s,t]×R

xM(du,dx)
}

= Λ
(
L
{∫

]s,t]×R

xN(ds,dx)
})

.

Proof. (i) Note first that for any n in N and any ε, s, t in [0,∞[, such that
s < t and ε > 0, we have that

∫

]s,t]×D(ε,n)

|x|Leb⊗ ν(du,dx) = (t− s)
∫

D(ε,n)

|x| ν(dx) <∞,

since ν is a Lévy measure. Hence, by application of Proposition 6.18, the
integral

∫
]s,t]×D(ε,n)

xM(du,dx) is well-defined and furthermore, by Corol-
lary 6.20,

L
{∫

]s,t]×D(ε,n)

xM(du,dx)
}

= Λ
(
L
{∫

]s,t]×D(ε,n)

xN(du,dx)
})

. (6.18)
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Note now that by Lemma 6.24(i) there is a subset Ω0 of Ω, such that Ω0 ∈ F ,
P (Ω0) = 1 and

∫

]s,t]×D(ε,∞)

|x|N(du,dx, ω) <∞, for all ω in Ω0.

Then
∫
]s,t]×D(ε,∞)

xN(du,dx, ω) is well-definedforall ω inΩ0 andbyLebesgue’s
theorem on dominated convergence,

∫

]s,t]×D(ε,n)

xN(du,dx, ω) −→
n→∞

∫

]s,t]×D(ε,∞)

xN(du,dx, ω),

for all ω in Ω0, i.e. almost surely. In particular
∫

]s,t]×D(ε,n)

xN(du,dx) −→
n→∞

∫

]s,t]×D(ε,∞)

xN(du,dx), in probability,

and hence (
∫
]s,t]×D(ε,n)

xN(du,dx))n∈N is a Cauchy sequence in probability.
Now, for any n,m in N, such that n ≤ m, we have, by Proposition 6.21 and
Corollary 6.20,

L
{∫

]s,t]×D(ε,m)

xM(du,dx)−
∫

]s,t]×D(ε,n)

xM(du,dx)
}

= L
{∫

]s,t]×D(n,m)

xM(du,dx)
}

= Λ
(
L
{∫

]s,t]×D(n,m)

xN(du,dx)
})

= Λ
(
L
{∫

]s,t]×D(ε,m)

xN(du,dx)−
∫

]s,t]×D(ε,n)

xN(du,dx)
})

.

By continuity of Λ, this shows that (
∫
]s,t]×D(ε,n)

xM(du,dx))n∈N is a Cauchy
sequence in probability, and hence, by completeness of A in the measure topol-
ogy, ∫

]s,t]×D(ε,∞)

xM(du,dx) := lim
n→∞

∫

]s,t]×D(ε,n)

xM(du,dx),

exists in A as the limit in probability.
Finally, since ID(∗) and ID(�) are closed with respect to weak conver-

gence, we have that

L
{∫

]s,t]×D(ε,∞)

xN(du,dx)
}
∈ ID(∗)

and



144 Ole E. Barndorff-Nielsen and Steen Thorbjørnsen

L
{∫

]s,t]×D(ε,∞)

xM(du,dx)
}
∈ ID(�).

Moreover, since convergence in probability implies convergence in distribution
(cf. Proposition A.9), it follows from (6.18) and continuity of Λ that (6.17)
holds.

(ii) Suppose
∫
[−1,1]

|x| ν(dx) < ∞. Then for any n in N and any s, t in
[0,∞[, such that s < t, we have that
∫

]s,t]×[−n,n]

|x|Leb⊗ ν(du,dx) = (t− s)
∫

[−n,n]

|x| ν(dx)

= (t− s)
(∫

[−1,1]

|x| ν(dx) +
∫

D(1,n)

|x| ν(dx)
)

<∞,

since ν is a Lévy measure. Hence, by application of Proposition 6.18, the
integral

∫
]s,t]×[−n,n]

xM(du,dx) is well-defined and, by Corollary 6.20,

L
{∫

]s,t]×[−n,n]

xM(du,dx)
}

= Λ
(
L
{∫

]s,t]×[−n,n]

xN(du,dx)
})

.

From this point on, the proof is exactly the same as that of (i) given above;
the only difference being that the application of Lemma 6.24(i) above must
be replaced by an application of Lemma 6.24(ii). ��

We are now ready to give a proof of the Lévy-Itô decomposition for free
Lévy processes (in law). As is customary in the classical case (cf. [Sa99]), we
divide the general formulation into two parts.

Theorem 6.26 (Free Lévy-Itô Decomposition I). Let (Zt) be a free Lévy
process (in law) affiliated with a W ∗-probability space (A, τ), let ν be the Lévy
measure appearing in the free generating triplet for L{Z1} and assume that∫ 1

−1
|x| ν(dx) <∞. Then (Zt) has a representation in the form:

Zt
d= γt111A0 +

√
aWt +

∫

]0,t]×R

x M(du,dx), (t ≥ 0), (6.19)

where γ ∈ R, a ≥ 0, (Wt) is a free Brownian motion in some W ∗-probability
space (A0, τ0) (see Example 5.16) and M is a free Poisson random measure
on (H,B(H),Leb⊗ ν) with values in (A0, τ0). Furthermore, the process

Ut :=
∫

]0,t]×R

x M(du,dx), (t ≥ 0),

is a free Lévy process (in law), which is freely independent of (Wt), and the
right hand side of (6.19), as a whole, is a free Lévy process (in law).
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As the symbol d= appearing in (6.19) just means that the two operators
have the same (spectral) distribution, it does not follow directly from (6.19)
that the right hand side is a free Lévy process (in law) (contrary to the
situation in the classical Lévy-Itô decomposition).

Proof of Theorem 6.26. By Proposition 5.15, we may choose a classical
Lévy process (Xt), defined on some probability space (Ω,F , P ), such that
Λ(L{Xt}) = L{Zt} for all t in [0,∞[. Then ν is the Lévy measure for L{X1},
so by the classical Lévy-Itô Theorem (cf. Theorem 2.9), (Xt) has a represen-
tation in the form:

Xt
a.s.= γt+

√
aBt +

∫

]0,t]×R

xN(du,dx), (t ≥ 0),

where (Bt) is a (classical) Brownian motion on (Ω,F , P ), N is a (classical)
Poisson random measure on (H,B(H),Leb⊗ν), defined on (Ω,F , P ) and (Bt)
and N are independent. Put

Yt :=
∫

]0,t]×R

xN(du,dx), (t ≥ 0).

Now choose a free Brownian motion (Wt) in some W ∗-probability space
(A1, τ1), and recall that L{Wt} = Λ(L{Bt}) for all t. Choose, further, a
free Poisson random measure M on (H,B(H),Leb ⊗ ν) with values in some
W ∗-probability space (A2, τ2). Next, let (A0, τ0) be the (reduced) free prod-
uct of the two W ∗-probability spaces (A1, τ1) and (A2, τ2) (cf. [VoDyNi92,
Definition 1.6.1]). We may then consider A1 and A2 as two freely independent
unital W ∗-subalgebras of A0, such that τ0

|A1 = τ1 and τ0
|A2 = τ2. In particular,

(Wt) and M are freely independent in (A0, τ0).
Since

∫
[−1,1]

|x| ν(dx) < ∞, it follows from Lemma 6.25(ii) that for any t

in ]0,∞[, the integral Ut =
∫
]0,t]×R

xM(du,dx) is well-defined, and L{Ut} =
Λ(L{Yt}). Furthermore, it follows immediately from Definition 6.16, Propo-
sition 6.18 and Lemma 6.25 that for any t in [0, t[, Ut =

∫
]0,t]×R

xM(du,dx)
is in the closure of A2 with respect to the measure topology. As noted in
Remark 4.8, the set A2 of closed, densely defined operators affiliated with A2

is complete (and hence closed) in the measure topology, and therefore Ut is
affiliated with A2 for all t. This implies, in particular, that the two processes
(Wt) and (Ut) are freely independent.

Now, for any t in ]0,∞[, we have
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L
{
γt111A0 +

√
aWt + Ut

}
= δγt �D√

aL{Wt}� L{Ut}

= Λ(δγt) �D√
aΛ(L{Bt}) � Λ

(
L{Yt})

= Λ
(
δγt ∗D√

aL{Bt} ∗ L{Yt}
)

= Λ
(
L
{
γt+

√
aBt + Yt

})

= Λ(L{Xt})

= L{Zt},

and this proves (6.19). We prove next that the process (Ut) is a free Lévy
process (in law). For this, recall that (Yt) is a (classical) Lévy process defined
on (Ω,F , P ) (cf. [Sa99, Theorem 19.3]), and such that L{Ut} = Λ(L{Yt}) for
all t. Since (Yt) has stationary increments, we find for any s, t in [0,∞[ that

L{Us+t − Us} = L
{∫

]s,s+t]×R

xM(du,dx)
}

= Λ
(
L
{∫

]s,s+t]×R

xN(du,dx)
})

= Λ
(
L{Ys+t − Ys

})
= Λ(L{Yt}) = L{Ut},

where we have used Lemma 6.25(ii). Thus, (Ut) has stationary increments
too. Furthermore, by continuity of Λ,

L{Ut} = Λ
(
L{Yt}

) w−→ Λ(δ0) = δ0, as t↘ 0,

so that (Ut) is stochastically continuous. Finally, to prove that (Ut) has freely
independent increments, consider r in N and t0, t1, . . . , tr in [0,∞[, such that
0 = t0 < t1 < · · · < tr. Then for any j in {1, 2, . . . , r} we have (cf. Lemma 6.25)
that

Utj − Utj−1 =
∫

]tj−1,tj ]×R

xM(du,dx) = lim
n→∞

∫

]tj−1,tj ]×[−n,n]

xM(du,dx),

where the limit is taken in probability. Since
∫

]tj−1,tj ]×[−n,n]

|x|Leb⊗ ν(du,dx) <∞

for any n in N and any j in {1, 2, . . . , r}, it follows from Proposition 6.22 that
for any n in N, the integrals

∫

]tj−1,tj ]×[−n,n]

xM(du,dx), j = 1, 2, . . . , r,

are freely independent operators. Hence, by Proposition 4.7, the increments

Ut1 , Ut2 − Ut1 , . . . , Utr − Utr−1

are also freely independent.
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It remains to note that the right hand side of (6.19) is a free Lévy process
(in law). This follows immediately from the fact that the sum of two freely
independent free Lévy processes (in law) is again a free Lévy process (in law).
Indeed, the stochastic continuity condition follows from the fact that addition
is a continuous operation in the measure topology, and the remaining con-
ditions are immediate consequences of basic properties of free independence.
This concludes the proof. ��

Theorem 6.27 (Free Lévy-Itô Decomposition II). Let (Zt) be a free
Lévy process (in law) affiliated with a W ∗-probability space (A, τ) and let ν be
the Lévy measure appearing in the free characteristic triplet for L{Z1}. Then
(Zt) has a representation in the form:

Zt
d= ηt111A0 +

√
aWt + Vt, (t ≥ 0), (6.20)

where

η ∈ R, a ≥ 0 and (Wt) is a free Brownian motion in a W ∗-probability space
(A0, τ0).

(Vt) is a free Lévy process (in law) given by

Vt := lim
ε↘0

[ ∫

]0,t]×D(ε,∞)

x M(du,dx)−
(∫

]0,t]×D(ε,1)

xLeb⊗ν(du,dx)
)
111A0

]
,

where M is a free Poisson random measure on (H,B(H),Leb ⊗ ν) with
values in (A0, τ0), and the limit is taken in probability.

(Wt) and (Vt) are freely independent processes.

Furthermore, the right hand side of (6.20), as a whole, is a free Lévy
process (in law).

Proof. The proof proceeds along the same lines as that of Theorem 6.26, and
we shall not repeat all the arguments. Let (Xt) be a classical Lévy process
defined on a probability space (Ω,F , P ) such that L{Zt} = Λ(L{Xt}) for all
t. In particular, the Lévy measure for L{X1} is ν. Hence, by Theorem 2.9(ii),
(Xt) has a representation in the form

Xt
a.s.= ηt+

√
aBt + Yt, (t ≥ 0),

where

η ∈ R, a ≥ 0 and (Bt) is a (classical) Brownian motion on (Ω,F , P ).
(Yt) is a classical Lévy process given by

Yt := lim
ε↘0

[ ∫

]0,t]×D(ε,∞)

x N(du,dx)−
∫

]0,t]×D(ε,1)

xLeb⊗ ν(du,dx)
]
,

where N is a (classical) Poisson random measure on (H,B(H),Leb ⊗ ν),
defined on (Ω,F , P ), and the limit is almost surely.
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(Bt) and (Yt) are independent processes.

For all ε, t in ]0,∞[, we put:

Yε,t =
∫

]0,t]×D(ε,∞)

x N(du,dx)−
∫

]0,t]×D(ε,1)

xLeb⊗ ν(du,dx),

so that Yt = limε↘0 Yt,ε almost surely, for each t.
As in the proof of Theorem 6.26 above, we choose, next, a W ∗-probability

space (A0, τ0), which contains a free Brownian motion (Wt) and a free Poisson
random measure M on (H,B(H),Leb⊗ ν), which generate freely independent
W ∗-subalgebras. For any ε in ]0,∞[, we put (cf. Lemma 6.25(i)),

Vε,t =
∫

]0,t]×D(ε,∞)

x M(du,dx)−
(∫

]0,t]×D(ε,1)

xLeb⊗ ν(du,dx)
)
111A0 .

Then for any t in ]0,∞[ and any ε1, ε2 in ]0, 1[, such that ε1 > ε2, we have
that

Vε2,t−Vε1,t =
∫

]0,t]×D(ε2,ε1)

x M(du,dx)−
(∫

]0,t]×D(ε2,ε1)

xLeb⊗ν(du,dx)
)
111A0 .

Making the same calculation for Yε2,t − Yε1,t and taking Corollary 6.20 into
account, it follows that L{Vε2,t − Vε1,t} = Λ(L{Yε2,t − Yε1,t}). Hence, by con-
tinuity of Λ and completeness of the measure topology, we may conclude that
the limit Vt := limε↘0 Vε,t exists in probability, and that L{Vt} = Λ(L{Yt}).
Moreover, as in the proof of Theorem 6.26, it follows that (Wt) and (Vt) are
freely independent processes.

Now for any t in ]0,∞[, we have:

L
{
ηt111A0 +

√
aWt + Vt

}
= δηt �D√

aL{Wt}� L{Vt}

= Λ
(
δηt ∗D√

aL{Bt} ∗ L{Yt}
)
=Λ

(
L{Xt}

)
=L{Zt}.

It remains to prove that (Vt) is a free Lévy process (in law). For this, note
first that whenever s, t ≥ 0, we have (cf. Lemma 6.25(i)),

Vs+t − Vs

= lim
ε↘0

(
Vε,s+t − Vε,s

)

= lim
ε↘0

[ ∫

]s,s+t]×D(ε,∞)

x M(du,dx)−
(∫

]s,s+t]×D(ε,1)

xLeb⊗ ν(du,dx)
)
111A0

]
.

Making the same calculation for Ys+t − Ys, and taking Lemma 6.25(i) as well
as the continuity of Λ into account, it follows that

L{Vs+t − Vs} = Λ(L{Ys+t − Ys}) = Λ(L{Yt}) = L{Vt},
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so that (Vt) has stationary increments. The stochastic continuity of (Vt) fol-
lows exactly as in the proof of Theorem 6.26. To see, finally, that (Vt) has
freely independent increments, assume that 0 = t0 < t1 < t2 < · · · < tr, and
consider ε in ]0,∞[. Then for any j in {1, 2, . . . , r},

Vε,tj − Vε,tj−1 = lim
n→∞

[ ∫

]tj−1,tj ]×D(ε,n)

x M(du,dx)

−
(∫

]tj−1,tj ]×D(ε,1)

xLeb⊗ ν(du,dx)
)
111A0

]
.

Hence, by Proposition 6.22 and Proposition 4.7, the increments Vε,tj −
Vε,tj−1 , j = 1, 2, . . . , r are freely independent, for any fixed positive ε. Yet
another application of Proposition 4.7 then yields that the increments

Vtj − Vtj−1 = lim
ε↘0

(
Vε,tj − Vε,tj−1

)
, (j = 1, 2, . . . , r),

are freely independent too. ��

Remark 6.28. Let (Zt) be a free Lévy process in law, such that L{Z1} has Lévy
measure ν. If

∫
[−1,1]

|x| ν(dx) <∞, then Theorems 6.26 and 6.27 provide two
different “Lévy-Itô decompositions” of (Zt). The relationship between the two
representations, however, is simply that

η = γ +
∫

[−1,1]

x ν(dx) and Vt = Ut − t
(∫

[−1,1]

x ν(dx)
)
111A0 , (t ≥ 0).

Remark 6.29. The proof of the general free Lévy-Itô decomposition, Theo-
rem 6.27, also provides a proof of the general existence of free Lévy processes
(in law). Indeed, the conclusion of the proof of Theorem 6.27 might also be
formulated in the following way: For any classical Lévy process (Xt), there ex-
ists a W ∗-probability space (A0, τ0) containing a free Brownian motion (Wt)
and a free Poisson random measure M on (H,B(H),Leb⊗ ν), which are freely
independent, and such that

Λ(L{Xt}) =

L
{
ηt111A0 +

√
aWt+

lim
ε↘0

[ ∫

]0,t]×D(ε,∞)

x M(du,dx)−
(∫

]0,t]×D(ε,1)

xLeb⊗ ν(du,dx)
)
111A0

]}
,

(6.21)

for suitable constants η in R and a in ]0,∞[. In addition, the process appearing
in the right hand side of (6.21) is a free Lévy process (in law) affiliated with
(A0, τ0).
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Assume now that (νt)t≥0 is a family of distributions in ID(�), satisfying
the two conditions

νt = νs � νt−s, (0 ≤ s < t),

and
νt

w→ δ0, as t↘ 0.
Then put µt = Λ−1(νt) for all t, and note that the family (µt) satisfies the
corresponding conditions:

µt = µs ∗ µt−s, (0 ≤ s < t),

and
µt

w→ δ0, as t↘ 0,
by the properties of Λ−1. Hence, by the well-known existence result for clas-
sical Lévy processes, there exists a classical Lévy process (Xt), such that
L{Xt} = µt and hence Λ(L{Xt}) = νt for all t. Therefore, the right hand side
of (6.21) is a free Lévy process (in law), (Zt), such that L{Zt} = νt for all t.

The above argument for the existence of free Lévy processes (in law) is,
of course, based on the existence of free Poisson random measures proved in
Theorem 6.9. The existence of free Lévy processes (in law) can also, as noted
in [Bi98] and [Vo98], be proved directly by a construction similar to that given
in the proof of Theorem 6.9. The latter approach, however, is somewhat more
complicated than the construction given in the proof of Theorem 6.9, since,
in the general case, one has to deal with unbounded operators throughout the
construction, whereas free Poisson random measures only involve bounded
operators.

A Unbounded Operators Affiliated
with a W ∗-Probability Space

In this appendix we give a brief account on the theory of closed, densely
defined operators affiliated with a finite von Neumann algebra10. We start
by introducing von Neumann algebras. For a detailed introduction to von
Neumann algebras, we refer to [KaRi83], but also the paper [Ne74], referred to
below, has a nice short introduction to that subject. For background material
on unbounded operators, see [Ru91].

Let H be a Hilbert space, and consider the vector space B(H) of bounded
(or continuous) linear mappings (or operators) a : H → H. Recall that compo-
sition of operators constitutes a multiplication on B(H), and that the adjoint
operation a �→ a∗ is an involution on B(H) (i.e. (a∗)∗ = a). Altogether B(H)
is a ∗-algebra11. For any subset S of B(H), we denote by S ′ the commutant

10To make the appendix appear in self-contained form, some of the definitions
that already appeared in Section 4.1 will be repeated below.

11Throughout this appendix, the ∗ refers to the adjoint operation and not to
classical convolution.
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of S, i.e.
S ′ = {b ∈ B(H) | by = yb for all y in S}.

A von Neumann algebra acting on H is a subalgebra of B(H), which contains
the multiplicative unit 111 of B(H), and which is closed under the adjoint opera-
tion and closed in the weak operator topology (see [KaRi83, Definition 5.1.1]).
By von Neumann’s fundamental double commutant theorem, a von Neumann
algebra may also be characterized as a subset A of B(H), which is closed under
the adjoint operation and equals the commutant of its commutant: A′′ = A.

A trace (or tracial state) on a von Neumann algebra A is a positive linear
functional τ : A → C, satisfying that τ(111) = 1 and that τ(ab) = τ(ba) for all
a, b in A. We say that τ is a normal trace on A, if, in addition, τ is continuous
on the unit ball of A w.r.t. the weak operator topology. We say that τ is
faithful, if τ(a∗a) > 0 for any non-zero operator a in A.

We shall use the terminology W ∗-probability space for a pair (A, τ), where
A is a von Neumann algebra acting on a Hilbert space H, and τ : A → C is
a faithful, normal tracial state on A. In the remaining part of this appendix,
(A, τ) denotes a W ∗-probability space acting on the Hilbert space H.

By a linear operator inH, we shall mean a (not necessarily bounded) linear
operator a : D(a) → H, defined on a subspace D(a) of H. For an operator a
in H, we say that

a is densely defined, if D(a) is dense in H,
a is closed, if the graph G(a) = {(h, ah) | h ∈ D(a)} of a is a closed subspace

of H⊕H,
a is preclosed, if the norm closure G(a) is the graph of a (uniquely determined)

operator, denoted [a], in H,
a is affiliated with A, if au = ua for any unitary operator u in the commutant
A′.

For a densely defined operator a in H, the adjoint operator a∗ has domain

D(a∗) =
{
η ∈ H

∣∣∣ sup{|〈aξ, η〉| | ξ ∈ D(a), ‖ξ‖ ≤ 1} <∞
}
,

and is given by

〈aξ, η〉 = 〈ξ, a∗η〉, (ξ ∈ D(a), η ∈ D(a∗)).

We say that a is selfadjoint if a = a∗ (in particular this requires that D(a∗) =
D(a)).

If a is bounded, a is affiliated with A if and only if a ∈ A. In general, a
selfadjoint operator a in H is affiliated with A, if and only if f(a) ∈ A for any
bounded Borel function f : R → C (here f(a) is defined in terms of spectral
theory). As in the bounded case, if a is a selfadjoint operator affiliated with
A, there exists a unique probability measure µa on R, concentrated on the
spectrum sp(a), and satisfying that
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∫

R

f(t) µa(dt) = τ(f(a)),

for any bounded Borel function f : R→ C. We call µa the (spectral) distrib-
ution of a, and we shall denote it also by L{a}. Unless a is bounded, sp(a) is
an unbounded subset of R and, in general, µa is not compactly supported.

By A we denote the set of closed, densely defined operators inH, which are
affiliated with A. In general, dealing with unbounded operators is somewhat
unpleasant, compared to the bounded case, since one needs constantly to take
the domains into account. However, the following two important propositions
allow us to deal with operators in A in a quite relaxed manner.

Proposition A.1 (cf. [Ne74]). Let (A, τ) be a W ∗-probability space. If a, b ∈
A, then a+ b and ab are densely defined, preclosed operators affiliated with A,
and their closures [a+ b] and [ab] belong to A. Furthermore, a∗ ∈ A.

By virtue of the proposition above, the adjoint operation may be restricted
to an involution on A, and we may define operations, the strong sum and the
strong product, on A, as follows:

(a, b) �→ [a+ b], and (a, b) �→ [ab], (a, b ∈ A).

Proposition A.2 (cf. [Ne74]). Let(A, τ)be aW ∗-probability space. Equipped
with the adjoint operation and the strong sum and product, A is a ∗-algebra.

The effect of the above proposition is, that w.r.t. the adjoint operation and
the strong sum and product, we can manipulate with operators in A, without
worrying about domains etc. So, for example, we have rules like

[[a+ b]c] = [[ac] + [bc]], [a+ b]∗ = [a∗ + b∗], [ab]∗ = [b∗a∗],

for operators a, b, c in A. Note, in particular, that the strong sum of two
selfadjoint operators in A is again a selfadjoint operator. In the following, we
shall omit the brackets in the notation for the strong sum and product, and it
will be understood that all sums and products are formed in the strong sense.

Remark A.3. If a1, a2 . . . , ar are selfadjoint operators in A, we say that they
are freely independent if, for any bounded Borel functions f1, f2, . . . , fr : R→
R, the bounded operators f1(a1), f2(a2), . . . , fr(ar) in A are freely indepen-
dent in the sense of Section 4. Given any two probability measures µ1 and µ2

on R, it follows from a free product construction (see [VoDyNi92]), that one
can always find a W ∗-probability space (A, τ) and selfadjoint operators a and
b affiliated with A, such that µ1 = L{a} and µ2 = L{b}. As noted above, for
such operators a + b is again a selfadjoint operator in A, and, as was proved
in [BeVo93, Theorem 4.6], the (spectral) distribution L{a + b} depends only
on µ1 and µ2. We may thus define the free additive convolution µ1 �µ2 of µ1

and µ2 to be L{a+ b}.



Classical and Free Infinite Divisibilityand Lévy Processes 153

Next, we shall equip A with a topology; the so called measure topology,
which was introduced by Segal in [Se53] and later studied by Nelson in [Ne74].
For any positive numbers ε, δ, we denote by N(ε, δ) the set of operators a in
A, for which there exists an orthogonal projection p in A, satisfying that

p(H) ⊆ D(a), ‖ap‖ ≤ ε and τ(p) ≥ 1− δ. (A.1)

Definition A.4. Let (A, τ) be a W ∗-probability space. The measure topology
on A is the vector space topology on A for which the sets N(ε, δ), ε, δ > 0,
form a neighbourhood basis for 0.

It is clear from the definition of the sets N(ε, δ) that the measure topology
satisfies the first axiom of countability. In particular, all convergence state-
ments can be expressed in terms of sequences rather than nets.

Proposition A.5 (cf. [Ne74]). Let (A, τ) be a W ∗-probability space and
consider the ∗-algebra A. We then have

(i) Scalar-multiplication, the adjoint operation and strong sum and product
are all continuous operations w.r.t. the measure topology. Thus, A is a
topological ∗-algebra w.r.t. the measure topology.

(ii) The measure topology on A is a complete Hausdorff topology.

We shall note, next, that the measure topology on A is, in fact, the topol-
ogy for convergence in probability. Recall first, that for a closed, densely de-
fined operator a in H, we put |a| = (a∗a)1/2. In particular, if a ∈ A, then
|a| is a selfadjoint operator in A (see [KaRi83, Theorem 6.1.11]), and we may
consider the probability measure L{|a|} on R.

Definition A.6. Let (A, τ) be a W ∗-probability space and let a and an, n ∈ N,
be operators in A. We say then that an → a in probability, as n → ∞, if
|an − a| → 0 in distribution, i.e. if L{|an − a|} → δ0 weakly.

If a and an, n ∈ N, are selfadjoint operators in A, then, as noted above,
an − a is selfadjoint for each n, and L{|an − a|} is the transformation of
L{an − a} by the mapping t �→ |t|, t ∈ R. In this case, it follows thus that
an → a in probability, if and only if an−a→ 0 in distribution, i.e. if and only
if L{an − a} → δ0 weakly.

From the definition of L{|an − a|}, it follows immediately that we have
the following characterization of convergence in probability:

Lemma A.7. Let (A, τ) be a W ∗-probability space and let a and an, n ∈ N,
be operators in A. Then an → a in probability, if and only if

∀ε > 0: τ
[
1]ε,∞[(|an − a|)

]
→ 0, as n→∞.
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Proposition A.8 (cf. [Te81]). Let (A, τ) be a W ∗-probability space. Then
for any positive numbers ε, δ, we have

N(ε, δ) =
{
a ∈ A

∣∣ τ
[
1]ε,∞[(|a|)

]
≤ δ

}
, (A.2)

where N(ε, δ) is defined via (A.1). In particular, a sequence an in A converges,
in the measure topology, to an operator a in A, if and only if an → a in
probability.

Proof. The last statement of the proposition follows immediately from formula
(A.2) and Lemma A.7. To prove (A.2), note first that by considering the polar
decomposition of an operator a in A (cf. [KaRi83, Theorem 6.1.11]), it follows
that N(ε, δ) = {a ∈ A | |a| ∈ N(ε, δ)}. From this, the inclusion ⊇ in (A.2)
follows easily. Regarding the reverse inclusion, suppose a ∈ N(ε, δ), and let p
be a projection in A, such that (A.1) is satisfied with a replaced by |a|. Then,
using spectral theory, it can be shown that the ranges of the projections p and
1]ε,∞[(|a|) only have 0 in common. This implies that τ [1]ε,∞[(|a|)] ≤ τ(111−p) ≤
δ. We refer to [Te81] for further details. ��

Finally, we shall need the fact that convergence in probability implies
convergence in distribution, also in the non-commutative setting. The key
point in the proof given below is that weak convergence can be expressed in
terms of the Cauchy transform (cf. [Ma92, Theorem 2.5]).

Proposition A.9. Let (an) be a sequence of selfadjoint operators affiliated
with a W ∗-probability space (A, τ), and assume that an converges in probabil-
ity, as n→∞, to a selfadjoint operator a affiliated with (A, τ). Then an → a

in distribution too, i.e. L{an} w→ L{a}, as n→∞.

Proof. Let x, y be real numbers such that y > 0, and put z = x + iy. Then
define the function fz : R→ C by

fz(t) =
1

t− z
=

1
(t− x)− iy

, (t ∈ R),

and note that fz is continuous and bounded with supt∈R |fz(t)| = y−1. Thus,
we may consider the bounded operators fz(an), fz(a) ∈ A. Note then that
(using strong products and sums),

fz(an)− fz(a) = (an − z111)−1 − (a− z111)−1

= (an − z111)−1
(
(a− z111)− (an − z111)

)
(a− z111)−1

= (an − z111)−1(a− an)(a− z111)−1.

(A.3)

Now, given any positive numbers ε, δ, we may choose N in N, such that an −
a ∈ N(ε, δ), whenever n ≥ N . Moreover, since ‖fz(an)‖, ‖fz(a)‖ ≤ y−1, we
have that fz(an), fz(a) ∈ N(y−1, 0). Using then the rule: N(ε1, δ1)N(ε2, δ2) ⊆
N(ε1ε2, δ1 + δ2), which holds for all ε1, ε2 in ]0,∞[ and δ1, δ2 in [0,∞[ (see
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[Ne74, Formula 17’]), it follows from (A.3) that fz(an)− fz(a) ∈ N(εy−2, δ),
whenever n ≥ N . We may thus conclude that fz(an)→ fz(a) in the measure
topology, i.e. that L{|fz(an) − fz(a)|} w→ δ0, as n → ∞. Using now the
Cauchy-Schwarz inequality for τ , it follows that

∣∣τ(fz(an)− fz(a))
∣∣2 ≤ τ(|fz(an)− fz(a)|2) · τ(111)

=
∫ ∞

0

t2 L{|fz(an)− fz(a)|}(dt) −→ 0,

as n → ∞, since supp(L{|fz(an) − fz(a)|}) ⊆ [0, 2y−1] for all n, and since
t �→ t2 is a continuous bounded function on [0, 2y−1].

Finally, let Gn and G denote the Cauchy transforms for L{an} and L{a}
respectively. From what we have established above, it follows then that

Gn(z) = −τ(fz(an)) −→ −τ(fz(a)) = G(z), as n→∞,

for any complex number z = x+ iy for which y > 0. By [Ma92, Theorem 2.5],
this means that L{an} w→ L{a}, as desired. ��
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Processes to Lévy Processes on Involutive Bialgebras . . . . . . . . . . . . . 234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Introduction

Lévy processes play a fundamental rôle in probability theory and have many
important applications in other areas such as statistics, financial mathematics,
functional analysis or mathematical physics, as well, see [App05, BNT05] and
the references given there.

In quantum probability they first appeared in a model for the laser in
[Wal73, Wal84]. Their algebraic framework was formulated in [ASW88]. This
lead to the theory of Lévy processes on involutive bialgebras, cf. [ASW88,
Sch93, FS99]. These processes are a generalization of both classical stochas-
tic processes with independent and stationary increments, i.e. classical Lévy
processes, and factorizable current representations of groups and Lie algebras.
The increments of these Lévy processes are independent in the sense of tensor
independence, which is a straightforward generalization of the notion of inde-
pendence used in classical probability theory. However, in quantum probability
there exist also other notions of independence like, e.g., freeness [VDN92], see
also Section 3. In order to formulate a general theory of Lévy processes for all
“nice” independences, ∗-bialgebras or quantum groups have to be replaced by
the dual groups introduced in [Voi87], see [Sch95b, BGS99, Fra01, Fra03b].

Quantum Lévy processes play an important rôle in the theory of contin-
uous measurement, cf. [Hol01], and in the theory of dilations, where they
describe the evolution of a big system or heat bath, which is coupled to the
small system whose evolution one wants to describe.

This chapter is organized as follows.
In the first two sections we review the theory of Lévy processes on invo-

lutive bialgebras. In the remaining two sections we discuss the notion of in-
dependence in quantum probability and study Lévy processes on dual groups
with respect to the five universal independences.

In Section 1, we present the basic theory of Lévy processes on involutive
bialgebras. This is the class of quantum Lévy processes that was studied first
and where the theory has been developed most. We introduce Schürmann
triples and state Schürmann’s representation theorem that says that every
Lévy process on an involutive bialgebra can be realized as the solution of
a quantum stochastic differential equation on a Boson Fock space. The co-
efficients of the quantum stochastic differential equation are given by the
Schürmann triples of the Lévy process. We furthermore present the recent
result by Franz, Schürmann, and Skeide that the vacuum vector is cyclic for
the realisation of a Lévy processes obtained by Schürmann’s representation
theorem.
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In Section 2, we study Lévy processes on the non-commutative analogue of
the coefficient algebra of the unitary group U(d) and classify their generators
and Schürmann triples. These Lévy processes play an important role in the
construction of dilations of quantum dynamical semigroups on the matrix
algebra Md.

In Section 3, we introduce the notion of a universal independence and
recall their classification by Muraki. We show that this notion has a natural
formulation in the language of category theory. We also study a notion of
reduction of one independence to another that generalizes the bosonisation of
Fermi independence. It turns out that three of the five universal independences
can be reduced to tensor independence.

Finally, in Section 4, we study Lévy process on dual groups for all five
universal independences. We show that in four of the five cases they can be
reduced to Lévy process on involutive bialgebras and use the theory devel-
opped in Section 1 to construct them and to study their properties. It is still
open, if a similar construction is possible for Lévy processes on dual groups
with free increments.

1 Lévy Processes on Quantum Groups

In this section we will give the definition of Lévy processes on involutive
bialgebras, cf. Subsection 1.1, and develop their general theory.

In Subsection 1.2 we will begin to develop their basic theory. We will see
that the marginal distributions of a Lévy process form a convolution semi-
group of states and that we can associate a generator with a Lévy process
on an involutive bialgebra, that characterizes uniquely its distribution, like
in classical probability. By a GNS-type construction we can get a so-called
Schürmann triple from the generator.

This Schürmann triple can be used to obtain a realization of the process
on a symmetric Fock space, see Subsection 1.3. This realization can be found
as the (unique) solution of a quantum stochastic differential equation. It es-
tablishes the one-to-one correspondence between Lévy processes, convolution
semigroups of states, generators, and Schürmann triples. We will not present
the proof of the representation theorem here, but refer to [Sch93, Chapter 2].

In Subsection 1.4, we present a recent unpublished result by Franz,
Schürmann, and Skeide. If the cocycle of the Schürmann triple is surjective,
then the vacuum vector is cyclic for the Lévy process constructed on the
symmetric Fock space via the representation theorem.

Finally, in Subsection 1.5, we look at several examples.
For more information on Lévy processes on involutive bialgebras, see also

[Sch93][Mey95, Chapter VII][FS99].
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1.1 Definition of Lévy Processes on Involutive Bialgebras

A quantum probability space in the purely algebraic sense is a pair (A, Φ)
consisting of a unital ∗-algebra A and a state (i.e. a normalized positive linear
functional) Φ on A. Positivity in this purely algebraic context simply means
Φ(a∗a) ≥ 0 for all a ∈ A. A quantum random variable j over a quantum
probability space (A, Φ) on a ∗-algebra B is simply a ∗-algebra homomorphism
j : B → A. A quantum stochastic process is an indexed family of random
variables (jt)t∈I . For a quantum random variable j : B → A we will call ϕj =
Φ ◦ j its distribution in the state Φ. For a quantum stochastic process (jt)t∈I
the functionals ϕt = Φ ◦ jt : B → C are called marginal distributions. The
joint distribution Φ◦

(∐
t∈I jt

)
of a quantum stochastic process is a functional

on the free product
∐
t∈I B, see Section 3.

Two quantum stochastic processes
(
j
(1)
t :B→A1

)

t∈I
and

(
j
(2)
t :B→A2

)

t∈I
on B over (A1, Φ1) and (A2, Φ2) are called equivalent, if there joint distrib-
utions coincide. This is the case, if and only if all their moments agree, i.e.
if

Φ1

(
j
(1)
t1 (b1) · · · j(1)tn (bn)

)
= Φ2

(
j
(2)
t1 (b1) · · · j(2)tn (bn)

)

holds for all n ∈ N, t1, . . . , tn ∈ I and all b1, . . . , bn ∈ B.
The term ‘quantum stochastic process’ is sometimes also used for an in-

dexed family (Xt)t∈I of operators on a Hilbert space or more generally of
elements of a quantum probability space. We will reserve the name operator
process for this. An operator process (Xt)t∈I ⊆ A (where A is a ∗-algebra of
operators) always defines a quantum stochastic process (jt : C〈a, a∗〉 → A)t∈I
on the free ∗-algebra with one generator, if we set jt(a) = Xt and extend jt
as a ∗-algebra homomorphism. On the other hand operator processes can be
obtained from quantum stochastic processes (jt : B → A)t∈I by choosing an
element x of the algebra B and setting Xt = jt(x).

The notion of independence we use for Lévy processes on involutive bial-
gebras is the so-called tensor or boson independence. In Section 3 we will see
that other interesting notions of independence exist.

Definition 1.1. Let (A, Φ) be a quantum probability space and B a ∗-algebra.
The quantum random variables j1, . . . , jn : B → A are called tensor or Bose
independent (w.r.t. the state Φ), if

(i) Φ
(
j1(b1) · · · jn(bn)

)
= Φ

(
j1(b1)

)
· · ·Φ

(
jn(bn)

)
for all b1, . . . , bn ∈ B, and

(ii)[jl(b1), jk(b2)] = 0 for all k �= l and all b1, b2 ∈ B.

Recall that an involutive bialgebra (B,∆, ε) is a unital ∗-algebra B with
two unital ∗-homomorphisms ∆ : B → B ⊗ B, ε : B → C called coproduct or
comultiplication and counit, satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity)
(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆ (counit property).
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Let j1, j2 : B → A be two linear maps with values in some algebra A, then we
define their convolution j1 
 j2 by

j1 
 j2 = mA ◦ (j1 ⊗ j2) ◦∆.

Here mA : A ⊗ A → A denotes the multiplication of A, m(a ⊗ b) = ab for
a, b ∈ A.

Using Sweedler’s notation ∆(b) = b(1) ⊗ b(2), this becomes (j1 
 j2)(b) =
j1(b(1)j2(b(2)). If j1 and j2 are two independent quantum random variables,
then j1 
 j2 is again a quantum random variable, i.e. a ∗-homomorphism. The
fact that we can compose quantum random variables allows us to define Lévy
process, i.e. processes with independent and stationary increments.

Definition 1.2. Let B be an involutive bialgebra. A quantum stochastic process
(jst)0≤s≤t on B over some quantum probability space (A, Φ) is called a Lévy
process, if the following four conditions are satisfied.

1. (Increment property) We have

jrs 
 jst = jrt for all 0 ≤ r ≤ s ≤ t,

jtt = ε1 for all 0 ≤ t,

i.e. jtt(b) = ε(b)1 for all b ∈ B, where 1 denotes the unit of A.
2. (Independence of increments) The family (jst)0≤s≤t is independent, i.e.

the quantum random variables js1,t1 , . . . , jsntn are independent for all n ∈
N and all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn.

3. (Stationarity of increments) The distribution ϕst = Φ ◦ jst of jst depends
only on the difference t− s.

4. (Weak continuity) The quantum random variables jst converge to jss in
distribution for t↘ s.

Exercise 1.3. Recall that an (involutive) Hopf algebra (B,∆, ε, S) is an (in-
volutive) bialgebra (B,∆, ε) equipped with a linear map called antipode
S : B → B satisfying

S 
 id = 1 ◦ ε = id 
 S. (1.1)

The antipode is unique, if it exists. Furthermore, it is an algebra and coalgebra
anti-homomorphism, i.e. it satisfies S(ab) = S(b)S(a) for all a, b ∈ B and
(S ⊗ S) ◦∆ = τ ◦∆ ◦ S, where τ : B ⊗B → B⊗B is the flip τ(a⊗ b) = b⊗ a.
If (B,∆, ε) is an involutive bialgebra and S : B → B a linear map satisfying
(1.1), then S satisfies also the relation

S ◦ ∗ ◦ S ◦ ∗ = id.

In particular, it follows that the antipode S of an involutive Hopf algebra is
invertible. This is not true for Hopf algebras in general.

Show that if (kt)t≥0 is any quantum stochastic process on an involutive
Hopf algebra, then the quantum stochastic process defined by
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jst = mA ◦
(
(ks ◦ S)⊗ kt

)
◦∆,

for 0 ≤ s ≤ t, satisfies the increment property (1) in Definition 1.2. A one-
parameter stochastic process (kt)t≥0 on a Hopf ∗-algebra H is called a Lévy
process on H, if its increment process (jst)0≤s≤t with jst =

(
ks ◦ S)⊗ kt) ◦∆

is a Lévy process on H in the sense of Definition 1.2.

Let (jst)0≤s≤t be a Lévy process on some involutive bialgebra. We will
denote the marginal distributions of (jst)0≤s≤t by ϕt−s = Φ ◦ jst. Due to the
stationarity of the increments this is well defined.

Lemma 1.4. The marginal distributions (ϕt)t≥0 of a Lévy process on an in-
volutive bialgebra B form a convolution semigroup of states on B, i.e. they
satisfy

1. ϕ0 = ε, ϕs 
 ϕt = ϕs+t for all s, t ≥ 0, and limt↘0 ϕt(b) = ε(b) for all
b ∈ B, and

2. ϕt(1) = 1, and ϕt(b∗b) ≥ 0 for all t ≥ 0 and all b ∈ B.

Proof. ϕt = Φ ◦ j0t is clearly a state, since j0t is a ∗-homomorphism and Φ a
state.

From the first condition in Definition 1.2 we get

ϕ0 = Φ ◦ j00 = Φ(1)ε = ε,

and
ϕs+t(b) = Φ

(
j0,s+t(b)

)
= Φ

(∑
j0s(b(1))js,s+t(b(2))

)
,

for b ∈ B, ∆(b) =
∑

b(1)⊗ b(2). Using the independence of increments, we can
factorize this and get

ϕs+t(b) =
∑

Φ
(
j0s(b(1))

)
Φ
(
js,s+t(b(2))

)
=
∑

ϕs(b(1))ϕt(b(2))

= ϕs ⊗ ϕt
(
∆(b)

)
= ϕs 
 ϕt(b)

for all ∈ B.
The continuity is an immediate consequence of the last condition in Defi-

nition 1.2. ��

Lemma 1.5. The convolution semigroup of states characterizes a Lévy process
on an involutive bialgebra up to equivalence.

Proof. This follows from the fact that the increment property and the in-
dependence of increments allow to express all joint moments in terms of
the marginals. E.g., for 0 ≤ s ≤ t ≤ u ≤ v and a, b, c ∈ B, the moment
Φ
(
jsu(a)jst(b)jsv(c)

)
becomes
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Φ
(
jsu(a)jst(b)jsv(c)

)
= Φ

(
(jst 
 jtu)(a)jst(b)(jst 
 jtu 
 juv)(c)

)

= Φ
(
jst(a(1))jtu(a(2))jst(b)jst(c(1))jtu(c(2))juv(c(3))

)

= Φ
(
jst(a(1)bc(1))jtu(a(2)c(2))juv(c(3))

)

= ϕt−s(a(1)bc(1))ϕu−t(a(2)c(2))ϕv−u(c(3)).

��

It is possible to reconstruct process (jst)0≤s≤t from its convolution semigroup,
see [Sch93, Section 1.9] or [FS99, Section 4.5]. Therefore, we even have a one-
to-one correspondence between equivalence classes of Lévy processes on B and
convolution semigroups of states on B.

1.2 The Generator and the Schürmann Triple of a Lévy Process

In this subsection we will meet two more objects that classify Lévy processes,
namely their generator and their triple (called Schürmann triple by P.-A.
Meyer, see [Mey95, Section VII.1.6]).

We begin with a technical lemma.

Lemma 1.6. (a) Let ψ : C → C be a linear functional on some coalgebra C.
Then the series

exp� ψ(b) def=
∑

n=0

ψ�n

n!
(b) = ε(b) + ψ(b) +

1
2
ψ 
 ψ(b) + · · ·

converges for all b ∈ C.
(b) Let (ϕt)t≥0 be a convolution semigroup on some coalgebra C. Then the

limit
L(b) = lim

t↘0

1
t

(
ϕt(b)− ε(b)

)

exists for all b ∈ C. Furthermore we have ϕt = exp� tL for all t ≥ 0.

The proof of this lemma relies on the fundamental theorem of coalgebras,
see [ASW88, Sch93].

Proposition 1.7. (Schoenberg correspondence) Let B be an involutive
bialgebra, (ϕt)t≥0 a convolution semigroup of linear functionals on B and

L = lim
t↘0

1
t

(
ϕt − ε

)
.

Then the following are equivalent.

(i) (ϕt)t≥0 is a convolution semigroup of states.
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(ii) L : B → C satisfies L(1) = 0, and it is hermitian and conditionally
positive, i.e.

L(b∗) = L(b)

for all b ∈ B, and
L(b∗b) ≥ 0

for all b ∈ B with ε(b) = 0.

Proof. We prove only the (easy) direction (i)⇒(ii), the converse will follow
from the representation theorem 1.15, whose proof can be found in [Sch93,
Chapter 2].

The first property follows by differentiating ϕt(1) = 1 w.r.t. t.
Let b ∈ B, ε(b) = 0. If all ϕt are states, then we have ϕt(b∗b) ≥ 0 for all

t ≥ 0 and therefore

L(b∗b) = lim
t↘0

1
t

(
ϕt(b∗b)− ε(b∗b)

)
= lim
t↘0

ϕt(b∗b)
t

≥ 0.

Similarly, L is hermitian, since all ϕt are hermitian. ��

We will call a linear functional satisfying condition (ii) of the preced-
ing Proposition a generator. Lemma 1.6 and Proposition 1.7 show that Lévy
processes can also be characterized by their generator L = d

dt

∣∣
t=0

ϕt.
Let D be a pre-Hilbert space. Then we denote by L(D) the set of all linear

operators on D that have an adjoint defined everywhere on D, i.e.

L(D) =
{
X : D → D linear

∣∣∣∣
there exists X∗ : D → D linear s.t.
〈u,Xv〉 = 〈X∗u, v〉 for all u, v ∈ D

}
.

L(D) is clearly a unital ∗-algebra.

Definition 1.8. Let B be a unital ∗-algebra equipped with a unital hermitian
character ε : B → C (i.e. ε(1) = 1, ε(b∗) = ε(b), and ε(ab) = ε(a)ε(b) for all
a, b ∈ B). A Schürmann triple on (B, ε) is a triple (ρ, η, L) consisting of

• a unital ∗-representation ρ : B → L(D) of B on some pre-Hilbert space D,
• a ρ-ε-1-cocycle η : B → D, i.e. a linear map η : B → D such that

η(ab) = ρ(a)η(b) + η(a)ε(b) (1.2)

for all a, b ∈ B, and
• a hermitian linear functional L : B → C that has the bilinear map B×B '

(a, b) �→ −〈η(a∗), η(b)〉 as a ε-ε-2-coboundary, i.e. that satisfies

− 〈η(a∗), η(b)〉 = ∂L(a, b) = ε(a)L(b)− L(ab) + L(a)ε(b) (1.3)

for all a, b ∈ B.
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We will call a Schürmann triple surjective, if the cocycle η : B → D is surjec-
tive.

Theorem 1.9. Let B be an involutive bialgebra. We have one-to-one corre-
spondences between Lévy processes on B (modulo equivalence), convolution
semigroups of states on B, generators on B, and surjective Schürmann triples
on B (modulo unitary equivalence).

Proof. It only remains to establish the one-to-one correspondence between
generators and Schürmann triples.

Let (ρ, η, L) be a Schürmann triple, then we can show that L is a generator,
i.e. a hermitian, conditionally positive linear functional with L(1) = 0.

The cocycle has to vanish on the unit element 1, since

η(1) = η(1 · 1) = ρ(1)η(1) + η(1)ε(1) = 2η(1).

This implies

L(1) = L(1 · 1) = ε(1)L(1) + 〈η(1), η(1)〉+ L(1)ε(1) = 2L(1) = 0.

Furthermore, L is hermitian by definition and conditionally positive, since by
(1.3) we get

L(b∗b) = 〈η(b), η(b)〉 = ||η(b)||2 ≥ 0

for b ∈ ker ε.
Let now L be a generator. The sesqui-linear form 〈·, ·〉L : B × B → C

defined by
〈a, b〉L = L

((
a− ε(a)1

)∗(
b− ε(b)1

))

for a, b ∈ B is positive, since L is conditionally positive. Dividing B by the
null-space

NL = {a ∈ B|〈a, a〉L = 0}
we obtain a pre-Hilbert space D = B/NL with a positive definite inner product
〈·, ·〉 induced by 〈·, ·〉L. For the cocycle η : B → D we take the canonical
projection, this is clearly surjective and satisfies Equation (1.3).

The ∗-representation ρ is induced from the left multiplication on B on
ker ε, i.e.

ρ(a)η
(
b− ε(b)1

)
= η

(
a
(
b− ε(b)1

))
or ρ(a)η(b) = η(ab)− η(a)ε(b)

for a, b ∈ B. To show that this is well-defined, we have to verify that left
multiplication by elements of B leaves the null-space invariant. Let therefore
a, b ∈ B, b ∈ NL, then we have

∣∣∣
∣∣∣
(
a
(
b− ε(b)1

))∣∣∣
∣∣∣
2

= L
((
ab− aε(b)1

)∗(
ab− aε(b)1

))

= L
((
b− ε(b)1

)∗
a∗
(
ab− aε(b)1

))

=
〈
b− ε(b)1, a∗a

(
b− ε(b)1

)〉
L

≤ ||b− ε(b)1||2
∣∣∣∣a∗a

(
b− ε(b)1

∣∣∣∣2 = 0,
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with Schwarz’ inequality.
That the Schürmann triple (ρ, η, L) obtained in this way is unique up to

unitary equivalence follows similarly as for the usual GNS construction. ��

Exercise 1.10. Let (Xt)t≥0 be a classical real-valued Lévy process with all
moments finite (on some probability space (Ω,F , P )). Define a Lévy process
on the free unital algebra C[x] generated by one symmetric element x = x∗

with the coproduct and counit determined by ∆(x) = x ⊗ 1 + 1 ⊗ x and
ε(x) = 0, whose moments agree with those of (Xt)t≥0. More precisely, such
that

Φ
(
jst(xk)

)
= E

(
(Xt −Xs)k

)

holds for all k ∈ N and all 0 ≤ s ≤ t.
Construct the Schürmann triple for Brownian motion and for a compound

Poisson process (with finite moments).

For the classification of Gaussian and drift generators on an involutive
bialgebra B with counit ε, we need the ideals

K = ker ε,
K2 = span {ab|a, b ∈ K},
K3 = span {abc|a, b, c ∈ K}.

Proposition 1.11. Let L be a conditionally positive, hermitian linear func-
tional on B. Then the following are equivalent.

(i) η = 0,
(ii) L|K2 = 0,
(iii) L is an ε-derivation, i.e. L(ab) = ε(a)L(b) + L(a)ε(b) for all a, b ∈ B,
(iv) The states ϕt are homomorphisms, i.e. ϕt(ab) = ϕt(a)ϕt(b) for all a, b ∈
B and t ≥ 0.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and the associated Lévy process a drift.

Proposition 1.12. Let L be a conditionally positive, hermitian linear func-
tional on B.

Then the following are equivalent.

(i) L|K3 = 0,
(ii) L(b∗b) = 0 for all b ∈ K2,
(iii) L(abc) = L(ab)ε(c) + L(ac)ε(b) + L(bc)ε(a) − ε(ab)L(c) − ε(ac)L(b) −

ε(bc)L(a) for all a, b, c ∈ B,
(iv) ρ|K = 0 for the representation ρ in the surjective Schürmann triple

(ρ, η, L) associated to L by the GNS-type construction presented in the
proof of Theorem 1.9,
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(v) ρ = ε1, for the representation ρ in the surjective Schürmann triple (ρ, η, L)
associated to L by the GNS-type construction presented in the proof of
Theorem 1.9,

(vi) η|K2 = 0 for the cocycle η in any Schürmann triple (ρ, η, L) containing
L,

(vii) η(ab) = ε(a)η(b) + η(a)ε(b) for all a, b ∈ B and the cocycle η in any
Schürmann triple (ρ, η, L) containing L.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and also the associated Lévy process quadratic or
Gaussian.

The proofs of the preceding two propositions can be carried out as an
exercise or found in [Sch93, Section 5.1].

Proposition 1.13. Let L be a conditionally positive, hermitian linear func-
tional on B. Then the following are equivalent.

(i) There exists a state ϕ : B → C and a real number λ > 0 such that

L(b) = λ
(
ϕ(b)− ε(b)

)

for all b ∈ B.
(ii) There exists a Schürmann triple (ρ, η, L) containing L, in which the co-

cycle η is trivial, i.e. of the form

η(b) =
(
ρ(b)− ε(b)

)
ω, for all b ∈ B,

for some non-zero vector ω ∈ D. In this case we will also call η the
coboundary of the vector ω.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it a Poisson generator and the associated Lévy process
a compound Poisson process.

Proof. To show that (ii) implies (i), set ϕ(b) = 〈ω,ρ(b)ω〉
〈ω,ω〉 and λ = ||ω||2.

For the converse, let (D, ρ, ω) be the GNS triple for (B, ϕ) and check that
(ρ, η, L) with η(b) =

(
ρ(b)− ε(b)

)
ω, b ∈ B defines a Schürmann triple. ��

Remark 1.14. The Schürmann triple for a Poisson generator L = λ(ϕ− ε) ob-
tained by the GNS construction for ϕ is not necessarily surjective. Consider,
e.g., a classical additive R-valued compound Poisson process, whose Lévy mea-
sure µ is not supported on a finite set. Then the construction of a surjective
Schürmann triple in the proof of Theorem 1.9 gives the pre-Hilbert space D0 =
span {xk|k = 1, 2, . . .} ⊆ L2(R, µ). On the other hand, the GNS-construction
for ϕ leads to the pre-Hilbert space D = span {xk|k = 0, 1, 2, . . .} ⊆ L2(R, µ).
The cocycle η is the coboundary of the constant function, which is not con-
tained in D0.
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1.3 The Representation Theorem

The representation theorem gives a direct way to construct a Lévy process
from the Schürmann triple, using quantum stochastic calculus.

Theorem 1.15. (Representation theorem) Let B be an involutive bial-
gebra and (ρ, η, L) a Schürmann triple on B. Then the quantum stochastic
differential equations

djst = jst 

(
dA∗

t ◦ η + dΛt ◦ (ρ− ε) + dAt ◦ η ◦ ∗+ Ldt
)

(1.4)

with the initial conditions
jss = ε1

have a solution (jst)0≤s≤t. Moreover, in the vacuum state Φ(·) = 〈Ω, ·Ω〉,
(jst)0≤s≤t is a Lévy process with generator L.

Conversely, every Lévy process with generator L is equivalent to (jst)0≤s≤t.

For the proof of the representation theorem we refer to [Sch93, Chapter 2].
Written in integral form and applied to an element b ∈ B with ∆(b) =

b(1) ⊗ b(2) (Sweedler’s notation), Equation (1.4) takes the form

jst(b) = ε(b)1+
∫ t

s

jsτ (b(1))
(
dA∗

τ

(
η(b(2))

)
+ dΛτ

(
ρ(b(2) − ε(b(2))

)
+ dAτ

(
η(b∗(2))

)
+ L(b(2))dτ

)
.

Exercise 1.16. Show that

dMt = dA∗
t ◦ η + dΛt ◦ (ρ− ε) + dAt ◦ η ◦ ∗+ Ldt

formally defines a ∗-homomorphism on ker ε = B0, if we define the algebra of
quantum stochastic differentials (or Itô algebra, cf. [Bel98] and the references
therein) over some pre-Hilbert space D as follows.

The algebra of quantum stochastic differentials I(D) over D is the ∗-
algebra generated by

{dΛ(F )|F ∈ L(D)} ∪ {dA∗(u)|u ∈ D} ∪ {dA(u)|u ∈ D} ∪ {dt},

if we identify

dΛ(λF + µG) ≡ λdΛ(F ) + µdΛ(G),
dA∗(λu+ µv) ≡ λdA∗(u) + µdA∗(v),
dA(λu+ µv) ≡ λdA(u) + µdA(v),

for all F,G ∈ L(D), u, v ∈ D, λ, µ ∈ C. The involution of I(D) is defined by
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dΛ(F )∗ = dΛ(F ∗),
(
dA∗(u)

)∗
= dA(u),

dA(u)∗ = dA∗(u),
dt∗ = dt,

for F ∈ L(D), u ∈ D, and the multiplication by the Itô table

• dA∗(u) dΛ(F ) dA(u) dt
dA∗(v) 0 0 0 0
dΛ(G) dA∗(Gu) dΛ(GF ) 0 0
dA(v) 〈v, u〉dt dA(F ∗v) 0 0

dt 0 0 0 0

for all F,G ∈ L(D), u, v ∈ D, i.e. we have, for example,

dA(v) • dA∗(u) = 〈v, u〉dt, and dA∗(u) • dA(v) = 0.

Proposition 1.17. Let (jst)0≤s≤t be a Lévy process on a ∗-bialgebra B with
Schürmann triple (ρ, η, L), realized on the Fock space Γ

(
L2(R+,D)

)
over the

pre-Hilbert space D. Let furthermore u be a unitary operator on D and ω ∈ D.
Then the quantum stochastic differential equation

dUt = Ut

(
dAt(ω)− dA∗

t (uω) + dΛt(u− 1)− ||ω||
2

2
dt
)

with the initial condition U0 = 1 has a unique solution (Ut)t≥0 with Ut a
unitary for all t ≥ 0.

Furthermore, the quantum stochastic process (̃st)0≤s≤t defined by

̃st(b) = U∗
t jst(b)Ut, for b ∈ B,

is again a Lévy process with respect to the vacuum state. The Schürmann
triple (ρ̃, η̃, L̃) of (̃st)0≤s≤t is given by

ρ̃(b) = u∗ρ(b)u,
η̃(b) = u∗η(b)− u∗

(
ρ(b)− ε(b)

)
uω,

L̃(b) = L(b)− 〈uω, η(b)〉 − 〈η(b∗), uω〉+ 〈uω,
(
ρ(b)− ε(b)

)
uω〉

= L(b)− 〈ω, η̃(b)〉 − 〈η̃(b∗), ω〉 − 〈ω,
(
ρ̃(b)− ε(b)

)
ω〉

The proof of this proposition is part of the following Exercise.

Exercise 1.18. Show that (on exponential vectors) the operator process
(Ut)t≥0 is given by

Ut = e−A
∗
t (uω)Γt(u)eAt(ω)e−t||ω||

2/2,
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where Γt(u) denotes the second quantization of u. (Ut)t≥0 is a unitary local
cocycle or HP-cocycle, cf. [Lin05, Bha05].

Setting
kt(x) = Ut

and extending this as a ∗-homomorphism, we get a Lévy process on the group
algebra A = CZ. A can be regarded as the ∗-algebra generated by one unitary
generator x, i.e. CZ ∼= C〈x, x∗〉/〈xx∗−1, x∗x−1〉. Its Hopf algebra structure
is given by

ε(x) = 1, ∆(x) = x⊗ x, S(x) = x∗.

Verify that (̃st)0≤s≤t is a Lévy process, using the information on (Ut)t≥0

we have due to the fact that it is a local unitary cocycle or a Lévy process.
Using the quantum Itô formula, one can then show that (̃st)0≤s≤t satisfies

the quantum stochastic differential equation

d̃st = jst 

(
dA∗

t ◦ η̃ + dΛt ◦ (ρ̃− ε) + dAt ◦ η̃ ◦ ∗+ L̃dt
)

with initial condition ̃ss = ε1, and deduce that (ρ̃, η̃, L̃) is a Schürmann triple
for (̃st)0≤s≤t.

Corollary 1.19. If the cocycle η is trivial, then (jst)ß≤s≤t is cocycle conjugate
to the second quantization

(
Γst(ρ)

)
0≤s≤t of ρ.

1.4 Cyclicity of the Vacuum Vector

Recently, Franz, Schürmann, and Skeide[FS03] have shown that the vacuum
vector is cyclic for the realization of a Lévy process over the Fock space given
by Theorem 1.15, if the cocycle is surjective.

Theorem 1.20. Let (ρ, η, L) be a surjective Schürmann triple on an involu-
tive bialgebra B and let (jst)0≤s≤t be the solution of Equation (1.4) on the
Fock space Γ

(
L2(R+,D)

)
. Then the vacuum vector Ω is cyclic for (jst)0≤s≤t,

i.e. the span of

{js1t1(b1) · · · jsntn(bn)Ω|n ∈ N, 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn, b1, . . . , bn ∈ B}

is dense in Γ
(
L2(R+,D)

)
.

The proof which we will present here is due to Skeide. It uses the fact that
the exponential vectors of indicator functions form a total subset of the Fock
space.

Theorem 1.21. [PS98, Ske00] Let h be a Hilbert space and B ⊆ h a total
subset of h. Let furthermore R denote the ring generated by bounded intervals
in R+. Then

{E(v1I)|v ∈ B, I ∈ R}
is total in Γ

(
L2(R+, h)

)
.
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We first show how exponential vectors of indicator functions of intervals
can be generated from the vacuum vector.

Lemma 1.22. Let 0 ≤ s ≤ t and b ∈ ker ε. For n ∈ N, we define

Πn
[s,t](b) = js,s+δ(1 + b)js+δ,s+2δ(1 + b) · · · jt−δ,t(1 + b)e−(t−s)L(b),

where δ = (t − s)/n. Then Πn
[s,t](b)Ω converges to the exponential vector

E
(
η(b)1[s,t]

)

Proof. Let b ∈ B and k ∈ D. Then the fundamental lemma of quantum
stochastic calculus, cf. [Lin05], implies

〈E(k1[0,T ]), jst(b)Ω〉

= ε(b) +
∫ t

s

〈E(k1[0,T ]), jsτ (b(1))Ω〉
(
〈k, η(b(2))〉+ L(b(2))

)
dτ

for 0 ≤ s ≤ t ≤ T . This is an integral equation for a linear functional on B, it
has a unique solution given by the convolution exponential

〈E(k1[0,T ]), jst(b)Ω〉 = exp�(t− s)
(
〈k, η(b)〉+ L(b)

)
.

(On the right-hand-side compute first the convolution exponential of the func-
tional b �→ (t− s)

(
〈k, η(b)〉+ L(b)

)
and then apply it to b.)

Let b ∈ ker ε, then we have

〈E(k1[0,T ]), jst(1 + b)e−(t−s)L(b)Ω〉 = 1 + (t− s)〈k, η(b)〉+O
(
(t− s)2

)

for all 0 ≤ s ≤ t ≤ T .
Furthermore, we have

〈jst(1 + b)e−(t−s)L(b)Ω, jst(1 + b)e−(t−s)L(b)Ω〉
= 〈Ω, jst

(
(1 + b)∗(1 + b)

)
e−(t−s)(L(b)+L(b∗))Ω〉

=
(
1 + ϕt−s(b∗) + ϕt−s(b) + ϕt−s(b∗b)

)
e−(t−s)(L(b)+L(b∗))

for b ∈ ker ε, and therefore

〈jst(1 + b)e−(t−s)L(b)Ω, jst(1 + b)e−(t−s)L(b)Ω〉
= 1 + (t− s)〈η(b), η(b)〉+O

(
(t− s)2

)
.

These calculations show that Πn
[s,t](b)Ω converges in norm to the exponential

vector E
(
η(b)1[s,t]

)
, since using the independence of increments of (jst)0≤s≤t,

we get
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∣∣∣
∣∣∣Πn

[s,t](b)Ω − E
(
η(b)1[s,t]

)∣∣∣
∣∣∣
2

= 〈Πn
[s,t](b)Ω,Π

n
[s,t](b)Ω〉 − 〈Πn

[s,t](b)Ω, E
(
η(b)1[s,t]

)
〉

−〈E
(
η(b)1[s,t]

)
,Πn

[s,t](b)Ω〉+ 〈E
(
η(b)1[s,t]

)
, E
(
η(b)1[s,t]

)
〉

=
(
1 + δ||η(b)||2 +O(δ2)

)n − e(t−s)||η(b)||
2

n→∞−→ 0.

��

Proof. (of Theorem 1.20) We can generate exponential vectors of the form
E(v1I), with I = I1 ∪ · · · ∪ Ik ∈ R a union of disjoint intervals by taking
products

Πn
I (b) = Πn

I1(b) · · ·Π
n
Ik

(b)

with an element b ∈ ker ε, η(b) = v. If η is surjective, then it follows from
Theorem 1.21 that we can generate a total subset from the vacuum vector.

��

If the Lévy process is defined on a Hopf algebra, then it is sufficient to con-
sider time-ordered products of increments corresponding to intervals starting
at 0.

Corollary 1.23. Let H be a Hopf algebra with antipode S. Let furthermore
(ρ, η, L) be a surjective Schürmann triple on H over D and (jst)0≤s≤t the so-
lution of Equation (1.4) on the Fock space Γ

(
L2(R+,D)

)
. Then the subspaces

H↑ = span{j0t1(b1) · · · j0tn(bn)Ω|0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, b1, . . . , bn ∈ H},
H↓ = span{j0tn(b1) · · · j0t1(bn)Ω|0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, b1, . . . , bn ∈ H},

are dense in Γ
(
L2(R+,D)

)
.

Remark 1.24. Let (ρ, η, L) be an arbitrary Schürmann triple on some involu-
tive bialgebra B and let (jst)0≤s≤t be the solution of Equation (1.4) on the
Fock space Γ

(
L2(R+,D)

)
. Denote by H0 the span of the vectors that can be

created from the vacuum using arbitrary increments.
Then we have H↑ ⊆ H0 and H↓ ⊆ H0 for the subspaces H↑,H↓,H0 ⊆

Γ
(
L2(R+,D)

)
defined as in Theorem 1.20 and Corollary 1.23. This fol-

lows since any product js1t1(b1) · · · jsntn(bn) with arbitrary bounded inter-
vals [s1, t1], . . . [sn, tn] ⊆ R+ can be decomposed in a linear combination of
products with disjoint intervals, see the proof of Lemma 1.5.

E.g., for j0s(a)j0t(b), a, b ∈ B, 0 ≤ s ≤ t, we get

j0s(a)j0t(b) = j0s(ab(1))jst(b(2))

where ∆(b) = b(1) ⊗ b(2).
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Proof. The density of H↑ follows, if we show H↑ = H0. This is clear, if we
show that the map T1 : H ⊗ H → H ⊗ H, T1 = (m ⊗ id) ◦ (id ⊗ ∆), i.e.,
T1(a⊗ b) = ab(1) ⊗ b(2) is a bijection, since

j0t1(b1) · · · j0tn(bn)

= m
(n−1)
A ◦ (j0t1 ⊗ jt1t2 ⊗ · · · ⊗ jtn−1tn)

((
b1 ⊗ 1

)(
∆(b2)⊗ 1

)
· · ·

(
∆(n−1)

))

= m
(n−1)
A ◦ (j0t1 ⊗ jt1t2 ⊗ · · · ⊗ jtn−1tn) ◦ T (n)

1 (b1 ⊗ · · · ⊗ bn),

where

T
(n)
1 = (T1 ⊗ idH⊗(n−2)) ◦ (idH ⊗ T1 ⊗ idH⊗(n−3)) ◦ · · · ◦ (idH⊗(n−2) ⊗ T1)

see also [FS99, Section 4.5]. To prove that T1 is bijective, we give an explicit
formula for its inverse,

T−1
1 = (m⊗ id) ◦ (id⊗ S ⊗ id) ◦ (id⊗∆).

To showH↓ = H0 it is sufficient to show that the map T2 : H⊗H → H⊗H,
T2 = (m⊗ id) ◦ (id⊗ τ) ◦ (∆⊗ id), T2(a⊗ b) = a(1)b⊗ a(2) is bijective. This
follows from the first part of the proof, since T1 = (∗ ⊗ ∗) ◦ T2 ◦ (∗ ⊗ ∗). ��

Exercise 1.25. (a) Prove T1 ◦ T−1
1 = idH⊗H = T−1

1 ◦ T1 using associativity,
coassociativity, and the antipode axiom.

(b) Find an explicit formula for the inverse of T2.

The following simple lemma is useful for checking if a Gaussian Schürmann
triple is surjective.

Lemma 1.26. Let (ρ, η, L) be a Gaussian Schürmann triple on a ∗-bialgebra
B and let G ⊆ B be a set of algebraic generators, i.e.

span{g1 · · · gn|n ∈ N, g1, . . . , gn ∈ G} = B.

Then we have
span η(G) = η(B).

Proof. For Gaussian Schürmann triples one can show by induction over n,

η(g1 · · · gn) =
n∑

k=1

ε(g1 · · · gk−1gk+1 · · · gn)η(gk).

��
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1.5 Examples

Additive Lévy Processes

For a vector space V the tensor algebra T (V ) is the vector space

T (V ) =
⊕

n∈N

V ⊗n,

where V ⊗n denotes the n-fold tensor product of V with itself, V ⊗0 = C, with
the multiplication given by

(v1 ⊗ · · · ⊗ vn)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,

for n,m ∈ N, v1, . . . , vn, w1, . . . , wm ∈ V . The elements of
⋃
n∈N

V ⊗n are
called homogeneous, and the degree of a homogeneous element a �= 0 is n if
a ∈ V ⊗n. If {vi|i ∈ I} is a basis of V , then the tensor algebra T (V ) can be
viewed as the free algebra generated by vi, i ∈ I. The tensor algebra can be
characterized by the following universal property.

There exists an embedding ı : V → T (V ) of V into T (V ) such that for
any linear mapping R : V → A from V into an algebra there exists a unique
algebra homomorphism T (R) : T (V ) → A such that the following diagram
commutes,

V
R

ı

A

T (V )
T (R)

i.e. T (R) ◦ ı = R.
Conversely, any algebra homomorphism Q : T (V )→ A is uniquely deter-

mined by its restriction to V .
In a similar way, an involution on V gives rise to a unique extension as an

involution on T (V ). Thus for a ∗-vector space V we can form the tensor ∗-
algebra T (V ). The tensor ∗-algebra T (V ) becomes a ∗-bialgebra, if we extend
the linear ∗-maps

ε : V → C, ε(v) = 0,
∆ : V → T (V )⊗ T (V ), ∆(v) = v ⊗ 1 + 1⊗ v,

as ∗-homomorphisms to T (V ). We will denote the coproduct T (∆) and the
counit T (ε) again by ∆ and ε. The tensor ∗-algebra is even a Hopf ∗-algebra
with the antipode defined by S(v) = −v on the generators and extended as
an anti-homomorphism.

We will now study Lévy processes on T (V ). Let D be a pre-Hilbert space
and suppose we are given

1. a linear ∗-map R : V → L(D),
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2. a linear map N : V → D, and
3. a linear ∗-map ψ : V → C (i.e. a hermitian linear functional),

then
Jt(v) = Λt

(
R(v)

)
+A∗

t (N(v)
)

+At
(
N(v∗)

)
+ tψ(v) (1.5)

for v ∈ V extends to a Lévy process (jt)t≥0, jt = T (Jt), on T (V ) (w.r.t. the
vacuum state).

In fact, and as we shall prove in the following two exercises, all Lévy
processes on T (V ) are of this form, cf. [Sch91b].

Exercise 1.27. Show that (R,N,ψ) can be extended to a Schürmann triple
on T (V ) as follows

1. Set ρ = T (R).
2. Define η : T (V )→ D by η(1) = 0, η(v) = N(v) for v ∈ V , and

η(v1 ⊗ · · · ⊗ vn) = R(v1) · · ·R(vn−1)N(vn)

for homogeneous elements v1 ⊗ · · · ⊗ vn ∈ V ⊗n, n ≥ 2.
3. Finally, define L : T (V )→ C by L(1) = 0, L(v) = ψ(v) for v ∈ V , and

L(v1 ⊗ · · · ⊗ vn) =
{〈

N(v∗1), N(v2)
〉

if n = 2,〈
N(v∗1), R(v2) · · ·R(vn−1)N(vn)

〉
if n ≥ 3,

for homogeneous elements v1 ⊗ · · · ⊗ vn ∈ V ⊗n, n ≥ 2.

Prove furthermore that all Schürmann triples of T (V ) are of this form.

Exercise 1.28. Let (ρ, η, L) be a Schürmann triple on T (V ). Write down
the corresponding quantum stochastic differential equation for homogeneous
elements v ∈ V of degree 1 and show that its solution is given by (1.5).

Lévy Processes on Finite Semigroups

Exercise 1.29. Let (G, ·, e) be a finite semigroup with unit element e. Then
the complex-valued functions F(G) on G form an involutive bialgebra. The
algebra structure and the involution are given by pointwise multiplication and
complex conjugation. The coproduct and counit are defined by

∆(f)(g1, g2) = f(g1 · g2) for g1, g2 ∈ G,
ε(f) = f(e),

for f ∈ F(G).
Show that the classical Lévy processes in G (in the sense of [App05]) are

in one-to-one correspondence to the Lévy processes on the ∗-bialgebra F(G).
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Lévy Processes on Real Lie Algebras

The theory of factorizable representations was developed in the early seventies
by Araki, Streater, Parthasarathy, Schmidt, Guichardet, · · · , see, e.g. [Gui72,
PS72] and the references therein, or Section 5 of the historical survey by
Streater [Str00]. In this Subsection we shall see that in a sense this theory is
a special case of the theory of Lévy processes on involutive bialgebras.

Definition 1.30. A Lie algebra g over a field K is a K-vector space with a
linear map [·, ·] : g × g → g called Lie bracket that satisfies the following two
properties.

1. Anti-symmetry: for all X,Y ∈ g, we have

[X,Y ] = −[Y,X].

2. Jacobi identity: for all X,Y,Z ∈ g, we have
[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0.

For K = R, we call g a real Lie algebra, for K = C a complex Lie algebra.
If A is an algebra, then [a, b] = ab− ba defines a Lie bracket on A.
We will see below that we can associate a Hopf ∗-algebra to a real Lie

algebra, namely its universal enveloping algebra. But it is possible to define
Lévy processes on real Lie algebras without explicit reference to any coalgebra
structure.

Definition 1.31. Let g be a Lie algebra over R, D be a pre-Hilbert space, and
Ω ∈ D a unit vector. We call a family

(
jst : g → L(D)

)
0≤s≤t of representa-

tions of g by anti-hermitian operators (i.e. satisfying jst(X)∗ = −jst(X) for
all X ∈ g, 0 ≤ s ≤ t) a Lévy process on g over D (with respect to Ω), if the
following conditions are satisfied.

1. (Increment property) We have

jst(X) + jtu(X) = jsu(X)

for all 0 ≤ s ≤ t ≤ u and all X ∈ g.
2. (Independence) We have [jst(X), js′t′(Y )] = 0 for all X,Y ∈ g, 0 ≤ s ≤
t ≤ s′ ≤ t′ and

〈Ω, js1t1(X1)k1 · · · jsntn(Xn)knΩ〉
= 〈Ω, js1t1(X1)k1Ω〉 · · · 〈Ω, jsntn(Xn)knΩ〉

for all n, k1, . . . , kn ∈ N, 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn, X1, . . . , Xn ∈ g.
3. (Stationarity) For all n ∈ N and all X ∈ g, the moments

mn(X; s, t) = 〈Ω, jst(X)nΩ〉

depend only on the difference t− s.
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4. (Weak continuity) We have limt↘s〈Ω, jst(X)nΩ〉 = 0 for all n ∈ N and
all X ∈ g.

For a classification of several processes on several Lie algebras of interest
of physics and for several examples see also [AFS02, Fra03a].

Exercise 1.32. Let g be a real Lie algebra. Then the complex vector space
gC = C⊗R g = g⊕ ig is a complex Lie algebra with the Lie bracket

[X + iY,X ′ + iY ′] = [X,X ′]− [Y, Y ′] + i
(
[X,Y ′] + [Y,X ′]

)

for X,X ′, Y, Y ′ ∈ g.

1. Show that ∗ : gC → gC, Z = X + iY �→ Z∗ = −X + iY defines an
involution on gC, i.e. it satisfies

(Z∗)∗ = Z and [Z1, Z2]∗ = [Z∗
2 , Z

∗
1 ]

for all Z,Z1, Z2 ∈ gC

2. Show that g �→ (gC, ∗) is an isomorphism between the category of real Lie
algebras and the category of involutive complex Lie algebras. What are
the morphisms in those two categories? How does the functor g �→ (gC, ∗)
act on morphisms?

The universal enveloping algebra U(g) of a Lie algebra g can be constructed
as the quotient T (g)/J of the tensor algebra T (g) over g by the ideal J
generated by {

X ⊗ Y − Y ⊗X − [X,Y ]|X,Y ∈ g
}
.

The universal enveloping algebra is characterized by a universal property.
Composing the embedding ı : g → T (g) with the canonical projection p :
T (g) → T (g)/J we get an embedding ı′ = p ◦ ı : g → U(g) of g into its
enveloping algebra. For every algebra A and every Lie algebra homomorphism
R : g → A there exists a unique algebra homomorphism U(R) : U(g) → A
such that the following diagram commutes,

g
R

ı′

A

U(g)
U(R)

i.e. U(R) ◦ ı′ = R. If g has an involution, then it can be extended to an
involution of U(g).

The enveloping algebra U(g) becomes a bialgebra, if we extend the Lie
algebra homomorphism

ε : g→ C, ε(X) = 0,
∆ : g→ U(g)⊗ U(g), ∆(X) = X ⊗ 1 + 1⊗X,



182 Uwe Franz

to U(g). We will denote the coproduct U(∆) and the counit U(ε) again by ∆
and ε. It is even a Hopf algebra with the antipode S : U(g)→ U(g) given by
S(X) = −X on g and extended as an anti-homomorphism.

Exercise 1.33. Let g be a real Lie algebra and U = U(gC) the enveloping
algebra of its complexification.

1. Let (jst)0≤s≤t be a Lévy process on U . Show that its restriction to g is a
Lévy process on g.

2. Let (kst)0≤s≤t now be a Lévy process on g. Verify that its extension to U
is a Lévy process on U .

3. Show that this establishes a one-to-one correspondence between Lévy
processes on a real Lie algebra and Lévy processes on its universal en-
veloping algebra.

We will now show that Lévy processes on real Lie algebras are the same
as factorizable representation of current algebras.

Let g be a real Lie algebra and (T, T , µ) a measure space (e.g. the real line
R with the Lebesgue measure λ). Then the set of g-valued step functions

gI =

{
X =

n∑

i=1

Xi1Mi
;Xi ∈ g,Mi ∈ T , µ(Mi) <∞,Mi ⊆ I, n ∈ N

}
.

on I ⊆ T is again a real Lie algebra with the pointwise Lie bracket. For I1 ⊆ I2
we have an inclusion iI1,I2 : gI1 → gI2 , simply extending the functions as zero
outside I1. Furthermore, for disjoint subsets I1, I2 ∈ T , gI1∪I2 is equal to the
direct sum gI1 ⊕ gI2 . If π be a representation of gT and I ∈ T , then have also
a representation πI = π ◦ iI,T of gI

Recall that for two representation ρ1, ρ2 of two Lie algebras g1 and g2,
acting on (pre-) Hilbert spaces H1 and H2, we can define a representation
ρ = (ρ1 ⊗ ρ2) of g1 ⊕ g1 acting on H1 ⊗H2 by

(ρ1 ⊗ ρ2)(X1 +X2) = ρ1(X1)⊗ 1 + 1⊗ ρ2(X2),

for X1 ∈ g1, X2 ∈ g2.

Definition 1.34. A triple (π,D,Ω) consisting of a representation π of gT by
anti-hermitian operators and a unit vector Ω ∈ D is called a factorizable
representation of the simple current algebra gT, if the following conditions are
satisfied.

1. (Factorization property) For all I1, I2 ∈ T , I1 ∩ I2 = ∅, we have

(πI1∪I2 ,D,Ω) ∼= (πI1 ⊗ πI2 ,D ⊗D,Ω ⊗Ω).

2. (Invariance) The linear functional ϕI : U(g)→ determined by

ϕI(Xn) = 〈Ω, π(X1I)nΩ〉

for X ∈ g, I ∈ T depends only on µ(I).
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3. (Weak continuity) For any sequence (Ik)k∈N with limk→∞ µ(Ik) = 0 we
have limk→∞ ϕIk

(u) = ε(u) for all u ∈ U(g).

Proposition 1.35. Let g be a real Lie algebra and (T, T , µ) = (R+,B(R+), λ).
Then we have a one-to-one correspondence between factorizable representa-
tions of gR+ and Lévy processes on g.

The relation which is used to switch from one to the other is

π(X1[s,t[) = jst(X)

for 0 ≤ s ≤ t and X ∈ g.

Proposition 1.36. Let g be a real Lie algebra and (T, T , µ) a measure space
without atoms. Then all factorizable representations of gT are characterized
by generators or equivalently by Schürmann triples on U(gC). They have a
realization on the symmetric Fock space Γ

(
L2(T, T , µ)

)
determined by

π(X1I) = A∗(1I × ρ(X)
)

+ Λ
(
1I ⊗ ρ(X)

)
+A

(
1I ⊗ η(X∗)

)
+ µ(I)L(X)

for I ∈ T with µ(I) <∞ and X ∈ g.

The Quantum Azéma Martingale

Let q ∈ C and Bq the involutive bialgebra with generators x, x∗, y, y∗ and
relations

yx = qxy, x∗y = qyx∗,

∆(x) = x⊗ y + 1⊗ x, ∆(y) = y ⊗ y,

ε(x) = 0, ε(y) = 1.

Proposition 1.37. There exists a unique Schürmann triple on Bq acting on
D = C with

ρ(y) = q, ρ(x) = 0,
η(y) = 0, η(x) = 1,
L(y) = 0, L(x) = 0.

Let (jst)0≤s≤t be the associated Lévy process on Bq and set Yt = j0t(y),
Xt = j0t(x), and X∗

t = j0t(x∗). These operator processes are determined by
the quantum stochastic differential equations

dYt = (q − 1)YtdΛt, (1.6)
dXt = dA∗

t + (q − 1)XtdΛt, (1.7)
dX∗

t = dAt + (q − 1)XtdΛt, (1.8)

with initial conditions Y0 = 1, X0 = X∗
0 = 0. This process is the quantum

Azéma martingale introduced by Parthasarathy [Par90], see also [Sch91a]. The
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first Equation (1.6) can be solved explicitely, the operator process (Yt)t≥0 is
the second quantization of multiplication by q, i.e.,

Yt = Γt(q), for t ≥ 0

Its action on exponential vectors is given by

YtE(f) = E
(
qf1[0,t[ + f1[t,+∞[

)
.

The hermitian operator process (Zt)t≥0 defined by Zt = Xt + X∗
t has as

classical version the classical Azéma martingale (Mt)t≥0 introduced by Azéma
and Emery, cf. [Eme89], i.e. is has the same joint moments,

〈Ω,Zn1
t1 · · ·Z

nk
tk
Ω〉 = E

(
Mn1
t1 · · ·M

nk
tk

)

for all n1, . . . , nk ∈ N, t1, . . . , tk ∈ R+. This was the first example of a classical
normal martingale having the so-called chaotic representation property, which
is not a classical Lévy process.

2 Lévy Processes and Dilations
of Completely Positive Semigroups

In this section we will show how Lévy process can be used to construct di-
lations of quantum dynamical semigroups on the matrix algebra Md. That
unitary cocycles on the symmetric Fock space tensor a finite-dimensional ini-
tial space can be interpreted as a Lévy process on a certain involutive bial-
gebra, was first observed in [Sch90]. For more details on quantum dynamical
semigroups and their dilations, see [Bha01, Bha05] and the references therein.

2.1 The Non-Commutative Analogue of the Algebra
of Coefficients of the Unitary Group

For d ∈ N we denote by Ud the free non-commutative (!) ∗-algebra generated
by indeterminates uij , u∗ij , i, j = 1, . . . , d with the relations

d∑

j=1

ukju
∗
�j = δk�,

d∑

j=1

u∗jkuj� = δk�,

The ∗-algebra Ud is turned into a ∗-bialgebra, if we put

∆(uk�) =
d∑

j=1

ukj ⊗ uj�,

ε(uk�) = δk�.
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This ∗-bialgebra has been investigated by Glockner and von Waldenfels, see
[GvW89]. If we assume that the generators uij , u∗ij commute, we obtain the
coefficient algebra of the unitary group U(d). This is why Ud is often called the
non-commutative analogue of the algebra of coefficients of the unitary group.
It is isomorphic to the ∗-algebra generated by the mappings

ξk� : U(Cd ⊗H)→ B(H)

with
ξk�(U) = PkUP

∗
� = Uk�

for U ∈ U(Cd ⊗ H) ⊆ Md

(
B(H)

)
, where H is an infinite-dimensional, sep-

arable Hilbert space and U(Cd ⊗H) denotes the unitary group of operators
on C

d ⊗ H. Moreover B(H) denotes the ∗-algebra of bounded operators on
H,Md

(
B(H)

)
the ∗-algebra of d× d-matrices with elements from B(H) and

Pk : C
d ⊗H → H the projection on the k-th component.

Proposition 2.1. 1. On U1 a faithful Haar measure is given by λ(un) =
δ0,n, n ∈ Z.

2. On U1 an antipode is given by setting S(x) = x∗ and extending S as a
∗-algebra homomorphism.

3. For d > 1 the bialgebra Ud does not possess an antipode.

Exercise 2.2. Recall that a (two-sided) Haar measure on a bialgebra B is a
normalized linear functional λ satisfying

λ 
 ϕ = ϕ(1)λ = ϕ 
 λ

for all linear functionals ϕ on B.
Verify (1) and (2).

Proof. Let us prove (3). We suppose that an antipode exists. Then

u∗�k =
d∑

n=1

d∑

j=1

S(ukj)ujnu∗�n

=
d∑

j=1

S(ukj)
d∑

n=1

ujnu
∗
�n

=
d∑

j=1

S(ukj)δj� = S(uk�).

Similarly, one proves that S(u∗k�) = ulk. Since S is an antipode, it has to be
an algebra anti-homomorphisms. Therefore,

S




d∑

j=1

ukju
∗
�j



 =
d∑

j=1

S(u∗�j)S(ukj) =
d∑

j=1

uj�u
∗
jk,

which is not equal to δk�, if d > 1. ��
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Remark 2.3. Since Ud does not have an antipode for d > 1, it is not a com-
pact quantum group (for d = 1, of course, its C∗-completion is the compact
quantum group of continuous functions on the circle S1). We do not know, if
Ud has a Haar measure for d > 1.

We have Un = C1 ⊕ U0
n, where U0

n = K1 = ker ε is the ideal generated
by ûij = uij − δij1, i, j = 1, . . . n, and their adjoints. The defining relations
become

−
d∑

j=1

ûij û
∗
kj = ûik + û∗ki = −

d∑

j=1

û∗jiûjk, (2.1)

for i, k = 1, . . . , n, in terms of these generators. We shall also need the ideals

K2 = span{ab|a, b ∈ K1} and K3 = span {abc|a, b, c ∈ K1}.

2.2 An Example of a Lévy Process on Ud

A one-dimensional representation σ : Ud → C is determined by the matrix
w = (wij)1≤i,j≤d ∈ Md, wij = σ(uij). The relations in Ud imply that w is
unitary. For � = (�ij) ∈ Md we can define a σ-cocycle (or σ-derivation) as
follows. We set

η�(uij) = �ij ,

η�(u∗ij) = −(w∗�)ji = −
d∑

k=1

wkj�ki,

on the generators and require η� to satisfy

η�(ab) = σ(a)η�(b) + η�(a)ε(b)

for a, b ∈ Ud. The hermitian linear functional Lw,� : Ud → C with

Lw,�(1) = 0,

Lw,�(uij) = Lw,�(u∗ij) = −1
2
(�∗�)ij = −1

2

d∑

k=1

�ki�kj ,

Lw,�(ab) = ε(a)Lw,�(b) + η�(a∗)η�(b) + Lw,�(a)ε(b)

for a, b ∈ Ud, can be shown to be a generator with Schürmann triple
(σ, η�, Lw,�). The generator Lw,� is Gaussian if and only if w is the identity
matrix.

The associated Lévy process on Ud is determined by the quantum stochas-
tic differential equations

djst(uij) =
d∑

k=1

jst(uik)

(
�kjdA∗

t + (wkj − δkj)dΛt −
d∑

n=1

wnj�nkdAt −
1
2

d∑

n=1

�nk�njdt

)
,
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on Γ
(
L2(R+,C)

)
with initial conditions jss(uij) = δij .

We define an operator process (Ust)0≤s≤t in Md ⊗ B
(
Γ
(
L2(R+,C)

)) ∼=

B
(
C
d ⊗ Γ

(
L2(R+,C)

))
by

Ust =
(
jst(uij)

)
1≤i,j≤d,

for 0 ≤ s ≤ t. Then (Ust)0≤s≤t is a unitary operator process and satisfies the
quantum stochastic differential equation

dUst = Ust

(
�dA∗

t + (w − 1)dΛt − �∗wdAt −
1
2
�∗�dt

)

with initial condition Uss = 1. The increment property of (jst)0≤s≤t implies
that (Ust)0≤s≤t satisfies

U0sUs,s+t = U0,s+t (2.2)

for all 0 ≤ s ≤ t.
Let St : L2(R+,K)→ L2(R+,K) be the shift operator,

Stf(s) =
{
f(s− t) if s ≥ t,
0 else,

for f ∈ L2(R+,K), and define Wt : Γ
(
L2(R+,K)

)
⊗ Γ

(
L2([0, t[,K)

)
→

Γ
(
L2(R+,K)

)
by

Wt

(
E(f)⊗ E(g)

)
= E(g + Stf),

on exponential vectors E(f), E(g) of functions f ∈ L2(R+,K), g ∈ L2([0, t[,K).
Then the CCR flow γt : B

(
Γ
(
L2(R+,K)

))
is defined by

γt(Z) = Wt(Z ⊗ 1)W ∗
t ,

for Z ∈ B
(
Γ
(
L2(R+,K)

))
. On B

(
C
d ⊗ Γ

(
L2(R+,K)

))
we have the E0-

semigroup (γ̃t)t≥0 with γ̃t = id⊗ γt.
We have Us,s+t = γ̃s(U0t) for all s, t ≥ 0 and therefore increment property

(2.2) implies that (Ut)t≥0 with Ut = U0t, t ≥ 0, is a left cocycle of (γ̃t)t≥0, i.e.

Us+t = Usγ̃s(Ut),

for all s, t ≥ 0. One can check that (Ut)t≥0 is also local and continuous, i.e.
an HP-cocycle, see [Lin05, Bha05].

Therefore we can define a new E0-semigroup (ηt)t≥0 on the algebra B
(
C
d⊗

Γ
(
L2(R+,K)

))
by

ηt(Z) = Utγ̃t(Z)U∗
t , (2.3)

for Z ∈ B
(
C
d ⊗ Γ

(
L2(R+,K)

))
and t ≥ 0.
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Let {e1, . . . , ed} be the standard basis of C
d and denote by E0 the condi-

tional expectation from B
(
C
d ⊗ Γ

(
L2(R+,K)

))
to B(Cd) ∼=Md determined

by (
E0(Z)

)
ij

= 〈ei ⊗Ω,Zej ⊗Ω〉

for Z ∈ B
(
C
d ⊗ Γ

(
L2(R+,K)

))
. Then

τt = E0

(
ηt(X ⊗ 1)

)
(2.4)

defines a quantum dynamical semigroup on Md. It acts on the matrix units
Eij by

τt(Eij)

=




〈e1 ⊗Ω,Ut(Eij ⊗ 1)U∗

t e1 ⊗Ω〉 · · · 〈e1 ⊗Ω,Ut(Eij ⊗ 1)U∗
t ed ⊗Ω〉

...
...

〈ed ⊗Ω,Ut(Eij ⊗ 1)U∗
t e1 ⊗Ω〉 · · · 〈ed ⊗Ω,Ut(Eij ⊗ 1)U∗

t ed ⊗Ω〉





= ϕt





u1iu
∗
1j u1iu

∗
2j · · · u1iu

∗
dj

u2iu
∗
1j u2iu

∗
2j · · · u2iu

∗
dj

...
...

...
udiu

∗
1j udiu

∗
2j · · · udiu∗dj



 ,

and therefore the generator L of (τt)t≥0 is given by

L(Eij) =
(
Lw,�(ukiu∗mj)

)
1≤k,m≤d,

for 1 ≤ i, j ≤ d.

Lemma 2.4. The generator L of (τt)t≥0 is given by

L(X) = �∗wXw∗�− 1
2
{
X, �∗�}

for X ∈Md.

Proof. We have, of course, d
dt

∣∣
t=0

ϕt(ukiu∗mj) = Lw,�(ukiu∗mj). Using (1.3) and
the definition of the Schürmann triple, we get

Lw,�(ukiu∗mj) = ε(uki)Lw,�(u∗mj) + η�(u∗ki)η�(u
∗
mj) + Lw,�(uki)ε(u∗mj)

= −1
2
δki(�∗�)mj + (�∗w)ki(w∗�)jm −

1
2
(�∗�)kiδmj .

Writing this in matrix form, we get

(
Lw,�(ukiu∗mj)

)
1≤k,m≤d = −1

2
Eij�

∗�+ �∗wEijw
∗�− 1

2
�∗�Eij ,

and therefore the formula given in the Lemma. ��
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2.3 Classification of Generators on Ud

In this section we shall classify all Lévy processes on Ud, see also [Sch97] and
[Fra00, Section 4].

The functionals Dij : Ud → C, i, j = 1, . . . , d defined by

Dij(ûkl) = Dij(ukl) = iδikδjl,

Dij(û∗kl) = Dij(u∗kl) = −Dij(ûlk) = −iδilδjk,
Dij(u) = 0 if u �∈ span{ûij , û∗ij ; i, j = 1, . . . , d},

for i, j, k, l = 1, . . . , d, are drift generators, since they are hermitian and form
Schürmann triples together with the zero cocycle η = 0 and the trivial repre-
sentation ρ = ε.

Let A = (ajk) ∈ Md(C) be a complex d × d-matrix. It is not difficult to
see that the triples (ε, ηA : Ud → C, GA), i, j = 1, . . . , d defined by

ηA(ûjk) = ηA(ujk) = ajk,

ηA(û∗jk) = ηA(u∗jk) = −ηA(ukj) = −akj ,
ηA(1) = ηA(uv) = 0 for u, v ∈ U0

d ,

and

GA(1) = GA(ûjk − û∗kj) = 0, for j, k = 1, . . . , d,

GA(ûjk + û∗kj) = −GA

(
d∑

l=1

û∗lj ûlk

)
= −

d∑

l=1

aljalk = −(A∗A)jk,

for j, k = 1, . . . , d,
GA(uv) = 〈ηA(u∗), ηA(v)〉 = ηA(u∗)ηA(v),

for u, v ∈ U0
d , are Schürmann triples. Furthermore, we have ηA|K2 = 0 and

GA|K3 = 0, i.e. the generators GA are Gaussian. On the elements ûjk, û
∗
jk,

j, k = 1, . . . , d, this gives

GA(ûjk) = −1
2
(A∗A)jk

GA(û∗jk) = −1
2
(A∗A)kj

GA(ûjkûlm) = ηA(û∗jk)ηA(ûlm) = −akjalm,
GA(ûjkû∗lm) = akjaml

GA(û∗jkûlm) = ajkalm

GA(û∗jkû
∗
lm) = −ajkaml

for j, k, l,m = 1, . . . , d.
Let us denote the standard basis of Md(C) by Ejk, j, k = 1, . . . , d. We

define the functionals Gjk,lm : Ud → C by
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Gjk,lm(1) = 0,

Gjk,lm(ûrs) = −1
2
δkrδjlδms = −1

2
(E∗

jkElm)rs, for r, s = 1, . . . , d,

Gjk,lm(û∗rs) = −1
2
δksδjlδmr = −1

2
(E∗

jkElm)sr, for r, s = 1, . . . , d,

Gjk,lm(uv) = 〈ηEjk
(u∗), ηElm

(v)〉 = ηEjk
(u∗)ηElm

(v),

for u, v ∈ U0
n, j, k, l,m = 1, . . . , d.

Theorem 2.5. A generator L : Ud → C is Gaussian, if and only if it is of
the form

L =
d∑

j,k,l,m=1

σjk,lmGjk,lm +
d∑

j,k=1

bjkDjk,

with a hermitian d×d-matrix (bjk) and a positive semi-definite d2×d2-matrix
(σjk,lm). It is a drift, if and only if σjk,lm = 0 for j, k, l,m = 1, . . . , d.

Proof. Applying L to Equation (2.1), we see that L(ûjk) = −L(û∗kj) has to
hold for a drift generator. By the hermitianity we get L(ûjk) = L(û∗jk), and

thus a drift generator L has to be of the form
n∑

j,k=1

bijDij with a hermitian

d× d-matrix (bij).
Let (ρ, η, L) be a Schürmann triple with a Gaussian generator L. Then

we have ρ = ε id, and η(1) = 0, η|K2 = 0. By applying η to Equation (2.1),
we get η(û∗ij) = −η(ûji). Therefore η(Ud) has at most dimension d2 and the
Schürmann triple (ρ, η, L) can be realized on the Hilbert spaceMd(C) (where

the inner product is defined by 〈A,B〉 =
d∑

j,k=1

ajkbjk for A = (ajk), B =

(bjk) ∈Md(C)). We can write η as

η =
d∑

j,k=1

ηAjk
Ejk (2.5)

where the matrices Ajk are defined by (Ajk)lm = 〈Elm, η(ûjk)〉, for j, k, l,m =
1, . . . , d.

Then we get
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L(û•1
rsû

•2
tu) = 〈η

(
(û•1
rs)

∗), η(û•2
tu)〉

=
d∑

j,k,l,m=1

〈ηAjk

(
(û•1
rs)

∗)Ejk), ηAlm
(û•2
tu)Elm)〉

=
d∑

j,k=1

ηAjk

(
(û•1
rs)∗

)
ηAjk

(û•2
tu)

=






∑d
j,k=1−(Ajk)sr(Ajk)tu if û•1 = û•2 = û∑d
j,k=1 (Ajk)sr(Ajk)ut if û•1 = û, û•2 = û∗∑n
j,k=1 (Ajk)rs(Ajk)tu if û•1 = û∗, û•2 = û∑d
j,k=1−(Ajk)rs(Ajk)ut if û•1 = û•2 = û∗

=
d∑

l,m,p,q=1

σlm,pqGjk,lm(û•1
rsû

•2
tu)

=




d∑

j,k,l,m=1

σjk,lmGjk,lm +
n∑

jmj=1

bjkDjk



 (û•1
rsû

•2
tu)

for r, s, t, u = 1, . . . , d, where σ = (σlm,pq) ∈ Md2(C) is the positive semi-
definite matrix defined by

σlm,pq =
d∑

j,k=1

(Ajk)lm(Ajk)pq

for l,m, p, q = 1, . . . , d.
Setting bjk = − i

2L(ûjk − û∗kj), for j, k = 1, . . . , d, we get

L(ûrs) = L

(
ûrs + û∗sr

2
+
ûrs − û∗sr

2

)
= −1

2

d∑

p=1

〈η(ûpr), η(ûps)〉+ ibrs

= −1
2

n∑

j,k=1

(A∗
jkAjk)rs + ibrs

=




d∑

j,k,l,m=1

σjk,lmGjk,lm +
d∑

jmj=1

bjkDjk



 (ûrs)



192 Uwe Franz

L(û∗sr) = L

(
ûrs + û∗sr

2
− ûrs − û∗sr

2

)
= −1

2

d∑

p=1

〈η(ûpr), η(ûps)〉 − ibrs

= −1
2

d∑

j,k=1

(A∗
jkAjk)rs − ibrs

=




d∑

j,k,l,m=1

σjk,lmGjk,lm +
d∑

jmj=1

bjkDjk



 (û∗sr)

where we used Equation (2.1) for evaluating L(ûrs + û∗sr). Therefore we have

L =
d∑

j,k,l,m=1

σjk,lmGjk,lm +
n∑

jmj=1

bjkDjk, since both sides vanish on K3 and

on 1. The matrix (bjk) is hermitian, since L is hermitian,

bjk =
i

2
L(ûjk − û∗kj) =

i

2
L(û∗jk − ûkj) = bkj ,

for j, k = 1, . . . , d.

Conversely, let L =
d∑

i,j=1

σjk,lmGjk,lm +
d∑

j,k=1

bjkDjk with a positive semi-

definite d2 × d2-matrix (σjk,lm) and a hermitian d× d-matrix (bjk). Then we

can choose a matrix M = (mkl,ml) ∈Md2(C) such that
d∑

p,q=1

mpq,jkmpq,lm =

σjk,lm for all i, j, r, s = 1, . . . , d. We define η : Ud → C
d2 by the matrices Ajk

with components (Ajk)lm = mjk,lm as in Equation (2.5). It is not difficult
to see that (ε id

Cd2 , η, L) is a Schürmann triple and L therefore a Gaussian
generator. ��

We can give the generators of a Gaussian Lévy process on Un also in the
following form, cf. [Sch93, Theorem 5.1.12]

Proposition 2.6. Let L1, . . . , Ln,M ∈ Md(C), with M∗ = M , and let H
be an n-dimensional Hilbert space with orthonormal basis {e1, . . . , en}. Then
there exists a unique Gaussian Schürmann triple (ρ, η, L) with

ρ = εidH ,

η(ujk) =
n∑

ν=1

Lνjkeν ,

η(u∗jk) = −η(ukj),

L(ujk) =
1
2

d∑

r=1

〈η(u∗jr), η(ukr)〉+ iMjk

for 1 ≤ j, k ≤ d.
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The following theorem gives a classification of all Lévy processes on Ud.

Theorem 2.7. Let H be a Hilbert space, U a unitary operator on H ⊗ C
d,

A = (ajk) an element of the Hilbert space H⊗Md(C) and λ = (λjk) ∈Md(C)
a hermitian matrix. Then there exists a unique Schürmann triple (ρ, η, L) on
H such that

ρ(ujk) = PjUP
∗
k , (2.6a)

η(ujk) = ajk, (2.6b)

L(ujk − u∗kj) = 2iλjk, (2.6c)

for j, k = 1 . . . , d, where Pj : H ⊗ C
d → H ⊗ Cej ∼= H projects a vector with

entries in H to its jth component.
Furthermore, all Schürmann triples on Un are of this form.

Proof. Let us first show that all Schürmann triples are of the form given in
the theorem. If (ρ, η, L) is a Schürmann triple, then we can use the Equations
(2.6) to define U , A, and λ. The defining relations of Ud imply that U is
unitary, since

U∗UP ∗
l =

d∑

j=1

d∑

k=1

PjU
∗P ∗

kPkUP
∗
l =

d∑

j=1

d∑

k=1

ρ(u∗kjukl) =
d∑

j=1

δjlρ(1) = idH⊗el
,

UU∗P ∗
l =

d∑

j=1

d∑

k=1

PjUP
∗
kPkU

∗P ∗
l =

d∑

j=1

d∑

k=1

ρ(u∗jkulk) =
d∑

j=1

δjlρ(1) = idH⊗el
,

for l = 1, . . . , d, where e1, . . . , ed denotes the standard basis of C
d. The her-

mitianity of λ is an immediate consequence of the hermitianity of L.
Conversely, let U , A, and λ be given. Then there exists a unique repre-

sentation ρ on H such that ρ(ujk) = PjUP
∗
k , for j, k,= 1, . . . , d, since the

unitarity of U implies that the defining relations of Un are satisfied. We
can set η(ûjk) = ajk, and extend via η(u∗ki) = −η

(
ûik +

∑d
j=1 û

∗
jiûjk

)
=

−aik −
∑d
j=1 ρ(ûji)

∗ajk, for i, k = 1, . . . , d and η(uv) = ρ(u)η(v) + η(u)ε(v)
(i.e. Equation (1.2), for u, v ∈ Ud, in this way we obtain the unique (ρ, ε)-

cocycle with η(ûjk) = ajk. Then we set L(ujk) = iλjk −
1
2

d∑

l=1

〈alj , alk〉 and

L(u∗kj) = −iλjk −
1
2

d∑

l=1

〈alj , alk〉, for j, k = 1, . . . , d, and use Equation (1.3)

to extend it to all of Ud. This extension is again unique, because the Re-

lation (2.1) implies L(ujk + u∗kj) = −
d∑

l=1

〈alj , alk〉, and this together with

L(ujk − u∗kj) = 2iλjk determines L on the generators ujk,u∗jk of Ud. But once
L is defined on the generators, it is determined on all of Ud thanks to Equation
(1.3). ��
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2.4 Dilations of Completely Positive Semigroups on Md

Let (τt)t≥0 be a quantum dynamical semigroup onMd, i.e. a weakly continuous
semigroup of completely positive maps τt :Md →Md.

Definition 2.8. A semigroup (θt)t≥0 of not necessarily unital endomorphisms
of B(H) with C

d ⊆ H is called a dilation of (τt)t≥0), if

τt(X) = Pθt(X)P

holds for all t ≥ 0 and all X ∈ Md = B(Cd) = PB(H)P . Here P is the
orthogonal projection from H to C

d.

Example 2.9. We can use the construction in Section 2.2 to get an example.
Let (τt)t≥0 be the semigroup defined in (2.4). We identify C

d with the subspace
C
d⊗Ω ⊆ C

d⊗Γ
(
L2(R+,K)

)
. The orthogonal projection P : H → C

d is given
by P = idCd ⊗ PΩ , where PΩ denotes the projection onto the vacuum vector.
Furthermore, we consider Md as a subalgebra of B

(
C
d ⊗ Γ

(
L2(R+,K)

))
by

letting a matrix X ∈Md act on v ⊗ w ∈ C
d ⊗ Γ

(
L2(R+,K)

)
as X ⊗ PΩ .

Note that we have
E0(X)⊗ PΩ = PXP

for all X ∈ B
(
C
d ⊗ Γ

(
L2(R+,K)

))
.

Then the semigroup (ηt)t≥0 defined in (2.3) is a dilation of (τt)t≥0, since

Pηt(X ⊗ PΩ)P = PUtγ̃t(X ⊗ PΩ)U∗
t P = PUt(X ⊗ idΓ (L2([0,t],K)) ⊗ PΩ)U∗

t P

= PUt(X ⊗ 1)U∗
t P = τt(X)⊗ PΩ

for allX ∈Md. Here we used that fact that the HP-cocycle (Ut)t≥0 is adapted.

Definition 2.10. A dilation (θt)t≥0 on H of a quantum dynamical semigroup
(τt)t≥0 on C

d is called minimal, if the subspace generated by the θt(X) from
C
d is dense in H, i.e. if

span {θt1(X1) · · · θtn(Xn)v|t1, . . . , tn ≥ 0,X1, . . . , Xn ∈Md, v ∈ Cd, n ∈ N}

is equal to H.

Lemma 2.11. It is sufficient to consider ordered times t1 ≥ t2 ≥ · · · ≥ tn ≥
0, since

span
{
θt1(X1) · · · θtn(Xn)v|t1 ≥ . . . ≥ tn ≥ 0,X1, . . . , Xn ∈Md, v ∈ C

d
}

= span
{
θt1(X1) · · · θtn(Xn)v|t1, . . . , tn ≥ 0,X1, . . . , Xn ∈Md, v ∈ C

d
}

Proof. See [Bha01, Section 3] ��
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Example 2.12. We will now show that the dilation from Example 2.9 is not
minimal, if w and � not linearly independent.

Due to the adaptedness of the HP-cocycle (Ut)t≥0, we can write

ηt(X ⊗ PΩ) = Utγ̃t(X ⊗ PΩ)U∗
t =

(
Ut(X ⊗ 1)U∗

t

)
⊗ PΩ

on Γ
(
L2([0, t],K)

)
⊗ Γ

(
L2([t,∞[,K)

)
. Let

η̂t(X) = ηt(X ⊗ 1) = Ut(X ⊗ 1)U∗
t

for X ∈Md and t ≥ 0, then we have

η̂t1(X1) · · · η̂tn(Xn)v = ηt1(X1 ⊗ PΩ) · · · ηtn(Xn ⊗ PΩ)v

for v ∈ C
d ⊗ Ω, n ∈ N, t1 ≥ · · · ≥ tn ≥ 0, X1, . . . , XnMd, i.e. time-ordered

products of the η̂t(X) generate the same subspace from C
d⊗Ω as the ηt(X⊗

PΩ). Using the quantum Itô formula, one can show that the operators η̂t(X),
X ∈Md satisfy the quantum stochastic differential equation.

η̂t(X) = Ut(X ⊗ 1)U∗
t = X ⊗ 1 +

∫ t

0

Us(wXw∗ −X)U∗
s dΛs, t ≥ 0,

if � = λw.
Since the quantum stochastic differential equation for η̂t(X) has no cre-

ation part, these operators leave C
d⊗Ω invariant. More precisely, the subspace

{
η̂t1(X1) · · · η̂tn(Xn)v ⊗Ω|t1 ≥ . . . ≥ tn ≥ 0,X1, . . . , Xn ∈Md, v ∈ C

d
}

is equal to C
d⊗Ω, and therefore the dilation (ηt)t≥0 is not minimal, if w and

� are not linearly independent. Note that in this case the quantum dynamical
semigroup is also trivial, i.e. τt = id for all t ≥ 0, since its generator vanishes.

One can show that the converse is also true, if w and � are linearly inde-
pendent, then the dilation (ηt)t≥0 is minimal.

The general form of the generator of a quantum dynamical semigroup on
Md was determined by [GKS76, Lin76].

Theorem 2.13. Let (τt)t≥0 be a quantum dynamical semigroup onMd. Then
there exist matrices M,L1, . . . , Ln ∈ Md, with M∗ = M , such that the gen-
erator L = d

dtτt is given by

L(X) = i[M,X] +
n∑

k=1

(
(Lk)∗XLk − 1

2
{
X, (Lk)∗Lk

})

for X ∈Md.

Note that M,L1, . . . , Ln ∈Md are not uniquely determined by (τ
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Proposition 2.14. Let n ∈ N, M,L1, · · · , Ln ∈ Md, M∗ = M , and let
(jst)0≤s≤t be the Lévy process on Ud over Γ

(
L2(R+,C

n)
)
, whose Schürmann

triple is constructed from M,L1, · · · , Ln as in Proposition 2.6. Then the semi-
group (ηt)t≥0 defined from the unitary cocycle

Ut =




j0t(u11) · · · j0t(u1d)

...
...

j0t(ud1) · · · j0t(udd)





as in (2.3) is a dilation of the quantum dynamical semigroup (τt)t≥0 with
generator

L(X) = i[M,X] +
n∑

k=1

(
(Lk)∗XLk − 1

2
{
X, (Lk)∗Lk

})

for X ∈Md.

Proof. The calculation is similar to the one in Section 2.2. ��

We denote this dilation by (ηt)t≥0 and define again η̂t : Md → B
(
Cd ⊗

Γ
(
L2([0, t],K)

))
, t ≥ 0 by

η̂t(X) = ηt(X ⊗ 1) = Ut(X ⊗ 1)U∗
t

for X ∈Md.
Denote by Qd the subalgebra of Ud generated by uiju

∗
k�, 1 ≤ i, j, k, � ≤ d.

This is even a subbialgebra, since

∆(uiju∗k�) =
d∑

r,s=1

uiru
∗
ks ⊗ urju

∗
s�

for all 1 ≤ i, j, k, � ≤ d.

Lemma 2.15. Let η : Ud → H be the cocycle associated to L1, . . . , Ln,M ∈
Md(C), with M∗ = M , in Proposition 2.6.

(a) η is surjective, if and only if L1, . . . , Ln are linearly independent.
(b) η|Qd

is surjective, if and only if I, L1, . . . , Ln are linearly independent,
where I denotes the identity matrix.

Proof. (a) Ud is generated by {uij |1 ≤ i, j ≤ d}, so by Lemma I.1.26 we have
η(Ud) = span{η(uij)|1 ≤ i, j ≤ d}.
Denote by Λ1 : H → span

{
(L1)∗, . . . , (Ln)∗

}
⊆ Md(C) the linear map

defined by Λ1(eν) = (Lν)∗, ν = 1, . . . , n. Then we have kerΛ1 = η(Ud)⊥,
since
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〈v, η(uij)〉 =
d∑

ν=1

vνL
ν
ij = Λ1(v)ji, 1 ≤ i, j ≤ d,

for v =
∑n
ν=1 vνeν ∈ H. The map Λ1 is injective, if and only if L1, . . . , Ln

are linearly independent. Since kerΛ1 = η(Ud)⊥, this is also equivalent to
the surjectivity of η|Ud

.
(b) We have η(Qd) = span{η(uiju∗k�)|1 ≤ i, j, k, � ≤ d}.

Denote by Λ2 : H → span{(L1)∗⊗I−I⊗(L1)∗, . . . , (Ln)∗⊗I−I⊗(Ln)∗} ⊆
Md(C)⊗Md(C) the linear map defined by Λ1(eν) = (Lν)∗⊗I−I⊗(Lν)∗,
ν = 1, . . . , n. Then we have kerΛ2 = η(Qd)⊥, since

〈v, η(uiju∗k�)〉 = 〈v, ε(uij)η(u∗k�) + η(uijε(u∗k�)〉
= 〈v,−δijη(u�k) + η(uijδk�)〉

=
d∑

ν=1

vν(Lνijδk� − δijL
ν
�k)

= Λ2(v)ji,k�, 1 ≤ i, j, k, � ≤ d,

for v =
∑n
ν=1 vνeν ∈ H.

The map Λ2 is injective, if and only if L1, . . . , Ln are linearly independent
and I �∈ span{L1, . . . , Ln}, i.e. iff I, L1, . . . , Ln are linearly independent.
Since kerΛ2 = η(Qd)⊥, it follows that this is equivalent to the surjectivity
of η|Qd

.
��

Bhat [Bha01, Bha05] has given a necessary and sufficient condition for the
minimality of dilations of the form we are considering.

Theorem 2.16. [Bha01, Theorem 9.1] The dilation (ηt)t≥0 is minimal if and
only if I, L1, . . . , Ln are linearly independent.

Remark 2.17. The preceding arguments show that the condition in Bhat’s
theorem is necessary. Denote by H0 the subspace of Γ

(
L2(R+,C

n)
)
, which is

generated by operators of form jst(uiju∗k�). By Theorem 1.20, this subspace
is dense in Γ

(
L2(R+, η(Qd)

)
. Therefore the subspace generated by elements

of the η̂t(X) = Ut(X ⊗ 1)U∗
t from C

d ⊗ Ω is contained in C
d ⊗ H0. If η is

minimal, then this subspace in dense in C
d ⊗ Γ

(
L2(R+,C

n)
)
. But this can

only happen if H0 is dense in Γ
(
L2(R+,C

n)
)
. This implies η(Qd) = C

d and
therefore that I, L1, . . . , Ln are linearly independent.

Bhat’s theorem is actually more general, it also applies to dilations of
quantum dynamical semigroups on the algebra of bounded operators on an
infinite-dimensional separable Hilbert space, whose generator involves infi-
nitely many L’s, see [Bha01, Bha05].
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3 The Five Universal Independences

In classical probability theory there exists only one canonical notion of inde-
pendence. But in quantum probability many different notions of independence
have been used, e.g., to obtain central limit theorems or to develop a quan-
tum stochastic calculus. If one requires that the joint law of two independent
random variables should be determined by their marginals, then an indepen-
dence gives rise to a product. Imposing certain natural condition, e.g., that
functions of independent random variables should again be independent or an
associativity property, it becomes possible to classify all possible notions of in-
dependence. This program has been carried out in recent years by Schürmann
[Sch95a], Speicher [Spe97], Ben Ghorbal and Schürmann [BGS99][BGS02],
and Muraki [Mur03, Mur02]. In this section we will present the results of these
classifications. Furthermore we will formulate a category theoretical approach
to the notion of independence and show that boolean, monotone, and anti-
monotone independence can be reduced to tensor independence in a similar
way as the bosonization of Fermi independence [HP86] or the symmetrization
of [Sch93, Section 3].

3.1 Preliminaries on Category Theory

We recall the basic definitions and properties from category theory that we
shall use. For a thorough introduction, see, e.g., [Mac98].

Definition 3.1. A category C consists of

(a) a class Ob C of objects denoted by A,B,C, . . .,
(b) a class Mor C of morphism (or arrows) denoted by f, g, h, . . .,
(c) mappings tar, src : Mor C → Ob C assigning to each morphism f its source

(or domain) src(f) and its target (or codomain) tar(f). We will say that
f is a morphism in C from A to B or write “f : A→ B is a morphism in
C” if f is a morphism in C with source src(f) = A and target tar(f) = B,

(d) a composition (f, g) �→ g◦f for pairs of morphisms f, g that satisfy src(g) =
tar(f),

(e) and a map id : Ob C → Mor C assigning to an object A of C the identity
morphism idA : A→ A,

such that the

(1) associativity property: for all morphisms f : A → B, g : B → C, and
h : C → D of C, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f),

and the
(2) identity property: idtar(f) ◦ f = f and f ◦ idsrc(f) = f holds for all mor-

phisms f of C,
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are satisfied.

Let us emphasize that it is not so much the objects, but the morphisms
that contain the essence of a category (even though categories are usually
named after their objects). Indeed, it is possible to define categories without
referring to the objects at all, see the definition of “arrows-only metacate-
gories” in [Mac98, Page 9]. The objects are in one-to-one correspondence with
the identity morphisms, in this way Ob C can always be recovered from Mor C.

We give an example.

Example 3.2. Let Ob Set be the class of all sets (of a fixed universe) and
MorSet the class of total functions between them. Recall that a total function
(or simply function) is a triple (A, f,B), where A and B are sets, and f ⊆
A × B is a subset of the cartesian product of A and B such that for a given
x ∈ A there exists a unique y ∈ B with (x, y) ∈ f . Usually one denotes this
unique element by f(x), and writes x �→ f(x) to indicate

(
x, f(x)

)
∈ f . The

triple (A, f,B) can also be given in the form f : A→ B. We define

src
(
(A, f,B)

)
= A, and tar

(
(A, f,B)

)
= B.

The composition of two morphisms (A, f,B) and (B, g, C) is defined as

(B, g, C) ◦ (A, f,B) = (A, g ◦ f, C),

where g ◦ f is the usual composition of the functions f and g, i.e.

g ◦ f = {(x, z) ∈ A× C; there exists a y ∈ B s.t. (x, y) ∈ f and (y, z) ∈ g}.

The identity morphism assigned to an object A is given by (A, idA, A), where
idA ⊆ A×A is the identity function, idA = {(x, x);x ∈ A}. It is now easy to
check that these definitions satisfy the associativity property and the identity
property, and therefore define a category. We shall denote this category by
Set.

Definition 3.3. Let C be a category. A morphism f : A→ B in C is called an
isomorphism (or invertible), if there exists a morphism g : B → A in C such
that g ◦ f = idA and f ◦ g = idB. Such a morphism g is uniquely determined,
if it exists, it is called the inverse of f and denoted by g = f−1. Objects A and
B are called isomorphic, if there exists an isomorphism f : A→ B.

Morphisms f with tar(f) = src(f) = A are called endomorphisms of A.
Isomorphic endomorphism are called automorphisms.

For an arbitrary pair of objects A,B ∈ Ob C we define MorC(A,B) to be
the collection of morphisms from A to B, i.e.

MorC(A,B) = {f ∈ Mor C; src(f) = A and tar(f) = B}.
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Often the collections MorC(A,B) are also denoted by homC(A,B) and called
the hom-sets of C. In particular, MorC(A,A) contains exactly the endomor-
phisms of A, they form a semigroup with identity element with respect to the
composition of C (if MorC(A,A) is a set).

Compositions and inverses of isomorphisms are again isomorphisms. The
automorphisms of an object form a group (if they form a set).

Example 3.4. Let (G, ◦, e) be a semigroup with identity element e. Then
(G, ◦, e) can be viewed as a category. The only object of this category is
G itself, and the morphisms are the elements of G. The identity morphism is
e and the composition is given by the composition of G.

Definition 3.5. For every category C we can define its dual or opposite cat-
egory Cop. It has the same objects and morphisms, but target and source are
interchanged, i.e.

tarCop(f) = srcC(f) and srcCop(f) = tarC(f)

and the composition is defined by f ◦opg = g◦f . We obviously have Cop op = C.

Dualizing, i.e. passing to the opposite category, is a very useful concept
in category theory. Whenever we define something in a category, like an epi-
morphism, a terminal object, a product, etc., we get a definition of a “co-
something”, if we take the corresponding definition in the opposite category.
For example, an epimorphism or epi in C is a morphism in C which is right
cancellable, i.e. h ∈ Mor C is called an epimorphism, if for any morphisms
g1, g2 ∈ Mor C the equality g1 ◦ h = g2 ◦ h implies g1 = g2. The dual notion
of a epimorphism is a morphism, which is an epimorphism in the category
Cop, i.e. a morphism that is left cancellable. It could therefore be called a “co-
epimorphism”, but the generally accepted name is monomorphism or monic.
The same technique of dualizing applies not only to definitions, but also to
theorems. A morphism r : B → A in C is called a right inverse of h : A→ B
in C, if h ◦ r = idB . If a morphism has a right inverse, then it is necessarily an
epimorphism, since g1 ◦ g = g2 ◦ h implies g1 = g1 ◦ g ◦ r = g2 ◦ h ◦ r = g2, if
we compose both sides of the equality with a right inverse r of h. Dualizing
this result we see immediately that a morphism f : A → B that has a left
inverse (i.e. a morphism l : B → A such that l ◦ f = idA) is necessarily a
monomorphism. Left inverses are also called retractions and right inverses are
also called sections. Note that one-sided inverses are usually not unique.

Definition 3.6. A category D is called a subcategory of the category C, if

(1) the objects of D form a subclass of Ob C, and the morphisms of D form a
subclass of Mor C,

(2) for any morphism f of D, the source and target of f in C are objects of D
and agree with the source and target taken in D,

(3) for every object D of D, the identity morphism idD of C is a morphism of
D, and
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(4) for any pair f : A→ B and g : B → C in D, the composition g ◦ f in C is
a morphism of D and agrees with the composition of f and g in D.

A subcategory D of C is called full, if for any two objects A,B ∈ ObD all
C-morphisms from A to B belong also to D, i.e. if

MorD(A,B) = MorC(A,B).

Remark 3.7. If D is an object of D, then the identity morphism of D in D is
the same as that in C, since the identity element of a semigroup is unique, if
it exists.

Exercise 3.8. Let (G, ◦, e) be a unital semigroup. Show that a subsemigroup
G0 of G defines a subcategory of (G, ◦, e) (viewed as a category), if and only
if e ∈ G0.

Definition 3.9. Let C and D be two categories. A covariant functor (or simply
functor) T : C → D is a map for objects and morphisms, every object A ∈ Ob C
is mapped to an object T (A) ∈ ObD, and every morphism f : A → B in C
is mapped to a morphism T (f) : T (A)→ T (B) in D, such that the identities
and the composition are respected, i.e. such that

T (idA) = idT (A), for all A ∈ Ob C
T (g ◦ f) = T (g) ◦ T (f), whenever g ◦ f is defined in C.

We will denote the collection of all functors between two categories C and D
by Funct(C,D).

A contravariant functor T : C → D maps an object A ∈ Ob C to an object
T (A) ∈ ObD, and a morphism f : A→ B in C to a morphism T (f) : T (B)→
T (A) in D, such such that

T (idA) = idT (A), for all A ∈ Ob C
T (g ◦ f) = T (f) ◦ T (g), whenever g ◦ f is defined in C.

Example 3.10. Let C be a category. The identity functor idC : C → C is defined
by idC(A) = A and idC(f) = f .

Example 3.11. The inclusion of a subcategory D of C into C also defines a
functor, we can denote it by ⊆: D → C or by D ⊆ C.

Example 3.12. The functor op : C → Cop that is defined as the identity map
on the objects and morphisms is a contravariant functor. This functor allows
to obtain covariant functors from contravariant ones. Let T : C → D be a
contravariant functor, then T ◦ op : Cop → D and op ◦ T : C → Dop are
covariant.

Example 3.13. Let G and H be unital semigroups, then the functors T : G→
H are precisely the identity preserving semigroup homomorphisms from G to
H.
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Functors can be composed, if we are given two functors S : A → B and
T : B → C, then the composition T ◦ S : A → C,

(T ◦ S)(A) = T (S(A)), for A ∈ ObA,
(T ◦ S)(f) = T (S(f)), for f ∈ MorA,

is again a functor. The composite of two covariant or two contravariant func-
tors is covariant, whereas the composite of a covariant and a contravariant
functor is contravariant. The identity functor obviously is an identity w.r.t.
to this composition. Therefore we can define categories of categories, i.e. cat-
egories whose objects are categories and whose morphisms are the functors
between them.

Definition 3.14. Let C and D be two categories and let S, T : C → D be two
functors between them. A natural transformation (or morphism of functors)
η : S → T assigns to every object A ∈ Ob C of C a morphism ηA : S(A) →
T (A) such that the diagram

S(A)
ηA

S(f)

T (A)

T (f)

S(B)
ηB

T (B)

is commutative for every morphisms f : A → B in C. The morphisms ηA,
A ∈ Ob C are called the components of η. If every component ηA of η : S → T
is an isomorphism, then η : S → T is called a natural isomomorphism (or a
natural equivalence), in symbols this is expressed as η : S ∼= T .

We will denote the collection of all natural transformations between two
functors S, T : C → D by Nat(S, T ).

Exercise 3.15. Let G1 and G2 be two groups (regarded as categories as in
Example 3.4). S, T : G1 → G2 are functors, if they are group homomorphisms,
see Example 3.13. Show that there exists a natural transformation η : S → T
if and only if S and T are conjugate, i.e. if there exists an element h ∈ G such
that T (g) = hS(g)h−1 for all g ∈ G1.

Definition 3.16. Natural transformations can also be composed. Let S, T, U :
B → C and let η : S → T and ϑ : T → U be two natural transformations. Then
we can define a natural transformation ϑ·η : S → U , its components are simply
(ϑ · η)A = ϑA ◦ ηA. To show that this defines indeed a natural transformation,
take a morphism f : A→ B of B. Then the following diagram is commutative,
because the two trapezia are.
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S(A)
ηA

S(f)

(ϑ·η)A=ϑA◦ηA
U(A)

U(f)

T (A)

ϑA

T (f)

T (B)
ϑB

S(B)

ηB

(ϑ·η)B=ϑB◦ηB

U(B)

For a given functor S : B → C there exists also the identical natural trans-
formation idS : S → S that maps A ∈ ObB to idS(A) ∈ Mor C, it is easy to
check that it behaves as a unit for the composition defined above.

Therefore we can define the functor category CB that has the functors from
B to C as objects and the natural transformations between them as morphisms.

Remark 3.17. Note that a natural transformation η : S → T has to be de-
fined as the triple (S, (ηA)A, T ) consisting of its the source S, its components
(ηA)A and its target T . The components (ηA)A do not uniquely determine the
functors S and T , they can also belong to a natural transformation between
another pair of functors (S′, T ′).

Definition 3.18. Two categories B and C can be called isomorphic, if there
exists an invertible functor T : B → C. A useful weaker notion is that of
equivalence or categorical equivalence. Two categories B and C are equivalent,
if there exist functors F : B → C and G : C → B and natural isomorphisms
G ◦ F ∼= idB and F ◦G ∼= idC.

We will look at products and coproducts of objects in a category. The idea
of the product of two objects is an abstraction of the Cartesian product of
two sets. For any two sets M1 and M2 their Cartesian product M1 ×M2 has
the property that for any pair of maps (f1, f2), f1 : N → M1, f2 : N → M2,
there exists a unique map h : N →M1×M2 such that fi = pi ◦h for i = 1, 2,
where pi : M1 ×M2 → Mi are the canonical projections pi(m1,m2) = mi.
Actually, the Cartesian product M1×M2 is characterized by this property up
to isomorphism (of the category Set, i.e. set-theoretical bijection).

Definition 3.19. A triple (AΠ B, πA, πB) is called a product (or binary
product) of the objects A and B in the category C, if for any object C ∈ Ob C
and any morphisms f : C → A and g : C → B there exists a unique morphism
h such that the following diagram commutes,
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C
f

h
g

A AΠ BπA πB
B

We will also denote the mediating morphism h : C → AΠ B by [f, g].

Often one omits the morphisms πA and πB and simply calls AΠ B the product
of A and B. The product of two objects is sometimes also denoted by A×B.

Proposition 3.20. (a)The product of two objects is unique up to isomor-
phism, if it exists.

(b) Let f1 : A1 → B1 and f2 : A2 → B2 be two morphisms in a category
C and assume that the products A1 Π A2 and B1 Π B2 exist in C. Then
there exists a unique morphism f1 Π f2 : A1 Π A2 → B1 Π B2 such that
the following diagram commutes,

A1
f1

B1

A1 Π A2

πA1

πA2

f1Π f2 B1 Π B2

πB1

πB2

A2
f2

B2

(c) Let A1, A2, B1, B2, C1, C2 be objects of a category C and suppose that the
products A1 Π A2, B1 Π B2 and C1 Π C2 exist in C. Then we have

idA1 Π idA2 = idA1Π A2 and (g1 Π g2) ◦ (f1 Π f2) = (g1 ◦ f1)Π (g2 ◦ f2)

for all morphisms fi : Ai → Bi, gi : Bi → Ci, i = 1, 2.

Proof. (a) Suppose we have two candidates (P, πA, πB) and (P ′, π′
A, π

′
B) for

the product of A and B, we have to show that P and P ′ are isomorphic.
Applying the defining property of the product to (P, πA, πB) with C = P ′

and to (P ′, π′
A, π

′
B) with C = P , we get the following two commuting

diagrams,

P ′

π′
A

h
π′

B

A PπA πB
B

P
πA

h′
πB

A P ′
π′

A π′
B

B

We get πA ◦ h ◦ h′ = π′
A ◦ h′ = πA and πB ◦ h ◦ h′ = π′

B ◦ h′ = πB , i.e. the
diagram
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P
πA

h◦h′
πB

A PπA πB
B

is commutative. It is clear that this diagram also commutes, if we replace
h ◦ h′ by idP , so the uniqueness implies h ◦ h′ = idP . Similarly one proves
h′ ◦ h = idP ′ , so that h : P ′ → P is the desired isomorphism.

(b) The unique morphism f1 Π f2 exists by the defining property of the prod-
uct of B1 and B2, as we can see from the diagram

A1 Π A2

f1◦πA1
f1Π f2

f2◦πA2

B1 B1 Π B2πB1 πB2
B2

(c) Both properties follow from the uniqueness of the mediating morphism in
the defining property of the product. To prove idA1 Π idA2 = idA1Π A2 one
has to show that both expressions make the diagram

A1 Π A2

idA1 idA2

A1 A1 Π A2πA1 πA2
A2

commutative, for the the second equality one checks that (g1 Π g2) ◦
(f1 Π f2) and (g1 ◦ f1)Π (g2 ◦ f2) both make the diagram

A1 Π A2

g1◦f1 g2◦f2

C1 C1 Π C2πC1 πC2
C2

commutative.
��

The notion of product extends also to more then two objects.

Definition 3.21. Let (Ai)i∈I be a family of objects of a category C, indexed
by some set I. The pair

(∏
i∈I Ai,

(
πj :

∏
i∈I Ai → Aj

)
j∈I

)
consisting of an

object
∏
i∈I Ai of C and a family of morphisms

(
πj :

∏
i∈I Ai → Aj

)
j∈I of

C is a product of the family (Ai)i∈I if for any object C and any family of
morphisms (fi : C → Ai)i∈I there exists a unique morphism h : C →

∏
i∈I Ai

such that
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πj ◦ h = fj , for all j ∈ I
holds. The morphism πj :

∏
i∈I Ai → Aj for j ∈ I is called the jth product

projection. We will also write [fi]i∈I for the morphism h : C →
∏
i∈I Ai.

An object T of a category C is called terminal, if for any object C of C
there exists a unique morphism from C to T . A terminal object is unique
up to isomorphism, if it exists. A product of the empty family is a terminal
object.

Exercise 3.22. (a) We say that a category C has finite products if for any
family of objects indexed by a finite set there exists a product. Show that
this is the case if and only if it has binary products for all pairs of objects
and a terminal object.

(b) Let C be a category with finite products, and let

C1
h1

D1

A
f

B

g1

g2

C2
h2

D2

be morphisms in C. Show

(h1 Π h2) ◦ [g1, g2] = [h1 ◦ g1, h2 ◦ g2] and [g1, g2] ◦ f = [g1 ◦ f, g2 ◦ f ].

Remark 3.23. Let C be a category that has finite products. Then the product is
associative and commutative. More precisely, there exist natural isomorphisms
αA,B,C : AΠ (BΠ C) → (AΠ B)C and γA,B : BΠ A → AΠ B for all
objects A,B,C ∈ Ob C.

The notion coproduct is the dual of the product, i.e.



∐

i∈I
Ai,

(
ıj : Aj →

∐

i∈I
Ai

)

j∈I





is called a coproduct of the family (Ai)i∈I of objects in C, if it is a product
of the same family in the category Cop. Formulated in terms of objects and
morphisms of C only, this amounts to the following.

Definition 3.24. Let (Ai)i∈I be a family of objects of a category C, indexed
by some set I. The pair

(∐
i∈I Ai,

(
ıj : Ak →

∏
i∈I Ai

)
j∈I

)
consisting of an

object
∐
i∈I Ai of C and a family of morphisms

(
ıj : Aj →

∐
i∈I Ai

)
j∈I of C
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is a coproduct of the family (Ai)i∈I if for any object C and any family of
morphisms (fi : Ai → C)i∈I there exists a unique morphism h :

∐
i∈I Ai → C

such that
h ◦ ıj = fj , for all j ∈ I

holds. The morphism ıj : Aj →
∏
i∈I Ai for j ∈ I is called the jth coproduct

injection. We will write [fi]i∈I for the morphism h :
∏
i∈I Ai → C.

A coproduct of the empty family in C is an initial object, i.e. an object I
such that for any object A of C there exists exactly one morphism from I to
A.

It is straightforward to translate Proposition 3.20 to its counterpart for
the coproduct.

Example 3.25. In the trivial unital semigroup (G = {e}, ·, e), viewed as a
category (note that is is isomorphic to the discrete category over a set with
one element) its only object G is a terminal and initial object, and also a
product and coproduct for any family of objects. The product projections
and coproduct injections are given by the unique morphism e of this category.

In any other unital semigroup there exist no initial or terminal objects and
no binary or higher products or coproducts.

Example 3.26. In the category Set a binary product of two sets A and B is
given by their Cartesian product A×B (together with the obvious projections)
and any set with one element is terminal. A coproduct of A and B is defined
by their disjoint union A∪̇B (together with the obvious injections) and the
empty set is an initial object. Recall that we can define the disjoint union as
A∪̇B = (A× {A}) ∪ (B × {B}).

Exercise 3.27. Let Vek be the category that has as objects all vector spaces
(over some field K) and as morphisms the K-linear maps between them. The
trivial vector space {0} is an initial and terminal object in this category.
Show that the direct sum of (finitely many) vector spaces is a product and a
coproduct in this category.

The following example shall be used throughout this section and the fol-
lowing.

Example 3.28. The coproduct in the category of unital algebras Alg is the free
product of ∗-algebras with identification of the units. Let us recall its defining
universal property. Let {Ak}k∈I be a family of unital ∗-algebras and

∐
k∈I Ak

their free product, with canonical inclusions {ik : Ak →
∐
k∈I Ak}k∈I . If

B is any unital ∗-algebra, equipped with unital ∗-algebra homomorphisms
{i′k : Ak → B}k∈I , then there exists a unique unital ∗-algebra homomorphism
h :

∐
k∈I Ak → B such that

h ◦ ik = i′k, for all k ∈ I.
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It follows from the universal property that for any pair of unital ∗-algebra
homomorphisms j1 : A1 → B1, j2 : A2 → B2 there exists a unique unital ∗-
algebra homomorphism j1

∐
j2 : A1

∐
A2 → B1

∐
B2 such that the diagram

A1

iA1

j1 B1

iB1

A1

∐
A2 j1

∐
j2 B1

∐
B2

A2

iA2

j2
B2

iB2

commutes.
The free product

∐
k∈I Ak can be constructed as a sum of tensor products

of the Ak, where neighboring elements in the product belong to different
algebras. For simplicity, we illustrate this only for the case of the free product
of two algebras. Let

A =
⋃

n∈N

{ε ∈ {1, 2}n|ε1 �= ε2 �= · · · �= εn}

and decompose Ai = C1⊕A0
i , i = 1, 2, into a direct sum of vector spaces. As

a coproduct A1

∐
A2 is unique up to isomorphism, so the construction does

not depend on the choice of the decompositions.
Then A1

∐
A2 can be constructed as

A1

∐
A2 =

⊕

ε∈A

Aε,

where A∅ = C, Aε = A0
ε1 ⊗ · · · ⊗ A0

εn for ε = (ε1, . . . , εn). The multiplication
in A1

∐
A2 is inductively defined by

(a1 ⊗ · · · ⊗ an) · (b1 ⊗ · · · ⊗ bm) =
{
a1 ⊗ · · · ⊗ (an · b1)⊗ · · · ⊗ bm if εn = δ1,
a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm if εn �= δ1,

for a1 ⊗ · · · ⊗ an ∈ Aε, b1 ⊗ · · · ⊗ bm ∈ Aδ. Note that in the case εn =
δ1 the product an · b1 is not necessarily in A0

εn , but is in general a sum of
a multiple of the unit of Aεn and an element of A0

εn . We have to identify
a1 ⊗ · · · an−1 ⊗ 1⊗ b2 ⊗ · · · bm with a1 ⊗ · · · ⊗ an−1 · b2 ⊗ · · · bm.

Since
∐

is the coproduct of a category, it is commutative and associative
in the sense that there exist natural isomorphisms

γA1,A2 : A1

∐
A2

∼=→ A2

∐
A1, (3.1)

αA1,A2,A3 : A1

∐(
A2

∐
A3

) ∼=→
(
A1

∐
A2

)∐
A3
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for all unital ∗-algebras A1,A2,A3. Let i� : A� → A1

∐
A2 and i′� : A� →

A2

∐
A1, � = 1, 2 be the canonical inclusions. The commutativity constraint

γA1,A2 : A1

∐
A2 → A2

∐
A1 maps an element of A1

∐
A2 of the form

i1(a1)i2(b1) · · · i2(bn) with a1, . . . , an ∈ A1, b1, . . . , bn ∈ A2 to

γA1,A2

(
i1(a1)i2(b1) · · · i2(bn)

)
= i′1(a1)i′2(b1) · · · i′2(bn) ∈ A2

∐
A1.

Exercise 3.29. We also consider non-unital algebras. Show that the free prod-
uct of ∗-algebras without identification of units is a coproduct in the category
nuAlg of non-unital (or rather not necessarily unital) algebras. Give an explicit
construction for the free product of two non-unital algebras.

Exercise 3.30. Show that the following defines a a functor from the category
of non-unital algebras nuAlg to the category of unital algebras Alg. For an
algebra A ∈ Ob nuAlg, Ã is equal to Ã = C1 ⊕ A as a vector space and the
multiplication is defined by

(λ1 + a)(λ′1 + a′) = λλ′1 + λ′a+ λa′ + aa′

for λ, λ′ ∈ C, a, a′ ∈ A. We will call Ã the unitization of A. Note that
A ∼= 01 +A ⊆ Ã is not only a subalgebra, but even an ideal in Ã.

How is the functor defined on the morphisms?
Show that the following relation holds between the free product with iden-

tification of units
∐

Alg
and the free product without identification of units∐

nuAlg
,

˜A1

∐

nuAlg

A2
∼= Ã1

∐

Alg

Ã2

for all A1,A2 ∈ Ob nuAlg.
Note furthermore that the range of this functor consists of all algebras that

admit a decomposition of the form A = C1 ⊕A0, where A0 is a subalgebra.
This is equivalent to having a one-dimensional representation. The functor is
not surjective, e.g., the algebra M2 of 2× 2-matrices can not be obtained as
a unitization of some other algebra.

Let us now come to the definition of a tensor category.

Definition 3.31. A category (C,�) equipped with a bifunctor � : C × C → C,
called tensor product, that is associative up to a natural isomorphism

αA,B,C : A�(B�C)
∼=→ (A�B)�C, for all A,B,C ∈ Ob C,

and an element E that is, up to natural isomorphisms

λA : E�A
∼=→ A, and ρA : A�E

∼=→ A, for all A ∈ Ob C,

a unit for �, is called a tensor category or monoidal category, if the pentagon
axiom
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(A�B)�(C�D)
αA�B,C,D

A�
(
B�(C�D)

)

αA,B,C�D

idA�αB,C,D

(
(A�B)�C

)
�D

A�
(
(B�C)�D

)
αA,B�C.D

(
A�(B�C)

)
�D

αA,B,C�idD

and the triangle axiom

A�(E�C)
αA,E,C

idA�λC

(A�E)�C

ρA�idC

A�C
are satisfied for all objects A,B,C,D of C.

If a category has products or coproducts for all finite sets of objects, then
the universal property guarantees the existence of the isomorphisms α, λ, and
ρ that turn it into a tensor category.

A functor between tensor categories, that behaves “nicely” with respect to
the tensor products, is called a tensor functor or monoidal functor, see, e.g.,
Section XI.2 in MacLane[Mac98].

Definition 3.32. Let (C,�) and (C′,�′) be two tensor categories. A coten-
sor functor or comonoidal functor F : (C,�) → (C′,�′) is an ordinary
functor F : C → C′ equipped with a morphism F0 : F (EC) → EC′ and
a natural transformation F2 : F ( ·� · ) → F ( · )�′F ( · ), i.e. morphisms
F2(A,B) : F (A�B) → F (A)�′F (B) for all A,B ∈ Ob C that are natural
in A and B, such that the diagrams

F
(
A�(B�C)

) F (αA,B,C)

F2(A,B�C)

F
(
(A�B)�C

)

F2(A�B,C)

F (A)�′F (B�C)

idF (A)�′F2(B,C)

F (A�B)�′F (C)

F2(A,B)�′idF (C)

F (A)�′(F (B)�′F (C)
)
α′

F (A),F (B),F (C)

(
F (A)�′F (B)

)
�′F (C)

(3.2)

F (B�EC)
F2(B,EC)

F (ρB)

F (B)�′F (EC)

idB�′F0

F (B) F (B)�′EC′
ρ′F (B)

(3.3)
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F (EC�B)
F2(EC,B)

F (λB)

F (EC)�′F (B)

F0�′idB

F (B) EC′�′F (B)
λ′

F (B)

(3.4)

commute for all A,B,C ∈ Ob C.

We have reversed the direction of F0 and F2 in our definition. In the case of
a strong tensor functor, i.e. when all the morphisms are isomorphisms, our
definition of a cotensor functor is equivalent to the usual definition of a tensor
functor as, e.g., in MacLane[Mac98].

The conditions are exactly what we need to get morphisms

Fn(A1, . . . , An) : F (A1� · · ·�An)→ F (A1)�′ · · ·�′F (An)

for all finite sets {A1, . . . , An} of objects of C such that, up to these morphisms,
the functor F : (C,�)→ (C′,�′) is a homomorphism.

3.2 Classical Stochastic Independence and the Product
of Probability Spaces

Two random variables X1 : (Ω,F , P ) → (E1, E1) and X2 : (Ω,F , P ) →
(E2, E2), defined on the same probability space (Ω,F , P ) and with values
in two possibly distinct measurable spaces (E1, E1) and (E2, E2), are called
stochastically independent (or simply independent) w.r.t. P , if the σ-algebras
X−1

1 (E1) and X−1
2 (E2) are independent w.r.t. P , i.e. if

P
(
(X−1

1 (M1) ∩X−1
2 (M2)

)
= P

(
(X−1

1 (M1)
)
P
(
X−1

2 (M2)
)

holds for all M1 ∈ E1, M2 ∈ E2. If there is no danger of confusion, then the
reference to the measure P is often omitted.

This definition can easily be extended to arbitrary families of random
variables. A family

(
Xj : (Ω,F , P )→ (Ej , Ej))j∈J , indexed by some set J , is

called independent, if

P

(
n⋂

k=1

X−1
jk

(Mjk)

)
=

n∏

k=1

P
(
X−1
jk

(Mjk)
)

holds for all n ∈ N and all choices of indices k1, . . . , kn ∈ J with jk �= j� for
j �= �, and all choices of measurable sets Mjk ∈ Ejk .

There are many equivalent formulations for independence, consider, e.g.,
the following proposition.

Proposition 3.33. Let X1 and X2 be two real-valued random variables. The
following are equivalent.
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(i) X1 and X2 are independent.
(ii)For all bounded measurable functions f1, f2 on R we have

E
(
f1(X1)f2(X2)

)
= E

(
f1(X1)

)
E
(
f2(X2)

)
.

(iii)The probability space (R2,B(R2), P(X1,X2)) is the product of the probability
spaces (R,B(R), PX1) and (R,B(R), PX2), i.e.

P(X1,X2) = PX1 ⊗ PX2 .

We see that stochastic independence can be reinterpreted as a rule to
compute the joint distribution of two random variables from their marginal
distribution. More precisely, their joint distribution can be computed as a
product of their marginal distributions. This product is associative and can
also be iterated to compute the joint distribution of more than two indepen-
dent random variables.

The classifications of independence for non-commutative probability spaces
[Spe97, BGS99, BG01, Mur03, Mur02] that we are interested in are based on
redefining independence as a product satisfying certain natural axioms.

3.3 Definition of Independence in the Language
of Category Theory

We will now define the notion of independence in the language of category
theory. The usual notion of independence for classical probability theory and
the independences classified in [Spe97, BGS99, BG01, Mur03, Mur02] will
then be instances of this general notion obtained by considering the category
of classical probability spaces or categories of algebraic probability spaces.

In order to define a notion of independence we need less than a (co-)
product, but a more than a tensor product. What we need are inclusions or
projections that allow us to view the objects A, B as subsystems of their
product A�B.

Definition 3.34. A tensor category with projections (C,�, π) is a tensor cat-
egory (C,�) equipped with two natural transformations π1 : � → P1 and
π2 : � → P2, where the bifunctors P1, P2 : C × C → C are defined by
P1(B1, B2) = B1, P2(B1, B2) = B2, on pairs of objects B1, B2 of C, and sim-
ilarly on pairs of morphisms. In other words, for any pair of objects B1, B2

there exist two morphisms πB1 : B1�B2 → B1, πB2 : B1�B2 → B2, such that
for any pair of morphisms f1 : A1 → B1, f2 : A2 → B2, the following diagram
commutes,

A1

f1

A1�A2

f1�f2

πA1 πA2
A2

f2

B1 B1�B2πB1 πB2
B2.
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Similarly, a tensor product with inclusions (C,�, i) is a tensor category
(C,�) equipped with two natural transformations i1 : P1 → � and i2 : P2 → �,
i.e. for any pair of objects B1, B2 there exist two morphisms iB1 : B1 →
B1�B2, iB2 : B2 → B1�B2, such that for any pair of morphisms f1 : A1 →
B1, f2 : A2 → B2, the following diagram commutes,

A1 iA1

f1

A1�A2

f1�f2

A2

f2

iA2

B1

iB1
B1�B2 B2.

iB2

In a tensor category with projections or with inclusions we can define a
notion of independence for morphisms.

Definition 3.35. Let (C,�, π) be a tensor category with projections. Two
morphism f1 : A → B1 and f2 : A → B2 with the same source A are called
independent (with respect to �), if there exists a morphism h : A → B1�B2

such that the diagram

A
f1

h
f2

B1 B1�B2πB1 πB2
B2

(3.5)

commutes.
In a tensor category with inclusions (C,�, i), two morphisms f1 : B1 → A

and f2 : B2 → A with the same target B are called independent, if there exists
a morphism h : B1�B2 → A such that the diagram

A

B1

f1

iB1
B1�B2

h

B2iB2

f2

(3.6)

commutes.

This definition can be extended in the obvious way to arbitrary sets of mor-
phisms.

If � is actually a product (or coproduct, resp.), then the universal property
in Definition 3.19 implies that for all pairs of morphisms with the same source
(or target, resp.) there exists even a unique morphism that makes diagram
(3.5) (or (3.6), resp.) commuting. Therefore in that case all pairs of morphism
with the same source (or target, resp.) are independent.

We will now consider several examples. We will show that for the category
of classical probability spaces we recover usual stochastic independence, if we
take the product of probability spaces, cf. Proposition 3.36.
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Example: Independence in the Category
of Classical Probability Spaces

The category Meas of measurable spaces consists of pairs (Ω,F), where Ω is
a set and F ⊆ P(Ω) a σ-algebra. The morphisms are the measurable maps.
This category has a product,

(Ω1,F1)Π (Ω2,F2) = (Ω1 ×Ω2,F1 ⊗F2)

where Ω1 × Ω2 is the Cartesian product of Ω1 and Ω2, and F1 ⊗ F2 is the
smallest σ-algebra on Ω1 × Ω2 such that the canonical projections p1 : Ω1 ×
Ω2 → Ω1 and p2 : Ω1 ×Ω2 → Ω2 are measurable.

The category of probability spaces Prob has as objects triples (Ω,F , P )
where (Ω,F) is a measurable space and P a probability measure on (Ω,F).
A morphism X : (Ω1,F1, P1) → (Ω1,F2, P2) is a measurable map X :
(Ω1,F1)→ (Ω1,F2) such that

P1 ◦X−1 = P2.

This means that a random variable X : (Ω,F , P ) → (E, E) automatically
becomes a morphism, if we equip (E, E) with the measure

PX = P ◦X−1

induced by X.
This category does not have universal products. But one can check that

the product of measures turns Prob into a tensor category,

(Ω1,F1, P1)⊗ (Ω2,F2, P2) = (Ω1 ×Ω2,F1 ⊗F2, P1 ⊗ P2),

where P1 ⊗ P2 is determined by

(P1 ⊗ P2)(M1 ×M2) = P1(M1)P2(M2),

for all M1 ∈ F1, M2 ∈ F2. It is even a tensor category with projections in
the sense of Definition 3.34 with the canonical projections p1 : (Ω1×Ω2,F1⊗
F2, P1 ⊗ P2)→ (Ω1,F1, P1), p2 : (Ω1 ×Ω2,F1 ⊗ F2, P1 ⊗ P2)→ (Ω2,F2, P2)
given by p1

(
(ω1, ω2)

)
= ω1, p2

(
(ω1, ω2)

)
= ω2 for ω1 ∈ Ω1, ω2 ∈ Ω2.

The notion of independence associated to this tensor product with projec-
tions is exactly the one used in probability.

Proposition 3.36. Two random variables X1 : (Ω,F , P ) → (E1, E1) and
X2 : (Ω,F , P ) → (E2, E2), defined on the same probability space (Ω,F , P )
and with values in measurable spaces (E1, E1) and (E2, E2), are stochastically
independent, if and only if they are independent in the sense of Definition
3.35 as morphisms X1 : (Ω,F , P ) → (E1, E1, PX1) and X2 : (Ω,F , P ) →
(E2, E2, PX2) of the tensor category with projections (Prob,⊗, p).
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Proof. Assume that X1 and X2 are stochastically independent. We have to
find a morphism h : (Ω,F , P )→ (E1 ×E2, E1 ⊗E2, PX1 ⊗ PX2) such that the
diagram

(Ω,F , P )
X1

h
X2

(E1, E1, PX1) (E1 × E2, E1 ⊗ E2, PX1 ⊗ PX2)pE1 pE2
(E2, E2, PX2)

commutes. The only possible candidate is h(ω) =
(
X1(ω),X2(ω)

)
for all

ω ∈ Ω, the unique map that completes this diagram in the category of mea-
surable spaces and that exists due to the universal property of the product of
measurable spaces. This is a morphism in Prob, because we have

P
(
h−1(M1 ×M2)

)
= P

(
X−1

1 (M1) ∩X−1
2 (M2)

)
= P

(
X−1

1 (M1)
)
P
(
X−1

2 (M2)
)

= PX1(M1)PX2(M2) = (PX1 ⊗ PX2)(M1 ×M2)

for all M1 ∈ E1, M2 ∈ E2, and therefore

P ◦ h−1 = PX1 ⊗ PX2 .

Conversely, if X1 and X2 are independent in the sense of Definition 3.35, then
the morphism that makes the diagram commuting has to be again h : ω �→(
X1(ω),X2(ω)

)
. This implies

P(X1,X2) = P ◦ h−1 = PX1 ⊗ PX2

and therefore

P
(
X−1

1 (M1) ∩X−1
2 (M2)

)
= P

(
X−1

1 (M1)
)
P
(
X−1

2 (M2)
)

for all M1 ∈ E1, M2 ∈ E2. ��

Example: Tensor Independence in the Category
of Algebraic Probability Spaces

By the category of algebraic probability spaces AlgProb we denote the category
of associative unital algebras over C equipped with a unital linear functional.
A morphism j : (A1, ϕ1)→ (A2, ϕ2) is a quantum random variable, i.e. an al-
gebra homomorphism j : A1 → A2 that preserves the unit and the functional,
i.e. j(1A1) = 1A2 and ϕ2 ◦ j = ϕ1.

The tensor product we will consider on this category is just the usual
tensor product (A1 ⊗ A2, ϕ1 ⊗ ϕ2), i.e. the algebra structure of A1 ⊗ A2 is
defined by

1A1⊗A2 = 1A1 ⊗ 1A2 ,

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2,
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and the new functional is defined by

(ϕ1 ⊗ ϕ2)(a1 ⊗ a2) = ϕ1(a1)ϕ2(a2),

for all a1, b1 ∈ A1, a2, b2 ∈ A2.
This becomes a tensor category with inclusions with the inclusions defined

by

iA1(a1) = a1 ⊗ 1A2 ,

iA2(a2) = 1A1 ⊗ a2,

for a1 ∈ A1, a2 ∈ A2.
One gets the category of ∗-algebraic probability spaces, if one assumes that

the underlying algebras have an involution and the functional are states, i.e.
also positive. Then an involution is defined on A1⊗A2 by (a1⊗a2)∗ = a∗1⊗a∗2
and ϕ1 ⊗ ϕ2 is again a state.

The notion of independence associated to this tensor product with inclu-
sions by Definition 3.35 is the usual notion of Bose or tensor independence
used in quantum probability, e.g., by Hudson and Parthasarathy.

Proposition 3.37. Two quantum random variables j1 : (B1, ψ1) → (A, ϕ)
and j2 : (B2, ψ2) → (A, ϕ), defined on algebraic probability spaces (B1, ψ1),
(B2, ψ2) and with values in the same algebraic probability space (A, ϕ) are
independent if and only if the following two conditions are satisfied.

(i) The images of j1 and j2 commute, i.e.
[
j1(a1), j2(a2)

]
= 0,

for all a1 ∈ A1, a2 ∈ A2.
(ii) ϕ satisfies the factorization property

ϕ
(
j1(a1)j2(a2)

)
= ϕ

(
j1(a1)

)
ϕ
(
j2(a2)

)
,

for all a1 ∈ A1, a2 ∈ A2.

We will not prove this Proposition since it can be obtained as a special case of
Proposition 3.38, if we equip the algebras with the trivial Z2-gradingA(0) = A,
A(1) = {0}.

Example: Fermi Independence

Let us now consider the category of Z2-graded algebraic probability spaces
Z2-AlgProb. The objects are pairs (A, ϕ) consisting of a Z2-graded unital
algebra A = A(0) ⊕ A(1) and an even unital functional ϕ, i.e. ϕ|A(1) = 0.
The morphisms are random variables that don’t change the degree, i.e., for
j : (A1, ϕ1)→ (A2, ϕ2), we have
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j(A(0)
1 ) ⊆ A(0)

2 and j(A(1)
1 ) ⊆ A(1)

2 .

The tensor product (A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) = (A1, ϕ1) ⊗Z2 (A2, ϕ2) is defined
as follows. The algebra A1⊗Z2 A2 is the graded tensor product of A1 and A2,
i.e. (A1⊗Z2A2)(0) = A(0)

1 ⊗A
(0)
2 ⊕A

(1)
1 ⊗A

(1)
2 , (A1⊗Z2A2)(1) = A(1)

1 ⊗A
(0)
2 ⊕

A(0)
1 ⊗A

(1)
2 , with the algebra structure given by

1A1⊗Z2A2 = 1A1 ⊗ 1A2 ,

(a1 ⊗ a2) · (b1 ⊗ b2) = (−1)deg a2 deg b1a1b1 ⊗ a2b2,

for all homogeneous elements a1, b1 ∈ A1, a2, b2 ∈ A2. The functional ϕ1⊗ϕ2

is simply the tensor product, i.e. (ϕ1 ⊗ ϕ2)(a1 ⊗ a2) = ϕ1(a1) ⊗ ϕ2(a2) for
all a1 ∈ A1, a2 ∈ A2. It is easy to see that ϕ1 ⊗ ϕ2 is again even, if ϕ1

and ϕ2 are even. The inclusions i1 : (A1, ϕ1) → (A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) and
i2 : (A2, ϕ2)→ (A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) are defined by

i1(a1) = a1 ⊗ 1A2 and i2(a2) = 1A1 ⊗ a2,

for a1 ∈ A1, a2 ∈ A2.
If the underlying algebras are assumed to have an involution and the func-

tionals to be states, then the involution on the Z2-graded tensor product is
defined by (a1 ⊗ a2)∗ = (−1)deg a1 deg a2a∗1 ⊗ a∗2, this gives the category of
Z2-graded ∗-algebraic probability spaces.

The notion of independence associated to this tensor category with inclu-
sions is called Fermi independence or anti-symmetric independence.

Proposition 3.38. Two random variables j1 : (B1, ψ1) → (A, ϕ) and j2 :
(B2, ψ2) → (A, ϕ), defined on two Z2-graded algebraic probability spaces
(B1, ψ1), (B2, ψ2) and with values in the same Z2-algebraic probability space
(A, ϕ) are independent if and only if the following two conditions are satisfied.

(i) The images of j1 and j2 satisfy the commutation relations

j2(a2)j1(a1) = (−1)deg a1 deg a2j1(a1)j2(a2)

for all homogeneous elements a1 ∈ B1, a2 ∈ B2.
(ii) ϕ satisfies the factorization property

ϕ
(
j1(a1)j2(a2)

)
= ϕ

(
j1(a1)

)
ϕ
(
j2(a2)

)
,

for all a1 ∈ B1, a2 ∈ B2.

Proof. The proof is similar to that of Proposition 3.36, we will only outline
it. It is clear that the morphism h : (B1, ψ1)⊗Z2 (B2, ψ2)→ (A, ϕ) that makes
the diagram in Definition 3.35 commuting, has to act on elements of B1⊗1B2

and 1B1 ⊗ B2 as

h(b1 ⊗ 1B2) = j1(b1) and h(1B1 ⊗ b2) = j2(b2).
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This extends to a homomorphism from (B1, ψ1)⊗Z2 (B2, ψ2) to (A, ϕ), if and
only if the commutation relations are satisfied. And the resulting homomor-
phism is a quantum random variable, i.e. satisfies ϕ ◦h = ψ1⊗ψ2, if and only
if the factorization property is satisfied. ��

Example: Free Independence

We will now introduce another tensor product with inclusions for the category
of algebraic probability spaces AlgProb. On the algebras we take simply the
free product of algebras with identifications of units introduced in Example
3.28. This is the coproduct in the category of algebras, therefore we also have
natural inclusions. It only remains to define a unital linear functional on the
free product of the algebras.

Voiculescu’s[VDN92] free product ϕ1 ∗ ϕ2 of two unital linear functionals
ϕ1 : A1 → C and ϕ2 : A2 → C can be defined recursively by

(ϕ1 ∗ ϕ2)(a1a2 · · · am) =
∑

I�{1,...,m}

(−1)m−�I+1(ϕ1 ∗ ϕ2)

( →∏

k∈I
ak

)
∏

k �∈I
ϕεk(ak)

for a typical element a1a2 · · · am ∈ A1

∐
A2, with ak ∈ Aεk , ε1 �= ε2 �= · · · �=

εm, i.e. neighboring a’s don’t belong to the same algebra. 'I denotes the
number of elements of I and

∏→
k∈I ak means that the a’s are to be multiplied

in the same order in which they appear on the left-hand-side. We use the
convention (ϕ1 ∗ ϕ2)

(∏→
k∈∅ ak

)
= 1.

It turns out that this product has many interesting properties, e.g., if ϕ1

and ϕ2 are states, then their free product is a again a state. For more details,
see [BNT05] and the references given there.

Examples: Boolean, Monotone, and Anti-monotone Independence

Ben Ghorbal and Schürmann[BG01, BGS99] and Muraki[Mur03] have also
considered the category of non-unital algebraic probability nuAlgProb consist-
ing of pairs (A, ϕ) of a not necessarily unital algebra A and a linear functional
ϕ. The morphisms in this category are algebra homomorphisms that leave the
functional invariant. On this category we can define three more tensor prod-
ucts with inclusions corresponding to the boolean product (, the monotone
product ( and the anti-monotone product ) of states. They can be defined by

ϕ1 ( ϕ2(a1a2 · · · am) =
m∏

k=1

ϕεk(ak),

ϕ1 ( ϕ2(a1a2 · · · am) = ϕ1

( →∏

k:εk=1

ak

)
∏

k:εk=2

ϕ2(ak),

ϕ1 ) ϕ2(a1a2 · · · am) =
∏

k:εk=1

ϕ1(ak) ϕ2

( →∏

k:εk=2

ak

)
,
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for ϕ1 : A1 → C and ϕ2 : A2 → C and a typical element a1a2 · · · am ∈
A1

∐
A2, ak ∈ Aεk , ε1 �= ε2 �= · · · �= εm, i.e. neighboring a’s don’t belong to

the same algebra. Note that for the algebras and the inclusions we use here the
free product without units, the coproduct in the category of not necessarily
unital algebras.

The monotone and anti-monotone product are not commutative, but re-
lated by

ϕ1 ( ϕ2 = (ϕ2 ) ϕ1) ◦ γA1,A2 ,

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C, where γA1,A2 :
A1

∐
A2 → A2

∐
A1 is the commutativity constraint (for the commutativity

constraint for the free product of unital algebras see Equation (3.1)). The
boolean product is commutative, i.e. it satisfies

ϕ1 ( ϕ2 = (ϕ2 ( ϕ1) ◦ γA1,A2 ,

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C.

Exercise 3.39. The boolean, the monotone and the anti-monotone product
can also be defined for unital algebras, if they are in the range of the unitiza-
tion functor introduced in Exercise 3.30.

Let ϕ1 : A1 → C and ϕ2 : A2 → C be two unital functionals on algebras
A1, A2, which can be decomposed as A1 = C1 ⊕ A0

1, A2 = C1 ⊕ A0
2. Then

we define the boolean, monotone, or anti-monotone product of ϕ1 and ϕ2 as
the unital extension of the boolean, monotone, or anti-monotone product of
their restrictions ϕ1|A0

1
and ϕ2|A0

2
.

Show that this leads to the following formulas.

ϕ1 ( ϕ2(a1a2 · · · an) =
n∏

i=1

ϕεi(ai),

ϕ1 ( ϕ2(a1a2 · · · an) = ϕ1

(
∏

i:εi=1

ai

)
∏

i:εi=2

ϕ2(ai),

ϕ1 ) ϕ2(a1a2 · · · an) =
∏

i:εi=1

ϕ1(ai)ϕ2

(
∏

i:εi=2

ai

)
,

for a1a2 · · · an ∈ A1

∐
A2, ai ∈ A0

εi , ε1 �= ε2 �= · · · �= εn. We use the convention
that the empty product is equal to the unit element.

These products can be defined in the same way for ∗-algebraic proba-
bility spaces, where the algebras are unital ∗-algebras having such a de-
composition A = C1 ⊕ A0 and the functionals are states. To check that
ϕ1 ( ϕ2, ϕ1 ( ϕ2, ϕ1 ) ϕ2 are again states, if ϕ1 and ϕ2 are states, one can
verify that the following constructions give their GNS representations. Let
(π1,H1, ξ1) and (π2,H2, ξ2) denote the GNS representations of (A1, ϕ1) and
(A2, ϕ2). The GNS representations of (A1

∐
A2, ϕ1 (ϕ2), (A1

∐
A2, ϕ1 ( ϕ2),
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and (A1

∐
A2, ϕ1 ) ϕ2) can all be defined on the Hilbert space H = H1 ⊗H2

with the state vector ξ = ξ1⊗ξ2. The representations are defined by π(1) = id
and

π|A0
1

= π1 ⊗ P2, π|A0
2

= P1 ⊗ π2, for ϕ1 ( ϕ2,

π|A0
1

= π1 ⊗ P2, π|A0
2

= idH2 ⊗ π2, for ϕ1 ( ϕ2,

π|A0
1

= π1 ⊗ idH2 , π|A0
2

= P1 ⊗ π2, for ϕ1 ) ϕ2,

where P1, P2 denote the orthogonal projections P1 : H1 → Cξ1, P2 : H2 →
Cξ2. For the boolean case, ξ = ξ1 ⊗ ξ2 ∈ H1 ⊗H2 is not cyclic for π, only the
subspace Cξ ⊕H0

1 ⊕H0
2 can be generated from ξ.

3.4 Reduction of an Independence

For a reduction of independences we need a little bit more than a cotensor
functor.

Definition 3.40. Let (C,�, i) and (C′,�′, i′) be two tensor categories with
inclusions and assume that we are given functors I : C → D and I ′ : C′ → D
to some category D. A reduction (F, J) of the tensor product � to the tensor
product �′ (w.r.t. (D, I, I ′))is a cotensor functor F : (C,�) → (C′,�′) and a
natural transformation J : I → I ′ ◦ F , i.e. morphisms JA : A → F (A) in D
for all objects A ∈ Ob C such that the diagram

I(A)

I(f)

JA
I ′ ◦ F (A)

I′◦F (f)

I(B)
JB

I ′ ◦ F (B)

commutes for all morphisms f : A→ B in C.

In the simplest case, C will be a subcategory of C′, I will be the inclusion
functor from C into C′, and I ′ the identity functor on C′. Then such a reduction
provides us with a system of inclusions Jn(A1, . . . , An) = Fn(A1, . . . , An) ◦
JA1�···�An

Jn(A1, . . . , An) : A1� · · ·�An → F (A1)�′ · · ·�′F (An)

with J1(A) = JA that satisfies, e.g., Jn+m(A1, . . . , An+m) = F2

(
F (A1)�′ · · ·�′

F (An), F (An+1)�′ · · ·�′F (An+m)
)
◦
(
Jn(A1, . . . , An)�Jm(An+1, . . . , An+m)

)

for all n,m ∈ N and A1, . . . , An+m ∈ Ob C.
A reduction between two tensor categories with projections would consist

of a cotensor functor F and a natural transformation P : F → I ′.
In our applications we will also often encounter the case where C is not be

a subcategory of C′, but we have, e.g., a forgetful functor U from C to C′ that
“forgets” an additional structure that C has. An example for this situation
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is the reduction of Fermi independence to tensor independence in following
subsection. Here we have to forget the Z2-grading of the objects of Z2-AlgProb

to get objects of AlgProb. In this situation a reduction of the tensor product
with inclusions � to the tensor product with inclusions �′ is a tensor function
F from (C,�) to (C′,�′) and a natural transformation J : U → F .

Example 3.41. The identity functor can be turned into a reduction from
(Alg,

∐
) to (Alg,⊗) (with the obvious inclusions).

The Symmetric Fock Space as a Tensor Functor

The category Vec with the direct product ⊕ is of course a tensor category
with inclusions and with projections, since the direct sum of vector spaces is
both a product and a coproduct.

Not surprisingly, the usual tensor product of vector spaces is also a tensor
product in the sense of category theory, but there are no canonical inclusions or
projections. We can fix this by passing to the category Vek∗ of pointed vector
spaces, whose objects are pairs (V, v) consisting of a vector space V and a non-
zero vector v ∈ V . The morphisms h : (V1, v1)→ (V2, v2) in this category are
the linear maps h : V1 → V2 with h(v1) = v2. In this category (equipped with
the obvious tensor product (V1, v1)⊗(V2, v2) = (V1⊗V2, v1⊗v2)) inclusions can
be defined by I1 : V1 ' u �→ u⊗v2 ∈ V1⊗V2 and I2 : V1 ' u �→ v1⊗u ∈ V1⊗V2.

Exercise 3.42. Show that in (Vek∗,⊗, I) all pairs of morphisms are indepen-
dent, even though the tensor product is not a coproduct.

Proposition 3.43. Take D = Vek, I = idVek, and I ′ : Vek∗ → Vek the
functor that forgets the fixed vector.

The symmetric Fock space Γ is a reduction from (Vek,⊕, i) to (Vek∗,⊗, I)
(w.r.t. (Vek, idVek, I

′)).

We will not prove this proposition, we will only define all the natural
transformations.

On the objects, Γ maps a vector space V to the pair
(
Γ (V ), Ω

)
consisting

of the algebraic symmetric Fock space

Γ (V ) =
⊕

n∈N

V ⊗n

and the vacuum vector Ω. The trivial vector space {0} gets mapped to the
field Γ ({0}) = K with the unit 1 as fixed vector. Linear maps h : V1 → V2 get
mapped to their second quantization Γ (h) : Γ (V1) → Γ (V2). F0 : Γ ({0}) =
(K,1) → (K,1) is just the identity and F2 is the natural isomorphism from
Γ (V1 ⊕ V2) to Γ (V1)⊗ Γ (V2) which acts on exponential vectors as

F2 : E(u1 + u2) �→ E(u1)⊗ E(u2)

for u1 ∈ V1, u2 ∈ V2.
The natural transformation J : idVec → Γ finally is the embedding of V

into Γ (V ) as one-particle space.
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Example: Bosonization of Fermi Independence

We will now define the bosonization of Fermi independence as a reduction
from (AlgProb,⊗, i) to (Z2-AlgProb,⊗Z2 , i). We will need the group algebra
CZ2 of Z2 and the linear functional ε : CZ2 → C that arises as the linear
extension of the trivial representation of Z2, i.e.

ε(1) = ε(g) = 1,

if we denote the even element of Z2 by 1 and the odd element by g.
The underlying functor F : Z2-AlgProb→ AlgProb is given by

F :
Ob Z2-AlgProb ' (A, ϕ) �→ (A⊗Z2 CZ2, ϕ⊗ ε) ∈ Ob AlgProb,

Mor Z2-AlgProb ' f �→ f ⊗ idCZ2 ∈ Mor AlgProb.

The unit element in both tensor categories is the one-dimensional unital
algebra C1 with the unique unital functional on it. Therefore F0 has to be a
morphism from F (C1) ∼= CZ2 to C1. It is defined by F0(1) = F0(g) = 1.

The morphism F2(A,B) has to go from F (A ⊗Z2 B) = (A ⊗Z2 B) ⊗ CZ2

to F (A)⊗ F (B) = (A⊗Z2 CZ2)⊗ (B ⊗Z2 CZ2). It is defined by

a⊗ b⊗ 1 �→
{

(a⊗ 1)⊗ (b⊗ 1) if b is even,
(a⊗ g)⊗ (b⊗ 1) if b is odd,

and

a⊗ b⊗ g �→
{

(a⊗ g)⊗ (b⊗ g) if b is even,
(a⊗ 1)⊗ (b⊗ g) if b is odd,

for a ∈ A and homogeneous b ∈ B.
Finally, the inclusion JA : A → A⊗Z2 CZ2 is defined by

JA(a) = a⊗ 1

for all a ∈ A.
In this way we get inclusions Jn = Jn(A1, . . . ,An) = Fn(A1, . . . ,An) ◦

JA1⊗Z2 ...⊗Z2An
of the graded tensor product A1 ⊗Z2 · · · ⊗Z2 An into the usual

tensor product (A1 ⊗Z2 CZ2) ⊗ · · · ⊗ (An ⊗Z2 CZ2) which respect the states
and allow to reduce all calculations involving the graded tensor product to
calculations involving the usual tensor product on the bigger algebras F (A1) =
A1 ⊗Z2 CZ2, . . . , F (An) = An ⊗Z2 CZ2. These inclusions are determined by

Jn(1⊗ · · · ⊗ 1︸ ︷︷ ︸⊗a⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸) = g̃ ⊗ · · · ⊗ g̃︸ ︷︷ ︸⊗ã⊗ 1̃⊗ · · · ⊗ 1̃︸ ︷︷ ︸,

k − 1 times n− k times k − 1 times n− k times

for a ∈ Ak odd, and

Jn(1⊗ · · · ⊗ 1︸ ︷︷ ︸⊗a⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸) = 1̃⊗ · · · ⊗ 1̃︸ ︷︷ ︸⊗ã⊗ 1̃⊗ · · · ⊗ 1̃︸ ︷︷ ︸,

k − 1 times n− k times k − 1 times n− k times

for a ∈ Ak even, 1 ≤ k ≤ n, where we used the abbreviations

g̃ = 1⊗ g, ã = a⊗ 1, 1̃ = 1⊗ 1.
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The Reduction of Boolean, Monotone, and Anti-Monotone
Independence to Tensor Independence

We will now present the unification of tensor, monotone, anti-monotone, and
boolean independence of Franz[Fra03b] in our category theoretical framework.
It resembles closely the bosonization of Fermi independence in Subsection 3.4,
but the group Z2 has to be replaced by the semigroup M = {1, p} with two
elements, 1 · 1 = 1, 1 · p = p · 1 = p · p = p. We will need the linear functional
ε : CM → C with ε(1) = ε(p) = 1.

The underlying functor and the inclusions are the same for the reduction
of the boolean, the monotone and the anti-monotone product. They map the
algebra A of (A, ϕ) to the free product F (A) = Ã

∐
CM of the unitization Ã

of A and the group algebra CM of M . For the unital functional F (ϕ) we take
the boolean product ϕ̃ ( ε of the unital extension ϕ̃ of ϕ with ε. The elements
of F (A) can be written as linear combinations of terms of the form

pαa1p · · · pampω

with m ∈ N, α, ω ∈ {0, 1}, a1, . . . .am ∈ A, and F (ϕ) acts on them as

F (ϕ)(pαa1p · · · pampω) =
m∏

k=1

ϕ(ak).

The inclusion is simply

JA : A ' a �→ a ∈ F (A).

The morphism F0 : F (C1) = CM → C1 is given by the trivial representation
of M , F0(1) = F0(p) = 1.

The only part of the reduction that is different for the three cases are the
morphisms

F2(A1,A2) : A1

∐
A2 → F (A1)⊗ F (A2) = (Ã1

∐
CM)⊗ (Ã2

∐
CM).

We set

FB
2 (A1,A2)(a) =

{
a⊗ p if a ∈ A1,
p⊗ a if a ∈ A2,

for the boolean case,

FM
2 (A1,A2)(a) =

{
a⊗ p if a ∈ A1,
1⊗ a if a ∈ A2,

for the monotone case, and

FAM
2 (A1,A2)(a) =

{
a⊗ 1 if a ∈ A1,
p⊗ a if a ∈ A2,

for the anti-monotone case.
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For the higher order inclusions J•
n = F •

n(A1, . . . ,An) ◦ JA1
∐

···
∐

An
, • ∈

{B,M,AM}, one gets

JB
n (a) = p⊗(k−1) ⊗ a⊗ p⊗(n−k),

JM
n (a) = 1⊗(k−1) ⊗ a⊗ p⊗(n−k),

JAM
n (a) = p⊗(k−1) ⊗ a⊗ 1⊗(n−k),

if a ∈ Ak.
One can verify that this indeed defines reductions (FB, J), (FM, J),

and (FAM, J) from the categories (nuAlgProb, (, i), (nuAlgProb, (, i), and
(nuAlgProb, ), i) to (AlgProb,⊗, i). The functor U : nuAlgProb → AlgProb

is the unitization of the algebra and the unital extension of the functional and
the morphisms.

This reduces all calculations involving the boolean, monotone or anti-
monotone product to the tensor product. These constructions can also be
applied to reduce the quantum stochastic calculus on the boolean, monotone,
and anti-monotone Fock space to the boson Fock space. Furthermore, they
allow to reduce the theories of boolean, monotone, and anti-monotone Lévy
processes to Schürmann’s[Sch93] theory of Lévy processes on involutive bial-
gebras, see Franz[Fra03b] or Subsection 4.3.

Exercise 3.44. Construct a similar reduction for the category of unital alge-
bras A having a decomposition A = C1⊕A0 and the boolean, monotone, or
anti-monotone product defined for these algebras in Exercise 3.39

3.5 Classification of the Universal Independences

In the previous Subsection we have seen how a notion of independence can
be defined in the language of category theory and we have also encountered
several examples.

We are mainly interested in different categories of algebraic probability
spaces. Their objects are pairs consisting of an algebra A and a linear func-
tional ϕ on A. Typically, the algebra has some additional structure, e.g., an
involution, a unit, a grading, or a topology (it can be, e.g., a von Neumann
algebra or a C∗-algebra), and the functional behaves nicely with respect to
this additional structure, i.e., it is positive, unital, respects the grading, con-
tinuous, or normal. The morphisms are algebra homomorphisms, which leave
the linear functional invariant, i.e., j : (A, ϕ)→ (B, ψ) satisfies

ϕ = ψ ◦ j

and behave also nicely w.r.t. additional structure, i.e., they can be required
to be ∗-algebra homomorphisms, map the unit of A to the unit of B, respect
the grading, etc. We have already seen one example in Subsection 3.3.

The tensor product then has to specify a new algebra with a linear func-
tional and inclusions for every pair of of algebraic probability spaces. If the
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category of algebras obtained from our algebraic probability space by forget-
ting the linear functional has a coproduct, then it is sufficient to consider the
case where the new algebra is the coproduct of the two algebras.

Proposition 3.45. Let (C,�, i) be a tensor category with inclusions and F :
C → D a functor from C into another category D which has a coproduct

∐
and

an initial object ED. Then F is a tensor functor. The morphisms F2(A,B) :
F (A)

∐
F (B) → F (A�B) and F0 : ED → F (E) are those guaranteed by

the universal property of the coproduct and the initial object, i.e. F0 : ED →
F (E) is the unique morphism from ED to F (E) and F2(A,B) is the unique
morphism that makes the diagram

F (A)
F (iA)

iF (A)

F (A�B) F (B)
F (iB)

iF (B)

F (A)
∐
F (B)

F2(A,B)

commuting.

Proof. Using the universal property of the coproduct and the definition of F2,
one shows that the triangles containing the F (A) in the center of the diagram

F (A)
∐(

F (B)
∐
F (C)

) αF (A),F (B),F (C)

idF (A)
∐
F2(B,C)

(
F (A)

∐
F (B)

)∐
F (C)

F2(A,B)
∐

idF (C)

F (A)
∐
F (B�C)

F2(A,B�C)

F (A)

iF (A)

iF (A)

F (iA)

iF (A)

F (iA)

F (A�B)
∐
F (C)

F2(A�B,C)

F
(
A�(B�C)

)
F (αA,B,C)

F
(
(A�B)�C

)

commute (where the morphism from F (A) to F (A�B)
∐
F (C) is given by

F (iA)
∐

idF (C)), and therefore that the morphisms corresponding to all the
different paths form F (A) to F

(
(A�B)�C

)
coincide. Since we can get simi-

lar diagrams with F (B) and F (C), it follows from the universal property of
the triple coproduct F (A)

∐(
F (B)

∐
F (C)

)
that there exists only a unique

morphism from F (A)
∐(

F (B)
∐
F (C)

)
to F

(
(A�B)�C

)
and therefore that

the whole diagram commutes.
The commutativity of the two diagrams involving the unit elements can

be shown similarly. ��

Let C now be a category of algebraic probability spaces and F the functor
that maps a pair (A, ϕ) to the algebra A, i.e., that “forgets” the linear func-
tional ϕ. Suppose that C is equipped with a tensor product � with inclusions
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and that F (C) has a coproduct
∐

. Let (A, ϕ), (B, ψ) be two algebraic proba-
bility spaces in C, we will denote the pair (A, ϕ)�(B, ψ) also by (A�B, ϕ�ψ).
By Proposition 3.45 we have morphisms F2(A,B) : A

∐
B → A�B that define

a natural transformation from the bifunctor
∐

to the bifunctor �. With these
morphisms we can define a new tensor product �̃ with inclusions by

(A, ϕ)�̃(B, ψ) =
(
A
∐
B, (ϕ�ψ) ◦ F2(A,B)

)
.

The inclusions are those defined by the coproduct.

Proposition 3.46. If two random variables f1 : (A1, ϕ1) → (B, ψ) and
f1 : (A1, ϕ1) → (B, ψ) are independent with respect to �, then they are also
independent with respect to �̃.

Proof. If f1 and f2 are independent with respect to �, then there exists a
random variable h : (A1�A2, ϕ1�ϕ2) → (B, ψ) that makes diagram (3.6) in
Definition 3.35 commuting. Then h◦F2(A1,A2) : (A1

∐
A2, ϕ1�̃ϕ2)→ (B, ψ)

makes the corresponding diagram for �̃ commuting. ��

The converse is not true. Consider the category of algebraic probability spaces
with the tensor product, see Subsection 3.3, and take B = A1

∐
A2 and ψ =

(ϕ1 ⊗ ϕ2) ◦ F2(A1,A2). The canonical inclusions iA1 : (A1, ϕ1)→ (B, ψ) and
iA2 : (A2, ϕ2)→ (B, ψ) are independent w.r.t. ⊗̃, but not with respect to the
tensor product itself, because their images do not commute in B = A1

∐
A2.

We will call a tensor product with inclusions in a category of quantum
probability spaces universal, if it is equal to the coproduct of the corresponding
category of algebras on the algebras. The preceding discussion shows that
every tensor product on the category of algebraic quantum probability spaces
AlgProb has a universal version. E.g., for the tensor independence defined in
the category of algebraic probability spaces in Subsection 3.3, the universal
version is defined by

ϕ1⊗̃ϕ2(a1a2 · · · am) = ϕ1

( →∏

i:εi=1

ai

)
ϕ2

( →∏

i:εi=2

ai

)

for two unital functionals ϕ1 : A1 → C and ϕ2 : A2 → C and a typical element
a1a2 · · · am ∈ A1

∐
A2, with ak ∈ Aεk , ε1 �= ε2 �= · · · �= εm, i.e. neighboring

a’s don’t belong to the same algebra.
We will now reformulate the classification by Muraki[Mur03] and by Ben

Ghorbal and Schürmann[BG01, BGS99] in terms of universal tensor products
with inclusions for the category of algebraic probability spaces AlgProb.

In order to define a universal tensor product with inclusions on AlgProb

one needs a map that associates to a pair of unital functionals (ϕ1, ϕ2) on two
algebras A1 and A2 a unital functional ϕ1 · ϕ2 on the free product A1

∐
A2

(with identification of the units) of A1 and A2 in such a way that the bifunctor
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� : (A1, ϕ1)× (A2, ϕ1) �→ (A1

∐
A2, ϕ1 · ϕ2)

satisfies all the necessary axioms. Since � is equal to the coproduct
∐

on the
algebras, we don’t have a choice for the isomorphisms α, λ, ρ implementing
the associativity and the left and right unit property. We have to take the
ones following from the universal property of the coproduct. The inclusions
and the action of � on the morphisms also have to be the ones given by the
coproduct.

The associativity gives us the condition
(
(ϕ1 · ϕ2) · ϕ3

)
◦ αA1,A2,A3 = ϕ1 · (ϕ2 · ϕ3), (3.7)

for all (A1, ϕ1), (A2, ϕ2), (A3, ϕ3) in AlgProb. Denote the unique unital func-
tional on C1 by δ, then the unit properties are equivalent to

(ϕ · δ) ◦ ρA = ϕ and (δ · ϕ) ◦ λA = ϕ,

for all (A, ϕ) in AlgProb. The inclusions are random variables, if and only if

(ϕ1 · ϕ2) ◦ iA1 = ϕ1 and (ϕ1 · ϕ2) ◦ iA2 = ϕ2 (3.8)

for all (A1, ϕ1), (A2, ϕ2) in AlgProb. Finally, from the functoriality of � we
get the condition

(ϕ1 · ϕ2) ◦ (j1
∐

j2) = (ϕ1 ◦ j1) · (ϕ2 ◦ j2) (3.9)

for all pairs of morphisms j1 : (B1, ψ1) → (A1, ϕ1), j2 : (B2, ψ2) → (A2, ϕ2)
in AlgProb.

Our Conditions (3.7), (3.8), and (3.9) are exactly the axioms (P2), (P3),
and (P4) in Ben Ghorbal and Schürmann[BGS99], or the axioms (U2), the
first part of (U4), and (U3) in Muraki[Mur03].

Theorem 3.47. (Muraki [Mur03], Ben Ghorbal and Schürmann
[BG01, BGS99]). There exist exactly two universal tensor products with in-
clusions on the category of algebraic probability spaces AlgProb, namely the
universal version ⊗̃ of the tensor product defined in Section 3.3 and the one
associated to the free product ∗ of states.

For the classification in the non-unital case, Muraki imposes the additional
condition

(ϕ1 · ϕ2)(a1a2) = ϕε1(a1)ϕε2(a2) (3.10)

for all (ε1, ε2) ∈
{
(1, 2), (2, 1)

}
, a1 ∈ Aε1 , a2 ∈ Aε2 .

Theorem 3.48. (Muraki[Mur03]) There exist exactly five universal tensor
products with inclusions satisfying (3.10) on the category of non-unital al-
gebraic probability spaces nuAlgProb, namely the universal version ⊗̃ of the
tensor product defined in Section 3.3 and the ones associated to the free prod-
uct ∗, the boolean product (, the monotone product ( and the anti-monotone
product ).
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The monotone and the anti-monotone are not symmetric, i.e. (A1

∐
A2, ϕ1 (

ϕ2) and (A2

∐
A2, ϕ2 ( ϕ1) are not isomorphic in general. Actually, the anti-

monotone product is simply the mirror image of the monotone product,

(A1

∐
A2, ϕ1 ( ϕ2) ∼= (A2

∐
A1, ϕ2 ) ϕ1)

for all (A1, ϕ1), (A2, ϕ2) in the category of non-unital algebraic probability
spaces. The other three products are symmetric.

In the symmetric setting of Ben Ghorbal and Schürmann, Condition (3.10)
is not essential. If one drops it and adds symmetry, one finds in addition the
degenerate product

(ϕ1 •0 ϕ2)(a1a2 · · · am) =
{
ϕε1(a1) if m = 1,
0 if m > 1.

and families
ϕ1 •q ϕ2 = q

(
(q−1ϕ1) · (q−1ϕ2)

)
,

parametrized by a complex number q ∈ C\{0}, for each of the three symmetric
products, • ∈ {⊗̃, ∗, (}.

If one adds the condition that products of states are again states, then one
can also show that the constant has to be equal to one.

Exercise 3.49. Consider the category of non-unital ∗-algebraic probability
spaces, whose objects are pairs (A, ϕ) consisting of a not necessarily unital ∗-
algebra A and a state ϕ : A → C. Here a state is a linear functional ϕ : A → C

whose unital extension ϕ̃ : Ã ∼= C1⊕A → C, λ1+a �→ ϕ̃(λ1+a) = λ+ϕ(a),
to the unitization of A is a state.

Assume we have products · : S(A1) × S(A2) → S(A1

∐
A2) of linear

functionals on non-unital algebras A1,A2 that satisfy

(ϕ1 · ϕ2)(a1a2) = c1ϕ1(a1)ϕ2(a2),
(ϕ1 · ϕ2)(a2a1) = c2ϕ1(a1)ϕ2(a2),

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C, and elements a1 ∈ A1,
a2 ∈ A2 with “universal” constants c1, c2 ∈ C, i.e. constants that do not
depend on the algebras, the functionals, or the algebra elements. That for
every universal independence such constants have to exist is part of the proof
of the classifications in [BG01, BGS99, Mur03].

Show that if the products of states are again states, then we have c1 =
c2 = 1. Hint: Take for A1 and A2 the algebra of polynomials on R and for ϕ1

and ϕ2 evaluation in a point.

The proof of the classification of universal independences can be split into
three steps.

Using the “universality” or functoriality of the product, one can show that
there exist some “universal constants” - not depending on the algebras - and
a formula for evaluating
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(ϕ1 · ϕ2)(a1a2 · · · am)

for a1a2 · · · am ∈ A1

∐
A2, with ak ∈ Aεk , ε1 �= ε2 �= · · · �= εm, as a linear com-

bination of products ϕ1(M1), ϕ2(M2), where M1, M2 are “sub-monomials”
of a1a2 · · · am. Then in a second step it is shown by associativity that only
products with ordered monomials M1, M2 contribute. This is the content of
[BGS02, Theorem 5] in the commutative case and of [Mur03, Theorem 2.1] in
the general case.

The third step, which was actually completed first in both cases, see
[Spe97] and [Mur02], is to find the conditions that the universal constants
have to satisfy, if the resulting product is associative. It turns out that the
universal coefficients for m > 5 are already uniquely determined by the coef-
ficients for 1 ≤ m ≤ 5. Detailed analysis of the non-linear equations obtained
for the coefficients of order up to five then leads to the classifications stated
above.

4 Lévy Processes on Dual Groups

We now want to study quantum stochastic processes whose increments are
free or independent in the sense of boolean, monotone, or anti-monotone in-
dependence. The approach based on bialgebras that we followed in the first
Section works for the tensor product and fails in the other cases because the
corresponding products are not defined on the tensor product, but on the free
product of the algebra. The algebraic structure which has to replace bialge-
bras was first introduced by Voiculescu [Voi87, Voi90], who named them dual
groups. In this section we will introduce these algebras and develop the theory
of their Lévy processes. It turns out that Lévy processes on dual groups with
boolean, monotonically, or anti-monotonically independent increments can be
reduced to Lévy processes on involutive bialgebra. We do not know if this is
also possible for Lévy processes on dual groups with free increments.

In the literature additive free Lévy processes have been studied most in-
tensively, see, e.g., [GSS92, Bia98, Ans02, Ans03, BNT02b, BNT02a].

4.1 Preliminaries on Dual Groups

Denote by ComAlg the category of commutative unital algebras and let B ∈
ObComAlg be a commutative bialgebra. Then the mapping

ObComAlg ' A �→ MorComAlg(B,A)

can be understood as a functor from ComAlg to the category of unital semi-
groups. The multiplication in MorAlg(B,A) is given by the convolution, i.e.

f 
 g = mA ◦ (f ⊗ g) ◦∆B
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and the unit element is εB1A. A unit-preserving algebra homomorphism
h : A1 → A2 gets mapped to the unit-preserving semigroup homomorphism
MorComAlg(B,A1) ' f → h ◦ f ∈ MorComAlg(B,A2), since

h ◦ (f 
 g) = (h ◦ f) 
 (h ◦ g)

for allA1,A2 ∈ Ob ComAlg, h ∈ MorComAlg(A1,A2), f, g ∈ MorComAlg(B,A1).
If B is even a commutative Hopf algebra with antipode S, then MorComAlg

(B,A) is a group with respect to the convolution product. The inverse of a
homomorphism f : B → A with respect to the convolution product is given
by f ◦ S.

The calculation

(f 
 g)(ab) = mA ◦ (f ⊗ g) ◦∆B(ab)
= f(a(1)b(1))g(a(2)b(2)) = f(a(1))f(b(1))g(a(2))g(b(2))
= f(a(1))g(a(2))f(b(1))g(b(2)) = (f 
 g)(a)(f 
 g)(b)

shows that the convolution product f 
g of two homomorphisms f, g : B → A
is again a homomorphism. It also gives an indication why non-commutative
bialgebras or Hopf algebras do not give rise to a similar functor on the category
of non-commutative algebras, since we had to commute f(b(1)) with g(a(2)).

Zhang [Zha91], Berman and Hausknecht [BH96] showed that if one replaces
the tensor product in the definition of bialgebras and Hopf algebras by the free
product, then one arrives at a class of algebras that do give rise to a functor
from the category of non-commutative algebras to the category of semigroups
or groups.

A dual group [Voi87, Voi90] (called H-algebra or cogroup in the category of
unital associative ∗-algebras in [Zha91] and [BH96], resp.) is a unital ∗-algebra
B equipped with three unital ∗-algebra homomorphisms ∆ : B → B

∐
B,

S : B → B and ε : B → C (also called comultiplication, antipode, and counit)
such that

(
∆
∐

id
)
◦∆ =

(
id
∐

∆
)
◦∆, (4.1)

(
ε
∐

id
)
◦∆ = id =

(
id
∐

ε
)
◦∆, (4.2)

mB ◦
(
S
∐

id
)
◦∆ = id = mB ◦

(
id
∐

S
)
◦∆, (4.3)

where mB : B
∐
B → B, mB(a1⊗a2⊗· · ·⊗an) = a1 ·a2 · · · · ·an, is the multi-

plication of B. Besides the formal similarity, there are many relations between
dual groups on the one side and Hopf algebras and bialgebras on the other
side, cf. [Zha91]. For example, let B be a dual group with comultiplication ∆,
and let R : B

∐
B → B ⊗ B be the unique unital ∗-algebra homomorphism

with
RB,B ◦ i1(b) = b⊗ 1, RB,B ◦ i2(b) = 1⊗ b,
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for all b ∈ B. Here i1, i2 : B → B
∐
B denote the canonical inclusions of B

into the first and the second factor of the free product B
∐
B. Then B is a

bialgebra with the comultiplication ∆ = RB,B ◦∆, see [Zha91, Theorem 4.2],
but in general it is not a Hopf algebra.

We will not really work with dual groups, but the following weaker notion.
A dual semigroup is a unital ∗-algebra B equipped with two unital ∗-algebra
homomorphisms ∆ : B → B

∐
B and ε : B → C such that Equations (4.1) and

(4.2) are satisfied. The antipode is not used in the proof of [Zha91, Theorem
4.2], and therefore we also get an involutive bialgebra (B,∆, ε) for every dual
semigroup (B,∆, ε).

Note that we can always write a dual semigroup B as a direct sum B =
C1⊕B0, where B0 = ker ε is even a ∗-ideal. Therefore it is in the range of the
unitization functor and the boolean, monotone, and anti-monotone product
can be defined for unital linear functionals on B, cf. Exercise 3.39.

The comultiplication of a dual semigroup can also be used to define a
convolution product. The convolution j1 
 j2 of two unital ∗-algebra homo-
morphisms j1, j2 : B → A is defined as

j1 
 j2 = mA ◦
(
j1
∐

j2

)
◦∆.

As the composition of the three unital ∗-algebra homomorphisms ∆ : B →
B
∐
B, j1

∐
j2 : B

∐
B → A

∐
A, and mA : A

∐
A → A, this is obviously

again a unital ∗-algebra homomorphism. Note that this convolution can not
be defined for arbitrary linear maps on B with values in some algebra, as for
bialgebras, but only for unital ∗-algebra homomorphisms.

4.2 Definition of Lévy Processes on Dual Groups

Definition 4.1. Let j1 : B1 → (A, Φ), . . . , jn : Bn → (A, Φ) be quantum
random variables over the same quantum probability space (A, Φ) and denote
their marginal distributions by ϕi = Φ ◦ ji, i = 1, . . . , n. The quantum ran-
dom variables (j1, . . . , jn) are called tensor independent (respectively boolean
independent, monotonically independent, anti-monotonically independent or
free), if the state Φ ◦mA ◦ (j1

∐
· · ·

∐
jn) on the free product

∐n
i=1 Bi is equal

to the tensor product (boolean, monotone, anti-monotone, or free product, re-
spectively) of ϕ1, . . . , ϕn.

Note that tensor, boolean, and free independence do not depend on
the order, but monotone and anti-monotone independence do. An n-tuple
(j1, . . . , jn) of quantum random variables is monotonically independent, if
and only if (jn, . . . , j1) is anti-monotonically independent.

We are now ready to define tensor, boolean, monotone, anti-monotone,
and free Lévy processes on dual semigroups.

Definition 4.2. [Sch95b] Let (B,∆, ε) be a dual semigroup. A quantum sto-
chastic process {jst}0≤s≤t≤T on B over some quantum probability space (A, Φ)
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is called a tensor (resp. boolean, monotone, anti-monotone, or free) Lévy
process on the dual semigroup B, if the following four conditions are satisfied.

1. (Increment property) We have

jrs 
 jst = jrt for all 0 ≤ r ≤ s ≤ t ≤ T,

jtt = ε1A for all 0 ≤ t ≤ T.

2. (Independence of increments) The family {jst}0≤s≤t≤T is tensor inde-
pendent (resp. boolean, monotonically, anti-monotonically independent, or
free) w.r.t. Φ, i.e. the n-tuple (js1t2 , . . . , jsntn) is tensor independent (resp.
boolean, monotonically, anti-monotonically independent, or free) for all
n ∈ N and all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn ≤ T .

3. (Stationarity of increments) The distribution ϕst = Φ ◦ jst of jst depends
only on the difference t− s.

4. (Weak continuity) The quantum random variables jst converge to jss in
distribution for t↘ s.

Remark 4.3. The independence property depends on the products and there-
fore for boolean, monotone and anti-monotone Lévy processes on the choice
of a decomposition B = C1⊕ B0. In order to show that the convolutions de-
fined by (ϕ1 ( ϕ2) ◦ ∆, (ϕ1 ( ϕ2) ◦ ∆, and (ϕ1 ) ϕ2) ◦ ∆ are associative and
that the counit ε acts as unit element w.r.t. these convolutions, one has to
use the universal property [BGS99, Condition (P4)], which in our setting is
only satisfied for morphisms that respect the decomposition. Therefore we are
forced to choose the decomposition given by B0 = ker ε.

The marginal distributions ϕt−s := ϕst = Φ ◦ jst form again a convolution
semigroup {ϕt}t∈R+ , with respect to the tensor (boolean, monotone, anti-
monotone, or free respectively) convolution defined by (ϕ1⊗̃ϕ2) ◦ ∆ ((ϕ1 (
ϕ2) ◦ ∆, (ϕ1 ( ϕ2) ◦ ∆, (ϕ1 ) ϕ2) ◦ ∆, or (ϕ1 ∗ ϕ2) ◦ ∆, respectively). It has
been shown that the generator ψ : B → C,

ψ(b) = lim
t↘0

1
t

(
ϕt(b)− ε(b)

)

is well-defined for all b ∈ B and uniquely characterizes the semigroup
{ϕt}t∈R+ , cf. [Sch95b, BGS99, Fra01].

Denote by S be the flip map S : B
∐
B → B

∐
B, S = mB

∐
B ◦

(i2
∐
i1), where i1, i2 : B → B

∐
B are the inclusions of B into the first

and the second factor of the free product B
∐
B. The flip map S acts on

i1(a1)i2(b1) · · · i2(bn) ∈ B
∐
B with a1, . . . , an, b1, . . . , bn ∈ B as

S
(
i1(a1)i2(b1) · · · i2(bn)

)
= i2(a1)i1(b1) · · · i1(bn).

If j1 : B → A1 and j2 : B → A2 are two unital ∗-algebra homomorphisms,
then we have (j2

∐
j1)◦S = γA1,A2◦(j1

∐
j2). Like for bialgebras, the opposite

comultiplication ∆op = S ◦∆ of a dual semigroup (B,∆, ε) defines a new dual
semigroup (B,∆op, ε).
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Lemma 4.4. Let {jst : B → (A, Φ)}0≤s≤t≤T be a quantum stochastic process
on a dual semigroup (B,∆, ε) and define its time-reversed process {jopst }0≤s≤t≤T
by

jopst = jT−t,T−s

for 0 ≤ s ≤ t ≤ T .

(i) The process {jst}0≤s≤t≤T is a tensor (boolean, free, respectively) Lévy
process on the dual semigroup (B,∆, ε) if and only if the time-reversed
process {jopst }0≤s≤t≤T is a tensor (boolean, free, respectively) Lévy process
on the dual semigroup (B,∆op, ε).

(ii)The process {jst}0≤s≤t≤T is a monotone Lévy process on the dual semi-
group (B,∆, ε) if and only if the time-reversed process {jopst }0≤s≤t≤T is an
anti-monotone Lévy process on the dual semigroup (B,∆op, ε).

Proof. The equivalence of the stationarity and continuity property for the
quantum stochastic processes {jst}0≤s≤t≤T and {jopst }0≤s≤t≤T is clear.

The increment property for {jst}0≤s≤t≤T with respect to ∆ is equivalent
to the increment property of {jopst }0≤s≤t≤T with respect to ∆op, since

mA ◦
(
jopst

∐
joptu

)
◦∆op = mA ◦

(
jT−t,T−s

∐
jT−u,T−t

)
◦ S ◦∆

= mA ◦ γA,A ◦
(
jT−u,T−t

∐
jT−t,T−s

)
◦∆

= mA ◦
(
jT−u,T−t

∐
jT−t,T−s

)
◦∆

for all 0 ≤ s ≤ t ≤ u ≤ T .
If {jst}0≤s≤t≤T has monotonically independent increments, i.e. if the n-

tuples (js1t2 , . . . , jsntn) are monotonically independent for all n ∈ N and
all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn, then the n-tuples (jsntn , . . . , js1t1) =
(jopT−tn,T−sn

, . . . , jopT−t1,T−s1) are anti-monotonically independent and there-
fore {jopst }0≤s≤t≤T has anti-monotonically independent increments, and vice
versa.

Since tensor and boolean independence and freeness do not depend on
the order, {jst}0≤s≤t≤T has tensor (boolean, free, respectively) independent
increments, if and only {jopst }0≤s≤t≤T has tensor (boolean, free, respectively)
independent increments. ��

Before we study boolean, monotone, and anti-monotone Lévy processes in
more detail, we will show how the theory of tensor Lévy processes on dual
semigroups reduces to the theory of Lévy processes on involutive bialgebras,
see also [Sch95b]. If quantum random variables j1, . . . , jn are independent in
the sense of Condition 2 in Definition 1.2, then they are also tensor inde-
pendent in the sense of Definition 4.1. Therefore every Lévy process on the
bialgebra (B,∆, ε) associated to a dual semigroup (B,∆, ε) is automatically
also a tensor Lévy process on the dual semigroup (B,∆, ε). To verify this, it
is sufficient to note that the increment property in Definition 1.2 with respect
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to ∆ and the commutativity of the increments imply the increment property
in Definition 4.2 with respect to ∆.

But tensor independence in general does not imply independence in the
sense of Condition 2 in Definition 1.2, because the commutation relations are
not necessarily satisfied. Therefore, in general, a tensor Lévy process on a
dual semigroup (B,∆, ε) will not be a Lévy process on the involutive bial-
gebra (B,∆, ε). But we can still associate an equivalent Lévy process on the
involutive bialgebra (B,∆, ε) to it. To do this, note that the convolutions of
two unital functionals ϕ1, ϕ2 : B → C with respect to the dual semigroup
structure and the tensor product and with respect to the bialgebra structure
coincide, i.e.

(ϕ1⊗̃ϕ2) ◦∆ = (ϕ1 ⊗ ϕ2) ◦∆.
for all unital functionals ϕ1, ϕ2 : B → C. Therefore the semigroup of marginal
distributions of a tensor Lévy process on the dual semigroup (B,∆, ε) is also a
convolution semigroup of states on the involutive bialgebra (B,∆, ε). It follows
that there exists a unique (up to equivalence) Lévy process on the involutive
bialgebra (B,∆, ε) that has this semigroup as marginal distributions. It is easy
to check that this process is equivalent to the given tensor Lévy process on the
dual semigroup (B,∆, ε). We summarize our result in the following theorem.

Theorem 4.5. Let (B,∆, ε) be a dual semigroup, and (B,∆, ε) with ∆ =
RB,B ◦∆ the associated involutive bialgebra. The tensor Lévy processes on the
dual semigroup (B,∆, ε) are in one-to-one correspondence (up to equivalence)
with the Lévy processes on the involutive bialgebra (B,∆, ε).

Furthermore, every Lévy process on the involutive bialgebra (B,∆, ε) is
also a tensor Lévy process on the dual semigroup (B,∆, ε).

4.3 Reduction of Boolean, Monotone, and Anti-Monotone Lévy
Processes to Lévy Processes on Involutive Bialgebras

In this subsection we will construct three involutive bialgebras for every
dual semigroup (B,∆, ε) and establish a one-to-one correspondence between
boolean, monotone, and anti-monotone Lévy processes on the dual semigroup
(B,∆, ε) and a certain class of Lévy processes on one of those involutive bial-
gebras.

We start with some general remarks.
Let (C,�) be a tensor category. Then we call an object D in C equipped

with morphisms
ε : D → E, ∆ : D → D�D

a dual semigroup in (C,�), if the following diagrams commute.
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D
∆∆

D�D
idD�∆

D�D
∆�idD

D�(D�D)
αD,D,D

(D�D)�D

E�D

λD

D�D
ε�idD idD�ε

D�E

ρDD

∆

id

D

Proposition 4.6. Let D be a dual semigroup in a tensor category and let
F : C → Alg be a cotensor functor with values in the category of unital algebras
(equipped with the usual tensor product). Then F (D) is a bialgebra with the
counit F0 ◦ F (ε) and the coproduct F2(D,D) ◦ F (∆).

Proof. We only prove the right half of the counit property. Applying F to
λD ◦ (ε�idD) ◦ ∆ = idD, we get F (λD) ◦ F (ε�idD) ◦ F∆ = idF (D). Using
the naturality of F2 and Diagram (3.3), we can extend this to the following
commutative diagram,

F (D)⊗ F (D)
idF (D)⊗F (ε)

F (D)⊗ F (E)

idF (D)⊗F0

F (D�D)

F2(D,D)

F (idD�ε)
F (D�E)

F (ρD)

F2(D,E)

F (D)

F (∆)

idF (D)

F (D) F (D)⊗ C
∼=

which proves the right counit property of F (D). The proof of the left counit
property is of course done by taking the mirror image of this diagram and
replacing ρ by λ. The proof of the coassociativity requires a bigger diagram
which makes use of (3.2). We leave it as an exercise for ambitious students. ��

Assume now that we have a family (Dt)t≥0 of objects in C equipped with
morphisms ε : D0 → E and δst : Ds+t →: Ds�Dt for s, t ≥ 0 such that the
following diagrams commute.

Ds+t+u
δs,t+uδs+t,u

Ds�Dt+u
id�δtu

Ds+t�Du
δst�id

D�(D�D)
αDs,Dt,Du

(Ds�Dt)�Du
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D0�Dt

ε�id

Dt

id

δ0t δt0 Dt�D0

id�ε

E�Dt
λDt

Dt Dt�EρDt

In the application we have in mind the objects Dt will be pairs consisting of
a fixed dual semigroup B and a state ϕt on B that belongs to a convolution
semigroup (ϕt)t≥0 on B. The morphisms δst and ε will be the coproduct and
the counit of B.

If there exists a cotensor functor F : C → AlgProb, F (Dt) = (At, ϕt) such
that the algebras Alg

(
F (Dt)

)
= At and the morphisms F2(Ds,Dt) ◦ F (δst)

are do not depend on s and t, then A = Alg
(
F (Dt)

)
is again a bialgebra

with coproduct ∆̃ = F2(Ds,Dt) ◦ F (δst) and the counit ε̃ = F0 ◦ F (ε), as in
Proposition 4.6.

Since morphisms in AlgProb leave the states invariant, we have ϕs ⊗ ϕt ◦
∆̃ = ϕs+t and ϕ0 = ε̃, i.e. (ϕt)t≥0 is a convolution semigroup on A (up to the
continuity property).

Construction of a Lévy Process on an Involutive Bialgebra

After the category theoretical considerations of the previous subsection we
shall now explicitely construct one-to-one correspondences between boolean,
monotone, and anti-monotone Lévy processes on dual groups and certain
classes of Lévy processes on involutive bialgebras.

Let M = {1, p} be the unital semigroup with two elements and the mul-
tiplication p2 = 1p = p1 = p, 12 = 1. Its ‘group algebra’ CM = span {1, p}
is an involutive bialgebra with comultiplication ∆(1) = 1⊗ 1, ∆(p) = p⊗ p,
counit ε(1) = ε(p) = 1, and involution 1∗ = 1, p∗ = p. The involutive bial-
gebra CM was already used by Lenczweski [Len98, Len01] to give a tensor
product construction for a large family of products of quantum probability
spaces including the boolean and the free product and to define and study
the additive convolutions associated to these products. As a unital ∗-algebra
it is also used in Skeide’s approach to boolean calculus, cf. [Ske01], where
it is introduced as the unitization of C. It also plays an important role in
[Sch00, FS00].

Let B be a unital ∗-algebra, then we define its p-extension B̃ as the free
product B̃ = B

∐
CM . Due to the identification of the units of B and CM , any

element of B̃ can be written as sums of products of the form pαb1pb2p · · · pbnpω
with n ∈ N, b1, . . . , bn ∈ B and α, ω = 0, 1. This representation can be made
unique, if we choose a decomposition of B into a direct sum of vector spaces
B = C1⊕V0 and require b1, . . . , bn ∈ V0. We define the p-extension ϕ̃ : B̃ → C

of a unital functional ϕ : B → C by
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ϕ̃(pαb1pb2p · · · pbnpω) = ϕ(b1)ϕ(b2) · · ·ϕ(bn) (4.4)

and ϕ̃(p) = 1. The p-extension does not depend on the decomposition B =
C1⊕V0, since Equation (4.4) actually holds not only for b1, . . . , bn ∈ V0, but
also for b1, . . . , bn ∈ B.

If B1, . . . ,Bn are unital ∗-algebras that can be written as direct sums Bi =
C1 ⊕ B0

i of ∗-algebras, then we can define unital ∗-algebra homomorphisms
IB
k,B1,...,Bn

, IM
k,B1,...,Bn

, IAM
k,B1,...,Bn

: Bk → B̃1 ⊗ · · · ⊗ B̃n for k = 1, . . . , n by

IB
k,B1,...,Bn

(b) = p⊗ · · · ⊗ p︸ ︷︷ ︸⊗b⊗ p⊗ · · · ⊗ p︸ ︷︷ ︸,

k − 1 times n− k times
IM
k,B1,...,Bn

(b) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸⊗b⊗ p⊗ · · · ⊗ p︸ ︷︷ ︸,

k − 1 times n− k times
IAM
k,B1,...,Bn

(b) = p⊗ · · · ⊗ p︸ ︷︷ ︸⊗b⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸,

k − 1 times n− k times

for b ∈ B0
k.

Let n ∈ N, 1 ≤ k ≤ n, and denote the canonical inclusions of Bk into the
kth factor of the free product

∐n
j=1 Bj by ik. Then, by the universal property,

there exist unique unital ∗-algebra homomorphisms R•
B1,...,Bn

:
∐n
k=1 Bk →

⊗nk=1B̃k such that
R•

B1,...,Bn
◦ ik = I•k,B1,...,Bn

,

for • ∈ {B,M,AM}.

Proposition 4.7. Let (B,∆, ε) be a dual semigroup. Then we have the follow-
ing three involutive bialgebras (B̃,∆B, ε̃), (B̃,∆M, ε̃), and (B̃,∆AM, ε̃), where
the comultiplications are defined by

∆B = RB
B,B ◦∆,

∆M = RM
B,B ◦∆,

∆AM = RAM
B,B ◦∆,

on B and by
∆B(p) = ∆M(p) = ∆AM(p) = p⊗ p

on CM .

Remark 4.8. This is actually a direct consequence of Proposition 4.6. Below
we give an explicit proof.

Proof. We will prove that (B̃,∆B, ε̃) is an involutive bialgebra, the proofs for
(B̃,∆M, ε̃) and (B̃,∆AM, ε̃) are similar.

It is clear that ∆B : B̃ → B̃ ⊗ B̃ and ε̃ : B̃ → C are unital ∗-algebra
homomorphisms, so we only have to check the coassociativity and the counit
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property. That they are satisfied for p is also immediately clear. The proof for
elements of B is similar to the proof of [Zha91, Theorem 4.2]. We get

(
∆B ⊗ idB̃

)
◦∆B

∣∣
B = RB

B,B,B ◦
(
∆
∐

idB
)
◦∆

= RB
B,B,B ◦

(
idB

∐
∆
)
◦∆

=
(
idB̃ ⊗∆B

)
◦∆B

∣∣
B

and

(ε̃⊗ idB̃) ◦∆B

∣∣
B = (ε̃⊗ idB̃) ◦RB

B,B ◦∆

=
(
ε
∐

idB
)
◦∆ = idB

=
(
idB

∐
ε
)
◦∆

= (idB̃ ⊗ ε̃) ◦RB
B,B ◦∆

= (idB̃ ⊗ ε̃) ◦∆B

∣∣
B .

��

These three involutive bialgebras are important for us, because the boolean
convolution (monotone convolution, anti-monotone convolution, respectively)
of unital functionals on a dual semigroup (B,∆, ε) becomes the convolution
with respect to the comultiplication ∆B (∆M, ∆AM, respectively) of their
p-extensions on B̃.

Proposition 4.9. Let (B,∆, ε) be a dual semigroup and ϕ1, ϕ2 : B → C two
unital functionals on B. Then we have

˜(ϕ1 ( ϕ2) ◦∆ = (ϕ̃1 ⊗ ϕ̃2) ◦∆B,

˜(ϕ1 ( ϕ2) ◦∆ = (ϕ̃1 ⊗ ϕ̃2) ◦∆M,

˜(ϕ1 ) ϕ2) ◦∆ = (ϕ̃1 ⊗ ϕ̃2) ◦∆AM.

Proof. Let b ∈ B0. As an element of B
∐
B, ∆(b) can be written in the form

∆(b) =
∑
ε∈A

bε ∈
⊕

ε∈A
Bε. Only finitely many terms of this sum are non-

zero. The individual summands are tensor products bε = bε1 ⊗ · · · ⊗ bε|ε| and
due to the counit property we have b∅ = 0. Therefore we have

(ϕ1 ( ϕ2) ◦∆(b) =
∑

ε∈A

ε �=∅

|ε|∏

k=1

ϕεk(bεk).

For the right-hand-side, we get the same expression on B,
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(ϕ̃1 ⊗ ϕ̃2) ◦∆B(b) = (ϕ̃1 ⊗ ϕ̃2) ◦RB
B,B ◦∆(b)

= (ϕ̃1 ⊗ ϕ̃2) ◦RB
B,B

∑

ε∈A

bε1 ⊗ · · · ⊗ bε|ε|

=
∑

ε∈A

ε1=1

ϕ̃1(bε1pb
ε
3 · · · )ϕ̃2(pbε2p · · · )

+
∑

ε∈A

ε1=2

ϕ̃1(pbε2p · · · )ϕ̃2(bε1pb
ε
3 · · · )

=
∑

ε∈A

ε �=∅

|ε|∏

k=1

ϕεk(bεk).

To conclude, observe

∆B(pαb1p · · · pbnpω) = (pα ⊗ pα)∆B(b1)(p⊗ p) · · · (p⊗ p)∆B(bn)(pω ⊗ pω)

for all b1, . . . , bn ∈ B, α, ω ∈ {0, 1}, and therefore

(ϕ̃1 ⊗ ϕ̃2) ◦∆B = ˜(ϕ̃1 ⊗ ϕ̃2) ◦∆B

∣∣
B = ˜(ϕ1 ( ϕ2) ◦∆.

The proof for the monotone and anti-monotone product is similar. ��

We can now state our first main result.

Theorem 4.10. Let (B,∆, ε) be a dual semigroup. We have a one-to-one cor-
respondence between boolean (monotone, anti-monotone, respectively) Lévy
processes on the dual semigroup (B,∆, ε) and Lévy processes on the invo-
lutive bialgebra (B̃,∆B, ε̃) ((B̃,∆M, ε̃), (B̃,∆AM, ε̃), respectively), whose mar-
ginal distributions satisfy

ϕt(pαb1p · · · pbnpω) = ϕt(b1) · · ·ϕt(bn) (4.5)

for all t ≥ 0, b1, . . . , bn ∈ B, α, ω ∈ {0, 1}.

Proof. Condition (4.5) says that the functionals ϕt on B̃ are equal to the
p-extension of their restriction to B.

Let {jst}0≤s≤t≤T be a boolean (monotone, anti-monotone, respectively)
Lévy process on the dual semigroup (B,∆, ε) with convolution semigroup
ϕt−s = Φ ◦ jst. Then, by Proposition 4.9, their p-extensions {ϕ̃t}t≥0 form
a convolution semigroup on the involutive bialgebra (B̃,∆B, ε̃) ((B̃,∆M, ε̃),
(B̃,∆AM, ε̃), respectively). Thus there exists a unique (up to equivalence)
Lévy process {̃st}0≤s≤t≤T on the involutive bialgebra (B̃,∆B, ε̃) ((B̃,∆M, ε̃),
(B̃,∆AM, ε̃), respectively) with these marginal distribution.

Conversely, let {jst}0≤s≤t≤T be a Lévy process on the involutive bialgebra
(B̃,∆B, ε̃) ((B̃,∆M, ε̃), (B̃,∆AM, ε̃), respectively) with marginal distributions
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{ϕt}t≥0 and suppose that the functionals ϕt satisfy Equation (4.5). Then,
by Proposition 4.9, their restrictions to B form a convolution semigroup on
the dual semigroup (B,∆, ε) with respect to the boolean (monotone, anti-
monotone, respectively) convolution and therefore there exists a unique (up
to equivalence) boolean (monotone, anti-monotone, respectively) Lévy process
on the dual semigroup (B,∆, ε) that has these marginal distributions.

The correspondence is one-to-one, because the p-extension establishes a
bijection between unital functionals on B and unital functionals on B̃ that
satisfy Condition (4.5). Furthermore, a unital functional on B is positive if
and only if its p-extension is positive on B̃. ��

We will now reformulate Equation (4.5) in terms of the generator of the
process. Let n ≥ 1, b1, . . . , bn ∈ B0 = ker ε, α, ω ∈ {0, 1}, then we have

ψ(pαb1p · · · pbnpω) = lim
t↘0

1
t

(
ϕt(pαb1p · · · pbnpω)− ε̃(pαb1p · · · pbnpω)

)

= lim
t↘0

1
t

(
ϕt(b1) · · ·ϕt(bn)− ε(b1) · · · ε(bn)

)

=
n∑

k=1

ε(b1) · · · ε(bk−1)ψ(bk)ε(bk+1) · · · ε(bn)

=
{
ψ(b1) if n = 1,
0 if n > 1.

Conversely, let {ϕt : B̃ → C}t≥0 be a convolution semigroup on (B̃,∆•, ε̃),
• ∈ {B,M,AM}, whose generator ψ : B̃ → C satisfies ψ(1) = ψ(p) = 0 and

ψ(pαb1p · · · pbnpω) =
{
ψ(b1) if n = 1,
0 if n > 1, (4.6)

for all n ≥ 1, b1, . . . , bn ∈ B0 = ker ε, α, ω ∈ {0, 1}. For b1, . . . , bn ∈ B0, ∆•(bi)
is of the form ∆•(bi) = bi ⊗ 1 + 1 ⊗ bi +

∑ni

k=1 b
(1)
i,k ⊗ b

(2)
i,k , with b

(1)
i,k , b

(2)
i,k ∈

ker ε̃. By the fundamental theorem of coalgebras [Swe69] there exists a finite-
dimensional subcoalgebra C ⊆ B̃ of B̃ that contains all possible products of
1, bi, b

(1)
i,ki

, b
(2)
i,ki

, i = 1, . . . , n, ki = 1, . . . , ni.
Then we have

ϕs+t|C (pαb1p · · · pbnpω)
= (ϕs|C ⊗ ϕt|C)

(
(pα⊗ pα)∆•(b1)(p⊗ p) · · · (p⊗ p)∆•(bn)(pω ⊗ pω)

)

and, using (4.6), we find the differential equation
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ϕ̇s|C (pαb1p · · · pbnpω)

=
n∑

i=1

ϕs|C (pαb1p · · · bi−1p1pbi+1p · · · bnpω)ψ(bi)

+
n∑

i=1

ni∑

ki=1

ϕ|C (pαb1p · · · bi−1pb
(1)
i,ki

pbi+1p · · · bnpω)ψ(b(2)i,ki
) (4.7)

for {ϕt|C}t≥0. This a linear inhomogeneous differential equation for a function
with values in the finite-dimensional complex vector space C∗ and it has a
unique global solution for every initial value ϕ0|C . Since we have

ϕ̇s(bi) = (ϕs ⊗ ψ)

(
bi ⊗ 1 + 1⊗ bi +

ni∑

k=1

b
(1)
i,k ⊗ b

(2)
i,k

)

= ψ(bi) +
ni∑

ki=1

ϕs(b
(1)
i,ki

)ψ(b(2)i,ki
),

we see that
{

(̃ϕt|B)
∣∣∣
C

}

t≥0
satisfies the differential equation (4.7). The initial

values also agree,

ϕ0(pαb1p · · · pbnpω) = ε̃(pαb1p · · · pbnpω) = ε(b1) · · · ε(bn) = ϕ0(b1) · · ·ϕ0(bn)

and therefore it follows that {ϕt}t≥0 satisfies Condition (4.5).
We have shown the following.

Lemma 4.11. Let {ϕt : B̃ → C}t≥0 be a convolution semigroup of unital
functionals on the involutive bialgebra (B̃,∆•, ε̃), • ∈ {B,M,AM}, and let
ψ : B̃ → C be its infinitesimal generator.

Then the functionals of the convolution semigroup {ϕt}t≥0 satisfy (4.5)
for all t ≥ 0, if and only if its generator ψ satisfies (4.6).

For every linear functional ψ : B → C on B there exists only one unique
functional ψ̂ : B̃ → C with ψ̂|B = ψ that satisfies Condition (4.6). And since
this functional ψ̂ is hermitian and conditionally positive, if and only if ψ is
hermitian and conditionally positive, we have shown the following.

Corollary 4.12. We have a one-to-one correspondence between boolean Lévy
processes, monotone Lévy processes, and anti-monotone Lévy processes on a
dual semigroup (B,∆, ε) and generators, i.e. hermitian, conditionally positive,
linear functionals ψ : B → C on B with ψ(1) = 0.

Another corollary of Theorem 4.10 is the Schoenberg correspondence for
the boolean, monotone, and anti-monotone convolution.
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Corollary 4.13. (Schoenberg correspondence) Let {ϕt}t≥0 be a convo-
lution semigroup of unital functionals with respect to the tensor, boolean,
monotone, or anti-monotone convolution on a dual semigroup (B,∆, ε) and
let ψ : B → C be defined by

ψ(b) = lim
t↘0

1
t

(
ϕt(b)− ε(b)

)

for b ∈ B. Then the following statements are equivalent.

(i) ϕt is positive for all t ≥ 0.
(ii)ψ is hermitian and conditionally positive.

We have now obtained a classification of boolean, monotone, and anti-
monotone Lévy processes on a given dual semigroup in terms of a class of Lévy
processes on a certain involutive bialgebra and in terms of their generators.
In the next subsection we will see how to construct realizations.

Construction of Boolean, Monotone,
and Anti-Monotone Lévy Processes

The following theorem gives us a way to construct realizations of boolean,
monotone, and anti-monotone Lévy processes.

Theorem 4.14. Let {kB
st}0≤s≤t≤T ({kM

st}0≤s≤t≤T ,{kAM
st }0≤s≤t≤T ,respectively)

be a boolean (monotone, anti-monotone, respectively) Lévy process with gen-
erator ψ on some dual semigroup (B,∆, ε). Denote the unique extension of
ψ : B → C determined by Equation (4.6) by ψ̂ : B̃ → C.

If {̃Bst}0≤s≤t≤T ({̃Mst}0≤s≤t≤T , {̃AM
st }0≤s≤t≤T , respectively) is a Lévy

process on the involutive bialgebra (B̃,∆B, ε̃) ((B̃,∆M, ε̃), (B̃,∆AM, ε̃), re-
spectively), then the quantum stochastic process {jBst}0≤s≤t≤T ({jMst}0≤s≤t≤T ,
{jAM
st }0≤s≤t≤T , respectively) on B defined by

jBst(1) = id, jBst(b) = ̃B0s(p)̃
B
st(b)̃

B
tT (p) for b ∈ B0 = ker ε,

jMst (1) = id, jBst(b) = ̃Mst(b)̃
M
tT (p) for b ∈ B0 = ker ε,

jAM
st (1) = id, jAM

st (b) = ̃AM
0s (p)̃AM

st (b) for b ∈ B0 = ker ε,

for 0 ≤ s ≤ t ≤ T , is a boolean (monotone, anti-monotone, respectively)
Lévy process on the dual semigroup (B,∆, ε). Furthermore, if {̃Bst}0≤s≤t≤T
({̃Mst}0≤s≤t≤T , {̃AM

st }0≤s≤t≤T ,respectively) has generator ψ̂,then {jBst}0≤s≤t≤T
({jMst}0≤s≤t≤T , {jAM

st }0≤s≤t≤T , respectively) is equivalent to {kB
st}0≤s≤t≤T

({kM
st}0≤s≤t≤T , {kAM

st }0≤s≤t≤T , respectively).

Remark 4.15. Every Lévy process on an involutive bialgebra can be realized
on boson Fock space as solution of quantum stochastic differential equations,
see Theorem 1.15 or [Sch93, Theorem 2.5.3]. Therefore Theorem 4.14 implies
that boolean, monotone, and anti-monotone Lévy processes can also always
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be realized on a boson Fock space. We will refer to the realizations obtained
in this way as standard Fock realization.

It is natural to conjecture that monotone and anti-monotone Lévy processes
can also be realized on their respective Fock spaces (see Subsection 4.3) as
solutions of monotone or anti-monotone quantum stochastic differential equa-
tions, like this has been proved for the tensor case in [Sch93, Theorem 2.5.3]
and discussed for free and boolean case in [Sch95b, BG01]. We will show in
Subsection 4.3 that this is really possible.

Proof. {̃•st}0≤s≤t≤T is a Lévy process on the involutive bialgebra (B̃,∆B, ε̃),
• ∈ {B,M,AM}, and therefore, by the independence property of its incre-
ments, we have [

̃•st(b1), ̃
•
s′t′(b2)

]
= 0

for all 0 ≤ s ≤ t ≤ T , 0 ≤ s′ ≤ t′ ≤ T with ]s, t[∩]s′, t′[= ∅ and all
b1, b2 ∈ B̃. Using this property one immediately sees that the j•st are unital
∗-algebra homomorphisms. Using again the independence of the increments
of {̃•st}0≤s≤t≤T and the fact that its marginal distributions ϕ•

st = Φ ◦ ̃•0s,
0 ≤ s ≤ t ≤ T , satisfy Equation (4.5), we get

Φ
(
jBst(b)

)
= Φ

(
̃B0s(p)̃

B
st(b)̃

B
tT (p)

)
= Φ

(
̃B0s(p)

)
Φ
(
̃Bst(b)

)
Φ
(
̃BtT (p)

)
= ϕB

st(b)

and similarly

Φ
(
jMst (b)

)
= ϕM

st(b),

Φ
(
jAM
st (b)

)
= ϕAM

st (b),

for all b ∈ B0. Thus the marginal distributions of {j•st}0≤s≤t≤T are simply
the restrictions of the marginal distributions of {̃•st}0≤s≤t≤T . This proves the
stationarity and the weak continuity of {j•st}0≤s≤t≤T , it only remains to show
the increment property and the independence of the increments. We check
these for the boolean case, the other two cases are similar. Let b ∈ B0 with
∆(b) =

∑
ε∈A

bε, where bε = bε1 ⊗ · · · bεε|ε| ∈ Bε = (B0)⊗|ε|, then we have

∆B(b) =
∑

ε∈A

ε1=1

bε1pb
ε
3 · · · ⊗ pbε2p · · ·+

∑

ε∈A

ε1=2

pbε2p · · · ⊗ bε1pb
ε
3 · · · (4.8)

We set jBst = j1, jBtu = j2, and get
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mA ◦
(
jBst

∐
jBtu

)
◦∆(b)

=
∑

ε∈A

ε �=∅

jε1(b
ε
1)jε2(b

ε
2) · · · jε|ε|(bε|ε|)

=
∑

ε∈A

ε1=1

̃B0s(p)̃
B
st(b

ε
1)̃

B
tT (p)̃B0t(p)̃

B
tu(b

ε
2)̃

B
uT (p) · · · ̃B0s(p)̃Bst(bε|ε|)̃BtT (p)

+
∑

ε∈A

ε1=2

̃B0t(p)̃
B
tu(b

ε
1)̃

B
uT (p)̃B0s(p)̃

B
st(b

ε
2)̃

B
tT (p) · · · ̃B0t(p)̃Btu(bε|ε|)̃BuT (p)

= ̃B0s(p)




∑

ε∈A

ε1=1

̃Bst(b
ε
1)̃

B
st(p)̃

B
st(b

ε
3) · · · ̃Btu(p)̃Btu(bε2)̃Btu(p) · · ·



 ̃BuT (p)

+̃B0s(p)




∑

ε∈A

ε1=2

̃Bst(p)̃
B
st(b

ε
2)̃

B
st(p) · · · ̃Btu(bε1)̃Btu(p)̃Btu(bε3) · · ·



 ̃BuT (p)

= ̃B0s(p)
(
mA ◦ (̃Bst ⊗ ̃Btu) ◦∆B(b)

)
̃BuT (p)

= ̃B0s(p)̃
B
su(b)̃

B
uT (p) = jBsu(b).

For the boolean independence of the increments of {jBst}0≤s≤t≤T , we have to
check

Φ ◦mA ◦
(
jBs1t1

∐
· · ·

∐
jBsntn

)
= ϕB

s1t1 |B ( · · · ( ϕ
B
sntn |B

for all n ∈ N and 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn ≤ T . Let, e.g.,
n = 2, and take an element of B

∐
B of the form i1(a1)i2(b1) · · · in(bn), with

a1, . . . , an, b1, . . . , bn ∈ B0. Then we have

Φ ◦mA ◦
(
jBs1t1

∐
jBs2t2

) (
i1(a1)i2(b1) · · · in(bn)

)

= Φ
(
̃B0s1(p)̃

B
s1t1(a1)̃Bt1T (p)̃B0s2(p)̃

B
s2t2(b1)̃

B
t2T (p) · · · ̃B0s2(p)̃

B
s2t2(bn)̃

B
t2T (p)

)

= Φ
(
̃B0s1(p)̃

B
s1t1(a1)̃Bs1t1(p) · · · ̃

B
s1t1(an)

B
s1t2(p)̃

B
s2t2(b1) · · · ̃

B
s2t2(bn)̃

B
t2T (p)

)

= ϕB
s1t1(a1pa2p · · · pan)ϕB

s2t2(pb1p · · · pbn) =
n∏

j=1

ϕB
s1t1(aj)

n∏

j=1

ϕB
s2t2(bj)

=
(
ϕB
s1t1 ( ϕ

B
s2t2

) (
i1(a1)i2(b1) · · · in(bn)

)
.

The calculations for the other cases and general n are similar. ��

For the actual construction of {̃Bst}0≤s≤t≤T ({̃Mst}0≤s≤t≤T , {̃AM
st }0≤s≤t≤T ,

respectively) via quantum stochastic calculus, we need to know the Schürmann
triple of ψ̂.

Proposition 4.16. Let B be a unital ∗-algebra, ψ : B → C a generator,
i.e. a hermitian, conditionally positive linear functional with ψ(1) = 0, and
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ψ̂ : B̃ → C the extension of ψ to B̃ given by Equation (4.6). If (ρ, η, ψ) is a
Schürmann triple of ψ, then a Schürmann triple (ρ̂, η̂, ψ̂) for ψ̂ is given by

ρ̂|B = ρ, ρ̂(p) = 0,
η̂|B = η, η̂(p) = 0,
ψ̂|B = ψ, ψ̂(p) = 0,

in particular, it can be defined on the same pre-Hilbert space as (ρ, η, ψ).

Proof. The restrictions of ρ̂ and η̂ to B have to be unitarily equivalent to ρ
and η, respectively, since ψ̂|B = ψ. We can calculate the norm of η̂(p) with
Equation (1.3), we get

ψ̂(p) = ψ̂(p2) = ε̃(p)ψ̂(p) + 〈η̂(p∗), η̂(p)〉+ ψ̂(p)ε̃(p)

and therefore ||η̂(p)||2 = −ψ̂(p) = 0. From Equation (1.2) follows

η̂(pαb1pb2p · · · pbnpω) =
{
η(b1) if n = 1, α = 0, ω ∈ {0, 1},

0 if n > 1 or α = 1.

For the representation ρ̂ we get

ρ̂(p)η(b) = η̂(pb)− η̂(p)ε(b) = 0

for all b ∈ B. ��

The Lévy processes {̃•st}0≤s≤t≤T on the involutive bialgebras (B̃,∆•, ε̃),
• ∈ {B,M,AM}, with the generator ψ̂ can now be constructed as solutions of
the quantum stochastic differential equations

̃•st(b) = ε̃(b)id +
(∫ t

s

̃•sτ ⊗ dIτ

)
∆•(b), for all b ∈ B̃,

where the integrator dI is given by

dIt(b) = dΛt(ρ̂(b)− ε̃(b)id) + dA+
t (η̂(b)) + dAt(η̂(b∗)) + ψ̂(b)dt.

The element p ∈ B̃ is group-like, i.e. ∆•(p) = p ⊗ p, and mapped to
zero by any Schürmann triple (ρ̂, η̂, ψ̂) on B̃ that is obtained by extending
a Schürmann triple (ρ, η, ψ) on B as in Proposition 4.16. Therefore we can
compute {̃•st(p)}0≤s≤t≤T without specifying • ∈ {B,M,AM} or knowing the
Schürmann triple (ρ, η, ψ).

Proposition 4.17. Let {̃•st}0≤s≤t≤T be a Lévy process on (B̃,∆•, ε̃), • ∈
{B,M,AM}, whose Schürmann triple (ρ̂, η̂, ψ̂) is of the form given in Propo-
sition 4.16. Denote by 0st the projection from L2([0, T [,D) to L2([0, s[,D) ⊕
L2([t, T [,D) ⊆ L2([0, T [,D),
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0stf(τ) =
{
f(τ) if τ �∈ [s, t[,
0 if τ ∈ [s, t[,

Then
̃•st(p) = Γ (0st) for all 0 ≤ s ≤ t ≤ T,

i.e. ̃•st(p) is equal to the second quantization of 0st for all 0 ≤ s ≤ t ≤ T and
• ∈ {B,M,AM}.

Proof. This follows immediately from the quantum stochastic differential
equation

̃•st(p) = id−
∫ t

s

̃•sτ (p)dΛτ (id).

��

Boson Fock Space Realization of Boolean, Monotone,
and Anti-Monotone Quantum Stochastic Calculus

For each of the independences treated in this chapter, we can define a Fock
space with a creation, annihilation and conservation process, and develop a
quantum stochastic calculus. For the monotone case, this was done in [Mur97,
Lu97], for the boolean calculus see, e.g., [BGDS01] and the references therein.

Since the integrator processes of these calculi have independent and sta-
tionary increments, we can use our previous results to realize them on a bo-
son Fock space. Furthermore, we can embed the corresponding Fock spaces
into a boson Fock space and thus reduce the boolean, monotone, and anti-
monotone quantum stochastic calculus to the quantum stochastic calculus on
boson Fock space defined in [HP84] (but the integrands one obtains in the
boolean or monotone case turn out to be not adapted in general). For the
anti-monotone creation and annihilation process with one degree of freedom,
this was already done in [Par99] (see also [Lie99]).

Let H be a Hilbert space. Its conjugate or dual is, as a set, equal to
H = {u|u ∈ H}. The addition and scalar multiplication are defined by

u+ v = u+ v, , zu = zu, for u, v ∈ H, z ∈ C.

Then V (H) = H ⊗H ⊕H ⊕H (algebraic tensor product and direct sum, no
completion) is an involutive complex vector space with the involution

(v ⊗ u+ x+ y)∗ = u⊗ v + y + x, for u, v, x, y ∈ H.

We will also write |u〉〈v| for u ⊗ v. Let now BH be the free unital ∗-algebra
over V (H). This algebra can be made into a dual semigroup, if we define the
comultiplication and counit by

∆v = i1(v) + i2(v),
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and ε(v) = 0 for v ∈ V (H) and extend them as unital ∗-algebra homomor-
phisms. On this dual semigroup we can define the fundamental noises for all
our independences. For the Schürmann triple we take the Hilbert space H,
the representation ρ of BH on H defined by

ρ(u) = ρ(u) = 0, ρ
(
|u〉〈v|

)
: H ' x �→ 〈v, x〉u ∈ H,

the cocycle η : BH → H with

η(u) = u, η(u) = η
(
|u〉〈v|

)
= 0,

and the generator ψ : BH → C with

ψ(1) = ψ(u) = ψ(u) = ψ
(
|u〉〈v|

)
= 0,

for all u, v ∈ H.
A realization of the tensor Lévy process {jst}0≤s≤t on the dual semigroup

(BH ,∆, ε) with this Schürmann triple on the boson Fock space Γ
(
L2(R+,H)

)

is given by

jst(u) = A+
st(u), jst(u) = Ast(u), jst(|u〉〈v|) = Λst

(
|u〉〈v|

)
,

for all 0 ≤ s ≤ t ≤ T , u, v ∈ H.

Boolean Calculus

Let H be a Hilbert space. The boolean Fock space over L2([0, T [;H) ∼=
L2([0, T ]) ⊗ H is defined as ΓB

(
L2([0, T [,H)

)
= C ⊕ L2([0, T [,H). We will

write the elements of ΓB

(
L2([0, T [,H)

)
as vectors

(
λ
f

)

with λ ∈ C and f ∈ L2([0, T [,H). The boolean creation, annihilation, and
conservation processes are defined as

AB+
st (u)

(
λ
f

)
=
(

0
λu1[s,t[

)
,

AB
st(u)

(
λ
f

)
=
(∫ t

s
〈u, f(τ)〉dτ

0

)
,

ΛB
st

(
|u〉〈v|

)(λ
f

)
=
(

0
1[s,t[(·)〈v, f(·)〉u

)
,

for λ ∈ C, f ∈ L2([0, T [,H), u, v ∈ H. These operators define a boolean Lévy
process {kB

st}0≤s≤t≤T on the dual semigroup (BH ,∆, ε) with respect to the
vacuum expectation, if we set
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kB
st(u) = AB+

st (u), kB
st(u) = AB

st(u), kB
st

(
|u〉〈v|

)
= ΛB

st

(
|u〉〈v|

)
,

for all 0 ≤ s ≤ t ≤ T , u, v ∈ H, and extend the kB
st as unital ∗-algebra

homomorphisms to BH .
On the other hand, using Theorem 4.14 and Proposition 4.16, we can

define a realization of the same Lévy process on a boson Fock space. Since the
comultiplication ∆B acts on elements of the involutive bialgebra (B̃H ,∆B, ε̃)
as

∆B(v) = v ⊗ p+ p⊗ v, for v ∈ V (H),

we have to solve the quantum stochastic differential equations

̃Bst(u) =
∫ t

s

Γ (0sτ )dA+
τ (u)−

∫ t

s

̃Bsτ (u)dΛτ (idH),

̃Bst(u) =
∫ t

s

Γ (0sτ )dAτ (u)−
∫ t

s

̃Bsτ (u)dΛτ (idH),

̃Bst
(
|u〉〈v|

)
=
∫ t

s

Γ (0sτ )dΛτ
(
|u〉〈v|

)
−
∫ t

s

̃Bsτ
(
|u〉〈v|

)
dΛτ (idH),

and set

jBst(u) = Γ (00s)̃Bst(u)Γ (0tT ),
jBst(u) = Γ (00s)̃Bst(u)Γ (0tT ),

jBst
(
|u〉〈v|

)
= Γ (00s)̃Bst

(
|u〉〈v|

)
Γ (0tT ),

These operators act on exponential vectors as

jBst(u)E(f) = u1[s,t[,

jBst(u)E(f) =
∫ t

s

〈u, f(τ)〉dτΩ,

jBst
(
|u〉〈v|

)
E(f) = 1[s,t[〈v, f(·)〉u,

for 0 ≤ s ≤ t ≤ T , f ∈ L2([0, T [), u, v ∈ H.
Since {kB

st}0≤s≤t≤T and {jBst}0≤s≤t≤T are boolean Lévy processes on the
dual semigroup (BH ,∆, ε) with the same generator, they are equivalent.

If we isometrically embed the boolean Fock space ΓB

(
L2([0, T [,H)

)
into

the boson Fock space Γ
(
L2([0, T [,H)

)
in the natural way,

θB : ΓB

(
L2([0, T [,H)

)
→ Γ

(
L2([0, T [,H)

)
, θB

(
λ
f

)
= λΩ + f,

for λ ∈ C, f ∈ L2([0, T [,H), then we have

kB
st(b) = θ∗Bj

B
st(b)θB

for all b ∈ B.
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Anti-Monotone Calculus

We will treat the anti-monotone calculus first, because it leads to simpler
quantum stochastic differential equations. The monotone calculus can then
be constructed using time-reversal, cf. Lemma 4.4.

We can construct the monotone and the anti-monotone calculus on the
same Fock space. Let

Tn = {(t1, . . . , tn)|0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T} ⊆ [0, T [n⊆ R
n,

then the monotone and anti-monotone Fock space ΓM

(
L2([0, T [,H)

)
over

L2([0, T [,H) can be defined as

ΓM

(
L2([0, T [,H)

)
= CΩ ⊕

∞⊕

n=1

L2(Tn,H⊗n),

where where H⊗n denotes the n-fold Hilbert space tensor product of H and
the measure on Tn is the restriction of the Lebesgue measure on R

n to Tn.
Since Tn ⊆ [0, T [n, we can interpret f1 ⊗ · · · ⊗ fn ∈ L2([0, T [,H)⊗n ∼=
L2([0, T [n,H⊗n) also as an element of L2(Tn,H⊗n) (by restriction).

The anti-monotone creation, annihilation, and conservation operator are
defined by

AAM+
st (u)f1 ⊗ · · · ⊗ fn(t1, . . . , tn+1)

= 1[s,t[(t1)u⊗ f1 ⊗ · · · ⊗ fn(t2, . . . , tn+1)

AAM
st (u)f1 ⊗ · · · ⊗ fn(t1, . . . , tn−1)

=
∫ min(t,t1)

s

〈u, f1(τ)〉dτf2 ⊗ · · · ⊗ fn(t1, . . . , tn−1)

ΛAM
st

(
|u〉〈v|

)
f1 ⊗ · · · ⊗ fn(t1, . . . , tn)

= 1[s,t[(t1)〈v, f1(t1)〉u⊗ f2 ⊗ · · · ⊗ fn(t2, . . . , tn),

for 0 ≤ s ≤ t ≤ T , 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1 ≤ T , u, v ∈ H.
These operators define an anti-monotone Lévy process {kAM

st }0≤s≤t≤T on
the dual semigroup B with respect to the vacuum expectation, if we set

kAM
st (u) = AAM+

st (u), kAM
st (u) = AAM

st (u), kAM
st

(
|u〉〈v|

)
= ΛAM

st

(
|u〉〈v|

)
,

for all 0 ≤ s ≤ t ≤ T , u, v ∈ H, and extend the kAM
st as unital ∗-algebra

homomorphisms to B.
We can define a realization of the same Lévy process on a boson Fock

space with Theorem 4.14. The anti-monotone annihilation operators jAM
st (u),

u ∈ H, obtained this way act on exponential vectors as

jAM
st (u)E(f) = u1[s,t[(·)⊗s E(00·f), f ∈ L2([0, T [,H),
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and the anti-monotone creation operators are given by jAM
st (u) = jAM

st (u)∗,
u ∈ H. On symmetric simple tensors f1 ⊗ · · · ⊗ fn ∈ L2([0, T [,H⊗n) they act
as

jAM
st (u)f1 ⊗ · · · ⊗ fn(t1, . . . , tn+1)

= f(t1)⊗ · · · ⊗ fk−1(tk−1)⊗ u1[s,t[(tk)⊗ fk+1(tk+1)⊗ · · · ⊗ fn(tn)

where k has to be chosen such that tk = min{t1, . . . , tn+1}.
Since {kAM

st }0≤s≤t≤T and {jAM
st }0≤s≤t≤T are boolean Lévy processes on

the dual semigroup B with the same generator, they are equivalent.
A unitary map θM : ΓM

(
L2([0, T [,H)

)
→ Γ

(
L2([0, T [,H)

)
can be defined

by extending functions on Tn to symmetric functions on [0, T [n and dividing
them by

√
n!. The adjoint θ∗M : Γ

(
L2([0, T [,H)

)
→ ΓM

(
L2([0, T [,H)

)
of θM

acts on simple tensors f1 ⊗ · · · ⊗ fn ∈ L2([0, T [,H)⊗n ∼= L2([0, T [n,H⊗n) as
restriction to Tn and multiplication by

√
n!, i.e.

θ∗Mf1 ⊗ · · · ⊗ fn(t1, . . . , tn) =
√
n!f1(t1)⊗ · · · ⊗ fn(tn),

for all f1, . . . , fn ∈ L2([0, T [,H), (t1, . . . , tn) ∈ Tn.
This isomorphism intertwines between {kAM

st }0≤s≤t≤T and {jAM
st }0≤s≤t≤T ,

we have
kAM
st (b) = θ∗Mj

AM
st (b)θM

for all 0 ≤ s ≤ t ≤ T and b ∈ BH .

Monotone Calculus

The monotone creation, annihilation, and conservation operator on the
monotone Fock space ΓM

(
L2([0, T [,H)

)
can be defined by

AM+
st (u)f1 ⊗ · · · ⊗ fn(t1, . . . , tn+1)

= f1 ⊗ · · · ⊗ fn(t1, . . . , tn)⊗ 1[s,t[(tn+1)u

AAM
st (u)f1 ⊗ · · · ⊗ fn(t1, . . . , tn−1)

=
∫ t

max(s,tn−1)

〈u, fn(τ)〉dτf1 ⊗ · · · ⊗ fn−1(t1, . . . , tn−1)

ΛAM
st

(
|u〉〈v|

)
f1 ⊗ · · · ⊗ fn(t1, . . . , tn)

= f1 ⊗ · · · ⊗ fn−1(t1, . . . , tn−1)1[s,t[(tn)〈v, fn(tn)〉u,

for 0 ≤ s ≤ t ≤ T , u, v ∈ H. These operators define a monotone Lévy
process {kM

st}0≤s≤t≤T on the dual semigroup B with respect to the vacuum
expectation, if we set

kM
st (u) = AM+

st (u), kM
st (u) = AM

st(u), kM
st

(
|u〉〈v|

)
= ΛM

st

(
|u〉〈v|

)
,

for all 0 ≤ s ≤ t ≤ T , u, v ∈ H, and extend the kM
st as unital ∗-algebra

homomorphisms to B.
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Define a time-reversal R : ΓM
(
L2([0, T [,H)

)
→ ΓM

(
L2([0, T [,H)

)
for the

monotone Fock space by RΩ = Ω and

Rf1 ⊗ · · · ⊗ fn(t1, . . . , tn) = fn(T − tn)⊗ · · · ⊗ f1(T − t1),

for (t1, . . . , tn) ∈ Tn, f, . . . , fn ∈ L2(Tn). The time-reversal R is unitary and
satisfies R2 = idΓM(L2([0,T [;H)). It intertwines between the monotone and anti-
monotone noise on the monotone Fock space, i.e. we have

kAM
st (b) = RkM

T−t,T−s(b)R

for all 0 ≤ s ≤ t ≤ T , b ∈ BH . On the boson Fock space we have to consider
RM = θMRθ

∗
M : Γ

(
L2([0, T [,H)

)
→ Γ

(
L2([0, T [,H)

)
. This map is again

unitary and satisfies also R2
M = id. It follows that the realization {jMst}0≤s≤t≤T

of {kM
st}0≤s≤t≤T on boson Fock space can be defined via

jMst (u) =
∫ t

s

dÃ+
τ (u)Γ (0τT ),

jMst (u) =
∫ t

s

dÃτ (u)Γ (0τT ),

jMst
(
|u〉〈v|

)
=
∫ t

s

dΛ̃τ
(
|u〉〈v|

)
Γ (0τT ),

where the integrals are backward quantum stochastic integrals.

Remark 4.18. Taking H = C and comparing these equations with [Sch93,
Section 4.3], one recognizes that our realization of the monotone creation and
annihilation process on the boson Fock space can be written as

θMA
M+
st (1)θ∗M = jMst (1) = X∗

stΓ (0tT ),
θMA

M
st(1)θ∗M = jMst (1) = XstΓ (0tT ),

where {(X∗
st,Xst)}0≤s≤t≤T is the quantum Azéma martingale [Par90, Sch91a]

with parameter q = 0, cf. Subsection I.1.5. Note that here 1 denotes the unit
of H = C, not the unit of BC.

Realization of boolean, monotone, and anti-monotone Lévy process on
boolean, monotone, and anti-monotone Fock spaces

Free and boolean Lévy processes on dual semigroups can be realized as solu-
tions of free or boolean quantum stochastic equations on the free or boolean
Fock space, see e.g. [Sch95b]. A full proof of this fact is still missing, because
it would require a generalization of their calculi to unbounded coefficients, but
for a large class of examples this has been shown in [BG01, Section 6.5] for the
boolean case. For dual semigroups that are generated by primitive elements
(i.e. ∆(v) = i1(v) + 12(v)) it is sufficient to determine the operators j0t(v),
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which have additive free or boolean increments. It turns out that they can
always be represented as a linear combination of the corresponding creators,
annihilators, conservation operators and time (which contains the projection
Γ (00T ) to the vacuum in the boolean case), cf. [GSS92, BG01].

We will sketch, how one can show the same for monotone and anti-
monotone Lévy processes on dual semigroups.

We can write the fundamental integrators of the anti-monotone calculus
on the monotone Fock space ΓM

(
L2([0, t[,H)

)
as

dAAM+
t (u) = θ∗MΓ (00t)dA+

t (u)θM,
dAAM

t (u) = θ∗MΓ (00t)dAt(u)θM,
dΛAM

t

(
|u〉〈v|

)
= θ∗MΓ (00t)dΛt

(
|u〉〈v|

)
θM,

where θM : ΓM

(
L2([0, t[,H)

)
→ Γ

(
L2([0, t[,H)

)
is the unitary isomorphism

introduced in 4.3. Anti-monotone stochastic integrals can be defined using
this isomorphism. We call an operator process {Xt}0≤t≤T on the monotone
Fock space anti-monotonically adapted, if {θ∗MXtθM}0≤t≤T is adapted on the
boson Fock space Γ

(
L2([0, t[,H)

)
and define the integral by

∫ T

0

XtdIAM
t := θM

(∫ T

0

θ∗MXtθMdIt

)
θ∗M

for

dIAM
t = dΛAM

t

(
|x〉〈y|

)
+ dAAM+

t (u) + dAAM
t (v),

dIt = Γ (00t)
(
dΛt

(
|x〉〈y|

)
+ dAAM+

t (u) + dAAM
t (v)

)
,

for x, y, u, v ∈ H. In this way all the domains, kernels, etc., defined in [Sch93,
Chapter 2] can be translated to the monotone Fock space.

Using the form of the comultiplication of (B̃,∆AM, ε̃), the quantum sto-
chastic equation for the Lévy process on the involutive bialgebra (B̃,∆AM, ε̃)
that we associated to an anti-monotone Lévy process on the dual semigroup
(B,∆, ε) in Theorem 4.10, and Theorem 4.14, one can now derive a represen-
tation theorem for anti-monotone Lévy processes on dual semigroups.

To state our result we need the free product
∐0 without unification of

units. This is the coproduct in the category of all ∗-algebras (not necessarily
unital). The two free products

∐
and

∐0 are related by

(C1⊕A)
∐

(C1⊕ B) ∼= C1⊕
(
A
∐0
B
)
.

We will use the notation ΓM(0st) = θ∗MΓ (0st)θM, 0 ≤ s ≤ t ≤ T .

Theorem 4.19. Let (B,∆, ε) be a dual semigroup and let (ρ, η, ψ) be a Schür-
mann triple on B over some pre-Hilbert space D. Then the anti-monotone
stochastic differential equations
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jst(b) =
∫ t

s

(
jsτ

∐0
dIAM
τ

)
◦∆(b), for b ∈ B0 = ker ε, (4.9)

with

dIAM
τ (b) = dΛAM

t

(
ρ(b)

)
+ dAAM+

t

(
η(b)

)
+ dAAM

t

(
η(b∗)

)
+ ψ(b)ΓM(00τ )dt,

have solutions (unique in θ∗MADθM). If we set jst(1B) = id, then {jst}0≤s≤t≤T
is an anti-monotone Lévy process on the dual semigroup (B,∆, ε) with respect
to the vacuum state. Furthermore, any anti-monotone Lévy process on the
dual semigroup (B,∆, ε) with generator ψ is equivalent to {jst}0≤s≤t≤T .

Remark 4.20. Let b ∈ B0, ∆(b) =
∑
ε∈A

bε, bε ∈ Bε, then Equation (4.9) has
to be interpreted as

jst(b) =
∑

ε∈A

ε1=1,ε �=(1)

∫ t

s

jsτ (bε1)dI
AM
τ (bε2)jsτ (b

ε
3) · · ·

+
∑

ε∈A

ε1=2

∫ t

s

dIAM
τ (bε1)jsτ (b

ε
2)dI

AM
τ (bε3) · · · ,

see also [Sch95b]. This equation can be simplified using the relation

dIAM
t (b1)XtdIAM

t (b2) = 〈Ω,XtΩ〉
(
dIAM
t (b1) • dIAM

t (b2)
)

for b1, b2 ∈ B0 and anti-monotonically adapted operator processes {Xt}0≤t≤T ,
where the product ‘•’ is defined by the anti-monotone Itô table

• dAAM+(u1) dΛAM
(
|x1〉〈y1|

)
dAAM(v1) dt

dAAM+(u2) 0 0 0 0
dΛAM

(
|x2〉〈y2|

)
〈y2, u1〉dAAM+(x2) 〈y2, x1〉dΛAM

(
|x2〉〈y1|

)
0 0

dAAM(v2) 〈v2, u1〉ΓM(00t)dt 〈v2, x1〉dAAM(y1) 0 0
dt 0 0 0 0

for ui, vi, xi, yi ∈ D, i = 1, 2.
One can check that dIAM

t is actually a homomorphism on B0 for the Itô
product, i.e.

dIAM
t (b1) • dIAM

t (b2) = dIAM
t (b1b2),

for all b1, b2 ∈ B0.

Using the time-reversal R defined in 4.3, we also get a realization of
monotone Lévy processes on the monotone Fock space as solutions of back-
ward monotone stochastic differential equations.

It follows also that operator processes with monotonically or anti-monotoni-
cally independent additive increments can be written as linear combination
of the four fundamental noises, where the time process has to be taken as
TAM
st =

∫ t
s
ΓM(00τ )dτ , 0 ≤ s ≤ t ≤ T , for the anti-monotone case and

TM
st =

∫ t
s
ΓM(0τT )dτ for the monotone case.
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motion. Sankhyā Ser. A, 61(3):305–311, 1999. 246

[PS72] K.R. Parthasarathy and K. Schmidt. Positive definite kernels, continuous
tensor products, and central limit theorems of probability theory, volume
272 of Lecture Notes in Math. Springer-Verlag, Berlin, 1972. 180

[PS98] K. R. Parthasarathy and V. S. Sunder. Exponentials of indicator func-
tions are total in the boson Fock space Γ (L2[0, 1]). In Quantum probabil-
ity communications, QP-PQ, X, pages 281–284. World Sci. Publishing,
River Edge, NJ, 1998. 174

[QIIP-I] D. Applebaum, B.V.R. Bhat, J. Kustermans, J.M. Lindsay. Quantum
Independent Increment Processes I: From Classical Probability to Quan-
tum Stochastic Calculus U. Franz, M. Schürmann (eds.), Lecture Notes
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Introduction

In this course we discuss aspects of the theory of stationary quantum Markov
processes.

By ‘processes’ we mean stochastic processes; hence, ideas of probability
theory are central to our discussions. The attribute ‘Markov’ indicates that
we are mainly concerned with forms of stochastic behaviour where the (prob-
abilities of) future states depend on the present state, but beyond this the
behaviour in the past has no further influence on the future behaviour of the
process.
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The attribute ‘quantum’ refers to the fact that we want to include sto-
chastic behaviour of quantum systems into our considerations; this does not
mean, however, that we discuss quantum systems exclusively. While quantum
systems are described in the language of Hilbert spaces and operators, clas-
sical systems are modelled by phase spaces and functions on phase spaces.
A mathematical language which allows a unified description of both types of
systems is provided by the theory of operator algebras. This is the language
we shall use throughout these lectures. Noncommutativity of such an algebra
corresponds to quantum features of the system while classical systems are
modelled by commutative algebras. The price paid for this generality lies in
the abstractness of the mathematical theory of operator algebras. We seek to
compensate its abstractness by giving a detailed description of two particular
physical systems, a spin- 1

2 -particle in a stochastic magnetic field (Chapter 6)
and the micro-maser (Chapter 7).

Finally, the attribute ‘stationary’ indicates that we are mainly interested
in a stochastic behaviour which possesses a distinguished stationary state, of-
ten referred to as an equilibrium distribution or equilibrium state . This does
not mean, that we usually find the system in such a stationary state, but in a
number of cases an initial state will converge to a stationary state if we wait
long enough. The mere existence of a stationary state as a reference state
has a number of pleasant mathematical consequences. First it allows, classi-
cally speaking, to work on a fixed measure space, which does not depend on
the initial state of the process and does not change in time. In the operator
algebraic description this is reflected by the fact that the mathematics can
be done within the framework of von Neumann algebras, frequently equipped
with a faithful normal reference state. They can be viewed as non-commutative
versions of spaces of the type L∞(Ω,Σ, µ). A second useful consequence of
stationarity is the fact that the time evolution of such a process can be im-
plemented by a group of automorphisms on the underlying von Neumann
algebra of observables, leaving the reference state fixed. This relates station-
ary processes to stationary dynamical systems, in particular to their ergodic
theory. From this point of view a stationary stochastic process is simply a
dynamical system, given by a group of automorphisms with a stationary state
on a von Neumann algebra, where the action on a distinguished subalgebra –
the time zero algebra – is of particular interest. As an example of the fruit-
fulness of this point of view we discuss in Chapter 4 a scattering theory for
Markov processes. The existence of stationary states is again fundamental
in our discussion of the ergodic theory of repeated measurement in the final
Chapter 10.

Needless to say that many important stochastic processes are not station-
ary, like the paradigmatic process of Brownian motion. However, even here
stationarity is present, as Brownian motion belongs to the class of processes
with stationary independent increments. Many efforts have been spent on em-
ploying the stationarity of its increments to the theory of Brownian motion.
The approach of Hida in [Hid] is a famous example: The basic idea is to
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consider Brownian motion as a function of its stationary increment process,
white noise, and early developments of quantum stochastic calculus on Fock
space can be considered as an extension of this approach. Recent developments
of these ideas can be found in the present two volumes.

We end with a brief guide through the contents of these lectures: A first
part (Chapters 1–3) introduces and discusses basic notions which are needed
for the following discussion of stationary quantum Markov processes. In par-
ticular, we introduce a special class of such Markov processes in Chapter 3. It
will play a prominent role in the following parts of these lectures. The second
part (Chapter 4) looks at this class of stationary Markov processes from the
point of view of scattering theory. In a third part (Chapters 5–8) we show
that such Markov processes do naturally occur in the description of certain
physical systems. The final part (Chapters 8–10) discusses a different type
of stochastic processes which describe repeated measurement. The aim is to
discuss the ergodic properties of such processes.

Parts of these notes are adaptions and revised versions from texts of two
earlier summer schools in Grenoble [Kü3] and Dresden [Kü4].
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1 Quantum Mechanics

Our first aim is to introduce quantum Markov processes. In order to do this we
start by giving a mathematical description of quantum mechanics. This frame
will be extended in the next section in such a way that it also incorporates
the description of classical systems.

1.1 The Axioms of Quantum Mechanics

Following the ideas of J.v. Neumann [JvN] quantum mechanics can be axiom-
atized as follows:
To a physical system there corresponds a Hilbert space H such that

1. Pure states of this system are described by unit vectors in H (determined
up to a phase).

2. Observables of this system are described by (possibly unbounded) self-
adjoint operators on H .

3. If the system is in a state described by the unit vector ξ ∈ H then
the measurement of an observable described by a self-adjoint operator X
yields the expectation value E(X) =

〈
Xξ, ξ

〉
.
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4. If an observable is described by the self-adjoint operator X on H then
the observable obtained from it by changing the scale of the measurement
apparatus via a measurable function f is described by the operator f(X).
Here, f(X) is obtained from X by use of the spectral theorem (cf. Section
1.3).

If f is a bounded function then f(X) is a bounded operator; therefore,
from a theoretical point of view working with bounded operators suffices.

From these axioms one can deduce large parts of the quantum mechanical
formalism (cf. the discussion in Section 1.3). Determining H , X , and ξ ,
however, is a different problem which is not touched in these axioms.

1.2 An Example: Two–Level Systems

In order to have a concrete example in mind consider a quantum mechanical
two–level system like a spin– 1

2 –particle. The corresponding Hilbert space is
the two-dimensional Hilbert space H = C

2 and a standard set of observables
is given by the self-adjoint matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

which may be interpreted as describing the measurement of polarization in
x, y , and z -direction, respectively.

Every self-adjoint matrix is a unique real linear combination of 1l, σx, σy, σz
and such a matrix

Φ = α · 1l + x · σx + y · σy + z · σz =
(
α+ z x− iy
x+ iy α− z

)

is a density matrix of a mixed state iff, by definition, Φ ≥ 0 and tr(Φ) = 1,
hence iff α = 1

2 and x2 + y2 + z2 ≤ 1
4 .

Thus the convex set of mixed states can be identified with a (full) ball in
R

3 (of radius 1
2 in our parametrization) and the pure states of the system

correspond to the extreme points, i.e. to the points on the surface of this ball.

1.3 How Quantum Mechanics is Related to Classical Probability

The formalism of quantum mechanics is not as different from the formalism
of classical probability as it might seem at a first glance. The link between
both of them is established by the spectral theorem (cf. [RS]):

If X is a self-adjoint operator on a separable Hilbert space then there exist

– a probability space (Ω,Σ, µ),
– a real-valued random variable Y : Ω → R ,
– a unitary u : H → L2(Ω,Σ, µ),
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such that uXu∗ = MY , where MY is the operator acting on L2(Ω,Σ, µ) by
pointwise multiplication with Y .

If follows that the spectrum σ(X) of X is equal to σ(MY ), hence it is
given by the essential range of the random variable Y . The function Y can
be composed with any further real or complex function f which is defined on
the (essential) range of Y , hence on the spectrum of X . Therefore we can
also define the operator

f(X) := u∗ ·Mf◦Y · u
for any such function f .

It thus appears that a self-adjoint operator can be identified with a real-
valued random variable. There is only one problem: Two self-adjoint operators
may not be equivalent to multiplication operators on the same probability
space with the same intertwining unitary u . Indeed, a family of self-adjoint
operators on H admits a simultaneous realization by multiplication operators
on one probability space if and only if they commute. It is only at this point,
the occurrence of non-commuting self-adjoint operators, where quantum me-
chanics separates from classical probability.

As long as only one self-adjoint operator is involved, we can proceed further
as in classical probability:

A state ξ ∈ H induces a probability measure µξ on the spectrum σ(X) ⊆
R which is uniquely characterized by the property

〈
f(X)ξ, ξ

〉
=
∫

R

f(λ) dµξ(λ)

for all bounded measurable functions f on R . The measure µξ is called the
spectral measure of X with respect to ξ but it may also be viewed as the
distribution of X :

The function uξ ∈ L2(Ω,Σ, µ) is a unit vector, therefore, its squared
pointwise absolute value |uξ|2 is, with respect to µ , the density of a proba-
bility measure on (Ω,Σ) and µξ is the distribution of Y with respect to this
probability measure.

The quantum mechanical interpretation of µξ is given in the next state-
ment.

Proposition 1.1. A measurement of an observable X on a system in a state
ξ gives a value in σ(X) and the probability distribution of these values is
given by µξ .

This result can be deduced from the axioms in Section 1.1 as follows: Let
f := χ := χσ(X)C be the characteristic function of the complement of σ(X).
By Axiom 4 a measurement of χ(X) yields a value 0 or 1. Therefore, the
probability that this measurement gives the value 1 is equal to the expectation
of this measurement, hence equal to
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〈
χ(X)ξ, ξ

〉
=
〈
0ξ, ξ

〉
= 0 .

It follows that a measurement of χ(X) gives 0, hence measuring X gives a
value in σ(X). More generally, if A ⊆ σ(X) then the probability for obtaining
from a measurement of X a value in A is the probability to obtain the value
1 in a measurement of χA(X) (again we used the fourth axiom), which is
given by

〈
χA(X)ξ, ξ

〉
=
∫

R

χAdµξ = µξ(A) .

The above proof could have been condensed. But in its present form it shows
more clearly the role played by the fourth axiom.

Corollary 1.2. A measurement of an observable X on a system in a state
ξ gives a value in a subset A ⊆ σ(X) with certainty iff 1 = µξ(A) =〈
χA(X)ξ, ξ

〉
, hence if and only if χA(X)ξ = ξ . This means, that ξ is an

eigenvector with eigenvalue 1 of the spectral projection χA(X) of X .

It follows that after a measurement of the observable X , if it resulted in
a value in A ⊆ σ(X), the state of the system has changed to a vector in
χA(X)H . The reason is that an immediate second measurement of X should
now give a value in A with certainty.

In such a manner one can now proceed further deducing, step by step, the
formalism of quantum mechanics from these axioms.

2 Unified Description of Classical and Quantum Systems

In this second chapter we extend the mathematical model in such a way that
it allows to describe classical systems and quantum systems simultaneously.
Additional motivation is given in [KüMa2].

2.1 Probability Spaces

Observables

In the above formulation of the second axiom of quantum mechanics we have
been a bit vague: We left open how many self-adjoint operators correspond to
physical observables. We are now going to use this freedom:

Axiom 2, improved version. There is a ∗ –algebra A of bounded operators
on H such that the (bounded) observables of the system are described by the
self-adjoint operators in A .

Here the word ∗–algebra means: If x, y ∈ A , then also x + y , λx (λ ∈ C),
x · y , and the adjont x∗ are elements of A . In the literature the adjoint of x
is sometimes denoted by x† .
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A is called the algebra of observables of the system. For simplicity we
assume that A contains the identity 1l . For mathematical convenience A is
usually assumed to be closed either in the norm – it is then called a C∗–
algebra – or in the strong operator topology – in this case it is called a von
Neumann algebra or W ∗–algebra.

In a truly quantum situation with only finitely many degrees of freedom
one would choose A = B(H), the algebra of all bounded operators on H .
Indeed, von Neumann in his formulation of quantum mechanics assumed this
explicitly. This assumption is known as his irreducibility axiom .

On the other hand, if (Ω,Σ, µ) is a probability space then bounded real-
valued random variables (the classical pendant to observables in quantum me-
chanics) are functions in L∞(Ω,Σ, µ) and any such function can be viewed
as a bounded multiplication operator on L2(Ω,Σ, µ). Therefore, classical sys-
tems correspond to (subalgebras of) algebras of the type L∞(Ω,Σ, µ), which
are now viewed as algebras of multiplication operators. Moreover, it is a non-
trivial fact (cf. [Tak2]) that any commutative von Neumann algebra is isomor-
phic to some L∞(Ω,Σ, µ). Therefore, it is safe to say that classical systems
correspond to commutative algebras of observables. If we do not think in prob-
abilistic terms but in terms of classical mechanics then Ω becomes the phase
space of the system and the first choice for µ is the Liouville measure on Ω .

States

The next problem is to find a unified description of quantum mechanical states
on the one hand and classical probability measures on the other. The idea is
that both give rise to expectation values of observables. Moreover, they are
uniquely determined by the collection of all expectation values. Thus, we will
axiomatize the notion of an expectation value.

Starting again with quantum mechanics a state given by a unit vector
ξ ∈ H gives rise to the expectation functional

ϕξ : B(H) ' x �→
〈
xξ, ξ

〉
∈ C .

The functional ϕξ is linear, positive (ϕξ(x) ≥ 0 if x ≥ 0) and normalized
(ϕξ(1l) = 1). More generally, if ρ is a density matrix on H , then

ϕρ : B(H) ' x �→ tr(ρ x) ∈ C

still enjoys the same properties. (A density matrix or density operator ρ on
H is a positive operator ρ such that tr(ρ) = 1 where tr denotes the trace.)

On the other hand, if (Ω,Σ, µ) is a classical probability space, then the
probability measure µ gives rise to the expectation functional

ϕµ : L∞(Ω,Σ, µ) ' f �→ E(f) =
∫

Ω

fdµ ∈ C .
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Again, ϕµ is a linear, positive, and normalized functional on L∞(Ω,Σ, µ).
This leads to the following notions.

Definition 2.1. A state on an algebra A of observables is a positive normal-
ized linear functional

ϕ : A → C .

If ϕ is a state on A then the pair (A, ϕ) is called a probability space.

Instead of calling ϕ a ‘state’ one could call it a ‘probability measure’ as
well, but the term ‘state’ has become common. In order to avoid confusion
with classical probability spaces, a pair (A, ϕ) is sometimes called quantum
probability space or non-commutative probability space, despite the fact that
it may describe a classical system and A may be commutative. Finally we
note that under certain continuity conditions a state on B(H) is induced by a
density matrix and a state on L∞(Ω,Σ, µ) comes from a probability measure
on (Ω,Σ) (see below).

2.2 From the Vocabulary of Operator Algebras

As might become clear from the above, the language of operator algebras is
appropriate when a unified mathematical description of classical systems and
quantum systems is needed. For convenience we review some basic notions
from the vocabulary of operator algebras. For further information we refer to
the books on this subject like [Tak2].

As mentioned above operator algebras can be viewed as *-algebras of
bounded operators on some Hilbert space H , closed either in the operator
norm (C∗ -algebra) or in the strong operator topology (von Neumann alge-
bra). Here, operators (xi)i∈I ⊆ B(H) converge to an operator x ∈ B(H) in
the strong operator topology if (xi(ξ))i∈I converges to x(ξ) for every vector
ξ ∈ H . Therefore, strong operator convergence is weaker than convergence in
the operator norm. It follows that von Neumann algebras are also C∗ -algebras.
But for many purposes convergence in the operator norm is too strong while
most C*-algebras are not closed in the strong operator topology. Conversely,
von Neumann algebras are ‘very large’ when considered as C∗ -algebras. There
is also an abstract characterization of C∗ -algebras as Banach *-algebras for
which ‖x∗x‖ = ‖x‖2 for all elements x (the usefulness of this condition is
by far not obvious). Von Neumann algebras are abstractly characterized as
C∗ -algebras which have, as a Banach space, a predual.

A typical example of a commutative C∗ -algebra is C(K), the algebra
of continuous functions on a compact space K , and every commutative C*-
algebra with an identity is isomorphic to an algebra of this type. A typical ex-
ample of a commutative von Neumann algebra is L∞(Ω,Σ, µ) (here (Ω,Σ, µ)
should be a localizable measure space) and every commutative von Neumann
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algebra is isomorphic to an algebra of this type. The algebras Mn of n× n -
matrices and, more generally, the algebra B(H) of all bounded operators on
a Hilbert space H are C*-algebras and von Neumann algebras. On the other
hand the algebra of all compact operators on H is only a C*-algebra whenever
H is not finite dimensional. Other C*-algebras which are interesting from the
point of view of physics are the C*-algebras of the canonical commutation
relations (CCR) and of the canonical anticommutation relations (CAR) (cf.
[EvLe]).

Elements x with x = x∗ are called self-adjoint as they are represented
by self-adjoint operators. It is less obvious that elements of the form x∗x
should be called positive. If y is an operator on some Hilbert space then by
the spectral theorem y is positive semidefinite if and only if y = x∗x for some
operator x . But is not so easy to see that also for an abstract C∗ -algebra this
leads to the right notion of positivity.

As motivated above a state on a C*-algebra A is abstractly defined as a
linear functional ϕ : A → C which is positive (in view of the above this means
that ϕ(x∗x) ≥ 0 for all x ∈ A) and normalized, i.e. ‖ϕ‖ = 1. If A has an
identity and ϕ is already positive then ‖ϕ‖ = 1 whenever ϕ(1l) = 1. A state
is thus an element of the Banach space dual of a C*-algebra A . If A is a von
Neumann algebra and ϕ is not only in the dual but in the predual of A then
it is called a normal state. There are various characterizations of normal states
by continuity or order continuity properties. For the moment it is enough to
know that a state ϕ on a commutative von Neumann algebra L∞(Ω,Σ, µ) is
normal if and only if there is a ‘density’ function fϕ ∈ L1(Ω,Σ, µ) such that
ϕ(g) =

∫
Ω
fϕgdµ for all g ∈ L∞(Ω,Σ, µ). A state ϕ on the von Neumann

algebra B(H) is normal if and only if there is a density matrix ρϕ on H such
that ϕ(x) = tr(ρϕ · x) for all x ∈ B(H).

The mathematical duality between states and observables has its counter-
part in the description of time evolutions of quantum systems: By their very
nature time evolutions are transformations on the space of (normal) states.
The Banach space adjoint of such a transformation is a transformation on
the dual space of observables. In the language of physics a description of time
evolutions on the states is referred to as the Schrödinger picture while the
Heisenberg picture refers to a description on the space of observables. These
two descriptions are dual to each other and they are equivalent from a theoret-
ical point of view. But spaces of observables have a richer algebraic structure
(e.g., operators can be multiplied). Therefore, working in the Heisenberg pic-
ture can be of great mathematical advantage, although a discussion in the
Schrödinger picture is closer to intuition.

3 Towards Markov Processes

In this chapter we discuss, step by step, the notions which will finally lead to
the definition of a Markov process in the operator algebraic language.
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3.1 Random Variables and Stochastic Processes

We are looking for a definition of a Markov process which covers the classical
and the quantum case. We already saw that in this general context there is no
state space Ω0 available such that the system could jump between the points
of Ω0 . Even if we generalized points of Ω0 to pure states on an algebra A0

of observables then a state given by a density matrix can not be interpreted
in a unique way as a probability measure on the pure states (the state space
of M2 , cf. 1.2, demonstrates this problem drastically). Consequently, there is
no direct way to talk about transition probabilities and transition operators
in this general context and we will introduce transition operators only much
later via conditional expectations.

Instead we proceed with defining random variables first. Unfortunately,
the notion of a general random variable seems to be the most abstract and
unaccessible notion of quantum probability.

From the foregoing it should be clear that a real-valued random variable is
a self-adjoint operator in A . But what would happen if one wanted to consider
random variables having other state spaces? For example, when studying the
behaviour of a two–level system one wants to consider polarization in all space
directions simultaneously. In classical probability it is enough to change from
Ω0 = R to more general versions of Ω0 like Ω0 = R

3 . Now we need an
algebraic description of Ω0 and this is obtained as follows ([AFL]).

If X : (Ω,Σ, µ) �→ Ω0 is a random variable and f : Ω0 → C is a measur-
able function then

iX(f) := f ◦X : (Ω,Σ, µ)→ C

is measurable. Moreover, f �→ iX(f) is a ∗–homomorphism from the al-
gebra A0 of all bounded measurable C -valued functions on Ω0 into A :=
L∞(Ω,Σ, µ) with iX(1l) = 1l. (∗–homomorphism means that iX preserves
addition, multiplication by scalars, multiplication, and involution which is
complex conjugation in this case).

We are allowing now A0 and A to be non-commutative algebras of ob-
servables. For the first part of our discussion they could be any *-algebras of
operators on a Hilbert space. Later in our discussion we have to require that
they are C*-algebras or even von Neumann algebras. We thus arrive at the
following definition.

Definition 3.1. ([AFL]) A random variable on A with values in A0 is an
identity preserving ∗–homomorphism

i : A0 �→ A .

It may be confusing that the arrow seems to point into the wrong direction,
but this comes from the fact that our description is dual to the classical
formulation. Nevertheless our definition describes an influence of A onto A0 :
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If the ‘world’ A is in a certain state ϕ then i induces the state ϕ ◦ i on A0

given by A0 ' x �→ ϕ(i(x)) ∈ C . If i comes from a classical random variable
X as above then ϕ ◦ i is the state induced by the distribution of X hence it
can be called the distribution of i also in the general case.

From now on we equip A with a state ϕ thus obtaining a probability space
(A, ϕ). Once having defined the notion of a random variable the definition of
a stochastic process is obvious:

Definition 3.2. A stochastic process indexed by a time parameter in T is a
family

it : A0 → (A, ϕ) , t ∈ T ,

of random variables. Such a process will also be denoted by (A, ϕ, (it)t∈T;A0) .

Stationary stochastic processes are of particular importance in classical prob-
ability. In the spirit of our reformulations of classical concepts the following
generalizes this notion.

Definition 3.3. A stochastic process (it)t∈T : A0 → (A, ϕ) is called station-
ary if for all s ≥ 0

ϕ(it1(x1) · . . . · itn(xn)) = ϕ(it1+s(x1) · . . . · itn+s(xn))

with n ∈ N , x1, . . . , xn ∈ A0, t1, . . . , tn ∈ T arbitrarily.

As in the classical situation this means that multiple time correlations depend
only on time differences. It should also be noted that it is not sufficient to
require the above identity only for ordered times t1 ≤ t2 ≤ . . . ≤ tn .

Finally, if a classical stochastic process is represented on the space of its
paths then time translation is induced by the time shift on the path space.
This is turned into the following definition:

Definition 3.4. A process (it)t∈T : A0 → (A, ϕ) admits a time translation if
there are ∗–homomorphisms αt : A → A (t ∈ T) such that

i) αs+t = αs ◦ αt for all s, t ∈ T

ii) it = αt ◦ i0 for all t ∈ T .

In this case we may also denote the process (A, ϕ, (it)t∈T;A0) by
(A, ϕ, (αt)t∈T;A0) .

In most cases, in particular if the process is stationary, such a time translation
exists. In the stationary case, it leaves the state ϕ invariant.
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3.2 Conditional Expectations

Before we can formulate a Markov property for a stochastic process we should
talk about conditional expectations. The idea is as in the classical framework:

One is starting with a probability space (Ω,Σ, µ) which describes our
knowledge about the system in the following sense: We expect an event A ∈ Σ
to occur with probability µ(A). Now assume that we obtain some additional
information on the probabilities of the events in a σ–subalgebra Σ0 ⊆ Σ .
Their probabilities are now given by a new probability measure ν on (Ω,Σ0).
It leads to improved – conditional – probabilities for all events of Σ given by
a probability measure ν̃ on (Ω,Σ) which extends ν on (Ω,Σ0). (Since ν
is absolutely continuous with respect to the restriction of µ to Σ0 , it has a
Σ0 -measurable density f by the Radon Nikodym theorem, and one can put
dν̃ = fdµ .)

Similarly, we now start with a (quantum) probability space (A,ϕ). If we
perform a measurement of a self-adjoint observable x ∈ A we expect the value
ϕ(x). Assume again that we gained some additional information about the
expectation values of the observables in a subalgebra A0 (for example by an
observation): Now we expect a value ψ(x) for the outcome of a measurement
of x ∈ A0 where ψ is a new state on A0 . As above this should change our
expectation for all measurements on A in an appropriate way, expressed by
a state ψ̃ on A . Unfortunately, there is no general Radon Nikodym theorem
for states on operator algebras which gives all the desired properties. Thus we
have to proceed more carefully.

Mathematically speaking we should have an extension map Q assigning
to each state ψ on A0 a state ψ̃ = Q(ψ) on A ; the map should thus satisfy
Q(ψ)(x) = ψ(x) for all x ∈ A0 . Moreover, if ψ(x) = ϕ(x) for all x ∈ A0 ,
that is if there is no additional information, then the state ϕ should remain
unchanged, hence we should require Q(ψ) = ϕ in this case. If we require, in
addition, that Q is an affine map (Q(λψ1+(1−λ)ψ2) = λQ(ψ1)+(1−λ)Q(ψ2)
for states ψ1 and ψ2 on A0 and 0 ≤ λ ≤ 1) and has a certain continuity
property (weak *-continuous if A0 and A are C*–algebras) then one can easily
show that there exists a unique linear map P : A → A such that P (A) = A0 ,
P 2 = P , and ||P || ≤ 1, which has the property Q(ψ(x)) = ψ(P (x)) for all
states ψ on A0 and x ∈ A : Up to identification of A0 with a subalgebra of
A the map P is the adjoint of Q . The passage from Q to P means to change
from a state picture (Schrödinger picture) into the dual observable picture
(Heisenberg picture). If A0 and A are C*–algebras then such a map P is
called a projection of norm one and it automatically enjoys further properties:
P maps positive elements of A into positive elements and it has the module
property

P (axb) = aP (x)b

for a, b ∈ A0 , x ∈ A ([Tak2]). Therefore, such a map P is called a conditional
expectation from A onto A0 .
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From the property ϕ(P (x)) = ϕ(x) for all x ∈ A it follows that there is
at most one such projection P . Indeed, with respect to the scalar product
< x, y >ϕ:= ϕ(y∗x) induced by ϕ on A the map P becomes an orthog-
onal projection. Therefore, we will talk about the conditional expectation
P : (A, ϕ)→ A0 ... if it exists.

Typical examples for conditional expectations are conditional expectations
on commutative algebras (on commutative von Neumann algebras they always
exist by the Radon Nikodym theorem) and conditional expectations of tensor
type: If A0 and C are C∗ -algebras and ψ is a state on C then

Pψ : A0 ⊗ C ' x⊗ y �→ ψ(y) · x⊗ 1l

extends to a conditional expectation from the (minimal) tensor product
A := A0 ⊗ C onto A0 ⊗ 1l (cf. [Tak2]. If A0 and C are von Neumann al-
gebras and ψ is a normal state on C then Pψ can be further extended to a
conditional expectation which is defined on the larger ‘von Neumann algebra
tensor product’ of A0 and C ([Tak2]). Sometimes it is convenient to identify
A0 with the subalgebra A0 ⊗ 1l of A0 ⊗ C and to call the map defined by
A0 ⊗ C ' x⊗ y �→ ψ(y)x ∈ A0 a conditional expectation, too. From its defin-
ition it is clear that Pψ leaves every state ϕ0 ⊗ ψ invariant where ϕ0 is any
state on A0 .

In general, the existence of a conditional expectation from (A, ϕ) onto
a subalgebra A0 is a difficult problem and in many cases it simply does not
exist: Equip A = M2 with a state ϕ which is induced from the density matrix(
λ 0
0 1− λ

)
(0 ≤ λ ≤ 1). Then the conditional expectation P from (M2, ϕ)

onto

A0 =
{(

a 0
0 b

)
: a, b ∈ C

}

does exist while the conditional expectation from (M2, ϕ) onto the commu-
tative subalgebra

A0 =
{(

a b
b a

)
: a, b ∈ C

}

does not exist (we still insist on the invariance of ϕ) whenever λ �= 1
2 .

There is a beautiful theorem due to M. Takesaki ([Tak1]) which solves
the problem of existence of conditional expectations in great generality. Since
we will not need this theorem explicitly we refer for it to the literature. It
suffices to note that requiring the existence of a conditional expectation can
be a strong condition. On the other hand, from a probabilistic point of view
it can nevertheless make sense to require its existence as we have seen above.

With the help of conditional expectations we can define transition opera-
tors:

Definition 3.5. Suppose i1 , i2 : A0 → (A, ϕ) are two random variables such
that i1 is injective and thus can be inverted on its range. If the conditional
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expectation P : (A, ϕ)→ i1(A0) exists then the operator T : A0 → A0 defined
by

T (x) := i−1
1 P (i2(x))

for x ∈ A1 is called a transition operator.

If the random variables i1 and i2 are random variables of a stochastic process
at times t1 and t2 (t1 < t2 ) then T describes the transitions from time t1
to time t2 .

3.3 Markov Processes

Using conditional expectations we can now formulate a Markov property
which generalizes the Markov property for classical processes:

Let (it)t∈T : A0 → (A, ϕ) be a stochastic process. For I ⊆ T we denote by
AI the subalgebra of A generated by {it(x) : x ∈ A0, t ∈ I} . In particular,
subalgebras At] and A[t are defined as in the classical context. A subalgebra
AI generalizes the algebra of functions on a classical probability space which
are measurable with respect to the σ -subalgebra generated by the random
variables at times t ∈ I .

Definition 3.6. The process (it)t∈T is a Markov process if for all t ∈ T the
conditional expectation

Pt] : (A, ϕ)→ At]
exists and

for all x ∈ A[t we have Pt](x) ∈ it(A0) .

If, in particular, the conditional expectation Pt : (A, ϕ)→ it(A0) exists, then
this requirement is equivalent to Pt](x) = Pt(x) for all x ∈ A[t . This parallels
the classical definition.

Clearly, a definition without requiring the existence of conditional expecta-
tions is more general and one can imagine several generalizations of the above
definition. On the other hand the existence of P0 : (A, ϕ) → i0(A0) = A{0}
allows us to define transition operators as above: Assume again, as is the case
in most situations, that i0 is injective. Then i0(A0) is an isomorphic image
of A0 in A on which i0 can be inverted. Thus we can define the transition
operator Tt by

Tt : A0 → A0 : x �→ i−1
0 P0it(x) .

From its definition it is clear that Tt is an identity preserving (completely)
positive operator, as it is the composition of such operators. Moreover, it
generalizes the classical transition operators and the Markov property again
implies the semigroup law



274 Burkhard Kümmerer

Ts+t = Ts · Tt for s, t ≥ 0

while T0 = 1l is obvious from the definition. The derivation of the semigroup
law from the Markov property is sometimes called the quantum regression
theorem, although in the present context it is an easy exercise.

In the classical case we have a converse: Any such semigroup comes from a
Markov process which, in addition, is essentially uniquely determined by the
semigroup. It is a natural question whether this extends to the general context.
Unfortunately, it does not. But there is one good news: For a semigroup on
the algebra Mn of complex n×n–matrices there does exist a Markov process
which can be constructed on Fock space (cf. Sect. 9.3). For details we refer
to [Par]. However, this Markov process is not uniquely determined by its
semigroup as we will see in Sect. 6.3. Moreover, if the semigroup (Tt)t≥0 on A0

admits a stationary state ϕ0 , that is, ϕ0(Tt(x)) = ϕ0(x) for x ∈ A0 , t ≥ 0,
then one should expect that it comes from a stationary Markov process as it
is the case for classical processes. But here we run into severe problems. They
are basically due to the fact that in a truly quantum situation interesting
joint distributions – states on tensor products of algebras – do not admit
conditional expectations. As an illustration of this kind of problem consider
the following situation.

Consider A0 = Mn , 2 ≤ n ≤ ∞ . Such an algebra A0 describes a
truly quantum mechanical system. Moreover, consider any random variable
i : A0 → (A, ϕ).

Proposition 3.7. The algebra A decomposes as

A � Mn ⊗ C for some algebra C , such that
i(x) = x⊗ 1l for all x ∈ A0 = Mn .

Proof: Put C := {y ∈ A : i(x) · y = y · i(x) for all x ∈ A0} .
Moreover, the existence of a conditional expectation forces the state ϕ to

split, too:

Proposition 3.8. If the conditional expectation

P : (A, ϕ)→ i(A0) = Mn ⊗ 1l

exists then there is a state ψ on C such that

ϕ = ϕ0 ⊗ ψ

i.e., ϕ(x ⊗ y) = ϕ0(x) · ψ(y) for x ∈ A0 , y ∈ C with ϕ0(x) := ϕ(x ⊗ 1l) . It
follows that

P (x⊗ y) = ψ(y) · x⊗ 1l ,

hence P is a conditional expectation of tensor type (cf. Sect. 3.2).
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Again, the proof is easy: From the module property of P it follows that P
maps the relative commutant 1l ⊗ C of i(A0) into the center of Mn , hence
onto the multiples of 1l ; thus P on 1l⊗ C defines a state ψ on C .

Therefore, if A0 = Mn then the existence of the conditional expectation
P : (A, ϕ)→ A0 forces the state to split into a product state hence the state
can not represent a non-trivial joint distribution.

3.4 A Construction Scheme for Markov Processes

The discussion in the previous section seems to indicate that there are no
interesting Markov processes in the truly quantum context: On the one hand
we would like to have a conditional expectation onto the time zero algebra
A0 of the process, on the other hand, if A0 = Mn , this condition forces the
state to split into a tensor product and this prevents the state from represent-
ing an interesting joint distribution. Nevertheless, there is a way to bypass
this problem. This approach to stationary Markov processes was initiated in
([Kü2]). It avoids the above problem by putting the information about the
relationship between different times into the dynamics rather than into the
state:

We freely use the language introduced in the previous sections. We note
that the following construction can be carried out on different levels: If the
algebras are merely *-algebras of operators then the tensor products are meant
to be algebraic tensor products. If we work in the category of C*-algebras
then we use the minimal tensor product of C*-algebras (cf. [Tak2]). In most
cases, by stationarity, we can even turn to the closures in the strong operator
topology and work in the category of von Neumann algebras. Then all algebras
are von Neumann algebras, the states are assumed to be normal states, and
the tensor products are tensor products of von Neumann algebras (cf. [Tak2]).
In many cases we may even assume that the states are faithful: If a normal
state is stationary for some automorphism on a von Neumann algebra then
its support projection, too, is invariant under this automorphism and we may
consider the restriction of the whole process to the part where the state is
faithful. In particular, when the state is faithful on the initial algebra A0 (see
below), then all states can be assumed to be faithful. On the other hand,
as long as we work on an purely algebraic level or on a C*-algebraic level,
the following construction makes sense even if we refrain from all stationarity
assumptions.

We start with the probability space (A0, ϕ0) for the time–zero-algebra of
the Markov process to be constructed. Given any further probability space
(C0, ψ0) then we can form their tensor product

(A0, ϕ0)⊗ (C0, ψ0) := (A0 ⊗ C0, ϕ0 ⊗ ψ0) ,

where A0⊗C0 is the tensor product of A0 and C0 and ϕ0⊗ψ0 is the product
state on A0 ⊗ C0 determined by ϕ0 ⊗ ψ0(x⊗ y) = ϕ0(x) · ψ0(y) for x ∈ A0 ,
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y ∈ C0 . Finally, let α1 be any automorphism of (A0, ϕ0)⊗(C0, ψ0) that means
that α1 is an automorphism of the algebra A0 ⊗ C0 which leaves the state
ϕ⊗ψ invariant. From these ingredients we now construct a stationary Markov
process:

There is also an infinite tensor product of probability spaces. In particular,
we can form the infinite tensor product

⊗
Z
(C0, ψ0): The algebra

⊗
Z
C0 is

the closed linear span of elements of the form · · ·⊗1l⊗x−n⊗· · ·⊗xn⊗1l⊗· · ·
and the state on such elements is defined as ψ0(x−n) · . . . ·ψ0(xn) for xi ∈ C0 ,
n ∈ N , −n ≤ i ≤ n . Then

⊗
Z
(C0, ψ0) is again a probability space which we

denote by (C, ψ). Moreover, the tensor right shift on the elementary tensors
extends to an automorphism S of (C, ψ).

We now form the probability space

(A, ϕ) := (A0, ϕ0)⊗ (C, ψ) = (A0, ϕ0)⊗ (
⊗

Z

(C0, ψ0))

and identify (A0, ϕ0) ⊗ (C0, ψ0) with a subalgebra of (A, ϕ) by identifying
(C0, ψ0) with the zero factor (n = 0) of

⊗
Z
(C0, ψ0). Thus, by letting it act as

the identity on all other factors of
⊗

Z
(C0, ψ0), we can trivially extend α1 from

an automorphism of (A0, ϕ0)⊗ (C0, ψ0) to an automorphism of (A, ϕ). This
extension is still denoted by α1 . Similarly, S is extended to the automorphism
Id⊗ S of (A, ϕ) = (A0, ϕ0)⊗ (C, ψ), acting as the identity on A0 ⊗ 1l ⊆ A .
Finally, we define the automorphism

α := α1 ◦ (Id⊗ S) .

This construction may be summarized in the following picture:

(A0, ϕ0)
⊗

· · · ⊗ (C0, ψ0) ⊗ (C0, ψ0)




α1

⊗ (C0, ψ0) ⊗ · · ·
−−−−−−−−−−−−−−→

S

The identification of A0 with the subalgebra A0 ⊗ 1l of A gives rise to a
random variable i0 : A0 → (A, ϕ). From i0 we obtain random variables in
for n ∈ Z by in := αn ◦ i0 . Thus we obtain a stochastic process (in)n∈Z

which admits a time translation α . This process is stationary (α1 as well as
S preserve the state ϕ) and the conditional expectation P0 : (A, ϕ) → A0

exists (cf. Sect. 3.2).

Theorem 3.9. The above stochastic process (A, ϕ, (αn)n∈Z;A0) is a station-
ary Markov process.

The proof is by inspection: By stationarity it is enough to show that for all
x in the future algebra A[0 we have P0](x) ∈ A0 . But the algebra A[0 is
obviously contained in
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(A0, ϕ0)
⊗

· · · ⊗ 1l ⊗ (C0, ψ0) ⊗ (C0, ψ0) ⊗ · · ·

while the past A0] is contained in

(A0, ϕ0)
⊗

· · · ⊗ (C0, ψ0) ⊗ 1l ⊗ 1l ⊗ · · ·

Discussion

This construction can also be carried out in the special case, where all algebras
are commutative. It then gives a construction scheme for classical Markov
processes, which is different from its canonical realization on the space of its
paths. It is not difficult to show that every classical discrete time stationary
Markov process can be obtained in this way. However, this process may not
be minimal, i.e., AZ may be strictly contained in A .

Given the initial algebra (A0, ϕ0) then a Markov process as above is de-
termined by the probability space (C0, ψ0) and the automorphism α1 . In par-
ticular, the transition operator can be computed from T (x) = P0 ◦ α1(x⊗ 1l)
for x ∈ A0 . It generates the semigroup (Tn)n∈N of transition operators on
(A0, ϕ0) (cf. Section 3.3). By construction the state ϕ0 is stationary, i.e.,
ϕ0 ◦ T = ϕ0 .

Conversely, given a transition operator T of (A0, ϕ0) with ϕ0 stationary,
if one wants to construct a corresponding stationary Markov process, then it
is enough to find (C0, ψ0) and α1 as above. This makes the problem easier
compared to the original problem of guessing the whole Markov process, but
it is by no means trivial. In fact, given T , there is no universal scheme for
finding (C0, ψ0) and α1 , and there are some deep mathematical problems
associated with their existence. On the other hand, if one refrains from the
stationarity requirements then the Stinespring representation easily leads to
constructions of the above type (cf. Section 10.3).

We finally remark that for A0 = Mn this form of a Markov process is
typical and even, in a sense, necessary. In fact there are theorems which show
that if A0 = Mn then an arbitrary Markov process has a structure similar to
the one above: It is always a coupling of A0 to a shift system. The meaning of
this will be made more precise in the next chapter. Further information can
be found in [Kü3].

3.5 Dilations

The relation between a Markov process with time translations (αt)t on (A, ϕ)
and its semigroup (Tt)t of transition operators on A0 can be brought into
the form of a diagram:
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A0
Tt−→ A0

i0

=
>P0

(A, ϕ) −→
αt

(A, ϕ)

This diagram commutes for all t ≥ 0.
From this point of view the Markovian time evolution (αt)t can be un-

derstood as an extension of the irreversible time evolution (Tt)t on A0 to an
evolution of *-homomorphisms or even *-automorphisms on the large alge-
bra A . Such an extension is referred to as a dilation of (Tt)t to (αt)t . The
paradigmatic dilation theory is the theory of unitary dilations of contraction
semigroups on Hilbert spaces, defined by the commuting diagram

H0
Tt−→ H0

i0

=
>P0

H −→
Ut

H
Here (Tt)t≥0 is a semigroup of contractions on a Hilbert space H0, (Ut)t is a
unitary group on a Hilbert space H , i0 : H0 → H is an isometric embedding,
and P0 is the Hilbert space adjoint of i0 , which may be identified with the
orthogonal projection from H onto H0 . The diagram has to commute for all
t ≥ 0.

There is an extensive literature on unitary dilations starting with the pi-
oneering books [SzNF] and [LaPh]. It turned out to be fruitful to look at
Markov processes and open systems from the point of view of dilations, like
for example in [EvLe] and [Kü2]. In fact, the next chapter on scattering is
a demonstration of this: P.D. Lax and R. S. Phillips based their approach
to scattering theory in [LaPh] on unitary dilations and our original idea in
[KüMa3] was to transfer some of their ideas to the theory of operator alge-
braic Markov processes. Meanwhile this transfer has found various interesting
applications. One is to the preparation of quantum states which is discussed
in Chapter 7.

There is a deeper reason why the understanding of unitary dilations can
be helpful for the understanding of Markov processes as the following section
will show.

3.6 Dilations from the Point of View of Categories

The relation between the above two types of dilations can be brought beyond
the level of an intuitive feeling of similarity. For simplicity we discuss the case
of a discrete time parameter only:

Consider a category whose objects form a class O . For any two ob-
jects O1, O2 ∈ O denote by M(O1, O2) the morphisms from O1 to O2 .
By IdO ∈M(O,O) denote the identity morphism of an object O ∈ O , which
is characterized by IdO ◦ T = T for all T ∈ M(A,O) and S ◦ IdO = S for
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all S ∈ M(O,B) where A and B are any further objects in O . Finally, a
morphism T ∈ M(O,O) is called an automorphism of O if there exists a
morphism T−1 ∈M(O,O) such that T−1 ◦ T = IdO = T ◦ T−1 .

Now we can formulate the general concept of a dilation (cf. [Kü2]):

Definition 3.10. Given T ∈ M(O,O) for some object O ∈ O then we call
a quadruple (Ô, T̂ ; i, P ) a dilation of (O, T ) if T̂ ∈M(Ô, Ô) is an automor-
phism of Ô and i ∈ M(O, Ô) and P ∈ M(Ô, O) are morphisms such that
the diagram

O
Tn

−→ O

i

=
>P

Ô −→̂
Tn

Ô

commutes for all n ∈ N0 . Here we adopt the convention T 0 = IdO for any
morphism T ∈M(O,O) .

For the special case n = 0 the commutativity of the dilation diagram implies
P ◦ i = IdO . Hence (i ◦ P )2 = i ◦ P ◦ i ◦ P = i ◦ IdO ◦ P = i ◦ P , i.e.,
i ◦ P ∈M(Ô, Ô) is an idempotent morphism.

Now we can specialize to the case where the objects of the category
are Hilbert spaces and the morphisms are contractions between Hilbert
spaces. In this category automorphisms are unitaries while idempotent mor-
phisms are orthogonal projections. Therefore, if H0 is some Hilbert space,
T ∈ M(H0,H0) is a contraction, and (H, U ; i0, P0) is a dilation of (H0, T ),
then U is unitary, i0 : H0 → H is an isometry, and the orthogonal projection
i0 ◦ P0 projects onto the subspace i0(H0) ⊆ H . We thus retain the definition
of a unitary dilation.

On the other hand we can specialize to the category whose objects are
probability spaces (A, ϕ) where A is a von Neumann algebra and ϕ is a
faithful normal state on A . As morphisms between two such objects (A, ϕ)
and (B, ψ) we consider completely positive operators T : A → B which are
identity preserving, i.e., T (1lA) = 1lB , and respect the states, i.e., ψ ◦ T = ϕ .
(For further information on completely positive operators we refer to Chap-
ter 8). In this category an automorphism of (A, ϕ) is a *-automorphism of
A which leaves the state ϕ fixed. Moreover, an idempotent morphism P of
(A, ϕ) turns out to be a conditional expectation onto a von Neumann sub-
algebra A0 of A [KüNa]. Therefore, if T is a morphism of a probability
space (A0, ϕ0) and (A, ϕ, α; i0, P0) is a dilation of (A0, ϕ0, T ) (we omit the
additional brackets around probability spaces) then i : A0 → A is an in-
jective *-homomorphism, hence a random variable, P0 ◦ i0 is the conditional
expectation from (A, ϕ) onto i0(A0), and (A, ϕ, (αn)n∈Z; i0(A0)) is a sta-
tionary stochastic process with (αn)n∈Z as its time translation and (Tn)n∈N0

as its transition operators. In particular, we have obtained a dilation as in
the foregoing Section 3.5. Depending on the situation it can simplify notation
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to identify A0 with the subalgebra i0(A0) ⊆ A and we will freely do so,
whenever it seems to be convenient.

This discussion shows that unitary dilations and stationary Markov proces-
ses are just two realizations of the general concept of a dilation. In fact,
the relation between those two realizations is even closer: Between the two
categories above there are functors in both directions which, in particular,
carry dilations into dilations:

The GNS-construction associates with a probability space (A, ϕ) a Hilbert
space Hϕ which is obtained from completing A with respect to the scalar pro-
duct <x, y >ϕ := ϕ(y∗x) for x, y ∈ A . A morphism T : (A, ϕ) → (B, ψ) is
turned into a contraction Tϕ,ψ : Hϕ → Hψ , as follows from the Cauchy-
Schwarz inequality for completely positive operators (cf. Chapter 8). Thus
the GNS-construction turns a dilation of (A, ϕ, T ) into a unitary dilation
of (Hϕ, Tϕ,ϕ). However this functorial relation is of minor interest, since in
general this unitary dilation is far from being unique.

There are, however, several interesting functors into the other direction.
We sketch only briefly some of them:

Given a Hilbert space H there is, up to stochastic equivalence, a unique
family of real valued centered Gaussian random variables {X(ξ) : ξ ∈ H}
on some probability space (Ω,Σ, µ) , such that H ' ξ → X(ξ) is linear
and E(X(ξ) · X(η)) = < ξ, η > for ξ, η ∈ H . Assuming that the σ -algebra
Σ is already generated by the random variables {X(ξ) : ξ ∈ H} we obtain
an object (A, ϕ) with A = L∞(Ω,Σ, µ) and ϕ(f) =

∫
Ω
fdµ for f ∈ A .

Moreover, consider two Hilbert spaces H and K leading, as above, to two
families of Gaussian random variables {X(ξ) : ξ ∈ H} and {Y (η) : η ∈ K} on
probability spaces (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2), respectively. It follows from
the theory of Gaussian random variables (cf. [Hid]) that to a contraction T :
H → K there is canonically associated a positive identity preserving operator
T̃ : L1(Ω1, Σ1, µ1) → L1(Ω2, Σ2, µ2) with T̃ (X(ξ)) = Y (Tξ) (ξ ∈ H) which
maps L∞(Ω1, Σ1, µ1) into L∞(Ω2, Σ2, µ2). It thus leads to a morphism T :
(A, ϕ)→ (B, ψ) with A := L∞(Ω1, Σ1, µ1), ϕ(f) :=

∫
Ω1

f dµ1 for f ∈ A , and
B := L∞(Ω2, Σ2, µ2), ψ(g) :=

∫
Ω2

g dµ2 for g ∈ B . Therefore, this ‘Gaussian
functor’ carries unitary dilations into classical Gaussian Markov processes,
usually called Ornstein-Uhlenbeck processes.

Similarly, there are functors carrying Hilbert spaces into non-commutative
probability spaces. The best known of these functors come from the theory of
canonical commutation relations (CCR) and from canonical anticommutation
relations (CAR). In both cases, fixing an ‘inverse temperature’ β > 0, to a
Hilbert space H there is associated a von Neumann algebra A of canoni-
cal commutation relations or anticommutation relations, respectively, which
is equipped with a faithful normal state ϕβ , called the equilibrium state at
inverse temperature β (for the CCR case this functor is used in our discus-
sion in Section 4.6). Again, contractions between Hilbert spaces are carried
into morphisms between the corresponding probability spaces. Hence unitary
dilations are carried into non-commutative stationary Markov processes. For
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details we refer to [EvLe] and [Eva]. An extension of these functors to the case
of q-commutation relations has been studied in [BKS].

In order to provide a unified language for all these situations we make the
following definition.

Definition 3.11. Consider a functor which carries Hilbert spaces as objects
into probability spaces of the form (A, ϕ) with A a von Neumann algebra
and ϕ a faithful normal state on A , and which carries contractions between
Hilbert spaces into morphisms between such probability spaces. Such a functor
is called a functor of white noise, if, in addition, the trivial zero-dimensional
Hilbert space is carried into the trivial one-dimensional von Neumann algebra
C1l and if families of contractions between Hilbert spaces which converge in
the strong operator topology are carried into morphisms which converge in the
pointwise strong operator topology.

The name functor of white noise will become in Section 4.3. From the
above discussion it is already clear that unitaries are carried into automor-
phisms while orthogonal projections are carried into conditional expectations
([KüNa]). In particular, subspaces of a Hilbert space correspond to subalge-
bras of the corresponding von Neumann algebra. Moreover, orthogonal sub-
spaces correspond to independent subalgebras in the sense described in Sec-
tion 4.3. The functor is called minimal if the algebra corresponding to some
Hilbert space H is algebraically generated by the subalgebras corresponding
to Hilbert subspaces of H which generate H linearly. The continuity assump-
tion could be omitted but it assures that, in particular, strongly continuous
unitary groups are carried into pointwise weak*-continuous groups of auto-
morphisms. Finally, we will see in the next section that a unitary dilation is
carried into a stationary Markov process by any such functor.

All functors mentioned above are minimal functors of white noise.

4 Scattering for Markov Processes

The Markov processes constructed in Section 3.4 above have a particular
structure which we call ”coupling to white noise”. The part (C, ψ, S) is a non-
commutative Bernoulli shift, i.e., a white noise in discrete time, to which the
system algebra A0 is coupled via the automorphism α1 . Thus the evolution
α of the whole Markov process may be considered as a perturbation of the
white noise evolution S by the coupling α1 . By means of scattering theory
we can compare the evolution α with the ”free evolution” S . The operator
algebraic part of the following material is taken from [KüMa3] to which we
refer for further details and proofs.

4.1 On the Geometry of Unitary Dilations

Before entering into the operator algebraic discussion it may be useful to have
a more detailed look at the geometry of unitary dilations. On the one hand
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this shows that the particular structure of the Markov processes constructed
in Section 3.4 is more natural than it might seem at a first glance. On the other
hand these considerations will motivate the operator algebraic discussions to
come.

It should be clear from the above discussion about categories that the
Hilbert space analogue of a two-sided stationary stochastic process with time
translation in discrete time is given by a triple (H, U ;H0) where H is a
Hilbert space, U : H → H is a unitary and H0 ⊆ H is a distinguished
subspace. This subspace describes the ‘time zero’ part, UnH0 the ‘time n
part’ of this process. If P0 : H → H0 denotes the orthogonal projection from
H onto H0 then the operators Tn : H0 → H0 with Tn := P0U

nP0 , n ∈ Z , are
the Hilbert space versions of the transition operators of a stochastic process.
In general, the family (Tn)n∈N0 will not form a semigroup, i.e., Tn may well
be different from Tn1 for n ≥ 2. Still, the process (H, U ;H0) may be called a
unitary dilation of (H0, (Tn)n∈Z), which now means that the diagram

H0
Tn−→ H0

i0

=
>P0

H −→
Un
H

commutes for all n ∈ Z . Here we identify H0 via the isometry i0 with a
subspace of H. The following theorem characterizes the families (Tn)n∈Z of
operators on H0 which allow a unitary dilation in the sense above:

Theorem 4.1. [SzNF] For a family (Tn)n∈Z of contractions of H0 the fol-
lowing conditions are equivalent:

a) (H0, (Tn)n∈Z) has a unitary dilation.
b) T0 = 1lH0 and the family (Tn)n∈Z is positive definite , i.e., for all n ∈ N

and for all choices of vectors ξ1, . . . , ξn ∈ H0 :

n∑

i,j=1

< Ti−j ξi, ξj> ≥ 0 .

Moreover, if the unitary dilation is minimal, i.e., if H is the closed linear span
of {Unξ : ξ ∈ H0, n ∈ Z} , then the unitary dilation is uniquely determined
up to unitary equivalence.

If T : H0 → H0 is a contraction and if we define Tn := Tn for n ≥ 0 and
Tn := (T−n)∗ for n < 0 then this family (Tn)n∈Z is positive definite and thus
it has a unitary dilation (H, U ;H0) (cf. [SzNF]). In slight abuse of language
we call (H, U ;H0) a unitary dilation of (H0, T ) also in this case.

In order to understand the geometry of such a unitary dilation we define
for a general triple (H, U ;H0) as above and for any subset I ⊆ Z the subspace
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HI as the closed linear span of {Unξ : ξ ∈ H0, n ∈ I} and PI : H → HI as
the orthogonal projection from H onto HI . For simplicity we denote H{n}
by Hn and P{n} by Pn for n ∈ Z , too.

The following observation describes the geometry of a unitary dilation of
(H0, T ):

Proposition 4.2. For a unitary dilation (H, U ;H0) of a positive definite
family (Tn)n∈Z the following conditions are equivalent:

a) (H, U ;H0) is a unitary dilation of a semigroup, i.e., Tn = Tn1 for n ∈ N .
b) For all ξ ∈ H0 and for all n,m ∈ N : UmP⊥

0 Unξ is orthogonal to H0 .
c) For all ξ ∈ H[0,∞[ we have P]−∞,0](ξ) = P0(ξ) .

Here, P⊥
0 denotes the orthogonal projection 1l−P0 onto the orthogonal com-

plement H⊥
0 of H0. Condition b) can be roughly rephrased by saying that the

part of the vector Unξ which is orthogonal to H0, i.e., which ‘has left’ H0 ,
will stay orthogonal to H0 at all later times, too. We therefore refer to this
condition as the ‘they never come back principle’. Condition c) is the linear
version of the Markov property as formulated in Section 3.3.

Proof: Given ξ ∈ H0 and n,m ≥ 0 we obtain

Tn+mξ = P0U
n+mξ = P0U

nUmξ = P0U
n(P0 + P⊥

0 )Umξ
= P0U

nP0U
mξ + P0U

nP⊥
0 Umξ

= TnTmξ + P0U
nP⊥

0 Umξ .

Thus Tn+m = TnTm if and only if P0U
nP⊥

0 Umξ = 0 for all ξ ∈ H0 , which
proves the equivalence of a) and b).

In order to prove the implication b)⇒ c) decompose η := Unξ with ξ ∈ H0 ,
n ≥ 0, as

η = P0η + P⊥
0 η .

By assumption, we have for all ζ ∈ H0 :

0 = <UmP⊥
0 η, ζ > = <P⊥

0 η, U−mζ > ,

hence P⊥
0 η is orthogonal to H]−∞,0] as this holds for all m ≥ 0; it follows

that
P]−∞,0]η = P]−∞,0]P0η + P]−∞,0]P

⊥
0 η = P0η .

Since the set of these vectors η is total in H[0,∞[ the assertion holds for all
η ∈ H[0,∞[ .

Finally, in order to deduce condition a) from condition c) we ‘apply’ Un to
condition c) and find

P]−∞,n]ξ = Pnξ
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for all ξ ∈ H[n,∞[ . Therefore, we obtain for ξ ∈ H0 and n,m ≥ 0:

Tn+mξ = P0U
n+mξ = P0U

nUmξ

= P0P]−∞,n]U
nUmξ = P0PnU

nUmξ

= P0U
nP0U

mξ = P0U
nTmξ

= TnTmξ.

��
It should be noted that the above result and its proof hold in continuous time
as well.

Corollary 4.3. A (minimal) functor of white noise carries a unitary dilation
of a semigroup into a stationary Markov process.

The proof is immediate from the above condition c) as such a functor trans-
lates the linear Markov property into the Markov property as defined in Sec-
tion 3.3. Moreover, it is clear that such a functor carries the semigroup of the
unitary dilation into the semigroup of transition operators of the correspond-
ing Markov process. Finally, we remark that an Ornstein-Uhlenbeck process
is obtained by applying the Gaussian functor as above to a unitary dilation.

The above geometric characterization of unitary dilations of semigroups
can be used in order to guess such a unitary dilation: Start with a contraction
T : H0 → H0 and assume that (H, U ;H0) is a unitary dilation of (H0, T ).
First of all the unitary U has to compensate the defect by which T differs
from a unitary. This defect can be determined as follows: Given ξ ∈ H0 we
obtain

‖Uξ‖2 − ‖Tξ‖2 = <ξ, ξ> − <Tξ, Tξ> = <ξ, ξ> − <T ∗Tξ, ξ>

= <1l− T ∗Tξ, ξ>

= ‖
√

1l− T ∗Tξ‖2 .

Therefore, 


T

√
1l− T ∗T



 : H0 �→
H0

⊕
H0

is an isometry. (We write operators on direct sums of copies of H0 as block
matrices with entries from B(H0).)

The easiest way to complete this isometry in order to obtain a unitary is
by putting

U1 :=




T −

√
1l− TT ∗

√
1l− T ∗T T ∗



 on
H0

⊕
H0

A short computation is necessary in order to show that T
√

1l− T ∗T =√
1l− TT ∗ T , hence U1 is indeed a unitary. Identifying the original copy of H0
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with the upper component of this direct sum we obviously have P0U1P0 = T .
On the other hand, if T was not already an isometry then P0U

2
1P0 would

differ from T 2 . The reason is that in this case the ‘they never come back
principle’ from the above proposition is obviously violated. In order to get it
satisfied we need to take care that elements after once having left the upper
copy of H0 and hence having arrived at the lower copy of H0 are not brought
back into the upper copy of H0 , in other words, they have to be brought
away. The easiest way to accomplish this is just to shift away these elements.
But also the elements having been shifted away are not allowed to come back,
so they have to be shifted further. Continuing this way of reasoning and also
taking care of negative times one finally arrives at a unitary dilation which
has a structure analogously to the one of the Markov process in Section 3.4:
Put

H := H0 ⊕
(⊕

Z

H0

)
= H0 ⊕ l2(Z;H0) .

Let U1 act on H0⊕H0
0 where H0

0 denotes the zero’th summand of
⊕

Z
H0 , and

extend U1 trivially to a unitary on all of H by letting it act as the identity on
the other summands. Denote by S the right shift on

⊕
Z
H0 = l2(Z;H0) and

extend it trivially to a unitary by letting it act as the identity on the summand
H0 ⊕ 0. Finally, put U := U1 ◦ S and define i0 : H0 ' ξ �→ ξ ⊕ 0 ∈ H , where
the 0 is the zero in l2(Z,H0), and put P0 := i∗ . This construction may be
summarized by the following picture:

H0

⊕
· · · ⊕ H0 ⊕ H0




U1

⊕ H0 ⊕ · · ·
−−−−−−−−−−−−−−→

S

By the above reasoning it is clear that (H, U ; i0, P0) is a unitary dilation of
(H0, T ). In general, this unitary dilation will not be minimal, but this can
easily be corrected: Put L :=

√
1l− TT ∗H0 and K :=

√
1l− T ∗TH0 where

the bar denotes the closure. If we substitute in the above picture the copies
of H0 by L for n ≥ 0 and by K for n < 0 so that the whole space H is now
of the form

H0

⊕
· · · ⊕ K ⊕ L ⊕ L ⊕ · · ·

then the unitary U as a whole is still well defined on this space and the
dilation will be minimal. For more details on the structure of unitary dilations
of semigroups in discrete and in continuous time we refer to [KüS1].
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4.2 Scattering for Unitary Dilations

In the above situation the unitary U might be considered as a perturbation
of the free evolution S , which is a shift, by the local perturbation U1 . This
is a simple example of the situation which is discussed in the Lax-Phillips
approach to scattering theory in [LaPh]. One way to compare the evolutions
U and S is to consider the wave operator

Φ− := lim
n→∞

S−nUn ,

if it exists. On ξ ∈ H[0,∞[ ∩ H⊥
0 we have Uξ = Sξ , hence Φ−ξ = ξ for such

ξ . From this observation it is almost immediate to conclude that

lim
n→∞

S−nUni0(ξ)

exists for ξ ∈ H0 if and only if limn→∞ Tnξ exists. From this one easily
derives the following result:

Proposition 4.4. In the above situation the following conditions are equiva-
lent:

a) Φ− := limn→∞ S−nUn exists in the strong operator topology and Φ−(H) ⊆
H⊥

0 .
b) limn→∞ Tn = 0 in the strong operator topology.

If this is the case then Φ−U = S|H⊥
0
Φ− . Since S|H⊥

0
is a shift, it follows, in

particular, that U is unitarily equivalent to a shift.
The following sections intend to develop an analogous approach for Markov

processes. They give a review of some of the results obtained in [KüMa3].

4.3 Markov Processes as Couplings to White Noise

For the following discussion we assume that all algebras are von Neumann
algebras and all states are faithful and normal.

Independence

On a probability space (A, ϕ) we frequently will consider the topology induced
by the norm ‖x‖2ϕ := ϕ(x∗x), which on bounded sets of A agrees with the
s(A,A∗) topology or the strong operator topology (A∗ denotes the predual
of the von Neumann algebra A).

Definition 4.5. Given (A, ϕ) then two von Neumann subalgebras A1 and
A2 of A are independent subalgebras of (A, ϕ) or independent with respect
to ϕ , if there exist conditional expectations P1 and P2 from (A, ϕ) onto A1

and A2 , respectively, and if

ϕ(x1x2) = ϕ(x1)ϕ(x2)

for any elements x1 ∈ A1, x2 ∈ A2 .
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Independence of subalgebras may be considered as an algebraic analogue to
orthogonality of subspaces in Hilbert space theory. Indeed, it is a short exercise
to prove that a functor of white noise as discussed in Section 3.5 will always
turn orthogonal subspaces of a Hilbert space into independent subalgebras.

The typical example of independence is the situation where

(A, ϕ) = (A1 ⊗A2, ϕ1 ⊗ ϕ2) ;

then A1 ⊗ 1l and 1l⊗A2 are independent.
There are, however, very different examples of independence. Another ex-

ample is obtained by taking A as the II1 -factor of the free group with two
generators a and b , equipped with the trace, and A1 and A2 as the com-
mutative subalgebras generated by the unitaries Ua and Ub , respectively,
representing the generators a and b . In this case A1 and A2 are called
freely independent. Other examples of independence are studied in [BKS],
[KüMa2]. A more detailed discussion of independence is contained in [Kü3]
and in [KüMa2].

White Noise

Roughly speaking white noise means that we have a stochastic process where
subalgebras for disjoint times are independent. In continuous time, however,
we cannot have a continuous time evolution on the one hand and independent
subalgebras of observables for each individual time t ∈ R on the other hand.
Therefore, in continuous time the notion of a stochastic process is too restric-
tive for our purpose and we have to consider subalgebras for time intervalls
instead of for individual times. This is the idea behind the following defini-
tion. It should be interpreted as our version of white noise as a generalized
stationary stochastic process as it is formulated for the classical case in [Hid].

Definition 4.6. A (non-commutative) white noise in time T = Z or T = R

is a quadruple (C, ψ, St; C[0,t]) where (C, ψ) is a probability space, (St)t∈T is
a group of automorphisms of (C, ψ) , pointwise weak*-continuous in the case
T = R , and for each t ∈ T, t ≥ 0 , C[0,t] is a von Neumann subalgebra of C
such that

(i) C is generated by the subalgebras
{
Ss(C[0,t])

∣∣ t ≥ 0, s ∈ T
}
;

(ii) C[0,s+t] is generated by C[0,s] and Ss(C[0,t]) , (s, t ≥ 0) ;
(iii) C[0,s] and Sr(C[0,t]) are independent subalgebras of (C, ψ) whenever s, t ≥

0 and r > s .

In such a situation we can define the algebras C[s,t] := Ss(C[0,t−s]) whenever
s ≤ t . Then subalgebras associated with disjoint time intervals are indepen-
dent. For an open interval I we denote by CI the union of all subalgebras CJ
with the interval J ⊂ I closed.
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Classical examples in discrete time are provided by Bernoulli systems with
n states in X := {1, · · · , n} and probability distribution µ := {λ1, · · · , λn}
on X . Define C := L∞(XZ, µZ), denote by S the map on C which is induced
by the coordinate left shift on XZ , and define C[0,t] as the set of all functions
in C which depend only on the time interval [0, t] . Then (C, ψ, St; C[0,t]) is a
white noise in the sense of the above definition.

This example is canonically generalised to the algebraic and non-commuta-
tive setting: one starts with some non-commutative probability space (C0, ψ0),
defines (C, ψ) as the infinite tensor product

⊗
Z
(C0, ψ0) with respect to the

infinite product state
⊗

Z
ψ0 , S as the tensor right shift on C , and C[0,t] as

the subalgebra generated by operators of the form · · · 1l⊗ 1l⊗ x0 ⊗ x1 ⊗ · · · ⊗
xt⊗ 1l⊗ · · · in C . Then (C, ψ, St; C[0,t]) is a white noise. If C0 is commutative
and finite dimensional then this example reduces to the previous one.

Other non-commutative examples can be constructed by using other forms
of independence, cf., e.g., [Kü3], [KüMa2].

As examples in continuous time one has, as the continuous analogue of
a Bernoulli system, classical white noise as it is discussed in [Hid]. Non-
commutative Boson white noise on the CCR algebra may be considered as the
continuous analogue of a non-commutative Bernoulli shift. Similarly, there is
the non-commutative Fermi white noise on the CAR algebra. Again, more
examples can be provided, such as free white noise and q -white noise [BKS].

In our algebraic context, white noise will play the same role which is played
by the two-sided Hilbert space shift systems on L2(R;N ) or l2(Z;N ) in the
Hilbert space context, where N is some auxiliary Hilbert space (cf. [SzNF],
[LaPh]). Indeed, any minimal functor of white noise will carry such a Hilbert
space shift system into a white noise in the sense of our definition. In partic-
ular, Gaussian white noise as it is discussed in [Hid] is obtained by applying
the Gaussian functor to the Hilbert space shift system L2(R), equipped with
the right translations. This explains the name ‘functor of white noise’ we have
chosen for such a functor.

Couplings to White Noise

Consider a two-sided stochastic process (A, ϕ, (αt)t∈T;A0) indexed by time
T = Z or R . For short we simply write (A, ϕ, αt;A0) for such a process. We
assume that the conditional expectation P0 : (A, ϕ) → A0 exists. It follows
from [Tak1] that also the conditional expectations PI : (A, ϕ)→ AI exist for
any time interval I .

The following definition axiomatizes a type of Markov process of which
the Markov processes constructed above are paradigmatic examples.

Definition 4.7. A stationary process (A, ϕ, αt;A0) is a coupling to white
noise if there exists a von Neumann subalgebra C of A and a (weak*-
continuous) group of automorphisms (St)t∈T of (A, ϕ) such that
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(i) A is generated by A0 and C ;
(ii) A0 and C are independent subalgebras of (A, ϕ) ;
(iii) There exist subalgebras C[0,t] , t ≥ 0 , of C such that (C, St|C , ϕ|C ; C[0,t]) is

a white noise and St|A0 is the identity;
iv) For all t ≥ 0 the map αt coincides with St on C[0,∞) and on C(−∞,−t) ,

whereas αt maps A0 ∨ C[−t,0] into A0 ∨ C[0,t] ;
(v) A[0,t] ⊂ A0 ∨ C[0,t] .

Here A∨B denotes the von Neumann subalgebra generated by von Neumann
subalgebras A and B .

It it obvious that the Markov processes constructed in Section 3.4 give
examples of couplings to white noise. Examples of independence other than
tensor products lead to other examples of couplings to white noise. Indeed,
whenever we apply a minimal functor of white noise to a unitary dilation as
described in Section 4.1 then the result will be a coupling to white noise. This
is the reason why we work with these abstract notions of couplings to white
noise. It is easy to see that whenever a stationary process is a coupling to
white noise in the above sense then it will be a Markov process.

In such a situation we define the coupling operators Ct := αt ◦ S−t for
t ≥ 0. So αt = Ct ◦ St and (Ct)t≥0 can be extended to a cocycle of the
automorphism group St and we consider (αt)t∈T as a perturbation of (St)t∈T .
Our requirements imply that Ct|C[t,∞) = Id and Ct|C(−∞,0) = Id for t ≥ 0.

There is a physical interpretation of the above coupling structure which
provides a motivation for its study. The subalgebra A0 of A may be inter-
preted as the algebra of observables of an open system, e.g, a radiating atom,
while C contains the observables of the surroundings (e.g., the electromagnetic
field) with which the open system interacts. Then St naturally describes the
free evolution of the surroundings, and αt that of the coupled system. Later
in these lectures we will discuss examples of such physical systems.

4.4 Scattering

Let us from now on assume that (A, ϕ, αt;A0)is a Markov process which has
the structure of a coupling to the white noise (C, ψ, St; C[0,t]). We are interested
in the question, under what conditions every element of A eventually ends
up in the outgoing noise algebra C[0,∞) . In scattering theory, this property is
called asymptotic completeness .

In the physical interpretation of quantum optics this means that any ob-
servable of the atom or molecule can eventually be measured by observing the
emitted radiation alone. Another example will be discussed in Chapter 7.

We start by defining the von Neumann subalgebra Aout of those elements
in A which eventually end up in C[0,∞) :

Aout :=
⋃

t≥0

α−t(C[0,∞)).
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The closure refers to the ‖·‖ϕ -norm. Let Q denote the conditional expectation
from (A, ϕ) onto the outgoing noise algebra C[0,∞) .

Lemma 4.8. For x ∈ A the following conditions are equivalent:

a) x ∈ Aout .
b) limt→∞ ‖Q ◦ αt(x)‖ϕ = ‖x‖ϕ.
c) ‖ · ‖ϕ - limt→∞ S−t ◦ αt(x) exists and lies in C .

If these conditions hold, then the limit in (c) defines an isometric *-homo-
morphism Φ− : Aout → C .

Lemma 4.9. For all x ∈ C the limit ‖ · ‖ϕ - limt→∞ α−t ◦ St(x) =: Ω−(x)
exists and Φ−Ω− = IdC . In particular, Φ− : Aout → C is an isomorphism.

In scattering theory the operators Ω− and Φ− , and the related operators
Ω+ := limt→∞ αt ◦ S−t and Φ+ := St ◦ α−t (taken as strong operator limits
in the ‖ · ‖ϕ - norm) are known as the Møller operators or wave operators
([LaPh]) associated to the evolutions (St)t∈T and (αt)t∈T . The basic result is
the following.

Theorem 4.10. [KüMa3] For a stationary process which is a coupling to
white noise the following conditions are equivalent:

a) A = Aout .
b) For all x ∈ A0 we have limt→∞ ‖Q ◦ αt(x)‖ϕ = ‖x‖ϕ .
c) The process has an outgoing translation representation, i.e., there exists an

isomorphism j : (A, ϕ)→ (C, ψ) with j|C[0,∞) = Id such that St◦j = j◦αt .

A stationary Markov process which is a coupling to white noise and satisfies
these conditions will be called asymptotically complete.

4.5 Criteria for Asymptotic Completeness

In this section we shall formulate concrete criteria for the asymptotic com-
pleteness of a stationary Markov process coupled to white noise.

As before, let Q denote the conditional expectation from (A, ϕ) onto the
outgoing noise algebra C[0,∞) , and put Q⊥ := IdA − Q . For t ≥ 0, let Zt
denote the compression Q⊥αtQ

⊥ of the coupled evolution to the orthogonal
complement of the outgoing noise.

Lemma 4.11. (Zt)t≥0 is a semigroup, i.e., for all s, t ≥ 0 ,

Zs+t = Zs ◦ Zt.

Now, let us note that for a ∈ A0

Zt(a) = Q⊥αtQ
⊥(a) = Q⊥αt

(
a− ϕ(a) · 1l

)
= Q⊥αt(a),
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so that
‖Zt(a)‖2ϕ = ‖a‖2ϕ − ‖Qαt(a)‖2ϕ.

Hence, by the above theorem asymptotic completeness is equivalent to the
condition that for all a ∈ A0

‖Zt(a)‖ϕ −→ 0 as t −→∞ .

In what follows concrete criteria are given to test this property of Zt in the
case of finite dimensional A0 and a tensor product structure of the coupling
to white noise.

Theorem 4.12. [KüMa3] Let (A, ϕ, αt;A0)be a Markov process with a finite
dimensional algebra A0 , and assume that this process is a tensor product
coupling to a white noise (C, ψ, S) . Let Q⊥ and Zt be as described above,
and let e1, e2, . . . , en be an orthonormal basis of A0 with respect to the scalar
product induced by ϕ on A0. Then the following conditions are equivalent:

a) A = Aout .
b) For all a ∈ A0 , limt→∞ ‖Zt(a)‖ϕ = 0 .
c) For all nonzero a ∈ A0 there exists t ≥ 0 such that ‖Zt(a)‖ϕ < ‖a‖ϕ .
d) For some t ≥ 0 , the n-tuple

{
Q ◦ αt(ej)

∣∣ j = 1, 2, · · ·n
}

is linearly
independent.

e) For some ε ≥ 0 , t ≥ 0 , and all x ∈ A[0,∞) ,

‖Ztx‖ϕ ≤ (1− ε)‖x‖ϕ.

4.6 Asymptotic Completeness in Quantum Stochastic Calculus

As a first application to a physical model we consider the coupling of a finite
dimensional matrix algebra to Bose noise. This is a satisfactory physical model
for an atom or molecule in the electromagnetic field, provided that the widths
of its spectral lines are small when compared to the frequencies of the radiation
the particle is exposed to. In [RoMa] this model was used to calculate the
nontrivial physical phenomenon known as the ‘dynamical Stark effect’, namely
the splitting of a fluorescence line into three parts with specified height and
width ratios, when the atom is subjected to extremely strong, almost resonant
radiation. The effect was calculated against a thermal radiation background,
which is needed in order to ensure faithfulness of the state on the noise algebra.
In the limit where the temperature of this background radiation tends to zero,
the results agreed with those in the physics literature, both theoretical [Mol]
and experimental [SSH].

The model mentioned above falls into the class of Markov chains with a
finite dimensional algebra A0 driven by Bose noise, as described briefly below.
In this section, we cast criterion (c) for asymptotic completeness of the above
theorem into a manageable form for these Markov processes.
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Although the main emphasis in these notes is put on discrete time, in the
following we freely use notions from quantum stochastic calculus. Some addi-
tional information on Lindblad generators and stochastic differential equations
may be found in Sect. 9.3. For a complete discussion we refer to [KüMa3].

For A0 we take the algebra Mn of all complex n× n matrices, on which
a faithful state ϕ0 is given by

ϕ0(x) := tr (ρx).

Here, ρ is a diagonal matrix with strictly positive diagonal elements summing
up to 1. The modular group of (A0, ϕ0) is given by

σt(x) := ρ−itxρit.

We shall couple the system (A0, ϕ0) to Bose noise (cf. [Par], [ApH], [LiMa]).
Let C denote the Weyl algebra over an m -fold direct sum of copies of L2(R),
on which the state ψ is given by

ψ(W (f1 ⊕ f2 ⊕ · · · ⊕ fm)) := exp



− 1
2

m∑

j=1

coth(1
2βj)‖fj‖

2



 .

The probability space (C, ψ) describes a noise source consisting of m channels
which contain thermal radiation at inverse temperatures β1, β2, · · · , βm . Let
the free time evolution St on C be induced by the right shift on the func-
tions f1, f2, · · · , fm ∈ L2(R). The GNS representation of (C, ψ) lives on the
2m -th tensor power of the Boson Fock space over L2(R) (cf. [Par]), where
annihilation operators Aj(t), (j = 1, · · · ,m) are defined by

Aj(t) := (1l⊗ 1l)⊗ · · · ⊗
(
c−j A(t)⊗ 1l− c+j 1l⊗A(t)∗

)
⊗ · · · ⊗ (1l⊗ 1l).

The operator is in the j -th position and the constants c+j and c−j are given
by

c+j :=

√
eβj

eβj + 1
, c−j :=

√
1

eβj + 1
.

In [LiMa], Section 9, Markov processes (A, ϕ, αt;A0) are constructed by cou-
pling to these Bose noise channels. They are of the following form.

A := A0 ⊗ C
ϕ := ϕ0 ⊗ ψ with P0(x⊗ y) := ψ(y)x;

αt(a) := u∗t (Id ⊗ St)(a)ut, (t ≥ 0); αt := (α−t)−1, (t < 0),

where ut is the solution of the quantum stochastic differential equation
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dut =

(
m∑

j=1

(
vj ⊗ dA∗

j (t)− v∗j ⊗ dAj(t)− 1
2 (c+j v

∗
j vj + c−j vjv

∗
j )⊗ 1l · dt

)

+(ih⊗ 1l) · dt
)
ut,

with initial condition u0 = 1l. The semigroup of transition operators on
(A0, ϕ0) associated to this Markov process is given by

P0 ◦ αt(a) =: Tt(a) = e−tL(a)

for a ∈ A0 , where the infinitesimal generator L : A0 → A0 is given by

L(a) = i[h, a]− 1
2

m∑

j=1

(
c+j (v∗j vja−2v∗j avj+av∗j vj)+c−j (vjv∗j a−2vjav∗j+avjv

∗
j )
)
.

Here vj ∈ A0 = Mn must be eigenvectors of the modular group σt of (A0, ϕ0)
and h must be fixed under σt .

Now, the key observation in [LiMa] and [RoMa] which we need here is the
following. Let Lεj be the operator x �→ [vεj , x] on A0 .

Observation. If Q is the projection onto the future noise algebra C[0,∞) , then

‖Qαt(x⊗ 1l)‖2

=
∑∞
k=0

∑
j∈{1,··· ,m}k

∑
ε∈{−1,1}k c

ε(1)
j(1) · · · c

ε(k)
j(k)

∫
0≤s1≤···≤sk≤t

∣∣∣ϕ
(
Tt−sk

L
ε(k)
j(k)Tsk−sk−1 · · ·Ts2−s1L

ε(1)
j(1)Ts1(x)

)∣∣∣
2

ds1 · · · dsk.

Together with the above theorem this leads to the following results concerning
asymptotic completeness.

Proposition 4.13. The system (A, ϕ, αt;A0)described above is asymptoti-
cally complete if and only if for all nonzero x ∈ Mn there are t > 0 ,
k ∈ N , and s1, s2, · · · , sk satisfying 0 ≤ s1 ≤ · · · ≤ sk ≤ t , j(1), · · · , j(k) ∈
{1, · · ·m} and ε ∈ {−1, 1}m such that

ϕ
(
Tt−sk

L
ε(k)
j(k) · · ·Ts2−s1L

ε(1)
j(1)Ts1(x)

)
�= 0.

In particular, if ϕ0 is a trace, i.e. ρ = 1
n1l in the above, then ϕ0 ◦ Tt = ϕ

and ϕ0 ◦ Lεj = 0, so that the system can never be asymptotically complete
for n ≥ 2. This agrees with the general idea that a tracial state ϕ should
correspond to noise at infinite temperature, i.e., to classical noise [KüMa1].
Obviously, if C is commutative there can be no isomorphism j between C
and C ⊗Mn .
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Corollary 4.14. A sufficient condition for (A, ϕ, αt;A0) to be asymptotically
complete is that for all x ∈ Mn there exists k ∈ N , j ∈ {1, 2, · · · ,m}k , and
ε ∈ {−1, 1}k such that

ϕ
(
L
ε(k)
j(k) · · ·L

ε(1)
j(1)

)
�= 0.

In particular, the Wigner-Weisskopf atom treated in [RoMa] is asymptotically
complete.

5 Markov Processes in the Physics Literature

In this chapter we compare our approach to Markov processes developed in
the first three chapters with other ways of describing Markovian behaviour in
the physics literature.

5.1 Open Systems

First, we compare our formalism of quantum probability with a standard
discussion of open quantum systems as it can be found in a typical book on
quantum optics. We will find that these approaches can be easily translated
into each other. The main difference is that the discussion of open systems in
physics usually uses the Schrödinger picture while we work in the Heisenberg
picture which is dual to it. The linking idea is that a random variable i
identifies A0 with the observables of an open subsystem of (A, ϕ).

Being more specific the description of an open system usually starts with
a Hilbert space

H = Hs ⊗Hb .
The total Hilbert space H decomposes into a Hilbert space Hs for the open
subsystem and a Hilbert space Hb for the rest of the system which is usually
considered as a bath .

Correspondingly, the total Hamiltonian decomposes as

H = Hs + Hb + Hint ,

more precisely,

H = Hs ⊗ 1l + 1l⊗Hb + Hint

where Hs is the free Hamiltonian of the system, Hb is the free Hamiltonian
of the bath and Hint stands for the interaction Hamiltonian.

At the beginning, at time t = 0, the bath is usually assumed to be in
an equilibrium state. Hence its state is given by a density operator ρb on Hb

which commutes with Hb : [ρb,Hb] = 0.
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Next, one can frequently find a sentence similar to “if the open system is
in a state ρs then the composed system is in the state ρs⊗ρb ”. The mapping
ρs �→ ρs ⊗ ρb from states of the open system into states of the composed
system is dual to a conditional expectation.

Indeed, if we denote by A0 the algebra B(Hs) and by C the algebra
B(Hb) and if ψb on C is the state induced by ρb that is ψb(y) = trb(ρb · y)
for y ∈ C , then the mapping

A0 ⊗ C ' x⊗ y �→ ψb(y) · x⊗ 1l

extends to a conditional expectation of tensor type P = Pψb
from A0 ⊗ C to

A0 ⊗ 1l such that

trs(ρs(P (x⊗ y))) = tr(ρs ⊗ ρb · x⊗ y)

where we identified A0 ⊗ 1l with A0 . This duality is an example of the type
of duality discussed in Sect. 2.2.

A further step in discussing open systems is the introduction of the partial
trace over the bath: If the state of the composed system is described by a
density operator ρ on Hs⊗Hb (which, in general, will not split into a tensor
product of density operators) then the corresponding state of the open system
is given by the partial trace trb(ρ) of ρ over Hb . The partial trace on a tensor
product ρ = ρ1 ⊗ ρ2 of density matrices ρ1 on Hs and ρ2 on Hb is defined
as

trb(ρ) = trb(ρ1 ⊗ ρ2) = trb(ρ2) · ρ1

and is extended to general ρ by linearity and continuity. It thus has the
property

tr(ρ · x⊗ 1l) = trs(trb(ρ) · x)

for all x ∈ A0 , that is x on Hs , and is therefore dual to the random variable

i : B(Hs) ' x �→ x⊗ 1l ∈ B(Hs)⊗B(Hb) .

The time evolution in the Schrödinger picture is given by ρ �→ utρu
∗
t with

ut = eiHt . Dual to it is the time evolution

x �→ u∗txut

in the Heisenberg picture which can be viewed as a time translation αt of a
stochastic process (it)t with it(x) := αt ◦ i(x).

Finally, the reduced time evolution on the states of the open system maps
an initial state ρs of this system into

ρs(t) := trb(ut · ρs ⊗ ρb · u∗t ) .
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Thus the map ρs �→ ρs(t) is the composition of the maps ρs �→ ρs ⊗ ρb ,
ρ �→ utρu

∗
t , and ρ �→ trb(ρ). Hence it is dual to the composition of the maps

i, αt , and P , that is to

Tt : A0 �→ A0 : x �→ P ◦ αt ◦ i(x) = P (it(x))

which is a transition operator of this stochastic process.
In almost all realistic models this stochastic process will not have the

Markov property. Nevertheless, in order to make the model accessible to com-
putations one frequently performs a so–called ‘Markovian limit’. Mathemat-
ically this turns this process into a kind of Markov process. Physically, it
changes the system in such a way that the dynamics of the heat bath looses
its memory. Hence its time evolution would become a kind of white noise. In
many cases it is not possible to perform such a limit rigorously on the whole
system. In important cases one can show that at least the reduced dynamics
of the open system converges to a semigroup (e.g. when performing a weak
coupling limit cf. [Dav2]). Sometimes one already starts with the white noise
dynamics of a heat bath and changes only the coupling (singular coupling
limit cf. [KüS1]).

5.2 Phase Space Methods

In the physics literature on quantum optics one can frequently find a different
approach to quantum stochastic processes: if the system under observation is
mathematically equivalent to a system of one or several quantum harmonic
oscillators – as it is the case for one or several modes of the quantized electro-
magnetic field – then phase space representations are available for the den-
sity matrices of the system. The most prominent of these representations are
the P –representation, the Wigner–representation, and the Q–representation
(there exist other such representations and even representations for states of
other quantum systems). The idea is to represent a state by a density func-
tion, a measure, or a distribution on the phase space of the corresponding
classical physical system. These density functions are interpreted as classical
probability distributions although they are not always positive. This provides
a tool to take advantage of ideas of classical probability:

If (Tt)t≥0 on A0 is a semigroup of transition operators it induces a time
evolution ρ �→ ρt on the density operators and thus on the corresponding
densities on phase space.

With a bit of luck this evolution can be treated as if it were the evolution
of probabilities of a classical Markov process and the machinery of partial
differential equations can be brought into play (cf. also our remarks in Sec-
tion 9.1). It should be noted, however, that a phase space representation does
not inherit all properties from the quantum Markov process. It is a description
of Markovian behaviour on the level of a phenomenological description. But
it can not be used to obtain a representation of the quantum Markov process
on the space of its paths.
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5.3 Markov Processes with Creation and Annihilation Operators

In the physics literature a Markov process of an open quantum system as in
Sect. 5.1 is frequently given by certain families (A∗

t )t and (At)t of creation
and annihilation operators. The relation to the above description is the fol-
lowing: If the open system has an algebra A0 of observables which contains an
annihilation operator A0 then a Markovian time evolution αt of the composed
system applies, in particular, to A0 and gives an operator At . Sometimes the
operators (At)t can be obtained by solving a quantum stochastic differential
equation (cf. Sect. 9.3).

6 An Example on M2

In this section we discuss Markov processes of the type discussed in Section 3.4
for the simplest non-commutative case. They have a physical interpretation in
terms of a spin- 1

2 -particle in a stochastic magnetic field. More information on
this example can be found in [Kü1]. A continuous time version of this example
is discussed in [KüS2].

6.1 The Example

We put A0 := M2 and ϕ0 := tr , the tracial state on M2 .
If (C0, ψ0) is any probability space then the algebra M2⊗C is canonically

isomorphic to the algebra M2(C) of 2 × 2-matrices with entries in C : The
element

(
x11 x12

x21 x22

)
⊗ 1l ∈ M2 ⊗ C

corresponds to (
x11 · 1l x12 · 1l
x21 · 1l x22 · 1l

)
∈ M2(C) ,

while the element
1l⊗ c ∈ M2 ⊗ C (c ∈ C)

corresponds to (
c 0
0 c

)
∈ M2(C) .

Accordingly, the state tr ⊗ ψ on M2 ⊗ C is identified with

M2(C) '
(
c11 c12
c21 c22

)
�→ 1

2 (ψ(c11) + ψ(c22))

on M2(C), and the conditional expectation P0 from (M2 ⊗ C, tr ⊗ ψ) onto
M2 ⊗ 1l reads as
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M2(C) '
(
c11 c12
c21 c22

)
�→

(
ψ (c11) ψ (c12)
ψ (c21) ψ (c22)

)
∈M2

when we identify M2 ⊗ 1l with M2 itself.
In Sect. 3.4 we saw that whenever we have a non-commutative probability

space (C0, ψ0) and an automorphism α1 of (M2⊗C0, tr⊗ψ0), then we can ex-
tend this to a stationary Markov process. We begin with the simplest possible
choice for (C0, ψ0): put Ω0 := {−1, 1} and consider the probability measure
µ0 on Ω0 given by µ0({−1}) = 1

2 = µ0({1}). The algebra C0 := L∞(Ω0, µ0)
is just C

2 and the probability measure µ0 induces the state ψ0 on C0 which
is given by ψ0(f) = 1

2f(−1) + 1
2f(1) for a vector f ∈ C0 .

In this special case there is yet another picture for the algebra M2⊗C0 =
M2 ⊗ C

2 . It can be canonically identified with the direct sum M2 ⊕M2 in
the following way. When elements of M2⊗C0 = M2(C0) are written as 2× 2-
matrices with entries fij in C0 = L∞(Ω0, µ0), then an isomorphism is given
by

M2(C0)→M2 ⊕M2 :
(
f11 f12

f21 f22

)
�→

(
f11(−1) f12(−1)
f21(−1) f22(−1)

)
⊕
(
f11(1) f12(1)
f21(1) f22(1)

)
.

Finally, we need to define an automorphism α1 . We introduce the following
notation: a unitary u in an algebra A induces an inner automorphism Adu :
A → A, x �→ u∗ · x · u . For any real number ω we define the unitary wω :=(

1 0
0 eiω

)
∈M2 . It induces the inner automorphism

Adwω : M2 →M2,

(
x11 x12

x21 x22

)
�→

(
x11 x12eiω

x21e−iω x22

)
.

Now, for some fixed ω define the unitary u := w−ω⊕wω ∈M2⊕M2 = M2⊗C0 .
It induces the automorphism α1 := Adu which is given by Adw−ω ⊕ Adwω
on M2 ⊕M2 .

To these ingredients there corresponds a stationary Markov process as in
Sect. 3.4. From the above identifications it can be immediately verified that
the corresponding one–step transition operator is given by

T : M2 →M2, x =
(
x11 x12

x21 x22

)
�→ P0 ◦ α1(x⊗ 1l) =

(
x11 x12ρ
x21ρ x22

)

where ρ = 1
2 (eiω + e−iω) = cos(ω).

6.2 A Physical Interpretation:
Spins in a Stochastic Magnetic Field

We now show that this Markov process has a natural physical interpretation: it
can be viewed as the description of a spin- 1

2 -particle in a stochastic magnetic
field. This system is at the basis of nuclear magnetic resonance.
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Spin Relaxation

We interpret the matrices σx , σy , and σz in M2 as observables of (multiples
of) the spin component of a spin- 1

2 -particle in the x-, y-, and z-directions,
respectively (cf. Sect. 1.2).

If a probe of many spin- 1
2 -particles is brought into an irregular magnetic

field in the z-direction, one finds that the behaviour in time of this probe is
described by the semigroup of operators on M2 given by

Tt : M2 →M2 : x =
(
x11 x12

x21 x22

)
�→

(
x11 x12 · e−

1
2λt

x21 · e−
1
2λt x22

)
,

where the real part of λ is larger than zero.
When we restrict to discrete time steps and assume λ to be real (in phys-

ical terms this means that we change to the interaction picture), then this
semigroup reduces to the powers of the single transition operator

T : M2 →M2 : x =
(
x11 x12

x21 x22

)
�→

(
x11 ρ · x12

ρ · x21 x22

)

for some ρ , 0 ≤ ρ < 1. This is just the operator, for which we constructed
the Markov process in the previous section. We see that polarization in the
z-direction remains unaffected, while polarization in the x-direction and y-
direction dissipates to zero. We want to see whether our Markov process gives
a reasonable physical explanation for the observed relaxation.

A Spin−1
2
−Particle in a Magnetic Field

A spin- 1
2 -particle in a magnetic field B in the z-direction is described by

the Hamiltonian H = 1
2
e
mB · σz = 1

2ω · σz , where e is the electric charge
and m the mass of the particle. ω is called the Larmor–frequency. The time
evolution, given by e−iHt , describes a rotation of the spin–particle around the
z-axis with this frequency:

Ad e−iHt(
(
x11 x12

x21 x22

)
) =

(
x11 eiωtx12

e−iωtx21 x22

)
.

Since we are discussing the situation for discrete time steps, we consider
the unitary

wω := e−iH =
(

e−iω/2 0
0 eiω/2

)
.

It describes the effect of the time evolution after one time unit in a field of

strength B. Note that Adwω = Adwω with wω =
(

1 0
0 eiω

)
as in Sect. 6.1.
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A Spin−1
2
−Particle in a Magnetic Field with Two Possible Values

Imagine now that the magnetic field is constant during one time unit, that it
always has the same absolute value |B| such that cosω = ρ , but that it points
into +z-direction and –z-direction with equal probability 1

2 . Representing the
two possible states of the field by the points in Ω0 = {+1,−1} , then the mag-
netic field is described by the probability space (Ω0, µ0) = ({+1,−1}, (1

2 ,
1
2 ))

as in the previous section. The algebraic description of this magnetic field
leads to (C0, ψ0) where C0 is the two-dimensional commutative algebra C

2 ,
considered as the algebra of functions on the two points of Ω0 , while ψ0 is
the state on C0 which is induced by the probability measure µ0 .

The spin- 1
2 -particle is described by the algebra of observables A0 = M2

and assuming that we know nothing about its polarization, then its state is
appropriately given by the tracial state tr on M2 (this state is also called
the “chaotic state”).

Therefore, the system which is composed of a spin- 1
2 -particle and of a

magnetic field with two possible values, has M2⊗C0 as its algebra of observ-
ables. We use the identification of this algebra with the algebra M2 ⊕M2 as
it was described in Section 6.1.

The point −1 ∈ Ω0 corresponds to the field in –z-direction. Therefore,
the first summand of M2 ⊕ M2 corresponds to the spin- 1

2 -particle in the
field in –z-direction and the time evolution on this summand is thus given
by Adw−ω = Adw−ω . On the second summand it is accordingly given by
Adwω = Adwω . Therefore, the time evolution of the whole composed system
is given by the automorphism α1 = Adw−ω ⊕ Adwω on (M2 ⊗ C0, tr ⊗ ψ0).
We thus have all the ingredients which we needed in Section 3.4 in order to
construct a Markov process.

A Spin−1
2
−Particle in a Stochastic Magnetic Field

What is the interpretation of the whole Markov process? As in Section 3.4,
denote by (C, ψ) the infinite tensor product of copies of (C0, ψ0), and denote
by S the tensor right shift on it. Then (C, ψ) is the algebraic description
of the classical probability space (Ω,µ) whose points are two-sided infinite
sequences of −1’s and 1’s, equipped with the product measure constructed
from µ0 = (1

2 ,
1
2 ). The tensor right shift S is induced from the left shift

on these sequences. Therefore, (C, ψ, S; C0) is the algebraic description of the
classical Bernoulli–process, which describes, for example, the tossing of a coin,
or the behaviour of a stochastic magnetic field with two possible values, +B
or −B , which are chosen according to the outcomes of the coin toss: (C, ψ, S)
is the mathematical model of such a stochastic magnetic field. Its time zero-
component is coupled to the spin- 1

2 -particle via the interaction–automorphism
α1 . Finally, the Markov process as a whole describes the spin- 1

2 -particle which
is interacting with this surrounding stochastic magnetic field.
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This is precisely how one explains the spin relaxation T : The algebra M2

of spin observables represents a large ensemble of many spin- 1
2 -particles. As-

sume, for example, that at time zero they all point in the x-direction. So one
measures a macroscopic magnetic moment in this direction. Now they feel the
above stochastic magnetic field in z-direction. In one time unit, half of the
ensemble feels a field in –z-direction and starts to rotate around the z-axis,
say clockwise; the other half feels a field in +z-direction and starts to rotate
counterclockwise. Therefore, the polarization of the single spins goes out of
phase and the overall polarization in x-direction after one time step reduces by
a factor ρ . Alltogether, the change of polarization is appropriately described
by T . After another time unit, cards are shuffled again: two other halfs of
particles, stochastically independent of the previous ones, feel the magnetic
fields in –z-direction and +z-direction, respectively. The overall effect in po-
larization is now given by T 2 , and so on. This description of the behaviour
of the particles in the stochastic magnetic field is precisely reflected by the
structure of our Markov process.

6.3 Further Discussion of the Example

The idea behind the construction of our example in Sect. 6.1 depended on
writing the transition operator T as a convex combination of the two automor-
phisms Adw−ω and Adwω . This idea can be generalized. In fact, whenever
a transition operator of a probability space (A0, ϕ0) is a convex combination
of automorphisms of (A0, ϕ0) or even a convex integral of such automor-
phisms, a Markov process can be constructed in a similar way ([Kü2]). There
is even a generalization to continuous time of this idea, which is worked out
in ([KüMa1]).

We do not want to enter into such generality here. But it is worth going at
least one step further in this direction. Obviously, there are many more ways
of writing T as a convex combination of automorphisms of M2 : let µ0 be any
probability measure on the intervall [−π, π] such that

∫ π
−π eiωdµ0(ω) = ρ .

Obviously, there are many such probability measures. When we identify the
intervall [−π, π] canonically with the unit circle in the complex plane and µ0

with a probability measure on it, this simply means that the barycenter of µ0

is ρ . Then it is clear that T =
∫ π
−π Adwωdµ0(ω), i.e., T is a convex integral

of automorphisms of the type Adwω . To any such representation of T there
correspond (C0, ψ0) and α1 as follows. Put C0 := L∞([−π, π], µ0) and let ψ0

be the state on C0 induced by µ0 . The function [−π, π] ' ω �→ eiω defines a

unitary v in C0 . It gives rise to a unitary u :=
(

1l 0
0 v

)
∈ M2(C0) ∼= M2 ⊗ C0

and thus to an automorphism α1 := Adu of (M2⊗C0, tr⊗ψ0). Our example
of Sect. 6.1 is retained when choosing µ0 := 1

2δ−ω + δω , where δx denotes
the Dirac measure at point x (obviously, it was no restriction to assume
ω ∈ [−π, π]).
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In this way for any such µ we obtain a Markov process for the same
transition operator T . By computing the classical dynamical entropy of the
commutative part of these processes one sees that there are uncountably many
non-equivalent Markov processes of this type. This is in sharp contrast to the
classical theory of Markov processes: up to stochastic equivalence a classical
Markov process is uniquely determined by its semigroup of transition opera-
tors. On the other hand, our discussion of the physical interpretation in the
previous section shows that these different Markov processes are not artificial,
but they correspond to different physical situations: The probability measure
µ0 on the points ω appears as a probability measure on the possible values
of the magnetic fields. It was rather artificial when we first assumed that the
field B can only attain two different values of equal absolute value. In general,
we can describe any stochastic magnetic field in the z-direction as long as it
has no memory in time.

There are even non-commutative Markov processes for a classical transi-
tion operator which are contained in these examples: The algebra M2 contains
the two-dimensional commutative subalgebra generated by the observable σx ,
and the whole Markov–process can be restricted to the subalgebra generated
by the translates of this observable. This gives a Markov process with val-
ues in the two-dimensional subalgebra C

2 , which still is non-commutative for
certain choices of µ0 . Thus we also have non-commutative processes for a
classical transition matrix. Details may be found in [Kü2].

7 The Micro-Maser as a Quantum Markov Process

The micro-maser experiment as it is carried through by H. Walther [VBWW]
turns out to be another experimental realization of a quantum Markov process
with all the structure described in Section 3.4. It turns out that the scat-
tering theory for such processes leads to some suggestions on how to use a
micro-maser for the preparation of interesting quantum states. In the follow-
ing we give a description of this recent considerations. For details we refer to
[WBKM] for the results on the micro-maser, to [KüMa3] for the mathemati-
cal background on general scattering theory, and to [Haa] for the asymptotic
completeness of this system. For the physics of this experiment we refer to
[VBWW].

7.1 The Experiment

In the micro-maser experiment a beam of isolated Rubidium atoms is pre-
pared. The atoms of this beam are prepared in highly exited Rydberg states
and for the following only two of these states are relevant. Therefore we may
consider the atoms as quantum mechanical two-level systems. Thus the alge-
bra of observables for a single atom is the algebra M2 of 2× 2-matrices. The
atoms with a fixed velocity are singled out and sent through a micro-wave
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cavity which has small holes on both sides for the atoms to pass through this
cavity. During their passage through the cavity the atoms interact with one
mode of the electromagnetic field in this cavity which is in tune with the energy
difference of the two levels of these atoms. One mode of the electromagnetic
field is described mathematically as a quantum harmonic oscillator. Hence its
algebra of observable is given by B(H) where H = L2(R) or H = l2(N),
depending on whether we work in the position representation or in the energy
representation. The atomic beam is weak enough so there is at most one atom
inside the cavity at a time and since the atoms all come with the same veloc-
ity there is a fixed time for the interaction between atom and field for each
of these atoms. To simplify the discussion further we assume that the time
between the passage through the cavity of two successive atoms is always the
same. So there is a time unit such that one atom passes during one time unit.
This is not realistic but due to the particular form of the model (cf. below)
the free evolution of the field commutes with the interaction evolution and
can be handled separately. Therefore it is easy to turn from this description
to a more realistic description afterwards where the arrival times of atoms in
the cavity have, for example, a Poissonian distribution.

For the moment we do not specify the algebras and the interaction involved
and obtain the following scheme of description for the experiment: ϕ stands
for the state of the field mode and (ρi)i denote the states of the successive
atoms. For the following discussion it will be convenient to describe states by
their density matrices.

Micro-
Wave-
Cavity

isolated Rubidium atoms
in Rydberg-states

←− • ←− • ←− • ←− • ←−

ϕ

· · · ρ−1 ⊗ ρ0 ⊗ ρ1 ⊗ ρ2 . . .

7.2 The Micro-Maser Realizes a Quantum Markov Process

We consider the time evolution in the interaction picture. For one time
step the time evolution naturally decomposes into two parts. One part de-
scribes the interaction between a passing atom and the field, the other part
describes the moving atoms.
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Consider one atom which is passing through the cavity during one time
step. Assuming that before the passage the cavity was in a state ϕ and the
atom was in a state ρ then the state of the system consising of field mode
and atom is now given by uint · ϕ ⊗ ρ · u∗int where uint = eiHt0 , H is the
Hamiltonian, and t0 is the interaction time given by the time an atom needs
to pass through the cavity.

The other part of the time evolution describes the moving atoms. For one
time unit it is the tensor right shift in the tensor product of states of the
flying atoms. Thus the time evolution for one step of the whole system might
be written in the following suggestive way:

ϕ

uint ⊗ u∗int

tensor left shift ( · · · ρ−1 ⊗ ρ0 ⊗ ρ1 ⊗ ρ2 · · · )

We continue to use this suggestive picture for our description. Then a descrip-
tion of this system in the Heisenberg picture looks as follows: If x ∈ B(H) is
an observable of the field mode and (yi)i ∈ M2 are observables of the atoms
then a typical observable of the whole systems is given by

x

⊗
· · · y−1 ⊗ y0 ⊗ y1 · · ·

∈
B(H)
⊗

· · · M2 ⊗ M2 ⊗ M2 · · ·
and arbitrary observables are limits of linear combinations of such observables.
The dynamics of the interaction between field mode and one passing atom is
now given by

αint :
x
⊗
y0

�→ u∗int ·
x
⊗
y0

· uint

while the dynamics of the chain of moving atoms is now the tensor right shift
on the observables:

S : · · · y−1 ⊗ y0 ⊗ y1 ⊗ y2 · · · �→ · · · y−2 ⊗ y−1 ⊗ y0 ⊗ y1 · · ·

Therefore, the complete dynamics for one time step is given by α := αint · S
and can be written as

B(H)
⊗

· · · ⊗ M2 ⊗ M2




αint
⊗ M2 ⊗ · · ·



Quantum Markov Processes and Applications in Physics 305

−−−−−−−−−−−−−−→
S

We see that the dynamics of this systems is a realization of the dynamics of
a quantum Markov process of the type as discussed in Sect. 3.4.

7.3 The Jaynes–Cummings Interaction

Before further investigating this Markov process we need to be more specific
on the nature of the interaction between field mode and two-level atoms. In the
micro-maser regime it is a good approximation to assume that the interaction
is described by the Jaynes–Cummings model: On the Hilbert space l2(N)⊗C

2

of field mode and atom we can use the simplified Hamiltonian given by

H = �ωFa
∗a⊗ 1l + 1l⊗ �

2
ωAσz + g�(a+ a∗)⊗ (σ+ + σ−)

� �ωFa
∗a⊗ 1l + 1l⊗ �

2
ωAσz + g�(a⊗ σ+ + a∗ ⊗ σ−)

� �ω a∗a⊗ 1l + 1l⊗ �

2
ω σz + g�(a⊗ σ+ + a∗ ⊗ σ−) .

Here the first line is the original Hamiltonian of a field–atom interaction where
ωF is the frequency of the field mode, ωA is the frequency for the transition
between the two levels of our atoms, and g is the coupling constant. In the
second line this Hamiltonian is simplified by the rotating wave approximation
and in the third line we further assume ωF = ωA =: ω . The operators σ+

and σ− are the raising and lowering operators of a two-level system. The
Hamiltonian generates the unitary group

U(t) = e−
i
�

Ht

and we put uint := U(t0) where t0 is the interaction time needed for one
atom to pass through the cavity.

We denote by |n〉 ⊗ |↓ 〉 and |n〉 ⊗ |↑ 〉 the canonical basis vectors of the
Hilbert space where |n〉 denotes the n-th eigenstate of the harmonic oscillator
and | ↑ 〉 and | ↓ 〉 are the two eigenstates of the two-level atom. The Hilbert
space decomposes into subspaces which are invariant under the Hamiltonian
and the time evolution:

Denote by H0 the one-dimensional subspace spanned by |0〉 ⊗ | ↓ 〉 ; then
the restriction of H to H0 is given by H0 = 0. Hence the restriction of U(t)
to H0 is U0(t) = 1. For k ∈ N denote by Hk the two-dimensional subspace
spanned by the vectors |k〉 ⊗ |↓ 〉 and |k − 1〉 ⊗ |↑ 〉 . Then the restriction of
H to Hk is given by
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Hk = � ·
(

ωk g
√
k

g
√
k ωk

)

and hence the restriction of U(t) to Hk is

Uk(t) = eiωkt

(
cos g

√
kt −i sin g

√
kt

−i sin g
√
kt cos g

√
kt

)
.

Finally, if for some inverse temperatur β , 0 < β < ∞ , ϕβ and ψβ are the
equilibrium states for the free Hamiltonian of the field mode and of the two-
level-atom, respectively, then ϕβ⊗ψβ is invariant under the full time evolution
generated by the Jaynes–Cummings interaction Hamiltonian H from above.
Therefore, α1 := αint := Aduint on B(H)⊗M2 leaves this state invariant and
the dynamics of the micro-maser is the dynamics of a full stationary Markov
process (A, ϕ, αt;A0)as discussed in Sect. 3.4: Put

(A, ϕ) := (B(H), ϕβ)⊗ (
⊗

Z

(M2, ψβ)) ,

αt := αt for t ∈ Z with α := αint ◦ S , and A0 := B(H).

7.4 Asymptotic Completeness and Preparation of Quantum States

The long-term behaviour of this system depends very much on whether or
not a so-called trapped state condition is fulfilled. That means that for some
k ∈ N the constant g

√
kt0 is an integer multiple nπ of π for some n ∈ N . In

this case the transition

|k − 1〉 ⊗ |↑ 〉 ←→ |k〉 ⊗ |↓ 〉

is blocked. Therefore, if the initial state of the micro-maser has a density
matrix with non-zero entries only in the upper left k − 1× k − 1 corner then
the atoms, in whichever state they are, will not be able to create a state in the
micro-maser with more than k − 1 photons. This has been used [VBWW] to
prepare two-photon number states experimentally: the initial state of the field
mode is the vacuum, the two-level atoms are in the upper state | ↑ 〉 and the
interaction time is chosen such that the transition from two to three photons
is blocked. This forces the field-mode into the two-photon number state.

On the other hand, if no trapped state condition is fulfilled and all tran-
sitions are possible then the state of the field-mode can be controlled by the
states of the passing atoms [WBKM]. The mathematical reason is the follow-
ing theorem:

Theorem 7.1. If no trapped state condition is fulfilled then for every inverse
temperature β > 0 the Markov process (A, ϕ, αt;A0)as above, which describes
the time evolution of the micro-maser, is asymptotically complete.
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A proof is worked out in [Haa].
For convenience we recall from Chapter 4 that a Markov process as in

Section 3.4 is asymptotically complete if for all x ∈ A

Φ−(x) := lim
n→∞

S−nαn(x) exists strongly

and Φ−(x) ∈ 1l⊗ C .

Moreover, as was noted in Chapter 4, it suffices if this condition is satisfied
for all x ∈ A0 . For x ∈ A0 , however, we find that

αn(x⊗ 1l) = u∗n ·x⊗ 1l · un
un := Sn−1(uint) · Sn−2(uint) · . . . · S(Uint) · uint

and asymptotic completeness roughly means that for x ∈ A0 and for very
large n ∈ N there exists xnout ∈ C such that

αn(x⊗ 1l) = u∗n · x⊗ 1l · un ≈ 1l⊗ xnout .

We translate this into the Schrödinger picture and, for a moment, we use
again density matrices for the description of states. Then we find that if such
a Markov process is asymptotically complete then for any density matrix ϕn
of A0 and large n ∈ N we can find a density matrix ρ0 of C such that

un · ϕ0 ⊗ ρ0 · u∗n ≈ ϕn ⊗ ρ′

for some density matrix ρ′ of C and the choice of ρ0 is independent of the
initial state ϕ0 on A0 . This means that if we want to prepare a state ϕn on
A0 (in our case of the field mode) then even without knowing the initial state
ϕ0 of A0 we can prepare an initial state ρ0 on C such that the state ϕ0⊗ ρ0

evolves after n time steps, at least up to some ε , into the state ϕn on A0

and some other state ρ′ of C which, however, is not entangled with A0 .
This intuition can be made precise as follows: For simplicity we use discrete

time and assume that (A, ϕ, α;A0) is a Markov process which is a coupling
to a white noise (C, ψ, S; C[0,n]).

Definition 7.2. We say that a normal state ϕ∞ on A0 can be prepared if
there is a sequence ψn of normal states on C such that for all x ∈ A0 and
all normal initial states θ on A0

lim
n→∞

θ ⊗ ψn ◦ αn(x⊗ 1l) = ϕ∞(x) .

It turns out that for systems like the micro-maser this condition is even equiv-
alent to asymptotic completeness:
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Theorem 7.3. If the Markov process (A, ϕ, α;A0) is of the form as consid-
ered in Section 3.4 and if, in addition, the initial algebra A0 is finite dimen-
sional or isomorphic to B(H) for some Hilbert space H then the following
conditions are equivalent:

a) The Markov process (A, ϕ, α;A0) is asymptotically complete.
b) Every normal state on A0 can be prepared.

A proof of this result is contained in [Haa]. This theorem is also the key
for proving the above theorem on the asymptotic completeness of the micro-
maser.

Therefore, from a mathematical point of view it is possible to prepare an
arbitrary state of the field-mode with arbitrary accuracy by sending suitably
prepared atoms through the cavity. This raises the question whether also from
a physical point of view states of the micro-maser can be prepared by this
method. This question has been investigated in [WBKM], [Wel]. The results
show that already with a small number of atoms one can prepare interesting
states of the field mode with a very high fidelity. Details can be found in
[WBKM]. As an illustration we give a concrete example: If the field mode is
initially in the vacuum |0〉 and one wants to prepare the two-photon number
state |2〉 with 4 incoming atoms then by choosing an optimal interaction time
tint one can prepare the state |2〉 with a fidelity of 99.87% if the four atoms
are prepared in the state

|ψ0〉 =
√

0.867|↑ 〉|↑ 〉|↓ 〉|↓ 〉
+
√

0.069|↑ 〉|↓ 〉|↑ 〉|↓ 〉
−
√

0.052|↓ 〉|↑ 〉|↑ 〉|↓ 〉
+
√

0.005|↑ 〉|↓ 〉|↓ 〉|↑ 〉
−
√

0.004|↓ 〉|↑ 〉|↓ 〉|↑ 〉
+
√

0.003|↓ 〉|↓ 〉|↑ 〉|↑ 〉 .

8 Completely Positive Operators

8.1 Complete Positivity

After the discussion of some specific examples from physics we now come back
to discussing the general theory. A physical system is again described by its
algebra A of observables. We assume that A is, at least, a C∗ –algebra of
operators on some Hilbert space and we can always assume that 1l ∈ A . A
normalized positive linear state functional ϕ : A → C is interpreted either as
a physical state of the system or as a probability measure.
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All time evolutions and other ‘operations’ which we have considered so far
had the property of carrying states into states. This was necessary in order
to be consistent with their physical or probabilistic interpretation. In the
Heisenberg picture these ‘operations’ are described by operators on algebras
of operators. In order to avoid such an accumulation of ‘operators’ we talk
synonymously about maps. Given two C*-algebras A and B then it is obvious
that for a map T : A → B the following two conditions are equivalent:

a) T is state preserving: for every state ϕ on B the functional

ϕ ◦ T : A ' x �→ ϕ(T (x))

on A is a state, too.

b) T is positive and identity preserving: T (x) ≥ 0 for x ∈ A , x ≥ 0, and
T (1l) = 1l .

Indeed, all maps which we have considered so far had this property. A closer
inspection, however, shows that these maps satisfy an even stronger notion of
positivity called complete positivity.

Definition 8.1. A map T : A → B is n –positive if

T ⊗ Idn : A⊗Mn → B ⊗Mn : x⊗ y �→ T (x)⊗ y

is positive. It is completely positive if T is n–positive for all n ∈ N .

Elements of A⊗Mn may be represented as n×n–matrices with entries from
A . In this representation the operator T ⊗ Idn appears as the map which
carries such an n × n–matrix (xij)i,j into (T (xij))i,j with xij ∈ A . Thus
T is n -positive if such non-negative n × n -matrices are mapped again into
non-negative n× n -matrices.

From the definition it is clear that 1–positivity is just positivity and
(n + 1)–positivity implies n–positivity: in the above matrix representation
elements of A⊗Mn can be identified with n× n–matrices in the upper left
corner of all (n+ 1)× (n+ 1)–matrices in A⊗Mn+1 .

It is a non–trivial theorem that for commutative A or commutative B
positivity already implies complete positivity (cf. [Tak2], IV. 3). If A and B
are both non-commutative algebras, this is no longer true. The simplest (and
typical) example is the transposition on the (complex) 2 × 2–matices M2 .
The map

M2 '
(
a b
c d

)
�→

(
a c
b d

)
∈M2

is positive but not 2–positive hence not completely positive. From this example
one can proceed further to show that for all n there are maps which are n–
positive but not (n+1)–positive. It is true, however, that on Mn n–positivity
already implies complete positivity.
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It is an important property of 2–positive and hence of completely positive
maps that they satisfy a Schwarz–type inequality:

‖T‖T (x∗x) ≥ T (x)∗T (x)

for x ∈ A (the property T (x∗) = T (x)∗ follows from positivity).
It can be shown that ∗ –homomorphisms and conditional expectations are

automatically completely positive. All maps which we have considered so far
are either of these types or are compositions of such maps, like transition
operators. Hence they are all completely positive. This is the mathematical
reason why we have only met completely positive operators.

One could wonder, however, whether there is also a physical reason for
this fact.

8.2 Interpretation of Complete Positivity

In the introduction to this paragraph we argued that time evolutions should
be described by positive identity preserving maps. Now suppose that T is such
a time evolution on a system A and that S is a time evolution of a different
system B . Even if these systems have nothing to do with each other we can
consider them – if only in our minds – as parts of the composed system A⊗B
whose time evolution should then be given by T ⊗S – there is no interaction.
Being the time evolution of a physical system the operator T ⊗S , too, should
be positive and identity preserving. This, however, is not automatic: already
for the simple case B = M2 and S = Id there are counter-examples as
mentioned above. This is the place where complete positivity comes into play.
With this stronger notion of positivity we can avoid the above problem.

Indeed, if T : A1 → A2 and S : B1 → B2 are completely positive operators
then T⊗S can be defined uniquely on the minimal tensor product A1⊗B1 and
it becomes again a completely positive operator from A1⊗B1 into A2⊗B2 . It
suffices to require that T preserves its positivity property when tensored with
the maps Id on Mn . Then T can be tensored with any other map having
this property and the composed system still has the right positivity property:
Complete positivity is stable under forming tensor products. Indeed, this holds
not only for C*-tensor products, but also for tensor products in the category
of von Neumann algebras as well. For these theorems and related results we
refer to the literature, for example ([Tak2], IV. 4 and IV. 5).

8.3 Representations of Completely Positive Operators

The fundamental theorem behind almost all results on complete positivity
is Stinespring’s famous representation theorem for completely positive maps.
Consider a map T : A → B . Since B is an operator algebra it is contained in
B(H) for some Hilbert space H and it is no restriction to assume that T is
a map T : A → B(H).
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Theorem 8.2. (Stinespring 1955, cf. [Tak2]). For a map T : A → B(H) the
following conditions are equivalent:

a) T is completely positive.
b) There is a further Hilbert space K , a representation π : A → B(K) and

a bounded linear map v : H → K such that

T (x) = v∗π(x)v

for all x ∈ A . If T (1l) = 1l then v is an isometry.

The triple (K, π, v) is called a Stinespring representation for T . If it is minimal
that is, the linear span of {π(x)vξ , ξ ∈ H , x ∈ A} is dense in K , then the
Stinespring representation is unique up to unitary equivalence.

From Stinespring’s theorem it is easy to derive the following concrete rep-
resentation for completely positive operators on Mn .

Theorem 8.3. For T : Mn →Mn the following conditions are equivalent:

a) T is completely positive.
b) There are elements a1, . . . , ak ∈Mn for some k such that

T (x) =
k∑

i=1

a∗i xai .

Clearly, T is identity preserving if and only if
∑k
i=1 a

∗
i ai = 1l .

Such decompositions of completely positive operators are omnipresent when-
ever completely positive operators occur in a physical context. It is important
to note that such a decomposition is by no means uniquely determined by
T (see below). In a physical context different decompositions rather corre-
spond to different physical situations (cf. the discussion in Sect. 6.3; cf. also
Sect. 10.2).

The following basic facts can be derived from Stinespring’s theorem with-
out much difficulty:

A concrete representation T (x) =
∑k
i=1 a

∗
i xai for T can always be chosen

such that {a1, a2, . . . , ak} ⊆Mn is linearly independent, in particular, k ≤ n2 .
We call such a representation minimal. The cardinality k of a minimal repre-
sentation of T is uniquely determined by T , i.e., two minimal representations
of T have the same cardinality. Finally, all minimal representations can be
characterized by the following result.

Proposition 8.4. Let T (x) =
∑k
i=1 a

∗
i xai and S(x) =

∑l
j=1 b

∗
jxbj be two

minimal representations of completely positive operators S and T on Mn .
The following conditions are equivalent:

a) S = T .
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b) k = l and there is a unitary k × k–matrix Λ = (λij)i,j such that

ai =
k∑

j=1

λij bj .

The results on concrete representations have an obvious generalization to the
case n = ∞ . Then infinite sums may occur, but they must converge in the
strong operator topology on B(H).

9 Semigroups of Completely Positive Operators
and Lindblad Generators

9.1 Generators of Lindblad Form

In Section 3.3 we saw that to each Markov process there is always associated
a semigroup of completely positive transition operators on the initial algebra
A0 . If time is continuous then in all cases of physical interest this semigroup
(Tt)t≥0 will be strongly continuous. According to the general theory of one-
parameter semigroups (cf. [Dav2]) the semigroup has a generator L such that

d
dt
Tt(x) = L(Tt(x))

for all x in the domain of L , which is formally written as Tt = eLt . In the
case of a classical Markov process with values in R

n one can say much more.
Typically, L has the form of a partial differential operator of second order of
a very specific form like

Lf(x) =
∑

i

ai(x)
∂

∂xi
f(x) +

∑

i,j

1
2
bij(x)

∂2

∂xi∂xj
f(x) +

∫

Rn

f(y)dw(y)

for f a twice continuously differentiable function on R
n and suitable functions

ai , bij and a measure w(·, t).
It is natural to wonder whether a similar characterization of generators can

be given in the non-commutative case. This turns out to be a difficult problem
and much research on this problem remains to be done. A first breakthrough
was obtained in a celebrated paper by G. Lindblad [Lin] in 1976 and at the
same time, for the finite dimensional case, in [GKS].

Theorem 9.1. Let (Tt)t≥0 be a semigroup of completely positive identity pre-
serving operators on Mn with generator L .

Then there is a completely positive operator M : Mn → Mn and a self-
adjoint element h ∈Mn such that
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L(x) = i[h, x] +M(x)− 1
2
(M(1l)x+ xM(1l)).

where, as usual, [h, x] stands for the commutator hx−xh . Conversely, every
operator L of this form generates a semigroup of completely positive identity
preserving operators.

Since we know that every such M has a concrete representation as

M(x) =
∑

i

a∗i xai

we obtain for L the representation

L(x) = i[h, x] +
∑

i

a∗i xai −
1
2
(a∗i aix+ xa∗i ai)

This representation is usually called the Lindblad form of the generator.
Lindblad was able to prove this result for norm-continuous semigroups on

B(H) for infinite dimensional H . In this situation L is still a bounded opera-
tor. If one wants to treat the general case of strongly continuous semigroups on
B(H) then one has to take into account, for example, infinite unbounded sums
of bounded and unbounded operators ai . Until today no general characteriza-
tion of such generators is available, which would generalize the representation
of L as a second order differential operator as indicated above. Nevertheless,
Lindblad’s characterization seems to be ‘philosophically true’ as in most cases
of physical interest unbounded generators also appear to be in Lindblad form.
Typically, the operators ai are creation and annihilation operators.

9.2 Interpretation of Generators of Lindblad Form

The relation between a generator in Lindblad form and the above partial
differential operator is not so obvious. The following observation might clarify
their relation. For an extended discussion we refer to [KüMa1].

For h ∈Mn consider the operator D on Mn given by

D : x �→ i[h, x] = i(hx− xh) (x ∈Mn) .

Then

D(xy) = D(x) · y + x ·D(y)

Hence D is a derivation.
In Lindblad’s theorem h is self-adjoint and in this case D is a real deriva-

tion (i.e. D(x∗) = D(x)∗) and generates the time evolution x �→ e+ihtxe−iht

which is implemented by the unitary group (eiht)t∈R . Therefore, for self-
adjoint h the term x �→ i[h, x] is a ‘quantum derivative’ of first order and
corresponds to a drift term.
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For the second derivative we obtain after a short computation

D2(x) = i[h, i[h, x]]
= 2(hxh− 1

2 (h2x+ xh2)) .

This resembles the second part of a generator in Lindblad form. It shows that
for self-adjoint a the term

axa− 1
2
(a2x+ xa2)

is a second derivative and thus generates a quantum diffusion.
On the other hand for a = u unitary the term a∗xa − 1

2 (a∗ax + xa∗a)
turns into u∗xu − x which generates a jump process: If we define the jump
operator J(x) := u∗xu and

L(x) := J(x)− x = (J − Id)(x) then

eLt = e(J−Id)t = e−t · eJt

=
∑∞
n=0 e−t t

n

n!J
n .

This is a Poissonian convex combination of the jumps {Jn , n ∈ N} . Therefore,
terms of this type correspond to classical jump processes.

In general a generator of Lindblad type L =
∑
i a

∗
i xai− 1

2 (a∗i aix+ a∗i aix)
can not be decomposed into summands with ai self-adjoint and ai unitary
thus there are more general types of transitions. The cases which allow de-
compositions of this special type have been characterized and investigated
in [KüMa1]. Roughly speaking a time evolution with such a generator can
be interpreted as the time evolution of an open quantum system under the
influence of a classical noise.

In the context of quantum trajectories decompositions of Lindblad type
play an important role. They are closely related to unravellings of the time
evolution Tt (cf., e.g., [Car], [KüMa4], [KüMa5]).

9.3 A Brief Look at Quantum Stochastic Differential Equations

We already mentioned that for a semigroup (Tt)t≥0 of transition operators
on a general initial algebra A0 there is no canonical procedure which leads to
an analogue of the canonical representation of a classical Markov process on
the space of its paths. For A0 = Mn , however, quantum stochastic calculus
allows to construct a stochastic process which is almost a Markov process in
the sense of our definition. But in most cases stationarity is not preserved by
this construction.

Consider Tt = eLt on Mn and assume, for simplicity only, that the gen-
erator L has the simple Lindblad form
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L(x) = i[h, x] + b∗xb− 1
2
(b∗bx+ xb∗b) .

Let F(L2(R)) denote the symmetric Fock space of L2(R). For a test function
f ∈ L2(R) there exist the creation operator A∗(f) and annihilation operator
A(f) as unbounded operators on F(L2(R)). For f = χ[0,t] , the characteristic
function of the interval [0, t] ⊆ R , the operators A∗(f) and A(f) are usually
denoted by A∗

t (or A†
t ) and At , respectively. It is known that the operators

Bt := A∗
t +At on F(L2(R)), t ≥ 0, give a representation of classical Brownian

motion by a commuting family of self-adjoint operators on F(L2(R)) (cf. the
discussion in Sect. 1.3). Starting from this observation R. Hudson and K.R.
Parthasaraty have extended the classical Itô–calculus of stochastic integration
with respect to Brownian motion to more general situations on symmetric
Fock space. An account of this theory is given in [Par].

In particular, one can give a rigorous meaning to the stochastic differential
equation

dut = ut

(
bdA∗

t + b∗dAt + (ih− 1
2
b∗b)dt)

)

where bdA∗
t stands for b ⊗ dA∗

t on C
n ⊗ F(L2(R)) and similarly for b∗dAt ,

while ih− 1
2b

∗b stands for (ih− 1
2b

∗b)⊗1l on C
n⊗F(L2(R)). It can be shown

that the solution exits, is unique, and is given by a family (ut)t≥0 of unitaries
on C

n ⊗F(L2(R)) with u0 = 1l.
This leads to a stochastic process with random variables

it : Mn ' x �→ u∗t · x⊗ 1l · ut ∈Mn ⊗ B(F(L2(R)))

which can, indeed, be viewed as a Markov process with transition operators
(Tt)t≥0 . This construction can be applied to all semigroups of completely
positive identity preserving operators on Mn and to many such semigroups
on B(H) for infinite dimensional H .

10 Repeated Measurement and its Ergodic Theory

We already mentioned that in a physical context completely positive oper-
ators occur frequently in a particular concrete representation and that such
a representation may carry additional physical information. In this chapter
we discuss such a situation of particular importance: The state of a quantum
system under the influence of a measurement. The state change of the system
is described by a completely positive operator and depending on the partic-
ular observable to be measured this operator is decomposed into a concrete
representation. After the discussion of a single measurement we turn to the
situation where such a measurement is performed repeatedly as it is the case
in the micro-maser example. We describe some recent results on the ergodic
theory of the outcomes of a repeated measurement as well as of the state
changes caused by it.
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10.1 Measurement According to von Neumann

Consider a system described by its algebra A of observables which is in a
state ϕ . In the typical quantum case A will be B(H) and ϕ will be given by
a density matrix ρ on H . Continuing our discussion in Section 1.1 we consider
the measurement of an observable given by a self-adjoint operator X on H .
For simplicity we assume that the spectrum σ(X) is finite so that X has a
spectral decomposition of the form X =

∑
i λipi with σ(X) = {λ1, . . . λn}

and orthogonal projections p1, p2, . . . , pn with Σipi = 1l. According to the
laws of quantum mechanics the spectrum σ(X) is the set of possible outcomes
of this measurement (cf. Sect. 1.1). The probability of measuring the value
λi ∈ σ(X) is given by

ϕ(pi) = tr(ρpi)

and if this probability is different from zero then after such a measurement
the state of the system has changed to the state

ϕi : x �→ ϕ(pixpi)
ϕ(pi)

with density matrix

piρpi
tr(piρ)

.

It will be convenient to denote the state ϕi also by

ϕi =
ϕ(pi · pi)
ϕ(pi)

,

leaving a dot where the argument x has to be inserted.
The spectral measure σ(X) ' λi �→ ϕ(pi) defines a probability measure

µϕ0 on the set Ω0 := σ(X) of possible outcomes. If we perform the measure-
ment of X , but we ignore its outcome (this is sometimes called “measurement
with deliberate ignorance”) then the initial state ϕ has changed to the state
ϕi with probability ϕ(pi). Therefore, the state of the system after such a
measurement in ignorance of its outcome is adequately described by the state

ϕX := Σiϕ(pi) · ϕi = Σiϕ(pi · pi) .
(Here it is no longer necessary to single out the cases with probability ϕ(pi) =
0.)

Turning to the dual description in the Heisenberg picture an element x ∈ A
changes as

x �→ pixpi
ϕ(pi)

if λi was measured. A measurement with deliberate ignorance is described by
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x �→
∑

i

pixpi
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the map ϕ �→ ϕ⊗ψ of states on A into states on A⊗C . We already saw
in Sect. 5.1 that dual to this map is the conditional expectation of tensor
type

Pψ : A⊗ C �→ A : x⊗ y �→ ψ(y) · x
which thus describes this step in the Heisenberg picture (again we identify
A with the subalgebra A ⊗ 1l of A ⊗ C so that we may still call Pψ a
conditional expectation).

β ) The time evolution of A ⊗ C during the interaction time t0 is given by
an automophism Tint on A ⊗ C . It changes any state χ on A ⊗ C into
χ ◦ Tint .

γ ) A measurement of X =
∑
i λipi ∈ C changes a state χ on A ⊗ C into

the state χ(1l⊗pi · 1l⊗pi)
χ(1l⊗pi)

and this happens with probability χ(1l ⊗ pi). It
is convenient to consider this state change together with its probability.
This can be described by the non-normalized but linear map

χ �→ χ(1l⊗ pi · 1l⊗ pi) .

Dual to this is the map

A⊗ C ' z �→ 1l⊗ pi · z · 1l⊗ pi

which thus describes the unnormalized state change due to a measurement
with outcome λi in the Heisenberg picture.
When turning from a measurement with outcome λi to a measurement
with deliberate ignorance then the difference between the normalized and
the unnormalized description will disappear.

δ ) This final step maps a state χ on the composed system A⊗C to the state

χ|A : A ' x �→ χ(x⊗ 1l) .

The density matrix of χ|A is obtained from the density matrix of χ by a
partial trace over C . As we already saw in Sect. 5.1 a description of this
step in the dual Heisenberg picture is given by the map

A ' x �→ x⊗ 1l ∈ A⊗ C .

By composing all four maps in the Schrödinger picture and in the Heisenberg
picture we obtain

A α) A⊗ C β) A⊗ C γ) A⊗ C δ) A
ϕ −→ ϕ⊗ ψ −→ ϕ⊗ ψ ◦ Tint −→ ϕi −→ ϕi|A

PψTint(x⊗ pi) ←− Tint(x⊗ pi)←− x⊗ pi ←− x⊗ 1l ←− x
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with ϕi := ϕ⊗ ψ ◦ Tint(1l⊗ pi · 1l⊗ pi).
Altogether, the operator

Ti : A → A : x �→ PψTint(x⊗ pi)

describes, in the Heisenberg picture, the non-normalized change of states in
such a measurement if the i-th value λi is the outcome. The probability for
this to happen can be computed from the previous section as

ϕ⊗ ψ ◦ Tint(1l⊗ pi) = ϕ⊗ ψ( Tint(1l⊗ pi) )
= ϕ( PψTint(1l⊗ pi) )
= ϕ( Ti(1l) ).

When performing such a measurement but deliberately ignoring its outcome
the change of the system is described (in the Heisenberg picture) by

T =
∑

i

Ti .

Since the operators Ti were unnormalized we do not need to weight them
with their probabilities. The operator T can be computed more explicitly:
For x ∈ A we obtain

T (x) =
∑

i

PψTint(x⊗ pi) = PψTint(x⊗ 1l)

since
∑
i pi = 1l.

From their construction it is clear that all operators T and Ti are com-
pletely positive and, in addition, T is identity preserving that is T (1l) = 1l. It
should be noted that T does no longer depend on the particular observable
X ∈ C , but only on the interaction Tint and the initial state ψ of the appa-
ratus C . The particular decomposition of T reflects the particular choice of
X .

10.3 Measurement of a Quantum System and Concrete
Representations of Completely Positive Operators

Once again consider a ‘true quantum situation’ where A is given by the al-
gebra Mn of all n× n–matrices and C is given by Mm for some m . Assume
further that we perform a kind of ‘perfect measurement’ : In order to draw a
maximal amount of information from such a measurement the spectral pro-
jection pi should be minimal hence 1–dimensional and the initial state ψ of
the measurement apparatus should be a pure state. It then follows that there
are operators ai ∈ A = Mn , 1 ≤ i ≤ m , such that

Ti(x) = a∗i xai and thus
T (x) =

∑
i a

∗
i xai .
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Indeed, every automophism Tint of Mn ⊗Mm is implemented by a unitary
u ∈Mn ⊗Mm such that Tint(z) = Adu(z) = u∗zu for z ∈Mn ⊗Mm . Since
Mn ⊗Mm can be identified with Mm(Mn), the algebra of m ×m–matrices
with entries from Mn , the unitary u can be written as an m×m matrix

u =



uij





m×m

with entries uij ∈Mn , 1 ≤ i, j ≤ m .
Moreover, the pure state ψ on Mm is a vector state induced by a unit vec-

tor




ψ1

...
ψm



 ∈ C
m while pi projects onto the 1–dimensional subspace spanned

by a unit vector




ξi1
...
ξim



 ∈ C
m .

A short computation shows that T (x) =
∑
i Ti(x) where

Ti(x) = PψTint(x⊗ pi) = Pψ(u∗ · x⊗ pi · u)
= a∗i xai

with

ai = (ξ
i

1, . . . , ξ
i

m) ·



uij








ψ1

...
ψm



 .

Summing up, a completely positive operator T with T (1l) = 1l describes the
state change of a system in the Heisenberg picture due to a measurement
with deliberate ignorance. It depends only on the coupling of the system
to a measurement apparatus and on the initial state of the apparatus. The
measurement of a specific observable X =

∑
i λipi leads to a decomposition

T =
∑
i Ti where Ti describes the (non-normalized) change of states if the

the outcome λi has occurred. The probability of this is given by ψ(Ti(1l)) .
In the special case of a perfect quantum measurement the operators Ti

are of the form Ti(x) = a∗i xai and the probability of an outcome λi is given
by ϕ(a∗i ai).

Conversely, a concrete representation T (x) =
∑
i a

∗
i xai for T : Mn →Mn

with T (1l) = 1l may always be interpreted as coming from such a measurement:
Since T (1l) = 1l the map

v :=




a1

...
am



 from C
n into C

n ⊗ C
m = C

n ⊕ . . .⊕ C
n
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is an isometry and T (x) = v∗ · x⊗ 1l · v is a Stinespring representation of T .

Construct any unitary u ∈ Mn ⊗Mm = Mm(Mn) which has v =




a1

...
am



 in

its first column (there are many such unitaries) and put ψ̃ :=





1
0
...
0



 ∈ C
m

which induces the pure state ψ on Mn . Then

Pψ(u∗ · x⊗ 1l · u) = v∗ · x⊗ 1l · v = T (x) .

Finally, with the orthogonal projection pi onto the 1–dimensional subspace

spanned by the i-th canonical basis vector





0
:
1
0
:
0




with 1 as the i-th entry,

we obtain

Pψ(u∗ · x⊗ pi · u) = a∗i xai .

10.4 Repeated Measurement

Consider now the case where we repeat such a measurement infinitely often.
At each time step we couple the system in its present state to the same
measurement apparatus which is always prepared in the same initial state.
We perform a measurement, thereby changing the state of the system, we
then decouple the system from the apparatus, perform the measurement on
the apparatus, and start the whole procedure again. Once more the micro–
maser can serve as a perfect illustration of such a procedure: Continuing the
discussion in Section 10.2 one is now sending many identically prepared atoms
through the cavity, one after the other, and measuring their states after they
have left the cavity.

For a mathematical description we continue the discussion in the previous
section: Each single measurement can have an outcome i in a (finite) set
Ω0 (the particular eigenvalues play no further role thus it is enough just to
index the possible outcomes). For simplicity assume that we perform a perfect
quantum measurement. Then it is described by a completely positive identity
preserving operator T on an algebra Mn (n ∈ N or n =∞) with a concrete
representation T (x) =

∑
i∈Ω0

a∗i xai .
A trajectory of the outcomes of a repeated measurement will be an element

in



322 Burkhard Kümmerer

Ω := ΩN

0 = {(ω1, ω2, . . .) : ωi ∈ Ω0} .
Given the system is initially in a state ϕ then the probability of measuring
i1 ∈ Ω0 at the first measurement is ϕ(a∗i1ai1) and in this case its state changes
to

ϕ(a∗i1 · ai1)
ϕ(a∗i1ai1)

.

Therefore, the probability of measuring now i2 ∈ Ω0 in a second measurement
is given by ϕ(a∗i1a

∗
i2
ai2ai1) and in this case the state changes further to

ϕ(a∗i1a
∗
i2
· ai2ai1)

ϕ(a∗i1a
∗
i2
ai2ai1)

.

Similarly, the probability of obtaining a sequence of outcomes (i1, . . . , in) ∈
Ωn

0 = Ω0 × . . .×Ω0 is given by

P
n
ϕ((i1, i2, . . . , in)) := ϕ(a∗i1a

∗
i2 · . . . · a

∗
inain · . . . · ai2ai1)

which defines a probability measure P
n
ϕ on Ωn

0 .
The identity

∑
i∈Ω0

a∗i ai = T (1l) = 1l immediately implies the compatibil-
ity condition

P
n+1
ϕ ((i1, i2, . . . , in)×Ω0) = P

n
ϕ((i1, . . . , in)) .

Therefore, there is a unique probability measure Pϕ on Ω defined on the
σ–algebra Σ generated by cylinder sets

Λi1,...,in := {ω ∈ Ω : ω1 = i1, . . . , ωn = in}
such that

Pϕ(Λi1,...,in) = P
n
ϕ((i1, . . . , in)) .

The measure Pϕ contains all information on this repeated measurement: For
every A ∈ Σ the probability of measuring a trajectory in A is given by
Pϕ(A).

10.5 Ergodic Theorems for Repeated Measurements

Denote by σ the time shift on Ω that is σ((ω1, ω2, ω3, . . .)) = (ω2, ω3, ω4, . . .).
Then a short computation shows that

Pϕ(σ−1(A)) = Pϕ◦T (A)

for all sets A ∈ Σ . In particular, if ϕ is stationary for T , that is ϕ ◦ T = ϕ ,
then Pϕ is stationary for σ on Ω . This allows to use methods of classical
ergodic theory for the analysis of trajectories for repeated quantum measure-
ments. Indeed, what follows is an extension of Birkhoff’s pointwise ergodic
theorem to this situation.
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Theorem 10.1. Ergodic Theorem ([KüMa4]) If

lim
n→∞

1
N

N−1∑

n=0

ϕ ◦ Tn = ϕ0

for all states ϕ then for any initial state ϕ and for any set A ∈ Σ which is
time invariant, that is σ−1(A) = A , we have either Pϕ(A) = 0 or Pϕ(A) = 1 .

We illustrate this theorem by an application: How likely is it to find during
such a repeated measurement a certain sequence of outcomes (i1, . . . , in) ∈
Ωn

0 ? If the initial state is a T –invariant state ϕ0 then the probability of
finding this sequence as outcome of the measurements k, k+1, . . . k+n− 1 is
the same as the probability for finding it for the first n measurements. In both
cases it is given by ϕ0(a∗i1 . . . a

∗
in
ain . . . ai1). However, it is also true that this

probability is identical to the relative frequency of occurences of this sequence
in an arbitrary individual trajectory:

Corollary 10.2. For any initial state ϕ and for (i1, . . . in) ∈ Ωn
0

lim
N→∞

1
N
|{j : j < N and ωj+1 = i1, . . . , ωj+n = in}|

= ϕ0(a∗i1 · . . . · a
∗
inain · . . . · ai1)

for Pϕ – almost all paths ω ∈ ΩN
0 .

Similarly, all kind of statistical information can be drawn from the observation
of a single trajectory of the repeated measurement process: correlations can
be measured as autocorrelations. This was tacitly assumed at many places in
the literature but it has not been proven up to now. For proofs and further
discussions we refer to [KüMa4], where the continuous time versions of the
above results are treated.

If a sequence of n measurements has led to a sequence of outcomes
(i1, . . . , in) ∈ Ωn

0 then the operator

Ti1i2...in : x �→ a∗i1 . . . a
∗
inxain . . . ai1

describes the change of the system in the Heisenberg picture under this mea-
surement, multiplied by the probability of this particular outcomes to occur.
Similarly, to any subset A ⊆ Ωn

0 we associate the operator

TnA :=
∑

ω∈Ωn
0

Tω .

In particular, TΩn
0

= Tn .
For subsets A ⊆ Ωn

0 and B ⊆ Ωm
0 the set A × B may be naturally

identified with a subset of Ωn
0 ×Ωm

0 = Ωn+m
0 , and from the definition of TnA

we obtain
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Tn+m
A×B = TnA ◦ TmB .

Therefore, the operators {TnA : n ∈ N, A ⊆ Ωn
0 } form a discrete time version

of the type of quantum stochastic processes which have been considered in
[Dav1] for the description of quantum counting processes.

Also for this type of quantum stochastic processes we could prove a point-
wise ergodic theorem [KüMa5]. It concerns not only the outcomes of a repeated
measurement but the quantum trajectories of the system itself which is being
repeatedly measured.

Theorem 10.3. [KüMa5] Under the same assumptions as in the above er-
godic theorem

lim
n→∞

1
N

N∑

n=1

ϕ(a∗i1 . . . a
∗
in
· ain . . . ai1)

ϕ(a∗i1 . . . a
∗
in
ain . . . ai1)

= ϕ0

for any initial state ϕ and ω = (i1, i2, . . .) Pϕ – almost surely.

The continuous time version of this theorem has been discussed and proven
in [KüMa5]. We continue to discuss the discrete time version hoping that this
shows the ideas of reasoning more clearly. In order to simplify notation we
put

Miψ := ψ(a∗i · ai)
for any state ψ . Thus

∑
i∈Ω0

Miψ = ψ ◦ T .
Given the initial state ϕ and ω ∈ Ω we define

Θn(ω) :=
Mωn

· . . . ·Mω1ϕ

‖Mωn
· . . . ·Mω1ϕ‖

=
ϕ(a∗ω1

. . . a∗ωn
· aωn

. . . aω1)
ϕ(a∗ω1

. . . a∗ωn
aωn

. . . aω1)

whenever ‖Mωn
· . . . ·Mω1ϕ‖ �= 0. By the definition of Pϕ the maps Θn(ω)

are well-defined random variables on (Ω,Pϕ) with values in the states of A .
Putting Θ0(ω) := ϕ for ω ∈ Ω we thus obtain a stochastic processs (Θn)n≥0

taking values in the state space of A . A path of this process is also called a
quantum trajectory . In this sense decompositions as T (x) = Σia

∗
i xai define

quantum trajectories.
Using these notions we can formulate a slightly more general version of

the above theorem as follows.

Theorem 10.4. For any initial state ϕ the pathwise time average

lim
N→∞

1
N

N−1∑

n=0

Θn(ω)

exists for Pϕ–almost every ω ∈ Ω . The limit defines a random variable Θ∞
taking values in the stationary states.
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If, in particular, there is a unique stationary state ϕ0 with ϕ0 ◦ T = ϕ0

then

lim
N→∞

1
N

N−1∑

n=0

Θn(ω) = ϕ0

Pϕ–almost surely.

Quantum trajectories are extensively used in the numerical simulation of irre-
versible behaviour of open quantum systems, in particular, for computing their
equilibrium states (cf. [Car]). The theorem above shows that for purposes like
this it is not necessary to perform multiple simulations and determine their
sample average. Instead, it is enough to do a simulation along a single path
only.

Proof: Since A = Mn is finite dimensional and ‖T‖ = 1 the operator T is
mean ergodic , i.e.,

P := lim
N→∞

1
N

N−1∑

n=0

Tn

exists and P is the projection onto the set of fixed elements. It follows that
PT = TP = P . For more information on ergodic theory we refer to [Kre] and
[KüNa].

By Σn we denote the σ–subalgebra on Ω generated by the process
(Θk)k≥0 up to time n . Thus Σn is generated by the cylinder sets {Λi1,...,in ,
(i1, . . . , in) ∈ Ωn

0 } . As usual, E(X|Σn) denotes the conditional expectation
of a random variable X on Ω with respect to Σn .

Evaluating the random variables Θn, n ≥ 0, with values in the state
space of A on an element x ∈ A we obtain scalar–valued random variables
Θxn : Ω ' ω �→ Θn(ω)(x), n ≥ 0. Whenever it is convenient we write also
Θn(x) for Θxn . For the following arguments we fix an arbitrary element x ∈ A .

Key observation: On Pϕ -almost all ω ∈ Ω we obtain
E(Θn+1(x)|Σn)(ω) =

∑
i∈Ω0

‖MiΘn(ω)‖ · MiΘn(ω)(x)
‖MiΘn(ω)‖

=
∑
i∈Ω0

MiΘn(ω)(x)
= Θn(ω)(Tx) .

(∗)

Step 1: Define random variables

Vn := Θn+1(x)−Θn(Tx) , n ≥ 0 ,

on (Ω,Pϕ). In order to simplify notation we now omit the argument ω ∈
Ω . The random variable Vn is Σn+1 – measurable and E(Vn|Σn) = 0 by
(∗). Therefore, the process (Vn)n≥0 consists of pairwise uncorrelated random
variables, hence the process (Yn)n≥0 with
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Yn :=
n∑

j=1

1
j
Vj

is a martingale.
From E(V 2

j ) ≤ 4 · ‖x‖2 we infer E(Y 2
n ) ≤ 4 · ‖x‖2 · π2

6 , hence (Yn)n≥1

is uniformly bounded in L1(Ω,Pϕ). Thus, by the martingale convergence
theorem (cf. [Dur]),

lim
n→∞

n∑

j=1

1
j
Vj =: Y∞

exists Pϕ –almost surely. Applying Kronecker’s Lemma (cf. [Dur]), it follows
that

1
N

N−1∑

j=0

Vj −→
N → ∞

0 Pϕ–almost surely,

i.e.,

1
N

N−1∑

j=0

(
Θj+1(x)−Θj(Tx)

)
−→

N → ∞
0 Pϕ–almost surely,

hence

1
N

N−1∑

j=0

(
Θj(x)−Θj(Tx)

)
−→

N → ∞
0 Pϕ–almost surely,

since the last sum differs from the foregoing only by two summands which can
be neglected when N becomes large. Applying T it follows that

1
N

N−1∑

j=0

(
Θj(Tx)−Θj(T 2x)

)
−→

N → ∞
0 Pϕ–almost surely,

and by adding this to the foregoing expression we obtain

1
N

N−1∑

j=0

(
Θj(x)−Θj(T 2x)

)
−→

N → ∞
0 Pϕ–almost surely.

By the same argument we see

1
N

N−1∑

j=0

(
Θj(x)−Θj(T lx)

)
−→

N → ∞
0 Pϕ–almost surely for all l ∈ N

and averaging this over the first m values of l yields



Quantum Markov Processes and Applications in Physics 327

1
N

N−1∑

j=0

(
Θj(x)− 1

m

m−1∑

l=0

Θj(T lx)
)
−→

N → ∞
0 Pϕ–almost surely for m ∈ N .

We may exchange the limits N →∞ and m→∞ and finally obtain

1
N

N−1∑

j=0

(
Θj(x)−Θj(Px)

)
−→

N → ∞
0 Pϕ–almost surely. (∗∗)

Step 2: From the above key observation (∗) we obtain

E(Θn+1(Px)|Σn) = Θn(TPx) = Θn(Px) ,

hence the process (Θn(Px))n≥0 , too, is a uniformly bounded martingale which
converges to a random variable Θx∞ Pϕ –almost surely on Ω . By (∗∗) the
averages of the difference (Θj(x)−Θj(Px))j≥0 converge to zero, hence

lim
N→∞

1
N

N−1∑

j=0

Θj(x) = Θx∞ Pϕ– almost surely on Ω .

This holds for all x ∈ A , hence the averages

1
N

N−1∑

j=0

Θj

converge to some random variable Θ∞ with values in the state space of A
Pϕ –almost surely.

Finally, since PTx = Tx for x ∈ A , we obtain

Θ∞(Tx) = limn→∞Θn(PTx) = limn→∞Θn(Px)
= Θ∞(x) ,

hence Θ∞ takes values in the stationary states.
��

If a quantum trajectory starts in a pure state ϕ it will clearly stay in the
pure states for all times. However, our computer simulations showed that
even if initially starting with a mixed state there was a tendency for the
state to ”purify” along a trajectory. There is an obvious exception: If T is
decomposed into a convex combination of automorphisms, i.e., if the operators
ai are multiples of unitaries for all i ∈ Ω0 then a mixed state ϕ will never
purify since all states along the trajectory will stay being unitarily equivalent
to ϕ . In a sense this is the only exception:

For a state ψ on A = Mn we denote by ρψ the corresponding density
matrix such that ψ(x) = tr(ρψ · x) where, as usual, tr denotes the trace on
A = Mn .
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Definition 10.5. A quantum trajectory (Θn(ω))n≥0 purifies, if

lim
n→∞

tr(ρ2
Θn(ω)) = 1 .

Theorem 10.6. [MaKü] The quantum trajectories (Θn(ω))n≥0 , ω ∈ Ω , pu-
rify Pϕ–almost surely or there exists a projection p ∈ A = Mn with dim p
≥ 2 , such that pa∗i aip = λip for all i ∈ Ω0 and λi ≥ 0 .

Corollary 10.7. On A = M2 quantum trajectories purify Pϕ–almost surely
or ai = λiui for λi ∈ C and ui ∈ M2 unitary for all i ∈ Ω0 , i.e., T is
decomposed into a convex combination of automorphisms.
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[KüMa1] B. Kümmerer, H. Maassen: The essentially commutative dilations of dy-
namical semigroups on Mn . Commun. Math. Phys. 109 (1987), 1 - 22. 293, 301, 313, 314
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